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With salt stress presenting a major threat to global food production, attention has turned to the identification and breeding of crop cultivars with improved salt tolerance. For instance, some accessions of wild species with higher salt tolerance than commercial varieties are being investigated for their potential to expand food production into marginal areas or to use brackish waters for irrigation. However, assessment of individual plant responses to salt stress in field trials is time-consuming, limiting, for example, longitudinal assessment of large numbers of plants. Developments in Unmanned Aerial Vehicle (UAV) sensing technologies provide a means for extensive, repeated and consistent phenotyping and have significant advantages over standard approaches. In this study, 199 accessions of the wild tomato species, Solanum pimpinellifolium, were evaluated through a field assessment of 600 control and 600 salt-treated plants. UAV imagery was used to: (1) delineate tomato plants from a time-series of eight RGB and two multi-spectral datasets, using an automated object-based image analysis approach; (2) assess four traits, i.e., plant area, growth rates, condition and Plant Projective Cover (PPC) over the growing season; and (3) use the mapped traits to identify the best-performing accessions in terms of yield and salt tolerance. For the first five campaigns, >99% of all tomato plants were automatically detected. The omission rate increased to 2–5% for the last three campaigns because of the presence of dead and senescent plants. Salt-treated plants exhibited a significantly smaller plant area (average control and salt-treated plant areas of 0.55 and 0.29 m2, respectively), maximum growth rate (daily maximum growth rate of control and salt-treated plant of 0.034 and 0.013 m2, respectively) and PPC (5–16% difference) relative to control plants. Using mapped plant condition, area, growth rate and PPC, we show that it was possible to identify eight out of the top 10 highest yielding accessions and that only five accessions produced high yield under both treatments. Apart from showcasing multi-temporal UAV-based phenotyping capabilities for the assessment of plant performance, this research has implications for agronomic studies of plant salt tolerance and for optimizing agricultural production under saline conditions.
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INTRODUCTION

Approximately 20% (45 million ha) of irrigated land is salt-affected (Machado and Serralheiro, 2017). Salt stress, caused by either saline or sodic soils, represents a major threat to global food production (Rao et al., 2013), with estimates of up to $30 billion in agricultural losses annually (Qadir et al., 2014). The problem is particularly acute in arid and semiarid environments, where irrigation associated with insufficient drainage of water from the sub-soil causes saline waters to rise into the root zone (Pitman and Lauchli, 2002). Salinity also occurs in irrigated soil because of the accumulations of soluble salts introduced via the continuous use of irrigation waters containing medium to high quantities of dissolved salts (Al-Hassoun, 2007; Ferchichi et al., 2018). Ultimately, excess salts cause a water deficit in plants due to osmotic stress and lead to the accumulation of sodium ions in plant shoots where they disrupt key biochemical processes (Zhang and Blumwald, 2001; Rao et al., 2013), resulting in yield losses. With estimates of global crop production needing to increase by more than 60% by 2050 (United Nations World Water Assessment Programme [WWAP], 2014; Senthilnath et al., 2016), breeding crops with improved salt tolerance represents a research priority (Munns and Tester, 2008; Messerer et al., 2018).

The commercial tomato is one of the world’s major horticultural crops, with a global annual production of approximately 178 million tons (FAOSTAT, 2016). Tomato varieties generally tolerate salinity levels up to 2,500 μS/cm, but above this level, the quality and yield often declines. To overcome yield losses due to salinity, the use of salt-tolerant wild tomato species as a genetic resource for improving commercial varieties has been explored. Indeed, some accessions of the wild tomato species S. pimpinellifolium, have shown traits of increased salt tolerance, representing a potential candidate for breeding (Zhang and Blumwald, 2001; Rao et al., 2013; Razali et al., 2018). As it is closely related to S. lycopersicum, S. pimpinellifolium has been used as a donor for many commercially important tomato traits (Zuriaga et al., 2009; Rao et al., 2013; Razali et al., 2018). S. pimpinellifolium is native to Peru and Ecuador, where it is adapted to diverse environmental conditions, ranging from coastal desert climates to humid and foggy conditions at higher altitudes (Zuriaga et al., 2009; Rao et al., 2012). With this diversity of environmental adaptions, some S. pimpinellifolium accessions might be suited to arid environments with saline soils elsewhere in the world.

Field trials are used to assess plant responses to soil conditions, fertilizers, diseases, abiotic stressors (e.g., heat, water, nutrients, wind, salinity) and many other growth factors in agriculturally and economically relevant settings (Singh et al., 2016). Plant phenotyping, i.e., the assessment of a plant’s observable characteristics and traits, such as its architecture, and biochemical and biophysical properties, is performed in order to identify key determinants of growth and yield (Yang et al., 2017). Effective field-based phenotyping is still considered a bottleneck to improve efficiency in breeding programs (Singh et al., 2016). While field trials are an effective setup for assessing plant traits and responses to different types of abiotic stress factors, phenotyping large numbers of plants in the field is often time-consuming, labor-intensive and subjective, especially for collection of time-series data that demand repetitive collection procedures (Sugiura et al., 2015; Holman et al., 2016). Given that abiotic stresses adversely affect photosynthesis and the growth of stems, leaves, and roots and, consequently, yield and fruit quality, there is potential for remote sensing technologies to measure these manifested characteristics in a more efficient and consistent manner. Indeed, a number of remote sensing approaches have already been developed for rapid and non-destructive assessment of responses to biotic and abiotic stress in tomato plants (Li et al., 2014).

Zhang et al. (2002, 2003, 2005) used field spectroscopy, airborne hyper-spectral and airborne multi-spectral imagery to map tomato plants with late blight infection, finding that only those plants with middle to late stages of infection could be mapped. Their assessment, however, focused on patches in a field rather than individual tomato plants, because of insufficient spatial resolution of the airborne imagery available. More recent developments in the use of Unmanned Aerial Vehicles (UAV) provide the capability to obtain imagery with a much higher spatial and temporal resolution, allowing individual plants and their properties to be clearly differentiated (Shi et al., 2016; Patrick and Li, 2017; Jung et al., 2018). Candiago et al. (2015) used a UAV-mounted Tetracam to calculate three different vegetation indices for assessment of tomato plants. However, they did not invert the indices to estimate biophysical or biochemical properties, and their assessment was not carried out at the individual plant level. Therefore, these results may have been affected by exposed bare ground in between plants. Senthilnath et al. (2016) used two UAV-derived images to map individual tomato fruits of each plant, testing different segmentation and classification approaches. They found this task to be difficult, as many fruits were hidden by the leaves and stalks. Moeckel et al. (2018) estimated crop height and biomass of eggplant, tomato and cabbage plants from UAV-based Red-Green-Blue (RGB) imagery and Structure-from-Motion and found a good correlation with manual field observations. Enciso et al. (2019) used RGB and multi-spectral UAV imagery collected during the growing season of eight difference tomato varieties to estimate plant height, canopy cover and NDVI, and found that height could be accurately estimated and that canopy cover was highly correlated with field-based LAI measurements. However, this assessment was performed at the plot and not individual plant level.

With an increasing number of studies focusing on UAV-based high-throughput phenotyping of agricultural crops, methods that might be appropriate for studies of tomato plants are also increasing. For instance, Makanza et al. (2018) used UAV-based RGB imagery to assess crop cover and canopy senescence in a maize field trial and found that the UAV imagery-derived plant traits showed moderately high heritability values for both traits. Holman et al. (2016) used multi-temporal UAV-based RGB imagery to measure wheat plant height, and found the image time-series useful for estimating growth rates in relation to fertilizer rates. Tattaris et al. (2016) obtained statistically significant correlations between UAV-based thermal and multi-spectral image-derived canopy temperature and Normalized Difference Vegetation Index (NDVI) values in relation to biomass and yield of wheat. Patrick and Li (2017) used UAV-based RGB imagery to successfully measure structural parameters (height, extent, canopy area, crown diameter and width) of 25 blueberry bushes. Many other recent examples of UAV-based applications for high-throughput phenotyping exist, e.g., for responses to drought and nitrogen deficiency in dry bean (Sankaran et al., 2018), vigor of different barley genotypes (Di Gennaro et al., 2018), drought adaptive traits in durum wheat (Condorelli et al., 2018), sorghum breeding for estimation of plant height (Watanabe et al., 2017; Hu et al., 2018), black poplar response to drought (Ludovisi et al., 2017), and for estimating the intra-field crop height variability at commercial farm scales (Ziliani et al., 2018). The reviewed literature on UAV-based high-throughput phenotyping demonstrates the capability of multi-temporal RGB and multi-spectral imagery for assessing growth rates, architectural parameters and plant cover under abiotic stress and control conditions.

While there has been a recent increase in agronomic research using UAV-based high-throughput phenotyping of agricultural crops (Shi et al., 2016), a survey of the literature indicates that our study is the first one to interrogate individual tomato plants in detail and demonstrate the utility of phenotyping tomato plant traits toward assessing yield and salt tolerance. The aim of this research was to develop and demonstrate a UAV-based method for effective assessment of phenotypic characteristics and salt tolerance of 199 wild tomato (S. pimpinellifolium) accessions in a field trial. Specific objectives were to: (1) automatically delineate tomato plants from a time-series of eight RGB and two multi-spectral UAV image datasets, using an automated object-based image analysis approach; (2) assess plant area, growth rates (defined as daily changes of plant area), condition and Plant Projective Cover (PPC, i.e., the vertically projected leaves, suckers, flowers, stem and fruit) over the growth season; and (3) identify the best-performing accessions in relation to yield and salt tolerance. Additional research contributions include using UAV-based image time-series analysis for multi-temporal plant trait analysis and determining their relations to salt tolerance and performance in terms of yield. The developed UAV-based methods provide the foundation to support more detailed plant phenotyping using remotely sensed mapping and monitoring of plant area, growth rates, biophysical and biochemical traits and health status of different tomato plant varieties at the individual plant and even sub-plant level.



MATERIALS AND METHODS

In this study, four phenotypic traits were mapped from multi-temporal UAV imagery, including plant area, growth rate, condition and PPC. While not previously explored for tomato plants using UAV data, these traits were selected due to their previous correlation with plant yield in other crop types (Peñuelas and Filella, 1998; Holman et al., 2016; Lootens et al., 2016; Jung et al., 2018; Makanza et al., 2018). To assess these traits at the individual plant level, an object-based image analysis approach was used as this technique has proven most suited for imagery with high spatial resolution, where mapped features may consist of hundreds or thousands of pixels (Blaschke, 2010).

Study Area and Experimental Design

The study area was located at the King Abdulaziz University Agricultural Research Station in Hada Al-Sham (21°47′48″N, 39°43′35″E), approximately 60 km east of Jeddah, Saudi Arabia. The site is located in a tropical arid climate that receives less than 100 mm of rainfall annually, and has a predominantly sandy loam soil type. An area of 75 m × 75 m was established for the experiment, comprising four plots of approximately 30 m × 30 m per plot, with each containing 15 rows of 20 tomato plants (Figure 1). A total of 1,200 tomato plants were planted, consisting of 200 genotypes that included 199 S. pimpinellifolium accessions (Supplementary Table S1) and one S. lycopersicum accession (the commercial tomato, Heinz 1706). The 199 S. pimpinellifolium accessions were originally collected in the 1950s and 1960s from different sites in Peru and Ecuador. The seeds for these accessions were obtained from the Tomato Genetics Resource Center at the University of California Davis and propagated at King Abdullah University of Science and Technology (KAUST) to generate a stock of fresh seeds for use in this experiment.
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FIGURE 1. Overview of study site at King Abdulaziz University Agricultural Research Station in Hada Al-Sham on the January 14, 2018, showing the four plots and four water tanks for irrigation as well as 36 plants with low, medium and high salt tolerance selected for focused field analysis.



All tomato plants were sown between October 1–2, 2017 at a greenhouse nursery at KAUST and transplanted, following a randomized design, 1 month later between November 1–2, 2017 into two control and two salt-treated plots. Each of the 200 accessions had three replicates in each of the two treatments. The two control plots were irrigated solely with low salinity water (approximately 27 mM NaCl, 900–1000 ppm), while the two salt-treated plots were irrigated with water of increasingly saline concentration. In those plots, the salt concentrations ranged from the original low salinity water to 127 mM NaCl (4500 ppm) from November 14 2017, 197 mM NaCl (7000 ppm) from December 4, 225 mM NaCl (8000 ppm) from December 10, 254 mM NaCl (9000 ppm) from December 18, and 183 mM NaCl (6500 ppm) from January 12 2018 until the time of harvest (between January 16–22). Drip irrigation occurred twice daily, first in the morning around sunrise and then in the evening after sunset, with both lasting for 10 min in the first week, 15 min from the second week (November 9), and 30 min from the eighth week (December 17) until harvest, in line with the increasing water requirements of growing plants. To ensure pure vegetation signals from the plots, any weeds were removed manually before each of the UAV flights. Maximum day and minimum night temperatures ranged from 27 to 37°C and 12 to 24°C, respectively, with a mean temperature of 25.67°C during the growing season. No rainfall was recorded, but several sandstorms occurred during the growing season, including on December 8 and 16 2017, on January 4, and between January 8–10 2018. Workers washed the plants with non-saline water and cleaned the plots after each event to prevent reflectance attenuation of the plants.

Field Data for Geometric and Radiometric UAV Image Calibration

Eight field campaigns were undertaken on November 9, 16, 23, and 30 and on December 6 and 20 2017, together with January 7 and 14 2018. To support the UAV-based imagery, a range of in situ data were collected concurrently, including ground control points (GCPs) for geometric correction of the UAV, spectrometer measurements of radiometric calibration panels, measurements of plant dimensions, visual assessment of plant condition, and ground-based plant photography for PPC measurements. Five GCPs were installed and measured on the November 2 planting date using a Leica GS10 base station with an AS10 antenna and a Leica GD15 smart antenna as a rover (Leica Geosystems, St Gallen, Switzerland). A single GCP was placed in the center of the field site, and another at each of the four corners of the study domain. All raw data from the base station and rover were post-processed using Leica Geo Office (Leica Geosystems, St Gallen, Switzerland). Six radiometric calibration panels were produced using oak plywood boards painted with three coats of matte paint in white, four shades of gray, and also in black (Johansen et al., 2018). The reflectance values of the six targets were measured with an ASD FieldSpec4 spectrometer (Malvern Panalytical, Malvern, United Kingdom) and confirmed to be near Lambertian. The root mean square error (RMSE) of reflectance (scaled from 0 to 100%) was 0.17%, between 450 and 850 nm, corresponding to the spectral range of the collected UAV RGB and multi-spectral imagery. The RMSE was based on spectrometer measurements obtained at 13 different elevation and azimuth angles, i.e., at nadir and at approximately 15, 30 and 45° off-nadir angles viewed from north, south, east and west, as suggested by Johansen et al. (2018).

Field-Based Plant Phenotypic Measurements

Measurements of morphometric features, condition and PPC were undertaken on January 7, 2018 for 36 selected tomato plants in the field. These tomato plants belonged to six accessions, deemed to have high (2 accessions), medium (2 accessions) and low (2 accessions) tolerance to saline irrigation (based on results from an earlier field trial). Each of the six accessions had six replicates (i.e., 36 plants in total), with three replicates of each of the six accessions (i.e., 18 plants) planted in both the control and salt-treated plots (for a total of nine plants in each of the four sub-plots) (Figure 1). It should be noted that because of the uneven number, i.e., three, of control and salt-treated replicates, these were split unequally between plots, i.e., one salt-treated replicate in one salt plot and two salt-treated replicates in the other salt plot. The selection of nine plants per plot used for focused analysis was a compromise between the number of plants that were practically feasible to assess within a day and obtaining sufficient information on plant biophysical and biochemical characteristics every second week during the growing season for calibration/validation purposes.

While the area of each plant was difficult to estimate in the field, ground-based measurements of the length and width of the tomato plants provided quantitative measures that could be directly compared against the UAV imagery. The length of each of the 36 plants were measured along the plants’ longest axis, with the longest width measured perpendicular to this axis. To measure the PPC for the same 36 plants, one representative photo was taken at midday on January 7 from a position vertically above each tomato plant, after black material had been placed underneath the plant canopy. The black background more easily enabled the separation of plant material and gaps within the canopy. Prior to analysis, each photo was cropped to exclude any edge effects from irregularly shaped tomato plants and to enable subsequent analysis to correspond to the UAV-based plant delineation. To be consistent, an ellipse was drawn along the approximate perimeter of the tomato plants and a rectangle was placed within the ellipse and used for cropping the photos (Figure 2). This ensured that the inclusion of areas with no plant material along the tomato plant perimeter (cyan ellipse in Figure 2) was minimized, while still including the majority of the plant for assessment. Measurements of PPC were derived following Scarth (2003) that converts vertical digital photos into measurements of PPC, based on the principle described in Van Gardingen et al. (1999).
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FIGURE 2. (A) Tomato plant with black material as background. The yellow ellipse shows the approximate perimeter of the plant, while the black square shows the part of the photo analyzed in (B). The cyan ellipse shows how areas with no plant material were excluded to correspond with the UAV-based plant delineation results. In this particular example, the studied plant had a PPC of 91.31%.



The physical condition of each plant in the trial was assessed visually on January 7. Senescent plants were labeled as “poor” condition, while plants with no visibly green photosynthetically active leaves and branches were labeled as “dead.” All other green plants were labeled as being in “good” condition. Based on these observations, empirical relationships were assessed between the field data and UAV imagery.

Yield was measured from each of the harvested tomato plants between January 18–26. This was done by manually counting the number of both mature and immature fruits on each plant and weighing them. Fruit maturity was assessed based on color, with immature fruits being green and fruits with some redness characterized as mature. For small plants (<1 kg shoot mass), all fruits > 3 mm in diameter were counted and weighed. For large plants (>1 kg shoot mass), a representative subset of the whole shoot was selected, and all fruits > 3 mm in diameter were counted, weighed and this subset data was used to extrapolate overall yield by multiplying the measured yield by the ratio of the whole shoot mass and the shoot mass of the selected subset. The number of fruits ranged from 1 to 3349 per plant with an average number of 528 fruits/plant. Yield ranged from 0.1 to 1433 g per plant with an average yield of 227 g/plant.

UAV Image Collection and Pre-processing

UAV-derived RGB imagery was collected using a Zenmuse X3 camera (Dà-Jiāng Innovations, Shenzhen, China) for all of the eight field campaigns, while additional multi-spectral green (530–570 nm), red (640–680 nm), red edge (730–740 nm) and near infrared (NIR) (770–810 nm) imagery were collected with the Parrot Sequoia sensor (Parrot SA, Paris, France) for the last two campaigns. Both cameras were mounted on a DJI Matrice 100 (Dà-Jiāng Innovations, Shenzhen, China) Quadcopter for coincident data capture. All UAV imagery were collected close to solar noon under clear sky conditions at a speed of 2 m/s and a height of 13 m. The Universal Ground Control Station (UgCS) Client application (SPH Engineering, SIA, Riga, Latvia) was used to autonomously collect the multi-spectral imagery with 68% sidelap and 83% along-track overlap, recording photos once every second. The RGB imagery was collected with an 82% sidelap and 78% along-track overlap, recording photos every 3 s. The sidelap was constrained by the field of view of a simultaneous thermal image data capture (not presented in this research). The RGB and multi-spectral imagery was processed in Agisoft PhotoScan (Agisoft LLC, St. Petersburg, Russia) to produce a georeferenced orthomosaic and Digital Surface Model (DSM) for each data capture. A 13 m flying height produced a pixel size of 0.5 and 1.12 cm for the RGB and multi-spectral orthomosaics, respectively. Based on the relationship between the field-derived spectrometer measurements and the digital numbers of the six radiometric calibration panels within the orthomosaics, the digital numbers were converted to at-surface reflectance for the RGB and multi-spectral imagery, using an exponential and linear empirical line correction, respectively (Ahmed et al., 2017; Johansen et al., 2018). This produced coefficients of determination (R2) > 0.98 for all band combinations. In order to produce a DSM, a dense point cloud was required. The dense point cloud was produced from Structure-from-Motion at “high” quality and using “mild” depth filtering to avoid removing points representing the tomato plant canopies. A Digital Terrain Model (DTM) was produced based on RGB imagery collected for the bare ground prior to planting. A Canopy Height Model (CHM) was produced by subtracting the DTM from the DSM.

Object-Based Image Analysis for Delineation of Tomato Plants

An object-based approach was developed in the eCognition Developer 9.3 software (Trimble, Munich, Germany) to delineate all tomato plants from each of the eight RGB and two multi-spectral image captures (Figure 3). First, a fine scale segmentation (multiresolution segmentation algorithm, scale factor = 6, shape = 0.1, compactness = 0.5) based on the three visible bands and the Green-Blue index (Table 1) for the RGB imagery, was performed to cluster pixels together with similar spectral information. The multi-spectral bands and all five band combinations reported in Table 1 were used to segment the multi-spectral imagery with the same multiresolution segmentation settings as the RGB imagery. Objects representing the green parts of the tomato plants were identified using empirically defined thresholds for a number of spectral band combinations (see Table 1: Thresholds 1 and Figure 4A). The identified areas were then expanded using a region-growing algorithm to grow into neighboring objects as long as slightly more relaxed thresholds (see Table 1: Thresholds 2) were fulfilled. A restriction imposed on this region-growing was that unclassified objects could only be classified as tomato plants if they bordered objects already classified as tomato plants (Table 1: Thresholds 2 and Figure 4B). This procedure was looped until the threshold conditions were no longer met to ensure all objects belonging to an individual tomato plant were encapsulated into a single large object. Unclassified objects surrounded by tomato plant objects were then classified as, and merged with, the respective tomato plant objects. Objects classified as tomato plants with an area < 150 cm2 and occurring more than 30 cm from a larger tomato plant object were labeled as unclassified, as these represented incorrectly classified objects.
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FIGURE 3. Flowchart showing the individual steps in the object-based image analysis process used for delineating the tomato plants.



TABLE 1. Band combinations and associated thresholds (TH) used for the initial tomato plant identification in the object-based image analysis for the RGB and multi-spectral UAV imagery.
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FIGURE 4. Individual steps in the object-based image analysis used to automatically delineate the tomato plants from the UAV-based RGB and multi-spectral imagery, using (A,B) various band combinations and thresholds of these (green objects), and pixel-based object resizing to (C) expand and subsequently (D) shrink plant objects (yellow outlines).



A pixel-based object resizing algorithm was then used to grow the tomato plants classified in the above steps beyond their perimeter, to ensure that all parts of the individual plants were included within the expanded objects (Figure 4C). This object expansion was only permitted into unclassified pixels to prevent neighboring tomato plants from merging. These large objects were then shrunk pixel by pixel in multiple loops, into areas of either bright bare ground or dark shaded ground, while smoothing the object perimeter and preventing shrinking into plant parts of the objects with NDVI values > 0.20 (Figure 4D). Finally, the CHM was used to expand the tomato plants into areas with a CHM value > 15 cm, if these were bordering the delineated tomato plants. Dead plants were identified based purely on the CHM and a height threshold of 15 cm. Each of the UAV-based delineation results were visually assessed and manually edited as necessary. The field-derived measurements of plant dimensions were used for evaluation of the UAV-based delineation results.

Extraction of Phenotypic Traits

The delineation of individual tomato plants allowed for an assessment of plant area. Plant area calculations were undertaken both at the plot level and at the individual plant level. From each plant object, it was possible to automatically derive a measure of object area, length (longest axis), and width (perpendicular to longest axis). Plant growth rates were assessed using the mapped plant area from the eight UAV campaigns. To calculate growth rate, the change in plant area between individual UAV campaigns was divided by the number of days between the campaigns. This provided seven growth rate measurements per plant through the growing season.

To map plant condition, an empirical relationship was developed between the field observations and derived vegetation indices (Table 1). To do this, 50% of randomly selected observations were used to empirically set NDVI and RE-NDVI values to < 0.35 and < 0.22, respectively, based on the multi-spectral imagery (Robson et al., 2017) to map plants that were either dead or in poor condition. These values were set to minimize errors of commission (incorrect inclusion of an observation, causing overestimation) and omission (incorrect exclusion of an observation, causing underestimation) based on the field assessment of plant condition carried out on January 7. For the RGB imagery, a Green-Red Vegetation Index (Motohka et al., 2010) threshold value was set to -0.19 for discriminating between plants in good and poor/dead condition. Field observations of dead plants and plants in poor condition were treated as one category because of the difficulty of spectrally discriminating these two categories in the imagery. As all image datasets were normalized to at-surface reflectance, the empirically set thresholds were applied to all other image dates to map plants in poor/dead condition.

The average value per plant of a range of vegetation indices (Table 1) were correlated against field-derived measurements of PPC, using linear and quadratic regression analysis, with predictive performance examined based on the calculation of RMSE. The vegetation indices producing best-fit equations with the largest R2 value and the lowest RMSE for both the RGB and multi-spectral imagery were used to predict PPC for all other dates. This was deemed appropriate as all image datasets were normalized to at-surface reflectance.

Identifying the Best-Performing Tomato Plant Accessions

Each of the UAV-based phenotypic traits were first correlated against field-harvested total yield mass (mass of mature and immature tomato fruit) per plant to determine their suitability for predicting the best-performing accessions. Jung et al. (2018) used a sequential procedure for cotton genotype selection based on UAV-derived canopy cover and open boll related phenotypic features. They compared the selected UAV-based entries to the highest yielding entries, with the UAV-selected entries matching 80 and 73% of the minimum and average lint yield, respectively. We adopted a similar approach to Jung et al. (2018) in this research, using a sequential procedure whereby tomato plant accessions were gradually eliminated based on the four UAV-derived phenotypic traits (condition, plant area, growth rate and PPC) to identify the best-performing accessions in relation to yield. Thresholds for this elimination process were set empirically.

To identify the best-performing tomato plant accessions, the time-series information on plant condition was used first. All of the plants that were initially classified as being in good condition, but proceeded to either poor/dead condition or went missing (e.g., due to wind damage or removal if dead), were identified based on the UAV-based condition classification results. When evaluating the UAV-based condition results for each of the 200 accessions (each accession had three replicates in each of the two treatments), those accessions with ≥ 2 (with ≥ 1 of these being salt-treated to incorporate salt tolerance into the condition assessment) of the six plants classified as either poor/dead condition or missing, were omitted from further analysis, as it was deemed undesirable to have only ≤ 4 out of 6 plants surviving the growing season. The remaining accessions were then used for the next elimination stage.

In the next stage, the mean area of the five or six tomato plants per accession for the last UAV data collection on January 14 was used. To establish a threshold based on plant area to identify the best-performing tomato plants, the tomato plants with the top 10% highest yield were identified based on the field data of total yield mass per plant. These 120 tomato plants (out of a total of 6 plants × 200 accessions; i.e., 1200 plants) were then sorted based on UAV-derived plant area to identify the smallest plant area, which was then used as a threshold. Plant accessions with a mean plant area below this threshold on January 14 were eliminated.

For each tomato plant, seven growth rate measurements were then obtained from the eight UAV datasets. The maximum value of these seven measurements was assigned to each plant. The maximum growth rate occurred within a short period around the end of November for the majority of plants. The tomato plants with the top 10% highest field-assessed yield were then selected, and out of these 120 plants, the smallest maximum growth rate value was used as a threshold. The average value for the maximum growth rate of the five or six plants belonging to each accession was then used to omit accessions if the average value fell below this threshold.

PPC was then used for the eight UAV image data captures. PPC values varied throughout the growing season with 25 and 75 quantiles ranging from around 66–86% and 82–91%, respectively. The mean PPC per accession was first calculated for each of the UAV datasets. Then, the number of PPC occurrences over both 85 and 80% were counted for the eight data captures. These thresholds were empirically set based upon the UAV-derived PPC values. Plant accessions with mean PPC values under 80% occurring in at least four out of the eight data captures, were excluded unless at least three out of the eight captures had PPC mean values over 85%. These thresholds were set empirically against the field-derived yield data. The remaining tomato plant accessions that were not eliminated based on their condition, area, growth rate and PPC values, were then compared with the ranked list of yield performance per accession based on field-derived data.

A similar approach was used for assessment of control and salt-treated plants separately. As there were only three plants per accession for each treatment, accessions with two or three plants in poor/dead condition or missing were omitted. Thresholds for plant area, maximum growth rate and PPC were obtained as described above, but only based on 600 plants split between the two treatments.

To gain further information on similarities and differences between the evaluated phenotypic traits of the 200 accessions mapped from the UAV imagery (i.e., condition, area, maximum growth rate, PPC), a principal component analysis was undertaken, using (1) all accessions and all plants (i.e., up to six plants per accession); (2) all accessions and all salt-treated plants (i.e., up to three plants per accession); and (3) all accessions and all control plants (i.e., up to three plants per accession). For the principal component analysis, the average plant area on January 14, average PPC for all eight campaigns, and the average value of the maximum growth rate were derived for each accession. Condition was given a number from 0 and 6 based on the number of plants in good condition on January 14 per accession. For the separate analysis of the salt-treated and control plants, the condition number ranged from 0 and 3, with only three plants per accession.



RESULTS

Delineation of Tomato Plants

Object-based image analysis was used to delineate all tomato plants from the 10 UAV image datasets. For the first five campaigns, > 99% of all tomato plants were automatically detected, with 7–12% of the automatically detected plants requiring manual editing to ensure accurate delineation of the perimeter of the tomato plants. The omission rate increased to between 1.7–5.4 and 0.96–2.1% for the last three campaigns for the RGB and multi-spectral imagery, respectively. The increased rate was due to the presence of dead and senescent plants exhibiting reflectance characteristics similar to neighboring bare ground and falling below the 15 cm CHM threshold used to discriminate plants from rocks and other small features above ground level (Table 2). Consequently, this increased the need for manual editing, with 9–16% of plants requiring adjustment for the RGB imagery, respectively. In comparison, adjustments of 5–12% of plants were required for the multi-spectral imagery. The NIR and red edge bands of the multi-spectral imagery facilitated the mapping of senescent plant parts as well as shaded leaves compared to the RGB imagery, explaining the difference in the plants requiring adjustment, although the higher spatial resolution of the RGB imagery improved the ability to map small senescent plants in some cases. For example, the use of the higher spatial resolution RGB imagery enabled identification of three plants that were incorrectly omitted using the multi-spectral imagery of January 7, 2018 (Table 2). However, the RGB image color and texture, i.e., spatial arrangement of color, of senescent plant parts appeared very similar to that of disturbed bare ground and bare ground with scattered shadows from plant branches and leaves. Commission errors also occurred on a few occasions, where weeds were not correctly removed. In such cases, these were manually deleted. When comparing the area of those plants that were manually adjusted to the automatically delineated area prior to adjustment, it was found that ≤ 10% of the plant area was adjusted in 88.7% of cases. Using measured plant length and width for comparison with the automatically delineated plant area, an R2 value of 0.85 (n = 132) with an RMSE of 0.052 m was achieved, with smaller plants slightly overestimated and larger plants slightly underestimated in length.

TABLE 2. Number of plants delineated per plot for the RGB and multi-spectral (MS) imagery for each of the eight campaigns and in brackets, number of plants omitted by the automatic delineation process validated against visual assessment of the RGB and multi-spectral imagery.
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From Table 2 it can be seen that the number of delineated plants increased from November 9–16 as a result of some plants being too small to identify in the first collected UAV dataset after manual editing. The number of plants started decreasing significantly after December 20 as a result of the destructive effects of a number of sandstorms, breaking plant stems and contributing to the death of about 10% of plants prior to harvest. Dead plants were removed prior to harvest to enable their yield to be assessed, and hence some plants were absent in the last two UAV data captures.

Assessment of Plant Growth

The time-series of delineated tomato plants derived from the eight UAV campaigns, allowed an assessment of growth rates on an individual plant and per plot basis. The dominating conditions affecting the phenotypic traits were saline irrigation and high wind speeds associated with sandstorms. As can be seen in Figure 5, the steady increase in plant area per plot over time was evident until December 6, but with a smaller increase for the two salt plots. Saline irrigation was initiated on November 14, and already by the following week, a clear distinction in plant area and daily growth rates could be observed between the plants in the control and salt plots. By December 6, the median plant area for control plots 1 and 2 and salt plots 1 and 2 was 0.68, 0.45, 0.27 and 0.28 m2, respectively. Significant sandstorm damage with wind gusts > 15 m/s occurred between December 6–20, resulting in a reduction in plant area per plot. These winds caused branches to break as well as damage to the stems of several plants. Between December 20 and January 7, some recovery and continual growth of plants was observed in the two control plots and salt plot 2, whereas a slight decrease in plant area per plot occurred for salt plot 1. After January 7, plant area per plot became difficult to interpret due to the removal of dead plants. However, on average the remaining plants still continued to grow slightly, even in the two salt plots, until January 14 (Figure 5). At this time, the RGB imagery showed an overall smaller plant area (370.63 m2 for all four plots) than that mapped using the multi-spectral imagery (404.52 m2 for all four plots): again the result of both senescent and dead parts of the plants being difficult to either automatically or manually delineate. On January 7, the difference in mapped plant area between the RGB and multi-spectral imagery was smaller (412.2 versus 420.57 m2, respectively) because of the removal of several dead plants prior to UAV data collection.
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FIGURE 5. Box-and-whisker plots, showing the variation throughout the growing season in area of individual plants, occurring within each of the four plots. The boxes cover the data from first quartile (Q1) to third quartile (Q3) (interquartile range (IQR)) with the line through each box and the X, displaying the median and mean values, respectively. The whiskers show the limits of Q1–1.5(IQR) and Q3+1.5(IQR) and dots indicate outliers from the population of plants.



While the two control plots had a significantly larger average plant area and daily growth rate than the two salt plots for individual plants from November 9 to December 6 (Figure 5), there were still discernable differences between the two control plots and between the two salt plots. Control plot 1 had the highest growth rate between November 23–30 (0.0336 m2/day) and the second highest growth rate between November 30 and December 6 (0.0286 m2/day), both of which were higher than the highest growth rate of control plot 2 (0.0228 m2/day), which occurred between November 30 and December 6. These differences in growth rates were likely due to differences in environmental conditions between the plots (e.g., exposure to wind). Salt plots 1 and 2 had similar growth rates between November 9 to December 6, with their highest growth rate of 0.0124 and 0.0135 m2/day, respectively, occurring between November 30 and December 6. A common characteristic for all four plots was the increase in plant area variability of individual plants from November 9 to December 6 (Figure 5). Between December 6 and 20, salt plot 1 sustained more damage and a reduction in average plant area and growth rate than salt plot 2 due to a strong sandstorm on December 19. With a wind direction from the northeast, salt plot 1 experienced direct exposure, whereas salt plot 2 was sheltered behind control plot 2. Control plot 2, facing northeast, was less impacted by the sandstorm than control plot 1 in terms of average plant area (Figure 5). This was attributed to the larger plant area in control plot 1, with more force behind the movement from side to side of larger plants due to wind gusts. The sandstorm caused a significant decrease in plant area variability (Figure 5) and physical movement of individual plants toward the southwest (Figure 6). From December 20, the growth rates remained low for the remainder of the growing season, with little variation in plant area within the individual plots, and even less variability in the area of individual plants toward January 14 (Figure 5).
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FIGURE 6. Shifts in tomato plant location due to sandstorms occurring between December 6 and 20, 2017.



Assessment of Tomato Plant Condition

For the January 7 campaign, 62 plants were visually classified as being either dead or in poor condition, while 56 were missing and 1006 plants were identified as being in good condition (Figure 7). Using 50% of these data for training, empirical thresholds were established from the coincident UAV-based vegetation indices to maximize the number of plants mapped correctly. Based on the Green-Red Vegetation Index (for the RGB imagery) and NDVI and RE-NDVI (for the multi-spectral imagery), 29 out of the 31 plants used for validation were correctly mapped as being in poor/dead condition (omission error = 6.5%). The two plants that were not identified had index values close to the set thresholds. The set thresholds were a compromise to reduce both omission and commission errors. The commission error of the RGB and multi-spectral imagery were 13.9% (5 incorrectly classified plants) and 8.8% (3 incorrectly classified plants), respectively. This was because some plants (RGB: 3, multi-spectral: 3) consisted of dead or senescent plant material, while still having some remaining green leaves, whereas other plants (RGB: 2) were very sparse but spread out, so that the delineated plant area included background reflectance characteristics from the soil, which reduced the index values. A deterioration of plant condition started from December 20 after the first sandstorm. This, combined with additional subsequent sandstorms, resulted in 130 plants missing (removed if dead) and 32 being in poor/dead condition on January 14 (Figure 7).
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FIGURE 7. (A) Cumulative number of plants either missing or being in a poor/dead condition throughout the growing season; and (B) mapped plants in either good or poor/dead condition on January 7, 2018. Missing plants were either blown away during the sandstorms or removed if they were dead to allow their yield to be assessed prior to harvesting the plots. At the time of flight on January 7, all dead plants had been removed in control plot 2.



Plot and Plant Analysis of Plant Projective Cover

To predict PPC for all tomato plants within the plant trial, a relationship between field measured PPC and a range of vegetation indices was determined for the January 7 campaign. For the multi-spectral imagery, the NIR-RE NDVI (Table 1) produced the best correlation and the lowest RMSE, while the Green-Red Vegetation Index best predicted PPC for the RGB imagery (Figure 8). Employing a second order polynomial prevented overestimation of PPC for plants with Green-Red Vegetation Index values > -0.05 for the RGB imagery. Comparing the predicted PPC values derived from the best-fit equations from the RGB and multi-spectral imagery collected on January 7 yielded similar results (RMSE = 5.31%, n = 1124). As all image datasets were normalized to at-surface reflectance, the best-fit equations were applied to all the other datasets to assess PPC variation for the UAV image time-series (Figure 9).
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FIGURE 8. Relationship between field measured PPC and (A) the Green-Red Vegetation Index and (B) NIR-RE NDVI derived from the UAV RGB and multi-spectral imagery, using a second order polynomial and linear regression, respectively. The best-fit equations were used to predict PPC for all tomato plants. These relationships were based on field and UAV imagery acquired on January 7, 2018.
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FIGURE 9. Box-and-whisker plots, showing the variation throughout the growing season in PPC of individual plants, occurring within each of the four plots. The boxes cover the data from Q1 to Q3 with the line through each box and the X, displaying the median and mean values, respectively. The whiskers show the limits of Q1–1.5(IQR) and Q3+1.5(IQR) and dots indicate outliers from the population of plants.



Variation in PPC between plants within the two control plots and salt plot 2 decreased gradually from November 9–30 and from November 9–23 for salt plot 1 (Figure 9), suggesting that the plants with initial low PPC caught up within three weeks, while plants with initial high PPC did not increase as much in terms of the absolute amount of PPC. PPC peaked between November 23–30 for the four plots (Figure 9), which was 1–2 weeks prior to the maximum recorded plant area, as shown in Figure 5. This might have been attributed to compact plants (around November 23) becoming more spread out due to growth of longer branches (around December 6), and hence decreasing the average PPC. Another contributor might have been the occurrence of a shift in plant energy resources away from the transfer of water and nutrient uptake toward producing fruit rather than foliage at the end of November, which may have contributed to the subsequent reduction in PPC per plant (Davies et al., 2000; Kavvadias et al., 2017). Similar to our study, Enciso et al. (2019) also found canopy cover of tomato plants to peak approximately 1 month prior to harvest. The effects of the sandstorms in combination with the two different treatments may have caused the variation in PPC to increase more for the salt plots than the control plots from December 20 to January 14. Similarly, the decrease in PPC between the time of the maximum recorded PPC and January 14 was larger for the salt plots (17.02%) than the control plots (10.42%). The median PPC on January 14 for control plots 1 and 2 and salt plots 1 and 2 was 79.47, 79.24, 65.31 and 68.30%, respectively. Despite the overall larger decrease in PPC for the salt plots toward the time of harvest, Figure 9 shows that some plants in the salt plots maintained high PPC, indicating that some accessions may be more salt tolerant, in terms of their ability to maintain a high PPC, than others.

Identification of the Best-Performing Plant Accessions

The results presented here illustrate just one of many pathways for assessing accession performance. To evaluate the ability to use plant condition, area, growth rate and PPC for prediction of plant performance in terms of yield, the phenotypic traits derived from the UAV imagery were assessed against field-derived total yield mass of tomato fruits (Figure 10). As can be seen in Figure 10A, plant accessions sustaining ≥ 5 plants in good condition on January 14 produced a significantly larger total yield mass (median of 232 g per plant) than those accessions with ≤ 4 plants maintaining good condition (median of 146 g per plant). Figures 10B–D indicate that the total yield mass per plant increased with increasing UAV-derived plant area, maximum growth rate throughout the time-series, and PPC. Hence, the four phenotypic traits presented in Figure 10 were used to eliminate plant accessions to identify the best-performing accessions in relation to yield out of the initial 200 accessions. As three out of the six plants per accession were salt-treated, the sequential elimination approach provided an indication of salt tolerance as well. Figure 10 also shows the number of accessions eliminated at each sequential step, using the four UAV-based phenotypic traits.
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FIGURE 10. Relationship of field-derived total yield mass per plant with (A) plant condition at harvest, (B) plant area at harvest, (C) maximum daily growth rate throughout growing season and (D) PPC of tomato plants at harvest, and the number of accessions eliminated from using each phenotypic traits to identify the best-performing accessions in terms of yield.



Mapped plant condition was used first to eliminate poorly performing accessions, because of the high mapping accuracy of plant condition and the clear distinction between total yield mass per plant based on the number of plants (i.e., ≤ 4 or ≥ 5 plants) in good condition for each accession. Seventy-nine out of the 200 accessions maintained good condition for all six plants. Another 41 accessions had one of the three salt-treated plants either missing (15 accessions) or ascribed as poor/dead condition (26 accessions), while the corresponding three control plants per accession remained in good condition. Thirty-one accessions had either one plant missing (15 accessions) or representing poor/dead condition (16 accessions) in the control plants with all three salt-treated plants being in good condition on January 14. The remaining 49 accessions had two or more plants missing or representing poor/dead condition out of the six plants per accession. These 49 accessions were eliminated from further analysis (Figure 10).

To reduce the remaining 151 accessions further, the tomato plants with the top 10% highest field-assessed yield were selected to determine the average plant area and maximum growth rate per accession below which plant accessions should be eliminated, as described in section 2.7. Based on plant area, a further 86 plant accessions were eliminated. Using maximum growth rate, the number of plant accessions was further reduced from 65 to 56. PPC was used as the final phenotypic trait to further eliminate 11 accessions. As a result of the sequential elimination process, 45 out of the 200 accessions were identified as the “best-performing” in terms of condition, area, maximum growth rate and PPC, which were all related to yield (Figure 10).

Based on the field-derived yield data collected at harvest, it was found that eight out of the top 10 highest yield-producing accessions were identified based on the sequential elimination process, using the four UAV-based phenotypic traits. The two out of the top 10 highest yielding accessions that were incorrectly omitted occurred with two and three plants, respectively, mapped as poor/dead condition on January 14. Despite the high average yield of the three and four remaining plants for the two omitted accessions, it is clearly not desirable if 33 and 50% of plants do not survive the growing season. A total of 14 out of the 20 highest yield-producing accessions were identified, with four out of the six accessions omitted due to poor/dead condition of ≥ 2 plants per accession. The remaining two out of the six accessions were omitted due to either their small plant area or limited growth rate.

A similar approach was used for a separate assessment of the control and salt-treated plant accessions. The sequential elimination process for the control and salt-treated plants identified 36 and 46 out of the 200 accessions, respectively, as the “best-performing.” Among these, the control and salt-treated accessions had 14 in common. However, only five accessions obtained a high ranking in terms of yield for both the control and salt-treated plants, including control accessions ranked as 2, 6, 8, 13 and 32, which corresponded to salt-treated accessions ranked as 11, 1, 23, 13, and 6, respectively, indicating high yield performance for these five accessions under both treatments. Eight and 15 out of the 10 and 20 highest yielding accessions, respectively, were identified for the control plants, whereas nine and 16 of the top 10 and 20 highest yielding accessions, respectively, were detected for the salt-treated plants. These observations demonstrate that phenotypic traits mapped from UAV-based RGB and multi-spectral imagery can be directly applied for selection of accessions for yield optimization.

A principal component analysis was performed to obtain information on similarities and difference between the evaluated phenotypic traits for each of the 200 accessions. Principal components 1 and 2 in Figure 11 show similar trends in the contribution of the phenotypic traits toward explaining variance using all plants (Figure 11A), salt-treated plants (Figure 11B) and the control plants (Figure 11C), with principal component 1 explaining between 54.4 and 57.7% and principal component 2 explaining between 25.5 and 29% of the variance. Explaining approximately 83% of the total variance, the first two principal components clearly show the relationship between the variables, with (1) area and growth rate, and (2) condition and PPC being highly correlated. This makes sense as a high growth rate can be assumed to produce a large plant area, and plants in good condition will appear with a denser plant cover. These observations can be directly related to Figure 10, where plant condition and area eliminated 49 and 86 plants, respectively, when identifying the best-performing accessions in relation to yield. Subsequently, the use of maximum growth rate and PPC only eliminated an additional nine and 11 accessions, respectively, because the prior use of the plant condition and area traits had already provided similar information for the elimination process. If focusing purely on the control plants (Figure 11C), plant area and maximum growth rate provide very similar information, whereas for salt-treated plants they are less correlated. Hence, based on the principal component analysis, the UAV-based phenotypic traits to be used for identifying the highest yielding accessions are condition, PPC and either plant area or maximum growth rate, although for salt-treated plants, some additional information is achieved if including all four phenotypic traits.
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FIGURE 11. Contribution of plant condition, area, maximum growth rate and PPC for all 200 accessions to principal components 1 (x-axis) and 2 (y-axis) for (A) all plants; (B) salt-treated plants; and (C) control plants. The values between the brackets indicate the percentage of variance explained by the individual principal components. Each trait’s contribution to the selected principal component is indicated by the length and color of the arrow.





DISCUSSION

We sought to address if four phenotypic traits, i.e., condition, plant area, growth rate, and PPC, of tomato plants could be monitored from a time-series of UAV-based RGB and multi-spectral imagery, and if these traits could be used to assess yield performance and salt tolerance in 200 accessions. Eight of the top 10 highest yielding accessions were identified as the best-performing ones in terms of yield. Interestingly, in a related study, Rao et al. (2013) found no correlation between physiological traits (chlorophyll content, leaf sodium content, leaf potassium content, shoot dry mass and plant height) and yield or yield-related traits for S. pimpinellifolium. As such, our results present something of a contrast to those in Rao et al. (2013). It is worth noting that their measurements were derived at a single point in time and for individual leaves, which may not be representative of a whole plant, whereas the results presented here were based on the whole plant and their average trait properties, which were assessed eight times during the growing season.

Based on the results from the UAV time-series collected over the growth of the 199 S. pimpinellifolium accessions, it seems likely that some of these can be successfully grown in the harsh environments characteristic of Saudi Arabia and the entire Middle East and North Africa region (Pena and Hughes, 2007). Similar studies of wild barley varieties have shown adaptive responses to salt stress in hot dry environments (Ferchichi et al., 2018). This may promote opportunities for enhancing food security in a region with challenging agricultural conditions. In areas that are in short supply of fresh water, any possibility to reduce demands on fresh water by substitution with brackish water can contribute to water and food security efforts. Therefore, identifying accessions that can grow and produce acceptable yield under an irrigation regime of moderately saline water (85–282 mM NaCl or 3,000–10,000 ppm) is of both scientific and practical interest, as they can provide genetic resources to improve commercial varieties. Understanding the mechanisms of plant tolerance to abiotic stressors such as salinity requires identification of the best-performing accessions and their traits. With the use of genomics, the accessions can be sequenced for identification of genetic markers such as single nucleotide polymorphisms (SNP) to genetically map salinity tolerance and the traits contributing to salinity tolerance for introgression into commercial lines (Rao et al., 2012). Such genetic examination is currently being undertaken for the dataset used in this plant trial, with the support of the UAV-based phenotyping presented here.

Field-based phenotyping is time- and labor-consuming and may lack consistency in multi-temporal data acquisition and for large plant trails (Sugiura et al., 2015; Holman et al., 2016). In this research, it was only possible to field-assess nine plants from each of the four plots in a day. The use of UAV-based monitoring provided a useful tool to scale up the measurements to encompass the entire plant trial of 1200 plants. It also allowed the measurements of phenotypic traits at the plot, plant and even sub-plant level, which is difficult for field-based studies. Figure 12 provides an example of PPC, where statistics can be used to assess all plants in a plot, the average PPC per plant can be derived, and PPC values per pixel within a plant can be used to understand the distribution and condition of foliage. With Structure-from-Motion information derived from multiple UAV-based viewing angles, the 3-dimensional structure of foliage can also be assessed to determine the distribution of biomass and the shape of individual plants (Moeckel et al., 2018; Ziliani et al., 2018). In general, the multi-spectral imagery, including the red edge and NIR bands, was found more feasible than the RGB imagery for mapping traits such as PPC and condition relying directly on spectral information, whereas the RGB data produced near identical results to the multi-spectral imagery for assessment of plant area and growth rates.


[image: image]

FIGURE 12. Various reporting scales of PPC based on the RGB imagery collected on January 14, 2018, showing (A) PPC for all four plots, (B) average PPC of individual plants for an image subset and (C) sub-plant PPC distribution of individual plants for an image subset.



While UAV-based phenotyping has demonstrated value for plant trials and agricultural monitoring (e.g., Holman et al., 2016; Burkart et al., 2017; Makanza et al., 2018; Ziliani et al., 2018), there are limitations and assumptions associated with these mapping approaches. The time of the day, resulting in different sun elevation and azimuth angles, may affect mapping results due to changing shadows and bidirectional reflectance distribution function effects (Tu et al., 2018). In this study, we reduced these effects by collecting UAV imagery around solar noon for all eight campaigns. However, seasonal solar elevation angle variations could not be avoided during the growing season. To optimize results and ensure reflectance consistency, all UAV-based datasets were converted to at-surface reflectance using an empirical line correction. However, this approach may also have limitations, as it relies on recorded image digital numbers and their color consistency and constant illumination throughout each flight (Tu et al., 2018). UAV flying height, speed, direction, flight line location, along-track overlap and sidelap were all kept the same for consistency. However, environmental variables such as temperature, humidity and wind speed and direction may introduce data collection variations in an image time-series. The impact of these variables are difficult to quantify and often sensor dependent. This research study provided a near ideal example of UAV-based time-series monitoring of phenotypic traits, as each of the eight campaigns were undertaken with clear sky conditions and low wind speeds, with a sandy soil background, providing a clear contrast to green plant foliage. In addition, all weeds were removed prior to UAV data collection and all plants were hosed down after each sandstorm to avoid reflectance attenuation from sandy leaves. The developed UAV-based approach remains to be tested in more complex and less ideal conditions.



CONCLUSION

Plant responses to abiotic stress require systematic testing in field trials to determine desirable phenotypic traits. We presented a novel approach that exploits the use of RGB and multi-spectral UAV image time-series to measure plant area, growth rate, condition and PPC of 199 accessions of the wild tomato species S. pimpinellifolium in low salt and high salt-irrigated conditions within an environment with several other significant environmental challenges. The purpose was to use collected data for the selection of the “best-performing” accessions in terms of yield. An object-based image analysis approach to delineate individual tomato plants was found to be useful for this purpose, as our plant level assessment provided significantly better results than previous studies, focusing on field-based leaf-level measurements. Our UAV-based experiment allowed phenotypic assessment of a large number (in this case 1200) of tomato plants on a routine and repeatable basis. The research provides a method to undertake plant trial assessments in a more effective and consistent manner at spatial and temporal scales that, until recently, were not possible to obtain. Our results provide insight into the effects of salt stress on plant area, growth, condition and PPC, of tomato plants, and establish a foundation for further assessment of plant trials at the plot, plant and sub-plant level to facilitate phenotyping and provision of information potentially suitable for plant breeding.

Phenotyping of plants and relating observable traits with yield and salt tolerance can be employed to optimize growth, increase production, promote food security and reduce pressure on freshwater resources. Arid environments such as those found in the Middle East and North Africa, which often face the combined stressors of heat and salinity, are obvious examples of regions requiring specially adapted crops that tolerate high levels of abiotic stress. More generally, improving the productivity of marginal lands and environments is one approach to increasing agricultural production on a global scale: an issue of critical importance to meet the food demands of growing populations. To advance the opportunities that UAVs provide for plant phenotyping studies, further research should focus on deriving additional traits, including biomass, plant height, leaf area index, chlorophyll concentration, and metabolic markers to assess if their inclusion can improve the ability to discriminate the most promising accessions for cultivation. Supplementing the optical imagery used herein with thermal data, or even hyperspectral imagery, is likely to provide additional insights into plant health and function.
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Visual assessment of colour-based traits plays a key role within field-crop breeding programmes, though the process is subjective and time-consuming. Digital image analysis has previously been investigated as an objective alternative to visual assessment for a limited number of traits, showing suitability and slight improvement to throughput over visual assessment. However, easily adoptable, field-based high-throughput methods are still lacking. The aim of the current study was to produce a high-throughput digital imaging and analysis pipeline for the assessment of colour-based traits within a wheat breeding programme. This was achieved through the steps of (i) a proof-of-concept study demonstrating basic image analysis methods in a greenhouse, (ii) application of these methods to field trials using hand-held imaging, and (iii) developing a field-based high-throughput imaging infrastructure for data collection. The proof of concept study showed a strong correlation (r = 0.95) between visual and digital assessments of wheat physiological yellowing (PY) in a greenhouse environment, with both scores having similar heritability (H2 = 0.85 and 0.76, respectively). Digital assessment of hand-held field images showed strong correlations to visual scores for PY (r = 0.61 and 0.78), senescence (r = 0.74 and 0.75) and Septoria tritici blotch (STB; r = 0.76), with greater heritability of digital scores, excluding STB. Development of the high-throughput imaging infrastructure allowed for images of field plots to be collected at a rate of 7,400 plots per hour. Images of an advanced breeding trial collected with this system were analysed for canopy cover at two time-points, with digital scores correlating strongly to visual scores (r = 0.88 and 0.86) and having similar or greater heritability. This study details how high-throughput digital phenotyping can be applied to colour-based traits within field trials of a wheat breeding programme. It discusses the logistics of implementing such systems with minimal disruption to the programme, provides a detailed methodology for the basic image analysis methods utilized, and has potential for application to other field-crop breeding or research programmes.

Keywords: phenotyping, physiological yellows, senescence, septoria tritici blotch, canopy cover


INTRODUCTION

Visual assessment of traits within field trials is subjective and laborious. However, it is an essential process for plant breeders who wish to observe the phenotype of material within their programme and determine genotype-by-environment effects. In recent years numerous high-throughput digital phenotyping methods have been proposed (Busemeyer et al., 2013; White and Conley, 2013; Andrade-Sanchez et al., 2014; Deery et al., 2014; Bai et al., 2016; Underwood et al., 2017; Jimenez-Berni et al., 2018), all of which offer to alleviate the current visual phenotyping bottleneck which exists within modern plant breeding programmes (Cobb et al., 2013; Araus and Cairns, 2014). Despite this, truly high-throughput systems which are easily integrated within large-scale breeding programmes are yet to be developed and used.

Typically, these phenotyping platforms are equipped with an array of sensors, with popular choices including red, green and blue (RGB) cameras, multi-spectral cameras, normalised difference vegetation index (NDVI) sensors and LiDAR. RGB cameras, in particular, have a long history with field phenotyping and in a number of studies have been effective in estimating canopy cover of field crops (Lukina et al., 1999; Casadesús et al., 2007; Liu and Pattey, 2010; Mullan and Reynolds, 2010). The popularity of these methods, from both a research and farmer perspective, has culminated in the development of a simple mobile application, which enables users to conduct simple in-situ estimates of canopy cover from their mobile devices (Oklahoma State University, 2015). The use of RGB cameras as a phenotyping tool has focused on digital images to estimate canopy cover or as an alternative to NDVI (Casadesús et al., 2007; Morgounov et al., 2014). However, they have also been used to a lesser extent to assess senescence (Adamsen et al., 1999; Hafsi et al., 2000), crop nitrogen content (Li et al., 2010), early vigour (Kipp et al., 2014) and soil water evaporation (Mullan and Reynolds, 2010). Image analysis techniques used to asses this range of traits also have the potential to be applied to other colour-based traits, such as disease assessment, which may provide wheat breeders with an objective system of assessment for specific traits within their breeding programme.

In the current study, we collected data on four traits [physiological yellowing (PY), senescence, Septoria tritici blotch (STB), and canopy cover] from within a Southern Australian bread wheat breeding programme, using high-throughput image collection and basic, open-source, image analysis.

Physiological yellowing of bread wheat (Triticum aestivum L) and durum wheat (T. durum) can have a number of possible causes, however, there is little literature surrounding the trait, with only a single study and two industry fact sheets exploring the effect (Australian Grain Technologies, 2013, 2016; Schwenke et al., 2015). Further to the reported yield impacts, farmer perception often marks material expressing PY as undesirable, due to its “disease-like” symptoms.

Senescence is yellowing of green leaves and the eventual browning and drying of leaf material as a crop matures. Senescence occurs naturally with time and can be used as indicator of maturity or the impact of abiotic stress (Distelfeld et al., 2014).

Septoria tritici blotch is a foliar disease of wheat due to infection by the fungus Zymoseptoria tritici. Resistance for STB is actively sought within breeding programmes (Brown et al., 2015). Expression of STB is observed as yellow/brown lesions on leaves, containing small black fruiting bodies (pycnidia). Assessment of STB in breeding programmes typically occurs in inoculated disease nurseries to ensure there is adequate incidence of the disease.

Canopy cover is the proportion of soil covered by the crop canopy, and is primarily used for the assessment of early vigour. It is associated with the reduction of soil water evaporation (Rebetzke et al., 2004; Mullan and Reynolds, 2010) and weed competitiveness (Lemerle et al., 1996; Coleman et al., 2001). In a more crude form it is also used to identify plant establishment issues in field trials.

While each of the traits investigated in the current study is physiologically different, they are linked through the colour-based nature of their visual assessment. Visual assessment for each of these traits is typically achieved through either a percentage score, or through a 1–9 scale of severity. This type of assessment lends itself to the application of image analysis, where percentage area within images can be calculated.

The aim of the current study was to develop a high-throughput digital imaging system capable of assessing colour-based traits observed within a wheat breeding programme. This was achieved in three stages:

(i) A proof of concept study in a greenhouse to develop a method and examine how effectively freely available image analysis software and consumer digital cameras can estimate colour-based traits.

(ii) Applying these concepts of hand-held digital imaging and basic image analysis to field trials to demonstrate their application in breeding programmes.

(iii) Using the results of i and ii to develop a field-based high-throughput imaging infrastructure, with a basic image analysis pipeline.

The first two years of the current study involved the development and testing of data capture and processing systems, and the third year tested these systems within a wheat breeding field trial.



MATERIALS AND METHODS

The three stages of the current study were conducted during the seasons of 2015, 2016, and 2017 using a combination of hand-held and high-throughput RGB imaging in greenhouse and field trials (Table 1). Images were collected opportunistically within a large-scale wheat breeding programme, across seven experiments, for PY, senescence, STB and canopy cover. While multiple traits were observed in the field, it is proposed that the image analysis methods can be applied to any colour-based trait of interest.

TABLE 1. Summary of trials assessed in the current study.
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Greenhouse Imaging

Imaging of a potted experiment investigating the expression of PY was conducted to establish the feasibility of assessing a colour-based trait with basic open-source image analysis methods. The experiment consisted of individually potted plants arranged in a randomised block design of three replicates, with treatments of genotype and presence/absence of chlorine (Cl-) as described by Schwenke et al. (2015). Plants were grown in a greenhouse on the University of Adelaide, Roseworthy Campus. Further details of this experiment are described by Australian Grain Technologies (2016).

The severity of symptoms was assessed shortly after anthesis [Zadoks Growth Scale 69 (Z69) (Zadoks et al., 1974)], as the percentage of leaf area affected by PY, i.e., a visual estimate of the percentage of leaf material that was yellow. To obtain image analysis scores, RGB images were captured for every plant using a commercial digital camera (Canon 100D) at a resolution of 3456 × 5184 pixels (18 MP), with auto exposure. Plants were placed in front of a white background, to allow for simplified image processing and analysis. Images were captured from the side of pots, allowing for large amount of leaf area to be visible, with minimal occlusion.

Field Imaging

Following the testing of imaging in the potted greenhouse experiment, imaging methods were adapted and deployed within six wheat breeding field trials which examined a number of different traits (Table 1). Field plot trials consisted of small plots 1.32 m × 3.2 m (trials A–D, F) or 0.45 m × 1 m (trial E) in size, with each trial containing a single treatment of genotype, with varying levels of replication (Table 1), arranged in a completely randomised design. Field plots were managed by Australian Grain Technologies (AGT) within their wheat breeding programme, with plots in trial E grown within an inoculated STB nursery.

Visual and digital scores were recorded as percentage of yellow leaf area, with visual scores collected in the field following imaging. Exceptions to this were trial E, where visual STB severity was assessed using a 1:9 scale at the time of imaging and trial F, where visual scores were recorded as percentage canopy cover obtained by a visual estimate of canopy cover in individual images, and digital scores were calculated as the percentage of image area that was green.

Images of plots in trials A–E were captured at a nadir angle by using a hand-held camera (Canon 100D) over each plot, approximately 1.5 m above ground level. Images were captured at a resolution of 3456 × 5184 pixels (18 MP), with exposure settings adjusted ad-hoc. Nadir images were chosen because lateral images reveal only the first few plants in each row, with the rest of the plot being occluded. Images of plots in trial F were collected at a nadir angle using the High-throughput Imaging Boom (HIB; described in detail below). Plots were imaged early in the season (approximately Z25) and following anthesis (approximately Z69) to observe plot establishment and canopy cover. Images were captured automatically using the HIB at both time-points, with cameras set to 1/1000 and 1/2000 of a second shutter speed at the first and second time-points, respectively, f 8.0 aperture and auto ISO to allow for exposure compensation.

Image Analysis

All images were processed in the FiJI distribution (Schindelin et al., 2012) of the open-source software ImageJ (Schneider et al., 2012), using the Threshold Colour plugin (Supplementary Data 1). Central regions of interest were applied to greenhouse images and field images, where plant material did not fill the frame.

A two-stage thresholding process was then used to separate firstly, all plant material from background material (i.e., white corflute in greenhouse and soil in field), and secondly yellow plant material from green. Examples of this process are shown for PY in Figure 1. Yellow thresholding was not required for the estimation of canopy cover. Thresholding was conducted using Hue, Saturation and Brightness (HSB) values, with these being visually determined for each experiment to obtain the most suitable thresholds. Once threshold images had been created, the number of plant material pixels and yellow pixels were counted, allowing the percent yellow leaf area score (or percent image area green) to be calculated. Detailed methods for thresholding and batch processing of images are available in Supplementary Data 1. Examples of processed images for senescence, STB and canopy cover are available in Supplementary Data 2.
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FIGURE 1. Stages of the thresholding process for single plants grown in the greenhouse (top) and whole plots grown in the field (bottom). Depicted are the original image (A), segmented plant material (B), binary plant material threshold (C), segmented yellow material (D), and binary yellow material threshold (E).



Images obtained from field trials were resized to 25% of their longest edge (∼1 MP), to increase processing speed and avoid RAM limitations, when batch processing large numbers of images.

High-Throughput Imaging Boom Development

The High-throughput Imaging Boom shown in Figure 2 was designed for the express purpose of integration into a large-scale wheat breeding programme. It features four commercially available digital cameras (Canon 70D) mounted inside weather sealed boxes on the boom arms. This setup allows two images per plot to be captured simultaneously, and the potential for future work to investigate applications of stereo imaging.
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FIGURE 2. The High-throughput Imaging Boom (HIB) developed and deployed as part of the current study, parked in a maintenance pathway of a wheat field trial. Annotations outline major components of the system.



Image capture is triggered by a single relay, which is controlled by a laptop computer in the tractor cab. The laptop uses proprietary software to monitor GPS output from a Trimble FM1000 RTK GPS unit and trigger the relay from a set of predefined GPS coordinates, camera trigger delay and the distance between GPS receiver and the cameras. GPS coordinates are computed based on three corner coordinates of the trial site and the number of plot rows and columns present at the site. The HIB is driven to each of these three corners and the cameras positioned over the end plot. Once in position the GPS coordinates are saved within the software. After collecting the three GPS coordinates, individual triggering coordinates for each plot are interpolated from the three corner positions. A text file containing all trigger coordinates is saved and can be loaded into the software for every imaging event, meaning this setup process need only be completed once per field site.

The boom on which the cameras are mounted features arms of adjustable height, which fold in for transport, mimicking a standard spray boom used for plot maintenance within the wheat breeding programme. To further strengthen the concept of integrating the HIB within a field-crop breeding programme, the tractor to which it is attached can use the GPS autosteer function of the RTK GPS unit, adhering to the predefined maintenance pathways within the trial. These pathways are typically used for standard management practises such as fertiliser, herbicide and fungicide application. This reduces operator error while driving the tractor, and allows repeated image capture throughout the season with a spatial accuracy of 2 cm. To operate the HIB the tractor is driven down maintenance pathways within each field trial, with boom arms placing the cameras centrally over one plot each side of the tractor.

As the tractor drives, image capture occurs automatically, with images stored on SD cards within individual cameras. The software running on the laptop computer monitors GPS message output from the RTK GPS unit, with this information being used to determine triggering of the relay in conjunction with the pregenerated trigger coordinate text file. This process accounts for tractor speed (calculated from GPS coordinates), signal travel time between laptop and camera shutter trigger (predefined within the software) and the distance between the GPS receiver and cameras. The tractor continues to travel along maintenance pathways in a serpentine manner, until all plots have been imaged.

The HIB was driven at 5 km/h during image capture. Cameras had manually set exposures, with a shutter speed of 1/1000 or 1/2000 of a second (for images at Z25 and Z69, respectively), an aperture of f 8.0 and auto ISO to allow for exposure compensation. Images were captured in JPEG format for ease of post processing, and because of limitations in image write speed and buffer capacity of the cameras for RAW images.

Statistical Analysis

All statistical analysis was conducted in the R software package (R-Core Team, 2017). Mixed linear models were used to analyse all data sets through univariate and bivariate analyses of visual and digital measurements using ASReml (Butler et al., 2009). Pearson’s correlations between raw data were calculated within univariate analyses, while genetic and residual correlations were calculated from bivariate analyses. Broad-sense trait heritability (Eq. 1), which can be described as the proportion of observed trait variation attributable to genetics (Visscher et al., 2008), was also calculated within univariate analyses.
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where H2 is broad-sense heritability, [image: image] is the variance attributable to genetic effects and [image: image] the environmental variance.

Linear regressions between visual and digital measurements are presented from raw data, with regression equations calculated using Model II Linear Regression (Ludbrook, 1997, 2012).



RESULTS

Proof of Concept

The image analysis methods proposed in Supplementary Data 1 were able to efficiently and consistently segment both plant material from the background image, and yellow plant material from total plant material (Figure 1 top). Digital scores correlated strongly (r = 0.95) with visual scores assessed from individual plants (Figure 3), with genetic and residual correlations being similarly, strong (Table 2). Heritability for both measurements showed similarly, high values, with visual scores being slightly higher (Table 2).
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FIGURE 3. The relationship between Digital Yellow Leaf Area and Visual Physiological Yellowing (PY) scores, for individually potted plants within a Greenhouse. Dashed line represents the linear regression between measurements.



TABLE 2. The correlation coefficients (r) for raw data, genetic and residual correlations between visual and digital scores, and the heritability (H2) of individual data sets collected for the traits physiological yellowing (PY), senescence, Septoria tritici blotch (STB) and canopy cover.
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RGB Imaging in Field Conditions

Following the success of applying the proposed image analysis methods to individual plants in a greenhouse environment, hand-held images of field plots were collected to further test the application of the methods and investigate their robustness under field conditions. As with greenhouse images, the image analysis methods proposed in the current study were capable of segmenting plant and background pixels, in this case from soil rather than a plain background, as well as separating yellow plant material from total plant material.

Significant correlations (p < 0.001) were observed between digital and visual scores across all field trials (Figure 4). A slightly weaker correlation between visual and digital scores was observed in trial A (r = 0.61), with trials B, C, D, and E having slightly stronger correlations (r = 0.74 – 0.78). For each trial, genetic correlations were stronger than raw correlations between visual and digital measurements, with residual correlations being smaller than raw correlations. For all but trial E, the heritability of the digital score was higher than that of the visual score (Table 2). This was particularly the case for trials A and B where the digital scores had heritability 0.28 and 0.27 units higher than the respective visual scores.
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FIGURE 4. The relationships between visual and digital scores for digital yellow leaf area and visual PY score in field trials (A,B) digital yellow leaf area and visual senescence score for field trials (C,D) and digital yellow leaf area and visual Septoria tritici blotch (STB) severity score for field trial (E). Dashed lines represent the linear regression between measurements.



Images were collected by hand at a rate of approximately one image every four seconds across all field trials, or approximately 900 plots per hour. Image analysis took approximately 10 min per trial, with the bulk of this time spent finessing threshold values. Computer processing time was approximately 0.02 sec per image (0.12 sec per image when including the process of importing images to FiJI). Visual scores (Trials A–E) took over double that time, with one score recorded approximately every nine seconds or 400 plots per hour.

Deploying Digital Phenotyping Methods on a High-Throughput Infrastructure

The final step in the current study was to deploy the digital phenotyping methods (Supplementary Data 1) on high-throughput infrastructure designed to work effectively within a field-crop breeding programme. Advanced yield plots were imaged using the HIB to assess canopy cover.

Both early and late assessments of canopy cover (approximately Z25 and Z69, respectively) showed strong correlations between digital and visual scores (r = 0.88 and 0.86, respectively) (Figure 5). Early assessment of canopy cover produced genetic and residual correlations of equal strength, both of which were slightly weaker than the raw correlation, though for assessment at Z69 genetic and residual correlations were, respectively, stronger and weaker than the raw correlation (Figure 5). Heritabilities were low for digital and visual scores at Z25, though slightly higher for visual scores, but greatly increased at Z69, with the digital score having a greater heritability than the visual score (Table 2).
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FIGURE 5. The relationships between visual and digital scores for percent image area green and visual assessment of percentage canopy cover, for field trial F at two time-points – Zadoks Growth Scale 25 (A) and 69 (B). Dashed lines represent the linear regression between measurements.



The HIB achieved a throughput of approximately 7,400 plots per hour, with the 9,600 plot trial site containing trial F being imaged in 80 min; equating to approximately two unique images per second. Analysis of plot images took approximately 10 min. Accurate in situ visual assessment of canopy cover is challenging due to the oblique perspective of the scorer, however, a throughput of approximately 400 plots per hour would be expected, based on scoring rate of other traits in the current study.



DISCUSSION

Image analysis as a phenotyping tool is a common practise within greenhouse and controlled environment experiments, and a number of commercial platforms and facilities offer streamlined approaches for data collection and analysis (for example the LemnaTec Scanalyzer1, and the Australian Plant Phenomics Facility2). These systems allow the collection of high temporal resolution data with ease, and are commonly used for the assessment of green leaf area, and subsequently for the assessment other traits such as of the rate of senescence (Atieno et al., 2017). However, these systems are expensive to establish and are limited to assessment of plants grown in controlled environments within pots.

The image analysis methods proposed in the current study offer a low-budget, open-source alternative to the controlled environment systems described above, and are suitable for the collection of digital scores comparable to visual scores of colour-based traits. The example presented in the current study shows the application of these methods to PY. However, as shown by the results of Objectives 2 and 3, these methods are robust across other colour-based traits. The strong correlation between digital and visual assessments of PY in the greenhouse experiment is unsurprising, as the imaging of individual plants in front of a uniform white background provides ideal conditions to implement this type of image analysis. There is little occlusion present, and plant material pixels can be easily segmented within the images due to the vastly different hue values of plant and background material pixels. Despite these ideal conditions, there are limitations to the use of the proposed methods for assessing colour-based traits which do not express uniformly across all plant organs, as the proposed methods are basic and not capable of isolating individual plant organs for analysis. In the case of the current study, stems and ears of plants often remained green while leaves expressed PY, resulting in images still containing a many green pixels. This ultimately reduced the percentage of the plant classed as yellow, leading to a slope <1 for the linear regression between visual and digital scores (Figure 3). Regardless of this limitation, the high heritability of PY for both digital and visual scores in the greenhouse experiment demonstrated the accuracy that is achievable under ideal conditions.

Despite the high-quality data obtainable under controlled conditions, field phenotyping is favoured within plant breeding programmes, to gain an understanding of genotype performance when subject to realistic and relevant environmental conditions and to examine genotype-by-environment interactions (Araus and Cairns, 2014). In contrast to controlled environment imaging, field imaging occurs under conditions that are far from ideal. The main contributing factors to this being the large amount of occlusion which occurs within the crop canopy, preventing plant material in the lower canopy from being fully visible (Casadesús et al., 2007), and the potential for plant pixels and soil pixels to have similar hue values, resulting in a more difficult segmentation process. Despite these limitations, there are still strong similarities between image analysis of greenhouse and field images, as can be seen in the results of Objectives 1 and 2 in the current study. In the case of PY, where images were obtained from both greenhouse and field trials (A and B), direct comparisons can be made around the quality of data collected. While the strongest correlation between digital and visual data was observed in the glasshouse experiment, the heritability of digital and visual scores was similar. Weaker correlations were observed between digital and visual scores within field trials, though the heritability of digital scores was generally greater than for visual scores, indicating that digital scores provide a more accurate assessment of the trait.

The ability to apply the image analysis methods of the current study to a range of traits across multiple field trials demonstrates the robustness of these simple methods. For each field trial (A–F) positive relationships were observed between digital and visual scores, irrespective of the trait, with digital scores generally resulting in a similar or improved heritability compared to visual scores (Table 2). The high heritability of all traits assessed digitally (excluding canopy cover at Z25) indicates the potential to achieve genetic gain through selection for or against the trait. Though heritability of canopy cover was low at Z25, this does not necessarily mean that genetic gain cannot be made for early canopy cover. The low heritability observed in the current study can likely be explained by the variable germination and establishment of plots within the trial, a result of variable soil and poor environmental conditions. These conditions resulted in canopy cover scores being driven by equal levels of genetic and residual variation, leading to a low heritability (Table 2). The potential to achieve genetic gain through selection in these traits is further supported by the relationship observed between raw, genetic and residual correlations, where the raw correlation is not driven purely by the residual, for any of the traits observed. In each instance (excluding canopy cover at Z25) the genetic correlation is greater than the raw and residual correlation, with the residual correlation being weaker than the raw. In trials where residual correlations were high, residuals could be fitted as co-variates within breeding analyses to better model non-genetic effects within the trial. Whether investigating the genetics, or accounting for residual effects in trait performance, the results of the current study show that digital methods can be exchanged with visual methods, while producing greater or maintaining similar heritability. The lower heritability of digital scores, compared to visual scores, observed in trial E is likely a result of (i) the amount of STB occluded from the camera sensor – as the pathogen is spread from the bottom of the canopy up, through rain-splash (Steinberg, 2015), and (ii) patches of senesced grass weeds within the plots. The presence of weeds has likely contributed to the lower heritability in the digital scores of trial F at Z25, with small broadleaf weeds being present in images and contributing to the amount of green pixels present. In both trials E and F visual scores can easily account for occluded leaves or the presence of weeds, which will result in a higher estimate of heritability.

Few studies have compared digital image analysis scores with visual scores of the same trait, opting instead for comparisons to sensor produced visual indices or alternative traits (Adamsen et al., 1999; Lukina et al., 1999; Casadesús et al., 2007; Li et al., 2010; Liu and Pattey, 2010; Mullan and Reynolds, 2010; Kipp et al., 2014). However, direct comparisons between digital and visual scores have been made by Hafsi et al. (2000) and Stewart and McDonald (2014), where individual leaves were isolated on a plain background to obtain images and visual scores. In each of these studies digital scores were found to be effective at estimating the trait of interest (senescence and STB, respectively), corresponding to the results of the current study.

It should be noted that the studies mentioned above used a variety of image analysis methods, some similar to the current study, using thresholds and/or segmentation (Lukina et al., 1999; Li et al., 2010; Liu and Pattey, 2010; Mullan and Reynolds, 2010; Kipp et al., 2014; Stewart and McDonald, 2014). Others have used numerical approaches across the whole image, looking at pixel colour values and ratios (Adamsen et al., 1999; Hafsi et al., 2000; Casadesús et al., 2007).

Despite the variety in previously described methods, image analysis within field experiments is currently far from common practise, with relatively few examples within the literature. Perhaps the most extensive example of using image analysis within large field trials, as well as in the context of plant breeding, is presented by Mullan and Reynolds (2010) where four bread wheat populations were repeatedly imaged and analysed to provide canopy cover values over time. A further example presented by Kipp et al. (2014) showed image analysis to be a superior method of early vigour assessment, compared to spectral sensing. The subject of image collection and processing time was raised in each of these studies, with Mullan and Reynolds (2010) stating an imaging rate of approximately one image every five seconds and an image processing rate of approximately three images per second. Kipp et al. (2014), on the other hand, merely state that their image collection and processing methods are too time consuming for application to large-scale field trials. The processes of image collection and analysis in the current study were conducted in similar times to those reported by Mullan and Reynolds (2010). The combination of image capture and analysis showed a time advantage over visual scores from field trials A–E in the current study, in which images were collected using a hand-held camera, with image collection taking approximately half the time of visual scoring and image processing taking approximately 10 min per trial. This shows that even in the absence of high-throughput methods, digital imaging can save time when scoring breeding or research experiments.

To be adopted by plant breeding programmes, or by large-scale research in general, image analysis methods should be highly automated. This has previously been acknowledged by Casadesús et al. (2007) when investigating digital image analysis for the derivation of visual indices, and is often satisfied through batch processing of images. This was the approach taken in the methods of the current study, greatly reducing the user input required. Further reducing user input could be achieved through the scripting of certain processing steps, however, manual input is still required to correctly apply thresholds to a new set of images. To apply true automation to this process avenues of computer vision and machine learning would need to be explored, such as in the work of Guo et al. (2017), however, such work requires a highly specialised skill set to undertake.

Further to the requirements of automated data processing, high-throughput data collection methods are essential. Platforms for the high-throughput collection of field phenotypic data have been proposed in the literature (Busemeyer et al., 2013; White and Conley, 2013; Andrade-Sanchez et al., 2014; Deery et al., 2014; Bai et al., 2016; Underwood et al., 2017; Jimenez-Berni et al., 2018), though there are currently limited commercial options available. As it stands, a platform that is affordable, truly high-throughput, and easily integrated into large scale breeding and research operations, has yet to be produced.

The HIB used in the current study shows great potential for future deployment within large scale research and plant breeding programmes, meeting the requirements of affordability, high throughput and ease of integration into current trial operations. Traditionally high-throughput phenotyping platforms described in the literature have travelled directly over plots (Busemeyer et al., 2013; White and Conley, 2013; Andrade-Sanchez et al., 2014; Deery et al., 2014; Bai et al., 2016; Underwood et al., 2017; Jimenez-Berni et al., 2018), following the direction of seeding. This allows for thorough data collection over the entire plot, whether multiple images of the canopy or other sensor data, though it greatly increases driving distance and is difficult to implement within standard breeding trials. This is illustrated in Figure 6, where travel along individual plot rows is nearly eight times the distance of travelling along field maintenance tracks, where two plots are imaged simultaneously (one either side of the pathway), when traversing a large-scale field trial in a wheat breeding programme.
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FIGURE 6. Aerial image of an Australian large-scale wheat breeding site, annotated with dimensions of the site and the number of plot rows, plot ranges and travel distances based on direction (A), and the serpentine path along site maintenance pathways, travelled by the HIB in the current study, allowing for two plots to be imaged simultaneously (B). Image: Google, 2017, Digital Globe.



Travelling along maintenance pathways within the field trial also offers the benefit of integrating with current field maintenance practises and can take advantage of tractor RTK GPS autosteer profiles that have previously been generated for the maintenance of trial sites. In the current study, GPS coordinates and output from the tractor’s RTK GPS autosteer system were used to automatically trigger image capture. This allowed a “hands-off” data collection approach, as well as ensuring that repeated imaging occurred in the same position for each plot, with a 2 cm tolerance for error. Further to this, the use of autosteer reduces the chance of operator error, assisting in the prevention of accidental damage to field trials.

The small tolerance for error within the image capture system will allow for the extension of this system to earlier stages of the breeding programme, which is often grown in small plots or individual plant rows (Halloran et al., 1979). As demonstrated by the STB images in the current study, the image analysis methods proposed are suitable for application to small plots and are likely transferrable to single rows and potentially single plants. This will be of great interest to plant breeders who wish to conduct phenotypic selection within the early generations of their breeding programme.

At the speed of 5 km/h driven in the current study it was possible to image approximately 7,400 plots per hour. While this is already exceptionally high throughput, the system is capable of operating at higher speeds (with 10 km/h successfully tested). At higher speeds movement is introduced into the boom arms when travelling on uneven ground, and can result in plot images being off-centre. However, these issues could be easily addressed through modification to the boom or tractor, for example, auto-levelling boom arms or lower tractor tyre pressure to reduce boom arm and camera movement. The throughput of imaging observed in the current study becomes even more impressive when compared against the throughput of other systems. Recent work by Khan et al. (2018) compared the throughput of plot level RGB imaging from two systems; a low-cost Mobile Ground Platform (MGP) and an Unmanned Aerial Vehicle (UAV). In their study, throughputs of 120 plots per hour and 1200 plots per hour were achieved for the MGP and UAV, respectively. While these results show a clear advantage in the throughput of UAVs compared to ground platforms, the throughput achieved by the HIB in the current study is over six times greater than that achieved by Khan et al. (2018) with a UAV. This demonstrates that truly high-throughput ground based, plot level, imaging is achievable and, as described by Khan et al. (2018), can deliver high-fidelity images of crop canopies not currently achievable with UAVs.

Deployment of the HIB within a large-scale wheat breeding programme during the 2017 growing season allowed for images of individual plots to be captured with extremely high throughput. While data from a single site is presented for the assessment of canopy cover in the current study, the system was deployed at eight trial sites across southern Australia and used to collect 288,680 images from 74,880 unique field plots. Images acquired with the HIB are suitable for the application of the image analysis methods proposed in the current study, enabling wheat breeders to efficiently and objectively assess colour-based traits.

Though the current study has focused on images collected from RGB cameras mounted on the platform, it is possible to expand the system for the collection of a greater variety of data. Numerous sensors have been proposed as high-throughput field phenotyping tools, such as LiDAR (Deery et al., 2014; Bai et al., 2016; Underwood et al., 2017; Jimenez-Berni et al., 2018), multispectral and hyperspectral cameras (Busemeyer et al., 2013; Bai et al., 2016; Underwood et al., 2017), thermal sensors/cameras (Crain et al., 2016; Deery et al., 2016) and NDVI (Bai et al., 2016; Crain et al., 2016; Underwood et al., 2017), all of which could be integrated to the HIB.



CONCLUSION

The basic image analysis methods described in the current study are effectively able to produce digital scores that correlate well to visual scores for colour-based traits, with examples being presented for PY, senescence, STB and canopy cover. The methods described in the current study have a low barrier to entry and utilise commercially available digital cameras and open-source computer software. This, combined with the strong correlations observed between digital and visual data, the high heritability of assessments, and the associated time savings, make for an attractive set of methods for the assessment of colour-based traits within a wheat breeding programme. Furthermore, they show potential for application within other breeding programmes, particularly other cereals and field crops.

To further encourage the adoption of image analysis within plant breeding programmes, an effective system for the high-throughput collection of images has been described, including a clear pathway for integration into current field maintenance practises. This system was deployed within a wheat breeding programme and is capable of high-throughput large-scale image collection, providing images suitable for the analysis methods described in the current study. This ultimately provides a rapid and objective data collection methodology, enabling unprecedented levels of data collection from large-scale plant breeding field trials.

There is further potential to increase the value of collected images to breeding programmes, through the implementation of more complex image analysis methods – focusing on other applications such as seedling counting (Liu et al., 2016), ear counting and flowering detection (Sadeghi-Tehran et al., 2017; Virlet et al., 2017). High-throughput collection and processing of such data, from large-scale field trials, will only further strengthen the role of image analysis within plant breeding programmes.
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FOOTNOTES

1 https://www.lemnatec.com/products/high-throughput-phenotyping-solutions/greenhouse-scanalyzer/

2 https://www.plantphenomics.org.au/
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Unmanned aerial vehicles have an immense capacity for remote imaging of plants in agronomic field research trials. Traits extracted from the plots can explain development of the plants coverage, growth, flowering status, and related phenomenon. An important prerequisite step to obtain such information is to find the exact position of plots to extract them from an orthomosaic image. Extraction of plots using tools which assume a uniform spacing is often erroneous because the plots may neither be perfectly aligned nor equally distributed in a field. A novel approach is proposed which uses image-based optimization algorithm to find the alignment of plots. The method begins with a uniformly spaced grid of plots which is iteratively aligned with regions of high vegetation index, i.e., the underlying plots. The approach is validated and tested on two different orthomosaic images of fields containing wheat plots with simulated and real alignment problems, respectively. The result of alignment is compared to manually located ground truth position of plots and the errors are quantitatively analyzed. The effectiveness of the proposed method is confirmed in accurately estimating the phenotypic trait of canopy coverage compared to the common methods of extraction from uniform grids or trimmed grids. The software developed in this study is available from SourceForge, https://sourceforge.net/projects/phenalysis/.

Keywords: plot extraction, precision phenotyping, aerial image analysis, remote sensing, unmanned aerial systems


1. INTRODUCTION

The United Nations estimates world population to reach 9.8 billion in 2050 (United Nations, 2017). To meet the growing demand of food with limited resources, production needs to increase by 70%, most of which relates to the cereals (Alexandratos and Bruinsma, 2012). Efforts to identify cultivation varieties which can perform under extreme climatic conditions have been accelerated by breeding programs that aim to bring resilience to drought, heat and salinity in a plant species (Wang et al., 2003; Tricker et al., 2018). Breeding is carried out through recurring cycles of “crossing,” “selection,” and “elimination” of varieties grown in different environmental conditions over several generations. In general, hundreds of varieties may be sown in field plots (also known as micro-plots or research plots) from which a few superior varieties are selected for successive evaluation cycles. Between sowing and harvest, breeders scout the field going from plot to plot and visually assign scores based on qualitative and quantitative traits of plants (e.g., height, vigor, flowering, leaf area, growth stage) for ranking at multiple stages of development. A major drawback is that manual assessment is labor intensive, subjective, and prone to human error.

Agricultural machinery has brought significant automation to farming activities. Today, mechanized seeders can sow varieties at a prescribed rate in uniformly spaced single row or multi-row plots in a field (Unruh, 2015). Subsequently, combined harvesters separately thresh each plot in sequence to independently record the varietal yield from each plot (Argetsinger et al., 2010). Driven by automation, sensor-based phenotyping platforms are emerging as an alternative to manual field phenotyping. Unmanned aerial vehicle (UAV), in particular, are now being used to acquires images of field plots in an efficient and non-invasive manner. Using photogrammetry software, aerial images are stitched together to generate an orthomosaic image which gives a holistic view of all field plots.

Delineation of field plots from the orthomosaic image is a preliminary step for plot-level analysis of attributes. The number of seedlings emerging from the seeds planted per plot is important for early intervention and management (Sankaran et al., 2015). Estimate of plot coverage is widely considered as a performance trait of developing plants (Duan et al., 2017). The number of flowers or fruits per plot is an indirect estimator of prospective yield (Xu et al., 2018). In general, many biophysical properties can be associated by correlation to vegetation indices derived from the plots (Lelong et al., 2008; Di Gennaro et al., 2017). The accuracy of such tasks is dependent on accurate delineation of field plots from an orthomosaic image. However, several issues hinder the extraction using primitive information such as plot size and spacing. Practically, the following issue(s) may arise:

1. Plots sown away due to their placement along the track of mechanical seeder.

2. Plots appear in ambiguous location due to partial emergence of seedlings.

3. Plots not aligned with the sown position due to geo-referencing error of the orthomosaic.

Methods to extract plots from aerial images range in manual, semi-automatic, or automatic. The manual approach is to mark polygonal regions, which can be particulary suitable for arbitrary shaped canopies (Virlet et al., 2014). However, the process of marking of position or sequence of plots can be tedious as well as erroneous. An automatic approach to delineate the extents of a plot is by classifying image pixels into “plant” and “non-plant” categories (Recio et al., 2013; Haghighattalab et al., 2016). Then, the minimum bounding box around each isolated cluster of plant pixels is regarded as the plot boundary. However, such methods assume ideal segregation between plots, failing which multiple plots may be seen as a single plot.

A semi-automatic approach is to mark the extent of a trial such that it can be split into equally sized plots (Deery et al., 2016; Duan et al., 2017). The user manually marks the bounding corners of a trial which is automatically divided into a grid of cells based on the number of rows and columns, and reduced margin to remove the alleyway. However, if the plots are non-uniformly spaced, delineation will be inaccurate because a uniformly spaced grid will not align with such plots as shown in Figure 1. A common workaround is to limit the plot bounds by clipping them to a smaller, central portion for analysis. As a consequence, the user is deprived of the full distribution of attributes obtainable from whole plots.


[image: image]

FIGURE 1. Aligning a grid of cells with an aerial view of an agronomic field trial. (A) An irregularly spaced range of plots planted in single rows. (B) A regularly spaced range of cells in gross misalignment with plots. (C) The ground truth positioning of cells in alignment with actual plot location.



Precise location of plots is partially dependent on accurate geo-referencing of an orthomosaic. Theoretically, if a mosaic is perfectly geo-registered, plots can be extracted based on the map coordinates prescribed in the sowing plan (Hearst and Cherkauer, 2015). Ground control point (GCP) objects are commonly used to geo-reference imagery and enable plot extraction with sufficient accuracy. However, use of GCP only mitigates the global image referencing error. It is important to note that recovery of irregular space variation between plots is not addressable through such methods.

In this paper, we present a semi-automatic method for accurate extraction of plots from an aerial orthomosaic image. The method assumes that a cellular grid based on the number of plots in rows and columns has been coarsely laid over the image. This assumption is practically feasible using information which is readily available from a trial design as modern sowing machines can make use of GPS based plot locations. The position of grid cells is then automatically optimized such that each cell accurately aligns with the underlying plots in the image. As will be demonstrated through experiments, the method is highly suitable for delineation of irregularly spaced plots in a field.

The rest of this paper is organized as follows. In section 2 we describe the field trials on which aerial images were taken and present the plot alignment algorithm proposed in this paper. In section 3 we present the results of validation and testing of the algorithm on images of the field trials. We end with a discussion of results and suggestions for future work in section 4 and a statement of conclusions in section 5.



2. MATERIALS AND METHODS


2.1. Field Trials

The images used in this exercise were taken of two separate field trials which are shown in Figure 2.


[image: image]

FIGURE 2. RGB orthomosaic image of the trial sites used for (A) validation, and (B) testing of the proposed method. Rectangular region signifies an approximate extent of the trials under consideration of this study.



Our validation image is of a trial conducted to observe the differential growth response of wheat to fertilizer treatment. A set of ten contrasting varieties (Drysdale, Excalibur, Gladius, Gregory, Kukri, Mace, Magenta, RAC875, Scout, Spitfire) of spring wheat (Triticum aestivum L.) in six replicates were laid out in a 5 × 12 randomized split-block design of 60 plots. Additional plots, not included in the trial were added at either end of the rows to attenuate edge effects on the border plots. The nominal plot dimensions were 1.2 × 4 m, comprising 6 rows each with an inter-row spacing of 0.2 m. Three replicates of each variety were selected for treatment, based on a top dressing of 16:8:16 N-P2O5-K2O applied 35 days after sowing and a top dressing of Urea applied 62 days after sowing. The other three replicates of each variety received no fertilizer treatment and served as controls. The experimental site was located in Mallala, South Australia (latitude = –34.457062, longitude = 138.481487). The trial was sown on July 8, 2016 and the aerial images were acquired 73 days after sowing. This field trial was best suited for validation since its plots had distinct placement (Figure 2A) allowing for simulated experiments of plot alignment with a rigorous evaluation of parameters.

Our test image is of a trial targeted at phenotyping of three different crosses of wheat for breeding. For each cross, 80 double haploid (DH) lines were planted unreplicated, along with 24 check varieties of soft and hard wheat, replicated twice. The DH lines of each cross was grown in a block of 4 ranges and check varieties were randomized within the block. Further to increase the disease pressure, a highly susceptible line (Morocco) was repeated regularly in each range. Germplasm entries were planted in a 48 × 12 fully randomized layout of 576 single-row plots of size 0.3 × 5 m each. The experimental site was located between Mallala and Balaklava, South Australia (latitude = 34.301192, longitude = 138.482500). The trial was sown on May 25, 2016 and the aerial images were captured 72 days after sowing. This field trial was ideally suited for testing the alignment algorithm because its plots were inherently misaligned due to variability in sowing position (Figure 2B).



2.2. Aerial Image Acquisition and Processing

Aerial images were collected by RX100 MIII Digital Compact camera (Sony Corp., Japan) mounted on a 3DR Solo Quadcopter drone (3D Robotics Inc., USA). Flight mission was planned using ground control station software, Mission Pilot (ArduPilot). The UAV followed a path directed by the controller to cover the geographical extent of a sites. The camera acquired 20.1 megapixel images at 2 second intervals from a constant height of 30 meters, maintaining an image-overlap of more than 80%. Radiometric calibration was performed using a standard reflectance panel (MicaSense Inc., USA) which was photographed before commencement of a flight. The captured images were stored in compressed JPEG format. A photogrammetry software, Pix4Dmapper v4.0 (Pix4D, Switzerland) was employed to process raw aerial images into an orthomosaic image. The orthomosaic images were generated at a resolution of 0.8 cm per pixel and stored in georeferenced TIFF format.

A graphical user interface was developed in MATLAB R2018b (Mathworks Inc., USA) for laying out a grid over the orthomosaic image. The tool enabled interactive placement of a grid of cells over a field image before proceeding with the automatic alignment function, which aligned each cell so as to correspond to an individual plot in the field. The following two dimensional geometric transformations are supported for placement of the grid:

• Translation: Displace the grid position.

• Rotation: Orient the grid at an angle.

• Scaling: Resize the grid to given plot dimensions.

• Shifting: Modify the grid cells to match plot spacing.

The specification of a grid may be achieved using the above functions, in any order, combination and as many times as necessary, as exemplified in Figure 3. In addition to the grid layout, a cell sequence corresponding to the research trial can also be specified. The position and attribute(s) of the grid can be exported in the shapefile format for use in external software.


[image: image]

FIGURE 3. Illustration of interactive grid manipulation functions (top to bottom) offered in the graphical user interface. (A) Scale cells to adjust to the plot size (B) Shift margin between cells to remove alleyways (C) Rotate cells to align with the orientation of trial (D) Translate cells to position over the plots.





2.3. Grid Alignment Function

We formulate a cost function to find the optimal alignment of a grid of rectangular cells, where the size, shape and orientation of the cells is fixed, whereas their relative distance varies. Consider a grid [image: image] of P × Q cells which represent the plots, where P is the number of rows (P ≥ 1) and Q is the number of columns (Q ≥ 1). A cell ηpq is characterized by its fixed size, Wpq × Hpq, corresponding to the width (Wpq > 0) and height (Hpq > 0) of the plot, and its position (upq, vpq), corresponding to the spatial coordinates of the center of the plot. The grid is located in a finite discrete scalar field S:ℝU×V → ℝ (as shown in Figure 4A) such as a vegetation index signifying the level of greenness on a numeric scale.


[image: image]

FIGURE 4. Characterization of grid cells in a discrete scalar field S ∈ ℝU×V. (A) A plot is characterized by a cell ηpq of size Wpq×Hpq centered at (upq, vpq), and its neighbor [image: image]. (B) Displacement of cells ηpq and [image: image] by parameters [image: image] and [image: image] resulted in overlap.



The von Neumann neighborhood of cell ηpq in the grid can be represented by a set of index pairs corresponding to the cell's immediate neighbors in rows/columns. The index pair [image: image] of a neighboring cell thus satisfies

[image: image]

where indices [image: image] and [image: image] must satisfy the inequalities [image: image] and [image: image] to be valid neighbors. Therefore, a cell can be neighbor to 2, 3, or 4 cells depending on its location (corner, side or internal to the grid).

Our objective is to find the optimal displacement [image: image] with which to move a grid cell ηpq from its initial position at (upq, vpq) to its optimal position [image: image], without change in lateral dimensions. The optimal displacement vector is a member of the discrete set

[image: image]

where [image: image] and [image: image] are the respective bounds on the orthogonal components of the 2D vector displacement.

Expressing an arbitrary displacement in a subset of Θ as [image: image], we define the intra-cell energy dpq, in the scalar field S, as

[image: image]

which is the energy of S accumulated within the bounds of the cell ηpq, hence termed as the intra-cell energy. The intra-cell energy signifies the level of vegetation inside a cell at a certain location.

In contrast to the intra-cell energy, consider the mutually shared energy resulting from the interaction of cell ηpq with its neighbors, [image: image], as illustrated in Figure 4B. Following an arbitrary displacement of cells ηpq and [image: image], the coordinates of their mutually overlapping region are given by

[image: image]

[image: image]

We define the inter-cell energy, gpq, in terms of the mutually shared energy in the scalar field S

[image: image]

which is the sum of accumulated energy of S due to the overlap of ηpq and its neighbors [image: image]. The inter-cell energy signifies the level of vegetation in the overlapping region of a cell and its neighbors at their respective locations. Note that the term [image: image] is the ratio of the intra-cell energy of neighbor [image: image] to the sum of their respective intra-cell energies. This coefficient attributes the mutually shared energy to a pair of neighboring cells being proportional to their intra-cell energies. When a cell does not overlap with any of its neighbors (x1 ≮ x2, y1 ≮ y2) then its inter-cell energy gpq = 0.

Our objective is to maximize the intra-cell energy to encourage alignment, and to minimize the inter-cell energy to discourage overlap. Therefore, we define the net energy, fpq, of cell ηpq to be,

[image: image]

which is normalized by the area of the cell. The energy of the grid [image: image] is then given by the uniformly averaged net energy of all PQ cells and the cost function is taken to be,

[image: image]

where the exponential decay function has been used to ensure numerical stability. The cost function f forms the basis for the optimization algorithm.



2.4. Optimization Algorithm

The idea of particle swarm optimization (PSO) was initially proposed in Kennedy and Eberhart (1995) and various improvements to the algorithm and parameters have since been proposed (Pedersen, 2010; Mezura-Montes and Coello, 2011). We leverage this algorithm's ability to seek the displacement θ required to align a grid from a random set of solutions Θ as illustrated in Figure 5. The algorithm begins with a swarm of particles Θ ∈ ℝN×K (candidate solutions), all but one randomly initialized within the predefined bounds of a search space Δθ and one particle initialized as null. The cost function (f) is evaluated for all particles and the best function value and its corresponding best particle state are recorded. A particle is updated based on its current state, the difference from its best state, and its difference from the best particle among its neighbors. Particles move in a dynamic neighborhood and are iteratively updated until a convergence criterion is satisfied. The final solution is given by the particle with the best function value in the swarm. A more detailed description of the optimization algorithm can be found in the Supplementary Material.


[image: image]

FIGURE 5. Illustration of the proposed optimization approach for plot alignment. Particles are characterized by a P×Q grid graph where each cell (plot) is initially placed at a uniform random position. A cost function whose output is proportional to underlying vegetation is evaluated for all particles. Particle positions are updated, weighted by the difference between their current and individual best position, best position in the neighborhood and the best overall particle position so far (outlined bold). Particles progressively align with regions of vigorous vegetation. The final alignment is given by the particle with the minimum cost achieved upon termination. (Pseudocolor scale from low:L to high:H vegetation index).






3. RESULTS

The ground truth location of all plots was manually labeled in the orthomosaics to validate and test the performance of the alignment algorithm. Denote the 2D displacement vector of the grid cell ηpq from its initial position (upq, vpq) in the uniform grid to the ground truth position by [image: image], and the 2D displacement vector of the grid cell ηpq from its initial position in the uniform grid (upq, vpq) to the computed position by [image: image]. The Euclidean distance between the ground truth displacement vector and the computed displacement vector was chosen as the basis for error estimation

[image: image]

This metric served as the criterion used to measure the overall performance. The alignment errors were computed in physical units for all PQ grid cells corresponding to the plots. Box and whisker diagrams were utilized to graphically illustrate the error distributions.

The discrete scalar field S in the definitions of intra-cell energy (Equation 3) and inter-cell energy (Equation 6), was defined in terms of information obtainable from the channels of an RGB image. To be precise, we implemented a green-red difference vegetation index defined as,

[image: image]

where G and R are the values in green and red channel, respectively, at pixel position (u, v).

In general any vegetation index which numerically distinguishes plant pixels from the background can be considered as S. This point is further elaborated in the Discussion.


3.1. Validation

From the validation orthomosaic image, we generated new images of artificially distributed plots based on known but random set of displacements. The validation images with known misalignment enabled the calculation of errors and an assessment of the stability of our results. However, simply displacing plots in a mosaic was unhelpful as this created voids in the original position of the plots and thus introduced discontinuities in the image data, as shown in Figure 6B. This problem was addressed by taking a unique approach of reflecting larger, randomly displaced regions around a plot in the mosaic as shown in Figure 6C. The resulting mosaic contained no voids, and the discontinuities were limited to low texture (soil) regions. The modified orthomosaic images with artificially misaligned plots appeared more realistic and were used for validation experiments.
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FIGURE 6. Simulating misaligned plots in an orthomosaic (A) Original validation image (B) Linear displacement of an image region leaves void areas at the plot's position (C) Reflection of an image region displaced from the plot's original position leaves no discontinuity.



Several aspects pertaining to the initialization, termination, and problem size of the optimization algorithm; as well as the role of cost function were explored using the validation images. These features are discussed in turn below.

3.1.1. Initialization

The dependency of the solution on the swarm initialization (see Supplementary Materials) was evaluated by running the algorithm with 50 different swarms. Each swarm is a random set of solutions independently drawn from a uniform distribution. In Figure 7, we present the whisker diagram of errors for each run. It can be observed that 48 initializations resulted in successful alignment, whereas only two resulted in failure. This shows that the optimization algorithm is largely invariant to the initialization.


[image: image]

FIGURE 7. Boxplot of errors for 50 random initializations in 1 random validation trial. Outliers are individually plotted as “+”.



3.1.2. Random Trials

We tested the adaptability of the algorithm to different randomly simulated trials from the original validation image. In Figure 8, we present the distribution of cell alignment errors for each of the 50 different randomly simulated validation trial images. It can be observed that the median error is 5 cm in general with the existence of a few outliers varying in each trial.


[image: image]

FIGURE 8. Boxplot of errors in 50 random validation trials. Outliers are individually plotted as “+”.



3.1.3. Tolerance

The tolerance value for termination of an optimization procedure can play an important role in the final result as well as for efficiency. Given the nature of the optimization, the minimum cost function value is maintained or improved with each iteration. The procedure is terminated if the change in minimum value does not differ by more than the specified tolerance, for a fixed set of consecutive iterations. In Figure 9, we show the distribution of errors in five random simulated trials for tolerance values ranging over five orders of magnitude, i.e., from 10−2 to 10−6. It can be observed that there was no significant improvement in errors for tolerance smaller than 10−4.
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FIGURE 9. Boxplot of errors for using 5 different tolerance values in 5 random validation trials. Outliers are individually plotted as “+”.



3.1.4. Swarm Density

We also considered how the swarm size affected the quality of the optimized solution. In Figure 10 we show the distribution of errors in 5 random trials for 10 different swarm sizes (K) in relation to a fixed problem size (N). It can be seen that a swarm density (K/N) ranging from 6 to 12 generally resulted in lower errors.
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FIGURE 10. Boxplot of errors for using 10 different swarm sizes in 5 random validation trials. Outliers are individually plotted as “+”.



3.1.5. Cost Function

We computed the contributions of the two constituent parts of the cost function and evaluated their influence on the overall performance in terms of errors.

The intra-cell energy component of the cost function established a baseline level of performance. The inter-cell energy term penalizes solutions with overlapping cells. To evaluate the usefulness of the inter-cell energy component, we simulated an artificial image with significantly more misalignment in one direction such that alternate pairs of plot rows had no gap. This created a challenging scenario since the absence of a significant gap presents a difficulty in demarcating plot boundary. Furthermore, we paired rows of fertilized plots with those of unfertilized plots. This offered a more challenging scenario because cells tend to overlap or align with plots which have a higher vegetation index due to the greedy nature of intra-cell energy function.

Figure 11 shows that cell alignment is erroneous when solely based on the intra-cell energy. It has been demonstrated here that alignment of cells of unfertilized plots (which are less vigorous and have low vegetation index values) tends to be biased toward fertilized plots (which are more vigorous and have high vegetation index values). This is as expected since the cost function seeks to align grid cells to areas of high vegetation index. With the addition of an inter-cell energy penalty, the anomaly is significantly reduced. The overlap of nearby cells, is generally limited to non-vegetative regions, i.e., to the gaps between consecutive plots.
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FIGURE 11. Effect of the constituent parts of the cost function on alignment errors. (A) Initially overlaid grid with regular spacing and its alignment error (B) Using only the intra-cell energy resulted in cells to overlap with poor alignment (C) Using both the intra-cell and inter-cell energy significantly improved alignment.





3.2. Testing

The result of cell alignment errors on the test image are summarized in Figure 12. The alignment errors of the automatically refined grid are compared with that of a regular uniformly spaced grid. The cell alignment error is significantly reduced through the application of the proposed algorithm as shown in Figure 12, based on an initialization using the same uniformly spaced grid. To complement these graphical results we visually compare the errors on a few sample plots in Figure 13. The sample plots have been selected to show variety of cases in terms of density of vegetation as well as accuracy of result. It can be seen that in general, the alignment errors are longitudinal, i.e., they lie along the direction of the sowing track. The alignment result is highly accurate in fully emerged plots, one such example from a large majority of these plots is shown in Figure 13A. The alignment can be erroneous in case of partial emergence of seedlings, a rare worst-case scenario of which is shown in Figure 13B. The sparsity of vegetation along the ends of a partially emerged plot can also translate into positional ambiguity as shown in Figure 13C. When seedling growth is present at the extreme edges despite missing in between, the result can still align with the ground truth position as shown in Figure 13D.
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FIGURE 12. Boxplot of alignment errors of the automatically refined grid compared to errors of a regular grid with uniform spacing on test orthomosaic image. Significant differences are indicated by non-overlapping box notches. Outliers are individually plotted as “+”.
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FIGURE 13. Example of cells aligned by the proposed method (red, dashed) in comparison to the uniformly spaced cells (blue, dashed) and ground truth cells (white, continuous). (A) Full emergence, good alignment (B) Partial emergence, bad alignment (C) Partial emergence, fair alignment (D) Partial emergence, good alignment.



3.2.1. Effect on Phenotypic Trait

The potential benefit of accurate plot extraction can be appreciated when it is ultimately used for the analysis of a phenotypic trait. One way to evaluate its advantage is to derive a common trait such as the canopy coverage from extracted plot location. Estimation of canopy coverage requires segmentation of plant pixels from the background which can be accomplished by applying a threshold to the discrete scalar field S. Pixels having a higher value than the threshold are regarded as belonging to the plants and vice-versa. We empirically selected a value of threshold to achieve the visually best result by overlaying the segmentation mask over the RGB image. The canopy coverage of plant pixels could then be expressed as a percentage of the total number of pixels in a cell. The coverage was estimated based on a regular grid of uniformly spaced cells, a regular grid of uniformly spaced cells with length trimmed (50%) and an automatically refined grid obtained with the proposed method. The suggested coverage estimates of each grid were compared to the actual coverage values obtained from the ground truth grid.

Figure 14 shows the scatter chart of canopy coverage obtained using the different types of grid against those of using the ground truth grid. A regular grid underestimated the coverage in most cases as it was not in positional alignment with the plots but rather overlaid on portions of soil. A regular grid with trimmed edge overestimated the coverage as it was generally positioned in the center of plots where vegetation was more likely to be present but did not take the excluded region into consideration. In contrast, a regular grid with automatic refinement returned better coverage estimates corresponding well with the ground truth estimates as its position was correctly aligned.
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FIGURE 14. Comparison of plot coverage estimated from three different types of grid with the coverage obtained from the ground truth grid. Regular grid with uniformly spaced cells (blue circles), regular grid with uniformly spaced cells and trimmed edges (yellow squares), and refined grid obtained using the proposed method (red triangles).



An analysis of variance (ANOVA) was conducted on plot coverage computed from the different types of grids (see Table 1). The result was significant and a low p-value indicated that coverages estimated from regular, trimmed, refined and ground truth grids are not same (F = 14.17, p = 3.77 × 10−9). Further multiple comparison suggested that coverage estimated from either regular or trimmed grid were different from all others, including the ground truth grid. However, coverage estimated from refined grid was different from regular and trimmed grids only.



Table 1. Analysis of variance of plot coverage from four different grids (regular, trimmed, refined, and ground truth).
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4. DISCUSSION

Any form of image analysis of a remotely sensed field trial, whether it be for assessment of canopy vegetation index (Khan et al., 2018b), estimation of canopy vigor and height (Cai et al., 2018; Khan et al., 2018a), or for estimation of yield by counting heads (Fernandez-Gallego et al., 2018; Hasan et al., 2018; Zhou et al., 2018), must begin with establishing the precise location and perimeter of field plots. Agronomic field trials can have an enormous scope, especially in plant breeding. Consequently, the magnitude of the task to manually demarcate individual plot sites on an image becomes considerable. Assuming a uniform grid of cells based on an expected experimental design (such as those shown in Figure 13) or even further clipping the cells to central portion of plots will almost certainly lead to significant errors in estimates of many phenotypic traits, which are normally quoted per unit area. As it has been demonstrated that canopy coverage, related to green pixel area relative to plot area can be in significant error (underestimated or overestimated) if predicted cell locations are grossly misplaced from the actual plots. Analogous to canopy coverage, vegetation index estimates could be under-represented if soil area was captured instead of true canopy area. Similarly, the assessment of crop germination and yield can be in error as a consequence of the failure to properly align cells with actual plot locations.

The main aim of this paper has been to introduce a robust algorithm to accurately superimpose cells of specified dimensions in an irregular grid over an image of a field trial, so that the positions of grid cells optimally correspond to actual field plot locations. Through the application of a series of validation experiments on simulated images and testing on real image of trial sites, we have demonstrated that the method is accurate, while requiring minimal manual input. Although it can be argued that the extreme displacement of plots (Figure 6) simulated for validation studies is not usually encountered in practice, the accurate results of our algorithm suggest that cell alignment with actual plots in less severe circumstances would be even more easily achieved. The procedure thus offers the potential for automatic application to actual plant breeder trials.

Assuming only fixed dimensions of grid cells, our proposed algorithm, invoking the combination of two complementary (nigh competing) cost functions shows remarkable results, as measured by our error metric in Equation (9). That an intra-cell energy is insufficient to optimize grid position is clear from Figure 11. By not including an inter-cell energy cost function, which penalizes overlap with neighboring cells, can result in a higher energy value when cells overlap green pixel-rich regions of neighboring plots. Our choice of inter-cell function is of course not unique. An extreme alternative inter-cell energy function could operate by simply excluding configurations in which any two cells overlap. In this case

[image: image]

which is akin to assuming that cell displacement is “hard limited,” or equivalently that the energy of any overlap is infinite. While this may seem to be a simpler prospect, such a penalization would lead to a high(er) number of rejected moves, thus forcing a greater number of iterations, thereby interrupting the optimization procedure. In contrast, the present approach allows “soft limited” cell displacements, with overlapping cells penalized with a cost proportional to the amount and content of overlap. This results in a more stable and robust optimization.

The proposed energy functions depend on a discrete scalar field which can be derived from the channel(s) of an image. In this study, we used a vegetation index derived from RGB images, which has elsewhere (Khan et al., 2018a,b) been shown to correlate well with normalized difference vegetation index (NDVI). It is, however, also possible to employ a different vegetation index as fundamental determinant, based on e.g., multispectral images. However, our preferred choice was based, at least partly, on the high resolution capabilities of the RGB camera, which can more accurately differentiate plant canopy (foreground) pixels from soil (background) pixels. Arguing on the basis of its correlation with NDVI, the scalar field we used possessed sufficient information about the state of vigor of the canopy.

Finally, from a technical perspective, the proposed cost function is related to the alignment of cells to plots based on an accumulation of underlying vegetation index. While this function has been shown to work in most circumstances, it needs to be recognized that the best objective value does not guarantee the best cell alignment; although they are related, they are not necessarily equivalent. Also, the final optimal solution was found to be largely invariant to the initialization of the swarm. In rare instances where a given initialization fails to lead to a converged solution, a possible corrective measure one can employ is simply to restart/rerun the algorithm with a different random seed initialization.

In future work it could be useful to extend the method to allow for possible variations in cell dimensions in addition to cell positions. However, it is important to reiterate that “total” measures of phenotypic traits such as germination and yield are more appropriately determined by computing the content of a developed canopy within a theoretically sown plot position represented by a fixed size cell. This is one reason why it may be preferable to fix cell dimensions and determine the optimal cell position rather than employ other boundary establishing techniques such as the level set method or the method of active contours (Mumford and Shah, 1989; Chopin et al., 2016), which explicitly capture the actual boundaries of plot canopy but would not be useful for quantifying traits in the same manner.



5. CONCLUSIONS

The tedious pre-analysis task of identifying field plots in an orthomosaic image of a plant research field trial can be simplified by the automatic registration of plot locations provided by the grid cell optimization algorithm proposed here. Being able to specify the location of separated field plots in a robust and accurate way sets the stage for a subsequent accurate analysis of a range of crop phenotypic traits such as total canopy coverage and canopy vigor. The proposal suits this general purpose and has the potential to be adapted for more specific purposes, such as cell dimension adjustment to capture exact canopy structure.
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Global agriculture production is challenged by increasing demands from rising population and a changing climate, which may be alleviated through development of genetically improved crop cultivars. Research into increasing photosynthetic energy conversion efficiency has proposed many strategies to improve production but have yet to yield real-world solutions, largely because of a phenotyping bottleneck. Partial least squares regression (PLSR) is a statistical technique that is increasingly used to relate hyperspectral reflectance to key photosynthetic capacities associated with carbon uptake (maximum carboxylation rate of Rubisco, Vc,max) and conversion of light energy (maximum electron transport rate supporting RuBP regeneration, Jmax) to alleviate this bottleneck. However, its performance varies significantly across different plant species, regions, and growth environments. Thus, to cope with the heterogeneous performances of PLSR, this study aims to develop a new approach to estimate photosynthetic capacities. A framework was developed that combines six machine learning algorithms, including artificial neural network (ANN), support vector machine (SVM), least absolute shrinkage and selection operator (LASSO), random forest (RF), Gaussian process (GP), and PLSR to optimize high-throughput analysis of the two photosynthetic variables. Six tobacco genotypes, including both transgenic and wild-type lines, with a range of photosynthetic capacities were used to test the framework. Leaf reflectance spectra were measured from 400 to 2500 nm using a high-spectral-resolution spectroradiometer. Corresponding photosynthesis vs. intercellular CO2 concentration response curves were measured for each leaf using a leaf gas-exchange system. Results suggested that the mean R2 value of the six regression techniques for predicting Vc,max (Jmax) ranged from 0.60 (0.45) to 0.65 (0.56) with the mean RMSE value varying from 47.1 (40.1) to 54.0 (44.7) μmol m-2 s-1. Regression stacking for Vc,max (Jmax) performed better than the individual regression techniques with increases in R2 of 0.1 (0.08) and decreases in RMSE by 4.1 (6.6) μmol m-2 s-1, equal to 8% (15%) reduction in RMSE. Better predictive performance of the regression stacking is likely attributed to the varying coefficients (or weights) in the level-2 model (the LASSO model) and the diverse ability of each individual regression technique to utilize spectral information for the best modeling performance. Further refinements can be made to apply this stacked regression technique to other plant phenotypic traits.
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INTRODUCTION

Increasing demands for food, fiber, and fuel caused by rising human population and global affluence will be a burden to environment sustainability over the next several decades. These increasing demands are likely to be challenged further with the world’s shrinking farmlands (Sayer et al., 2013; Ort et al., 2015) and with climate change (Tester and Langridge, 2010). Among other improvements, development of high photosynthetically efficient crop cultivars is required to overcome these challenges (Tester and Langridge, 2010). Although crop yields have increased over the last several decades, this is achieved in the Green Revolution which are diminishing with time (Parry et al., 2011). Photosynthesis as a process leaves significant room for improvement, which can bolster crop yields (Long et al., 2006; Zhu et al., 2008). Thus, major research efforts are underway to increase photosynthetic energy conversion efficiency by engineering photosynthetic pathways (Yokota and Shigeoka, 2008; Ducat and Silver, 2012; Ort et al., 2015) and exploiting mechanisms underlying natural variation of photosynthesis (Flood et al., 2011; Lawson et al., 2012).

Altering the photosynthetic capacity of plants may lead to higher productivity, but assessing the potential to optimize photosynthesis, or to measure the underlying natural variation in multiple plots representing diverse genotypes requires careful and comprehensive phenotyping under field conditions (Furbank and Tester, 2011). High-throughput phenotyping using non-invasive imaging sensors offers a non-destructive, rapid, and inexpensive way to characterize phenotypic traits for individual plants (Finkel, 2009; Großkinsky et al., 2015). However, compared with high-throughput genotyping (Thomson, 2014), plant phenotyping in a low-throughput manner has been a bottleneck to the generation of improved crop varieties (Furbank and Tester, 2011). Therefore, advances in both high-throughput phenotyping platforms (HTPPs) and statistical techniques that relate sensor measurements to phenotypic traits are needed to enable capacity for rapid and accurate phenotyping to ensure crop improvements.

Biochemical kinetic properties such as Vc,max (the maximum rate of Rubisco-catalyzed carboxylation) and Jmax (maximum electron transport rate supporting RuBP regeneration) are critical variables in determining photosynthetic capacity (Long and Bernacchi, 2003). These parameters with their underlying temperature functions (Bernacchi et al., 2001, 2003) are used to parameterize the leaf photosynthesis model (Farquhar et al., 1980) to predict photosynthetic rates over a wide range of environmental conditions. Traditionally, these parameters are acquired from in vivo measurements using commercial gas exchange systems (Long and Bernacchi, 2003) fit to mechanistically defined photosynthesis models (Farquhar et al., 1980; Sharkey et al., 2007). However, measurements from gas exchange systems are time-consuming, cost-prohibitive, and labor-intensive, making it difficult to phenotype photosynthesis for large numbers of plants in a short time. The emergence of HTPPs in recent years suggests opportunities to rapidly measure leaf level photosynthetic information for thousands of individual plants. Imaging techniques currently used in HTPPs include visible light (RGB), fluorescence, thermal, 3D (e.g., light detection and ranging), tomographic, and hyperspectral imaging (HSI) (Fiorani et al., 2012; Deery et al., 2014; Li et al., 2014). Among these techniques, HSI is deemed as one of the most effective technologies to predict physiological status and stress related response of crops in a high-throughput manner at different scales (Mahlein et al., 2012; Matsuda et al., 2012; Mutka and Bart, 2014; Sytar et al., 2017).

Inference of photosynthetic variables and other phenotypic traits from hyperspectral reflectance entails the development of calibration models relating spectral measurements and reference data (e.g., Vc,max and Jmax, derived with gas exchange systems). Required by model calibrations, a representative sub-sample of a complete data set in terms of range of spectral variation treated with appropriate pre-processing techniques should be selected (Montes et al., 2007; Cabrera-Bosquet et al., 2012). In model calibration phase, empirical models used to correlate spectral information with ground truth data can be diverse. For most HSI studies, vegetation indices that associate two or more spectral bands with specific biological parameters of plants/crops are commonly derived for assessing and quantifying phenotypic traits (Fiorani et al., 2012). As such, simple correlation, regression, and classification techniques rather than sophisticated mathematical models can help achieve research goals, for example to characterize plant responses to abiotic and biotic factors (Rumpf et al., 2010; Kim et al., 2011; Behmann et al., 2014). In contrast, to relate photosynthetic capacities with complete reflectance spectra, it is necessary to use statistical models that have both powerful feature extraction ability and data inference ability. For example, partial least squares regression (PLSR) (Geladi and Kowalski, 1986; Wold et al., 2001) has been commonly used to estimate Vc,max and Jmax at the leaf level from leaf-clip reflectance spectra (Serbin et al., 2012; Ainsworth et al., 2014; Yendrek et al., 2017; Silva-Perez et al., 2018). These studies also showed that wavebands used for estimating photosynthetic information fell with spectral regions associated with leaf characteristics such as water content, internal structure, dry mass, and chlorophylls. However, the performance of PLSR in estimating photosynthetic capacities varies significantly across different plant species, regions, and growth environments.

To cope with the heterogeneous performances of PLSR among different situations, it is necessary to explore other powerful machine learning techniques. With appropriate feature extraction, other statistical techniques such as artificial neural network (ANN) regression (Specht, 1991), support vector machine (SVM) regression (Cortes and Vapnik, 1995), least absolute shrinkage and selection operator (LASSO) regression (Tibshirani, 1996), random forest (RF) regression (Breiman, 2001), and Gaussian process (GP) regression (Williams and Rasmussen, 2006) may achieve the similar, if not better, predictive performance as PLSR in phenotyping photosynthetic variables. However, there is a lack of understanding of the predictive performance of individual machine learning-based regression techniques and whether their ensemble would provide better performances for quantifying photosynthetic variables in a high-throughput manner. Therefore, the objectives of this study are to test a series of regression techniques, including PLSR, and compare the model performance of each individual regression technique to that of stacking all the regression techniques in high-throughput phenotyping photosynthetic capacities. Testing these machine learning techniques on both wild and genetically modified tobacco plants, we hypothesize that this stacked regression framework may form a more general approach to estimations of plant phenotypic traits of greater accuracy and sensitivity than those from any single regression algorithm.



MATERIALS AND METHODS

Experimental Site

Six tobacco (Nicotiana tabacum) genotypes including both transgenic and wild type lines (Table 1) were planted during two growing seasons (2016–2017) at the University of Illinois Energy Farm Facility in Urbana, Illinois1. Tobacco plants were germinated in green house conditions and transplanted to the farm field at the four leaf stage. Two weeks prior to transplanting, 275 lbs./acre ESN Smart Nitrogen (∼150 ppm) was applied to the field site. A biological pesticide, Bacillus thuringiensis v. kurstaki (54%) (DiPel PRO, Valent BioSciences LLC, Walnut Creek, CA, United States), was applied to the field site 5 days prior to transplanting and bi-weekly thereafter to control for tobacco pests. In addition, a broad action herbicide, Glyphosate-isopropylammonium (41%) (Killzall; VPG, Windthorst, TX, United States) was applied once to all plots 2 days before transplanting at 15 l at 70 g/l. Each genotype plot was arranged in a 6 plant × 6 plant grid totaling 36 plants per plot with 0.38 m spacing and was replicated four times. Throughout the growing season, irrigation was provided to tobacco plants as needed. The six genotypes have quite contrasting differences in photosynthetic capacities with three wild-type cultivars of different growth rates, two transgenic Rubisco antisense lines with reduced photosynthetic capacity (Hudson et al., 1992), and one transgenic type with overexpression of photosynthetic carbon reduction cycle enzymes to increased photosynthetic capacity (Simkin et al., 2015; Table 1). Thus, these genotypes can provide a wide range for each photosynthetic variable. In this study, photosynthetic capacities Vc,max and Jmax (ambient values rather than values normalized to a standard temperature) were derived, as described below.

TABLE 1. List and description of tobacco genotypes used in the study.
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Leaf Reflectance and Gas Exchange

Leaf reflectance properties of the six genotypes were analyzed from 400 to 2500 nm using a high-spectral-resolution spectroradiometer (Fieldspec 4, Analytical Spectral Devices – ASD, Boulder, CO, United States) with a leaf clip attached to the fiber optic cable. The spectroradiometer has a spectral resolution of 3 nm in the visible and near infrared range (350–1000 nm) and of 8 nm in the shortwave-infrared range (1000–2500 nm). The relative leaf reflectance was determined from the measurement of leaf radiance divided by the radiance of a 99% reflective white standard (Spectralon, Labsphere Inc., North Dutton, NH, United States). Six leaf-clip reflectance measurements were made in different regions of the same youngest fully expanded sunlit leaf and then were averaged. Measurements were collected between 11 AM and 2:30 PM local time under clear-sky conditions for three different leaves in each plot. The short-time window was to ensure that photosynthetic variation among cultivars in a day were not impacted by time. Within 30 min of hyperspectral measurements, the corresponding response of photosynthesis (A) to intercellular CO2 concentration (Ci) for each leaf was captured using a portable leaf gas exchange system (LI-6400, LICOR Biosciences, Lincoln, NE, United States). Measurements were initiated at the growth CO2 concentration of 400 μmol m-2 s-1 at saturating light (1800 μmol m-2 s-1). The CO2 concentration (μmol mol-1) in the cuvette was changed stepwise in the following order: 400, 200, 50, 100, 300, 400, 600, 900, 1200, 1500, 1800, and 2000. Prior to initiating A/Ci curves, three leaf temperature measurements were made and averaged using a handheld IR temperature probe (FLIR TG54, FLIR Systems, Inc., Wilsonville, OR, United States) and the block temperature of the gas exchange cuvette was set to match this average leaf temperature. In addition, leaves were acclimated to chamber conditions for a minimum of 300 s and adjusted to chamber conditions for between 160 s and 200 s before each individual measurement. Relative humidity inside the chamber was controlled at 65 ± 5% by adjusting the flow through the desiccant tube integrated into the gas exchange system. The photosynthetic variables Vc,max and Jmax were derived by fitting A/Ci curves with a mechanistically defined mathematical model (Farquhar et al., 1980) through a fitting utility program (Sharkey et al., 2007). The mesophyll conductance (gm) was constrained according to a previous study for tobacco at 25°C (Evans and Von Caemmerer, 2012). According to Sharkey (2016), the derived Jmax should be called as J or J at 1800 μmol m-2 s-1 and should not be used for the maximum rate of electron transport at high light intensity. Thus, in the following of the manuscript, we used J1800 instead of Jmax when referring to both measured and predicted values.

The pairs of reflectance spectra and A/Ci curves were measured on the following dates from 2016 to 2017: June 30-July 1, 2016, July 19 and 21, 2016, August 4 and 5, 2016, June 22 and 28 2017, July 6, 7, 12 and 31 2017, and August 1 and 18 2017. In total, 212 data pairs were collected for Vcmax, and 179 measurement pairs for J1800. The fewer measurement pairs of J1800 than Vcmax stems from the double Rubisco knockdown plants (SSuD) not being electron transport limited under any conditions and therefore were removed from analysis. Further details can also be found in Meacham-Hensold et al. (2019).



REGRESSION TECHNIQUES

This study presents a test of the idea that an ensemble of regression techniques can be used together to measure plant traits with greater accuracy and sensitivity than from any single regression algorithm. Stacked regression (SR, also called as stacked generalization, stacking, stacking regressions, or blending) was first introduced by Wolpert (1992) and later statistically principled by Breiman (1996) to blend different predictors to give improved prediction accuracy. Although SR is used less frequently than other ensemble learning methods, such as Bagging and Boosting, it is commonly used for generating ensembles of heterogeneous predictors (Sesmero et al., 2015). Figure 1 shows the workflows of stacked regression for phenotyping photosynthetic capacities. The training data pairs, leaf level hyperspectral reflectance and gas exchange system-derived Vc,max and J1800 were first split into N folds (N was 10 in this study) with the Nth fold reserved for test. In this study, six regression models including ANN, SVM, LASSO, RF, GP, and partial least squares (PLS) regressions were individually tested and combined in the stacked regression framework. As seen from Figure 1, predictions for each fold were obtained using the N-2 folds and collected in an out-of-sample predictions matrix. Then the out-of-sample predictions matrix was used to train the level-2 regression model to obtain final predictions for all data points. Here the LASSO regression was used as the level-2 model to avoid collinearity among predictions of photosynthetic capacities. To reduce uncertainty, the 10-fold cross-validations were conducted for both level-1 and level-2 models. More importantly, by using the cross-validated predictions, SR avoids giving unfair weight to models with higher complexity. In this study, the data pairs collected in 2016 and 2017 were randomly split into the training and test datasets with a ratio of 9:1. This splitting procedure was repeated 10 times for analysis of the performance of both the six regression techniques and the stacked regression.
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FIGURE 1. The workflows of regression stacking for phenotyping photosynthetic capacities. ANN, artificial neural network; SVM, support vector machine; LASSO, least absolute shrinkage and selection operator; RF, random forest; GP, Gaussian process; and PLS, partial least squares. P and p are model predictions at different modeling stage. The regression models are trained with a leave-one-out cross validation approach (the Nth fold is reserved) to form the out-of-sample predictions matrix. The final predictions of each fold were made using the LASSO model based on the out-of-sample predictions matrix (no data normalization).



Before the training of each individual regression model, the original hyperspectral reflectance data of samples were standardized for each individual band as:
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where z refers to the standardized reflectance value, Ri is the raw hyperspectral reflectance for band i, Ri is the mean value of all the sampled hyperspectral reflectance for band i, and SRi is the standard deviation of all the sampled hyperspectral reflectance for band i. This pre-processing step ensures that reflectance values at each wavelength have zero mean and unit standard deviation and receive equal considerations in the model training phase. For the level-2 model, the out-of-sample predictions (without data normalization) were directly used for regression stacking. Figure 2 shows the raw spectra and standardized data in 3D. During the model training and test phases, the performance of each individual model and stacked regression was assessed based on the coefficient of determination (R2) and root mean square error (RMSE). In the following sections, a brief overview of each individual regression technique was provided.
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FIGURE 2. The spectra data: a matrix of 212 samples (rows) and 2151 features (columns). The x-axis refers to the wavelength, the y-axis represents Vc,max, and the z-axis denotes the reflectance of the spectrum (A) or z-scored value (B). Each color line represents one sample.



Artificial Neural Network

Artificial neural network models are generic non-linear function approximation algorithms that are capable of computing, predicting, and classifying data (Ali et al., 2016). They have been widely used in applications including pattern recognition, classification, and regression in various fields (Hong et al., 2004; Kim, 2010; Zain et al., 2012; Neto et al., 2017). ANN refers to a multi-layer network structure that consists of an input layer, an output layer, and one or more hidden layers (Kimes et al., 1998). It achieves regression by building a model of the data-generating process for the network to generalize and predict outputs from inputs that are not previously seen. In this study, back-prorogation (BP) neural networks-based regression were utilized in that it can handle non-linear relationships among data even when there are conflicting relationships between the input variables and the response variables (Moghadassi et al., 2010). The optimal number of hidden layers and neurons in the BP neural networks was determined through the leave-one-out cross validation process that yielded the smallest RMSE value.

Support Vector Machine

Support vector machine, benefiting from the statistical learning theory and the minimum structural risk principle (Cortes and Vapnik, 1995), is mainly used for classification and regression of small non-linear and high-dimensional samples (Mountrakis et al., 2011). Given a set of adequate training samples, support vector regression (SVR) allows continuous estimations of a specified output variable by fitting an optimal approximating hyperplane to a set of training samples. Such a hyperplane is approximated with two important parameters including the kernel function, which reflects similarity between data points (i.e., between reflectance values), and the cost loss function (regularization parameter; Verrelst et al., 2012). Integrated into a kernel framework, SVR enables mapping the original data into a higher dimensional feature space, wherein a better fitting of a linear function would be possible (Brereton and Lloyd, 2010). In this study, the radial basis function (RBF) was used as the kernel function with the regularization parameter tuned through the cross-validation process.

Least Absolute Shrinkage and Selection Operator

Least absolute shrinkage and selection operator as a regression analysis method performs both variable selection and regularization by minimizing the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant (Tibshirani, 1996). It was originally introduced in the context of least squares as a sparse regression method. In building a model with high dimensional data such as hyperspectral reflectance, LASSO regression can shrink some of the regression coefficients toward zero as the penalty parameter increases to improve the prediction accuracy (Donoho, 2006). As a quadratic programming problem, LASSO regression coefficients can be optimized and derived by efficient algorithms without much computational cost (Efron et al., 2004; Friedman et al., 2010; Boyd et al., 2011). In this study, the LASSO regression was utilized since it has been widely used to deal with hyperspectral data for various purposes (Samarov et al., 2015; Sara et al., 2017; Yang and Bao, 2017).

Random Forest

Random forest is a non-linear statistical ensemble method that constructs and subsequently averages a large number of randomized decision trees for classification or regression (Breiman, 2001). It models the relationship between explanatory variables and response variables by a set of decision rules which are constructed by recursively partitioning the input space into successively smaller regions (Hastie et al., 2009). RFs overcome weaknesses of regression trees that tend to overfit the data as the tree becomes too complex (James et al., 2013) by introducing randomness through a bootstrap strategy. Generally, the number of variables selected at each split tree was optimized by minimizing the out-of-bag error of predictions. In this study, RF regression was selected because it can handle data of high dimensions and does not require explicitly the feature selection step (Hastie et al., 2009).

Gaussian Process

The Gaussian process regression (GPR) can be interpreted as a distribution over and inference occurring in the space of function from the function-space view (Williams and Rasmussen, 2006). It has been received much attention in the field of machine learning and can provide the Bayesian approach to establishing the relationship between the input (i.e., hyperspectral reflectance) and the output variable. GPR achieves the prediction purpose by computing the posterior distribution over the unknown values with the hyperparameters typically tuned by maximizing the Type-II Maximum Likelihood, using the marginal likelihood of the observations. In this study, GPR was employed since it has been widely used for remote sensing applications (Verrelst et al., 2013; Fu and Weng, 2016).

Partial Least-Squares Regression

Partial least square regression (PLSR) is a bilinear calibration method using data reduction by compressing a large number of measured collinear variables into a few orthogonal principal components (also known as latent variables) (Geladi and Kowalski, 1986; Wold et al., 2001). These latent variables represent the main variance-covariance structures as they are constructed to optimize the explained power of the response variables (Ehsani et al., 1999). PLSR estimates the regression coefficients for each latent variable through a leave-one-out cross validation approach. In general, the optimal number of latent variables is determined by minimizing RMSE between predicted and observed response variable. More details on the PLSR algorithm can be referred to Esbensen et al. (2002).



RESULTS

The Modeling Performance for Predicting Vc,max and J1800

The Vc,max and J1800 datasets collected based on the leaf gas exchange systems in 2016 and 2017 exhibited a variation of 23.8 fold (14.5-344.6 μmol m-2 s-1) and 4.9 fold (73.6-362.0 μmol m-2 s-1), respectively (Table 2). The six cultivars had quite varying mean and standard deviation values for Vc,max and J1800. Figure 3 shows the statistical distributions of R2 and RMSE values of each machine learning algorithms for predicting Vc,max. With the cross-validation in the model training phase, the LASSO model yielded the highest mean R2 of 0.65 (mean RMSE = 47.1 μmol m-2 s-1), followed by the PLS model with the mean R2 of 0.64 (mean RMSE = 47.6 μmol m-2 s-1). The SVM regression and the GP regression had the same mean R2 value of 0.60 with the RMSE value of 50.4 μmol m-2 s-1 and 49.8 μmol m-2 s-1, respectively. Compared to the ANN regression model (mean R2 = 0.61; mean RMSE = 50.5 μmol m-2 s-1), the RF model had a higher mean R2 of 0.63 with a larger mean RMSE of 54.0 μmol m-2 s-1. Among the six regression models, LASSO displayed the smallest standard deviation in both R2 and RMSE while the largest standard deviation was found in ANN for both R2 and RMSE. In the model test phase, it was found that the R2 and RMSE values of each regression model had a relatively wider range, compared to those in the model training phase. For example, the R2 and RMSE yielded by the LASSO model in the model test phase ranged from 0.48 to 0.75, much wider than the range from 0.62 to 0.7 in the model training phase. In addition, the mean R2 and RMSE values of each machine learning algorithm were slightly larger or at least very similar to those in the model training phase. These findings were reasonable since the machine learning algorithms applied to test dataset were calibrated by all the training data rather than data used in the cross-validation in the training phase (Figure 3). The best regression model (based on the mean R2 and RMSE values) in the model test phase was achieved by SVM (R2 = 0.67, RMSE = 47.1 μmol m-2 s-1), followed by GP (R2 = 0.66, RMSE = 47.7 μmol m-2 s-1), LASSO (R2 = 0.66, RMSE = 47.9 μmol m-2 s-1), RF (R2 = 0.61, RMSE = 49.5 μmol m-2 s-1), PLS (R2 = 0.60, RMSE = 50.1 μmol m-2 s-1), and ANN (R2 = 0.60, RMSE = 54.8 μmol m-2 s-1). The disparities of the performance of different regression models, when applied to the same dataset, further suggested that it was necessary to develop new techniques to utilize the advantages but avoid the disadvantages of each individual regression algorithm.

TABLE 2. The descriptive statistics of Vc,max (μmol m-2 s-1) and J1800 (μmol m-2 s-1) for samples collected in 2016 and 2017 from the energy farm at University of Illinois at Urbana-Champaign.
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FIGURE 3. The statistical distributions of R2 (A) and RMSE (B) of each machine learning algorithm for predicting Vc,max in the training (with and without cross-validation) and test phases. The training phase with cross-validation was required by the regression stacking, and models trained without cross-validation were used in the test phase.



Similar results were also found in Figure 4 for predicting J1800 using the six regression models. However, compared to the mean R2 values of the regression models in Figure 3, those in Figure 4 were much smaller and were generally less than 0.6 in the model training phase. The best predictive performance was achieved by the PLSR with the mean R2 value of 0.56 and a RMSE value of 43.8 μmol m-2 s-1. Compared to PLSR, the LASSO model had a smaller mean R2 value of 0.48 with a smaller mean RMSE value of 40.1 μmol m-2 s-1. It was also noted that the ANN model (R2 = 0.48, RMSE = 41.5 μmol m-2 s-1) exhibited a similar predictive performance to the LASSO model but with a relatively narrower R2 range. The SVM, RF, and GP had a very similar predictive performance, with the GP model exhibiting the largest standard deviation values in both R2 and RMSE. Higher mean R2 values and smaller RMSE values were observed in the model test phases compared to those in the training phase. The improved performance is likely attributed to the better trained machine learning algorithms using all the samples as the training data (Figure 4). Overall, the differences among the performance of each individual regression model in predicting Vc,max and J1800 across different cultivars over time provided a strong basis for stacking (see section “The Regression Stacking”).
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FIGURE 4. The statistical distributions of R2 (A) and RMSE (B) of each machine learning algorithm for predicting J1800 in the training (with and without cross-validation) and test phases. The training phase with cross-validation was required by the regression stacking, and models trained without cross-validation were used in the test phase.



The Regression Stacking

Figure 5A presents the modeling performance of the regression stacking (the LASSO model as the level-2 model as shown in Figure 1) for predicting Vc,max and J1800 in both the training and test phases. For Vc,max, the regression stacking improved the mean R2 value to 0.75, an increase of 0.1 compared to the highest mean R2 value observed in the LASSO model (Figure 3) in the training phase (cross-validation). Meanwhile, the mean RMSE value in the regression stacking was reduced to 43.0 μmol m-2 s-1, less than the mean RMSE value of 47.1 μmol m-2 s-1 yielded by the LASSO model. Still, a slightly higher mean R2 value of 0.76 and a smaller mean RMSE value of 42.2 μmol m-2 s-1 were observed in the test phases compared to those in the training phase. Similar findings were also observed in the performance of the stacking regression to predict the J1800 parameter (Figure 5A) in the training and test phases. For J1800, the stacking regression yielded the mean R2 value of 0.64 and the mean RMSE value of 37.2 μmol m-2 s-1 in the training phase. An increase of 0.08 in the R2 value and a decrease of 6.6 μmol m-2 s-1 in the RMSE value were noted in the training phase of the stacking regression compared to the best model (the PLS model with the R2 of 0.56 and the RMSE value of 43.8 μmol m-2 s-1) used to predict the J1800 parameter (Figure 4). In the test phase, the stacked regression provided a higher R2 value of 0.63 and a RMSE value of 36.4 μmol m-2 s-1. It was also worth noting that the mean R2 and RMSE values yielded by the regression stacking in the training phase were very similar to those in the test phase for predicting both Vc,max and J1800. Overall, the performance improvement of the regression stacking should be credited to the ability of the regression stacking to harness strengths of each individual model.
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FIGURE 5. The statistical distributions of R2 and RMSE of the regression stacking for predicting Vc,max and J1800 in the training (cross-validation) and test phases (A), and the distribution of coefficient within the level-2 model (LASSO) (B).



To further explain the mechanism of the better performance of the regression stacking, Figure 5B shows the distribution of the coefficient of each individual regression model within the level-2 model (the LASSO model). A larger coefficient within the level-2 model indicated a higher weight in the stacking procedure. As shown in Figure 5B, the stacking performance depended heavily on the LASSO, ANN, and PLS models with the mean coefficients (standard deviation) of 0.39 (0.07), 0.30 (0.09), and 0.26 (0.07), respectively, for predicting the Vc,max parameter. The impacts of the SVM, RF and GP models on the stacking were relatively small even though the standard deviation values of their coefficients could reach up to 0.22. The larger standard deviation values of the SVM, RF, and GP model, compared to the other three models, may indicate that the three models were more sensitive to the changes in the training dataset. These results suggest that the sampling strategy should be optimized to generate a representative training dataset to feed into the SVM and RF models for a good modeling performance.

For the prediction of J1800, the distribution of the coefficient of each regression model was quite different from that in the prediction of J1800. The highest coefficient was found in the ANN model (0.34 ± 0.15), followed by the LASSO (0.29 ± 0.11), PLS (0.24 ± 0.04), SVM (0.23 ± 0.25), GP (0.20 ± 0.23), and RF (-0.32 ± 0.23) models. Still, the coefficient of the SVM, RF, and GP within the level-2 model, compared to that in other three models, displayed relatively higher standard deviation though the RF model was negatively used in the stacking for predicting J1800. Overall, these findings indicated that the stacking procedure was better than each individual regression techniques for predicting photosynthetic capacities.



DISCUSSION

Explanations for Heterogeneous Modeling Performance of Machine Learning Algorithms to Predict Vc,max and J1800

As the use of hyperspectral reflectance measurements in high-throughput phenotyping of plant traits continues to increase (Furbank and Tester, 2011), powerful statistical techniques are needed to provide the best predictive power. A common dilemma arises when there are multiple empirical and machine learning algorithms for selection – which one is the best model for high-throughput phenotyping of plant traits (Heckmann et al., 2017)? As the predictive ability of each algorithm may be different, it is worth investigating whether there is a way to collectively harness the strengths of each predictive model. Inspired by the recent advances of geographic stacking in remote sensing applications (Clinton et al., 2015; Healey et al., 2018), this study aimed to test the idea, supported by the results in the sections “The Modeling Performance for Predicting Vc,max and J1800” and “The Regression Stacking,” that the stacking of different regression models (ANN, SVM, LASSO, RF, GP, and PLS) would provide a better predictive performance than that of each individual algorithm.

To further understand the modeling performance of each regression technique, the whole spectrum was divided into 22 blocks (A–V in Figure 6). Figure 6 shows the relative contribution (%) of each band block for the modeling performance of each regression technique, including the ANN, SVM, LASSO, RF, GP, and PLS models. For each band block, the modeling procedure was repeated 100 times and the average percent change in the R2 value was recorded. Here the relative contribution (importance) of each band block to the modeling performance was calculated as the percent change in the R2 value when the band block was excluded from the modeling procedure. The baseline R2 value was provided by the model calibrated by the dataset using the whole spectrum from 350 to 2500 nm.
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FIGURE 6. The relative contribution (%) of each band block for the modeling performance of each regression model for estimating Vc,max (A) and J1800 (B). The relative contribution was calculated as the percent change of the R2 value. ANN, artificial neural network; SVM, support vector machine; LASSO, least absolute shrinkage and selection operator; RF, random forest; GP, Gaussian Process; PLS, partial least squares. A: 350–400 nm, B: 400–500 nm, C: 500–600 nm, D: 600–700 nm, E: 700–800 nm, F: 800–900 nm, G: 900–1000 nm, H: 1000–1100 nm, I: 1100–1200 nm, J: 1200–1300 nm, K: 1300–1400 nm, L: 1400–1500 nm, M: 1500–1600 nm, N: 1600–1700 nm, O: 1700–1800 nm, P: 1800–1900 nm, Q: 1900–2000 nm, R: 2000–2100 nm, S: 2100–2200, T: 2200–2300 nm, U: 2300–2400 nm, and V: 2400–2500 nm.



As shown in Figure 6, it was observed that the band blocks T, U, and V (2200–2500 nm) did not affect the predictions of Vc,max and J1800, as evidenced by the zero percent change of the R2 values yielded by all the six regression models. This finding suggested that the spectral bands from 2200 to 2500 could be discarded without compromising the overall modeling performance. In addition, the six regression models had quite different responses to the changes in the spectra from 350 to 2200 nm. For the predictions of Vc,max, for example, the exclusion of the band block F (800–900 nm) resulted in the decrease of the R2 value by 4.9, 0.7, and 0.5% in the ANN, RF, and PLS models, respectively, and the increase of the R2 value by 0.4 and 0.1% in the SVM and GP models, respectively. For the predictions of J1800, the exclusion of the band block A (350 – 400 nm) led to a rising R2 by 14.9 and 5.9 % in the ANN model and the LASSO model, and a falling R2 by 2.6, 8.4, 2.6, and 3.4% by the other four regression models. Note the percent change value was relatively small for all the six regression models (mostly within the range between -5 and +5), and it should be mainly interpreted as a measure of the relative importance of each band block or the unique contribution of each band block to the modeling performance. For instance, in the SVM model, the percent change value was generally less than 1%, indicating that the unique contribution of each band block was very small, but the shared contribution of the combination of band blocks was huge (99%). The PLS and GP model exhibited a very similar ability as the SVM model to use the shared contribution of the combination of band blocks for the modeling performance. In addition, it should be cautioned that previous studies used the coefficient or the variable importance in projection (VIP) provided by the PLS model to understand the importance of each spectral band to, and the underlying physiological mechanism of the modeling performance (Serbin et al., 2012, 2015; Yendrek et al., 2017). However, when it comes to the comparison of the modeling performance of different regression techniques, these metrics could not be used anymore. Thus, this study used the percent change of the R2 value as a common metric to understand the modeling differences among the six regression techniques rather than to understand the physiological aspects of correlating reflectance spectra with photosynthetic information. Further explanations of underlying physiology to correlate reflectance spectra with photosynthetic variables can be found in Meacham-Hensold et al. (2019). Overall, the results in Figure 6 suggested that the six regression models utilized information from different spectral regions to achieve the best modeling performance. The differences in utilizing spectral information by the six regression models thus provided a solid basis for stacking which was expected to enhance the strengths of each individual regression technique.

Implications for High-Throughput Phenotyping

The application of imaging spectroscopy or hyperspectral reflectance to plant phenotyping resulted from initial goals to estimate canopy structure and biochemistry to improve understanding of ecosystem carbon dynamics (e.g., Knyazikhin et al., 2013; Ustin, 2013). Hyperspectral remote/proximal sensing has also been successfully used for rapid measurements of physiological traits in large number of crop genotypes that are needed to fully understand plant-environment interactions (Großkinsky et al., 2015). Previous studies have shown that hyperspectral reflectance measurements and the PLS model can be used together to estimate Vc,max and Jmax in a high-throughput manner under well-controlled environment (Serbin et al., 2012; Ainsworth et al., 2014; Silva-Perez et al., 2018). However, the PLS analysis is species and environment dependent and cannot be easily adapted to other crop species with varying field conditions. Inspired by the recent advancements in the geographic stacking in the remote sensing community (Clinton et al., 2015; Healey et al., 2018), this study revealed that the regression stacking was superior over individual regression techniques (ANN, SVM, LASSO, RF, GP, and PLS) in capturing intraspecies variations of photosynthesis capacities among tobacco lines with genetically altered photosynthetic pathways.

The stacking results presented in this study are valuable particularly for high-throughput phenotyping of plant physiology traits of new crop cultivars in a large quantity. Within a field, the microenvironments due to a combination of factors such as temperature, nutrition concentration, and leaf angle distribution may vary from plot to plot and thus influence the plant phenotypes and their interactions with the environment. As a result, spatial and temporal variability of plant traits may be expected due to the variations of microenvironments. The results as shown in Figures 3, 4 indicated that different regression techniques could capture quite different temporal variations of plant photosynthetic capacity. However, variance in RMSE/R2 in the test phase was larger than that in the training phase as shown in Figures 3, 4. This higher variance may suggest that a larger number of data samples are needed to derive a robust statistical relationship between reflectance spectra and photosynthetic variables. Although these machine learning algorithms can still work well with a small number of data pairs, their strength can only be fully released with independent and dependent variables covering a wide range of values. As the collection of ground-truth information is time-consuming, the sharing of photosynthetic variables from different species under different growth environments within the scientific community may be a viable solution to further train and assess each regression technique. The further application of the regression stacking to hyperspectral reflectance measurements from close-range/remote sensing platforms (e.g., unmanned aerial vehicle and gantries) can help estimate photosynthetic capacities of hundreds or even thousands of genotypes needed in a plant breeding context. However, before the use of the developed regression technique at canopy level with close-range/remote sensing platforms, there still exist challenges in detecting continuous variations in photosynthetic capacity among crop cultivars. Leaf-scale analysis provides an ideal test bed for spectroscopic techniques as spectral measurements at a broader scale need to deal with more challenges such as differences in canopy cover and structure among different crop cultivars. Therefore, future work should be made to integrate the developed regression stacking technique with remote sensing radiative transfer models that can accurately estimate reflectance spectra from plants by accounting for canopy structures and background soil signals. Overall, the use of regression stacking yielded a better predictive performance to identify photosynthetic differences among cultivars with a RMSE reduction by 8% for Vc,max and by 15% for J1800.

There is potential for the stacking procedure to be further improved. First, more machine learning algorithms can be incorporated in the stacking procedure. These newly incorporated regression models can be variants of the algorithms already used in the study or totally new machine learning algorithms. For example, deep learning-based regression techniques such as the denoising autoencoder network regression (Bengio et al., 2006) can be used as a totally new algorithm in the stacking procedure while the least square SVM regression (Suykens et al., 2002) can be used as a variant of the SVM regression already used in this study. The inclusion of these different types of regression models may lead to different modeling performance of the stacking. Second, as the stacking procedure occurs at the product level (photosynthesis parameters are separately predicted by each regression technique before stacking), it can be extended to include non-machine learning based approaches. For example, photosynthesis parameters can be estimated by using the ground-based solar-induced florescence (SIF) platform (Grossmann et al., 2018; Yang et al., 2018). The SIF based photosynthetic predictions can then be stacked with those estimated from hyperspectral reflectance to capture interspecies variations among different environmental conditions. Thus, further research efforts can refine this study. It is also worth investigating the portability of the stacking to high-throughput phenotyping of other plant traits such as leaf chlorophyll and nitrogen concentration under varying growth conditions.



CONCLUSION

Current efforts to engineer photosynthetic pathways in crops are constrained by phenotyping challenges. Although hyperspectral sensors are increasingly used to rapidly estimate photosynthetic capacity, effective analysis techniques are still lacking to capture interspecies variations in a large field with varying environment conditions. Many machine learning and empirical models can be selected to correlate hyperspectral reflectance with photosynthesis capacity, therefore it is worth investigating which models work better and whether the combination of individual regression techniques can provide better predictive performance. Inspired by the application of geographic stacking in the remote sensing studies, this study examined a series of machine learning algorithms, including ANN, SVM, LASSO, RF, GP, and PLS in the high-throughput phenotyping context. Results showed that the stacked regression had a better predication performance, with an increase of R2 around 0.1, than individual regression algorithms in phenotyping of photosynthetic capacities. Analysis of variable importance also revealed diverse abilities of the six regression techniques to utilize spectral information for the best modeling performance. The techniques presented in this study could be particularly valuable for high-throughput phenotyping of many crop cultivars, thus accelerating plant breeding processes. It is also suggested in this study that the stacking procedure can be further extended to harness strengths of new techniques such as the ground-based SIF system as a supplement to the hyperspectral reflectance for estimating other phenotypic traits.
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The dynamics of the Green Leaf Area Index (GLAI) is of great interest for numerous applications such as yield prediction and plant breeding. We present a high-throughput model-assisted method for characterizing GLAI dynamics in maize (Zea mays subsp. mays) using multispectral imagery acquired from an Unmanned Aerial Vehicle (UAV). Two trials were conducted with a high diversity panel of 400 lines under well-watered and water-deficient treatments in 2016 and 2017. For each UAV flight, we first derived GLAI estimates from empirical relationships between the multispectral reflectance and ground level measurements of GLAI achieved over a small sample of microplots. We then fitted a simple but physiologically sound GLAI dynamics model over the GLAI values estimated previously. Results show that GLAI dynamics was estimated accurately throughout the cycle (R2 > 0.9). Two parameters of the model, biggest leaf area and leaf longevity, were also estimated successfully. We showed that GLAI dynamics and the parameters of the fitted model are highly heritable (0.65 ≤ H2 ≤ 0.98), responsive to environmental conditions, and linked to yield and drought tolerance. This method, combining growth modeling, UAV imagery and simple non-destructive field measurements, provides new high-throughput tools for understanding the adaptation of GLAI dynamics and its interaction with the environment. GLAI dynamics is also a promising trait for crop breeding, and paves the way for future genetic studies.

Keywords: diversity panel, dynamics, drought, green leaf area index (GLAI), growth model, high-throughput phenotyping, maize, unmanned aerial vehicle (UAV)


INTRODUCTION

Crop production is mainly driven by the plant's capacity to intercept and use sunlight through photosynthesis. Photosynthetically active radiation is mostly intercepted by leaves, which are also the principal interface for water and carbon exchanges. However, green leaf area is influenced by several stresses including nitrogen, water and temperature (Çakir, 2004; Ding et al., 2005; Chen et al., 2018), thus reducing dry matter production and yield. This underlines the importance of green leaf area estimation for several applications such as yield prediction (Baez-Gonzalez et al., 2005; Dente et al., 2008), precision farming (Walthall et al., 2007), and plant breeding (Yang et al., 2017b). Green leaf area can be quantified by the Green Leaf Area Index (GLAI) defined as the one-sided green area of leaves per unit horizontal ground surface area (Chen and Black, 1992). Its dynamics throughout the crop cycle is considered as a crucial trait for improving grain yield and adapting a genotype to a particular environment and climatic scenario (Bänziger et al., 2000; Tardieu, 2012).

Different approaches have been developed to estimate GLAI including in-situ methods, remote sensing techniques, and crop models. Direct measurements of the area of a sample of green leaves in the canopy is time-consuming, labor-intensive and prone to errors when the sampling size is too small. Indirect in-situ methods based on light transmission through the canopy (Jonckheere et al., 2004) are easier to implement than direct GLAI measurements. However, both these direct and indirect ground-based methods remain tedious and low-throughput, thus failing to satisfy breeders' requirements which entail the characterization of hundreds to thousands of microplots several times throughout the growth cycle. Therefore, high-throughput methods for estimating GLAI are highly desirable. Remote sensing observations from UAVs (Unmanned Aerial Vehicles) present the advantage of fulfilling spatial and temporal resolution requirements while providing high-throughput measurements at a relatively low cost, making it a valuable phenotyping tool (Tattaris et al., 2016; Yang et al., 2017a; Reynolds et al., 2018).

Remote sensing methods rely on the use of multispectral or hyperspectral sensors to measure canopy reflectance, which is sensitive to variation in the GLAI. Empirical methods have been widely used to statistically relate the GLAI to the reflectance observed in several bands generally combined in vegetation indices. The results of this approach depend on the sensitivity of the selected vegetation indices to the GLAI but also to confounding factors such as leaf orientation, illumination conditions and soil properties (Baret and Guyot, 1991). Moreover, this approach must be applied in the same conditions as those prevailing during the calibration of the statistical relation, as it lacks robustness and accuracy when applied under other conditions, i.e., outside the calibration domain (Broge and Leblanc, 2001; Haboudane et al., 2004; Dorigo et al., 2007). More comprehensive statistical models, that are more robust and can be applied to different crops, were also developed (Viña et al., 2011; Nguy-Robertson et al., 2014; Kang et al., 2016; Kira et al., 2017). However, empirical transfer functions are generally calibrated and applied locally, thus limiting possible extrapolation problems. They thus must be calibrated each time over a set of samples representative of the range of variation.

The dynamics of GLAI is of prime importance to understand the functioning of crops. The growth and senescence rates of the leaf area, the timing of the minimum and maximum GLAI and the corresponding magnitude are important traits for breeders (Comar et al., 2012). The continuous description of GLAI dynamics based on crop models like APSIM (Keating et al., 2003), STICS (Brisson et al., 1998), and DSSAT (Jones et al., 2003) would provide a very efficient solution to access similar functional traits, corresponding to genotype-dependent parameters. However, the complexity of such models, the large number of parameters required and the mandatory information on important environmental conditions that are often not well-known, still make it difficult to broaden their use (Liu et al., 2014; Gaydon et al., 2017). Nevertheless, simpler semi-empirical models that require a minimum set of parameters with physiological meaning and a limited description of the environment have already been used to estimate GLAI dynamics or to interpolate and smooth remote sensing observations collected throughout the cycle (España, 1997; Kötz, 2001; Lizaso et al., 2003). Such simple dynamic models therefore appear well-adapted in situations where information on environmental conditions is limited and when only few field measurements are possible.

The objectives of this study are (i) to propose a high-throughput phenotyping method to describe maize (Zea mays subsp. mays) GLAI dynamics from UAV observations repeated throughout the growth cycle and a simple but physiologically sound GLAI dynamics model (ii) to unravel GLAI dynamics response to environmental scenarios, and (iii) to investigate the potential interest of GLAI traits for maize breeding in well-watered and water limited environments.



MATERIALS AND METHODS

A simple model inspired from the work of Baret (1986), España (1997), Kötz (2001), and Lizaso et al. (2003) is proposed to simulate GLAI dynamics from a limited set of parameters. Empirical transfer functions are first calibrated for each flight to estimate the GLAI from the UAV observations and additional available predictors. The simple GLAI dynamics model is then fitted to the GLAI estimates from the transfer functions by adjusting the unknown parameters. The heritability of the derived traits describing the GLAI dynamics is quantified. Their effect on grain yield is evaluated as well as the genotypic response to water stress.


Plant Material, Experimental Design and Environmental Conditions

The study was carried out on a panel of lines derived from a MAGIC population (Multi-parent Advanced Generation Inter-Crosses). This population was created following a funnel crossing design from 16 historical lines representative of the genetic diversity of temperate material. The panel consisted of 400 doubled haploid lines extracted from the third generation of population mixing (Buet et al., 2013). The doubled haploid lines were crossed with the tester line MBS847 and their progenies evaluated in the field. Phenotypic evaluations from test-cross progenies aimed at comparing lines in a hybrid context and reducing the range in flowering time to limit confounding effects due to differences in precocity.

Field trials were conducted in 2016 and 2017 close to Romans-sur-Isère, France (45° 4′N, 5° 6′E) with, respectively, 360 and 347 hybrids (330 in common). Each year, two trials were carried out, one in a Well-Watered (WW, irrigated) condition and the other in a Water-Deficient (WD, rain-fed with monitored irrigation) condition. The experiment was laid out as an alpha-lattice design with two replicate blocks for each treatment in both years. The plot length was 5.35 m with 2 rows spaced by a 0.8 m interval. The soil water potential was measured at three different depths (30, 60, and 90 cm) with a tensiometer in each treatment throughout the cycle. Because the flowering time is known to be the most drought sensitive period for grain yield, the WD trial irrigation was monitored to target a water deficit from 10 days before flowering time to 10 days afterwards. Moreover, this timing was expected to impact not only the end of leaf development and thus the GLAI amplitude, but also leaf longevity. The trials were sown on 6th May 2016 and on 18th May 2017 at a density of 9 seed.m−2 in a sandy loam soil. The silking stage (defined as the time when 50% of a plot has visible silks) was reached around 19th July (≈950°C.d) in 2016 and around 16th July (≈900°C.d) in 2017. Weeds, diseases and pests were controlled using conventional agronomic practices.



GLAI Dynamics Maize Model (GDMM)

The model of maize GLAI dynamics was derived from the previous models proposed by Baret (1986), España (1997), Kötz (2001), and Lizaso et al. (2003). Time is described by growing degree days (GDD) computed using a 6°C base (Sánchez et al., 2014). Growing degree days control the rate of leaf appearance using the phyllochron ϕGDD, i.e., the GDD required between the appearance of two successive leaves. A leaf is considered appeared when its tip emerges visibly out of the whorl. To account for the quick appearance of the first four leaves, the phyllochron is set to [image: image]. After leaf emergence, leaf area expands linearly with GDD until the leaf area expansion is completed, when the ligule emerges from the whorl (Supplementary Figure 1). The leaf stage when the ligule of the leaf i appears, Li, is estimated as:

[image: image]

where itop is the final number of leaves.

Li and ϕGDD are then used to compute the GDD at which the ligule appears.

The Maximum Area of leaf i, MAi, reached when the ligule appears, is computed as:

[image: image]

where MAbig is the maximum area of the biggest leaf.

Leaf longevity, δi, defined as the GDD required between leaf appearance and leaf death, depends on leaf order i:

[image: image]

Equation 3 is an adaptation of the exponential models proposed by Baret (1986) to describe LAI dynamics and that of Lizaso et al. (2003) describing leaf senescence. The start of senescence for each leaf is set equal to 75% of leaf longevity, δi. Senescence is assumed to be linear with GDD from its start up to the death of the leaf (Supplementary Figure 1).

The model proposed therefore describes the dynamics of the green leaf area of each plant as the sum of the green area of each individual leaf. GLAI is finally computed by multiplying the plant green leaf area by the plant density, d. The resulting GDMM uses 5 parameters: {d, itop, ϕGDD, MAbig, δ} (Table 1). Every parameter has a specific effect on the GLAI dynamics, except d and MAbig that have a similar impact (Supplementary Figure 2).



Table 1. Parameters required for the GLAI Dynamics Maize Model (GDMM) and their ground measurement in this study.
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Ground Measurements

Measurements Performed Over the Whole Experiment

The appeared leaves were counted on a weekly basis on three plants identified on each of the microplots in one replicate of the WW treatment in 2016. This provided an estimate of the phyllochron, ϕGDD, as well as the final number of leaves, itop. These parameters have been shown to be dependent on the genotype and stable between environments (Hajibabaee et al., 2012; Millet, 2016; Parent et al., 2018). They were thus assumed to be dependent only on the genotype and measured in 2016 over the WW treatment. These values of {itop, ϕGDD} were used for the WD treatment in 2016 and for both treatments in 2017.

The flowering date (silking date in °C.d) was recorded for each microplot, as well as the plant density, d, at maturity. Plants were then harvested on 10th October 2016 (≈2,100°C.d) and on 25th October 2017 (≈2,150°C.d) to estimate grain yield adjusted to 15% moisture (in q.ha−1), thousand kernel weight adjusted to 15% moisture (in g), kernel number per square meter and harvest grain moisture (in %).

GLAI Ground Measurements Over a Reference Sample of Microplots (GLAIfield)

In 2016 and 2017, for both conditions (WW and WD) and the two replicates, a reference sample of 15 (2016) and 20 (2017) genotypes was selected amongst which 10 were common between years. This resulted in 15 genotypes × 2 replicates × 2 water regimes = 60 microplots in 2016 and 20 genotypes × 2 replicates × 2 water regimes = 80 microplots in 2017. Genotypes were chosen to be contrasted for both GLAI magnitude and dynamics.

Shortly after flowering, the width, w, and length, l, of the biggest leaf were measured on three plants per microplots and the corresponding area estimated as MAbig = 0.72.w.l (España, 1997). Equation 2 was then used to estimate the area of fully expanded leaves. The fraction of green area of each leaf was visually scored on a weekly basis to describe senescence. The leaf longevity factor, δ, of the GDMM (Table 1) was then adjusted using the previously measured values of {itop, ϕGDD, MAbig} and the senescence fraction. Finally, GLAIfield of a microplot was obtained by simulating the GLAI with the GDMM for the corresponding GDD and the parameters {d, itop, ϕGDD, MAbig, δ} of the microplot.



Multispectral Image Acquisition From the UAV and Data Processing

A hexacopter UAV was used for nine (2016) and eleven (2017) flights on dates selected to represent the dynamics of GLAI over the growth cycle. Furthermore, the UAV was flying always under clear sky and low to medium wind speed conditions. The AIRPHEN multispectral camera (www.hiphen-plant.com) was fixed on a two-axis gimbal to point downward, vertically. The device is composed of six cameras equipped with an 8 mm focal length lens. They record 1,280 × 960 pixel images with 10 nm spectral resolution bands centered at 450, 532, 568, 675, 730, and 850 nm. The integration time of each camera was adjusted automatically to minimize saturation and maximize the range of variation. Images were acquired continuously during the flight at a 1 Hz frequency. The flight plan was designed to ensure 80% overlap both across and along the track. The flight altitude was fixed to 60 m to provide a ground spatial resolution of around 2.5 cm.

Radiometric calibration was performed using a 3 m2 reference panel. In addition, nine circular panels of 60 cm diameter were placed within the field and used as ground control points (GCPs). The positions of the GCPs were measured with RTK-GPS, providing an accuracy of around 2 cm.

The multispectral images were first corrected for the vignetting effect, and then co-registered using the method proposed by Rabatel and Labbé (2016). Agisoft Photoscan software (v1.2.2, 2015, Agisoft LLC., Russia) was used to find the position and orientation of the camera for each individual image. This information was then used to project the images onto the ground and to extract the microplots based on the coordinates of their corners measured previously. The GCPs were used to ensure good geometric consistency between the projected images and the microplots coordinates. Finally, radiometric calibration was applied to compute the bidirectional reflectance factor, rb, in the six bands b using the recorded integration time and the images captured over the radiometric panel. To limit the impact of possible variations of illumination conditions during the flight, normalized reflectances, [image: image] were computed by dividing the reflectance in each band by that observed in the near infrared: [image: image] with b ∈ {450, 532, 568, 675, 730}. More details can be found in Jay et al. (2018).



Estimation of GLAI of Each Microplot (GLAITF) Using Transfer Functions Calibrated Over the Reference Microplots

For each flight, an empirical transfer function was calibrated between GLAIfield and the corresponding values of [image: image] used as predictors. To improve the performance of the transfer function, variables {d, itop, ϕGDD} were added to the normalized reflectances [image: image] since they were available for all the microplots and expected to impact the GLAI (Supplementary Figure 2). Ridge regression (Hoerl and Kennard, 1970) was used to calibrate the transfer functions (Equation 4) to deal with possible multicollinearity between predictors.

[image: image]

where μ is the intercept, αj, j∈[[1, 5]] the effect of normalized reflectance [image: image] observed in the wavelength bj (b = {450, 532, 568, 675, 730}), α6 the effect of the density d, α7 the effect of the final number of leaf itop and α8 the effect of the phyllochron ϕGDD. E is the random residual, with [image: image] and I the identity matrix. Ridge regressions were computed with the glmnet R package v2.0-13 (Friedman et al., 2010; R Core Team, 2017).

To evaluate the relevance of the additional variables {d, itop, ϕGDD} as predictors jointly with the normalized reflectance [image: image], transfer functions using only the multispectral data, TFUAV, or only the additional variables, TFprior, were considered in addition to the transfer function TFfull using all eight variables. A leave-one-out cross-validation approach (Efron and Tibshirani, 1993) was used to evaluate the prediction performance of the three different transfer functions by computing the Root Mean Squared Error of Prediction (RMSEP) and the Relative RMSEP (RRMSEP).

The calibration domain, defined as the distribution of the predictors [image: image] over the reference microplots, was compared to the application domain, defined as the distribution of the predictors over the whole experiment. The convex hull of the calibration domain was first computed over the reference microplots using the R package geometry v0.3-6 (Habel et al., 2015). It was then expanded by 5% over all eight dimensions, assuming that in the vicinity of the calibration domain, the transfer function should behave with similar performance. For each date, the percentage of microplots included in the calibration and extended calibration domain was computed to evaluate the representativeness of the reference microplots used to calibrate the transfer function.

Once calibrated over the reference microplots for a given flight date, the full transfer function TFfull was finally applied to the whole experiment to predict the GLAI value, GLAITF, for each microplot on the date considered.



Estimation of MAbig and δ Over the Whole Experiment

For each microplot, the unknown parameters of the GDMM, {MAbig, δ} were estimated by inverting the GDMM, i.e., by fitting the GDMM over the GLAITF values for the nine (2016) or eleven (2017) flight dates. The other three parameters were either measured directly (Table 1) over each microplot (d) or over the 2016 WW treatment ({itop, ϕGDD}), since they were considered to be dependent only on the genotype. A Look-Up-Table approach was used since it is easy to implement, runs fast and avoids trapping in local minima. It consisted in simulating the GLAI value with the GDMM for 10,000 combinations of the two parameters to be estimated, {MAbig, δ}, for each flight date and each set of {d, itop, ϕGDD}. Parameters {MAbig, δ} were randomly drawn using uniform distributions within their possible range of variation: [image: image]; 250°C.d < δ < 2, 000°C.d. These ranges were estimated based on the reference plot variations. A cost function, J, computed for the 10 000 simulations of the GDMM, quantified the agreement between the simulated GLAI, GLAIsim, and the GLAI estimated with the transfer function, GLAITF:

[image: image]

where σ(t) is the corresponding uncertainty of both GLAITF estimation and GDMM for the date t, approximated as:

[image: image]

The solution was computed as the average of the combinations leading to J ≤ 1, i.e., for which the difference between the simulated GLAIsim and GLAITF is smaller than the associated uncertainty σ (Diner et al., 1999; Zhang et al., 2000; Wang et al., 2001).

The estimated values of {MAbig, δ} were used along with the known GDMM parameters {d, itop, ϕGDD} to estimate the GLAI values, GLAIest, continuously from emergence to harvest. The Area Under the Curve (AUC) of GLAIest was also computed from emergence to harvest to account for both the magnitude and duration of GLAI dynamics.



Statistical Analysis

Adjusted Means and Broad-Sense Heritability

Best linear unbiased estimates of the genotypes (adjusted means) were estimated from a linear mixed model fitted for each combination of trait, year, and treatment.

[image: image]

Where Yij is the phenotypic value, μ the overall mean, bi the fixed effect of replicate i and gj the fixed effect of genotype j. E is the random residual, [image: image] with Rr and Rc the correlation matrices for the row and column first order autoregressive processes, respectively, as proposed by Gilmour et al. (1997).

Broad-sense heritability (H2) was computed following Cullis et al. (2006):

[image: image]

where [image: image] is the genetic variance and [image: image] the mean variance of a difference between two BLUPs (Best Linear Unbiased Predictions). Model 7 was fitted again, considering the genotype as a random effect, to estimate [image: image] and [image: image]. All linear models were fitted using the R package ASReml-R v3.0 (Butler et al., 2009).

Impact of GLAI on Grain Yield and Drought Stress Tolerance

A linear model (9) was used to evaluate the effect of the estimated GLAI traits MAbig, δ and AUC on grain yield in each environment. The effect of genotype earliness was also considered in the model.

[image: image]

where Yi is the grain yield or its components of genotype i, μ is the intercept, a the effect of the flowering date f, b the effect of AUC, c the effect of MAbig and d the effect of the δ. E is the random residual, with [image: image] and I the identity matrix.

The drought response of a trait (GLAI dynamics or grain yield and its components) was defined as the normalized difference between the value of this trait in the WW condition and in the WD condition:

[image: image]

where YWW and YWD are respectively the trait values in the WW and WD treatments of the same year. For GLAIest, the normalized difference was computed every 25°C.d from 50 to 2,000°C.d for each year and a hierarchical clustering was performed using Ward's distance and the stats R package. The inertia gain method was used to choose the number of clusters. This allowed identifying groups of genotypes that exhibit similar changes in the shape of GLAI dynamics between WW and WD conditions.

The effect of dynamics' drought response patterns on grain yield stability was finally tested jointly with the genotype precocity effect in the following model:

[image: image]

where Yij is the normalized difference of grain yield (or its components) for the individual i in the cluster j, μ the intercept, a the effect of the precocity f and Cj the effect of cluster j. E is the random residual, with [image: image] and I the identity matrix.




RESULTS AND DISCUSSION


Environmental Conditions and Field Measurements

In 2016, soil moisture monitoring and water balance showed that the flowering drought stress was limited for the WD treatment due to rainfalls just around flowering, and that only a light stress occurred from 8th July (≈800°C.d) to 5th August (≈1,250°C.d). Nevertheless, a more severe stress occurred during the grain filling stage from approximately 5th August to 25th August (≈1,550°C.d). The water stress impacted the reference microplots GLAI with an earlier senescence (Figure 1). It also resulted in a 40% loss for grain yield over the whole panel in WD compared to the WW treatment (Table 2), explained by a 20% reduction of both the kernel number and the thousand kernel weight. In 2017, water stress took place in the WD treatment around flowering, from 8th July (≈750°C.d) to 29th July (≈1,100°C.d), delayed the senescence (Figure 1) and reduced yield by 21% mostly because of a reduction of the kernel number. For both years, no water stress was detected in the WW condition. However, in 2017 soil crusting impacted stand establishment in both conditions, with an actual density of around 8 plants.m−2 in WW and 7.5 plants.m−2 in the WD treatment. Comparison of GLAI dynamics between years shows that maximum GLAI was significantly higher and more variable in 2017 than in 2016.


[image: image]

FIGURE 1. Effect of drought stress on GLAIfield dynamics in 2016 and 2017. Boxplots are built from the reference microplots data for each flight date. The horizontal line in the boxplots corresponds to the median, while the diamond corresponds to the mean. The lower and upper hinges show the first and third quartiles, and the whiskers correspond to 1.5 times the inter-quartile range or to the most extreme value, whichever is smallest. Dots represents values outside this range. Black arrows indicate flowering time.





Table 2. Climatic conditions, yield and its components in 2016 and 2017 for the Well-Watered (WW) and Water-Deficient (WD) conditions.
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Combining UAV Observations and GDMM Enables Accurate and High-Throughput Phenotyping of GLAI Dynamics and Underlying Traits

The phenotyping method developed in this study is divided in two steps. First, transfer functions are calibrated using UAV observations and field reference measurements, and are then used to predict GLAI of the whole panel for each flight date (GLAITF). Secondly, the GDMM is inverted based on GLAITF data to finally provide the continuous GLAI dynamics (GLAIest) and two underlying traits (MAbig and δ).

GLAITF estimated from TFfull using the eight predictors [image: image] agrees closely with the reference GLAIfield over the cycle for both years (Supplementary Figure 3) with a high coefficient of determination (R2≈0.95), and a low Root Mean Squared Error (RMSE≈0.3, Relative RMSE≈13%). Moreover, the RMSEP shows that the prediction error is low and similar to the RMSE of the reference sample with 0.01 ≤ RMSEP ≤ 0.62 for 0 ≤ GLAI ≤ 5 depending on the flight date (Figure 2). The RRMSEP was close to 10% for both years throughout the whole growth cycle, except for the two last dates, because RMSEP remained fairly constant but GLAIfield decreased due to senescence (Figure 1). This increase in RRMSEP for the last dates may be due to confounding effects originating from the similarity of senescent vegetation and bare soil spectra (Girard and Girard, 2003).


[image: image]

FIGURE 2. Comparison between the Root Mean Squared Error of Prediction (RMSEP) of TFfull, TFUAV, and TFprior for each flight date in 2016 and 2017. TFfull is the transfer function based on the eight predictors [image: image], while TFUAV is based only on [image: image] and TFprior only on {d, itop, ϕGDD}. Black arrows indicate flowering time.



The transfer functions in Equation 4 combine two types of GLAI predictors. We further evaluated the contribution of these two types of predictors by considering two other transfer functions: TFUAV when using only the five normalized reflectance [image: image] and TFprior when using only the three additional predictors {d, itop, ϕGDD}. Results clearly show that the transfer functions using the eight predictors, TFfull, perform better than the two other transfer functions (Figure 2). This is particularly clear for the early stages, when {d, itop, ϕGDD} are the key drivers of the GLAI dynamics (Supplementary Figure 2). Furthermore, during the end of the vegetative and plateau periods, when GLAI was high, saturation of the reflectance signal could degrade GLAI retrieval from the multispectral data (Baret and Guyot, 1991). This explains the higher RMSEP of TFUAV in 2017, especially during the plateau period, because the GLAI was higher in 2017 as compared to 2016 (Figure 1). Nevertheless, during the senescence period the impact of parameter δ is dominant (Supplementary Figure 2) and UAV observations bring valuable information that significantly improve GLAI predictions. Indeed, using the spectral predictors leads to moderate RRMSEP values during the critical period of the senescence because it limits RMSEP inflation when the GLAI values decrease substantially (Figures 1, 2).

Parameters {MAbig, δ} of the GDMM were adjusted over the GLAITF dynamics estimated from each of the three transfer functions. The GDMM was then run with the estimated values of {MAbig, δ} to get GLAIest that describes the continuous GLAI dynamics of each microplot. Results show that GLAIest is highly correlated to GLAITF for the three transfer functions with R2 ≥ 0.98 and RRMSE ≤ 0.08. However, the estimation accuracy of parameters {MAbig, δ} varies greatly depending on the use of GLAITF dynamics from TFfull, TFUAV or TFprior to invert the GDMM. Indeed, when using TFfull estimates to fit the GDMM, the parameters {MAbig, δ} are retrieved with a good accuracy (R2≈0.6 and RRMSE < 9%, Figure 3), although the R2 values are relatively low for MAbig when computed for each individual year (Table 3) due to the restricted range of variation observed in 2016 and 2017. Conversely, inverting the GDMM based on GLAITF dynamics obtained from TFUAV or TFprior significantly degraded the accuracy of {MAbig, δ} retrieval (Table 3). Differences of retrieval accuracy between GLAIest dynamics and {MAbig, δ} when using TFUAV and TFprior estimates to invert the GDMM are not surprising, as numerous combinations of parameters can lead to the same expected dynamics.


[image: image]

FIGURE 3. Correlation between the biggest leaf area (MAbig) and leaf longevity (δ) assessed in the field and estimated by inverting the GLAI Dynamics Maize Model based on GLAI dynamics obtained from TFfull. TFfull is the transfer function based on the eight predictors [image: image].





Table 3. Coefficient of determination (R2), Root Mean Square Error (RMSE) and Relative RMSE (RRMSE) values obtained when using three sets of predictors in the transfer functions to estimate the biggest leaf area (MAbig) and leaf longevity (δ) by inverting the GLAI Dynamics Maize Model.
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Currently, UAV is the only phenotyping tool able to deliver both high spatial resolution (Tattaris et al., 2016) and throughput (Madec et al., 2017; Yang et al., 2017a) in the field. These characteristics, added to its reasonable cost (Reynolds et al., 2018), explain its growing popularity in the last decade (Yang et al., 2017a). Although numerous studies have been conducted about crop phenotyping from UAV, most of them focus on vegetation indices to describe the evolution of the canopy. Very few studies such as Lelong et al. (2008), Potgieter et al. (2017) and Yao et al. (2017), aimed at characterizing the GLAI dynamics throughout the whole cycle from UAV imagery. Moreover, these studies dealt with few genotypes and/or microplots and delivered GLAI estimates on a limited number of time points distributed throughout the cycle. In this study, we proposed an innovative way of developing transfer functions, consisting in using spectral predictors [image: image] concurrently with additional known variables {itop, ϕGDD, d} to predict GLAI dynamics of a large panel. The resulting transfer functions provided good accuracy compared to other studies where GLAI was retrieved from remote sensing observations (Haboudane et al., 2004; Walthall et al., 2004; Verger et al., 2014; Verrelst et al., 2015; Kang et al., 2016), especially given the small size of the microplots, and the diversity of the genotypes characterized. However, possible residual genotypic effects related to differences in leaf orientation or aggregation may be present because a unique transfer function was used for all genotypes on each date. Additional view directions or the use of a proper 3D model of canopy architecture may help to solve this structure effect problem and further improve the prediction accuracy (López-Lozano et al., 2007; Baret et al., 2010; Liu et al., 2016).

Inversion of the GDMM also appears to be a valuable approach as it provides continuous dynamics that are more biologically meaningful than time point estimates or dynamics obtained by adjusting purely mathematical functions (Koetz et al., 2005). Two fine scale traits: the area of the biggest leaf (MAbig) and leaf longevity parameters (δ) were also retrieved with a satisfying accuracy, providing that priori information was available. However, the temporal sampling of GLAITF might have a strong impact on the retrieval performances of the inversion process (Kalogiros et al., 2016). The flight dates were approximately evenly distributed along the growth cycle in our study, but a simulation approach using the GDMM model could be used to determine the optimal temporal sampling.

The good performance of our approach is partly explained by the good representativeness of the reference plots as compared to the whole experiment. The convex hull of the calibration domain computed for the eight predictors [image: image] and extended by 5% to account for the associated uncertainties included 87% (2016) and 91% (2017) of the whole dataset. These results show that ground measurement for only 5% of the total number of microplots is sufficient to accurately predict the GLAI dynamics and its two underlying traits on the whole experiment. However, in our case the genotypes were selected to represent a wide range of variation based on prior knowledge gained on the genotype characteristics, which may not be possible in all the situations.

This method reduced the phenotyping time by a factor of about 20 compared to fully ground-based phenotyping. This makes possible for only one person to perform all the ground measurements and assess GLAI dynamics of large populations that were previously unmanageable. To our best knowledge, this study is one of the first describing a field phenotyping method to characterize the maize GLAI dynamics continuously throughout the cycle, with sufficient throughput and accuracy to fit breeding and genetic studies requirements.



Unraveling GLAI Dynamics Response to Contrasted Environmental Conditions

The differences observed for the GLAI dynamics between water treatments (Figure 1) can be better understood by analyzing its underlying components. In 2016, AUC was greatly reduced under the WD condition compared to the WW condition (-8%, Figure 4) which is mainly explained by the decrease of δ (Supplementary Figure 4). This decreased stay-green under drought (-13.7%) is consistent with the timing of the water stress as reported by previous results (Kamara et al., 2003; Çakir, 2004; Young et al., 2004; Li et al., 2018; Mangani et al., 2018). On the contrary, in 2017 the reduced MAbig and density, d was compensated by an increase of δ, leading to almost similar AUC values for both treatments (−1.7%). Conversely to 2016, this increased stay-green (+7.9%) under drought is surprising. A possible explanation is that the reduced MAbig and d probably led to an increased light homogeneity in the canopy. Indeed, better light distribution in the canopy strata have been shown to delay the canopy senescence (Borrás et al., 2003; Huang et al., 2017; Yang et al., 2019). The difference in plant density between treatments was negligible in 2016 compared to 2017, supporting this explanation.
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FIGURE 4. Impact of drought stress on the biggest leaf area (MAbig), leaf longevity (δ), density (d) and the Area Under the Curve (AUC) in 2016 and 2017. Boxplots are built from adjusted means. The horizontal line in the boxplots corresponds to the median, while the diamond corresponds to the mean. The lower and upper hinges show the first and third quartiles, and the whiskers correspond to 1.5 times the inter-quartile range or to the most extreme value, whichever is smallest. Dots represent values outside this range. Asterisks indicate a significant difference of means between treatments based on a paired t-test: *** p ≤ 0.001; ** p ≤ 0.01.



In both years, δ seems more affected by drought stress than MAbig (Figure 4) because the water stress started at the end of leaf growth, allowing an almost optimal setup of the plant leaf area (Çakir, 2004; Li et al., 2018). Thus, δ seems to be a promising trait for exploring the impact of flowering or grain-filling drought stress on GLAI dynamics. However, the small variation of MAbig between treatments should be opposed to the strong increase that occurred in 2017 as compared to 2016 (Figure 4). This increase might be explained by the lower density observed in 2017 (Supplementary Figure 4), with less competition for resources resulting in bigger leaves. Therefore, MAbig could be a valuable trait for studying impact of other stress on GLAI dynamics, including early drought and high plant density.

GLAI response to water stress was further analyzed by applying a hierarchical clustering to the genotypic relative differences of GLAI dynamics between WW and WD treatments. It revealed four different patterns of response to drought stress in both years, representing between 13% (Cluster 1 in 2017) and 39% (Cluster 2 in 2016) of the panel (Figure 5). In 2016, all patterns showed earlier senescence under the WD condition. The differences are on the timing of the senescence onset as well as the impact of drought on the maximum GLAI value. Surprisingly, the fourth cluster showed a larger amplitude of GLAI dynamics under the WD condition. In 2017, the maximum GLAI value was impacted by drought stress with a variable magnitude amongst the four clusters (Figure 5), while senescence was only slightly delayed.
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FIGURE 5. GLAI dynamics response to drought representative of the panel diversity in 2016 and 2017. The hierarchical clustering applied to the normalized difference of GLAI dynamics in Well-Watered and Water-Deficient treatments resulted in four distinct clusters in both years. The thick line represents the median of GLAIest for the genotypes in the corresponding cluster, while the thin dashed lines show the first and third quartiles. N is the number of genotypes in each cluster. Data are adjusted means.



The patterns of GLAI dynamics' drought response is significantly linked to the stability of grain yield (Supplementary Figure 5). Interestingly, the effect of GLAI dynamics response was not due to a drought escape allowed by precocity which was considered in the linear model. In 2016, the dynamics clusters explained 5.7, 5.2, 7.2, and 10% of the drought tolerance of grain yield, kernel number, thousand kernel weight and harvest grain moisture, respectively. A higher amplitude of dynamics under the WD condition (Figure 5, cluster 4) was associated with better stability of grain yield and kernel number under drought stress (Supplementary Figure 5). Also, a maximum stay-green led to a limited thousand kernel weight loss and a higher harvest grain moisture (clusters 2, 3, and 4). These results are consistent with the timing of the drought: the flowering stress impacted the maximum GLAI value and the establishment of the kernel number, while the grain filling stress affected the thousand kernel weight and harvest grain moisture through earlier senescence (Çakir, 2004; Li et al., 2018; Mangani et al., 2018).

In 2017, the clusters explained a smaller part of the grain yield (4%) and kernel number (6.4%) stability while the cluster effect was not significant for the thousand kernel weight and harvest grain moisture. Cluster 4 exhibited very similar GLAI dynamics under both treatments, resulting in the smallest impact of the drought on grain yield and kernel number (Supplementary Figure 5). For the three other clusters, the magnitude of the reduction of the maximum GLAI value led to a corresponding decrease of grain yield and kernel number. Although these results seem in good agreement with the timing of the stress experienced in 2017, it is not possible to clearly attribute either the grain yield variation or the response of the GLAI dynamics to the flowering drought stress rather than to the reduced plant density.

Here, MAbig, δ and AUC were used to decipher an average response of GLAI dynamics to drought stress, while clustering was used to identify groups of genotypes with typical pattern of drought response. Both approaches bring valuable insights to understand the GLAI dynamics adaptation to environmental conditions. Despite the relatively simple clustering method used, our study demonstrated that the timing and magnitude of GLAI values were consistent with the timing and magnitude of the water stress experienced with possible consequences on the thousand kernel weight (2016) and kernel number (2016 and 2017) (Supplementary Figure 5). Such clustering approach was applied to temporal series of observations over maize (Han et al., 2018; Su et al., 2019) and rice (Campbell et al., 2015). However, it is not yet widely used because of the still limited number of studies based on high temporal phenotyping of many genotypes.

A better understanding of drought stress impact on GLAI dynamics and its underlying traits is a first step toward the design of new ideotypes for maize breeding. Comprehensive crop models like APSIM, DSSAT, or STICS, have been used to study how specific traits influence grain yield of a reference genotype under a large range of current and future environments, and predict the best combination of traits to maximize productivity (Hammer et al., 2005; Chenu et al., 2008; Harrison et al., 2014; Parent et al., 2018). However, these models are sometimes inaccurate, especially when dealing with stressing environments (Rötter et al., 2015). Leaf Area Index assessed locally have been used to constrain or update crop model predictions for specific experiments and showed good results (Casa et al., 2012; Jégo et al., 2012). The rapid accumulation of field GLAI data provided by high-throughput phenotyping, coupled with proper envirotyping, will allow to accurately link average GLAI response to environmental factors and improve crop models' calibration. This in turn will contribute to the design of more valuable ideotypes. While high-throughput phenotyping platform under controlled conditions are efficient to estimate leaf related traits (Cabrera-Bosquet et al., 2016) and have already been used to calibrate crop models (Parent et al., 2018), field phenotyping would allow to explore a wider but also more realistic range of environmental conditions (White et al., 2012).



GLAI Traits Are Promising Traits for Maize Breeding Under Optimal and Water Limited Conditions

To investigate the potential interest of GLAI traits (MAbig, δ, AUC) in maize breeding, their heritability and their impact on grain yield and its components were evaluated. High heritability of MAbig, δ and AUC traits was found for all years and conditions with H2 > 0.70 (Figure 6). This is consistent with the high heritability of GLAITF throughout the growth cycle. GLAITF heritability was slightly lower in 2017 than in 2016, probably because of density heterogeneities. Moreover, the lower heritability observed in 2017 for the first flight is explained by the dominant impact of density at this early stage, which had a medium heritability (0.53<H2<0.66). The senescence period also seems to show decreased heritability, which can be linked to the increasing residual effect of the soil reflectance, leading to poorer performance of the transfer function during this period (Girard and Girard, 2003). Moreover, the soil moisture heterogeneity may also contribute to decrease the heritability for the later stages, especially for the 2016 WD condition when the water stress is culminating. Overall, both the dynamics and the derived traits exhibit similar or higher heritability than grain yield and female flowering.
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FIGURE 6. Heritability estimates for GLAI dynamics (GLAITF), biggest leaf area (MAbig), leaf longevity (δ), Area Under the Curve (AUC), grain yield and female flowering throughout the growth cycle in 2016 and 2017 for Well-Watered (WW) and Water-Deficient (WD) treatments. The black dots represent the heritability of GLAITF estimated at each flight date, year and modality.



Earliness is related to the duration of the growth cycle, with early genotypes that tend to have fewer leaves, reduced stay-green, and finally lower grain yield (Li et al., 2016; Parent et al., 2018). In our study, the effect of GLAI traits on grain yield and its components are distinct from the effect of the flowering date which was considered in the linear model (Table 4). Further, grain yield and its components are more related to GLAI traits that to earliness. Among the four harvest traits (grain yield, kernel number, thousand kernel weight, harvest grain moisture), the grain yield is the best explained trait (Table 4). As it accounts for both the magnitude and the duration of the dynamics, AUC explains the largest part of the harvest traits variance, with up to 14.7 and 16.4%, for grain yield and kernel number, respectively. Cairns et al. (2012) and Christopher et al. (2014, 2016) also highlighted the link between grain yield and the AUC of NDVI dynamics in maize and wheat, respectively. Cairns et al. (2012) showed that AUC throughout the whole growth cycle explains up to 14% of grain yield variability under optimal conditions and 9% under drought stress in tropical hybrids, which agrees with our findings. However, a limited effect of AUC on grain yield and kernel number was observed in the 2016 WD condition, because of the greater impact of thousand kernel weight on grain yield due to water stress during grain filling (Çakir, 2004; Mangani et al., 2018).



Table 4. Impact of GLAI traits on grain yield and its components in each year and water treatment.
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MAbig and δ showed smaller effects, except for thousand kernel weight and harvest grain moisture in the 2016 WD condition. MAbig impact on grain yield and thousand kernel weight is consistent with results reported by Allison et al. (1998), Subedi and Ma (2005), and Li et al. (2018), showing the strong dependency of grain yield to the area of the biggest leaves around the ear. However, δ had a larger effect than MAbig, due to the timing of the drought stress that impacted mostly the thousand kernel weight and harvest grain moisture through an earlier senescence and a shorter grain filling period (Çakir, 2004; Li et al., 2018; Mangani et al., 2018). Previous works (Cairns et al., 2012; Kante et al., 2016; Yang et al., 2017b) have also pointed out that stay-green is one of the major determinant of grain yield, and can explain from 7 to 12% of its variation, which is very similar to the magnitude of δ effect in this study (Table 4). Finally, it is noteworthy that MAbig and δ are strongly negatively correlated in both stressed and well-watered environments (Supplementary Figure 4). This relationship, also observed by Kamara et al. (2003), might be the consequence of an increase illumination homogeneity within canopy strata for maize genotypes with smaller leaves, thus exhibiting a delayed senescence.

Leaf greenness traits have been shown to increase breeding efficiency when used as secondary traits in the past (Bänziger and Lafitte, 1997; Rutkoski et al., 2016; Sun et al., 2017). There are several requirements for a secondary trait to be useful in a breeding program: it must be correlated with yield, have a higher heritability than yield, be fast, easy and cheap to measure by non-destructive means (Araus et al., 2012). The use of the GLAI phenotyping method proposed in this study fulfill all these requirements. Importantly, it provides GLAI traits that exhibit similar or higher heritability than their ground based counterparts. The heritability of MAbig is comparable with that of maize ear leaf width and length measured manually (Tian et al., 2011; Wang et al., 2017, 2018; Zhao et al., 2019), while stay-green traits, related to δ, are generally associated with lower heritability, whether assessed manually (Yang et al., 2017b), by visual scoring (Messmer et al., 2011; Ziyomo and Bernardo, 2013; Almeida et al., 2014; Trachsel et al., 2016) or proximal sensing (Christopher et al., 2014; Yang et al., 2017b). Similarly, lower heritability is generally reported for traits similar to AUC, such as the NDVI AUC before flowering (Trachsel et al., 2016 for maize) and after flowering (Christopher et al., 2014 for wheat) estimated by proximal sensing. These results demonstrate the benefit of data aggregation at the canopy level throughout the whole growth cycle, by combining a model-based approach with UAV remote sensing to characterize traits describing the green leaf area dynamics. These spatial and temporal aggregation decreases estimation uncertainties compared to measurements realized on few plants and/or a single time point, and provides more accurate genotypic parameters (Araus et al., 2012; Tuberosa, 2012). These conclusions are in good agreement with a recent study that demonstrated in durum wheat the higher heritability of NDVI estimated from UAV compared to ground-based NDVI (Condorelli et al., 2018).

Our results demonstrate that AUC, MAbig and δ are promising traits for further investigation in maize breeding programs. However, the compensation between leaf area (MAbig) and leaf longevity (δ), constitutes a significant limit for the improvement of maize through increased light interception during the whole cycle and particularly the grain filling period. A solution to circumvent this correlation could be to modify maize leaf area vertical profile and leaf orientation to allow a better light penetration in the canopy, but this question can't be addressed with the simple GLAI dynamics model presented here.



Applicability and Limitations of the Method

In this study, we proposed a high-throughput method to phenotype maize GLAI in the field by combining repeated UAV observations, a simple GLAI dynamics model and a few field measurements. The main limitation of the proposed method is that two parameters, the phyllochron (ϕGDD) and the final number of leaves (itop), must be characterized beforehand for all the genotypes. These two parameters were assumed constant under contrasted environmental conditions to reduce the field work. The leaf number is marginally sensitive to growing conditions, with maximum variation of about one leaf (Allen et al., 1973; Bonaparte and Brawn, 1976). Although the constancy of the phyllochron across environments for a given genotype is a common assumption in crop modeling (Tardieu, 2013), it is still debated. For example, Birch et al. (1998) for maize and Clerget et al. (2008) for sorghum found that phyllochron may vary between environment due to temperature, day length and irradiance variation. Conversely, Lafarge and Tardieu (2002) measured maize phyllochron in strongly diverse environments located in France (Mediterranean conditions) and in Mali (Sahelian conditions) and showed that maize phyllochron was perfectly stable between environments and years except under extreme conditions of temperature (40°C) and high vapor pressure deficit (6 kPa). Chenu et al. (2008) showed the same constancy for sorghum phyllochron across environments. Therefore, the phyllochron and leaf number constancy for a given genotype seems to be a reasonable assumption for most of agricultural environments in which our method is likely to be used.

The phyllochron and the leaf number can be assessed rapidly either in the field or in a high-throughput greenhouse platform during the early stages before silking (Tardieu et al., 2017). This first step provides an opportunity to gather information on the vegetative development of a population of interest and is necessary to accelerate the characterization of its GLAI dynamics under a subsequently infinite number of scenarios. The third prior variable used, the density, is often routinely measured in a breeding trial. If the density is unknown, it could be readily estimated through image analysis based on early UAV flight as proposed by Gnädinger and Schmidhalter (2017) and Jin et al. (2017).

The preliminary characterization of the phyllochron and the leaf number should be done once but for all new genotypes, and thus could not be feasible for some material, like segregating breeding populations. However, in case one or all the prior variables are unknown, it is still possible to assess GLAI dynamics with acceptable precision. Indeed, we showed that using only the multispectral measurements lead to reasonable GLAI estimation performance throughout the cycle. Indeed, spectral predictors limit the RRMSEP inflation during the senescence which is the period exhibiting the higher uncertainties. Moreover, a highly precise GLAI dynamics is only required to estimate MAbig and δ when inverting the GDMM. Indeed, we demonstrated that GLAIest was accurately retrieved irrespectively to the use of the prior variables, and thus emerging properties such as AUC can still be derived accurately. This alternative approach is thus particularly well suited for the first steps of breeding programs, when the need is on high-throughput more than high precision phenotyping tools.




CONCLUSION

This study demonstrated that with a limited number of field measurements and UAV multispectral observations covering the growth cycle, it is possible to finely characterize the GLAI dynamics of a large maize panel under contrasted environmental conditions. Our high-throughput method reduces the phenotyping time by a factor of about 20 compared to fully ground-based phenotyping observations. Moreover, the use of a simple GLAI dynamics model provides continuous description from emergence to maturity and allows the estimation of three GLAI traits: the Area Under the Curve, the area of the biggest leaf and leaf longevity. Both the dynamics and the GLAI traits exhibit high heritability and could be used as secondary traits in maize breeding programs. Indeed, the GLAI traits can be used to predict grain yield while the pattern of GLAI dynamics drought response is informative about the grain yield stability under water stress. Finally, the high-throughput nature of the method proposed in this study also paves the way to new genetic studies on large populations, like Genome Wide Association Studies, to dissect the genetic determinants of GLAI and its interaction with the environment throughout the crop growth cycle.
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Infrared canopy temperature (CT) is a well-established surrogate measure of stomatal conductance. There is ample evidence showing that genotypic variation in stomatal conductance is associated with grain yield in wheat. Our goal was to determine when CT repeatability is greatest (throughout the season and within the day) to guide CT deployment for research and wheat breeding. CT was measured continuously with ArduCrop wireless infrared thermometers from post-tillering to physiological maturity, and with airborne thermography on cloudless days from manned helicopter at multiple times before and after flowering. Our experiments in wheat, across two years contrasting for water availability, showed that repeatability for CT was greatest later in the season, during grain-filling, and usually in the afternoon. This was supported by the observation that repeatability for ArduCrop, and more so for airborne CT, was significantly associated (P < 0.0001) with calculated clear-sky solar radiation and to a lesser degree, vapor pressure deficit. Adding vapor pressure deficit to a model comprising either clear-sky solar radiation or its determinants, day-of-year and hour-of-day, made little to no improvement to the coefficient of determination. Phenotypic correlations for airborne CT afternoon sampling events were consistently high between events in the same year, more so for the year when soil water was plentiful (r = 0.7 to 0.9) than the year where soil water was limiting (r = 0.4 to 0.9). Phenotypic correlations for afternoon airborne CT were moderate between years contrasting in soil water availability (r = 0.1 to 0.5) and notably greater on two separate days following irrigation or rain in the drier year, ranging from r = 0.39 to 0.53 (P < 0.0001) for the midday events. For ArduCrop CT the pattern of phenotypic correlations, within a given year, was similar for both years: phenotypic correlations were higher during the grain-filling months of October and November and for hours-of-day from 11 onwards. The lowest correlations comprised events from hours-of-day 8 and 9 across all months. The capacity for the airborne method to instantaneously sample CT on hundreds of plots is more suited to large field experiments than the static ArduCrop sensors which measure CT continuously on a single experimental plot at any given time. Our findings provide promising support for the reliable deployment of CT phenotyping for research and wheat breeding, whereby the high repeatability and high phenotypic correlations between afternoon sampling events during grain-filling could enable reliable screening of germplasm from only one or two sampling events.

Keywords: field experiments, proximal sensing, remote sensing, data processing, field phenotyping, foliage temperature


1. INTRODUCTION

Canopy temperature (CT) has been used in field phenotyping of crops since the 1960s (e.g., Fuchs and Tanner, 1966). The use of CT is based on the fact that plant surfaces (e.g., leaves) are cooled by evaporation, so that temperatures decrease in proportion to the evaporation rate. In this way, cooler CT is related to stomatal opening and higher transpiration rates while in contrast, stomatal closure and a reduction in transpiration rate manifests as a warmer CT. Thus, CT can be used as a surrogate measure of stomatal traits including stomatal conductance, stomatal aperture or leaf porosity and indirectly, photosynthetic rate (Blum et al., 1982; Smith et al., 1988; Amani et al., 1996; Fischer et al., 1998; Jones, 2004; Leinonen et al., 2006; Jones and Vaughan, 2010; Maes and Steppe, 2012). The latter arises because of the dependence of photosynthetic gas exchange on stomatal conductance and the two are often highly correlated. However, CT could be insensitive to non-stomatal regulation of photosynthesis. The relationship between stomatal conductance and yield potential in C3 crops over the last 50 years was recently highlighted in a review (Roche, 2015). Further, under yield potential conditions, cooler CT has been associated with genetic gains in wheat yield (Aisawi et al., 2015), and higher stomatal conductance and maximum photosynthetic rate in the CIMMYT wheat breeding program (Fischer et al., 1998). Likewise, cooler CT has been associated with grain yield under warm irrigated conditions in Mexico (Reynolds et al., 1994; Amani et al., 1996; Ayeneh et al., 2002; Rutkoski et al., 2016) and in Australian environments (Rattey et al., 2011; Rebetzke et al., 2013b). Similarly, in water-limited environments, cooler CT has been associated with increased wheat yield (Blum et al., 1989; Rashid et al., 1999; Olivares-Villegas et al., 2007). While lower CT may be linked directly to yield via greater stomatal conductance under yield potential conditions, another possibility arises under water limitation: cooler CT has been associated with increased rooting depth (Reynolds et al., 2007), and greater water use and yield (Lopes and Reynolds, 2010) when measured during grain-filling.

The use of airborne thermography in field experiments has greatly increased the repeatability of CT. Previous hand-held CT heritability estimates were low of the order of 0.1 to 0.3 (e.g., Rebetzke et al., 2003, 2013b; Pask et al., 2012). In contrast, using airborne CT, Deery et al. (2016) reported broad-sense heritabilities typically >0.50 and as high as 0.79. In a study comprising five environments and several hundred breeding lines, broad-sense heritabilities for airborne CT, estimated on a single-plot and line-mean basis, were high ranging from 0.56 to 0.96 (Rutkoski et al., 2016). To the best of our knowledge, no study has reported estimates of CT repeatability from ArduCrop CT.

The greater heritability now achievable through airborne thermography (Deery et al., 2016; Rutkoski et al., 2016), together with the demonstrable association between stomatal conductance and grain yield improvement (Roche, 2015), highlights the potential for deployment of CT within a breeding program as an indirect surrogate for grain yield. The value of CT deployment is likely to be greatest in early generations (Rebetzke et al., 2002; Fischer and Rebetzke, 2018), on unreplicated rows or small plots where reliable yield measures are unattainable (Rebetzke et al., 2014). Further opportunities include improving the heritability estimate of grain yield by using CT measurements to improve spatial and site characterization for variation in soil water, and subsoil constraints including root disease (Araus et al., 2018).

In order for CT to be effectively utilized within a wheat breeding program, a greater understanding is required of: (1) the optimal period of the season (e.g., before and or after flowering) and the optimal time during the day to measure CT; (2) the benefits of aerial vs static CT measurements; and (3) the number of measurements required in a given year to appropriately characterize the germplasm. We address these issues in this paper through the use of continuous terrestrial and regular airborne CT measurements to evaluate the repeatability of CT at discrete time points and the phenotypic correlation across and between two seasons contrasting in soil water availability.



2. MATERIALS AND METHODS


2.1. Field Experiments

A field experiment containing wheat genotypes contrasting for canopy architecture was grown in two successive years at the Managed Environment Facility (MEF) (Rebetzke et al., 2013a), located at Yanco (34.62°S, 146.43°E, elevation 164 m) in South-eastern Australia. The soil at the Yanco MEF is classified as chromosol and has a clay-loam texture (Isbell, 1996). The experiment was sown on 23rd May in 2016 and 29th May in 2017 following canola or field pea break-crops and then managed with adequate nutrition and chemical controls as required for pest, weed and leaf diseases.

The experiment comprised 400 and 192 experimental plots, in 2016 and 2017, respectively, of size 2 × 6 m containing seven rows of 25 cm spacing (orientated North - South), sowing density of 200 seeds per mʦ2 and paths between plots of ca. 0.4 m. The germplasm represented a series of near-isogenic wheat lines varying for a range of agronomic traits including plant height, tiller number, plant development and canopy erectness. In 2016, 106 genotypes were sown into a partial-replicate design experiment with the genotype replication averaging 3.8 and ranging from one to five. In 2017, 99 genotypes were sown into a partial-replicate design experiment comprising 192 plots with the genotype replication averaging 1.9 and ranging from one to two. Ninety-eight of the 99 genotypes grown in 2017 were also grown in 2016. The dimensions of the experiment were 50 × 110 m in 2016 and 25 × 110 m in 2017.

In 2016, 670 mm of rainfall was recorded at the site between 1-Jan-2016 and when the crop reached physiological maturity (1-Dec-2016). Of this, 191 mm was recorded prior to sowing and the remaining 479 mm between sowing and harvest. In 2017, 201 mm of rainfall was recorded at the site between 1-Jan-2017 and physiological maturity (1-Dec-2017). Of this, 90 mm was recorded prior to sowing and the remaining 111 mm between sowing and physiological maturity. Due to the limited rainfall in 2017, a total of 186 mm of sprinkler irrigation was applied on seven separate days throughout the season, with amounts ranging from 15 to 37 mm. Thus, rainfall and irrigation totalled 387 mm in 2017, 283 mm less than the total rainfall in 2016.

In 2016, for 90% of the lines, the flowering growth stage ranged from 22-Sept-16 to 13-Oct-16 (122 to 143 days after sowing, respectively) and the median flowering date was 28-Sept-16 (128 days after sowing). In 2017, for 90% of the lines, the flowering growth stage ranged from 25-Sept-17 to 10-Oct-17 (119 to 134 days after sowing, respectively) and the median flowering date was 3-Oct-17 (127 days after sowing). Therefore, results are presented according to the following growth stages: early-veg, early vegetative growth stage (August); late-veg, late vegetative growth stage (September); early-gf, early grain-filling growth stage (October); late-gf, late grain-filling growth stage (November).



2.2. Weather Measurements

For 2016 and 2017, the following weather variables were obtained from the Bureau of Meteorology (http://www.bom.gov.au) weather station located at the experiment site (station number 074037): air temperature (°C); average and maximum wind speed (km.hr−1); wind direction (°); and vapor pressure deficit (VPD) (Pa). These variables were measured at 60 s frequency. The clear-sky solar radiation, Rso (W.m−2), was calculated as 75% of the extraterrestrial solar radiation, whereby the latter was calculated hourly from the day-of-year and latitude (Allan et al., 1998) for both 2016 and 2017. In 2016 and 2017, solar radiation, Rs (W.m−2), was measured hourly at Griffith NSW (ca. 60 km north-west from the experiment site).



2.3. Continuous Canopy Temperature Measurements

Continuous CT measurements were made with the ArduCrop wireless canopy temperature system described previously (Rebetzke et al., 2016; Jones et al., 2018) (Figure 1). The ArduCrop system comprises wireless infrared temperature sensors, similar in design to that described by O'Shaughnessy et al. (2011a,b), with an infrared thermometer sensor (MLX90614-BCF from Melexis, Ypres, Belgium), for which the technical specifications are: 10° field of view; resolution of 0.02°C; and accuracy of ± 0.5°C from 0 to 50°C. This specification was checked for each ArduCrop sensor before and after deployment with a Landcal P80P black body radiation source (Land Instruments, Leicester, United Kingdom). Temperature data were recorded at 1 s intervals on an Arduino microcontroller and 60 s averages radio transmitted to a field base station. The base station sent data via the mobile phone network every 15 min to the SensorDB website [http://sensordb.csiro.au, see Salehi et al. (2015)] for real-time data access and preliminary visualization through a web portal. The ArduCrop sensors were height adjustable to maintain a consistent height for all plots above the crop canopy throughout the growing season of ca. 0.5 m. The ArduCrop viewing angle was 45° facing toward the canopy. Thus, each ArduCrop sensor collected data from an elliptical field of view ca. 0.2 m long by ca. 0.1 m wide. Each ArduCrop sensor was positioned to view the canopy at ca. 45° angle to the individual rows, and thereby reduce the likelihood of viewing background soil, and facing approximately north-northwest (in Southern Hemisphere) to avoid the warmer, sunlit side of the canopy (see Jones, 2002).
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FIGURE 1. ArduCrop wireless infra-red canopy temperature sensor (Left) and manned helicopter for airborne canopy temperature (Right) comprising white cargo pod mounted on skid of helicopter with thermal camera inside.



In 2016, 113 ArduCrop sensors in total were deployed from 11-Aug-2016 until 24-Nov-2016, across 43 randomly sampled genotypes on 84 of the 400 experimental plots. Of the 84 experimental plots containing ArduCrop sensors, 55 plots contained one ArduCrop sensor and 29 plots contained two paired ArduCrop sensors, referred to as duplicate-ArduCrop-plots. The duplicate-ArduCrop-plots enabled testing whether the additional ArduCrop sensor improved the estimate of CT. The plot level replication per genotype ranged from one to four and averaged 1.95.

In 2017, 96 ArduCrop sensors were deployed from 24-Aug-2017 until 27-Nov-2017, across 49 randomly sampled genotypes, 20 of which were also used in 2016. ArduCrop replication per genotype in 2017 ranged from one to two and averaged 1.96. Duplicate-ArduCrop-plots were not used in 2017.



2.4. Airborne Canopy Temperature Measurements

As previously described (Deery et al., 2016), thermal images were acquired using a thermal infrared camera (FLIRʦ® SC645, FLIR Systems, Oregon, USA, for which the technical specifications are: ±2°C or ±2% of reading; < 0.05°C pixel sensitivity; 640x480 pixels; 0.7 kg without lens; 13.1 mm lens). The camera was mounted in a commercially-available helicopter cargo pod (R44 Helipod II Slim Line Top Loader, Simplex Aerospace, Oregon, USA) and fitted to a Robinson R44 Raven helicopter (Figure 1). Images for a given event were collected in a single pass and typically acquired at a height of 120 m above-ground-level and at a flight velocity of 25 to 35 knots (45 to 65 km/h). The camera was mounted to provide a nadir view (pointing straight down), such that the angle of view for a given image spread from vertical to 15-20° at the image edges. Thus, images for a given event were acquired in <10 s for the experiments described above.

Measurements of airborne CT occurred on six and eight separate days in 2016 and 2017, respectively. On a given day, measurements generally occurred hourly starting at 09:00 and finishing at 15:00. Herein an airborne CT measurement at a given date and time is referred to as an event.



2.5. Data Processing

The Python 3.5 software language (Python Software Foundation, https://www.python.org) was used for data processing [pandas and NumPy modules (Jones et al., 2001)]. All data is reported in local time for the experiment site, namely Australian Eastern Standard Time (UTC/GMT +10 h) and, during daylight savings time, Australian Eastern Daylight Time (UTC/GMT +11 h). Note that daylight saving time commenced at 02:00 on 1-Oct-2016 and 02:00 on 1-Oct-2017.

2.5.1. Weather Data

Hourly means were calculated from the 60 s weather data using the pandas module in Python 3.5 [method: resample(“H”).mean()], whereby an hourly mean computed for 12:00 comprises values from 12:00 to 12:59 inclusive.

2.5.2. ArduCrop Canopy Temperature Data

For each ArduCrop sensor, temperature data <–30.0°C and >50.0°C was attributed to the ArduCrop sensor inadvertently viewing the sky or soil and was therefore discarded, prior to the calculation of hourly mean. ArduCrop sensor data was also discarded on days when rainfall and irrigation occurred. Then for each day, hourly mean data between the times of 08:00 and 16:00, inclusive, were calculated for later analysis (refer section 2.6) using same method described above for the weather data.

2.5.3. Airborne Canopy Temperature Data

Thermal images were processed using a previously described method (Deery et al., 2016), whereby the CT for each individual plot was extracted for later analysis. Custom developed software works on a frame-by-frame basis extracting data from the raw images, whereby the user navigates through the image stack to ensure that each plot in the experiment has been sampled. For each experimental plot, a rectangle was defined within a surrounding buffer, and the CT pixels extracted from within the plot rectangle. From the resultant pixels within each plot, a mean CT for a given plot was calculated for later analysis (refer section 2.6).



2.6. Statistical Analysis

Hourly ArduCrop and airborne CT data were analyzed after first checking for residual normality and error variance homogeneity at each date-by-time sampling event. Each event was analyzed separately using the SpATS package (Rodríguez-Álvarez et al., 2018) (available from CRAN: https://cran.r-project.org/package=SpATS) in the R programming language (http://www.r-project.org). Spatial effects were modeled on a row and column basis by specifying the separation of anisotropic penalties (SAP) algorithm, with the number of segments set to the respective number of rows and columns from the experimental design. For the 2016 ArduCrop data, where for the purpose of the analysis the duplicate ArduCrops in the duplicate-ArduCrop-plots were treated as internal replicates (or pseudo-replicates), the following factors were modeled as random effects: genotype, row, column and the internal ArduCrop replicate. For the 2016 airborne, 2017 ArduCrop and 2017 airborne CT data, the following factors were modeled as random effects: genotype, row and column. Repeatability (ρ), sometimes called broad-sense heritability (Falconer and Mackay, 1996; Holland et al., 2003; Piepho and Möhring, 2007), was then estimated using relevant variance components, namely: [image: image]. Where [image: image] and [image: image] are the genotypic and residual variances, respectively, and nrep is the number of genotype replicates in the experiment. The best linear unbiased predictors of genotype effects (BLUPs) and standard errors (BLUP SEs) were predicted from a fitted SpATS object. Phenotypic correlations were estimated between BLUPs using Pearson correlation analysis with the pandas module in Python 3.5 and statistically significant associations denoted: ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05. The scipy module (Jones et al., 2001) in Python 3.5 was used to estimate linear least-squares regression and the coefficient of determination (R2) between variables.

The association between canopy temperature (CT) repeatability (response variable) and the weather (explanatory) variables most significantly and strongly correlated with repeatability was investigated using ordinary least squares (OLS) regression analysis using the statsmodels Python module (Seabold and Perktold, 2010). Figures were prepared using the matplotlib and seaborn Python modules (Jones et al., 2001). Phenotypic correlations for ArduCrop CT are presented in hierarchically-clustered heatmaps to identify occasions when the phenotypic correlations were greatest. Box plots were used to summarize data according to the following: The box extends from the lower to upper quartile values (Q1 and Q3) of the data, with a line at the median. The whiskers extend from the box by the product of 1.5 and the interquartile range (i.e., Q3+1.5*IQR and Q1-1.5*IQR). The flyer points are data points past the end of the whiskers.




3. RESULTS


3.1. Summary of Experimental Conditions

The meteorological conditions during the CT measurement period for both years are summarized in Table 1, together with the rainfall, irrigation and the ArduCrop and airborne CT deltas from air temperature (CT minus air temperature). The latter were calculated on two dates (at 13:00 on 5-Oct-16 and 3-Oct-17), using the respective ArduCrop or airborne CT mean of the best linear unbiased predictors of genotype effects, and illustrate the extreme contrast in available soil water between 2016 and 2017, whereby ArduCrop and airborne CT deltas from air temperature were greater in 2017 than 2016. On both dates, ArduCrop CT and airborne CT were warmer than air temperature and airborne CT was warmer than ArduCrop CT. VPDs were greater in 2017 than 2016, indicating that evaporative demand was likely also greater in 2017.



Table 1. Experimental conditions during the canopy temperature (CT) measurement period for 2016 and 2017 at Yanco, New South Wales.
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3.2. ArduCrop Internal Replicate

The internal ArduCrop replicate sensors on the duplicate-ArduCrop-plots were significantly correlated with one another (slope = 0.98, intercept = 0.34°C, R2 = 0.98, P < 0.0001, Figure 2) and the root mean square error (RMSE) was 1.18°C, equating to a normalized RMSE (NRMSE) of 0.05. Linear regression analysis for each individual plot (Figure S2 and Table S1) showed a high degree of linearity between the pairs of ArduCrop sensors (R2 ≥ 0.96, P < 0.0001). The slopes ranged from 0.91 to 1.11, the intercepts ranged from -1.32 to 1.31°C, the RMSE ranged from 0.55 to 1.89°C and the NRMSE was ≤ 0.09. We investigated the size of the variance explained with the addition of an internal ArduCrop replicate on the duplicate-ArduCrop-plots. For the 2016 ArduCrop data, the variance ratios between the internal ArduCrop replication, [image: image], and [image: image] were typically <0.1 (Figure S1). Specifically, the percentile score denoting when the variance ratios, [image: image] and [image: image], were <0.1 was 87.
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FIGURE 2. Relationship between canopy temperature (CT) of duplicate ArduCrop sensors, denoted ArduCrop 1 and ArduCrop 2. Scatter plot comprising CT data from all 29 plots with fitted linear regression equation, coefficient of determination (R2), root mean square error (RMSE), normalized RMSE (NRMSE) and the number of values (n). Linear regression analysis for each individual plot is shown in Figure S2 and Table S1.





3.3. Repeatability of ArduCrop Canopy Temperature

The box plots of repeatability estimates for each hour of the day grouped by growth stage, for 2016 (Figure 3A) and 2017 (Figure 3B), show a similar temporal distribution for both years, although less marked in 2017, whereby repeatability was greater during the grain-filling months of October and November. In 2016, repeatability was highest, and the range lowest, during late-gf (November) and from 11:00 onwards. Estimates of repeatability were also high for the same HoDs in early-gf (October) 2016, however the range was greater cf. late-gf (November) 2016. Repeatability estimates were lowest for HoD 8 and 9, for all months in 2016 and during late-veg (September). For 2017, ArduCrop CT repeatability estimates were highest during early-gf and late-gf (October and November, respectively) for HoD after and including 10, and were also high during late-veg (September) for the afternoon HoDs 15 and 16. For all growth stages at HoD 8 and 9 in 2017, with the exception of late-gf (November) at HoD 9, a large proportion of repeatability values were <ca. 0.4. The temporal distributions of repeatability on a weekly basis are shown in Figures S7, S8, for 2016 and 2017, respectively. The frequency distributions of repeatability estimates for ArduCrop CT in 2016 and 2017 are shown in Figure S6. The range in repeatability was large in both years, ranging from 0.0 to 0.80 in 2016 (Figure S6a), and from 0.0 to 0.82 in 2017 (Figure S6b). The median repeatability was similar for both years (0.42 in 2016 and 0.36 in 2017).
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FIGURE 3. Repeatability estimates for ArduCrop canopy temperature shown as box plots for each hour of the day grouped by growth stage for 2016 (A) and 2017 (B). Early-veg, early vegetative; late-veg, late vegetative; early-gf, early grain-filling; late-gf, late grain-filling.





3.4. Phenotypic Correlations for ArduCrop Canopy Temperature Within Years

Hierarchically-clustered heatmaps of all possible pairwise phenotypic correlations between BLUPs are shown for ArduCrop CT in 2016 (Figure 4) and 2017 (Figure 5). The overall pattern of clusters was similar for both years, whereby correlations were higher during the grain-filling months of October and November and for HoDs from 11 onwards. Conversely, the lowest correlations comprised events from HoDs 8 and 9 across all months (clustered at the lower left of the figures).
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FIGURE 4. Hierarchically-clustered heatmap of all possible pairwise phenotypic correlations between best linear unbiased predictors of genotype effects (BLUPs) for ArduCrop canopy temperature in 2016. Frequency distributions of the phenotypic correlations are shown in Figure S11.
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FIGURE 5. Hierarchically-clustered heatmap of all possible pairwise phenotypic correlations between best linear unbiased predictors of genotype effects (BLUPs) for ArduCrop canopy temperature in 2017. Frequency distributions of the phenotypic correlations are shown in Figure S11.



To investigate the phenotypic correlations between ArduCrop CT BLUPs as a function of repeatability, all possible pairwise phenotypic correlations were estimated for ArduCrop CT BLUPs corresponding to the following, arbitrarily chosen, quantiles of event repeatability: 0.0 to 0.33; 0.33 to 0.66; 0.66 to 1.0 (shown as frequency distributions in Figures S11a–c for 2016 and Figures S11d–f for 2017, respectively). The mean, median and percentiles of phenotypic correlations increased with repeatability quantiles (i.e., 0.0 to 0.33 < 0.33 to 0.66 < 0.66 to 1.0) for both years. For a given quantile distribution (e.g., 0.0 to 0.33 in 2016 cf. 0.0 to 0.33 in 2017 etc.), the mean, median and percentiles of phenotypic correlations were higher for 2016 than 2017.

The frequency distributions of phenotypic correlations for the entire data set of ArduCrop CT BLUPs are shown in Figure S11g for 2016, and Figure S11h for 2017, whereby the mean, median and percentiles of phenotypic correlations were higher for 2016 than 2017. The mean and median was 0.50 and 0.52, in 2016 respectively, and 0.38 and 0.41 in 2017, respectively.



3.5. Repeatability of Airborne Canopy Temperature

Repeatability estimates for 2016 and 2017 airborne CT events are shown as scatter plots for each date in Figure 6 (and as frequency distributions in Figure S12). In 2016 all airborne CT events occurred post-flowering during the grain-filling months of October and November. Repeatability estimates in 2016 were typically high, ranging from 0.63 to 0.82 with a mean of 0.76 (Figure S12a). In 2016, the scatter plots of repeatability for each date show that repeatability estimates were typically lower at 09:00, ranging from 0.63 to 0.74 (Figure 6A). In 2017 airborne CT events occurred pre and post-flowering, as denoted on Figure 6B. Repeatability estimates were generally lower in 2017, ranging from 0.31 to 0.85 with a mean of 0.56 (Figure S12b and showed no clear pattern with regards to HoD (Figure 6B). The lowest repeatability estimates occurred during late-veg (20 and 28 September 2017) and, conversely, repeatability estimates were consistently higher for the early-gf and late-gf (October and November, respectively) events. For airborne CT events during early-gf (October) 2017, repeatability tended to increase with HoD until 12, and then decrease with HoD for 13, 14, and 15. Similar patterns were evident for late-gf events (November, one day only), where repeatability increased until HoD 13 before decreasing, and the early-veg (September) events, where there was a marked decrease in repeatability for HoDs 13 and 14. The range in repeatability was greatest for the early-veg (September) events at HoD 9, ranging from 0.36 to 0.85.
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FIGURE 6. Repeatability estimates for airborne canopy temperature shown as scatter plots for each date in 2016 (A) and 2017 (B) with hour-of-day denoted as per legend. Growth stage is denoted as follows: early-veg, early vegetative; late-veg, late vegetative; early-gf, early grain-filling; late-gf, late grain-filling.





3.6. Phenotypic Correlations for Airborne Canopy Temperature Within and Between Years

For both years, the phenotypic correlations between the best linear unbiased predictors of genotype effects (BLUPs) for airborne CT events were generally lower for HoDs before 12:00 and in 2017, for days before 20-September (pre-flowering). For these reasons, Figure 7 shows phenotypic correlations between BLUPs for selected airborne CT events in 2016 and 2017: for 2016, on each day after (and including) 12:00; for 2017, for events on days after and including 20-September and after 12:00. Frequency distributions of the selected airborne CT events are shown in Figure S18a for 2016 and Figure S18b for 2017. For the selected airborne CT events, the phenotypic correlations ranged from 0.73 to 0.98 in 2016, and from 0.41 to 0.94 in 2017. Phenotypic correlations between BLUPs for all airborne CT events are shown as frequency distributions (Figure S17a for 2016 and Figure S17c for 2017) and heatmaps (Figure S17b for 2016 and Figure S17d for 2017).
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FIGURE 7. Heatmaps of phenotypic correlations between the best linear unbiased predictors of genotype effects (BLUPs) for selected airborne canopy temperature events in 2016 (A) and 2017 (B). For 2016, on each day after (and including) 12:00. For 2017, for events on days after and including 20-Sept and after 12:00.



Phenotypic correlations across the years for BLUPs (for the 98 genotypes common to both years), for the 2016 and 2017 airborne CT events shown in Figure 7, are shown in Figure 8 (and frequency distribution in Figure S19). Figure 8 shows that phenotypic correlations between the selected 2016 and 2017 airborne CT events were moderate, ranging from 0.06 to 0.53, and greater on particular days in 2017 than others (e.g., 28-Sept-17, 10-Oct-17). For many of the individual CT events on 28-Sept-17 and 10-Oct-17, the phenotypic correlation was >0.40 and significantly associated (P < 0.0001) with every CT event in 2016, evidence of a strong genotypic effect across years. The two days in 2017 where the correlations were greatest (28-Sept-17 and 10-Oct-17), occurred soon after irrigation or rain (24 mm irrigation on 22-Sept-17 and 8 mm rain on 9-Oct-17) when the crop was less water-limited.
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FIGURE 8. Heatmap of phenotypic correlations between the best linear unbiased predictors of genotype effects (BLUPs) (98 genotypes) for selected airborne canopy temperature (CT) events in 2016 and 2017 (as shown in Figure 7). For 2016, on each day after (and including) 12:00. For 2017, for events on days after and including 20-Sept-17 and after 12:00. Repeatability is shown in parenthesis for each respective airborne CT event. The two days in 2017 where the correlations were greatest (28-Sept-17 and 10-Oct-17), occurred soon after irrigation or rain (24 mm irrigation on 22-Sept-17 and 8 mm rain on 9-Oct-17) when the crop was less water-limited.





3.7. Association Between Repeatability and Weather Data

The scatter plot associations between CT repeatability estimates and the corresponding hourly weather data are shown in Figures S20–S23 for 2016 ArduCrop, 2016 airborne, 2017 ArduCrop and 2017 airborne, respectively. For 2016 ArduCrop CT, all weather variables were positively and significantly (P < 0.0001) associated with repeatability, with the calculated clear-sky solar radiation (Rso), vapor pressure deficit (VPD) and the measured solar radiation (Rs) at Griffith NSW (ca. 60 km north-west from the experiment site) having the strongest correlations with repeatability (0.61, 0.51, and 0.47, respectively) (Figure S20). For 2016 airborne CT all weather variables, except the wind parameters (average wind speed, maximum wind speed and wind direction), were positively and significantly (P < 0.01) associated with repeatability, with Rso, Rs and VPD having the strongest correlations with repeatability (0.78, 0.45, and 0.44, respectively) (Figure S21). For 2017 ArduCrop CT, Rso, Rs, air temperature and VPD were positively and significantly (P < 0.0001) associated with repeatability (respective correlations with repeatability were 0.30, 0.27, 0.25, 0.21) (Figure S22). For 2017 airborne CT, only air temperature and VPD were significantly (P < 0.05) associated with repeatability with correlations of 0.39 and 0.39, respectively (Figure S23). Non-significant correlations between repeatability and Rs, Rso were 0.30 and 0.27, respectively. Generally, correlations between CT repeatability and weather variables were greatest for Rso, Rs, VPD and air temperature. The association between CT repeatability and the wind parameters (average wind speed, maximum wind speed and wind direction) were generally poor and not significant, with the exception of 2016 ArduCrop where correlations were highly significant (P < 0.0001) and ranged from 0.24 to 0.28.

The day-of-year (DoY) and hour-of-day (HoD) were positively and significantly correlated with CT repeatability for 2016 ArduCrop CT (DoY: 0.47, P < 0.0001; HoD: 0.36, P < 0.0001), 2016 airborne CT (DoY: 0.38, P < 0.05; HoD: 0.44, P < 0.01) and 2017 ArduCrop CT (DoY: 0.14, P < 0.01; HoD: 0.18, P < 0.0001). For 2017 airborne CT, DoY was significantly associated with repeatability (0.33, P < 0.05), however the association with HoD was poor (0.02) and not significant.

Ordinary least squares (OLS) model results for estimates of CT repeatability (response variable) and the power set of the most significantly correlated weather (explanatory) variables (namely Rso and VPD) are shown in Table 2. Air temperature and Rs were omitted from the OLS models due to their high correlation with VPD and Rso, respectively. Both DoY and HoD are directly related to Rso and were therefore modeled separately (discussed below). The wind parameters (average wind speed, maximum wind speed and wind direction) were also omitted from the models due to their generally poor correlation with repeatability (Figures S20–S23). Table 2 shows that, when modeled alone Rso and VPD were highly significant (P < 0.0001) and that the coefficient of determination (R2) was higher for Rso than VPD for ArduCrop and airborne in both years. Although VPD was highly significant (P < 0.0001) when modeled alone, the addition of VPD to Rso did not substantively increase the R2. Specifically, the addition of VPD to Rso increased the R2 from 0.815, with Rso alone, to 0.830 and from 0.990 to 0.992 for 2016 ArduCrop and airborne CT, respectively. For 2017 ArduCrop and airborne CT, the addition of VPD to Rso was non-significant. The OLS model results were consistent for ArduCrop and airborne in both years, where the ranking of models by R2 and the ranking of P-values for each respective model and variable were the same. In summary, the R2 values were high, ranging from 0.666 (2017 ArduCrop, VPD) to 0.992 (2016 airborne, Rso and VPD).



Table 2. Ordinary least squares model results for canopy temperature (CT) repeatability (response variable) and the weather (explanatory) variables most significantly and strongly correlated with repeatability, namely Rso and VPD (positive associations always).
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Given that Rso is directly related to DoY and HoD, the latter two were modeled with VPD to test for their significance as surrogates for physiological effects (Table S2). For 2016 ArduCrop, the addition of VPD to DoY and HoD increased the R2 from 0.763 to 0.804. However, for 2016 and 2017 airborne, the addition of VPD to DoY and HoD did not increase the R2. Similarly for 2017 ArduCrop, the R2 only increased marginally from 0.792 (DoY and HoD) to 0.793 (VPD, DoY and HoD).



3.8. Association Between ArduCrop Canopy Temperature and Airborne Canopy Temperature

Airborne CT occurred on six and eight separate days in 2016 and 2017, respectively. In 2016 airborne CT commenced post-flowering in early October and in 2017, commenced pre-flowering in late August. Regressing the best linear unbiased predictors of genotype effects (BLUPs) for airborne and ArduCrop CT from all of the date-by-time events revealed a strong and significant association between the airborne and ArduCrop CT in 2016 (R2 = 0.96, P < 0.0001) and 2017 (R2 = 0.94, P < 0.0001) (Figures 9A,C for 2016 and 2017, respectively). In 2016, for temperatures >18°C, the ArduCrop CT was typically cooler than the airborne CT (slope of 0.78 and intercept of 4.19°C) while in 2017, for temperatures >21°C, the ArduCrop CT was typically cooler than the airborne CT (slope of 0.75 and intercept of 5.12°C). Figures 9B,D show that phenotypic correlations between airborne and ArduCrop CT BLUPs were typically higher in 2016 than 2017. In 2016, the phenotypic correlations between airborne and ArduCrop CT BLUPs ranged from 0.25 to 0.75 and with the exception of one event (13-Oct-16 at 09:00), ranged from 0.38 to 0.75. In 2017, the phenotypic correlations between airborne and ArduCrop CT BLUPs ranged from 0.19 to 0.76.
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FIGURE 9. Association across all dates between airborne canopy temperature (CT) and ArduCrop CT (where for a given airborne CT event, data was compared to the nearest hourly ArduCrop CT event). Scatter plots for 2016 (A) and 2017 (C). Scatter plots of phenotypic correlations between airborne CT and ArduCrop CT for each date 2016 (B) and 2017 (D). Data are coded by hour-of-day as per respective legend. CT data are best linear unbiased predictors of genotype effects (BLUPs).



On an individual plot basis, the frequency distributions of phenotypic correlations between airborne and ArduCrop CT, show that the associations were generally greater in 2016 than 2017 (Figures S5a,b). In 2016, associations were highest from 11:00 onwards (with the exception of one event at 11:00) (Figure S5c). In 2017, the correlations were highest at 14:00 and 15:00 and, with the exception of two events at 10:00, tended to increase with hour-of-day (HoD) (Figure S5d). The same data are shown as scatter plots for each airborne CT event in Figures S3, S4, for 2016 and 2017, respectively.




4. DISCUSSION

There is substantive evidence for the concomitant yield improvement in C3 crops and increased stomatal conductance in irrigated or non water-limited environments (for many examples see Roche, 2015). In turn, CT provides a surrogate measure of stomatal aperture traits, particularly stomatal conductance (Blum et al., 1982; Smith et al., 1988; Amani et al., 1996; Fischer et al., 1998; Jones, 2004; Jones and Vaughan, 2010; Rebetzke et al., 2013b). In this study, the consistently high estimates of CT repeatability obtained during grain-filling and from the middle of the day onwards (Figures 3, 6), together with the high phenotypic correlations between different sampling events (Figures 4, 5, 7, 8), provide confidence in the repeatability of CT phenotyping. These findings, together with the recent developments in reliable CT phenotyping through airborne thermography (Deery et al., 2016), provide further support for the use of CT to reliably screen germplasm, in both research and plant breeding, from as little as one or two sampling events.


4.1. Extreme Contrast in Available Soil Water Between 2016 and 2017

There was an extreme contrast in available soil water between 2016 and 2017, whereby the total rainfall and irrigation in 2017 was 283 mm less than that in 2016. The VPD was also greater in 2017 than 2016 (Table 1). The impacts of the contrast in available soil water between years are evident in nearly all of the results presented herein. Canopy temperature (CT) delta from air temperature (CT minus air temperature) plotted as a function of VPD has been used to indicate the crop water stress (e.g., Jackson et al., 1981; Idso et al., 1984), with higher values of CT delta denoting greater water stress. Table 1 shows that, for both ArduCrop and airborne CT, CT deltas during the grain-filling period were greater for 2017 than 2016, presumably due to reduced stomatal conductance and transpiration arising from the greater water limitation in 2017.

The assessments of CT delta enable comparison with those reported by Smith et al. (1988) where CT was measured continuously using a logging infra-red thermometer on wheat, well-watered and under drought, at Griffith NSW (ca. 60 km from the present study). Smith et al. (1988) reported a diurnal time-course of CT delta and VPD on 31-Oct-1985 and the approximate values at 13:00 h were as follows: CT delta of 2.0°C for well-watered; CT delta of 5.0 to 6.0°C under drought; VPD of 1300 Pa. The ArduCrop CT delta under well-watered conditions in 2016 was 1.0°C (Table 1), consistent with those reported by Smith et al. (1988) for well-watered wheat during grain-filling. By contrast, the ArduCrop CT delta under water limited conditions in 2017 was 6.8°C, slightly greater than the range of 5.0 to 6.0°C reported by Smith et al. (1988) for their drought treatment. Together these findings provide confidence in the ArduCrop method. By contrast to the VPD and CT deltas from air temperature reported herein (and in Smith et al., 1988), the VPD reported from CT studies in Mexico and Arizona were much greater and CT was typically less than air temperature by up to 5°C or more in well-watered experiments (Jackson et al., 1981; Idso et al., 1984; Amani et al., 1996).



4.2. Comparison of ArduCrop and Airborne Canopy Temperature

That the variance for the internal ArduCrop replication in 2016 was negligibly small (Figure S1), indicates that the additional ArduCrop sensors on the duplicate-ArduCrop-plots did not significantly improve the estimate of CT. However, the highly significant association between the internal ArduCrop replicate sensors (R2 = 0.98, P < 0.0001), together with the slope of 0.98 and intercept of 0.34 (Figure 2), provides good evidence for the capacity of an individual ArduCrop sensor to reliably measure CT.

For CT >ca. 20°C, the ArduCrop CT was typically cooler than the airborne CT across both years (Figures 9A,C for 2016 and 2017, respectively). This can be partly attributed to the respective viewing angles of the ArduCrop and airborne CT methods. The ArduCrop viewing angle was 45° (facing downward) to minimize the likely influence of soil temperature resulting from the 25 cm row spacing used herein. In contrast, the airborne CT viewing angle was nadir (directly above) and therefore likely to sample a greater proportion of soil than the ArduCrop. For a given plot, the airborne CT was derived from the mean of all pixels within a rectangle and no attempt was made to remove temperature pixels resulting from the background soil. The latter is because a previous study at the Yanco site, using the same row spacing of 25 cm, found that methods based on filtering the frequency distribution of the temperature pixels to remove the influence of background soil did not improve the estimates of broad-sense heritability (Deery et al., 2016). Nevertheless, the airborne CT as measured from the nadir view, was possibly influenced by the degree of fractional cover and the soil temperature. In our study, early morning airborne CT measurements at HoD 9 were typically cooler than ArduCrop CT measurements and conversely, airborne CT measurements from midday onwards were often warmer than ArduCrop CT (Figure 9). These differences may have been attributable to the airborne CT sampling a cooler soil temperature in the morning and a warmer soil temperature from midday onwards. For a given event the association between ArduCrop and airborne CT BLUPs (Figures 9B,D) tended to improve with HoD, for both years, and was generally greater in 2016 than 2017. That for a given experimental plot the sampling area of the ArduCrop (ca. 0.02 mʦ2) was far less than for airborne CT (ca. 4.0 mʦ2), the reasonable association between ArduCrop and airborne CT BLUPs is encouraging and provides confidence in the precision of both methods.



4.3. Higher Repeatability for Canopy Temperature During Grain-Filling and From 11:00 Onwards

The repeatability of CT was typically greater during the grain-filling growth stage in October and November than during the pre-flowering months of August and September (Figures 3, 6). The ArduCrop CT repeatability estimates were often greater from 11:00 onwards in 2016 (Figure 3A) and 2017, although less so in 2017 (Figure 3B). These patterns were more pronounced in the more favorable growing environment of 2016 than the more water-limited environment of 2017 (cf. 2016 ArduCrop data (Figure 3A) with the 2017 ArduCrop data (Figure 3B). The repeatability estimates for airborne CT were slightly lower for events at 09:00 during 2016 (Figure 6A), however no clear HoD pattern was evident in 2017 (Figure 6B). The greater repeatability of CT later in the season is consistent with previous studies including Rutkoski et al. (2016), where in four out of their five environments, broad-sense heritabilities of CT on a line mean basis and on a single plot basis, were greater during grain-filling than pre-flowering. The higher repeatability for ArduCrop CT from 11:00 onwards, particularly in 2016, is similar to experiments with Pima cotton, whereby the optimal time for screening stomatal conductance was two to three hours past solar noon (Lu et al., 1998). Similarly in a selection of 23 spring wheat cultivars (Amani et al., 1996), correlations between CT and yield were greatest for CT measurements made between noon and 4pm compared to those made between 8am and noon. Further, in a recent study involving continuous CT measurements on 20 winter wheat cultivars (Thapa et al., 2018), variation between genotypes was greater during the middle of the day than early morning.

Ordinary least squares modeling revealed that the calculated clear-sky solar radiation (Rso) and vapor pressure deficit (VPD) were highly significant explanatory variables for repeatability (Table 2), with Rso the most highly significant explanatory variable for ArduCrop and airborne CT in both years. The addition of VPD to the model comprising either Rso or its determinants, day-of-year and hour-of-day, made little to no improvement to the coefficient of determination (Table S2). Thus, it is possible that genotypic differences in CT, and potentially stomatal conductance (Rebetzke et al., 2013b), were more pronounced during the grain-filling stage because of greater solar radiation and VPD. From energy balance theory linking the estimation of CT from the local weather variables (e.g., Jackson et al., 1981; Smith et al., 1988; Jones and Vaughan, 2010), for a given stomatal conductance, CT is linearly related to solar radiation and VPD. Therefore, it seems biophysically plausible that genotypic differences in stomatal conductance would produce larger differences in CT, and potentially (but not necessarily) repeatability, with greater solar radiation and VPD, both of which are more likely to occur during grain-filling and later in the day. That CT repeatability was generally lower earlier in the day is not surprising given that solar radiation and VPD are lower earlier in the day. However, that the most significant explanatory variable associated CT repeatability was Rso, a diurnal function that increases with the day-of year-after the winter solstice in the southern hemisphere, implies a significant temporal association with CT repeatability that may be mechanistic in nature. Although the mechanisms responsible for the apparent increase in CT repeatability during grain-filling cannot be identified with certainty, possible reasons include: (a) that genotypes differed in their capacity to extract water from the soil with cooler genotypes producing deeper root systems (e.g., Lopes and Reynolds, 2010; Pask and Reynolds, 2013); (b) that genotypes with cooler canopies were responding to either higher photosynthetic capacity or higher sink demand for photosynthate - for example Tang et al. (2015, 2017) reported that genotypes with greater canopy photosynthesis, measured at flowering and 20 days after flowering, had greater leaf chlorophyll (as measured by SPAD) and were also higher yielding; (c) that the genotypes differed in “stay-green” (a genotype's capacity to continue assimilating carbon toward the latter part of grain-filling) and that such differences increased as they moved into grain-filling, so that cooler genotypes had greater green leaf area (e.g., Christopher et al., 2016; Rebetzke et al., 2016); and (d) that the genotypes differed in their seasonal pattern of water-use, so that cooler genotypes had lower water-use pre-flowering and greater water-use post-flowering (e.g., Richards and Passioura, 1989; Rebetzke et al., 2003; Blum, 2005).

Although in our experiments the repeatability estimates for CT were often smaller pre-flowering, the importance of stomatal conductance during the pre-flowering growth stage was recently highlighted by Motzo et al. (2013), whereby the greater pre-flowering radiation-use-efficiency of triticale was associated with greater stomatal conductance and greater biomass than durum wheat. Although pre-flowering genotypic variation for stomatal conductance may be potentially useful for yield improvement, our experiments suggest that detecting such variation using CT as a surrogate measure of stomatal conductance may be difficult. This is because of the likely smaller differences in conductance pre-flowering, due to lower VPD and solar radiation, and therefore lower sensitivity of CT to conductance. The latter would likely result in reduced repeatability of CT. Published theoretical calculations and sensitivity analyses are useful for understanding the relationship between CT and conductance for a range of weather variables (Leinonen et al., 2006; Maes and Steppe, 2012). In particular, theoretical calculations for a range of conductance values show the convergence of CT with decreasing VPD (Maes and Steppe, 2012, their Figure 3), thereby highlighting the potential difficulty in detecting variation in CT at low VPD. Error analysis showing the steep increase in relative error with decreasing conductance (Leinonen et al., 2006, their Figure 4), further highlights the challenge with detecting variation for conductance using CT at low conductance values. However, that our results show a strong phenotypic correlation between CT measurements, more so when repeatability was high (Figure S11), suggests the possibility of a sufficient phenotypic correlation between pre and post-flowering CT for screening purposes (discussed later).



4.4. High Phenotypic Correlation When Repeatability Was High

The phenotypic correlation between the best linear unbiased predictors of genotype effects (BLUPs), for both ArduCrop and airborne CT within a particular year, was high when repeatability and confidence in among-genotypic differences was high. For the ArduCrop CT, the mean, median and percentiles of phenotypic correlations all increased with repeatability quantiles (i.e., 0.0 to 0.33 < 0.33 to 0.66 < 0.66 to 1.0) in both years (Figure S11). In particular, for the 2016 ArduCrop repeatability quantile 0.66 to 1.0, the median phenotypic correlation was 0.84 and the 25ʦth percentile was 0.74 (Figure S11c).

The high phenotypic correlations for the airborne CT in 2016 (Figure 7A) provide evidence of the repeatability of CT measurements between different sampling events. Together these results provide confidence in the potential for CT phenotyping, whereby the sufficiently high repeatability and phenotypic correlation across multiple sampling events, for afternoon events later in the season, could permit reliable genotype screening from as little as one or two sampling events provided soil water availability is not constrained.

That the phenotypic correlations between the 2016 and 2017 airborne CT events were typically smaller (median was 0.32 shown in Figure S19) is not surprising given the contrast in available water between the two years. Although the correlations for airborne CT between years were moderate, ranging from 0.06 to 0.53, they were greater on particular days in 2017 than others, in particular 28-Sept-17 and 10-Oct-17 (Figure 8) when the crop was less water-limited (24 mm irrigation applied on 22-Sept-17 and 8 mm rain on 9-Oct-17). The correlations on these two days, for the midday events, were highly significant (P < 0.0001), ranging from r = 0.39 to 0.53. The higher correlations after irrigation and rainfall events on 22-Sept-17 and 9-Oct-17, between two environments with an extreme contrast in available water throughout the season, provide confidence in the capacity of CT to reliably discriminate genotypes in a generally water-limited environment (2017), provided that CT is sampled soon after an irrigation or rainfall event when the soil water stress is reduced. Nevertheless, that many of the individual CT events on 28-Sept-17 and 10-Oct-17 were significantly correlated with every CT event in 2016 (Figure 8), provides evidence of a strong genotypic effect across years and for the potential of CT in more favorable environments that are not exposed to severe water limitation (discussed below).



4.5. Implications for Research and Plant Breeding

The estimates of repeatability and phenotypic correlations for CT, across multiple sample events, were notably greater in the more favorable 2016 environment than those in the water-limited 2017 environment (Figures 3–7). Further, the phenotypic correlations across the years between selected 2016 and 2017 airborne CT events were greater on particular days in 2017 than others, probably due to the severe water limitation in 2017, while the 2016 events were devoid of such day effects (Figure 8). That the two days in 2017 when the correlations with 2016 events were greatest (r = 0.39 to 0.53, P < 0.0001) occurred soon after an irrigation or rainfall event, provides support for the use of CT as a selection tool in more favorable environments that are not exposed to severe water limitation. While such favorable environments may not represent the complete target population of environments for a breeding program, there is good evidence in wheat supporting the use of favorable selection environments (Cooper et al., 1997) and that yield potential progress can translate across to most environments, except those most strongly water-limited (Araus et al., 2002; Rebetzke et al., 2002; Olivares-Villegas et al., 2007).

The consistently high estimates of CT repeatability obtained herein and in previous studies (e.g., Deery et al., 2016; Rutkoski et al., 2016) is encouraging for the potential use of CT for indirect selection of grain yield in a breeder's nursery (Fischer and Rebetzke, 2018). This is because the theory of correlated response to indirect selection (Falconer, 1952) shows greater benefits for indirect selection when both the heritability for the indirect trait (i.e., CT) and the genetic correlation between the indirect and target trait (i.e., yield) are high. While a number of studies have reported high genetic correlations between CT and grain yield (e.g., Rebetzke et al., 2013b; Rutkoski et al., 2016), to the best of our knowledge few studies have reported such consistently high estimates of repeatability from multiple sampling events as those presented herein.

The interquartile range for CT variation between genotypes on a given sampling event was typically <1.0°C for both ArduCrop (Figures S9, S10) and airborne (Figures S13–S16). Thus, the high precision camera used herein, with <0.05°C pixel-to-pixel sensitivity, is ideally suited to the application of CT phenotyping. Further, by using a manned helicopter at an approximate height of 120 m above-ground-level, large image swaths were obtained: using the camera described above, at 120 m AGL, an image swath ca. 87.1 m by 64.1 m was obtained with a pixel size 0.14 × 0.13 m, which equated to ca. 55 temperature pixels per mʦ2. Such large swaths enabled sampling from the entire experiment, with dimensions of 50 × 110 m in 2016 and 25 × 110 m in 2017, in a few seconds, together limiting the impact of slight weather fluctuations to reduce experimental noise and increase the measurement precision of CT. While unmanned aerial vehicles (UAVs) have been used for thermal image acquisition (e.g., Sullivan et al., 2007; Berni et al., 2009a,b; Zarco-Tejada et al., 2012; Chapman et al., 2014; Gómez-Candón et al., 2016), their effectiveness for quantifying repeatable CT differences among genotypes is yet to be determined. To the best of our knowledge, no study has reported high estimates of CT repeatability or heritability from a UAV.

The ArduCrop sensors measure CT continuously on a single experimental plot at any given time. By contrast, the airborne method measures CT across large experiments comprising hundreds of plots at a single moment in time and, supported by the high repeatability estimates and phenotypic correlations herein, is ideally suited to deployment within plant breeding. Despite that in our experiments the repeatability estimates from ArduCrop CT were high during grain-filling and in the afternoon (Figure 3), the deployment of large numbers of ArduCrop sensors, in the numbers deployed herein (ca. 100), on a breeder's trial is not practically feasible nor justified when compared to the airborne method. However, the reasonable association between ArduCrop and airborne CT (Figure 9) is encouraging and provides confidence in the precision of the ArduCrop sampling only a fixed small part of each plot. This is further supported by the high correlation between the internal ArduCrop replicate sensors and the negligibly small variance for the internal ArduCrop replication in 2016 (Figure 2, Figures S1, S2 and Table S1). The use of the ArduCrop CT sensors is probably more suited to detailed crop physiology studies and applications where an understanding of the crop's diurnal and seasonal response to the environment is required. For example, the possibility to estimate crop canopy conductance and evaporation rate from ArduCrop CT (Jones et al., 2018) may assist with improved: environmental characterization using probe genotypes; agronomic decisions including irrigation scheduling (e.g., Mahan et al., 2012); characterization of frost or high temperature events.

Clearly in most cases, CT phenotyping is of diminishing value unless CT can be confidently related to stomatal conductance and yield. However, there is the possibility that variation in canopy structure (e.g., height, ground-cover, architecture and albedo) and stage of development (e.g., variation in flowering and maturity dates) can influence the association between stomatal conductance and CT. Moreover, sensitivity analyses indicate that variation in height, albedo, leaf area index and leaf angle can influence the relationship between CT and stomatal conductance (Maes and Steppe, 2012). Nevertheless, the effectiveness of UAV platforms for quantifying leaf area and plant height (Potgieter et al., 2017; Hu et al., 2018), together with ground-based platforms (e.g., Deery et al., 2014; Jimenez-Berni et al., 2018), presents an opportunity for greater understanding between conductance, CT and yield, in the presence of variation in canopy structure, and highlights the need for further work in this area.




5. CONCLUSIONS

Repeatability estimates for ArduCrop and airborne CT in wheat were typically greater later in the season during grain-filling and in the afternoon. This was supported by the observation that the pattern of repeatability, for ArduCrop and more so for airborne CT, was significantly associated (P < 0.0001) with the calculated clear-sky solar radiation and to a lesser degree, vapor pressure deficit. The latter is because the addition of vapor pressure deficit to a model comprising either clear-sky solar radiation or its determinants, day-of-year and hour-of-day, made little to no improvement to the coefficient of determination. For airborne CT afternoon sampling times, the phenotypic correlations were consistently high across sampling times within a given year and, to a lesser extent, between years contrasting in soil water availability. The phenotypic correlations for ArduCrop CT were higher during the grain-filling months of October and November and for hours-of-day from 11 onwards. In contrast, the lowest correlations comprised events from hours-of-day 8 and 9 across all months. These findings build upon the recent developments in CT phenotyping as a surrogate measure of stomatal conductance and the abundant evidence of the association between wheat yield improvement and high stomatal conductance. Together these factors provide promising support for the reliable deployment of CT phenotyping within both pre and commercial plant breeding, whereby the high repeatability and phenotypic correlation across afternoon sampling events later in the season could enable reliable screening of germplasm from as few as one or two sampling events.
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The application of high-throughput phenotyping (HTP) techniques based on unmanned aerial vehicle (UAV) remote-sensing platforms to study large-scale population breeding opens the way to more efficient acquisition of dynamic phenotypic traits and provides new tools that should help close the gap between genotyping and traditional field-phenotyping methods. Toward this end we used a field UAV-HTP platform to deploy a RGB high-resolution camera to acquire time-series images. By using three-dimensional reconstructed point cloud models, we developed a repeatable processing workflow to extract plant height from time-series images. The plant height determined by the UAV-HTP platform correlated strongly with that measured manually. The plant heights estimated at various growth stages form temporal profiles that give insights into changes and trends in genotyping. Based on fuzzy c-means clustering analysis, we extract the typical dynamic patterns in phenotypic traits (i.e., plant height, average rate of growth of plant height, and rate of contribution of plant height) hidden in the temporal profiles. The fuzzy c-means clustering and set-intersection operation were first applied to analyze the temporal profile to identify how plant-height patterns change and to detect differences in phenotypic variability among the genotypes. The results revealed the capacity of UAV remote sensing to easily evaluate field traits on multiple timescales, for a few breeding plots or for 1000s of breeding plots.

Keywords: FCM, temporal profile, maize, plant height, clustering


INTRODUCTION

Maize (Zea mays L.) is one of the most important grain crops in China. According to a report by the National Bureau of Statistics in China, the planting area and grain yield of maize in 2017 were 35.45 million hectares and 21.58 million tons (National Bureau of Statistics of China, 2017), respectively, ranking it first among the major crops. China’s maize imports are expected to increase gradually to 7.2 million tons by 2024 and 2025 (United States Department of Agriculture (USDA), 2015). Genetic breeding has contributed to increasing maize yield and to ensuring global food security. New technologies to accelerate breeding through improving genotyping and phenotyping methods are currently in demand (Tester and Langridge, 2010).

An accelerated breeding pipeline to obtain breeding-target-related agronomic traits is a key to developing improved varieties (Shakoor et al., 2017). High-throughput phenotyping (HTP) techniques based on unmanned aerial vehicles (UAV-HTPs) in field breeding programs have gradually become promising tools with which to acquire phenotype traits with high temporal and spatial resolution, affordable cost, and non-invasive remote-sensing methods (Araus and Cairns, 2014). UAV-HTP can identify and access both simple and complex phenotypic traits, which are the key breeding targets for genetic breeding and include grain yield (Kefauver et al., 2017; Herrmann et al., 2019), above-ground biomass (Han et al., 2019), lodging resistance (Han et al., 2018a), senescence (Makanza et al., 2018), and plant height (Pugh et al., 2018; Wang et al., 2019).

Plant height in maize is an important agronomic trait because it is highly heritable (Peiffer et al., 2014), easy to measure, and influences the stalk lodging (Li et al., 2007). Previous research has shown that plant height correlates highly with biomass or grain yield, so it is used for estimating biomass (Salas Fernandez et al., 2009; Han et al., 2019) and grain yield (Yin et al., 2011; Barrero Farfan et al., 2013; Geipel et al., 2014). Manually measuring plant height in the field is usually only done at the end of growth. However, the expression of each quantitative trait locus (QTL) controlling plant height depends on the time at which the measurements are made and on the space where they are made (Yan et al., 2003; Wang et al., 2015). Pauli et al. (2016) found that the correlation between HTP canopy traits, including plant height, and agronomic traits varies over time. Measuring plant height throughout crop growth can provide new insights to genetic breeding, but it is time consuming (Chang et al., 2017).

Previous studies have shown that the use of HTP technologies to monitor multi-temporal crop height and growth has various advantages (Holman et al., 2016; Duan et al., 2017; Kronenberg et al., 2017; Malambo et al., 2018; Thompson et al., 2019). For example, Liebisch et al. (2015) used a Zeppelin airship as a remote-sensing platform to acquire multi-sensor and multi-temporal images throughout the maize growth season and found that the traits of various genotypes differ clearly. However, they gave no detailed agronomic interpretation. Pugh et al. (2018) used unmanned aerial systems to determine plant height in maize and sorghum and formed high-resolution temporal growth curves that provided new physiological insights and applications for phenotyping. Many clustering algorithms have been adopted in the literature to extract expression patterns from time-series data, such as density-based clustering for analyzing the electrical load profile (Yang et al., 2018), hierarchical clustering for genetic diversity (Tagliotti et al., 2018), and fuzzy clustering for gene expression (Olsen et al., 2006; Collins et al., 2013; Piening et al., 2018).

In the present study, we used a UAV-based high-throughput platform to collect RGB images in a field breeding program and a method to extract plant-height information from the images. The plant height acquired at different growth stages and from different genotypes can be combined to form temporal profiles, which offer novel insights into the diversity of gene expression. The specific objectives for this study included (i) developing a repeatable processing workflow to extract plant height from time-series images, (ii) investigating the accuracy of plant-height estimates by comparing them with field measurements, and (iii) detect differences in phenotypic variability among the genotypes.



MATERIALS AND METHODS


Field Experiments

The maize-breeding experiments were conducted in 2017 at the research station of Xiao Tangshan National Precision Agriculture Research Center of China, Changping District of Beijing City (115°50′ 17′′–116°29′ 49′′ E, 40°20′ 18′′–40°23′ 13′′ N). The experimental field was approximately 27 m wide and 210 m long, comprising 800 breeding plots in total, with each plot being 2 m (3 rows) wide and 2.4 m long (Figure 1a). The single factor experiment design was applied to explore the differential expression of maize genotypes. Eight hundred breeding plots were divided into four sub-populations according to the genetic background: mixed, TEM (temperate) and TST (tropical and subtropical) and DH (doubled-haploid). The first three sub-populations, i.e., 482 breeding plots, were used to search for patterns in the temporal profiles of the plant height. Since the ground truth data included the DH subpopulation, its samples were also used as the validation dataset. The experiment used a solid row and column configuration with a row spacing of 0.6 m and a column spacing of 0.8 m. Eight hundred plots were planted on May 15, 2017 at a seeding density of 6 plants m–2.
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FIGURE 1. Maize breeding experiment at Xiao Tangshan National Precision Agriculture Research Center, Changping, 2017. (a) Study area. (b) Ground control points (GCPs) measurement using a differential global positioning system. (c) UAV platform.



Prior to the first flight, 16 ground control point (GCP) markers consisting of 45 cm × 45 cm black and white square planks were evenly distributed in the experimental field, and the XYZ coordinates of each GCP marker were measured by using a differential global positioning system (DGPS, South Surveying & Mapping Instrument, Co., Ltd., Guangzhou, China) with millimeter accuracy (Figure 1b). According to the row number from south to north, about every 10 rows set up a group of sampling plots, for a total of nine groups with eight plots in each group. The sampling plots in campaigns 2–4 were the same (see Table 1). Some sampling plots (19.4%, i.e., 56:288) were excluded due to abnormal growth or lodging, so the sample size of ground truth varied at different observation date. Three plants were selected at random in the center of the sampling plots to measure plant height at four time points. The manual measurement of plant height was done by using a telescopic leveling rod. The mean height of the three plants was used as the canopy height of the given sampling plot for ground truth.

TABLE 1. Timing of measurement campaign.
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UAV Campaigns and Image Processing

A UAV (DJI Spreading Wings S1000, SZ DJI Technology, Co., Shenzhen, China) equipped with a RGB high-resolution camera (DSC-QX100, 5472 × 3648 pixels, Sony Electronics, Inc., Tokyo, Japan) was used to capture the RGB images after sowing at five time points (Figure 1c). ISO and shutter speed were fixed at 160 and 1/2000, respectively. Flight paths over the experimental area were determined by using the DJI PC ground station (SZ DJI Technology, Co., Shenzhen, China) to ensure substantial overlap (i.e., 80% forward and 75% side) with two different flight altitudes above ground level (AGL),i.e., 40 and 60 m, and a flight speed of 6 m/s, yielding six strips. To classify the ground point cloud and build the digital elevation model (DEM), the flight altitude AGL for the first flight on June 8, 2017 was 40 m, yielding a ground-sampling distance of 0.72 cm. The corresponding image-acquisition dates and maize growth stage are given in Table 1.

After acquiring images by using the UAV with a RGB camera at multiple different time points, the images were processed by using Agisoft PhotoScan (version 1.3, Agisoft LLC, Saint Petersburg, Russia) to generate orthomosaics and digital surface models (DSMs) with the GCPs. The GCPs were used to optimize the camera position and orientation data, which led to better results for generation Agisoft (2018). A semi-automated processing workflow was applied to export a short time series (five time points) of orthomosaics and DSMs according to the days after sowing (DAS) (Figure 2A).
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FIGURE 2. Agisoft Photoscan processing workflow and export for orthomosaic and DSM. (A) Five-step semi-automated processing workflow. (B) Orthomosaics with zoomed views of area (red rectangle) show differences in maize growth at the plot scale. For example, some plots were lodged at 57DAS, and some plots had tassels at 74DAS, whereas others did not. GCP, ground control point; DSM, digital surface model; DAS, days after sowing.





Point Cloud Classification and Plant-Height Extraction


CSM and DEM Generation

Crop surface models (CSMs), which are widely used to obtain plant-height information from various crops, were introduced by Bendig et al. (2014) for barley, Han et al. (2018a) for maize, De Souza et al. (2017) for sugarcane, and Holman et al. (2016) for wheat. They can be obtained by subtracting the DEM from the DSMs. As mentioned above, the DSM can be generated directly and then exported by using the Agisoft Photoscan software.

The difficulty of this study is how to build a DEM. Several studies extracted soil point elevations from a DSM that was not covered by vegetation and built a DEM by using Kriging spatial interpolation (Yue et al., 2017; Han et al., 2018a) or inverse-distance-weighted interpolation (Brocks and Bareth, 2018). To ensure an accurate DEM, we manually picked up a large number of soil points when using the interpolation method to build a DEM, which was time consuming and offered a low degree of automation. With the help of the Agisoft Photoscan software, we introduced an alternative approach to build a DEM with a triangulation-based ground classifier. The goal was to divide early low-vegetation-cover dense point clouds (on June 8, 2017) into ground point clouds and the rest and build the DEM based only on classified ground point clouds. The adaptive triangulated irregular network ground classifier in the Agisoft Photoscan software is an iterative algorithm that works basically as follows (Serifoglu Yilmaz et al., 2018): (1) breaking dense point clouds into cells of a certain size (cell size) and detecting the lowest points of each cell, (2) triangulating these points to obtain an approximate ground model, and (3) adding new points to the ground class, providing that it satisfies two conditions: (i) limiting its distance from the ground model to a given maximum distance, and (ii) keeping the angle between the ground model and the line connecting this new point with a point from ground class within a certain maximum angle. This third step is repeated until all points are checked. These parameters (cell size, maximum distance, and maximum angle) are adjusted until we get an acceptable point cloud classification. Blanks left after the exclusion of non-ground points can be filled with nearest neighbor point interpolation. For campaign 1, we used a trial-and-error method to find an acceptable point cloud classification result with a cell size of 20 cm, a maximum angle of 1.5°, and a maximum distance of 3 cm, and then built the DEM based only on the classified ground point clouds. Figure 3 illustrates the workflow for building a DEM-based point cloud classification.
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FIGURE 3. Workflow for building DEM based on point cloud classification. (A) Full extent of dense point cloud and DEM. (B) Expanded views of area (red rectangle). DEM, digital elevation model.





Plant Height Estimation

After building the CSMs, they were processed via ArcMap software (version 10.2, Esri, Inc., Redlands, CA, United States) and ENVI software (version 4.5, Esri, Inc., Redlands, CA, United States) to extract plant-height information. Up to this point, the CSM has been a raster image mixed with soil background and plant-height information for the various vertical levels. Using the mean to calculate plant height at the plot level may result in underestimation, especially in areas where vegetation coverage is low. To solve this problem, we used an image-segmentation method based on vegetation index (i.e., normalized green-red difference index) to segment plants from bare soil. NGRDI values for soils are always recorded as negative (Shimada et al., 2012). The NGRDI was calculated by using
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where green and red are the reflection in the green band and red band of the remote-sensing images, respectively.

The orthomosaic image was operated on in both bands to obtain the NGRDI image, and then NGRDI image was binarized to separate vegetation and non-vegetation areas by using ENVI software. The vegetation areas were converted into a vector map as areas of interest, which served as a mask to extract the plant-height information from the CSM, yielding a new CSM based only on images of vegetation. The pixels in the new CSM were aggregated to filter out low-level plant-height information. The Zonal statistics tool in ArcMap software was used to calculate the mean of the above results per plot by using the areas of interest. Figure 4 shows the corresponding workflow for plant-height extraction at the plot level.
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FIGURE 4. Workflow for plant-height extraction at plot level. AOI, areas of interest.



Where Green and Red are the reflection in the green band and red band of the remote-sensing images, respectively.




Temporal Profiles Phenotypic Traits

The plant-height dataset was constructed by using the plant-height extraction method described in Section “Point Cloud Classification and Plant-Height Extraction” and the time series of UAV orthomosaic, which provided five time-point profiles. The temporal profile revealed that dynamic changes in plant height at different development stages were regarded as a phenotypic trait in our study. Breeders and agronomists are interested not only in the changes in plant height, but also in the distribution of plant-height increments during the different development stages. Therefore, two other temporal profile traits were derived (Han et al., 2018b): the average growth rate of plant height (AGRPH) and the contribution rate of plant height (CRPH). The following equations were used to calculate AGRPH and CRPH, respectively:
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where subscripts Pk and Ti represent plot k and time point i, respectively. AGRPH is the ratio of plant-height increment to day increment between two adjacent time points and represents the increment per day. CRPH is the percent contribution of plant-height increment to the final plant height and reflects the incremental distribution at different development stages.



Clustering of Temporal Profiles

During data preparation before clustering, the raw dataset with the three traits were cleaned by deleting abnormal records that stemmed from abnormal growth or lodging on July 11. Outliers were treated by using the capping-flooring approach. Outliers were capped at a certain value above the 98th percentile value or floored at a certain value below the 2nd percentile (Pyle, 1999).

We are interested in whether genotypes can express phenotypic traits in similar patterns, so the temporal profiles were clustered by using the fuzzy c-means (FCM) clustering algorithm. This study uses the R package ‘e1071’ (version 1.7-0) to implement this algorithm (David et al., 2018), which is based on the open-source statistical language R (R Core Team, 20181). Fuzzy c-means is a data-clustering algorithm in which each profile belongs to more than one cluster with varying degrees of membership in the range [0, 1]. The centroid of a cluster is the mean of all points weighted by their degree of belonging to the cluster (Kesemen et al., 2016). It uses Euclidean distance as the distance metric. With the FCM algorithm, the difficulty lies in choosing suitable values for the parameters C, which defines the optimal number of clusters, and M, which defines how fuzzy the cluster is. The greater M is, the fuzzier the cluster will be in the end. Pal and Bezdek (1995) obtained the optimal range of m from the experimental study of clustering validity as [1.5, 2.5], and considered that the median M = 2 was acceptable in general. Bezdek (1993) found that M = 2 had the clearest physical meaning. The FCM parameter was therefore set to M = 2 for the following analysis. The parameter C was chosen by computing six indices, and the best number of clusters is determined by using the majority rule (Charrad et al., 2014). The majority rule is an unweighted voting rule with a threshold of 50%. The six indices used were the partition coefficient (PC), the partition entropy coefficient (PE), the Xie-Beni index (XB), the Fukuyama-Sugeno index (FS), the fuzzy hyper volume (FHV), and the partition density index (PD). Table 2 describes these indices in detail.

TABLE 2. Six indices for determining cluster size.
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Based on FCM clustering analysis, typical dynamic patterns of phenotypic traits (i.e., PH, CRPH, or AGRPH) that are hidden in the temporal profiles were extracted and are represented by the plots of the cluster centroids. The R package ‘UpSetR’ (version 1.3.3) visualized the dataset intersections (Conway et al., 2017). The intersections of clusters and genetic backgrounds were used to identify and explain typical dynamic patterns. When a genetic background dominates a cluster, the centroid profile of the cluster was chosen as the typical dynamic pattern of a phenotypic trait with this genetic background. The following two inequalities were used to identify the dominant genetic background.

(1) More than one third of the samples in a cluster from a given genetic background, which is called the ClusterProportion.
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Where NGincluster is the sample size in the cluster from a given genetic background, NCtotal is the sample size of the cluster.

(2) Samples from a given genetic background in a cluster accounted for more than 2/3 of the total sample from this genetic background, which is called the TotalProportion.
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where NGtotal is the total sample size from a given genetic background.




RESULTS


Reconstruct Digital Surface Model and Orthomosaic

To evaluate the accuracy of geolocation of DSMs and orthomosaics, Table 3 summarizes the root mean squared errors (RMSEs) of GCPs (in cm) and the two performance indices for restructuring the DSM. The point cloud density can impact the quality or accuracy of the DSM, which is based on point clouds. The smaller the resolution value is, the higher is the resolution of DSM and the more accurate the DSM is depicted. The total GCP error, calculated by using the ground truth of GCPs (measured by using a DGPS; see section “Field Experiments”) and their reconstructured locations in the UAV images, varied over campaigns from 1.45 to 6.56 cm and were considered reasonable and acceptable, taking into account the flight altitude and allowing for error (<10 cm) (Roth and Streit, 2017; Malambo et al., 2018). The lower the AGL is, the smaller are the total errors, the higher is the DSM resolution, and the larger is the point density. In the latter two campaigns, the GPS marks were more easily occluded by leaves and pollen, resulting in poor geolocation accuracy (i.e., the total error is 6.56 and 6.10 cm, respectively). Because the errors in both the horizontal and vertical direction increased significantly, it is reasonable to suspect that GPS markers were inadvertently and slightly moved during the field activities. Errors in horizontal direction strongly affected the geolocation of automatic areas of interest extracted from orthomosaics (see section “Point Cloud Classification and Plant-Height Extraction”) and further affected the accuracy of plant-height extraction.

TABLE 3. Summary of geolocation accuracies and performance of reconstructed DSM.
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Plant-Height Estimation and Validation

By using the method in Section “Point Cloud Classification and Plant-Height Extraction,” the plant height of 400 plots containing a natural population was extracted from the five-time-point series orthomosaic. Figure 5 shows the distribution of three phenotypic traits before treating outliers. Outliers occurred most frequently in the first campaign, because the plant height was low at that time (the mean plant height was less than 20 cm) and plants were sparse, which is not conducive to UAV remote-sensing observation due to apparent noise artifacts actually caused by sparse plant representation. Most of the outliers were removed after applying the capping-flooring treatment.
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FIGURE 5. Boxplots showing distribution of phenotypic traits before treating outliers. Boxplots are based on three traits from 400 plots. The solid line in the box indicates the median and the purple square is the mean. The red points are outliers. PH, plant height; PH, plant height; AGRPH, average growth rate of plant height; CRPH, contribution rate of plant height; DAS, days after sowing.



We used Kruskal–Wallis test to determine whether there was a significant difference in each trait among the three genetic backgrounds. Kruskal–Wallis test found no significant differences in overall PH and CRPH among the three genetic backgrounds (p > 0.05, Figure 6 from right side). In terms of a specific growth stage, there were significant differences in each trait among the three genetic backgrounds (Figure 6 from left side). The most obvious finding to emerge from the test was that observing traits from time dimension was easy to find differences in phenotypic traits among different genetic backgrounds.
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FIGURE 6. The difference in three traits based on different genetic backgrounds. Kruskal–Wallis test was used to determine whether there was a significant difference in each trait among the three genetic backgrounds (i.e., mixed, TEM, and TST). The white plus sign indicates the mean. The following convention for symbols indicates statistical significance: p > 0.05 (ns); *p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001; ****p ≤ 0.0001. PH, plant height; AGRPH, average growth rate of plant height; CRPH, contribution rate of plant height; DAS, days after sowing. TEM, temperate; TST, tropical and subtropical.



To validate the accuracy of the plant-height estimates, the mean height extracted from UAV images of the sampled plots (i.e., PHuav) was compared with the mean height as determined by manual measurements with rulers (i.e., PHgrd). Figure 7A compares PHuav with PHgrd and shows that the two have a strong and statistically significant (p-value < 2.0 × 10–16) linear relationship, with R2 = 0.95 (RMSE = 14.1 cm). The UAV measurements underestimate the plant height significantly in campaigns 4 (74DAS) and 5 (81DAS), which may be because PHgrd was measured at the top of the tassels after tasseling. However, reconstructing the point cloud of the tassels from UAV images at an AGL of 60 m is difficult because of their small spindles and complex branches. Figure 7B shows that, unlike regression statistics along the growing season, for the individual observation time point, the linear relationship between manual and UAV based heights is weak. In terms of R-squared (R2, the coefficient of determination), there is an increasing trend toward the linear relationship from campaigns 2 (45DAS) to 5 (81DAS), with the gradual closure of the canopy.
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FIGURE 7. Scatter plot of plant height extracted from UAV images (PHuav) versus manual ground measurements made with rulers (PHgrd). (A) Along the growing season. (B) Individual observation time point. The blue solid line represents the regression line and the red solid line has unity slope. The cross tabulation at the upper-right corner shows the frequency distribution of sampled plots according to four genetic backgrounds and four time points. DAS, days after sowing; TEM, temperate; TST, tropical and subtropical.



Because of differences in genotypes, maize in different plots may be in different development stages. For example, the TEM population was in the flowering stage while the TST population was still in the vegetative stage (Figure 2B). This heterogeneity in the development of maize may also lead to a high RMSE (18.7 cm in Figure 7B). Due to the tall stature of terminal maize growth, last season height measurements may be biased or less accurate due to difficulties in taking consistent measurement above eye level. Any analysis of the correlation between UAV measurements and manual measurements may be challenging because it assumes that the manual measurements are correct and that the UAV measurements must therefore reproduce them (Pugh et al., 2018). Therefore, due to the subjectivity of observers, the high RMSE may reflect the subjectivity of the manual observers and shows that three repeated manual measurements may not be sufficient in this study.



Determination of Cluster Size

The size of clusters c was varied between 2 and 15. We iterated 500 times to ensure convergence and explored the combination of clustering size and fuzzy parameter M = 2 and found the optimal partition with C = 2 and M = 2 based on the majority rule. For clustering temporal profiles of PH and CRPH traits, we obtained a consistent optimal cluster size from the six fuzzy clustering indices (i.e., C = 2), but for clustering temporal profiles of AGRPH, five fuzzy clustering indices proposed C = 2, but PE proposed C = 4 (Figure 8 and Table 2).
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FIGURE 8. Determining optimal size of clusters based on six fuzzy-clustering indices. The blue vertical dashed line indicates the optimal size of clusters for PH, CRPH, and AGRPH. To ensure that six indices can be presented simultaneously in the same coordinate system, some indices are scaled (i.e., PE, XB, PD, and FHV). The figures in brackets are scaling coefficients. PH, plant height; AGRPH, average growth rate of plant height; CRPH, contribution rate of plant height; FHV, fuzzy hyper volume; PD, partition density; XB, Xie-Beni; FS, Fukuyama-Sugeno; PC, partition coefficient; PE, partition entropy.





Detecting Typical Temporal Profiles

For each trait, 400 temporal profiles from three genetic backgrounds fell into different clusters after FCM clustering, and each profile was assigned a membership grade for the clusters. To better understand the dynamic pattern of each trait, we join the clustering centroids at five time points by a polyline to form a typical temporal profile. Data visualization analyses reveal a number of typical patterns. For the profiles of PH observed in clusters A and B (Figure 9), the upward trends are similar, except for the large differences in plant height between the 74DAS (mean = 195.4 versus 237.8 cm) and 81DAS (mean = 210.4 versus 262.8 cm). Although the TST population accounted for 48.5% of cluster B, the total proportion was only about 58% (100:172), so we conclude that no dominant genetic background exists in cluster B, and no further explanation is needed (Figure 12A). These results suggested that the typical temporal profile of PH was not conducive to detecting plant height variations among different genotypes of maize.
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FIGURE 9. Clustering temporal profiles of PH. Temporal profiles are assigned to clusters A and B by fuzzy c-means clustering. Each trace is color coded according to its membership in the respective cluster (see color bar). The right plot shows a polyline formed joining the clustering centroids at five time points that is used to identify the dynamic pattern of the PH trait. PH, plant height; DAS, days after sowing.



For the profiles of CRPH observed in clusters A and B (Figure 10), the TST population accounts for 60.5% in cluster A, and the total proportion is as high as 80.2% (138:172), so we conclude that the TST population forms the dominant genetic background of cluster A. The typical temporal profile of cluster A is thus used to represent the dynamic pattern of the CRPH traits in the TST population (Figure 12B). At the second, third, and fourth time points, the CRPH of the TST population remains above 25%, especially at the fourth time point (17-day interval), where the CRPH increases to over 30%. This indicates that the TST population was in the vegetative stage from the second to the fourth time points. Because the plant height will reach its maximum when a plant enters into the reproductive stage (at or shortly after growth stage VT) from the vegetative stage (Mcwilliams et al., 1999). When planted in the northern temperate regions, the effective accumulated temperature for the TST population is insufficient, so it takes a longer to enter the reproductive growth stage from the vegetative growth stage. In other words, the growth cycle is usually prolonged. The consequence is that the accumulated temperature for reproductive growth is insufficient to produce high grain yields (Hatfield and Prueger, 2015). These results suggested that the typical temporal profile of CRPH could detect the difference of plant height increment among different genotypes of maize.
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FIGURE 10. Clustering temporal profiles of CRPH. Temporal profiles are assigned to clusters A and B by fuzzy c-means clustering. Each trace is color coded according to its membership in the respective cluster (see color bar). The right plot shows a polyline formed joining the clustering centroids at five time points that is used to identify the dynamic pattern of the CRPH trait. CRPH, contribution rate of plant height.



For the profiles of AGRPH observed in clusters A and B (Figure 11), TEM population accounts for 43.3% in cluster A and 80.2% (110:137) in total (Figure 12C). Therefore, we conclude that the TEM population is the dominant genetic background of cluster A, and the typical temporal profile of the cluster may be used to explain the dynamic pattern of the AGRPH trait in the TEM population. The phenomenon whereby the growth rate observed in the TEM population first increases and then decreases from the vegetative growth stage to reproductive growth stage. Although the total percent of the mixed population in cluster A is 76.9% (70:91), we cannot reasonably explain the dynamic pattern of the AGRPH trait due to the unclear source of the genetic background. These results suggested that the typical temporal profile of AGRPH could detect the difference of plant height growth rate among different genotypes of maize.
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FIGURE 11. Clustering temporal profiles of AGRPH. Temporal profiles are assigned to clusters A and B by fuzzy c-means clustering. Each trace is color coded according to its membership in the respective cluster (see color bar). The right plot shows a polyline formed joining the clustering centroids at five time points that is used to identify the dynamic pattern of the AGRPH trait. AGRPH, average growth rate of plant height.




[image: image]

FIGURE 12. Intersections between clusters and genetic backgrounds. (A) PH trait. (B) CRPH trait. (C) AGRPH trait. Pie chart shows the population of the three genetic backgrounds (i.e., mixed, TEM, and TST) in a cluster. Colored dumbbell and column represent the intersection and the dominant genetic background in a cluster, respectively. PH, plant height; AGRPH, average growth rate of plant height; CRPH, contribution rate of plant height; TEM, temperate; TST, tropical and subtropical.






DISCUSSION


Factors Affecting Accuracy of Maize Plant-Height Extraction

Although it achieved higher accuracy and lower estimation error, the accuracy with which the maize plant height is extracted can still suffer from uncertain factors. First, misclassification may cause some classified dense points to not represent the real ground when creating a DEM, resulting in an underestimate of plant height (Geipel et al., 2014). Unfortunately, the GCPs markers were not placed in time before seedling emergence after sowing. Although the vegetation coverage was low, the plants were small, and the soil could be exposed over large areas on June 8th, 2017, which could minimize the possibility of misclassification, it is clear that collecting remote-sensing images and creating a DEM before emergence can completely avoid the problem of misclassification. When planting in a heterogeneous field or canopy closure, less soil is exposed and this method is more prone to misclassification.

Second, GCP distribution and stability factors have a certain impact on the accuracy with which plant height is extracted. Tonkin and Midgley (2016) report that the distribution and quantity of GCPs strongly influence the quality of a model’s reconstruction (e.g., DEM and DSM). To facilitate an accurate reconstruction, GCPs should be located at the edge or outside of the study area, and the quantity of GCPs should be sufficient (James and Robson, 2012). Han et al. (2018a) found uneven topographic changes in the southern part of the study area, which should be considered to increase the number of GCPs appropriately in this part. To collect UAV remote sensing time-series images, it is recommended to periodically check whether the GCP markers have moved. If so, they should be accurately restored their original position before making the UAV flight.

Third, the characteristics of the development of the maize canopy structure could introduce errors to varying degrees during the different growth stages. From a horizontal perspective, Figure 13 shows that high-density point cloud locations do not always appear at the top of the canopy, but shift continuously as the canopy develops. At the second time points (45DAS), the number two maize plot shows an optimal canopy structure for extracting plant height; that is, high-density point clouds have all gathered at the top of the canopy to form a horizontal structure like a balance beam. However, in most cases, depending on the canopy structure, high-density point clouds may appear at any vertical position, which is the most essential cause of underestimation.


[image: image]

FIGURE 13. Characteristics of canopy development and changes in point cloud density. The positions of the eight plots in the example are given in Figure 2 (blue rectangles). The position of the high-density point cloud changes as the maize canopy develops. The dotted line represents the boundary of a plot.



The best way to avoid this problem is to remove the low-level point cloud in the vertical direction while maintaining the high-level canopy spatial structure, so as to ensure that multiple plants in a plot can participate in the plant-height calculation. Han et al. (2019) has presented a method for extracting plant height that takes into consideration the maize canopy structure. The core steps of this method include the spatial Kriging interpolation based on multiple neighboring maximum pixels from multiple plants. In comparison, we adopt a simpler aggregation analysis method whereby we aggregate pixels within a certain window size by using the maximum value, and then calculate the mean of these local maxima, which serves as the representative plant height at the plot scale. The biggest difference between the two approaches is that our method does not use the spatial Kriging interpolation. Compared with the percentile height method (Li et al., 2015; Kronenberg et al., 2017; Malambo et al., 2018), the distinct advantage of extracting plant height by considering the canopy spatial structure is to ensure that multiple plants in a plot can participate in the calculation, which theoretically reduces the errors caused by the high-density point cloud at low levels (see, e.g., Plot 2 at 81DAS in Figure 13) or caused by outliers when the growth of maize plants are uneven at the plot scale.



Clustering of Temporal Profiles

To search for patterns in the temporal profiles of these traits (i.e., PH, CRPH, and AGRPH), we explored several clustering methods and found that FCM as a soft clustering method is more suitable for our analysis than is a hard clustering method such as k-means or hierarchical clustering. The initial points of the k-means clustering algorithm are randomly selected, which can cause unstable clustering results. Bubeck et al. (2012) showed that the initialization strongly influences the k-means clustering results. Hierarchical clustering does not require us to pre-specify the number of clusters to be produced, but once the clusters are merged or divided, it cannot be corrected and the quality of the clustering is limited (Oded and Lior, 2010).

One major shortcoming of these hard-clustering methods is that they make an either-or decision regarding the temporal profile clustering (Kim et al., 2006). Many genotypes may have the same temporal profile. FCM clustering provides more information regarding the degree of membership of each temporal profile to each cluster of genotypes. The main advantage of the FCM is its ability to handle noisy data (Halkidi et al., 2001). The shortcomings of the FCM are that the clustering result is sensitive to M and the best value of M depends on the dataset used. Therefore, the value of M should be interpreted with caution.

Distance measures quantify the dissimilarity between the two clusters. In this study, we use the Euclidean distance. Han et al. (2018b) used a shape-based distance metric to cluster these traits and obtained more-typical temporal profiles (called “typical curves” in their article). However, due to the excessive number of typical temporal profiles, the agronomic interpretation of the clustering solutions is not clear. Based on our research, typical temporal profiles can better identify genetic differences at different stages of crop development.

Note that temporal resolution affects the interpretation of temporal profiles. Changing temporal resolution may lead to changes in dynamic trait patterns. It is impractical to measure these traits at high frequencies during the crop growth cycle, and may even have a negative impact on breeding (Araus and Cairns, 2014). Therefore, careful consideration and understanding of the appropriate time points for phenotyping field traits is critical for their evaluation (Shakoor et al., 2017). In view of this, our future work will focus on determining the best remote-sensing observation time scale to identify stable and reliable dynamic patterns of traits, according to the crop growth cycle.




CONCLUSION

This study identifies dynamic patterns of maize plant height from a short time series of UAV orthomosaic in a field breeding program. First, by using the reconstructed three-dimensional point cloud model based on RGB images and a new method for extracting plant height, we estimate plant heights from different genotypes at five time points, thereby forming multi-temporal profiles that provide insights into the changes and trends in plant height. Second, based on FCM clustering analysis, typical dynamic patterns of three phenotypic traits (i.e., PH, CRPH, and AGRPH) hidden in temporal profiles were extracted and represented by plotting the cluster centroids. Based on our research, typical temporal profiles regarded as traits could allow better identification of genetic differences at different stages of crop development. Typical temporal profiles could enable new ways to understand phenotypic traits, as demonstrated herein by the three highly detailed traits reflecting plant height. This concept can be extended from traits involving temporal plant height to other traits, such as spectral vegetation index, canopy coverage, or biomass.

Although the capacity of UAV remote sensing to scale phenotyping up from a few to 1000s of breeding plots allows breeders to effortlessly assess the development of field traits on multiple time scales and thereby accelerate the breeding of novel traits, limitations remain that must be considered. For example, some sensors are expensive, and data processing takes a long time. In particular, another urgent issue is whether the phenotypic features obtained by remote sensing by UAV can be accurately marked by QTL analysis.
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Identifying Verticillium dahliae Resistance in Strawberry Through Disease Screening of Multiple Populations and Image Based Phenotyping
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Verticillium dahliae is a highly detrimental pathogen of soil cultivated strawberry (Fragaria x ananassa). Breeding of Verticillium wilt resistance into commercially viable strawberry cultivars can help mitigate the impact of the disease. In this study we describe novel sources of resistance identified in multiple strawberry populations, creating a wealth of data for breeders to exploit. Pathogen-informed experiments have allowed the differentiation of subclade-specific resistance responses, through studying V. dahliae subclade II-1 specific resistance in the cultivar “Redgauntlet” and subclade II-2 specific resistance in “Fenella” and “Chandler.” A large-scale low-cost phenotyping platform was developed utilizing automated unmanned vehicles and near infrared imaging cameras to assess field-based disease trials. The images were used to calculate disease susceptibility for infected plants through the normalized difference vegetation index score. The automated disease scores showed a strong correlation with the manual scores. A co-dominant resistant QTL; FaRVd3D, present in both “Redgauntlet” and “Hapil” cultivars exhibited a major effect of 18.3% when the two resistance alleles were combined. Another allele, FaRVd5D, identified in the “Emily” cultivar was associated with an increase in Verticillium wilt susceptibility of 17.2%, though whether this allele truly represents a susceptibility factor requires further research, due to the nature of the F1 mapping population. Markers identified in populations were validated across a set of 92 accessions to determine whether they remained closely linked to resistance genes in the wider germplasm. The resistant markers FaRVd2B from “Redgauntlet” and FaRVd6D from “Chandler” were associated with resistance across the wider germplasm. Furthermore, comparison of imaging versus manual phenotyping revealed the automated platform could identify three out of four disease resistance markers. As such, this automated wilt disease phenotyping platform is considered to be a good, time saving, substitute for manual assessment.

Keywords: disease resistance, Fragaria x ananassa, wilt, NDVI, NBS, breeding


INTRODUCTION

Verticillium dahliae (Kleb.) is a soilborne plant pathogen which has a large detrimental impact on the yield of soil cultivated strawberry (Fragaria x ananassa) (Maas, 1998). This ascomycete fungi is particularly problematic due to the longevity of inoculum in the soil whereby the resting propagules, termed microsclerotia, persist for up to 14 years in the absence of a host plant (Schnathorst, 1981). Low inoculum densities of 2 cfu per gram of soil can result in complete strawberry crop losses (Harris and Yang, 1996), indicating that strawberry exhibits a very high susceptibility to Verticillium alongside the crops cotton (Paplomatas et al., 1992) and olive when artificially inoculated (López-Escudero and Blanco-López, 2007). Verticillium infects over 200 different dicotyledonous plant species including many horticultural crops and weeds (Woolliams, 1966; Bhat and Subbarao, 1999) meaning that crop rotation is an ineffective form of disease control (Atallah et al., 2011). Effective disease control is also hampered by the absence of curative fungicides and restriction of preventative chemical fumigants due to European regulations (e.g., 91/414/EEC; Colla et al., 2012). Disease resistant germplasm is therefore an essential resource required to combat the pathogen, particularly where countries rely predominantly on soil cultivation systems.

A pathogenesis related protein which catalyzes chitinase from wild tomato has been shown to be effective against V. dahliae when transformed into strawberry (Chalavi and Tabaeizadeh, 2003). This mechanism acts before infection therefore indicating very strong resistance as proven by the percentage infection of Verticillium in strawberry crowns. Complete resistance has not been observed in natural populations of octoploid strawberry to date. Tolerance, whereby the host is colonized by the fungus but does not exhibit infection symptoms, is frequently observed in strawberry alongside the crop species olive (López-Escudero et al., 2004) potato (Dan et al., 2001), cultivated tomato (Chen et al., 2004; Fradin et al., 2009) and cotton (Bolek et al., 2005; Zhang et al., 2011).

High variation for V. dahliae resistance has been observed in Californian strawberry germplasm and empirical selection had led to an increase in resistance (Shaw and Gubler, 1996; Shaw et al., 1997). Studies investigating the GCA for V. dahliae resistance in strawberry, found that four out of ten cultivars had a significant GCA indicating a high transmission of resistance or susceptibility status from parent to progeny. This study suggests that Verticillium wilt resistance is controlled by additive quantitative genetic components (Masny et al., 2014). Furthermore, a significant SCA in two crosses indicated that some Verticillium resistance alleles are non-additive (Masny et al., 2014). Previous studies using in vitro strawberry have found Verticillium resistance to be controlled by additive genes and in one case a single partially dominant gene (Zebrowska et al., 2006). The study of the “Redgauntlet” x “Hapil” mapping population revealed that multiple small effect QTL control V. dahliae resistance (Antanaviciute et al., 2015).

Isolate and cultivar specific interactions complicate the description of resistance and must be considered for robust disease resistance breeding. Segregation of V. dahliae into six distinct races has been proposed based on the resistance status of different strawberry varieties (Govorova and Govorov, 1997) indicating a complex series of host-pathogen interactions. By contrast, a simpler dissection of V. dahliae isolate virulence has been proposed: two subclades of V. dahliae have been isolated from United Kingdom strawberry; II-1 and II-2, which exhibit different average levels of virulence on the susceptible strawberry cultivar “Hapil” (Jiménez-Díaz and Olivares-García, 2017; Fan et al., 2018).

Single major gene resistance to V. dahliae has been identified in tomato, lettuce and cotton; the Ve1 host gene, which recognizes the avirulence pathogen effector VdAve1, leads to the separation of V. dahliae isolates into two races; those with and without VdAve1 (Kawchuk et al., 2001; Hayes et al., 2011; Zhang et al., 2011; de Jonge et al., 2012). Fan et al. (2018) conclude that there is an absence of the VdAve1 gene in V. dahliae isolated from United Kingdom strawberry. The exclusive infection of strawberry by “race 2” isolates in the United Kingdom, despite of the presence of “race 1” isolates in other United Kingdom hosts, likely suggests a lack of dispersion of VdAve1 isolates, rather than selection against Ave1, as VdAve1 isolates were also able to infect strawberry. This reduces the relevance of harnessing Ve1 mediated resistance in future strawberry breeding.

Platforms for strawberry genotyping have advanced substantially over the last decade (Bassil et al., 2015; Verma et al., 2017), however, the low throughput capacity of traditional large scale phenotyping is now the limiting factor restricting pre-breeding research (Mahlein, 2016). Currently, many breeders use manual assessments to quantify the disease resistance status of plants, which is subjective and time consuming. Imaging techniques have been successfully applied to high-throughput plant phenotyping for the past decade (Barbedo, 2013) and with the development of lightweight UAV for precision agriculture, imaging techniques can be applied to screen large crop areas with centimeter level spatial resolution and accurate positional information (Candiago et al., 2015). Multispectral cameras are lighter than the majority of imaging sensors that can be attached to UAV (Sugiura et al., 2016) they also provide accurate quantification and are a cost effective strategy for disease severity quantification. The most common vegetation index derived from multispectral sensor is the NDVI where a positive NDVI value indicates healthy green vegetation whilst a negative value indicates the absence of vegetation (Candiago et al., 2015).

In this study, a low-cost UAV with global positioning system and multispectral imaging sensor was implemented as part of a phenotyping platform to measure Verticillium wilt resistance in strawberry.

We also report a reanalysis of historical data using the “Redgauntlet” and Hapil mapping populations infected with a mixed inoculum of V. dahliae, reported by Antanaviciute et al. (2015) using newly generated SNP data and also test additional progeny of “Redgauntlet” and Hapil against a single isolate from subclade II-1. Furthermore, two additional mapping populations are studied to identify putative resistance loci toward a highly virulent subclade II-2 isolate of V. dahliae.



MATERIALS AND METHODS


Study Area and Experimental Design

Field phenotyping for V. dahliae resistance was conducted on three strawberry mapping populations. Mapping populations were produced through crosses between the cultivars “Emily” x “Fenella” (ExF, 181 genotypes), “Flamenco” x “Chandler” (FxC, 140 genotypes) and “Redgauntlet” x “Hapil” (RxHb, 160 genotypes). The RxHb cross differs from the population described in previous research, as it is a different set of individuals (Sargent et al., 2012; Antanaviciute et al., 2015). The analysis reported in Antanaviciute et al. (2015) used the original “Redgauntlet” x “Hapil” (RxHa) cross and SSR markers. This study integrates the Antanaviciute et al. (2015) phenotypic data where, in contrast to the previous analysis, the AUDPC and Best Linear Unbiased Estimate (BLUE) scores were calculated to represent the disease score of each genotype across 3 years of phenotyping. Use of SNP marker genotyping allowed a more powerful analysis and comparison of resistance markers across populations. The validation experiment utilized 92 accessions selected from across the wider germplasm, where 97.7% of the SNPs were polymorphic in at least one individual out of a total 22,296 SNP’s. Parent and progeny stock plants were maintained in a polytunnel and runners were pinned down into 9 cm pots before planting in “Calves Leys,” Aylesford, Kent United Kingdom field in autumn 2015 (ExF & FxC) or “Rocks Farm,” East Malling, Kent, United Kingdom in 2016 (Validation & RxHb). Plants were arranged East to West with 64 plants per row at 0.6 m intervals in a randomized block design with 5–10 replicate plants per genotype or accession and parental lines. Black MyPex® was used for weed growth suppression and allowed segregation of plant foliage for image analysis. Plants were rainfed with additional overhead irrigation supplied if required. The pre-existing microsclerotia level was quantified using the Harris method (Harris et al., 1993) and found to be 4.2 cfu g–1 soil in “Calves Leys” and 0.9 cfu g–1 in “Rocks Farm.” To ensure robust disease symptom expression, plants were inoculated with 10 ml of 4 x 106 conidia ml–1 into the crown and immediate surrounding soil of each strawberry plant. A single, highly virulent isolate of V. dahliae (12008) was used as inoculum in March 2016 for ExF, FxC and March 2017 for germplasm experiments. The isolate, 12008, has been used extensively in work conducted by Soares (2004) and Fan et al. (2018) and represents an isolate from V. dahliae subclade II-2, the “high virulence subclade” when inoculated onto strawberry. Plants in the RxHb phenotyping event were inoculated with isolate 12158 from subclade II-1. All RxHa phenotyping events were conducted through a trial plot originally inoculated with a large mixture of V. dahliae isolates (Antanaviciute et al., 2015). Weather conditions were 12.2 (±3.7)oC; 76.7 (±8.6) RH% spring 2016, 18.5 (±2.3)oC; 77.4 (±6.3) RH% summer 2016, 13.34 (±0.49)oC; 74.5 (±0.76) RH% spring 2017 and 18.36 (±0.62)oC; 75.76 (±1.12) RH% summer 2017.



Visual Assessment of Verticillium Wilt

Disease scores were recorded five times from June to September at 3-week intervals, plants were scored for percentage wilting disease symptoms on a score of 1–9 depending on severity of leaf wilting where a score of 1 denoted a completely healthy plant; 3 denoted 25% necrotic leaves; 5 denoted 50% necrotic leaves; 7 denoted 75% necrotic leaves and 9 denoted 100% necrosis, a dead plant (Antanaviciute et al., 2015). The AUDPC was calculated across each phenotyping event using the R package “agricolae” (Felipe de, 2017) to predict scores for QTL analysis. AUDPC was calculated as below (Shaner and Finney, 1977).
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Where y is the disease score, for score i and X represents time in days and n is the number of scoring events. Relative AUDPC (rAUDPC) was calculated by dividing the AUDPC by the number of days after inoculation.



Image Acquisition and Processing

Arial imaging was conducted, in addition to manual scoring, for 2017 field trials. The 2017 trials were of the RxHb population and the validation set, the experimental field was 45 m x 30 m in size containing approximately 2500 plants (Figure 1A). The UAV platform was a 1.6 kg DJI Flamewheel F450 quadcopter. RGB images were captured using a Canon SX240 HS, 12 MP digital camera. Multi-spectral images with resolution of 1280 × 960 pixels were captured using a MicaSense RedEdge narrow-band multispectral camera (MicaSense, Seattle, DC, United States). Images were captured at altitude of 30 m at 5 bands including Blue (B: 475 nm center wavelength, 20 nm bandwidth), Green (G: 560 nm, 20 nm), Red (R: 668 nm, 10 nm), Red Edge (RE: 717 nm, 10 nm) and Near Infrared (NIR: 840 nm, 40 nm) were captured simultaneously with the format of 16-bit raw GeoTIFF. Ortho-mosaic images were produced by processing UAV images in Pix4Dmapper Pro software (Pix4D SA, 1015 Lausanne, Switzerland). Two surveys were undertaken of the experimental plot on the August 2, 2017 at 11:00 and the September 13, 2017 at 12:00. The final image resolution was 1.27 cm2 pixel–1, the resolution of Figure 1 has been lowered to reduce file size. NDVI was calculated as the normalized ratio between near infrared (NIR) and red (R) bands (Potgieter et al., 2017), which is shown in Eq. (2). The diseased:healthy leaf area was calculated based on the green and total plant pixels, which is shown in Eq. (3).
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FIGURE 1. Aerial image taken using UAV of 2017 Verticillium disease field experiments containing the RxHb population and the validation set (A) RGB image (B) Green: Red ratio mask image of the canopy for each strawberry plant (C) Normalised difference vegetation index (NDVI) image with false color of the validation set and the “Redgauntlet” x “Hapil” (RxHb) mapping population.
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Bandpass thresholding was applied to obtain the mask image of the whole canopy for each strawberry plant, the green:red band ratio image was found to provide a good contrast between the plant canopy and background (Figure 1B). A semi-automated image analysis software was developed to calculate the average NDVI value for each plant (Figure 1C). Manual selection of a plant on the masked image allows the software to automatically calculate the ratio of total NDVI: total canopy pixel number.



Linkage Map Generation

The Qiagen DNAeasy plant mini extraction kit (Qiagen Ltd., Manchester, United Kingdom) was used to extract DNA from the studied genotypes and accessions according to the manufacturer’s instructions. F1 mapping populations RxHa, ExF and FxC were genotyped using the Affymetrix Istraw90 Axiom®array (i90k; Bassil et al., 2015) whereas the population RxHb and validation accessions were genotyped on the streamlined Axiom® IStraw35 384HT array (i35k; Verma et al., 2017). Crosslink was used to generate linkage maps1 a program developed specifically for polyploid plant species (Vickerstaff and Harrison, 2017). Fragaria x ananassa chromosome number is denoted by 1–7 and sub-genome number is represented by A-D as specified in van Dijk et al. (2014) and Sargent et al. (2015).



Statistical Analysis

For the RxHa historical data the BLUE was calculated using the relative AUDPC for QTL analysis (R package “nlme,” Pinheiro et al., 2017).

For populations phenotyped with both manual and UAV imaging, the Pearson’s correlation coefficient was calculated between the ratio of healthy:diseased leaf area, NDVI and the raw phenotypic disease score at each time point. A combined analysis used the NDVI-AUDPC and healthy:diseased leaf area-AUDPC alongside the AUDPC disease score to determine the efficacy of the drone phenotyping method. Transgressive segregation where progeny wilt phenotype varied more than expected based on parental phenotypes was assessed using a Dunnett’s test.

Disease resistance markers were identified and validated as outlined in Cockerton et al. (2018b). Furthermore, inference of whether resistant markers were present across multiple populations and the targeted marker association study was conducted as outlined in Cockerton et al. (2018b). Candidate resistance genes were identified in the Fragaria vesca genome (assembly v1.1; Shulaev et al., 2011) and screened for the presence of NB-LRR, TM–CC, RLP, RLK (S-type and general) domains and candidate Rosaceous MLO genes (Pessina et al., 2014) following published pipelines (Li et al., 2016). Resistance genes were identified within 100 kb of the significant resistance marker using BEDtools (Quinlan and Hall, 2010). Characterisation of homologous genes in the NCBI database was undertaken through tblastx (Karlin and Altschul, 1993). NB-ARC domains were identified from F. vesca ab initio and hybrid gene models using InterProScan (Quevillon et al., 2005). Significant association of NBS and NB-ARC domains with focal markers was tested through assessing their occurrence within 100 kb of 25 randomly sampled markers from across the four populations over 10,000 permutations.




RESULTS


Resistance to Isolates Varies Between Cultivars

The cultivar “Redgauntlet” exhibits tolerance to the subclade II-1 isolate, 12158 and moderate tolerance to the subclade II-2 isolate 12008, however, the cultivar “Hapil” is susceptible to the isolates from both subclades (Supplementary Figure S1). The cultivars “Fenella,” “Flamenco,” and “Chandler” are highly tolerant to the V. dahliae subclade II-2 isolate whereas “Emily” is highly susceptible (Supplementary Figure S2).



The ‘Flamenco’ x ‘Chandler’ Linkage Map

The newly generated FxC linkage map (Supplementary Tables S1, S2) has an average genetic distance between markers of 0.3 cM which is a lower average gap than ExF and RxHa (Cockerton et al., 2018b), however, there are 10 gaps greater than 20 cM and linkage groups 2C, 3C, 6C, and 6D each resolved into two linkage groups. FxC linkage information was used as one of the five populations to construct the consensus map. All reported marker positions listed in this study are based on the position in the consensus map.



Comparison of Automated and Manual Phenotyping Methods

The proportion of diseased: healthy leaf area and the NDVI values were assessed at discrete time points and over time (Figure 1). A strong negative correlation was observed between the manual disease scores and diseased: healthy leaf area (Figure 2), with a stronger relationship observed between the manual disease score and NDVI for validation and RxHb phenotyping events August 2, 2017 (r = 0.78, p < 0.001) and September 13, 2017 (r = 0.78, p < 0.001) and also between the manual AUDPC and NDVI-AUDPC (r = 0.85, p > 0.001; Figure 2).
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FIGURE 2. Correlation of disease scores measured through manual and automated techniques. Manual disease score against Diseased: Healthy and Normalized difference vegetation index (NDVI) leaf area for observation time points on 2nd August (2/8) and 13th September (13/9). Area under the disease progression curve calculated for combine Diseased: Healthy score and NDVI. Points represent the score for individual strawberry plants inoculated with Verticillium dahliae in the validation set (green) and the “Redgauntlet” x “Hapil” (RxHb; black) mapping population. r = pearson’s correlation values.



Significance values for focal SNPs predicted by either automated and manual phenotyping follow the same patterns across the strawberry genome (Figure 3) and three out of four resistance markers were successfully identified in the automated phenotyping QTL analysis (Figure 4).
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FIGURE 3. Kruskal–Wallis −log10 p-values denoting the association of single nucleotide polymorphisms with strawberry Verticillium dahliae automated and manual disease scores at each position in the octoploid strawberry genome in cM. Panels represent markers segregating in “Redgauntlet”, “Hapil” and both parents. Labels 1A–7D denote the 28 linkage groups. Solid horizontal line is p = 0.05, dashed horizontal line is p = 0.01. Color denotes phenotype measure blue- manual AUDPC, pink- NDVI-AUDPC.
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FIGURE 4. Physical marker positions of 35154 SNPs (gray) scaled to the Fragaria vesca genome (Hawaii 4 genome 2.0) in Mb for 28 linkage groups of octoploid strawberry (1A–7D). Quantitative trait loci associated with strawberry Verticillium dahliae disease resistance locations from each phenotyping event represented by points for “Emily” x “Fenella” 2016 (red squares), “Redgauntlet” x “Hapil” RxHa Best Linear Unbiased Estimate (2009, 2010, and 2011) (blue cross), RxHb 2017 manual scores (pink plus) and RxHb 2017 automatic scores (purple diamond) and “Flamenco” x “Chandler 2016 (green triangle). Points are weighted based on significance with thicker lines representing greater significance.





QTL Mapping in Four F1 Full-Sib Mapping Populations

In total, four populations were assessed for resistance to V. dahliae. Twenty-five focal markers for V. dahliae resistance were identified in the RxHa, RxHb, ExF, and FxC populations of strawberry (Figures 3–7 and Table 1). Twelve of these focal markers were considered to have a moderate effect with greater than 10 percent impact on disease score across the population. When comparing the observed versus expected disease scores the coefficients of determination, the focal markers explain between 25 and 68% of the observed mean disease scores between progeny members (Table 2).
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FIGURE 5. Kruskal–Wallis -log10 p-values denoting the association of single nucleotide polymorphism with strawberry Verticillium dahliae disease scores at each position in the octoploid strawberry genome in cM. Panels represent markers segregating in “Emily,” “Fenella” and both parents. Labels 1A–7D denote the 28 linkage groups. Solid horizontal line is p = 0.05, dashed horizontal line is p = 0.01.
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FIGURE 6. Kruskal–Wallis −log10 p-values denoting the association of single nucleotide polymorphism with strawberry Verticillium dahliae disease scores at each position in the octoploid strawberry genome in cM. Panels represent markers segregating in “Flamenco,” “Chandler” and both parents. Labels 1A–7D denote the 28 linkage groups. Solid horizontal line is p = 0.05, dashed horizontal line is p = 0.01.
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FIGURE 7. Parental markers on linkage group 7B for phase 0 and 1. Phase represents the grandparental haplotypes (0 or 1) for each parent denoted by the position {maternal or paternal} shared markers denoted in both positions. Bold text represents focal SNP markers; Affx-88898083 represents the focal marker FaRVd7B and Affx-88898195 represents the focal marker FaRVd7B2. Red text represents a shared haploblock. A blue background denotes markers associated with resistance and yellow background denotes markers associated with susceptibility.



TABLE 1. Focal SNPs linked with each quantitative trait loci associated with strawberry Verticillium dahliae disease resistance identified through the Kruskal–Wallis analysis.
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TABLE 2. Model parameters for the predictive linear model for each phenotyping event.
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Resistance Markers Found Close to Neighboring Resistance Genes

A total of 14 out of 25 markers identified were located within 100 kb of a putative resistance gene found in F. vesca (Table 1), each of which indicating a potential target for further study. Twelve resistance markers were found to be within 100 kb of a putative resistance gene containing a NBS. NBS containing genes were more frequently associated with resistance focal SNPs than markers selected at random (p = 0.0073–0.0017, n = 10,000; Supplementary Figure S3). Nine of the twelve NBS genes contained an NB-ARC domain, however, NB-ARC domain containing genes were not more frequently associated with resistance focal SNPs than markers selected at random (p = 0.066–0.024, n = 10,000; Supplementary Figure S4).



Improved QTL Identification With SNP Data

Newly generated SNP data has allowed the analysis of the RxHa mapping population wilt phenotypic data reported in Antanaviciute et al. (2015). Our new analyses identified four different loci represented by SNP markers which are located on the same linkage groups as four of the QTL previously reported using the SSR marker analysis (Antanaviciute et al., 2015) and six novel resistance QTL. The original SSR markers associated with wilt resistance all mapped to the same chromosome as originally reported, however, different sub-genomes were assigned when following the linkage group nomenclature stipulated by van Dijk et al. (2014) and Sargent et al. (2015). The QTL RVd1 maps to linkage group 3B and is located 2.7 Mb from the FaRVd3B SNP marker. RVd3 maps to linkage group 7A and is 6.4 Mb from FaVd7A2. RVd7 maps to linkage group 2D and is 1.2 Mb away from FaRVd2D2. RVd4-M1 mapped to linkage group 2B, however, it is not considered to represent the same QTL as FaRVd2B as it was mapped 12.6 Mb away. The RxHa SNP strawberry map has a greater density of segregating loci (3451) than the SSR map (1133) therefore the SNP data allows greater accuracy of QTL mapping which, when combined with the consensus map, assists the comparison of alleles to other phenotyped populations. Discrepancies between the two analyses can be explained by the removal of 13 rogue individuals, the use of AUDPC phenotyping measure and BLUE calculated across multiple years of phenotyping, in comparison the original analysis used data from the single most heritable scoring event for each year.



Overlap of Resistance Markers Between Cultivars

The resistance marker FaRVd7B identified in ‘Flamenco’ and FaRVd7B2 in ‘Chandler’ are 9.5 cM and 1 Mb apart, however, the analysis of haploblocks revealed that these two markers represent discrete resistance loci present on different haplotypes (Figure 7). Shared markers indicate that the resistance marker from “Flamenco” and “Chandler” contribute to resistance in an additive fashion. The haploblock representing the marker FaRVd7B is associated with resistance in “Flamenco” is also present in “Chandler,” however, it is associated with susceptibility. This low transferability indicates that marker tagging the resistance haplotype FaRVd7B is not in linkage disequilibrium with the resistance gene.

The resistance markers FaRVd1B and FaRVd1B2 from population RxHa and ExF, respectively, are positioned 1.5 Mb apart on linkage group 1B (Table 1). Comparison of haploblocks across the two-populations allowed us to determine whether the two markers represent the same resistance allele. Although the focal markers are reciprocally monomorphic, analysis of shared polymorphic neighboring markers indicated that the resistant markers are present on different haplotypes and therefore represent discrete resistance loci.

No overlap in markers was observed between resistance loci identified between the RxHa combined analysis and the RxHb populations screened with mixed inoculum and subclade II-2 inoculum, respectively (Table 1). By contrast, the marker Affx-88837276 identified on linkage group 7C was 0.72 Mb from the focal marker identified in the RxHa 2011 phenotyping event indicating the possibility of an overlapping QTL associated with resistance to different isolates.

The aforementioned co-dominant shared marker, FaRVd3D, was identified in both “Redgauntlet” and “Hapil” cultivars; this is a shared resistance QTL between the two cultivars. The shared marker FaRVd5A identified a resistance allele present in both “Emily” and “Fenella” cultivars whereby homozygous genotypes containing two resistance alleles are required to observe significant levels of resistance.



Validation of Two Resistance Markers Across the Wider Germplasm

Identification of substitute i35k SNPs co-localizing with focal SNPs identified in the i90k F1 mapping population analysis allowed focal markers to be screened across the wider germplasm (Supplementary Figure S5 and Supplementary Table S3). Two of the focal SNPs identified in the F1 cross studies maintained a strong association with resistance across the validation accessions. FaRVd2B identified in “Redgauntlet” (X2(4,5;1) = 5.72; p = 0.017) and FaRVd6D identified in “Chandler” (X2(4,6;2) = 7.47; p = 0.024) explained 13.4 and 2.2% of the variation in disease scores observed in the validation germplasm, respectively.




DISCUSSION


Description of Resistance

Multiple sources of resistance to Verticillium wilt were observed across six strawberry cultivars indicating a wealth of genetic resources that can be exploited by breeders. Similar studies have also found multiple sources of resistance to V. dahliae in strawberry, and all alleles were found to be dominant (Govorova and Govorov, 1997). We observe that the dominantly inherited allele FaRV5D (Affx-88867578) is associated with an increase in susceptibility (Figure 8). It is impossible to know from this work whether FaRV5D is a susceptibility factor or whether it represents an additive resistance allele which is in repulsion to the identified marker. Further work, through selfing “Emily,” or through crossing heterozygous ExF progeny would generate the missing homozygous class and reveal the inheritance of this resistance allele more clearly. Should FaRV5D be found to represent a recessive resistance allele it could prove a valuable tool for strawberry breeders. Resistant homologs of susceptibility factors have been shown to be highly robust, with exploitation lasting for 50 years in the field (Kang et al., 2005; Pavan et al., 2010), therefore utilization of such a resistance incidence could prove a highly robust strategy to prevent against Verticillium infection.
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FIGURE 8. Phasing and marker effect sizes for the FaRVd5D focal SNP and neighboring shared markers. Parental phased haploblocks for linkage group 5D represented in “Emily 0”, “Emily 1”, “Fenella 0” and “Fenella 1” columns, Red haplotype associated with susceptibility. Grand phenotype means for each marker class represented under marker classes denoted “ll”, “lm”, “hh”,”hk”, “kh” and “kk”; ll/lm represents markers that segregate in the maternal parent, hh, hk, kh and kk represents markers that segregates in both parents. cM – centimorgan distance along linkage group 5D, p – probability for the k – Kruskal–Wallace test statistic testing differences between marker classes.



A resistance QTL was identified in both “Redgauntlet” and “Hapil” cultivars on linkage group 3D. Analysis of parental and shared markers in this region indicated resistance alleles from both parents co-localized to the same location and thus represent the same QTL. This QTL was termed FaRVd3D and could be best represented by haploblocks phase 1 “Hapil” and phase 0 “Redgauntlet.” Both alleles are required in order to observe the greatest combined resistance effect thus indicating that this QTL was inherited in a co-dominant fashion.

Genotypes exhibit large variation in the disease response when compared to variation across genotypes. The variation is represented by large standard error values (Supplementary Figure S2) and the corresponding low broad sense heritability values (Table 2). The high correlation between automated and manual phenotyping values, validates the manual phenotypic scores. We can therefore conclude that the large variation associated with disease score reflects the truly variable nature of the Verticillium disease responses in strawberry. This within-genotype variation has been observed previously and as such, high replication of genotypes in Verticillium trials (n = 10) mitigates this large variation and results in a greater phenotyping accuracy.



Transgressive Segregation

Transgressive segregation toward susceptibility was observed in the FxC population (Supplementary Figure S2) with 7.5% of progeny exhibiting a significantly higher disease symptoms than that of the parents. The parental cultivars “Flamenco” and “Chandler” are related, namely “Chandler” is the grandparent of “Flamenco.” Reports that inbreeding results in increased susceptibility to plant diseases (Watt et al., 2013) alongside negative implications on other traits (Maas and Galleta, 1996) support the observation of increased susceptibility after crossing two related parents. Transgressive segregation toward susceptibility indicates that the two parental lines contain different resistance alleles (Geiger and Heun, 1989), indeed we do not identify any shared markers or loci between the two parents, however, only one significant marker was identified in “Flamenco.” Nonetheless, this cross allowed the identification of a number of focal SNPs for further investigation.



Limitations of the i35k Phenotyping Platform

Phenotypic data was re-analyzed using the subset of i90k markers represented on the i35 SNP chip. The subset of i35k markers were associated with a slightly reduced power to detect resistance markers (Supplementary Figure S5). A surrogate i35k SNP marker could not be elucidated for FaRVd6D. The i35k focal SNP representing the FaRVd5D shifted 9.2 Mb and FaRVd1B2 had shifted 2.0 Mb. However, the remaining focal markers were detected within 0.8 Mb or less of the i90k focal SNP. The validation set of 92 cultivars was phenotyped using the streamlined i35k SNP chip. A targeted marker association analysis using the validation phenotyping event did not pull out any resistance markers, typically genome wide analysis requires a greater genotype number. Either a greater density of markers or a greater number of genotypes may allow the identification of resistance QTL present across the wider germplasm.



Environmental Factors

Variation in weather conditions can lead to variation in disease severity between years (Talboys and Bennett, 1969), the variation in disease development may explain differences observed in RxHa phenotyping events (Supplementary Figures S6, S7) (Keyworth and Bennett, 1951). Where variation in disease susceptibility was observed in cultivars of “Earliglow,” “Howard 17” and “Bounty” across different publications (Vining et al., 2015) this may be due to environmental variation or variation in the isolates subclade used for inoculations. Pre-inoculation of strawberry with low virulence V. dahliae isolates has been shown impact the virulence of pathogenic V. dahliae strawberry isolates (Diehl et al., 2013). Thus, the mix of isolates for RxHa trials and the presence of existing V. dahliae microsclerotia at trial sites may have influenced disease expression.



NBS Genes May Contribute to Verticillium Resistance

A high proportion of the resistance focal SNPs were associated with NBS resistance genes indicating that NB-LRR mediated signaling may play a role in strawberry Verticillium resistance. NBS genes have been implicated in Verticillium resistance in other host systems. Seven TIR-NBS-LRR resistance genes were observed to be up-regulated in Arabidopsis thaliana 24 h after Verticillium co-culturing (Scholz et al., 2018) again indicating NBS-LRRs may play a role in Verticillium resistance. The NBS resistance gene GbaNA1 was found to control disease resistance to Verticillium in cotton and also confer resistance when transformed into A. thaliana (Li et al., 2018a, b). A positive correlation between the number of Verticillium and Fusarium wilt resistance QTL and NBS genes was observed on subgenome A of Cotton (Zhang et al., 2015). The most convincing evidence for the existence of Verticillium specific nuclear interactions can be observed through the pathogen effector VdSCP7 which was found to localize at the host nucleus and modulate effector triggered immunity in cotton (Zhang et al., 2017). Of the 12 identified NBS resistance genes, nine were found to contain a NB-ARC domain. NB-ARCs have been demonstrated to trigger HR leading to localized plant cell death and thus containment of the pathogen (Hammond-Kosack and Jones, 1996; van der Biezen and Jones, 1998). HR occurs in response to pathogen derived molecules (Avr genes) with trigger specificity controlled by LRR domains of the resistance gene (van der Biezen and Jones, 1998). A high frequency of NB-ARC association with Verticillium resistance focal SNPs suggests that HR may play a large role in V. dahliae resistance response of strawberry. HR resistance is typically considered to be race specific and also have a lower durability within the field (Lindhout, 2002). Previous studies have highlighted the importance of the HR in roots: Phytophthora sojae resistance was partially induced in soybean through the use of lesion mutant lines which triggered root cell death in response to pathogen invasion (Kosslak et al., 1996). This also resulted in a trade-off where lesion mutants exhibited an inability to form symbiotic nodules with nitrogen-fixing bacteria (Kosslak et al., 1996). Further evidence that HR may be an important factor of a resistance response to V. dahliae infection can be seen where the effector PevD1 identified in V. dahliae isolated from cotton resulted in HR when infiltrated onto tobacco (Wang et al., 2012) and similarly with the Verticillium effector Ave1 in tobacco (Fan et al., 2018). Of particular interest was the marker FaRVd7B3 where the closest resistance gene shows 90% identity to 47% of the resistance gene muRdr1 controlling gene-for-gene specific resistance to Diplocarpon rosae a foliar fungal disease in tetraploid rose (Rosa multiflora) (Terefe-Ayana et al., 2011).



Automated Phenotyping as a Tool for Breeders

The UAV and imaging have allowed the development of a high-throughput phenotyping system to assess the disease resistance status of plants. A substantial labor-saving cost could be achieved through implementation of the phenotyping platform as the manual assessment of 2500 plants five times over the season took a total of 37.5 h. In contrast switching to a UAV-based phenotyping approach cut the time down to 2.5 h. There was a strong association between the manual disease scores (AUDPC) and the automated disease scores (NDVI-AUDPC) of V. dahliae inoculated plants. Furthermore, the use of automated phenotypic scores resulted in successful identification of resistance markers. In a similar study NDVI was found to be a good measure for Verticillium wilt structural damage in olive (Calderón et al., 2013), which suggests the transferability of this NDVI disease score across different crop hosts. In future work, the semi-automated image analysis will be improved to fully automated canopy segmentation.



Deploying the Identified Resistance

Most of the alleles identified in this study are of moderate effect with two out of 25 consistently preforming over the wider germplasm. Studying the Verticillium resistance present within pertinent cultivars related to breeding populations will ensure greater relevance of future resistance markers. In the absence of robust markers associated with the moderate resistance incidences seen here, and in the complete absence of major single gene resistance, we believe that genomic selection may provide a better strategy to breed Verticillium disease resistance into strawberry. Nonetheless, recent advances in strawberry research including recent advances in genome sequencing (unpublished observation) and successful CRIPSR/CAS9 transformation (Wilson et al., 2018), could be used to identify putative resistance genes and allow functional characterisation, respectively. These tools may allow the development of robust functional markers which perfectly tag the causative resistance genes associated with FaRVd5D and FaRVd3D.




CONCLUSION

Marker-assisted breeding and more likely genomic selection will result in a higher probability of developing a successful cultivar containing Verticillium wilt resistance and provides plant breeders with a competitive advantage in comparison to those implementing empirical breeding strategies. Here we report multiple loci of interest for breeders, two of which are associated with resistance across the wider strawberry germplasm. Furthermore, we highlight the potential for a HR resistance mechanism to play a large role in resistance to Verticillium in strawberry. The automated phenotyping platform could provide a valuable tool for breeders and pre-breeding research work.
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FIGURE S1 |
Area under the disease progression curve for “Hapil,” “Redgauntlet,” and “Chandler” cultivars. Light gray bars represent plants inoculated with Verticillium dahliae isolate 12008 from subclade II-2, white bars 12158 from subclade II-1 and dark gray represents mock inoculated plants.

FIGURE S2 |
Area under the disease progression curve for each genotype from the “Flamenco” x “Chandler” and “Emily” x “Fenella” populations.

FIGURE S3 |
Permutation test results showing the frequency of twenty-five randomly sampled markers, from those present in the F1 populations, that fell within 100 kb of a NBS containing resistance gene over 10,000 iterations. The red vertical line represents the number of markers within 100 kb of an NBS observed in three F1 populations.

FIGURE S4 |
Permutation test results showing the frequency of twenty-five randomly sampled markers, from those present in the F1 populations, that fell within 100 kb of an NB-ARC containing resistance gene over 10,000 iterations. The red vertical line represents the number of markers within 100 kb of an NB-ARC observed in three F1 populations.

FIGURE S5 |
Physical marker positions of SNP markers (gray) scaled to the Fragaria vesca genome (Hawaii 4 version 2.0) in Mb for 28 linkage groups of octoploid strawberry (1A–7D) marker positions scaled to F. vesca genome. Resistance marker locations from the Istraw90 Affymetrix chip (red; +) and Istraw35 Affymetrix chip validation SNPs (green; ⋄). Overlap of symbols indicates focal SNPs identified at the same location.

FIGURE S6 |
Kruskal–Wallis -log10 p-values denoting the association of SNPs with strawberry Verticillium dahliae disease scores at each position in the octoploid strawberry genome in cM. Panels represent markers segregating in “Redgauntlet,” “Hapil” and both parents. Labels 1A–7D denote the 28 linkage groups. Solid horizontal line is p = 0.05, dashed horizontal line is p = 0.01. Color denotes phenotyping event blue- 2009, lime- 2010, green- 2011, orange- 2017.

FIGURE S7 |
Relative Area Under the Disease Progression Curve (AUDPC) for each of the seven phenotyping events illustrating the phenotypic range of disease symptoms. “Emily” x “Fenella” (ExF), “Flamenco” x “Chandler” (FxC), Validation set (Val), “Redgauntlet” x “Hapil” in population 1 (RxHa) over 3 years (2009, 2010, and 2011), and population 2 (RxHb). A relative AUDPC of 80 indicates an a-symptomatic plant and 900 indicates a plant that died at the first timepoint.

TABLE S1 |
Genetic map for “Flamenco” x “Chandler” F1 population for Axiom® IStraw90 markers generated using Crosslink (Vickerstaff and Harrison, 2017).

TABLE S2 |
“Flamenco” x “Chandler” Axiom® IStraw90 marker order based upon Fragaria vesca Hawaii 4 genome version 2.0 22.

TABLE S3 |
List of individuals in the validation set.



ABBREVIATIONS

AUDPC, area under the disease progression curve; cfu, colony forming units; ExF, “Emily” x “Fenella” mapping population; FaRVd∗∗, Fragaria x ananassa resistance allele for Verticillium dahliae ∗∗ denotes chromosome (1–7) and subgenome (A-D); FxC, “Flamenco” x “Chandler” mapping population; GCA, general combining ability; HR, hypersensitive response; i35k, istraw35 affymetrix chip; i90k, istraw90 affymetrix chip; NB-ARC, domain name; NBS, nucleotide binding site; NDVI, normalized difference vegetation index; NIR, near infrared; QTL, quantitative trait loci; R, red; rAUDPC, relative area under the disease progression curve; RGB, red green blue; RH%, percentage relative humidity; RxHa, “Redgauntlet” x “Hapil” mapping population. Cross one (n = 169), screened with mixed inoculum; RxHb, “Redgauntlet” x “Hapil” mapping population. Cross two (n = 80), screened with isolate 12158; SCA, specific combined ability; SNP, single nucleotide polymorphism; SSR, simple sequence repeat; UAV, unmanned aerial vehicle.



FOOTNOTES

1
https://github.com/eastmallingresearch/crosslink
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Crop yield is an essential measure for breeders, researchers, and farmers and is composed of and may be calculated by the number of ears per square meter, grains per ear, and thousand grain weight. Manual wheat ear counting, required in breeding programs to evaluate crop yield potential, is labor-intensive and expensive; thus, the development of a real-time wheat head counting system would be a significant advancement. In this paper, we propose a computationally efficient system called DeepCount to automatically identify and count the number of wheat spikes in digital images taken under natural field conditions. The proposed method tackles wheat spike quantification by segmenting an image into superpixels using simple linear iterative clustering (SLIC), deriving canopy relevant features, and then constructing a rational feature model fed into the deep convolutional neural network (CNN) classification for semantic segmentation of wheat spikes. As the method is based on a deep learning model, it replaces hand-engineered features required for traditional machine learning methods with more efficient algorithms. The method is tested on digital images taken directly in the field at different stages of ear emergence/maturity (using visually different wheat varieties), with different canopy complexities (achieved through varying nitrogen inputs) and different heights above the canopy under varying environmental conditions. In addition, the proposed technique is compared with a wheat ear counting method based on a previously developed edge detection technique and morphological analysis. The proposed approach is validated with image-based ear counting and ground-based measurements. The results demonstrate that the DeepCount technique has a high level of robustness regardless of variables, such as growth stage and weather conditions, hence demonstrating the feasibility of the approach in real scenarios. The system is a leap toward a portable and smartphone-assisted wheat ear counting systems, results in reducing the labor involved, and is suitable for high-throughput analysis. It may also be adapted to work on Red; Green; Blue (RGB) images acquired from unmanned aerial vehicle (UAVs).

Keywords: wheat ear counting, crop yield, deep learning in agriculture, semantic segmentation, superpixels, phenotyping, automated phenotyping system



Introduction

Yield is composed of three components: number of ears per unit area, number of grains per ear, and grain weight, some which may be estimated during the growing season. The early estimation of preharvest yield allows breeders more rapid germplasm assessment and enables farmers to adjust cultivation practices to optimize production. Manual counting protocols have been the only way of calculating the number of ears per square meter (ears/m2). Breeders can identify and count wheat spikes visually; however manual counting of wheat spikes is labor-intensive and time-consuming. In addition, these tasks may need to be performed on many thousands of cultivars, which is likely to introduce human error into the obtained data. An ideal alternative would be the development of automated systems operating under field conditions. Recent advances in automated data acquisition systems (Busemeyer et al., 2013; Virlet et al., 2016; Kirchgessner et al., 2017) allow a high spatial sampling due to the rapidity of the image acquisition process, which enables all possible measurements of crop growing status. Even though the ability to acquire data is relatively fast and easy, challenges remain in terms of the data mining of images. Computer vision offers an effective choice for analyzing high-throughput image-based phenotyping due to low-cost (relative to man-hours invested into manual observations) and the requirement for minimal human intervention. Although current computer vision systems are increasingly powerful and capable, they still need to overcome the difficulties associated with images acquired under field conditions. Environmental noise causes major challenges for computer vision-based techniques in identifying objects of interest, such as wheat spikes. Some challenges include the following: (i) plant movements and/or stability of handheld cameras may cause blurred images; (ii) dark shadows or sharp brightness may appear in images due to natural condition and light variations in the field even though a camera is set to auto exposure; (iii) overlaps between ears due to a floppy attitude of the ears may also cause additional difficulties, especially with the presence of awns in some cultivars; and (iv) spikes in different varieties change significantly through development stages, as spikes show only little similarity between the early and later growth stages.

Several studies have utilized image-based automatic wheat ear counting for early evaluation of yields (Cointault and Gouton, 2007; Fernandez-Gallego et al., 2018; Cointault et al., 2008b). These methods have relied on image data extraction techniques related to characteristics of color, texture, and morphological operations. Cointault et al. (2008b) proposed a mobile platform to acquire data where visible images were taken by a digital camera located vertically above the field of view using a tripod. The field of view is a closed system delimited by a black matte frame to control variabilities in illumination and weather conditions. The proposed framework creates a homogeneous environment and blocks unwanted image effects. Subsequently, the authors improved their platform by collecting images in different lighting conditions without any structure blocks (Cointault et al., 2008b). The main drawback is the restricted data acquisition pipeline required for the system to operate. For instance, prior knowledge of the environment is required to achieve an optimum result; moreover, even with the current restrictions, only a small number of images were selected based on which the authors felt presented “good illumination.” In a similar approach (Cointault and Gouton, 2007; Cointault et al., 2008a; Fernandez-Gallego et al., 2018), a supervised classification method was proposed to distinguish three classes of leaves, soil, and ears. In the end, morphological operations were applied for counting the number of blobs (potentially ears) from the binary image with the preassumptions of the shapes of the ears. Each pixel is represented by color and texture properties. As suggested, a hybrid space is constructed to address a sensitivity of color properties to the intensity variations in an image. The method has been tested on a limited number of wheat varieties without awns with a low level of wheat ear density; nonetheless, no evaluation was carried out to validate the accuracy of the proposed method with the manual measurements. In another study, Fernandez-Gallego et al. (2018) applied Fourier filtering and two-dimensional discrete Fast Fourier transform (FFT) (Cooley and Tukey, 1965) to distinguish wheat ears from the background. The approach performs, in three main steps of high-pass filtering, thresholding, and mathematical morphology, operations to eliminate “nonwheat” pixel groups, which are small and scattered. The threshold is predefined by a user to determine if pixels should be identified as foreground (ears) or background (leaf, soil, etc.). The drawback is that a wrong choice of the threshold value may result in distortion and low performance of the whole system in different environments. Finally, Zhou et al. (2018) proposed a twin-support-vector machine segmentation method to segment wheat ears from visible images. The method relies on the hand-engineered features, including color, texture, and edge histogram descriptor. The images were collected from the side at 45 degrees above the horizontal because color and texture were suggested being typically more substantial from this perspective.

At the core, the success of any of the current state-of-the-art methods crucially depends on the feature representation of the images. While the aforementioned methods use handcrafted features to represent images by encoding of various features including corners, edges, texture, and color schemes, the features are tailored to a specific condition, and their effectiveness is inherently limited as these approaches mainly operate at the primitive level. Unlike conventional feature extraction techniques, which often use shallow architecture and solely rely on human-crafted features, relatively new learning-based methods based on convolutional neural networks (CNNs) show promising results for visual analysis. CNN models attempt to model high-level abstractions in images by employing deep architectures composed of multiple nonlinear transformations (Lomonaco, 2015; Schmidhuber, 2015). In CNN, features are extracted at multiple levels and allow the system to learn complex functions that directly map raw sensory input data to the output, without relying on hand-engineered features using domain knowledge. The convolution is an operation of applying the filter on a single color image to enhance some of its features. One-to-one convolutions take a single image as an input and return a single image as an output. However, in CNN, different kinds of convolutions exist. For instance, in one-to-many convolutions, a single input image is passed to k filters; then each filter is used to generate a new output image. Alternatively, in many-to-many convolutions, there are n inputs and m outputs where each output image is connected to one or more input images characterized by k filters (Lomonaco, 2015). Potentially, this capability makes the deep neural network more robust to different types of variations in digital images. As a result, the model can adapt to such differences and has the capacity to learn complex models.

In recent years, CNNs have shown usefulness in a large variety of natural language processing and computer vision applications, including segmentation and image classification, and often surpassed state-of-the-art techniques (Krizhevsky et al., 2012; Mikolov et al., 2013; Lomonaco, 2015). Despite the promising outcomes of deep learning in computer vision, there are some limitations in implementing a deep neural network. Deep learning approaches are usually computationally intensive, and their performance relies on the quantity and quality of training datasets. In most cases, for deep learning to show great advantages, training datasets of tens of thousands to millions are required (Deng et al., 2009; Ubbens et al., 2018). Having a large training dataset provides deep learning models with extensive variety, which leads to an effective learned representation as a result. Deep neural networks (DNN) are an area of active research, and applications to plant research are still in the early stages. There are few deep learning applications successfully applied in the field of image-based plant phenotyping (Pound et al., 2017; Madec et al., 2019). The small body of existing applications includes plant disease detection on leaf images (Mohanty et al., 2016), rice panicle segmentation (Xiong et al., 2017), leaf counting in rosette plants (Ubbens et al., 2018), wheat ear counting (Madec et al., 2019), and localizing root and shoot tips (Pound et al., 2017).

This study utilizes a novel visual-based approach based on linear iterative clustering and deep CNNs to identify and count the number of wheat spikes. The proposed method can also calculate the number of wheat ears per square meter when a ground standard is present within the image. The proposed method, called DeepCount, alleviates the limitations and lack of separability inherent in existing wheat ear-counting methods and minimize the constraints of capturing digital images taken under natural outdoor environments. The approach presented will pave the way for computationally efficient and significantly faster approaches compared to the manual techniques, leading to reducing the labor involved and enabling high-throughput analysis.




Materials and Methodology

In this study, we explore the feasibility of automatically identifying wheat spikes under natural in-field conditions based on a completely data-driven framework. The main contributions of the work can be summarized as follows:


	Building a high-quality dataset of annotated spikes and utilizing them to train our CNN model.

	Developing a deep learning model called DeepCount that can learn from the training dataset and then identify and segment spikes from different wheat cultivars (awns and no awns).

	Demonstrating that the constructed model can automatically quantify the number of spikes within visible images under natural field environments and calculate the number of ears per square meter when a ground standard is present.



Quantification of spikes may be achieved in two ways. One approach is localization/detection of spikes, which provides not only the prediction for the whole image but also additional information regarding the spatial location of the spikes. Another technique is semantic segmentation (pixel-wise segmentation), which understands an image at pixel level. It enables dense predictions inferring labels of every pixel in the image, so that each pixel is labeled as an ear or background. Inspired by the success of the recent deep learning algorithms in computer vision applications, we propose a CNN approach combined with a superpixels technique known as simple linear iterative clustering (SLIC) (Achanta et al., 2010). The core idea is to overcome the computational complexity by using SLIC to generate homogeneous regions instead of processing at a pixel level. The homogeneous regions generated by SLIC will contain more information about the color and texture and are less sensitive to noise as opposed to pixel-level analysis. It also reduces the complexity of subsequent ear detection and localization tasks. The generated regions are later used as input data for the CNNs. The network is capable of not only recognizing spikes but also delineating the boundaries of each spike with the canopy based on dense pixel level predictions. Figure 1 illustrates an end-to-end wheat ear quantification, including the offline training and online ear segmentation and counting. In the following section, we will describe the data collection/annotation process and the model architecture developed to localize wheat spikes within images and quantify them.



[image: ]

Figure 1 | Schematic representation of the DeepCount method. 





Experimental Materials

The experiments were carried out at Rothamsted Research, UK (51°48′34.56′′N, 0°21′22.68′′W) in two fields, Great Field (Field Scanalyzer area) and Black Horse. Two experiments were conducted under the Field Scanalyzer platform (Virlet et al., 2016) during the growing season in 2014–2015 (hereafter referred to as 2015-FS dataset) and 2015–2016 (hereafter referred to as 2016-FS dataset). Six wheat cultivars (Triticum aestivum L. cv. Avalon, Cadenza, Crusoe, Gatsby, Soissons, and Maris Widgeon) were sown on 6th November 2014 and 20th October 2015 at a planting density of 350 seeds/m2. Nitrogen (N) treatments were applied as ammonium nitrate in the spring at rates of 0 kgN.ha−1 (residual soil N; N1), 100 kgN.ha−1 (N2), and 200 kgN.ha−1 (N3) for both years and 350 kgN.ha−1 (N4, 2015-FS only). The plot sizes were 3 × 1 m in 2015-FS and 2 × 1 m in 2016-FS.

The third experiment has been funded by DEFRA since 2008, known as WGIN (Wheat Genetic Improvement Network), to provide genetic and molecular resources for research in other DEFRA projects and for a wide range of wheat research projects in the United Kingdom. In this study, we collected images from the 2015–2016 experiment (hereafter referred to as 2016-WGIN dataset) at Black Horse field. Thirty wheat cultivars were grown at four nitrogen fertilizer treatments (N1, N2, N3, and N4), sown on 12th October 2015. Each repetition consists of a 9 × 3 m “main plot” and a 2.5 × 3 m “sampling plot” used for nondestructive measurement and destructive sampling, respectively. The three experiments in this study use a split plot design (with three blocks) and were managed by local agronomic practices.




Image Acquisition

The images were acquired under conditions of natural illumination at multiple stages of ear maturation with different canopy complexities achieved through varied nitrogen inputs. The tests were carried out in extreme lightning conditions with typical environmental challenges faced in the field for images taken by different cameras and optics with no direct scaling relationships. Table 1 summarizes the characteristics of the three trials carried out in this study. The camera models include different types of commercially available visible cameras with various spatial resolutions and configurations (Table 1).



Table 1 | Characteristics of the three experiments considered in this study.
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The images for 2015-FS and 2016-FS were collected by the Scanalyzer onboard visible camera (color 12-bit Prosilica GT3300) at a resolution of 3,296 × 2,472 pixels. The camera is positioned perpendicular to the ground and was set up at a fixed distance to the ground (3.5 m) for the 2015-FS experiment and at a fixed distance to the top of the canopy (2.5 m) for the 2016-FS. The camera is set up in auto-exposure mode to compensate for outdoor lighting changes.

In the 2016-WGIN experiment, two handheld cameras, Canon G12 and Sony Nex-7, were used to acquire visible images with the resolution of 3,648 × 2,736, and 6,000 × 3,376 pixels, respectively (Table 1). Similarly, to the Field Scanalyzer, the cameras were set up in an auto-exposure mode and held vertically over the canopy. In addition, a rapid and easy ground standard system was implemented by placing an A4 sheet over the canopy in the field of view of the camera lens (Figure 2B). The ground system was used to transform the total number of wheat ears within an image into the number of ears per square meter.
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Figure 2 | Overhead view digital images of wheat cultivars with different canopy complexities taken in the field using the handheld DSLR camera (A and B) and the Field Scanalyzer platform (C). An A4 sheet is placed over the canopy for each image as a ground standard system to transform the total number of wheat ears in the image into the number of ears per square meter.






Evaluation

Two different evaluation methods were used and compared with the automatic ear-counting techniques. The first method is based on manual image-based annotation in which ears are manually counted on the images acquired by the Field Scanalyzer platform (2015-FS and 2016-FS datasets). Wheat ears were interactively marked using the VIA image annotator (Dutta et al., 2016), which enabled the automatic printing of the incremental number on each individual ear.

The second ground-truthing method is based on field manual measurements carried out for all three experiments. In the 2015-FS and 2016-FS experiments, ears were manually counted on six rows of 1-m length, corresponding to the 1-m2 area, for each plot. In the 2016-WGIN trial, the number of ears per square meter was estimated based on the method presented in Pask et al. (2012). Samples of four rows of 1-meter length were cut at anthesis, then the ears per square meter were derived from the aboveground biomass (ABG) and the dry weight (DW) of the fertile culm:

	[image: ]	

Figure 2 shows the representation of digital images of different wheat traits taken under the Field Scanalyzer platform (Figure 2C) and a handheld DSLR camera (Figures 2A, B). As depicted in the sample images, the data were collected in different weather conditions, with illumination changes from cultivars with differences in ear shapes and sizes.




Annotation and Generating the Training Dataset

The fundamental part of any supervised decision-making system, such as CNN, is how to specify the output based on a given set of inputs or training dataset. In practice, hundreds or even thousands of annotated training datasets are required to make a good training of CNN. Even though high-throughput image-based plant phenotyping systems like Field Scanalyzer (Virlet et al., 2016) exist and generate a huge amount of image data daily, a large set of annotated images with ground-truth are not widely accessible yet within the plant phenotyping community.

To expose our CNN model to a wider variety of images, the data were collected by a handheld DSLR Canon Camera with a resolution of 5,760 × 3,840 pixels from diverse Limagrain field trials at different stages from heading to maturation under different ambient illumination condition. The broad range of images enabled the constitution of a “strong” training dataset, covering the ears development from multiple wheat varieties, making the detection model more robust and thereby increasing the precision of the wheat spikes quantification. The graphical image annotation tool, VGG image annotator (VIA) (Dutta et al., 2016), was used to draw boxes around the background, such as leaves, stems, and soil, (Figure 3C), and draw strokes using the polygon tool around ears (Figures 3A, B). Here, 330 representative wheat images are selected to build the annotated training dataset, in which the illumination variations, weather conditions, wheat ears shapes, and reproductive stages are all considered. As a result, 24,938 ears and 30,639 backgrounds are manually annotated.
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Figure 3 | Training patches. Examples of expert annotation of spikes for different wheat cultivars without awns (A), with awns (B), and backgrounds (e.g., soil, leaves) (C).




The next step is to combat the high expense of creating a training source with their corresponding labels. The augmentation model is constructed to simulate the illumination change by adjusting the HSV color space and applying various transformations, such as random rotation, cropping, flipping, zooming, scaling, and brightness to the images that are already in the training dataset (Figure 4). In addition, a nonlinear operation known as gamma correction (also referred to as gamma encoding or gamma compression) (Rahman et al., 2016) was applied to encode and decode luminance in the images. The augmented images are appended to the existing training samples, from which 20% of the sample set is randomly selected as the validation set (145,000 patches), and the remaining 80% is selected as the training set (580,000 patches; 300,000 ears and 280,000 backgrounds).



[image: ]

Figure 4 | Augmented samples of the same spike with various transformations, such as random zoom, rotation, flipping, brightness, and gamma correction. For example, 1) the original image; 5 and 12) adjusted HSV color image; 6, 8, and 9) gamma color correction. 2-4, 7, 10, and 11) adjusted brightness samples Cropping, flipping, zooming, and scaling were applied to all images randomly with the probability of 0.5.






Superpixels Segmentation

Most computer vision algorithms use pixel grid as the underlying representation of an image. However, grids of pixels do not hold a semantic meaning of an image nor represent a natural representation of a visual scene. It would be more efficient to work with perceptually meaningful entities obtained from a low-level grouping process. Superpixel algorithms aim to group pixels into perceptually meaningful regions based on their similarity characteristics, such as color and texture distributions. Superpixel techniques will reduce the complexity of images from thousands to millions of pixels to only a few hundred superpixels; thereby, it will diminish the influence of noise and potentially improves the computational efficiency of vision algorithms.

In light of the fundamental importance of superpixel algorithms in computer vision, many algorithms have been proposed in the literature (Achanta et al., 2010; Achanta et al., 2012, Li and Chen, 2015; Tu et al., 2018). The superpixel segmentation algorithms can be broadly categorized as graph-based segmentation and clustering-based segmentation. In graph-based techniques, an image is considered a planar graph, where pixel vertices and pixel affinities are computed for connected pixels (Felzenszwalb and Huttenlocher, 2004; Ren and Malik, 2005). Alternatively, the clustering-based method starts with a rough initial clustering of pixels, then the clusters are refined iteratively until some convergence criterion is met to form superpixels (Achanta et al., 2010; den Bergh et al., 2015; Achanta and Susstrunk, 2017).

In this study, we use SLIC (Achanta et al., 2010; Achanta et al., 2012), which is fast and memory efficient for generating superpixels (Achanta et al., 2012). As opposed to other superpixels algorithms with many difficult-to-tune parameters, SLIC is simple to use in which the number of desired superpixels is its sole parameter. The spectral-spatial distance is measured between each pixel to its cluster center and then the cluster centers are updated using K-means clustering technique. For N prespecified superpixels, clustering pixels are represented based on their color similarity (CIELAB colour space) and pixel proximity in the 5-D space Ci = [li, ai, bi, xi, yi] where i = [1, N]. In this study, based on our experience, the number of superpixels is set to N = 3,000 to avoid oversegmentation and to produce roughly equally sized superpixels. We can also control the trade-off between the compactness of the superpixels and boundary adherence (Achanta et al., 2012). It means SLIC can prevent small or disconnected areas or islands within a larger region (Figure 5 and 6A.1, B.1). The candidate regions are then used as inputs for the CNN model to perform pixel-wise segmentation. Feeding the network with image descriptors extracted from the candidate regions enables the model to learn local information, such as texture and shape, rather than using the pixel grids.
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Figure 5 | (A-C) Examples of superpixel segmentation using the SLIC technique. C) illustrates the imperfection in the SLIC method.
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Figure 6 | A.1 and B.1 show the SLIC superpixel outputs. A.2 and B.2 are the results of pixel-wise semantic segmentations. The red circle illustrates the imperfection in the SLIC method.






Architecture of the Convolutional Neural Network Model

As previously mentioned, SLIC reduces the computational complexity by partitioning an image into homogeneous regions, instead of extracting features at the pixel level (Figure 5). However, the SLIC method, like many other superpixel techniques (Felzenszwalb and Huttenlocher, 2004; Ren and Malik, 2005; Li and Chen, 2015; Wang et al., 2017), relies on handcrafted features, thus often fails to separate objects within an image in appropriate regions (Figures 5C and 6A.1). To address the limitation, the proposed CNN model classifies each superpixel at a pixel level as opposed to characterizing the content of the entire candidate region and predict a single label. The network takes each candidate region as input data and outputs a pixel level segmented of the region (Figures 6A.2, B.2).

In general, semantic segmentation architecture in CNN can be broadly categorized as an encoder network followed by a decoder network. The encoder network gradually reduces the spatial dimension of the input by down-sampling and developing lower-resolution feature mappings, which are learned to be highly efficient at discriminating between classes. To get the dense pixel-wise classification, the decoder network semantically projects the discriminative features learned by the encoder onto the pixel space by up-sampling the feature representations into a full-resolution segmentation map. There are usually shortcut connections from encoder to decoder to help the decoder recover the object details better.

In this work, we leverage an existing model known as U-Net, which was originally designed for biomedical image segmentation for identifying lung nodules in a computed tomography (CT) scan (Ronneberger et al., 2015). The U-Net architecture consists of a contracting path to capture context and an asymmetric expanding path that enables precise localization. The model concatenates the encoder feature maps to up-sampled feature maps from the decoder at every stage. The concatenation allows the decoder at each stage to learn back relevant features that are lost when pooled in the encoder. Normally, U-Net is trained from scratch starting with randomly initialized weights (optimization variables). Since up-sampling in the decoder is a sparse operation, we need a good prior from earlier stages to better represent the localization.

Since transfer learning proved to be a powerful technique for semantic segmentation models, such as U-Net-like architectures (Iglovikov and Shvets, 2018), we used a pretrained VGG model (Simonyan and Zisserman, 2014) without fully connected layers as its encoder mechanism followed a decoder network as the original U-Net to further improve the performance of pixel level dense classification. The VGG family of CNN can be characterized by two components: 1) all convolutional layers in the network use 3 × 3 filters; and 2) multiple convolutional layer sets are stacking together before applying a pooling operation. Normally, the number of consecutive convolutional layers increases the deeper the network goes (Simonyan and Zisserman, 2014). The VGG-16 used in this work was proposed by a group of researchers in Oxford and the winner of the ImageNet competition (Deng et al., 2009) in 2013. It uses a stack of convolution layers with small receptive fields in the first layers instead of few layers with big receptive fields.

By using an existing architecture in which the weights are initialized on big datasets, such as ImageNet, the network can converge faster and learn more general filters. To construct the encoder, the fully connected layers were removed and replaced with a single convolutional layer of 512 channels that serves as a bottleneck part of the network to separate the encoder from the decoder. The network contains a total of four max-pooling layers. For each of the pooling layers, the spatial size of the feature map is reduced by a factor of 2 vertically and horizontally.

The decoder part of the network consists of up-sample and concatenation with an output of the corresponding part of the decoder followed by regular convolution operations (Figure 7). Since the pretrained VGG model takes an input of 224 × 224 pixels with three channels, the irregular superpixels need to be resized to achieve proper input into the model. The network takes superpixels as inputs and outputs a segmented version of the inputs. Each pixel is labeled as 1 (wheat spikes) or 0 (background), which generated a binary image (Figure 8). After the semantic segmentation, the median filter is applied to minimize the noise and remove the result of misclassification over the binary image. In this process, a window size of seven pixels slides over the entire image, pixel by pixel. Then, the pixel values from the window are sorted numerically and replaced with a median value of neighboring pixels. In the end, for contour quantification, a classical image processing algorithm known as the watershed technique is used for postprocessing for further segmentation of individual contour.



[image: ]

Figure 7 | Encoder-decoder neural network architecture is also known as U-Net where VGG-16 neural network without fully connected layers as its encoder. The number of channels increases stage by stage on the left part while it decreases stage by stage on the right decoding part. The arrows show a transfer of information from each encoding layer and concatenating it to a corresponding decoding part.




[image: ]

Figure 8 | A.1 and B.1 show the SLIC superpixel outputs. A.2 and B.2 are the output of the DeepCount model. The red circle illustrates the imperfection in the SLIC method.





Loss Function

The role of the loss function in our parameterized learning was investigated. Parameterized learning will allow us to take sets of input data (ears and background) and their class labels and learn a function that maps the input to the output predictions by defining a set of parameters and optimizing over them. At a basic level, a loss function quantifies how good or bad a given predictor is at classifying the input data in our dataset (Marsland, 2009; Harrington, 2012).

The binary cross-entropy loss function is used to quantify how accurate the CNN method is at classifying the input data in our dataset (a brief overview of the cross-entropy loss function and the calculations are provided in the supplementary data). A visualization of the loss function plotted over time for our model is shown in Figure 9A visualization of training accuracy, training loss, validation accuracy, and validation loss plotted over time for the model is plotted after 15 epochs.1 The smaller the loss, the better a job the model/classifier is at modeling the relationship between the input data and output class labels. As shown in Figure 9, loss starts slightly high but then decreases rapidly and continues to stay low when trained on our dataset. As expected, the usage of the pretrained VGG model helps the network to converge faster, as a result, we obtained 98% accuracy after only 15 epochs. Furthermore, the training and validation curves match each other very closely, indicating that there is no issue of overfitting with the training process.



[image: ]

Figure 9 | A plot of loss and accuracy throughout 15 epochs with a 1e-4 learning rate. Using of pretrained VGG model on ImageNet dataset helped the model to converge quicker.







Handcrafted Features Extraction Techniques for Wheat Ear Quantification

A handcrafted image-based method presented in Jansen et al. (2015) was compared with the proposed DeepCount model. The technique is based on an edge detection technique and several morphological image-processing operations. First, the image is converted from a 3-D RGB image (Figure 10A) into a 2-D grayscale representation of the image (Figure 10B), then the edge detection based on Sobel kernel (Kaufman et al., 1994) performs a 2-D spatial gradient measurement on the gray image to emphasize regions of high spatial frequency that correspond to edges that return a binary image (Figure 10C). Edges may correspond to boundaries of an object, boundaries of shadowing or lighting conditions, and/or boundaries of parts within an object in an image. The next steps are morphological operations, including dilation to increase the size of foreground pixels (Figure 10D), which is useful for joining broken parts of the image. Filling the holes (Figure 10E) and removing small objects (Figure 10F) are the fifth and sixth steps. The final step is erosion, where pixels near the boundary of an object in the image will be discarded. A foreground pixel in the input image will be kept only if all pixels inside the structuring element are bigger than zero; otherwise, the pixels are set to zero (Figure 10G). In the end, a list of all contours is returned, and their numbers are printed out on the RGB image (Figure 10H). The handcrafted method will be referred to hereafter as the edge method.
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Figure 10 | The handcrafted ear-counting method. (A) Original image. (B) Grayscale image. (C) Result after applying edge detection technique. (D) Dilate the image. (E) Fill the holes. (F) Filtering by removing small objects (noises). (G) Erode and smooth the image. (H) Counting the contours/ears.







Results and Discussions

The performance of the proposed DeepCount model (Figure 11) was evaluated against the hand-engineered edge detection method and two manual evaluation techniques. The first technique was based on manual counting of ears within visible images while the second evaluation method was the field-based measurements. In addition, the ear-counting performances were quantified based on the coefficient of determination (R2), the root means squared error (RMSE), the relative RMSE (rRMSE), and the bias:
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Figure 11 | Examples of result images. (A) WGIN experiment with an A4 sheet used as a ground standard. (B) Field Scanalyzer experiment in 2015.
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where N denotes the number of images, and ri and ei are the reference and estimated counts for image i, respectively.

The algorithm was tested on a workstation PC running a Centos7 operating system with 10-core Intel Xeon CPU, 3.6 GHz per CPU, 64 GB of memory, and Nvidia Quadro M5000 video card. The CNN framework was developed in python using OpenCV library and the Keras framework. While there is no restriction in the spatial resolution of the test images, the segmentation and quantification of wheat spikes will take approximately 90–100 seconds on a single image with the resolution of 6,000 × 3,376 pixels. The CUDA parallel acceleration was also used to improve the processing efficiency, especially for training the model. CUDA is a parallel computing platform created by NVIDIA, and the cuDNN library was developed for deep learning with GPU acceleration. The current method also has the potential to be faster in the future by CPU multithreading utilization.



DeepCount Versus Handcrafted Edge Method

First, the performance of the automatic image-based methods (DeepCount and the handcrafted technique presented in section 2.7) was compared against manual image-based counting. In the image-based evaluation, 33,011 ears were manually counted from 126 images. The 2015-FS and 2016-FS trials include 72 and 54 images in which 22,284 and 10,727 ears were manually counted on the images, respectively.

Figures 12A, B illustrate the linear regression between the automatic methods and the first evaluation method tested on the 126 images. The results showed a high correlation between the automatic methods and the manual image-based counting. The DeepCount model has a higher coefficient of determination and lower RMSE and rRMSE (R2 = 0.94, RMSE = 25.1, rRMSE = 11%) than the edge detection method (R2 = 0.75, RMSE = 45.5, rRMSE = 21%), indicating that the DeepCount technique was closer to the visual observation. In addition, the bias values of -13.1 and -13.2 for both methods show a slight overestimation of the number of ears compared to the visual assessment (Figures 12A, B).
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Figure 12 | Comparison of the number of ears visually annotated on the images (Annotation – A, B) and the number of ears per meter square (C, D) with the number of ears estimated by the edge (A, C) and DeepCount (B, D) methods for the two datasets collected with the Field Scanalyzer in 2015 (blue dots) and 2016 (red triangles).




The visual inspection of the results suggested that the edge method had more false positives than the DeepCount model. It was observed that in some cases, where leaves or objects have a clearer contrast than their surroundings, they were misidentified as ears. This was expected since the edge detection is defined as discontinuities in pixel intensity, in other words, a sharp difference and change in pixel values; thus, the edge detection method is more prone to noise. This may also pose more difficulties for the edge method to identify ears with awns (e.g., Soissons cv). The DeepCount model, on the other hand, had less false positive, regardless of the cultivars or level of nitrogen. Furthermore, visual inspection showed that the fraction of false negatives, in both automatic methods, appeared to be the failure of the watershed method to separate ears exposed to a severe degree of overlap.

While Fernandez-Gallego et al. (2018) argued that the edge method is unlikely to be reliable due to loss of RGB information during its color transformation to gray scale, our results indicated otherwise. The edge method showed similar performances compared to the method presented by the authors. The success rate metric (μ) used by the authors to evaluate the performance of their method showed 31.96–92.39% on RGB images and 65.36–93.01% on grayscale images, whereas we achieved a similar range of values with 86% and 81% in the 2015-FS and 2016-FS experiments, respectively. Moreover, the R2 values between the edge method and the two evaluation techniques (image-based counting and ground-based measurements) are high, with R2 = 0.75 and 0.60, respectively (Figures 12A, C). Nevertheless, the DeepCount model outperformed the edge method in every experiment carried out in this study. Our results are also in agreement with the method presented by Madec et al. (2019). The authors obtained R2 = 0.91 and rRMSE = 5.3% from their manual image-based ear counting, which is also very similar to the 2016-FS dataset, where the results showed R2 = 0.97 and rRMSE = 7% (Figure S1). We also found similar outcomes between our methods and the technique presented by Zhou et al. (2018); however, as the performance metrics differ, a quantitative comparison is not possible.

Furthermore, the performances of the edge and DeepCount methods were validated against the ground-based measurements after the numbers of ears were converted into ears per square meter. As shown in Figures 12C, D, the performance degraded slightly compared to the manual image-based measurements (Figures 12A, B). In the edge method, R2 reduced from 0.75 to 0.60, whereas the performance in the DeepCount model dropped from R2 = 0.94 to 0.86. The edge and DeepCount methods had a similar bias (36 and 35.3, respectively), which indicated that both methods underestimated the number of ears per square meter compared to the field data. In addition, the RMSE increased from 45.5 to 104.9 ears/m2 and 25.1 to 71.4 ears/m2 in both approaches, respectively.

A similar decrease in performance was also observed in Madec et al. (2019). This is partly attributed to the relatively different observation area used for the ground measurements and the visible images. The spatial representativeness was therefore limited to get an accurate comparison between the automatic counting and field-based measurements that were not measured at the same place over plots. For instance, in the 2015-FS trial, the ground-based measurements were obtained from six rows, including the edge rows; however, the same area was not taken by the Field Scanalyzer. The number of rows captured in the images varies between 3.5 and 5 rows (Figure 2C). An additional factor may also be due to the fact that some ears are hidden deep down inside canopies or partially visible on the borders of images, which pose more difficulties for the automatic models to identify them. Further improvement can be achieved between the automatic counting and direct counting in the field if the same protocol is followed by both methods during data acquisition. For example, in the 2016-FS trial, the results showed an improvement in performance when images were consistently taken from four middle rows in every plot (Table 2).






	
Table 2 | Comparison between the number of ears per square meter counting from the field and the number of ears estimated by the DeepCount model for the three datasets collected separately and combined for each of the nitrogen levels. A and B are the slope and the offset of the regression line, respectively.





	
	

	
N1


	
N2
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2015-FS


	
a


	
1.16


	
0.96


	
0.64


	
0.68





	
b


	
-18.40


	
55.22


	
263.06


	
282.56





	
R2


	
0.58


	
0.46


	
0.15


	
0.22





	
RMSE


	
61.50


	
60.30


	
92.20


	
122.90





	
rRMSE


	
13%


	
10%


	
14%


	
17%





	
Bias


	
42.30


	
35.20


	
58.90


	
100.10





	
2016-FS


	
a


	
0.75


	
1.10


	
0.93


	
 





	
b


	
45.23


	
-16.13


	
39.29


	
 





	
R2


	
0.59


	
0.75


	
0.89


	
 





	
RMSE


	
41.00


	
43.80


	
32.40


	
 





	
rRMSE


	
22%


	
10%


	
7%


	
 





	
Bias


	
-19.60


	
20.20


	
9.70


	
 





	
2016-WGIN


	
a


	
 


	
0.95


	
0.71


	
0.88





	
b


	
 


	
33.87


	
189.27


	
89.62





	
R2


	
 


	
0.42


	
0.41


	
0.63





	
RMSE


	
 


	
67.10


	
98.30


	
72.00





	
rRMSE


	
 


	
15%


	
17%


	
14%





	
Bias


	
 


	
15.60


	
57.90


	
30.80





	
All datasets


	
a


	
1.28


	
1.06


	
0.83


	
0.96





	
b


	
-76.43


	
-4.10


	
131.26


	
66.39





	
R2


	
0.81


	
0.69


	
0.53


	
0.60





	
RMSE


	
52.20


	
61.40


	
90.00


	
84.40





	
rRMSE


	
18%


	
13%


	
16%


	
15%





	
Bias


	
11.30


	
20.70


	
50.30


	
44.30












DeepCount Model Versus Field-Based Measurements

The performance of the DeepCount model was further evaluated against the ground-based measurements in each individual trial and all together. As shown in Figure 13, the coefficient of determination was higher in the 2016-FS experiment (R2 = 0.89) compared to the 2015-FS (R2 = 0.70) and 2016-WGIN (R2 = 0.57) trials. Also, the lowest bias was obtained in the 2016-FS (bias = 3.6), followed by 2016-WGIN and 2015-FS with 37.4 and 59.14, respectively. As mentioned in the previous section, the notable difference in bias between the 2016-FS and the other trials may reside in the fact that, first, the measurements on the field and the visible images were obtained from the same area; also, in the 2016-FS, the camera was set up at a fixed distance to the top of a canopy (2.5 m) regardless of the height of the plots. As opposed to the 2015-FS trial, where the camera was set up at a fixed distance to the ground (3.5 m), or in the 2016-WGIN trial, where the distance between the handheld cameras and top of canopies vary from one plot to another.
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Figure 13 | Comparison between the number of ears per square meter counting from the field and the number of ears estimated by the DeepCount model for the datasets collected with the Field Scanalyzer in 2015 (A – open circle) and in 2016 (B - open triangles), for the WGIN trial in 2016 (C – cross) separated by camera (D), for all datasets together (E), and for all datasets together separated by nitrogen level (F - N1: blue, N2: green, N3: red, and N4: purple).




Furthermore, the lower performance in the 2016-WGIN trial may be associated with several factors. First, improper placement of an A4 sheet used as a ground standard to transform the total number of wheat ears in an image into the number of ears per square meter. To have an accurate ear density estimation, the sheet should be placed perpendicular to the handheld camera’s viewing angle, which was not the case in many images taken from the WGIN-2016 trial. In addition, in some images, the ground standard was partially obstructed by leaves and wheat ears. Second, the perspective of the images may also account for the slight lack of correlation between the proposed model and the field measurements. While focal length does not change perspective per se, it does change how the ears are represented; thus, it is important to capture the scene optimally. The ultra-wide angle focal length used to capture images from 2016-WGIN (6 and 18 mm) provided a bigger field of coverage but caused a perspective distortion, particularly on the image borders. Last but not least, the manual field measurements may have introduced human error into obtained data.

Despite the above uncertainties, the DeepCount algorithm showed the same accuracy in every experiment (rRMSE = 15% ± 1) regardless of the number of ears identified in the images (2015-FS: 309–655, 2016-FS: 183–634, 2016-WGIN: 238–821) and types of cameras with different spatial resolutions. The same accuracy was also obtained when all three experiments were combined together (R2 = 0.72 and rRMSE = 15%). As shown in Table 1, two cameras (Canon and Sony) with different spatial resolutions and lens focal lengths were used to acquire images. In the Canon camera, we observed lower R2 but higher bias compared to the Sony camera (R2 = 0.48 and 0.60, respectively; bias = 43.2 and 33.7, respectively; Figure 13C); nevertheless, both show similar rRMSE (15% and 16%, respectively; Figure 13C). Figure 13C depicted outliers for both cameras, but it is not possible to attribute them to one of the cameras or a human error.

Overall, the DeepCount algorithm showed a solid performance in identifying wheat spikes at early or later growth stages. Visual inspection of results also showed that the proposed CNN model was able to discriminate ears and background (soil, leaves, etc.) and classified them on a pixel level. The proposed model was capable of minimizing effects related to brightness, shadow, ear size and shape, awn or awnless cultivars, and even overlap ears in most scenarios. It should be highlighted that the strength of the algorithm also resides in its training dataset, where images were collected by a third party on completely independent trials, different spatial resolutions, and different varieties than the wheat materials in this study. An improvement in the performance would be expected via the optimization of data acquisition process both in the field and within images. We believe that the optimum configuration is to take images at 2.0–2.5 m above canopies using the focal length between 35 and 60 mm, which is similar to what human eyes see. Moreover, we noticed that the textural information will fade away when spatial resolution is below 0.2–0.3 mm, which will degrade the identification performances.




The Effect of Nitrogen Rate on the Performance of the DeepCount Model

We also investigated the effect of nitrogen on the performance of the DeepCount method. It was expected that the performance of the algorithm declines with the increase of nitrogen use since the canopies with a higher level of nitrogen have a higher ear density in which ears are more overlapped and clustered; however, the results showed otherwise. As depicted in Table 2, the overall N3 and N4 data had a lower R2 (0.53 and 0.60, respectively) compared to the overall N1 and N2 data (0.81 and 0.69, respectively). On the other hand, the 2016-FS and 2016-WGIN trials do not follow the same pattern. For instance, in the 2016-FS trial, N3 had the highest R2 value (R2 = 0.89), followed by N2 and N1 (R2 = 0.75 and 0.59, respectively), whereas in the 2016-WGIN, the N4 treatment had the highest R2 (0.63). Furthermore, on closer inspection, the N3 and N4 treatments showed the highest bias values and underestimation of the ear density in the 2015-FS, 2016-WGIN, and combined datasets.

Despite that, the accuracy of the overall experiments for each nitrogen treatment did not change too much as the rRMSE value for N1, N2, N3, and N4 were 18, 13, 16, and 15%, respectively. In the end, the results did not suggest that the performance of the DeepCount model degrades due to the complex canopies with a high level of ear density.





Conclusion

In this study, the main objective was to present an automatic model that quantifies the number of wheat ears in an image or image series. Regardless of the challenges posed by the acquisition protocol or environmental variations in the field, the model was able to deliver the total number of wheat ears within an image and/or estimated the number of ears per square meter if a ground standard was present in the image. We demonstrated the feasibility of the proposed technique in which the model was validated on numerous images taken from a broad range of spatial resolution images and various data acquisition systems. It has been shown that the model can be an essential tool for high-throughput analysis and has the potential to reduce labor involvement considerably. To minimize the uncertainties between the automatic methods and the ground-based measurements, we recommend to 1) have the same sample areas, 2) have a more reliable ground standard rather than an A4 sheet used in this study, 3) take samples from a larger area for both image sampling and field measurements, 4) increase the spatial resolution of visible image to avoid losing the textural information, and 5) use the focal length of lens between 35 and 60 mm. The code can be found at https://github.com/pouriast.

In the end, the aim is to increase the adoption of the approach by farmers and breeders by lowering the expense of camera equipment. The proposed model can be used as a high-throughput post processing method to quantify the number of spikes for large-scale breeding programs. Furthermore, the automatic technique can facilitate farmers to make improved yield estimates, which can be used to plan requirements for grain harvest, transport, and storage. Subsequently, improved estimates could reduce post farm gate costs.

The DeepCount model benefitted from the CNN architecture and even though the model was trained to distinguish two classes, nothing prevents modifying the network to classify and segment more plants or species. Given adequate training model, the proposed semantic segmentation technique offers the advantages of versatility and may be applied to other types of applications, such as segmenting different parts of plant organs and vegetation and even detect diseases. In future work, we aim to envisage the use of thermal and hyperspectral images, which will offer additional information to RGB visible images.
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Above-ground biomass (AGB) is a trait with much potential for exploitation within wheat breeding programs and is linked closely to canopy height (CH). However, collecting phenotypic data for AGB and CH within breeding programs is labor intensive, and in the case of AGB, destructive and prone to assessment error. As a result, measuring these traits is seldom a priority for breeders, especially at the early stages of a selection program. LiDAR has been demonstrated as a sensor capable of collecting three-dimensional data from wheat field trials, and potentially suitable for providing objective, non-destructive, high-throughput estimates of AGB and CH for use by wheat breeders. The current study investigates the deployment of a LiDAR system on a ground-based high-throughput phenotyping platform in eight wheat field trials across southern Australia, for the non-destructive estimate of AGB and CH. LiDAR-derived measurements were compared to manual measurements of AGB and CH collected at each site and assessed for their suitability of application within a breeding program. Correlations between AGB and LiDAR Projected Volume (LPV) were generally strong (up to r = 0.86), as were correlations between CH and LiDAR Canopy Height (LCH) (up to r = 0.94). Heritability (H2) of LPV (H2 = 0.32–0.90) was observed to be greater than, or similar to, the heritability of AGB (H2 = 0.12–0.78) for the majority of measurements. A similar level of heritability was observed for LCH (H2 = 0.41–0.98) and CH (H2 = 0.49–0.98). Further to this, measurements of LPV and LCH were shown to be highly repeatable when collected from either the same or opposite direction of travel. LiDAR scans were collected at a rate of 2,400 plots per hour, with the potential to further increase throughput to 7,400 plots per hour. This research demonstrates the capability of LiDAR sensors to collect high-quality, non-destructive, repeatable measurements of AGB and CH suitable for use within both breeding and research programs.

Keywords: wheat, phenomics, high throughput phenotyping, field phenotyping, plant breeding



Introduction

In recent years there has been much discussion regarding the role of high-throughput phenotyping (HTP) technologies within field crop breeding programs, focused primarily on the potential of these technologies to reduce the current disparity between the amount of phenotype and genotype data available to breeders (Cobb et al., 2013; Araus and Cairns, 2014). There are three key aspects of these technologies which interest field crop breeders: i) the ability to collect data faster than traditional methods; ii) the ability to collect higher-quality objective data than traditional methods; and (iii) the ability to collect data which cannot be collected through existing methods. With these three aspects in mind, the trait of above-ground biomass (AGB) is a prime candidate to benefit from the potential advantages offered by HTP technologies.

Above-ground biomass is traditionally measured through laborious and destructive methods, requiring crop cuts to be collected from field plots and dried in an oven before being weighed to assess the dry biomass of each sample. This multi-step process is prone to error, from variability in the area within the plot sampled, to the potential loss of material while cutting, transporting, and handling samples. Furthermore, the destructive nature of crop cuts is undesirable within field crop breeding programs due to the loss of plot area and edge effects that influence plot yield. Despite the inconvenience of phenotyping AGB, it is an important trait of interest in many field crop breeding programs. For bread wheat (Triticum aestivum L.), AGB has been identified as a trait with much potential to exploit within breeding programs, particularly in relation to yield improvements through harvest index and radiation use efficiency (Reynolds et al., 2012), water use efficiency (Richards et al., 2002), drought tolerance (Fischer and Wood, 1979), as well as potential advantages in crop competitiveness (Zerner et al., 2016).

Of the sensors investigated to estimate AGB with HTP to date, one of the most promising is LiDAR, a laser-based sensor, from which raw data can be transformed into a three-dimensional (3D) point cloud. As AGB is a 3D trait in nature, point cloud data provides a logical advantage compared to two-dimensional sensors such as digital or multispectral cameras, to accurately account for and estimate AGB of field crops. Although there are other methods and technologies that can be used to generate point cloud data, such as digital images and photogrammetry techniques (Walter et al., 2018), LiDAR-based systems offer not only a high-throughput and high-density method of collecting such data, but also the possibility of penetrating and collecting measurements from within the crop canopy.

To date, few studies have investigated the use of LiDAR, or similar technologies, to estimate the AGB of field crops. Those that have, often used LiDAR-derived canopy height (CH) as a proxy of AGB (Long and McCallum, 2013; Pittman et al., 2015; Eitel et al., 2016). This approach may be suitable for large-scale biomass estimation, such as in commercial crops, but in cereal breeding programs there is often little variation in CH among breeding lines. Investigations into processing methods which utilize the 3D nature of LiDAR-derived point cloud data have been undertaken, with volume measurements of point clouds (Jimenez-Berni et al., 2018; Sun et al., 2018; Walter et al., 2018), and 3D indices (Jimenez-Berni et al., 2018) shown to correlate strongly to manually measured AGB. While the findings of these studies are promising, they have not fully investigated how these methods and data may be applied to field crop breeding programs. One particular shortcoming of these previous studies is that they were limited to a single environment and a relatively small number of plots, in contrast to commercial breeding programs, which operate across many environments and require many plots to be evaluated.

The current study investigates the deployment of a LiDAR-based system for the non-destructive estimation of AGB and CH across multiple environments, with this system based on the High-throughput Imaging Boom (HIB) described by Walter et al. (2019). The logistics of integrating such a system within a breeding program are discussed, along with the relevance of the data to breeding programs, particularly focusing on trait heritability and genetic and residual correlations. Though the current study takes place within a wheat breeding program, we believe this discussion is relevant to a wide variety of field crop breeding and research programs.




Methods



Site and Trial Design

To investigate the application of LiDAR sensors within a wheat breeding program, field trials were run across eight sites in southern Australia, encompassing a range of environments with differences in yield potential. The trial sites selected are used for the evaluation of germplasm by a commercial wheat breeding program and are representative of the environmental range over which wheat is grown in the region. Location and details of the eight sites are shown in Table 1.



Table 1 | Location and details of the eight field trial sites present in the current study. Latitude and longitude are presented in the WGS84 datum.
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Each trial consisted of eight bread wheat (Triticum aestivum L.) cultivars, grown in small plots and designed as a completely randomized factorial design, with factors of genotype and sample time and three replicates (192 plots total). More sampling times were allocated during experimental design than were ultimately utilized in the current study. Trials were uniquely randomized at each site and were specifically designed to provide large amounts of phenotypic variation for plant height and above-ground biomass. Cultivars selected for this purpose were: Axe, Beckom, Halberd, Krichauff, Scepter, Shield, Wyalkatchem, and Yitpi. Trials were located within large-scale wheat breeding sites (approximately 6 ha and 8,000 plots per site) and managed by Australian Grain Technologies (AGT). Plots were 3.2 × 1.32 m and consisted of five rows spaced at 25 cm.




Manual Measurements

Manual measurements were collected across all sites during the growing season. Sample times differed between sites (Table 2), though all sites were sampled at anthesis — Zadoks growth scale 65 [ZGS 65 (Zadoks et al., 1974)] — as a measurement of maximum leaf biomass. Developmental rate differs between the varieties used in the current study, with flowering time spread approximately across a two week window. As such ZGS values assigned are nominal, and sample dates were determined when 50% of varieties were at, or had surpassed, the designated ZGS. This does not impact on the processing or analysis methods used for the purpose of comparing manual and digital measurements in the current study. At each sample time CH was measured in each plot, while AGB was measured in plots of the corresponding sample time. Canopy height was measured with a ruler at four randomly-selected points within each plot, with an average of these heights recorded to provide a representative CH. Above-ground biomass was collected from individual plots as two linear meters of plant material (1m from two adjacent rows) cut at ground level. Cuts were taken from the inner seed rows to avoid edge effects. Cuts from each plot were bundled, dried at 45ºC for two weeks, then weighed to obtain AGB. Due to the small size of plots sown in the trial it was impractical to take multiple AGB samples from individual plots. To circumvent this, sampling time was allocated as a factor within the trial design, such that each sampling time was undertaken within unique plots.






	
Table 2 | Sample times and associated Zadoks growth scale for each of the sites in the current study. 





	
Site


	
Sample time





	
ZGS 31


	
ZGS 49


	
ZGS 59


	
ZGS 65


	
ZGS 96





	
AV


	
	
✓


	
	
✓


	



	
BL


	
	
	
	
✓


	



	
KV


	
	
	
	
✓


	



	
MN


	
	
	
	
✓


	



	
PN


	
	
	
	
✓


	



	
RS


	
✓


	
✓


	
✓


	
✓


	
✓





	
RD


	
	
	
	
✓


	



	
WT


	
✓


	
✓


	
	
✓


	










LiDAR Measurements

The LiDAR sensors used in the current study were SICK LMS400-2000 (SICK AG, Waldkirch, Germany). These 2D sensors have a 70° field of view and are capable of scanning between 270–500 Hz at an angular resolution of 0.1°–1.0°, with a ± 4 mm systematic measurement error and a 3–10 mm statistical error, depending on remission distance. For the purpose of the current study, two sensors were mounted on a boom of adjustable height and attached to a tractor as shown in Figure 1. The sensors are mounted at a nadir angle, with scans occurring along the crop row. Measurements are collected across the crop rows as the tractor moves. Detailed information on the boom and its implementation within field plot trials is provided in Walter et al. (2019). For the current study all LiDAR measurements were collected from a single direction of travel, as opposed to the serpentine manner described in Walter et al. (2019). To investigate the repeatability of LiDAR measurements at Roseworthy, three scans were conducted at each timepoint. Two scans were collected from the same direction of travel, to observe the repeatability of duplicate scans, with the third scan collected from the opposite direction of travel, to observe any effects of travel direction on scan data.



[image: ]

Figure 1 | The tractor mounted LiDAR system used in the current study showing the boom system and LiDAR sensor mounting positions, with major components annotated (A) and a closer view of one of the mounted LiDAR sensors (B).




Scans were captured at a speed of 2 km/h with the LiDAR sensor capturing data in a 70° nadir field of view, at 300 Hz, with an angular resolution of 0.133° and a theoretical scanning resolution of 1.5 mm between consecutive scans. Sensors were configured to output data to laptop computers in the tractor cab. Data capture was triggered by a 1.5 V pulse, output from a Trimble FM1000 RTK GPS unit (Trimble Inc., Sunnyvale, California, USA). This allowed individual plots to be identified in-situ using shapefiles created using GIS software MiniGIS (geo-konzept GmbH, Adelschlag, Germany) loaded onto the Trimble FM1000. LiDAR sensors were mounted at a height of 230 cm above the ground throughout all scans, allowing for an approximate field of view of 2 m at 80 cm above-ground level (estimated average wheat canopy height). All data collection occurred on the same day, within each sample time, with manual measurements taken immediately after plots were scanned by the LiDAR system.




LiDAR Processing

Raw scan data was processed in the R software package (R-Core Team, 2017). Scan data was cleaned to remove false returns through a process of removing negative height values and filtering each scan line through a 98th percentile check to remove excessively high points. To better extract data from each plot, scanlines of two plot rows within each plot were processed, with ends of each scan trimmed to give a total plot length of 1 m (i.e. 0.5 m either side of the sensor), equating to the area of plot to be manually sampled. Points with a height less than 5 cm were re-assigned a height of 0 cm to eliminate returns from raised soil along seeding furrows, rocks or other miscellaneous objects. Visualization of these point cloud processing steps are shown in Figure 2. Similar procedures, for the removal of ground-level points, when dealing with fixed-height LiDAR data, have been demonstrated by Friedli et al. (2016); Sun et al. (2017) and Jimenez-Berni et al. (2018).



[image: ]

Figure 2 | Visualisation of a point cloud collected in the current study (at Zadoks growth scale 65), showing the three steps of data processing; raw point cloud, cleaned point cloud, and segmented area used for processing of measurements, from a side, top and perspective view.




Canopy height was extracted through percentile algorithm in R (R-Core Team, 2017). Firstly, identifying the 98th percentile of maximum returned height in each scan line (Figure 3A), and secondly taking the 86th percentile of these values to provide an estimate of overall canopy height, henceforth referred to as LiDAR Canopy Height (LCH) (Figure 3B). The 86th percentile was selected through optimization of Pearson’s correlation coefficient and RMSE between LCH and CH for all sample times at Roseworthy (Supplementary Material).



[image: ]

Figure 3 | The height of all laser returns present in each scan line of a point cloud segmented for processing (A), a visualization of the LiDAR Canopy Height calculation process (B) showing the 98th percentile of processed points within each scan line and the over-all LiDAR Canopy Height value, represented with a dashed blue line, as calculated by the 86th percentile of these points, and a two-dimensional representation of LiDAR Projected Volume calculated for a single scan line of the point cloud (C); the width and height of each prism being represented by the x axis (scan line width) and the y axis (prism height) respectively. The depth of each prism is calculated from the distance between scan lines as the LiDAR sensor moves, producing the unplotted z axis (prism depth).




As a surrogate to AGB, plot volume estimates were produced by calculating the distance between each point in a scan line, the distance between scan lines and the height of each point. Using these three variables, a rectangular prism was created for each point in the point cloud, and volume of this prism calculated. A two-dimensional representation of these prisms for a single scan line is presented in Figure 3C with the z axis distance for these prisms provided by the movement of the LiDAR sensor. The summation of all prism volumes from within the point cloud was used as an estimate of plot volume. This measure will henceforth be referred to as LiDAR Projected Volume (LPV), as it encompasses all space below the LiDAR returns, rather than purely the area occupied by plant material. In the current study this volume is calculated as m3/m2, as this can be directly compared to plant material per square meter of plot, as measured in kg/m2 for AGB. A single automated script was written in R to clean raw data and simultaneously calculate LCH and LPV, with processing taking approximately 13 s per plot.

In addition to the LPV calculations, point clouds for the Roseworthy data set were processed using the formulas described by Jimenez-Berni et al. (2018) to calculate their 3D profile index (3DPI) used to estimate AGB. This index is based around the fraction of points present throughout the point cloud, rather than a volume-based measurement. It requires splitting the point cloud into layers, applying a correction factor to each layer and finally taking a summation of the corrected point fractions present in each later. This process, and the required formula, are described in detail by Jimenez-Berni et al. (2018). The processing and AGB estimation methods of Jimenez-Berni et al. (2018) were followed, using the separate equations for pre- and post-anthesis measurements presented, and finally estimating AGB through transforming LiDAR data with the linear regression equation between AGB and 3DPI at each measurement time.




Statistical Analysis

All statistical analyses were conducted in the R software package (R-Core Team, 2017). Mixed linear models were used for multivariate analyses, comparing traits and trait collection methods, using ASREML (Gilmour et al., 2015). From multivariate analyses Pearson’s correlation coefficients were calculated between traits (raw correlations), along with genetic and residual correlations, accounting for the proportion of variance observed between the two traits based on genetic and residual components, respectively (Falconer, 1960). Outputs of multivariate analyses were also used for the calculation of broad-sense heritability (Equation 1), which can be described as the proportion of observed trait variation attributable to genetics (Visscher et al., 2008), for the traits CH, LCH, and LPV. Outputs from a randomized complete block analysis with ASREML were used to calculate broad-sense heritability for AGB.

	[image: ]	(Equation 1.)

where H2 is broad-sense heritability, [image: ] is the variance attributable to genetic effects and [image: ] the variance attributable to environmental effects (residual variance).

Due to the small sample size and large spatial spread of AGB measurements collected within trials at each sample time, genetic and residual correlations were not calculated between AGB and other traits.





Results



LiDAR Repeatability

Repeatability of multiple measurements taken at Roseworthy was generally high for both LCH and LPV measurements at both individual sample times (Table 3) and when pooling sample times (Figure 4). Scans taken in the same direction of travel show greater repeatability than scans taken in opposite directions of travel.



Table 3 | Coefficient of determination (r2) and components (slope ± standard error, and intercept ± standard error) for linear regression models between repeated scans in the same and opposite directions, processed for the traits LiDAR Canopy Height (LCH) and LiDAR Projected Volume (LPV), at each sample time (ZGS) at Roseworthy. 
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Figure 4 | The repeatability of LiDAR-based measurements collected at Roseworthy throughout the season, comparing scans collected from the same direction (A, B) and the opposite direction (C, D) for the measurement of LiDAR canopy height (A, C) and LiDAR projected volume (B, D). Dashed lines indicate the line of best fit, coloured shapes indicate measurements collected at Zadoks growth scales (ZGS) as follows, red circles at ZGS 31, yellow triangles at ZGS 49, green triangles at ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.




Repeatability of height measurements was seen to be extremely high at three of the five sample times, ZGS 49, 65, and 96, when scanned in the same direction of travel, with high r2 values, linear regression coefficients nearing one and intercepts nearing zero (Table 3). In contrast repeatability of samples taken at ZGS 31 and 59 showed much greater variation, with lower linear regression coefficients and intercepts further away from zero (Table 3, Figure 4A). Repeatability of measurements in opposite directions of travel was less accurate than the same direction of travel (Figure 4C). Generally, measurements of LCH from opposite directions had linear regression coefficients nearing one and intercepts nearing zero, though lower r2 values than scans from the same direction (Table 3), with differences between timepoints being less pronounced. A similar trend for repeatability of LPV measurements was also observed, though overall LPV showed greater reproducibility than LCH. High repeatability was observed between LPV measurements in the same direction of travel (Figure 4B) and good repeatability in opposite directions of travel (Figure 4D).




Canopy Height

A wide range in canopy height was observed between site locations and sample timepoints, with this being especially apparent between environments. Strong raw correlations were observed between LCH and manually measured height for all sites (r = 0.56–0.94), and at the majority of sample times (Table 4). However, individual sample times at some sites showed poorer correlation compared to the rest of the data set. Strong linear relationships were observed between CH and LCH at the majority of sites (Figure 5), though weaker relationships were observed for some early growth stages (Roseworthy at ZGS 31 and Angas Valley at ZGS 49), or when CH was low (Minnipa ZGS 65). Pooling measurements throughout the season showed strong continuity of data and strong linear relationships between CH and LCH, such as presented in Figure 6 for Roseworthy.



Table 4 | Correlations between traits, plus or minus standard error, at each site and sample time (ZGS), measured in the current study. 

[image: ]





[image: ]

Figure 5 | The relationship between LiDAR Canopy Height and Canopy Height, presented individually for each site and sample time (ZGS). Dashed lines indicate the line of best fit, coloured shapes indicate measurements collected at Zadoks growth scales (ZGS) as follows, red circles at ZGS 31, yellow triangles at ZGS 49, green triangles at ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.
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Figure 6 | The relationship between LiDAR Canopy Height and Canopy Height for all sample times measured at Roseworthy. Dashed lines indicate the line of best fit, coloured shapes indicate measurements collected at Zadoks growth scales (ZGS) as follows, red circles at ZGS 31, yellow triangles at ZGS 49, green triangles at ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.




Raw (r = 0.56 to 0.94) and genetic (rg = 0.91 to 1.00) correlations between CH and LCH were strong across all sample times, while residual correlations ranged from 0.08 to 0.67 (Table 4). For repeated measures there were no apparent trends for raw, genetic or residual correlations over time. Both CH and LCH had high heritability at all times of measurement, excluding Winulta at ZGS 31. Heritability tended to increase over time at sites where repeated measurements were taken (Table 5).



Table 5 | Broad-sense heritability of each trait, at each site and sample time (ZGS), measured in the current study.
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Above-Ground Biomass

Above-ground biomass samples collected showed large amounts of variation between sites, with LPV showing similar amounts of variation. Raw correlations between AGB and LPV were predominantly strong and positive, though some weaker correlations were observed, with one weak negative correlation (Table 4). Figure 7 shows the linear nature of the relationship between AGB and LPV within each sample. The relationships between measurements of AGB and LPV collected over the growing season at Angas Valley, Roseworthy and Winulta are displayed in Figure 8. Both Angas Valley and Winulta showed an increase of AGB and LPV over time. This was also observed at Roseworthy for most sample times. However, samples collected at ZGS 65 and 96 showed increased AGB (compared to previous samples) but did not show any increase in LPV, with slight decreases in LPV being observed.
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Figure 7 | The relationship between LiDAR Projected Volume and Above-ground Biomass, presented individually for each site and sample time measured in the current study. Dashed lines indicate the line of best fit, coloured shapes indicate measurements collected at Zadoks growth scales (ZGS) as follows, red circles at ZGS 31, yellow triangles at ZGS 49, green triangles at ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.
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Figure 8 | The relationship between LiDAR Projected Volume and Above-ground Biomass for each sample time collected at Angas Valley (A), Roseworthy (B) and Winulta (C). Coloured shapes indicate measurements collected at Zadoks growth scales (ZGS) as follows, red circles at ZGS 31, yellow triangles at ZGS 49, green triangles at ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.




Above-ground biomass correlated most strongly to LPV for much of the raw data, though a number sites showed stronger, or similar, correlations to CH and LCH (Table 4). LiDAR projected volume correlated strongly to LCH for most measurements. Similar but generally weaker correlations were observed between LPV and CH.

The heritability of AGB measurements was generally lower than that of LPV measurements, although this was reversed in some instances. Heritability of AGB appears to show no trend across repeated measures, though heritability of LPV appears to generally increase over time, with the exception of Roseworthy at ZGS 96.

To assess the effectiveness of the LPV measurements calculated in the current study as an AGB estimator, LPV was compared to 3DPI, as described by Jimenez-Berni et al. (2018), for the Roseworthy data set. Except for ZGS 31, LPV was strongly correlated with 3DPI and, in general, showed slightly greater correlations to AGB (Table 6). A strong relationship between AGB and 3DPI-predicted AGB was observed throughout the season (Figure 9), excluding the ZGS 49 measurement which did not fit this trend. A similar relationship was observed by Jimenez-Berni et al. (2018).



Table 6 | Pearson’s correlation coefficients (r), between LiDAR Projected Volume (LPV), 3DPI and Above-ground Biomass (AGB), for each sample time (ZGS) at Roseworthy. 
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Figure 9 | The relationship between 3DPI Biomass and manually measured Above-ground Biomass, for each sample time at Roseworthy. Coloured shapes indicate measurements collected at Zadoks growth scales (ZGS) as follows, red circles at ZGS 31, yellow triangles at ZGS 49, green triangles at ZGS 59, blue diamonds at ZGS 65 and pink squares at ZGS 90.







Discussion

The adoption of LiDAR and terrestrial laser scanners (TLS) as field-based sensors for the non-destructive phenotyping of AGB and canopy height has been discussed and demonstrated numerous times in the literature (Deery et al., 2014; Tilly et al., 2014; Eitel et al., 2016; Friedli et al., 2016; Kronenberg et al., 2017; Sun et al., 2017; Virlet et al., 2017; Jimenez-Berni et al., 2018; Sun et al., 2018), ultimately contributing towards a solution to the phenotyping bottleneck present in large-scale research and plant breeding programs (Cobb et al., 2013; Araus and Cairns, 2014). Despite the different approaches to the deployment of these sensors, there are still many questions left unanswered, particularly with regard to the robustness and reliability of the data collected and its application and value within research or field crop breeding programs.

In the current study, adaption of the imaging boom described in Walter et al. (2019) to accommodate a dual LiDAR system allowed for LiDAR sensors to be efficiently deployed across eight large-scale wheat breeding trial sites in a range of environments, and for large amounts of point cloud data to be collected at multiple growth stages.



Data Repeatability

Objective and repeatable data collection is of key importance within breeding and research programs but can be difficult to obtain through traditional in-field measurements. Thus, the overall high repeatability and objective nature of point cloud data collected with LiDAR sensors in the current study shows great potential for integration within field-based research programs.

Repeated LiDAR scans from the same direction of travel were capable of producing near identical LCH measurements for three of the five physiological growth stages measured (ZGS 49, 65, and 96). The remaining two growth stages (ZGS 31 and 59) still showed sound repeatability of LCH measurements, though not to the extent seen at other growth stages. Interestingly, the repeatability of LPV across all physiological growth stages showed a strong relationship, with few outlying points, similar to that observed for LCH at ZGS 49, 65, and 96. There is no apparent cause of the variation observed between LCH measurements at ZGS 31 and 59 and we can only speculate that this is an artefact of the LCH calculation process, as the variation between LPV measurements for these samples is much lower than for LCH and is similar to that observed for other LPV measurements.

Measurements of both LCH and LPV were less repeatable when measured with opposite directions of travel, however repeatability was still strong. The discrepancies observed between measurements collected in opposite directions likely arise for two reasons; firstly, despite endeavors to mount LiDAR sensors identically on each side of the boom, there are likely to be small differences between the two, altering the laser emission and return pattern of each unit. Secondly, triggering of the LiDAR sensors relative to shapefiles on the RTK GPS unit requires calibration, which if not precise may result in small variations to the area of plot measured. Towards addressing these issues, LiDAR sensor and direction of travel could be fitted as random terms within spatial analyses, which may help to account for variation between measurements.

To the authors’ best knowledge, repeatability of data derived from LiDAR plot scans has yet to be described in the literature, however Busemeyer et al. (2013) have reported very high repeatability of canopy height measurements collected with a light-curtain (r2 = 0.99, Mean Relative Error = 0.01). Given the similarities between the type of data obtained from these two sensors, the high repeatability of LiDAR data observed in the current study is a positive, but not unexpected, result.




Canopy Height

Point cloud data collected through the LiDAR system was able to accurately and repeatedly estimate canopy height of wheat grown in field plots across multiple growth stages and environments. Strong raw correlations were observed at the majority of locations and growth stages measured, ranging from r = 0.56 at the weakest, to r = 0.94 at the strongest. Similar results have been previously reported for wheat and other field crops, with r2-values of 0.99 (Jimenez-Berni et al., 2018), 0.99 (Kronenberg et al., 2017), 0.99 (Virlet et al., 2017), 0.97 (Sun et al., 2018), 0.91 (Tilly et al., 2014), 0.87 (Eitel et al., 2016), 0.84 (Walter et al., 2018) and 0.73 to 0.93 (Friedli et al., 2016). The current study and those of Jimenez-Berni et al. (2018) and Sun et al. (2018) collected data with mobile LiDAR systems deployed in field; Virlet et al. (2017) used a dual 3D laser scanner system mounted on the Field Scanalyzer gantry; Kronenberg et al. (2017) used a cable suspended laser scanner mounted on the ETH field phenotyping platform; Tilly et al. (2014); Eitel et al. (2016) and Friedli et al. (2016) used TLS systems; and Walter et al. (2018) used digital cameras and photogrammetry. Though each of these systems differ, comparable results have been achieved from each, reinforcing the concept that 3D data collected in the form of point clouds is highly suitable for the derivation of canopy height.

While the correlations presented in the current study do not appear to be as strong as some previously reported in the literature, it is important to consider the way in which the data has been collated for presentation. Data from the current study has been collected from eight wheat varieties across eight locations and in some circumstances at multiple time points. This contrasts with the data presented by Jimenez-Berni et al. (2018), where three replicates of 18 genotypes were measured at a single location and time point, with the mean values of each genotype being presented and used for correlation. The results presented by Jimenez-Berni et al. (2018) are more similar to those from Table 4, of genetic correlations between CH and LCH at each site, which showed improved correlations compared to raw data.

The weakest correlation between CH and LCH in the current study occurred at Minnipa, where severe drought conditions occurred during most of the 2017 growing season. Very little variation was observed between canopy heights, with varieties ranging from 32.5 to 47.5 cm, much less than the variation observed at other sites. A similar explanation is likely for the weaker correlations present at Roseworthy at ZGS 31 and Angas Valley at ZGS 49, where plants measured early in the growing season had short canopies and little variation in CH. These correlations, as well as all correlations in the current study, could likely be improved through optimisation of the percentile algorithm used to process the data. A similar process has been described by Friedli et al. (2016), with data in Supplementary Material reinforcing this work, and showing the variability in selecting an algorithm based on maximizing the correlation and reducing the RMSE. The authors believe the use of a single algorithm is suitable in large-scale breeding or research programs as it is generally not feasible to collect ground truth data for each site and timepoint to optimize this process. Moreover, the implications of taking physical measurements are counterintuitive to the aims of deploying these sensor systems for rapid collection of large amounts of data.

The similarity in the heritabilities calculated for CH and LCH gives great confidence in LiDAR-derived canopy height, showing that in terms of accuracy/repeatability within a breeding program it is as good as, or in some cases superior to, manual measurements. In addition to the high heritability of LCH demonstrated in the current study, a similarly high heritability of LiDAR-derived CH has previously been reported by Kronenberg et al. (2017) for a diverse set of European bread wheat cultivars (H2 = 0.96), though this was not compared to the heritability of manual measurements. While in the current study, and in that of Kronenberg et al. (2017), heritabilities were calculated for material containing greater variation in CH than often present within breeding populations, it is expected these results are still directly applicable as CH is known to be a highly heritable trait. The strong genetic correlations observed between CH and LCH in the current study further support that LCH will be suitable for estimating CH within breeding populations, as similar genetic components are measured by both methods. The moderately strong residual correlations between CH and LCH would seem to indicate the ability of LCH to capture differences in CH resulting from environmental variance across the experimental area. This makes sense from a physiological perspective, as plant height can be influenced by a number of biotic and abiotic factors, which may result in uneven growth throughout the trial. While the variation observed in CH within the current study was typically greater than would be observed within modern breeding populations, the results of current study suggest that LiDAR sensors would be suitable for measuring relative CH, or for measuring absolute CH if required. The slopes of lines of best fit for Figures 5 and 6 show that as CH increased LCH underestimated CH, generally by around 10 cm. This is likely due to the data cleaning process and LCH algorithm function, and though it is not an issue if relative CH is desired, if an absolute measurement of CH is required this discrepancy will need to be accounted for.




Above-Ground Biomass

The LPV measurement in the current study has been shown capable of estimating a wide range of AGB, across different varieties, phenological stages and environments. To date, very few studies have investigated the use of point cloud data for the type of bio-volume measurements presented here. The few that have presented data for different plant species, such as cotton (Sun et al., 2018), arctic shrubs (Greaves et al., 2015) and trees (Rosell Polo et al., 2009), or for wheat which was grown in a single environment (Jimenez-Berni et al., 2018; Walter et al., 2018), except for one study by Eitel et al. (2014), where two adjacent fields of wheat plots with differing micro-climates were investigated. The collection of the point cloud data across eight different environments in the current study is an important addition to the current understanding of AGB estimation from point cloud bio-volume measurements.

The multi-location measurements presented in the current study provide a unique set of results, where large ranges in AGB were observed across a single phenological growth stage. At each location there was a moderately strong correlation between AGB and LPV, with each of these relationships (excluding Roseworthy at ZGS 59) being suitably explained by a linear regression model (Figure 7).

Combining repeated measurements from within sites at Angas Valley, Roseworthy and Winulta showed heteroscedastic relationships, which appear to be curvilinear. This is most apparent at Roseworthy, where AGB increases with time, however LPV plateaus and declines following ear emergence (ZGS 59). This trend also appears to be occurring at Angas Valley and Winulta, where AGB seems to be increasing more than LPV, though the final sample occurring at ZGS 65 for these sites prevents confirmation of this. This can likely be explained by the senescence of the crop. As the crop senesces, leafy volume is lost through leaves drying out and contracting, however, overall AGB continues to increase due to grain fill. Though this curvilinear relationship can be explained, it does highlight the limitation of using volume as an estimator for AGB at later growth stages. A further limitation of using LPV for AGB estimation may be present in dense canopies, where laser penetration within the canopy is poor. In such cases an over-estimation of volume will occur, as only points collected from the top of the canopy will be used to compute LPV. While this did not appear to be a limitation in the current study, with the laser sufficiently penetrating the canopy at maximum leafy biomass, it should be noted as a potential limitation of LiDAR-based volume measurements in high AGB environments. Furthermore, different relationships are observed over time at Angas Valley, Roseworthy and Winulta, suggesting that unique curvilinear relationships may be required for each environment. Considering geographical differences as a predictor of seasonal differences, it is likely these relationships will also alter from year to year as a result of the differing abiotic and biotic factors which occur between seasons and environments. This in turn may affect numerous aspects of crop morphology, which may alter the relationship between volume-based measurements and AGB. This introduces the question of how breeders will use such data. Will it be used to measure AGB over time within trials, comparing relative AGB at a single time point between trials, or for comparing relative AGB at individual time points? To better understand the interactions occurring between volume-based measurements and AGB, and how these interactions may influence a breeder’s use of these measurements, a series of multi-year, multi-environment trials would be beneficial.

The moderately strong correlations observed between AGB and LPV within individual measurement points, align with the results of Walter et al. (2018) and Jimenez-Berni et al. (2018), where linear regressions provided a suitable explanation for the relationship between AGB and point cloud bio-volume estimates. The work of Jimenez-Berni et al. (2018) is the most comparable to the current study, and their results indicate a strong linear relationship between AGB of wheat and their 3D Indices of processed LiDAR data for numerous physiological growth stages. However, optimization of equations was conducted for the processing of these 3D Indices, based on developmental stage, which were further transformed using separate equations for pre and post-anthesis measurements for comparison to measured AGB. These processes of optimisation require ground-truth data, which as discussed previously, are not likely to be collected within a breeding program. It is also worth noting that in the current study, and that of Jimenez-Berni et al. (2018), as AGB increases, digital measurements obtained with LiDAR sensors correlate less strongly to manual measurements, with the pooling of measurements showing a heteroscedastic relationship. This is likely a limitation imposed by the LiDAR sensors used in these studies, which return only a single discrete point, compared with units capable of returning multiple discrete points or a full wave form. Capturing multiple discrete returns or the full wave form, may overcome this issue and allow for deeper penetration within the crop canopy. However, such systems are currently prohibitively expensive for their deployment within plant breeding programs, both from an upfront cost and from a data processing perspective.

Processing LiDAR data from Roseworthy using 3DPI as described by Jimenez-Berni et al. (2018), yielded a positive linear relationship across all sample times (Figure 9). The results presented here align with those of Jimenez-Berni et al. (2018), and show the robustness of their 3DPI when applied to an alternate data set, even in the absence of optimisation. The sample at ZGS 49 did fall outside of the linear relationship observed for 3DPI, however, similar results were observed for ZGS 49 in the processing methods of the current study, where samples at ZGS 49 did not increase in projected volume but did increase in AGB. Values of 3DPI at individual sample times correlated strongly with LPV, with the exception of the ZGS 31 sample, which showed a weak correlation (Table 6). 3DPI also showed similar, but slightly weaker, correlations to AGB compared to LPV (Table 6). It is likely these correlations could be improved through the optimization of the k value within the 3DPI equation. However, as described for canopy height, continued optimization of such equations runs contrary to the benefits of implementing such phenotyping systems within field crop breeding programs. For this reason, we believe the performance of the LPV measurement used within the current study is applicable to field crop breeding programs, providing sound estimates of AGB and requiring no optimization for deployment within breeding programs. Similar volume based measurements to those used in the current study were successfully utilized to estimate cotton AGB by Sun et al. (2018), who observed manually-measured biomass to correlate strongly to volume measurements across a small number of plots.

Above-ground biomass of cereal crops is highly variable (Sharma, 1993); which was confirmed in the current study where H2 ranged from 0.12 to 0.78. Despite this broad range, only at two measurement times (Roseworthy at ZGS 31 and Angas Valley at ZGS 49) did AGB have a substantially greater heritability than LPV, while for all other measurements LPV showed similar, or substantially greater heritability than AGB. This generally high heritability of LPV, combined with the moderate correlations to AGB, indicates that it could be used as an effective tool for making genetic gain if selecting for AGB.




Application of Data

Past studies investigating the use of LiDAR sensors as a phenotyping tool have shown strong correlations to manually-collected data for multiple traits and have suggested potential applications of such data. Despite these often strong relationships, practical applications have yet to be published. For this point cloud generated phenotype data to be used effectively within wheat breeding programs, data collection and processing needs to be quick and largely automated, reducing the manual labor and time required. While the travel speed of the LiDAR system was relatively slow in the current study (2 km/h) this can be easily increased with alterations to the system hardware, specifically the path from GPS signal to LiDAR sensor trigger. Despite this, throughput of the system allows two unique plots to be scanned every 3 s, allowing for 2,400 plots to be scanned per hour. To the author’s knowledge the throughput of similar ground-based LiDAR systems has not previously been reported in the literature, with the exception of Sun et al. (2018) who reported an approximate throughput of 600 plots per hour for cotton field plots of similar size to the plots measured in the current study. While the current reported throughput of 2,400 plots per hour is high, there is still potential to improve upon this by increasing the travel speed of the system in conjunction with alterations to the system hardware. It is expected this could increase throughput to approximately 7,400 plots per hour, as reported for the HIB described by Walter et al. (2019). However, it should be noted that were travel speed to be increased, longitudinal resolution of collected point clouds would decrease. As such, further validation for correlations between LiDAR-based and manual measurements would be required at greater speeds of travel. Processing of the data takes approximately 13 s per plot (though this could potentially be optimized for greater speed) resulting in a total time of approximately 15 s to collect and convert raw data into LCH and LPV measurements for a single plot. This is an immense increase in throughput compared to manual methods, with CH measurements taking approximately 10 s per plot and AGB cuts several minutes per plot, not including time required for handling, drying and weighing samples post collection. Further to this, all measurements taken with the system are non-destructive, allowing for repeated measurements in season and for AGB to be estimated without impacting upon plot grain yield. This now provides the opportunity for breeders to collect large-scale data sets for AGB, which were previously impossible to collect due to the destructive nature of manual measurements.

Even though in the current study, the LiDAR system was effectively able to provide large increases in throughput and decreases in manual labor for the collection of CH and AGB measurements, it is likely that within a large-scale breeding program, collection of this data would only occur at one or two key physiological time points throughout the season. Examples of this could be; once the greater part of a site has reached first node (ZGS 31) for estimating early AGB, or at anthesis (ZGS 65) for estimating maximum AGB, though these timepoints would be driven by the specific trait of interest. For routine integration within a wheat breeding program, these measurements would ideally be combined with another field operation, such as herbicide or fungicide spraying. Combining data collection with routine field maintenance practices would allow for repeated measurements during the season, while also reducing the logistical burden of transporting equipment between field sites. Alternatively, a more focused set of measurements could be conducted at a single site, allowing many repeated measures throughout the season. However, this would fail to assess the genotype-by-environment interaction effects which need to be considered by breeders. Ultimately the field campaign undertaken will depend on the breeding objectives of the program and consequently the specific data desired by the breeder. The data presented on LiDAR data repeatability in the current study suggests that LiDAR sensors could be used to measure absolute values of CH and to a lesser extent AGB. However, it seems the most apparent fit for such data within breeding programs is for the relative measurement of these traits, which could be used to select within populations to achieve the desired breeding objective.

The LiDAR-based data generated in the current study shows great promise for application within breeding programs, particularly as the heritability of LCH and LPV assessments were generally comparable to, or greater than, manual measurements, indicating that genetic gain can be made through selection of each trait. There are many examples as to how the type of data collected within the current study could be applied within wheat breeding programs: one example is the selection of breeding lines based on early AGB accumulation at first node (ZGS 31). Some programs may wish to select for this trait, or against it, depending on the desired purpose of the material, e.g. for dual-purpose wheats (i.e. those producing large amounts of grazeable biomass prior to ZGS 31) or for weed competitiveness. A second example is for breeders wishing to select for increased AGB independently of CH. Currently to achieve this, breeders must manually collect measurements of CH and AGB. However, this process can be greatly simplified as LCH and LPV are calculated from the same data, and a combination of the two measurements could be used for the selection of increased AGB while maintaining lower CH. Broadening the scope of potential application, there are many other field crop breeding programs which could take advantage of the type of data presented in the current study, prime examples being biomass heavy crops, such as those used for hay or silage, as well as horticultural breeding programs where leafy biomass or volume may be key traits.





Conclusion

Through the deployment of a mobile ground-based LiDAR system across multiple environments within a large-scale commercial wheat breeding program, it has been shown that the collection and processing of 3D point cloud data is highly repeatable, strongly correlated to manual measurements of CH and AGB, and highly heritable. This combination makes LiDAR sensors a promising and valuable tool for wheat or other field crop breeders who wish to non-destructively measure CH and or AGB within their breeding programs.

Discussion on the application of LiDAR sensors to breeding programs in the current study has been based around the direct or indirect selection of specific traits within breeding programs, however there are also the exciting possibilities of fitting LiDAR data in multivariate analyses of yield trials, or within crop physiological models, in both cases to improve upon current techniques of data analysis and variety performance prediction. The authors suggest that the possibilities listed above are the logical progression for future work investigating LiDAR sensors, either for use in breeding or research programs.
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To identify drought-tolerant crop cultivars or achieve a balance between water use and yield, accurate measurements of crop water stress are needed. In this study, the canopy temperature (Tc) of maize at the late vegetative stage was extracted from high-resolution red–green–blue (RGB, 1.25 cm) and thermal (7.8 cm) images taken by an unmanned aerial vehicle (UAV). To reduce the number of parameters for crop water stress monitoring, four simple methods that require only Tc were identified: Tc, degrees above non-stress, standard deviation of Tc, and variation coefficient of Tc. The ground-truth temperatures obtained using a handheld infrared thermometer were used to calibrate the temperature obtained from the UAV thermal images and to evaluate the Tc extraction results. Measured leaf stomatal conductance values were used to evaluate the performance of the four Tc-based crop water stress indicators. The results showed a strong correlation between ground-truth Tc and Tc extracted by the red–green ratio index (RGRI)-Otsu method proposed in this study, with a coefficient of determination of 0.94 (n = 15) and root mean square error value of 0.7°C. The RGRI-Otsu method was most accurate for estimating temperatures around 32.9°C, but the magnitude of residuals increased above and below this value. This phenomenon may be attributable to changes in canopy cover (leaf curling) under water stress, resulting in changes in the proportion of exposed sunlit soil in UAV thermal orthophotographs. Therefore, to improve the accuracy of maize canopy detection and extraction, optimal methods and better strategies for eliminating mixed pixels are needed. This study demonstrates the potential of using high-resolution UAV RGB images to supplement UAV thermal images for the accurate extraction of maize Tc.

Keywords: stomatal conductance, leaf area index, soil water content, red-green ratio index, Otsu algorithm, nearest neighbor algorithm



Introduction

The most important challenge for agriculture in arid and semi-arid areas worldwide is the need to produce more food under water-limited conditions (Han et al., 2018). The current food demand will double by 2050 because of projected population and socio-economic growth. For developing countries to meet this challenge, cereal yields need to increase by 40%, and net irrigation water requirements will increase by 40–50% (Atkinson et al., 2018). It is necessary to accelerate plant breeding efforts to increase potential yields and achieve maximum production per unit of applied irrigation water. Accurate measurements of crops’ responses to water stress are essential for screening drought-tolerant crop species and for achieving a delicate balance between yield and irrigation.

Currently, there are two methods for detecting water stress in crops: One is based on soil water content, and the other is based on crop parameters (Ihuoma and Madramootoo, 2017). Crop physiological changes, e.g., stomatal conductance (Gs) and leaf water potential, and biophysical changes, e.g., leaf and canopy structure, have been widely used to monitor crop water status (Gerhards et al., 2018). However, on-site measurements of soil water content and crop characteristics are time-consuming, laborious, and costly and cannot represent the spatial variability of crop water status (Campbell and Campbell, 1982; Li et al., 2010).

For decades, crop water stress has been monitored using satellite-based remote sensing images (Du et al., 2013; Calera et al., 2017; Veysi et al., 2017; Helman et al., 2018). For example, Veysi et al. (2017) evaluated the water status of a sugarcane plantation in southwest Iran using Landsat 8 thermal infrared data. The advantages of this method are that it is non-destructive and requires low labor inputs. However, satellite-based remote sensing imagery is often not suitable for monitoring crop water stress at the farm scale due to its coarse spatial resolution and homogeneity of data with large pixels (Sagan et al., 2019). In addition, cloud cover also remains a significant challenge in satellite-based remote sensing (Mulla, 2013).

In recent years, unmanned aerial vehicles (UAVs) have become an advanced field phenotyping platform to provide data with high spatio-temporal resolution. These vehicles have boosted the use of near-earth aerial imagery to monitor crop water status (Park et al., 2017; Poblete et al., 2018; Quebrajo et al., 2018; Yang et al., 2018; Zhang et al., 2019). For example, the water status of a cotton crop was evaluated using UAV thermal imagery with high spatio-temporal resolution (1-day revisits and 0.01-m resolution) in Yangling, Shaanxi, China (Bian et al., 2019). Crop water status is often monitored using UAV thermal remote sensing technology (Martínez et al., 2016; Santesteban et al., 2017; Zhang et al., 2018b; Zhang et al., 2018c), because canopy temperature (Tc) is one of the most important physiological parameters related to transpiration, leaf water potential, and Gs. When the water supply is adequate, rising environmental temperature results in increased Gs and a higher transpiration rate of crops to cool the leaves, resulting in insignificant changes in Tc (Tanner, 1963). However, under drought conditions, the leaf Gs and transpiration rate may decrease. Consequently, the Tc may increase because of the reduction in the cooling effect of transpiration (Tanner, 1963; Gates, 1968).

The use of UAV thermal remote sensing technology to monitor crop water status involves three important steps: temperature calibration, Tc extraction, and establishment of a Tc-based crop water stress indicator (Ribeiro-Gomes et al., 2017; Gerhards et al., 2018). To calibrate UAV thermal imagery, a linear regression model is often established between the measurements obtained using a handheld infrared thermometer and those obtained from UAV thermal images (Harvey et al., 2016; Bian et al., 2019; Sagan et al., 2019). For example, Yang et al. (2018) collected ground-truth temperature data for maize canopy and white-black boards to calibrate UAV thermal images. The coefficient of determination (R2) between the ground-truth temperatures and those estimated from UAV thermal images was 0.99 in the range of 25–55°C. However, due to the strong influence of environmental factors (e.g., air temperature and humidity) and the locations where images are acquired on Tc, it is important to establish specific linear regression models according to particular environmental conditions and measurement locations (Sugiura et al., 2007; Torres-Rua, 2017).

When using UAV thermal imagery to monitor crop water status before the crop reaches effective canopy cover, it is necessary to extract pure canopy pixels while avoiding the pixels of soil and other background materials in the images. There are two commonly used methods to exclude background pixels: a threshold-based approach and a co-registration approach. The threshold-based approach uses thermal imagery only, and Tc is extracted using algorithms such as Otsu and edge detection (Meron et al., 2010; Rud et al., 2014). For example, Ludovisi et al. (2017) used two alternative automatic threshold segmentation approaches (in-house algorithms in Matlab and eCognition) to extract Tc data for black poplar. Park et al. (2017) excluded ambiguously mixed pixels in the canopy-soil boundary using an edge detection method combined with Sobel and Canny algorithms in analyses of images of nectarine and peach orchards, and then they established an adaptive crop water stress index (CWSI) model. Zhang et al. (2018c) extracted Tc data for cotton using a threshold-based approach based on Otsu and canny algorithms. However, mixed pixels in thermal images can cause significant bias in Tc measurements because of the relatively low spatial resolution (from 320 × 240 to 640 × 480 pixels). To reduce bias in the extracted Tc data, a co-registration approach using both thermal and other (e.g., red–green–blue (RGB) and multispectral) imagery has been proposed. Co-registered RGB or multispectral imagery can help to mask the temperature of non-canopy features such as soil. For example, Poblete et al. (2018) proposed a method for automatic co-registration of UAV thermal and multispectral imagery to extract Tc data for a vineyard using a computer vision algorithm of modified-scale invariant feature transformation and Kmeans++ clustering. However, the wide row spacing in vineyards, e.g., 2.8 m in Baluja et al. (2012), results in small fractional canopy cover (e.g., 19% in Poblete et al., 2018). Compared with vineyards, maize crops show a wide range of fractional cover, increasing from 0 to 1 as the crop grows (Han et al., 2018). These changes and the large proportion of canopy cover may affect the extraction of maize Tc data. Therefore, the extraction of maize Tc data using a co-registration approach should be explored.

Among the Tc-based crop water stress indicators, CWSI is the most widely used. This model has been used to monitor the water status of various plants, such as maize (Irmak et al., 2000; Zia et al., 2013; Han et al., 2018; Zhang et al., 2018a), cotton (Cohen et al., 2015; Zhang et al., 2018c), grapevine (Zarco-Tejada et al., 2013; Pou et al., 2014; Bellvert et al., 2015), peach (Wang and Gartung, 2010; Paltineanu et al., 2013; Bellvert et al., 2014), and olive (Berni et al., 2009; Agam et al., 2013a; Agam et al., 2013b). There are two widely used CWSI models: the empirical model proposed by Idso et al. (1981) and the theoretical model proposed by Jackson et al. (1981). Although the empirical model has the advantage of being easier to establish after the determination of non-water-stress and non-transpiring (stomata fully closed) baselines, it still requires at least three parameters, i.e., Tc, air temperature, and relative humidity, or wet and dry reference positions (Zhang et al., 2019). Some researchers have attempted to reduce the number of parameters required to calculate crop water stress indicators. For example, Taghvaeian et al. (2014) compared the performances of CWSI and degrees above non-stress (DANS) models to estimate the water stress of sunflower crops in northern Colorado. Their results showed that DANS based solely on Tc and extracted by a simple subtraction could be used to monitor water stress and schedule irrigation for water-deficient sunflower crops in arid and semi-arid areas. Han et al. (2016) developed a new crop water stress indicator, standard deviation of Tc (CTSD), within a thermal image to monitor the water stress of maize crops in Greeley, Colorado, USA. Soil water deficit, leaf water potential, Gs, and other crop water stress indicators were shown to be highly correlated with CTSD. Their results suggested that the CTSD model has good potential for scheduling irrigation because it relies only on Tc and is easy to calculate. Zhang et al. (2018b) proposed that Tc characteristics obtained from thermal images, including CTSD and coefficient of variation of Tc (CTCV), could be used to monitor water stress of cotton crops in Yangling, Shaanxi, China.

The aim of this study was to explore the use of the co-registration approach to extract maize Tc data and monitor maize water stress at the farm scale. We obtained and analyzed UAV-based thermal and RGB images, and we evaluated the performance of Tc and Tc-based indicators (CTSD, DANS, and CTCV) for monitoring maize water stress.




Materials and Methods



Study Site

This study was conducted in a 1.13-ha research field (40°26′0.29″N, 109°36′25.99″E, elev. 1,010 m), located in Ordos, Inner Mongolia, the North China Plain, where rainfall cannot meet crop water requirements. The study field was divided into five regions with five different irrigation treatments (TRTs). Three areas measuring 6 × 6 m2 within each region were selected as sampling plots. In each plot, three sampling sites were selected for data collection (yellow rectangles in Figure 1). At the effective rooting depth (0–90 cm), the volumetric soil water content at field capacity was 13%, and permanent wilting point was 5.6%. More detailed information on the soil at the site is provided in Zhang et al. (2019). Maize (Zea mays cv. Junkai 918) was planted on May 11, 2018 [day of year (DOY) 131], with a row spacing of 0.58 m, plant spacing of 0.25 m, and east–west row direction. The maize plants emerged on May 18, headed on July 21, and were harvested on September 10, 2018 (silage) after a 115-day life span.
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Figure 1 | Aerial view of the experimental field. Shown are treatment region division, location of sampling plots, sampling sites (A), and ground control sites (B).






Experimental Design

During the late vegetative stage (V7–VT, DOY 184–206) before full canopy cover, three different levels of irrigation were applied in TRTs 1–5; full irrigation (FI, TRT 1), moderate deficit irrigation (MDI, TRTs 2 and 4), and severe deficit irrigation (SDI, TRTs 3 and 5). Non-stressed crop evapotranspiration was estimated by the reference evapotranspiration and single crop coefficient approach (Allen et al., 1998). The crop coefficient was 0.66, 1.31, and 0.54 in the initial, mid-season, and late-season developmental stages (alfalfa-based), respectively. The maize plants were irrigated using a center pivot sprinkler system (Valmont Industries, Inc., Omaha, USA) with two spans and one end gun (total length, 143.7 m). Detailed information about the center pivot sprinkler system is provided elsewhere (Li et al., 2018). The coefficient of uniformity for the first span (research field) using R3000 sprinklers was 82.7% or 88.3% at 20% or 40% of full walking speed, respectively, as calculated using the modified formula of Heermann and Hein (1968). The amount of water applied to each TRT was measured and recorded using a MIK-2000H flow meter (Meacon Automation Technology Co., Ltd, Hangzhou, China). To eliminate interference from nutritional stress and weeds, fertilizer and herbicide were applied according to the local cultivation practices.

Figure 2 shows the specific dates and amounts of precipitation and irrigation events. Before the start of deficit irrigation (DOY 184), all treatments (TRTs 1–5) received an equal amount of irrigation provided in three applications (total amount, 90 mm). The purpose of this early season irrigation was to provide sufficient water in all treatments so that plants would emerge and grow as uniformly as possible before imposing water deficit at different levels. During DOY 131–184, the total amount of precipitation was 16 mm. During DOY 184–197, TRT 1, TRTs 2 and 4, and TRTs 3 and 5 received 60, 45, and 15 mm of water, applied in three, two, and one applications, respectively. During this time, there were three rain events (in total, 14-mm precipitation). During DOY 198–206, there were three unusually heavy rain events (in total, 146-mm precipitation).
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Figure 2 | Dates (day of year (DOY)) and amounts of precipitation (blue solid line) and irrigation (red solid line) events from seeding to tassel in 2018. Panels of (A–E) are for treatments 1–5, respectively. The dotted lines indicate dates of seeding (red) and emergence (green), the boundaries of late vegetative stage (black), and the date of data collection (blue). DOY 185 was rainy before dawn and was sunny during the daytime.






Field and Meteorological Data Collection

Figure 3 shows the field data collected including ground-truth Tc (Figure 3A), stomatal conductance (Gs, Figure 3B), leaf area index (LAI, Figure 3C), and soil water content (SWC, Figure 3D). On DOY 185 and 193 (sunny days), ground-truth Tc, Gs, and UAV images were collected between 11:00 and 13:00 (Chinese standard time). The LAI was measured at 2 h before sunset, to avoid the influence of direct sunlight. The SWC data were collected in the afternoon. At each sampling plot, ground-truth Tc, Gs, and LAI measurements were taken at three sampling sites, and the average values of these three readings were used to represent the sampling plot. A total of 45 data sets of samples (ground-truth Tc, Gs, and LAI) were obtained on each sampling day.
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Figure 3 | Schematic indicating the field data collection within each sampling site, including measurements of canopy temperature (A), stomatal conductance (B), leaf area index (C), soil water content (D), and written informed consent of identifiable imagery (E).




Ground-truth Tc was measured by a handheld infrared thermometer (RAYTEK, ST60+, Raytek Inc., Santa Cruz, USA) with a temperature range of 32–600°C and a spectral range of 8–14 µm. The measurement error is ±1% of the reading or ±1°C, whichever value is larger. The emissivity value was set to 0.97. To avoid interference from the soil, the infrared thermometer was moved across the canopy (at about 120°) perpendicular to the row at 30 cm above the canopy with a horizontal angle of 15° (Figure 3A). The Gs was measured using an AP4 porometer (Delta-T Devices, Burwell, Cambridge, CB25 0EJ, UK) with a measurement range of 5.0–1,200 mmol·m−2·s−1 and a measurement accuracy of ±10% (5–800 mmol·m−2·s−1) or ±20% (800–1200 mmol·m−2·s−1). At each sampling site, measurements were conducted on the upper side of two fully collared sunlit leaves. The LAI was measured using an LAI-2200C plant canopy analyzer (LI-COR, USA). At each sampling site, radiation values were measured at the top of canopy and at four marked points under the canopy.

The SWC was measured at the center of each sampling plot using the traditional gravimetric method. The SWC was determined at six depths (10, 20, 30, 45, 60, and 90 cm) in each plot. Details of SWC measurements are provided in Zhang et al. (2019). The meteorological data were measured by an automated weather station located in a 1-ha alfalfa field adjacent to the research field. The meteorological data included rainfall, air temperature, relative humidity, net solar radiation, and wind speed (at 2 m above the ground). Except for rainfall, other meteorological factors were measured at 30-min intervals. The mean daily air temperature, relative humidity, net solar radiation, and wind speed during the maize late vegetative stage were 22°C, 73%, 101 W/m2, and 0.7 m/s, respectively.




UAV System and Data Collection



UAV Thermal and RGB Imaging Systems

In this study, a hexa-copter UAV thermal remote sensing system (Figure 4) was developed with a PIXHAWK autopilot (CUAV, Guangzhou, China), a FLIR Vue Pro R 640 thermal camera (FLIR Systems, Wilsonville, OR, USA), and a Feiyu brushless gimbal (Moyouzhijia, Huizhou, China). The main technical parameters are shown in Table 1. The FLIR Vue Pro R 640 is a small radiometric thermal sensor designed for UAV integration and data collection. It has a claimed accuracy of ±5°C and thermal sensitivity of 0.05°C. It is easy to operate with many MAVLink autopilots (e.g., PIXHAWK) using the included accessory cable and can be triggered based on time intervals or from waypoints within the UAV flight plan. Information of GPS locations for each image was obtained from PIXHAWK during collection. The configuration was set using the FLIR UAS mobile application that connects to the camera via Bluetooth. Flight planning was conducted with ground control station software, Mission Planner, which allows the user to generate a route of waypoints as a function of the field of view of the sensor, degree of overlap between images, and ground resolution. Mission Planner also displays real-time flight data.
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Figure 4 | Schematic indicating the main components of unmanned aerial vehicle (UAV) thermal remote sensing system developed in this study, including UAV platform (A), pixhawk suite (B), gimbal and Flir Vue Pro R camera (C), 2.4GHz computer radio system (D), and ground control station (E).







	
Table 1 | Main parameters of UAV thermal and RGB image acquisition system.





	
Parameter


	
Value





	
UAV thermal image acquisition system


	
Wheelbase


	
900 mm





	
Takeoff weight


	
6 kg





	
Payload


	
2 kg





	
Flight time


	
18 min





	
Communication radius


	
3 km





	
Speed


	
5 m/s





	
Imager resolution


	
640 × 512 pixels





	
Data format


	
14-bit Tiff





	
Spectral bands


	
7.5–13.5 µm





	
Frame rate


	
9 Hz





	
Lens focal length


	
13 mm





	
Lens field of view


	
45° × 37°





	
Accuracy


	
(±) 5°C





	
Thermal sensitivity (NETD)


	
0.05°C





	
Weight


	
 < 115 g





	
Dimension


	
63 mm × 44.4 mm × 44.4 mm





	
UAV RGB image acquisition system


	
Wheelbase


	
350 mm





	
Weight


	
1,388 g





	
Flight time


	
30 min





	
Communication radius


	
5 km





	
Speed


	
 <72 km/s





	
Imager resolution


	
4,864 × 3,648 pixels





	
Lens focal length


	
8.8 mm/24 mm





	
Lens field of view


	
84°





	
Image sensor


	
1-in. CMOS





	
RGB color space


	
sRGB





	
ISO range


	
100–12,800





	
Shutter speed


	
8–1/8,000 s





	
Image format 


	
JPEG; DNG





	
UAV, unmanned aerial vehicle; RGB, red–green–blue; CMOS, complementary metal-oxide semiconductor.










A quad-rotor UAV RGB remote sensing system, DJI Phantom 4 Pro (Shenzhen Dajiang Baiwang Technology Co., Ltd, China) was used to collect RGB images. This UAV system has an integrated camera with a 1-in. complementary metal-oxide semiconductor sensor that captures RGB spectral information. The camera has an 84° field of view lens with an f/2.8 aperture and a resolution of 4,864 × 3,648 pixels. This lens has been especially designed to eliminate image distortion. Table 1 gives detailed information about the digital camera and UAV system.




Acquisition and Pretreatment of UAV Thermal and RGB Images

Figure 5 shows the main procedures for acquisition and pretreatment of UAV thermal and RGB images. On DOY 185 and 193 (sunny days) between 11:00 and 13:00, thermal images were obtained with the FLIR Vue Pro R 640 camera lens facing downward vertically, and with 85% front and side overlap. The flight height, speed, and ground sample distance were 60 m (relative flying height), 5 m/s, and 7.8 cm, respectively. Before collecting thermal images of the maize canopy, images of black (reflectivity 3%) and white (reflectivity 58%) diffuse boards (size 3 m × 3 m, Group VIII, USA) and water were captured at relative flying heights of 10, 20, 30, 40, 50, and 60 m. At the same time, the temperatures of the above three objects were measured using a handheld infrared thermometer (RAYTEK ST60+) for temperature calibration. Before the flight, the emissivity and image format were set to 0.97 and 14-bit Tiff. The outdoor mode was selected; and parameters of weather conditions, atmosphere temperature, and humidity were set to actual conditions. The infrared thermal camera was pre-heated for about 10 min to reduce systematic error (Yang et al., 2018).
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Figure 5 | The acquisition and pretreatment of unmanned aerial vehicle (UAV) thermal and red–green–blue (RGB) imagery, including flight route design, camera parameter setting, UAV fights, image mosaicking and correction, and temperature calibration (thermal). (A) Written informed consent of identifiable imagery.




On DOY 185 and 193 (sunny days) between 11:00 and 13:00, RGB images of maize were acquired using the digital camera mounted on a DJI Phantom 4 Pro. Flights were controlled by Altizure software (Everest Innovation Technology Ltd, Hong Kong, China), which directed the UAV to fly along a serpentine image acquisition plan at height of 50 m and a speed of 2.5 m/s with the camera facing downwards. The overlap of front and side images was 90%. The ground sample distance was 1.25 cm. The parameters of ISO, white balance, and shutter were set to 400, 1/1,250, and sunny, respectively.

After images were acquired, mosaic processing was performed using Pix4DMapper software (Pix4DInc., Lausanne, Switzerland), which is specifically designed to process UAV images using techniques rooted in both computer vision and photogrammetry (Turner et al., 2012). Thermal and RGB orthomasaics were geo-referenced using five ground control points (Figure 1) whose coordinates were measured using a KOLIDA RTK differential GNSS device (KOLIDA Instrument Co., Ltd, Guangzhou, China).





Tc Extraction Method

We used a co-registration approach (the red–green ratio index (RGRI)-Otsu method proposed in this study) to analyze UAV thermal and RGB images to extract maize Tc at the late vegetative stage (Figure 6). This approach involved two key steps: First, we extracted the maize fractional vegetation cover (FVC) on the basis of UAV RGB images; and second, we resampled the spatial resolution of the FVC map to match the scale of the thermal images. To obtain the FVC map, the Otsu algorithm was applied to the RGRI (Verrelst et al., 2008) map. The RGRI was calculated using equation (1):
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Figure 6 | The main steps of the co-registration approach (red–green ratio index (RGRI)-Otsu method proposed in this study) using both unmanned aerial vehicle (UAV) thermal and red–green–blue (RGB) remote sensing imagery. FVC (fractional vegetation cover) and RGRI (red–green ratio index) were derived from optical image.




	[image: ],	(1)

where R and G represent the digital numbers of red and green bands. During the extraction of the FVC map, soil or other background pixels were flagged as 0 and maize pixels as 1. The result was an FVC map with a spatial resolution of 1.25 cm. During downscaling, the spatial resolution of the FVC map was resampled from 1.25 to 7.8 cm by using the nearest-neighbor interpolation algorithm. The nearest-neighbor interpolation is the simplest and fastest implementation and sets the pixel value of each point of the target image to the nearest point in the source image, without producing mixed pixels. This decreases the effect of mixed pixels on Tc extraction. Finally, multiplication between the FVC map (7.8 cm) and thermal image (7.8 cm) was adopted to extract a Tc map. The entire process of the RGRI-Otsu method was implemented by programming in R language (R-3.4.3, https://www.r-project.org/).




Tc-Based Crop Water Stress Indicators

To reduce the number of parameters required for crop water stress monitoring, we chose four indices i.e., Tc, DANS, CTSD, and CTCV, which only need Tc. The values of DANS, CTSD, and CTCV were calculated using equations (2)–(4):
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where [image: ] is the mean maize Tc within a sampling plot derived by the RGRI-Otsu method, TNS is the non-stressed maize Tc, Tci (i = 1, 2, …, n) is the actual Tc of each maize canopy pixel within a sampling plot, and n is number of maize canopy pixels within a sampling plot. Estimation of DANS requires appropriate selection of TNS. For maize, 28°C has been suggested by the ARS Plant Stress and Water Conservation Laboratory (Evett et al., 2000; DeJonge et al., 2015).




Statistical Analysis

For statistical analysis, ground-truth Tc values were compared with the extraction results of maize Tc, and measured Gs values were used to evaluate the performance of the four Tc-based crop water stress indicators. Specifically, linear regression models were used with the coefficient of determination (R2) and the root mean square error (RMSE) calculated for comparisons. The regressions were implemented by using R programming language and the lm() function.





Results



Distribution of Ground-Truth Tc, Gs, and LAI

Figure 7 shows the distributions of ground-truth Tc, Gs, and LAI, for TRTs 1, 2, and 5 based on data acquired on DOY 185 and 193, respectively. As shown in Figure 7A, E, because of the irrigation event on DOY 184 when the deficit irrigation treatments began (Figure 2), there was no obvious difference in the distributions of ground-truth Tc and LAI among the three different irrigation treatments. The average ground-truth Tc values were 29.2°C, 28.9°C, and 28.7°C, and LAI were 1.3, 1.1, and 1.2 for TRTs 1 (FI), 2 (MDI), and 5 (SDI), respectively. The Gs values for TRTs 1, 2, and 5 were higher than 0.50 mol·m−2·s−1, which is the non-stress baseline for maize (Han et al., 2016) (Figure 7C, DOY 185). However, with prolonged water deficit, clear gradients in the distributions of ground-truth Tc, Gs, and LAI were detected among the irrigation treatments (Figures 7B, D, F, DOY 193). As shown in Figure 7B, the ground-truth Tc of TRT 1 was below 30.0°C. The Tc increased with increasing severity of drought stress. The average ground-truth Tc in TRTs 1, 2, and 5 was 29.4°C, 32.7°C, and 35.3°C, respectively. As shown in Figure 7D, the Gs of TRT 1 was higher than 0.50 mol·m−2·s−1, indicating no water stress. The Gs tended to decrease with increasing severity of drought stress. The average Gs for TRTs 1, 2, and 5 was 0.60, 0.24, and 0.17 mol·m−2·s−1, respectively. As shown in Figure 7F, the highest LAI was in TRT 1, and LAI tended to decrease with increasing severity of drought stress (average LAI of 1.6, 1.4, and 1.1 in TRTs 1, 2, and 5, respectively).
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Figure 7 | The distributions of ground-truth canopy temperature (Tc), stomatal conductance (Gs), and leaf area index (LAI) for deficit irrigation treatments at three different levels (TRT 1, TRT 2, and TRT 5), based on data acquired on day of year (DOY) 185 and DOY 193, respectively. TRT 1, TRT 2, and TRT 5 were full irrigation (FI), moderate deficit irrigation (MDI), and severe deficit irrigation (SDI), respectively. Panels (A), (B), and (C) were ground-truth Tc, Gs, and LAI acquired on DOY 185, respectively, while panels (D), (E), and (F) were ground-truth Tc, Gs, and LAI acquired on DOY 193, respectively.






Calibration of Temperature Derived From UAV Thermal Images

Figure 8A shows the temperature variations of water and diffuse boards derived from UAV thermal images captured at different flight heights (10, 20, 30, 40, 50, and 60 m) on DOY 193. With increasing height of image acquisition (10–60 m), the temperatures of the three objects on the ground showed a clear downward trend. The difference between the highest and lowest estimated temperatures for water and the two diffuse boards were 5.35°C, 6.91°C, and 6.17°C, respectively, indicating that the acquisition height of UAV thermal images affects the accuracy of the derived temperatures. As the height increased, the temperatures derived from UAV thermal images significantly decreased. Figure 8B shows the relationships between temperatures derived from the UAV thermal images and ground-truth measurements. At different flight heights (10, 40, and 60 m), there were good linear correlations with a slope about 1.30. However, as the height increased, the intercept of the linear correlation changed markedly and became smaller. This provided more evidence that the temperature obtained by the thermal infrared camera significantly decreased as the flight height increased.
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Figure 8 | The temperature variations of water and black-white diffuse boards derived from unmanned aerial vehicle (UAV) thermal imagery at different flight heights (A); regression model between temperatures derived from UAV thermal imagery and ground-truth temperatures (B).






Extraction of Maize Tc

As shown in Figure 7C, there was no water stress in the three irrigation treatments on DOY 185, with Gs values above the non-stress baseline for maize (0.50 mol·m−2·s−1). Therefore, to better describe the relationship between ground-truth Tc and Tc derived from UAV thermal images, data acquired on DOY 193 for maize under different levels of water stress in three irrigation treatments were used in a linear regression analysis (Figure 9). There was a high correlation with an R2 value of 0.94 (n = 15) and an RMSE value of 0.7°C. At the same time, there was a significant deviation from the 1:1 line with slope and intercept of 0.71 and 9.53, respectively. Specifically, when the ground-truth Tc was less than 32.9°C, a lower Tc was obtained by RGRI-Otsu extraction, and when the ground-truth Tc was greater than 32.9°C, a higher Tc was obtained by RGRI-Otsu extraction. Therefore, to obtain more accurate values, the RGRI-Otsu extracted Tc should be modified accordingly based on the linear regression model. Similar deviations have been found in other studies (Baluja et al., 2012; Yang et al., 2018; Sagan et al., 2019).
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Figure 9 | Linear regression model between maize canopy temperatures (Tc) extracted by the co-registration approach (red–green ratio index (RGRI)-Otsu method) and by ground-truth.






Relationships Between Tc-Based Crop Water Stress Indicators and Gs and LAI of Maize

Figure 10 illustrates the relationships between Tc-based crop water stress indicators and Gs. There were significant negative correlations between Gs and Tc, DANS, CTSD, and CTCV (p < 0.01), with the largest R2 of 0.76 for Tc and DANS, and lower R2 of 0.62 and 0.54 for CTSD and CTCV, respectively. Plant leaves curl under water stress, resulting in lower LAI (Taghvaeian et al., 2014). Therefore, the relationships between Tc-based crop water stress indicators and LAI were analyzed (Figure 11). There were significant negative correlations between LAI and Tc, DANS, CTSD, and CTCV (p < 0.01). When there was no or mild water stress and high LAI values (no leaf rolling), the four Tc-based water stress indicators had smaller values. When there was water stress and LAI values were lower (caused by leaf rolling), the four Tc-based water stress indicators had larger values; the R2 values were 0.77 for Tc and DANS, and 0.61 and 0.46 for CTSD and CTCV, respectively.
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Figure 10 | Relationships of canopy temperature (Tc)-based crop water stress indicators with stomatal conductance (Gs). The data were acquired on day of year (DOY) 193. Panel (A) for canopy temperature (Tc) derived by red–green ratio index (RGRI)-Otsu method; (B) for degrees above non-stress (DANS); (C) for standard deviation of canopy temperature (CTSD); and (D) for canopy temperature coefficient of variation (CTCV).
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Figure 11 | Same as Figure 10, but for leaf area index (LAI).






Relationships Between Tc-Based Crop Water Stress Indicators and SWC

In general, Tc, DANS, CTSD, and CTCV showed significant (p < 0.05) correlations with SWC at the depths of 10, 20, and 30 cm, except for CTSD and CTCV with SWC at 10 cm (Table 2). In contrast, there were no significant correlations between the four indicators and SWC at the soil depths of 45, 60, and 90 cm. Among the three shallowest depths of the root zone (10, 20, and 30 cm), SWC at 20 cm had the highest correlation (R2 ≥ 0.46) with the four indicators. Similar to the characteristics of Gs and LAI, the Tc and DNAS showed the largest R2 value of 0.53 with SWC at 20 cm, while the R2 values for CTSD and CTCV were 0.47 and 0.46, respectively. The same trend was detected for SWC at the soil depth of 10 cm. However, we detected the opposite trend in the correlations between the four indicators and SWC at the depth of 30 cm, with slightly larger R2 values of 0.40 and 0.38 for CTCV and CTSD, respectively, and a smaller R2 value of 0.34 for Tc and DANS. Further research is required to determine the reason for this phenomenon.






	
Table 2 | Coefficient of determination (R2) of four Tc-based crop water stress indicators with respect to the soil volumetric water content (SWC) at different depths of root zone (10, 20, 30, 45, 60, and 90 cm) on day of year (DOY) 193.





	
Depth (cm)


	
Tc


	
DANS


	
CTSD


	
CTCV





	
10


	
0.40*


	
0.40*


	
0.23


	
0.20





	
20


	
0.53*


	
0.53*


	
0.47*


	
0.46*





	
30


	
0.34*


	
0.34*


	
0.38*


	
0.40*





	
45


	
0.04


	
0.04


	
0.01


	
0.01





	
60


	
0.00


	
0.00


	
0.00


	
0.01





	
90


	
0.10


	
0.10


	
0.09


	
0.07





	
Tc, DANS, CTSD and CTCV were abbreviations of canopy temperature derived by the red–green ratio index (RGRI)-Otsu method for degrees above non-stress, standard deviation of canopy temperature, and canopy temperature coefficient of variation, respectively.

*p < 0.05.












Mapping Maize Water Stress Based on UAV Thermal and RGB Images

After the comparison and analysis of the correlations between Tc-based crop water stress indicators and Gs, the classical water stress indicator, the maize Tc derived by the RGRI-Otsu method showed great potential for monitoring maize water stress. Figure 12 shows the maize Tc distribution in TRTs 1–5 on DOY 185 and 193. On DOY 185 (non-stressed, Figure 7C), there were no obvious differences among three irrigation treatments (TRTs 1, 2, and 5) with mean Tc values of 25.1°C, 25.9°C, and 26.2°C, respectively (Table 3). However, on DOY 193 (water-stressed, Figure 7D), there was a clear temperature gradient among the different irrigation treatments (TRTs 1, 2, and 5) with mean Tc values of 27.1°C, 33.2°C, and 38.9°C, respectively.
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Figure 12 | Maps of maize canopy temperature (Tc) derived by the co-registration approach (red–green ratio index (RGRI)-Otsu). Panel (A) for Tc maps derived by using unmanned aerial vehicle (UAV) thermal and red–green–blue (RGB) imagery acquired on day of year (DOY) 185; (B) for Tc maps derived by using UAV thermal and RGB imagery acquired on DOY 193.







	
Table 3 | The mean maize canopy temperature of each deficit irrigation treatment (TRTs 1–5) derived by the co-registration approach (red–green ratio index (RGRI)-Otsu).





	
Dates


	
The mean maize canopy temperature (°C)





	
TRT 1


	
TRT 2


	
TRT 3


	
TRT 4


	
TRT 5





	
DOY 185


	
25.1


	
25.9


	
26.2


	
28.5


	
26.2





	
DOY 193


	
27.1


	
33.2


	
37.4


	
40.1


	
38.9













Discussion

Thermal remote sensing using UAVs has great potential for the detection and monitoring of drought stress and has been used to monitor drought stress in crops such as cotton (Cohen et al., 2015; Cohen et al., 2017; Zhang et al., 2018b; Bian et al., 2019), potato (Rud et al., 2014), and soybean (Maimaitijiang et al., 2017; Bai and Purcell, 2018), and in orchards (Berni et al., 2009; Park et al., 2017) and vineyards (Espinoza et al., 2017; Poblete et al., 2018). However, accurately extracting the crop Tc is still a challenge (Vadivambal and Jayas, 2011; Gago et al., 2015). Because there is no thermo-electric cooler device in the uncooled thermal camera, appropriate calibration is required for accurate estimates of crop Tc. There are five main aspects of calibration: non-uniformity correction, defective pixel correction, shutter correction, radiometric calibration, and temperature calibration (for details of these factors, see Ribeiro-Gomes et al., 2017). In currently used uncooled thermal cameras, non-uniformity correction, defective pixel correction, and shutter correction are performed by the firmware included in the system. With respect to radiometric calibration, the perceived temperature of the vegetation is substantially affected by air temperature, relative humidity, emissivity, and object distance (Aubrecht et al., 2016; Sagan et al., 2019). The FLIR Vue Pro R 640 thermal camera used in this study could perform radiometric calibration via its digital acquisition system. For temperature calibration, a linear regression model between ground-truth temperatures measured using a handheld infrared thermometer and those derived from UAV thermal images is often established (Harvey et al., 2016; Bian et al., 2019; Sagan et al., 2019). In this study, we generated a specific linear regression model for each acquisition height (10–60 m) of the UAV thermal images (Figure 8), since the temperature obtained by the thermal camera significantly decreased with increasing flight height. Similar results were reported by Yang et al. (2018), who found that the linear regression model based on data acquired at 1-m height had a slope of 1.0, while that based on data acquired at 50-m height had a slope of 1.4. Similar to our results, their findings showed that the temperatures derived from thermal images acquired at 50-m height were lower than those derived from thermal images acquired at 1-m height. Therefore, to obtain an accurate temperature calibration model, specific linear regression models between ground-truth temperatures and temperatures derived from UAV thermal images should be established for different image acquisition heights.

Before the crop reaches its effective canopy cover, another problem for effectively monitoring water status based on UAV thermal imagery is the relatively low spatial resolution (image resolution ranging from 320 × 240 to 640 × 480 pixels) (Gago et al., 2015). Mixed pixels consist of crop canopy and background and considerably reduce data quality (Jones and Sirault, 2014). In this study, the RGRI-Otsu method was used to extract maize Tc at the late vegetative stage using both UAV thermal and RGB images. In the RGRI-Otsu method, high-spatial-resolution (1.25 cm) UAV RGB images were used to obtain the distribution of maize (FVC map), and the nearest-neighbor algorithm was applied to resample the spatial resolution of FVC map to match the scale of thermal images (from 1.25 to 7.8 cm). During resampling, the nearest-neighbor interpolation set the pixel value of each point of the target image to the nearest point in the source image without producing mixed pixels. This decreased the effect of mixed pixels on Tc extraction.

The RGRI-Otsu extracted Tc was highly correlated with the ground-truth Tc, with R2 of 0.94 (n = 15) and RMSE of 0.7°C (Figure 9). We detected significant deviation from the 1:1 line with the slope and intercept of 0.71 and 9.53°C, respectively. Similar deviations have been found in other studies (Baluja et al., 2012; Yang et al., 2018; Sagan et al., 2019). More specifically, in this study, when Tc was lower than 32.9°C, a lower RGRI-Otsu extracted Tc value was obtained, and when Tc was higher than 32.9°C, a higher extracted Tc value was obtained. This phenomenon is illustrated in Figure 12 and Table 3. For example, on DOY 185, since maize was not under water stress (Figure 7C), there were relatively low mean Tc values of 25.1°C, 25.9°C, and 26.2°C for TRTs 1, 2, and 5, respectively, compared with the ground-truth Tc values of 29.2°C, 28.9°C, and 28.7°C, respectively. On DOY 193, after prolonged water deficit, TRT 2 and TRT 5 were under different levels of water stress with average Gs values of 0.24 and 0.17 mol·m−2·s−1, respectively (Figure 7D). The Tc also had a clear gradient with mean values of 27.1°C, 33.2°C, and 38.9°C for TRTs 1, 2, and 5, respectively (Table 3). Compared with the ground-truth Tc values of 29.4°C and 35.3°C for TRT 1 and TRT 5, respectively, the Tc of TRT 1 extracted by the RGRI-Otsu method (29.4°C, less than 32.9°C) was assigned a lower value of 27.1°C and that of TRT 5 (35.3°C, greater than 32.9°C) was assigned a higher value of 38.9°C. However, in TRT 2, there was no obvious difference between the ground-truth Tc value (32.7°C, close to 32.9°C) and the Tc value (33.2°C) derived by RGRI-Otsu method. Similar results were found by Ribeiro-Gomes et al. (2017). In their study, compared with the ground-truth temperature of a vineyard obtained using a FLIR B660 thermal camera, temperature derived from a UAV thermal image taken 1 day after irrigation was lower, and temperature derived from a UAV thermal image taken 7 days after irrigation was higher.

A possible reason for the phenomenon described above may be differences in maize LAI caused by drought stress. When we extracted the Tc of TRT 1 (lower than 32.9°C, Figure 7B) using the RGRI-Otsu method, the leaves of maize were not curled because there was no water stress (Gs > 0.50 mol·m−2·s−1, Figure 7D), resulting in a greater proportion of shadowed soil and leaves (lower temperature) in the UAV thermal orthophoto. When Tc was extracted from thermal images, the Tc values were lower because of the influence of shadowed soil and leaves. As water stress became more severe, the maize leaves gradually curled, resulting in a gradual decrease in the proportion of shadowed soil and leaves, and a gradual increase in the proportion of sunlit soil (higher temperature). When Tc was extracted from thermal images, the Tc values were higher due to the influence of sunlit soil. Therefore, to obtain more accurate values for the maize Tc, more accurate methods for canopy detection and extraction and better strategies for eliminating mixed pixels are needed, especially for drought-stressed maize plants with curled leaves and, thus, narrower blade width.

After Tc was extracted, selecting an appropriate Tc-based water stress indicator is an important step in effectively monitoring crop water stress status. In this study, Tc, DANS, CTSD, and CTCV, which only require Tc, were chosen to reduce the number of parameters required to detect crop water stress. Maize leaf Gs was used as the reference for water stress status. We analyzed the relationships between the four indicators and Gs, and we found that all of them could be used to monitor maize water stress with R2 values greater than 0.54 (Figure 10). Compared with CTCV and CTSD, Tc and DANS were more effective indicators of water stress in maize and were better able to reflect the status of SWC at shallow root zone depths.

When monitoring crop water stress over a longer period (e.g., the whole growing season), the effects of meteorological conditions on the stability of the monitoring performance of the four indicators should be normalized (Cohen et al., 2015; Cohen et al., 2017). Even the widely used CWSI empirical model is affected by different meteorological conditions. Some researchers have reported that the non-water-stress baseline of the CWSI empirical model varies markedly among different locations (Idso et al., 1981; Gardner et al., 1993; Yazar et al., 1999; Han et al., 2018) and that differences in meteorological conditions (e.g., radiation and wind speed) are among the most important factors (Zolnier et al., 2001; Payero et al., 2005; Payero and Irmak, 2006; Gonzalez-Dugo et al., 2014). For instance, the previously reported slopes of maize non-water-stress baselines established at different locations range from −1.10 to −3.77°C/kPa, and the corresponding intercepts range from 0.42°C to 3.11°C. Even in the same growing season, the coefficient of the maize non-water-stress baseline can vary significantly among different growing stages (Zhang et al., 2019). Therefore, further research is needed to compare the performance of the four Tc-based water stress indicators under different meteorological conditions.

Finally, Tc maps at the farm scale were obtained using both UAV thermal and RGB images (Figure 12). The Tc extracted by the RGRI-Otsu method could effectively monitor maize water stress and its spatial variability at the late vegetative stage. In addition, whether there was water stress or not, TRT 4 (moderate deficit irrigation) had the largest Tc values of 28.5°C on DOY 185 and of 40.1°C on DOY 193. Further research is required to determine the reason for this result.




Conclusions

Before a crop reaches effective canopy cover, the accurate extraction of Tc from UAV-based thermal imagery is still a challenge. To improve the accuracy of Tc extraction, we explored methods for appropriate temperature calibration and reduction of the influence of mixed pixels on the accuracy of the extracted Tc. The number of parameters required for crop water stress monitoring and the difficulty in obtaining measurements are among the current limitations. To determine the effects of flight height on the temperature calibration of UAV thermal imagery, we conducted regression analyses between the temperatures derived from UAV thermal images acquired at different flight heights (10–60 m) and ground-truth measurements. To reduce the influence of mixed pixels on the quality of the extracted Tc value, we propose the use of the RGRI-Otsu method, which uses both UAV thermal and RGB images. Four crop water stress indicators were tested including Tc, DANS, CTSD, and CTCV. All of these indicators only need Tc. Our results confirmed that there was a specific temperature calibration model for each acquisition height (10–60 m) of UAV thermal images, since the temperature obtained by the thermal camera significantly decreased as the flight height increased. The Tc extracted by the RGRI-Otsu method was highly correlated with the ground-truth measurements with R2 of 0.94 (n = 15) and RMSE of 0.7°C. At the same time, there was a significant deviation from the 1:1 line with a slope and intercept of 0.71 and 9.53°C, respectively. The change in maize LAI caused by water stress (i.e., leaf curling) might explain this phenomenon. The four Tc-based crop water stress indicators all showed high correlations with Gs (R2 > 0.54), suggesting that the RGRI-Otsu method based on the combination of UAV RGB and thermal images has great potential for monitoring water stress in maize crops.
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Image analysis methods for measuring crop phenotypes may replace traditional measurements if they more efficiently and reliably capture similar or superior information. This study used a recreational-grade unmanned aerial vehicle carrying a spectrally-modified consumer-grade camera to collect images in which each pixel value is a vegetation index based on the normalized difference between the blue and near infrared wavelength bands (BNDVI). The subjects of the study were Zea mays hybrids with good yield potential grown in 4-row plots. Flights were conducted at least once per week during three successive growing seasons in south-central Wisconsin. Average BNDVI for each plot (genotype) rose steadily through June, peaked in July, and then declined as plants matured. BNDVI histograms changed shape over the season as the canopy concealed soil, became more uniformly green, then senesced. Principal Components Analysis (PCA) captured the change in histogram shape. PC1 represented canopy closure. PC2 represented the mean of the BNDVI distribution. PC3 represented the spread of the distribution. Correlation analysis showed that flowering time correlated with PC2 and PC3 best (r ≈ 0.5) a few days before the event (day in which 50% of the plants exhibited tassels). Three ears were picked from each plot to quantify kernel dimensions by image analysis before each plot was mechanically harvested to determine grain weight per plot. Correlations between this measurement of yield and PC2 were low in June but exceeded 0.4 within 10 days after flowering. Kernel length correlated similarly with PC2. The correlation between PC2 and kernel thickness displayed a similar but inverted time course. These results indicate that greater mid-season BNDVI values correlate positively with yield comprised of tall, thin kernels. Partial least squares regression performed on the BNDVI time courses predicted flowering time (r = 0.54–0.79) and yield (r = 0.4–0.69). This three-year experiment demonstrated that readily available hardware and software can create a phenotyping platform capable of predicting maize flowering time, yield, and kernel dimensions to a useful degree.

Keywords: normalized difference vegetation index, Zea mays, unmanned aerial vehicle, flowering time, grain yield, kernel dimension



Introduction

Genotype-to-phenotype studies will produce stronger conclusions and the process of improving quantitative traits will accelerate if the methods for measuring crop plant phenotypes are as discriminating as the next-generation DNA sequencing methods used to characterize the genotypes (Edwards et al., 2013; Bevan et al., 2017). Image analysis methods have the potential to provide the needed phenotype data. When successfully applied, they measure standard traits more precisely, objectively, and automatically than manual methods, and they can measure informative features for which there is no manual equivalent. However, acquiring image data from which useful phenotype data can be extracted is more challenging in a field experiment than in situations where the imaging scene can be controlled and optimized. White et al. (2012) and Araus and Cairns (2014) discuss the many challenges to field-based phenotype measurements using cameras and other sensors.

Satellites and piloted aircrafts have been used to obtain aerial images of field-grown crops for various applications. For instance, Landsat and Sentinel-2 satellites collect red and near-infrared (NIR) wavelength bands from regularly revisited locations to assess global vegetation and crop health (Rouse et al., 1973; Tucker and Choudhury, 1987). Unfortunately, the spatial resolutions of these methods (Issei et al., 2010) are on the order of meters or tens of meters, which is not fine enough to serve the phenotype measurement needs of many crop plant research projects. Cameras and other sensors mounted to ground-based vehicles, overhead gantries, or cable supports can collect detailed phenotype information (Furbank and Tester, 2011; Montes et al., 2011; White et al., 2012; Deery et al., 2014). Growing in popularity is the small unmanned aerial vehicle (UAV) programmed to fly along a path defined by a series of waypoints marked by global positioning system (GPS) coordinates (Colomina and Molina, 2014; Yang et al., 2017). When outfitted with cameras, UAV technology provides a low-cost approach to collecting images with the required spatial and temporal resolutions. Potential uses of UAV technology include measuring seedling emergence, plant height, ground canopy cover, leaf angle distribution, leaf area index, and overall crop health in various crop species (for a review, see Yang et al., 2017). For example, a surface model generated from aerial color images measured barley and rice crop height (Bendig et al., 2013a; Bendig et al., 2013b), height and growth rate in maize and wheat (Holman et al., 2016; Li et al., 2016), and sorghum and maize plant height at many points across the growing season (Pugh et al., 2018). UAV platforms were used to measure vegetation indices based on ratios of spectral bands captured by a camera in tens of thousands of wheat plots (Haghighattalab et al., 2016). Hyperspectral sensors mounted on UAVs collected many wavelength bands from which the biomass and nitrogen content of wheat, barley, and maize were estimated (Montes et al., 2011; Pölönen et al., 2013). A UAV platform carrying a hyperspectral imager and a thermal camera was used to detect water stress in a citrus orchard (Zarco-Tejada et al., 2012). Numerous studies also used UAV platforms to measure maize plant lodging (Chu et al., 2017), ground canopy cover in wheat (Yu et al., 2017), plant density, early vigor, and radiation interception in maize (Liebisch et al., 2015), as well as soil and plant interactions, and weed management (Shi et al., 2016).

A desirable application of UAV technology is to predict crop yield based on a vegetation index derived from aerial images. A common vegetation index is the normalized difference vegetation index (NDVI). It is based on the principal that chlorophyll absorbs red and blue wavelengths while reflecting near-infrared radiation (Tucker, 1979). To measure NDVI, the camera’s detector must be sensitive to near-infrared (NIR) and blue or red wavelengths. NDVI is calculated at each pixel according to Equation 1.
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A value of 1 indicates green plant material due to absorption of red wavelengths relative to the NIR reference, while -1 indicates the lack of red-absorbing material. Higher NDVI values usually indicate greater vigor, and therefore may relate to yield potential and abiotic/biotic stress tolerance (Candiago et al., 2015; Condorelli et al., 2018). For example, a UAV-based platform generated NDVI images that were used to estimate the effects of low nitrogen stress on maize yield (Zaman-Allah et al., 2015). Makanza et al. (2018) used RGB image data to create a novel senescence index. It showed a moderately high heritability and a strong genetic correlation with maize grain yield. Cerrudo et al. (2017) and Condorelli et al. (2018) used NDVI and other spectral-based indices to study the effects of heat and drought stress on grain yield in maize and wheat. In rice, dynamic changes in vegetation indices during early to middle growth stages were used to predict rice grain yield (Zhang et al., 2019). For wheat, a fairly high correlation of vegetation index values with yield was observed (Guan et al., 2019).

Many studies employing UAVs to measure a vegetation index focused on growth, phenology, and stress responses of crops (Yang et al., 2017). The differences between comparison groups in such studies are often large. Fewer studies have used a UAV imaging platform to discern subtle differences among genotypes experiencing a similar environment, which a tool must achieve if it is to be useful in a breeding program. Liebisch et al. (2015) and Han et al. (2018) included multiple maize genotypes in their analyses of NDVI acquired from airborne platforms but testing for differences between them was not a feature of their reports. We designed the present study to determine if analyses of vegetative index values could discern differences in flowering time, grain yield, and kernel dimensions between different hybrid maize plants, each with good yield potential.




Materials and Methods



Germplasm and Field Trials

The field experiments were conducted between June and October of 2016, 2017, and 2018 at the University of Wisconsin’s Arlington Agricultural Research Station in Arlington, Wisconsin, USA (43.33° latitude and -89.34° longitude). Twenty-five F1 maize hybrids were planted as randomized complete block designs on 5/24/2016, 5/10/2017, and 5/24/2018, then harvested in late-October. Most but not all of the genotypes were used each year. The complete list is presented in Supplementary Table S1. Each replicated plot (i.e., two trials) contained 4 rows with 40 plants each. The rows were 4.57 m long, 0.76 m apart, and the target density was 78,200 plants ha−1.




Flowering Time

Flowering time is typically scored as the date when 50% of the plants in a plot display tassels for the male, and when 50% of the ears have extruded silks to receive pollen. These standard measures of flowering time were made by repeated visual inspection of each plot during the flowering period each year. Specifically, to record flowering data, we visited each plot every other day during the flowering period in late July. We recorded the day when half of the plants in a plot were shedding pollen or displayed silks, for each genotype.




Kernel Dimensions

To measure kernel dimensions, three mature ears were hand-picked from each plot prior to machine harvest. We used a previously developed image analysis pipeline (Miller et al., 2017) to measure kernel traits for each of the genotypes for each year.




Grain Yield

A combine harvester measured the mass of grain and percent moisture for each plot at the end of growing season (mid-October). Grain yield, which includes the grain harvested by the combine and the hand-picked ears, was adjusted to 15.5% grain moisture. Grain yields for each genotype for each year are shown in Supplementary Table S1.




Unmanned Aerial Vehicle Platform

The UAV platform consisted of a quadcopter (model IRIS+; 3D Robotics, Berkeley, CA, USA) and a Canon S110 compact camera attached to a gimbal that maintained the camera in the nadir position. The sensor in the camera was modified by Llewellyn Data Processing (http://maxmax.com) such that the red channel sensed wavelengths between 670 and 770 nm, with a peak at approximately 710 nm. Therefore, instead of a red, green, and blue (RGB) image, this camera created an NIR, green, blue (NGB) image. A plot of the spectral sensitivity of the modified sensor provided by Llewellyn Data Processing is presented in Supplemental Figure S1. Custom software controlled the camera to enable time-lapse imaging at a frequency of approximately one frame per second. The focal length was 5 mm, the aperture was f/2.5, the ISO sensitivity was 200, the shutter speed was 1/1600 s, and the image size was 3000 X 4000 pixels. The files were saved in Joint Photographic Expert Group (jpeg) format. The ground sample distance of the full-field image was 0.7 cm per pixel. We used Mission Planner autopilot software (http://www.arducopter.co.uk/advanced.html) to design a flight route. The flight altitude was 25 m and the flight speed was 1 m s-1. These specifications combined to produce images that overlapped at least 60% forward and laterally. Flights were conducted only during fully clear (cloudless) periods between 10 a.m. and 3 p.m. at least once per week during each of the three seasons, with a higher frequency around the flowering period. Early season flights were not performed in 2018 because 2016 and 2017 results indicated June time points were not sufficiently useful to justify the analyses. In late August 2018, a severe storm caused widespread lodging so late season flights were not performed.




Image Processing and BNDVI Extraction

Agisoft PhotoScan Professional software (www.agisoft.com) was used to construct a full-field image from the individual frames after each flight. The parameter settings, including raw image alignment, mesh building, and orthoimage generation, were held constant for each field image construction. The resulting three channel NGB image of the field was then converted into a blue channel-based NDVI layer (BNDVI, Equation 2) by a plugin for ImageJ/FIJI that can be downloaded here: https://github.com/nedhorning/PhotoMonitoringPlugin/tree/master/downloads.

	[image: ]	(2)

Figure 1A shows a representative NGB image and Figure 1B shows the corresponding BNDVI image. Each pixel in the BNDVI image is associated with a value ranging from -1 to 1. Figure 1C uses histogram representations of images within regions of interest to demonstrate that pixels corresponding to ground or maize canopy are reasonably well separated by choosing 0.06 as the threshold (background < 0.06 < plant).
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Figure 1 | Aerial image data obtained by the UAV platform. (A) A representative image of a field containing all the genotypes obtained with a camera modified to have an NIR, green, and blue channel. (B) The calculated BNDVI image layer. (C) Histogram of BNDVI values from canopy (red line) and soil background (black line). The threshold 0.06 was used as cutoff to extract plant BNDVI in all plots. 




Individual 4-row plots were manually cropped from the full-field BNDVI image. The alley separating ends of rows was excluded (Figure 1). Each plot sub-image consisted of approximately 2 x 105 pixels, each representing a BNDVI value ranging from -1 to 1. The average BNDVI values for each genotype at the time of flowering for each year are presented in Supplementary Table S1. Most analyses were performed not on average BNDVI values but on the histogram of BNDVI values for each plot at each flight date. These histograms were treated as quantitative, time-dependent phenotypes to be compared between genotypes.




Principal Component Analysis (PCA)

The BNDVI values between 0 and 1 were placed into 999 equally spaced bins to create a histogram for each four-row plot. The histograms from all genotypes (g), trials (t = 2), flight-dates (d), and years (y) were stacked into the matrix X with n = × t × d × y rows and m = 999 columns to make a n × m matrix containing one histogram for every plot measured during the study. Principal component analysis reduced the number of variables and provided a potentially interpretable set of latent scores based on the eigenvectors of the covariance matrix of X, or the right singular vectors from the singular value decomposition of the column-mean centered X. The cumulative sum of the eigenvalues of the covariance matrix of X divided by the total variance is the percent variance explained. We took the first 15 components, which explained greater than 99% of the variance and created three matrices (X2016, X2017, X2018), each with g × t × d rows and 15 columns, which contained the scores used for partial least squares regression analysis of the traits.




Partial Least Squares Regression (PLS-R)

To prepare for partial least squares regression (PLS-R), a technique commonly used when the number of observations is greater than the number of trials, the measured traits (r = tassel time, silk time, kernel thickness, kernel width, kernel depth, and grain yield) for all genotypes (g) were stacked into three matrices (Y2016, Y2017, Y2018) with 2g rows (because there were two trials of each genotype) and one column for each separate r. The goal of the PLS-R was to obtain a low dimensional model that maximized the covariance between Xyear and Yyear. For each Xyear and Yyear pair, one-hundred PLS-R models were constructed, with 30% of the data randomly selected for hold out. To guard against overfitting, the model was applied to the hold-out group and the factor threshold (fT) was found where the predictive power of the model began to diminish. The average threshold (fA) across the 100 hold-out draws was computed and reported in Table 1 along with the correlation coefficients that indicate the degree of prediction accuracy. We also performed the PLS-R using the original histogram values instead of their corresponding 15 PCs. The predictions were generally slightly higher when the original histogram data was used but the distribution of correlation values obtained from 100 different hold-out trials were not statistically different (p = 0.05).









	
Table 1 | Correlation coefficients (r) of partial least squares regression analysis of various maize traits. Numbers in parentheses are the minimum number of factors needed for accurate predictions.





	
Year


	
Tassel


	
Silk


	
Grain yield


	
Kernel length


	
Kernel thickness





	
2016


	
0.79 (4)


	
0.75 (6)


	
0.69 (4)


	
0.44 (5)


	
0.31 (4)





	
2017


	
0.54 (6)


	
0.55 (7)


	
0.45 (4)


	
0.41 (8)


	
0.35 (5)





	
2018


	
0.77 (6)


	
0.76 (7)


	
0.40 (3)


	
0.37 (4)


	
0.39 (7)















Results



BNDVI Profiles During Growing Season

Figure 2A shows mean BNDVI values for the canopy pixels (average of the duplicated plots) for each of the 25 hybrids grown in 2016, at each flight date. BNDVI increased during the early growing season, peaked during the flowering period, and then decreased as senescence progressed as previously reported (Viña et al., 2004). A dip in BNDVI was consistently observed a few days preceding flowering for all genotypes in 2016. This phenomenon was observed again in 2017 and 2018 although it was not as obvious as in 2016 (Figures 2B, C). Han et al. (2018) also detected a transient reduction in NDVI near flowering time. The appearance of tassels in the images at flight dates corresponding to the dip support the idea that the reduced BNDVI was due to a small but significant contribution of non-green tassel material entering the scene. These results indicate that BNDVI could be monitored to detect flowering time.





[image: ]

Figure 2 | Change in BNDVI for different maize genotypes across the growing season. (A) 2016, (B) 2017, and (C) 2018. Two vertical lines in each panel mark the flowering time range for all genotypes.








Principal Components Analysis of BNDVI Histograms

Instead of calculating the mean BNDVI value for each plot, at each flight date, the BNDVI values were treated as a frequency histogram. Figure 3A shows histograms of BNDVI values including those below the 0.06 threshold from one of the plots at each flight date during the 2016 season. The distributions change shape as the canopy covers the ground, becomes greener, then senesces.







[image: ]

Figure 3 | Principal component analysis of vegetation index histograms. (A) BNDVI histograms from a representative genotype shifted during the 2016 growing season. Parameter sweeps of the back-projection models for the three eigenvectors (PCs) that explain 96% of the variance in histogram data from all trials, years, genotypes, and flight dates (B–D). PC scores ranged from the minimum score to the maximum score at five steps along each eigenvector. See the Results section for an interpretation of the effects the three PCs.





The shape of histograms may carry important information that aids the prediction of maize traits. The meaning of the eigenvectors was explored by independently sweeping the score values, back-projecting the corresponding histogram model, and adding back the average. Shown in Figures 3B–D are the back-projection models for the three eigenvectors that explain 96% of the variance. The first principal component (PC1) accounts for 71% of the total variability. The sweeps indicate that it captures the shift in the distribution of BNDVI from low values corresponding to soil to high values indicative of maize canopy. PC2, which accounts for 19% of the total variance, shifts the overall distribution to greater BNDVI values. PC3, which explains 6% of the variance, changes the shape of histogram toward a bimodal distribution.

The principal component scores were plotted as a function of flight date made relative to the mean flowering date for all genotypes for each of the three years (Figure 4). In 2016, the year in which flights were spread most evenly across the season, PC1 rapidly decreased early, consistent with it interpreting soil background. The same was observed in 2017 but in 2018 the early season was not surveyed. In each year, PC2 showed a tendency to drop from a mid-season high, consistent with it interpreting average greenness. No pattern in PC3 across the season was apparent, consistent with PC3 representing only 6% of the total variance.





[image: ]

Figure 4 | Average principal component scores derived from BNDVI histograms of all genotypes during the three growing seasons. The average date of flowering of all genotypes was set as day 0.




The main aim of this study was to find factors that could be used to distinguish important traits among maize genotypes. Figures 5A, B show the histograms from a low yield genotype (B14A/C103; 10.1 kg/plot) and a high yield genotype (PHW52/TX205; 27.6 kg/plot) at each flight date in 2016. Figures 5C-E show the seasonal course of average PC1, PC2, and PC3 from 6 genotypes with lowest grain yield and 7 genotypes with highest grain yield in 2016. There was no difference in PC1 between the two genotype groups before the flowering period but 30 days after flowering, PC1 for the low yielding genotypes rose more quickly than the high yielding genotypes. PC2 was higher for the high-yielding genotypes for most of the season, while PC3 did not demonstrate any obvious trend across the whole season. The PC scores of these two contrasting genotypes indicate that higher yield is associated with a more persistent and full green canopy after flowering. This comparison of genotypes contrasting with respect to plot yield gave reason to seek other correlations between the BNDVI histogram principal components and other agronomically relevant traits.
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Figure 5 | BNDVI histogram principal components change across the growing season. BNDVI histograms from a low yield (A) and a high yield (B) genotype change shape during the 2016 growing season. (C–E) The principal components of the histograms corresponding to the 6 lowest-yielding genotypes (Low yield) and the 7 highest-yielding genotypes (High yield) in 2016 were averaged and plotted across the growing season. Significant differences in PC1 (C), especially PC2 (D), and PC3 (E) were found between the low and high yielding pools of genotypes. An asterisk above a point indicates P < 0.05.







Flowering Time: Correlations With Histogram Principal Components

Maize is a monoecious plant that produces a terminal male inflorescence (tassel) at the shoot apex and one or more lateral female inflorescences (ears) along the stalk axis (Bortiri and Hake, 2007). The timing of male and female flower maturation, or flowering time, greatly influences the potential grain yield at harvest time. Flowering time is therefore a very important trait to measure in a maize breeding program. To evaluate whether UAV-based BNDVI measurements contain information about male flowering time scored on the ground, we calculated Pearson’s correlation coefficients between the histogram PC values from each plot and tassel-appearance date. The most salient result in Figure 6 is that slightly before the manually scored male flowering time (average for all genotypes), PC2 sharply increased and PC3 coordinately decreased. The biological basis of these coupled parameter changes is not known, but they could be useful indicators of maize flowering time.
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Figure 6 | Correlations between male flowering (tassel) time and BNDVI histogram principal components in 2016, 2017, and 2018. In each panel, the blue line indicates the correlation between tassel time and mean BNDVI. The other lines represent correlation with the indicated principal component. Any correlation value that is significant at the P < 0.05 level is marked with a red dot.






Yield: Correlations With Histogram Principal Components

The genotypes studied here varied more than two-fold with respect to grain yield measured at the end of the season (Supplementary Table S1). Figure 7A shows the correlation between the principal components and grain yield were as high as 0.6 after the flowering period. PC2 correlated positively and PC1 correlated negatively with grain yield. Because PC2 appeared to interpret the mean of the BNDVI distribution (Figure 2C), we tested the correlation between mean BNDVI and grain yield. Mean BNDVI and PC2 correlated with grain yield almost identically, indicating a greener canopy post-flowering is associated with a higher yield. PC1 negatively correlated with yield, indicating less visible ground (higher canopy coverage) after flowering is associated with a higher yield. PC3 negatively correlated with yield, indicating a less uniform canopy is associated with higher yield. Plant leaf greenness indicated by NDVI is an important trait, probably reflecting the ability to maintain robust photosynthesis needed for grain filling in the final growth stage (Zheng et al., 2009).
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Figure 7 | Correlations between yield, kernel dimensions and BNDVI histogram principal components in 2016, 2017, and 2018. (A) grain yield, (B) kernel length, and (C) kernel thickness. In each panel, the blue line indicates the correlation between the trait and mean BNDVI. The other lines represent correlation with the indicated principal component. Any correlation value that is significant at the P < 0.05 level is marked with a red dot.









Kernel Traits: Correlations With Histogram Principal Components

Grain yield is the product of kernel number and kernel weight. The latter is a function of kernel length, width, and thickness. The correlation between NDVI histograms and these separate components of yield was calculated. Figure 7B shows that kernel length displayed a correlation pattern similar to that displayed by grain yield (Figure 7A) while kernel thickness (distance each kernel occupies along the axis of the ear) displayed an inverse but otherwise similar correlation pattern (Figure 7C). The kernel width measurement returned by the analysis pipeline is probably related to and constrained by kernel row number, which is a highly heritable trait (Liu et al., 2016). This may explain why kernel width did not correlate well with BNDVI histogram principal components. Together, these results indicate that the features extracted from UAV-based images can be used to distinguish high-yielding genotypes from low yielding genotypes and that the higher yields are comprised of tall, thin kernels.




Partial Least Squares Regression (PLS-R) Modeling

The analyses described thus far were designed to evaluate correlations at each sample date. As an alternative approach, we performed partial least squares regression (PLS-R) modeling to determine if the data contained in the BNDVI histograms obtained for each plot at all sample dates could predict the measured agronomic traits (flowering time, grain yield, and kernel dimensions). The PLS-R model was run 100 times, each time with 30% of the trials held out. The correlation coefficients obtained for each of the 100 runs were averaged and displayed in Table 1. The minimum number of factors needed to maintain predictive power of the model is also presented in Table 1. In some cases, especially for male and female flowering dates, a predictive relationship was discovered.

The results presented here are most useful if it can be assumed that the subjects (hybrid genotypes) are each unique and genetically unrelated. More caution would need to be exercised when interpreting the results if the genotypes belonged to a smaller number of classes characterized by shared portions of the genome. The potential source of misleading correlation to guard against is a familial relationship called population structure. It can be assessed by performing principal component analysis of genotype marker sets. Such an analysis of many of the genotypes used here is presented in Supplementary Table S2. The percent of genetic variation explained by the first four principal components of the genotype data was found to be 12.3, 6.0, 4.7, and 4.5. These genotype principal components did not correlate well with the BNDVI histogram principal components (Supplementary Table S3). Furthermore, PLS-R predictions of grain yield in 2016 and 2017 based on genotype principal components was 0.3, substantially lower than the predictions based on BNDVI histograms (Table 1). Thus, the BNDVI values derived from the UAV platform contain more predictive information than the genotype variables; population structure does not appear to be a significant confounder of the results and conclusions presented here.





Discussion

Automated image acquisition followed by computational analysis promises to advance research on crops by producing better and new phenotype measurements (Perez-Sanz et al., 2017). Any approach begins with a decision about how to acquire images that will contain information about the process or trait of interest. Simplicity of design and operation is an important consideration when deciding on an image-acquisition platform (Kasampalis et al., 2018). The platform used here was based on a generic UAV and a compact digital camera mounted with its optical axis perpendicular to the ground. Open-source computer code developed by a photography community controlled the camera and the UAV was guided along routes created by free software running on a standard portable computer. The platform used standard global positioning systems (GPS) to navigate but not to tag the images. Neither GPS information nor ground reference points were necessary to construct full-field images from the highly overlapping component images. During a 5 minute flight session, the simple, low-cost UAV platform collected all the data needed to construct a full-field image comprising 50 plots with sub-centimeter resolution. Preliminary surveys of 1,000 two-row plots were completed in less than one hour.

There are some tradeoffs associated with the simple design and easy operation of the platform. The spectrally modified camera does not produce a standard NDVI measurement so the index values reported here can only be qualitatively compared with the results of other studies. To minimize the size of data files, the images were compressed and saved in jpeg format, which can distort color ratios and therefore affect vegetation indices (Verhoeven, 2010). Calibration against a color standard in the field was not performed so the effects of seasonal variation in sunlight quality were not removed from the data. While these issues would negatively affect the accuracy of an NDVI measurement, none of them affects the ability of the platform to quantitatively compare genotypes on a given date because images of each were acquired on clear days within minutes of each other. In fact, this platform produced an index that displayed a wide range and no saturation as the corn grew and matured, in contrast to a recent report of NDVI and its correlation with maize yield in different nitrogen conditions (Buchaillot et al., 2019).

It may be surprising that sampling two broad wavebands at 200,000 points within a plot across genotypes and time could produce metrics that correlated strongly with differences in flowering time, yield, and kernel thickness, but that is the central conclusion of this study. The correlations were reproducible across years. The predictive metrics derived from principal component analysis of BNDVI histograms have no traditional analog or manually-measured equivalent, but the correlations with yield were high enough to be useful in a selection process and higher than other researchers found using average NDVI as the metric (Spitkó et al., 2016; Buchaillot et al., 2019). The BNDVI histogram may be more useful for predictions than a simple plot average because multivariate analysis of histogram shape can de-emphasize uninformative values, for example those that may correspond to soil. The present results indicate that the metrics derived from the BNDVI histograms predict yield as well or better than genomic selection methodologies (Zhao et al., 2012). Our results support a recent suggestion to combine spectral information and genomic selection to improve breeding processes (Crossa et al., 2017). Other uses for mid-season information that reliably relates to yield include forecasting a year’s harvest and for inferring yield outcomes that were not accurately measured due to late-season storm damage.

Flowering time in relation to growing season has an important effect on yield. Traditionally, flowering time is measured by humans visually inspecting plots. Therefore, the method is prone to individual subjectivity. In 2018, two people independently scored flowering time of the plots studied in this project. The correlation between their two data sets was 0.82. Acquiring BNDVI data frequently during the flowering window with a simple UAV platform may more accurately and efficiently measure flowering time than human scorers. The feature in the data that appears to cause the correlation between NDVI and flowering is a transient reduction or dip, possibly due to the abrupt appearance of tassel material that is not green. In addition to being useful for determining the timing of tassel emergence, this feature in the data could serve as a proxy measurement of tassel size and structure (Gage et al., 2017), which may affect photosynthesis by shading the canopy (Duncan et al., 1967).

At a high level, yield is a function of canopy photosynthesis (source) and utilization of photosynthetic products especially in developing kernels (sink). Because a vegetation index measures the interaction between light and photosynthetic pigments, and may even correlate with photosynthetic capacity (Gamon et al., 1995), it is reasonable to consider that the platform used in this study measured source-related traits that affect yield. Lee and Tollenaar, (2007) argue that a slow rate of pigment loss in the latter stages of the season, a delay in senescence termed “stay green,” is associated with greater yield. The transcriptional and metabolic pathways associated with the stay-green phenomenon are beginning to be elucidated (Sekhon et al., 2019). The BNDVI histograms may have captured genotype-dependent differences in “stay green” that are associated with grain yield, resulting in the observed reproducible correlations with the histogram principal components. Performing more flights through the senescence period may improve yield predictions from BNDVI data by characterizing the senescence time course better. A more targeted or hypothesis-based analysis of the BNDVI histograms may capture the senescence time course better than the principal components approach taken here, resulting in better predictions.

The UAV platform described here collects data from which metrics that correlate well with flowering time, yield, and kernel dimensions can be computed. The bottleneck in the process is isolating the individual plots from the full field image. If future software development activities can automate this currently manual step, then the advantages of a simple aerial platform for measuring maize in a field can be put into full practice.




Conclusion

The present study demonstrated that a UAV-based imaging platform assembled from consumer-grade components can generate measurements of a vegetation index that allowed the flowering time, yield, and kernel dimensions of maize hybrids to be compared. Rather than averaging the index values to summarize the plot, the frequency histograms of the values were decomposed into principal components. The three principal components that explained most of the variance were interpretable and predictive of tassel time, grain yield, kernel length, and kernel thickness. If a future software development effort could automate the step of isolating individual plots from the full-field image, the methods described here could allow essentially any research group to incorporate high-throughput predictive NGB imaging in their maize genetic research or breeding programs.
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Hyperspectral remote sensing holds the potential to detect and quantify crop diseases in a rapid and non-invasive manner. Such tools could greatly benefit resistance breeding, but their adoption is hampered by i) a lack of specificity to disease-related effects and ii) insufficient robustness to variation in reflectance caused by genotypic diversity and varying environmental conditions, which are fundamental elements of resistance breeding. We hypothesized that relying exclusively on temporal changes in canopy reflectance during pathogenesis may allow to specifically detect and quantify crop diseases while minimizing the confounding effects of genotype and environment. To test this hypothesis, we collected time-resolved canopy hyperspectral reflectance data for 18 diverse genotypes on infected and disease-free plots and engineered spectral–temporal features representing this hypothesis. Our results confirm the lack of specificity and robustness of disease assessments based on reflectance spectra at individual time points. We show that changes in spectral reflectance over time are indicative of the presence and severity of Septoria tritici blotch (STB) infections. Furthermore, the proposed time-integrated approach facilitated the delineation of disease from physiological senescence, which is pivotal for efficient selection of STB-resistant material under field conditions. A validation of models based on spectral–temporal features on a diverse panel of 330 wheat genotypes offered evidence for the robustness of the proposed method. This study demonstrates the potential of time-resolved canopy reflectance measurements for robust assessments of foliar diseases in the context of resistance breeding.

Keywords: high-throughput phenotyping, field-based phenotyping, feature engineering, feature selection, spectral vegetation index



Introduction

Hyperspectral remote sensing has shown significant potential for the rapid, non-invasive assessment of crop diseases at different scales, ranging from single leaves (e.g., Mahlein et al., 2010; Ashourloo et al., 2014) to the canopy (e.g., Cao et al., 2013; Yu et al., 2018) to fields and regions (Wakie et al., 2016). Applications have been proposed primarily in the context of precision agriculture, but resistance breeding may equally benefit (Mahlein, 2016). The identification of novel sources of durable, quantitative disease resistance requires screening large and diverse germplasm collections under field conditions. Reflectance-based techniques hold the potential to reduce associated costs and allow for the screening of more genetic variation, if deployed on adequate phenotyping platforms (Kirchgessner et al., 2017; Aasen et al., 2018; Aasen and Bolten, 2018). This may enable indirect selection in early breeding generations and facilitate the identification of novel sources of resistance.

However, to benefit crop breeding, new methods must accurately estimate phenotypes for large numbers of diverse genotypes under field conditions (Furbank and Tester, 2011; Araus and Cairns, 2014; Araus et al., 2018). This represents a significant challenge because genotypic diversity and contrasting environmental conditions are major sources of variation in spectral reflectance. This variation arises mostly from i) genotype morphology, canopy cover, and canopy 3-D structure (Haboudane et al., 2002; Zarco-Tejada et al., 2005; Jacquemoud et al., 2009; Gutierrez et al., 2015); ii) differences in genotype phenology and the timing of developmental transitions such as heading, flowering, and senescence (Pimstein et al., 2009; Stuckens et al., 2011; Kipp et al., 2014); and iii) reactions to other biotic or abiotic stresses, which may result in similar spectral responses as the disease of interest (Zhang et al., 2012). At present, effects of diseases on canopy reflectance are often investigated at specific points in time (see e.g., Yang, 2010; Cao et al., 2013; Yu et al., 2018). Such investigations have provided valuable but highly context-specific insights (i.e., specific to the genotype, growth stage and/or site and environment under study; see e.g., Delalieux et al., 2007; Zhang et al., 2012; Zheng et al., 2019). Accordingly, identified spectral features and corresponding thresholds or calibration curves are not sufficiently robust (i.e., universally applicable) for use in resistance breeding. Largely due to such difficulties, high throughput phenotyping of disease resistance under field conditions using hyperspectral reflectance is still elusive (Araus et al., 2018).

Septoria tritici blotch (STB) caused by the fungal pathogen Zymoseptoria tritici is a serious threat to wheat production in major wheat growing areas around the world (Orton et al., 2011; Torriani et al., 2015). The development of cultivars with improved resistance to this disease has become a significant objective in wheat breeding and constitutes a key component of STB management strategies (O’Driscoll et al., 2014; Brown et al., 2015; McDonald and Mundt, 2016). Several major resistance genes conferring near-complete resistance to certain Z. tritici isolates have been identified and used in commercial cultivars (reviewed by Brown et al., 2015). However, these genes are frequently overcome within a few years of their introduction due to the high evolutionary potential of Z. tritici populations (McDonald and Mundt, 2016). Genetic loci conferring broadly effective partial resistance are thought to be more durable than major resistance genes (McDonald and Linde, 2002; McDonald and Mundt, 2016). However, sources of partial resistance are much more difficult to identify, as subtle differences in disease severity must be accurately quantified under field conditions, ideally over time.

Automated image analysis has shown great potential to accurately quantify STB resistance and characterize different components of resistance in genetically diverse breeding material (Stewart et al., 2016; Karisto et al., 2018). However, such measurements are more labor-intensive than visual scorings and do not provide the necessary throughput to routinely screen large breeding trials over time. Some recent work has investigated the potential of reflectance-based techniques to detect and quantify STB non-destructively at the leaf and canopy levels (Odilbekov et al., 2018; Yu et al., 2018). At the canopy level, the above-mentioned challenges are particularly pronounced in the case of STB, because epidemics frequently reach damaging levels and affect crop performance most during the grain filling phase (Bancal et al., 2007). Consequently, detection and quantification of STB must be achieved in fully developed canopies with a complex architecture, and a clear delineation of STB and physiological senescence is essential for efficient selection.

Recently, efforts have been made to increase the specificity of reflectance-based methods. For example, new spectral vegetation indices (SVIs) with improved specificity to diseases have been developed by several authors for various patho-systems (e.g., Mahlein et al., 2013; Ashourloo et al., 2014). Other work has demonstrated that SVI combinations may allow to differentiate between diseases (Mahlein et al., 2010) and to delineate disease symptoms and nitrogen deficiency in wheat (Devadas et al., 2015). Yu et al. (2018) investigated the potential of different spectral features to robustly estimate STB severity at the canopy level in a large population of genetically diverse wheat genotypes. Other work has demonstrated that the sequence of temporal changes in hyperspectral reflectance signatures at the leaf level may be disease-specific, allowing to differentiate between sources of biological stress (Mahlein et al., 2010; Mahlein et al., 2012; Wahabzada et al., 2015).

Here, we aimed to achieve robust reflectance-based detection and quantification of STB under field conditions by exploiting changes in hyperspectral canopy reflectance over time. The basic rationale of the proposed approach is that pathogenesis consists in a specific and fixed sequence of events producing a constant outcome (i.e., disease symptoms). Accordingly, these events and outcomes should result in a specific and fixed sequence of changes in canopy spectral reflectance over time, irrespective of the genotype or environment under study. It seems highly likely that relying exclusively on this type of information increases the robustness of resulting estimations.

To test the feasibility of this approach, we engineered spectral–temporal features based on hyperspectral time series measurements. These features are designed to capture relevant changes in reflectance over time while minimizing the effect of the known confounding factors discussed above. We put forward the following hypotheses: (H1) Confounding effects of contrasting morphology, canopy cover, and canopy 3-D structure are strongly reduced, if only relative changes in reflectance over time at the level of individual plots are analyzed. (H2) Confounding effects of phenology can be reduced by using combinations of STB-sensitive and STB-insensitive spectral features. Specifically, we hypothesize that several plant traits are relatively unaffected in their temporal dynamics by STB. Thus, related spectral features can be used as a baseline of changes in spectral reflectance over time, arising primarily from advancing crop phenology. This baseline can then be used to correct temporal patterns observed in STB-sensitive features for variation in phenology. Finally, we hypothesized (H3) that the sequence and the dynamics of STB-sensitive features are to a certain extent specific to this disease and not related to other biotic or abiotic stresses.

Thus, the objective of this study was i) to evaluate the potential of time-resolved hyperspectral reflectance measurements to detect and quantify STB infections, ii) to delineate STB and physiological senescence, and iii) to estimate the robustness of the proposed method and hence its potential for breeding applications.




Materials and Methods



Plant Materials, Experimental Design, Phenology, and Meteorological Data

A field experiment was carried out in the field phenotyping platform (FIP, Kirchgessner et al., 2017) at the ETH Research Station for Plant Sciences Lindau-Eschikon, Switzerland (47.449N, 8.682E, 520 m a.s.l.; soil type: eutric cambisol), in the wheat growing season of 2017–2018. A subset of 18 bread wheat (Triticum aestivum) genotypes was selected from the genom-analyse in biologischen system pflanze (GABI) wheat panel (Kollers et al., 2013; complemented with Swiss cultivars) for contrasting levels of resistance to STB and for contrasting stay-green properties based on previous experiments at the same location (Anderegg et al., 2019, submitted to this issue; Karisto et al., 2018). The set comprised morphologically diverse genotypes (e.g., awned and unawned), and there were obvious differences in canopy structural parameters (e.g., flag leaf angle) among the selected genotypes (Supplementary Figure 1). The study was conducted as a two-factorial experiment in a split-plot design with the presence/absence of artificial pathogen inoculation as a whole-plot factor and genotype as a split-plot factor.

Artificial inoculation with Z. tritici spore suspension was done on May 21, 2018. Z. tritici strains ST99CH_1A5, ST99CH_1E4, ST99CH_3D1, and ST99CH_3D7 were used (Zhan et al., 2002; see also http://www.septoria-tritici-blotch.net/isolate-collections.html). Spores were grown for 6 days in 200 ml of yeast sucrose broth liquid media (10 g yeast extract and 10 g sucrose in 1 L of water) in several flasks for each strain. The spore suspension was filtered and pooled together for each strain. Spore concentration was adjusted, and spore suspensions of each strain were mixed to achieve 150 ml of inoculum for each plot containing in total 106 spores/ml (2.5 x 105 sp/ml of each strain). Inoculum was sprayed in the evening into wet canopy of each plot.

There were two replications for the whole-plot factor. On the same site, the entire GABI panel was also grown in two replicates (two spatially separated lots). One replication of the inoculated plots each was located in a row adjacent to a lot of the GABI panel, separated by one row sown with the resistant cultivar CH NARA (DSP, Delley, Switzerland). One replication of the non-inoculated control plots each was spatially randomized within a lot of the GABI panel. The experiments were sown with a sowing density of 400 plants m−2 on Oct 18, 2017. The plots sown with the GABI panel (and thus control plots within it) were treated with fungicides on three occasions: i) Input, Bayer (a mixture of sprioxamine at 300 g/L and prothioconazole at 150 g/L), was applied with a dose of 1.25 L/ha on 23 April 2018 (BBCH 31); ii) Aviator Xpro, Bayer (a mixture of bixafen at 75 g/L and metconazole at 41.25 g/L), was applied with a dose of 1.25 L/ha on 14 May 2018 (BBCH 51); and iii) Osiris, BASF (a mixture of epoxiconazole at 56.25 g/L and metconazole at 41.25 g/L), was applied with a dose of 2.5 L/ha on 28 May 2018 (BBCH 65). The inoculated control plots did not receive fungicide treatment. Temperature data was obtained from an on-site weather station. Rainfall data was obtained from a nearby weather station of the federal Swiss meteorological network Agrometeo (www.agrometeo.ch) located at ca. 250 m distance to the field trial. The temperature data was used to calculate growing degree-days (GDD) following
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where Tmeand is the mean temperature for day d after sowing, maxTd,h and minTd,h are hourly maximum and minimum temperatures for day d after sowing, respectively, and baseT is the base temperature, set to 0°C. Heading date was recorded when 50% of the spikes were fully emerged from the flag leaf sheath (BBCH 59, Lancashire et al., 1991). BBCH scores within the main growth stages were linearly interpolated between assessment dates. Stay-green was assessed visually as described previously (Anderegg et al., 2019, submitted), separately for the flag leaf and the whole canopy, following guidelines provided by Pask et al. (2012). Flag leaf stay-green was scored based on the portion of green leaf area on a scale from 0 (0% green leaf area) to 10 (100% green leaf area). An integer mean value was estimated for plants located in a central region of about 0.5 m × 0.5 m of each plot. Canopy stay-green was scored on the same scale by estimating the overall greenness of the plot when inspected at a view angle of approximately 45° considering the entire plot area. All scorings were done by the same person in 2–3 day intervals. An overview of measurements, scorings, and samplings is given in Table 1. Growth stages were recorded until physiological maturity following the BBCH scale (Lancashire et al., 1991).



Table 1 | Overview of wheat phenology, canopy reflectance measurements, visual scorings, and samplings.
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Hyperspectral Reflectance Measurements

Canopy hyperspectral reflectance in the optical domain from 350 to 2500 nm was measured using a passive non-imaging spectroradiometer (ASD FieldSpec® 4 spectroradiometer, ASD Inc., USA) equipped with an optic fiber with a field of view of 25°. Five spectra were recorded as the average of 15–25 separate spectral records while moving the fiber optic once along the diagonal of each plot at a height of approximately 0.4 m above the canopy. A Spectralon® white reference panel was used for calibration before measuring canopy reflectance. The calibration was repeated after measuring one-half of a replicate (i.e., after nine plots, approximately every 3–5 min). Measurements were carried out on 14 dates between heading and physiological maturity (i.e., between May 30 and July 12, 2018), resulting in an average of one measurement every 3 days. The maximum distance between two consecutive measurement dates was 6 days. In parallel, one lot of the GABI panel was measured on 13 dates. Here, the sensor calibration was repeated approximately every 10 min after completion of measurements on two rows.




STB Disease Assessment

The amount of STB in each plot was assessed on five dates (t1–t5) between 16 days after inoculation (dai, June 6, 2018) and 42 dai (July 2, 2018). STB was quantified by combined assessments of disease incidence (i.e., the proportion of leaves showing visible symptoms of STB) and conditional disease severity (i.e., the amount of disease on symptomatic plants). Disease incidence was assessed visually for 30 plants per plot by inspecting the leaves of one tiller per plant. Incidence scorings were obtained per leaf layer. Conditional disease severity was then measured using automated analysis of scanned leaves exhibiting obvious disease symptoms. To this end, eight infected leaves were sampled per plot, transported to the laboratory, and imaged on flatbed scanners following the method described by Stewart et al. (2016) and Karisto et al. (2018). However, to avoid interfering excessively with the development of the disease epidemic, leaf samples from inoculated plots were taken only if disease incidence was at least 1/3 (i.e., if at least 10 out of 30 examined leaves exhibited symptoms of STB infection). Thus, no leaf samples were taken at t1, while at t2, second leaves from the top were sampled from a subset of plots. Starting at t3, all plots were sampled at the flag leaf layer. In contrast, from non-inoculated control plots, eight leaves were sampled without reference to their disease status due to very low disease incidence. Automated image analysis was then used to extract the percent of leaf area covered by lesions (PLACL) from the generated leaf scans using thresholds in the HSV color space and functions of the Python application program interface of OpenCV V3.0.0 (https://opencv.org/). The precision of the automated image analysis method used here to assess STB has been demonstrated repeatedly in greenhouse and field studies (Lendenmann et al., 2014; Zhong et al., 2017; Krishnan et al., 2018; Meile et al., 2018; Stewart et al., 2018). The procedure was optimized to minimize the effect of insect damage, powdery mildew infections, and physiological senescence, particularly leaf-tip necrosis, on the derivation of PLACL. PLACL was extracted only from t2 and t3 scans, as leaves increasingly displayed physiological senescence at later time-points. Finally, overall disease severity was calculated by multiplying disease incidence with conditional disease severity for inoculated plots, whereas it was directly extracted from the leaf scans for control plots. 




Data Analysis

All data analyses were done in the R environment for statistical computing (R version 3.5.2; R Core Team, 2018). Raw spectra were smoothed using the Savitzky–Golay smoothing filter (Savitzky and Golay, 1964) with a window size of 11 spectral bands and a third order polynomial, using the R package “prospectr” V0.1.3. (Ramirez-Lopez and Stevens, 2014). Spectral regions comprising the wavelengths from 1,350 to 1,475 nm, from 1,781 to 1,990 nm, and from 2,400 to 2,500 nm were removed because of the very low signal-to-noise ratio resulting from high atmospheric absorption. Spectra were averaged for each experimental plot. Pre-processed spectra, consisting of reflectance values at 1,709 wavelengths, were then used for time-point specific analysis as well as for time-integrated analyses, as described in the next sections. For ease of notation, the reflectance at a specific wavelength will be abbreviated by R followed by the wavelength in nm (e.g., R750).



Benchmark Time-Point Specific Analysis

The relationship between spectral reflectance and STB was studied on a diverse panel of wheat genotypes by Yu et al. (2018), but the analysis was limited to single time-points. We performed a comparable analysis for each measurement time-point as a benchmark and to estimate model transferability across time. Yu et al. (2018) reported improved prediction of STB severity metrics and classification accuracy when using the full spectrum rather than single SVIs. Therefore, our analysis focuses on these approaches. We tested two parametrically structured linear models [partial least squares (PLS) regression and ridge regression] and two tree-based ensemble models (random forest regression and cubist regression) for their capability to predict STB severity metrics. For classification, PLS discriminant analysis (PLSDA) was used (for details on these methods we refer to Kuhn and Johnson, 2013 and citations therein). Prior to modeling, spectral resolution was reduced to 6 nm by binning (i.e., by computing average values for six adjacent wavelengths) due to very high correlation of reflectance values at neighboring wavelengths. Following a standard procedure (Kuhn and Johnson, 2013), model hyperparameters were tuned using 10 times repeated 10-fold cross-validation. Thus, training and test datasets comprised 90 and 10% of the original dataset, respectively. The root mean square error of predictions (RMSE) and overall classification accuracy were used as performance metrics for regression and classification, respectively. The overall accuracy reflects the agreement between the predicted and the observed classes. This agreement can also be expressed in terms of sensitivity and specificity of the model, with
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The simplest model with a performance within one standard error of the absolute best model was chosen as the final model. Variable importance for the projection (VIP) was computed for PLSDA models to estimate the importance of individual wavebands to predict the class (i.e., “healthy” or “diseased”). In the regression setting, two different training datasets were used for model fitting: the full dataset, including all control plots, and a dataset consisting of the inoculated plots only. When all control plots were used for model fitting, the RMSE and R2 of the resulting models were adjusted by removing the predicted and observed values for the control plots again, in order to avoid overly optimistic performance estimates resulting from a good prediction of disease severity in control plots. The R packages “caret” V6.0.80 (Kuhn, 2008), “mixOmics” V6.3.2 (Rohart et al., 2017), “pls” V2.7.0 (Mevik et al., 2018), “Cubist” V0.2.2 (Kuhn et al., 2018), “ranger” V0.10.1 (Wright and Ziegler, 2017), and “elasticnet” V1.1.1 (Hastie, 2018) were used for the analysis. 




Time-Integrated Analysis

Summarizing H1–H3, we hypothesized that the analysis of temporal dynamics in hyperspectral reflectance signatures may facilitate a robust detection and quantification of STB across diverse wheat genotypes under field conditions. To evaluate these hypotheses, we condensed the hyperspectral time series into time series of SVIs, similar to the procedure described previously (Anderegg et al., 2019, submitted). Thereby, we obtained a comprehensive summary representation of the hyperspectral dataset collected over time, interpretable in terms of plant physiology and canopy characteristics. The smoothness of SVI values over time was evaluated graphically, and only SVIs showing a clear and interpretable temporal trend were maintained for further analyses. Values of the selected SVIs were scaled to range from 0 to 10, representing the minimum and maximum values recorded during the assessment period for the corresponding experimental plot, respectively. To simplify subsequent steps in the analysis, the scale for SVIs with increasing values over time was inverted. Measurement dates were converted to thermal time after heading by subtracting the plot-specific accumulated thermal time at heading from the accumulated thermal time at each measurement date. The scaled SVI values were then fitted against thermal time after heading for each experimental plot and SVI using a Gompertz model with asymptotes constrained to 0 and 10 (eq. 1).
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where S represents the scaled SVI value, t is the accumulated thermal time after heading, b is the rate of change at time M, and M is the accumulated thermal time after heading when the rate is at its maximum (Gooding et al., 2000). Eq. (1) was fitted using the R package “nls.multstart” V1.0.0 (Padfield and Matheson, 2018). Two types of dynamics parameters for each experimental plot and SVI were extracted from the resulting model fits: 1) “key time-points,” which are specific points in time when a certain criterion (e.g., a threshold) is met, and 2) “change parameters,” which represent the rate or duration of a process (Figure 1). We extracted two key time-points: the M parameter of the Gompertz model and the time when fitted values decreased to 8.5 (t85). As change parameters, we used the rate parameter b of the Gompertz model and the duration between t85 and M (dur). While the b and M parameters of the Gompertz model fully describe the fitted curve, the t85 and dur parameters are affected by both Gompertz model parameters, thus representing a mix of both. The threshold was set to 8.5 because i) this level efficiently captured observed variation during the late stay-green phase (Figure 2), ii) it was little affected by somewhat unstable values during the stay-green phase observed for some SVIs, and iii) for some SVIs, the initial highest values were not optimally represented by the Gompertz model.
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Figure 1 | Extraction of dynamics parameters for one spectral vegetation index (SVI; here scaled values of the plant senescence reflectance index) and one experimental plot (here a non-inoculated control plot). The t85 parameter is the time point when fitted scaled SVI values decrease to 8.5; M is a parameter of the Gompertz model, representing the time point when the rate of decrease is at its maximum; the dur parameter represents the duration in thermal time between t85 and M; and b is a parameter of the Gompertz model, representing the maximum rate of decrease. M and t85 are labeled “key points”; dur and b are labeled “change parameters.”
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Figure 2 | Temporal dynamics of spectral vegetation indices (SVIs). Gompertz model fits for all 72 experimental plots are shown. (A) A disease-insensitive SVI (here the flowering intensity index, FII) displays the same temporal patterns for both treatments (inoculated and control). (B) A disease-sensitive SVI (here the modified chlorophyll absorption ratio index, MCARI2) displays contrasting temporal patterns for control and inoculated plots.




Next, SVIs least affected in their temporal dynamics by the presence or absence of STB infections were selected separately for each dynamics parameter as follows: for the key time-points (t85, M) by selecting SVIs with the smallest average difference between the parameter values of the inoculated and non-inoculated control plots and for change parameters (b, dur) by selecting SVIs with the smallest average deviance from 1 of the ratio of the change parameter values. For each dynamics parameter, a subset of eight SVIs with the smallest difference or ratio was selected. All other SVIs were considered to be significantly affected by STB infection. Figure 2 shows an example of an STB-sensitive and an STB-insensitive SVI.

We then performed unsupervised subset selection (i.e., without considering the response) on both sets of SVIs (i.e., the STB-sensitive and STB-insensitive SVIs) with the aim of removing redundant SVIs. For each dynamics parameter (t85, M, dur, b), pairwise Pearson correlation coefficients between the parameter values derived from all used SVIs were computed. For change parameters, the maximum linear correlation allowed was set to r = 0.9, whereas for the key time-points, it was set to r = 0.95, as these were generally highly collinear. In cases where pair-wise correlations were higher than these threshold values, only one of the two SVIs was retained, preferring narrow-band SVIs over broad-band SVIs, SVIs with a specific physiological interpretation, and SVIs developed specifically for use in wheat or barley canopies over more generic SVIs. Additionally, the goodness of the Gompertz model fit was evaluated qualitatively (i.e., graphically) and used as an additional selection criterion. The parameters were then combined by calculating differences between the key time-points derived from selected STB-sensitive and STB-insensitive SVIs and the ratios of the change parameters derived from STB-sensitive and STB-insensitive SVIs (Figure 3). These differences and ratios were calculated for all possible pairs of STB-sensitive and STB-insensitive SVIs and were then used as features for 1) the classification of plots into non-inoculated healthy control plots and inoculated, diseased plots and 2) the prediction of STB severity in each plot. This final step was performed primarily to estimate whether a combination of features outperform single features in predicting STB severity (relevant with respect to H3) and to identify the most predictive features (see section 2.4.3). Models and model fitting procedures were identical to the time-point specific analysis.
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Figure 3 | Derivation of the final key time points based predictors for disease classification and quantification. Key time points extracted from disease-sensitive and disease-insensitive spectral vegetation indices (SVI) are combined to isolate the effect of the disease from other effects (e.g., contrasting stay-green) by calculating the differences (highlighted by red arrows). (A) Control, “healthy” plot. (B) Inoculated, “diseased” plot. For change parameters, the ratio, rather than the difference, was calculated.






Selection of Spectral–Temporal Features

While tree-based models are considered naturally resistant to non-informative predictors and some perform feature selection intrinsically, the presence of highly correlated predictors makes the interpretation of resulting variable importance measures challenging (Strobl et al., 2007). Hence, we performed supervised feature selection by recursive feature elimination with cubist and random forest regression as base-learners, using a nested cross-validation approach. The dataset was resampled 30 times with an 80:20 split using stratified sampling. Samples were binned into eight classes based on percentiles of STB severity to ensure balanced evaluation datasets. Thus, for each resample, feature elimination was carried out on 80% of the data, and model performance was evaluated on the remaining 20% in 28 decreasing steps. Eliminated features were assigned a rank corresponding to the iteration after which they were excluded (i.e., those eliminated first had rank 28, whereas the feature retained as the last had rank 1). In each iteration, the base-learner hyperparameters were tuned using 10-fold cross-validation (see Ambroise and McLachlan, 2002; Guyon et al., 2002; Granitto et al., 2006 for a detailed discussion of the methodology). 




Independent Model Validation

Due to the relatively small size of the experiment (n = 72 experimental plots), we did not rely exclusively on the cross-validated training performance estimates for model evaluation. The performance and robustness of the developed models were further evaluated using data of 360 wheat plots sown with 330 registered varieties obtained from one replication of the GABI panel. Low to intermediate disease incidence and very low conditional disease severity as well as late appearance of symptoms in all 36 control plots spatially randomized within the two replications of the panel suggested that STB disease should not have reached damaging levels in the vast majority of these plots. Therefore, these plots were considered as essentially disease-free. For all of these plots, spectral–temporal features were extracted from the 13 measurement time-points as described previously and were then used to generate a class label and class probabilities from the classification models as well as a prediction of disease severity from the regression models. To distinguish the performance measures obtained for held-out samples of the main experiment (i.e., the cross-validated training performance) from those obtained for the independent plots, these are referred to as the internal accuracy (accint) and the generalized accuracy (accgen), respectively. It is important to note that accuracy represents only model specificity in this case, as no independent plots with significant levels of STB were available. In a final validation step, the spatial distribution of class labels and severity predictions were examined by creating plots of the experimental design. Thus, we aimed to test the robustness of the models to heterogeneous field conditions. Field heterogeneity may affect plant physiology and thus hyperspectral reflectance over time (e.g., through the development of local drought stress). The presence or absence of spatial patterns in model predictions can therefore be interpreted as an additional measure of model robustness.




Validation of the Most Predictive Feature in a Contrasting Environment

Spectral–temporal features were engineered specifically to minimize effects of genotype and environment. However, it is still conceivable that relative changes in spectral reflectance over time are also affected by environmental conditions. This may result in the extraction of environment-specific relationships between spectral–temporal features and disease severity. We therefore evaluated the relationship between the most predictive spectral–temporal feature and STB severity using data from a separate year. This dataset enables a rigorous validation of the spectral–temporal features as predictors of STB for several reasons: i) it originates from a strongly contrasting environment with wet and cool weather conditions; ii) sowing parameters were different, likely affecting canopy structural parameters; iii) only natural variance in disease resistance was observed, as artificial inoculations were not performed; iv) a large number of morphologically, phenologically, and structurally diverse genotypes not contained in the training population were assessed; v) reflectance measurements were not carried out with a sufficient frequency to allow fitting of parametric models, and we had to use linear interpolations of individual measurement time points instead, losing the advantage of the smoothing effect; and finally, vi) sampling procedures to quantify STB severity were not optimal for our purpose. As parametric models could not be fitted, the time point when interpolated values decreased below 50% of their initial value (t50) was extracted as an equivalent to the M parameter of the Gompertz model. For more details on datasets and experiments, we refer to Karisto et al. (2018) and Anderegg et al. (2019, submitted).






Results



Development of STB Disease

Toward the end of the vegetation period, all inoculated plots had substantial levels of STB. In contrast, non-inoculated control plots were essentially disease-free until late in the vegetation period. Thus, artificial inoculations were effective in all plots, and the dataset was suitable for testing the feasibility of the classification of plots into healthy and diseased canopies based on reflectance spectra or spectral–temporal features. Furthermore, large variation in the levels of STB could be observed among the inoculated plots, probably attributable to different levels of resistance, with the largest variation observed during late stay-green (i.e., at t3, June 19, 2018, compare with Figure 4B). Thus, the dataset was also suitable for testing the feasibility of disease quantification using reflectance spectra or spectral–temporal features.
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Figure 4 | Symptoms of Septoria tritici blotch (STB) and associated spectral reflectance characteristics over time. (A) Date-wise averaged reflectance spectra of healthy canopies (upper panel) and of inoculated, diseased canopies (lower panel). Colors approximate the average color of the vegetation on the corresponding measurement date (estimated based on average visual canopy senescence scorings). The thick black spectra mark the average reflectance spectra measured at t3 (i.e., June 19, 2018). (B) Images of two inoculated plots, taken on June 16, 2018. The genotype in the upper panel was highly resistant to STB, developing visible symptoms only later, whereas the genotype in the lower panel was highly susceptible and displays severe symptoms of STB. Images were captured using the field phenotyping platform (FIP, Kirchgessner et al., 2017). (C) Values of the structure insensitive pigment index (SIPI) for both treatments on three measurement dates. The plots shown in panel B are contained in this boxplot (indicated by the red box). No obvious signs of apical senescence were visible by June 20, 2018, in any of the healthy control plots, but senescence started shortly after.




High levels of STB in inoculated plots were the result of both high incidence and high conditional severity, particularly at t4 and t5 (Figure 5A, Table 2). Visual assessments of scanned leaves suggested a high conditional severity in all inoculated plots at these late stages. In contrast, the non-inoculated control plots displayed very low levels of STB even at late stages. STB incidence increased in some plots at t4 and t5, but visual assessments of the sampled leaves demonstrated very low conditional disease severity even at t5. Since the subset of genotypes used for the experiment also included some highly susceptible genotypes, this suggests that natural infections did not cause agronomically significant levels of STB in this experiment. This was likely the result of fungicide applications and the very low rainfall in the period from May to July. Rainfall in this period totaled 178 mm, which represents 52% of the average of 343 mm in the reference period 1981–2010 (MeteoSwiss, 2019).
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Figure 5 | Development of Septoria tritici blotch (STB) disease. (A) STB incidence at five different assessment dates for non-inoculated “healthy” control plots (ctrl) and for artificially inoculated “diseased” plots (dis). In diseased plots, STB incidence on flag leaves was assessed at all time points, whereas for the control plots, it was assessed only from t3 onward. Filled boxes represent STB incidence on flag leaves; open boxes represent STB incidence on lower leaf layers. 1)Open boxes represent STB incidence on third leaves from the top; 2)open boxes represent STB incidence on second leaves from the top. (B) Conditional disease severity measured as percent leaf area covered by lesions (PLACL) at t3 (June 19, 2018) for eight flag leaves per plot for all 72 experimental plots.




Table 2 | Summary of Septoria tritici blotch (STB) assessments. STB incidence and conditional severity were assessed at the level of individual leaf layers, namely, the flag leaf (Fl0), the penultimate leaf (Fl1), and the ante-penultimate leaf (Fl2). Conditional severity was measured as percent leaf area covered by lesions (PLACL). Severity was calculated as the product of STB incidence and conditional severity. Values are reported separately for non-inoculated control plots and inoculated plots, separated by a slash. Mean values across all plots are reported, with minima and maxima in brackets. Disease assessments were carried out on five dates (t1–t5) covering the growth phases of 15 days after inoculation (dai) to 41 dai.
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STB incidence was low at t1, both in inoculated and in control plots. Symptoms were apparent at significant levels only on lower leaf layers of inoculated plots, whereas flag leaves were essentially disease-free in both treatments. At t2, there was approximately a five-fold increase in STB incidence at the flag leaf and subtending leaf layer in many inoculated plots (Figure 5A, Table 2). At t3, STB incidence on flag leaves reached very high levels in most inoculated plots, and PLACL reached an average of 17%, indicating a moderate conditional STB severity on average. Thus, the observed differences in STB severity among inoculated plots are primarily a result of differences in conditional severity, with PLACL ranging from 0 to 38% (Figure 5B). In control plots, almost no lesions were detected. There were some signs of physiological senescence on sampled flag leaves at t3, but these were mostly limited to yellowing of the entire leaves and/or leaf tip necrosis. As there was ample variation for disease severity at t3 among the inoculated plots and physiological senescence did not significantly affect extraction of PLACL from leaf scans, this time-point was chosen as a measure of overall disease severity and used as response variable in the time-integrated analysis.




Effects of STB and Phenology on Canopy Spectral Reflectance

Over the assessment period, observed changes in spectral reflectance were similar for diseased and healthy canopies (Figure 4A), showing the typical pattern of senescing canopies. However, an obvious effect of STB infections consisted in an early marked decrease in reflectance in the near-infrared region (NIR) not observable in healthy canopies. This decrease preceded the appearance of physiological senescence and was observable in the pre-symptomatic phase of STB infections. Furthermore, an early increase in reflectance in the VIS, especially for wavelengths greater than 535 nm, was observed. An early increase in short-wave infrared region (SWIR) reflectance in diseased canopies compared to healthy canopies was also discernible. However, these differences were small compared to changes in reflectance over time.

Canopy spectral reflectance seemed to remain relatively constant throughout the stay-green phase in healthy canopies (Figure 4A, upper panel). However, the examination of SVI values over time revealed significant changes in canopy reflectance during this period (Figure 4C). Importantly, variation caused by advancing phenology (i.e., within-treatment variation in Figure 4C) was prominent with respect to STB-induced variation (i.e., between-treatment variation in Figure 4C). This is true even for the structure insensitive pigment index (SIPI), which has been proposed as a potential surrogate for crop disease under field conditions (Yu et al., 2018; Figure 4C). For several other spectral indices, initial variation as well as variation over time was even larger (data not shown).




Time-Point Specific Full-Spectrum Analysis



Binary Classification Into Healthy and Diseased Canopies Using Reflectance Spectra

PLSDA models correctly classified all held-out samples in most resampling iterations, resulting in classification accuracies accint ≥ 0.96 for all time-points (Figure 6). The optimal number of components used by the PLSDA models (determined via repeated CV) was between 5 and 17, depending on the time-point. Correct class labels were obtained for all held-out samples even for the first time-point at 9 dai, when no visual symptoms of STB were present in most experimental plots. However, prediction accuracies for the independent GABI plots were distinctly lower, particularly for models calibrated with data from early and late measurement time-points (data not shown). A satisfactory performance on independent plots was observed for models calibrated with data from the late stay-green phase (i.e., between 2018-06-10 and 2018-06-22), which correctly predicted the independent plots as disease-free in most cases (accgen ≥ 0.88 in all cases).
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Figure 6 | Variable importance for the projection (VIP) of the time point specific partial least squares discriminant analysis (PLSDA) models for the first three components (comp.1–comp.3). The total number of components used by the model (ncomp), the prediction accuracy for plots included in the experiment (accint), and prediction accuracy for the independent test set comprising >300 plots of an adjacent experiment measured on the same day or with a maximum delay of one day (accgen) are also reported for each model. The earliest and latest time points are not represented. The gray shaded area represents the spectral range between 680 and 750 nm, i.e., the red edge. The horizontal black line marks a commonly used threshold value for an important contribution (VIP = 0.8).




VIP scores quantify the importance of wavebands to predict the response, i.e., to generate the class label (“healthy” or “diseased”) or to predict STB disease severity here (Yu et al., 2018). VIP scores for the first three components showed some general patterns across time-points (Figure 6). The NIR (750–1,300 nm) and the SWIR (1,475–1,781 and 1,991–2,400 nm) had a relatively high importance (Figure 6). However, the relative importance of the SWIR compared to the NIR drastically changes over time. The importance of the SWIR is comparably low during early stay-green, but its importance greatly increases and exceeds the importance of the NIR during late stay-green. Furthermore, the red edge (RE, 680–750 nm) had a low importance at the beginning but is increasingly important at later stages, as indicated by a gradual left-shift of the peak in VIP at the NIR for later time-points. Finally, at early time-points, there is a significant contribution of wavebands in the visible range (VIS, 400–700 nm). This feature is somewhat transformed over time, resulting in a narrow peak in VIP at wavelengths around 535 nm at intermediate time-points. Toward later time-points, this feature broadens again.

Given the common patterns but also significant differences across time-points, we aimed to evaluate the robustness of the developed models to temporal changes in reflectance induced by advancing crop phenology, as differences in crop phenology are typically present among genotypes in breeding programs. Model performance across time is shown in Figure 7. The performance of models calibrated with data from early and late time-points quickly deteriorates. In contrast, models calibrated with data of intermediate time-points show a higher stability over time, although the performance of some models still decreases rather fast. The models created using data from 2018-06-10 and 2018-06-19 were most robust over time and produce accurate class predictions over a period of about 10 days. It is essential to note that these performance estimates are derived from the same plots used to calibrate the models, although at different time-points. Given the lower accgen compared to the accint (see above), significantly decreased performance should be expected on entirely independent plots (different genotypes).
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Figure 7 | Overall prediction accuracy of PLSDA models across time. Binary classification models were calibrated for each measurement time point, using reflectance spectra collected on this date as predictors and the known class label (i.e., “diseased” or “healthy”) as response. The performance of these models was evaluated on held out samples of the same date as well as on all plots of the subsequent measurement time points as the overall accuracy of classification. Colored lines track the performance of each date-specific model across time (e.g., the left-most red line represents the performance of the model calibrated with spectra obtained on May 30, 2018, when tested on the same date, and for all subsequent measurement dates). The broken black line indicates a performance of 0.5, i.e., the performance of a random guess of the class label.






Regression Models to Quantify Disease Severity Using Reflectance Spectra

Cubist regression models performed best in predicting disease severity. The smallest RMSE was obtained for models trained on data from inoculated plots only (RMSE = 0.061, R2 = 0.67; Figure 8). The underlying model was simple, building on only four variables (R748, R766, R892, and R1084) in a single model tree. Model performance was slightly decreased when all available data was used for model fitting (RMSEadj = 0.066, R2adj = 0.55). Here, significant improvements were achieved by increasing model complexity. Validation on the largely disease-free plots of the GABI panel suggested a high specificity of the model (i.e., disease levels on healthy plots were predicted to be virtually zero for almost all plots). This was true irrespective of whether the control plots were included in the training dataset or not. PLS and ridge regression performed similarly (RMSE = 0.063, R2 = 0.64), whereas random forest regression performed comparably poorly (RMSE = 0.087, R2 = 0.46). A strong systematic bias was observed in predictions of the random forest, with low values of disease severity overestimated and high values underestimated.
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Figure 8 | Predicted vs. observed Septoria tritici blotch (STB) severity levels of 36 artificially inoculated wheat plots. Mean and standard error of predictions are shown. STB severity was measured on flag leaves using a combination of visual incidence scorings and scans of flag leaves exhibiting disease symptoms. Predictions were obtained from a cubist regression model based on the reflectance spectrum of the canopies measured on June 19, 2018. The broken red line represents the 1:1 line, the blue line represents the least squares line of the linear regression of predicted vs. observed values, and the gray area represents the 95% confidence interval of the least squares line.







Time-Integrated Analysis Using Combinations of Spectral Vegetation Indices



Engineering of Spectral–Temporal Features as New Predictors

Fifty-seven of the tested SVIs were deemed amenable for analysis of their temporal dynamics in the proposed framework (i.e., they displayed a clear and interpretable temporal trend, which could be represented using a Gompertz-type model). For seven of these, the last three measurements were excluded prior to modeling their temporal dynamics, as values increased again in later stages. After subset selection, 7 and 13 SVIs were retained as insensitive and sensitive SVIs, respectively, for the key time-points. For change parameters, 4 and 12 SVIs were retained as insensitive and sensitive SVIs, respectively. In total, 24 distinct SVIs were retained, of which 10 sensitive and 14 insensitive SVIs. From their fitted dynamics, a total of 278 (i.e., 4 insensitive SVIs * 12 sensitive SVIs * 2 parameters + 7 insensitive SVIs * 13 sensitive SVIs * 2 parameters) spectral–temporal features were generated as pairwise combinations of dynamics parameters obtained from sensitive and insensitive SVIs. These features were then used for classification and regression, as described below.




Binary Classification Into Healthy and Diseased Canopies Using Spectral–Temporal Features

A PLSDA model using four components achieved a classification accuracy accint = 1.00, suggesting correct classification of each experimental plot as healthy or diseased canopy based on spectral–temporal features. In the external validation, the model achieved accgen = 0.86, thus correctly classifying 304/353 plots as healthy. This is slightly less accurate than the best time-point specific models (Figure 6).




Regression Models to Quantify Disease Severity Using Spectral–Temporal Features

Overall, disease severity predictions from spectral–temporal features were similarly accurate as those obtained from time-point specific models based on reflectance spectra. The lowest RMSE was achieved when no control plots were used as training data using the PLS algorithm (RMSE = 0.068, R2 = 0.71). Differences in performance among algorithms were smaller than in time-point specific analyses, but the random forest performed relatively poorly also in this case (RMSE = 0.076, R2 = 0.62). Both tree-based models, and particularly the random forest, produced systematically biased predictions, which was not observable for PLS and ridge regression. In contrast to the time-point specific analyses, validation on the largely disease-free plots of the GABI panel suggested the necessity to include the control plots in the training data in order to obtain accurate predictions for low levels of disease, except for ridge regression. When these were included, tree-based models produced good estimates of the low disease-levels, whereas PLS and ridge regression still predicted disease severity of >0.05 in a significant number of plots. The inclusion of the control plots resulted in a lower systematic bias of the tree-based predictions, while only marginally decreasing model performance (RMSEadj = 0.074 and RMSEadj = 0.076 for cubist and random forest, respectively; Figure 9A). Importantly, the inclusion of the control plots also strongly reduced or eliminated spatial patterns in predictions of the GABI panel, except for ridge regression (Figure 9B). Thus, cubist regression seemed to perform best when taking all evaluated aspects of model performance into account.
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Figure 9 | (A) Predicted vs. observed Septoria tritici blotch (STB) severity levels of 36 artificially inoculated wheat plots. Mean and standard error of predictions are shown. Data from all experimental plots (n = 72) was used to tune/train the model, but reported performance estimates are based only on artificially inoculated plots (n = 36) in order to avoid overly optimistic performance estimates resulting from a good prediction of disease severity in control plots. STB severity was measured on flag leaves using a combination of visual incidence scorings and scans of flag leaves exhibiting disease symptoms. Predictions were obtained from a cubist regression model based on spectral–temporal features for the same 36 plots and 36 non-inoculated control plots sown with the same genotypes. The broken red line represents the 1:1 line, the blue line represents the least squares line of the linear regression of predicted vs. observed values, and the gray area represents the 95% confidence interval of the least squares line. (B) Spatial distribution of predicted STB severity levels of ~360 largely disease-free plots of the GABI wheat panel, grown next to the plots used as training dataset. White fields correspond to the plots contained in the training dataset.






Feature Selection and Validation

Feature selection was performed to identify the most important spectral–temporal features and to estimate the benefit of adding additional features. The difference between M derived from the modified chlorophyll absorption ratio index (MCARI2) and the SIPI was consistently the most informative spectral–temporal feature (Supplementary Table 1). The MCARI2 was designed to estimate green leaf area index in crop canopies, whereas the SIPI measures pigment concentrations and ratios in leaves. This feature was retained as the last in all 30 resamples by the random forest and in 29 resamples by cubist. Following features had much increased ranks. The most influential features were all based on the M parameter of the Gompertz model, while other parameters were clearly less important. In particular, differences in change parameters did not seem to be informative of disease severity. Most selected features used the SIPI, R780/R740, and PRInorm indices as STB-insensitive index, even though they seemed to be somewhat more affected by the presence of disease than the flowering intensity index (FII) on average (Table 3). There was little evidence for the existence of complementary information among the spectral–temporal features, as model performance was affected little by the sequential removal of features (Figure 10). However, the small sample size resulted in very high variance of the performance estimates obtained from the test set and contrasting patterns between the cross-validated training and the test performance estimates (Figure 10). The top-selected spectral–temporal feature was found to be informative of STB severity in the separate experiment carried out under contrasting environmental conditions (Pearson r = 0.53, p < 0.001; Figure 11).



Table 3 | Spectral vegetation indices (SVI) identified to be insensitive in their temporal dynamics to the presence or absence of Septoria tritici blotch (STB) disease. For each dynamics parameter, a subset of eight SVI with the smallest difference (diff, GDD) or ratio (dimensionless) of the parameters between treatments was selected. The reported SVI were retained after subset selection based on pairwise correlations. The mean pairwise correlation (corr) is reported per dynamics parameter. Values in brackets report the minimum and maximum pairwise correlations.
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Figure 10 | Performance profile of models based on spectral–temporal features to predict STB severity as a function of the number of spectral–temporal features used. Mean performance and standard deviation are shown based on 30 resamples of the data.
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Figure 11 | STB severity as measured by the percent leaf area covered by lesions (PLACL) plotted against the spectral–temporal feature identified as most predictive of STB severity (the difference between t50 extracted from the MCARI2 and SIPI spectral vegetation indices, expressed in growing degree days). The Pearson product moment correlation coefficient and the p-value of the linear correlation are based on 592 experimental plots. Data was collected in a separate experiment conducted in 2016 without artificial inoculation. In this experiment, 330 genotypes were grown in two replicates, but some plots were excluded from the analysis due to heavy lodging.








Discussion



Limitations of Time-Point Specific Analyses

Current reflectance-based approaches to high throughput phenotyping of crop diseases under field conditions suffer from a lack of specificity and from insufficient robustness to genotypic diversity and environmental variability (i.e., context specificity). This problem has previously been described in detail with regard to growth stages of the crop, different phases in the pathogenesis, and the presence of other stresses (Zhang et al., 2012; Devadas et al., 2015; Zheng et al., 2019).

Our results prominently illustrate context-specificity of the relationship between spectral reflectance and disease. Firstly, variation on a specific date in potentially disease-sensitive spectral features, such as the SIPI (see Bajwa et al., 2017; Yu et al., 2018), is quickly overridden by variation caused by advancing phenology (Figure 4C), illustrating the difficulty in defining thresholds or calibration curves. Secondly, unstable VIP values of single wavelengths in PLSDA models, systematic shifts in VIP patterns (Figure 6), and limited model applicability over time, even for the plots contained in the training dataset (Figure 7), illustrate marked short-term changes in the relationship between STB and spectral reflectance. Thirdly, the decreased classification accuracy on independent test plots (Figure 6) indicates context-specificity related to the effect of genotypes and, possibly, field heterogeneity.

There was a short period during late stay-green when classification models were transferable between time-points to some extent (Figure 6). This can be explained by the relatively synchronized appearance of moderate to high levels of STB in front of the relatively stable background of a stay-green canopy. In this intermittent phase, the signal caused by STB is strong compared to the noise caused by genotypic diversity and in-field measurements (see also Figure 4A). Nonetheless, the regression model for STB-severity based on reflectance spectra is still context-specific, as reflectance in the NIR (used as predictors) gradually decreases during the stay-green and senescence phase irrespective of the presence of STB (Figure 4A). NIR reflectance is also strongly affected by genotype morphology, canopy 3-D structure, and canopy cover (Jacquemoud et al., 2009; Gutierrez et al., 2015) and is therefore not specific to STB if analyzed on a particular point in time. In addition, time-point specific models highlight the potential of detecting STB in different phases, using different spectral features. This potential would be left unused if only a short period would be targeted.




Potential of Temporal Changes in Reflectance to Detect and Quantify STB

Due to the strong limitations of models based on reflectance spectra, we evaluated the potential of exploiting temporal changes in reflectance for disease detection and quantification instead. Models based on spectral–temporal features were characterized by a somewhat lower performance compared with models trained on reflectance spectra of a specific time-point (Figure 7, Figure 8). Nevertheless, classification accuracies were similar to the time-point specific PLSDA models, and regression models suggested that spectral–temporal features were also informative of disease severity. This is encouraging, particularly given the strongly contrasting morphological, canopy structural, and stay-green properties of the genotypes comprised in the experiment.




Selected Spectral Indices and Resulting Spectral–Temporal Features

Even though high levels of STB developed during the stay-green phase in most artificially inoculated plots (Figure 4), several SVIs could be identified which displayed similar temporal patterns across treatments (Table 3). In particular, the FII (Stuckens et al., 2011), i.e., the normalized difference of R475 and R365, was found to be almost unaffected by STB (Figure 2A). In a previous study, we found that early physiological senescence of wheat canopies results in only (proportionally) small increases in reflectance at wavelengths shorter than 500 nm (unpublished data). Strong increases were observable only toward later stages of senescence. The observed insensitivity of the FII to STB likely results from the fact that STB affects only parts of the vegetation, initially mostly lower leaf layers, while significant amounts of healthy green tissue remain. Thus, FII values should change significantly only with the onset of rapid apical senescence, encompassing a generalized loss of green leaf area. It has been suggested that STB does not accelerate or anticipate apical senescence under a range of environmental conditions (Bancal et al., 2016). This is in line with the observed insensitivity of the FII to STB. Interestingly, the dynamic pattern of the SIPI (Penuelas et al., 1995) was also found to be highly insensitive to STB. In contrast, this SVI was previously suggested as a potential surrogate for crop disease under field conditions (Bajwa et al., 2017; Yu et al., 2018). This index was developed at the leaf scale to maximize sensitivity to the ratio between carotenoid and chlorophyll a concentrations (Car/Chl a ratio), while minimizing the effect of leaf surface and mesophyll structure (Penuelas et al., 1995). Provided the principles underlying the SIPI hold also for canopy level reflectance, a low sensitivity of the dynamic pattern to the presence of STB would be expected, as there seems to be no reason to expect a significant change at canopy level of the Car/Chl a ratio due to STB. STB causes the appearance of localized necrotic lesions; however, a general increase in the Car/Chl a ratio is not expected, unless STB accelerates or anticipates apical senescence, which does not seem to be the case (Bancal et al., 2016). The PRInorm was also among the most STB-insensitive SVIs. This SVI is based on the photochemical reflectance index (PRI), initially employed to measure changes in the relative levels of pigments in the xanthophyll cycle (Gamon et al., 1992). Over larger temporal scales, the PRI was shown to be strongly responsive to the Car/Chl ratio (Sims and Gamon, 2002). Zarco-Tejada et al. (2013) modified this SVI to decrease the effect of reduced canopy leaf area resulting from water stress. Thus, its insensitivity to STB can probably be explained in an analogous manner as for the SIPI.

The temporal patterns of water-sensitive SVIs such as the water index (WI; Peñuelas and Inoue, 1999) and the normalized difference water index (NDWI; Gao, 1996) were found to be highly sensitive to STB. Similarly, the disease water stress index (DSWI; Apan et al., 2004), which uses information from the water-sensitive SWIR and the NIR, was strongly affected in its temporal dynamics. In particular, water sensitive SVIs decreased much earlier for inoculated than for control plots, and the decrease occurred more gradually than in healthy plots (data not shown). This is in line with findings by Yu et al. (2018), who reported both the WI and NDWI to discriminate best between STB-diseased and healthy canopies in early stages of disease development. Several SVIs using reflectance in the RE and NIR also showed strongly contrasting temporal patterns [e.g., DSWI, normalized difference vegetation index, plant senescence reflectance index (PSRI), and VI700]. Similar to the SIPI, the PSRI (Merzlyak et al., 1999) is highly sensitive to the Car/Chl ratio at the leaf level. However, NIR reflectance is used to normalize the difference between R677 and R500. It seems highly questionable whether the PSRI is particularly sensitive to the Car/Chl ratio in diverse germplasm at the canopy level. Variation in the PSRI seems to arise primarily from differences in canopy structure among genotypes and from canopy structural changes over time (Anderegg et al., 2019, submitted). The modified chlorophyll absorption ratio index (MCARI2; Haboudane et al., 2004), sensitive to green leaf area index, also showed strongly contrasting dynamic patterns (Figure 2B). The healthy index (HI; Mahlein et al., 2013) was developed to separate healthy sugar beet leaf tissue from tissues affected by various foliar diseases. The prominent use of the RE by this index suggests that in our case, HI values are mostly driven by canopy structure and to a lesser extent chlorophyll absorption. Overall, our results thus suggest that SVIs sensitive to leaf internal structure and canopy structure are strongly affected by the presence of STB. This effect has been previously described for various patho-systems (e.g., Zhang et al., 2012; Yu et al., 2018; Zheng et al., 2019).

In summary, it seems that many of the derived spectral–temporal features can be interpreted as robust measures of STB-induced temporal changes in leaf internal structure, canopy structural parameters, and canopy water content. These are obtained by normalizing the temporal dynamics of corresponding SVIs via the estimation of temporal changes in pigment ratios and reflectance at short wavelengths centered around 465 nm, likely representing physiological apical senescence. Thus, spectral–temporal features seem to well represent our hypothesis H2, as STB-affected plant and canopy traits are expressed relative to phenology-related traits.




Robustness of Spectral–Temporal Features

As far as quantifiable in the framework of this experiment, models based on spectral–temporal features were robust to variation in genotype morphology, phenology, canopy cover, and canopy 3D structure as well as genotype-specific temporal changes thereof. Accurate predictions were obtained also for 330 diverse genotypes comprised in the GABI panel and grown in a large field experiment, suggesting robustness of the method to varying growing conditions arising from field heterogeneity (Figure 9B). The most predictive feature was also among the best predictors of STB severity in a different experiment. The observed correlation is very similar to the correlations reported by Yu et al. (2018) for simple SVI measured at individual time points, however with the advantages discussed throughout the manuscript. The results of this final validation likely underestimate the power of the developed approach for several reasons as described in section 2.4.5 but offer evidence for the transferability of our results across sites, environments, genotypes, and agricultural practices.

Results from feature selection suggested that a single spectral–temporal feature (i.e., the difference between M derived from MCARI2 and SIPI), relating structural changes in leaves and canopies to senescence-induced changes in pigment composition, was sufficient to achieve the performance illustrated above. Other stresses occurring during grain filling such as terminal drought stress and nitrogen shortages are likely to result in a similar decrease in green leaf area index. However, these stresses are also known to accelerate physiological senescence (Martre et al., 2006; Bogard et al., 2011; Distelfeld et al., 2014). Therefore, we speculate that the developed models may be moderately robust against the effect of common other stresses despite their simplicity. Yet, we conclude that our hypothesis H3 (i.e., that the combination of several spectral–temporal features representing the unique sequence and dynamics of separate events during pathogenesis could increase the specificity of the method) remains to be confirmed in larger experiments including other stress factors. In particular, other diseases causing similar symptoms and prevalent in the same developmental stage of the crop may have similar effects on the temporal evolution of hyperspectral reflectance. Large multifactor experiments will be required to judge the potential of the proposed approach to detect, quantify, and delineate individual necrotrophic foliar diseases. Finally, it should be noted that some effects of fungicide applications on canopy reflectance characteristics cannot be excluded in our experiment. However, a fungicide formulation without greening effect was used for the last treatment at BBCH 65. It seems unlikely that this or earlier fungicide applications significantly affected the temporal dynamics of canopy reflectance.




Multiple Spectral Vegetation Indices to Exploit Temporal Dynamics in Reflectance

A key component of the proposed approach consists in summarizing hyperspectral data in terms of multiple SVIs and modeling of their temporal dynamics. Though this may result in the loss of some relevant information contained in reflectance spectra (Pauli et al., 2016), the use of SVIs presented a number of advantages here: i) noise in temporal patterns was much reduced compared to reflectance values at single wavelengths, facilitating the fitting of parametric models; ii) the inevitable subset selection step preceding feature combination could be based on objective criteria related to the form and purpose of SVIs; iii) many of the used SVIs were designed specifically to maximize responsiveness to certain vegetation properties while minimizing the effect of common confounding factors, which is likely to also increase the robustness of derived spectral–temporal features (see e.g., Penuelas et al., 1995; Haboudane et al., 2004); and finally, iv) the procedure results in a summary of the hyperspectral dataset that is interpretable in terms of plant physiology and canopy characteristics, which also holds true for derived spectral–temporal features. Fitting parametric models to scaled SVI values may smooth out measurement errors related to single measurement dates, resulting for example from varying sun angle at measurement or short-term variation in illumination conditions. Thus, scaling SVI values and modeling their temporal dynamics reduces the effect of confounding factors on initial reflectance spectra and minimizes the effect of errors related to single measurements in the series.




Context and Scope

In this study, we used a non-imaging spectroradiometer and manual feature engineering for disease detection and quantification. A high spatial resolution of imaging sensors has been deemed critical for disease detection, identification, and quantification by others (Mahlein et al., 2010; Mahlein et al., 2012; Mahlein, 2016). The high potential of 2-D information in combination with deep learning methods for disease identification has been demonstrated recently (Mohanty et al., 2016; Fuentes et al., 2017). However, changes in spectral reflectance over time have also been shown to be highly informative at the leaf level (Mahlein et al., 2010; Wahabzada et al., 2015). To make use of the spatial and temporal dimensions under field conditions, individual lesions would arguably have to be tracked across time. Some solutions to this problem have been presented for close-range hyperspectral measurements (Behmann et al., 2018). However, similar solutions at the canopy level may be technically extremely challenging to implement and require extensive studies due to problems in tracking individual pixels or organs over time and in obtaining a clean spectral signal from objects with varying orientation. Existing approaches to make use of spectral, spatial, and temporal information rely on automated and data-driven extraction of characteristic spectral features for diseased plants under controlled conditions (Wahabzada et al., 2015; Wahabzada et al., 2016; Thomas et al., 2018). Here, promising results were achieved using a non-imaging sensor and manual feature extraction. This highlights that an improved understanding of potential confounding factors arising under field conditions may equally boost the potential of remote sensing methods for applications in crop breeding.

We developed and validated the presented method to facilitate robust in-field detection and quantification of STB. However, the underlying concepts should be transferrable to different problems, such as the detection and quantification of other foliar diseases. Several features of the proposed approach (e.g., exploiting plot-based relative changes in reflectance over time, combining sensitive and insensitive features, or the SVI-based parameterization of temporal dynamics) may also be valuable in quantifying other breeding-relevant traits, such as the timing and dynamics of nitrogen remobilization.





Conclusion

Here, we tested the possibility to detect and quantify STB relying exclusively on relative changes in spectral reflectance over time, which is expected to minimize confounding effects on spectral reflectance arising from genotypic diversity and environmental conditions. Our results demonstrated the feasibility of the proposed approach and suggested that resulting models were robust against variation in several common nuisance factors. Specifically, it appears that the temporal dynamics in green leaf area index when set in relation to the dynamics of physiological apical senescence is highly indicative of the presence of STB infections and of STB severity. Time-resolved measurements of the MCARI2 and the SIPI SVIs could allow to assess these traits at very high throughput, facilitating time-resolved large-scale screenings of breeding nurseries.

Larger calibration experiments will offer the opportunity to evaluate the inclusion of additional spectral–temporal features that better capture relevant information in different phases of pathogenesis. This is likely to improve sensitivity and specificity of resulting models, which should also be tested in more detail. Furthermore, the evaluation of the scalability to unmanned aerial vehicles will represent a crucial step toward application of such methods in breeding programs.
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Increasing herbage biomass is the predominant objective for pasture plant breeding programs. Three types of field trials are commonly involved during forage plant breeding, i.e., individually spaced plants, row plot, and sward trials. Assessments of biomass production at individual plant, row plot, and sward plot levels are through visual scoring and/or cutting of biomass manually or mechanically. Both visual scoring and cutting of plants are laborious, time consuming, and costly. The development of sensor technology such as multispectral sensors and unmanned aircraft systems (UAS) provide the opportunity to accelerate the process of biomass evaluation and to increase throughput, improve resolution, and reduce time and cost. We tested either the handheld Trimble GreenSeeker® or Parrot Sequoia multispectral sensors attached to a 3DR Solo Quadcopter to assess biomass in perennial ryegrass field trials sown as spaced individual plants, row plots, and simulated sward plots. Significant correlations were observed between visual score and normalized difference vegetation index (NDVI) in a spaced plant field trial and between biomass yield and NDVI in row plot and sward trials (r = 0.12 ~ 0.93). NDVI obtained from multispectral sensors and UAS can replace visual scoring in spaced plant trials. It was also a valuable proxy for yield estimation in row plot and sward trials. These technologies will assist in transition for the forage grass breeding from pen and notepad to digital and data era.

Keywords: Lolium perenne, normalized difference vegetation index, perennial ryegrass, sensor, unmanned aerial vehicle, biomass



Introduction

Increasing herbage biomass production is the predominant objective for pasture plant breeding programs. The common breeding systems include ecotype selection, restricted recurrent phenotype selection, half-sib progeny test, between-and-within family selection, and recurrent multistep family selection (Vogel and Pedersen, 1993). Whichever breeding systems are adopted, there are three types of field trials generally involved: transplanted spaced plant nursery, which allows breeders to observe variation and make selection within a population/family/accession; clonal row trials, which test the performance of polycross clonal progenies; and seeded sward plot trials, which enable the evaluation of population/family/cultivar performances (Humphreys et al., 2010; Hayes et al., 2013). The goal of breeding trials is to select the best genotypes or lines within a group of selection candidates. Therefore, the ranking order based on biomass yield of the candidates compared to reference cultivars and each other is often the primary focus rather than the absolute yield.

The method for evaluation of spaced plant nursery trials and row trials is commonly based on breeder’s visual score, which gives a discrete rank order of 1 to 5 or 1 to 9. Although, the visual score is much more efficient than cutting plants, drying, and weighing the biomass (Smith et al., 2001), it is highly subjective and is influenced by interference from surrounding plants. The method for evaluating biomass of sward trials generally involves sampling and cutting plants either manually or mechanically. In each breeding cycle, repeated evaluations over seasons and years are essential for perennial grasses. The cost in time and labor becomes a restricting factor for the upscaling of any breeding program. The inability to accurately screen large numbers of plants is one of the limitations to increase the rate of genetic gain in forage grasses.

Technologies for rapid, nondestructive, and high-throughput biomass evaluation have been highly sought after especially when next-generation genotyping and sequencing becomes available and requires the in-field phenotyping to be high throughput to support genomic selection programs. Remote sensing is often used to assess rangeland condition and primary productivity across large areas on earth surface using satellite platforms (Pettorelli et al., 2005). Normalized difference vegetation index (NDVI) provided a proxy measure for green plant biomass (Tucker et al., 1981; Schino et al., 2003). Adaptation of NDVI into field-based spectrometry makes the application into breeding scale trials possible. The ground-based Trimble GreenSeeker® (Trimble Navigation Limited, Sunnyvale, CA, USA) optical sensor emits light at two fixed wavelengths (660 ± 10 nm and 770 ± 15 nm) and measures the amount of each type of light that is reflected from the plant and outputs the calculated NDVI value. Using NDVI obtained by GreenSeeker as a biomass proxy has been reported for a range of crops (Teal et al., 2006; Li et al., 2010; Raun et al., 2011; Lofton et al., 2012; Ji et al., 2017). The Trimble GreenSeeker can be either handheld or mounted on a ground-based vehicle such as buggies or tractors to increase the throughput (Deery et al., 2014).

The development and adoption of unmanned aircraft systems (UAS) provide an airborne platform for high-throughput phenotyping, which can be at centimeter-level resolution (Shi et al., 2016). Attached with various sensors, it has been used for high-throughput in-field phenotyping of plant biomass accumulation (Busemeyer et al., 2013) and responses to drought (Ludovisi et al., 2017). The aerial-based NDVI and ground-based NDVI are highly correlated (Duan et al., 2017). The selection of either ground or airborne platforms will depend on the trial scale. Aerial-based platforms are more suitable for large scale trials in which postimage processing is essential and critical. Ground-based platforms are suitable for smaller trials, where walking/driving through the trial is logistically possible within a few hours and do not require postprocessing of images. As pointed out by Shi et al. (2016), most research to date has been on “one-off” projects to demonstrate the technology and stopped short of developing routine methods. The applicability of these sensors and platforms for forage grass breeding and how they can be applied routinely remains to be validated. Since 2014, we have developed ground- and aerial-based platforms for nondestructive high-throughput forage grass phenotyping, firstly for biomass yield, here, we validate these methods on our prebreeding research trials to facilitate genomic prediction and selection in ryegrass.

In this paper, we describe using Trimble GreenSeeker and multispectral sensors attached to UAS for high-throughput in-field biomass phenotyping in our perennial ryegrass pre-breeding research trials. These trials represent all three trial types of spaced plant, row plot, and seeded sward trials in forage grass breeding. The goal is to validate the ground-based and aerial-based platforms for nondestructive high-throughput biomass phenotyping and their potential to replace traditional visual score and clipping for routine application in breeding to improve data collection and decision-making ability.




Materials and Methods



Field Trials

For this study, we used perennial ryegrass as the model species for perennial forage grasses. Three types of breeding trials were used to validate the sensors and platforms. All field trials were conducted in the research farm in Hamilton, Victoria, Australia (–37.841S, 142.073E). A spaced plant trial of perennial ryegrass was used to test the correlation between NDVI and visual score and therefore the possibility to replace visual scoring for plant biomass/vigor in a spaced plant nursery. This trial contained a total of 2,576 individual plants in four blocks. Each block contained 644 individual genotypes randomly assigned in a 46-row by 14-column layout. The spacing was 60 cm between columns and 40 cm between rows. The primary aim of this trial was to screen genotypes for drought tolerance. Therefore, two blocks received natural rainfall as control and two blocks were under rainout shelters, which received less rainfall as a drought treatment. Here, the trial was used to develop the relationship between the aerial-based NDVI and visual score and compare the selections based on the two measurements. The effect of drought stress and response of different genotypes to the stress will be reported in a subsequent manuscript. The trial was planted in October 2015.

A row plot trial consisting of 50 perennial ryegrass cultivars/breeding lines with 10 replicates, a total of 500 plots, was used to test the correlation between biomass yield and aerial-based NDVI at plot level. Each plot consists of 96 plants from one cultivar, arranged in three rows and 32 plants per row. Distance between plot and rows within plot was 60 cm and distance between plants within a row was 25 cm. The area of the trial site was 8,100 sqm. The trial was transplanted in June 2016.

Two simulated sward trials of perennial ryegrass were used to test the correlation between NDVI obtained by handheld Trimble GreenSeeker with biomass yield. The first sward trial was a cultivar subselection trial which contained 60 plots. They were divided into 10 replicates each consisted of four subpopulations and two plots of the original cultivar. Each plot was a minisward that comprised 100 plants in a 10 plant × 10 plant, square grid layout. The distance between plants was 15 cm, which simulates the common spacing between rows as seeded sward. The distance between plots is 1 m. The trial was planted in May 2014. The second simulated sward trial was a perennial ryegrass F2 family trial, which contained 72 plots of 10 families of two generations and three reference cultivars in two replicates. The distances between and within plots were the same as the cultivar subselection trial. This trial was planted in May 2015.




Data Collection

For the spaced plant trial, the individual plant from each block were visually scored on a scale from 0 to 9; where 0 (dead plant) and then 1 (the lowest biomass yield) to 9 (the highest biomass yield) on 12 December 2015 (before stress) and 28 July 2016 (after stress). The flight missions were conducted with a Parrot Sequoia multispectral sensor attached to 3DR Solo Quadcopter at a flight height of 20 m (with ground sampling distance of 2 cm, overlap and side lap 80%) on the same day as the visual score were taken. The Parrot Sequoia multispectral sensor has green (550 nm), red (660 nm), red edge (735 nm), and near infrared (790 nm) lenses all with a bandwidth of 40 nm along with a standard RGB camera, GPS sensor and incident light sensor. Images captured during takeoff and landing were discarded from further processing. Images processing, georectification and radiometric calibration were conducted through Pix4Dmapper (Version 4.1.15, Pix4D SA, Lausanne, Switzerland). Individual plant identification was achieved through an in-house developed segmentation algorithm in an R environment. NDVI for each plant was extracted from the reflectance at red and near infrared wavelengths represented in a reconstructed and segmented orthomosaic through QGIS.

For the row plot trial, a weekly flight missions were undertaken with the 3DR Solo multirotor and Parrot Sequoia multispectral sensor at the same flight height, speed, and overlap as described for the spaced plant nursery above. Image process followed the same procedure as described above (Figure 1). Segmentation was conducted for each row and NDVI was extracted at the row level. NDVI of each plot was averaged of the three rows. Mechanical harvests were conducted at row plot level and biomass yield in fresh weight was recorded to test the correlations between biomass and NDVI on four occasions.
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Figure 1 | Three types of field trials and schema of data collection. The normalized difference vegetation index (NDVI) was extracted from the spaced plant trial and row plot trial by aerial imaging using 3DR Solo Quadcopter and Parrot Sequoia multispectral sensors and image analysis. The NDVI values from the sward trials were measured using Trimble Greenseeker RT100.




For the simulated sward trials, herbage samples were harvested when plants reached 2.5- to 3-leaf stage with a push mower at a height of 5 cm from the ground. Biomass yield in fresh weight for each plot was recorded, and for most of the harvests, 200–300 g of herbage was subsampled from each plot and the subsamples oven-dried at 60°C for 48 h and dry matter yield of every plot was calculated. A total of 16 harvests were conducted for the cultivar subselection trial and 15 for the perennial ryegrass F2 trial. NDVI values were collected weekly by walking through the trial plots with a handheld Trimble GreenSeeker RT100 system at 80 cm height over the plot. The NDVI value of each plot was averaged from approximately 20–30 readings of the plot.




Statistical Analysis

Statistical analysis was conducted using GenStat (Payne et al., 2009). Pearson correlation coefficients between NDVI and reference data were obtained using correlation command in GenStat for all field trials in each harvest. For the spaced plant trial, the best linear unbiased prediction (BLUP) of genotypic effects and tests of significance were conducted using residual maximum likelihood (REML) model in GenStat with genotype and replicate were fitted as random effects under both control and drought conditions. To compare the selection based on visual score and NDVI for the spaced plant trial, we assumed two scenarios. In the first scenario, the top 50 genotypes would be selected from each block (treat each block as independent) based on the raw data. In the second scenario, the 50 highest score/NDVI genotypes would be selected under both control and treatment conditions based on the BLUP values. The maximum consistency was calculated as the most possible number of common genotypes selected based on the two measurements. For the row plot trial, REML was used to analyze the data as a linear mixed model with cultivar fitted as a fixed effect and experimental design factors (column and row) as random effects. The cultivar ranks based on the predicted mean of yield and NDVI at each harvest were compared.





Results



Relationship Between NDVI and Visual Score From the Spaced Plant Trial

Significant correlations (p < 0.001) were observed between NDVI and visual score and the correlation coefficients were 0.79 and 0.93 in December 2015 and July 2016, respectively (Figures 2A, B). Each visual score spanned a range of NDVI values and there were considerable overlaps of the range of NDVI values across different visual score groups.
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Figure 2 | The scatter plots of visual score and the normalized difference vegetation index (NDVI) values based on Parrot Sequoia multispectral sensor attached to 3DR Solo Quadcopter in perennial ryegrass spaced plant trial in December 2015 (A) and July 2016 (B).




In the first scenario of selection, 50 genotypes were to be selected from each block to approximate a selection strategy that a breeder may use. Based on the distribution of the visual scores of the four blocks (Table 1), if selection was made for the top 50 plants from each block based on visual score, plants in the same ranking may be chosen randomly. For example, based on vigour on July 2016, for field block-1 the 24 plants ranked “9” would be selected and the remaining 26 genotypes would be selected from the next level of rank “8” which had 115 plants (Table 2). If selection was made based on NDVI values, the genotype selection would be certain due to NDVI being a continuous variable. The maximum consistency between the two methods was from 54% to 96% for field block-2 and shelter block-2, respectively (Table 3). In the second scenario, selection is made based on the BLUP values after treatment in both control and treatment conditions, the maximum consistency was 90% for the control and 92% for the treatment conditions, respectively.



Table 1 | Number of plants in each visual score group in four blocks at two-time points on 15 December 2015 (before treatment) and on 28 July 2016 (after treatment) (visual score 0 indicated dead plant; 1 to 9 indicated lowest to highest vigor scores) from the spaced plant trial.
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Table 2 | Top 50 selections based on visual score in four blocks after treatment (number of selection/number of candidate in each group) from the spaced plant trial.
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Table 3 | Top 50 selection based on normalized difference vegetation index (NDVI) from Parrot Sequoia multispectral sensor attached to 3DR Solo Quadcopter in four blocks and their corresponding NDVI range, visual score, and maximum selection consistence between the two methods from the spaced plant trial.
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Relationship Between NDVI and Biomass From the Row Plot Trial

Significant correlations were observed between biomass yield and aeriel NDVI for the row plot trial (Table 4). The correlation coefficients varied from 0.59 to 0.79 in different harvests. The cultivar ranking based on the predicted mean of biomass yield and NDVI was compared (Figure 3). Although the correlation of the ranking based on the two measurements were significant for all the 5 harvests (r = 0.45–0.87), the discrepancy of the rank for a particular cultivar was common especially for those middle ranked cultivars. It has to be noted that the different rank order may not necessarily mean any significant difference in cultivar mean yield which will be determined by the least significant difference value. In some cases, the difference was significant. For example, in the first harvest, cultivar C1 was ranked 28th by yield and the yield was significantly less than culitvar C8, which was ranked as 1st (highest yielding cultivar). However, C1 was ranked the 1st by NDVI and not significantly different from C8 which was ranked 6th.



Table 4 | Range of normalized difference vegetation index (NDVI) from NDVI from Parrot Sequoia multispectral sensor attached to 3DR Solo Quadcopter and herbage yield in fresh weight and their correlation coefficent at different cutting date from the perennial ryegrass row plot trial (n = 500).
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Figure 3 | The scatter plots between cultivar ranking based on biomass (x-axis) and ranking based on normalized difference vegetation index (NDVI) (y-axis) from Parrot Sequoia multispectral sensor attached to 3DR Solo Quadcopter in four harvests from the row plot trial.






Relationship Between NDVI and Biomass From Sward Trials

Significant correlations were observed between NDVI and harvested biomass in the cultivar subselection trial from all but one harvest (Table 5). The correlation coefficients ranged from 0.12 (May 2015) to 0.91 (October 2015). The correlation coefficients were higher in September and October harvests.



Table 5 | Correlation coefficent between normalized difference vegetation index (NDVI) from GreenSeeker and herbage yield in fresh weight and dry weight at different cutting date from the cultivar subselection trial (n = 60, NS: not significant at p < 0.05 level. a: NDVI data not available for the first harvest; b: dry weight data not available for these harvests).
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The correlations between NDVI and the biomass were also significant in the perennial ryegrass F2 trial for all of the 16 harvests (Table 6). The correlation coefficients were from 0.54 (Noveber 2016) to 0.77 (May 2016), which were slightly lower than the cultivar subselection trial.



Table 6 | Correlation coefficent between normalized difference vegetation index (NDVI) from GreenSeeker and herbage yield in fresh weight and dry weight at different cutting date from the perennial ryegrass F2 trial (n = 72, a: data not available due to long harvest peroid; b: dry weight data not available for these harvests).
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Monitoring NDVI weekly during the 2.5-year experimental peroid for perennial ryegrass sward trials showed marked seasonal changes of the NDVI values (Figures 4B, E). NDVI was at the lowest point during summer and gradually increased and reached its peak in winter and early spring, then gradually decreased again into summer. The trend of this seasonal change largely followed the pattern of seasonal yield in this environment (Figures 4A, D) and the monthly rainfall pattern of the trial site (Figures 4C, F). The unusually high rainfall that occurred during the summer in January 2015 was associated with a clear transient NDVI peak while there was no such peak in the summer of 2016 and 2017 when there was a normal rainfall pattern with little summer rain. In the summer time, ryegrass plants are generally dormant, NDVI values  were low, and differences between cultivars were small. In the winter and spring, NDVI values were higher and difference between cultivars were also larger (Figures 4B, E). There were sharp declines of NDVI in the spring in 2014 and 2015 in both trials due to lower than long-term average rainfall in contrast to the much slower decline  of NDVI in the spring of 2016 where above long-term average rainfall occured.
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Figure 4 | Biomass and normalized difference vegetation index (NDVI) from GreenSeeker change overtime and the monthly rainfall during the experimental periods in the cultivar sub-selection trial (A–C) and perennial ryegrass F2 trial (D–F), respectively (red dotted lines in (C and F) indicate long-term average rainfall).







Discussion

To accommodate the need to collect a large amount of relatively accurate yield data rapidly and cost effectively, forage breeders select breeding parents based on visual vigor score of genotypes. For mass selection, nursery trials with up to 10,000 plants are not uncommon (Hayes et al., 2013). Scoring tens of thousands of plants in a field with a pen and a notepad is a tiring task and may take a few days. With sensors and UAS, it takes less than 20 minutes to fly over the site to capture the data to rank plants based on vegetative indices. In addition, in perennial grass breeding, programs scoring needs to happen at multiple times throughout multiple years to capture seasonal yield changes. The time saving of the application of sensor-based screening technology is enormous. The other advantage is that the data is stored electronically and can be checked and retrieved anytime afterwards. Most importantly, the multispectral image is more informative than the simple visual score and rank and it gives precise, continuous value of indices hence much higher resolution. The rapid adoption and increasing affordability of UAS and sensors provides potential for routine application of this technology in breeding. The major concern currently is the analysis and data extraction from large volumes of data. With the development of some open sourced and licensed computer programs such as those used in this study, image analysis is becoming more streamlined.

The significant correlation between NDVI and visual score forms the basis for NDVI to replace visual score. It was noted that there were overlaps of NDVI range across different ranking groups. For example, visual score as “0,” which indicated a dead plant, with a range of NDVI values 0–0.1 in 2015 and 0–0.2 in 2016. This was partially due to leaves of neighboring plant that fill into the polygon delineated the plant. So, the accuracy of NDVI for each plant will depend on how well the segmentation of the image matches the actual plant. In this spaced plant trial, the distance between neighboring plants within a column was 40 cm which was less than the common distance in breeders’ nursery trial which is 50 or 60 cm. The greater the distance, the clearer of the separation between the neighboring plants and more accurate of the NDVI value. In this experiment, we extracted data automatically without manual correction, which would be useful if higher accuracy was required. Selection of genotypes based on NDVI and selection based on visual score was largely in agreement. The bigger the difference is between the genotypes the higher the confidence is for visual score and the higher consistency between the two methods as seen in the stressed condition compare to the control condition. The high-throughput nature of this technology may allow more replication within sites which will reduce environmental variance and improve selection efficiency. The NDVI obtained from multispectral sensors and UAS can replace visual score to assist selection.

Highly significant correlations were observed between NDVI and the biomass yield at row plot level. A similar correlation (r = 0.79) between biomass yield and NDVI was observed in wheat row trial (Tucker et al., 1981). The ranking of the 50 cultivars was correlated between based on biomass and based on NDVI although the rank discrepancy occurred commonly for a specific cultivar (Figure 4). However, it must be noted that even among cultivars with different ranks, the difference in yield may or may not be significant. At the current level of correlation (r = 0.59 to 0.79), some cases of true difference existed in ranks of a cultivar based on NDVI and the yield. Therefore, cultivar rank by aerial NDVI was not always in complete agreement with yield rank. The missing accuracy may be due to the saturation of NDVI value at high density vegetation (Gu et al., 2013). Beyond the saturation point, major component of yield may be explained by combination with other terms such as canopy height and structure. For perennial pasture, the saturation NDVI value may provide a threshold point for grazing rotation and this requires further study. Another reason may be the intensity of leaf green color difference between cultivars, which ranges from very light green to very dark green in perennial ryegrass (UPOV), may cause differences in reflectance. This may make the cross-cultivar comparison less accurate. In this circumstance, the NDVI model could be adjusted according to different cultivars to achieve better ranking agreement with biomass.

Significant correlations were observed between the ground-based NDVI and biomass for all 32 harvests except one from the two sward trials. The lack of correlation between NDVI and herbage yield in harvest 4 of the cultivar subselection trial (Table 5) may be due to the skewed distribution of yield (skewness 1.16). Under the climatic conditions of the trial site, the seasonal change of perennial ryegrass pasture production is remarkable. The NDVI change over time reflected the seasonal yield trend and may be explained since NDVI has been considered as an indicator of “greenness” (chlorophyll content) and positively correlated with photosynthetic rate in plants where canopy development and photosynthetic activity were in synchrony (Gamon et al., 1995). The NDVI fluctuation was also associated with the rainfall events and was more prominent when unusual rainfall occurs. So, plant response to moisture was reflected by the NDVI change. The NDVI may serve as a good early indicator of plants responses to the environment, hence to explore genotype-environment interaction during cutting/grazing intervals and to track regrowth after cutting/grazing to explore the dynamics and persistence of perennial pastures. Multispectral sensors and UAS also allow tracking productivity over time for perennial pasture, in particular, the regrowth after grazing or clipping and to explore seasonal changes and responses to environmental factors such as precipitation. We found that the correlation coefficients changed over harvests/seasons. In summer time, the correlation was generally lower than in spring, autumn, and winter. Similar trends have been reported by Schino et al. (2003), who indicated that in summer when the ratio of dry/green biomass increases, NDVI estimate becomes less accurate.

In this paper, we validated the most common vegetation index NDVI in the three main types of early-generation grass breeding trials for correlation with the visual score and biomass. Aerial NDVI was significantly correlated with visual score and has clear advantages and may replace visual score in forage grass breeding programs. NDVI was significantly correlated with the biomass yield in row plot trial and simulated sward trials. Cultivar rank by NDVI was correlated with the rank by yield. Future research would be to explore ways to improve the accuracy for biomass estimation. The modeling of absolute biomass prediction is not the focus of this paper, but would be important in predicting and monitoring animal consumption and production and for estimation of yield in larger sward trials. To accurately model biomass prediction, other terms including height, volume, and density may be measured simultaneously in combination with other sensors such as sonar and LiDAR (Deery et al., 2014). Remote sensing for traits related to forage quality have been investigated and with mixed results for different parameters (Starks et al., 2004; Guo et al., 2010). Further research would be preferable into nondestructive forage quality evaluation procedures for ready application. NDVI provides an indication to study the plant response to environmental factors over time without destructive intervention. The sensors together with ground- and aerial-based platform technologies may be extended to pastoral farmland management in collection of data on the germination rate, early vigor, speed of establishment, and spatial variations to assist with decision making and to contribute to digital and precision agriculture.
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Photosynthesis reacts dynamic and in different time scales to changing conditions. Light and temperature acclimation balance photosynthetic processes in a complex interplay with the fluctuating environment. However, due to limitations in the measurements techniques, these acclimations are often described under steady-state conditions leading to inaccurate photosynthesis estimates in the field. Here we analyze the photosynthetic interaction with the fluctuating environment and canopy architecture over two seasons using a fully automated phenotyping system. We acquired over 700,000 chlorophyll fluorescence transients and spectral measurements under semi-field conditions in four crop species including 28 genotypes. As expected, the quantum efficiency of the photosystem II (Fv/Fm in the dark and Fq'/Fm' in the light) was determined by light intensity. It was further significantly affected by spectral indices representing canopy structure effects. In contrast, a newly established parameter, monitoring the efficiency of electron transport (Fr2/Fv in the dark respective Fr2'/Fq' in the light), was highly responsive to temperature (R2 up to 0.75). This parameter decreased with temperature and enabled the detection of cold tolerant species and genotypes. We demonstrated the ability to capture and model the dynamic photosynthesis response to the environment over entire growth seasons. The improved linkage of photosynthetic performance to canopy structure, temperature and cold tolerance offers great potential for plant breeding and crop growth modeling.

Keywords: cold acclimation, photosynthesis x environment interactions, electron transport, chlorophyll fluorescence, high-throughput phenotyping



Introduction

Photosynthesis is a highly dynamic process responding to environmental changes, especially to light intensity and temperature, in short- and long-term acclimation (Demmig-Adams et al., 2012; Kono and Terashima, 2014). Excess light energy is dissipated within seconds upon thylakoid lumen acidification, known as non-photochemical quenching (NPQ) (Noctor et al., 1991; Adams III et al., 2006; Croce, 2015). This protection status can last or relaxes within minutes (Demmig-Adams et al., 2012; Kromdijk et al., 2016). In contrast, acclimation and deacclimation to low temperature is slower requiring up to a few days (Huner et al., 1993; Rapacz et al., 2008; Zuther et al., 2015). Photosynthetic performance at low temperature is tightly linked to cold tolerance (Rapacz et al., 2008; Dahal et al., 2012). Traits reflecting cold tolerance in the field are an important breeding target in order to adapt crop productivity to a colder and changing climate (Rapacz et al., 2014; Frascaroli, 2018). However, photosynthetic regulation under natural fluctuating conditions, especially in response to temperature, is hardly known (Rogers et al., 2017; Murchie et al., 2018).

Cold acclimation is initiated, amongst other factors, by an imbalance between photosynthetic energy uptake and the metabolomic sink (Huner et al., 1998; Ensminger et al., 2006; Hüner et al., 2012). At low temperatures, cold responsive genes trigger different acclimation processes regulating, e.g., the expression of hormones, chloroplast proteins, and proteins associated with lipid metabolism (Svensson et al., 2006; Liu et al., 2019). Differences in cold tolerant and sensitive barley genotypes were reported in expression of cold responsive genes and photosynthetic capacity at low temperature (Rapacz et al., 2008). Photosynthesis itself acclimates to cold temperature by synthesizing more photosynthetic proteins since enzyme activity is decreased and by maintaining greater membrane fluidity (Yamori et al., 2014). Membrane fluidity at high and chilling temperatures is adjusted by the amount of trienoic fatty acids in the chloroplast and thylakoid membrane (Mitchell and Barber, 1986; Murakami et al., 2000; Sage and Kubien, 2007). This process ensures the optimal function of proteins integrated into the membrane and diffusion of electron carriers for photosynthetic electron transport (Upchurch, 2008; Liu et al., 2013). In consequence, temperature acclimation and chilling stress alter electron transport kinetics between photosystem II (PSII) and photosystem I (PSI) (Yamasaki et al., 2002; Suzuki et al., 2011).

Photosynthesis under field conditions is complex not only because of the fluctuating environment but also due to the canopy structure. Sunlight flecks which occur by canopy movement and light penetration into the canopy alter the photosynthetic status (Jia et al., 2013; Kono and Terashima, 2014; Townsend et al., 2018; Kaiser et al., 2018b). Consequently, photosynthetic light responses differ in controlled versus field conditions (Rascher and Nedbal, 2006; Meacham et al., 2017; Vialet-Chabrand et al., 2017). Leaves grown under fluctuating conditions showed lower photosynthetic capacity compared to controlled conditions but similar photosynthetic rates per leaf area (Vialet-Chabrand et al., 2017). In addition, leaves in the lower canopy acclimate to shading with decreasing photosynthesis and nitrogen content (Evans and Poorter, 2001; D’Odorico et al., 2019). Sunlight flecks interfere with this acclimation process and high net photosynthetic rates are maintained (Kaiser et al., 2018a).

In order to understand the dynamic regulation and acclimation of canopy photosynthesis in response to a fluctuating environment, high-throughput photosynthesis phenotyping systems are required with a high spatio-temporal resolution. Chlorophyll fluorescence (ChlF)-based measurements serve as a fast proxy for net photosynthesis derived from CO2 gas exchange measurements (Warren and Dreyer, 2006; Fiorani and Schurr, 2013; Kalaji et al., 2017). However, existing ChlF phenotyping platforms operate under static conditions and are not able to catch natural environmental interactions (Jansen et al., 2009; Mishra et al., 2014; Flood et al., 2016; Wang et al., 2018). Under field conditions, measurements are usually carried out manually and restricted to a few days and to the leaf level (Rapacz et al., 2004; Ribeiro et al., 2004; Demmig-Adams et al., 2012; Moura dos Santos et al., 2013). ChlF-based operating efficiency of PSII (Fq'/Fm') is widely used to assess photosynthetic performance (Baker, 2008; Kalaji et al., 2016). Fq'/Fm' is sensitive to light, as it is affected by the amount of NPQ at the PSII antennae (Von Caemmerer, 2000; Croce, 2015; Lazár, 2015). However, changes in electron transport between PSII and PSI, which occur in response to temperature, are difficult to detect using Fq'/Fm' because it represents the efficiency of charge separation in the PSII reaction center (Van Heerden et al., 2003; Bezouw et al., 2019).

The light-induced fluorescence transient (LIFT) method monitors ChlF induction and relaxation within milliseconds from a distance using sub-saturating excitation flashlets (Kolber et al., 1998; Pieruschka et al., 2010; Osmond et al., 2017; Keller et al., 2019). The efficiency of PSII charge separation (Fq'/Fm') is derived from ChlF induction using fast repetition rate flashlets (Kolber et al., 1998). Electron transport rates derived by the LIFT method from several meter distance were highly correlated to pulse amplitude modulated and gas exchange measurements from close distance (Pieruschka et al., 2010). Further, the efficiency of electron transport beyond the primary quinone electron acceptor of PSII (QA) in the dark (Fr/Fv) and light (Fr'/Fq') can be assessed via ChlF relaxation using flashlets with decreasing repletion rate. Fr/Fv serves as a fast and robust approximation of electron transport kinetics (Keller et al., 2019). From a series of saturating flashes in the dark and the followed ChlF relaxation, it was observed that QA− oxidation time constants are approximately 0.2 ms to reduce the secondary quinone electron acceptor (QB) and 0.7 ms to reduce QB− to QB2− (Vass et al., 1999; de Wijn and van Gorkom, 2001). The time constant of biding a plastoquinone (PQ) to a vacant QB-binding site is about 2 to 3 ms which matches roughly the estimated turn-over time for a oxidized PQ to leave the QB pocket side as reduced plastoquinol (PQH2) (de Wijn and van Gorkom, 2001; Petrouleas and Crofts, 2005). In the light, the ChlF relaxation showed less pronounced phases and Fr'/Fq' derived thereof was rather insensitive to increasing light intensities (Keller et al., 2019). Besides, the LIFT device acquires the leaf reflectance spectrum. Spectral indices such as the photochemical reflectance index (PRI) are correlated to photosynthetic light use efficiency, chlorophyll content, and related to canopy structure (Barton and North, 2001; Shrestha et al., 2012; Wu et al., 2015; Schickling et al., 2016; Sukhova and Sukhov, 2018).

We established a fully automated LIFT high-throughput phenotyping system and monitored four crop species (barley, maize, soybean, wheat) over two growing seasons. The main hypothesis was that Fr'/Fq' is independent of Fq'/Fm' baring additional information to photosynthetic activity and its regulation under controlled and fluctuating conditions. Specifically the following hypotheses were addressed: 1) light intensity controls the PSII efficiency of charge separation (Fq'/Fm'). The light penetration into the canopy can be approximated by reflectance indices. In contrast, 2) Fr/Fv and Fr'/Fq' show a strong dependency on temperature which is extenuated in winter hard species and cold tolerant genotypes. Fr/Fv and Fr'/Fq' quantifies electron transport capacity indicating genotypic specific cold acclimation. 3) Fluctuating photosynthetic response and genotype x environment interactions can be modeled to predict photosynthetic performance for entire and future growing seasons.

For the first time, we quantified Fr/Fv under controlled and fluctuating conditions. In addition, full reflectance spectra of the measured leaves were acquired to gain information about canopy structure. We show the photosynthetic response over the full growing season beyond snapshot phenotyping toward the full incorporation of genotype x environmental interactions using high-throughput data and modeling. Fr/Fv proved to be a promising trait to study photosynthetic regulation and cold tolerance.




Material and Methods

ChlF measurements were performed under controlled and semi-field conditions in five species and 29 genotypes by using the LIFT method in high-throughput.



Controlled Conditions

Arabidopsis (Arabidopsis thaliana) Col-0 genotypes were grown at 23°C in 12/12 h day/night cycle in the growth chamber at around 150 μmol photons m−2 s−1. At 59 days after sowing (DAS), plants were subjected for four days to fluctuating temperature between 15 and 35°C. The temperature increased in the light and decreased in the dark. Temperature steps were 5°C in 2 h intervals followed by 4 h at 20°C. The air humidity in the climate chamber was kept at around 50–70%.




Semi-Field Growth Conditions

The Miniplot facility with an automated measuring platform is located at the Field Campus Klein Altendorf (University of Bonn, Germany, 50°37′ N, 6°59′ E) in an unheated glasshouse without additional lighting (Thomas et al., 2018). The Miniplot facility hosts a total of 90 growth containers (111 x 71 x 61 cm) with a volume of 535 L filled with a loamy-clay silt soil (luvisol) from the nearby field site (Hecht et al., 2016). Containers were drip irrigated with approximately 16 L per week. The amount was increased to up to 36 L per week in hot weather conditions.



Soybean

Soybean [Glycine max (L.) Merr.] genotypes differing in cold tolerance were kindly provided by the Swiss soybean breeding program of Agroscope (Changins, Switzerland). Genotypes Amarok, Gallec, and Tourmaline are tolerant to cold whereas 22216, S1, and Protibus are cold sensitive (Supplementary Table 1) (Gass et al., 1996). In 2016, soybean genotypes were sown on August 19 directly into the containers of the Miniplot facility. 22 seeds per container were sown 3 cm deep in two rows (distance 40 cm) every 10 cm. Five genotypes in two replicates and one genotype (S1) in 1 replicate were planted in 11 randomized containers. On September 20, each container was fertilized with 30 g Hakaphos® Blue (N-P-K, 1.0–0.7–1.0, COMPO EXPERT GmbH, Münster, Germany).

In 2017, Genotype Protibus was excluded Bahia, Eiko, and MinnGold were included into the trial. The MinnGold genotype has a chlorophyll-deficient phenotype caused by a spontaneous mutation in the Mg-chelatase subunit gene (ChlI1a) (Campbell et al., 2015). These eight soybean genotypes were cultivated in a greenhouse for two weeks at approximately 20°C. Then on March 23, plants were transplanted into containers in the Miniplot. Sixteen plants per container were arrayed into two rows (40 cm row distance). Six genotypes in four replicates and two genotypes (Bahia and Eiko) in two replicates were planted in 28 containers in a randomized block design. At 34 DAS, plants were fertilized using 24 g Hakaphos® blue (COMPO EXPERT GmbH) per plot (around 3.6 g N per plot or 0.2 g N per plant). The LIFT instrument beam was focused at 1.4 m until June 21, 2017 and then adjusted to 1.2 m.




Maize

Five maize (Zea mays) genotypes of the German Plant Phenotyping Network (DPPN) reference collection were sown on May 24, 2016 (Supplementary Table 2). Genotypes were grown in 10 containers in a randomized block design (two containers per genotype). In 2017, nine genotypes of the DPPN reference were sown on May 30 into 18 containers.




Barley

Six commercial available barley (Hordeum vulgare L.) cultivars (Gesine, Eileen, Irina, Tocada, Grace, and Milford) were selected (Bundessortenamt, 2013). These cultivars were sown on September 16, 2016 in one container per genotype and grown as described in Thomas et al. (2018). The sowing density per plot was 360 seeds.




Wheat

Three wheat (Triticum aestivum L.) genotypes (Brilhante, PF37 and PF62) were used in this study (Poersch-Bortolon et al., 2016). Fifty seeds per meter in 15 cm row distance (five rows per container) were sown on May 12, 2016 into six containers (two containers per genotype) in a randomized block design. On June 15, 30 g Hakaphos® Blue (COMPO EXPERT GmbH) per container was applied.





Environmental Data

Environmental data were recorded every minute from three sensor stations distributed in the Miniplot facility. Data were uploaded to an SQL database. The used sensors were LI-190 (LI-COR Inc., Nebraska USA) for photosynthetic photon flux density (PPFD) and HMP110 (Vaisala, Helsinki, Finland) for air temperature and humidity. Environmental data were linked to LIFT measurements taken in the same minute.




Light-Induced Fluorescence Transient Device

The compact LIFT instrument (Version LIFT-REM, Soliense Inc., New York, USA) is equipped with a blue light-emitting diode (LED) (445 nm), a STS-VIS spectrometer (Ocean Optics, Florida, USA), and two RGB cameras (FLIR Integrated Imaging Solutions Inc., British Colombia, Canada). Subsaturating actinic LED flashlets in fast repetition rate (FRR) induce the maximum fluorescence yield and monitor its relaxation with decreasing repetition rates. ChlF is detected at 685 ( ± 10) nm. The FRR flash was used with a excitation phase of 0.75 ms (FRRF0.75ms) consisting of 300 flashlets (Keller et al., 2019). The relaxation phase included 127 flashlets triggered at decreasing repetition rate and lasted for 200 ms (Figure 1A). When measuring under ambient light, background irradiation in the wavelength range of the detector is determined between the flashlets and subtracted from the ChlF yield of every flashlet. For all measurements, the excitation power at 60 cm distance was about 40,000 photons m−2 s−1 for the ChlF induction phase, as described in Keller et al. (2019).
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Figure 1 | Chlorophyll fluorescence transients were acquired in Arabidopsis leaves from 60 cm distance using fast repetition rate excitation flashlets. Leaves were subjected to different temperatures (15 to 35°C) and different light intensities under controlled laboratory conditions. (A) Transient was normalized to the maximum chlorophyll fluorescence which allows to compare the quantum efficiency of the photosystem II (Fv/Fm in the dark and Fq'/Fm' in the light) at the different temperatures. The ambient light intensity was 200 μmol photons m−2 s−1. (B) Fv/Fm and Fq'/Fm' in response to increasing light intensities at the different temperatures are shown. (C) Chlorophyll fluorescence transients in (A) were double normalized to the maximum and minimum chlorophyll fluorescence, which allows to retrieve the efficiency of electron transport 5 ms after reduction of the primary quinone (QA) (Fr2/Fv in the dark, Fr2'/Fq' in the light). (D) Fr2/Fv and Fr2'/Fq' are shown in response to increasing light intensities at the different temperatures. Attached Arabidopsis leaves (n = 6) were measured in dark-adapted and steady-state at 0, 100, 200, and 400 μmol photons m−2 s−1 of blue light (445 nm). Error bars indicate the 95% confident interval.





Light Response Curves Under Controlled Conditions

Blue light curves at different temperatures were carried out on Arabidopsis plants. Plants were dark adapted for 30 min prior to measurements (n = 5 plants). The light response curve consisted of 161 FRRFs0.75ms. It was one FRRF0.75ms in the dark-adapted state and 40 FRRFs0.75ms at each light intensity level in a 1.5 s interval. Light intensities were 80, 100, 200, 400 μmol photons m−2 s−1. Plants were measured from low to high light intensities at 25°C, 35°C (63 DAS), and the following day at 20, 15, and 30°C (64 DAS). Transition between temperatures took about 20 min. LI-COR sensors were matched at every temperature step and after every second measurement.

The blue LED of the LIFT instrument was used as actinic light source (445 nm). The size of the illumination spot was around 3 cm2. The intensity of the blue LED was calibrated by using a quantum sensor (LI-190R, LI-COR, Inc.) at 60 cm distance. A fully expanded leaf was placed into a LI-6400XT transparent 2x3 cm chamber head (LI-COR, Inc., Nebraska USA) and measured with the LIFT instrument through the transparent film of the chamber. The air flow rate during the measurements was 300 µmol air s−1 and block temperature was kept at 20°C. CO2 concentration in the air was controlled at 400 ppm and air flow was set to 400 µmol s−1.




Automated Measurements Under Fluctuating Semi-Field Conditions

Fully automated LIFT measurements took place from May 2016 to August 2017 using the measuring platform of the Miniplot facility (Figure 2A). Every hour, crop canopy of every container was scanned in consecutive 3 x 300 mm line measurements at a velocity of around 30 mm s−1 by one or two LIFT devices. The distance from the LIFT lens to soil was 1.5 m and the measurements were initially focused at 1.4 m. The focus was adjusted as plants grew. The measuring spot was around 30 mm in diameter, hence about 700 mm2 (Figure 2B). Each ChlF transient measurement took 210 ms. Every ChlF measurement was followed by a spectral measurement with 1,790 ms integration time (Supplementary Figure 1A). In that mode, one combined measurement was acquired every 2 s, resulting in 5 to 7 combined measurements for each of the 3 x 300 mm scans (Supplementary Figure 2). In total, about 18 independent measurements were acquired for each row operating with one LIFT device. The third measurement of each line was excluded since it most likely measured the same spot due to the stop of the positioning system after 300 mm. For the experiments in 2017, it was about 36 measurements since two LIFT devices operated simultaneously hanging next to each other from the moving platform.
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Figure 2 | The fully automated light-induced fluorescence transient (LIFT) system scanned crop canopy in 30 mm s−1 measuring every 2 s. (A) Plants were grown in containers under fluctuating conditions in an unheated glasshouse. The measuring distance was about 1 m. (B) The diameter of the measuring beam on the canopy was around 30 mm.






Leaf Angle and Canopy Effects

In order to assess the canopy effect and different measuring distances, leaves of soybean genotype Tourmaline were fixed 30 cm aboveground with three needles on top of a bamboo stick perpendicular to the LIFT lens. Four leaves per plot in four plots were fixed (n = 16). Automated platform measured changing the distance randomized from 120 to 75 cm in 15 cm steps. Every leaf was measured with randomized distance in 14-min intervals allowing oxygen evolving complex to relax when measuring during the night.





Fluorescence Data Processing

The ChlF transient data acquired by the LIFT FRRF0.75ms represent complex processes of QA reduction and reoxidation. In order to quantitatively characterize the main processes, the ChlF transients were analyzed on an empirical basis described in Keller et al. (2019).



Retrieval of Minimum and Maximum Fluorescence

For the FRRF0.75ms used in this study, the minimum ChlF yield Fo is defined as the ChlF yield of the first flashlet and the maximum ChlF yield (Fm) as the averaged ChlF yield of the 301st and 302nd flashlet (Keller et al., 2019). The 300th flashlet does not represent Fm due to quenching processes in the induction phase. The variable ChlF yield (Fv) is the difference between Fm and Fo which was used to calculate the maximum efficiency of PSII (Fv/Fm) in the dark-adapted state. The light adapted states of Fv and Fm were denoted as Fq' and Fm.'




QA− Reoxidation Efficiency

The ChlF parameter Fr/Fv represents the efficiency of reoxidation after QA reduction, which can be estimated by measuring the kinetics of ChlF relaxation. For calculation of Fr/Fv, the area between Fm and actual ChlF (Fr1 or Fr2) was integrated within a specific time range (t1 to t2) during ChlF relaxation measurements and normalized to the integral area of Fv in that time range (Keller, 2018). The same calculation were made using data from light-adapted measurements. Two time ranges, t1 to t2, were chosen to catch reoxidation processes with different time constants:

1.	t1 from 0.8 to 1.47 ms (0.65 ms for calculation of Fr1)

2.	t2 from 0.8 to 5.9 ms (5 ms for calculation of Fr2)

resulting in the efficiency of electron transport 0.65 ms after reduction of QA (Fr1/Fv in the dark; Fr1'/Fq' in the light) and 5 ms after reduction of QA (Fr2/Fv in the dark; Fr2'/Fq' in the light). In contrast to the earlier study of Keller et al. (2019), the time range for t2 was chosen to get a more detailed insight into the dynamics of ChlF relaxation. The time ranges of t1 and t2 correspond to the first and second exponential decay phases after ChlF induction (Vass et al., 1999). These phases are pronounced in dark-adapted samples, in which the photosynthetic apparatus is not activated, but are not visible in light-adapted samples (Keller et al., 2019).





Spectral Data Processing

Spectral measurements were taken from 400 to 800 nm in 0.46 nm resolution. The detector temperature of the spectrometer was kept between 20 and 35°C. Measurements were acquired in the glasshouse under ambient sunlight every 2 s during the canopy scans. Raw digital numbers from the spectrometer output were averaged to intervals of 2 nm, i.e., to one value per every full even wavelength number between 400 and 800 nm. From every spectra taken during the day, the instrument noise (dark current) measured from spectra at the night before was subtracted. The averaged wavelengths were then used to calculate pseudo spectral indices from the raw digital numbers. The pseudo spectral indices are marked with a "p" at the beginning of the abbreviation, e.g., pseudonormalized difference vegetation index (pNDVI). In addition, reflectance spectra were normalized for incoming irradiance by gray reference spectra (reflecting 50% of the total incoming irradiation). Measurements on the gray reference were carried out in the middle of every measuring round, i.e. once per hour between May 15 and May 18, 2017. The reflectance spectra were then associated with the PPFD value recorded from the environmental station in the same minute and averaged in steps of 10 μmol photons m−2 s−1. In that way, a look up table for reference spectra was generated for spectra covering a range from 100 to 1,350 µmol photons m−2 s−1. This look up table was used to correct every spectral measurement according to its associated top of canopy PPFD value using the corresponding reference spectra closest to that PPFD value [Keller (2018) and Supplementary Figure 1]. Normalized difference vegetation index (NDVI), alternative NDVI (NDVI_II), green normalized difference vegetation index (GNDVI), MERIS Terrestrial Chlorophyll Index (MTCI), and the PRI were calculated as the following:

1.	NDVI = (R750−R706)/(R750+R706) adapted from Frampton et al. (2013)

2.	NDVI_II = (R740−R680)/(R740+R680) adapted from Frampton et al. (2013)

3.	GNDVI = (R740−R540)/(R740+R540) adapted from Frampton et al. (2013)

4.	MTCI = (R754−R710)/(R710+R680) adapted from Dash and Curran (2004)

5.	PRI = (R530−R570)/(R530+R570) adapted from Gamon et al. (1992)

with R indicating the used wavelength from the corrected signal. The same wavelengths were used to calculate the pseudo indices using the raw digital signal. A parameter called reflectance was calculated as the sum of the raw signals in all wavelengths between 450 and 800 nm. Every calculated spectral index was then associated to the ChlF measurement taken instantly before.




Statistical Analysis

Data of ChlF transients were discarded when the signal-to-noise ratio was lower than 50 in the case of maize, rapeseed, and soybean or lower than 100 in barley and wheat. Data were also excluded when Fv/Fm, (respective Fq'/Fm') or Fr1/Fv (respective Fr1'/Fq') were lower than zero or Fr1/Fv and Fr2/Fv (respective Fr1'/Fq' and Fr2'/Fq') were higher than 0.35 and 0.8, respectively.

Values from spectral indices were removed when PPFD at that time was <30 μmol photons m−2 s−1 due to low S/N ratio at low light intensities. Outliers or measurement errors of spectral indices, for example when soil was targeted, were removed when the value was >1.5 times and <1.5 times the second and third quantile of all data collected per species, respectively.



Predictive Modeling

Least absolute shrinkage and selection operator (Lasso) regression was performed to identify dependent parameters on phenotypes under fluctuating conditions using glmnet package of R program (Friedman et al., 2010). Basic random model equation is:
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where y is a vector of n phenotypic values, µ is a common intercept, Z is a n x p covariate matrix of p environmental and reflectance parameters, u is the random effect for every parameter, and ε is a vector of n residual. The random effects u are penalized by the ℓ1 norm and scaled by a λ value determined by internal cross validation. Parameters for p were PPFD, temperature, humidity, vapor pressure deficit (VPD), reflectance, reflectance at 685 nm, GNDVI, NDVI, NDVI_II, PRI, MTCI, age of plants in DAS, measuring week and month, daytime, crop species, and genotype. The predictive models for Fv/Fm (respective Fq'/Fm') and Fr2/Fv (respective Fr2'/Fq') contained all parameters p. Models were fitted on soybean trainings datasets with standardized parameters. Trainings dataset contained either half of all the days measured, the growing season 2016 or 2017. Model predictions were validated on the remaining soybean data. Model accuracy was calculated as Pearson correlation coefficient between predicted and measured values.




Linear Modeling

Best predictive parameters for Fv/Fm (respective Fq'/Fm') and Fr2/Fv (respective Fr2'/Fq') were selected out of the Lasso model for linear modeling in order to quantify the effect of these parameters on photosynthesis. The error term was not further structured (e.g., for correlated errors) since no confidence intervals were calculated. The sum of squares was used to estimate the explained variance of each parameter. To analyze the leaf angle and canopy effect, the factors treatment (fixed vs. natural leaf angle) and distance were included in the linear model.






Results

In order to understand the dynamics of photosynthesis, ChlF response was monitored from the distance under controlled and fluctuating conditions. The photosynthetic response in controlled steady-state conditions was investigated in Arabidopsis leaves under different light intensities and temperature levels. Under fluctuating semi-field conditions, four crop species including 28 genotypes were monitored over two growing seasons in order to analyze photosynthetic interactions with the environment. In total, 789,475 measurements were acquired over 138 days using the automated LIFT system.



Chlorophyll Fluorescence Transients Under Controlled Conditions

Under controlled conditions, ChlF transients of Arabidopsis leaves at different temperatures showed differences in the induction phase (Figure 1A). As expected, Fq'/Fm' responded clearly to increasing light intensities and less pronounced to the different temperatures (Figure 1B). In contrast, ChlF relaxation phase and Fr2'/Fq' responded highly sensitive to temperatures (Figure 1C) but not to light intensities (Figure 1D).




Fv/Fm and Fq'/Fm' Under Fluctuating Conditions

Photosynthetic response under semi-field conditions was monitored in four crop species on canopy level (Figure 2). Barley and wheat canopy photosynthesis was monitored for one growing season, maize and soybean for two growing seasons covering a wide range of environmental fluctuations. Fv/Fm (in the dark) and Fq'/Fm' (in the light) responded highly dynamically to the fluctuating environmental conditions over the two growing seasons (Figure 3A). In a subset of a five diurnal soybean measurements, Fv/Fm and Fq'/Fm' showed a clear diurnal pattern following changes in PPFD. Fq'/Fm' values were further grouped according to PRI ranges, which are probably related to canopy structure (Figure 3B). In a linear model, PPFD explained in total 15.7% of all variance in Fq'/Fm' (including 3.7% from a square root term) (Supplementary Table 3). PRI explained 21.1%. Further, predicting variables pNDVI_II, measurement date, and pNDVI showed only a minor effect explaining 5.9, 4.3, and 4% of all variance in Fq'/Fm,' respectively. Temperature (accounting only for 0.3% of the variance), humidity, crop species, and genotype had no major effect on Fq'/Fm.' The interaction of PRI with Fq'/Fm' was rather stable and independent of PPFD (Figure 3C). The unexplained variance was 39.5%. In summary, Fv/Fm and Fq'/Fm' under fluctuating conditions were mainly dependent on PPFD and reflectance indices but little affected by temperature or measurement date.
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Figure 3 | Quantum efficiency of the photosystem II (Fv/Fm in the dark and Fq'/Fm' in the light) of barley, maize, soybean, and wheat genotypes was monitored under a fluctuating environment over two seasons in high time resolution. (A) Natural fluctuation of photosynthetic photon flux density (PPFD) together with the dynamic Fv/Fm and Fq'/Fm' and their associated photochemical reflectance index (PRI) values are shown over the two growing seasons (n = 782,420, acquired from May 2016 to August 2017). (B) PPFD and Fv/Fm (respective Fq'/Fm') are shown in a subset of diurnal measurements within 1 week to illustrate the strong interaction between the parameters. Fv/Fm and Fq'/Fm' were grouped according to photochemical reflectance index (PRI) levels to reveal the strong effect of PRI. Gray error bars show 95% confidence interval (n = 8 to 975 independent measurements averaged per PRI level and hour, 106,433 in total). (C) Fq'/Fm' was correlated to PPFD, grouped according to PRI levels, and fitted to a linear model depending on PPFD (square root transformed, all measurements with associated PPFD > 25 μmol photons m−2 s−1 were used, n = 42,434 to 179,152 measurements per PRI group). Chlorophyll fluorescence and spectral data was acquired by an automated light-induced fluorescence transient (LIFT) device scanning over the crop canopy. PPFD was recorded every minute by three stations distributed in the unheated glasshouse and linked to LIFT measurements done in the same minute.






Fr2/Fv and Fr2'/Fq' Under Fluctuating Conditions

Fr/Fv (in the dark) and Fr'/Fq' (in the light) describe the oxidation kinetics of QA−. In order to catch different steps in the electron transport, two time constants (t1 = 0.65 ms and t2 = 5 ms) were considered in this study. Fr1/Fv and Fr1'/Fq' were highly correlated to Fr2/Fv and Fr2'/Fq' in all four crops whereas the ratio depended on the measurement time (Supplementary Figure 3). Therefore in the following, this study is focused only on Fr2/Fv and Fr2'/Fq.' The parameter responded highly dynamically to the fluctuating environment (Figure 4A). In a data subset, Fr2/Fv and Fr2'/Fq' of barley and soybean showed a clear distinct diurnal pattern dependent on temperature and species (Figure 4B). In a linear model for Fr2/Fv and Fr2'/Fq,' temperature alone explained over 67% of all variance in Fr2/Fv and Fr2'/Fq' (Table 1). The different months of the season and crop species accounted for 5.1 and 5% of the variance, respectively. Interestingly, winter barley had higher Fr2/Fv and Fr2'/Fq' values than soybean in cold temperature but lower values in warm temperature (Figure 4C). In contrast to Fq'/Fm,' PRI and pNDVI did not contribute significantly to variation in the data. The unexplained variance was 21%. The two monitored ChlF parameters, Fv/Fm (respective Fq'/Fm') and Fr2/Fv (respective Fr2'/Fq'), were independent form each other and changed their relation according to the time of the day (Supplementary Figure 4). In contrast to Fv/Fm and Fq'/Fm,' the parameters Fr2/Fv and Fr2'/Fq' were highly dependent on temperature.
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Figure 4 | Reoxidation efficiency 5 ms after primary quinone (QA) reduction (Fr2/Fv in the dark and Fr2'/Fq' in the light) of barley, maize, soybean, and wheat genotypes was monitored under a fluctuating environment over two seasons in high time resolution. (A) Temperature fluctuation together with the dynamic Fr2/Fv and Fr2'/Fq' of the four crop species is shown over the two growing seasons (n = 778,224, acquired from May 2016 to August 2017). (B) Temperature and Fr2/Fv (respective Fr2'/Fq') are shown in a subset of diurnal measurements within 1 week to illustrate the strong interaction between the parameters. Fr2/Fv and Fr2'/Fq' were grouped according to crop species to reveal the strong effect of the different species. Gray error bars show 95% confidence interval (n = 58 to 171 independent measurements averaged per crop species and hour, in total = 30,704). (C) Fr2/Fv and Fr2'/Fq' were correlated to temperature and fitted to a linear model depending on temperature (temperature was square root transformed, all measurements were used, n = 33,902 to 604,857 measurements per crop species). Chlorophyll fluorescence data was acquired by an automated light-induced fluorescence transient (LIFT) device scanning over the crop canopy. Temperature was recorded every minute by three stations distributed in the unheated glasshouse and linked to LIFT measurements done in the same minute.





Table 1 | Reoxidation efficiency 5 ms after primary quinone (QA) reduction (Fr2/Fv in the dark and Fr2'/Fq' in the light) measured in four crop species over two seasons in an unheated glasshouse was analyzed using a linear model (n = 760,874 measurements). Depending factors were temperature (including a square root term), time point of the measurement (month, date, and hour), crop species, genotype, plot, and days after sowing (DAS). Descriptors of the linear models are degree of freedom (Df), sum of squares, mean of squares, ratio of mean squares, and mean squares error (F value) and the explained sum of squares per factor (explained variance) in percentage.
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Detection of Cold Tolerance in Soybean Genotypes

Since Fr2/Fv and Fr2'/Fq' may be a proxy for temperature dependent limitations in electron transport, it was tested whether these ChlF parameters detect cold tolerance. The response of Fr2/Fv and Fr2'/Fq' to temperature differed between the genotypes especially at low and high temperature (Figure 5A). Genotype Protibus had no data around 30°C because it was measured only in 2016. Data acquired at 5°C revealed faster ChlF relaxation in cold-tolerant genotype Amarok and Gallec compared to 22216 or S1 (Figure 5B). At 5°C, Fr2/Fv and Fr2'/Fq' between these four genotypes differed significantly whereas Fv/Fm showed no difference (Supplementary Figure 5). In contrast, these genotypes showed no clear difference in the ChlF relaxation at 20°C (Figure 5C). In summary, Fr2/Fv and Fr2'/Fq' allowed to monitor temperature tolerance of the photosynthesis in different genotypes.
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Figure 5 | Chlorophyll fluorescence transients were measured in soybean canopies of different genotypes over two seasons under fluctuating conditions. (A) Efficiency of electron transport 5 ms after reduction of primary quinone (QA) (Fr2/Fv in the dark, Fr2'/Fq' in the light) of soybean genotypes differing in cold tolerance are shown. Fr2/Fv and Fr2'/Fq' were fitted to a linear model depending on temperature (including a square root and a squared temperature term). (B) A contrasting subset of chlorophyll fluorescence transients of genotypes 22216, Amarok, Gallec, and S1 at 4°C and (C) 20°C is shown. Fr2/Fv and Fr2'/Fq' calculated from these data are shown in Supplementary Figure 5. For each temperature level, measurements were selected from October and November 2016 which had data recorded at the indicated temperature ( ± 0.5°C) between noon and dawn. Error bars show 95% confidence interval of the mean (n = 33 to 161 measurements). Genotype Amarok and Gallec are breed for cold tolerance. Light-induced fluorescence transient (LIFT) method was used with fast repetition rate flash from about 1 m distance scanning over the crop canopy. Temperature was recorded every minute by three stations distributed in the unheated glasshouse and linked to LIFT measurements done in the same minute.






Genotype x Environment Interaction and Modeling in Soybean Genotypes

The genotype specific response of the photosynthetic parameters to natural fluctuation under semi-field conditions was modeled in order to estimate genotype x environment interactions over full seasons. Fv/Fm and Fq'/Fm' as well as Fr2/Fv and Fr2'/Fq' were modeled based on environmental data and reflectance indices. Photosynthetic performance of 69 days were predicted in high time resolution using the remaining 69 days to train the model (in total 580,547 measurements). In a subset of three dates, the model based estimates of the photosynthetic parameters are shown together with the measured values as validation (Figure 6A). The prediction accuracies, expressed as the Pearson correlation coefficient of estimated and measured values, ranged between 0.7 and 0.92 for the different genotypes in Fq'/Fm' (and Fv/Fm) and Fr2'/Fq' (and Fr2/Fv), respectively (Figure 6B). The model coefficients are shown in Supplementary Table 4 and Supplementary Datasheet 2 respectively. Furthermore, we modeled genotype x environment interactions over an entire season based on the other measured season. These prediction accuracies ranged between 0.44 and 0.84 for the different genotypes in Fq'/Fm' (and Fv/Fm) and Fr2'/Fq' (and Fr2/Fv), respectively (Supplementary Figure 6). In summary, the modeling of genotype x environment interactions allowed the estimation of the photosynthetic performance also at days or entire seasons which had no measurements available.
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Figure 6 | Chlorophyll fluorescence parameters were used to model genotype x environment interactions of different soybean genotypes. (A) Quantum efficiency of the photosystem II (Fv/Fm in the dark and Fq'/Fm' in the light) and the efficiency of electron transport 5 ms after reduction of primary quinone (QA) (Fr2/Fv in the dark, Fr2'/Fq' in the light) at three random dates with measured (full line) and modeled (dashed line) values are shown. (B) Predicted and measured values for both photosynthetic parameters were correlated to each other in order to assess the model accuracy. Measurements of 48 days were used to train the model using Lasso regression (n = 284,662). Photosynthetic performance over the remaining 47 days was predicted and validated (n = 295,885). Predicted and measured values were averaged per genotype, day and hour. Error bars show the 95% confidence interval. The λ value derived through internal cross-validation on the training set was 1.14285 x 10−5 and 3.626669 x 10−5 for Fv/Fm and Fr2/Fv, respectively. For the Lasso model coefficients see Supplementary Table 4.






Influence of Canopy Structure, Plant Height, and Leaf Angle

In order to estimate the variance introduced by canopy structure, soybean leaves were fixed perpendicular to the LIFT lens. At noon and night, LIFT signal was not significantly affected by changes of the measuring distance within 150 mm (Supplementary Figure 7). The effect of the measuring distance ranging from 750 to 1,200 mm on Fv/Fm and Fr2/Fv accounted for about 1.4 and 19.3% of the variance during night measurements, respectively (Supplementary Table 5). In contrast, leaf angle (or canopy structure) affected Fv/Fm more strongly (23.6% of explained variance) than Fr2/Fv (2.2% of explained variance). At noon, the explained variance of Fq'/Fm' and Fr2'/Fq' for leaf angle was not bigger than 8% (Supplementary Table 6). Regarding PRI, leaf angle accounted for 22.7% of explained variance representing canopy structure. In summary, photosynthesis, specifically regulation of Fq'/Fm' and Fr2'/Fq,' in response to a fluctuating environment was quantified and related to environmental factors and canopy structure.





Discussion

Based on diurnal and seasonal ChlF data from different crop species and genotypes, a unique dataset was collected to identify, quantify, and model photosynthesis x environmental interactions under semi-field conditions. Fv/Fm and Fq'/Fm' correlated with PPFD but not significantly with temperature. Therefore, screening for this trait detects light-use efficient genotypes at the level of PSII charge separation but misses the photosynthetic response to temperature. In contrast, Fr2/Fv and Fr2'/Fq' provided information about genotype specific differences in acclimation to temperature. In general, the responses to temperature and PPFD from lab conditions in Arabidopsis to fluctuating environmental conditions in the four different crop species were consistent in their trends but differed in the complexity of the interactions.



Temperature Tolerance of Electron Transport

For the first time, Fr2/Fv and Fr2'/Fq' were quantified under fluctuating semi-field conditions and their interactions with the environment was analyzed. Fr2/Fv and Fr2'/Fq' were highly dependent on temperature pointing toward limitations of electron transport in the cold. Under cold conditions, electron transport depends on the membrane fluidity, which is maintained by the fatty acid composition (Upchurch, 2008; Liu et al., 2013). Electron transport between PSII and PSI acclimates to different growth temperatures which was shown by measurements of QA− reoxidation and PSI primary donor (P700) reduction (Yamasaki et al., 2002). Exposure to cold of non-acclimated plants resulted in a severe loss of thylakoid membrane function and decreased NPQ capacity in rice plants (Suzuki et al., 2011). The efficiency to reduce the electron transport chain downstream of QA was reported to be increased after six nights of dark chilling compared to the control (Van Heerden et al., 2003). In general, exposure to cold of non-acclimated plants resulted in a severe loss of thylakoid membrane function, decreased reoxidation efficiency of QA−, and limited electron transport and carboxylation rate (Yamori et al., 2008; Suzuki et al., 2011; Krüger et al., 2014). This probably explains the close relationship of Fr2/Fv and Fr2'/Fq' to temperature which we found under controlled (Figure 1D) and fluctuating conditions (Figure 4C). Fr2'/Fq' seemed to reflect the capacity of electron transport from QA through PQ pool toward cytochrome b6f and PSI complex. In the light-adapted state, Fr1'/Fq' and Fr2'/Fq' were highly correlated indicating a continuous electron transport (Supplementary Figure 3). In agreement, a gradual decrease of the ChlF relaxation curve was observed in light-adapted leaves under controlled conditions (Keller et al., 2019). The changes in the ratio between Fr1'/Fq' and Fr2'/Fq' according to the time of the day were probably related to the diurnal temperature pattern. Ratio changes in the morning seemed to represent the acclimation of the photosynthetic machinery to light visible as temporary decrease in Fr2'/Fq' (Figure 4B). This transition was also observed under lab conditions upon illumination of dark-adapted leaves (Keller et al., 2019). In photosynthetic models, the response to temperature is commonly included as a constant (Bernacchi et al., 2001; Yamori et al., 2014). Under fluctuating environmental conditions, Fr2/Fv and Fr2'/Fq' could improve these models exchanging the constant by a genotypic specific variable responding to temperature at the level of electron transport.

The detected temperature tolerance of photosynthetic electron transport varied between species and genotypes (Figure 5A). In general, the minimum temperature required for growth is 5°C (Körner, 2016). The cold tolerant genotype Amarok showed higher Fr2/Fv (respective Fr2'/Fq') than the cold sensitive genotypes 22216 and S1 at low temperature. This tolerance of electron transport to low temperature may be related to adjusted membrane composition or general limitations at CO2 fixation (Liu et al., 2013; Yamori et al., 2014; Pignon et al., 2019). The remaining cold tolerant genotypes, Tourmaline and Gallec, showed intermediate response indicating different cold tolerance mechanisms in soybean (Gass et al., 1996; Yamori et al., 2010). The potential to detect cold tolerance via the analysis of electron transport kinetics was also demonstrated earlier under lab conditions (Strauss et al., 2006; Krüger et al., 2014). We conclude that Fr2/Fv and Fr2'/Fq' represent efficiency of electron transport beyond QA reflecting membrane fluidity and composition, and therefore contributes to the temperature tolerance at a given temperature.




Photosynthetic Interactions With Light Intensity and Canopy Architecture

In steady-state conditions, Fq'/Fm' is tightly linked to electron transport and CO2 assimilation (Genty et al., 1989; Niyogi et al., 1998; Von Caemmerer, 2000). Under natural conditions, Fv/Fm and Fq'/Fm' follow a diurnal pattern (Adams and Demmig-Adams, 1995; Ribeiro et al., 2004; Pieruschka et al., 2008; Moura dos Santos et al., 2013; Ruiz-Vera et al., 2015). Similar results, but with higher spatio-temporal resolution over the whole seasons, were presented in this study (Figure 3A). The response of Fq'/Fm' to light measured under fluctuating semi-field conditions was almost linear (Figure 3C and Supplementary Table 1). It did not fit the response measured under controlled steady-state conditions (Figure 1B). In agreement, the curvature factor and the light saturation point were reported to be reduced under natural light conditions compared to control conditions probably caused by higher NPQ levels (Rascher et al., 2000; Jia et al., 2013; Meacham et al., 2017). In relation to that, the response of Fq'/Fm' to temperature was negligible under fluctuating conditions in contrast to lab conditions (Supplementary Table 1). The decrease of Fq'/Fm' under cold stress was associated with the inhibition of PSII reaction centers and their repair mechanism (Murata et al., 2007). Cold acclimation resulted in slower decrease of Fv/Fm after exposure to 4°C in control leaves compared to cold-hardened leaves (Streb et al., 1999). This could explain the small effect of temperature on Fq'/Fm' under fluctuating conditions allowing cold acclimation compared to lab conditions. Comparing fluctuating with controlled conditions, we conclude that the response of Fq'/Fm to light intensity was slightly modified by higher NPQ levels while the response to temperature was minimized by cold acclimation.

Besides PPFD, Fq'/Fm' on canopy level was related to PRI in all four species examined in this study (Figure 3C). PRI is mainly linked to the xanthophyll cycle and therefore sensitive to NPQ changes and various other stress responses (Prasad et al., 2006; Garbulsky et al., 2011; Zhang et al., 2016). It explains the close relationship of PRI and Fq'/Fm' described in a recent meta-analysis (Sukhova and Sukhov, 2018). However, scans of natural crop canopy showed additionally a high variability in NDVI (e.g., Supplementary Figure 2). The NDVI is known to correlate highly with vegetation productivity, hence, we would not expect a high variability within one plot (Gamon et al., 1992; Ji and Peters, 2003). This variability could be explained with the observation that PRI as well as NDVI vary with canopy structure (Barton and North, 2001; Rascher et al., 2015; Cordon et al., 2016). Canopy structure affects physiological processes directly, e.g., the leaf angle distribution affects the light penetration into the canopy leading to variation in Fq'/Fm' and NPQ. In addition, Fq'/Fm' values differed in the upper compared to the lower canopy and were affected by steep leaf angles (Rascher and Pieruschka, 2008; Wyber et al., 2018). Our data support this conclusion: variability in Fq'/Fm,' NPQ, and PRI were higher in leaves with natural orientation than in leaves with a fixed leaf angle (Supplementary Figure 7). The leaf angle explained more of the variation in PRI than in Fq'/Fm' indicating an additional influence of canopy structure to PRI (Supplementary Table 6). Similarly, the correlations between PRI and Fq'/Fm' decreased when measured on canopy compared to leaf level (Sukhova and Sukhov, 2018). These findings indicate a combination of NPQ level and canopy structure expressed in Fq'/Fm' and PRI. The variability in Fq'/Fm' on canopy level describes plant performance in the field more realistic than measurements on selected leaves or leaf segments (Evans, 2013; Niinemets et al., 2015). In conclusion, the variability of Fv/Fm and Fq'/Fm' combines physiological and structural canopy information without the requirement to select leaves for measurement under steady-state conditions.




Prediction of Photosynthesis in a Fluctuating Environment

Photosynthetic genotype x environment interactions were modeled over the entire growing season based on environmental parameters and training data from another season (Supplementary Figure 6). The accurate prediction across seasons (Pearson correlation coefficient between 0.44 and 0.84) indicated that our modeling is valid for a wide range of environmental conditions confirming the identified predictive parameters. Based on these models, the total amount of electron transported through a season for a specific genotype is possible to estimate without having measurement data from that season. This has potential application in crop growth models to increase the prediction of plant performance in untested environments (van Eeuwijk et al., 2019; Voss-Fels et al., 2019). The LIFT method is directly applicable in high-throughput field phenotyping requiring about 30 s to scan 1 m plot. A few diurnal measurements over the season seem to be sufficient to model the full photosynthetic response. Different development stages were probably represented in our models via seasonal changes of reflectance indices such as NDVI (Condorelli et al., 2018). In the soybean data of 2017, development stage represented by DAS was correlated to NDVI with a Pearson correlation coefficient of 0.63 (data not shown). Further research is needed to increase the model prediction accuracies and to gain more detailed knowledge about driving factors of photosynthesis in the field. Based on the detected environmental interactions, the modeling and estimation of photosynthetic performance at the genotype level over entire growing seasons is possible.





Conclusions

Diurnal and seasonal fluctuation of photosynthesis at canopy level was successfully quantified using ChlF measurements in high-throughput. Fv/Fm and Fq'/Fm and the newly established ChlF parameters Fr2/Fv and Fr2'/Fq' were able to detect photosynthetic acclimation under fluctuating semi-field conditions. Fq'/Fm provided the quantum efficiency at the level of PSII and was mainly determined by PPFD. In contrast, Fr2'/Fq' was rather independent of PPFD and reflected efficiency of electron transport beyond QA. Fr2/Fv and Fr2'/Fq' showed a high sensitivity to temperature identifying electron transport limitations at low temperature when Fv/Fm was not affected. The automated scans allowed a high spatio-temporal resolution of the data. It enabled the analysis of several genotypes regarding not only means under steady-state conditions but also their dynamic interaction with environmental factors. Autonomous monitoring of photosynthesis x environment interactions under natural conditions as well as their predictions over entire growing seasons has great potential in plant physiology and breeding applications.
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Genomic prediction of complex traits, say yield, benefits from including information on correlated component traits. Statistical criteria to decide which yield components to consider in the prediction model include the heritability of the component traits and their genetic correlation with yield. Not all component traits are easy to measure. Therefore, it may be attractive to include proxies to yield components, where these proxies are measured in (high-throughput) phenotyping platforms during the growing season. Using the Agricultural Production Systems Simulator (APSIM)-wheat cropping systems model, we simulated phenotypes for a wheat diversity panel segregating for a set of physiological parameters regulating phenology, biomass partitioning, and the ability to capture environmental resources. The distribution of the additive quantitative trait locus effects regulating the APSIM physiological parameters approximated the same distribution of quantitative trait locus effects on real phenotypic data for yield and heading date. We use the crop growth model APSIM-wheat to simulate phenotypes in three Australian environments with contrasting water deficit patterns. The APSIM output contained the dynamics of biomass and canopy cover, plus yield at the end of the growing season. Each water deficit pattern triggered different adaptive mechanisms and the impact of component traits differed between drought scenarios. We evaluated multiple phenotyping schedules by adding plot and measurement error to the dynamics of biomass and canopy cover. We used these trait dynamics to fit parametric models and P-splines to extract parameters with a larger heritability than the phenotypes at individual time points. We used those parameters in multi-trait prediction models for final yield. The combined use of crop growth models and multi-trait genomic prediction models provides a procedure to assess the efficiency of phenotyping strategies and compare methods to model trait dynamics. It also allows us to quantify the impact of yield components on yield prediction accuracy even in different environment types. In scenarios with mild or no water stress, yield prediction accuracy benefitted from including biomass and green canopy cover parameters. The advantage of the multi-trait model was smaller for the early-drought scenario, due to the reduced correlation between the secondary and the target trait. Therefore, multi-trait genomic prediction models for yield require scenario-specific correlated traits.

Keywords: crop growth model, dynamic traits, wheat, APSIM model, trait hierarchy, genotype to phenotype, P-spline, genomic prediction



Background

With the availability of low-cost genotyping, genomic prediction has become an attractive tool to increase the number of genotypes considered for selection (Poland et al., 2012; Crossa et al., 2013; Hickey et al., 2014) and to speed up the breeding cycle (Cooper et al., 2014; Haghighattalab et al., 2016; Araus et al., 2018). In genomic prediction, additive and non-additive effects for the target trait (e.g. yield) are estimated in a training set of genotypes, which has genotypic and phenotypic observations. Those estimates are used to predict the phenotypes of the collection of genotypes for which no phenotypic information is available (Meuwissen, 2007).

Complex target traits like yield show low genomic prediction accuracy because they frequently suffer from low heritability and are regulated by a large number of loci with small effects (Crossa et al., 2013; Sorrells, 2015). Yield can be decomposed into a number of underlying genetically correlated traits, called “secondary traits” (Rutkoski et al., 2016; van Eeuwijk et al., 2019) or “components” (Porter and Gawith, 1999; Chapman and Edmeades, 2010). Secondary traits can be either basic traits or intermediate traits. Basic traits correspond to response mechanisms/sensitivities to the environmental conditions (e.g. sensitivity to photoperiod, water uptake capacity, radiation use efficiency). Intermediate traits result from the integration of a number of processes over time (e.g. biomass, flowering time, grain number). As yield and its secondary traits are genetically-correlated, modeling them simultaneously increases yield genomic prediction accuracy, compared to single-trait prediction (Dekkers, 2007; Calus and Veerkamp, 2011; Jia and Jannink, 2012; Alimi, 2016; Biscarini et al., 2017; Sun et al., 2017). In some cases (in small plots, for example), breeders may wish to use the secondary traits directly for selection (e.g. for screening maturity or crop height) within season and discard unwanted genotypes prior to harvest for the next generation of testing. In this case, the interest may be in correlating secondary traits in small plots with expected yield in larger plots in the next season.

Phenotyping additional secondary traits implies an investment that does not always pay off through a larger prediction accuracy for the target trait. Therefore, it is crucial to estimate in advance whether a phenotyping strategy for intermediate traits is likely to increase the prediction accuracy of the target trait. An increased multi-trait prediction accuracy is observed when the heritability of the secondary traits is larger than that of the target trait, and when secondary and target traits are sufficiently genetically correlated (Isik et al., 2017). The evaluation of heritability and genetic correlations is especially relevant for high-throughput phenotyping (HTP). HTP makes the phenotyping of additional traits affordable but it may suffer from larger measurement error than direct (and often destructive) measurements. A large measurement error for secondary traits reduces their heritability and simultaneously reduces the prediction accuracy of the target trait in a multi-trait prediction model (Cabrera-Bosquet et al., 2012; Araus and Cairns, 2014; Yang et al., 2014; Haghighattalab et al., 2016; Rutkoski et al., 2016). The genetic correlation between traits changes over time and across environmental conditions (Crain et al., 2018; Bustos-Korts et al., 2019). Therefore, the potential of secondary traits to improve the prediction accuracy of the target trait is time- and environment-dependent, making it relevant to have a good characterization of the target population of environments (TPE; Chenu, 2015).

A strategy to evaluate the potential of phenotyping strategies is to combine crop growth models and statistical-genetic models to simulate data that resembles the multi-trait data that could be collected in phenotyping experiments. Such simulated data allows to investigate the structure of G × E, and the dynamics of trait correlations and heritability over time. Simulated multi-environment data of traits over time is also useful to evaluate statistical prediction models and test hypotheses regarding crop adaptation (Cooper et al., 2002; Bustos-Korts et al., 2019). Agricultural Production Systems Simulator (APSIM) belongs to a class of widely-used crop growth models, which considers characteristics of the crop, weather, soil, agronomic management, and their interactions over time (Wang et al., 2002; Keating et al., 2003; Holzworth et al., 2014; Chenu et al., 2017). The algorithms in APSIM predict yield as a nonlinear combination of secondary phenotypes, which are calculated indirectly from environmental conditions and from a number of physiological parameters (Wang et al., 2002; Keating et al., 2003; Holzworth et al., 2014). APSIM physiological parameters correspond to basic physiological mechanisms, at the bottom of the trait hierarchy, that modulate crop response to the environmental conditions and can be regarded as constant across environments (Cooper et al., 2002; Hammer et al., 2016; Bustos-Korts et al., 2019). APSIM physiological parameters involve development, capture and use efficiency of environmental resources and biomass partitioning to the different plant organs. Genotypes can differ in their parameter values, leading to phenotypic differences for yield and intermediate traits across environments. Examples of phenotype prediction across environments using APSIM with genotype-dependent parameters can be found in Chapman et al. (2003), Chenu et al. (2009; 2011; 2013), Hammer et al. (2014), and Zheng et al. (2012; 2013). Further discussion about the combination of crop growth models and statistical models can be found in Bustos-Korts et al. (2016b; 2018), van Eeuwijk et al. (2019), and Wang et al. (2019).

Simulated data of secondary and target traits over the growing season present a useful resource to evaluate the advantages of additional phenotyping of traits at different levels of the trait hierarchy and in contrasting environmental conditions (Chapman, 2008). Intermediate traits can be measured at a single time point, or they can be monitored at multiple time points during the season to describe their dynamics. Monitoring traits over time provides useful information about the genotypic response to the environmental conditions integrated over the growing season, providing more insight about the adaptive mechanisms than single traits. Therefore, we might find these dynamics to be more informative about genotypic performance than the collection of single-time point measurements (Malosetti et al., 2006; van Eeuwijk et al., 2010; Hurtado et al., 2012; Hurtado-Lopez et al., 2015). Simultaneous modeling of data points over time is also a strategy to reduce the measurement error and to increase the heritability of traits measured with HTP (Rutkoski et al., 2016).

In this paper, we propose a strategy based on the combination of statistical-genetic and crop growth models to generate data that is similar to those collected in real phenotyping experiments. Such simulated data will be used to evaluate phenotyping strategies. We compare different methods to model trait dynamics over time (i.e. P-splines, nonlinear regression and polynomial models), using an Australian wheat panel simulated with APSIM to grow in a sample of environments representing water deficit patterns present in the Australian TPE. We also discuss and illustrate the convenience of using traits belonging to different levels of the trait hierarchy.




Methods



Simulated Data

Simulated data consisted of yield, daily biomass and green canopy cover, for 199 genotypes in three Australian environments with contrasting water deficit patterns (Figure 1). These three environments were sampled from a total of 124 environments (4 locations and 31 seasons) corresponding to the TPE. These three environments were chosen to represent target drought environment types (ETs) that are relevant to Australian wheat production. ET1 have no or short-term water limitation and was represented in the sample by “Yanco_2010.” ET2 corresponded to intermediate drought starting around flowering, represented by “Narrabri_2008.” ET3 corresponded to intense drought starting early during the growing season (around 200oCd before flowering) and was represented by “Emerald_1993,” Figure 2 (more details in Chenu et al., 2013; Bustos-Korts et al., 2019). Trait correlations changed over time and across environments, building up G × E for grain yield during the growing season. Different traits are expected to confer adaptation to each environment type, making them interesting to study the convenience of phenotyping additional traits to improve yield prediction accuracy.



[image: ]

Figure 1 | Simulation steps to generate phenotypes for a set of genotypes across environments. Bottom left; an Australian wheat panel is defined as a sample of the target population of genotypes. For this sample of genotypes, phenotypic data for yield and heading date have been collected in eight field trials as well as single nucleotide polymorphisms (SNP) data. The phenotypic data are associated with SNP data in univariate genome-wide association study analyses. From these analyses, empirical distributions for the additive effects of quantitative trait loci underlying these phenotypes are obtained. Physiological knowledge on trait correlations is used to define genetic correlations between Agricultural Production Systems Simulator (APSIM) parameters[image: ]. These correlations are included in a multi-variate description of the quantitative trait loci underlying APSIM parameters. From this distribution, genotype specific APSIM parameters[image: ]are generated and assigned to a subset of SNPs. Bottom right; we have historical environmental data defining the target population of environments (TPE). We use APSIM to identify environment scenarios (water deficit patterns). The environmental data of the selected scenarios and the genotype-dependent APSIM physiological parameters are used to generate intermediate traits over time[image: ]. In a breeding programme, these intermediate traits are unknown, but we can approximate intermediate traits by high throughput phenotyping techniques, where the intermediate traits will come with plot [image: ]and measurement error[image: ]. The target trait[image: ]is modeled as a function of intermediate traits.





[image: ]

Figure 2 | Additive main effect and multiplicative interaction biplot for grain yield in Emerald, Merredin, Narrabri, and Yanco during 1993–2013. Gray squares represent genotype scores and grey arrows represent environment scores. Environments that were sampled from different environment types (ET) for a more detailed characterization of traits over time are indicated in coloured arrows. ET1 represents trials without water deficit (represented in the sample by “Yanco_2010”), ET2 corresponded to intermediate drought starting around flowering (represented by “Narrabri_2008”). ET3 corresponded to intense drought starting early during the growing season (represented in the sample by “Emerald_1993”).




We simulated phenotypic data in the following steps (Figure 1): 1) We generated genotype-specific values for 12 APSIM physiological parameters, regulating phenology, capture of environmental resources, resource use efficiency and biomass partitioning (Table 2 in Bustos-Korts et al., 2019). These APSIM physiological parameters were regulated by 300 single nucleotide polymorphisms (SNPs) with simulated additive effects sampled from a gamma distribution that followed the same shape and rate as the quantitative trait locus effects for real phenotypic data (see Figures 1 and 2 in Bustos-Korts et al., 2019). 2) We ran APSIM simulations for the three sampled environments from the TPE. We saved phenology, yield at harvest and the daily output for biomass.






Plot and Measurement Errors

As APSIM is fully deterministic, the simulated data do not include stochastic fluctuations due to experimental and measurement error. We added some error structures to APSIM output to investigate questions related to phenotyping schedules and multi-trait prediction. Field traits measured with HTP can contain two main sources of error: a plot error due to the within-trial heterogeneity (e.g. plot to plot variation) and a measurement error. This measurement error adds imprecision to the phenotype observed directly (e.g. by harvesting, processing and weighing the biomass). We added an experimental (plot) error and a measurement error to the APSIM output of daily biomass and daily green canopy cover from 20 days after sowing until harvest. Part of this methodology is also described in Bustos-Korts et al. (2017).



Size of the Experimental (Plot) and Measurement Errors

To simulate the experimental (plot) error, we considered a heritability of 0.50 for yield and 0.90 for biomass and canopy cover. The plot error size was calculated from Equation (1):
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In Equation (1), the genotypic variance [image: ] was assumed to be equivalent to the variance of APSIM biomass for a given day. As APSIM yield and biomass genotypic values do not contain error, phenotypic differences in the same environment can be considered as genetic. The experimental error [image: ] was sampled jointly for yield, biomass and green canopy cover from a multivariate normal distribution with a covariance of 0.1 and a variance of 1.0. The covariance between plot error structures for yield and biomass was larger than zero because traits measured on the same plot might be correlated. The phenotypic value for genotype i and day j was calculated with Equation (2):
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Where [image: ]is the APSIM phenotype for an intermediate trait I, genotype i and day t and[image: ]is the experimental (plot) error for genotype i and day t. As the genotypic variance of biomass (or green canopy cover) changes over time, we rescaled the plot error[image: ]to keep heritability constant and equal to 0.9 during the growing season.

Besides the experimental (plot) error, we added a measurement error that simulates the HTP approximation of [image: ];
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In Equation (3),[image: ]is the phenotype “measured” by HTP,[image: ]is the phenotypic value for genotype i and day j and[image: ]is the simulated measurement error for genotype i and day t (Figure 1). Measurement error[image: ]was sampled independently for each environment, trait and day (random error). We evaluated two classes of measurement error size; a homogeneous over time and a measurement error size that was a function of canopy cover (details about the measurement error size are given in the following sections).




Homogeneous Measurement Error Over Time

The homogeneous measurement error, [image: ], was considered as constant over time and across genotypes. We examined eight levels of measurement error size [image: ] on yield prediction accuracy. The size of[image: ]was defined to achieve an R2 between the[image: ]and[image: ]of 0.10, 0.20,…, 0.90. For each of these measurement error levels, the relative size of the measurement error with respect to the phenotypic variance (i.e. the variance of[image: ]) was kept constant over time.




Measurement Error as a Function of Canopy Growth

In reality, measurement error size in HTP (estimated by[image: ]) can change over time, depending on the dynamics of other traits, e.g. the error increases as canopy closes and decreases with the onset of senescence (Grieder et al., 2015; Christopher et al., 2016; Magney et al., 2016). The influence of trait dynamics on measurement error can be taken into account when simulating measurement error for biomass. Hence, R2 between[image: ]and[image: ] was assumed to decrease with a quadratic function with an increase in canopy cover (Figure 3). The function that relates the measurement error size to canopy cover was defined in such a way that the maximum R2 (smallest measurement error) was 0.6 to agree with experiments reported in the literature (e.g. Grieder et al., 2015; Magney et al., 2016) and a R2= 0.1 when the canopy is fully closed. Hence, for a given genotype, the simulated measurement error increases when the green canopy cover increases (Figure 3). As the dynamics of canopy cover are genotype dependent, in this measurement error class, the size of the measurement error becomes time- and genotype-dependent.
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Figure 3 | Quadratic function to relate the measurement error size (R2 between the high-throughput phenotyping and direct measurement of biomass) to the green canopy cover observed for a genotype at a specific day. As genotypes differ in green canopy cover in a given environment and day, their measurement error is also genotype-specific.






Phenotyping Schedules

Phenotyping schedules were defined by combining the measurement error sizes (9 measurement error sizes for the homogeneous measurement error over time, plus one measurement error as a function of canopy growth) with five levels of measurement intervals (every 5, 10, 15, 20, and 25 days) in a factorial way. Thus, for each environment, we obtained 50 phenotyping schedules differing in their measurement error size and interval between two consecutive measurements.




Heritability of APSIM Physiological Parameters

Besides the simulated intermediate traits biomass and canopy cover, we evaluated the impact of using basic traits that are lower in the trait hierarchy, and that correspond to the physiological mechanisms of response to the environment (APSIM physiological parameters) on yield prediction accuracy. We focused on three APSIM physiological parameters that have an important effect on yield across environments, as identified by a factorial regression model applied to 124 environments in Bustos-Korts et al. (2019). These simulated APSIM physiological parameters were radiation use efficiency (“y_rue”), sensitivity to photoperiod (“photop_sens”), and vernalization requirements (“vern_sens”). For each of them, we evaluated a range of H2s (from 0.20 to 0.80). The three APSIM physiological parameters with simulated error were included simultaneously in a multi-trait genomic prediction model.





Statistical Modeling of Phenotypes Over Time

The simulated data, with different error sizes and intervals between measurements, were used to extract parameters of the dynamics for biomass and green canopy cover. These parameters were introduced in multi-trait genomic prediction models to compare prediction accuracy calculated from a single-trait (yield) or from multiple traits modeled simultaneously (biomass, green canopy cover dynamics and yield, or APSIM parameters and yield). In this section, we describe the statistical models used to characterize the dynamics of biomass and green canopy cover during the growing season.



Logistic Regression Fitted to Biomass

A logistic function was fitted independently to the simulated biomass HTP data over time for each genotype and phenotyping schedule.
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In model (4), yt is the simulated biomass (with plot and measurement error) at day t, L is the curve's maximum value (asymptote), k is the initial relative growth rate and to is the day at which biomass achieves the maximum growth rate (inflection point) and εt is a residual. By definition, maximum growth rate in a logistic curve is [image: ]. The curve was fitted with the nls function of the stats package in R (R Core Team, 2016). The estimated parameters will be represented as follows; BL_asy is the asymptote for biomass fitted with a logistic curve, BL_inf is the inflection day for biomass fitted with a logistic curve, BL_slope is the maximum slope of biomass fitted with a logistic curve.




Cubic Function Fitted to Green Canopy Cover

A cubic function was fitted independently to the simulated green canopy cover HTP data of each genotype and phenotyping schedule over time, using the lm function in R.
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The fitted values of Equation (5), were used to calculate the maximum cover (CS_max, defined as the maximum fitted value) and the integral of the fitted curve (CS_int, defined as the sum of the daily fitted values).




P-Splines Fitted to Biomass and Canopy Cover

P-splines were fitted to the time series data for biomass during the growing season, using cubical B-splines and second order difference penalties (Eilers and Marx, 1996; Eilers et al., 2015). For the B-splines basis 100 equidistant knots were used. The P-splines were fitted as a mixed model (Currie and Durban, 2002)
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In Equation (6), yt is biomass at time point t, β0 is the intercept, β1 is the slope for the linear trend over time,[image: ]is the non-linear trend over time, and єt is the residual. The original B-splines basis functions were transformed to the non-linear trend functions vk(t) using spectral decomposition of the penalty matrix (Wand and Ormerod, 2008). To summarize the curves of simulated biomass and green canopy cover over time, we calculated the following parameters; BS_asy, which is the asymptote for biomass calculated from a spline fit, calculated as the biomass fitted values at the last day of the growing season, BS_inf, which is the inflection day for biomass, calculated as the day in which the maximum of the spline first derivative occurs, BS_slope, which is the maximum slope for biomass calculated from the first derivative of the B-spline basis. A description of the curve parameters is also given in Table 1.



Table 1 | Abbreviations used to describe the parameters estimated for the parametric and the P-spline models fitted to biomass and canopy cover over time.
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Heritability of Curve Parameters

To estimate the repeatability (“heritability”), we fitted the parametric models and the splines twice; first to the data with plot and measurement error, and then to the data without error (the APSIM output). We estimated the curve parameters for both data sets. To get an approximation of the heritability, we calculated the R2 between the curve parameters extracted from the logistic, cubic polynomial or spline fitted to the data with error, and those observed for the APSIM output without error.





Genomic Prediction



Single Trait Predictions (Yield)

Single trait genomic prediction for yield was carried out with the Genomic Best Linear Unbiased Prediction model.
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In Equation (7), yi is yield of genotype i, μ is the intercept, Gt stands for the random genotype effects that follow [image: ]where ∑ is a covariance matrix. The variance-covariance matrix ∑ is modeled as ∑=∑G, where ∑G is the genotypic kinship matrix, calculated as in Astle and Balding (2009). The predictions were made with ASReml 3.0 (VSN-International, 2015).




Multi-Trait Predictions

Multi-trait genomic prediction models fitted on i) APSIM yield output and parameters extracted from the dynamics of simulated biomass and canopy cover, or ii) APSIM yield and APSIM physiological parameters with error.
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In model (8), yik is the phenotype for genotype i and trait k, μ is the intercept, Tk is the fixed main effect of trait k. Gik is the random effect for genotype i and trait k, following Gik ∼ MVN (0,∑*). The variance–covariance matrix ∑* is modeled as ∑=∑G⨂∑T, where ∑G is the same genotypic kinship matrix that was used in Equation (7). ∑T is the variance-covariance between traits, modeled with an unstructured model and ⨂ is the Kronecker product. єik ∼ MVN (0,∑*), where R is a diagonal matrix, allowing for trait-specific residuals.

Several combinations of traits were evaluated in model (8), starting with a full model with all the spline or parametric curve parameters for both biomass and canopy cover over time. Traits that did not contribute to increase yield prediction accuracy were removed from the model. The final multi-trait model considered the following traits; biomass asymptote (BL_asy and BS_asy), the maximum slope of biomass accumulation (BL_slope, BS_slope) and maximum canopy cover (CL_max, CS_max). For the APSIM physiological parameters, we included radiation use efficiency (“y_rue”), sensitivity to photoperiod (“photop_sens”), and vernalization requirements (“vern_sens”). These APSIM physiological parameters were selected because they were important for G×E in this data sets, based on previous analyses (Bustos-Korts et al., 2019). A detailed list of the single- and multi-trait prediction models is given in Table 2.



Table 2 | Single and multi-trait genomic prediction models. Details about the trait description are indicated in Table 1.

[image: ]






Prediction Scenarios

All the multi-trait genomic prediction models (Table 2) were evaluated in two prediction scenarios; nG_all and nG_yield. In nG_all, all traits (i.e. yield and secondary traits) were present in the training set, but they were missing in the validation set. In nG_yield, secondary traits were present in the training and validation set, and only yield was missing in the validation set.




Prediction Accuracy

Prediction accuracy was calculated as the Pearson correlation coefficient between APSIM yield (genotypic value) and the predicted phenotypes (Meuwissen et al., 2001), considering a training set of 100 genotypes and a validation set of 99 genotypes. Thirty training sets were constructed with the uniform sampling method described by Bustos-Korts et al. (2016a) and by Jansen and van Hintum (2007). To comply with the normality assumption, correlation means and standard errors across 30 training set realizations were calculated on a transformed scale using Fischer's z transformation,[image: ]Then, means and the confidence interval lower and upper bound were back transformed using[image: ]before reporting them.






Results

We used the APSIM-simulated traits to investigate the structure and the magnitude of G × E, trait correlations over time and across environments and to evaluate multi-trait prediction models. We would like to emphasize that when we mention traits like “yield,” “biomass,” or “canopy cover,” we refer to simulated traits.



Patterns of Trait Correlations Over Time Depend on the Environment

We observed the AMMI biplot shown in Bustos-Korts et al. (2019) to select three environments that represent target production ETs for the Australian wheat belt (Figure 2). These ETs have a large G × E that is driven by water deficit patterns; ET1 has no water limitation, ET2 has mild drought starting around flowering, and ET3 has intense drought, starting early during the growing season. Correlations between traits were largely affected by the environmental conditions, with a strong correlation between yield and biomass in environments without water limitation (ET1), and with a moderate correlation between them in dry environments like ET3 (Figure 4). Trait correlations also changed during the growing season, depending on the progression of the water stress and the environmental conditions over time (Figure 7 in Bustos-Korts et al., 2019); i.e. the correlation between biomass and final yield was intermediate in the late-stress environment ET2 and large (>0.80) in the non-stress environment and ET1, whereas in the dry environment ET3, the correlation was negative at the beginning of the growing season and became positive after heading. The temporal changes in trait correlations give insight about which traits are contributing to end-of-season yield outcomes at specific moments within the season. These dynamics also influence the potential of secondary traits like biomass or canopy cover to improve prediction accuracy of the target trait when included simultaneously in a multi-trait model (Figure 8 in Bustos-Korts et al., 2019). Conversely, trait correlations are also a diagnostic tool about the environmental conditions experienced by the crop, and can therefore be used to classify environments.
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Figure 4 | Correlations between APSIM parameters, parameters of biomass accumulation and canopy cover and yield. Details about the trait description are indicated in Table 1.




The dynamics of canopy cover also depended on the genotype and on the environmental conditions (Figure 5, left panels). Senescence began earlier in ET3, due to more rapid development associated with higher growth temperatures (Table 1 in Bustos-Korts et al., 2019). The genotypic differences in the dynamics of green canopy cover influence the rate size of the measurement error (Figure 5, right panels); dry environments like ET3 have a faster increase in canopy cover in the early season, and an earlier reduction in canopy cover, and therefore they have relatively a greater proportion of the season with a smaller measurement error (larger R2).
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Figure 5 | Green canopy cover dynamics for a random sample of five genotypes (left panels) and genotype-specific R2 between high-throughput phenotyping and direct measurement of green canopy cover during the growing season (right panels) in three trials representing different environment types (i.e. different patterns of drought).






Correlations Between Parameters for Secondary Traits and the Target Trait Depend on the Environment Type

Multi-trait prediction accuracy is influenced by the H2 and the correlation between secondary and target traits. As expected, the correlations between yield and the parameters of the secondary traits, biomass and green canopy cover followed the same trends as the biomass and green canopy cover without error; BS_asy and BL_asy were positively correlated to yield in ET1 and ET2 (stronger in ET1 than in ET2), and negatively correlated to yield in ET3 (Figure 4). This implies that breeders need to change their selection strategy, considering the traits that contribute to adaptation in each environment type. BS_slope and BL_slope were also correlated to yield (Figure 4), following the same environment-dependent correlation sign as BS_asy and BL_asy (positive in ET1 and ET2, and negative in ET3. However, the correlations were a stronger for BS_slope and BL_slope than BS_asy and BL_asy. BS_inf and BL_inf were only correlated to yield in ET3, probably related to the more asymmetric and irregular biomass accumulation dynamics in ET2 and ET1. As for biomass accumulation, maximum green canopy cover (CS_max and CL_max) were also positively correlated in ET1 and ET2, and they were negatively correlated with yield in the dry environment ET3. This pattern in the trait correlations supports the idea that, in dry environments with little in-season rain, smaller canopies allow for more effective use of water throughout the growing season, avoiding the early depletion of soil water. In those same environments, a fast-growing genotype can use too much water and be stressed around flowering at the critical time when grains are being set (and maximum yield in that season becomes fixed, and is realised by water supply during grain-filling). This pattern also indicates that different traits need to be phenotyped for multi-environment prediction, depending on the environment-type and that the selection pressure applied by breeders on specific traits needs to be adjusted for each environment type. Therefore, it is essential to have an adequate environment characterization before deciding which traits to include in the phenotyping schedule.




Modeling Phenotype Dynamics as Measured by HTP Increases Heritability

We simulated HTP measurements for biomass and green canopy cover by adding a plot and a measurement error to the daily APSIM output for both of these traits. We used the simulated data to evaluate a number of configurations for measurement error size and phenotyping interval (expressed as the number of days between two consecutive measurements). We considered two scenarios for measurement error size; a constant error size over time (with nine levels), and a measurement error size that changes over time as a function of green canopy cover. The simulated HTP data for biomass and green canopy cover were fitted with parametric models (logistic or cubic function), and P-splines. The parameters extracted from biomass and green canopy cover over time were used to evaluate how HTP schedules influence prediction accuracy for the target trait. In this section, we describe the H2 for parameters of the logistic curve and for parameters defined on the basis of the fitted P-spline function, as a rough indicator for the potential of that parameter to predict yield.

In general, the H2s of parameters for biomass and green canopy cover over time were substantially larger when using P-splines, than when using parametric models (Figures 6–8). The logistic model led to a more variable response of H2 in relation to the measurement interval and to the H2 of individual measurements. This was because of the lack of fit of the logistic curve when there were few measurements (intervals of 20 days). The H2 for the parameters of the logistic curve fitted to HTP biomass data over time was largest in ET2 and ET3, where biomass curves were more symmetric. In ET1, biomass accumulation over time was most asymmetric (Figure 6 in Bustos-Korts et al. 2019) and H2 for the parameters of the logistic curve was, therefore, lower in this environment. In the three environments, H2 increased with more frequent (smaller interval between two consecutive measurements) and with more precise measurements at individual time points (larger R2 between the direct phenotypic measurements, Equation 2, and HTP, Equation 3).
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Figure 6 | Heritability of the parameters from curves fitted to the dynamics of biomass accumulation and green canopy cover for the collection of genotypes, measured with high-throughput phenotyping (HTP). BL_asy is the asymptote for biomass fitted with a logistic curve, BS_asy is the asymptote for biomass fitted with a spline, BL_slope is the maximum slope of biomass fitted with a logistic curve, BS_slope is the maximum slope of biomass fitted with a spline, CC_max is maximum green canopy cover calculated from a cubic curve and CS_max is maximum green canopy cover calculated from a spline fit. The x-axis indicates the interval for different analyses, expressed as the number of days (5, 10, 15, or 20) between two consecutive HTP measurements. The z-axis (H2 time point) indicates the quality of the HTP measurement, quantified as the R2 between the direct phenotypic measurements (APSIM biomass plus plot error, Equation 2) and HTP (APSIM biomass plus plot and measurement error, Equation 3).




When comparing the H2 of the three parameters of the logistic curve fitted to biomass accumulation over time, we observed that the asymptote and the inflection point showed a somehow flat H2 surface (Figure 6), indicating that precise estimates of these parameters can be obtained, even after reducing measurement frequency and increasing the measurement error. For example, in ET3, the same H2 estimate for the asymptote can be obtained (H2~0.80) from an HTP technology that delivers an R2 between HTP and direct measurements of 0.50 or with one that has an R2 of 0.80. The same applies for measurement intervals; if multiple time points are measured simultaneously, the same mean H2 can be obtained measuring every 5 or every 15 days. This highlights the convenience of integrating measurements over time, compared to using single time points independently.

We also used P-splines to extract parameters for the dynamics of biomass and green canopy cover over time. For the P-splines, similar H2 was obtained for curve parameters across environments (Figures 6–8), showing that P-splines are a more flexible model than the logistic curve. Therefore, P-splines can accommodate the asymmetries of the biomass accumulation curve. The H2 achieved for the spline fitted values was also larger than the H2 of the logistic curve and the H2 surface was more smooth (Figures 6–8). The smoother H2 surface and the reduced variation indicate that P-splines are better than the logistic curve when it comes to removing part of the measurement error by integrating information throughout the season. In practice, this means that, when using a spline to integrate the HTP measurements for biomass, measurements can be done at a lower frequency (larger intervals) and lower precision (lower R2 between HTP and APSIM biomass) to still obtain large H2, compared to the logistic model. We characterized the P-splines as fitted to the HTP measurements for biomass by the following parameters; asymptote (BS_asy), maximum biomass accumulation rate (BS_slope) and the inflection point of biomass accumulation (BS_inf). The largest H2 was obtained for BS_asy. The H2 of BS_slope was slightly lower (H2~0.60–0.70) and the lowest H2 was observed for BS_inf (H2~0.10–0.30, Figures 7 and 8). This implies that BS_slope was more difficult to estimate, requiring very frequent and precise measurements to obtain a large H2.
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Figure 7 | Heritability of curve estimates, as a function of the heritability at single time points. Each box contains H2 estimates obtained across levels for interval size between two consecutive measurements. Details about the trait description are indicated in Table 1.
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Figure 8 | Heritability of curve estimates, as a function of the interval between two consecutive measurements, expressed in days. Each box contains H2 estimates obtained across measurement error sizes. Details about the trait description are indicated in Table 1.






Multi-Trait Predictions Using Secondary Traits

We estimated parameters of logistic, cubic curves or spline fitted values for biomass accumulation and green canopy cover during the growing season with HTP measurement error. We used those parameters as correlated traits for yield genomic prediction. In general, multi-trait genomic prediction models (Figure 9) had a larger accuracy than single-trait models (Figures 6–9). However, the prediction accuracy of multi-trait models was highly dependent on the quality (H2) of the correlated trait and on the correlation between the secondary traits and the target trait; more frequent and more precise HTP measurements led to larger accuracy, compared to less frequent and less precise measurements, only if traits were correlated. Therefore, prediction accuracy had a very large increase in ET1 (from 0.27 to 0.60) whereas it showed a moderate increase in ET2 (from 0.60 to 0.73) and it did not increase in ET3. The increase in prediction accuracy was more consistent (less variation between phenotyping schedules) when using P-splines than when using the parametric models (Figures 9 and 10). This is related to the smaller variation in the estimates of curve summaries when using P-splines, than when using the parametric models (Figures 6–8). When comparing different phenotyping schedules, we observed that the differences in prediction accuracy between the different measurement intervals become more evident when the H2 of individual measurements is low. In other words, if H2 of individual time points is small, multi-trait prediction accuracy benefits from more frequent measurements and from modeling secondary traits over time (Figures 9 and 10).
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Figure 9 | Yield prediction accuracy and standard error in ET1, ET2, and ET3 calculated with the multi-trait prediction models M2S and M2P, considering yield and parameters estimated from the biomass and green canopy cover dynamics using P-splines (BS_asy, BS_slope and CS_max) or parametric models (BL_asy, BL_slope, or CL_max), for the scenario nG_allt (target and secondary traits missing in the validation set). The x-axis indicates the heritability of individual time points measured with HTP, quantified as the R2 between the direct phenotypic measurements (APSIM biomass plus plot error, Equation 2) and HTP (APSIM biomass plus plot and measurement error, Equation 3). Symbol colour indicates the interval, expressed as the number of days between two consecutive HTP measurements. Black horizontal lines shows yield prediction accuracy for a single trait model trained with yield data for the genotypes in the training set (M1). Single- and multi-trait models were trained with 100 genotypes, whereas 99 genotypes were used for validation. Bars indicate the confidence interval for the mean, calculated across 30 realizations of the training-validation sets.




We also compared prediction scenarios that differed in the traits that were missing in the validation set: In nG_all, yield and secondary traits were missing in the validation set, whereas in nG_yld, yield only was missing in the validation set. The increase in prediction accuracy was larger for the scenarios nG_yld (Figure 10), than for nG_all (Figure 9), particularly in ET3, probably because green canopy cover in this environment had more genotypic variation due to the earlier onset of senescence under drought. The heterogeneity in the measurement error size over time did not have a large impact on prediction accuracy for the target trait. Prediction accuracy was similar for the phenotyping schedules with a homogeneous error size (Figure 9) and for schedules that had a measurement error depending on green canopy cover (Figure 11).
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Figure 10 | Yield prediction accuracy and standard error in ET1, ET2, and ET3 calculated with the multi-trait prediction models M2S and M2P, considering yield and parameters estimated from the biomass and green canopy cover dynamics using P-splines (BS_asy, BS_slope, and CS_max) or parametric models (BL_asy, BL_slope, or CL_max), for the scenario nG_yld (target trait missing in the validation set, but secondary traits are present in both training and validation set).The x-axis indicates the heritability of individual time points measured with HTP, quantified as the R2 between the direct phenotypic measurements (APSIM biomass plus plot error, Equation 2) and HTP (APSIM biomass plus plot and measurement error, Equation 3). Symbol colour indicates the interval, expressed as the number of days between two consecutive HTP measurements. Black horizontal lines shows yield prediction accuracy for a single trait model trained with yield data for the genotypes in the training set (M1). Single- and multi-trait models were trained with 100 genotypes, whereas 99 genotypes were used for validation. Bars indicate the confidence interval for the mean, calculated across 30 realizations of the training-validation sets.
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Figure 11 | Yield prediction accuracy and standard error in ET1, ET2, and ET3 calculated with the multi-trait prediction models M3S and M3P, considering the target trait and summaries of biomass over time, whenbiomass had an error that was a function of canopy cover. Predictions indicated with nGall_param and nGyld_param considered yield plus BL_asy, BL_slope, and CL_max, and models nGall_spline and nGyld_spline considered yield plus BS_asy, BS_slope and CS_max. The x-axis indicates the interval between consecutive phenotyping days. Symbol color indicates the combination of prediction scenario (nG_all, target and secondary traits missing in the validation set or nG_yld, target trait missing in the validation set, but secondary traits are present in both training and validation set) and method to model biomass over time (spline or logistic model) interval, expressed as the number of days between two consecutive HTP measurements. Black horizontal lines shows yield prediction accuracy for a single trait model trained with yield data for the genotypes in the training set (M1). Single- and multi-trait models were trained with 100 genotypes, whereas 99 genotypes were used for validation. Bars indicate the confidence interval for the mean, calculated across 30 realizations of the training-validation sets.






Multi-Trait Predictions Using Physiological APSIM Parameters

Besides the parameters of biomass and green canopy cover over time, we also included APSIM parameters in the multi-trait prediction model; i.e. y_rue (radiation use efficiency), photop_sens (sensitivity to photoperiod) and vern_sens (vernalization requirements). We added a range of error sizes to these parameters to evaluate its impact on prediction accuracy.

When assessing the effect of including APSIM physiological parameters in the multi-trait prediction model, prediction accuracy increased (Figure 12). The increase was observed only in the scenario nG_yld, where prediction accuracy reached 0.70 in ET3 and 0.85 in ET1 and ET2. The increase was more modest for the scenario nG_all, showing that including basic traits is particularly useful for unobserved genotypes. The advantage of including basic traits is that, as they correspond to response mechanisms to the environment, they tend to have less G × E. Therefore, they need to be phenotyped in a reduced number of environments, compared to secondary traits, and can potentially be useful across a larger number of environments (they are less environment-type dependent than the secondary traits that have a larger amount of G × E).
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Figure 12 | Yield prediction accuracy and standard error in ET1, ET2, and ET3 calculated with a multi-trait prediction model (M4) considering either the target trait and three APSIM (y_rue, photo_sens, and vern_sens). The x-axis indicates the heritability of the HTP measurement for the APSIM parameter. Symbol colour indicates the prediction scenario; nG_all (target and secondary traits missing in the validation set) or nG_yld (target trait missing in the validation set, but secondary traits are present in both training and validation set). Black horizontal lines shows yield prediction accuracy for a single trait model trained with yield data for the genotypes in the training set (M1). Single- and multi-trait models were trained with 100 genotypes, whereas 99 genotypes were used for validation. Bars indicate the confidence interval for the mean, calculated across 30 realizations of the training-validation sets.








Discussion

In this paper, we illustrate how the output APSIM crop growth model with simulated genotype-dependent physiological parameters allows to evaluate the potential of secondary traits measured with HTP to improve yield genomic prediction accuracy. Our APSIM simulations produced daily output for several traits in three environments that were contrasting in their water deficit patterns. We added error to this output to simulate biomass and canopy cover in a range of phenotyping schedules. Then, we used statistical models (parametric and P-splines) to model biomass and canopy cover over time. We estimated parameters that summarize the dynamics of biomass and canopy cover and used these parameters (together with yield data) to evaluate multi-trait prediction models. In our illustration, we used a diversity panel that represents well the spectrum of genotypes that is adapted to Australian environments. However, our approach could also be applied to other panels or population types. We based ourselves on previous research done by Casadebaig et al. (2016), Chenu et al. 2011; 2013, and Zheng et al. (2013) to select a number of environments that represent well the Australian TPE. Similar approaches to characterize yield responses across environments and to identify traits that are useful for selection in different environment types have been previously discussed by (Podlich and Cooper, 1998; Chapman et al., 2002; Hammer et al., 2002; Hammer et al., 2005; Chapman, 2008).



Multi-Trait Predictions

Yield prediction accuracy was better for multi-trait than for single-trait models. The multi-trait models considered parameters for the dynamics of biomass and green canopy cover as a correlated traits, or APSIM physiological parameters. The only cases in which multi-trait prediction did not have larger accuracy than single trait prediction were for those cases in which the measurement error was very large, or when the curve (in particular the logistic curves) did not fit well to the seasonal trend in biomass data. The degree of success of our predictions was largely affected by the environmental conditions; i.e. biomass- and canopy-related traits are more helpful to increase yield prediction accuracy in non-dry environments, than in dry environments. These results coincide with experimental data showing that normalized difference vegetation index (NDVI) was more beneficial for yield prediction accuracy in non-dry than in dry environments (Rutkoski et al., 2016). The observed trait correlations agree with the experimental observations of Hassan et al. (2019), who showed that correlations between biomass-related traits decrease under drought. The fact that the correlations were stronger for the maximum biomass accumulation rate (BS_slope and BL_slope) than for final biomass (BS_asy and BL_asy) is probably related to the influence of biomass around flowering on the number of grains set (González et al., 2011). Because environmental conditions modify the correlations between the secondary and target traits, the phenotyping and prediction strategy needs to consider the type of environments in which genotypes are evaluated. Our modeling approach allows estimating a priori whether the traits are likely to be correlated with the target trait, and to evaluate trait correlations over a large sample of the TPE, allowing to assess the potential of intermediate traits for making predictions. As an illustration, we focused on a selection of three environments, but our modeling approach could be applied to large data sets across the whole TPE, as shown in Bustos-Korts et al. (2019).

Besides the constant size of the measurement error over time, we also assessed a measurement error dependent on canopy cover, as most commonly encountered in real experiments (Grieder et al., 2015; Magney et al., 2016). We used parameters extracted from P-splines logistic curves fitted to biomass and green canopy cover as correlated traits. Multi-trait prediction models using parameters obtained from biomass with an error that changes as a function of green canopy cover showed similar results, compared to the curve parameters obtained using a constant error size. This result shows the potential of our approach to also evaluate phenotyping techniques that have heterogeneous measurement error. We assumed that errors were uncorrelated over time. If there are reasons to assume that the error, besides changing in size, is also correlated over time, this could be taken into account using an autoregressive or an ante-dependence model for the error (Zimmerman and Núñez-Antón, 2009; Funatogawa and Funatogawa, 2019; Giri et al., 2019).




Simultaneous Modeling of Traits Measured With HTP During the Growing Season

We modeled biomass as measured with HTP during the growing season. We compared the use of parametric models (logistic functions and cubic model) and P-splines to characterize biomass dynamics over time. Both, P-splines and parametric models, increased the heritability of biomass, indicating that modeling multiple time points simultaneously is a good strategy to reduce the measurement error. Similar results have been observed when using P-splines to model canopy temperature and NDVI measurements in real wheat experiments (Sun et al., 2017). We observed that parameters estimated from P-spline fits have a larger heritability than parameters obtained from logistic curve fits because they can accommodate better the irregularities in the biomass accumulation.

The advantage of using simulated data is that we can evaluate error sizes and measurement frequencies, allowing to provide recommendations for a phenotyping schedule. In our simulations, we covered a range of phenotyping scenarios, varying in their measurement precision and interval, and on the genotypes that are phenotyped (i.e. nG_all and nG_yld scenarios). For both scenarios, nG_all and nG_yld, the prediction accuracy for multi-trait models using biomass information during the whole growing season was in line with results obtained for real phenotypic data. For example, Sun et al. (2017) show that canopy temperature and NDVI can be useful to improve yield prediction of genotypes that do not have observations for any trait (nG_all), whereas Crain et al. (2018) also observed an increase in yield prediction accuracy when NDVI and canopy temperature were measured in genotypes in the validation set.

Some of the levels we chose for measurement error are perhaps too optimistic, given that biomass approximations with technologies like NDVI usually have R2 of maximum 0.60 (Marti et al., 2007; Grieder et al., 2015; Magney et al., 2016). Our results indicated that when integrating the information over the growing season, similar prediction accuracy is obtained when using HTP technologies that deliver an R2 of 0.60 or 0.80. This suggests that, if we use the currently available technologies, more can be gained from the integration of multiple observation during the growing season, than from reducing the error of single observations. The next step in terms of integration of HTP data into phenotype prediction might be combining the information from proximal sensing of field trials (e.g. NDVI measured from a drone or helicopter, Chapman et al., 2014) with remote sensing from the actual wheat production environments (e.g. satellite measurements of wheat paddocks, Perry et al., 2014).




Trait Hierarchy, Physiological Breeding, and Multi-Trait Prediction

Intermediate traits, in general, express a larger G × E, compared to basic traits (Bustos-Korts et al., 2016b; Bustos-Korts et al., 2019; van Eeuwijk et al., 2019). The notion of differences in scale (basic traits with short phenotypic distance to the genetic basis vs. intermediate traits with larger phenotypic distance to the genetic basis) is useful to organize the phenotyping and the breeding strategy (Hammer et al., 2016; Hammer et al., 2019). Secondary traits that have a short phenotypic distance to the target trait (more genetically correlated) are more useful selection targets and they also have a larger potential to be used in multi-trait genomic prediction models. Examples of the use of platforms/controlled conditions to characterize basic traits are wheat early vigour measured in the greenhouse (Duan et al., 2016), the root angle in maize and sorghum measured in greenhouse pots as a trait related to water uptake (Singh et al., 2010), or the sensitivity to photoperiod, vernalization and earliness per se in wheat measured in controlled conditions for photoperiod and temperature (Zheng et al., 2013; Sukumaran et al., 2016). Examples for intermediate traits in field conditions are airborne measurements for wheat NDVI and canopy temperature (Deery et al., 2016; Rutkoski et al., 2016). These traits can be combined by pyramiding their underlying alleles, in a strategy called “physiological breeding” (Reynolds et al., 2009). To facilitate this process, we propose the convenience of using platforms, greenhouses or facilities with more controlled conditions for detailed phenotyping of basic traits, and field phenotyping for the more integrative traits, that commonly show a larger G × E. These basic traits could then be used in a prediction scenario like nG_yld, helping to increase yield prediction accuracy across environments. Scenario nG_yld would also be analogous to the idea of “phenomic selection” proposed by Rincent et al. (2018), in which the phenotypic data is used as a proxy of the SNP data to estimate the genotypic similarity between individuals.

Data from field imaging for integrative traits and from platforms for basic traits (i.e. crop growth models parameters) can be used for predicting target traits. Different approaches are possible. The first type of phenotyping network would rely on a central location to intensively phenotype basic traits in platforms, with some additional phenotyping of integrative traits in the field. As basic traits are commonly difficult to measure, phenotyping could be made on a few genotypes, using genomic prediction to predicting the rest of the target population of genotypes (Pauli et al., 2016). This strategy is also highly attractive for genomic prediction, where the expensive basic trait is measured on a subset of genotypes that represent the relevant genetic space of the target population of genotypes (Albrecht et al., 2014; Bustos-Korts et al., 2016a) and then the rest of the population can be predicted from a training set. Under this scheme, prediction of the target trait would require a good articulation of statistical and crop growth models. Another application would be the use of secondary traits to improve prediction accuracy across breeding cycles. For example, Sun et al. (2019) use canopy temperature and NDVI measured in early breeding stages to improve yield prediction accuracy in later stages. We propose that our simulation methodology could be used to evaluate a large number of prediction scenarios, considering a large range of trait and measurement error combinations, narrowing down the range of phenotyping and prediction scenarios that need to be evaluated empirically during the design process of the phenotyping protocol.




Environment Classification

We examined the genetic correlations between yield, parameters for the biomass and canopy dynamics, and with the APSIM physiological parameters. We showed that genetic correlation between traits is time- and environment-dependent. In this paper, we focused on three environments only, but the same approach could be considered across the whole TPE to study the consistency of the correlation patterns across environments. For example, Bustos-Korts et al. (2019)show that the correlation between yield and the underlying traits biomass and phenology changes over time. However, the temporal pattern is very similar for environments that have similar environmental conditions. The time- and environment dependencies of trait correlations inform about the physiological adaptation mechanisms that are relevant to each of the environment types. Therefore, trait correlations could also be used as a diagnostic tool to classify environments, assuming that environments with similar environmental conditions will induce similar trait correlations. To answer this question, techniques like clustering methods or networks could be applied on phenotypic data of multiple traits.





Conclusions

The combined use of crop growth models and multi-trait genomic prediction models provides a procedure to assess the efficiency of phenotyping strategies and to evaluate the impact of yield components under different environment types on the genomic prediction of final yield.

Using P-splines or parametric models to extract parameters that characterize the dynamics of secondary traits allows to increase trait heritability, compared to individual time points. This increases the potential of secondary traits to achieve a larger prediction accuracy for the target trait.

Yield prediction accuracy benefitted from including biomass and green canopy cover parameters in prediction scenarios with no- or limited water stress. The advantage of the multi-trait model was smaller for the early-drought scenario, due to the reduced correlation between the secondary and the target traits.
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The incorporation of nondestructive and cost-effective tools in genetic drought studies in combination with reliable indirect screening criteria that exhibit high heritability and genetic correlations will be critical for addressing the water deficit challenges of the agricultural sector under arid conditions and ensuring the success of genotype development. In this study, the proximal spectral reflectance data were exploited to assess three destructive agronomic parameters [dry weight (DW) and water content (WC) of the aboveground biomass and grain yield (GY)] in 30 recombinant F7 and F8 inbred lines (RILs) growing under full (FL) and limited (LM) irrigation regimes. The utility of different groups of spectral reflectance indices (SRIs) as an indirect assessment tool was tested based on heritability and genetic correlations. The performance of the SRIs and different models of partial least squares regression (PLSR) and stepwise multiple linear regression (SMLR) in estimating the destructive parameters was considered. Generally, all groups of SRIs, as well as different models of PLSR and SMLR, generated better estimations for destructive parameters under LM and combined FL+LM than under FL. Even though most of the SRIs exhibited a low association with destructive parameters under FL, they exhibited moderate to high genetic correlations and also had high heritability. The SRIs based on near-infrared (NIR)/visible (VIS) and NIR/NIR, especially those developed in this study, spectral band intervals extracted within VIS, red edge, and NIR spectral range, or individual effective wavelengths relevant to green, red, red edge, and middle NIR spectral region, were found to be more effective in estimating the destructive parameters under all conditions. Five models of SMLR and PLSR for each condition explained most of the variation in the three destructive parameters among genotypes. These models explained 42% to 46%, 19% to 30%, and 39% to 46% of the variation in DW, WC, and GY among genotypes under FL, 69% to 72%, 59% to 61%, and 77% to 81% under LM, and 71% to 75%, 61% to 71%, and 74% to 78% under FL+LM, respectively. Overall, these results confirmed that application of hyperspectral reflectance sensing in breeding programs is not only important for evaluating a sufficient number of genotypes in an expeditious and cost-effective manner but also could be exploited to develop indirect breeding traits that aid in accelerating the development of genotypes for application under adverse environmental conditions.
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Introduction

The agriculture sector in arid and semiarid regions utilizes the maximum amount of available water abstracted from the rivers or groundwater, accounting to an average of approximately 70% of available fresh water resources (El-Hendawy et al., 2017a). With the unprecedented competition for the limited water resources between different water-consuming sectors, the governments in these regions have issued many regulations to reduce the amount of water allocated to the agriculture sector. Therefore, one of the most important objectives to meet the challenge of water-limited supplies is to apply the most feasible strategies that ultimately maximize water productivity (Fereres and Soriano, 2007; El-Hendawy et al., 2017a). Development of new genotypes that are capable of producing high yield stability under deficit irrigation conditions by enhancing their drought tolerance is one of those strategies (Sinclair, 2011; Leufen et al., 2013; El-Hendawy et al., 2017a).

An enhanced performance of in-depth multidimensional descriptions of phenotypic parameters related to drought tolerance for a sufficient number of crossing lines is urgently required when developing drought tolerance in breeding programs (Leufen et al., 2013; El-Hendawy et al., 2015; Becker and Schmidhalter, 2017; Garriga et al., 2017). There is a need for the in-depth description of phenotypic plant traits to close the gap between plant genetics, physiology, and phenomics studies, and is also of vital importance, especially for developing genotypes with an advantageous series of phenotypes or mechanisms related to drought tolerance (Houle et al., 2010). Unfortunately, the comprehensive evaluation of plant traits using field-based plant sampling is destructive, and cost- and time-inefficient. This emphasizes the rising need for the development of phenotyping and phenomics tools and algorithms that help in obtaining a multidimensional description of the phenotypic plant traits in an expeditious and nondestructive manner. Hyperspectral canopy reflectance is one of the most recent and promising tools for achieving this objective.

The spectral signatures reflected from the plant canopy at specific wavelengths provide various types of cumulative information on the substantial and gradual changes that occur in specific plant characteristics or tolerance levels. These spectral signatures are closely associated with drought-induced changes that take place in several biochemical and biophysical plant characteristics, such as plant pigment concentrations, photosynthetic efficiency, internal leaf structures, green biomass, vegetative vigour, and plant water status (Gutierrez et al., 2010; Erdle et al., 2013; Lobos et al., 2014; Becker and Schmidhalter, 2017; Silva-Perez et al., 2018; El-Hendawy et al., 2019a; Lobos et al., 2019). Such changes in biochemical and biophysical plant characteristics, which can be related to genotypic differences and drought stress levels, can be detected through the substantial changes that tack place in the spectral signatures of the canopy measured in the visible (400–700 nm), near-infrared (700–1300 nm), and shortwave-infrared (1300–2500 nm) regions. The close association between the different plant characteristics and canopy spectral signatures indicates that the canopy spectral reflectance can thus be exploited for indirect estimation of different physiological and agronomic parameters that eventually are related to either healthy or stressed plants. However, the information of canopy spectral reflectance is not exploited until it is translated into specific simple normalized difference or ratio spectral reflectance indices (SRIs), which most of the studies have depended on SRIs for predicting plant traits of interest.

Several published SRIs have been used to successfully estimate different parameters such as aboveground biomass and water content, leaf area index, gas exchange and transpiration rates, stomatal conductance, ion and pigment contents, carbon isotope discrimination, yield components, and grain yield in several field crops under either normal or abiotic stress conditions (Erdle et al., 2013; Li et al., 2014; Lobos et al., 2014; El-Hendawy et al., 2015; Bayat et al., 2016; Becker and Schmidhalter, 2017; Garriga et al., 2017; Kawamura et al., 2018; El-Hendawy et al., 2019a; El-Hendawy et al., 2019b). For example, in diverse studies, several SRIs, which are related to plant biomass, plant water status, and plant photosynthetic efficiency, such as the green normalized difference vegetation index (GNDVI), normalized difference vegetation indices (NDVIs), SRIs related to normalized water indices (NWI-1, NWI-2, NWI-3, and NWI-4), and normalized difference moisture index (NDMI: 2200; 1100) showed significant correlation with final grain yield and explained more than 70% of yield variability under contrasting water irrigation regimes (Shanahan et al., 2001; Aparicio et al., 2002; Prasad et al., 2007; Lobos et al., 2014; Elazab et al., 2015; El-Hendawy et al., 2017a). In addition, several studies have also reported that the SRIs formulated based on NIR wavelengths such as different SRIs related to normalized water indices (NWIs), SRIs that incorporate a combination of SWIR/VIS wavelengths such as the water band index (WABI) and SWIR/NIR wavelengths such as the normalized difference water index-1640 (NDWI-1640), normalized difference moisture index (NDMI), and three-band index (SRI (860, 1640, 2130)), red edge/NIR/SWIR wavelengths such as the three-band index (SRI (690, 905, 1550)) or VIS/NIR/SWIR wavelengths such as the three-band index (SRI (974, 518, 1392) and SRI (762, 518, 1930)) were found to be effective for tracking changes in plant water status under various water treatments (Gutierrez et al., 2010; Rischbeck et al., 2014; Yao et al., 2014; Junttila et al., 2016; Elsayed et al., 2017; Rapaport et al., 2017; El-Hendawy et al., 2019a). These indicate that we can deal with different SRIs as indirect selection traits like the traditional physiological traits related to photosynthesis efficiency (photosynthesis rate, stomatal conductance, and transpiration rate) or those related to plant or leaf water status like relative water content, leaf water potential, and equivalent water thickness. Indirect selection is based on the fact that the trait employed for this selection (SRIs) and the trait used for direct selection (destructive traits) are subjected to the same pressure in a particular environment. Therefore, several studies have dealt with SRIs as indirect selection traits and their potential as an indirect selection tool has been evaluated based on the basis of its genetic correlation and heritability (Jackson, 2001; Babar et al., 2006; Gutierrez et al., 2010). Most importantly, these studies indicated that an indirect selection trait (SRIs) should have higher heritability than the direct trait (agronomic or physiological traits), and high genetic correlation with the direct trait.

However, because SRIs use only 2–3 wavebands from the full spectrum (350–2500 nm) and the spectral reflectance is strongly affected by both biochemical and biophysical characteristics of the canopy, it is difficult to construct unified SRIs to estimate measured parameters across different genetic materials and years, and contrasting growing conditions (Li et al., 2014; Kawamura et al., 2018). Furthermore, these SRIs only target the spectral information over a wide range of wavebands, while losing the critical available spectral information in specific narrow wavebands (Hansen and Schjoerring, 2003; Stellacci et al., 2016). This issue can be addressed by employing multivariate analysis techniques, which provide more flexibility in estimating the measured parameters, because they take into account the full spectrum or a wider portion of wavelengths (Herrmann et al., 2011; Hernandez et al., 2015; Garriga et al., 2017).

Stepwise multiple linear regression analysis (SMLR) is one of the multivariate analyses that can be used to extract critical wavebands associated with biochemical and biophysical properties of interest (Thenkabail et al., 2000). However, if the number of predictors (X) remarkably exceeds the number of observations (Y) (overfitting) and/or several predictors are highly correlated with each other (multicollinearity), both of which are inherent to spectral data, the MLR will fail to efficiently address both problems (Nguyen and Lee, 2006). Therefore, several studies have reported that the predictive ability of SMLR could be improved by employing only the most influential wavelengths in the final model by employing appropriate wavelength selection methods before its use (Kawamura et al., 2008; Wu et al., 2012; Li et al., 2016).

Unlike SMLR, partial least squares regression (PLSR) overcomes the problems inherent to spectral data by transforming the original predictor variables into a small number of new variables called orthogonal latent variables (OLVs) by using the characteristics of SMLR and principal component analysis (Wold et al., 2001; Balabin et al., 2007). Therefore, PLSR could be used to construct predictive models for analysing hyperspectral data and extracting the important wavebands from the full-spectrum to estimate the measured parameters, especially when hyperspectral data are analyzed across different growing conditions and genetic materials. Since the PLSR efficiently deals with the problems inherent to canopy hyperspectral reflectance, this method has been considered superior to the SRIs-based method for estimating and predicting various measured parameters such as grain yield, leaf dry weight, leaf area index, nitrogen and nutrient contents, transpiration rate, and photosynthetic capacity (Hansen et al., 2002; Cho et al., 2007; Weber et al., 2012; Li et al., 2014; Sharabian et al., 2014; Rischbeck et al., 2016; Elsayed et al., 2017; Barmeier et al., 2018).

In classical breeding programs, the final grain yield per see (GY) is often considered to be the main screening criterion for identifying the more suitable genotypes for each target environment. Because of the strong interactions between the environment and genotype for this trait, plant breeders commonly seek plant traits other than grain yield as screening criteria. However, these traits will become increasingly important as screening criteria if they demonstrate a high genetic correlation with grain yield and have high heritability values under different environmental conditions, as well as are capable of detecting high yielding lines early and efficiently from a sufficient number of crossing-lines (Babar et al., 2006; Gutierrez et al., 2010). In this sense, dry weight (DW) and water content (WC) of aboveground biomass can facilitate the prediction of grain yield at the early growth stage, of which, the former indicating the photosynthetic size of the canopy (Royo et  al., 2003) and the latter indicating the amount of water available for transpiration in leaves (Sun et al., 2008).

In this study, we propose that it is possible to exploit the canopy spectral signature to expand the use of high-throughput phenotyping sensing for breeding purposes by providing plant breeders with important information to increase the chances of recognizing genotypes that are well-adapted to water shortages, creating indirect nondestructive traits that can be used as an alternative to destructive traits, and/or estimating the complex destructive traits in a rapid and cost-efficient way. Therefore, the main objectives of this study were to (1) evaluate the potential use of new and published SRIs to estimate the destructive parameters (DW, WC, and GY) for advanced breeding wheat lines under full and limited irrigation regimes; (2) assess the potential of these SRIs as an indirect nondestructive tool based on their heritability and genetic correlations for breeding purposes under both conditions; and (3) develop different SMLR and PLSR models using the effective wavelengths, different groups of SRIs, or the full spectral region (350–2500 nm) and compare their performance with those of indices that individually estimate the destructive parameters.




Materials and Methods



Experimental Details

Thirty recombinant F7 and F8 inbred lines (RILs) developed from a cross between the drought-susceptible genotype Sids 1 and the drought-tolerant genotype Sakha 94 were evaluated with their parents under full irrigation (FL) and limited water irrigation (LM) during 2014/2015 (F7) and 2015/2016 (F8). The seeds of the two parents were provided by the Wheat Research Center at the Agricultural Research Center, Ministry of Agriculture and Land Reclamation Giza, Egypt.

The two field experiments were conducted at the Research Station of the Food and Agriculture Sciences College, King Saud University, Riyadh, Saudi Arabia, situated at 24°25′N, 46°34′E, and 400 m above mean sea level. The temperature and precipitation during the wheat growing period (December to April) ranged between 20.2°C and 33.4°C for the maximum temperature, between 9.0°C and 20.4°C for the minimum temperature, and between 8.0 and 23.8 mm for precipitation. The soil texture at the experimental site is sandy loam with a pH of 8.2, along with soil hydraulic characteristics of 0.151 m3 m-3, 0.067 m3 m-3, and 1.51 g cm-3 for field water capacity, permanent wilting point, and soil bulk density, respectively.

The experiments were performed using a randomized complete block split-plot design with three replicates. The two irrigation treatments and the wheat RILs were distributed randomly in the main plots and subplots, respectively. Each subplot size was 4 m × 1.5 m (6.0 m2 in total area). The seeds of each RIL or parent were planted in 10-row subplots on December 5 of each season and at a seeding rate of 150 kg ha-1. Each subplot was fertilized at a rate of 180 kg N, 31 kg P2O5, and 60 kg K2O ha-1. Nitrogen fertilizer was applied in three equal doses at the seedling (ZS 13), middle of tillering (ZS 23), and beginning of booting growth stages (ZS 43) of Zadoks growth stages (Zadoks et al., 1974). The entire doses of P and K were applied at sowing and at the stem elongation stage, respectively. The N, P, and K fertilizers were applied as urea (46.0% N), monocalcium phosphate (15.5% P2O5), and potassium chloride (60% K2O), respectively.

The amount of irrigation water applied for the FL treatment was calculated based on the reference evapotranspiration (ETo, mm day-1) and the crop coefficient (Kc) of spring wheat. The daily meteorological data, which were collected from a weather station located 150 m from the experimental site, were applied to the FAO-56 Penman-Monteith equation given by Allen et al. (1998) to estimate ETo. The Kc values that are recommended by FAO-56 for spring wheat were adjusted based on the actual values of wind speed and relative humidity of the study area (El-Hendawy et al., 2017b). Averaged over two seasons, the cumulative amount of irrigation for the FL treatment based on the above calculation was approximately 6,000 m3 h-1. This amount of irrigation water was reduced to 50% for the LM treatment. The irrigation treatments began 2 weeks after sowing. A low-pressure surface irrigation system was used and consisted of a main water pipe that distributed water to submain hoses at each subplot. Each main water pipe was equipped with a water meter, whereas each submain hose was equipped with a manual control valve to monitor and control the amount of irrigation water delivered to each irrigation treatment.




Measurements

Spectral data of canopy reflectance were collected at the middle anthesis growth stage (Zadoks growth stage 65) under sunny and windless conditions around midday (10:00–15:00 local time; UTC+2) (using the nonimaging portable ASD spectroradiometer; Analytical Spectral Devices Inc., Boulder, CO, USA). This sensor captures the spectral data in the range between 350 to 2,500 nm with sampling intervals of 1.4 and 2.2 nm for the spectral regions 350–1,000 nm and 1,000–2,500 nm, respectively. However, spectral data were finally interpolated automatically to 1.0 nm continuous bands. The spectral reflectance was taken at a nadir with a 25° field of view from 80 cm above the wheat canopy to cover a sufficiently large sensing area of the wheat canopy (~23.0 cm in diameter). A Spectralon white reference panel (40 cm × 40 cm) covered with a mixture of white paint and barium sulfate (BaSO4) was used to calibrate the reflectance measurements. This calibration was performed prior to the measurements and every 15 min to overcome any changes in solar irradiance and atmospheric conditions during measurements. An average of five sequential measurements and 20 scans for each was recorded as the measured spectrum per subplot. The five measurements were taken for the four central rows within each subplot, excluding the first meter from both sides of each row to eliminate border effects.

After the spectral data of canopy reflectance has been collected, an area of 0.15 m2 from each subplot and within the scanned area (two 0.5-m consecutive rows) was cut from the ground level and its fresh weight (FW) was immediately recorded. The plant samples were cut into small pieces and oven-dried at 70°C to a constant weight and then weighed to obtain the final dry weight (DW). The aboveground dry weight per square meter (DW) was estimated based on a land-area basis using the length and width of the harvested area, whereas the water content of aboveground biomass (WC) was calculated as the ratio between the quantity of water (FW – DW) and DW and was expressed as a percentage.

When plants reached maturity, an area of 1.8 m2 (four 3-m consecutive rows) was harvested from each subplot, and spikes were separated and threshed. Thereafter, the final grain yield (GY) was weighed and expressed as tons ha−1 after the moisture content of the seeds was adjusted to approximately 14%.




Data Analysis

Data were analyzed using XLSTAT statistical package software (vers. 2019.1, Excel Add-ins soft SARL, New York, NY, USA), while the figures were constructed using Sigma Plot (Sigma Plot 11.0). The RILs and their parents were clustered into different groups based on DW, WC, and GY simultaneously under FL and LM treatments, and by combining both treatments (FL+LM). The cluster analysis was performed using Euclidean distance and the unweighted pair-group method with arithmetic mean (UPGMA).

The spectral data of canopy reflectance collected separately from the FL and LM treatments were used to calculate different published and newly developed spectral reflectance indices (SRIs). All SRIs were selected based on their sensitivity to changes in leaf pigmentation, photosynthetic efficiency, leaf/tissue structure, leaf area index, biomass, and plant water status. The SRIs developed in this study were selected based on contour maps, which facilitated the evaluation of all possible dual wavelength combinations from binary, normalized spectral indices, and extents of hot spot regions that enabled the assessment of each trait target being studied (Elsayed et al., 2015; Stratoulias et al., 2015). The contour maps show matrices of the coefficients of determination of the relationship between the trait target and possible combinations of two individual wavelengths in the full spectral region (350–2500 nm) (Figure S1). The different contour maps were drawn using the R package “lattice” from the software R statistics version 3.0.2 (R Foundation for Statistical Computing, 2013). Based on hot spots in different contour maps, 26 single wavelengths (440, 480, 550, 557, 570, 580, 590, 622, 700, 710, 738, 748, 751, 760, 780, 790, 812, 850, 900, 970, 1,250, 1,450, 1,500, 1,650, 2,058, and 2,100 nm) were extracted and used to construct different SRIs. These SRIs and published SRIs are shown in Figure 2. The published SRIs used in the present study included a normalized difference vegetation index (NDVI, Mistele and Schmidhalter, 2008), an optimized soil-adjusted vegetation index (OSAVI, Rondeaux et al., 1996), a modified triangular vegetation index (MTVI, Haboudane et al., 2004), an enhanced vegetation index (EVI, Jiang et al., 2008), a normalized water index-2 (NWI-2, Babar et al., 2006), SRI1100,351,1392 (El-Hendawy et al., 2019a), and a normalized difference moisture index (NDMI, Lozano et al., 2007).




Determination coefficients (R2) of the linear relationship between each SRI and the measured parameters were used to evaluate the performance of SRIs individually for estimating the measured parameters.

Genotypic correlations between the measured parameters and the SRIs were estimated under individual irrigation treatments and the combined dual-treatment using the following equation described by Singh and Chaudhary (1977):
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where Cov and Var indicate components of covariance and variance between trait x (measured parameter) and trait y (SRI), respectively.

The broad-sense heritability calculated in this study measures the proportion of the phenotypic variance that is the result of genetic effects (Falconer, 1989). Therefore, the different variance components associated with the phenotypic (σ2P) and genotypic (σ2G) variance were estimated (Table S1) to calculate the broad-sense heritability (H2) for each parameter and SRI under FL, LM, and FL+LM across two years using the following equation:
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The phenotypic variance (σ2P) was calculated using the following equation:
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where σ2G is the genetic variance, σ2GE is the genotype × environment interaction, σ2e is the residual variance, e is the number of environment, and r is the number of replications.

PLSR and SMLR analyses were used to extract the effective spectral band intervals and wavelengths that most significantly contributed to the estimation of the measured parameters. To avoid underfitting or overfitting of the spectral data, PLSR analysis was applied under the optimal number of latent variables (ONLVs) using leave-one-out cross-validation (LOOCV). The ONLVs maximized the covariance between predictors (Y, spectral data) and response variables (X, measured parameters). According to the criterion of covariance maximization, the important latent variables explained most of the variance of X and Y. The ONLVs were selected according to the cumulative (cum) values of Q2 cum, R2Y cum, and R2X cum (Figure S2). Q2 cum was the cumulative variation of the Y and X variables predicted by the extracted ONLVs of the model and used to describe the predictive quality of the model. R2Y cum and R2X cum were the cumulative sum of squares (SS) of the variation of the Y or X variables, respectively, and explained by the extracted ONLVs of the model and utilized for describing the goodness of the fit. In general, models with Q2cum > 0.5 and R2Y cum and R2X cum close to 1.0 are most acceptable as the best models (Eastment and Krzanowski, 1984).

After the ONLVs were identified, the effective spectral band intervals that most significantly contributed to the measured parameter estimation under each irrigation treatment and the combined treatments were extracted based on variable importance in the projection (VIP) and loading weights of PLSR analysis simultaneously for the ONLVs. The sensitive band intervals were extracted when their VIP value was greater than 1.0, coinciding with a high absolute loading weight (Wold et al., 2001). These sensitive band intervals were further applied to SMLR analysis as independent variables to extract the exact influential wavelength contributing to the target parameter estimation, which is not possible in PLSR analysis.

Models for target parameter estimation were constructed using PLSR and SMLR. The SMLR models were constructed based on the most influential wavelengths selected for each parameter under each treatment and the group of SRIs that covered VIS/VIS, NIR/VIS, NIR/NIR, SWIR/VIS, SWIR/SWIR, or SWIR/NIR, whereas the PLSR models were constructed based on all influential wavelengths, all SRIs groups or the full spectral region (350–2500 nm). The predictive performance of all models was estimated using the coefficient of determination (R2) and the root mean square error (RMSE). The performance ability of the cross validation of PLSR based on the full spectral region was assessed by R2, RMSE, and relative error (RE, %) in both calibration and validation data sets. Twenty-five percent of data sets were applied for validation, while the remaining data sets were included in the training set.





Results



Grouping Genotypes Under Different Irrigation Treatments

Figure 1 shows the hierarchical cluster of the 30 recombinant inbred lines (RILs) and their two parents based on shoot dry weight per square meter (DW), water content of aboveground biomass (WC), and grain yield per hectare (GY) under full irrigation (FL), limited irrigation (LM), and the two treatments combined (FL+LM). All genotypes were grouped into three main clusters under three conditions. Even though the drought-tolerant genotype, Sakha 94, and the drought-susceptible genotype, Sids 1, were grouped together in cluster 2 under FL, they were separated in cluster 1 and cluster 2, respectively, under LM and FL+LM (Figure 1). Cluster 1, 2, and 3 included 4, 20, and 6 RILs under FL; 8, 16, and 6 RILs under LM; and 7, 15, and 8 RILs under FL+LM, respectively (Figure 1). The results in Table 1 show that the genotypes in cluster 1 attained a higher value for the three measured parameters; the opposite was true for the genotypes in cluster 3. The mean values of DW, WC, and GY of the genotypes in cluster 2, which included most RILs and Sids 1, decreased by 17.1%, 6.8%, and 23.8% under LM and by 19.5%, 5.9%, and 18.8% under FL+LM, respectively, when compared with the mean values of the genotypes in cluster 1 (Table 1).
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Figure 1 | Hierarchical clusters analysis of the 32 genotypes based on measured parameters using Euclidian distance matrix and unweighted pair-group method arithmetic average (UPGMA) under full irrigation (FL), limited irrigation (LM), and the combined two treatments (combined FL+LM).





Table 1 | Mean values ± standard deviations of shoot dry weight per square meter (DW), water content of aboveground biomass (WC), and grain yield per hectare (GY) of the three clusters group under full irrigation (FL), limited irrigation (LM) and the combined two treatments (FL+LM).
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Relationships Between Spectral Reflectance Indices (SRIs) and Measured Parameters

Twenty-three different SRIs (seven published indices and 16 indices constructed in this study from contour map analysis) were selected to cover different combinations of wavelengths from visible (VIS), near (NIR), and shortwave (SWIR) infrared and linearly regressed with the measured parameters under FL, LM, and FL+LM treatments (Figure 2). In general, all the SRIs correlated better with the measured parameters when they were calculated from the canopy spectral reflectance detected under the LM treatment compared with those detected under the FL treatment. When the data of canopy spectral reflectance of the FL and LM treatments were combined together, all the SRIs were efficiently correlated with the measured parameters as they did under the LM treatment (Figure 2).
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Figure 2 | Coefficient of determinations (R2) for the linear relationships of different spectral reflectance indices with shoot dry weight per square meter (DW), water content of aboveground biomass (WC), and grain yield per hectare (GY) under full irrigation (FL), limited irrigation (LM) (n = 192), and the combined two treatments (FL+LM) (n = 384). R2 values ≥ 0.10 are significant at alpha = 0.05.




The SRIs constructed in this study and based on NIR/VIS, NIR/NIR, and SWIR/VIS exhibited higher coefficients of determination (R2) with the measured parameters under FL, LM, and FL+LM treatments than those based on VIS/VIS, SWIR/SWIR, and SWIR/NIR. In addition, when the published SRIs based on NIR/VIS and NIR/NIR were compared with those constructed, the later SRIs exhibited higher values for R2 with the measured parameters than the former. The published normalized water index-2 (NWI-2 = (R970−R850)/(R970+R850)) was the only SRIs that failed to estimate the variation of the measured parameters under FL and attended a lower value of R2 under LM and FL+LM when compared to that of other SRIs (Figure 2).




Phenotypic and Genotypic Correlations Between SRIs and Measured Parameters

To illustrate the importance of SRIs as an indirect selection tool, the phenotypic and genetic correlation between SRIs and the three measured parameters were calculated (Figure 3 and Figure S3). In general, all SRIs had significant positive and negative genetic correlations with the measured parameters under each treatment, except NWI-2 for DW and GY under FL and FL+LM (Figure 3). NWI-2 had a highly negative genetic correlation with DW under LM (–0.62) and WC under FL (–0.72). Most of the SRIs showed a strong genotypic correlation with WC under the three treatments (rg ≥ ± 0.70). The genotypic correlations between the SRIs and DW and GY were much stronger under LM than that under FL and FL+LM. Even though some SRIs exhibited a moderate relationship with the measured parameters, such as SRIs based on VIS/VIS and SWIR/SWIR, they showed a highly significant genetic correlation (rg ≥ ± 0.70) with DW and GY under LM and with WC under FL and LM (Figure 3).
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Figure 3 | Genetic correlations between different spectral reflectance indices and measured parameters (shoot dry weight per square meter (DW), water content of aboveground biomass (WC), and grain yield per hectare (GY)) under full irrigation (FL), limited irrigation (LM), and the combined two treatments (FL+LM). R2 values ≥ 0.50 are significant at alpha = 0.05.






Broad-Sense Heritability of SRIs and Measured Parameters

All the SRIs and the three measured parameters exhibited high heritability values under LM and FL+LM, with a range of 0.77 to 0.99 (Figure 4). Heritability was higher for most SRIs, especially those based on VIS/VIS, NIR/VIS, NIR/NIR, and SWIR/VIS than that of the three measured parameters under LM and FL+LM. Whereas the heritability value for SRIs based on SWIR/SWIR and SWIR/NIR was comparable with those three measured parameters under both conditions. SRIs based on VIS/VIS, SWIR/SWIR, and SWIR/NIR and NWI-2 resulted in lower heritability values than those of the three measured parameters under FL. Importantly, even though some SRIs exhibited low and moderate relationships with the measured parameters, they showed high heritability (Figure 4).
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Figure 4 | Broad-sense heritability (%) for different spectral reflectance indices and three measured parameters (shoot dry weight per square meter (DW), water content of aboveground biomass (WC), and grain yield per hectare (GY)) under full irrigation (FL), limited irrigation (LM), and the combined two treatments (FL+LM).






Extraction of the Sensitive Spectral Band Intervals and Influential Wavelengths for Estimating the Measured Parameters Based on PLSR and SMLR Analysis

Based on the variable importance in projection (VIP) and loading weights of the PLSR analysis over the full spectrum, the most sensitive spectral band intervals for each measured parameter under FL, LM, and FL+LM were extracted and listed in Table 2. These sensitive band intervals were extracted when their value of VIP was greater than 1.0 and was synchronized with a high absolute loading weight (Figure 5). Under the FL treatment, the VIS and red-edge band intervals, which were located at 350–774 nm for DW and 350–741 nm for GY, exhibited significant and weak relationships with DW, whereas they failed to exhibit any relationship with WC (Table 2). The SWIR band intervals that were extracted for the three parameters under FL (mainly 1,891–2,030 nm for DW, 1,899–1,978 nm for WC, and 1,891–2,010 nm for GY) exhibited significant and weak relationships with DW only, whereas they failed to exhibit any relationships with the other two parameters (Table 2). The wavelengths around 350–737 nm and 751–889 nm, which corresponded to VIS, red edge, and middle NIR band intervals, had a strong relationship with DW and GY under LM and FL+LM, and a weak relationship with WC under LM, whereas they failed to exhibit relationships with WC under FL+LM (Table 2). The SWIR band intervals that were extracted for WC and GY under LM treatment did not exhibit any relationship with either parameter, whereas those extracted under FL+LM had weak and significant relationship with DW and GY (Table 2).



Table 2 | Extraction of the important sensitive spectral band intervals based on the variable importance in projection (VIP) and loading weights of partial least square regression (PLSR) analysis over full wavelengths as well as the most influential wavelengths and their models using the stepwise multiple linear regression (SMLR) for the three measured parameters [shoot dry weight per square meter (DW), water content of aboveground biomass (WC), and grain yield per hectare (GY)] under full irrigation (FL), limited irrigation (LM), and the combined two treatments (FL+LM).
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Figure 5 | The variable importance in projection (VIP) and loading weights of PLSR analysis over full wavelengths to extract the sensitive spectral band intervals for each measured parameters [shoot dry weight per square meter (DW), water content of aboveground biomass (WC), and grain yield per hectare (GY)] under full irrigation (FL), limited irrigation (LM), and the combined two treatments (FL+LM).




The sensitive band intervals that were extracted based on the VIP and loading weights of the PLSR analysis were further applied to SMLR analysis as independent variables to select the most influential wavelengths for each parameter under the three treatments (Table 2). In general, 23 individual wavelengths were identified as the most influential wavelengths for estimating the measured parameters. The most influential wavelengths for estimating the measured parameters were in the VIS region (693 nm), red-edge region (733 nm), middle NIR region (769 nm), and SWIR region (1,891, 1,899, 1,921, and 2,443 nm) under FL; in the VIS region (532 nm), red-edge region (733, 737, 748 nm), and NIR region (751, 1,061, and 1,066 nm) under LM; and in the VIS region (557 nm), red-edge region (737, 738, 750 nm), NIR region (751 and 812 nm), and the SWIR region (1,896 and 1,947 nm) under FL+LM (Table 2). Irrespective of the irrigation treatments, the most influential wavelengths for estimating DW were in the red-edge region (733, 737, and 750 nm), NIR region (751 and 769 nm), and SWIR region (1,896, 1,921, and 2,443 nm). The wavelengths identified for estimating WC were mainly in the VIS region (532 and 557 nm), red-edge region (733 nm), NIR region (751, 812, and 1,066 nm), and SWIR region (1,899 nm). For estimating GY, these wavelengths were mainly identified in the VIS region (693 nm), red-edge region (737, 738, and 748 nm), NIR region (751 and 1,061 nm), and SWIR region (1,891 and 1,947 nm) (Table 2).




Calibration and Validation of PLSR Analysis for the Full Spectrum

To assess the measured parameters using the entire continuous spectrum, the PLSR analysis was estimated using the LOOCV and the ONLVs for avoiding overfitting of the spectral data. The ONLVs were identified based on the goodness of prediction accuracy (Q2) (Figure S2). The ONLVs were 6, 3, and 6 under FL; 5, 5, and 6 under LM; and 8, 6, and 9 under FL+LM for DW, WC, and GY, respectively (Table 3). In general, across all calibration (cal) and validation (val) data set formations, the closest relationship for the measured parameters were recorded under LM and FL+LM, with significant R2 cal or val > 0.70 for DW, >0.60 for WC, and >0.75 for GY (Table 3). The PLSR exhibited a moderate relationship in both cal and val for DW and GY (R2 ~ 0.45) and a weak relationship for WC (R2 ~ 0.20) under FL (Table 3). The lowest values for RMSE and relative error (RE) for the three measured parameters in either the cal or val set were recorded under LM. The RMSE in both sets under FL+LM was lower than those under FL, but the opposite was true for RE (Table 3).



Table 3 | Calibration and validation statistics of partial least square regression (PLSR) models based on entire full wavelengths (350–2500 nm) for estimating shoot dry weight per square meter (DW), water content of aboveground biomass (WC), and grain yield per hectare (GY) under full irrigation (FL), limited irrigation (LM) (n = 192), and the combined two treatments (FL+LM) (n = 384). Twenty-five percent of data sets were applied for validation, while the remaining data sets were included in training set.
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Model Application for Estimating the Measured Parameters Based on Wavelengths and SRIs

SMLR analysis was performed to construct different models for the measured parameters based on the most influential wavelengths selected for each parameter under each treatment (Table 2) or the different groups of SRI that covered the VIS/VIS, NIR/VIS, NIR/NIR, SWIR/VIS, SWIR/SWIR, and SWIR/NIR (Table 4). In general, both models (wavelengths or different groups of SRI) delivered more accurate estimations of the measured parameters under LM and FL+LM than under FL. Under FL, the SRI models based on NIR/VIS, NIR/NIR, and SWIR/VIS were more accurate to estimate the measured parameters than was that of the other group of SRI models or wavelength models and explained 38% to 46%, 23% to 30%, and 35% to 46% of the variation in DW, WC, and GY, respectively (Table 4). The SRI models based on NIR/NIR under LM and NIR/VIS under FL+LM were the best models to accurately estimate the measured parameters, with the NIR/NIR model explaining 72%, 60%, and 80% and NIR/VIS model explaining 75%, 71%, and 78% of the variation in DW, WC, and GY respectively. In addition, the SRI models based on the NIR/VIS and wavelength models showed comparable accurate estimations of the measured parameters under LM and explained approximately 69%, 59%, and 77% of the variation in DW, WC, GY, respectively (Tables 2 and 4). Under FL+LM, the SRI models based on NIR/NIR and SWIR/VIS still had more accurate estimations of the measured parameters than did the wavelength models. The SRI models based on VIS/VIS, SWIR/SWIR, or SWIR/NIR provided the least accurate estimations of the measured parameters under the three treatments compared with that of the other models (Tables 2 and 4).



Table 4 | SMLR Model summary for estimating the measured parameters based on different groups of SRIs.
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Prediction of Measured Parameters Based on Influential Wavelengths and SRIs Using the PLSR Model

The PLSR models using the influential wavelengths selected for the three parameters under each treatment, which were 7, 8, and 8 wavelengths under FL, LM, and FL+LM, respectively, or all twenty-three SRIs were established to predict the three measured parameters under each treatment, and scatter plots and linear regression between the observed and predicted values of each measured parameter are shown in Figure 6. In general, the PLSR models based on the SRIs exhibited higher values of R2 and lower values of RMSE between observed and predicted values of the measured parameters than did those of the PLSR models based on wavelengths. Both models fitted the three measured parameters more precise under the LM (R2 values ranged from 0.48 to 0.64 for wavelength models and from 0.61 to 0.81 for SRI models) and FL+LM (R2 values ranged from 0.57 to 0.61 for wavelength models and from 0.72 to 0.78 for SRI models) than under the FL (R2 values ranged from 0.16 to 0. 31 for wavelength models and from 0.25 to 0.44 for SRI models) (Figure 6). Interestingly, the PLSR model based on all SRIs exhibited comparable performance for estimating the measured parameters (Figure 6) as did the SMLR model that was based on NIR/VIS, NIR/NIR, or SWIR/VIS (Table 4) and the individual SRIs that were selected within NIR/VIS, NIR/NIR, or SWIR/VIS under each treatment (Figure 2). However, the SMLR model based on the influential wavelengths performed better for the three measured parameters (Table 2) than the wavelength models derived by PLSR (Figure 6), especially under LM (R2 values ranged from 0.56 to 0.77 for SMLR model and from 0.59 to 0.65 for the PLSR model) and FL+LM (R2 values ranged from 0.59 to 0.65 for SMLR model and from 0.57 to 0.61 for PLSR model).
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Figure 6 | Relationship between estimated and observed measured parameters ((shoot dry weight per square meter (DW), water content of aboveground biomass (WC), and grain yield per hectare (GY)) under full irrigation (FL), limited irrigation (LM), and the combined two treatments (All) based on influential wavelengths or SRIs.







Discussion

The simultaneous indirect assessment of a number of different destructive parameters in a rapid and cost-efficient way by incorporating nondestructive tools into genetic drought studies will become increasingly important for increasing the chances of recognizing the genotypes that are well-adapted to water shortage in arid conditions. Interestingly, using a nondestructive tool, such as a proximal canopy spectral reflectance, is not only useful for achieving the previous objective but also useful for creating indirect nondestructive traits that can be exploited as an alternative to the direct traits (measured traits) in breeding trials. However, these indirect traits will be appropriate as screening criteria if such traits have a strong genetic correlation and have a high heritability as the direct traits (Babar et al., 2006; Gutierrez et al., 2010). To obtain accurate information from canopy spectral reflectance to assess the direct traits or create the indirect traits, further studies are needed to fix many factors associated with this tool as a methodology and the condition of the reflectance measurements, equipment used, plant materials evaluated, and analysis of spectral data before being applied in breeding trials (Lobos et al., 2019).

In the present study, a sufficient number of RILs were evaluated under two contrasting irrigation regimes (FL and LM) for 2 years to create a wide range in the investigated crop variables, which is an important and first step to make spectral reflectance measurements as realistic as possible for plant breeding programs. The ability of different constructed and published spectral reflectance indices (SRIs) for assessing the destructive parameters were evaluated through linear regression analysis, genotypic correlations, and heritability. As the SRIs involved only 2–3 wavelengths and targeted only the spectral information over a wide range waveband (Hansen and Schjoerring, 2003; Li et al., 2014; Stellacci et al., 2016), different multivariate analysis (PLSR and SMLR) were further applied to extract the sensitive spectral band intervals and wavelengths associated with growth, yield, and plant water status from the full spectrum (350–2500 nm). This multivariate analysis revealed important spectral information correlated with crop parameters across a broad range of crop growing conditions.

Interestingly, the results of this study indicate that all SRIs had weaker relationships with the three detective parameters under the full irrigation treatment (FL), whereas they had a better performance under the limited irrigation treatment (LM) or when the SRIs were combined across the two treatments (FL+LM) (Figure 2). This finding reflects that, methodologically, crop growing conditions play vital roles in the values of canopy spectral reflectance. This finding could be attributed to the fact that large leaf area index and biomass saturation under FL and high temperature under arid conditions could make the SRIs unsuitable to differentiate genotypic differences in plant growth, water status, and yield, especially at the early growth stage. These results also suggest that sufficient genetic variation in morphological characteristics must exist when measuring the spectral reflectance. In this study, the drought-tolerant genotype (Sakha 94) and drought-susceptible genotype (Sids 1) were grouped together in the same cluster under FL, whereas they were separated in two different clusters under LM and FL+LM based on the three measured parameters (Figure 1 and Table 1). This indicates that the both parents have a low morphological diversity and had the lowest range in the measured parameters under FL (Table 1), which could explain why the association between all the SRIs and three detective parameters was generally low under FL, when compared to LM condition. Previous studies have reported that several SRIs exhibit a low association with several productive and physiological traits at the early stage (for example, at the booting stage in wheat) under full irrigation conditions, and these associations were improved when SRI data from the contrasting irrigation regimes (full irrigation, and mild and severe water deficit) were combined (Aparicio et al., 2000; Gutierrez et al., 2010; Lobos et al., 2014; El-Hendawy et al., 2017a; Garriga et al., 2017).

To exploit the SRIs as indirect selection tool in breeding trials, these indices should show high genetic correlation with and higher heritability than the direct destructive traits (Jackson, 2001; Gutierrez et al., 2010). The results of the present study showed that even though most of the SRIs exhibited low relationships with the measured parameters under the FL treatment (Figure 2), they could be used for assessing the direct traits because they have moderate and high genetic correlations and exhibited high heritability (Figures 3 and 4), especially the SRIs based on NIR/VIS, NIR/NIR, and SWIR/VIS wavelengths. These indices exhibited a better fit with the measured parameters under LM and FL+LM, as well as giving high genetic correlations, especially under LM, and exhibited higher heritability than the measured parameters under all conditions (Figures 2–4). These results suggest that because the SRIs based on NIR/VIS, NIR/NIR, and SWIR/VIS wavelengths demonstrated a high genetic base (high heritability and genetic correlation), these indices could be used for breeding purposes as indirect selection tools under both FL and LM treatments. A high heritability value for these indices indicates that the variation which is observed in the tested materials is mostly related to genotypic variation among the RILs rather than the environmental changes. A similar result was reported by Gutierrez et al. (2010) for assessing yield in elite wheat genotypes under two contrasting water stress conditions (well-watered and water-deficit conditions), who reported that the SRIs, especially those showing strong genetic correlations and reasonably high heritability, could be used for breeding purposes for high yielding advanced lines under both conditions.



Integration Between PLSR and SMLR for Dealing With the Entire Spectral Data Set

Even though the SRIs represent a very simple approach for estimating the direct parameters and can be used as an alternative screening tool in plant breeding trials and to develop lightweight spectral sensors, many limitations are associated with this model to differentiate genotypes, such as the sensitivity of many bands involved in the SRIs for different physical and biochemical attributes of the canopy rather than the target traits (Ollinger, 2011). Therefore, recent studies have considered the entire spectral data set for improving the estimation of measured parameters using multivariate analysis. The advantage of this approach is the ability to predict crop variables under complex conditions, e.g., different agronomic treatments, heterogeneous field conditions, and different growth stages and genotypes (Darvishzadeh et al., 2008; Li et al., 2014; El-Hendawy et al., 2019a). In this study, the integration between PLSR and SMLR was applied to select the sensitive band intervals and influential wavelengths associated with each parameter under FL, LM, and FL+LM (Table 2). The sensitive band intervals were selected based on the values of VIP and absolute loading weight derived from PLSR analysis (Figure 5). Overall, the VIS (350–700), red-edge (700–750), and middle NIR (750–890) band intervals were identified as the most important regions for estimation of the measured parameters. These regions exhibited moderate relationships with DW and GY under FL and strong relationships with both parameters under LM and FL+LM, whereas they failed to track changes in WC under FL and FL+LM; while showing moderate relationships with WC under LM (Table 2). Indeed, the VIS region is known to be related to the pigment status and photosynthetic capacity, which always are the elements most affecting the growth and production of crops (Weber et al., 2012; Wang et al., 2017). The red-edge and NIR regions are mainly influenced by the structural leaf compounds, leaf cellular structure, and canopy structure, and therefore both regions are more informative for above ground biomass estimation than the other regions (Rotbart et al., 2013; Barankova et al., 2016; Wang et al., 2017). This influence may explain why these three regions were associated with DW and GY under all conditions in the present study. The water absorption bands in the NIR region, which penetrate deeper into the canopy, are also correlated well with leaf moisture content (Babar et al., 2006; Gutierrez et al., 2010). This correlation could explain why a relationship exists between the NIR region and WC under the LM treatment only.

When the sensitive band intervals selected by PLSR were applied to SMLR analysis as independent variables, different wavelengths were identified as the most effective wavelengths for monitoring the three measured parameters (Table 2). These influential wavelengths correspond to the visible green region (532 and 557 nm), middle of the red depression region (693 nm), red-edge inflection point (733, 737, 738, 748, and 750 nm), NIR region (751, 769, 814, 1,061, and 1,066 nm), and SWIR region (1,891, 1,896, 1,899, 1,921, 1,947, and 2,443 nm). The green region around 550 nm was found to be highly correlated with the high concentrations of chlorophyll a and b and directly related to photosynthetic efficiency (Christenson et al., 2016). Therefore, the wavelengths around 550 nm, such as 559 nm, have been used alone as well as in a ratio with some wavelengths in the red region to explain 13% to 92% of the variation in yield of wheat and soybean genotypes (Ma et al., 2001; Royo et al., 2003). In the present study, the two green wavelengths were extracted as the influential wavelengths for WC under LM and FL+LM (Table 2). This result indicates that the variability in WC among genotypes under water deficit stress could also be detected by the spectral properties related to pigment concentrations. Similar results have been reported by El-Hendawy et al. (2019a) and Kovar et al. (2019), who showed that the green spectral regions had a significant relationship with plant water status, as expressed by the relative water content, leaf water potential, and equivalent water thickness in wheat and soybean under different irrigation regimes. This could be explained by the loss of cell turgor under water stress leading to a decrease in cell volume (shrinking of cells), which ultimately results in a significant reduction in chlorophyll content, and therefore, high reflection in the spectral green region (Canny and Huang, 2006; Scoffoni et al., 2014).

Unlike the green region, the wavelengths in the red region are associated with the chlorophyll absorption capacity (Christenson et al., 2016). In the present study, the wavelength of 693 nm was important for estimating GY under FL (Table 2). This indicates that the high-yielding genotypes under FL conditions had lower reflectance in the red region, suggesting a higher amount of chlorophyll, which resulted in higher grain yields. This finding is consistent with that of Royo et al. (2003) for wheat and Weber et al. (2012) for maize.

The red-edge region was often used as an indirect stress indicator, especially when the plants suffer stress. This region carries important information about biomass quantity and leaf area index, and therefore, could be used to distinguish plant health and yield (Smith et al., 2004; Gitelson et al., 2011; El-Hendawy et al., 2019b). The five wavelengths extracted within this region were associated with DW and GY under LM and FL+LM (Table 2). This indicates that these wavelengths could be used to differentiate genotypic differences in DW and GY under limited water conditions.

The wavelengths in the NIR region were mainly influenced by several leaf structure properties, such as area, biomass and anatomy of leaves, intercellular air spaces, the ratio between palisade and spongy mesophylls, and the arrangement of cells within the mesophyll layer, as well as the leaf water status (Gutierrez et al., 2010; Li et al., 2014; Wang et al., 2017). We assumed that the evaluation of an increased number of genotypes under different irrigation rates could result in a significant variation among genotypes in the previous leaf structure properties. This indicates that the three measured parameters could be estimated through several wavelengths in the NIR region. The wavelengths extracted in the NIR region in this study also fully confirmed this statement and were informative regarding DW under FL and LM, and GY and WC under LM and FL+LM (Table 2).

The wavelengths in the SWIR region are always sensitive to plant water status and less sensitive to noises caused by the internal leaf structure (Mariotto et al., 2013; Rapaport et al., 2017). In addition, the spectral reflectance in this region was also found to be affected by leaf biochemical compounds, such as lignin, cellulose, sugar, proteins, and lipids (Romero et al., 2012; Wang et al., 2013). Yao et al. (2014) reported that the wavelength of 1865 nm was found to be sensitive to cellulose in wheat under different water and nitrogen treatments. Romero et al. (2012) also reported that because cellulose and lignin are the major components of plant dry matter, several wavelengths in the SWIR region (2100 to 2500 nm) are effective to correlate with plant dry matter content. In the present study, the five wavelengths extracted in SWIR were informative for the three parameters under FL conditions, as well as for DW and GY under FL+LM (Table 2). Interestingly, no wavelengths extracted in the SWIR region were informative for any of the three parameters under the LM conditions (Table 2). This could be because the leaf biochemical compounds may be affected at the same rate for all genotypes under LM conditions. Therefore, the wavelengths in the VIS and red edge, as well as the wavelengths related to water bands in the NIR region were sufficient to detect the changes in DW, GY, and WC under LM conditions in this study.




Best Models for Estimating the Measured Parameters

Several studies have reported that constructing different models of the spectral reflectance data could improve the estimation potential of the measured parameters (Li et al., 2014; Christenson et al., 2016; Garriga et al., 2017; Lobos et al., 2019). In the present study, different models were constructed using SMLR and PLSR analysis. Some models were constructed based on the most influential wavelengths, which were selected for each parameter under each condition (Table 2) or based on different groups of SRIs (Table 4) using SMLR analysis, whereas other models were constructed based on all the most influential wavelengths, different SRIs groups (Figure 6), or the entire full spectrum (Table 3) using PLSR analysis. By modeling the spectral reflectance, an assessment of the important direct traits or the creation of new indirect ones is possible and can be applied in wheat breeding programs oriented toward adaptation to challenging water deficits in arid conditions. In this study, among all the models, there were five models for each condition (FL, LM, or FL+LM) that were more accurate in the estimation of the measured parameters than the other models. The SMLR models based on SRIs of NIR/VIS or NIR/NIR, as well as the PLSR models based on all SRIs or the full wavelengths were shared for the three conditions in addition to the PLSR and SMLR models based on most influential wavelengths for FL and LM, respectively, and the SMLR based on SRIs of SWIR/VIS for FL+LM. The five models identified for each condition explained 42% to 46%, 19% to 30%, and 39% to 46% under FL; 69% to 72%, 59% to 61%, and 77% to 81% under LM; and 71% to 75%, 61% to 71%, and 74% to 78% under FL+LM of the variation in DW, WC, and GY among genotypes, respectively (compared data in Tables 2–4 and Figure 6). Interestingly, there were specific individual SRIs, especially those developed in this study and based on NIR/VIS or NIR/NIR, had a comparable performance for estimating the measured parameters, as for the previous five models (Figure 2). Taken together, these results indicate that it is possible to use the SRIs as a simple and easy way to estimate the growth, yield, and water status of wheat in breeding programs, especially those showing strong genetic correlations and reasonably high heritability. More importantly, the most efficient indices, which had significant relationships with the measured parameters, were based on VIS and NIR wavebands, which support ongoing efforts to develop new spectral sensors being less expensive and enabling more multilateral applications. However, the main drawback of SRIs is that it is difficult to create a universal index to remotely estimate crop variables for different genotypes. This is because the canopy reflectance is strongly influenced by the variation in structural and biochemical properties of the canopy among genotypes (Thenkabail et al., 2000; Li et al., 2014). For instance, although the different normalized water index (NWIs) using the wavelengths 970, 920, and 850 nm were the only indices satisfactorily explaining a large amount of variation in GY among wheat genotypes under full-irrigated and water-stressed conditions and added genotypic variation explanation to the studies of Prasad et al. (2007) and Gutierrez et al. (2010), the NWI-2 exhibited weak relationships with the measured parameters under all conditions in this study (Figure 2). In addition, even though the different normalized vegetative indices (NDVIs) have provided a strong association with wheat GY under different water stress conditions in the studies by Raun et al. (2001) and Royo et al. (2003), these indices failed to estimate GY in bread wheat in the study by Gutierrez et al. (2010) and exhibited low to moderate association with the measured parameters in the present study. Because of this inconsistency of SRIs in their relationship with the crop variables, multivariate analyses have been proposed and applied in recent decades for trait modeling (Nguyen and Lee, 2006; Garriga et al., 2017; Kawamura et al., 2018; Li et al., 2018; El-Hendawy et al., 2019a; Lobos et al., 2019). Among multivariate analysis, SMLR and PLSR methods have been widely used for estimating crop variables. In most studies, PLSR was superior to SMLR for trait modeling. However, to improve the performance of SMLR models, it is important to apply the model after selection of appropriate wavelengths (Goicoechea and Olivieri, 2002; Li et al., 2016; Kawamura et al., 2018). In the present study, there were three SMLR models, which are based on SRIs of NIR/VIS or NIR/NIR for all conditions and based on most the influential wavelengths for the LM condition, providing accurate estimation for the three measured parameters, similar to the PLSR models.





Conclusion

The results of this study showed that the three destructive measurements (DW, WC, and GY) could be used as direct traits in breeding programs to assess the water stress tolerance among several advanced lines of spring wheat. However, there is a pressing need to assess these traits in a fast and nondestructive way to accelerate the development of genotypes for water stress conditions. In this study, the feasibility of applying spectral reflectance data for indirect assessment of these traits or exploited as an alternative to indirect traits was evaluated. The results indicated that it was possible to assess direct traits using the specific individual SRIs, especially those developed in this study and based on NIR/VIS wavelengths such as SRI (580,790), SRI (580,900), SRI (780,580), SRI (812,557), and SRI (850,570) or NIR/NIR wavelengths such as SRI (760,710), SRI (780,710), SRI (748,730), SRI (751,738), and SRI (970,700). Such SRIs could also be used as indirect traits for breeding purposes because they demonstrated high heritability and genetic correlation. Because there was no universal SRI that could be used to assess the direct traits under contrasting environmental conditions and with different genotypes, the methodology used in the selection of the important spectral waveband regions and wavelengths is becoming important. In this study, the integration between PLSR and SMLR was used to consider the entire spectral data set to improve the estimation of direct traits. The results confirmed that modeling of the spectral reflectance data using both analyses aided in constructing a robust model to assess some key breeding traits for breeding purposes of spring wheat genotypes under different environmental conditions.
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Genotype by environment interaction (G×E) for the target trait, e.g. yield, is an emerging property of agricultural systems and results from the interplay between a hierarchy of secondary traits involving the capture and allocation of environmental resources during the growing season. This hierarchy of secondary traits ranges from basic traits that correspond to response mechanisms/sensitivities, to intermediate traits that integrate a larger number of processes over time and therefore show a larger amount of G×E. Traits underlying yield differ in their contribution to adaptation across environmental conditions and have different levels of G×E. Here, we provide a framework to study the performance of genotype to phenotype (G2P) modeling approaches. We generate and analyze response surfaces, or adaptation landscapes, for yield and yield related traits, emphasizing the organization of the traits in a hierarchy and their development and interactions over time. We use the crop growth model APSIM-wheat with genotype-dependent parameters as a tool to simulate non-linear trait responses over time with complex trait dependencies and apply it to wheat crops in Australia. For biological realism, APSIM parameters were given a genetic basis of 300 QTLs sampled from a gamma distribution whose shape and rate parameters were estimated from real wheat data. In the simulations, the hierarchical organization of the traits and their interactions over time cause G×E for yield even when underlying traits do not show G×E. Insight into how G×E arises during growth and development helps to improve the accuracy of phenotype predictions within and across environments and to optimize trial networks. We produced a tangible simulated adaptation landscape for yield that we first investigated for its biological credibility by statistical models for G×E that incorporate genotypic and environmental covariables. Subsequently, the simulated trait data were used to evaluate statistical genotype-to-phenotype models for multiple traits and environments and to characterize relationships between traits over time and across environments, as a way to identify traits that could be useful to select for specific adaptation. Designed appropriately, these types of simulated landscapes might also serve as a basis to train other, more deep learning methodologies in order to transfer such network models to real-world situations.

Keywords: QTL (quantitative trait loci), crop growth model, adaptation, G×E interaction, wheat, APSIM model, reaction norm



Background

A major objective of breeding programs is to create and identify genotypes that are well adapted to the growing conditions in which the resulting varieties are likely to be grown. This set of conditions is referred to as the target population of environments, TPE (Comstock and Moll, 1963; Cooper and Hammer, 1996; Chenu, 2015). Across the TPE, climate, soil, and management typically change, inducing genotype-specific responses that might lead to heterogeneous genotypic ranking for the target trait (e.g. yield). For example, the Australian grain cropping TPE has been represented by four or five environment types (ETs) that correspond to different water deficit patterns (sorghum: Chapman et al., 2000b; wheat: Chenu et al., 2011; Chenu et al., 2013). These water deficit patterns induce genotype-specific responses that are an expression of genotype-by-environment interaction (G×E).

G×E for yield (i.e. the target trait) is an emerging property of agricultural systems and results from the interplay between secondary traits, organized in a hierarchy that involves the capture and allocation of environmental resources during the growing season (Chapman et al., 2002b; Hammer et al., 2016). Traits underlying yield differ in their contribution to adaptation across environmental conditions; e.g. later flowering might be advantageous for yield in a non-dry environment but can be counterproductive in an environment with late drought (Slafer et al., 2005). Secondary traits can be classified as intermediate traits (e.g. biomass, flowering time, grain number) or as basic traits that correspond to response mechanisms/sensitivities to the environmental conditions (e.g. sensitivity to photoperiod, radiation use efficiency). As the target and intermediate traits involve a large number of processes, they are more prone to G×E. In contrast, basic traits/sensitivities usually show less G×E because they correspond to mechanisms of response to the environment; they are less context-dependent, but they sense and generate the environmental context for more complex traits (Tardieu and Tuberosa, 2010a; Hammer et al., 2016; Chenu et al., 2018). Although genotypic sensitivities to environmental conditions are hard to phenotype, their estimates facilitate predictions along the environmental gradient, provided that the relevant environmental variables are measured (Tardieu and Tuberosa, 2010b; van Eeuwijk et al., 2019). As traits along the trait hierarchy might interact in non-linear ways, G×E for the target trait can be observed, even if its underlying traits do not show G×E (Génard et al., 2017).

To study G×E, breeders traditionally evaluate genotypes in multi-environment trials (METs) consisting of a sample of locations and years that is hoped to represent the TPE. Practical constraints restrict the number of genotype–environment combinations that can be tested in METs, as well as the number and frequency of traits that can be measured. Therefore, it is typically hard to understand from the analysis of MET yield data how G×E has arisen from component traits and the biological interactions between them as well as their responses to the environment. It will be useful to consider the dynamics of the underlying traits (intermediate traits like biomass and basic traits/sensitivities). Such traits will be genetically correlated to yield, making them interesting targets for selection on specific adaptation (Furbank et al., 2019). Intermediate and basic traits are becoming increasingly accessible thanks to high-throughput phenotyping techniques. As additional phenotyping always implies additional costs, simulations might be used for a more detailed characterization of the system dynamics to identify the key adaptive mechanisms in the targeted conditions. Phenotyping a large number of genotypes and environments over time is still an expensive task, and results typically depend on how representative the MET environments were. Simulations offer an opportunity to evaluate strategies to design METs and efficiently allocate resources (structure and size of the trial network, impact of phenotyping additional traits), compare prediction methods (multi-trait, multi-environment genomic prediction, and QTL models), and develop methodologies to assess how additive effects for basic mechanisms influence intermediate and target traits, among others.

Our simulations involved the combination of statistical-genetic models and crop growth models (Chapman, 2008; van Eeuwijk et al., 2019). A number of interesting approaches for crop growth models with genotype-dependent parameters have been proposed during the past decades. For example, Chapman et al. (2002a, 2003) and Chapman (2008) simulated a number of sorghum genotypes varying in APSIM parameters. APSIM is an example of a class of widely-used crop growth models that account for characteristics from the crop, weather, soil, and agronomic management and their interactions over time (Wang et al., 2002; Keating et al., 2003; Holzworth et al., 2014). The algorithms in APSIM predict yield as a nonlinear combination of intermediate traits, which are calculated indirectly from environmental conditions and a number of physiological parameters (sensitivities and partitioning coefficients) that are constant across environments. The simulations by Chapman et al. (2002) and Chapman (2008) produced realistic G×E patterns and allowed to connect G×E to explicit water deficit scenarios for a limited set of discrete genotype classes, varying for four physiological traits. A similar approach, implemented at a larger-scale on representative cropping conditions, was applied for wheat by Chenu et al. (2011; 2013), who used a detailed soil and long-term meteorological characterization to assess the frequency of occurrence of different drought patterns along the Australian wheat belt for three genotypes differing in phenology.

The novel aspect of this paper, is that we added an explicit and detailed quantitative genetic basis to simulated APSIM-wheat physiological parameters. In this way, we simulated multiple traits over time and across environments, with a quantitative genetic basis. To make our simulations realistic, APSIM-wheat parameters were genetically regulated by additive QTL effects that follow the same distribution as the ones observed for real phenotypic data for an association panel in Australia (data also used in Bustos-Korts et al., 2016a). Parameter ranges were adjusted to those that have been observed in physiological experiments for wheat. The genotype-specific parameters with known genetic basis were used to simulate daily phenotypes of secondary traits (e.g. biomass, canopy cover, flowering time) for 199 genotypes growing in four Australian locations during 31 years. In this paper, we simulated data that were first explored for the structure of G×E by statistical models that incorporated genotypic and environmental covariables to assess the biological credibility of the simulated data. Subsequently, we used the simulated data to evaluate statistical genotype-to-phenotype models for multiple traits and multiple environments. Finally, we studied relationships between traits over time and across environments, as a way to identify traits that could be useful in selection for specific adaptation.




Methods

The Methods section is presented in three sub-sections: sub-section Genotypic, Phenotypic, and Climatic Data Used to Define Simulation Settings describes the real data (markers and phenotypes) used to do a genome-wide-association analysis and define the environmental conditions in the simulations; sub-section Crop Simulations describes the steps to define the distributions for the simulated QTL allelic effects underlying the APSIM parameters and the simulation settings; sub-section Genetic, Environmental, and G×E Analyses of the Simulated Yield Response Surface describes genetic, environmental, and G×E analyses of the simulated phenotypes.



Genotypic, Phenotypic, and Climatic Data Used to Define Simulation Settings



Genotypic Data

Genotypic data consisted of SNPs for a sample of the target population of wheat genotypes (TPG) for Australia, containing 199 genotypes (Australian Wheat Flowering time Association Mapping panel, AWFAM) that represent the range in flowering time variation that is relevant for Australian wheat. This panel was previously used in research about phenotype prediction in Australian environments (Zheng et al., 2013; Bustos-Korts et al., 2016a). Genotypes were characterized with 3,035 polymorphic SNPs with less than 1% missing data and with a minor allele frequency larger than 0.02 (Tables S1 and S2). SNPs and map are provided in the Supplementary material. Genotypes were characterized for their alleles for photoperiod and vernalization, following the same procedure as described in Zheng et al. (2013). Missing markers were imputed using the missForest package in R (Bogard et al., 2014).

To characterize the structure of the AWFAM population, a relationship matrix A was calculated from the SNPs following Patterson et al., (2006):
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In model (1), the elements in the matrix A are proportional to the genetic covariance among genotypes. XX′ is the product of a matrix of dimensions number of genotypes by number of SNPs (X) and its transpose (X′), whose entries are the standardized marker scores, coded 0, 1, or 2, representing the number of copies of the minor allele. nm is the number of markers.

To study population structure, we inferred the number of subpopulations present in AWFAM from the number of significant principal components, calculated after applying a spectral decomposition to the matrix A (Patterson et al., 2006). Genotypes were grouped and assigned to subpopulations using a hierarchical clustering procedure applied to the significant principal components, following Odong et al. (2013). The cut-off for the dendrogram was chosen such that the number of subpopulations was equal to the number of significant (p<0.05) principal components plus one. Pearson correlation between each of the APSIM parameters and the kinship principal components were calculated and added as vectors in a biplot depicting the genetic diversity.




Phenotypic Data

Phenotypic data consisted of plot observations for yield and heading date of the 199 genotypes belonging to the AWFAM panel observed in eight environments across the Australian wheat belt. A row–column design with two replicates was used. Adjusted means were calculated with the following mixed model:
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In model (2), yijl(k) is the phenotype of genotype i in replicate k, row j, and column l within replicate k, µ is the intercept, Repk is the fixed effect of replicate k, Rj is the random effect of row j, Cl(k) is the random effect of column l within replicate k, Gi is the fixed effect of genotype i, and εijl(k) is the vector of spatially correlated residuals modelling the local trend, with distribution εijl(k)~N(0, R). R represents the Kronecker product of first-order autoregressive processes across rows and columns, and [image: ] is the residual variance: [image: ].




Environments

APSIM-wheat simulations were carried out to generate a sample of the TPE defined by four sites (Emerald, Narrabri, Yanco, and Merredin) and 31 years (1983–2013), corresponding to a subset of the environments used in Casadebaig et al. (2016) and Chenu et al. (2013). This subset was chosen to represent common conditions at four contrasting wheat growing areas in the Australian wheat belt. Climate data were sourced from the SILO patched point data set (http://www.longpaddock.qld.gov.au/silo/index.html; Jeffrey et al., 2001) and are summarized in Table 1 and Figure S1.



Table 1 | Characteristics of the locations, soils, and management regimes representing the target population of environments considering the period 1983–2013.
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Crop Simulations

Phenotypic data was simulated for the 199 studied genotypes characterized by 12 genotype-specific at the four studied sites over 1983–2013 (Figure 1) for standard management practices with the APSIM model, version 7.7 (Holzworth et al., 2014). Sub-section Genotype-Specific Parameters and Their Genetic Basis describes the generation of genotype specific values for 12 APSIM parameters, and sub-section APSIM Crop Simulations describes the settings that were used when running the APSIM model for a sample of the TPG and TPE.
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Figure 1 | Steps to generate the adaptation landscape. Bottom left; an Australian wheat panel is defined as a sample of the target population of genotypes (TPG). For this set of wheat lines, the genotypes were characterized by SNP markers, phenotypic data have been collected in field trials. The phenotypic and genetic data were used in univariate GWAS analyses to estimate empirical distributions for the additive effects of QTLs underlying these phenotypes. Physiological knowledge on trait correlations was used to define genetic correlations between APSIM parameters [image: ]. These correlations are included in a multi-variate description of the QTLs underlying APSIM parameters. From this distribution, genotype specific APSIM parameters [image: ] are generated and assigned to a subset of SNPs. Bottom right; 31 years of historical environmental data at four sites were used to define the target population of environments (TPE) and identify contrasting environment scenarios (water deficit patterns). Top panel; the environmental data of the selected scenarios and the genotype-dependent APSIM parameters are used to generate intermediate traits over time [image: ] using APSIM. The target trait [image: ] is modeled as a function of intermediate traits.





Genotype-Specific Parameters and Their Genetic Basis

Genotype-specific values were generated for 12 APSIM parameters, regulating phenology, capture of environmental resources, resource use efficiency, and biomass partitioning (Figures 1 and 2). Parameter selection was based on their impact on grain yield, as shown by a global sensitivity analysis (Casadebaig et al., 2016) and by physiological studies (e.g. Manschadi et al., 2006; Acreche et al., 2009; Schoppach and Sadok, 2013). The set of 12 parameters was generated in the following steps (Figure 2): (1) define the distribution of the underlying QTL additive effects, (2) sample the QTL additive effects from Gamma marginal distributions using copulas (Nelsen, 2013), (3) attach the sampled additive effects to 300 SNPs along the genome, (4) for each APSIM parameter, define which will be the trait-increasing allele, so that target parameter correlations are met, and (5) rescale parameters to meet the range that is biologically relevant for this TPG.
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Figure 2 | Steps to generate the genotype-dependent parameters, additive effects sampled with copulas from a marginal distribution that follows the same shape and rate than the ones of real wheat data. Steps were as follows: (1) define the distribution of the underlying additive effects by fitting empirical distributions of additive effects estimated from a genome-wide association scan (GWAS) applied to wheat heading date and yield in Australia, (2) sample the additive effects from gamma marginal distributions using copulas, (3) attach the sampled additive effects to 300 SNPs randomly sampled and in low linkage disequilibrium with each other. Alleles for heading date were attached to known flowering time genes. The fixation index (Fst) was calculated for each of the 300 SNPs to assess its potential confounding with population structure. (4) For each APSIM parameter, define which will be the trait-increasing allele, so that target parameter correlations are met, and (5) rescale parameters to meet the range that is biologically relevant for this target population of genotypes (TPG).




The first step (Figure 2) consisted in defining the distribution of the underlying additive QTL effects. These QTL effects were estimated from the application of a single locus GWAS on heading date and yield of the AWFAM panel, observed in the Australian wheat belt (adjusted means obtained in section Genotypic Data).
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In model (3), yi stands for the phenotype of genotype i, µ is the intercept, xik is a vector that represents information of genotype i at marker k (0, 1, or 2 for the number of minor alleles), and αk is the additive QTL effect (fixed) for marker k. Gi represents a polygenic effect for genotype i, with distribution [image: ]. A is the chromosome-specific kinship matrix calculated from the molecular marker information as in Rincent et al. (2014). ϵi is the residual [image: ]. The empirically estimated additive effects (αk) were used to define the shape and rate of the marginal gamma distributions to be followed by the simulated data (step 1 in Figure 2). The estimation of the parameters for these distributions was done by maximum-likelihood using the DISTRIBUTION directive in Genstat 18 (VSN-International, 2016). As the distribution parameters slightly differed between environments, we used the median of the Gamma shape and rate across environments (Step 1 in Figure 2, Table 2).



Table 2 | Genotype-specific parameters from APSIM that were used in this study, with the lower and upper limits for the simulated population, and the default value of the parameter in the released version of APSIM.
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In step two (Figure 2), we defined the additive effects producing the APSIM parameters. We used physiological knowledge reported in the literature to specify correlations between APSIM parameters. The genetic basis of the simulated APSIM parameters was established by 300 SNPs, assumed to have additive effects; no epistasis was modeled for any of these parameters. The SNP effects were sampled from the gamma distribution with the shape and rate parameters estimated from the GWAS analysis of heading date and yield observed for real phenotypic data. The univariate distributions for physiological parameters were turned into a multi-variate distribution by considering the physiological evidence for correlations between some of the APSIM parameters. Most of the parameters were assumed to be uncorrelated, except for the transpiration efficiency coefficient and radiation use efficiency (r = -0.40), the number of grains per gram of stem at flowering and maximum grain size (r = -0.50) and maximum grain size and potential grain filling rate (r = +0.45). These correlations were set to match physiological constraints that have been observed in real experiments (Slafer and Savin, 1994; Monneveux et al., 2006; Sadras and Lawson, 2011; Bustos et al., 2013).

To impose parameter correlations, 300 additive SNP effects were sampled with copulas (step 2, Figure 2), implemented in the R package copula (Maechler, 2017). Briefly, copulas describe the dependence between random variables, each of them with a separate marginal Gamma distribution for the additive effects (Nelsen, 2013). Copulas allow the creation of correlations between the additive effects. Since the Gamma distribution always takes positive values, 50% of the additive effects for each parameter were randomly assigned a negative sign (Pérez-Enciso et al., 2017). In this way, the major and the minor allele had 50% probability of increasing the trait (on average, across the 300 SNPs). Sign allocation was done independently for each parameter, but an exception was made for the following pairs of correlated parameters: (a) transpiration efficiency coefficient and radiation use efficiency, (b) grains per gram of stem and maximum grain size, and (c) maximum grain size and potential grain filling rate. In these three exceptional cases, the sign was assigned jointly for a proportion of the additive effects, instead of independently, as for the other parameters (step 4, Figure 2). If target parameter correlation was positive, a negative sign was assigned jointly to 60% of the most common allele of randomly sampled SNPs (i.e. the same allele would increase the value of both parameters), whereas for the other 40% of the SNPs, the trait-increasing allele was assigned for each parameter to either of the alleles. From a range of percentages, the value of 60% was chosen because it allowed best to achieve the target correlations between APSIM parameters. If the target parameter correlation was negative (in the case of variable pair: grains per gram of stem and maximum grain size), opposite signs were assigned randomly to a 60% of the additive effects. This means that the least common allele of 60% of the loci would be assigned a negative sign for one of the correlated parameters and a positive sign for the other correlated parameter. Therefore, the correlation between each pair of APSIM physiological parameters was determined via the correlation between the absolute value of the QTL additive effects imposed by the copula, and by the proportion of loci for which the same allele is increasing both APSIM parameters.

In step three (Figure 2), we defined QTL locations. Positions of the 300 SNPs with additive effects were determined by sampling from a uniform distribution. Because of the random nature of the sampling process, some SNPs were more related to population structure than others. For that reason, SNPs with additive effects differed in their fixation index values (Fst, Wright, 1949). Additive effects sampled in the second step above described were assigned at random to the 300 SNPs, except for the largest additive effects regulating photoperiod sensitivity (photo_sens) and vernalization requirements (vern_sens). In this case, the largest additive effects were assigned to SNPs at the position of nine known flowering time genes/QTLs, which showed moderate to large Fst (between 0.11 and 0.72 with a median of 0.5). The consequence of this decision was that photo_sens and vern_sens were more likely to be correlated to population structure, making it more difficult to detect QTLs using GWAS methods. We used the 300 SNPs and their additive effects to generate genotype-specific APSIM parameter values for each genotype, Equation (4), step 3 in Figure 2. These genotype-specific parameters are constant across environments.
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In model 4, [image: ] is the vector with genotypic values that were simulated for APSIM parameter p (p = 1…12); μp is the mean of the range for the simulated APSIM parameter p; xiq is an indicator variable with values −1, 0, and 1 that represents information of genotype i at marker q; [image: ] is the additive QTL effect for marker/QTL q and parameter p. In step 4, we checked the realized correlations between APSIM parameters. If the correlation was very different from the target, we rejected that sample and repeated the sampling for sign allocation until the target correlation was achieved (Figure S2). Samples were rejected when pairs of parameters that should have a low correlation had a correlation larger than 0.4, and when pairs of parameters that were intended to be correlated departed more than ±0.2 of the target correlation. If a sample was rejected, we repeated from step 3 onwards (sign allocation) until the realized correlations were within the target range. In step 5 (Figure 2), we rescaled the resulting APSIM parameters, to meet the ranges shown in Table 2.




APSIM Crop Simulations

Crop simulations were conducted with the APSIM-wheat model for the 199 studied genotypes characterized by the 12 physiological parameters at Emerald, Narrabri, Yanco, and Merredin using historical climatic data from 1983–2013 and soil characteristics as described in Table 1, Figure S1, and section Environments. Sowing settings corresponded to control conditions from Casadebaig et al. (2016), chosen to mimic local farming practices. Sowing date was set at the 15th of May for all sites, and the soil conditions were reset each season, i.e. we did not simulate a continuous wheat cropping system, but treated the seasons as independent environment samples, assuming that the genotypes were sown into representative soil conditions. Further details on the sowing and management parameters can be found in Table 1 and in Casadebaig et al. (2016).

The 12 simulated parameters showing variation for the 199 genotypes were used to generate intermediate traits using APSIM, and expressed as equation (5).
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where [image: ] is an intermediate trait for genotype i in environment j, which is modeled as a function of multiple APSIM parameters/inputs, [image: ], (12 of them that are genotype-specific) and multiple environmental inputs, zj, integrated over time (Figure 1). Description and ranges of the genotype-dependent APSIM parameters can be found in Table 2. For a more detailed description of APSIM see the user manual (http://www.apsim.info/; Zheng et al., 2015). The function f embodies the algorithms that transform APSIM parameters and environmental inputs into intermediate phenotypes, [image: ] (e.g. biomass, grain number, grain weight). In APSIM, the target trait (yield) for genotype i in environment [image: ] is modeled as a function of intermediate traits and the environment over time, following equation (6);
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The APSIM simulations sampled part of the Australian wheat TPE comprising environments with standard management at four locations between 1983–2013. The saved output of the APSIM simulation consisted of phenology, dry biomass and yield for each genotype, and indices for environmental characterization (cumulative thermal time, soil water supply, and soil water demand) for each day during the whole growing season.





Genetic, Environmental, and G×E Analyses of the Simulated Yield Response Surface

In this section, we describe statistical models that we applied to analyze the simulated data. The simulation data were analyzed for three distinct purposes. Firstly, we need to verify whether the genotype-by-environment data as simulated by APSIM have a realistic structure, i.e., whether the G×E patterns that we detect in the simulated data correspond with the patterns that occur in empirical MET data. If the simulated data have the characteristics of real-world experiments, they provide an opportunity to investigate the performance of purely statistical models for yield prediction. A third type of analysis of our simulated data consist of examining the correlations between traits over time and across environments. In a companion paper, we discuss whether statistical prediction models for yield can be improved by using additional information on the dynamics of secondary traits.



G×E Analyses

For our simulations to be useful to answer questions related to genotype adaptation across the Australian TPE, the size and nature of G×E need to resemble that of experimental data. Therefore, APSIM yield and biomass at harvest simulated for the 199 genotypes, 31 years, and four locations were used to investigate and describe the G×E patterns in the sample of the TPG and TPE that we simulated. A common way of characterizing G×E in empirical breeding data is by fitting an Additive Main Effects and Multiplicative Interaction (AMMI) model followed by an inspection of genotypic and environmental scores (Gauch and Zobel, 1997; Gauch, 2013; van Eeuwijk et al., 2016).
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In model (7), yij represents the APSIM output for yield without error of the ith genotype in the jth environment, μ stands for the intercept, Gi is the fixed effect of the ith genotype and Ej is the fixed effect of the jth environment. The interaction in an AMMI model is described by M multiplicative terms that consist of products of the genotypic sensitivity bim (genotypic score) and an environmental score zjm. Finally, ϵij is a residual term that contains the part of the two-way analysis of variance interaction that is not explained by the AMMI interaction terms. Genotypic and environmental scores allow visualizing the G×E interaction patterns in the form of biplots. We used an AMMI-2 biplot (scatter plot of the first two multiplicative terms) to assess whether the G×E patterns correspond with the water-deficit patterns. Phenotypic correlations were assessed by the angle between the environmental vectors; if the angle is small, those environments can be interpreted as inducing a similar phenotypic response (Kempton, 1984; Malosetti et al., 2013; van Eeuwijk et al., 2016).

A complementary statistical analysis of G×E quantifies the contributions of genotype-by-location, genotype-by-year, and genotype-by-location-by-year interaction variances (Atlin et al., 2011; van Eeuwijk et al., 2016). A three-way mixed model is fitted with the factors genotype, location, and year.
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In model (8), yilk is the phenotype (APSIM output for yield or biomass without error) for genotype i in location j and year k and μ stands for the intercept. The term Ej in model (7) was decomposed in fixed terms for locations (Ll), years (Yk) and the location by year interaction (LYlk). Gi is the random effect of genotype i, GLil is the random interaction between genotype i and location j, GYik is the random interaction between genotype i and year k and GLYijk is a random term that contains the residual G×E. No extra error term was added to the model because as APSIM is fully deterministic so that the GLYijk contains in principle residual G×E.

To quantify the importance of environmental classifications for G×E variation, we define model (9) (details about environment classification are described in the following section).
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In this model, Tt is a fixed environment type effect, E(T)j(t) is the fixed effect of environments (trials) within environment types, GTit is the random genotype by environment type interaction and GE(T)ij(t) is residual G×E due to trials within ET variation.

To evaluate the dynamics of G×E over time, we selected three single environments (trials) that showed contrasting genotypic responses (by looking at the AMMI biplot.). In those selected environments, we fitted on a daily basis a simple two-way mixed model (10) to quantify the contribution of G×E to the total phenotypic variance for biomass for each day during the growing season.
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Here, yij is the APSIM output for biomass without error for genotype i in environment j, Ej is the fixed environment effect, Gi is the random effect of genotype i and GEij is the random G×E. For each environment, we quantified the autocorrelation for biomass over time. The autocorrelation was calculated as the Pearson correlation coefficient between biomass lagged by 5, 10, and 15 days [biomass at day t and day (t − 5, 10, or 15)].




Environment Classification

In addition to implicit environment characterizations based on phenotype data, as can be obtained from AMMI analyses, we also grouped trials using explicit environmental information about the dynamics of water deficit patterns during the growing season. To calculate the water deficit patterns, we ran APSIM for a “standard” genotype that had the average population value for each parameter (μp). We calculated the water supply/demand ratio to provide an explicit representation of the water availability in the soil, as perceived daily by the crop (Chapman et al., 2000b; Chenu et al., 2011; Chenu et al., 2013). The water supply/demand ratio indicates the degree to which the soil water extractable by the roots (water supply; associated with root depth and root/soil water conductance) is able to match the potential transpiration (water demand). The water demand (mm) corresponds to the amount of water the crop would have transpired in the absence of soil water constraints and is estimated on a daily basis from the potential radiation-driven crop growth on that day (g m–2), the genotype transpiration efficiency (g mm-1 water) and the atmospheric saturation vapor pressure deficit (kPa). Water supply–demand ratio for each environment was centered around flowering and averaged over 100°Cd from emergence to 450°Cd after flowering. Environments were classified into four ETs, applying hierarchical clustering to the dynamics of water supply–demand ratios.




Trait Correlations Over Time

To study the impact of APSIM parameters on the dynamics of intermediate traits and final yield, we calculated Pearson correlations between simulated APSIM parameters and the simulated daily values for intermediate traits and between simulated APSIM parameters and simulated final yield (APSIM output without error). These correlations were calculated for three of the environments that induce the most contrasting genotypic responses, as selected from an AMMI biplot (section Genetic, Environmental and G×E Analyses of the Simulated Yield Response Surface).




QTL Effects Over Time

To describe G×E at the genetic level, we did a genome-wide association analysis using a single locus GWAS model as described above in Equation 3. The model was fitted to the APSIM output for daily biomass, in each of the three most contrasting environments. The additive QTL effects were expressed as a percentage of the daily biomass mean.




Genomic Prediction

Various scenarios need to be distinguished for multi-environment genomic prediction, depending on whether genotypes, environments, or combinations thereof, are to be predicted (Bustos-Korts et al., 2016b; Malosetti et al., 2016; Ly et al., 2017). In this paper, we focus on the prediction of unobserved environments, assuming that all genotypes have been observed/phenotyped in the training set, i.e. each training set encompassed the full set of 199 genotypes. As G×E in the Australian wheat belt is mostly driven by water deficit patterns, we constructed 20 training sets, each of them consisting of 16 simulated trials that were drawn in a stratified random fashion from the four ETs, i.e. each training set consisted of 4 × 4 trials. For each of the 20 training sets, the remaining 108 simulated trials between 1983–2013 were used for validation.

The simulated APSIM yield genotypic values do not contain error because APSIM is a fully deterministic model. Therefore, phenotypic differences in the same environment can be interpreted as genetic. To evaluate the genomic prediction models, we added an error to the APSIM output for yield and the physiological APSIM parameters (for the analyses described in sections G×E Analyses, Environment Classification, and QTL Effects Over Time, we used the APSIM yield and parameters without error).
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In equation (11), the genotypic variance at a given environment [image: ] was calculated as the variance of APSIM yield for that environment. The experimental error [image: ] was sampled independently for each environment and added to the APSIM outputs for yield. For yield, heritability was set to 0.50. APSIM parameters used for the genomic prediction models had a heritability of 0.70. Four types of genomic prediction models were evaluated:



Genomic Prediction Models Using an ET Mean (ETmean)

This model uses an environmental classification based on four ETs (see section Environment Classification) to structure the variance–covariance matrix across environments. As the four relevant ETs are represented in the training set because of stratified sampling, unobserved environments (trials) can be predicted from the means of the ET to which that trial belongs to, provided that the ET in the validation environment is known:
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In model (12), yij(t) is the yield of genotype i in environment trial (j) belonging to environment type t (APSIM output for yield with error to achieve a H2 of 0.5), Tt is the fixed effect of each environment type, E(T)j(t) is the fixed effect of environments (trials) within environment type, Git is the random effect for genotype i in environment type t, following Git~MVN(0, Σ) where Σ is a covariance matrix. The variance–covariance matrix Σ is modeled as [image: ], where ΣG is the genotypic kinship matrix A, calculated in Equation (7) and ΣE is following an unstructured model between the environment types (each environment type has a unique variance and each pair of environment types has a unique correlation). εij(t)~MVN(0,R), where R is a diagonal structure, allowing for environment type-specific residuals. Predictions for environments that are not in the training set are formed from the means of the environment type to which they belong: [image: ].




Genomic Prediction Models Based on the Average Product of Principal Components Extracted From the Genotypic and Environmental Kinship Matrices (MeanPC)

In this approach, we used a mixed model including genotypic and environmental covariables to model the variance–covariance matrix between individual trials (year–location combinations), following (Jarquín et al., 2013; Malosetti et al., 2016). The environmental kinship corresponded to the Euclidean distances calculated from standardized environmental covariables calculated for different periods. Environmental covariables consisted of summaries of temperature, solar radiation, water supply–demand ratio, and photoperiod, calculated for each environment during four periods during the growing season (Table 3). For computational reasons, we replaced the conventional Kronecker product between the genotypic and environmental kinship in the random part of the mixed model by a simpler fixed analogue based on the cross-products of the principal components of the genotypic kinship and the environmental kinship matrices. These cross-products considered three principal components for the environmental kinship and four principal components for the genotypic kinship (the numbers were defined by testing the significance, following Patterson et al., 2006). After calculating all possible cross-products, the resulting 12 product vectors were averaged to obtain a single vector with one value for each genotype–environment combination, denoted by [image: ]. The average cross product vector values [image: ] were included as fixed effect in the following model:



Table 3 | Environmental covariables calculated using the phenology of the population mean.
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where β represents the sensitivity of yield to changes in the genotypic and environmental distances, as represented by [image: ].




Genomic Prediction Models Based on the Full Set of Products of Principal Components Extracted From the Genotypic and Environmental Kinship Matrices (IndivPC)

Model (13) uses a single slope to characterize the sensitivity of yield to changes in genotypic and environmental distances. Here, we create a more versatile model by allowing each of the 12 vectors to have a separate slope:
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In model (14), [image: ] represents the p = 1…12 vectors corresponding to the cross-products of the three environmental kinship principal components and the four genotypic kinship principal components (see previous paragraph). Each vector is allowed to have a separate slope, represented by γp.




Prediction Models Based on Factorial Regression With APSIM Parameters (FReg)

To consider a more explicit approach to model G×E, we modeled the sensitivity of APSIM parameters to environmental covariables in a factorial regression model.
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In model (15), [image: ] represents a genotype-specific covariable (APSIM parameter with a H2 of 0.7) and [image: ] is an environmental covariable belonging to the set of covariables described in Table 3. The proportionality constant κ represents the sensitivity to the product of APSIM parameter and environmental covariable.

We did a forward selection, evaluating all the combinations of APSIM parameters and environmental covariables, also considering the squares of the environmental covariables, sequentially adding the most significant covariable combination in each evaluation round. In the forward selection procedure, the environmental covariables and their squares were added simultaneously. The squares of covariables were dropped if they were not significant, before continuing to evaluate a next covariable and its square. The prediction model with combinations of APSIM parameters, subscript r, and environmental covariables, subscript s, is then:
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Prediction Accuracy

Prediction accuracy was calculated as the Pearson correlation coefficient between the APSIM phenotypes (genotypic value) and the predicted phenotypes (Meuwissen et al., 2001). To comply with the normality assumption, correlation means and standard errors across 30 training set realizations were calculated on a transformed scale using Fischer’s z transformation, [image: ]. Means and the confidence interval lower and upper bound were back transformed using [image: ] before reporting them.







Results

In this paper, we simulated the dynamical behavior of a set of secondary traits across multiple environments (trials) as well as values for the primary or target trait, yield, with realistic G×E patterns. The most novel aspect of our paper is that we used explicit distributions for the additive effects included in a multi-locus QTL model regulating 12 of the APSIM parameters. We used the simulated data to evaluate statistical genotype-to-phenotype models that improve the prediction of target phenotypes across environments and to characterize relationships between traits over time and across environments, as a way to identify traits contributing to specific adaptation.



Exploring the Structure of (Simulated) G×E by Using Models Incorporating Genotypic and Environmental Covariables

We begin the exploration of our simulated data by checking their biological credibility. The joint distribution of simulated secondary and primary traits over time should follow biological principles and possess a time-dependent mean, and a variance-covariance structure that matches that of empirically observed MET data (Figures S3–S5). When successful, data simulated by a crop growth model with genotype-specific parameters provide a realistic and flexible representation of the empirical adaptation landscape for multiple genotypes. We evaluated to which extent basic traits (APSIM parameters) correlated to population structure, and investigated the relationship between an environmental grouping following from a water-stress index and the values for a set of pedo-climatic characteristics. Further, we looked at grouping of genotypes on the basis of yield and biomass performance across environments.



Population Structure

For our wheat simulations, we used the AWFAM panel that represents the flowering time variation that is relevant to the Australian TPE, albeit with a greater genomic variation than any single breeding program might utilize for either Australia or a specific region in the wheatbelt. Hence we might assume that the results here are more similar to what might be seen in yield trials of germplasm from earlier stages of breeding program cycle, rather than the results one might find during near-commercial variety testing. Nonetheless, this same approach is applicable to other collections of genotypes. Spectral decomposition of the kinship matrix suggested the presence of five subpopulations (Figure 3). These subpopulations coincided to some extent with the frequency of photoperiod and vernalization alleles in the real SNP data of the AWFAM panel. The first eigenvector represented the contrast between subpopulation 1, with mostly photoperiod-insensitive alleles, spring alleles for Vrn-A1, and winter alleles for Vrn-B1, and subpopulation 2 with photoperiod insensitive alleles and a high frequency of winter alleles for Vrn-A1. Along the second eigenvector, subpopulation 3 had mostly photoperiod-sensitive alleles and spring alleles for Vrn-A1 and Vrn-B1. Therefore, the simulated vern_sens had a positive correlation with the first eigenvector and the simulated photop_sens coincided with the direction of the second eigenvector. Other simulated APSIM parameters also were moderately correlated with population structure; i.e. correlations with PC1 ranged from −0.46 (ll_modifier) to +0.31 (vern_sens), correlations with PC2 ranged from −0.27 (y_rue) to +0.69 (transp_eff_cf) and correlations with PC3 ranged from −0.51 (max_grain_size) to +0.40 (grains_per_gram_stem). The intermediate size of the correlation between APSIM parameters and population structure is in line with the fact that SNPs with additive effects were sampled at random and some of them had moderate to large Fst (between 0.11 and 0.72 with a median of 0.50).
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Figure 3 | Population structure as revealed by principal components extracted from the matrix of marker scores. Color symbols indicate the genotype assignment to one of the five sub-populations. Directions of greatest change for a set of physiological parameters have been projected on the biplots to help in interpretation. The length of the physiological parameter representations is proportional to the amount of variation explained by the kinship principal components.






Environment Classification

We used the water supply-demand ratio over time of a genotype with the average values for the APSIM parameters to classify the 124 environments into four main ETs (Figure 4). The combination of the four locations with the series of years is considered to represent well the Australian TPE for wheat. We found in our APSIM simulations that locations largely differed in the frequency with which trials at those locations were assigned to ETs; ET1 (no drought) was most frequent in Yanco and did not occur in Emerald (which has low within-crop rainfall), ET2 (intermediate water stress after flowering, with relief at the end of the growing season) was most common in Narrabri and Yanco, ET3 (strong water stress around flowering, with later relief) and ET4 (very strong water stress starting before flowering with very late or no relief) were most common in Emerald, with a low frequency in the other locations.
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Figure 4 | APSIM simulated water supply–demand ratio (stress index) for a genotype with average parameter values growing in Emerald, Narrabri, Merredin, and Yanco during 1983–2013, considering windows of 100oCd. Thermal time was expressed as cumulative degree days from flowering as computed by APSIM. The water supply/demand ratio indicates the degree to which the soil water extractable by the roots (water supply) is able to match the potential transpiration (water demand). The water demand (mm) corresponds to the amount of water the crop would have transpired in the absence of soil water constraint and is estimated on a daily basis from the amount of crop growth on that day (g mm–2), and the atmospheric saturation vapor pressure deficit (kPa, Chapman et al., 2000b; Chenu et al., 2011). Line colors correspond to the four environment types obtained by hierarchical clustering of all location × year combinations together. Pie charts represent the frequency of occurrence of environment types at each location for the 31 year period.






Representing G×E Patterns With a Sample of the TPE

Simulations generating data for a sample of the TPG and TPE need to be checked for the validity of the generated G×E patterns. Statistical techniques to investigate G×E patterns are fitting AMMI models and estimating variance components for G×E. We also look at the contribution of subsets of genotypes and environments (trials) to simulated G×E. We used the APSIM-simulated yield of the 199 genotypes grown across a large sample of the TPE (4 locations and 31 years, 1983–2013) to identify a subset of trials that represent the most important growing conditions driving G×E. In the simulated TPE sample, G×E for yield was 73% of the total phenotypic variance, whereas G×E for biomass “only” corresponded to 57% of the total phenotypic variance (Table 4). For yield, the largest proportion of the G×E was driven by GLYijk and GLij (45 and 44% respectively), whereas GYik explained 11% of the G×E variance. For biomass, the largest proportion (65%) of the G×E was driven by GLij, followed by GLYijk (27%) and GYik explaining 8% of the G×E variance. The G×E patterns observed for yield in the AMMI biplot (Figure 5) are closely related to the water deficit dynamics (Figures 4 and 5). G×E is driven to a large extent by the contrast between environments without strong water stress (e.g. most of the environments in Yanco) and those that suffer from severe drought starting before flowering (e.g. most of the environments in Emerald and Merredin). Accordingly, the ETs obtained from the water deficit patterns explained a large proportion of G×E variance (57% for yield and 59% for biomass, Table 5). The environmental conditions also modified mean yield and biomass across environments. Locations that commonly suffered from drought and that have soils with a lower plant available water capacity, like Emerald and Merredin, showed a lower yield and biomass than Narrabri and Yanco (Figures S2 and S3).



Table 4 | Variance components and standard error for genotype, genotype by location, genotype by year, and residual G×E, as estimated by mixed model analysis of the APSIM outputs for yield and biomass at maturity of the 199 genotypes in the 124 environments used to characterize the TPE (Emerald, Merredin, Narrabri, and Yanco between 1983 and 2013).
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Figure 5 | AMMI biplot for simulated grain yield (kg ha−1) in Emerald, Merredin, Narrabri, and Yanco during 1983–2013. Circles represent genotype scores (colored by groups) and arrows represent environment scores (colored by environment type).




Table 5 | Variance components and standard error for genotype, genotype by environment type, and residual G×E, as estimated by mixed model analysis of the APSIM outputs for yield and biomass at maturity of the 199 genotypes in the 124 environments used to characterize the TPE (Emerald, Merredin, Narrabri, and Yanco between 1983 and 2013).
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The complexity of the observed patterns in the simulated G×E and their biologically acceptable interpretations led us to the conclusion that the APSIM generated phenotypes were realistic and useful for testing the performance of statistical models for phenotypic variation under G×E.





Evaluating Statistical Genotype-To-Phenotype Models That Consider Multiple Traits and Multiple Environments

Crop growth model simulations as done here, can be useful to compare multi-environment genomic prediction models that could later be applied to empirical data. For illustration, we trained a number of models differing in the way that environmental information was incorporated. Although there were some differences in model ranking between environments, in general, the largest prediction accuracy was achieved by the ETmean (with an unstructured variance-covariance for the four ETs, estimated from the simulated yield), emphasizing the interest of grouping environments into more homogeneous classes (Figure 6). The second largest accuracy was obtained by the FReg model (APSIM physiological parameters represent the genotypic sensitivity to environmental covariables), showing the importance of variable selection methods in both the genotypic and environmental dimension. After the forward selection procedure, the final factorial regression model considered the basic traits (APSIM parameters with H2 of 0.7) of radiation use efficiency (y_rue), sensitivity to vernalization (vern_sens), and sensitivity to photoperiod (photop_sens). The selected environmental covariables were supply–demand ratio during period 3 (sd_P3), sum of radiation in period 4 (radsumP4), maximum photoperiod in period 4 (photomaxP4), mean photoperiod in period 2 (photomeanP2), the mean of radiation during period 2 (radmeanP2), and the sum of radiation in period 4 (radsumP4), as shown in model 17:
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Figure 6 | Prediction accuracy and standard error for environments in Emerald, Merredin, Narrabri, and Yanco, between 1983–2013. 20 training sets with four environments randomly drawn from each of the four environment types were used to train the following models: ETmean (yield predicted per environment type, using an unstructured model for environment types), FReg (factorial regression model), IndivPC (independent model terms for each of the cross-products between four genotypic and three environmental scores), MeanPC (mean of the cross-products of genotypic and environment scores).
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The model with estimates for the proportionality constants, ĸ1 to ĸ10, to the selected cross-products of genotypic and environmental covariables (IndivPC, using the principal components of the environmental kinship to represent genotypic sensitivities) was clearly better than the MeanPC model (using the mean of the principal components of the environmental kinship to represent genotypic sensitivities) model that avoids any differential weighting and simply includes all available information in the genotypic and environmental dimensions.




Identifying Traits and Underlying QTLs That Are Useful for Adaptation Across Environments

The intensity and temporal dynamics of the correlations between yield and its underlying traits reflect the mechanisms of adaptation and the periods of environmental stress. In our simulations, trait correlations depended on the environmental conditions explored during the growing season. Within a given location, the correlation between biomass and yield (Figure S6) and the correlation between Zadok’s development score (Figure S7) and yield were heavily influenced by the water deficit patterns (ETs). For a more detailed illustration, we randomly selected three simulated environments that show contrasting water deficit patterns: (a) Yanco_2010 (ET1), (b) Narrabri_2008 (ET2), and (c) Emerald_1993 (ET3). For simplicity, ET4 was not included in the detailed analysis because it induced a similar genotypic response as ET3, when assessing the AMMI biplot. The correlation between biomass and yield differed greatly across the three selected environments and over time (Figure 7). Differences in the correlation patterns also coincided with the water deficit dynamics; the correlation between biomass and final yield was intermediate through the season in the late-stress environment Narrabri_2008 and large (>0.8) in the non-stress environment and Yanco_2010. In contrast, the correlation with grain yield in the dry environment Emerald_1993, was negative for biomass at the beginning of the growing season and only became positive after heading.
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Figure 7 | Upper panels: For three location/year combinations, the correlation between daily phenotypes for secondary traits and grain yield at the end of the growing season, and correlation between APSIM parameters (which are a single constant for each genotype) and daily biomass (dark blue indicates a correlation of +1 and dark red indicates a correlation of −1). The correlation between APSIM parameters and grain yield at the end of the growing season is shown between the blue vertical bars. Vertical lines indicate mean phenology for the population, expressed as Zadoks scores for the population mean (Z2.1 is the beginning of tillering, Z3.1 is the beginning of stem elongation, Z5.5 is heading and Z6.5 is anthesis). Lower panels: water supply/demand ratio for the population mean, calculated for sliding windows of 100 oCd from sowing.




Simulated data also allows to identify which traits are conferring adaptation to specific environments and help directing selection processes. When descending over the trait hierarchy and focusing on the basic traits, the correlations between APSIM parameters (constant over time for each genotype and across environments) and biomass changed across environments and over time (Figure 6). These changes differed between APSIM parameters. For example y_rue (efficiency of conversion of radiation to carbohydrates) and y_extinct_coef (effectiveness of leaf area to intercept radiation) showed little variation over time, indicating that traits related to radiation capture provide a constitutive advantage for biomass accumulation, except for severe water stress. In the dry environment Emerald_1993, the correlation between y_rue, y_extinct_coef, and biomass dropped after heading to become almost zero during the grain filling period. APSIM parameters that are related to water uptake (ll_modifier) and water use efficiency (transp_eff_cf) had a larger impact in the dry environments (Figure 6). However, it has to be noted that y_rue and transp_eff_cf were genetically correlated and therefore it is hard to disentangle the effects of each of these parameters on biomass. The correlation between the water-related parameters and biomass was stronger (negative) in dry than in humid environments. This indicates that both ll_modifier (related to effectiveness of root water extraction) and transp_eff_cf (more efficient production of carbohydrates per unit of water transpired) are valuable traits for drought-adapted genotypes (Voltas et al., 1999; Rebetzke et al., 2002; Rebetzke et al., 2012). Phenology-related parameters also changed their correlation with biomass across environments and over time. Photoperiod sensitivity was negatively correlated with biomass before flowering, indicating that more sensitive genotypes (i.e. that flower earlier) also have a smaller biomass accumulation, coinciding with a shorter growing season. During post-flowering, photoperiod sensitivity had a positive correlation with biomass, showing that genotypes can have a larger biomass accumulation during the later stages of the growing season as long as they do not exhaust the water supply in shallow soils with low rainfall (as in Emerald). Vernalization requirements had a stronger negative correlation with biomass in Emerald_1993, than in the other environments. Across environments, the changes of correlations between biomass and final yield, and those between APSIM parameters and biomass coincided with the key phenological stages, especially with heading and flowering time, reflecting the importance of these stages in triggering adaptation processes.

APSIM simulations were also used to explore the impact of basic traits (APSIM parameters) on final yield (Figure 7). The correlation between APSIM parameters and final yield was in several cases reversed, compared to that between APSIM parameters and biomass. For example, y_extinct_coef had a positive correlation with biomass in Emerald_1993, but a negative correlation with the final yield, an outcome that can arise when the rapidly growing crop exhausts its water supply around flowering, with consequent decreases in crop growth rate and grain set and yield. The positive correlation was preserved in Narrabri_2008 and Yanco_2010. These sign reversions are a reflection of the propagation of effects through the trait hierarchy.

Simulations allow analysis of how trait effects are propagated, informing breeders about ET-specific selection of alleles, in a kind of biological sensitivity analysis. We assessed the effects of QTLs for APSIM parameters on daily biomass in the three environments, and grouped the co-localizing QTLs (Figure 8). QTLs that had a positive effect on y_extinct_coef and y_rue (mk3992 and mk3765) and a negative effect on photop_sens (mk0621) had a positive effect on biomass in Narrabri_2008 and Yanco_2010. The same QTLs had a positive effect in Emerald_1993 during pre-anthesis and became slightly negative during post-anthesis. This change of the additive effects over time in the dry environment coincides with the temporal change of the phenotypic correlation between biomass and its underlying parameters (Figure 7). Other QTLs that also showed strong evidence of G×E were those contributing to increase of photop_sens and ll_modifier. Two of these QTLs (mk3982 and mk0572) were not significant in the non-stress environments, whereas they had a large negative effect in Emerald_1993 during post-anthesis, when water became most limiting. QTL analyses that model G×E in terms of QTL×E can benefit from the insights extracted from the APSIM simulations. Correlations and co-location of QTLs for basic, intermediate, and target traits give insight in which are the physiological mechanisms that are relevant for adaptation to a particular type of environment. It also shows that the effect of a QTL for biomass will also have an effect on yield only if biomass and yield are correlated. For example, mk3992 had a strong positive effect on biomass in both Yanco_2010 and Narrabri_2008 (Figure 8). However, this biomass QTL only had a large effect on yield in Yanco_2010 (and not in Narrabri_2008) because the correlation between biomass and yield was larger in Yanco_2010 than in Narrabri_2008. This information can be used to build multi-trait and/or multi-environment models that account for trait- or environment-specific effects. It can also be used to structure the residual genetic variance in QTL detection models, improving the reliability for QTL detection.
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Figure 8 | Upper panels: For three location/year combinations, the daily biomass production (kg ha−1) for the 199 wheat genotypes. Lower panels: QTL additive effects for biomass estimated from the GWAS for the daily APSIM output. QTL additive effects are expressed as a percentage of the population mean at a given environment and day. SNPs are grouped based on their effects on the APSIM parameters. APSIM parameters written in blue are increased by the most frequent SNP allele, whereas APSIM parameters written in red are decreased by the most frequent SNP allele. Vertical lines indicate mean phenology for the population, expressed as Zadoks scores for the population mean (Z2.1 is the beginning of tillering, Z3.1 is the beginning of stem elongation, Z5.5 is heading and Z6.5 is anthesis). The effect (kg ha−1) of the biomass QTLs on final grain yield at the end of the growing season is shown between the blue vertical bars.






Biomass Auto-Correlation Over Time G×E

To understand genotypic differences in yield as a function of the environmental conditions, we studied the dynamics of underlying intermediate traits like biomass. Examining the autocorrelation in time for biomass may help to identify critical moments during which genotypic changes occur for biomass and consequently yield. The frequency and amplitude of cross-over interactions in intermediate traits as a function of time (lags) influence the degree of success of using early measurements of intermediate traits to improve the predictions for the target trait (Figure S7). For our simulated data, biomass autocorrelation was moderate-to-large for all the environments that we analyzed. A reduced auto-correlation became only relevant when considering a lag of 15 days. Autocorrelation was lowest in the early drought-stress environment Emerald_1993 during the first part of the growing season, coinciding with the onset of water stress (Figures S7 and 7). In Narrabri_2008, with mild after flowering stress, biomass autocorrelation was reduced after flowering, coinciding with the start of drought stress in this environment. In the non-stressing environment of Yanco_2010, biomass autocorrelations were large and almost constant (around 0.97) during the whole growing season (Figure S7), pointing to very low genotype by time interactions. This means that, in Yanco_2010, biomass accumulation curves for all genotypes run almost parallel. Therefore, biomass in the non-stress environment Yanco_2010, measured early during the growing season (e.g. by some phenotyping method), shows promise as a useful trait for final biomass and yield prediction in non-dry environmental conditions. Across the 124 simulated environments, the changes in genotypic ranking for biomass over time led to changes in the variance partitioning. Figure S5 shows that G×E for biomass is large at the beginning of the growing season (more than 50% of the phenotypic variance), it decreases during the vegetative period (relative to the genotypic main effect), and it increases again around flowering oscillating at around 50% of the phenotypic variance





Discussion

For a deeper understanding of the mechanisms underlying adaptation, sizeable METs may be required to guarantee that sufficient genotype by environment combinations are covered to train prediction models. In this paper, we generated biologically realistic MET wheat data with G×E and dynamical secondary traits. Our wheat simulations represented a sample from a TPE as evaluated in 124 trials in the Australian wheat belt. We described the structure of G×E using genotypic and environmental covariables, evaluated genotype-to-phenotype models that consider multiple traits over time and multiple environments and characterized the relationships between traits and their underlying QTLs over time and across environments.



Simulation Settings



Genetic Architecture of APSIM Parameters

To check whether the realized correlations between traits were close to the intended correlations, we calculated the Pearson correlation between simulated APSIM parameters. We showed that the way of selecting the SNPs with additive effects influences the correlation (confounding) between traits (APSIM parameters) and population structure. If causal SNPs are sampled at random (equivalent to the neutral genetic architecture proposed by Pérez-Enciso et al., 2017), the correlation between APSIM parameters and structure will vary between one realized MET and the next, depending on the Fst of the SNPs that were used to assign the largest additive effects to. If SNPs with a large Fst are used to assign the largest additive effects to, the APSIM parameters become more correlated to the population structure, but the correlation is more homogeneous across sampling events because we restrict the QTL locations (general discussion in Bustos-Korts, 2017). The larger correlations with population structure reduce the variation in configurations of APSIM parameters that is present in the TPG. The opposite occurs if we attach additive effects to SNPs with low Fst; APSIM parameters will show a lower correlation with population structure and the parameter space will be explored more homogeneously (general discussion in Bustos-Korts, 2017). In this way, simulation settings can be adjusted to regulate the degree of confounding between the causative alleles and population structure, depending on the type of QTL/genomic prediction model that needs to be evaluated. Another alternative is to use the simulations to evaluate how the confounding between causative QTLs and population structure influences QTL detection.




Genotypic Variation in APSIM Parameters Modifies G×E

We used the literature as a basis for our selection of parameter ranges. The selection of parameter ranges is one of the most critical steps, having a large impact on the G×E patterns observed in the apsim output. The set of traits and trait ranges that are adaptive across the TPE is defined by the collection of genotypes belonging to the TPG. Flowering time is one of the most important examples of trait ranges that determine the adaptation to the tpe (Figure S8); in some environments, only some flowering time values allow successful completion of the growing cycle. Examples and discussions on how the relationship between TPG and TPE relates to trait ranges can be found in Slafer (2003), Slafer et al., (2005), and in Zheng et al. (2012; 2013). In our simulations, we assessed whether the flowering time ranges from the simulations were similar to those observed in the real phenotypic data and adjusted the parameters accordingly. Thus, the sample of the TPG that we constructed matched the phenology that is usually observed in well-adapted genotypes to dry australian environments.





Representing the TPG Along the TPE

The APSIM crop growth model was used to generate samples from the TPE. Here, we expanded the work previously done by Chenu et al. (2011; 2013) and Casadebaig et al. (2016), through the incorporation of an explicit genetic basis for the APSIM parameters, to evaluate multi-environment quantitative-genetics models. The G×E patterns and partitioning of the phenotypic variance observed for this simulated combination of samples from TPG and TPE were comparable to the ones reported for real field trials (Cullis et al., 2000; Chenu et al., 2011). The large GLYijk and the clear impact of water deficit patterns on G×E supports the convenience of focusing on the analysis of ETs (water-deficit patterns) in place of environments defined by years and locations (Chapman et al., 2002a; Chapman, 2008; Chenu et al., 2011; Chenu et al., 2013; Hammer et al., 2014; Watson et al., 2017). Such simulated data are useful to investigate phenotyping and breeding strategies across the Australian TPE. For example, using our simulated data we could evaluate the potential of biomass (or other traits) measured with different high-throughput phenotyping schedules as a correlated trait to improve yield prediction accuracy (companion paper) (Bustos-Korts et al., 2019). The output of our simulations would also allow breaking complex traits into simpler component phenotypes, facilitating the use of marker-assisted and physiological breeding (Ramstein et al., 2018).

The genetic basis that we used for APSIM parameters consisted of exclusively additive effects. However, we did observe nonlinear trait dynamics during the growing season, which result from interactions between physiological mechanisms, called “physiological epistasis” (Cheverud and Routman, 1995; Cooper, 2004). Combining crop growth models with statistical-genetic models showed how biological or physiological epistasis can arise when scaling up from basic traits (APSIM parameters) to traits that show a higher level of integration of biological processes. Biological epistasis takes place when the phenotypic differences among individuals are influenced by other traits via physiological mechanisms (Cheverud and Routman, 1995; Cooper, 2004). If the relationship between the underlying component traits is non-additive, epistatic effects can occur at the phenotypic level of complex traits even if the gene action is purely additive (Holland, 2001; Chapman et al., 2002a; Cooper et al., 2002; Hammer et al., 2006; Technow et al., 2015). For example, all APSIM parameters regulating canopy growth were additive. However, the intermediate trait “green canopy cover” showed a genotype-dependent response that largely changed during the growing season, leading to temporal changes in the genotypic ranking (Figure 2).




Environment Classification

We examined trait correlations over time and the dynamics of biomass QTL effects. We showed that the genetic correlation between traits and the QTL additive effects are time- and environment-dependent. Examining these dependencies gives insight about the physiological mechanisms that confer adaptation to particular environment types and about their genetic regulation. Given that similar environmental conditions induce similar patterns in trait correlations and QTL effects over time, the dynamics of trait correlations and the QTL effects over time can be used to classify environments. Such an approach is increasingly feasible thanks to high throughput phenotyping techniques that allow to monitor multiple traits over time.




Using Simulated Data to Evaluate Statistical Models for Phenotype Prediction

Most simulation approaches for genotypes across environments involve the use of linear models that might sample from a univariate- or multivariate distribution to directly generate the target trait, without considering its relationships with the underlying traits (Yang et al., 2015). Although they have proven useful to evaluate quantitative genetic models, they might be overly simplistic, as the same kind of model is used to generate the data, and to produce the genomic predictions. Furthermore, linear models cannot incorporate explicit information about the nonlinear dynamics of multiple traits occurring in multiple environments. Therefore, the most important novel aspect of this paper is the simulation of biologically realistic phenotypes for a set of genotypes across a large number of environments using a crop growth model with parameters that have a quantitative genetic basis.

The availability of (simulated) data of a large number of genotypes, environments, and traits over time is a very useful resource to develop and compare genomic prediction models. In this paper, we evaluated four genomic prediction models: (1) using an environmental classification (ETMean), (2) using the individual principal components of the genotypic and environmental kinships (IndivPC), (3) using the mean of the principal components of the genotypic and environmental kinships (MeanPC), and (4) factorial regression models (Freg). All prediction models were used with a training set having environments randomly drawn from each of the four ETs. In general, models that allowed for biological insight (as ETMean and FReg) or allowing for differential influence of the meteorological information on G×E (as IndivPC ) led to greater accuracy, compared to models that do not incorporate biological insight and that assume a similar influence of all environmental covariables on the phenotype (MeanPC). In that sense, our MeanPC model was similar in spirit to the model proposed by Jarquín et al., (2013) and later applied by Malosetti et al., (2016) and Ly et al., (2017). We chose to use an approximation to their model to circumvent the convergence and singularity problems that arose for a large majority of our training sets, showing that although the model proposed by Jarquín et al., (2013) is conceptually appealing, it cannot be easily applied to large-scale data that have large G×E using mixed model software as ASREML-R.

Besides the evaluation of prediction scenarios, long-term phenotypic data, as we produced, also allow forecasting adaptation to future environmental conditions by estimating the probability of a given ET to occur at a particular location (Chenu et al., 2011; Chenu et al., 2013). Forecasting can be further fine-tuned by using information about ENSO events measured early in the growing season (Rimmington and Nicholls, 1993; Zheng et al., 2018). This information can be used to identify the ET for which to make predictions with the model using the ET mean and could also be used in the context of climate change, where more extreme weather scenarios are likely to become more frequent in key producing regions (Watson et al., 2017).




A New Generation of Crop Growth Models?

In this paper, we used APSIM-wheat, which considers the most important elements to characterize the adaptation landscape in the Australian wheat belt (Chenu et al., 2011; Chenu et al., 2013). Crop growth models can be used with multiple objectives (Chenu et al., 2017). One of them is to assist breeder’s selection decisions by predicting the phenotype of genotypes that are candidate varieties (e.g. Zheng et al., 2013). A second objective is to generate MET data to describe the trait relationships and the adaptation landscape (as we aimed for in this paper). In this second case, the main interest is not on specific genotypes, but on the adequate representation of the variation patterns due to genotypes, environments, traits, and time (genetic correlations across traits and environments over time). Our simulations provided a realistic representation of the Australian wheat belt, considering the most important G×E patterns, and characterizing the dynamics of the most important traits for adaptation to each ET, with assumed underlying QTLs. Therefore, our simulation output could also be useful to design and evaluate high throughput phenotyping schedules and methods (companion paper) Bustos-Korts et al., (2019).

There is a large body of evidence showing that crop growth models are useful to characterize the performance of cropping systems over time (Asseng et al., 1998; Van Ittersum et al., 2003; Holzworth et al., 2014). However, none of them has been properly parameterized in a single set of experiments for a large number of genotypes. In contrast, for most of them, their structure arose by the concatenation of equations estimated in individual experiments, and additional sets of equations (“modules”) were added a posteriori to the original model structure. Although this model building process is adequate for a number of agronomical and breeding applications, these models typically do not account for the correlation structure between APSIM parameters, and it might lead to models that are overly complex for some breeding applications. This increases the amount of phenotypic data and the computational power that is required to fit them to large sets of genotypes and environments.

Although high-throughput phenotyping offers a great opportunity to estimate genotype specific parameters for crop growth models, the structure of crop growth models could be re-thought when aiming at the prediction of phenotypes for a large number of genotypes (Hammer et al., 2019). One way to get a grip on which genotype-to-phenotype dependencies are really necessary for which environments, is to model them via networks (Cooper, 2004). Networks can consider processes belonging to the same level of organization, as genes and gene expression (Mochida et al., 2011; Torres-Sosa et al., 2012; Liseron-Monfils and Ware, 2015), or they can model processes belonging to more than one level of biological organization. Examples of the relationship between QTLs and phenotypes can be seen in Neto et al. (2010), Valente et al., (2010), Wang et al., (2015), and Wang and van Eeuwijk, (2014). Further approaches as directed networks applied to our simulations are explored in Kruijer et al., (2019). Networks are a valuable tool to characterize the dependencies between traits and QTLs. Such networks, applied to large-scale high-throughput phenotyping data over time (or to the output of simulations) would allow us to better understand the conditional dependencies between genotypes, traits, and environments and can be used as a starting point to re-design a new generation of crop growth models that can be more easily used in breeding applications. Deep learning and network methodology can also be extended to consider the time dimension for multiple traits. Although longitudinal networks have shown promise in other fields of science (De Vos et al., 2017), they have not been yet assessed in the context of plant breeding, making them worthwhile for exploration in further research. Our simulated data could be used to evaluate such methodologies.





Conclusions

We generated realistic phenotypic data by APSIM wheat for multiple dynamical secondary traits and yield. For the simulations, TPE and TPG were inspired by the wheat adaptation landscape along the Australian wheat belt. These simulations were successful in that they reproduced the most important G×E patterns, and described the dynamics for the most important traits for adaptation to each ET, with their underlying QTLs. Our APSIM wheat simulations provide a system that is useful to (1) explore the structure of (simulated) G×E by using models incorporating genotypic and environmental covariables, (2) evaluate statistical genotype-to-phenotype models considering multiple traits and multiple environments, and (3) characterize relationships between traits over time and across environments, as a way to identify traits that could be useful to select for specific adaptation. We provided illustrations of the adaptation landscape across the Australian wheat belt.
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Figure S1 | Monthly cumulative rainfall (bars) and monthly average temperature (solid line) in the four locations between 1983 and 2013, with years classified into four environment types (ETs), according to their water deficit pattern.

Figure S2 | Histograms and correlations for the genotype-dependent APSIM parameters. These parameters were generated from 300 loci with additive effects. We imposed the following correlations on some pairs of parameters: (a) transpiration efficiency coefficient and radiation use efficiency (r=−0.40, blue), (b) number of grains per gram of stem at flowering and maximum grain size (r=−0.50, red), and (c) maximum grain size and potential grain filling rate (r=+0.45, green). Differences between the imposed and realized correlations are product of the sampling process.

Figure S3 | Box plots of grain yield (kg ha−1) for 199 genotypes grown in a total of 124 environments (Emerald, Merredin, Narrabri, and Yanco during 1983–2013), with environments colored by environment type, related to their water deficit pattern (Figure 4).

Figure S4 | Biomass for 124 environments (Emerald, Merredin, Narrabri, and Yanco during 1983–2013), coded as per Figure S3.

Figure S5 | For grain yield (kg ha−1), the G×E variance, G variance, and percentage of G×E with respect to the phenotypic variance considering 124 environments (Emerald, Merredin, Narrabri, and Yanco during 1983–2013). Vertical arrows show mean heading date in the population, as observed in Emerald_1993, Narrabri_2008, and Yanco_2010.

Figure S6 | Within-environment autocorrelation (lag = 15 days) of biomass in Emerald_1993, Narrabri_2008, and Yanco_2010.

Figure S7 | Correlation between yield and biomass (simulated traits) for Emerald, Merredin, Narrabri, and Yanco during 1983–2013. Lines of different colors indicate the correlation for the four ETs. Pie charts represent the frequency of occurrence of environment types at each location.

Figure S8 | Correlation between yield and Zadok’s development score (simulated traits) for Emerald, Merredin, Narrabri, and Yanco during 1983–2013. Lines of different colors indicate the correlation for the four ETs. Pie charts represent the frequency of occurrence of environment types at each location.

Table S1 | Genetic map.

Table S2 | Marker scores used to characterize the 199 wheat genotypes.
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Computer vision models that can recognize plant diseases in the field would be valuable tools for disease management and resistance breeding. Generating enough data to train these models is difficult, however, since only trained experts can accurately identify symptoms. In this study, we describe and implement a two-step method for generating a large amount of high-quality training data with minimal expert input. First, experts located symptoms of northern leaf blight (NLB) in field images taken by unmanned aerial vehicles (UAVs), annotating them quickly at low resolution. Second, non-experts were asked to draw polygons around the identified diseased areas, producing high-resolution ground truths that were automatically screened based on agreement between multiple workers. We then used these crowdsourced data to train a convolutional neural network (CNN), feeding the output into a conditional random field (CRF) to segment images into lesion and non-lesion regions with accuracy of 0.9979 and F1 score of 0.7153. The CNN trained on crowdsourced data showed greatly improved spatial resolution compared to one trained on expert-generated data, despite using only one fifth as many expert annotations. The final model was able to accurately delineate lesions down to the millimeter level from UAV-collected images, the finest scale of aerial plant disease detection achieved to date. The two-step approach to generating training data is a promising method to streamline deep learning approaches for plant disease detection, and for complex plant phenotyping tasks in general.

Keywords: phenotyping, unmanned aerial vehicles, plant disease, deep learning, machine learning, crowdsourcing



Introduction

Machine learning models for object detection require a large amount of training data, typically generated by humans. When the average person can identify the feature or object in question, such as a face, a stop sign, or an apple, these data can be generated through crowdsourcing, as was done for large datasets such as ImageNet (Deng et al., 2009) and Microsoft COCO (Lin et al., 2014). Even if the feature is unfamiliar to most people, crowdsourcing may be viable if the task is simple and the feature obvious. In a recent study on best practices for crowdsourcing plant feature annotation, Zhou et al. (2018) found that, with minimal instruction, anonymous online workers could accurately identify maize male flowers in images where they were clearly visible. Accurate identification of many plant features requires a certain level of expertise, however. If only a handful of human experts are qualified and willing to generate training data, the process takes much longer than if tasks could be reliably performed by hundreds or thousands of non-experts. This places a burden on those experts and creates a bottleneck in the model training process.

This dilemma has been addressed by many groups, particularly in the field of human medicine, wherein a model trained on low-quality data could endanger lives, but experts’ time is limited and expensive. Different circumstances allow for distinct solutions to the problem. For some tasks, such as interpreting X-ray radiographs, large amounts of training data are already generated and archived under normal protocols, and these data can be used as is without need for additional annotations (Gale et al., 2017). When untrained workers perform moderately well, but not quite on par with experts, their annotations can be used to train a “first pass” model that identifies regions of interest (Park et al., 2017), or one that performs only those tasks that non-experts can do well (Heim et al., 2018). Researchers might have access to a community of knowledgeable, enthusiastic amateurs, such as those who enjoy identification of birds (Van Horn et al., 2015) or aircraft (Maji et al., 2013). If nothing but expert annotations will suffice, data sharing lessens the burden on any one group. Multiple groups have used the International Skin Imaging Collaboration image set of human skin diseases (Codella et al., 2015; Haenssle et al., 2018) or the PlantVillage image set of plant diseases (Mohanty et al., 2016; Ghosal et al., 2018; Picon et al., 2019).

Identifying plant diseases via machine learning presents two challenges that limit the feasibility of the above solutions. First, qualified expert judgment is needed at some point in the annotation process, since there are often many causes for tissue death (e.g., disease, abiotic stress, physical damage, natural senescence) and the average person has no experience distinguishing among these. Second, there are hundreds of economically important plant diseases, each with unique considerations of host tissue appearance, plant architecture, symptomatology, etc. A group aiming to implement machine learning detection of a given disease for the first time will likely have to generate novel training data.

The identification of plant disease symptoms in an image might belong to one of three classes of tasks, per Liu et al. (2018): classification, detection, or segmentation. Object classification methods detect the presence or absence of features within an image on the whole, e.g., “this is an image of wheat stem rust.” Object detection methods identify the location and extent of symptoms within an image on a coarse spatial level, most commonly delineating them with bounding boxes. Semantic segmentation methods delineate the boundaries of features, assigning each pixel of an image to a given class, e.g., leaf, soil, or disease symptom. In this paper, we undertake this last task-identifying and outlining every diseased region in an image.

Aerial plant disease detection via machine learning has aroused much interest in the past few years, as evidenced in many reviews, letters, and prospectives (Araus and Cairns, 2014; Singh et al., 2016; Tsaftaris et al., 2016; Shakoor et al., 2017; Yang et al., 2017; Ubbens and Stavness, 2017; Chouhan et al., 2019; Maes and Steppe, 2019). Compared to the level of interest, relatively few examples have been published. Machine learning classification has been used to classify entire plants as virus-infected or not (Ha et al., 2017; Sugiura et al., 2018). Object detection methods have been used to identify diseased regions of grape plants (Kerkech et al., 2018) and diseased leaves of soybean (Tetila et al., 2017). Semantic segmentation of unmanned aerial vehicle (UAV) images, the task we undertake here, has been implemented in soybean (Tetila et al., 2019), tea plants (Gensheng et al., 2019), and maize (Stewart et al., 2019).

In the course of our previous work, we labeled over 100,000 examples of northern leaf blight (NLB), a fungal foliar disease of maize that causes gray-brown necrotic lesions (Wiesner-Hanks et al., 2018). Each of these annotations consisted of a line drawn down the principal axis of a lesion. With these line annotations, we trained convolutional neural networks (CNNs) to recognize NLB lesions in images taken by hand with 96.7% accuracy (DeChant et al., 2017) and in aerial field images with 95.0% accuracy (Wu et al., 2019). Delineating lesion boundaries with polygons would be ideal, as such annotations can ultimately yield much more precise image segmentation than lower-resolution annotations (Bell et al., 2015). Drawing such polygons is prohibitively time-consuming to do with only a small number of trained experts, however.

In this study we describe and implement a two-step approach for generating large amounts of high-resolution training data that has been vetted by qualified experts. First, experts identify disease symptoms, annotating them quickly at low resolution. Second, the more time-consuming task of annotating the lesion boundaries is outsourced to anonymous online workers through Amazon’s Mechanical Turk platform. This two-step approach allows us to maintain the reliability of expert diagnosis while also exploiting the speed and scale of crowdsourcing, producing a model with high accuracy and spatial resolution (Figure 1) with only one fifth as many expert-generated annotations.
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Figure 1 | Examples of lesion segmentation on original images taken in the field by unmanned aerial vehicle. Regions classified as disease lesions by model outlined in magenta.






Materials and Methods



Image Annotation

All Mechanical Turk human intelligence tasks (HITs) consisted of one or more prompts to draw a single bounding polygon delineating the boundaries of a single lesion (Figure 2, top right), previously annotated with a line down the major axis by one of two human experts (Wiesner-Hanks et al., 2018). All images and annotations used, generated, or described herein are available in an Open Science Framework repository (https://osf.io/p67rz).
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Figure 2 | Comparison of annotations used and results of expert-drawn-lines model (left; Wu et al., 2019) and crowdsourced-polygon model described here (right). Top row: original image with annotations overlaid. Middle row: heatmap created by applying convolutional neural network in sliding window across image, brightness indicating probability of lesion at a given point (white = lesion, black = non-lesion). Bottom row: binary mask output of conditional random field segmentation using original image and heatmap.




For each annotated lesion, a subimage was taken of the same width and height of the annotation line, plus 150 pixels padding on all four sides, so that workers had some context to the image. The annotation lines mostly spanned 400–1200 pixels in the x- and y-dimensions (depending on orientation), so this padding usually expanded the field of view by 25–75%. Workers were given basic instructions asking them to draw a polygon delineating the edges of the necrotic lesion with between 10 and 15 vertices, along with an example lesion thereof (Supplemental text, Supplemental Figure 1). The annotation lines drawn by experts were included in these subimages in red to make clear which lesion to annotate, as there was often more than one lesion in a single subimage.

HITs were deployed in three batches over the course of 2 months. Three unique workers were assigned to complete each HIT. Each worker was paid $0.03/HIT, an amount chosen to be similar to payment for comparable tasks deployed on Mechanical Turk at that time, adjusting for the fact that different HITs involve a different number of tasks. An additional $0.01 was paid to Amazon each time a worker completed a HIT, resulting in a total cost of $0.12/lesion (three workers per lesion, $0.03 per worker, $0.01 to Amazon per worker).

Annotations drawn by Amazon Mechanical Turk (MTurk) workers were first screened to see how much they agreed with the other annotations drawn on the same lesion. If a given worker drew polygons that rarely agreed with those drawn by other workers, their annotations were potentially suspect. After a batch was completed, the Intersection over Union (IoU), also called the Jaccard similarity, was calculated for each pair of polygons drawn on the same lesion by taking the area in pixels of their intersection divided by the area in pixels of their union. Each polygon was thus compared to the two other polygons drawn by other workers on the same lesion. If the mean Jaccard similarity between all annotations drawn by a given worker and those drawn by other workers was <0.5, the worker was flagged for manual review. This threshold was set at 0.5 because the vast majority of workers had overall mean IoUs in the 0.5–0.8 range, while a small number, who mostly completed only a handful of HITs each, had mean IoUs in the 0–0.5 range (Supplemental Figure 2). Manual review was deemed necessary, since a worker may have drawn their high-quality annotations compared to low-quality annotations. If their work was found to be unacceptable, all of their annotations were rejected and lesion subimages were redeployed as needed until three unique workers had acceptably annotated each. In all cases, workers whose annotations were rejected appeared to be drawing polygons at random.

The IoU was also used to filter out low-quality lesions. Entire UAV images were filtered automatically prior to annotation and manually during annotation, as described previously (Wiesner-Hanks et al., 2018), but individual lesions in an image could still vary in how clear and defined the visible symptoms were. Preliminary manual inspection of MTurk annotations revealed that lesions on which otherwise well-performing workers drew lesions with low overlap with one another were often blurry, ambiguous, or otherwise unacceptable. Only lesions for which all three polygon annotations had an IoU >0.6 with one another (a threshold chosen to filter out roughly the bottom 25% of lesions) were used to generate images for model training as described below. The mean and standard deviation of pixel red, green, and blue (RGB) values, used for later normalization of images, were calculated on these whole images.

Training, validation, and test data were generated based on the method used with polygon annotations in the OpenSurface dataset (Bell et al., 2015). Multiple square subimages, hereafter referred to as “patches,” were cropped from the entire UAV image and classified as “lesion” or “non-lesion” based on whether the exact center point of the image lay within a lesion. To generate positive patches (the “lesion” class), pixels lying within at least two of three annotation polygons were used as a search space. From these, random points were sampled via Poisson-disk subsampling (scipython.com/blog/poisson-disc-sampling-in-python/), with minimum distance of 200 pixels between each point. Negative patches (the “non-lesion” category), were chosen by randomly sampling points from the pixels in each image that were not included in any of the annotation polygons. Negative training images thus could contain a lesion, so long as they were not centered on one.

Because the original UAV images consisted mostly of non-lesion area, many more non-lesion patches could be extracted from the images than lesion patches. Preliminary model testing with sample images suggested that using a balanced dataset with an equal number of lesion and non-lesion patches biased model predictions toward false positives, i.e., detecting lesions where there were none (data not shown). We thus used a moderately unbalanced dataset and accounted for the class imbalance using weights in the loss function, as described below.

In order to make the model more generalizable, training images were augmented via random transformations that preserved the image class, i.e., the location of the central pixel in a lesion or not. Images were horizontally and/or vertically flipped, rotated by 0 to 90° either clockwise or counterclockwise, and scaled between 0.75x and 1.33x. As these images were taken from directly overhead, there was no need to preserve image orientation.




Network Construction

We used a ResNet34 model (He et al., 2016) that had been pre-trained on the ImageNet dataset of several million labeled images (Russakovsky et al., 2015) as a generalized feature extractor, replacing the final fully connected layer with a fully connected layer of output dimension 2. The output tensor for each input image was a two-dimensional vector of scores for the two classes: centered on a lesion or not centered on a lesion (note that images containing a lesion but not exactly centered on it belong to this second class). A weighted cross-entropy loss function was used, which normalizes the scores into estimated probabilities via the softmax function, then takes the negative log of these probabilities and multiplied by the class weights to account for class imbalance. Class weights of 0.36 and 1.0 were used for lesion and non-lesion images, proportional to the number of images in each class.

In order to determine which patch size and learning rate was most appropriate, we analyzed performance on a smaller sample set of images. For both image classes (lesion and no lesion), 5% of the training and validation sets were randomly sampled. The above network was trained and validated on this 5% subsample with six patch sizes (square patches of size 200, 400, 500, 600, 800, or 1,000 pixels, using the same centerpoints for each size) and seven learning rates (1e−5, 3e−5, 1e−4, 3e−4, 1e−3, 3e−3, and 1e−2). With each combination of patch size and learning rate, the network was trained for 10 epochs with a step size of 10 and gamma of 0.1, corresponding to a 10-fold decrease in the initial learning rate every 10 epochs.

The best-performing parameters were then used to train the network on the entire training and validation set for 20 epochs with a step size of 10 and gamma of 0.1. Patches were resized to 224 by 224 pixels and treated with a random horizontal flip, then normalized using the previously calculated mean and standard deviation of pixel RGB values. To compare learning rate dropouts, the model was also trained using step sizes of 5 and 20, maintaining a gamma of 0.1. Weights were optimized using stochastic gradient descent with weights of 1.0 and 0.36 for the non-lesion and lesion labels, respectively, proportional to the number of images in each category. All training was done on an Nvidia GTX 1070 Ti GPU with batch size 120, randomizing image input order.

To visualize the model-estimated probability of a given region containing a lesion or not, heatmaps were generated by applying the final CNN on a sliding window across whole UAV images, then applying softmax transformation to generate probabilities for the two classes (centered on a lesion or not). To account for varying lesion sizes, we used the resizing approach of Bell et al. (2015). The image was resized by three separate scaling factors: the original scale r used in model training (such that a 500x500 window was resized to 224x224 pixels), r*sqrt(2), and r/sqrt(2). At these scales, a window of size 500x500, 690x690, or 345x345 pixels, respectively, mapped to 224x224 pixels. Images were padded on all sides via reflectance padding, and the trained model was applied via a sliding window approach across the entire image with a stride of 50 pixels in both dimensions. The resultant output was then resized to the original 4,000x6,000 pixels via bilinear interpolation. The three resultant heatmaps were then averaged, and this averaged heatmap was used for downstream analyses. For comparison, the trained model described by Wu et al. (2019) was applied in an identical manner. As the scaling used for training purposes was identical between these two models, the same scales were used for heatmap generation.




Image Segmentation

Pixel-wise classification was performed using the fully connected conditional random field (CRF) method of Krähenbühl and Koltun, (2011), implemented in Python via pydensecrf. CRF optimization was performed using three separate color spaces: the original, untransformed RGB values, RGB values transformed to maximize contrast between lesion and non-lesion pixel values, and L*a*b* color space. For the second method, the pixels surrounding each polygon annotation were found by dilating the polygon mask (expanding the mask along its edges to include pixels for which a kernel overlaps with the mask) for five iterations using a 20 pixel by 20 pixel square kernel, then subtracting the area created by performing only one dilation of the mask. The RGB values of pixels within these regions and those lying within polygon annotations were then downsampled by a factor of 10 and analyzed via linear discriminant analysis (LDA) to obtain a transformation maximizing between-group differences in Euclidean distance between values in the two regions. RGB to L*a*b* transformation was performed using OpenCV, producing 0–255 integer-valued L*a*b* coordinates.

CRF performance is controlled the θ parameters, which determine how strongly pixel classification is influenced by proximity (is it close to many pixels believed to be NLB lesions)? and color (is it the same color as pixels believed to be NLB lesions)?. Because optimizing these is difficult (Krähenbühl and Koltun, 2011), we used a simple grid search to find suitable parameters, evaluating CRF performance for all combinations of θ values on a set of 118 training images. These were selected from the entire set of training images by choosing images in which the annotation polygons of all three workers agreed fairly well (each one having IoU > 0.8 with the union of all three, a cutoff chosen to be fairly stringent) for all lesions in the image. CRF performance on each image was evaluated under each color space with slightly different parameters, as appropriate for each. For the RGB and LDA-transformed color spaces, the kernel width θα, corresponding to the spatial dimension of pixel correlation and deviation, was evaluated at values ranging from 10 to 600 by a step size of 10. For the untransformed RGB color space, θβ, corresponding to the color-space correlation and deviation of pixels, was evaluated at values ranging from 1 to 40, step size 1. For the LDA-transformed RGB values, θβ was evaluated at values ranging from 0.1 to 0.4, step size 0.1. For the L*a*b* color space, separate kernel widths were used for the distance along the L dimensions and distance in a–b dimensions. CRF performance was analyzed for θα (still the spatial kernel width, unrelated to the a* color dimension) ranging from 10 to 500 with step size 10, θL ranging from 1 to 25 with step size 1, and θab from 1 to 20 with step size 1. CRF performance on the model of Wu et al. (2019) was tested only in the RGB color space.





Results



Mechanical Turk Annotations

MTurk workers drew 15,240 polygon annotations on 5,080 lesions, cropped from 752 parent images collected by the UAV. Training data for the CNN were generated only from those images in which, for all lesions in the image, all three polygon annotations had an IoU of at least 0.6 with one another, leaving us with 588 UAV images containing 3,834 annotated lesions. Poisson-disk subsampling of the lesion polygon annotations yielded 22,193 centerpoints that were used to generate 22,193 positive images (Table 1). From the same 588 UAV images, we sampled 58,800 negative images, 100 from each image. Both positive (centered on a lesion) and negative (not centered on a lesion) images were divided into training, validation, and test sets in a 70:15:15 ratio.



Table 1 | Number of images sampled of each label (lesion vs. no lesion) and their division into training, validation, and test sets.
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Most workers annotated only a few images, with a small number of workers annotating several hundred (Supplemental Figure 3). On average, it took an MTurk worker 32 s to annotate a single lesion (median 27 s, standard deviation 19 s). All sets of deployed HITs were fully annotated in under 2 h. Workers generally performed fairly well, as shown by the fact that any two annotations drawn on the same lesion tended to overlap (Figure 3). Most pairs of polygons (83.2%) had an IoU of at least 50%. Manual examination found that many of the annotations with low IoU were on images that were blurry, ambiguous, or otherwise undesirable. Workers were paid $0.03/lesion, resulting in an average payment of only $3.75/h for annotation.
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Figure 3 | Histogram of Intersection over Union (IoU) between all pairs of polygon annotations drawn by Amazon Mechanical Turk workers, calculated as the area in pixels of intersection divided by the area in pixels of the union. Median IoU (0.7265) indicated by solid line, mean IoU (0.6832) indicated by dotted line.






Model Performance

Testing classification accuracy of the crowdsourced CNN on a subsample of training and validation images, we found a learning rate of 3e−3 and a patch size of either 500 or 800 to be best (Figure 4). Though classification accuracy was slightly higher when using a patch size of 800 compared to a patch size of 500, we chose a patch size of 500 to be consistent with that used in the model trained on expert-drawn-lines (Wu et al. in press) to facilitate comparisons between the two.
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Figure 4 | Comparison of crowdsourced convolutional neural network accuracy on 5% subsample of training/validation images across various parameters of learning rate (LR) and patch size in pixels.




The accuracy of the crowdsourced CNN on the validation set of image crops converged by 15 epochs (Figure 5). One concern with any machine learning model is the possibility of overfitting: training a model that performs well on the specific data set being used, but that is not generalizable and performs poorly on new data. Loss on the validation set did not tend to increase after reaching a global minimum, suggesting that overfitting was not a major concern (James et al., 2017), though the gap between training loss and validation loss suggested some overfitting (Figure 5). On the final held-out test set of image crops, the crowdsourced CNN performed well, achieving an overall classification accuracy of 0.9741, precision [TP/(TP+FP)] of 0.9351, recall [TP/(TP+FN)] of 0.9694, and F1 (harmonic mean of precision and recall) of 0.9520 (Table 2).
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Figure 5 | Accuracy (blue) and loss (red) of convolutional neural network on training images (dashed lines) and validation images (solid lines) converged by 15 epochs. Gray area shows standard deviation of accuracy over five replications of training on the same training/validation sets.





Table 2 | Predictions of the final network on the held-out test set.
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Image Segmentation

Applying a fully connected CRF to the heatmaps generated by the crowdsourced CNN and the held-out test images, we were able to accurately classify each pixel of an image as lesion or non-lesion with high spatial resolution (Figure 2, bottom row). Pixel-wise classification accuracy was high even when heatmaps were clearly not suitable, as the vast majority of most images is non-lesion, so a model that classified all pixels as non-lesion would still achieve an accuracy of 0.9940. For this reason, F1 was taken to be a more suitable metric for image segmentation performance than accuracy.

Exhaustive grid search found the best-performing θ parameters for each color space to be θα = 50, θβ = 5 for the standard RGB color space, θα = 110, θL = 25, and θab = 1 for the L*a*b* color space, and θα = 70 and θβ = 0.7 for the LDA-transformed color space (Figure 6). Transforming images into the L*a*b* color space moderately increased segmentation accuracy. The best-performing CRF parameters segmented images with an accuracy of 0.9957 and F1 of 0.6695 in the RGB color space, compared to peak accuracy of 0.9977 and F1 of 0.6777 in the L*a*b* color space. Transforming the RGB values using the matrices obtained via LDA was the most effective, yielding a peak accuracy of 0.9981 and F1 of 0.7153. The parameters that segmented LDA-transformed images with the highest F1 score also did so with near-maximum accuracy (Figure 7).
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Figure 6 | Heatmap of pixel-wise F1 score of conditional random field (CRF) segmentation across different levels of θα, corresponding to the spatial scale of correlations between pixel color values, and θβ, corresponding to the color space scale of correlations. Values were determined using images transformed with red, green, and blue values transformed via linear discriminant analysis-derived differentiation transformation, as this was the color space in which CRF segmentation performed best.
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Figure 7 | Pixel-wise F1 score of lesion/non-lesion segmentation vs. accuracy thereof across different levels of θα and θβ. The conditional random field parameters that yielded the highest F1 score (red point) also yielded near-maximum accuracy of segmentation. Each point represents a single combination of θα and θβ tested in the grid search (Figure 5).




CRF segmentations could be used to accurately estimate the proportion of an image covered by lesions (Figure 8). The proportional lesion coverage estimated by CRF was highly correlated to ground truth estimates. The heatmaps themselves could also be used to estimate proportional lesion coverage in an image, bypassing the CRF step. Thresholding probability heatmaps at 0.5 produced binary images, in which pixels had a value of 1 if the interpolated predicted softmax probability of the “lesion” prediction was higher and a value of 0 if that of “non-lesion” was higher. However, the lesion coverages estimated by CRF segmentation were proportional to the ground truth areas in an approximately 1:1 manner, while the areas generated from thresholding probability heatmaps were artificially inflated (Figure 8).
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Figure 8 | Correlation between the proportion of a test image classified as lesion in ground truth (consensus polygons of three high-quality Amazon Mechanical Turk annotations), conditional random field segmentation, and heatmap thresholded at 0.5. Red lines depict 1:1 ratio.




Image segmentation using the crowdsourced CNN and CRF tended to outperform human experts. There were seven instances in which the proportion of a test image classified as “lesion” diverged highly between CRF segmentation and ground truth (Figure 8, outliers lying off of the red 1:1 line). This was surprising, as precision of CRF segmentation was higher than recall (0.7388 vs. 0.6937) on a pixel-wise basis. Examining these seven cases more closely, we found that five of them were due to the model correctly locating lesions missed by the experts, while only two were due to the model misidentifying senescent leaves as lesions (Figure 9). Excluding the five images in which the CRF outperformed human experts, the Pearson’s correlation between the proportion of pixels in an image labeled as lesions in the ground truth masks and the proportion classified as lesions by the CRF segmentation rose from 0.8893 to 0.9428. Thus, while there is room to improve the model by addressing false positives, it was more often than not outperforming trained human experts.
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Figure 9 | Original image (top row), ground truth annotations drawn by Amazon Mechanical Turk workers (middle row), and conditional random field (CRF) segmentation (bottom row) for all seven test images in which CRF segmentation and ground truth diverged highly. In left five images, crowdsourced-polygon model outperformed humans by identifying lesionated areas where human experts had missed them. In the right two images, the model falsely classified senescent leaf tissue as lesions. White = lesion, black = non-lesion.




The two-step image segmentation process was fairly slow, however. Heatmap construction by the sliding-window approach using three different scales took a mean of 38.1 s on a 4,000x6,000 image: 10.8 s at original scale r, 6.2 s at scale r/sqrt(2), and 21.1 s at scale r*sqrt(2). CRF segmentation of a 4,000x6,000 image took 2.8 s on average. Newer end-to-end segmentation methods should be able to improve on this, as discussed below.




Benefits of Crowdsourcing

Using crowdsourced polygon annotations greatly improved the spatial resolution of the final model with far less time investment from experts. We compared two CNNs of similar structure and implementation: one trained on lines drawn by experts (Wu et al., 2019) and the one trained on crowdsourced polygons, described here. These models were used to perform semantic segmentation using the same approach, via applying the CNN on a sliding window across images to generate probability heatmaps, then feeding these heatmaps into an optimized CRF to perform the final segmentation. Using the same approach with both model outputs isolated the effects of using the more information-rich crowdsourced polygons, rather than differences in segmentation methods.

Using the crowdsourced annotations provided three key benefits. First, the greater spatial resolution of polygon annotations allowed us to reliably delineate individual lesions with millimeter-level accuracy (Figure 10), which could not be done with line annotations alone. CRF segmentation using the crowdsourced CNN output was able to segment images into lesion and non-lesion pixels with a maximum F1 of 0.76 on the validation image set, while segmentation using expert-drawn lines achieved a maximum F1 of only 0.21.
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Figure 10 | Close-up view of image segmentations performed by conditional random field using heatmaps generated by the crowdsourced convolutional neural network. Magenta outline shows lesion boundaries from 12 randomly selected images in the test set.





Second, the crowdsourced-polygon model was able to achieve this higher spatial resolution using only one-fifth as many annotations. The crowdsourced CNN was trained, validated, and tested on only 5,080 expert-drawn lesions, compared to the 25,508 used for the expert-drawn-lines model (Wu et al., 2019).

Third, crowdsourcing allowed us to generate these polygons more quickly than would be possible using only a handful of experts. Drawing a line took far less time than drawing a polygon. Examining the timestamps of the annotations, we found that experts took 4.38 s on average to annotate a lesion with a line, while it took an MTurk worker a mean of 32 s to draw a polygon. An expert could thus annotate 1,000 lesions with lines in 73 min on average, while a non-expert would take 533 min to annotate 1,000 lesions with polygons. The more complex non-expert task thus took 7.3x more time than the simpler expert task. Due to the parallel nature of crowdsourcing, however, all 5,080 lesions were annotated by MTurk workers in less than 15 h.

A comparison of the total time needed to generate training data at the scale used in this study shows the benefits of a two-step crowdsourcing approach. A single human expert can annotate 5,000 lesions in roughly 6 h, which could then be completely annotated with polygons by MTurk workers in one to 2 days. Assuming this expert worked as fast as the average MTurk worker (including locating lesions, which MTurk workers were not required to do), drawing these polygons would take them roughly 44 h. Crowdsourcing the more laborious part of the task as described here is a more efficient use of plant scientists’ time and expertise.





Discussion

Our full method, combining a CNN applied across a sliding window and image segmentation via a fully connected CRF, was able to identify and delineate disease lesions at the millimeter level, the smallest spatial scale reported so far for aerial plant disease detection. The two-step approach for generating training data, in which experts annotate symptoms in low detail and non-experts annotate them further in high detail, was critical to achieve high spatial resolution. Without the non-expert polygon annotations, our previous effort was able to identify lesions with high accuracy at a sub-leaf scale (Wu et al., 2019), but not at sufficient resolution to accurately segment an image and delineate individual lesions. With them, we were able to segment images down to the millimeter with sensitivity surpassing that of human experts: in five out of seven cases in which human ground truth and model predictions diverged, the model had correctly identified disease symptoms where experts had missed them (Figure 9).

Using Mechanical Turk, thousands of images could be annotated in only a few hours, reducing what was until then a major bottleneck in the model training process. Despite the fact that these workers (presumably) have no experience in plant disease diagnosis, their annotations were generally of high quality and could be used to train the model without the need for an expert to look over each one. With three annotations for each image, we were able to identify and filter both low-performing workers, whose annotations tended not to agree with others, and low-quality images, on which multiple (otherwise well-performing) workers drew annotations that did not agree. There are several possibilities for improving the MTurk annotation process. Increasing the number of workers per image could increase the quality of annotation polygons or the ease of identifying low-quality images.

The cost of crowdsourcing via MTurk was quite low, at $0.03/lesion, implying a wage of $3.75/h based on the average time to annotate a lesion. Future studies would ideally compare different payment structures in order to maximize worker payment, minimize overhead, and maintain or increase annotation quality. Restructuring the HIT so that each consists of annotating multiple lesions, rather than just a single lesion, would decrease the payment to Amazon per image while paying workers the same per HIT. Many HITs posted on MTurk require a short qualification test to vet workers. In our case, workers could be asked to annotate three lesions adequately in order to be approved to complete HITs. Increasing worker payment in tandem with this could attract and retain better-performing annotators, providing workers with a higher wage while decreasing the amount of post-processing needed to filter out low-confidence annotations.

We used a two-step method for semantic segmentation, first training a model to classify lesions, then using a sliding window approach and CRF to turn these classifications into semantic segmentation of a full image. This allowed us to make a useful comparison to a model trained on coarse, expert-generated annotations, since the same segmentation method could be used with both models’ output, isolating the impact of the annotation data rather than the segmentation approach used. However, newer methods for semantic segmentation, such as region proposal networks (Ren et al., 2016) or atrous convolution (Chen et al., 2017) might well perform the task better and faster.

A chief limitation of this method is the difficulty of acquiring field images at high enough resolution and clarity such that individual lesions can be discerned. Capturing images in which each pixel represented a millimeter or less at canopy level required slow flights at low altitude with a high-zoom lens (Wiesner-Hanks et al., 2018), not ideal for comprehensively imaging a large area. This challenge would be even greater when working with a disease with small or inconspicuous symptoms—chlorosis, leaf curling, lesions only a few millimeters in diameter—as opposed to the large, obvious lesions of NLB. Targeted sampling of a field, rather than attempting to image every plant, can still give growers a large amount of information with which to make decisions regarding disease management. Acquiring images and diagnosing lesions every 10 m or so would only analyze a very small proportion of a field’s total area, but it would provide much more information compared to the zig-zag walking paths commonly used when scouting for pests and diseases (Doll et al., 2016).

UAVs are now a common part of many US growers’ field operations, and interest continues to grow (Luck et al., 2018; Miller and Adkins 2018; Purdue Extension Annual Report 2018). The use of UAVs for disease diagnosis is still in its infancy, however. We predict that UAV-based disease phenotyping will be most readily adopted in crops with a high value per acre where fungicide usage is common, such as grapes or almonds. In such crops, the added benefit of fast, frequent, reliable disease screening is most likely to outweigh the time and monetary costs needed to develop the diagnostic platform. As UAV and imaging technology progress, and more and more image datasets are generated and freely shared among researchers, we believe that UAV-based deep learning will become simpler to implement and will soon be a useful tool for growers and geneticists across many crops and pathosystems.
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High-throughput, non-invasive phenotyping is promising for evaluating crop nitrogen (N) use efficiency (NUE) and grain yield (GY) formation under field conditions, but its application for genotypes differing in morphology and phenology is still rarely addressed. This study therefore evaluates the spectral estimation of various dry matter (DM) and N traits, related to GY and grain N uptake (Nup) in high-yielding winter wheat breeding lines. From 2015 to 2017, hyperspectral canopy measurements were acquired on 26 measurement dates during vegetative and reproductive growth, and 48 vegetation indices from the visible (VIS), red edge (RE) and near-infrared (NIR) spectrum were tested in linear regression for assessing the influence of measurement stage and index selection. For most traits including GY and grain Nup, measurements at milk ripeness were the most reliable. Coefficients of determination (R²) were generally higher for traits related to maturity than for those related to anthesis canopy status. For GY (R² = 0.26–0.51 in the three years, p < 0.001), and most DM traits, indices related to the water absorption band at 970 nm provided better relationships than the NIR/VIS indices, including the normalized difference vegetation index (NDVI), and the VIS indices. In addition, most indices including RE bands, notably NIR/RE combinations, ranked above the NIR/VIS group. Due to index saturation, the index differentiation was most apparent in the highest-yielding year. For grain Nup and total Nup, the RE/VIS index MSR_705_445 and the simple ratio R780_R740 ranked highest, followed by other RE indices. Among the vegetative organs, R² values were mostly highest and lowest for leaf and spike traits, respectively. For each trait, index and partial least squares regression (PLSR) models were validated across years at milk ripeness, confirming the suitability of optimized index selection. PLSR improved the prediction errors of some traits but not consistently the R² values. The results suggest the use of sensor-based phenotyping as a useful support tool for screening of yield potential and NUE and for identifying contributing plant traits—which, due to their expensive and cumbersome destructive determination are otherwise not readily available. Water band and RE indices should be preferred over NIR/VIS indices for DM traits and N-related traits, respectively, and milk ripeness is suggested as the most reliable stage.


Keywords: phenomics, smart farming, remote sensing, nitrogen use efficiency, yield prediction, red edge, water band indices, breeding



Introduction

Spectral high-throughput sensing has gained increasing attention for efficient assessment of genotypic performance of plant breeding material (Furbank and Tester, 2011; Araus and Cairns, 2014). Various authors have stressed the suitability of using reflectance data measured earlier in the season for the estimation of grain yield (GY). This would enable plant breeders to focus on a limited set of promising genotypes for further rating, thus even making yield determination of dismissed lines unnecessary (Garriga et al., 2017). Besides GY, GY formation, its mechanisms, and the contribution of plant organs were less frequently addressed with spectral methods, especially for the discrimination of genotypes. However, a better understanding of these mechanisms could facilitate plant breeders to target specific traits (Acquaah, 2007), such as leaf area and nitrogen (N) concentration for increasing assimilation, and spike and culm characteristics for increasing the sink and storage size for assimilates, respectively (Schnyder, 1993; Feng et al., 2016).

The contribution of plant organs as sink or source for assimilates and N differs both between genotypes and between growth stages, so that their potential use as traits for indirect selection differs during the grain-filling phase (Barmeier and Schmidhalter, 2017; Prey et al., 2019b; Prey et al., 2019c). Evaluating the variation of these traits in breeding lines can provide valuable complementary information for plant breeders for optimized selection of N use efficiency (NUE), notably GY and grain N uptake (GNup). Additionally, estimating the translocation of dry matter (DM) and N from vegetative organs would contribute to the understanding of promising strategies of the temporal DM and N acquisition (Slimane et al., 2013; Prey et al., 2019a; Prey et al., 2019b) However, the determination of such traits is expensive and cumbersome, thus requiring low-cost robust high-throughput techniques (Nguyen and Kant, 2018).

Such spectral methods need to be optimized in terms of the selection of suitable spectral bands, growth stages for measurements, and spectral models. For GY, different spectral vegetation indices (SVI) were compared for the in-season estimation in durum (Aparicio et al., 2000; Royo et al., 2003), spring barley (Rischbeck et al., 2016; Barmeier et al., 2017), or wheat (Tucker et al., 1980; Raun et al., 2001; Freeman et al., 2003; Moges et al., 2004; Babar et al., 2006a; Babar et al., 2006b; Babar et al., 2007; Prasad et al., 2007a; Prasad et al., 2007b; Gizaw et al., 2016a; Gizaw et al., 2016b). A number of these studies that were often conducted in warm or drought-prone environments strengthened the suitability of band combinations from the near-infrared (NIR) spectrum, including the water absorption band around 970 nm (Babar et al., 2006b; Gutierrez et al., 2010b; Gizaw et al., 2016a; Rischbeck et al., 2016; Becker and Schmidhalter, 2017; Garriga et al., 2017) due to the relation of canopy water mass with biomass and water status with assimilation, respectively, as well as the lower saturation of these bands.

In contrast to GY, GNup and the underlying traits of the formation of GY and GNup were rarely assessed with spectral methods. Barmeier and Schmidhalter (2017) evaluated the spectral estimation of organ-level DM and N uptake (Nup) traits at anthesis and dough ripeness in spring barley and recommended the R780_R670 simple ratio index for DM traits to overcome the saturation of the normalized difference vegetation index (NDVI). The DM and Nup of leaf blades followed by those of culms were mostly better predicted than those of spikes and leaf sheaths. Using red edge (RE)-based SVIs in winter wheat breeding lines grown in small plots, Frels et al. (2018) found mostly weaker but significant relationships with DM and Nup at anthesis and maturity as well as with N harvest index (NHI), N utilization efficiency (NutEff), N uptake efficiency (NupEff), and post-anthesis N uptake (PANup). These authors recommended the RE Maccioni index and identified the early grain filling stage as the most promising. Testing many SVIs for predicting GY, GNup, and NUE traits, Pavuluri et al. (2015) confirmed related indices such as the R780_R740 (Mistele et al., 2004) and found better correlations under reduced N fertilization, that was ascribed to the lower saturation in thinner canopies. Various studies found SVIs to be highly heritable (Babar et al., 2007; Prasad et al., 2007a; Frels et al., 2018) or to be related to QTLs associated with GY (Gizaw et al., 2016a), thus to be used as promising indirect selection tools if sufficient correlations are found early enough in the season. Most studies that assessed traits related to N status in response to N fertilization predominantly agree on the usefulness of RE bands for vegetative N concentration (NC) (Mistele and Schmidhalter, 2008a; Li et al., 2010), Nup (Mistele and Schmidhalter, 2008b; Mistele and Schmidhalter, 2010; Li et al., 2013; Guo et al., 2017; Prey and Schmidhalter, 2019a), N status, biomass, and LAI (Hansen and Schjoerring, 2003), as well as grain NC and Nup (Li et al., 2014; Prey and Schmidhalter, 2019b), due to the shift in the RE reflection as indicator for the N status. RE indices were also found useful for the estimation of biomass traits due to their higher sensitivity in dense canopies (Pavuluri et al., 2015; Frels et al., 2018). Band combinations in the visible range were recommended to be useful for pigment-related traits (Peñuelas et al., 1995; Gitelson et al., 2002; Hansen and Schjoerring, 2003).

Besides SVIs, multivariate analysis such as partial least squares regression (PLSR) holds the advantage of including more spectral information than SVIs, but may be affected by overfitting, so that more calibration data may be required (Mehmood et al., 2012; Overgaard et al., 2013) Comparing SVIs and PLSR, improvements were found for biomass and NC but not for chlorophyll concentration and LAI (Hansen and Schjoerring, 2003). Similar GY predictions were found from PLSR and best SVIs for spring barley (Barmeier et al., 2017). These authors reported improved RMSE values by PLSR but similar coefficients of determination for estimating organ-level traits (Barmeier and Schmidhalter, 2017). While SVIs can be derived from both multi- and hyperspectral data, the potential improvements by multivariate analysis are restricted to hyperspectral data, which comes at the price of more expensive sensors, being less convenient to use in practice, for example on UAV-based platforms (Oehlschläger et al., 2018). Therefore, the benefit of PLSR for traits of NUE and yield formation remains to be evaluated for wheat.

The application of spectral phenotyping depends on the wheat type and environment (Gizaw et al., 2016b). Therefore, the assessment of the influence of measurement conditions regarding growth stage and plant phenology is essential. Yet, often only few growth stages were evaluated for GY, focusing on the period from booting until early grain filling. Several studies reported increasing correlations until milk ripeness (Freeman et al., 2003; Babar et al., 2006a; Gutierrez et al., 2010b; Christopher et al., 2014; Becker and Schmidhalter, 2017). While relationships peaked at anthesis in a rain-fed trial, they increased until maturity under irrigated conditions but were generally lower due to saturation effects in denser canopy (Aparicio et al., 2000). Under water-limited conditions, heading, anthesis (Aparicio et al., 2000; Becker and Schmidhalter, 2017) and stem elongation-heading (Pavuluri et al., 2015) were useful stages. Though year-specific differences were substantial, Frels et al. (2018) recommended the early grain filling stage for NUE traits, but a similar evaluation under high-yielding conditions is missing.

In contrast to the variation driven by altered N application, the detection of variation between genotypes is likely to be more affected by the influence of varying morphology, shifted phenology, and differing contributions of indirect DM and N traits to GY and GNup. Moreover, even if the methods are also promising in high-yielding environments (Gizaw et al., 2016b), many of the studies on spectral GY prediction were conducted on spring wheat (Babar et al. 2006a; Babar et al., 2007; Gutierrez et al. 2010a; Sultana et al., 2014) or in environments with low yield potential. This limits the transferability to high-yielding winter wheat, given that weaker relationships were often reported from irrigated trials or denser canopies compared to drought-stress trials (Aparicio et al., 2000; Babar et al., 2006a; Becker and Schmidhalter, 2017; Frels et al., 2018). Moreover, the optimized selection of SVIs depends on the availability of suitable sensors—characterized by band number, narrowness, and placement—and measurement stages (Thenkabail et al., 2000; Prey and Schmidhalter, 2019b).

The present study, therefore, tested the performance of 48 SVIs for the estimation of GY, GNup, and 45 further organ- and plant-level DM and N traits from hyperspectral passive proximal canopy sensing acquired from leaf development until dough ripeness over three years in a high-yielding West-European environment, based on a previous evaluation of the included DM and N reference traits (Prey et al., 2019b). The questions addressed are (i) the detectability of reference traits, (iii) the influence of optimized selection of specific SVIs, (iii) the selection of optimum growth stages for measurements, and (iv) the use of PLSR in comparison to SVIs.



Materials and Methods


Field Experiments and Plant Sampling

The field experiment was conducted over three years from 2014/2015 to 2016/2017 for evaluating traits with influence on NUE and yield formation in a diverse population of winter wheat double haploid breeding lines. The population's parents consisted of elite cultivars and breeding lines provided by regional plant breeders. The population had undergone pre-selection, which removed genotypes peculiar in terms of extreme flowering date, plant height, and disease susceptibility. The trials comprised 75 lines in two replicates in 2014/2015, 75 lines in four replicates in 2015/2016, and 32 selected lines representing the overall yield variation in 4 replicates in 2016/2017. In addition, three high performance cultivars were included as references. The plot width was 1.5 m, and the plot length was 6.5 m. The trial was located approximately 25 km North of Munich (48.406 N, 11.692 E). The soil consisted mainly of homogeneous Cambisols of loamy clay. The precipitation in the main wheat growing period from October to August was 714 mm in 2014/15, 746 mm in 2015/16 and 690 nm in 2016/2017. During the grain filling period in 2015, heat and lack of precipitation caused moderate drought stress whereas grain filling in 2016 was influenced by fungal pathogens. The preceding crop was winter wheat in the first and second year and grass-clover in the third year.

Biomass sampling was conducted at anthesis (Zadoks growth stage 6), and at physiological maturity (stage 9). Sampling dates were determined for each genotype by visual scoring. For sampling at anthesis, 20 randomly selected spiked culms were cut directly at stem base in 2015 and 30 culms in 2016 and 2017, and at maturity 30 culms in 2015 and 50 culms in 2016 and 2017, respectively. The plants were manually separated into leaf blades, stems including leaf sheaths, and spikes. In 2016, only a subset of 34 genotypes was separated into vegetative organs. At maturity, spikes were threshed. Plant samples were oven-dried at 50°C until constant weight was reached and DM weight was determined by weighing. N concentration (NC) of the plant material was analyzed by means of NIR spectroscopy in a Foss Rapid Content Analyzer for leaves and spikes and in a Bruker Vector 22/N for the remaining organs. Final GY per plot was determined using a combined harvester. Spike density per plot was calculated by dividing GY per area by yield per spike. Nitrogen uptake (Nup) was calculated by multiplying DM with NC. Further indirect traits related to yield components, DM and N translocation and N uptake and utilization efficiency were calculated (Table 1). Reference traits were categorized into DM and N traits (Prey et al., 2019b). Moreover, these are either direct traits, which were directly retrieved from plant sampling either at anthesis or maturity like DM per ha, NC or Nup, or indirectly derived DM and N traits, which were predominantly calculated using data from both sampling dates or from different plant organs (Table 1). See Prey et al. (2019b) for details on the plant sampling, descriptive statistics and correlations of the plant traits. Plant height had been included in the analysis of the reference traits, but was not considered in the spectral analysis since it is easily assessable from height sensors (Barmeier et al., 2016), which were not available on all measurement dates.


Table 1 | List of traits considered for testing relationships with spectral indices.





Spectral Measurements

Spectral measurements were conducted using the PhenoTrac 4 multi-sensor platform during various growth stages throughout the season (Table 2). In 2015, measurements were performed on only four dates, in 2016 on 12 dates and in 2017 on 10 dates, with the highest frequency during the grain filling phase due to the more rapid canopy development and the expected better relationships with maturity traits. The PhenoTrac 4 is equipped with a hyperspectral bidirectional passive point sensor spectrometer (tec5, Oberursel, Germany), measuring at a nominal resolution of approximately 3.3 nm between 300 and 1000 nm. The measurement distance was approx. 80 cm above the canopy. Measurements were registered at a frequency of 5 Hz together with the GPS coordinates from the TRIMBLE RTK-GPS (real-time kinematic global positioning system; Trimble, Sunnyvale, CA, USA). See Kipp et al. (2014) and Erdle et al. (2011) for further description of the sensor system.


Table 2 | Heritability of indices averaged by index groups by measurement dates calculated for all measurement dates.





Selection of Vegetation Indices

SVIs were selected from the literature based on previous work that identified useful applications of the indices, and from an Index-database (https://www.indexdatabase.de; Henrich et al., 2012). The indices were grouped by the included spectral ranges (visible light [VIS], the extended RE, and NIR), with the VIS < 700 nm, RE: 700–765 nm and the NIR > 765 nm (Table 3; Supplementary Figure 1). Prior to index calculation, the spectra were smoothed using a five-band moving average filter (Mistele and Schmidhalter, 2010) in order to remove spectral noise. However, comparisons with unsmoothed data suggested little influence of spectral noise on the trait/index relationships.


Table 3 | List of spectral vegetation indices considered in this study.







Statistical Analysis

For each sampling stage, each SVI was tested in simple linear regressions with DM and N-traits using mean values per genotype as averaged across the replicates. Data analysis was conducted in R (version 3.4.; R Core Team, 2017), using the lm-function. The coefficient of determination (R²) was used to compare the linear relationships. Broad-sense heritability (H²) was calculated for the SVIs for each measurement date using the lmer function as H² = Vg/(Vg+Ve/nR), where V denotes the variance component for the effects of genotype (Vg) and of the residual variance (Ve), and nR the number of replicates (nR = 2 in 2015 and nR = 4 in 2016 and 2017).

In order to overcome the influence of differing growing conditions as well as of the date-specific index rankings, indices were quantitatively ranked by their normalized performance for each trait, adapting the ranking by Frels et al. (2018). Since the coefficient of determination is range-dependent but independent of the level of the trait, it represents a bivariate ranking of the genotypes. Therefore, the R² values were used instead of the RMSE values. For each trait, the seasonally mean (Supplementary Equation 1a) and maximum (Supplementary Equation 1c) R² values of each index were normalized (Supplementary Equation 1e, f) to the trait-specific seasonally mean (Supplementary Equation 1b) and maximum (Supplementary Equation 1d) R² within each year as calculated from the results of all indices, respectively. Thus, a value > 1 indicated a comparative advantage of the index for the trait under consideration. Consequently, both the within-year mean- and maximum-based rankings (Supplementary Figure 9) were summed up across the three years for achieving year-independent rankings (Supplementary Equation 1g, h). These across-years mean- and maximum- based rank sums were combined by summing up both ranking sums for a unique ranking per trait (Supplementary Equation 1i). Considering a selection of indices that is robust towards date-specific effects as more important, the mean-based rank sums were double-weighted. These weighted mean/maximum-rank sums (WMMRS) were used for identifying one trait-specific optimum index, irrespective of the R² level achieved.

The selected indices were validated in test set validations across years by linear regression on the trait-specific WMMRS-indices and on the NDVI (“NDVI2”) and REIP indices, considered as widely used “reference” indices, in comparison to PLSR models. Based on the seasonal evaluation of the SVI-relationships, calibration and validation was conducted using milk ripeness measurements (June 25, 2015, June 28, 2016, and June 21, 2017). Initial PLSR models were fitted on smoothed spectral data for evaluating influential spectral bands. PLSR models used for predictions were based on spectra additionally pretreated by Savitzki-Golay first order derivation due to significant improvements (not shown). Bands below 370 nm and above 990 nm were not included due to spectral noise. PLSR was fitted using the kernel algorithm (Mevik and Wehrens, 2007) in the pls package. The optimum number of components was determined by minimizing the cross validation RMSE with the restriction that an additional component further decreased the RMSE by at least 1%. For both SVIs and PLSR, validation was conducted cross-wise on the data of both other years, resulting into each six validation cases.




Results


Heritability of Vegetation Indices

Heritability (H²) estimated for all SVIs was higher in 2016 and 2017 than in 2015 and generally increased in all index groups with ongoing plant development (Table 3; Supplementary Table 1). For all measurement dates in 2015, the group of VIS indices reached the highest H² values, whereas the NIR/RE/VIS indices yielded similar values in 2016, mostly followed by the group of RE/VIS indices. In 2016, unlike in most other groups, the H² of NIR indices was highest (0.90) already at booting and anthesis, followed by decreasing values until hard dough (0.76). Though moderate H² values (~0.60) were already reached before stem elongation, H² mostly exceeded 0.80 only after booting/anthesis, both in 2016 and 2017. Notably, many indices including VIS bands were not heritable during booting, later anthesis and milk ripeness in 2017, whereas most indices with NIR bands still reached high values (>0.80) on these days.



The Seasonal Trait Assessment

The relationships found between reference traits and SVIs differed between measurement days and between years, so that an identification of optimal measurement dates and SVIs is necessary. Mean and maximum (Supplementary Figure 2) coefficients of determination (R²) peaked during milk ripeness and early dough ripeness at the end of June for most traits in both 2015 and 2016, whereas R² values increased for later measurement dates in 2017 (Figure 3; Figure 5). In all years and for most traits, the steepest R² increase was found between anthesis and milk ripeness, whereas useful relationships were rarely found during the vegetative phase.

For direct DM and Nup traits and for NC, predominantly closer relationships were observed for the maturity traits than for the anthesis traits. Due to the dominant effect of the measurement date, no clear differences in the date suitability by trait were found (Supplementary Figure 2). In all years, the VIS indices represented the weakest index group and their R² values decreased earlier during grain filling than those of most other indices (Supplementary Figure 3). In 2016, several indices with RE bands yielded higher R² values during stem elongation (May 18) than those of the other groups. In 2017, the relationships reached from NIR/VIS indices increased later at anthesis/grain filling than from the other indices.



Seasonal Relationships and Index Rankings

For assessing the trait detection, the trait-specific index suitability, and the stability over time, seasonally maximum (Figure 1; Supplementary Figure 4) and mean (Supplementary Figure 5) R² values were calculated for each SVI–trait combination across measurement dates in the individual years. The group of direct DM traits was relatively best assessed, followed by direct Nup traits, whereas the derived DM traits were the least estimated (Table 4). The relationships differed more strongly between traits and years for the groups of derived DM and N traits. Mean and maximum R² values by traits were closely related for most traits, indicating that the comparison of the trait estimation was not derived from specific dates only. For each trait, the indices were ranked based on weighted mean/maximum-rank sums (WMMRS) achieved over the three years (Figure 2). Seasonal R² values are presented for selected DM and N traits.




Figure 1 | Maximum coefficients of determination (R²) calculated across the R² values of the different measurement dates in 2015 by trait/SVI combinations. Indices are colored according to the included spectral regions (Supplementary Figure 1; from bottom to top): NIR (blue), NIR/VIS (green), VIS (orange), NIR/RE (light red), NIR/RE/VIS (brown), RE (red), RE/VIS (purple). Refer to Supplementary Figure 4 for results of the other years.




Table 4 | Best trait-specific indices identified based on the weighted mean/maximum rank sums (WMMRS) and their coefficients of determination (R²; *: p < 0.05; **: p < 0.01; ***: p < 0.001) on the optimum dates.






Figure 2 | Weighted mean/maximum rank sums (WMMRS) for all SVI/trait combinations. The column-wise and overall WMMRS-mean is 9. A WMMRS > 9 indicates a comparative advantage of an index for a specific trait. WMMRS values are colored from low (white) to high (green) values. For each trait, the highest value is highlighted in bold. For a better comparison in the main range, the color shading for WMMRS > 15 is not differentiated. Indices are colored according to the included spectral regions (Refer to caption of Figure 1 and Supplementary Figure 1).




Direct DM Traits

NIR indices showed a clear advantage for total DM at maturity (Mat; WMMRS > 12; average of all indices = 9; Figure 2) and for grain DM (GY; WMMRS > 14; Figure 2), but performed below-average for DM of leaves both at anthesis and maturity—traits RE-based indices and the EVI (WWMRS > 12) were mostly superior for (Table 4; Figure 3). Noticeably, among the large group of NIR/VIS indices (n = 15), only few indices reached superior WMMRS values. Total DM at anthesis was better estimated in 2015 (WMMRS-index: R760_R730: max. R² = 0.33***; *: p < 0.05; **: p < 0.01; ***: p < 0.001) and 2017 (max. R² = 0.33***) than in 2016 (max. R² = 0.11***; Table 4). A pronounced depression with low R² values is visible for booting in 2016 and for anthesis in 2017 for most traits (Figure 3). Among plant organs at anthesis, DM of leaves was best detected with slightly higher (2015 and 2016) or clearly higher (2017: R² = 0.44; EVI) R² values, as was found for total DM at anthesis (Table 4). While in 2015, indices with RE bands or only NIR bands performed similarly well during milk ripeness for DM traits (Figure 3), all indices with only NIR bands (blue lines) outperformed the other groups on most dates in 2016 and 2017 for total DM and GY. In all years, significant (p < 0.005) relationships were found for GY (grain DM at maturity; Figure 3) although the best R² values of the WMMRS-index NWI-2 (R² = 0.51, 0.26, 0.27) were lower in 2016 and 2017 than those found for total DM at maturity (NWI-5; R² = 0.41, 0.37, 0.34). For both traits, relationships peaked in all years at milk ripeness or early dough ripeness, and the water-related NIR indices (blue lines) excelled the other groups during grain filling and were more consistent over time. In all years, R² values of the related water band indices WBI and NWI-1 were almost identical during grain filling (Supplementary Figure 7). The NIR/RE indices were generally the second best group but failed at the dough stages.




Figure 3 | Seasonal coefficients of determination (R²) of selected direct DM traits in the three years for the tested 48 SVI. Index lines are colored according to the included spectral regions (Supplementary Figure 1; Table 3). Horizontal lines indicate the significance thresholds (p < 0.05), differing between years due to the differing number of data points. Thick lines indicate R² values of the labeled rank-based best index per trait (Figure 2; Table 4).





N Concentration Traits

Weak relationships were found for all NC traits, especially at anthesis, and R² values of the WMMRS-indices (Table 4; Figure 1) differed more from the maximum relationships than for other trait groups. The R² values found from the WMMRS-index for grain NC were weak (max. R² = 0.08*) although other SVIs performed clearly better in individual years (Supplementary Figure 4). Relationships with maturity NC traits were closer than with anthesis NC (maximum R² of WMMRS-indices for culms: 0.26*** in 2015, 0.18* in 2016 and 0.22** in 2017; for leaves: 0.32***, 0.42** and 0.21**; Table 4).






N Uptake Traits

N uptake traits were best assessed in 2017, while the relationships were often weaker than for DM traits in the previous years (Table 4).

Leaf and total Nup were better estimated than the Nup of other organs. Both in 2015 and 2017, Nup of leaves at anthesis was best detected from indices of the groups of the RE/VIS, NIR/RE whereas the PRI was identified as best WMMRS index (Figures 4 and 5). As for total DM and grain DM, similar R² curves were observed for total Nup (WMMRS-index R780_740) and GNup (MSR_705_445; Figure 4), but R² values remained higher during dough ripeness for total Nup. For both traits, the group of NIR/RE indices stood out from the others during milk ripeness notably in 2015 and 2017. The detection of the vegetative Nup differed more between years than for DM. Notably, maturity leaf Nup was best detected in 2015 (WMMRS-index R787_R765: R² = 0.28***; Table 4), whereas culm Nup was best detected in 2017 (WMMRS-index NDRE_770_750: R² = 0.38***). Straw Nup is an indicator for the remaining, non-harvested Nup. It was weaker and similarly estimated than total Nup in 2015 and the other years, respectively (Table 4).




Figure 4 | Seasonal coefficients of determination (R²) for selected N uptake (Nup) traits. See the legend of Figure 3 for details.






Figure 5 | Relationships of the rank-based best index MSR_705_445 (R750-R445)/(R705-R445) with GNup on the most suitable measurements dates.





Derived DM Traits

Among the three yield components spike density, thousand kernel weight and grain number per spike, no consistent relationships were found with SVIs (Table 4). For the DM translocation (DMT; R² = 0.20***) and its efficiency (DMTEff; R² = 0.19***), moderate R² values were found only in 2016. For post-anthesis assimilation (PAA), the WMMRS-index NWI-5 revealed useful relationships during dough ripeness in 2015 (max. R² = 0.23***) and 2016 (R² = 0.34***), but not in 2017. In contrast, the harvest index (HI) was spectrally detected only in 2017 from NIR indices from anthesis on (R² = 0.30***). The total N utilization efficiency (NutEff_total) was best detected by the NWI-2, however with substantially different seasonal curves in the three years (not shown). For grain N utilization efficiency (NutEff_grain), the WMMRS-index EVI provided moderate relationships (R² = 0.21***, 0.14***, 0.21*** in 2015, 2016, and 2017 respectively), which however turned from positive sign in 2015 to negative in the other years (Supplementary Figure 6).



Derived N Traits

As for the DM harvest index, the best relationships for the N harvest index (NHI) were found in 2017, but just like for NutEff_grain, the direction of the relationship was not consistent (Supplementary Figure 6). In 2015 (WMMRS-index MND_750_705: R² = 0.42***) and 2017 (0.21***), N translocation (NT) was better detected than DMT. On the organ-level, NT of leaves was detected best (DD: R² = 0.42***, 0.30***, 0.26***). Unlike post-anthesis N uptake and its contribution to total Nup, and in contrast to DMTEff, N translocation efficiency (NTEff) also yielded moderate relationships, but the direction of the regression line was not consistent (Table 4; Supplementary Figure 6; Supplementary Figure 8). Relations for NTEff peaked later at dough ripeness than for NT. With NT being in close relationship to total Nup at anthesis (r > 0.93 in all years; not shown), the seasonal R² values were similar as for for both traits (Supplementary Figure 8).




Validation of Index and PLSR Models

PLSR models were compared to the WMMRS-based selected index, the NDVI2 and the REIP. Due to the year-specific shifts in the spectral data and the differing seasonality, GY was substantially overestimated in 2015 (Figure 6). In 2017, GY predicted from PLSR models was relatively close at the 1:1 line whereas the index models resulted in substantial underestimations and low slope values. Models calibrated in 2017 overestimated GY in the other years, whereas models calibrated in 2016 over- and underestimated GY in 2015 and 2017, respectively. For GY, the WMMRS-index NWI-2 achieved similar R² values of validation but on average slightly higher RMSE values (RMSE = 1891 kg ha−1; Table 4; Supplementary Table 2) than the PLSR (RMSE = 1609 kg ha−1), while R² values were higher and RMSE values lower than from the NDVI and REIP models in all cases. Refer to Supplementary Table 2 for all validation results and to Supplementary Table 3 for calibration results.




Figure 6 | Test set validation results (p < 0.05) across years for GY for PLSR and index models. Cal and val indicate years of calibration and validation, respectively: 2015 (15), 2016 (16) and 2017 (17).



For GNup, the advantage of the WMMRS-index MSR_705_445 (average R² from the six test cases = 0.29; average RMSE = 51 kg N ha−1) was relatively stronger with respect to the NDVI (R² = 0.20; RMSE = 56 kg N ha−1) but less evident with respect to the REIP (R² = 0.30; RMSE = 52 kg N ha−1, Table 4). PLSR reached lower average prediction errors (RMSE = 33 kg N ha−1) but not higher R² values (R² = 0.27). Compared for the averaged validation results (n = 6; Table 4), the WMMRS-indices achieved higher R² values and lower RMSE values than the PLSR models for 29 and 22 of the investigated 45 traits, for 32 and 27 traits compared to the REIP, and for 41 and 35 traits compared to the NDVI, respectively. The strongest improvement over the PLSR models was found for leaf DM at anthesis and maturity (ΔR² = +0.09 and +0.11, respectively; Table 4), leaf NC at maturity (ΔR² = +0.10) as well as total and leaf NT (ΔR² = +0.11 and +0.13). In contrast, PLSR was superior notably for total DM at maturity (ΔR² = +0.07), harvest index (ΔR² = +0.09) and several traits of Nup at maturity.

In addition to optimized PLSR models on derivated spectra, PLSR models were fitted on non-derivated spectra due to the shift through derivation for identifying influential wavebands. For GY, the RE region and the water band beyond about 950 nm showed highest Variable Importance in Projection (VIP) values (VIP > 1; Figure 7), whereas the VIS range was not particularly relevant. A similar pattern was observed for GNup, yet with a higher importance of the RE and a weaker peak at the water band. However, no pronounced RE-peak was observed for GNup in 2016.




Figure 7 | Variable Importance in Projection (VIP) of PLSR models for grain yield and grain nitrogen uptake. See Supplementary Figure 11 for VIP values of all traits.






Discussion

The findings corroborate the possibility of early estimation of GY and GNup in optimum growth stages. Substantial variation in most traits was identified (Prey et al., 2019b), and many traits were significant for explaining plant breeders' main target traits GY, GNup, and grain N concentration (GNC), or are of direct interest. Sufficient heritability (H²) is essential for using SVIs as indirect selection tool. Increasing H² values between the vegetative and grain filling phases are in line with Frels et al. (2018) and may be due to a stronger genetic determination of the senescence process compared to the vegetative growth. The lower H² values in 2015 may be due to the only two replicates in that year, whereas the overall higher values than those found in a nearby experiment (Becker and Schmidhalter, 2017) may be associated with the larger plot size in the present experiment. The lower H² of NIR/VIS indices compared to the water (NIR) indices is in line with Babar et al. (2007) and Becker and Schmidhalter (2017).


Optimum Growth Stages

More measurement dates than in most previous studies were tested in order to identify reliable growth stages. Overall, the grain filling phase was found to be relatively most suitable for all traits, including “post-dictions” of traits related to the anthesis canopy status. The suitability of the milk ripeness stage is in line with previous results (Freeman et al., 2003; Babar et al. 2006a; Gutierrez et al. 2010a; Christopher et al., 2014; Zhang et al., 2019). In contrast, under conditions of drought/heat-induced rapid senescence, post-anthesis assimilation is reduced and early flowering and the translocation of vegetative DM may be an escape-strategy rather than the stay-green trait (Van Herwaarden et al., 1998; Inoue et al., 2004). The canopy status at anthesis may then be more indicative than under prolonged maturation, possibly explaining the relatively better relationships of earlier dates in drier environments (Babar et al. 2006a; Prasad et al. 2007b; Becker and Schmidhalter, 2017), and the contrasting late R²-peaks in 2017, the year with the most favorable ripening conditions. The weak relationships at heading-anthesis are in line with the sensitivity of the spectral signal to the ear emergence (Pimstein et al., 2009).



The Potential of Early Estimation of DM and GY

GY can only be predicted indirectly from spectral readings, which dominantly detect the leaf area, vegetative biomass, chlorophyll, and senescence status (Jacquemoud et al., 2009). The interrelationships of the traits contributing to GY indicated that the major fraction (56–69% in the three years) of GY was formed post-anthesis (Prey et al., 2019b). Moderate correlations were found between GY and total anthesis DM (r = 0.35, 0.43, 0.57***; not shown) in all three years, as well as with most organ-level DM traits at anthesis. In contrast to DM translocation and its efficiency, post-anthesis assimilation correlated with GY (r = 0.71***, 0.42**, and 0.69***) in all three years, explaining the better spectral relationships during grain filling.

The lower R² values in 2016 and 2017 indicate saturation of the spectral signal in dense canopies (Prasad et al., 2007b; Pavuluri et al., 2015; Frels et al., 2018). In the present dataset, the only moderate relationships in 2016 and 2017 still enable to “half” the population without losing the best-yielding genotypes—a “culling tool” strategy that would be relevant to plant breeders (Garriga et al., 2017; Frels et al., 2018) aiming at a visual evaluation of only relevant genotypes or even non-harvesting the others. The relationships were in the same range or closer than in similar studies (Pavuluri et al., 2015; Frels et al., 2018), even though the levels of DM and GY were substantially higher in the present study. With regard to plant organs, the best assessment of leaves is in line with Barmeier and Schmidhalter (2017), which was ascribed to the nadir position of the sensor, since leaves dominate the spectral signal.


Water Band and NIR/VIS Indices for DM and GY

In all years, the water band indices were among the best indices for GY and mostly for total DM but performed less well than most RE-based and NIR/VIS indices for leaf DM. It may be possible that the reflection in the water absorption band is influenced by the water, which is mainly located in culms and—with ongoing grain filling—in kernels, whereas the leaves' appearance dominantly impact the VIS and NIR reflection outside the water absorption band (Haboudane et al., 2004). Given that water band indices ranked relatively high during the late grain filling stages, it is also conceivable that there is a better detection of senescence traits. Total DM (r = 0.90, 0.75, 0.82 in 2015, 2016 and 2017 respectively; not shown) was dominant for explaining GY, whereas the variation in the harvest index was significant (r = 0.56***) only in 2016, explaining the similar index rankings and seasonal patterns for total DM and GY. In all years, GY correlated closer with total DM than with the DM of vegetative organs (r = 0.75 in 2016 and r > 0.82 in the other years; not shown), possibly explaining that the indirect prediction of GY from indices optimized for LAI was less successful.

The constant direction (Figure 8) of the relationships indicates that genotypes keeping canopy water later in the season also reached higher DM formation (Gutierrez et al. 2010a). This “stay-moist” trait was relatively better detected than the stay-green trait, especially in 2017, as seen from the poor performance of the VIS and NIR/VIS indices this year. In addition, water band indices were reported to be less prone to saturation than the NDVI (Sims and Gamon, 2003), corresponding to their stronger relative advantage in the highest-yielding year, 2017. The lower ranking of NIR/VIS indices optimized for LAI (EVI; MCARI1, MCARI2, MTVI2) for GY suggests that structural information that they are able to detect is less relevant for GY than the canopy water status. The present breeding population was morphologically and phenologically diverse—characteristics known to influence the spectral signal (Gutierrez et al., 2015) without direct influence on GY (Prey et al., 2019b). Among NIR/VIS and VIS indices, only the EVI ranked among the best indices for leaf DM traits, but failed for GY. It was reported to saturate less for canopies beyond NDVI values of about 0.80 (Huete et al., 2002), which were clearly exceeded from tillering to milk ripeness. The group of VIS indices ranked clearly below the other groups. Only the VARIgreen reached similar rankings as the NIR/VIS indices, as previously found for DM traits (Erdle et al., 2011).





Figure 8 | Relationships of the rank-based best indices with GY and total DM at maturity on the most suitable measurements dates (year/month/day). The index equations are (R970-R850)/(R970+R850) [NWI-2] for GY and (R970-R930)/(R970+R930) [NWI-5] for total DM at maturity.






Normalized Difference Versus Simple Ratio Equations

For three pairs of spectral bands, a normalized difference index and a simple ratio version were included each, namely WBI and NWI-1, GNDVI and R780_R550, as well as NDVI2 and R780_R670. For most direct and indirect DM traits, the R780_R550 (on average WMMRS Δ +0.2) and the R780_R670 (on average Δ +0.2), ranked slightly higher than the normalized difference index versions, confirming previous results (Nguy-Robertson et al., 2012; Yu et al., 2012; Barmeier and Schmidhalter, 2017).



RE Indices for DM and GY

Most RE-indices ranked higher than the NIR/VIS indices for most DM traits. The advantage of using wavelengths at the RE, was attributed to increased sensitivities in dense canopies (Nguy-Robertson et al., 2012; Prey and Schmidhalter, 2019a). The RE-indices were also suggested for GY (Pavuluri et al., 2015; Barmeier et al., 2017; Frels et al., 2018). For most dates, the red band used by many NIR/VIS indices was left to the position, where the reflectance difference between plots of maximum and minimum GY was most negative (Supplementary Figure 10). It is possible that most NIR/RE and RE indices reached higher sensitivity by positioning their lower band in this range, whereas their NIR bands were similarly positioned as those of the NIR/VIS indices, beyond approximately 760 nm at the “NIR-plateau” with similar reflectance differences, as supported by the influential bands in the PLSR models.



Derived DM Traits

No consistently useful estimations were achieved for the yield components, possibly because these traits were rarely correlated to GY (Prey et al., 2019b). The mostly lower coefficients of determination found for DMT compared to NT may be explained by the stronger variation in DMTEff than in NTEff. The HI was only well discriminated (R² = 0.30***) in 2017, the year when HI and total DM correlated negatively, thus indicating only indirect relationships through the detection of DM. Similarly, NutEff_grain showed negative relationships with the EVI greenness index in 2017 and 2016, but a positive relationship in 2015. In contrast, the regression of NutEff_total with its best index NWI-2 did not turn in direction, which is in line with the NutEff_total's positive correlations with total DM in all years. In contrast, Erdle et al. (2013a) found good relationships for the HI at milk ripeness, however for fewer cultivars. For NutEff_grain, Frels et al. (2018) found good relationships (max. R² = 0.41) already at heading in one year, but weaker relationships than in the present study in another year.




The Estimation of N Traits

The usefulness of RE bands for N-related traits is well established and was related to the rightward-shift of the RE position with increasing N status (Guyot et al., 1988; Boochs et al., 1990; Guo et al., 2017) and—as for GY—the higher sensitivity in dense canopies (Erdle et al., 2011; Zhang et al., 2019). The higher ranking of most RE, NIR/RE, and NIR/RE/VIS indices may be associated with the placement of the lower band in the lower RE at 700–750 nm (Supplementary Figure 10) (Datt, 1999), whereas the RE/VIS indices use mostly similar red bands as the NIR/VIS indices. The results are in line with the Maccioni index that was suggested for GNup and total Nup efficiency (Frels et al., 2018), the R780_740 for detecting total Nup and for NUE (Pavuluri et al., 2015), the R760_R730 for spike Nup (Erdle et al., 2013a), as well as the NDRE_770_750 (Prey and Schmidhalter, 2019b) and the REIP (Prey et al., 2018) for GNup—all indices that ranked high for many Nup traits.

The similar best growth stages for predicting GNup just like for GY is in line with the coupling of both traits (r = 0.86, 0.66 and 0.64 in 2015, 2016 and 2017, respectively; not shown). The only date- and SVI-specific relationships found within years for GNC indicate that the formation of GNC was highly influenced by the year-specific growing conditions. Thus, the negative relationship (R² = 0.24***) found between the EVI index and GNC at milk ripeness in 2015 and the positive relationship between the senescence index PSRI and GNC in 2017 (R² = 0.18***) indicate that due to the GY/GNC antagonism, late canopy greenness was promoting GY (positive relationship with EVI, R² = 0.34***), but reducing GNC.

As the HI for GY, the NHI was secondary for explaining GNup (Prey et al., 2019b), and GNup was therefore closely correlated with total Nup (r > 0.93 in all years). This explains that the seasonal R² patterns and the index rankings were comparable, similarly as reported by Frels et al. (2018). In contrast to Frels et al. (2018), post-anthesis Nup was not sufficiently estimated (max. R² = 0.16***), even if it correlated positively with GNup. However, total N translocation, which was the dominating fraction for GNup in all years, revealed useful relationships during grain filling in 2015 and 2017 due to its close correlations with total Nup at anthesis. The weaker detection of vegetative Nup at maturity in organs and in the straw than of total and grain Nup may be due to the low absolute residual Nup, as well as the differing influence of the organ-level NTEff. The weak detection of N concentration (NC) traits at anthesis does not allow the recommendation of optimum indices. At maturity, moderate NC estimations were possible only for the vegetative organs but the indices previously optimized for leaf chlorophyll, TCARI_OSAVI (Haboudane et al., 2002; Huang et al., 2011), and MCARI (Daughtry et al., 2000), or for NC (R787_R765), ranked never among the best indices, thus indicating rather indirect relationships.



Index Validation and PLSR

The comparison of the WMMRS-SVIs to the “reference” SVIs NDVIs and REIP in the year-to year test set validation models supports the usefulness of the seasonal rank-based SVI selection. The NDVI, which, despite its known limitations, is still widely used, was clearly outperformed for the vast majority of the traits by the REIP, the PLSR models, and the WMMRS-indices, confirming the results observed in the individual years. The relative advantage of the WMMRS-indices over the REIP was confirmed for GY and other DM traits, but was less pronounced for most N traits.

The often lacking or weak R²-improvements from PLSR models indicate that optimized selection of SVIs can compete with multivariate models and may be preferred in terms of calibration effort, the transferability to simpler, multispectral sensors and applicability by breeders. Thus, PLSR suggested substantial improvements in the calibration (Supplementary Table 3), which however largely dwindled in the validation (Table 4). While the relative discrimination will often be sufficient in phenotyping (Garriga et al., 2017), lower RMSE values of PLSR for several traits indicate a higher robustness over year- and growth stage-specific shifts in the spectral data, being in line with results on barley (Barmeier et al., 2017; Barmeier and Schmidhalter, 2017). Unlike to the latter study, the year-based calibrations in the present study were relatively more useful than pre-evaluated across-years models (not shown), but the validation results were generally weaker due to testing only on individual years' data. The influential bands in the PLSR confirm the RE and water bands to be most indicative.




Conclusions

For most plant traits including GY and GNup, the milk ripeness stage was the most reliable under conditions of moderate terminal heat/drought or pathogen stress, whereas the relationships were more stable during dough ripeness in the year with favorable senescing conditions (2017). In contrast, phenological shifts at heading/anthesis appeared to decrease the relationship in this phase. NIR-combinations exploiting the water absorption band at 970 nm were found to be indispensable to achieve a useful discrimination in GY in dense canopies, followed by NIR/RE combinations, which mostly outperformed the NIR/VIS indices including the NDVI. For GNup, simple NIR/RE indices ranked high and clearly better than the NDVI. Relationships of indices with GY and GNup were explained by the detection of total DM and Nup, respectively, rather than by that of the relative allocation (harvest index) to the grain. The validation of the selected indices confirms the usefulness of the rank-based index selection notably for overcoming limitations of the NDVI. The PLSR did not achieve clearly higher R² values, but often lower estimation errors, thus that it should be preferred for improving prediction accuracies, whereas optimized SVIs appear sufficient for a relative discrimination of important traits. GNC was not reliably predicted. DM and N traits related to maturity canopy status were detected better than anthesis traits. The screening for useful band combinations can be used for optimizing sensor configurations. The results could also be transferred to multispectral sensors, thus improving the transfer of the evaluated methods to the application in breeding nurseries.
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The ability of a genotype to stay green affects the primary target traits grain yield (GY) and grain protein concentration (GPC) in wheat. High throughput methods to assess senescence dynamics in large field trials will allow for (i) indirect selection in early breeding generations, when yield cannot yet be accurately determined and (ii) mapping of the genomic regions controlling the trait. The aim of this study was to develop a robust method to assess senescence based on hyperspectral canopy reflectance. Measurements were taken in three years throughout the grain filling phase on >300 winter wheat varieties in the spectral range from 350 to 2500 nm using a spectroradiometer. We compared the potential of spectral indices (SI) and full-spectrum models to infer visually observed senescence dynamics from repeated reflectance measurements. Parameters describing the dynamics of senescence were used to predict GY and GPC and a feature selection algorithm was used to identify the most predictive features. The three-band plant senescence reflectance index (PSRI) approximated the visually observed senescence dynamics best, whereas full-spectrum models suffered from a strong year-specificity. Feature selection identified visual scorings as most predictive for GY, but also PSRI ranked among the most predictive features while adding additional spectral features had little effect. Visually scored delayed senescence was positively correlated with GY ranging from r = 0.173 in 2018 to r = 0.365 in 2016. It appears that visual scoring remains the gold standard to quantify leaf senescence in moderately large trials. However, using appropriate phenotyping platforms, the proposed index-based parameterization of the canopy reflectance dynamics offers the critical advantage of upscaling to very large breeding trials.
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Introduction

Maximizing carbon assimilation by a prolonged green leaf area duration after anthesis is a major breeding aim in many crops. This so-called stay green (Thomas and Smart, 1993) has been linked to increased grain yield (GY) in several crops (reviewed by Gregersen et al., 2013). Stay green results from a delayed onset of senescence and/or a reduction in the rate of the process (Gregersen et al., 2013). The benefit of such an extended period of functional stay green, i.e. a prolonged photosynthetic activity, has been particularly well documented in maize and sorghum (Rajcan and Tollenaar, 1999; Borrell et al., 2000).

In wheat, potential GY is currently viewed as being predominately limited by sink strength, i.e. the number of grains available for grain filling, which is largely determined up until and including a short period after anthesis (reviewed by Borrás et al., 2004; Fischer, 2008; Distelfeld et al., 2014). However, several studies have reported positive correlations between delayed senescence and GY, particularly under stress conditions (Verma et al., 2004; Christopher et al., 2008; Bogard et al., 2011; Lopes and Reynolds, 2012; Christopher et al., 2014; Christopher et al., 2016; Montazeaud et al., 2016). Where plants are exposed to severe stress, the stay-green phenotype may be interpreted as the avoidance of premature senescence, which could result in source limitation, i.e. a lack of carbohydrates delivered to the developing grains (Borrás et al., 2004). Fine-tuning senescence dynamics has therefore been proposed as a promising selection criterion in wheat breeding particularly under the scenario of an increased frequency of weather extremes, such as heat and drought.

Optimizing senescence dynamics requires intense field testing for at least two reasons: (i) senescence per se is known to underlie complex genetic and environmental control (reviewed by Lim et al., 2007), typically resulting in moderate to low heritability across environments (e.g. Lopes and Reynolds, 2012; Crain et al., 2017) and (ii) effects of altered senescence dynamics on key primary traits, such as GY and grain protein concentration (GPC), often depend on the environment (Bogard et al., 2011; Lopes and Reynolds, 2012). For example, negative relationships between GY and stay-green have also been reported, especially in the absence of water- or nitrogen-limiting conditions (Jiang et al., 2004; Derkx et al., 2012; Naruoka et al., 2012; Kipp et al., 2014). A delayed or slow senescence has also been linked to a reduced efficiency of remobilization, with adverse effects on harvest index (Gong et al., 2005; Yang and Zhang, 2006), nitrogen use efficiency and GPC (Gregersen et al., 2008; Gaju et al., 2014). GPC is a key quality parameter in bread wheat, which may be additionally lowered via a dilution effect if the increased post-anthesis C-compound synthesis of stay-green cultivars is not paralleled by an increased uptake and transfer of nitrogen to the developing grains (Bogard et al., 2010; Cormier et al., 2016). Thus, in order to exploit variation in senescence dynamics for the improvement of bread wheat, a better understanding of environmental, genetic, and physiological determinants of senescence dynamics per se as well as of the effects of senescence dynamics on GY and GPC in contrasting environments is required. Traditional phenotyping methods, such as visual senescence inspection (e.g. Bogard et al., 2011) or SPAD meter measurements (e.g. Xie et al., 2016) do not provide the necessary throughput to assess a dynamic trait for large numbers of genotypes at high temporal resolution and in contrasting environments.

Regular ground-based normalized difference vegetation index (NDVI) measurements obtained from an active spectral GreenSeeker sensor (NTech Industries, Ukiah, CA, USA) have shown significant potential for the rapid identification of variation in senescence patterns among wheat genotypes (Lopes and Reynolds, 2012; Christopher et al., 2014; Montazeaud et al., 2016). However, the use of a single and relatively unspecific spectral index is likely to entail some important limitations. During senescence, wheat canopies undergo a sequence of profound biochemical and biophysical changes. These changes in part temporally overlap, and their effects on the reflectance spectrum of the canopy are, therefore, confounded. In this context, to the best of our knowledge, the NDVI has been used primarily as a generic indicator of canopy greenness or green biomass and has not been thoroughly validated as a tool to track canopy senescence in wheat. Gitelson and Merzlyak (1994) demonstrated the insensitivity of the NDVI to physiological changes occurring during early senescence at the leaf scale. At the canopy scale, the NDVI is often saturated in dense canopies as can be observed for wheat stands under favorable conditions (Asrar et al., 1984; Gu et al., 2013). This is likely to limit the sensitivity and precision of the NDVI in detecting early senescence at the canopy scale. Using passive sensors with a high spectral resolution, more specific narrow-band spectral indices (SI) or full-spectrum analysis can be deployed to reduce the effect of canopy structure and other confounding factors on the assessment of biochemical or physiological traits of interest (e.g. Haboudane et al., 2002; Chen et al., 2010; Li et al., 2014). For example, the plant senescence reflectance index (PSRI) developed by Merzlyak et al. (1999) can be used to measure leaf and fruit senescence. It is based on the chlorophyll/carotenoid ratio which undergoes major changes as a consequence of differential breakdown rates of these pigments during early senescence, offering advantages over the NDVI (Sanger, 1971; Fischer and Feller, 1994; Merzlyak et al., 1999). Similarly, Kipp et al. (2014) were able to estimate greenness of flag leaves and onset of flag leaf senescence in wheat using ground-based hyperspectral canopy reflectance measurements in combination with full-spectrum models, while no stable relationships were found for the NDVI.

An additional advantage of hyperspectral reflectance measurements as compared to single SI measurements could consist in the opportunity to track multiple processes simultaneously. For example, during late development, green leaf area, pigment composition and total content, nitrogen distribution and water content of the canopy change dramatically. Visual senescence scorings mainly capture changes in pigment composition and content, but largely disregard other canopy characteristics, potentially resulting in a loss of breeding-relevant information. For example, the dynamics of nitrogen remobilization after flowering has been identified as a key determinant of GPC in wheat (reviewed by Kong et al., 2016). In contrast to visual scorings, all of the aforementioned traits have been shown to be amenable to assessment using hyperspectral measurements provided sufficient variability exists (Haboudane et al., 2002; Li F. et al., 2014; Li X. et al., 2014; Becker and Schmidhalter, 2017). In a breeding context, variability for a trait of interest is typically low, and differences in morphology and canopy structure among genotypes are thus likely to mask their effects on spectral reflectance at a specific point in time. However, assessments of relative changes over time could reveal differences in trait dynamics, which can be analyzed at the level of genotypes or experimental plots. Thus, we hypothesized that capturing the dynamics of such traits using repeated reflectance measurements during late development could complement a precise representation of canopy greenness. The objective of the present study was two-fold: First, we aimed to develop a high-throughput method based on spectral reflectance to track visually observed senescence dynamics in a large population of morphologically diverse wheat genotypes. Second, we aimed to establish whether the resulting representation of canopy greenness decay could be complemented with additional information (e.g. relating to pigment, nitrogen or water content of the canopy) derived from repeated hyperspectral reflectance measurements.



Materials and Methods


Plant Materials, Experimental Design, and Meteorological Data

A field experiment was conducted in the field phenotyping platform (Kirchgessner et al., 2017) at the ETH Research Station for Plant Sciences Lindau-Eschikon, Switzerland (47.449N, 8.682E, 520 m a.s.l.; soil type: eutric cambisol) in the wheat growing seasons of 2016 to 2018. In each year 300 cultivars comprised in the GABI wheat panel (Kollers et al., 2013) obtained from the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) were used, which were complemented with important Swiss cultivars for a total of 335 cultivars in 2016 and a total of 352 cultivars in 2017 and 2018. The cultivars were grown in plots of 1 m × 1.4 m size. The designs were generated using the R package DiGGer (Coombes, 2009; http://nswdpibiom.org/austatgen/software). The plots were arranged in a two dimensional incomplete block design with checks. The test varieties were randomized in two complete replications (one per lot). Within each replication, these test varieties were allocated to incomplete row blocks of size one (one row per block) and incomplete range blocks of size six (six ranges per block). The check varieties were distributed as follows: In 2016, wheat cultivar CH CLARO was used as a check variety at 21 evenly distributed locations in each replicate leading to a total of 42 checks per design. In 2017 and 2018 the three Swiss cultivars CH CLARO, SURETTA and NARA (DSP, Delley, Switzerland) were allocated to nine complete blocks spanning seven rows by six ranges each, summing up to a total of 54 checks per design. In all cases, at least one check was present per row and column of the design. Crop husbandry was performed according to local agricultural practice. The experiments were sown with a sowing density of 400 plants m−2 on Oct 13, 2015, on Nov 1, 2016, and on Oct 18, 2017, respectively. Temperature data was retrieved from an on-site weather station. Rainfall data was obtained from a nearby weather station of the federal Swiss meteorological network Agrometeo (www.agrometeo.ch) located at ca. 250 m distance to the field trial. The temperature data was used to calculate growing degree-days (GDD) following

	

	

where Tmeand is the mean temperature for day d after heading, maxTd,h and minTd,hare hourly maximum and minimum temperatures for day d and baseT is the base temperature, set to 0°C.



Phenology and Agronomic Data

Heading date was recorded when 50% of the spikes were fully emerged from the flag leaf sheath (BBCH 59, Lancashire et al., 1991). Senescence was assessed visually, separately for the flag leaf and the whole canopy, following guidelines provided by Pask et al. (2012). Flag leaf senescence was scored based on the portion of green leaf area on a scale from 0 (0% green leaf area) to 10 (100% green leaf area). An integer mean value was estimated for plants located in a central region of about 0.5 m × 0.5 m of each plot. Whole plot senescence was scored on the same scale by estimating the overall greenness of the plot when inspected at a view angle of approximately 45° considering the entire plot area. Where necessary, the canopy was opened by hand to enable inspection of lower canopy layers. All scorings were done in 2- to 4-day intervals. Senescence scorings were done from approximately 20 days after flowering to complete canopy senescence. All heading and senescence scorings were done by the same person. The progression of leaf and whole plot senescence as assessed by visual scorings was then fitted against thermal time after heading (BBCH 59) for each individual plot using linear interpolation as well as a Gompertz model with asymptotes constrained to 0 and 10 (eq. 1; Gooding et al., 2000),



where S represents the scaled senescence scoring, t is the accumulated thermal time after heading for a given plot, b is the rate of senescence at time M and M is the accumulated thermal time after heading when senescence rate is at its maximum. Eq. (1) was fit for each experimental plot using the R package “nls.multstart” (Padfield and Matheson, 2018). Senescence dynamics parameters were then extracted as follows (Figure 1): Onset of senescence (Onsen) was defined as the time point when values fell below 80% of the initial maximum, midpoint of senescence (Midsen) when values fell below 50%, end of senescence (Endsen) when values fell below 20%, and duration (Tsen) was defined as the time between onset and end of senescence, similar to the procedure applied to NDVI data by Christopher et al. (2014). We will refer to the duration between heading and the onset of senescence as the duration of stay green.




Figure 1 | Scaled visual scorings of canopy greenness (Sc) and a scaled spectral index (SI) as a function of thermal time after heading for one experimental plot. Linear interpolation was used to derive the onset (Onsen), mid (Midsen) and end (Endsen) of the rapid senescence phase, its duration (Tsen) and the deviation of the SI curve from the Sc curve (error; shaded area). Black arrows represent the difference between SI- and Sc-derived parameters. The mean of these differences across all plots represents a measure of bias.



GY was determined by manually harvesting the sowing rows 7 and 8 (out of 9). Grain moisture content was measured on a subset of 290 plots in 2016, 108 plots in 2017 and 84 plots in 2018, using a Wile 55 moisture meter (Farmcomp Oy; FIN-04360 Tuusula, Finland). Where available, grain weight was normalized to 14% water content using the plot-specific moisture content. The mean value of the measured plots was used otherwise. GPC was determined using near-infrared transmission spectroscopy (InfratecTM 1241 Grain Analyzer; Foss, DK-3400 Hilleroed, Denmark).



Statistical Analysis

The derived senescence dynamics parameters and agronomic traits were spatially corrected using two-dimensional P-splines as implemented in the R-package SpATS (Xose Rodriguez-Alvarez et al., 2018). To fit an independent smoothed surface to each replicate, the replicates were allocated diagonally in a grid of 49 rows by 41 ranges with replicate one ranging from row 1 to 22 and range 1 to 18 and replicate two ranging from rows 27 to 49 and range 23 to 41.The spatial model was:



where f (ri, cj) is a smoothed bivariate surface defined by row r (i = 1,…,49) and range c (j = 1,…,41) as covariates (for details see Xose Rodriguez-Alvarez et al., 2018), K is the fixed effect of the check or the mean of all test genotypes (l = 1, 2, 3,   test), G is the random effect of the test genotypes (k = 1, …, 351), with check genotypes coded as missing. Ri and Cj are random factors of the rows and ranges, respectively, and ϵ is the random error vector. Twenty spline points were used each for rows and ranges.

To obtain best linear unbiased estimators (BLUEs) for all genotypes, the factor genotype was considered as a fixed effect in model (1) (k = 1, …, 354) and K was omitted from the model. The sum of the genotypic BLUE and the plot-specific residual error was extracted as a spatially corrected plot value.

Within-season repeatability (w2) of the spatially corrected traits was calculated according to Xose Rodriguez-Alvarez et al. (2018) based on the genetic effective dimensions provided by SpATS as:



where EDg is the effective dimension for the genotypes and mg is the total number of genotypes evaluated.

Spatially corrected plot values derived from (1) were used for the multi-year model using the R package “asreml-4” (Butler et al., 2018):



where Yihkl is the spatially corrected senescence dynamics parameter or single plot measurement estimated in (1), µ is the overall mean, Y the fixed effect of the year (h = 2016, …, 2018), B is fixed effect of the replication within year h (k = 1, 2), GYih the random genotype-by-year interaction and ϵihkl is the random normally distributed error with a year-specific variance. The effect of the replicate was specified only for years where more than one replicate was measured (i.e. for reflectance-based traits, where both replicates were measured only in 2016).

Across-year heritability was derived according to the method proposed by Cullis et al. (2006) as:

	

where   is the heritability that is appropriate for complex residual structures (though not needed here) and avsed is the average standard error of prediction differences provided by the predict.asreml function. In the original equation provided by Cullis et al. (2006), the avsed is expressed as the mean variance of a difference between a pair of genotype  , the square of avsed (Isik et al., 2017).



Hyperspectral Assessment of Senescence Dynamics


Hyperspectral Reflectance Measurements

Canopy hyperspectral reflectance in the optical domain from 350 to 2500 nm was measured using a passive spectroradiometer (ASD FieldSpec® 4 spectroradiometor; ASD Inc., USA) equipped with an optic fiber with a field of view of 25˚. Whenever possible, measurements were carried out between 10:00 and 14:00 local time under clear and cloudless conditions. However, given the need for frequent measurements and the geographic location of the experiment, this was not always possible. Reflectance spectra were recorded as the average of 15 to 25 separate spectral records. Measurements were taken from nadir view holding the sensor at a height of approximately 0.4 m above the canopy. In 2016, reflectance spectra were recorded for one to two locations per plot holding the sensor in a nadir position above a crop row. In 2017 and 2018, 5 spectra were recorded while moving the fiber optic along the diagonal of each plot. This change in the measurement procedure was decided to reduce the variance of reflectance measurements due to plot heterogeneity in senescence observed in the first year. A Spectralon® white reference panel was used for calibration before measuring canopy reflectance, and the calibration was repeated approximately every 10 min. Under more variable conditions, the device was re-calibrated more frequently. When light conditions changed perceivably, measurements were interrupted immediately, and the device was recalibrated before continuing the measurements under stable light conditions. In 2016, both replicates were measured, requiring about 3 h on average, whereas in 2017 and 2018 measurements were limited to one replicate, requiring about 2 h on average. The experiments were measured between heading and physiological maturity on 7 dates in 2016, on 8 dates in 2017 and on 12 dates in 2018. Thus, the frequency of spectral measurements was slightly lower than the frequency of visual scorings. The resulting hyperspectral dataset was then analyzed from two different perspectives relating to the main objectives of this study (Figure 1, upper and lower panels, respectively). The two approaches are described in more detail in the following sections and in Supplementary Methods. For ease of notation, reflectance at specific wavelengths will be abbreviated as R followed by the wavelength (e.g. R750).



Spectral Indices and Full-Spectrum Models to Infer Senescence Dynamics

An assessment of the performance and robustness of SI and full-spectrum models to track canopy senescence across environments was performed. A detailed description of the methodology is provided in Supplementary Methods. In brief, a large number of published spectral indices were computed (Table S1) and full-spectrum models to infer visually observed senescence scorings were calibrated from pre-processed reflectance spectra (Figure 2, [1]). Models were used to generate predictions of senescence scorings for unseen data of the same environment as used in model calibration and of environments not included in model calibration. The resulting SI values and model predictions were scaled to range from 0 to 10, representing the minimum and maximum value recorded or predicted for the assessment period, respectively. Scaled values were fitted against thermal time after heading, and parameters describing the observed dynamics were extracted from time courses as was done for visual scorings (Figure 2, [2]). A subset of spectral indices was then selected using several filtering criteria to reduce multi-collinearity of the dataset (Figure 2, [3]). For full-spectrum models, waveband selection was performed in each experiment using recursive feature elimination. Performance and robustness of selected SI and full-spectrum models was assessed by comparing the dynamics parameters obtained from selected SI and model predictions to those obtained from visual scorings as shown in Figure 1 (step [5] in Figure 2). Pearson product moment correlation coefficients were calculated for the dynamics parameters obtained from linear interpolation of visual scorings, SI and model predictions. The mean difference in GDD over all experimental plots between the SI-derived and the scoring-derived parameters was also calculated to reveal potential general bias. Finally, the area between the resulting lines was calculated as a measure of precision in tracking the entire process.




Figure 2 | Overview of the objectives of this study and the implemented workflow: pre-processing of reflectance spectra and conversion to spectral indices (SI) [1]; full-spectrum models (Mod) to obtain predictions (Pred) of visual senescence scorings (Sc) based on reflectance spectra [4]; fitting of SI, Sc and Pred against thermal time and extraction of corresponding dynamics parameters (DynPars) [2]; Unsupervised DynParsSI subset selection [3]; Model and SI evaluation based on DynPars [5]; Spatial correction and calculation of best linear unbiased estimators (BLUEs) [6]; Modelling of primary traits (i.e. grain yield (GY) and grain protein concentration (GPC)) and supervised feature selection by recursive feature elimination [7] to determine the most predictive features and estimate the potential benefits of a high spectral resolution.





Multiple Spectral Indices During Senescence to Predict Primary Traits

Finally, all senescence dynamics parameters obtained from scorings and from the selected SI (hereafter referred to as features) were analyzed directly for their association with GY and GPC. BLUEs or spatially corrected values were used for the analysis (Figure 2, [6]). We aimed to answer three separate questions in a step-wise procedure: First, whether a phenotypic correlation between senescence dynamics and GY and GPC existed for any given trait in any given year; we used simple linear regression models for this purpose. Second, if the results suggested the presence of such a linear correlation, we investigated the potential of additional information contained in multiple SI time courses as opposed to the time course of a single SI or visual scoring. Such single SI or scoring values are likely to capture only part of the changes occurring during senescence (e.g. the dynamics of chlorophyll breakdown) while other processes might hold complementary information. Third, we aimed at identifying the most important features to predict the trait. The rationale behind this was the following: Given a significant correlation between senescence dynamics and GY and GPC and a number of features describing aspects of senescence, the feature identified by the model to be the most relevant feature to predict GY or GPC should also be the one feature that most precisely captures the relevant aspects. For this purpose, we conducted supervised feature selection by recursive feature elimination (Figure 2, [7]; see Ambroise and McLachlan, 2002; Guyon et al., 2002; Granitto et al., 2006 for a detailed description and discussion of the methodology). A detailed description is provided in Supplementary Methods.





Results


Experiments Represented Contrasting Environments

Weather conditions during the main growing phase of the three experimental years strongly contrasted (Figure 3). The year 2016 was characterized by a wet summer with high precipitation causing severe lodging and high levels of foliar diseases. In particular, high levels of Septoria tritici blotch (STB) caused by the fungal pathogen Zymoseptoria tritici were observed. A total of 88 plots had to be excluded from further analyses due to heavy lodging. An additional 24 plots were excluded due to extended patches affected by take-all disease (Gaeumannomyces graminis var. tritici), which made objective senescence scorings and reflectance measurements impossible. Contrarily, the years 2017 and 2018 were characterized by dry summers and in 2017 additionally by high temperatures with daily maximum temperatures exceeding 30°C on several days, particularly during grain-filling. While both biotic and abiotic stresses can affect senescence dynamics in wheat, the underlying responses are stress-specific and may be controlled by very different genes or gene networks (Guo and Gan, 2012). Consequently, the three experimental years can be considered contrasting environments for the assessment of senescence dynamics and effects on GY and GPC.




Figure 3 | Daily mean temperatures (black solid line), daily maximum temperatures (red dotted line) and rainfall measured at 2 m above the ground for the main growing period of the experiment at the field phenotyping platform of ETH Zurich. Temperature data was retrieved from an on-site weather station. Rainfall data was obtained from a nearby weather station of the federal Swiss meteorological network Agrometeo (www.agrometeo.ch).





Large Variability and Moderate to High Heritability for Senescence Dynamics and Agronomic Traits

Large variability was observed for heading date, GY and GPC among the >330 genotypes in all years (Table 1). Heading occurred 8 days earlier in 2018, likely due to the comparably dry conditions in spring (Figure 3). Large variability was also observed for senescence dynamics, with a difference of >300 °C days in the onset between the earliest and the latest genotype in all years. Similarly, the duration of senescence varied strongly across genotypes. The rate of senescence was somewhat lower in 2017 as expressed by an increased duration of the process. Across all genotypes, flag leaf senescence was somewhat delayed with respect to canopy senescence in 2016 and 2017, especially in early senescing genotypes. In 2018, this sequential vertical pattern of senescence was much less pronounced (data not shown). The stay-green phase was shorter in the dry seasons of 2017 and 2018 and longer in the wet season of 2016. Correlations between the senescence dynamics parameters extracted from the non-linear model fit and linear interpolation of visual senescence scorings were high for Onsen (r = 0.94), Midsen (r = 0.99) and Endsen (r = 0.96), suggesting a good approximation of the dynamic patterns through linear interpolation. Therefore, linear interpolation was used for further analyses. Repeatability for senescence dynamics parameters was higher in 2016 than in 2017 and intermediate in 2018 (Table 1). Repeatability for Onsen, Midsen, and Endsen was moderate to high, ranging from 0.72 to 0.79, from 0.44 to 0.65 and from 0.64 to 0.68 in 2016, 2017 and 2018, respectively. For Tsen, repeatability was distinctly lower in all years. Across-year heritabilities were intermediate to high for Onsen, Midsen, and Endsen(Table 1).


Table 1 | Descriptive statistics, within-year repeatability and across-year heritability for heading date (HD), grain yield (GY), grain protein concentration (GPC) and senescence dynamics parameters derived from linearly interpolated visual canopy senescence scorings (Sc,Lin) and from linearly interpolated values of the PSRI (PSRI,Lin).





Spectral Reflectance Is Associated With Visual Senescence Scorings in a Non-Linear Manner

Senescence led to major changes in canopy reflectance throughout the recorded spectrum (Figure 4A). Reflectance in the visible range (VIS; 400–700 nm) increased strongly, whereas reflectance in the near infrared (NIR; 750–1300 nm) portion of the spectrum decreased. In the short-wave infrared (SWIR; 1,475–1781 nm and 1991–2400 nm) portion of the spectrum, reflectance increased. Pearson correlation coefficients between the reflectance at each wavelength and the visual canopy senescence scores were calculated for each year (Figure 4B) and separately for different phases of the senescence process (Figure 4C). High positive correlations were found between the reflection in the VIS, with peaks at around 500 and 680 nm, as well as in the SWIR, indicating a decrease of light absorption (resulting in an increase in reflection) in these parts of the spectrum as senescence progresses. Strong negative correlations were found in the NIR with a peak near 750 nm, indicating a strong decrease of reflectance in this portion of the spectrum as senescence progresses. These patterns were consistent across years. When different phases of the senescence process were analyzed separately, major differences in the correlations over large parts of the spectrum were found, indicating that reflectance throughout the spectrum is associated in a non-linear manner with visual senescence scorings.




Figure 4 | General reflectance patterns of senescing wheat canopies. (A) Mean reflectance spectrum of wheat genotypes through the process of senescence (10 denotes completely green canopies, 0 denotes complete senescence, based on visual scorings). Data from all time points and all years was used to calculate the mean reflectance spectrum per scoring. Vertical lines mark the wavebands constituting the NDVI and the PSRI. (B) Pearson correlation between reflectance at each wavelength and visual senescence scorings. Positive correlations indicate increasing reflectance as senescence progresses, negative correlations indicate decreasing reflectance as senescence progresses; Year-specific correlation coefficients; (C) Separate analyses for early senescence (scorings = [0:3]), intermediate senescence (scorings = [4:7] and late senescence (scorings = [8:10]). This part of the graph is based on data of the 2018 experiment.





Spectral Indices Track Visually Observed Senescence Dynamics Across All Years

A subset of 83 SI-derived senescence dynamics parameters was retained for further analyses. These included 21 Tsen parameters, suggesting that this parameter could be measured with a satisfactory repeatability (w2 > 0.5) using certain SI. Several SI could be identified for which the mean value across all experimental plots followed clearly contrasting dynamic patterns (see Figure 5 for examples). Generally, the NDVI-derived senescence dynamics parameters correlated well with the scoring-derived parameters. However, for some SI the senescence parameters consistently correlated better with the scoring-derived parameters and were less biased (i.e. deviated less from scorings) than the NDVI-derived parameters (Table 2, Figure 5). PSRI-derived onset of senescence correlated best with scoring-derived onset and was unbiased (r = 0.72, dOnsen = 6°C days, r = 0.78 and dOnsen = −11°C days and r = 0.75, dOnsen = −7°C days for 2016–2018, respectively) as opposed to the parameter derived from NDVI (r = 0.64, dOnsen = −43°C days, r = 0.63 and dOnsen = −61°C days and r = 0.51, dOnsen = −57°C days in 2016–2018, respectively). PSRI also predicted midpoint of senescence with a high accuracy (r = 0.76, dMidsen = 43°C days, r = 0.91, dMidsen = 25°C days and r = 0.86, dMidsen = 26°C days in 2016–2018, respectively). Endpoint of senescence was predicted quite accurately (r ≈ 0.7 across all years) by several SI, whereas the NDVI was clearly less stable across different years. Across all three years, Endsen derived from VARIgreen was correlated best with scoring-derived Endsen (r = 0.79, dEndsen = 10°C days, r = 0.83, dEndsen = −18°C days and r = 0.82, dEndsen = −17°C days in 2016–2018, respectively), while NDVI was clearly less precise and less stable across years (r = 0.59, dEndsen = 53°C days, r = 0.78, dEndsen = 65°C days, and r = 0.54, dEndsen = 52°C days in 2016–2018, respectively). The PSRI performed best in tracking the senescence process as observed visually from the onset to the end of the process, as expressed by comparably small error reprinted by the area between the curves (Table 2). Since repeatability for Tsen assessed visually was low in all years, results of the correlation analysis should be interpreted with caution, but the strongest correlations were found again for the PSRI. Thus, in summary, the PSRI outperformed the NDVI and all other tested SI in assessing most of the senescence dynamics parameters investigated here. Importantly, the observed correlations were stable across the three years. A comparison of experimental plots for which NDVI-derived Onsen strongly differed from the scoring-derived Onsen with RGB images suggested that this might be largely due to canopy structural effects such as leaf angles, spike geometry and spike orientation. This is illustrated in Figure 6 for two contrasting example plots, sown respectively with a genotype with changing spike orientation during grain filling (Figure 6, right) and a genotype with relatively stable spike orientation (Figure 6, left).




Figure 5 | Dynamic pattern of scaled spectral indices (in grey) and visual canopy senescence scores (in green; identical in all subplots) over thermal time after heading. Mean linearly interpolated values over all experimental plots of the 2016 experiment (thick lines) and their standard deviations (thin lines) are shown. Dashed lines mark the thresholds defined as onset, midpoint and end of senescence.




Table 2 | Pearson correlation (*p < 0.05; **p < 0.01; ***p < 0.001) between the senescence dynamics parameters derived from visual scorings and spectral indices, mean deviation in GDD between the derived parameters, and the total error throughout the entire process.






Figure 6 | Time courses of PSRI, NDVI (nadir view) and visual scorings (whole plot, 45° viewing angle) for two experimental plots of the 2018 experiment. Left: Genotype with changing spike orientation during grain filling. With time, spikes make up an increasingly dominant part of the image. Concomitantly, NDVI values decrease early in the grain filling phase, while visual scorings indicate no change in canopy greenness (evidenced by red arrow). Right: Genotype characterized by relatively stable spike orientation during grain filling and comparable NDVI, PSRI and scoring time courses (evidenced by red arrow); Letters A-F in the upper part of the Figure represent time points when corresponding images were taken. Images were taken by the field phenotyping platform (FIP, Kirchgessner et al., 2017).





Full-Spectrum Models Are Environment-Specific

We aimed to develop a further optimized spectral model to track wheat canopy senescence exploiting the full spectrum. Both tested algorithms resulted in significantly improved predictions of senescence scorings compared to the best SI for held out samples of the same year. This resulted in smaller errors in tracking the entire process (Tables 2 and 3).


Table 3 | Within-year and across-year validation results for partial least squares regression (PLSR) and cubist regression models.



Cubist regression models performed better and reduced the RMSE by an average of 0.2 with respect to the PLSR models (Table 3). Overall, PLSR-derived senescence dynamics parameters were not higher correlated with scoring-derived parameters than the SI-derived parameters (Table 3). In contrast, cubist produced better estimates of Onsen, Midsen, and Endsen and outperformed the SI in most cases. The difference between algorithms was particularly ample in 2016. However, when models were validated across years, correlations were drastically reduced in many cases. Major differences were found for accuracy in predicting all senescence dynamics parameters, depending on which year(s) were used for training and validation, respectively. Generally, adding a second year to the training data did not substantially improve model performance on samples of the held out year. In some cases, the correlations were even negatively affected by adding additional training data, especially when PLSR was used. Commonly observed problems were (i) remaining non-linearity in the predicted vs. observed regressions, particularly for PLSR (Figure 7A), and (ii) year-specific bias in the predicted vs. observed regression (Figures 7A, B). Neither data type or pre-processing procedure was clearly and consistently superior to another. Notably, the year-specific bias could not be removed by using first derivatives or continuum-removed spectra.




Figure 7 | Example of model within-year and across-year validation results. Predictions of senescence scorings obtained from full-spectrum models are plotted against the visual scorings (observed). Here, averaged reflectance spectra were used, and the data was mean-centered and scaled to unit variance prior to modeling. Data from the 2017 experiment was used for model training. Models were validated on held-out samples of the same year (within-year validation, red) as well as on samples from the 2018 experiment (across-year validation, cyan). The full dataset was used for model training, i.e. no down-sampling was performed, whereas validation datasets were randomly down-sampled. (A) Results for partial least squares regression; (B) Results for cubist regression.



Near-optimal models could be created using six to eight wavelengths for 2016 and 12 to 14 wavelengths for 2017 and 2018 (Figure 8A). In all years, most of the commonly selected wavelengths were contained in the 650 nm to 800 nm range (Figure 8B). However, there were some obvious differences between 2016, on the one hand, and 2017 and 2018, on the other hand. Models for 2016 frequently used several wavelengths between 720 and 770 nm, whereas models for 2017 and 2018 relied more heavily on the region from 670 to 720 nm, i.e., the chlorophyll absorption maximum and the red edge. Models for 2016 used a combination of R677 and one wavelength in the NIR (most often 764 nm or 767 nm) as the top two predictors in all 30 resamples, and this combination contained most of the spectral information (Figure 8A). Contrarily, models for 2017 and 2018 used several wavelengths (typically 3–6) in the range from 677 nm to 695 nm before including a wavelength in the NIR or around 575 nm. Given the limited potential of full-spectrum models to infer senescence dynamics across years, we aimed to optimize the PSRI to the case of wheat canopy senescence and identify the factors driving its temporal dynamics. For this purpose, we simplified the PSRI to a simple ratio index and searched the spectrum for optimal waveband compositions for these simple ratio indices as well as for the original 3-band PSRI formula (Figure 9). The 750 nm waveband in the denominator of the PSRI is at the upper limit of the red edge. Moving R750 towards R800 did not significantly affect the accuracy of the index, whereas moving it into the red edge affected it negatively (Figure 9, upper left panel). Thus, similarly to the NDVI, the PSRI appears to be driven largely by chlorophyll absorption and canopy structure. However, omitting R500 from the PSRI (i.e. reducing the PSRI to a simple ratio index R678/R750) resulted in a decrease of its accuracy (Figure 9, lower left panel). Substituting R500 by neighboring wavelengths had little effect, although a small improvement was observed when replacing R500 by R525 (Figure 9, upper right panel).




Figure 8 | (A) Performance of the cubist regression models to predict visual senescence scorings depending on the number of wavelengths used as predictors. Mean performance as measured by the RMSE of predictions and standard deviations are shown based on 30 resamples of the data. (B) Frequency of wavelengths resulting among the most informative to predict visual scorings of canopy senescence. Frequencies denote the number of times out of 30 resampling iterations in which a given wavelength was retained in the cubist regression model down to a subset size of 12 wavelengths during recursive feature elimination. Only wavelengths which were among the top 12 predictors in at least 10% of the resamples (i.e. in at least 3 resamples, marked by the dashed horizontal line) are shown. The grey line represents the mean reflectance spectrum of canopies with a visual scoring of 8 (early senescence).






Figure 9 | Correlation-based sensitivity analysis of the spectral bands (500, 678 and 756) constituting the PSRI. The “x” in the SI formula denotes the reflectance at the waveband that was varied in the depicted range.





Grain Yield and Grain Protein Concentration Correlate With Senescence Dynamics

Simple linear regression models suggested the presence of significant, albeit rather weak, linear phenotypic correlations between senescence dynamics and GY and GPC in all years (Table 4). The strongest linear correlation was found between the PSRI-derived onset of senescence and GY in 2016 (r = 0.369, p < 0.001) which was slightly higher than the linear correlation between scoring-derived midpoint of senescence and GY (r = 0.365, p < 0.001) and significantly higher than the correlation between NDVI-derived onset of senescence and GY (r = 0.311, p < 0.001). A significant linear correlation was also found between Tsen derived from several SI and GPC in 2016 (r = −0.297, p < 0.001 for NPCI). In 2017 and 2018, there was only a weak (r < 0.19) linear correlation between senescence dynamics parameters and GY and GPC. In these years, scoring-derived parameters were always among the three most highly linearly correlated senescence dynamics parameters for both traits.


Table 4 | Correlation (**, p < 0.01; ***, p < 0.001) between senescence dynamics parameters and grain yield (GY) and grain protein concentration (GPC) in different years.



Heading date correlated negatively with the duration of the stay-green phase. The strongest correlation was observed in 2016, when the correlation between stay green and GY was also strongest. However, multiple linear regression suggested a significant effect of stay green duration on GY even when accounting for heading date, whereas heading date did not have a significant effect on GY (Supplementary Table 2). Both heading date and stay green correlated negatively with GPC in both years (2016 and 2017, Supplementary Table 2). Thus, it seems that senescence dynamics had a direct effect on GY and GPC in our experiments.



Visual Senescence Scorings Accurately Track Senescence-Related Processes Affecting Final Grain Yield

Given the phenotypic correlations between senescence dynamics parameters and GY and GPC in all 3 years, recursive feature elimination was performed for each trait × year combination. Performance of the models with a given subset size differed across years (Figure 10A). Multiple SI improved the prediction accuracy for GY and GPC as compared to single SI (Figure 10A). However, after inclusion of two to three features, mean model performance levelled off rapidly. In addition, there was significant variance in model performance estimates and feature ranks across resamples (Figures 10A, B). Feature ranks showed lower variance in 2016 for both GY and GPC models, whereas in 2017 and 2018, there was considerable variance across resamples (Figure 10B). The most important feature in the 2016 GY model (i.e. midsen derived from the Gompertz model fitted to visual canopy senescence scorings) had an average rank of 1.40 (±0.97), indicating that it was consistently retained as the most predictive feature. For the 2017 GY model, the most important feature had an average rank of 4.10 (±5.57) and for the 2018 GY model, it had an average rank of 5.83 (±4.77), indicating much lower consistency across resamples (data not shown). In the GY model for 2016, features derived from the visual scorings were clearly the most predictive (Figure 10B). The features derived from the non-linear fit of visual canopy senescence scorings had lower ranks than the corresponding feature derived from linear interpolations, except for Endsen, for which the features had almost identical ranks. SI-derived features had much higher mean ranks than scoring derived features. The lowest ranked SI-derived features were derived from the mND705, the PSRI, the NDRE, the REIP, and the VARIgreen. No Tsen parameters were among the top 15 features of the GY models for any year, suggesting that the duration of senescence as assessed here did not affect GY in any experiment. Feature ranks were quite unstable across years, particularly for the GY models. In contrast to the GY models, no scoring-derived features were among the most important features in the GPC models. Instead, features derived from the PSND4 and the PRInorm had relatively low mean ranks in both years. This was in strong contrast to the results of the simple regressions, which suggested mainly a negative correlation between the duration of senescence and GPC in 2016 and a negative correlation between visually assessed stay-green and GPC in 2017 (Table 4).




Figure 10 | (A) Performance of the random forest regression models to predict grain protein concentration (GPC) and grain yield (GY). Mean performance and standard deviation are shown based on 30 resamples of the data for models containing a decreasing number of features selected by recursive feature elimination. (B) Feature ranks as determined by recursive feature elimination. Mean feature rank and standard deviation are shown based on 30 resamples of the data for the top and lowest 15 features, separated by the broken line. Features are plotted according to their descending mean rank in the 2016 models.






Discussion


Large Genetic Variability in Senescence Dynamics and Minor Effects on Grain Yield and Grain Protein Concentration

Within-year repeatability of Onsen, Midsen and Endsen was moderate to high for scoring and SI-derived parameters, which is in line with previous reports (Blake et al., 2007; Lopes and Reynolds, 2012; Crain et al., 2017). Within-year repeatability of Tsen derived from some SI was similar, but was nearly zero for visual scorings (Table 1). This suggests that the duration and the rate of the senescence process is more accurately estimated using specific SI.

In this study, a positive correlation between the duration of the stay-green phase and GY was observed in all years. However, a strong correlation was found only in the wet season of 2016, whereas in the relatively dry and hot seasons of 2017 and 2018, correlations were weaker (Table 4). This is somewhat unexpected, as drought and heat stress are likely to anticipate and accelerate senescence (Gregersen et al., 2013). This could result in source-limited GY and therefore enhance differences in GY between stay-green and early senescing genotypes (Borrás et al., 2004). In 2016, visual senescence scorings were affected by foliar diseases, mainly STB. It seems likely that disease symptoms affected senescence scorings particularly during the late stay-green phase. High levels of STB can reduce GY significantly (reviewed by Fones and Gurr, 2015). Thus, differences in STB severity likely contributed to the observed correlation between visually assessed senescence dynamics and GY. Another possibility is that the phenotypic correlation between senescence dynamics and GY in 2016 arose at least in part from pleiotropic effects. Bogard et al. (2011) demonstrated that phenotypic correlations between senescence dynamics and GY were mainly related to differences in flowering date in a doubled haploid mapping population. In our experiments, heading date was significantly correlated with the duration of the stay-green phase, but effects on yield were not statistically significant. This highlights that, in addition to facilitating the investigation of direct effects of secondary trait dynamics on primary traits, the implementation of high throughput phenotyping protocols may equally benefit the elucidation of such pleiotropic effects. A detailed understanding of such interdependencies is paramount to improve genetic crop models and fine tune dynamic traits in breeding (Chenu et al., 2009; Chenu et al., 2017). It should also be understood that such aspects will have to be taken into account when investigating the genetic determinants of senescence dynamics. In the subsequent sections, we discuss the results of different approaches to phenotype senescence as a dynamic trait.



Spectral Indices Emphasizing Reflectance in the Visible to Near-Infrared Range Accurately Track Canopy Senescence Dynamics

Regular NDVI measurements have been used by several authors to evaluate stay-green, mainly under drought conditions (Lopes and Reynolds, 2012; Christopher et al., 2014; Christopher et al., 2016; Montazeaud et al., 2016; Christopher et al., 2018). In this study, the PSRI gave a better representation of visually recorded canopy senescence dynamics than the NDVI. The dynamics of the SI suggest that the accuracy of the NDVI is not primarily hampered by saturation effects, as it tends to decrease earlier than the PSRI (Figures 5 and 6).

At the leaf scale, the PSRI specifically measures changes in pigment composition by comparing the reflectance at 500 nm, which is controlled by the combined absorption of chlorophyll a, chlorophyll b and carotenoids with absorption at 678 nm, which is controlled by chlorophyll a only (Merzlyak et al., 1999). Major changes in pigment composition have been observed for flag leaves of field-grown wheat plants after about 20 days post-anthesis (Lu et al., 2001). These changes in pigment composition coincided with the onset of a steep decrease in total chlorophyll content and thus probably with the onset of chloroplast dismantling, which marks the beginning of senescence (Lu et al., 2001; Havé et al., 2017). Therefore, it appears plausible that the PSRI is indicative of wheat canopy senescence. However, unlike at the leaf scale, R750 changes drastically during senescence at the canopy scale (Figure 4A). Thus, PSRI values at the canopy scale are strongly driven by R750. Reflectance in the NIR is dominated by leaf area index among other canopy structure parameters (Jacquemoud et al., 2009). Based on a comparison with RGB images, we hypothesized the PSRI to be less sensitive to variation in canopy structure than the NDVI. The NDVI is highly sensitive to canopy structure, as R800 is one of two constituting wavebands. Canopy structure may change drastically prior to and during senescence. For example, leaf-roll can be induced by water shortage resulting in major canopy structural changes and an increased contribution of soil reflectance that is not necessarily related to senescence. Furthermore, changes in spike geometry are likely to interfere with the retrieval of biochemical information. Both factors strongly affect reflectance in the NIR, while reflectance in the VIS is less affected (Gutierrez et al., 2015). It appears that the inclusion of a second waveband in the VIS stabilized the PSRI against canopy structural effects during early senescence (Figure 6).

The relatively low sensitivity of the observed correlations between the PSRI and visual canopy senescence dynamics to shifts in the constituting wavebands suggests that multispectral information is sufficient to obtain accurate estimates of canopy senescence dynamics. This makes the trait amenable to phenotyping using multispectral cameras which can be mounted on unmanned aerial vehicles (Aasen et al., 2018; Aasen and Bolten, 2018). This would greatly facilitate large-scale screenings and frequent measurements. Such large-scale screenings and a high temporal resolution of measurements are likely to be the primary benefits of digital phenotyping of senescence dynamics in the near future.



Non-Linear Models Outperform PLSR in Tracking Senescence Dynamics, but Are Similarly Environment-Specific

Full-spectrum models improved the inference of visual senescence scorings from spectral data as compared to the best SI, but their power to track senescence dynamics was limited by the extraction of year-specific relationships between reflectance and scorings, and, in the case of PLSR, by their inflexibility to capture non-linear relationships between spectral reflectance and visual scorings. Such non-linearities likely arise from the fact that senescence is a complex process, during which major physiological and structural changes at the leaf and canopy scales occur sequentially or simultaneously with most of them having strong but contrasting effects on the reflectance characteristics of plant canopies. Such changes include chlorophyll degradation and changes in pigment composition, loss of cellular structure, mesophyll breakdown and water loss at the leaf level (Gitelson and Merzlyak, 1994) as well as a reduction in leaf area index and ground cover, changes in leaf and spike geometry, nutrient redistribution to the spikes and water loss at the canopy level.

PLSR failed to accurately track visually observed senescence dynamics in our experiment, and was outperformed by several SI, even when validated on held out samples of the same experiment. Kipp et al. (2014) found no stable relationships between various types of SI and flag leaf color, but reported a good predictive performance of PLSR models. This is not necessarily in contradiction to our observations, since we also found improved prediction of visual senescence scorings when exploiting the full spectrum. However, our objective was not to predict absolute values of greenness, but to track temporal changes throughout the process of senescence and extract parameters that describe these dynamics. Therefore, we scaled both scorings and spectra-derived predictions to a uniform range and only exploited the relative temporal changes (Figure 2, upper panel). With this intermediate step, we eliminated initial and terminal differences across genotypes or experimental plots, which can have multiple origins and interfere with the retrieval of dynamics parameters and measures of overall accuracy. The increase in accuracy of cubist compared to PLSR models was paralleled by an increased across-year applicability of the models on average, indicating that the problem of year-specific modeling was not exacerbated by using a more flexible algorithm.

In general, the RMSE of the cubist models was low (<0.7 in 2017 and 2018). We speculate that this is close to the performance ceiling set by the precision of visual scorings. Achieving substantial improvements by further optimizing the models seems therefore unlikely. Rather, more precise ground truth data would be required. Visual scorings are subjective and limited in tracking small changes between assessment time points. SPAD meter or color measurements have been used by other authors (e.g. Kipp et al., 2014; Xie et al., 2016). These tend to be more objective, more sensitive to subtle changes and relate more directly to a physiological trait. On the other hand, they sample only a small part of the leaf and are laborious to obtain. Also, senescence typically does not progress uniformly along the leaf, resulting in difficulties to obtain a good average value per plot. Thus, in our opinion, these measurements do not produce better average values per plot than a visual scoring. Furthermore, small gains in precision need to be weighed against the necessity of sampling a sufficiently large genotypic diversity at a high temporal resolution in several years/environments to achieve robust models, as illustrated above.



Model Transferability Is Strongly Related to Differences in Environmental Conditions

We found major differences in the applicability of models across years. In particular, the dynamics of visual scorings in the 2016 experiments were very poorly predicted by models trained on 2017 and/or 2018 data (Table 3). Furthermore, models trained and validated within the 2016 experiment performed poorly compared to the other two years. This could be due to the different measurement protocol applied in 2016. Interestingly, however, models trained using data from 2016 performed well in 2017 and 2018. Therefore, it seems more likely that limited model applicability in 2016 is at least in part a consequence of a larger variability in how progression of senescence affected hyperspectral reflectance across genotypes in this year. In the same experiment and during the same period, major differences were found for STB severity among genotypes and STB was the dominant disease throughout the stay-green phase (see Karisto et al., 2018 for details). In contrast, in 2017 and 2018 foliar diseases were at very low levels due to dry weather conditions. Several STB severity metrics were found to affect spectral reflectance in 2016, with strong effects particularly in the NIR (see Yu et al., 2018 for details). We therefore hypothesize that STB altered the temporal evolution of the hyperspectral reflectance signal during the late stay-green and early senescence phases with respect to disease-free plots. Assuming that STB also affected the visual canopy senescence scorings at least during early senescence, this would explain the strong contribution of wavebands in the NIR to models in 2016 (Figure 8B). The results of the SI dynamics seem to offer some additional support for this hypothesis. Indeed, the difference in accuracy between the PSRI and the more generic NDVI in tracking visually assessed senescence is relatively small in 2016 as compared to 2017 and 2018 (Table 2). This suggests that changes in pigment composition were not much better indicators of senescence in 2016 than was a generic indicator of greenness such as the NDVI. Leaves affected by STB develop necrotic lesions, but do not undergo controlled dismantling of the photosynthetic apparatus resulting in the typical changes in color and in pigment composition probably contributing to the increased performance of the PSRI. Finally, the difference between performance of PLSR and cubist was particularly large for 2016 (Table 3). Under the scenario that STB affected overall greenness in the late stay-green and early senescence phase (see above) this pattern is to be expected, since STB should affect the spectral reflectance in a different manner than physiological senescence, which will dominate in later phases, increasing the non-linearity between spectral reflectance and visual senescence scorings through the entire process. We hypothesize that repeated hyperspectral reflectance measurements during late stay-green and throughout senescence might allow to distinguish purely physiological senescence from partly disease-driven loss of green leaf area, and facilitate an indirect assessment of disease resistance in field-grown wheat at high throughput.



Digital Senescence Phenotyping May Benefit Crop Breeding Primarily Through Increased Temporal Resolution and Throughput of Measurements

Relatively strong linear correlations were observed between senescence dynamics parameters and GY and GPC in 2016 and results from feature selection are most conclusive for this year. Increases in model performance could be observed both for GY and GPC in 2016 when using multiple features and the obtained feature ranks were relatively stable across resamples. For GY, the most important features are either directly derived from visual senescence scorings of the canopy or from SI that were found to predict these scorings well (Table 2). Specifically, Endsen derived from NDRE is highly correlated to Endsen derived from visual scorings (r = 0.73), mND705 was found to be most accurate to predict Midsen (r = 0.81), followed by the PSRI (r = 0.76). NDRE and mND705 have been developed to improve sensitivity to chlorophyll content with respect to the NDVI (Barnes et al., 2000; Sims and Gamon, 2002). This is achieved primarily by replacing the reflectance in the red by reflectance in the red-edge, which is less prone to saturation at high chlorophyll contents of leaves and vegetation and more robust in presence of leaf or canopy structural effects (Demetriades-Shah et al., 1990; Gitelson and Merzlyak, 1994; Sims and Gamon, 2002).

The low average feature ranks of visual canopy senescence scorings and SI that accurately track these scorings suggest that the dynamics of chlorophyll breakdown was most predictive of GY, and that this trait could be assessed with a high precision using visual scorings or the proposed SI. This can be well explained, as the onset of chlorophyll breakdown marks the onset of remobilization and the end of photo-assimilation, thereby directly affecting source capacity. However, several additional conclusions can be drawn from these findings.

First, it can be concluded that feature selection on time courses of multiple SI resulted in the identification of features most strongly associated with GY and describing a dynamic trait interpretable in terms of plant physiology.

Second, given that no SI-derived feature was more predictive of GY than scoring-derived features, we conclude that potential precision gains in estimating the switch from stay-green to remobilization using hyperspectral high throughput phenotyping techniques rather than visual scorings may be limited. It should be noted, however, that most of the SI used in this study were not developed for use in wheat canopies during senescence, and only few of them have been tested for their applicability during this growth stage (Erdle et al., 2013; Barmeier and Schmidhalter, 2017; Hassan et al., 2018). Significant relationships seem to be maintained during later growth stages, but tend to be unstable across stages (Erdle et al., 2013). Nonetheless, we assume that the selected features summarize a considerable part of the total information contained in hyperspectral measurements during this phase. We further conclude that visual scorings apparently allow assessing a key trait during senescence in a reliable manner. Further research should therefore aim at understanding the factors hampering across-year applicability of otherwise successful full-spectrum models to infer senescence scorings and how these factors can be accounted or corrected for. A method to obtain highly accurate training data of canopy greenness will also be required to achieve good predictive models. Additionally, the lower mean ranks of PSRI-derived features and higher linear correlation coefficients between PSRI-derived features and GY provide additional evidence for the superior precision of the PSRI compared to the NDVI.

Third, in a first step, improvements in precision may be achieved mainly by increasing the temporal resolution of measurements. The higher ranks of features derived from the parametric models are likely the result of the smoothing properties of non-linear model fits, better approximating the gradual nature of the senescence process and reducing the impact of measurement or scoring errors associated with a particular time point on the estimation of dynamics parameters. In addition, parametric models would also allow for the derivation of measures that better separate distinct characteristics of the senescence process. In particular, the derivation of a parameter describing specifically the rate of senescence or any process occurring during senescence, could be highly beneficial to elucidate effects of senescence dynamics on primary traits, particularly GPC and nitrogen use efficiency, but also GY (Gregersen et al., 2008; Wu et al., 2012; Kong et al., 2016; Xie et al., 2016). In contrast, the Tsen parameter used here is partly reflected by the other parameters since it was derived by subtracting Onsen from Endsen. It also integrates over the whole process, which may be overly simplistic and may not adequately represent senescence dynamics observed at the leaf or canopy scale (Bogard et al., 2011; Gaju et al., 2014).

Several of the selected features had relatively low linear correlation coefficients whereas some other highly ranked features also had high linear correlation with GY. Thus, it seems that rf extracted some non-linear relationships between features and GY, and these seemed to be more predictive of GY than the linear correlations found for some features. Unfortunately, the final rf model is not interpretable due to its ensemble nature. We chose rf as a base learner for feature selection (i) because it is affected much less by the presence of non-informative predictors and multi-collinearity among predictors than parametrically structured models, (ii) for its capability to capture non-linear relationships between predictors and the response and interactions between predictors which could not be excluded in our case and, most importantly, (iii) precisely because of its ensemble nature that allowed it to produce stable variable importance rankings even in the presence of highly collinear predictors and consequently facilitated the removal of the less important one during subsequent feature elimination steps. We recognize that this may have come at the cost of less-than-optimal performance in the presence of strictly linear relationships between predictors and the response and might, in some cases, have resulted in the extraction of relationships that are difficult to interpret in terms of plant physiology or phenology. However, the fact that the scoring and PSRI-derived features were among the most highly ranked features, while we also found high linear correlations suggests that these weaknesses of the rf algorithm should have impacted the result only marginally.

The above observations could not be confirmed in 2017 and 2018 in spite of the fact that simple linear regressions suggested that visual scorings and corresponding SI were again among the most predictive features (Table 4). It seems likely that the overall effect of senescence dynamics on GY and GPC was too weak in 2017 and 2018, which would also explain the increased variability of feature ranks across resamples. In the presence of small effects and under the hypothesis that the correlations between features and responses are close to linear, the results of linear regressions may be more reliable.

Finally, it should be noted that our analysis was based on the observation of a phenotypic correlation between senescence dynamics parameters and primary traits. We did not observe a significant effect of heading date on GY. Nevertheless, it cannot be excluded with certainty that this phenotypic correlation arose primarily as a result of pleiotropic effects, and this might have affected our conclusions. Subjecting genotypes to very harsh conditions post-anthesis is likely to accentuate direct effects of senescence dynamics on primary traits, enabling a more precise evaluation of the potential benefits of a high spectral resolution during late development.




Conclusions

Using existing variability in senescence dynamics for wheat improvement requires intensive field-testing of large populations in contrasting environments. We hypothesized that repeated spectral reflectance measurements may facilitate an accurate assessment of this developmental phase at high throughput. Our results show that time series of the PSRI accurately track visually observed canopy senescence dynamics across a large number of genotypes and under varying environmental conditions. When a substantial effect of senescence dynamics on GY was present, correlations between scoring-derived and PSRI-derived senescence dynamics parameters and GY were very similar. We therefore conclude that visual scorings could be replaced by PSRI measurements without a significant loss in precision. On the other hand, the high spectral resolution of measurements did not confer significant advantages over visual scorings or measurements of a single spectral index in our experiment. This is encouraging for the breeding and plant-phenotyping community, since it implies that senescence dynamics may be accurately tracked using less sophisticated and potentially cheaper spectral sensors. Thus, we conclude that digital senescence phenotyping will benefit wheat breeding through an increased temporal resolution and high throughput of measurements.
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Introduction

In recent decades, the interest has grown to quantify the green area index as one of the key characteristics of crop canopies (e.g. for modelling transpiration, light interception, growth). The approach of estimating green area index based on multispectral reflection data from unmanned airborne vehicles with lightweight sensors might have the potential to deliver data with sufficient accuracy and high throughput during the whole season.



Materials and Methods

We therefore examined the applicability of a recently launched drone-based multispectral system (Sequoia, Parrot) for the prediction of whole season green area index in winter wheat, with data from field trials in Northern Germany (2017, 2018 and 2019). The explanatory power of different modeling approaches to predict green area index based on multispectral data was tested: linear and non-linear regression models, multivariate techniques, and machine learning algorithms. Further, different predictors were implemented in these models: multispectral data as raw bands and as ratios. Additionally, a new approach for the evaluation of green area index predictions during senescence is introduced. It is shown that a robust calibration during growth phase is applicable during senescence as well.



Results and Discussion

A linear model which includes all four wavebands provided by the sensor in three ratios (VIQUO) and a Support Vector Machine (SVM) algorithm allow a reliable and sufficiently accurate whole season prediction. The VIQUO-model is recommended as the best model, as it is precise but still relatively simple, thus easier to communicate and to apply than the SVM. The integrated values of predicted green area indices in an independent trial are highly correlated with their final biomass (R2: VIQUO = 0.84, SVM = 0.85) which represents the process of radiation interception, one of the determining factors of growths. This is an indicator for both, a robust model calibration and a high potential of the tested multispectral system for agricultural research and crop management.
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Introduction

In agricultural science, the monitoring of canopies throughout the growing season is of major concern to understand, predict, and manage crop growth. A fundamental parameter of canopies is the green area index (green plant area per ground area; GAI), which plays a central role in the processes of radiation interception and transpiration by vegetation. Because GAI changes continuously from sowing to harvest, sequenced measurements are necessary. For this purpose, non-destructive methods are advantageous. Additionally, applications in precision agriculture and the phenotyping of large plant material collections require the measurement of large areas in feasible time. Both demands are fulfilled by remote spectral sensors (Salamí et al., 2014).

Since the first introduction of remote sensing data for the satellite driven surveillance of vegetated areas, this field of research has developed significantly (Weiss et al., 2020). In the same time, new scopes of application of spatial data have emerged. It became quickly evident that satellite sensors cannot meet all requirements of remote sensing applications, due to insufficient spatial and temporal resolution. To overcome these restrictions, new platforms for complemental or alternative data acquisition were introduced (e.g. onboard traction-engine, airplanes) (Zecha et al., 2013).

First developed for military applications (Majumdar et al., 2001; Beard et al., 2006), unmanned aerial vehicles (UAV) turned in focus of civilian remote sensing with special attention in the domain of agriculture (Salamí et al., 2014). With their measurement distance between ground (tractor, handheld) and satellite, UAV can reach both, high ground coverage as well as high spatial resolution. Furthermore, they are independent of cloud cover (in contrast to satellites) and are in some environments the only opportunity to reach sufficient temporal resolution within certain time periods during season. Considering these features, UAVs might be the most promising carrier systems for airborne spectral sensors in agricultural research and precision agriculture (Puri et al., 2017; Raparelli and Bajocco, 2019; Tsouros et al., 2019).

Despite the high spatial resolution of UAV-data, there are still a lot of factors influencing the spectral reflectance signal, such as soil background and radiation conditions. To compensate this spectral variability, it is common practice to associate crop characteristics not only with one spectral band, but with at least two, merged into a vegetation index (VI) (Tucker et al., 1981; Baret and Guyot, 1991; Verger et al., 2014).

In recent decades, a high number of VIs have been developed to characterize different crop characteristics. The certainly most popular VI is the normalized difference vegetation index (NDVI) by Rouse et al. (1974), combining the spectral range of red with the near infrared (NIR). The NDVI has been shown to be sensitive to different crop characteristics, such as leaf area index (LAI), GAI, dry matter, and nitrogen content (e.g. Serrano et al., 2000; Lelong et al., 2008; Berni et al., 2009; Mistele and Schmidhalter, 2010; Nebiker et al., 2016; Ni et al., 2017). However, it is a known fact that the sensitivity of the NDVI towards these crop characteristics is heavily dependent on the degree of soil coverage, being insensitive above a LAI of 2–3 m2 m-2 (Serrano et al., 2000; Haboudane et al., 2004; Pinty et al., 2009; Viña et al., 2011). Thus, for the most crops the NDVI cannot provide information for a long time in the vegetation period. Several newly developed VIs are more or less able to compensate this saturation effect, but are still subject to a number of influences restricting their usability through the whole growing season and on different sites, such as different species, growth stages, the process of senescence, site- and year-effects (e.g. Gitelson et al., 2003; Serrano et al., 2000; Li et al., 2010).

In recent time, new, multivariate methods as well as non-linear algorithms have been introduced in the calibration of spectral data to crop data, such as Partial Least Squares Regression (Höskuldsson, 1988) or Support Vector Machines (SVM) (Burges, 1998). As a consequence of this broad field of different VIs, used spectral bands, different multispectral sensors, and different prediction models, the best way to use a spectral sensor for the prediction of any canopy characteristic might be reassessed separately for each new sensor model.

Therefore, the objective of this study was to develop an easy-to-handle, reliable UAV-based approach to predict whole season GAI of winter wheat which could usefully be transferred into precision agriculture and support agricultural research. For this purpose, a recently launched low to medium cost UAV-based multispectral system was deployed, namely the Parrot Sequoia sensor.

The focus was on the questions: (1) Is the Sequoia sensor providing sufficiently meaningful multispectral images for the monitoring of winter wheat growth on plot level? (2) How can the data be used best for the prediction of the crop characteristic GAI? (2a) Can one calibration approach for GAI be employed throughout the whole growing season? (2b) Are the VI-based approaches excelled by the new multivariate methods?



Materials and Methods


Study Site and Trial Design

Data acquisition was conducted during three years (growing seasons 2016/17, 2017/18 and 2018/19) at the Hohenschulen Experimental Farm (10.0 E, 54.3 N, 30 m a.s.l.) of the Kiel University, located in Northern Germany. The long-term average temperature is 8.9°C, the precipitation average 788 mm (Deutscher Wetterdienst, 2013). The site is characterized by a small-scale heterogeneous soil, the main soil type being a pseudogleyic sandy loam.

Destructive sampling for sensor calibration was conducted as additional measurement in different ongoing trials. In the growing season 2016/17, data were collected within Trial A and Trial B, in 2017/18 in Trial B and Trial C and in 2018/19 only in Trial C. Trial A is a four-field rotation since 2003, with winter wheat following winter oilseed rape. Four different nitrogen levels are tested in interaction with four different cultivars in four replications (Table 1). Trial B and C are experimental sites, placed each year on a different field. In Trial B four different sowing densities of four cultivars are examined whereas in Trial C six cultivars and two nitrogen levels are tested (Table 1). Except the treatments mentioned, the wheat crops were managed according to regional farmer’s practice.


Table 1 | Different treatments of the three field trials.





Data Collection

The following sections (GAI Reference Measurement up to Advanced Predictive Models) describe the process from data collection through data processing to model calibration and evaluation. To clarify the procedure, it is illustrated schematically in Figure 1.




Figure 1 | Flowchart of the process of data collection, data processing, model calibration, and model evaluation (CV, cross validation; GAD, green area duration; MAE, mean absolute error; RMSE, root mean square error; VI, vegetation index).




GAI Reference Measurement

At every sampling date (Table 2), three replications of the respective trial were sampled, hence 48 plots. In every plot, the aboveground plant material of an area of 0.25 m² was withdrawn and its BBCH stage (Lancashire et al., 1991) was scored. The fresh matter was fractionized into leaf, stem, ear, and senescence. The category senescence comprised all fresh matter no longer considered as green and was the only fraction not being included in the calculation of the GAI, wherefore the LAI, Stem Area Index and Ear Area Index were determined using a LiCor 3100 leaf area meter (LiCor Inc., NE, USA).


Table 2 | Sampling dates and the most frequent BBCH stage (mode).



On August 07, 2017 and on July 17, 2018 ripening was considered as terminated (BBCH 92), thus, at these dates a GAI of 0 was assigned to each plot of the relevant trial. Spectral data from the bare ground of the plots from Trial A at August 29, 2017 were included in the dataset as well.

A description of the GAI-course during the senescence by destructive sampling and measurements of the green area is not possible as the differentiation between green and senesced plant material is not clearly defined and because, in parallel to this zonal process, a gradual degradation of chlorophyll takes place. The concept to evaluate GAI-predictions during this development stage is further specified in Further Evaluation of GAI-Models.



Reflectance Measurements

Every sampling date was accompanied by an overflight with an UAV-based multispectral camera within at most three days. The plant development during this time span was considered as negligible, thus no interpolation techniques (as for example used by Broge and Mortensen, 2002) were applied. An overflight after the sampling was in each case used to know at which position the samples were taken exactly, by visual determination of the additional hole in the canopy. For further evaluation of the GAI-models, 14 additional overflights on Trial C in the season 2017/18 were made (April 04, April 16, April 23, May 03, May 16, May 22, June 01, June 06, June 12, June 20, June 26, July 05, July 13, July 17).

The UAV applied was an eBee by senseFly, a micro aerial vehicle (following the classification of Allen et al., 2011), with fixed wings and automatic flight manager. It served as carrier system for the Parrot Sequoia camera (Parrot Drones SAS, France, Paris), a multispectral sensor which records simultaneously images in four reflection-bands; green (550 nm), red (660 nm), red edge (RE, 735 nm), and near-infrared (NIR, 790 nm). Besides RE, all reflection-bands have a bandwidth of 40 nm, RE just of 10 nm. The Sequoia camera has an incoming light sensor and provides therefore fractional reflection values regarding the incoming radiation. Before each flight, images of a grayscale target were made for radiometric calibration.

The software eMotion3 from senseFly was used as flight manager. Every position on the ground was at least photographed five times to ensure a sufficient data quality. The chosen resolution was 8 x 8 cm pixel-1. All images were preprocessed in the post flight-manager of eMotion 3 and afterwards imported and processed using the Pix4Dmapper software (Pix4D SA., Switzerland). On days with fast moving clouds, a manual screening of the images was conducted to exclude those images containing both, regions with cloud shadow and full sunlight. The results were four orthogonal reflection maps, one for every waveband. The extraction of the reflectance data of the sampling spots was undertaken in QGIS version 3.8.0 (QGIS Development Team, 2018), whereby all pixels of a sampling spot were summarized as median.

With a RTK-enabled eBee, it is possible to include RINEX-files (Receiver Independent Exchange Format) in the post-flight-processing in eMotion 3. If this function was not available, the reflectance maps were georeferenced manually using the Georeferencer Plugin in QGIS.





Model Calibration


Data Sets

At the very beginning, plots assessed as compromised in any manner (e.g. strong weed abundance, damages by game, lodging) were excluded of further consideration. This affected especially Trial B, as in 2017 the data of the whole sowing density 50 K m-2-treatment were sorted out due to strong weed abundance and the data of sowing density 400 K m-2 of the cultivar Solehio after early July due to lodging. In 2018 in Trial B, problems in crop establishment of the cultivar Dekan and additional waterlogging stress led to too little sampling material in the lowest sowing density variant at the end of May and in the two lowest sowing density variants in June.

Considering GAI, values above 7 m² m-2 were excluded from the dataset because under local growing conditions these high values do never occur as a treatment mean and they were considered as more harmful then useful for calibration purposes (concerns six samples of the calibration dataset and one of the evaluation dataset). Furthermore July 18, 2017; June 27, 2017 and June 11, 2018 were omitted from GAI-dataset as the process of senescence had already started (see GAI Reference Measurement).

Finally, the data from Trial A and Trial B (2016/17 and 2017/18) were combined to form one single calibration dataset, covering a broad spectrum of GAI-values, crop managements, and environmental factors (e.g. irradiance at flight day, ground coverage, nitrogen levels and sowing densities), whereas the data from Trial C constitute the evaluation dataset (45% of the total data volume). Calibration and evaluation dataset never share a common date and flight, respectively. The result is a high level of independence between both data sets (final sample size for GAI-calibration: 474, GAI-evaluation: 383).



Statistical Analysis

All statistical analysis was conducted in R Core Team, 2017.


Linear Regression Models

Every single band, their combination with and without interaction, the quotients of NIR and Green, NIR and Red, NIR and RE, their combination with and without interaction and the NDVI (the quotient of NIR-Red and NIR+Red, by Rouse et al., 1974), as most common VI, were tested for their sensitivity towards GAI.

Based on the calibration dataset, linear models between GAI and the components of the VIs were fitted, whereas for the NDVI an exponential term was introduced, taking into consideration its known non-linear behavior (Wiegand et al., 1992; Chen and Cihlar, 1996; Myneni et al., 1997; Lelong et al., 2008; Viña et al., 2011).

For the comparison of the different VIs, two statistical metrics were selected: the root mean square error (RMSE) and the mean absolute error (MAE). The RMSE was chosen for comparability with the results of other studies. However, since the RMSE gives more weight to large errors but the predictive power of the models at low GAI-values is at least as important as at high GAI-values (non-linear relationship between light interception and GAI), the MAE was used to compare the advantages and disadvantages of the different models.



Advanced Predictive Models

To streamline the process of model creation, the integrative package caret (Kuhn, 2017) was used. The models were implemented by different additional packages: Partial Least Squares Regressions using pls (Mevik et al., 2016), SVM using kernlab (Karatzoglou et al., 2004), K Nearest Neighbor using caret (Kuhn, 2017), Multivariate Adaptive Regression Spline using earth (Milborrow, 2017), and Boosted Trees using gbm (Ridgeway, 2017).

For Partial Least Squares, SVM, and K Nearest Neighbor, all predictors were centered and scaled prior to model fitting. The models Partial Least Squares, SVM, K Nearest Neighbor, Multivariate Adaptive Regression Spline, and Boosted Trees possess tuning parameters. These were found by a grid search and the optimal model was selected by the smallest RMSE value. The parameters usually have a tradeoff between descriptive and predictive modeling performance. To prevent overfitting by an optimization of the descriptive quality, the RMSE for parameter selection was calculated by a 10-fold cross-validation. The hold-out sample was specifically selected by date. Tuning parameter “n.minobsinnode” for the Boosted Tree model was held constant at the value of 10. Selected tuning parameters are shown in Table S1.



Further Evaluation of GAI-Models

To examine the sensitivity of some selected VIs through the growing season, the dataset was further divided in seven different GAI-classes and the MAE and the relative MAE (rMAE) of the GAI-predictions in the different GAI-classes was calculated individually. As the rMAE is determined as the quotient of the MAE and the mean GAI of the considered class, no rMAE could be calculated for the class “Dead Plant” (division through 0 not possible).

Further it was considered if one GAI-model can be applied regardless of the cultivar (unaffected by different leaf angles and single leaf reflectance). For this purpose, calibration and evaluation dataset were reduced to the data of the two cultivars represented in both datasets: Solehio and Piko. Those two cultivars are quite contrasting ones (Table 3): Piko represents a compact growth habitus with rather short and planophile leaves while Solehio shows a pronounced vertical growth with long, erectophile leaves. Based on the calibration subset, two linear models were calibrated; a “common” model which estimates the GAI via reflectance data only and an “extended” model, including the cultivar as an additional factor. The effect of cultivars on the GAI-estimation was assessed by comparing the MAEs of the models with regard to the calibration- and the evaluation dataset. Additionally, an ANOVA was performed to test whether there is a significant difference between the two models or rather a significant effect of the cultivars in the “extended” model.


Table 3 | Characteristics of the cultivars Piko and Solehio (May 9, 2017; sowing density 400 K m-2).



For the examination of the models during the senescence we built on the approach of Serrano et al. (2000) of introducing an empirical green fraction factor. However, in contrast to the biomass-based approach of Serrano et al. (2000), a chlorophyll-driven approach was chosen. The methodology is based on SPAD-measurements which are converted into a “canopy greenness”-factor. Required data for this approach were collected by measurements with a chlorophyll meter (SPAD-502, Konica Minolta) in the growing season 2016/17 during the phase from maximal GAI until harvest on 13 dates (June 20, June 24, June 28, July 2, July 5, July 8, July 11, July 14, July 17, July 20, July 23, July 26, and July 30) in all leaf layers (10 leaves per layer). Used plant material was a subset of a large genotype trial (eight genotypes: Piko, Dekan, Hybery, Jafet, Biscay, SUR99820, Brilliant, and Lambriego Inia, in three replications). Crop management included 220 kg N ha-1 (Nmin in early spring subtracted) and application of herbicides as well as pesticides. Tested plots were spread over a large area with much variation in soil properties, which resulted in an increased variation regarding the canopy greenness during senescence. Different leaf layers make up for different shares of the total canopy area. To account for this effect, 20 shoots of each genotype were sampled, fractionated into leaf layers, stem, and spike and the green area was determined as described before.

Multiple authors showed a nonlinear relationship between SPAD-measurements and chlorophyll concentrations (Markwell et al., 1995; Uddling et al., 2007; Ling et al, 2011). To get a closer link to the physiological base of “greenness”, we transformed SPAD-readings to chlorophyll concentrations in g m-2 (per unit leaf area), using the equation from Uddling et al. (2007).

Chlorophyll concentrations of each leaf layer were multiplied by its fraction of the overall canopy leaf area and the sum of these weighted concentrations is the average chlorophyll concentration of the canopy in g m-2.

Weibull curves were fitted on single plot level to the relationship between chlorophyll concentration and thermal time. Each value of a plot was reduced by the minimum value of its fit and afterwards divided by its maximum value, resulting in the parameter “measured canopy greenness” (ranges between one at maximal GAI and 0 when leaves are clearly senesced.

For the evaluation of the GAI-models during the senescence, all predicted values after June 19 (start of senescence) were divided by the value on June 19 to get the “predicted canopy greenness”. These predictions were hence correlated to the measured canopy greenness and the goodness of fit was assessed via MAE and R².

In a final step, the informative value of the calibrated models was tested by their application. This had two objectives: The evaluation of the whole season GAI-predictions with the different models and the illustration of the potential and suitability of the resulting GAI-information for agricultural research and commercial crop production.

For this purpose, we refer to a very simple but common method of correlating VI-measurements with crop characteristics (Watson et al., 1963; Pinter et al., 1981; Tucker et al., 1981; Bartholome, 1988; Rasmussen, 1992; Serrano et al., 2000). In these studies the spectral measurements were summarized in a VI, most commonly the NDVI, and, either on single dates or time-integrated over multiple dates, correlated with crop yield or final biomass. In this context, the VI represents the duration and intensity of the photosynthetic capacity of the canopy (Serrano et al., 2000) and it has been proven that the correlation of the parameters can be increased by a good performing VI (Tucker et al., 1981; Serrano et al., 2000). It seems therefore suitable to test our GAI-models with this approach.

Sequoia data from the 14 flights in the season 2017/18 from Trial C was hence used to calculate GAI-courses on plot level through the whole season with the different tested GAI-models. Between the dates, the GAI was linearly interpolated. Subsequently, the green area duration was calculated by integrating the GAI over the whole season. Then, the proportion of variance explained of the final biomass was examined. Furthermore, the development of the variance explained during season was considered, hence whether and how efficient the GAI-models convert additional multispectral-data to agronomic reasonable information.





Results


Linear Regression Models

None of the single bands performs convincingly (MAEevaluation = 1.41–2.64 m2 m-2, Table S2). Combining the bands increases the performance considerably, especially if interactions between the bands are allowed (16 different terms, MAEevaluation = 0.99 m2 m-2, Table S2). The single ratio-models perform noticeably better than the single band-models (MAEevaluation = 0.55–0.81 m2 m-2, Table 4). The combination of different ratios provides considerably better results than the single ratios, with a lower MAEcalibration if interactions are allowed, but with a better performance at evaluation if not (Table 4). It is noteworthy that the increase of the predictive error from calibration to evaluation is considerably lower for most of the Simple Ratio approaches (on average 61%, Table 4), than for the single band-models (on average 80%, Table S2) and that the increase of the single-band model with interaction is the highest (230%).


Table 4 | Measurement of model performance for VI-based GAI-prediction [m2 m-2] in calibration and evaluation with ratios of reflections as predictors and the equation for the calibrated GAI-models.



In summary, the combination of NIR/Green, NIR/Red, and NIR/RE without interaction convinces the most (MAEevaluation = 0.45 m2 m-2 and RMSEevaluation = 0.71 m2 m-2, Table 4), followed by the simple ratio of NIR/RE (MAEevaluation = 0.55 m2 m-2 and RMSEevaluation = 0.74 m2 m-2, Table 4).

These two were hence selected for further evaluation, together with the NDVIexp as the most common VI. The VI combining all spectral bands provided by the Sequoia camera as NIR-based quotients was named VIQUO. The equations for the calibrated models are given in Table 4.



Advanced Predictive Models

On average, the advanced predictive models perform better than the VI-models, in terms of raw reflections, reflectance ratios, in the calibration and the evaluation (Tables 4, 5, S2 and S3). While the raw data models provide similar MAEs in terms of calibration, their MAEs in the evaluation are at least 111% higher (Tables 5 and S3).


Table 5 | Measurement of model performance for GAI-prediction [m2 m-2] with advanced predictive models in calibration and evaluation with ratios of reflections as predictors.



Focusing on the ratio-based models, it is noticeably that the best predictive models in calibration are the worst in the evaluation (e.g. Boosted Trees with an increase of predictive error of 79%, Table 5). The best models in the evaluation are the SVMs with linear respectively radial Kernel and the Multivariate Adaptive Regression Spline (MAEevaluation = 0.44 m² m-2). Due to its relative simplicity, the SVM with linear Kernel (SVM, MAEevaluation = 0.44 m² m-2 and RMSEevaluation = 0.71 m m-2) is chosen to represent advanced predictive modeling methods for further investigation and comparison with the VI-models.



Further Evaluation of GAI-Models

Comparing the performance of the selected VI-models with the SVM via their MAEs (Tables 4 and 5), it can be stated that the SVM performs considerably better than the NDVIexp and the NIR/RE, both in terms of calibration and evaluation, whether the VIQUO has a lower MAEcalibration as the SVM and its MAEevaluation is only slightly higher. The increase of predictive error from calibration to evaluation is relatively high with the NDVIexp-model (64%, Table 4), but nearly the same with the SVM-, the NIR/RE- and the VIQUO-model (22–29%, Tables 4 and 5). However, while the predictive error of SVM and VIQUO is increasing at high GAI-values, the predictions of NIR/RE meets the high GAIs well, but its predictions at low GAI-values scatter strongly, producing for the most part negative predictions (Figure 2). Looking at Figure 2, it is notably that several points in the high GAI-range in the evaluation are not met by any of the tested models. These data were obtained during the last sampling date in 2018, after a long period of drought. It is hence probable that they are already affected by senescence, which is not adequate depicted in destructive measurements.




Figure 2 | Correlation of measured and predicted GAI for calibration (white) and evaluation dataset (grey) for the different VIs and equation of the linear regression of measured vs. predicted values of the evaluation dataset (different shapes illustrate the three sampling seasons).



Figure 3 allows a closer view to the topic of varying model-sensitivity through the season: With regard to the MAE, none of the examined VIs has considerable problems in predicting low GAIs (> 0 – < 0.25 & Dead Plants), with NIR/RE having the highest predictive error (MAE = 0.29 m2 m-2). Due to the exponential term, the NDVIexp-model predicts very well in these classes, but it has considerable problems depicting high GAI-values, with the highest MAEs in every other GAI-class (Figure 3) and a massive scattering when predicting GAIs > 2 (Figure 2). SVM and VIQUO perform well at the low values and are very sensitive to medium-range GAIs, with only small differences between the two models. However, a saturation effect is visible at GAIs > 5. In contrast, while the NIR/RE-model is the worst in predicting low GAIs (0–0.25 & Dead Plants) and only slightly better at medium GAIs (< 2, 2–3 and 3–4), it shows the best results when depicting GAIs above four (MAE = 0.81 m2 m-2, rMAE = 16%) and is the only tested approach with no saturation effects at the highest measured GAI values.




Figure 3 | Mean absolute errors (MAE [m2 m-2]) and relative Mean absolute errors (rMAE [-]) of the different VIs for the evaluation dataset, calculated individually for the different GAI-classes (n: sample size of the considered GAI-class). rMAEs of the class dead plant cannot be calculated due to division by zero.



For the assessment of cultivar-specific effects, the linear NIR/RE-model was chosen (due to the low number of predictors and the concern to not inflate the number of interactions between cultivars and predictors). No significant difference (p = 0.05) between the model with- and without the interaction between reflectance and cultivar information was determined by means of ANOVA and the MAEs of the two models in calibration and evaluation differ only slightly (without interaction: MAEcalibration = 0.40 m2 m-2, MAEevaluation = 0.55 m2 m-2, with interaction: MAEcalibration = 0.39 m2 m-2, MAEevaluation = 0.54 m2 m-2).


Senescence

Transforming the SPAD-time series to canopy greenness enables the quantification of the process of senescence (Figure 4). Canopy greenness varies in a large range (~300 °C d, ~15 d), due to variation of genotype and soil properties, and enables a robust model evaluation during senescence.




Figure 4 | Canopy greenness for eight genotypes, grouped by replication (Repl.), in relation to degree days since sowing. The grey ribbon indicates the range of all genotypes to facilitate their classification.



The relationship between measured values of canopy greenness (SPAD-meter) and predicted values (multispectral) by the tested models for GAI-prediction is quite close (Figure 5). Regarding MAE and R2, the model with NDVIexp is the worst-performing one (MAE = 0.13 m2 m-2; R2 = 0.91), followed by VIQUO (MAE = 0.10 m2 m-2; R2 = 0.92), NIR/RE (MAE = 0.10 m2 m-2; R2 = 0.93), and SVM (MAE = 0.09 m2 m-2; R2 = 0.94) as the best performing model. Especially the predictions of the VIQUO- and the SVM-calibration are nearly unbiased.




Figure 5 | Evaluation of selected GAI-models during the senescence. Data from June 19 is excluded from the calculation of the RMSE because of the self-explanatory perfect fit.





Suitability for Agricultural Research and Commercial Crop Production

The application of the selected models to the multispectral data from Trial C in 2017/18 reveals that the different GAI-models provide in part considerably differing results (Figure 6). While the GAI-curves of the NDVIexp-, the SVM- and the VIQUO-model are running very smooth and even through the season, the NIR/RE-model has problems during senescence: at two flight dates, the GAI seems to increase again at some plots and at the third-last date negative GAIs are predicted. Apart from these three “problematic” dates with regard to the NIR/RE, the GAI-curves of the SVM, the VIQUO, and the NIR/RE are similar, whereas the NDVIexp predicts a faster GAI-increase from April to May and an earlier decrease from June to July, reaching a GAI of 0 m2 m-2 already at the first date in July. This results in notably lower NDVIexp-estimated green area durations for some plots (Figure 7A). When comparing the green area durations with the final biomasses, the correlation achieved by the NDVIexp-predictions is nevertheless notably better than those of the NIR/RE-model. This is attributable to the instability of the NIR/RE-model during senescence, as the explained variation decreases notably in this period (Figure 7B). This characteristic of the R²-curve is unique, as the explanatory power of the other GAI-models increases when more data is provided (Figure 7B). It is only due to this, that the final R² of the NIR/RE-predictions is lower than the one of the NDVIexp-predictions, as during the rest of the season, the NDVIexp-based green area duration-predictions have the lowest informative value regarding the final biomass and as the NIR/RE-predictions between May and mid of June are even the best (Figure 7B). It is worth mentioning that in the early May the four GAI-models have approximately the same informative value, explaining about 50% of the final biomass variation. The R²-curves of VIQUO and SVM increase constantly and almost equally through the season and explain finally the highest proportion of final biomass variation (> 80%, Figure 7B).




Figure 6 | Seasonal course of predicted GAIs by different models in the growing season 2017/2018 on four different plots of Trial C (cultivar Solehio, 220 kg N ha-1). Grey ribbons indicate the range of all models.






Figure 7 | (A) Correlation of total green area duration and final biomass (B) the R2 of the relationship between green area duration (calculated from sowing to date x) and final biomass, with different models applied for the prediction of GAI. Final date in subfigure B corresponds to subfigure A.







Discussion

Before discussing different GAI-models or possible areas of application, it is necessary to consider the applicability of the Sequoia camera. Other studies using different UAV-based sensors in general (Duan et al., 2017; Zhou et al., 2017; Condorelli et al., 2018; Kanning et al., 2018), predecessors of the Sequoia sensor (Verger et al., 2014; Haghighattalab et al., 2016; Nebiker et al., 2016) and in particular the Sequoia sensor (Condorelli et al., 2018; Tunca et al., 2018) showed promising results in terms of comparability with ground-based multispectral sensors and their implication to generate information about crop characteristics. Our results match to these findings; the Sequoia camera provides reliable and sufficiently accurate data for crop monitoring purposes on plot level in terms of a scientific context. This should be transferable in the context of commercial crop production as well.


Whole-Season Applicability

A whole season- and cultivar-transferable approach for GAI-prediction is preferable to specific models for several growth stages, concerning simplicity in data processing and communicability, both affecting transferability into practice. In our data, no significant cultivar-specific effect can be identified. When it comes to GAI-prediction, established calibration methods exist until the GAI-maximum is reached. But problems arise when the sensitivity of GAI-models is tested after the start of the senescence, as the accurate identification of the actual GAI is complicated or not possible at all due to the inhomogeneous senescence of the plant organs and the gradual degradation of leaf chlorophyll. Problems in estimating winter wheat GAI during senescence based on multispectral data have also been reported by other studies (Boegh et al., 2002; Haboudane et al., 2004; Lelong et al., 2008; Richter et al., 2012). They assumed that the decreasing performance of their calibrated models originates not from the informative value of the multispectral data but in the validity of the ground truth GAI-measurements. The method introduced in this study, enables the validation of our GAI-models during senescence and hence the confirmation of these considerations. It could thus be shown that the GAI-estimations of the tested models were valid and that the models, being calibrated without any senescence data (except dead plants), can provide reasonable GAI-predictions for this part of the season as well.

The quality of the whole-season GAI-predictions was tested further via the calculation of green area duration and the correlation with the final biomass. Hereby, 80% of the variation in the final biomass is explained by the NDVIexp-model, which fits to the results of Wiegand et al. (1992) and Tucker et al. (1981) with handheld devices. The new GAI-models VIQUO and SVM explain even more of the observed variance (up to 85%).



Evaluation of GAI-Models

The best model to derive GAI-information should provide reliable and precise GAI-information as simple as possible. In terms of both, model complexity and communicability, the models can be set in the same order: The application of raw bands is the simplest approach, followed by the traditional two-band ratios. The newly introduced VIQUO-model, based on all four bands the Sequoia camera provides, follows shortly afterwards and the advanced predictive models are for sure the most complex and the most difficult to communicate. Therefore, the central question to be answered is, if the increasing complexity is worth it.

Raw reflection driven models are clearly not sufficient to predict GAI adequately, regardless if they are integrated in an advanced predictive model or not. The increase in MAE from calibration to evaluation indicates instability in the relationship of single bands to GAI between different sampling dates. Problems in predicting crop characteristics with raw reflections under varying irradiance conditions were found by Tucker et al. (1981) and Verger et al. (2014) as well, both demonstrating at the same time that this problem can be solved by using ratios instead.

When applying a two- or more-band approach, the questions of band selection and their combination arise. Many studies have worked on the issue which bands are essential to predict crop characteristics, either based on a priori knowledge about plant reflection characteristics (Baret and Guyot, 1991; Haboudane et al., 2004) or by recording large number of wavelengths with hyperspectral sensors and testing all possible combinations (e.g. Thenkabail et al., 2000; Hansen and Schjoerring, 2003). Based on the finding that already simple ratios (as NIR/RE) provide relatively low MAEs and on the attempt to keep the GAI-models as simple as possible, we restricted our analysis on two-band simple ratios, the combination of all possible simple ratios in the VIQUO and the classical NDVI (with exponential fit), and did not test different band combination approaches. In accordance to the findings of other studies (Serrano et al, 2000; Haboudane et al., 2004; Pinty et al., 2009; Viña et al., 2011) it was shown that the NDVIexp is insensitive in dense canopies (here: GAI > 2 m2 m-2). The NIR/RE, as best Simple Ratio, is superior in predicting high GAIs. This result is in accordance with many studies (e.g. Delegido et al.,2013; Zhou et al., 2017) that the RE-band provides information even at high canopy densities. However, the model performs inaccurately at low GAIs and the NIR/RE-calculated GAI-curves are not stable through the season. The latter could be a result of both, of lower sensitivity of NIR/RE in the phase of senescence or of technical problems of the RE-band (the RE-band is the narrowest of the used bands, which could result in instabilities in the measurements, for example at low irradiation).

The VIQUO- and the SVM-model can compensate the temporarily low sensitivity of the RE-band and provide stable GAI-predictions over the whole season. A stabilization of crop-characteristic estimations with regard to differing irradiance conditions by adding additional bands to the traditional two-band approach has been reported by Mistele and Schmidhalter (2010) as well. Other studies describe a decreasing saturation effect and an increase of sensitivity obtained through additional bands (Haboudane et al., 2004; Delegido et al., 2013). Haboudane et al. (2004) increased the sensitivity of their model to GAI-values > 4 m2 m-2 by adding a green-band to their NIR-Red-model and achieved a whole season RMSE of 0.79 – 1.28 m2 m-2. In our case, the VIQUO, including additionally the RE-band, is sensitive to GAI-values ≤ 5 m2 m-2 and produces even more accurate predictions (RMSEevaluation = 0.72 m2 m-2). Due to a very high fraction of intercepted radiation at GAI-values ≥ 5, we hold that sensitivity at rather low values is more important for the model-selection. For different requirements, the NIR/RE-model with its high sensitivity at high GAI-values might be the adequate approach.

The advanced predictive models are able to produce lower RMSEs than the VI-models, with the SVM even surpassing the VIQUO (RMSEevaluation = 0.71 m2 m-2). This improvement in GAI-prediction is in accordance to the findings of Hansen and Schjoerring (2003), but notably lower than that of Verrelst et al. (2015), where the advanced predictive model reduced the RMSE by nearly 30%. This could be due to their data set, as a simultaneous consideration of different crop types might require more complex model methods, or due to their evaluation approach, as they used a cross-validation instead of an independent dataset, increasing the probability of overparameterization. While there are no indications that the here presented SVM-model is overparametrized (same decrease in predictive power from calibration to evaluation than the testes Simple Ratio-models), it has the same saturation effect for GAI-values >5 as the VIQUO. Considering the sensitivity in the different GAI-classes, the SVM is predicting mostly, but not in every case, GAI more precise than the VIQUO. The GAI-curves estimated with these two different models are nearly the same and the correlation of green area duration to final biomass of the SVM-model is consequently not notably better. On this base we consider the higher complexity of the advanced predictive model as not justified.



Transferability of the GAI-Calibration

Lastly, besides the validity through the whole season for different cultivars, the applicability of the GAI-calibration across seasons should be considered. In general, the transferability of purely statistic-based approaches, as the calibration here presented, might be regarded as problematic. Additionally, the use of destructive GAI-data restricts the size of the data set to the affordable workload and the local conditions of the respective study site (e.g. number of seasons, plots, cultivars, nitrogen levels). A concept to overcome these problems is the use of radiative transfer models, such as PROSAIL, to generate reflectance- and LAI-data sets for the sensor of interest (Richter et al., 2010; Verger et al., 2014). However, this approach relies on the estimation of several crop parameters (e.g. average leaf angle, dry matter content, leaf mesophyll parameter). These parameters may vary in plot trials, for example due to different cultivars and fertilization levels (as exemplarily shown above for two cultivars), and probably also on farm sites with heterogeneous crop growth. Furthermore problematic may be to depict the sensitivity of the raw bands to illumination conditions during image acquisition when generating artificially reflectance data (Verger et al., 2014) and the saturation effect when considering high GAIs (Richter et al., 2010; Verger et al., 2014). These effects could be examined closer in further investigations, using our data set as basis for evaluation. However, taking into account these restrictions of physically based calibration approaches, statistically-based approaches can probably be considered at least of equal standing and have shown to be stable over multiple seasons and many different measurement dates in the presented data set.




Conclusion

The Sequoia multispectral camera was identified as an adequate instrument for multispectral data acquisition for crop monitoring.

Different models for GAI-estimation were presented and evaluated. For this purpose, a new approach for evaluating GAI-models during senescence was introduced and tested successfully.

Only two of the tested GAI-models can be considered as reliable and sufficiently accurate for whole-season GAI-prediction; the newly developed four-band VI-approach VIQUO and the advanced predictive model SVM. Both models use all four spectral bands provided by the Sequoia camera. The two-band approaches are outperformed in terms of stability and sensitivity. Only if especially sensitivity at high GAI-values is of major importance, the alternative use of the NIR/RE-model should be considered.

The VIQUO-model is recommended as best model to estimate winter wheat GAI, as it provides a high precision in GAI-prediction and is still relatively simple, thus easier to communicate and to apply than the SVM.

The strong correlation between green area duration (derived from GAI-predictions) and the final biomass demonstrates the high potential of the used system (in combination with appropriate calibration) for the application in agriculture research and precision farming.
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Canopy temperature (CT) has been related to water-use and yield formation in crops. However, constantly (e.g., sun illumination angle, ambient temperature) as well as rapidly (e.g., clouds) changing environmental conditions make it difficult to compare measurements taken even at short time intervals. This poses a great challenge for high-throughput field phenotyping (HTFP). The aim of this study was to i) set up a workflow for unmanned aerial vehicles (UAV) based HTFP of CT, ii) investigate different data processing procedures to combine information from multiple images into orthomosaics, iii) investigate the repeatability of the resulting CT by means of heritability, and iv) investigate the optimal timing for thermography measurements. Additionally, the approach was v) compared with other methods for HTFP of CT. The study was carried out in a winter wheat field trial with 354 genotypes planted in two replications in a temperate climate, where a UAV captured CT in a time series of 24 flights during 6 weeks of the grain-filling phase. Custom-made thermal ground control points enabled accurate georeferencing of the data. The generated thermal orthomosaics had a high spatial accuracy (mean ground sampling distance of 5.03 cm/pixel) and position accuracy [mean root-mean-square deviation (RMSE) = 4.79 cm] over all time points. An analysis on the impact of the measurement geometry revealed a gradient of apparent CT in parallel to the principle plane of the sun and a hotspot around nadir. Averaging information from all available images (and all measurement geometries) for an area of interest provided the best results by means of heritability. Correcting for spatial in-field heterogeneity as well as slight environmental changes during the measurements were performed with the R package SpATS. CT heritability ranged from 0.36 to 0.74. Highest heritability values were found in the early afternoon. Since senescence was found to influence the results, it is recommended to measure CT in wheat after flowering and before the onset of senescence. Overall, low-altitude and high-resolution remote sensing proved suitable to assess the CT of crop genotypes in a large number of small field plots as is required in crop breeding and variety testing experiments.




Keywords: thermography, unmanned aerial vehicle, phenotyping, plant breeding, spatial correction, low-altitude/high-resolution remote sensing, anisotropy, temperate climate



Introduction

In view of current scenarios for climate change, canopy temperature (CT) is considered an important trait to select for adapted genotypes. CT was robustly associated with water status and stomatal conductance in wheat (Berliner et al., 1984; Blum et al., 1989; Amani et al., 1996). Low CTs have been associated with a 30% increased yield an increased water uptake by deeper roots (Lopes and Reynolds, 2010), when measured during grain filling. Even in regions with ample rainfall, such as the Swiss central plateau, heat and drought avoidance mechanisms connected to adjusted root system architecture may play an important role in extreme years (Oberholzer et al., 2017), projected to increase in frequency and severity in the near future. The regular assessment of CT during the breeding process holds great promise for an indirect selection of varieties with optimized rooting behaviour. A greater transpiration is a major driver leading to high yield potential of C3 crops under conditions characterized by low to moderate stress (Roche, 2015). It is, however, still a challenge to obtain reliable quantitative CT measurements for larger breeding experiments with small plots, since plot-by-plot CT measurements generally have a low repeatability (Pask et al., 2012; Rebetzke et al., 2013; Sukumaran et al., 2015; Deery et al., 2016) and are very time consuming.

The principle of elucidating plant evapotranspiration based on thermal remote sensing of CT has been used in a multitude of studies (Jones et al., 2009; Maes and Steppe, 2012; Liebisch et al., 2015; Khanal et al., 2017). It has been successfully applied to estimate grain yield (Elsayed et al., 2015; Becker and Schmidhalter, 2017; Elsayed et al., 2017), plant water, and plant drought stress (Calderón et al., 2013; Zarco-Tejada et al., 2013; Gómez-Candón et al., 2016), plant water status (Pou et al., 2014; Shafian and Maas, 2015; Bellvert et al., 2016), and soil water status (Hassan-Esfahani et al., 2015). unmanned aerial vehicle (UAV)-based thermography has been conducted in a multitude of studies as well (Zarco-Tejada et al., 2013; Gómez-Candón et al., 2016; Hoffmann et al., 2016; Ortega-Farías et al., 2016; Maes et al., 2017; Ribeiro-Gomes et al., 2017; Santesteban et al., 2017; Malbéteau et al., 2018; Sankaran et al., 2018; Sagan et al., 2019). Only a few studies (Liebisch et al., 2015; Deery et al., 2016; Rutkoski et al., 2016; Sagan et al., 2019), however, used it in a breeding context, where it would be strongly needed in the context of high-throughput field phenotyping (HTFP). HTFP aims for rapid and reliable assessment of phenotypic traits under field conditions. The lack of suited tools for HTFP has been identified as one of the main bottlenecks for plant breeding, slowing future breeding advances (Araus and Cairns, 2014; Walter et al., 2015). Moreover, a reliable method that allows repeated screening of a large number of plots in a short time period would be essential for thermal HTFP in particular, since the thermographic response of plants depends on the environmental conditions such as temperature, irradiance, and humidity that may change during the measurements.

Unmanned aerial vehicles (UAVs) are a low-altitude and high resolution remote sensing tool that promise to be an efficient carrier system for sensors used for vegetation monitoring (Anderson and Gaston, 2013; Colomina and Molina, 2014; Sanchez-Azofeifa et al., 2017; Aasen et al., 2018) including HTFP (Zaman-Allah et al., 2015; Deery et al., 2016; Hund et al., 2019). These carrier systems enable efficient data acquisition with a high spatial and temporal resolution at a relatively low cost (Berni et al., 2009b; Bellvert et al., 2016; Yousfi et al., 2016; Shakoor et al., 2017). Thus, they are also increasingly applied in field phenotyping applications (e.g., Gómez-Candón et al., 2016; Shakoor et al., 2017; Joalland et al., 2018; Sagan et al., 2019) and we hypothesize that they are also useful for HTFP of CT.

Two main approaches can be used to obtain remotely sensed plant CT form thermal imagery captured with airborne carrier systems at low altitude. The first approach is to take a single image to cover an area of interest (Zarco-Tejada et al., 2012; Calderón et al., 2013; Sankaran et al., 2018). The second approach is to mosaic multiple images together into an orthomosaic (Berni et al., 2009a; Gonzalez-Dugo et al., 2013; Hoffmann et al., 2016; Santesteban et al., 2017). The latter increases the area that can potentially be covered in one scene and thus, allows to capture larger areas and/or increase the spatial resolution (ground sampling distance, GSD) of the data by flying lower (Aasen et al., 2018). But when an orthomosaic is generated from multiple overlapping images, each area of interest on the ground (e.g., a plot) is captured by multiple images with different viewing geometries and several options exist to extract the signature of this area (Aasen and Bolten, 2018). It has been shown that the different data processing and extraction approaches have an influence on the apparent reflectance in remote sensing data in the visible and near-infrared, e.g., (Aasen, 2016; Aasen and Bolten, 2018). This results from the interaction of surface anisotropy (meaning that the signal is directionality dependent) and measurement geometry [expressed by the bi-directional reflectance distribution function; BRDF, (Nicodemus et al., 1977; Schaepman-Strub et al., 2006)], which also effects the apparent temperature (Jones et al., 2009; Cao et al., 2019). While studies have reported challenges when multiple thermal images are to be mosaicked together (Hoffmann et al., 2016; Ribeiro-Gomes et al., 2017), it has not been investigated how different data processing, mosaicking and capturing approaches affect the apparent CT.

Besides, the data may further include spatial trends due to field variability and temporal trends due to changes during the flight campaign. Correcting the data for these influences is essential if the genotypic performance is the major interest (Gilmour et al., 1997; Piepho and Williams, 2010; Araus and Cairns, 2014). Multiple approaches exist to perform this correction with the most widespread being first order autocorrelation models (Gilmour et al., 1997; Piepho and Williams, 2010) and P-splines (Velazco et al., 2017; Rodríguez-Álvarez et al., 2018), both implemented in a mixed-model framework.

This study combines the above mentioned aspects and aims for an integrated concept how CT can be assessed from high-resolution UAV remote sensing within a breeding context. In particular, the study aims to:

	Establish a workflow for high-resolution UAV remote sensing HTFP

	Investigate and discuss different data processing modes to generate thermal orthomosaics

	Evaluate the method in a temperate environment across the season

	Investigate the optimal timing for thermography measurements

	Compare the UAV approach to other established approaches for HTFP of CT






Materials and Methods


Experimental Site and Wheat Cultivation

A field experiment was conducted at the ETH field phenotyping platform field phenotyping platform (FIP) (Kirchgessner et al., 2017), a one-hectare field (“FIP field”) located at ETH Zurich's plant research station [47°27′01″N and 8°40′57″E, the World Geodetic System (WGS) 84]. The soil type is a skeleton rich variable Cambisol (stagnic to slightly acidic appearance) with 21% clay, 21% silt, and 3.5% organic matter. The “FIP field” employs a crop rotation containing major crops of Switzerland's agricultural system in six lots (Figure 1). The experiment was sown in two replicates (represented by lots one and three in the “FIP field,” Figure 1) and consisted of 354 winter wheat genotypes, mainly from the GABI-wheat panel (Kollers et al., 2013) with additional Swiss varieties. Three out of the 354 genotypes were used as checks (CH Claro, Suretta, and CH Nara). The genotypes were distributed to the experiment using the R package “DiGGer” (Coombes, 2009) in an augmented 2D design as follows: The check varieties were distributed within each replication (Figure 1) in nine complete blocks (seven rows by six ranges), making sure that at least one check was placed in each row and each range of the design (27 check plots per replication in total). Onto this design, the 351 test genotypes were augmented to incomplete blocks in row (one row per incomplete block) and range direction (6 ranges per incomplete block). The 351 test genotypes and the 27 check plots resulted in a total of 378 plots for each replication or 756 plots for the whole experiment. Each replication of the experiment consisted of 21 ranges and 18 rows. For the growing season 2018, winter wheat was sown on both replicates on the 2017-10-17 with a sowing density of 400 seeds per m2. The size of the winter wheat replications was approximately 40 m x 36 m. The individual plots had a length of 1.7 m and a width of 1 m with a row spacing of 12.5 cm equating to nine rows per plot. Harvest of the winter wheat was on the 2018-07-13. Weather data was obtained by the on-site weather station (Figure 1). 2018 was a very dry summer with no rain between the 2018-06-14 and 2017-07-02 (for details, see section Canopy Temperature Heritability Across a Day and Dates). During the whole season BBCH growth stages (Lancashire et al., 1991) were rated in the field. Canopy senescence was scored visually in 2–3 day intervals by estimating the overall greenness of the plot when inspected at a viewing angle of approximately 45°. An integer mean value per plot was estimated on a scale ranging from 0 (completely green canopy) to 10 (completely senescent canopy). The onset of senescence was defined when a plot reached a scoring of greater than zero. The first genotypes started to become senescent on the 2018-06-16. Based on these measurements we defined a set of 178 genotypes that showed no sign of visual senescence up to the 2018-06-23, the “stay green” genotypes (see sections Canopy Temperature Heritability Across a Day and Dates and Canopy Temperature Correlation Across a Day and Dates). After that date, the set of “stay green” genotypes became very small.




Figure 1 | Red green blue (RGB) orthophoto of the “FIP” field at the agricultural research station in Eschikon with the location of the 16 ground control points (GCPs) (white dots), the two replicates of the winter wheat field trial (lot 1 and lot 3) and the weather station (red cross).





Unmanned Aerial Vehicles Flights

Twenty-four UAV flights between early June 2018 and mid-July 2018 were performed covering the grain filling and ripening phase (BBCH growth stages 73-92). Most flights were carried out around solar noon or in the early afternoon and under stable cloud cover (no clouds or a sparse cloud cover). On the 2018-06-16 and the 2018-06-20, multiple flights from the morning to the late afternoon were carried out. On the 2018-06-16 cloud conditions were fluctuating, with the photosynthetically active radiation (PAR, measured in photosynthetically active photon flux density) fluctuating between 750 and 2,200 μmol m−2s−1. On the 2018-06-20 the conditions were very stable with a typical diurnal cycle of temperature and PAR. Thus this day is referred to as “stable day.” The flight dates and corresponding BBCH stages can be found in Table 1 of the Supplementary Materials. Geo-referencing the thermal scenes (section Processing of Thermal Data) was done using thermal ground control points (GCPs). These custom-made GCPs consisted of a styrofoam plate of dimensions 0.5 m x 0.5 m x 0.04 m glued onto a wooden panel. On top of the styrofoam panel, two black aluminum triangles were glued to obtain a distinctive cross-shaped GCP (for details see section Processing of Thermal Data). The black aluminum plates heated up considerably more than the white Styrofoam, showing as a distinct pattern in the GCP. Sixteen GCPs were evenly distributed across the experimental site (Figure 1) and their positions were measured using a Trimble R10 GNSS (Global Navigation Satellite System) receiver (Trimble Ltd., USA) with swipos-GIS/GEO RTK (Real Time Kinematic) correction (Federal Office of Topography Swisstopo, Wabern, Switzerland) with an overall horizontal and vertical precision of 0.1 m.


Unmanned Aerial Vehicles Platform

The UAV platform was a DJI Matrice 600 Pro (SZ DJI Technology Co. Ltd., China). The total weight of the UAV, including the batteries, is 9.5 kg, leaving a maximum payload of 6 kg. The UAV uses a DJI A3 flight controller, which was upgraded to A3 Pro standard with an enhanced GNSS system for position data. The UAV was controlled using the DJI Matrice 600 series remote controller and an iPad (Apple Inc., USA) with the DJI Ground Station Pro app (SZ DJI Technology Co. Ltd., China). The UAV requires six charged 99.9 Wh batteries for operation. With the payload, flight times are about 15 min.



Thermal Camera System

A radiometrically calibrated FLIR A65 thermal imaging camera (FLIR integrated Imaging Solutions Inc., Canada) was mounted in a custom-made sensor package (Figure 2). The thermal camera has a field of view (FOV) of 25° x 20° and a resolution of 640 x 512 pixels. The camera's sensor is an uncooled Vanadium Oxide (VOx) microbolometer detector with a detector pitch of 17 µm measuring in the spectral range of 7.5–13 µm. The maximum image frequency of the camera is 30 Hz. It weighs approximately 0.2 kg and is connected to an Intel® NUC computer through a standard RJ45 LAN cable. The specified temperature range of the measurement objects is −40°C to +550°C. The noise equivalent temperature difference (NETD) of the camera is 0.05°C at 30°C and the absolute measurement accuracy is ±5°C or 5% of the readings (FLIR Systems, 2014). The camera system was controlled by a self-developed MATLAB (MATLAB R2017b, The MathWorks Inc. USA) script running on a compact Intel® NUC computer (i7-5557U dual core processor, 16GB RAM and a 256GB SSD, Windows 10 operating system). The whole system was mounted on a three-axis stabilized DJI Ronin-MX Gimbal (SZ DJI Technology Co. Ltd., China), to ensure a nadir viewing geometry (Figure 2).




Figure 2 | The sensor package (white box) with the four cameras and the Intel NUC computer mounted on the gimbal beneath the unmanned aerial vehicle (UAV). All cameras still have their protective caps on.





Measurement Protocol

Mission planning was conducted in the “PhenoFly Planning Tool” (Roth et al., 2018). The flight details were: 80 m height above ground level with an image overlap of >70% across to flight direction and >90% in the along direction. Images were acquired at a rate of 2.2 Hz. Average flight duration was 8 min to cover the two replications (lots one and three, Figure 1). Since uncooled thermal cameras tend to drift when their temperature change (Mesas-Carrascosa et al., 2018; Kelly et al., 2019), the camera was turned on more than 30 min before the measurements [as recommended by Berni et al. (2009b) and Kelly et al. (2019)] to allow temperature stabilization of the system. After take-off at the instant before the measurement sequence was started, a non-uniformity correction (NUC) was manually triggered. No further NUCs were performed during the flight since during the time of the flight, the temperature of the sensor did barely change (chip: ~0.2°C, housing: ~0.4°C according to the sensor metadata).




Processing of Thermal Data


Photogrammetric Processing

The processing of thermal data is summarized in Figure 3. After the raw data (raw digital numbers, DN) of each image was converted to °C, photogrammetric data processing of the thermal images was done in Agisoft PhotoScan Professional 1.4.3 (Agisoft LLC, St. Petersburg, Russia). Agisoft PhotoScan is a software performing the Structure from Motion (SfM) algorithm, which enables capture of the 3D structure of objects by a 2D transformation of a set of their projected images (Ullman, 1979). It allows derivation of 3D information through exploitation of feature points found in overlapping images (Harwin and Lucieer, 2012). SfM performs image matching by calculating the relative position of a series of images by identification of feature points. The feature points are used in bundle adjustment, which estimates viewing parameters (camera positions and/or calibration) estimates for the individual images (Triggs et al., 2000). Bundle adjustment results in a set of 3D points, corresponding to a sparse 3D point cloud. The “image alignment” in Agisoft PhotoScan was run using quality parameter set to “high,” a key point limit of 40,000 and a tie point limit of 1,000. Additionally, pre-estimated camera parameters were loaded and set to fixed to ensure a consistent generation of the orthomosaics. The quality setting “high” compressed the image quality by half (Agisoft LLC, 2016) but greatly reduced processing times. The point clouds were georeferenced to the coordinate system EPSG:2056 (CH1903+/LV95) using the thermal GCPs (Figure 3, bottom center). The GCPs were manually marked in three to four images for each GCP, until the algorithm picked up their correct locations across all images. This referencing also optimized the sparse point cloud, correcting distortion effects. The density of the optimized sparse point cloud was increased in the “build dense cloud” step in Agisoft PhotoScan, resulting in a dense point cloud. The “build dense cloud” was performed using the “high” quality and “aggressive” depth filtering settings. The georeferenced dense point cloud was then used to generate a digital surface model (DSM), effectively representing the captured surface in three coordinates.




Figure 3 | Schematic summary of the workflow for obtaining high-accuracy thermal orthomosaics from single, raw thermal unmanned aerial vehicles (UAV) images. The thermal ground control points (GCPs) used in this study are depicted in the bottom center: as seen in red green blue (RGB) (left) and through a handheld infrared (IR) camera. The canopy temperature (CT) extraction through the polygons representing the plots is shown top right.





Generation of Orthomosaics

The georeferenced DSM was then used to generate a thermal orthomosaic of the UAV flights through mosaicking of the individual images (“Orthomosaic” is hereafter used interchangeably with “thermal orthomosaic” in this study, unless stated otherwise). Agisoft PhotoScan offers multiple processing modes to calculate an orthomosaic, of which the following two were chosen in this study:

	- In the blending mode “average,” the values of all pixels from all images that covered a point in the orthomosaic were averaged. Consequently, each pixel in the final orthomosaic originate only from many images.


	- In the blending mode “disabled,” the pixel value from the image with a view being closest to the normal at that point (nadir) was used. Consequently, each pixel in the final orthomosaic originate only from one image.





Consequently, the angular properties of the data within the two different types of orthomosaics differ. The viewing geometry of each pixel in the blending mode “disabled” orthomosaic is the same as in the original image and thus, very narrow (because of the narrow instantaneous field of view of every pixel) and can be described as (almost) directional measurement geometry (Schaepman et al., 2015; Aasen and Bolten, 2018). In the blending mode “average,” the viewing geometry is composed by all the viewing geometries of the pixels that are averaged for one pixel in the orthomosaic. Thus, the total viewing geometry of each pixel in the orthomosaic is wider than in the blending mode “disabled” and can be described as conical measurement geometry (Schaepman et al., 2015; Aasen and Bolten, 2018). While a detailed description and discussion on these differences for spectral data can be found in Aasen and Bolten (2018), this paper will investigate the effects on the apparent CT within orthomosaics. This will be done by qualitatively comparing the two blending modes for the flight on the 2018-06-20 at 14:00 h and quantitatively investigating the viewing geometry dependency of the apparent CT on the same date. Additionally, we used a Bland-Altman analysis (Bland and Altman, 1986) to estimate systematic differences between the two blending modes in relationship to the plot mean temperature. Differences in the heritability (section Spatial Correction and Heritability Calculation) will also be investigated.



Plot Wise Canopy Temperature Extraction and Normalization

To extract the per-plot UAV temperature, a polygon describing the plot shape and location was generated using the experimental design. QGIS 3.2.3 Geographic Information System Software (QGIS Development Team, 2018) was used to create an inward buffer of 50 cm from the shapes to omit edge effects (Figure 3, top right: blue polygon). Based on a Python 3.6 script, the median of this area was then used as CT for a plot. The CT was normalized by the ambient air temperature (TA) to compare temperatures across different measurement dates (Balota et al., 2007; Maes and Steppe, 2012; Zarco-Tejada et al., 2013; Bellvert et al., 2016) as follows:



TA was measured at 2 m above ground level by a temperature sensor (CS215, Campbell Scientific, Inc., USA) covered by a 10-Plate Solar Radiation Shield (RAD10, Campbell Scientific, Inc., USA) situated in the on-site weather station (Figure 1).




Spatial Correction and Heritability Calculation

The correction of spatial trends as a result of both, spatial variability of trait (CT) values in the field and, in case of CT, additional changes during the flight campaign was done with the R-packages SpATS (Rodríguez-Álvarez et al., 2018). For each UAV flight, a model was fitted with a peculiarity of the experimental site in mind: generally we observe a strong pattern in the replications (lots one and three, Figure 1) in working direction (row direction) while there are more smooth trends perpendicular to this direction (range direction). The spatial model was:



where f (r,c) is a smoothed bivariate surface defined over row (r= 1–74) and range (c=1–18) positions of a virtual grid in which both replication were arranged (see below). The vector cg = (cg1, …, cg354) is the random coefficient of the genotypes associated with the design matrix Zg, cr = (cr1, …, cr74) ~ N(0, σr2I74) is the random coefficient of the rows associated with design matrix Zr and ε is the random error vector ε= (ε1, …,εn) ~ N(0, σ2In). Replication 1 (lot 1) ranged from row 1 to 21 and range 1 to 18 while replication 2 (lot 3) ranged from row 54 to 74 and range 1 to 18 in the virtual grid. Thus, there were 32 rows separating the two replications in the virtual grid representing lot two (the parcel between lots one and three, Figure 1). The number of spline points was set to 2/3 of the total number of rows and ranges in the virtual grid, respectively. To calculate the best linear unbiased estimator (BLUEs), the genotypes were set as fixed-effects and the design matrix in equation two became Xg accordingly. The spatially corrected plot values were derived as the sum of model intercept, plot-specific genotypic BLUEs and residual error. Heritability of the spatially corrected traits (model two) was calculated according to (Rodríguez-Álvarez et al., 2018) based on the genetic effective dimensions provided by SpATS as:



where EDg is the effective dimension for the genotypes and ng is the total number of genotypes evaluated. The denominator (ng–1) reflects the upper bound for the effective dimension [see Rodríguez-Álvarez et al. (2018) for further details].




Results


Analysis of Orthomosaics Resulting From Different Blending Modes

Processing the thermal data (section Processing of Thermal Data, Figure 3) resulted in orthomosaics such as shown in Figure 4. The thermal GCPs (section Unmanned Aerial Vehicles Flights and Figure 3) were clearly visible in the orthomosaic (Figure 4), leading to an overall high spatial accuracy. The obtained GSD of these orthomosaics varied from 4.89 to 5.11 cm due to slight variations in flying altitudes. The calculated GSD of the thermal camera used at a flight height of 80 m was 5.5 cm. The root-mean-square deviation (RMSE) of the GCP positions across all 24 UAV flights ranged from 1.25 to 10.05 cm with a mean RMSE of 4.79 cm. The exact accuracy metrics for each flight date can be found in Table 2 of the Supplementary Materials.




Figure 4 | Thermal orthomosaic of the experimental site [the “field phenotyping platform (FIP) field”] mosaicked using the blending mode “average” from the flight on the 2018-06-23 at 15:09 h local time. The orthomosaic has a dimension of 3,990 x 4,490 px, a ground sampling distance of 4.89 cm/px at a flight height of 87 m (estimated by Agisoft PhotoScan). The enlarged area (top left) shows a thermal ground control point (GCP) as seen in the orthomosaic. Note the “chessboard”-like structure of the individual wheat plots in the two replicates (lots one and three).



A detailed look at thermal orthomosaics revealed that the viewing geometry influenced the apparent CT. Figure 5 exemplifies the situations for the flight on the 2018-06-20 at 14:00 h. Figure 5A, B show the orthomosaics generated with the blending mode “disabled” and “average,” respectively. The hot areas are the paths between the plots. The high spatial resolution reveal differences within the plots of up to several °C. Approx. 20 cm (four pixels) within every plot seem to be influenced by border effects in both orthomosaics. A qualitative comparison of the orthomosaics showed more apparent heterogeneity in “disabled” mode.




Figure 5 | Excerpt of an orthomosaic generated with blending mode “disabled” (A) and “average” (B) on the 2018-06-20 at 14:00 h local time. The color corresponds to the apparent canopy temperature (CT). (C) shows the viewing geometry of the information used to generate the blending mode “disabled” orthomosaic (A). In A and C, black seamlines mark the border of the information that is taken from different images. The white box highlights a plot where information from four images are composed in the blending mode “disabled” mosaic (A). (D) shows the average apparent temperature of all plots of that flight in dependence of its viewing geometry. The sun had an azimuth angle of approx. 199° and a zenith angle of approx. 25°. The viewing geometry of the apparent temperature was calculated from the relative position of the camera seen from the plot.



The black lines in Figure 5A, C denote seamlines between information of the different images used to compose the orthomosaic in blending mode “disabled.” The white rectangle highlights a plot that is composed by information from four different images. Within the plot, the apparent temperature changes along the seamlines. Figure 5C shows that, at this point, information with different viewing geometries (about 4° difference) have been composed next to each other. For a detailed explanation and schematically drawing on how an orthomosaic is composed please refer to Aasen and Bolten (2018), and for a detailed description on how to trace pixel dependent properties please refer to Aasen et al. (2015). Generally, only very small ranges of viewing geometries are used in the blending mode “disabled.” In the blending mode “average” (Figure 5B), sharp transitions between apparent temperatures are not visible. In this mode the information of more than 20 images was averaged and thus, a wide range of viewing geometries were used.

Figure 5D shows the average apparent temperature of all plots of that fight in dependence of its viewing geometry. The sun had an azimuth angle of approx. 199° and a zenith angle of approx. 25° (retrieved from https://www.suncalc.org, for Lindau, Zurich, CH at 14:01 h UTC+2). The viewing geometry of the apparent temperature was calculated from the relative position of the camera seen from the plot. Thus, a viewing geometry of 0° azimuth and zenith corresponded to nadir (measurement right above the plot), and a viewing geometry of 20° zenith and 199° azimuth would have an acute angle while 20° zenith and 19° azimuth would have an obtuse angle to the sun. The plot reveals that, on average, the apparent temperature differs by more than 3.5°C (36.5–40.1°C) within the different viewing geometries within an image, with the largest gradient in direction of the principal plane of the sun were the measurement geometry (sun-object-sensor) changes from an obtuse angle to an acute angle. A close look at Figure 5D reveals that around nadir—where the proportion of soil signal is higher compared to other viewing geometries—the temperatures are slightly increased when compared to the general pattern. High-resolution thermal imagery captured by the ETH field phenotyping station (Kirchgessner et al., 2017) explains this observation, since in-between the crop rows the warm soil can be seen (see Figure 1 in the Supplementary Materials for an example).

For all flights together, the CT values obtained by the two evaluated blending modes were linearly related across all UAV flights (intercept = 0.14; slope = 0.96; R2 = 0.98, Figure 2 in the Supplementary Materials together with linear relationships for each UAV flight). Figure 6 shows a Bland-Altman plot of the 2018-06-20 containing the relationship of the plots mean CT across both blending modes (x axis) to the difference in CT between both blending modes (y axis, “disabled” subtracted from “average”). It allows comparing systematic differences between the two blending modes. Overall, the difference became more negative until noon and increased toward the late afternoon. For the first and last flight, the difference between the blending modes was negligible. All other UAV flights exhibited a slightly negative trend between the mean CT and the CT difference between the blending modes.




Figure 6 | Bland-Altman plot showing the mean canopy temperature (CT, in ΔT) of both blending modes (“average” and “disabled”) on the x axis and the CT difference (in ΔT) between both blending modes on the y axis (“average” minus “disabled”) for measurements taken on the 2018-06-20.





Canopy Temperature Heritability Across a Day and Dates

For the first day with multiple flights—the 2018-06-16—fluctuations in PAR due to cloud passes and, to a lesser extent, vapor pressure deficit (VPD) (Figure 7, bottom) resulted in variable H2 values (Figure 7, top). For all genotypes, H2 values ranged from 0.46 to 0.58 for the blending mode “disabled” and from 0.48 to 0.61 for the blending mode “average.” Overall, H2 increased during the morning, peaking at 12:50 h on the 2018-06-16, right after a passing of clouds. H2 values of the “stay green” genotypes were low at the 14:06 h and the 15:27 h measurements. They ranged from 0.29 to 0.6 for the blending mode “average” and from 0.3 to 0.59 for the blending mode “disabled.”




Figure 7 | Diurnal variation of H2 values on the 2018-06-16 and the 2018-06-20 (top) for all genotypes (black) and for “stay green” genotypes (red). Data were gathered using the blending mode set to “average.” Axis times in hours:minutes, local time. Diurnal variation of the temperature, the photosynthetically active radiation (PAR in μmol m−2s−1) and the vapor pressure deficit (VPD) on the 2018-06-16 and the 2018-06-20 (bottom). The vertical lines correspond to the start time of the unmanned aerial vehicles (UAV) flights.



For the second day with multiple flights, the 2018-06-20, weather conditions were stable and the H2 values were similar for most flights (Figure 7, top). The H2 values of the 9:24 h measurement were low with values under 0.3 for both blending modes and sets of genotypes. The other UAV flights showed higher H2 values ranging from 0.48 to 0.54 for the blending mode “average” and from 0.43 to to 0.54 for the blending mode “disabled.” On that day, highest H2 was reached at 14:00 h before decreasing again. The “stay green” genotypes exhibited lower H2 values than all genotypes throughout the 2018-06-20 with the exception of the blending mode “disabled” measurement at 15:05 h. The pattern of H2 values for these genotypes was similar to the one found in all genotypes.

Figure 8 shows the H2 values of the measurements carried out on different days (top) and the weather data for the UAV flights (bottom). Overall, H2 values generally increased from flowering at the end of May up to a peak on the 2018-07-04. The increase in H2 values coincided with the dry period with no rainfall between the 2018-06-14 and the 2017-07-02. H2 values ranged from 0.30 to 0.67 for the blending mode “disabled” and from 0.36 to 0.74 for the blending mode “average.” The CT elicited with the blending mode “average” showed higher H2 values on all measurement dates except on the 2018-06-04 and the 2018-06-20. The variance components of the heritability split into genotypic and residual variance showed the blending mode “average” reducing both variances (Figure 8). The impact was however, larger for the residual variance than the genotypic variance.




Figure 8 | Heritabilities for the solar noon measurements shown for spatially corrected data (top) for all genotypes (black) and for “stay green” genotypes (red). The genotypic and residual variances of the two blending modes are also plotted (middle panels). The genotypic and the residual variance of the SpATS corrected data was overall lower for the blending mode “average.” Weather data (bottom) is given in mean daily air temperature (°C, red line) and cumulated daily precipitation data (mm, blue bars) and photosynthetically active radiation (PAR in μmol m−2s−1, black rectangles) for the measurement period. Weather data from the on-site weather station (Figure 1). Unmanned aerial vehicles (UAV) flight dates marked in vertical dashed lines.



The “stay-green” genotypes (red data points Figure 8, top) also showed a similar increase in H2 values after flowering at the end of May until beginning of senescence, with an outlier on the 2018-06-16 where the PAR was low compared to the other UAV flights (Figure 8, bottom). H2 values elicited with blending mode “average” were generally also higher than the blending mode “disabled,” except for the 2018-06-20. The blending mode “average” also reduced the genotypic and residual variance components for the “stay-green” genotypes. Further results are reported on the CT measured with the blending mode set to “average,” due to the generally higher heritability.



Canopy Temperature Correlation Across a Day and Dates

Correlation coefficients between the measurements performed around solar noon at the different dates ranged from 0.41 to 0.95 (Figure 9). All correlations shown in Figure 9 were significant on p ≤ 0.01. Correlations between successive measurement dates were high and ranged between 0.68 and 0.95 (Figure 9, diagonal). Especially the three measurements between the period of the 2018-06-16 and the 2018-06-30 showed high correlations. For the 2018-06-16, Pearson correlations between measurements were overall high and ranged from 0.83 to 0.93 (Figure 10A). Correlations between successive flights were also high, ranging from 0.88 to 0.93. For the same-day measurements on the 2018-06-20, Pearson correlations ranged from 0.49 to 0.95 (Figure 10B). The two measurements conducted before solar noon (09:24 and 10:11 h) showed weak correlations with the measurements conducted around solar noon and the 15:05 and 15:49 h measurement. The solar noon measurements (11:05, 12:27, and 14:00 h) correlated highly.




Figure 9 | Correlation coefficients between spatially corrected genotypic canopy temperature (CT) values of different dates measured around solar noon. All correlations were significant at p ≤ 0.01.






Figure 10 | Correlation coefficients between spatially corrected genotypic canopy temperature (CT) values on the dates with multiple measurements: (A) the 2018-06-16 and (B) the 2018-06-20. All correlations were significant at p ≤ 0.01.






Discussion

This study presented a comparably cheap method for high throughput CT phenotyping based on UAV thermography in combination with photogrammetry and computer vision, namely the SfM approach. The total hardware cost added up to 18k € (6k € for the Matrice 600 pro, 8k € for the A65 camera, 3.5k € for Agisoft professional edition, 0.5k € controlling equipment). Additionally, a high-precision GNSS solution for measuring the GCP positions and a workstation for photogrammetric processing are also needed. With the flight parameters used in this study, an area of one hectare was captured in a flight time of approximately 8 min. Since the drone was powered by electricity, no substantial follow-up cost besides the cost of replacing the batteries occasionally needed to be considered. With increased flight time and increasing altitude, the approach potentially allows capturing very large areas since it allows combining many individual images to an orthomosaic. In the following, the results of this method are discussed.


Orthomosaic Generation From Thermal Images

The orthomosaics showed high detail that allowed assessment of in-plot heterogeneity. Visually it can be seen that plot temperature is influenced by border effects of the between-plot space by approximately four pixels (approx. 0.25–0.3 m or two rows) (Figure 5A, B). Looking at the plots from multiple viewing geometries showed that CT is anisotropic. It shows an almost symmetrical pattern in parallel to the principal plane of the sun with on average several °C difference across the field of view (25°) of the sensor. Around nadir a hotspot is visible were the temperatures are slightly increased compared to the general pattern (Figure 5D). This can be explained by higher soil temperatures compared to plant temperatures, which are revealed when looking at very high-resolution images from the field phenotyping platform captured at the same time (Figure 1, Supplementary Materials). However, the effect of this differs depending on the canopy structure within each plot. Visual inspection of high-resolution images indicated that the angle of the heads and leafs also influence the apparent temperature.

The systematic differences resulting from the viewing geometry are also found in the blending modes. The blending mode “disabled” showed higher in-plot heterogeneity. In this blending mode, only the center part of each image is used, which corresponds to viewing geometries close to nadir (Figure 5C). This viewing geometry potentially captures more information from inside the canopy and the soil background than oblique viewing geometries (for a detailed discussion on the effects of the viewing geometry on the apparent signal—in particular the proportion of visible soil and plant material—please refer to Aasen and Bolten, 2018). In the blending mode “average” all information from all images covering a certain pixel in the orthomosaic is taken into account, and thus the information is averaged over a wide range of viewing geometries (including nadir and oblique). Consequently, compared to an only nadir viewing geometry, more information of plant material from the higher canopy levels is captured (Aasen and Bolten, 2018). This effect is also visible in the Bland-Altman plot (Figure 6). Negative differences between the blending mode “average” and “disabled” corresponds to higher apparent temperatures in the close to nadir viewing geometries (blending mode “disabled”). The negative slopes of the relationships indicate that with a higher absolute plot temperature the close to nadir values relatively increase. This can result from higher plot temperatures in less dense canopies (with lower biomass) were the nadir viewing geometry captures more of the warm soil background. Toward the later afternoon, the canopy cooling decreases and the soil background is shaded such that the nadir measurements become cooler (15:05 h flight) and later (15:49 h flight), the differences between the two measurements procedures become negligible. Similar, in the early morning (09:24 h flight) both soil and leaf temperature are largely determined by the air temperature, which result in negligible difference in apparent temperature between the blending modes. Overall, the interpretation of the results in this detail is very complex. More research is needed to disentangle the interaction of canopy structure, illumination, and viewing geometry with CT to establish a robust link between CT and actual physiological status (e.g., stomatal conductance) of the plants.

Many studies that use 2D imager [c.f. (Aasen et al., 2018)] based thermography have used single images for CT extraction (Bendig et al., 2012; Zarco-Tejada et al., 2012; Calderón et al., 2013; Deery et al., 2016; Sankaran et al., 2018; Deery et al., 2019), eliminating the need for complex image mosaicking. The drawback of the single image approach is that only a limited area can be captured—and to increase this area the flight height needs to be increased, consequently decreasing the GSD. Considering the limited resolution of current thermal cameras (most have a resolution of up to 640 x 480 pixels) and the limited maximum legal flying height of UAV systems in most countries, the applicability of the single image approach for low-cost UAV phenotyping is limited. Additionally, in the single image approach, anisotropy effects have a stronger influence on the data since a larger variety of viewing geometries are used within one image.

To achieve high position accuracy, GCPs are used during the generation of the orthomosaics (Ortega-Farías et al., 2016; Ribeiro-Gomes et al., 2017; Malbéteau et al., 2018; Sagan et al., 2019). A dense distribution of GCPs across the experimental site help to obtain optimal results (Mesas-Carrascosa et al., 2015; Roth et al., 2018). A key issue with conventional GCPs in thermal imagery is that they can be hard to detect in thermal images due to low contrast of such imagery (Malbéteau et al., 2018). This was confirmed in test flights conducted for this study. To overcome this limitation, some authors first georeferenced red green blue (RGB) images with GCPs and then referenced the thermal imagery to the RGB data (Sagan et al., 2019). With special thermal GCPs it is possible to georeference thermal orthomosaics without the need for exact for expensive on-board RTK solution for the UAV. Most studies did not report position accuracies of generated thermal orthomosaics (Berni et al., 2009b; Berni et al., 2009a; Zarco-Tejada et al., 2013; Maes et al., 2017; Santesteban et al., 2017; Malbéteau et al., 2018; Sankaran et al., 2018; Sagan et al., 2019). Ribeiro-Gomes et al. (2017) used rubber sheets with an aluminum plate as thermal GCPs and reported a thermal orthomosaic position RMSE of 7.2 m at a flight height of 80 m. After increasing the contrast of their thermal images, they reduced their position RMSE to 1.2 m. Malbéteau et al. (2018) used aluminum plates with black crosses taped onto but did not report spatial accuracies of their orthomosaics. Using regular GCPs, Gómez-Candón et al. (2016) report orthomosaic RMSEs ranging from 15 to 19.4 cm for their thermal flights at 40 m flight height. Compared to these studies, the obtained position accuracy in our study was very high, with positional RMSE ranging from 1.25 to 10.05 cm with an overall mean RMSE of 4.79 cm. Both Gómez-Candón et al. (2016) and Ribeiro-Gomes et al. (2017) used a thermal camera with similar resolution as in this study.

Some conclusions can be drawn from these results:

	- When using the information of individual images or the blending mode “disabled” the flight pattern should be planned such that the plots are captured in similar viewing geometries since already small differences impact the apparent temperature. Ideally, the flight pattern should be along the range or rows of the design and with a high rate of frames per second.


	- The “average” blending mode is able to reduce the impact of the viewing geometries. Since the anisotropy is symmetrically to the principal plane of the sun, a flight pattern in parallel to the principal plane is advised. Ideally, the capturing position is symmetrically in all directions, but it should at least be along the principal plane to appropriately average out the viewing effects. This would also be supported by a high measurement frequency.


	- In case of slightly fluctuating measurement conditions, it is advised to fly in parallel to the range or row direction since differences can then be included into the range or row component of the spatial correction model. In future, models that integrate the measurement time could further improve the correction. Under strongly fluctuating environmental conditions it is not advised to measure, since the comparability of the measurements might be compromised due to the changes in plant physiology during the measurements.


	- Independent of the data generation procedure, precise georeferencing is key if data from multiple flights should be processed in an automated way.







Optimal Timing for Canopy Temperature Characterization

Comparing the genotypic CT values from multiple measurements on the 2018-06-16 and 2018-06-20, showed constant correlations across all measurement times on the 2018-06-16 (Figure 10A). On the other hand, the correlations of the morning measurements with subsequent measurements decreased toward the afternoon on the 2018-06-20 (Figure 10B). This indicated a changed response of the genotypes to the environmental conditions during the day with the rapid increase of temperature throughout the day on the 2018-06-20 compared to the moderate increase on the 2018-06-16 (21°C vs. 25°C span between the measurements).

H2 values were highest in the early afternoon at 14:00 h local time (Figure 7). This can be explained by the increased potential photosynthesis due to high irradiation and an increasing vapor pressure deficit toward the early afternoon (Figure 7), which can potentially increase conductance and may lead to an increased variance between the genotypes. These results align with the results of (Deery et al., 2016; Deery et al., 2019) for wheat. Thus, generally it can be concluded that flights at that time are best to estimate genotypic differences in CT. Still, the highest H2 on the 2018-06-16 was found around noon right after a cloud overpass. This could be an indication of differences between genotypes in upregulating transpiration after a cloud overpass during dry periods. Also, it is likely that the best timing depends on the water availability in the soil. Thus, to resolve such interactions, continuous measurements would be of benefit.

Looking at the whole period, H2 generally increased toward the beginning of July (Figure 8). The period between the 2018-06-14 and the 2017-07-02 corresponded to a dry period without rainfall (Figure 8, bottom) and it can be assumed that also the water stress increased in this period. Still, also the senescence started on the 2018-06-16 for the early senescent genotypes. In an attempt to disentangle the effect of phenology and water stress, we selected the “stay green” genotypes. These showed a similar trend in H2 as the whole-genotype set (Figure 8) suggesting that not only the senescence but also the ongoing dry period increased variance between genotypes. The drop in H2 observed on the 2018-06-16 for the “stay green” genotypes may have been a result of low PAR on that UAV flight, (Figure 7, left and Figure 8, bottom), possibly resulting in poor transpiration, which lowered the heritability and thus the ability to differentiate genotypes. Other flights on that day showed similar H2 as the flights on the 2018-06-20. This effect was not seen in the whole genotype set that contained already visual senescence genotypes. Still, it has to be noted that the “stay green” genotypes were only identified based on visual signs of senescence in this study, an pre-visual senescence processes might still influence the results. Consequently, to get stable CT estimates that correspond to physiology rather than phenology, the authors suggest performing CT measurements at early afternoon and before the onset of senescence. Further research is needed on this topic, since i) change in physiology during pre-visual senescence might already influence CT and ii) drought and phenology (i.e., early senescence) might interact and both have an effect on CT, as also mentioned in Lopes and Reynolds (2010).



Comparison of Different Canopy Temperature Measurement Approaches

In a typical field phenotyping scenario, a couple of hundred to thousand plots situated on a few hectares need to be screened. For CT, several other measurement approaches exist besides the one described in this study. Table 1 analyses the advantages and disadvantages of these approaches. Handheld measurements have a very attractive setup cost, are easy to setup and are highly flexible while arguably having the highest GSDs available. Sampling such a large field experiment by hand is in most cases unfeasible due to the high running costs, the long time needed to sample a plot and the changes in environmental conditions during the sample time, which result in low heritability (Deery et al., 2016; Sagan et al., 2019).


Table 1 | Advantages (+, ++) and disadvantages (-, --) of the most common scenarios for eliciting canopy temperature (CT) in a field-phenotyping environment.



Phenotyping stations such as the “field phenotyping platform” (FIP) at ETH Zürich (Kirchgessner et al., 2017), the “Field Scanalyzer” in Rothamsted (Virlet et al., 2017) and similar stations described in Hund et al. (2019) are highly automated, reducing manual labor costs. Phenotyping stations have low effort for data acquisition, a moderately high area that they can efficiently cover and are applicable to measure tall crops to a certain extent (< 3 m). With the sensors situated only a few meters above ground, they have a very high GSD that allows differentiating differences between plant organs. However, they require high setup costs and are spatially very inflexible due to their stationary nature. In addition, the measurements are recorded sequentially, which might introduce biases due to changing environmental effects. Jones et al. (2018) and Deery et al. (2019) used a sensor network of infrared point sensors to simultaneously elicit CT for up to 84 out of 400 plots in their field experiments.

While this minimizes the running costs, acquiring a sufficient number of sensors to make such measurements viable requires high setup—and possibly maintenance—costs. However, such a system has the advantage that all measurements are done simultaneously, minimizing the impacts from changing environmental conditions during measurements.

Table 1 contains the two scenarios “UAV orthomosaic” and “manned aircraft single image” for airborne measurements, whereas both—manned aircrafts and UAVs—could be used for both approaches. Still, these two scenarios are the most popular ones when it comes to airborne thermal field-phenotyping (Liebisch et al., 2015; Deery et al., 2016; Gómez-Candón et al., 2016; Malbéteau et al., 2018; Deery et al., 2019; Sagan et al., 2019).

The UAV has an advantage over manned aircrafts when it comes to setup and running costs of the measurement system. The effort for setup effort (sensor implementation) are roughly similar between the two systems. The size of the coverable area in an orthomosaic is only limited by the flight time of the carrier system but can be extended by combining imagery from multiple flights. The orthomosaic scenario can thus effectively cover a larger area than the single image approach at the cost of potential impacts of changing environmental conditions during the measurement of the images. The “single image” scenario, can sample more plots in a shorter time when the flight altitude is higher to capture all plots, at the cost of having a lower GSD than an orthomosaic captured from a lower altitude. Additionally, single images are limited in their covered area per image. The lower cost and administration needed to fly UAVs make this system more flexible than piloted aircraft.

A limitation of the UAV based orthomosaic employed in this study was the flying time of the multi-rotor UAV, which is currently at maximum 15 to 20 min. The high spatial resolution of the obtained orthomosaics meant that flight heights could potentially be doubled while still having a good GSD. Due to the high measurement speed of the camera, a higher flying speed would also be possible, extending the possible coverage per flight. The greatest benefit in sampling area could however be achieved by mounting thermal cameras on fixed-wing UAVs. Fixed-wing UAVs are able to cover large areas [up to tens of ha in one flight [e.g., (Wingtra, 2019; senseFly, 2019)].




Conclusion

This study presented an unmanned aerial vehicle (UAV) based low cost thermal imaging approach to estimate canopy temperature (CT) for field phenotyping experiments. The approach allowed obtaining data with high temporal and spatial resolution at variable extents, since many thermal images can be mosaicked into one orthomosaic. Viewing geometry effects within the thermal imagery were analyzed and it was found that they potentially had large influences on the obtained signal within one image. It was discussed how these translated into effects in the thermal orthomosaic, depending on how the orthomosaics were generated. It was found that averaging the information of all images to characterize an area of interest (e.g., a plot) had a higher heritability that only using the center parts of the images during the mosaicking process. When averaging the information during the orthomosaic generation, it is suggested to use a regular grid of measurements in parallel to the principle plane of the sun and a high framerate. Correction for spatial effects in the data with the 2D splines of SpATS resulted in a heritability of 0.36 to 0.74 for CT measurements, depending on the day, flight time, and data processing mode. Analysis of multiple flights per day and across the season showed that an optimal time point for thermal measurements in wheat is before the onset of senescence and ideal flight times to estimate genotypic differences in CT are in the early afternoon around 14:00 h local time. Overall, the results of this study demonstrate that the low-altitude thermal remote sensing is suitable for high-throughput field phenotyping. A comparison to other approaches demonstrated that it helps to close the gap of existing applications of thermography in large-scale phenotyping scenarios for plant breeding. Future research should aim to establish a robust link between observed CT and plant physiological traits (e.g., stomatal conductance), since multiple results indicated a confounding effect of canopy structural traits such as canopy density, leaf, and head inclination.
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Stripe rust (Pst) is a major disease of wheat crops leading untreated to severe yield losses. The use of fungicides is often essential to control Pst when sudden outbreaks are imminent. Sensors capable of detecting Pst in wheat crops could optimize the use of fungicides and improve disease monitoring in high-throughput field phenotyping. Now, deep learning provides new tools for image recognition and may pave the way for new camera based sensors that can identify symptoms in early stages of a disease outbreak within the field. The aim of this study was to teach an image classifier to detect Pst symptoms in winter wheat canopies based on a deep residual neural network (ResNet). For this purpose, a large annotation database was created from images taken by a standard RGB camera that was mounted on a platform at a height of 2 m. Images were acquired while the platform was moved over a randomized field experiment with Pst-inoculated and Pst-free plots of winter wheat. The image classifier was trained with 224 × 224 px patches tiled from the original, unprocessed camera images. The image classifier was tested on different stages of the disease outbreak. At patch level the image classifier reached a total accuracy of 90%. To test the image classifier on image level, the image classifier was evaluated with a sliding window using a large striding length of 224 px allowing for fast test performance. At image level, the image classifier reached a total accuracy of 77%. Even in a stage with very low disease spreading (0.5%) at the very beginning of the Pst outbreak, a detection accuracy of 57% was obtained. Still in the initial phase of the Pst outbreak with 2 to 4% of Pst disease spreading, detection accuracy with 76% could be attained. With further optimizations, the image classifier could be implemented in embedded systems and deployed on drones, vehicles or scanning systems for fast mapping of Pst outbreaks.

Keywords: yellow rust, monitoring, deep learning, wheat crops, image recognition, camera sensor, ResNet, smart farming


INTRODUCTION

Stripe rust caused by the fungus Puccinia striiformis Westend. f. sp. tritici Eriks. (Pst) is one of the major diseases that lead to severe yield losses in wheat crops. Pst possesses a high genetic variability for developing new and often aggressive strains, which led to major epidemic outbreaks in North America and Europe in history (Chen et al., 2014). Under the effect of global warming, this trend is currently worsening because Pst has adapted to warmer conditions promoting its wider global propagation with devastating effects in major wheat-producing areas in China, Northern Africa, the Middle East, and India (Milus et al., 2009; Hovmøller et al., 2010). Today, almost 88% of the global wheat production is susceptible to Pst (Beddow et al., 2015). The use of disease-resisting cultivars is an effective and ecologically feasible way to control Pst (Chen et al., 2014; Park, 2016). However, the farmer may prefer to choose a wheat variety with a less good rating of rust resistance in favor of specific market requirements. In addition, new Pst races are known to appear rapidly that overcome major resistance genes in wheat varieties (Hubbard et al., 2015). Often only the application of fungicides remains the optimal choice for the farmer to control Pst when sudden outbreaks loom immanent. If sensors were available that were able to detect Pst outbreaks reliably in the fields in early development phases, it would help to control and reduce the use of fungicides more efficiently (Tackenberg et al., 2018).

The disease develops in the leaf tissue, but also affects spikes and stems in later stages. Initially, patches of unspecific bleaching become visible on the leaves. Then, long and narrow stripes appear between the leaf veins with a yellow to orange coloration (Chen et al., 2014). They are provoked by densely clinging uredospore pustules. Despite its obvious appearance, early detection is still challenging as only a few leaves will carry these symptoms at the beginning. Yet, each pustule is highly infectious and can produce thousands of spores that may initiate subsequent spreading of the disease over the entire field. Thus, field inspections should be done periodically throughout the season to identify outbreaks in a timely manner. Nevertheless, field inspections are time-consuming and laborious, which limits them to be conducted only punctual in the field and during the season.

A number of research studies investigated the use of hyperspectral sensors to detect patches of the Pst infection on plants. Bravo et al. (2003) and Moshou et al. (2004) showed that hyperspectral measurements in the spectral range between 460 and 900 nm are able to differentiate Pst from healthy wheat plants. Huang et al. (2007) found that the photochemical reflectance index (PRI) has high potential for the identification of Pst from airborne hyperspectral images. A limited upscaling to satellite remote sensing was presented by Yuan et al. (2013). Yet, hyperspectral imaging is costly in terms of investment and data handling. Moreover, discolorations in the plant canopy can be the result of nutrients deficiency, herbicide toxicity, or water deficiency (Singh et al., 2018) and may falsely be identified as Pst when only the reflectance on pixel level but not the form of the disease symptoms is included in the image analysis.

The disease symptoms are readily visible by the human eye and Pst develops a characteristic pattern on the leaf’s surface. Instead of focusing on the spectral domain, the analysis of the spatial association of pixels as shown by color images taken from infected leaf spots may also be promising. This would enable the use of simpler camera systems for Pst detection as intelligent sensors. In this regard, attention for image-based plant classification has been given for using segmentation-based (Nilsback and Zisserman, 2008; Khatra, 2013), morphological-based (Munisami et al., 2015), and texture-based (Wang et al., 2012) as well as the use of local image descriptors (Nilsback and Zisserman, 2010). Based on color image segmentation, Khatra (2013) was able to extract yellow rust from wheat plant images using k-means clustering. Wang et al. (2012) could successfully classify yellow rust by training a one-hidden-layer backpropagating neural network with 50 global features from segmented yellow rust images. Local image descriptors are often used within a multi-stage process, where, first, local features are described on a low level and summarized within a visual vocabulary, then feature vectors are related to the visual vocabulary and these relations are finally used for an image classifier based for example on a support vector machine. Bag of visual words is the best known approach among them (Csurka et al., 2004) and, specifically, for plant and weed detection good results have been obtained (Kazmi and Andersen, 2015; Pflanz et al., 2018).

Recently, object-based image classification has been shifted mainly toward the use of convolutional neural networks (CNN), as originally introduced by LeCun and Bengio (1998). CNNs are able to perform feature extraction and classification in one step, i.e., the filters that extract the features for the classification are directly learned within the network and, thus, avoid the dependence on user-defined implementation of feature extraction. It is hoped, that with the use of CNNs, the image classifier can cope much better with the complexity of cluttered field scenes in order to detect the relevant information. CNNs are inspired by the receptive field as found in the human visual cortex (Kim et al., 2016). They include convolutional and subsampling layers (strided convolution layers), which perform the feature learning, feature extraction and dimension reduction. The feature learning part of the network is then followed by dense layers, which will decide the final class label (Rawat and Wang, 2017). CNNs have recently gained respectable image classification results due to the use in large deep learning architectures (DCNN) such as AlexNET (Krizhevsky et al., 2012) or ResNet (He et al., 2016). Within these DCNNs several convolution and pooling layers are stacked block by block, often integrating additional architectural features serving as dropout layers (Srivastava et al., 2014) or shortcut connections (He et al., 2016). Due to the high performance in image classification and recognition, DCNNs are currently becoming a hot topic for plant phenotyping research as reviewed in Singh et al. (2018). Pawara et al. (2017) compared DCNNs using AlexNET and GoogleNET with classical local image descriptors using a bag of visual words framework for plant classification. They could show that DCNNs clearly outperform bag of visual words on three different plant image datasets. Based on DCNN, Mohanty et al. (2016) developed a plant disease detection model using a large image data set of plant leaves with 38 class labels. The architecture of the models used AlexNET and GoogleNET and reached very high accuracy on the dataset itself, yet medium accuracy with random plant images taken from the web. A smartphone app was subsequently developed. It is based on machine learning algorithms and updated with crowdsourcing data, i.e., users can evaluate plant images by sending them in via their smartphones. It is said to recognize up to 400 plant diseases (Rupavatharam et al., 2018). More specifically focused on wheat diseases, Lu et al. (2017) developed an in-field automatic wheat disease diagnosis system based on modified fully connected network architecture also using smartphone images (Long et al., 2015). They built up an image data set called Wheat Disease Database 2017 (Lu et al., 2017) depicting different wheat diseases including stripe rust with no background covering and used it for training the DCNN. The prediction model was later packed into a real-time mobile app to provide support for agricultural disease diagnosis in the field (Lu et al., 2017).

However, images from smartphones differ because they are already focused on the object of interest. In case of smartphone detection, the user has first to act as a sensor in order to determine that there is a specific symptom on the leaves present (Siricharoen et al., 2016). Our aim is, however, to detect Pst from unobserved imagery that can be collected from camera sensors deployed on drones, vehicles or high-throughput scanning systems. In this manner, a large annotation image data base was collected for Pst with the support from a randomized field trial and trained a ResNet convolutional neural network for classifying images as Pst. The image classifier was constructed under the constraints to be integrated in an online sensor system in the future. This study shows the classification performance in relation with different Pst development stages.



MATERIALS AND METHODS


Field Experiment

For the experiments, 6 Pst infested plots (+1) and 6 control plots (+2) of a randomized field trial at the research site Marquardt (ATB), Potsdam, Germany (52° 28′ 00″ N, 12° 57′ 30″ E) were used in the year 2018. The additional plots were originally installed for planning security, but were later used in the experiment. In all plots, winter wheat was sown as the variety Matrix B with a Pst resistance rating of 8 (highly susceptible). The seed row distance was 0.12 m and the seed rate was 350 grains per m2. The plots were arranged as shown in Figure 1. Each plot had the dimension of 9 × 9 m and was separated from each other with a distance of 3 m to avoid confusion of management from one plot to the other. Each Pst plot was inoculated starting with April 11, 2018 during cold and calm weather. For inoculation, a spore solution with 2.5 g Pst spores and mixed with 500 ml purified mineral oil was prepared. The spore solution was evenly spread with an Ulva+ hand-held spinning disc sprayer (Micron Group, Bromyard, United Kingdom) over the whole plot. Control plots were treated with the fungicide Osiris® (BASF, Germany) on May 3, 2018 to guarantee that they were free of disease.
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FIGURE 1. An ortho image generated from a drone in 10 m altitude showing the field experiment at the research station Marquardt (ATB), Potsdam, Germany (52° 28′ 00″ N, 12° 57′ 30″ E). Images were recorded in 2 m altitude along the superimposed lines using a moving equipment carrier.


Beginning with 20 days after Pst inoculation (dai) on May 3, 2018, the experimental plots were weekly assessed for Pst symptoms occurring on the plants. The Pst assessment scored the percentage of infestation symptoms for the first three top leaf layers of the plants. Pst assessment was conducted at six locations within each plot near the locations where the images were acquired. At each location, 10 wheat plants were selected randomly for the assessment.



Image Acquisition and Annotation Database

All images were acquired with the DSLM camera ILCE-6000 (Sony, Japan) with an APS-C type sensor chip (23.5 × 15.6 mm) and a 50 mm lens attached (SEL50F18, Sony, Japan). The camera was installed on a boom, which was mounted on an equipment carrier in nadir position. The distance between camera lens and ground was fixed to 2 m. The projected area on the ground was 0.63 × 0.97 m. The equipment carrier was slowly driven through the field experiment while the boom was always holding the camera with 2.25 m distance off the plot boundary in order to prevent edge effects. While moving, the camera was automatically triggered via USB using a wheel sensor installed on the equipment carrier approximately every 1 m. Images were acquired from both sides of each plot (Figure 1). Camera parameters were adjusted to a f-number of 8 or 7.1 and to an exposure time of 1/1000 or 1/800 depending on the ambient conditions. Images were recorded on dai 34, 42, 47, and 56.

After excluding the images that were not recorded within the plots, a total number of 2772 images was recorded along the green line (Figure 1), which were taken to train the image classifier and 2690 images recorded along the yellow line, from which 1800 images were randomly selected both plot and dai specific for testing the image classifier. Thus, a ratio between training and test data of 60 % to 40 % was obtained. All images from the training set and 1/3 of the images of the test set were further split into image patches of the dimension 224×224 px along a regular, non-overlapping grid. These patches were annotated on screen by experts. For this purpose, a stand-alone tool was written in MatLab 2018b (The MathWorks, Inc., United States) to allow a fast and multi-user annotation. The tool presented a patch image on a monitor screen and the expert had to choose whether the plant material shown within the patch was affected by Pst (category Pst) or not (category Pst-free). Each patch was selected randomly from all patches belonging to a randomly selected camera image from a specific dai and plot. The patch annotation was repeated until a maximum of 200 patches for each category, plot, and dai were found from the training set and a maximum of 50 patches for each category, plot, and dai for the test set. In case of less annotations for a specific group, plot, and dai, the procedure was stopped until all images had been examined. In this way, an annotation image database was built for four dates containing in total 17245 annotated patches for training and 3621 for testing. From the training set, 8000 patches were randomly chosen for validation and optimization during the training of the ResNet-18. This set is completely independent from the test set. In the annotation database, for each patch, their appropriate camera images, plots and dais was documented. Next, 20 images per plot and dai were annotated from the remaining 2/3 of the test set (1200 images) for testing the image classifier on the full resolution camera images. The annotation was applied to the entire image and upon recognition of one Pst symptom, the image was labeled as Pst otherwise as Pst-free. The number of all images and patches that were used for training and testing the image classifier were summarized in Table 1. Due to technical reasons such as not continuous speed of the equipment carrier when trespassing the experiment as well as time-specific differences due to unequal distribution of Pst symptoms, an exact balances between the eight combinations of dai, training and test set could not be reached.


TABLE 1. Number of images and patches used for training and testing the image classifier displayed according to the acquisition of the imagery in terms of days after inoculation (dai).
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Finally, drone imagery was collected from the disease outbreak. For this, aerial images were taken from 10 m altitude for all experimental plots on dai 36, 42, 46, and 58 with the same camera sensor as the images on ground were sampled but with a 16 mm lens attached. Ground resolution was 3.84 mm/px. We used a Quadrocopter (HP-X4-E1200, Hexapilots, Germany) and a flight planning that yielded an image overlap of 80%.



Deep Residual Network Architecture

Image classification was based on a residual neural network (ResNet), a state-of-the-art deep convolutional neural network architecture for computer vision. The key feature of ResNets is the use of so-called residual blocks in the network architecture (He et al., 2016). A residual block consists of a shortcut connection, which implements the identity function x, and in parallel a stack of convolution layers whose output F(x) is added to the identity mapping to form the output F(x)+x of the residual block. Therefore, the stack of convolution layers only has to learn a residual term that refines the input of the residual block toward the desired output. It has been shown that ResNets are easier to train compared to plain convolutional neural networks that simply stack convolution layers, especially for deep architectures (He et al., 2016). Specifically, the identity mappings enable the direct propagation of information and gradients across multiple layers of the network, leading to better gradient flow and convergence properties (He et al., 2016). The ability to train deeper networks with residual blocks has led to a breakthrough in accuracy for major image recognition benchmarks such as ImageNet (Russakovsky et al., 2015).

The general ResNet architecture used in this study is depicted in Figure 2. It incorporates two different types of residual blocks (Type A and Type B). The residual mapping F(x) is identical for the two types of blocks and consists of two convolution layers with intermittent batch normalization and ReLU activation functions. Type B follows the original design proposed by He et al. (2016) with an identity mapping for the non-residual branch in the block, while Type A implements a modified version where a single convolution layer is added to the non-residual branch (He et al., 2016II). Type A can be seen as a middle ground between a fully residual and a standard, stacked convolutional block. Specifically, the ResNet-18 architecture was used here, which stacks several residual blocks on top of each other, alternating between Type A and Type B. Directly after the input layer, an initial convolution layer with 64 filters and stride two is followed by a max pooling layer with kernel size two and stride two to reduce the spatial dimension of the input. The main part of the network is comprised of eight residual blocks; alternating between Type A and Type B. The number of filters in the convolution layers of the eight residual blocks is 64 for the first two blocks, 128 for the next two blocks, 256 for the next two blocks, and 512 for the final two blocks. The final convolution layer of every second block reduces the spatial dimension by employing a stride of two, while all other convolution layers in the residual blocks employ stride one. All convolution layers in the network have a kernel size of 3 × 3. The residual blocks are followed by a global average pooling layer and, in the end, one dense layer with softmax activation for binary classification was used. The model is implemented using the Keras library1 with Tensorflow backend (Abadi et al., 2015). The full model architecture is shown in Supplementary Figure S1.
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FIGURE 2. Workflow of the image classification for training and predicting Pst in the full resolution images using the architecture of the ResNet-18 convolutional neural network.




Training the ResNet Model

The ResNet-18 model was trained using the 224 × 224 px training patches from the annotation database along with their associated labels. To increase the number of image patches available for training, the training set was augmented by adding for each original training patch, copies that were rotated (by 90°, 180°, and 270°) and additionally for each rotation angle a copy that was mirrored left-to-right. This procedure yielded eight augmented images patches for each original patch, yielding a total of 137960 image patches fed to the network. The model was trained using the Adam optimizer (Kingma and Ba, 2014) with an initial learning rate of 0.001 and a batch size of 128 for 100 epochs. Training was conducted on a GTX 1080 Ti GPU with 11GB of memory on a server with two Intel Xeon E5-2640 CPUs and 512 GB of main memory running Debian Linux 8.11. After training, the predictive class probabilities returned by the softmax activation in the final layer of the neural network are often not well scaled; specifically, they are often too close to zero or one. Therefore, class probabilities were scaled according to the temperature scaling method described by Guo et al. (2017). While temperature scaling is a monotonic transformation and does not change the classification result, having well-calibrated class probabilities makes it easier to interpret the output of the network (for example, a probability of 0.99 for the Pst class after calibration would indicate high confidence in the prediction). Temperature scaling was performed on the validation patches.



Applying the ResNet Model

The trained image classifier as described in 2.3 returns a probability for class affiliation of the Pst class, which represents whether the image patch shows signs of Pst infection or not. In the following this probability is referred as the Pst-score of the patch. The goal of this study is to detect stripe rust in the full resolution camera images (6000 × 4000 px). To obtain a prediction for a full image, each image was cut into small patches (224 × 224 px) without overlap across the full image. For each patch, the ResNet-18 model was evaluated and returns a Pst-score. This procedure resulted in 442 image patches for each 6000 × 4000 px full image, and therefore 442 score values for each image.

To classify the full resolution image, a preferably high precision with still acceptable recall is needed. A prediction error of 1% seemed suitable to satisfy both criteria. Thus, the full resolution images was classified as Pst, if only one patch of the 442 patches per image had a Pst-score greater than 0.99.



Performance Evaluation Metrics

We tested on patch level and image level given the independent test patches and images as described in section “Image Acquisition and Annotation Database.” The following performance criteria were used for evaluation calculated from the resulting true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN):
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On patch level, the standard model threshold of 0.5 was chosen to describe the performance of the model. The relationship between recall and false positive rate (FPR) informs about the power of a binary classification model for a range of thresholds. This curve is called ROC curve (receiver operating characteristic curve). As a measure of the prediction accuracy the AUC (area under the curve) was used to compare the classification models. The value of one is a perfect model, zero means a random prediction.



Comparison With Drone Imagery

The drone images were photogrammetrically processed with Metashape Professional (Agisoft LLC, Russia, 2019) to produce ortho images of the field experiment. Based on the RGB values, the triangular greenness index (TGI) was calculated, which has a good correlation with photosynthetic activity of dense canopies (Hunt et al., 2013):
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TGI maps were used as a qualitative assessment at which point in time the disease outbreak influenced the reflectance signal in such a manner that it was being recognized from typical remote sensing imagery taken from drones.




RESULTS


The Course of the Disease Outbreak

First disease symptoms of Pst were determined from dai 28 by field scoring in the lowest leaf layers (Figure 3). These first Pst symptoms occurred very sporadically within the Pst inoculated plots. In most cases, these characteristics were only discolorations due to chlorosis because the growing fungus within the leaf absorbed nutrients and lowered in turn photosynthetic activity. The area of discoloration of the infected leaves was below 0.5%. On dai 42, the Pst infection had developed from the lower leaf layers to the upper leaf layers and the whole canopy sporadically showed Pst characteristics. According to the Pst scoring, around 2% of the upper leaf layer area and around 4% of the lower leaf layer area was infected by Pst at this date. On dai 47, Pst infection rapidly developed upward in the canopy and infected the first leaf layers with an area of around 8 to 10% whereas the development of Pst in the lower leaf layers slowed down and was around 6%. On dai 56, the whole canopy was strongly infected. However, because of the hot and dry spring, the general severity of the disease was rather low.
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FIGURE 3. Pst infection development of the upper three leaves according to field scoring values of the inoculated plots. Dai refers to the number of days after inoculation.


Next to Pst characteristics, other weak damages of the leaves occurred in the Pst infected plots. The appearances of some of these symptoms were quite similar to Pst symptoms especially in the earlier stages of disease development. This included slug or snail damage, discolorations of chlorosis not originated by Pst fungi, and symptoms of other fungal diseases such as septoria leaf blotch (Zymoseptoria tritici) and leaf rust (Puccinia triticina). In addition to these similarities, the imagery was cluttered with no background separation, leaves could be partly hidden or shadowed, or heavily mixed by many different features such as spikes, leaves, stems and soil. In Figure 4 some of these challenges that the image classifier was faced are summarized.
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FIGURE 4. Examples of 224 × 224 px patches showing wheat without (A) and with (B) Pst symptoms.




Classification Accuracy of Pst at Patch Level

The training of the ResNet-18 model with the 224×224 px image patches from the training set reached a fast convergence after about 20 epochs with the training data and stabilizes after about 40 epochs with the validation data as can be seen from the trend discovered by the accuracy and loss curves in Figure 5. The model showed very good performance during validation with an accuracy between 0.9 and 1.0. The loss in the validation was slightly increased, which may indicate that probabilities were not sufficiently calibrated. That is why a recalibration with temperature scaling was performed on the class probabilities.
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FIGURE 5. Accuracy and loss trend curves for training (left) and validation (right) of the ResNet-18 model.


After training and scaling of the ResNet-18 model, a prediction of the Pst occurrence was returned as a Pst-score for each new image patch. In Figure 6A, boxplots of those Pst-score values calculated on the basis of the test patches for dai 34, 42, 47, and 56 are shown for the test categories Pst and Pst-free. For all dais, a clear division of the main bulk of score values (non-overlapping boxes) was determined supporting the prospects of a possible image classifier for Pst detection. The tallness of the individual boxes, e.g., the variability of Pst-score values, increased for the Pst-free group whereas decreased for the Pst group with later stages. This might indicate some uncertainty to detect Pst in the initial phase of the outbreak and to detect Pst-free when the disease has fully evolved. Only in the case of dai 34, stronger overlap of the Pst-free and Pst score values occurred in the low Pst-score range as can be seen from the overlapping whiskers. The whiskers signify the lowest or highest value, which are still within the 1.5 times the interquartile range based on the lower or upper quartile. This indicates that the ResNet-18 model over interprets anomalies in the wheat canopy as Pst at the beginning of the outbreak of visual Pst symptoms. However, according to the Wilcoxon test (p < 0.001), the Pst-scores of Pst group and Pst-free group were significant different at all dates including dai 34.


[image: image]

FIGURE 6. (A) Box plots of the Pst-scores evaluated by the Softmax layer of the ResNet-18 model for the group Pst and the group without Pst symptoms calculated from 3126 test patches. (B) ROC curves showing the recall and FPR of the ResNet-18 model for classifying 3126 test patches.


Additionally, ROC curves were calculated from evaluating the test patches. All ROCs exhibited a strong convex curve with their inflection points orientated toward the left-hand upper corner. The AUC values varied between 0.92 and 0.98 showing a good to very good performance for creating a binary classifier for Pst (Figure 6B). The confusion matrices (Figure 7) based on the standard threshold 0.5 and the corresponding performance criteria are given in Table 2 for the individual dais and for all dais pooled. The confusion matrices are depicted for each observed dai, which show directly the number of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). The number of TP increased with increasing dai. On dai 34, only 141 from 224 patches (63%) were truly predicted as Pst, on dai 42, it increased to 86% (236 from 274 patches) and on dai 47 it rise above 93% (269 from 289 patches). The characteristics of the TN differs from this. The TN were constant with a very high number for dai 34 to 47 ranging between 93% and 94%, while for dai 56 there was a small decrease to 86%. So, at the beginning of the Pst outbreak on dai 34, the model was more inclined to predict patches as Pst-free, although symptoms of the disease were present. This differs in the latest stage of the disease outbreak (dai 56) when Pst was nearly omnipresent on the leaves. Here, model prediction was slightly reversed. The image classifier had now a higher tendency of predicting patches as Pst although no Pst was present. In general terms, a classification accuracy of greater than 90% was reached with good precision and recall performance, which shows the F1 score of 0.85. For the models of the individual dais, accuracies ranged between 86 and 93%. The best accuracy was reported for the model of dai 47, whereas the weakest model was reported for dai 34. Although the total model performance for precision and recall was balanced, slight variations of the F1 score were observed between the dais.


[image: image]

FIGURE 7. Confusion matrices of classification of the image patches into Pst and non-Pst based on an independent test set (n = 3126) for different days after inoculation (dai).



TABLE 2. Classification of patches into Pst and not Pst based on an independent test set (n = 3126) for different days after inoculation (dai) and all patches pooled (Total).
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Classification Accuracy of Pst at Camera Image Level

The trained model needed 2.7 s for the full evaluation of one camera image given the designated hardware. In Figure 8, the areas of those patches exceeding the Pst-score of 0.95 were highlighted in a magnified camera image for illustration. It shows that clear Pst characteristics on leaves were easily identified and were associated with a very high Pst-score (> 0.99). In cases where the Pst symptoms were very small, partly covered by objects or unsharpened due to deeper leaf layer position, the Pst-score decreased.


[image: image]

FIGURE 8. A magnified part of a camera image in a Pst-inoculated plot. The violet rectangles show evaluated patches (224×224 px) given a high Pst-score value (> 0.95) by the ResNet-18 model.


The classification was tested on 1200 annotated images and performance results were summarized in Table 3. In total, classification accuracy reached 77% with an F1 score of 0.84 and precision and recall values mostly greater than 0.7. However, there were differences in classification accuracy among the observed dais. The weakest classification accuracy was obtained on dai 34 shortly after the outbreak of the disease. The image classifier reached here an accuracy of 57% with an F1 score of 0.53. Compared to the results at patch level, the F1 score was lower based on a lower precision. According to the confusion matrices shown in Figure 9, the highest FP (27%) occurred for this dai. Because an image contains 442 patches, it seems likely that some false-positive classifications of patches may have occurred mainly in the early stage of disease. One reason could be that the Pst symptoms at this time are in deeper leaf layer position because of early disease stage. On dai 42, classification accuracy rose above 76% with high and well-balanced precision and recall. The confusion matrix for this dai showed a decreased FP (9%) compared to dai 34. This was still in the initial phase of the Pst outbreak, where only 2 to 4% of the leaf area was infected. On the other site, the confusion matrices also reveal some limitations of the full image classifier, since FN was quite high specifically in the later stages of the disease at dai 47 and 56, which means that the classifier detects many images as Pst whereas no Pst is actually present.


TABLE 3. Classification of full resolution camera images into Pst and not Pst based on an independent test set (n = 1200) for different days after inoculation (dai) and all images pooled (Total).
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FIGURE 9. Confusion matrices of classification of full resolution camera images into Pst and not Pst based on an independent test set (n = 1200) for different days after inoculation (dai).


Another interesting point is at which dai, symptoms of Pst can be assumed from typical drone imagery as a remote sensing approach as an alternative method for assessing Pst in the field. In Figure 10, the TGI maps calculated from the drone imagery taken from 10 m altitude are shown for the plot with the strongest disease occurrence over the course of the Pst outbreak. It turns out that effects of the Pst outbreak can only be seen from dai 42 onward and even on dai 42 the Pst nests can only vaguely be assumed because TGI distribution had no structure from which Pst nests were readily recognizable. Without any further information, it would be impossible to assume the Pst infection in this phase. On dai 36, no changes at all were recognizable in the drone imagery. On dai 46, the pattern points to the occurrence of several Pst nests within the plot and on dai 58 the whole plot was infected and TGI values had all changed to higher values. However, this study could show that a detection of Pst with high resolution imagery is possible even under low disease infestation (2 to 4%) with an acceptance rate of 76% by using deep residual neural networks on dai 42. This is even before discolorations in the drone imagery from 10 m altitude could be identified as Pst disease.


[image: image]

FIGURE 10. Triangular Greenness Index map (TGI, Hunt et al., 2013) calculated from UAV ortho images taken over the course of the Pst outbreak for a plot with very high Pst occurrence after the outbreak. Dai refers to the number of days after inoculation.





DISCUSSION

The image classifier was trained and tested as if it should be integrated in an online detection system for Pst in the field. Thus, imagery was collected from an equipment carrier passing slowly along the Pst experiment plots with a camera adjusted to nadir position. In no case, we had any control to focus the camera on certain Pst symptoms or to homogenize the background so that an easy segmentation of individual wheat leaves would have been possible. Thus, this study differs from the works of, for example, Mohanty et al. (2016), who successfully classified 38 plant diseases using AlexNet and GoogleNet. However, they used images taken under controlled conditions and performed a segmentation between background and plant leaves before training the image classifier. Also, this study differs from studies that focus on smart phone usage (Lu et al., 2017; Rupavatharam et al., 2018), because in this case the user operates like a monitoring system when directing the smartphone toward the plant anomaly of interest. In our scenario, images were taken fully unobserved, without any pre-selection and Pst infection needed to be identified from them in a high throughput manner.

This posed a lot of challenges to the image classifier. It needed to distinguish the disease symptoms from a highly heterogenic mix of different positioned plant leaves, stalks, spikes and background cluttering. Leaves and its symptoms can be partly covered or shadowed. Image quality may vary due to external dynamics such as wind, which may introduce blurriness in the images. The image classifier was trained from images, which closely adhered to those conditions because it is assumed that this would make the final model more robust for an implementation as an automatic sensor. Technically, the image classifier had to evaluate a new image in a very short time to use it as a sensor. Thus, it was choosen a rather large striding length in the dimension of one patch, e.g., 224 px, which enabled faster evaluation of the camera images. These constraints we put on our image classifier might have reduced classification accuracy to some extent. In contrary, DeChant et al. (2017) produced heat maps of the full resolution images with shorter striding length of 30 px and used an additional CNN that evaluated the heat maps. This improved the classification accuracy for detecting S. turcica in the maize canopy; however, they needed several minutes to evaluate one image, which is too long for a future implementation on an online mapping system. In contrary, the patch-combined classification of the whole images seems rather simple. However, most of the information is kept in the patches anyway. One limitation might be that edges of the patches discontinue stripe rust occurrences in the images. This can slightly increase wrong annotation, erroneous learning of the network and faulty evaluation, which leads to a classifier that might be stronger susceptible to errors. On the plus side, the evaluation of the images is fast enough to implement in an online system and no sophisticated post processing of the images is needed. Implementation on an embedded system can solely concentrate on the deep learning network (ResNet-18) itself.

Another source of uncertainty arises from the annotation data base. Even the experts annotating the patches and images on the monitor screen did occasionally run into problems because characteristics of leaves depicted on screen were barely recognizable as Pst or Pst-free. Specifically, lower leaves, shadowed leaves or unsharpened image regions posed problems to the manual annotation on screen. In this study, this error was tried to reduce by using a relatively large annotation size of 17245 patches for training rather than removing the uncertain image data. Obvious errors are only removed by checking of the annotation database. Furthermore, we decided to split the training and test data along the green and yellow line (Figure 1) to maintain equal balance of variability in both data sets. The problem was that in the experiment the Pst infestation severity was different from plot to plot. If the data had been split by plot number, a training and test set with too different Pst occurrences could have been generated, leading to biased results. Transferability to different fields and crops was not tested in this study. Yet, the annotation data base can be extended with more patch-based annotations so that the ResNet-18 model can be retrained to fit other situations as well. Finally, an automatic sensor system that should work unsupervised in the field will always be restricted to a certain angular perspective and viewing range. An expert in the field can hold the leaf in their hands turn it around and look from several angles and distances to estimate the occurrence and degree of Pst infestation. A sensor might easily miss Pst occurrences on the back of the leaves or in lower leaf layers. Yet, an expert is not able to evaluate an entire field but is restricted to only punctual investigations. Even in earlier stages of the disease, single leaves in the higher leaf layers become infected. These can be easily missed by an expert who is not in immediate vicinity in the field but might be recording with an automatic scanning system.

For our approach to work, images are required as input from which the outlines of the symptoms of Pst on infected wheat leaves can be resolved. Thus, near surface images are needed taken only 1 to 3 m from above the wheat canopy. Many phenotyping platforms, vehicle based carriers and low flying drones may meet these requirements. For example, the ETH Zurich has implemented a stationary installation for crop phenotyping for a 1 ha field area with a cable system that enables free movement of sensors over the field experiments (Kirchgessner et al., 2017). This system operates 2 to 5 m above the canopy acquiring high resolution images in an automatic and high-throughput manner. However, this system is stationary and quite expensive to implement. Vehicle-based systems such as conventional tractors or phenomobiles could carry camera based systems collecting high resolution imagery from above the canopy (Schirrmann et al., 2016; Qiu et al., 2019). However, they will be confined to specific tramlines or passing lines in the field so that images will cover only a small section of the field. Drones could collect high resolution imagery as well with much more freedom of movement. However, multiple drones would be needed for complete field coverage at low altitudes and problems such as the downward wind (downwash) of the copters influencing the canopy needed to be solved (Kirchgessner et al., 2017). Higher altitudes of the drone would provide better field coverage, yet, the lower spatial resolution prevents the assessment of individual form characteristic of the Pst disease in the imagery and only integrated reflectance differences can be surmised. This might not be enough. The study of Su et al. (2018) could not recognize Pst in the initial phase of the disease from drone imagery using multispectral camera and testing many different spectral indices. However, they were favorable in discriminating the disease for a classifier when the Pst disease was fully developed using RVI, NDVI and OSAVI. This was corroborated by the TGI maps shown in Figure 8. If the spatial resolution of future drone imagery can be increased, for example, with low flying drone swarms, drones could theoretically use our approach in embedded systems enabling an early warning system for crop diseases.



CONCLUSION

Deep residual networks (ResNet-18) proved suitable to identify symptoms of the Pst disease from high resolution imagery of wheat canopies with an overall accuracy of 77% in this study. Detection accuracy was dependent on the disease spreading in the canopy. When the disease was fully developed, detection accuracy was at 95% while during the disease outbreak, with 2 to 4% infected leaf area, detection accuracy was lower at 76%. This was even before the disease developed nests in the plots that could have been recognized from the imagery taken by drones from 10 m altitude. In an even earlier stage of the disease outbreak, with very low Pst spreading of about 0.5% infected leaf area, a detection accuracy of 57% was still obtained. This shows that the stage of the Pst development needs to be taken into account when training and testing suitable image recognition models based on deep learning for disease detection. Furthermore, the model was trained with a focus on an online detection system that can be integrated on a mobile scanner or a drone platform in this study. The only presumption was to use high resolution imagery from above the wheat canopy within the visible spectral range (RGB). Future work should take into account the optimization of the model for integration into embedded systems by still retaining all the properties of the ResNet model. With some adaptations, the prospects are good that the model can be used for real-time mapping of stripe rust allowing for optimizing precise crop protection and field phenotyping.
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