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Editorial on the Research Topic

Magnetic Resonance Imaging for Radiation Therapy

Since the introduction of magnetic resonance imaging (MRI) to radiation therapy (RT), it has
increasingly been adopted in RT treatment planning for target and organ-at-risk (OAR) definition
due to superior soft tissue contrasts. Recently, the roles of MRI in RT have been advanced
to tumor delineation in a multiparametric format, MRI-based treatment planning and dose
calculation, MRI-guided treatment delivery, and outcome assessment using quantitative imaging
metrics or radiomic features. These advancements are due to the development of dedicated MRI
simulators, integration of MRI scanners with radiation treatment platforms, as well as technical
developments and applications of 4D-MRI, tumor tracking, adaptive planning, and treatment
response evaluation. The advancement of machine learning and artificial intelligence also brings
about tremendous opportunities to transform the application of MRI in RT.
This collection includes 16 articles that cover the following themes:

• Target volume delineation and treatment planning workflow using MRI as the primary
imaging modality

Multiparametric MRI (mp-MRI), a combination of morphologic and functional imaging
modalities, has shown the potential to increase the accuracy of tumor detection, localization,
and characterization of cancer aggression. Integration of mp-MRI techniques into RT offers
enormous opportunities to individualize RT adaptation based upon the individual patient’s
response to treatment.

MR spectroscopy imaging (MRSI) can describe the metabolism of different tissues. However,
the spatial resolution is limited due to the very low concentration of the metabolites in tissues.
Iqbal et al. developed a densely connected U-Net to create super resolution spectroscopic images
by training the T1 weighted images (T1WI) and the low-resolution 1H MR spectroscopic images
together. They showed that the 1H spectra were maintained on retrospective in vivo data.

Lee et al. performed a volumetric and voxel-wise analysis of the dominant intraprostatic
lesions (DIL) defined from T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), and
dynamic contrast enhanced (DCE) imaging respectively. The correlation was further classified
according to tumor location and Gleason grade group. The data suggested that constructing a
Boolean sum volume that incorporated T2WI and apparent diffusion coefficient (ADC) maps
were reasonable for delineating the DIL on mp-MRI. The value of adding information provided
by Ktrans maps remains investigational due to the repeatability and consistency of DCE scans.
The interobserver variability also indicated the need to develop a consensus guideline on DIL
delineation using mp-MRI.
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• Techniques to generate synthetic CT from MRI and the
clinical implementation of MRI only workflow

Substantial interest has developed around generating synthetic
CT (sCT) from MRI in order to use MRI as the only, or primary,
imaging modality in the RT workflow. Different methods have
been introduced to create sCT images using bulk density,
atlas-based, or voxel-based approaches. Deep machine learning
algorithms such as a U-Net or Generative Adversarial Network
can learn image features among different imaging modalities and
have great potentials to generate highly accurate synthetic images.

Choi et al. used a bulk anatomical density approach to develop
a method for patient-specific quality assurance for MRI-only
prostate RT. The three-class model (bone, muscle, and fat)
provided accurate dose calculations for verifying sCT for clinical
use in MRI-only workflows. The model has currently been
implemented as a quality assurancemethod in amulti-center trial
of prostate stereotactic RT that includes an MRI-only study.

Gupta et al. used a 3-channel U-Net trained on aligned MRI
and CT pairs in sagittal planes to generate sCT images. The three
channels represented Hounsfield Unit (HU) ranges of voxels
containing air, soft tissue, and bone, respectively. The improved
soft tissue contrast of sCT was proved with low mean absolute
error difference between sCT and actual CT. The improved image
quality was also beneficial for the online image registration with
cone beam CT.

Wang et al. generated sCT from T2WI of nasopharyngeal
carcinoma patients using a 2D U-net algorithm. The deep U-net
with 23 convolutional layers was used to generate sCT. The soft
tissue, nasal bone, bone marrow, and the interface between bones
and soft tissues were carefully evaluated.

Greer et al. described a multi-center study for the
implementation of an MRI-only prostate workflow. A sCT
was created using an atlas-based method from whole pelvic
T2WI scans with an isotropic 1.6mm voxel. A CT scan was
acquired subsequent to MRI only plan approval for patient
specific quality assurance. The 3D gamma was calculated to
evaluate the dose difference between sCT and actual CT, and
gold fiducial marker positions were used to evaluate the image
registration accuracy between sCT and actual CT. All 25 patients
recruited were treated with MRI only workflow.

Mittauer et al. developed an MRI-guided online adaptive
radiotherapy (MRgoART) procedure for palliative care in RT.
The electron density information was incorporated with either
a bulk density override or deformable image registration of
diagnostic CT to the MRI. The plan quality and treatment
delivery efficiency were superior than the conventional method.
Excellent clinical outcomes were observed and were in line with
historical and sampled controls.

• Quantitative analysis of morphological and functional MRI
and their applications in treatment response assessment

Quantitative MRI can reflect tissue characteristics. Imaging
biomarkers from functional MRI can have prognostic
and predictive values for progression free survival, overall
survival, and distant metastases etc. Radiomic features,
which are defined as the post-processing for extraction

of textural information from medical images, can provide
tremendous information to analyze and characterize the
properties of tumor tissues and their physiological and
pathological stages.

In this collection, Cao et al. analyzed MRI-derived gross
tumor volume, blood volume, and ADC from pre-treatment
and mid-treatment, as well as pre-treatment FDG PET metrics
for locally advanced head and neck cancer (HNC) treated with
chemoradiation. The mean ADC values from pre-RT and its
change rate mid-treatment were significant higher and lower
in p16– than p16+ locally advanced HNC tumors, respectively.
These biomarkers had predictive values and compared favorably
with FDG-PET imaging markers.

van Schie et al. analyzed T2 and ADC changes during
treatment and compared patients with and without hormonal
therapy, as the hypoFLAME trial patients received ultra-
hypofractionated prostate radiotherapy with an integrated boost
to the tumor in 5 weekly fractions. Significant ADC changes
were observed in the tumor in patients without hormonal
therapy. Such early response measured with quantitative MRI
holds the potential to predict clinical outcome and guide
treatment adaptation.

Bagher-Ebadian et al. extracted discriminant radiomic
features in the real radiomics-feature space and the latent-
variable space from mp-MRI for prostate cancer. These features
were used to construct an artificial neural network to classify the
DIL from normal prostatic tissues.

Li Z. et al. analyzed pre-treatment T1WI, T2WI, and DWI
for esophageal squamous cell carcinoma patients undergoing
concurrent chemoradiotherapy and identified the ADC texture
features that can be used to predict the overall survival.

Yu et al. also analyzed pre-treatment T1WI, T2WI to identify
tumoral radiomic features that were used to predict patient
eligibility for adaptive radiotherapy in advanced nasopharyngeal
carcinoma (NPC) patients.

Considering post-treatment changes are often highly
heterogeneous, including cellular tumor, fat, necrosis, and cystic
tissue compartments, evaluation of the tumors defined using
pre-treatment images could be limited to predict treatment
response. Blackledge et al. studied 8 commonly used supervised
machine-learning algorithms for tissue classification of mp-
MRI of soft tissue sarcoma to quantify post-RT changes. Five
out of eight algorithms achieved similar performance. Of
the five methods, the Naïve-Bayes classifier was chosen for
further investigation due to its relatively short training and
prediction times.

• Development of MR-Linac

Recent commercial developments of MRI-guided RT

platforms provide great opportunities for direct imaging

guidance, tumor/OAR tracking during RT, and treatment

adaptation. Two systems have received CE and/or FDA

510 k clearance so far: Unity (Elekta, Sweden) and MRIdian

system (Viewray, USA). The Australian MRI-linac system is

at the research prototype stage and has an inline orientation,

with radiation beam parallel to the main magnetic field.
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Such inline design can help minimize magnetic field
influence on dose deposition. Jelen et al. developed methods
to quantify dosimetric characteristics of the Australian
MRI-linac system.

• Review papers

There are two review papers in this collection. As MRI-guided
RT, including adaptive RT, have advanced in the field, the
community needs to develop protocols on how to make clinical
decisions with funneling MRIgRT data. Kiser et al. discussed the
challenges of interpretability and reproducibility of MRI data, the
complexity of a variety of MR sequences, and the corresponding
impacts on RT workflow, such as synthetic CT generation,
image fusion, dose calculation, and prognostic values using
radiomic features.

Li G. et al. reviewed two 4D-MRI techniques—respiratory-
correlated (RC) and time-resolved (TR) 4D-MRI. The

RC-4DMRI was reconstructed to provide one-breathing-

cycle motion, while the TR-4DMRI provided an adequate

spatiotemporal resolution to assess tumor motion and motion

variation. Both techniques were also discussed in the context of
their clinical applications in radiotherapy.

Benefitting from advanced technologies of synthetic CT
techniques and MR Linacs, the MR-solely RT workflow has
been rapidly evolving and has been clinically implemented
widely. It has potential to improve the therapeutic gains for

certain disease sites through dose escalation with better tumor
delineation and motion management. Randomized clinical
trials have been promoted to investigate the effects of dose
escalation on normal tissue toxicity, quality of life, as well
as overall survival and local control for prostate cancer,
locally advanced pancreatic cancer, etc. As MRI is playing
an increasingly essential role in RT, opportunities arise to
incorporate functional imaging into RT workflow. Considering
the response of the ADC maps to radiation dose and relatively
robust protocol for DWI acquisition, DWI-derived biomarkers
have strong potentials for tumor delineation and response
assessment, as evidenced in a series of articles published in
this collection.
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Introduction: Multiparametric MR imaging (mpMRI) has shown promising results in the

diagnosis and localization of prostate cancer. Furthermore, mpMRI may play an important

role in identifying the dominant intraprostatic lesion (DIL) for radiotherapy boost. We

sought to investigate the level of correlation between dominant tumor foci contoured

on various mpMRI sequences.

Methods: mpMRI data from 90 patients with MR-guided biopsy-proven prostate cancer

were obtained from the SPIE-AAPM-NCI Prostate MR Classification Challenge. Each

case consisted of T2-weighted (T2W), apparent diffusion coefficient (ADC), and Ktrans

images computed from dynamic contrast-enhanced sequences. All image sets were

rigidly co-registered, and the dominant tumor foci were identified and contoured for each

MRI sequence. Hausdorff distance (HD), mean distance to agreement (MDA), and Dice

and Jaccard coefficients were calculated between the contours for each pair of MRI

sequences (i.e., T2 vs. ADC, T2 vs. Ktrans, and ADC vs. Ktrans). The voxel wise spearman

correlation was also obtained between these image pairs.

Results: The DILs were located in the anterior fibromuscular stroma, central zone,

peripheral zone, and transition zone in 35.2, 5.6, 32.4, and 25.4% of patients,

respectively. Gleason grade groups 1–5 represented 29.6, 40.8, 15.5, and 14.1% of

the study population, respectively (with group grades 4 and 5 analyzed together). The

mean contour volumes for the T2W images, and the ADC and Ktrans maps were 2.14

± 2.1, 2.22 ± 2.2, and 1.84 ± 1.5mL, respectively. Ktrans values were indistinguishable

between cancerous regions and the rest of prostatic regions for 19 patients. The Dice

coefficient and Jaccard index were 0.74 ± 0.13, 0.60 ± 0.15 for T2W-ADC and 0.61 ±

0.16, 0.46 ± 0.16 for T2W-Ktrans. The voxel-based Spearman correlations were 0.20 ±

0.20 for T2W-ADC and 0.13 ± 0.25 for T2W-Ktrans.

Conclusions: The DIL contoured on T2W images had a high level of agreement with

those contoured on ADC maps, but there was little to no quantitative correlation of these

results with tumor location and Gleason grade group. Technical hurdles are yet to be

solved for precision radiotherapy to target the DILs based on physiological imaging. A

Boolean sum volume (BSV) incorporating all available MR sequences may be reasonable

in delineating the DIL boost volume.

Keywords: prostate cancer, multiparametric MR, dominant intraprostatic lesions, tumor delineation, radiotherapy
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INTRODUCTION

Prostate cancer is the most common malignancy of men in
the U.S., with an annual incidence of 161,360 cases resulting
in 26,730 deaths (1). Most patients are diagnosed with disease
localized to the prostate, for which radiation therapy is an
important curative treatment modality.

In the modern era of dose-escalated radiation therapy, the
entire prostate gland is treated to the same dose of radiation
irrespective of the biopsy-proven region of disease. Multiple
randomized studies have demonstrated that dose-escalation
improves biochemical progression-free survival (2, 3). It has also
been reported that local recurrences are dose-dependent and
most frequently occur at the site of the dominant intraprostatic
lesion (DIL) (4, 5)—defined as the most prominent cancerous
lesion within the prostate which also exhibits the most aggressive
clinical behavior. Numerous studies have suggested that the
addition of a boost to the DIL is safe and efficacious without
increased acute or late toxicity (6–14).

Multiparametric magnetic resonance imaging (mpMRI) is
rapidly becoming the standard diagnostic imaging modality for
prostate cancer. mpMRI can be defined as any functional form
of MR imaging which supplements standard anatomical T1-
(T1W) and T2-weighted (T2W) MR sequences. Namely, this
includes diffusion-weighted imaging (DWI), which measures the
Brownian motion of water molecules in tissue; dynamic contrast-
enhanced (DCE) sequences, which assess tumor angiogenesis
and detect microvascular vessel wall permeability; and MR
spectroscopy (MRS), which analyzes the chemical composition
of prostatic tissue, and compares it to that of cancerous tissue.

mpMRI has shown potential to increase the accuracy of tumor
detection, localization, and characterization of prostate cancer
(15–18). It has been demonstrated to have a negative predictive
value of up to 95% for clinically significant prostate cancer
(defined as the presence of Gleason pattern 4 or greater) (19, 20).
Whole amount histopathology has been used a gold standard
reference to evaluate DIL detection and localization accuracy
using mpMRI (21).

The correlation of tumor volume defined by pathology and
mpMRI was also investigated and it showed strong dependence
on both imaging techniques and specimen processing workflow
(22). There are still lack of studies to investigate whether a specific
MR sequence is optimal or if a combination of MR sequences
is mandatory in accurately delineating the DIL for radiotherapy
planning. In this study, we performed volumetric and voxel-wise
analyses of tumor foci delineated in three MR sequences and
report the level of concordance between them. Furthermore, we
quantitatively correlated these results with tumor location and
Gleason grade group.

MATERIALS AND METHODS

Robust mpMRI data from 90 patients with MRI-guided biopsy-
proven prostate cancer were obtained from the SPIE-AAPM-
NCI Prostate MR Classification Challenge (23, 24). All images
were acquired using two different types of Siemens 3-Tesla MR
scanners (the Magnetom Trio and Skyra) without an endorectal

coil. Each dataset consisted of T2W, ADC, and volume transfer
coefficient (Ktrans) images computed from DCE sequences.

The T2W images were acquired using a turbo spin echo
sequence (TE/TR: 5,660/104ms, Flip Angle: 90◦ with image
resolution of 0.5 × 0.5 × 3.0 mm3). The DWI was acquired
with a single-shot echo planar imaging sequence with diffusion-
encoding gradients in three directions (TR/TE: 2,700/63ms, with
image resolution of 2.0 × 2.0 × 3.0 mm3). The ADC map was
calculated from three b-values of 50, 400, and 800 s/mm2.The
DCE series were acquired using a 3-D turbo flash gradient echo
sequence (TR/TE: 3.4/1.5ms, with image resolution of 1.5 × 1.5
× 3.0 mm3 and a temporal resolution of 3.5 s). The standard
Tofts model was used for pharmacokinetic modeling of the
contrast concentration curves. An automated reference tissue
method was used to estimate the arterial input function (25). The
transfer constant (Ktrans) parametric maps were calculated from
the contrast concentration curves.

An experienced radiologist annotated suspicious lesions on
each MR modality, and MRI-guided biopsies were performed
to confirm the aggressiveness of the disease (i.e., Gleason grade
grouping). The tissue specimens were examined by expert
pathologists and the results were defined as the ground truth
in this study. Both the ADC and Ktrans image sets were rigidly
co-registered and resampled using linear interpolation to match
those of the T2W images. For example, resampling transformed
the resolution from 2.0 × 2.0 × 3.0mm (ADC) and 1.5 × 1.5 ×
3.0mm (Ktrans) to 0.5× 0.5× 3.0mm (T2W). The intraprostatic
lesions were then identified and contoured on each MR sequence
separately for every patient by a radiation oncologist based on the
radiologist’s annotation following criteria of hypointense values
on the T2W images (window 718, level 360) and ADC maps
(window 3,000, level 1,500) and high values on the Ktrans maps
(window 39, level 21). The DIL was separately contoured by
a second radiation oncologist for a subset of MR images (19
patients) to assess for interobserver variability. Representative
images of an intraprostatic lesion contoured on an ADC map,
Ktrans map and T2W image are shown in Figure 1.

The anatomic location of the intraprostatic lesions as well as
their corresponding Gleason grade group (1–5) were available for
each patient. Due to the small number of data points available,
Gleason grade groups 4 and 5 were analyzed together. To evaluate
the quantitative correlation between contours on each imaging
modality and its statistical dependence on tumor location and
Gleason grade group, the 95 percentiles of Hausdorff distance
(HD), mean distance to agreement (MDA), Dice coefficient, and
Jaccard index were calculated between the contours for each pair
of MR sequences (i.e., T2W vs. ADC, T2W vs. Ktrans, and ADC
vs. Ktrans). These variables are defined in Table 1.

For the voxel-wise analysis, a Boolean sum volume (BSV) was
defined as a combination of the contours from all three image
modalities for each patient. This additional step was performed
to ensure that an equal number of representative voxels from
eachMR sequence were included in the analysis. Fractional ranks
were then obtained for each voxel of the BSV and the Spearman
correlation was calculated. It is worth noting that the Spearman
correlation was selected because a monotonic relationship was
assumed between each pair of contours, as opposed to a linear

Frontiers in Oncology | www.frontiersin.org 2 July 2019 | Volume 9 | Article 6169

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Lee et al. Contour Analysis of DILs on mpMRI

FIGURE 1 | Representative images of a dominant intraprostatic lesion contoured on an T2W image, ADC map, and Ktrans map (from left to right). The axial T2W

images were carefully scrutinized along with those in the coronal, and sagittal planes (not shown) to confirm the presence of a hypodense lesion corresponding to the

location of the DIL annotated by an experienced radiologist. In the axial T2W image above, a hypointense lesion is demonstrated in the right peripheral zone. This

same area was then assessed for values that were lower and higher than the surrounding normal prostate tissue in the rigidly-registered axial ADC and Ktrans maps,

respectively. Of note, areas of hypervascularity outside of the contoured region in the Ktrans map shown above were assumed to represent normal vasculature within

the central zone of the prostate gland, as a corresponding area suspicious for cancer was not visualized in either the T2W image or the ADC map.

TABLE 1 | Definitions of contour evaluation metrics.

Definitions

Hausdorff distance (HD): The distance from one point in a subset to the closest point in another subset.

dH = max[sup inf d (x, y) , sup inf d (x, y)]

Mean distance to agreement (MDA): The average of the Hausdorff distances within a defined metric space.

Dice coefficient: Measure of the degree of overlap between sample sets, with a value of 1.0 representing complete overlap (range: 0–1.0).

DICE =
2 * A

⋂
B

A + B

Jaccard index: Comparison of the similarity and diversity of sample sets, with a value of 1.0 representing unity (range 0–1.0).

Jaccard =
A

⋂
B

A + B − A
⋂

B

relationship in which case a Pearson correlation may have been
more appropriate.

RESULTS

The DILs were located in the anterior fibromuscular stroma,
central zone, peripheral zone, and transition zone in 35.2, 5.6,
32.4, and 25.4% of patients, respectively. Gleason grade groups 1–
5 represented 30.3, 39.4, 17.2, and 13.1% of the study population,
respectively (with group grades 4 and 5 analyzed together).
The mean contour volumes for the T2W images, and the ADC
and Ktrans maps were 2.14 ± 2.1, 2.22 ± 2.2, and 1.84 ±

1.5mL, respectively. Ktrans values were indistinguishable between
cancerous regions and normal prostatic tissue for 19 patients.

The Dice coefficient and Jaccard index were 0.74 ± 0.13, 0.60
± 0.15 for T2W-ADC, and 0.61 ± 0.16, 0.46 ± 0.16 for T2W-
Ktrans. For the voxel-based portion of the study, the Spearman
correlations were 0.20 ± 0.20 for T2W-ADC and 0.13 ± 0.25
for T2W-Ktrans.

Tables 2, 3 summarize the Spearman correlation, Dice
coefficient, Jaccard index, as well as the HD and MDA by DIL
location and Gleason grade groups, respectively.

The DIL was separately contoured for 19 patients by a second
radiation oncologist to assess for interobserver variability (these
results were not analyzed with respect to Gleason Grade and

TABLE 2 | Hausdorff distance (95%), Mean distance to agreement, Dice

coefficient, Jaccard index, and Spearman-rank order by tumor location.

Location AFS Peripheral Cent/Tran Total

T2-ADC HD 4.46 ± 1.69 4.11 ± 1.39 4.36 ± 2.43 4.32 ± 1.89

MDA 0.96 ± 0.53 0.94 ± 0.45 1.00 ± 0.77 0.97 ± 0.60

Dice 0.73 ± 0.12 0.69 ± 0.16 0.74 ± 0.16 0.74 ± 0.13

Jaccard 0.59 ± 0.14 0.55 ± 0.17 0.61 ± 0.18 0.60 ± 0.15

Spearman 0.15 ± 0.16 0.26 ± 0.26 0.18 ± 0.13 0.20 ± 0.20

T2-Ktrans HD 6.46 ± 2.42 5.77 ± 2.82 6.57 ± 4.18 6.21 ± 3.25

MDA 1.65 ± 0.65 1.53 ± 0.97 1.63 ± 1.13 1.59 ± 0.95

Dice 0.61 ± 0.15 0.59 ± 0.17 0.61 ± 0.19 0.61 ± 0.16

Jaccard 0.45 ± 0.16 0.44 ± 0.17 0.46 ± 0.18 0.46 ± 0.16

Spearman 0.18 ± 0.22 0.06 ± 0.26 0.19 ± 0.27 0.13 ± 0.25

Cent/Tran, central/transition; AFS, anterior fibromuscular stroma.

location). For this second set of contours, the Dice coefficient was
0.51 ± 0.19 for T2W-ADC and 0.42 ± 0.13 for T2W-Ktrans. A
comparison between the Dice and Jaccard coefficients, MDA, and
HD for the 19 patients contoured by the two different physicians
is shown in Figure 2.

Table 4 shows the mean, minimum, and maximum pixel
values within the ADC and Ktrans contours of the 90 patients split
according to theGleason grade group. The results of grade groups
4 and 5 were combined together due to the smaller sample sizes.
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The mean ADC contoured pixel values ranged from 964.14 to
1007.74 mm2/s among different groups while the Ktrans values
ranged from 3.27 to 6.21 min−1.

DISCUSSION

Current national guidelines recommend dose-escalated radiation
therapy to the entire intact prostate gland for men receiving
definitive radiation therapy for prostate cancer. This approach

TABLE 3 | Hausdorff distance (95%), Mean distance to agreement, Dice

coefficient, Jaccard index, and Spearman-rank order by Gleason grade group.

Gleason grade group 1 2 3 4, 5

T2-ADC HD 4.33 ± 2.24 4.21 ± 1.96 4.20 ± 1.26 4.61 ± 1.28

MDA 0.94 ± 0.68 0.96 ± 0.61 0.94 ± 0.37 1.03 ± 0.57

Dice 0.73 ± 0.15 0.73 ± 0.13 0.71 ± 0.14 0.70 ± 0.21

Jaccard 0.59 ± 0.15 0.59 ± 0.15 0.56 ± 0.15 0.57 ± 0.22

Spearman 0.21 ± 0.16 0.25 ± 0.20 0.20 ± 0.19 0.04 ± 0.19

T2-Ktrans HD 6.07 ± 3.53 5.89 ± 2.87 6.07 ± 2.44 7.51 ± 4.62

MDA 1.65 ± 1.29 1.50 ± 0.68 1.40 ± 0.66 2.02 ± 1.33

Dice 0.60 ± 0.22 0.60 ± 0.14 0.65 ± 0.12 0.57 ± 0.22

Jaccard 0.46 ± 0.21 0.44 ± 0.15 0.50 ± 0.12 0.43 ± 0.22

Spearman 0.15 ± 0.24 0.10 ± 0.23 0.12 ± 0.32 0.15 ± 0.27

has demonstrated clear benefits in biochemical progression-
free survival across multiple randomized controlled studies.
Unfortunately, biochemical recurrence rates can exceed 25%
at 10 years necessitating further salvage therapy, which can
adversely affect quality of life. Up to 90% of local recurrences
after conventional radiation therapy have been shown to occur
at the site of the DIL (4, 26). This coupled with the tremendous
technological advancements in diagnostic imaging (27) and
modern radiation therapy techniques such as treatment under
image-guidance (28–30), has led to emerging interest in more
accurately targeting the intraprostatic lesion and delivering a
further boost to the dominant site of disease.

While the majority of these efforts have been realized using
intensity-modulated radiation therapy (7, 9, 11, 31–33), studies
have also included dose-escalation using brachytherapy with
biologically equivalent doses of around 200Gy to the DIL (6, 34–
36), and more recently with stereotactic body radiotherapy using
a simultaneous integrated boost technique (14, 32, 37, 38).

Clinical Outcomes of Radiation Therapy
Boost to the DIL
Early results have demonstrated efficacy with low acute
and late toxicities with either treatment approach. A recent
systematic review of dose-escalated radiation therapy to the DIL

FIGURE 2 | Dice, Jaccard, Mean Distance to Agreement (MDA), and 95% Hausdoff Distance (HD) for 19 patients contoured by the two different physicians. One

physician’s contour comparisons (i.e., T2-ADC vs. T2-Ktrans) are denoted by blue and orange, respectively, while the other physician’s contour comparisons (i.e.,

T2-ADC vs. T2-Ktrans) are denoted by gray and yellow, respectively. The data suggests strong dependence on physician performance and relatively high

interobserver variability.
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TABLE 4 | Mean, minimum, and maximum contoured pixel values for ADC and Ktrans.

Gleason grade group Number of patients (%) ADC Mean ADC min ADC max ADC SD Ktrans mean Ktrans min Ktrans max Ktrans SD

mm/s mm/s mm/s Min−1 Min−1 Min−1

1 30.3 964.14 661.55 1247.63 136.70 3.27 0 13.54 3.52

2 39.4 988.43 822.13 1380.78 130.65 3.81 0 10.54 3.19

3 17.2 1007.74 656.63 1334.02 163.89 6.21 0 17.29 4.92

4+5 13.1 999.62 770.11 1806.99 251.47 3.56 0 16.28 5.37

SD, standard deviation.

demonstrated that the average grade 3+ gastrointestinal and
genitourinary late toxicity was ∼2–3% for intensity-modulated
radiation therapy, 6–10% for stereotactic body radiotherapy, and
2–6% for brachytherapy (39). The median 5-years biochemical
progression-free survival was reported to be 85%. However,
the study population included patients of all risk groups with
heterogenous use of androgen deprivation therapy. These factors
need to be taken into consideration when interpreting the results
of these studies.

mpMRI as a Tool for Target Volume
Delineation
mpMRI demonstrates high sensitivity and specificity in the
diagnosis and staging of prostate cancer, and its utility in this
context has been extensively investigated (40, 41). However, its
use as a tool in target volume delineation for the purposes
of radiation treatments has not been adequately elucidated.
Several barriers exist to incorporating mpMRI to define adequate
radiation treatment volumes, one of the most significant being
a lack of sufficient data to determine which mpMRI sequence is
most accurate in defining the DIL. Groenendaal et al. developed
a logistic regression model on DCE and DWI images to
predict tumor presence and validated on whole-mount section
histopathological images for 12 patients. The model achieved
a receiver operating characteristic curve of 0.70 (41). However,
the study was limited to peripheral zone and low Gleason score
lesions (6 and 7). In addition, each image modality reflects
different biological characteristics and may be individually
inconsistent in tumor delineation particularly at the voxel level. It
is unclear whether a combination of MR sequences would confer
any advantage compared to a single mpMRI sequence when
contouring the DIL, especially with respect to clinical outcomes
such as biochemical control.

Considering the technical variability and lack of consensus
on ADC and Ktrans values for intraprostatic lesions, we did
not use automatic threshold values for segmentation. ADC and
Ktrans values can have significant variations across different
scanning protocols and MR scanners which makes quantitative
analysis difficult. The monoexponential ADC model was used
to describe the water diffusion behavior in this study. The b
value selection as well as the duration and strength of diffusion
sensitizing gradients could have impact on the ADC value. And
the ADC values depended onmany factors including cell density,
size, shape, permeability, and perfusion effects. The complex
diffusion dynamics of biological tissue required more advanced

compartment models such as intravoxel incoherent motion and
vascular, extracellular, and restricted diffusion for cytometry
in tumors. It was difficult to achieve an optimal balance of
spatial and temporal resolution of the DCE scans in the pelvic
region. In the past decade, several models have been recruited
in pharmacokinetic analysis of clinical trial data and animal
studies to calculate the plasma volume fraction, extravascular
and extracellular volume fraction, and Ktrans (42–45). However,
few have examined whether the models are appropriate to the
data (46, 47) and the variances and co-variances of parametric
estimates, as well as the biases introduced by systematic errors,
is generally lacking. Model selection, which is a potential
solution since it defines the region of leaky microvasculature,
a tumor signature, allows delineating different tumor regions
and the temporal evolution of the local model and producing
approximately unbiased estimate of vascular parameters that
are relatively independent of variation in the details of image
acquisition and equipment (48).

Tumor Size and Location Are Important
Considerations
Smaller lesions pose a challenge to using mpMRI to accurately
and reproducibly target the DIL as imaging precision is known to
become less accurate as volume decreases. This was previously
reported by Groenendaal et al. (49), citing the impact of
noise and geometrical distortions induced by MRI machines
in complicating the validity of functional MRI techniques for
smaller volumes. In this study, the mean contour volume for the
T2W images, and the ADC and Ktrans maps were 2.14± 2.1, 2.22
± 2.2, and 1.84± 1.5mL, respectively. It is reasonable to assume
that with such small volumes, even slight differences in contours
can result in significantly altered results.

The location of the DIL also plays a role in precise target
delineation with mpMRI as lesions involving different zones
of the prostate gland can present unique challenges. Prostate
cancer most commonly involves the peripheral zone of the gland
and appears as a region of homogenous low-signal intensity
on T2W. Tumor involving of the central gland can be more
difficult to discern (e.g., due to benign prostatic hyperplasia),
but cross-observer consensus can be reached in up to 80% of
cases (50). Similarly, Ktrans does not reliably differentiate prostate
cancer from benign prostatic hyperplasia within the central
zone of the prostate gland due to similarities in microvascular
density exhibited by both conditions. In fact, Ktrans values were

Frontiers in Oncology | www.frontiersin.org 5 July 2019 | Volume 9 | Article 61612

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Lee et al. Contour Analysis of DILs on mpMRI

indistinguishable between tumor foci and the normal prostate
gland for 19 patients in this study suggesting that the value of
this mpMRI sequence may be limited to more peripheral lesions.

Quantitative Correlation Between the DIL
and Tumor Location
To evaluate the quantitative correlation between contours on
each imaging modality and its statistical dependence on tumor
location and Gleason grade group, the Hausdorff distance (HD),
mean distance to agreement (MDA), Dice coefficient, and Jaccard
index were calculated between the contours for each pair of
MR sequences (i.e., T2W vs. ADC, T2W vs. Ktrans, and ADC
vs. Ktrans). Table 2 summarizes the results of the statistical
analysis based on tumor location. Between T2W-ADC and T2W-
Ktrans, the Dice coefficient was 0.74 ± 0.13 and 0.61 ± 0.16,
respectively, and the Jaccard index was 0.60 ± 0.15 and 0.46
± 0.16, respectively. This suggests that there was a relatively
high level of overlap between the contours regardless of tumor
location, and that the contours were slightly more similar than
they were divergent. Furthermore, the results were consistently
better between T2W-ADC vs. T2W-Ktrans which may reflect the
fact that T2W images provide anatomical information whereas
Ktrans maps reflect the permeability of regional vasculature;
consequently, although we expect to appreciate a certain level of
correlation between the two MR sequences, it is understandable
that a more substantial overlap between the contours was not
observed. Conversely, the voxel-based Spearman correlation
was 0.21 ± 0.18 and 0.13 ± 0.25, respectively, suggesting that
the strength of the association between the contours was not
very robust.

Quantitative Correlation Between the DIL
and Gleason Grade Group
Table 3 summarizes the results of the statistical analysis based
on Gleason grade group. Between T2W-ADC and T2W-Ktrans,
the overall Dice coefficient and Jaccard index were identical to
the results based on tumor location. Furthermore, the voxel-
based Spearman correlation between T2W-ADC was similarly
low, especially for Gleason grade groups 4 and 5 (0.04 ± 0.19)
suggesting a very poor correlation between anatomical imaging
and diffusion-weighted and perfusion-based imaging in poorly-
differentiated prostate cancer. Again, the results were consistently
better between T2W-ADC vs. T2W-Ktrans.

Incorporating a Boolean Sum Volume (BSV)
to Better Delineate the DIL
As previously mentioned, the Spearman correlation between
tumor location and Gleason grade group for the MR sequences
was rather weak. This was particularly so between the T2W
images and ADC maps for lesions with Gleason grade groups 4
and 5 (although lower Gleason grade group did not necessarily
predict for a higher correlation). This data would suggest that
constructing a BSV that incorporates T2W images and ADC
maps may be reasonable for delineating the DIL on mpMRI, as
the BSV would adequately represent radiographic disease that is
both anatomically- and functionally-defined. This is supported
by the fact that the level of correlation between T2W images
and ADC maps was relatively high but far from reaching unity.

This would, in theory, allow the entire DIL to be included in the
radiation boost volume reducing the probability of a marginal
miss especially with an adequately designed margin. The value
of adding information provided by Ktrans maps to the BSV
remains investigational at this time as this mpMRI sequence
was not reliably and consistently detectable as elaborated on
above. A larger study population and a community consensus
on quantitative analysis of Ktrans may be warranted prior to its
systematic incorporation into tumor delineation.

Interobserver Variability
Nineteen cases were contoured by two radiation oncologists
in an effort to assess for interobserver variability. There was a
large difference in the Dice coefficient between the contoured
DILs (23 and 19% for T2W-ADC and T2W-Ktrans, respectively).
This is not surprising as significant interobserver variability is
a known limitation in the interpretation of mpMRI images.
As previously mentioned, the small volumes of the contours
in this study (mean volumes ranging from 1.84 to 2.14mL)
may have amplified even the smallest of differences in tumor
delineation, and whether these marginal statistical discrepancies
would translate into meaningful differences in clinical outcome
is debatable. Furthermore, it would be impractical for more
than one radiation oncologist to delineate the DIL in clinical
practice. A more pragmatic approach would be to develop an
expert consensus guideline on DIL delineation coupled with
suggestions for optimal clinical target volume margins to ensure
adequate coverage.

Contoured Pixel Values
The mean, minimum, and maximum contoured pixel values for
ADC and Ktrans are tabulated in Table 4. This information is
intended as a baseline threshold recommendation for automatic
segmentation of ADC and Ktrans maps based on Gleason grade
group. The contours used to obtain this data were delineated
by the original physician on 90 patients. Of note, the Ktrans

mean pixel value is relatively high compared to reported tumor
regions in previous studies (40, 51–53). Ktrans images used in
this study were procured by a method explained in Huisman
et al. (54), which results with differing pixel values than other
commonly used methods. Since this study has shown that there is
a large variation of ADC and Ktrans values in each Gleason grade
group, future work is needed to recommend specific thresholds
for automatic delineation with the verification of whole-mount
histopathologic section findings.

Study Limitations
The limitations of this study include its retrospective design,
inherent inconsistencies between functional MR images (e.g.,
different institutional imaging protocols such as contrast inject
rate, variations in patient body mass index, and differences
in spatial and temporal resolution), lack of histopathological
validation, maximum b-value of 800 in calculating the ADC
map, and tumor delineation by only two radiation oncologists.
A prospectively designed study using standardized imaging with
up-to-date protocols and contouring by a team of experienced
radiation oncologists allowing for interobserver variability would
strengthen the validity of these results.
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CONCLUSIONS

Using mpMRI to delineate a target volume for a radiation boost
is an emerging area of interest and one that may improve clinical
outcomes without increasing the toxicity associated with external
beam radiation therapy. The intraprostatic lesions contoured
on T2W images had a high level of agreement with those
contoured on ADC maps, but there was little to no quantitative
correlation of these results with tumor location and Gleason
grade group. As shown in the study, there have been many
technical hurdles to be solved for precision radiotherapy to
target the tumor based on physiological imaging and understand
its corresponding treatment outcome. A BSV incorporating
all available MR sequences may be reasonable at the current
stage in delineating the DIL boost volume for clinical practice.
A larger study population and a community consensus on
quantitative analysis of Ktrans is warranted prior to its systematic
incorporation into tumor delineation.
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Purpose: This project investigates the feasibility of implementation of MRI-only prostate

planning in a prospective multi-center study.

Method and Materials: A two-phase implementation model was utilized where

centers performed retrospective analysis of MRI-only plans for five patients followed

by prospective MRI-only planning for subsequent patients. Feasibility was assessed

if at least 23/25 patients recruited to phase 2 received MRI-only treatment workflow.

Whole-pelvic MRI scans (T2 weighted, isotropic 1.6mm voxel 3D sequence) were

converted to pseudo-CT using an established atlas-based method. Dose plans

were generated using MRI contoured anatomy with pseudo-CT for dose calculation.

A conventional CT scan was acquired subsequent to MRI-only plan approval for

quality assurance purposes (QA-CT). 3D Gamma evaluation was performed between

pseudo-CT calculated plan dose and recalculation on QA-CT. Criteria was 2%, 2mm

criteria with 20% low dose threshold. Gold fiducial marker positions for image guidance

were compared between pseudo-CT and QA-CT scan prior to treatment.

Results: All 25 patients recruited to phase 2 were treated using the MRI-only workflow.

Isocenter dose differences between pseudo-CT and QA-CT were−0.04± 0.93% (mean

± SD). 3D Gamma dose comparison pass-rates were 99.7%± 0.5% with mean gamma

0.22 ± 0.07. Results were similar for the two centers using two different scanners. All

gamma comparisons exceeded the 90% pass-rate tolerance with a minimum gamma

pass-rate of 98.0%. In all cases the gold fiducial markers were correctly identified on

MRI and the distances of all seeds to centroid were within the tolerance of 1.0mm of the

distances on QA-CT (0.07 ± 0.41mm), with a root-mean-square difference of 0.42 mm.

Conclusion: The results support the hypothesis that an MRI-only prostate workflow

can be implemented safely and accurately with appropriate quality assurance methods.
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INTRODUCTION

The benefit of MRI scanning for prostate radiation therapy
planning is-well established with studies demonstrating lower
inter-observer variation in contours, and smaller contours
than CT with subsequent lower doses to normal tissues
such as the penile bulb (1–3). The use of MRI for prostate
delineation therefore potentially allows for more accurate and
more consistent treatment. Typically for prostate planning as
well as other treatment sites the MRI scans are registered to
CT scans to allow for dose computation using the electron
density or physical density map that is generated from simple
calibration of Hounsfield Units (HU). The registration can
be performed using MRI sequences that visualize implanted
gold fiducial markers or less accurately using prostate soft-
tissue. The MRI scans are often not acquired in the treatment
position and do not encompass the patient external contour. The
major limitation of this approach is that systematic registration
uncertainties can result in the prostate contour from MRI (the
target which is used to generate the high dose region) being
misaligned to the gold fiducial positions on CT which are used
for image guidance. These uncertainties have been estimated
to be up to 2mm in standard deviation which are significant
given the small margins used for modern high dose treatments.
These are systematic targeting uncertainties present for every
treatment fraction.

Recently a new paradigm for treatment planning has emerged
that of MRI-alone or MRI-only planning (4–13). In this
approach the HU map for dose calculation is generated from
one or more MRI sequences that encompass the typical field
of view of a planning CT scan (pseudo/synthetic CT). A
variety of methods have been developed to convert MRI
data to HU including calibration and classification methods
using the MRI voxel values, atlas-based methods that use
deformable image registration, hybrid voxel, and atlas methods
and deep-learning algorithms (convolutional neural networks
and generative adversarial networks) (14, 15). The performance
of these algorithms are similar and meet the requirements
for dose calculation accuracy. Clinical acceptance is assessed
by comparison of dose calculation on CT and pseudo-CT for
individual patients. The increase in dose calculation uncertainty
is regarded as a worthwhile trade-off to eliminate the systematic
registration uncertainty (4).

While there have been many investigations performed
retrospectively comparing new pseudo-CT methods to CT
dose calculations, there has been less attention to clinical
implementation of MRI-only workflows and in particular how
these can be performed and assessed to ensure safe clinical
use. Tyagi et al. presented a clinical workflow for MRI-
only simulation (16). Their workflow included an initial CT
simulation appointment where orthogonal x-ray scout images
were used to determine patient dimensions and acceptance for
use by the commercial MRCAT synthetic CT software. If the
patient had prior brachytherapy a small field-of-view CT scan
was acquired to distinguish brachytherapy seeds from fiducial
markers. Forty-two patients from an initial cohort of 48 received
this workflow. Tenhunen et al. presented their experience with

TABLE 1 | Patient details.

Patient detail Mean [range]

Age (years) 73.4 [58–83]

Gleason score 3 + 3 = 6 (n = 3), 3 + 4 = 7 (n = 13), 4 + 3 = 7 (n =

10), 4 + 4 = 8 (n = 1), 4 + 5 = 9 (n = 3)

Pre-treatment PSA 9.0 [0.88–33.8]

Weight (kg) 84.4 [62–122]

Body mass index (BMI) 28.5 [19–39]

MRI-only prostate planning for a large cohort at Helsinki
hospital (17). They found that 92% of patients were suitable
for MRI-only workflow. To date these reports are for single
institution studies.

MRI-only treatment planning is an entirely new approach
for treatment centers and does entail potential risks. Recently a
failuremodes and effects analysis (FMEA) ofMRI-only treatment
planning was reported which demonstrated multiple failure
modes that need to be considered (18). To gain benefit from
these techniques it is important that MRI-only workflows be
implemented in a rigorous and safe manner with appropriate
quality assurance methods. In this work a multi-center study
was initiated for the implementation of an MRI-only prostate
workflow. Two different treatment centers participated and 30
patients in total were recruited, 15 at each center. The study was
designed to enable and assess safe implementation of this new
technique for radiation therapy departments.

METHODS AND MATERIALS

Patients
Thirty patients receiving radical radiation oncology treatment
for prostate cancer were recruited across two treatment centers.
The study title was High precision Prostate Substitute CT based
External beam Radiotherapy (HIPSTER). The study was ethically
approved by the Hunter New England Human Research Ethics
Committee (HREC Registration No: 16/07/20/3.01, NSW HREC
Reference No: HREC/16/HNE/298, Australian New Zealand
Clinical Trials Registry ACTRN12616001653459) and informed
consent was obtained from all patients. The study opened for
recruitment 6 April 2017 and closed to recruitment 16 April 2019
with 15 patients recruited at each center. Eligibility criteria were
men >18 years, low, intermediate or high risk prostate cancer,
fiducial gold markers inserted and prostate or prostate and
seminal vesicle irradiation. The exclusion criteria were inability
to undergo MRI scanning, prior pelvic radiation therapy, unsafe
for or refusal to undergo fiducial marker insertion, presence
of hip prostheses, men highly dependent on medical care or
men with mental or intellectual impairment that would have
difficulty giving informed consent to the study. Patient details
are listed in Table 1. Three fiducial markers were implanted
at least 1 week prior to MRI scanning. Treatment details are
listed in Table 2. Patients were scanned and treated according to
local guidelines except for the MRI-only planning requirements
outlined below.
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TABLE 2 | Details of the centers equipment and techniques.

Center 1 Center 2

CT scanner Toshiba Acquilion or GE LightSpeed-RT or Siemens Confidence Philips Brilliance Big Bore

MRI scanner Siemens Magnetom Skyra 3T Siemens Magnetom Skyra 3T

Treatment planning system Varian Eclipse Philips Pinnacle

Record and verify system Varian Aria Elekta Mosaiq

Linear accelerators Varian Clinac or Truebeam Elekta Synergy (Agility MLC) or Versa

Fiducial markers 1.0 × 3.0mm gold 1.2 × 3.0mm gold

Treatment technique 7-field IMRT (n = 11) 2-arc VMAT (n = 4) 1-arc VMAT (n = 12)

2-arc VMAT (n = 3)

Prescribed dose 60Gy in 20 fractions (n = 14)

78Gy in 39 fractions (n = 1)

60Gy in 20 fractions (n = 9)

78Gy in 39 fractions (n = 6)

Beam energy 6MV (n = 13)

10MV (n = 2)

6 MV

FIGURE 1 | Phase 1 design for retrospective analysis.

Centers and Equipment
While the centers had the same make and model of 3T MRI
scanner (MAGNETOM Skyra, Siemens Healthineers, Erlangen,
Germany) they differed in all other radiation therapy equipment.
Both MRI scanners were fully equipped as MRI simulators with
radiation therapy flat couch tops (CIVCO Medical Solutions,
Coralville, USA), laser bridges (LAP Laser, Luneburg, Germany)
and pelvic coil bridges (CIVCO). Both scanners had regular
quality assurance procedures for image quality and distortion.

Study Design
The study was designed as a two-phase implementation model
where centers performed retrospective analysis of MRI-only
plans for five patients followed by prospectiveMRI-only planning
for subsequent patients. The first phase is commensurate with
literature studies to determine the accuracy of the pseudo-
CT generation (Figure 1). The second phase is designed as a
transition to MRI-only planning without CT where the MRI-
only workflow is implemented but with final quality assurance

to ensure accuracy and safety provided by comparison to CT
scanning. In this phase the CT scan (QA-CT) is only imported
into the TPS following preliminary radiation oncologist approval
of the MRI-only plan (Figure 2). The study aimed to recruit and
treat 25 patients with phase 2 MRI-only prospective planning. As
center 1 had previously performed retrospective analysis for 39
patients (19) they began at phase 2. Center 1 recruited 15 patients
to phase 2 while center 2 recruited five patients to phase 1 and a
further 10 patients to phase 2.

The major endpoint of the study was feasibility of MRI-
only implementation with the aim achieved if >90%
of patients received MRI-only treatment. This allowed
for 2/25 patients to have their MRI-only plans deemed
unacceptable. From previous experience 39/39 patients would
have achieved the dose calculation criteria therefore a 25
patient sample size was regarded as reasonable to recruit
and to demonstrate feasibility. Secondary endpoints were
the assessment of the dose and image-guidance quality
assurance metrics.
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FIGURE 2 | Phase 2 study design for prospective MRI-only planning.

FIGURE 3 | Example patient setup for MRI simulation.

MRI Simulation
The patients were setup in exactly the same position as for
treatment with a radiation therapist in attendance for patient
setup. Patients were aligned using the lasers and MRI visible skin
markers (Liquimark, Suremark) were placed on the patient’s skin
along with temporary tattoo marks. The coil mount was placed
over the patient’s pelvis, without compressing their contour. All
patients were positioned head-first supine and had full bladder
and empty rectum. An example of patient positioning for MRI
simulation is shown in Figure 3.

TABLE 3 | Details of the MRI scans acquired and their function for MRI-only

planning.

Scan type Function

Small field-of view T2 TSE Prostate delineation (CTV) and urethral

delineation

Small field-of-view T1 GRE Flip 80 Fiducial marker delineation

Large field-of-view T2 SPACE Organ delineation

Generation of pseudo- CT

Pseudo-CT Dose calculation

Image guidance using fiducial marker

contours transferred from T1 flip 80

A large field of view 3D sequence was utilized for pseudo-
CT generation. Both centers used the same T2-weighted SPACE
isotropic 3D sequence with 1.6mm voxel side dimensions
and scanning parameters as previously reported (19). The
manufacturers 3D distortion correction was used for all scans.

Routine sequences used at each center were also acquired
for prostate contouring and fiducial marker visualization. These
were not altered for this study as the aim was to follow the
conventional workflow as closely as possible but with MRI
replacing the functionality of CT for treatment dose calculation,
contouring and image-guidance. Details of these sequences have
been reported earlier (19). The functionality of the three main
sequences acquired along with the pseudo-CT are shown in
Table 3. A checklist was designed to ensure adequate MRI
scanning for treatment planning shown in Table 4.

Pseudo-CT Generation
Details of the pseudo-CT method have been reported in detail
previously (19). The method is a hybrid atlas-voxel method using
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an atlas of 39 previously acquired patients. The LFOV SPACE
sequence was de-identified and the patient details replaced with
a study ID before cloud upload to a secure site. The pseudo-CT
was generated and downloaded to the treatment center where
the patient ID and details were entered into the DICOM header
of the scan, replacing the study ID. For the first eight patients
the pseudo-CT generation was identical to the method described
in Dowling et al. (19) including the addition of an extra 1.0mm
“skin” expansion due to the lack of visibility of this layer on MRI.
However, this was discontinued due to erroneous generation of
this layer for patient number 9 of the study and it was decided
that it was clinically more robust to subsequently exclude this
additional layer calculation from the algorithm.

CT Scanning
All patients received CT scans (QA-CT) for quality assurance and
analysis of the MRI-only workflow performed as close as possible
in time as the MRI scan and preferably after the MRI scan.

TABLE 4 | MRI simulation checklist.

MRI skin markers placed on tattoos, patient level with

lasers (scanned HFS)

�

LFOV MRI acquired first �

LFOV MRI—skin markers visible on LFOV MRI and

patient is leveled (within 0.5 cm)

�

LFOV MRI—covers external body contour in all

directions and inferior superior extent according to CT

scanning guidelines

�

LFOV MRI—T2 SPACE, 1.6mm isotropic voxels �

LFOV MRI—3D distortion correction is active �

SFOV T2 TSE—3D distortion correction is active �

SFOV T1 GRE flip80—three gold markers are visible on

the scan, 2D distortion correction is active

�

Slice thickness was 2.0mm or 2.5mm at Center 1 and 2.0mm
at Center 2.

MRI-Only Treatment Planning
The MRI sequences along with the pseudo-CT were imported
into the treatment planning system (TPS). Alignment of all
scans was visually checked by a radiation therapist. Following
prostate, organ and fiducial marker delineation these contours
were transferred to the pseudo-CT for treatment plan generation
following incorporation of a couch-model. Imbedding of
fiducials into the pseudo-CT scan pixel values was not used.
Treatment plans were then defined according to routine
department protocols. The pseudo-CT with attached fiducial
marker contours was then transferred to the linear accelerator
for image guidance with either cone-beam CT based image
registration to pseudo-CT based on the markers or orthogonal
kilovoltage x-ray image based image registration to digitally
reconstructed radiographs generated from pseudo-CT.

Quality Assurance
A quality assurance procedure was designed for assessment
of MRI-only treatment plans prior to acceptance of the plan
for treatment. This included verification that the scans were
consistent, pseudo-CT appearance and field-of-view, seeds were
correctly identified, and dose and image-guidance metrics as
described below (Table 5). This procedure is designed for an
implementation phase for MRI-only planning where a MRI-only
workflow is used but a gold-standard CT scan is still acquired for
final verification before MRI-only plan is used for treatment.

Following full preparation of the MRI-only treatment plan
and preliminary radiation oncologist approval, the QA-CT scan
was imported into the TPS. This scan was registered to the
pseudo-CT using automatic registration and the MRI plan
transferred to the QA-CT. Dose was recalculated on the QA-
CT using the same fluences and monitor units as the MRI

TABLE 5 | Quality assurance checklist for MRI-only plan.

Distortion correction Confirm that 3D distortion correction was activated for the whole-pelvic scan. Check

distortion corrections for other scans.

�

Image transfer Confirm that pseudo-CT corresponds to the MRI scan and conventional CT scan to verify

that correct pseudo-CT has been assigned to the patient.

�

Image orientation

and appearance

Confirm that pseudo-CT is correctly oriented by comparison to conventional CT scan.

Visually inspect the entire pseudo-CT volume and compare to conventional CT for any

missing tissue or major differences.

�

Field of view Ensure that the pseudo-CT has sufficient field-of-view to cover all external contours and

sufficient extension superiorly and inferiorly for dose calculations.

�

Fiducial marker

visibility

Verify that the fiducial marker structures generated on the pseudo-CT correspond to the

fiducial markers determined from the conventional CT (i.e., all fiducial marker locations

have been correctly identified).

�

Femoral heads Confirm visually that MRI generated bone contours visually correspond to CT bone

contours.

�

Dose at isocenter Verify that isocenter dose on pseudo-CT is within 2% of conventional CT �

Dose distribution Verify that 3D Gamma comparison at 2%, 2mm criteria > 90% pass-rate for the entire

body volume (−1.5 cm to avoid skin region where dose is uncertain).

�

Fiducial marker

positions

Verify that fiducial marker contours on pseudo-CT are within 1mm from centroid of the

locations on conventional CT from centroid (accounting for prostate rotation).

�
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FIGURE 4 | Example of a patient (top-left) large-field-of-view MRI scan; (top-right) dose plan developed on pseudo-CT; (bottom-left) dose recalculated on QA-CT

scan; (bottom-right) gamma analysis result at 2%, 2 mm criteria.

plan. Following alignment using the isocenters the doses were
interpolated onto a 1.5mm voxel size and compared with a
three-dimensional gamma calculation. A 20mm region close
to the skin was excluded from the comparison using a two-
dimensional erosion operation on each axial plane to avoid
the large dose discrepancies due to differences in the external
body contour at CT and MRI. A dose threshold of 20% of the
maximum dose was used and gamma criteria of 3%, 3mm, 2%,
2mm, and 2%, 1mm with the QA-CT as the reference dose
for the comparison. Doses at the isocenter were also compared.
Acceptance criteria for the dose calculation on pseudo-CT were
isocenter dose within 2% and gamma pass-rate > 90% at 2%, 2
mm criteria.

Locations of fiducial markers as identified on MRI were also
compared to locations on the QA-CT scan. The x, y, and z
locations of the markers were carefully measured on the scans
and entered into an Excel spreadsheet which calculated the
centroid of the markers for each scan. The distances of each
marker to the centroid were calculated and compared for the
scans. If all distances were within 1.0mm then the MRI locations
were accepted.

RESULTS

The primary outcome of the study was achieved with all 25
patients in phase 2 having their MRI-only plans accepted by the
radiation oncologist and passing all quality assurance criteria.
These patients were all treated using the MRI-only workflow.

Figure 4 shows an example patient MRI scan, pseudo-CT dose
calculation, and QA-CT dose recalculated for comparison.

For the secondary endpoints all 30 patient results were
assessed including the five patients for phase 1 at center 2 as
the assessment methodology is the same as phase 2. The results
for the ratio of isocenter dose on pseudo-CT and QA-CT are
shown in Figure 5 along with the Bland-Altman levels. The
mean difference in isocenter doses was −0.04% with a standard
deviation of 0.93%. The effect of the first eight patients calculated
with the 1.0mm skin expansion can be seen with lower pseudo-
CT doses. The mean difference for the first eight patients was
−0.64% (0.90%) while for the subsequent patients it was 0.17%
(0.85%). All isocenter dose differences were within 2.0% and only
3 (10%) had more than 1.5% difference.

The results for the gamma evaluations of the dose on pseudo-
CT and QA-CT are shown in Table 6 for the three gamma
criteria. The average gamma pass-rates and the average of the
mean gamma values for all patients are shown.

The results for the comparison of fiducial marker distances
to centroid on MRI and QA-CT are shown in Figure 6. The
average difference between MRI and QA-CT was 0.07mm (1 SD
= 0.41mm) and the root-mean-square difference was 0.42mm.
The maximum difference was 1.00 mm.

DISCUSSION

This study demonstrates that MRI-only workflows can be
implemented in a multi-center setting with appropriate quality
assurance measures to ensure accurate and safe treatment. The
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FIGURE 5 | Isocenter dose comparison on MRI only pseudo-CT scan and QA-CT scan.

TABLE 6 | Results of gamma analysis for comparison of dose calculation using

pseudo-CT and CT.

3%, 3 mm 2%, 2 mm 2%, 1 mm

Gamma pass-rate (%) 100.0 99.7 99.2

Standard deviation (%) 0.1 0.5 1.0

Mean gamma 0.145 0.218 0.221

Standard deviation 0.05 0.07 0.07

study is distinct from most other reported studies in that it is
prospective and the 25 patients received an MRI-only workflow
and treatment.

The QA-CT scan was only used for quality assurance purposes
and this was imported following full generation and preliminary
approval of the MRI only plan. This ensures that an MRI-
only planning workflow is fully implemented but also allows for
verification against the gold standard for dose calculation and
image-guidance. This prepares the center for MRI-only workflow
and ensures safe practice. Subsequent to this implementation
phase the center could then use the MRI-only workflow without
CT acquisition. There are two major potential approaches to
this; consider that there is now adequate confidence in the
process that no specific quality assurance techniques are required;
or to utilize separate quality assurance techniques, and these
decisions will be center-dependent. To provide a method for the
latter approach, in parallel with this study a simple bulk-density
calculation method was developed to compare to the pseudo-CT
dose calculation. This was based on MRI bone and body contour
anatomy and the results will be reported separately. This method
can provide confidence in the integrity of the pseudo-CT and is
robust and easy to perform.

Quality assurance methods to validate fiducial marker
positions as identified on MRI scans would also be beneficial.

FIGURE 6 | Histogram of the differences in distance on MRI and QA-CT of

each marker to the centroid of the markers.

Prostate calcifications can in some cases be difficult to
differentiate from fiducial markers in the sequences used
here. Although potentially problematic this misidentification is
unlikely to lead to image guidance errors as the seed positions
are clearly identified with cone-beam CT scans or x-ray images
prior to treatment and misidentified seed positions are obvious
and can be corrected. However, this is not an ideal scenario as
it could delay treatment. Several methods have been proposed
to ensure fiducial marker identification using MRI techniques or
planar x-ray imaging (16, 20–25).

Patient movement between and during MRI scans is also a
potential source of error in MRI-only planning as the scans
can take several minutes to acquire. It is critical to ensure
that movement has not occurred between the small field-of-
view acquisitions used for CTV definition and fiducial marker
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delineation. If there is a shift of position between them this will
introduce a systematic error in dose delivery to the CTV/PTV.
Visual inspection of alignment of the prostate contour on the
two sequences should be performed. Note that this is not a
problem specific to MRI-only planning. This problem also exists
for MRI-CT registration based treatment planning as is currently
performed. Movement of the patient for the large-field-of-view
MRI scan is not as critical for dose calculation but it will result
in systematic errors of normal tissues that are delineated on this
scan and hence potential mismatch of planned and delivered
doses to these organs.

For patient 9 an error in the pseudo-CT scan was detected
visually during plan generation. This was due to the algorithm
component that introduces an additional “skin” expansion to
compensate for the lack of visibility of the skin onMRI. Although
this correction was introduced in earlier method development
to improve dose calculation accuracy it was felt that it would
be clinically safer to exclude this additional layer for this and
subsequent patients. This patients pseudo-CT was recalculated
with the modified algorithm which generated a new pseudo-CT
that was used for the treatment plan. This has a small effect on
the dose calculation when compared to QA-CT. The patients
prior to patient 9 that included this layer had on average slightly
lower dose calculation on pseudo-CT compared to CT whereas
the patients subsequent to the change had on average slightly
higher dose on pseudo-CT when compared to CT. The patients
prior to the change could be recalculated with the modified
algorithm however the patient plans were developed using the
prior algorithm so this would not reflect the reality for this
prospective study.

CONCLUSION

An MRI-only workflow was introduced in a prospective multi-
center trial setting and all recruited (25 patients) received

the MRI-only workflow. MRI-only planning workflow can be
implemented in a safe manner with appropriate testing and
quality assurance.
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Generation of Synthetic CT Images
From MRI for Treatment Planning and
Patient Positioning Using a
3-Channel U-Net Trained on Sagittal
Images

Dinank Gupta*, Michelle Kim, Karen A. Vineberg and James M. Balter

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States

A novel deep learning architecture was explored to create synthetic CT (MRCT) images

that preserve soft tissue contrast necessary for support of patient positioning in Radiation

therapy. A U-Net architecture was applied to learn the correspondence between input

T1-weighted MRI and spatially aligned corresponding CT images. The network was

trained on sagittal images, taking advantage of the left-right symmetry of the brain

to increase the amount of training data for similar anatomic positions. The output CT

images were divided into three channels, representing Hounsfield Unit (HU) ranges of

voxels containing air, soft tissue, and bone, respectively, and simultaneously trained

using a combined Mean Absolute Error (MAE) and Mean Squared Error (MSE) loss

function equally weighted for each channel. Training on 9192 image pairs yielded resulting

synthetic CT images on 13 test patients with MAE of 17.6+/−3.4 HU (range 14–26.5 HU)

in soft tissue. Varying the amount of training data demonstrated a general decrease in

MAE values with more data, with the lack of a plateau indicating that additional training

data could further improve correspondence between MRCT and CT tissue intensities.

Treatment plans optimized on MRCT-derived density grids using this network for 7

radiosurgical targets had doses recalculated using the corresponding CT-derived density

grids, yielding a systematic mean target dose difference of 2.3% due to the lack of the

immobilization mask on the MRCT images, and a standard deviation of 0.1%, indicating

the consistency of this correctable difference. Alignment of MRCT and cone beam

CT (CBCT) images used for patient positioning demonstrated excellent preservation

of dominant soft tissue features, and alignment comparisons of treatment planning CT

scans to CBCT images vs. MRCT to CBCT alignment demonstrated differences of −0.1

(σ 0.2) mm, −0.1 (σ 0.3) mm, and −0.2 (σ 0.3) mm about the left-right, anterior-posterior

and cranial-caudal axes, respectively.
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INTRODUCTION

While MRI has shown significant value for Radiation Oncology
treatment of intracranial tumors due to its superior soft tissue
contrast and ability to map quantitative biological features
such as diffusion and perfusion, it has inherent limitations in
providing electron density maps necessary to support calculation
of radiation dose distributions, as well as in supporting most
existing clinical workflows for patient positioning that rely on
alignment of treatment planning CT images with Cone Beam
CT (CBCT) scans acquired at the time of patient positioning.
While the former issue has been reasonably resolved by a
variety of synthetic CT approaches (1–6), the latter has received
little attention.

Many CBCT-CT alignment mechanisms rely on reasonably
similar intensity distributions, especially those that align soft
tissue features. Recent reports have demonstrated the potential
of “machine learning” approaches to generate synthetic CT
(“MRCT”) scans, but have shown rather large errors in intensity
differences of the soft tissues of the brain. While not specifically
analyzed in most of these investigations, the structural details
of soft tissue features are often misrepresented, thus potentially
confounding alignment with similar features displayed on CBCT
image volumes. This may present challenges for precise local
alignment of tissues, as the potential for local changes between
simulation and treatment is enhanced due to the temporal
periods associated with frameless radiosurgery techniques (7).

The objective of this investigation was to investigate whether
a Neural Network could be optimized to preserve the soft tissue
contrast features necessary for precision alignment of intracranial
tumors. Attempts to maximize local contrast include use of a U-
Net architecture trained on aligned MR and CT pairs, training
on sagittal planes to increase data diversity for the same number
of input patients, and separation of the CT images into three
intensity regions, preserving the narrow intensity range wherein
most of the soft tissue contrast falls on CT. The impact of
numbers of training images is briefly explored.

MATERIALS AND METHODS

Training Data
Under an Institutional Review Board approved protocol, 60
patients who underwent CT-based simulation for treatment

FIGURE 1 | Example sagittal CT image with tissue windows: (A) original CT image (B) air window (C) tissue window, (D) bone window.

of intracranial tumors further underwent an MR simulation
scan while immobilized with their fixation devices. CT image
volumes were all acquired using the same in-house CT simulator
(Brilliance big bore, Philips Medical Systems, Andover MA)
and had initial voxel sizes ranging from 0.6 by 0.6 by 1mm
to 1.17 by 1.17 by 3mm. MR images were acquired on an
in-house 3 Tesla MR Simulator (Skyra, Siemens Healthineers,
Erlangen, Germany), and included a T1-weighted acquisition
as the in phase images of a Dixon scan series. These images,
with sampled voxel sizes of ∼1 by 1.25 by 1.25mm, were used
for training.

CT image volumes were rigidly aligned to corresponding MR
images using an open source package dipy (8) and the resulting
transforms applied to the CT and resampled to match the native
MR image resolution.

The range of Hounsfield Units of typical human tissues
is roughly −1,000 to 2,000. The majority of this intensity
range is occupied by air and/or skeletal tissues. Most soft
tissue falls within a narrow subset of HU values (∼−100
to 100 HU). As a result of this very limited region of the
intensity range wherein soft tissue contrast lies, training loss
functions will have HU differences an order of magnitude
higher in air or bone regions than in locations consisting of
primarily soft tissue contrast. As a result, the training might
prioritize errors in bone or air over those of soft tissue.
This leads to a potential challenge to preserving local soft
tissue structures, especially with limited amounts of training
data. To attempt to capture soft tissue contrast, we split
training CT images into 3 separate output “channels” that
can facilitate easier learning from limited data sets (Figure 1).
These channels were defined by using intensity thresholds of
< −100 HU to define voxels containing air, −100 HU to
100 HU to primarily identify soft tissue and >100 HU for
voxels containing bone. The regions outside of the threshold
masks were set to 0 HU for each channel. This 3-channel
approach forces the network to learn the 3 regions of
interests separately, thus capturing the tissue intensity contrasts
independently for air, tissue and bone. As the tissue intensities
were consistent across the MR scans due to a standard
image acquisition methodology and coil configuration, and the
HU value ranges of tissues were similarly consistent, a fixed
normalization was applied to the input and separately each of the
output channels.
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FIGURE 2 | U-net architecture. Each block represents a convolution operation, followed by batch normalization and Leaky ReLU. Last convolution operation converts

64 dimensional channel to 3 channel synthetic CT.

FIGURE 3 | Normalized training and validation loss curves.

Network Architecture
A U-Net neural network architecture (1, 9) (Figure 2) was
implemented for translating T1-weighted MRI images into
corresponding MRCT images. This network involves a series
of downsampling operations that squeezes the input image by
factors of two while increasing the number of filters by factors
of two. Once this downsampling shrinks the input image 5
times, the same number of upsampling operations successively
increase the image dimension by factors of 2, while reducing
the number of channels by factors of two. This upsampling is
also supported by padding of weights from the corresponding
dimension image in the downsampled layer. This allows for

easy flow of gradient information and avoids the “vanishing
gradient” problem (10). Each convolution layer is followed by
a Batch Normalization (11) and Leaky ReLU (12) activation.
We perform downsampling in our convolution operation and
upsampling with a transpose convolution operation. The very
last convolution layer converts a 64 channel input to a 3-channel
output image. We employ Adaptive stochastic gradient descent
(Adam) (13) as our optimizer. The U-Net architecture was
chosen due to its lower complexity and data requirements than
recently used adversarial networks that might overfit the training
dataset, since the data sufficiency problem has not been addressed
in deep learning based synthetic CT literature.
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FIGURE 4 | Split window display of MRCT aligned with CBCT for an example patient, demonstrating the preservation of dominant soft tissue interfaces such as major

sulci and ventricles as seen in axial, coronal, and sagittal cross sections through the image volumes.

Of the 60 patients, 47 were used for training. To increase the
diversity of imaging features on similar anatomic cross sections,
sagittal planes were used for training. A total of 9,192 images were
used for training. We also implemented data augmentation by
random rotation of image by 90 degrees and also by randomly
cropping a section of each image for training. To explore
the impact of magnitude (and by implication, diversity) of
training data, subsets of 10, 20, and 50% of total images were
also tested, and the resulting MRCT images from test subjects
qualitatively reviewed.

Loss Function
The choice of loss function (L) for our task was a combination
of mean absolute error (MAE) and mean squared error (MSE)
losses between the CT and MRCT images.

MAE (X,Y) =

∑n
i=1 |Xi − Yi|

n
(1)

MSE (X,Y) =

∑n
i=1 (X

2
i − Y2

i )

n
(2)

L (X,Y) = MAE (X,Y) +MSE (X,Y) (3)

where X,Y are the images being compared, n is the total number
of pixels in the image and Xi represents the ith pixel for image X.

We compare the loss L for each region separately which is
backprojected for training the network:

Ltot(X,Y) = L(Xair ,Yair) + L(Xtissue,Ytissue) + L(Xbone,Ybone)

(4)

TABLE 1 | MAE values between MRCT and CT image volumes from the fully

sampled network.

Patient MAE (HU)

all voxels

MAE (HU)

air

MAE (HU)

tissue

MAE (HU)

bone

Patient 1 73.80 213.5 13.97 170.02

Patient 2 76.88 227.54 14.39 182.83

Patient 3 88.31 234.27 17.11 217.24

Patient 4 77.53 229.34 17.87 174.08

Patient 5 99.28 271.21 17.8 227.25

Patient 6 69.17 220.9 15.11 169.53

Patient 7 118.14 293.7 26.5 302.54

Patient 8 83.20 218.69 23.51 188.98

Patient 9 58.13 197.96 15.56 154.99

Patient 10 71.45 216.57 17.15 181.51

Patient 11 75.66 200.88 16.7 158.48

Patient 12 89.04 274.47 16.97 214.17

Patient 13 72.66 239.77 16.29 169.13

Mean 81.02 233.75 17.61 193.13

Standard deviation 14.60 28.02 3.41 38.33

Minimum 58.13 197.96 13.97 154.99

Maximum 118.14 293.7 26.5 302.54

Network Training
The U-net was initialized with a normal distribution with mean 0
and standard deviation 0.01. Training was done in mini-batches
of 32 random slices. Five-fold cross validation was used, and
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FIGURE 5 | Dose distributions for intensity modulated treatment plans for two targets. The original plan was optimized using the MRCT-derived density grid (left), and

the resulting beam fluences were used to recalculate doses on the CT-derived density grid (right). Dose volume histograms (DVHs) for the Brainstem (yellow), Optic

chiasm (brown), eyes (green), and two targets (light and dark blue) are shown. Squares represent MRCT plan DVH curves, and triangles come from recalculated plans

using CT.

training was stopped after 150 epochs where loss function was
observed to reach a plateau as shown in Figure 3. The 3 channel
images were summed along the channels dimension to generate
corresponding MRCT slices.

MRCT Evaluation
MRCT volumes were compared with corresponding CT volumes
by various methods. MAE comparisons were done on voxel wise
basis, as well as for voxels primarily containing air, soft tissue
and bone. These regions were defined within an automatically
generated mask that encompassed the head to the inferior border
of the skull by using dipy (8).

Dosimetric comparisons were made on 11 targets from 7 of
the test patients. Using a commercial treatment planning system
(Eclipse, VarianMedical Systems, Palo Alto, CA), treatment plans
for these radiosurgical targets were generated using the clinical
treatment planning directives and with electron density maps
derive using MRCT images. The beam fluences generated from
these plans were used to recalculate doses by applying the aligned
treatment planning CT image volumes as attenuation maps.

For these patients, the MRCT and treatment planning CT
image volumes were individually aligned to the Cone Beam
CT (CBCT) images acquired for treatment positioning. The

alignment transformations were subsequently applied to the
center of the planned treatment targets, and the differences in
transformed coordinates compared.

RESULTS

The network training times were 928, 634, 302, and 161min
using 9192, 4096 (50%), 1838 (20%), and 919 (10%) image pairs,
respectively, on 2 NVIDIA K40 GPUs. Generation of 3-channel
MRCT images took∼1 s.

The preservation of major soft tissue interfaces is
demonstrated in example images in Figure 4, which further
shows support for soft tissue-based alignment between MRCT
and CBCT. The MAE for the 13 test patients is reported in
Table 1. The MAE for all voxels ranged from 58.1–118.1 HU
with mean 81.0 HU and standard deviation 14.6 HU. Error
values for each of the 3 channels are reported in Table 1. Mean
MAE values for air, tissue and bone were 234, 22, and 193
HU, respectively.

Figure 5 shows an example treatment plan comparison. The
PTV mean dose values had a systematic difference of 2.3% (σ
0.1%) between the plans generated using the MRCT-defined
density grids and recalculated using the CT-defined grids. As can
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FIGURE 6 | Mean Absolute Error (MAE) values between Synthetic and actual CT image volumes as a function of amount of training data used, tested across 13 tested

patients. The maximum (orange), mean (purple), and minimum (blue) values all demonstrate a gradual decreasing trend with increased numbers of training images.

be seen on the images, the MRCT was not trained to reproduce
the immobilization device present on the CT, and thus these
differences are expected due to the added attenuation of themask.

Alignment results from CT to CBCT as well as corresponding
MRCT-CBCT alignment showed a mean difference of −0.1 (σ
0.2) mm, −0.1 (σ 0.3) mm, and −0.2 (σ 0.3) mm about the left-
right, anterior-posterior and cranial-caudal axes, respectively.
The range of differences was (−0.3, 0.4), (−0.4, 0.3), and (−0.7,
0.2) mm about the same axes.

Figure 6 shows error for training the U-net with subsampled
data for air, tissue and bone, respectively. While the difference
between training on 10% (912) and 20% (1824) of available
images is not clearly discernable, increasing the number of
training images beyond 20% of the total 9192 available samples
for training yielded a gradual decrease in average MAE for
all three classes intensities, with the most significant trend
observed in bony tissues. No plateau was observed, indicating
that potential further improvements might be possible with a
larger base set of training images.

DISCUSSION

In this report, we suggest an update to the design of neural
networks used for generating synthetic CT from MRI. The goal
of a 3-channel network is to allow learning of subtle contrast
changes in HU values that might not be accurately learned due
to the vast range of intensities in CT images. We implemented

the 3-channel structure in a U-Net architecture and saw that
soft-tissue contrast can be learned with good precision.

Two previous investigations reported MAE differences
between synthetic and actual CT images within soft tissue
regions. Emami (4) reported a MAE of 41.85 +/– 8.58 HU in
soft tissue using a GAN trained on 15 patients, and Dinkla (6)
reported a MAE of 22 +/– 3 HU using a dilated convolutional
neural network trained on 52 patients. While we observed error
values that are comparable or better (at least in soft tissue)
than those reported in these and other investigations (1, 14), we
would nonetheless argue that lowMAE values are not enough for
clinical implementation of MRI-only radiotherapy. Alignment of
CT and CBCT is a crucial step that requires correct soft-tissue
contrast, and a 3-channel network optimizes for it. We show that
the 3-channel output network potentially reduces the problem of
faithfully preserving soft tissue features by separately training on
CT images within an appropriate intensity range. This process
also allows us to scale the loss function to incur heavier penalties
separately for errors for each of the different intensity regions.

We observed a gradual trend toward decreasing MAE with
increasing amounts of training data. Many prior investigations
used far fewer patient images for training than the 47 we had
available, and it may be possible that their results are potentially
limited by the amount of data available. It is likely that our
results are limited by the amount of available data as well,
and future investigations will focus on increasing the training
data set to incorporate ideally hundreds of patients. A critical
question for future investigations will be the elucidation of
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the necessary complexity of training information and robust
estimation of resulting uncertainty from trained networks. While
we chose to focus on a U-Net for training our data in part to
limit the potential overfitting due to degeneracy associated with
optimizing a network with a larger number of degrees of freedom
from limited data, it is also possible that use of a generative
adversarial network (GAN) may better reveal the relationship
between volume and by inference complexity of training data
and accuracy of final results. We will explore the use of GANs
as we increase our training data in the future. Of note, a recently
published study using a GAN trained on 77 patients with mutual
information as a loss function reported an average MAE of 47.2,
compared to a MAE of 60.2 when MAE was used as the loss
function using the same network (14). While we combined L1
(MAE) and L2 (MSE) in our loss function, we clearly see the value
in evaluating loss functions that are better designed to preserve
local features, and will consider optimizing such functions in
future investigations.

While we chose to train on 2-dimensional images in this
investigation, other investigators have shown interesting results
using “2.5 dimensional” groupings of multiple images in the same
or orthogonal orientations, as well as through training on several
3-dimensional patches. These techniques, as well as nominally
fully three-dimensional training, will be part of our future focus.

CONCLUSION

A deep learning approach, consisting of simultaneous training
of conversion of T1-weighted MR images to 3 separate
intensity regions of corresponding spatially aligned CT images
representing HU values typically found in voxels containing
mostly air, soft tissue and bone, respectively, was investigated.

Results indicate potential promise in preserving local soft
tissue features. Furthermore, the potential advantage of
increasing the volume of training data indicated potential further
improvements with additional number of patients.
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Magnetic resonance imaging provides a sea of quantitative and semi-quantitative

data. While radiation oncologists already navigate a pool of clinical (semantic) and

imaging data, the tide will swell with the advent of hybrid MRI/linear accelerator

devices and increasing interest in MRI-guided radiotherapy (MRIgRT), including adaptive

MRIgRT. The variety of MR sequences (of greater complexity than the single parameter

Hounsfield unit of CT scanning routinely used in radiotherapy), the workflow of adaptive

fractionation, and the sheer quantity of daily images acquired are challenges for

scaling this technology. Biomedical informatics, which is the science of information in

biomedicine, can provide helpful insights for this looming transition. Funneling MRIgRT

data into clinically meaningful information streams requires committing to the flow of

inter-institutional data accessibility and interoperability initiatives, standardizing MRIgRT

dosimetry methods, streamlining MR linear accelerator workflow, and standardizing MRI

acquisition and post-processing. This review will attempt to conceptually ford these

topics using clinical informatics approaches as a theoretical bridge.

Keywords: MRI, MRI-guided radiotherapy, MR LINAC, informatics, biomedical informatics, clinical informatics,

imaging informatics, radiomics

INTRODUCTION

Use of magnetic resonance imaging (MRI) rather than computed tomography (CT) for
radiotherapy (RT) planning can be highly desirable because MRI visualizes soft tissues with
superior contrast and resolution (1), introduces unique sequences and contrast agents for
delineating specific tumors and anatomic subsites (1, 2), and permits daily adaptive radiotherapy
(ART) without added CT radiation dose (3–5). MRI-guided ART (MRIgART) machines
have advanced from low-field (0.35 Tesla) magnets with Cobalt-60 radiation sources (6) to
diagnostic-strength magnetic fields (1.5 Tesla) fully integrated with linear accelerators (7, 8) in <5
years. Over the coming decade, MRI-guided RT (MRIgRT) may change clinical practice paradigms
(9). The earliest adopter of MRIgART, Washington University in St. Louis (WUSTL), has already
altered its management of breast and abdominal malignancies (10). However, to scale MRIgRT,
workflow and standardization challenges that do not exist in CT-guided planning need be resolved.

First, MR scan reproducibility is more complicated than for CT. Consider a T1-weighted scan:
pixel intensities are predominately derived from longitudinal relaxation time (T1), an intrinsic
tissue property. Nevertheless, proton density (H) and transverse relaxation time (T2) (which are

34
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also intrinsic tissue properties) may greatly influence overall
signal intensity (11) depending on repetition time (TR) and echo
time (TE) parameters (see Equation 1).

S = K · [H] ·
(
1− e−

TR
T1

)
· e−

TE
T2 (1)

These parameters are not standardized across institutions or
vendors, so a T1-weighted scan acquired by a given vendor’s
machine is not necessarily equivalent in terms of observed
intensity as one acquired by another manufacturer. Similarly,
MRI acquisition suffers from geometric distortions that are
model-, vendor-, software-, shim-, and coil-dependent. Proper
correction also depends on variable user-driven acquisition
parameters (12, 13).

Second, there are more steps in MRIgRT planning than
CT-guided planning. MRI does not convey electron density
information necessary for standard photon dosimetry, so either
(1) MRI data must be registered to CT Hounsfield unit values
(14–17), or (2) a synthetic CT (sCT) must be algorithmically
generated from MRI (18, 19), or (3) tissue types must
be assigned a single, indiscriminate density (18) (Figure 1).
Additionally, MRIgART fractionation requires far more time of
the patient, radiation oncologist, and staff than traditional RT
treatment courses.

Third, RT generates seas of imaging data (20, 21) and
structured and unstructured clinical data (22–24) that will
deepen with multiparametric MRI sequences, unique contrast
agents, and radiomics features and MRIgART daily images,
contours, and plans (Figure 2). At our institution, MRIgRT
generates roughly four times as many bytes of data as CT-
guided RT (1 Gb per patient per day vs. 250Mb). Not all
data are fit for clinical decision-making or scientific inquiry.
For example, MRIgART could quantitatively track soft tissue
tumor shrinkage, but the results would only be clinically
actionable if the segmentation method were systematic and
reproduceable. Interpretability and reproducibility of MRI data
across institutions and vendors is not a given.

Effective use of “biomedical data, information, and knowledge
for scientific inquiry, problem-solving and decision making”
formally defines the field of biomedical informatics (BMI) (25).
The raison d’être of BMI is to reduce data (which are meaningless
symbols) into information (which is data plus meaning), and
further into knowledge (which is information that is justifiably
believed to be true) (26). This paper considers BMI concepts in
the context of scalingMRIgRT (seeTable 1) and critiques existing
literature from the perspective of how it increases information
and knowledge to streamline MRIgRT workflow and ensure the
consistency and usability of MRIgRT data.

HOW IS BIOMEDICAL INFORMATICS
RELEVANT TO MRIGRT CURRENTLY?

MRI is already an established modality for image-guided
RT of nasopharynx, brain, spine, liver, pancreas, prostate,
and female genital tract cancers (1, 2, 32). In each case,
standardization preserves the integrity of critical decision-
making information. Consider MRIgRT for prostate cancer

(33, 34). Radiology standards exist for MRI acquisition,
interpretation, and reporting (35). These improve reporting
among radiologists of varying experience levels (36), lest
anatomic delineation suffer poor consistency and patient
outcomes comparison data be meaningless. At the MR-CT co-
registration step, co-registration between limited field-of-view
images is the recommended standard because error is increased
when the field-of-view includes the anatomically variable bladder
and rectum (37). At the RT planning step, guidelines from
the European Society for Radiotherapy and Oncology (ESTRO)
(38) and Radiation Therapy Oncology Group (RTOG) (39)
standardize MRI-based clinical target and organ-at-risk (OAR)
contour volumes. Ostensibly, these steps culminate in more
conformal prostate RT, but MRIgRT has proved only modest
decreases in OAR toxicity compared to CT-guided RT (40, 41),
especially with the development of rectal spacer hydrogel (42).
Evaluating data quality and the assumptions used to establish
the clinical value of MRIgRT will be a critical BMI task in
the coming decade, one that should exploit emerging consumer
health informatics approaches.

BMI Considerations for MRIgRT Dosimetry
As already noted, MRIgRT requires either MRI-CT co-
registration, sCT generation, or bulk density assignment to
calculate tissue radiation dose. MR-only workflows employ
either the second or third approach (with the caveat that
atlas-based sCT generation techniques employ MRI-CT co-
registration to generate an MRI atlas). Improving MR-only RT is
strongly motivated by the desire to simplify adaptive workflow
for integrated magnetic resonance linear accelerators (MRLs).
Figure 3 exemplifies an imputed electron densitymap in a patient
treated on an MRL. We refer the reader to Table 1 in (34) for an
overview of current MRL platforms.

Bulk Density Override and Synthetic CT
Homogenous bulk density override is crude but achieves
reasonable dosimetric accuracy if specific structures (e.g.,
cortical bone) are contoured by a radiation oncologist and
separately assigned a unique density (43–45). In contrast, sCT
generation by voxel-based or atlas-based methods obviates
the need for time-intensive contouring and therefore may be
preferred. Johnstone et al. extensively discussed sCT generation
methods in a systematic review (18). Many sCT results appear
clinically comparable to CT. In the brain, sCT-derived digitally
reconstructed radiographs were as geometrically robust as those
derived from CT (46). In the prostate, sCT gamma passing rates
have been comparable with CT gamma passing rates (median
1%/1mm pass rate of 100% for almost all regions of interest
across 29 patient scans) (47). Nevertheless, MR-only workflow
introduces unique BMI considerations. For example, prostate
RT plans are more precise with setup to intraprostatic gold or
titanium fiducial implants (48), but these are visualized as signal
void on conventional MRI sequences and poorly differentiated
from calcifications. Maspero et al. (49) reported that 3/48 fiducial
implants were imprecisely and inaccurately identified by five
radiation technologists when visualized only on MRI. On the
other hand, new setup techniques based on MR daily imaging
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FIGURE 1 | RT planning with MRI requires assignment of electron density to pixels or tissues to calculate dose, a step that is not part of CT-guided RT planning.

FIGURE 2 | MRI-guided radiotherapy may introduce a deluge of new image sequences, optimization needs, image post-processing needs, contrast agents,

prognostic and predictive radiomics features, and adaptive imaging and clinical data.

might obviate the need for fiducials. Thoughtful consideration of
parameters like these are needed to ensure not only the safety
of the method but the quality and reproducibility of the data.
Consensus is also needed to establish the standard metrics by
which sCT quality should be gauged (18).

MRI-CT Co-registration
MRIs can be registered to CT rigidly (without warping the
MRI) or by a deformation vector field. Deformable registration
confers a more concordant result than rigid registration between
diagnostic CT and simulation CT (50–53), but recent work from
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TABLE 1 | Biomedical informatics concepts.

Concept Explanation Example

Data,

Information,

Knowledge,

Wisdom (DIKW)

pyramid

Data, information, and

knowledge are not

synonymous terms.

Information is data plus

meaning. Knowledge is

information plus a justifiable

belief in its veracity. Some

models also include wisdom

as a tier above knowledge

(27), but Bernstam et al. (26)

omit this.

Radiation oncologist expert

interpretation refines

dose-volume histogram

(DVH) data into information.

Statistical analyses then

extract and justify

knowledge.

The cycle of

clinical

information flow

Clinical care generates data,

which are used in biomedical

research, the results of which

develop prevention and

treatment standards, which

are built into clinical protocols,

which are built into clinical

decision support and

order-entry systems, which

directly influence clinical care,

etc. (28).

MRIgRT outcomes data are

recorded in electronic health

records, then leveraged in

clinical research, which

begins to establish the role

of MRIgRT, which dictates

clinical protocols, which are

built into clinical decision

support and other health

information technology

systems, which collaborate

with physicians during

MRIgRT treatment

evaluation and planning,

etc.

Data standards Data standards define and

describe “common and

repeated use, rules,

guidelines or characteristics

for activities or their results,

aimed at the optimum degree

of order” (29).

Digital Imaging and

Communications (DICOM),

DICOM-RT, Fast Healthcare

Interoperable Resources

(FHIR), AAPM Task Group

263 consensus

nomenclature for dosimetric

structures (24).

Interoperability Interoperability is “the ability of

a system or product to work

with other systems or

products without special effort

on the part of the customer”

(30). Data standards precede

interoperability.

FHIR-conforming electronic

health record applications

are interoperable between

different vendors that also

conform with FHIR.

Consumer

health

informatics

Consumer health informatics

is a subfield of biomedical

informatics focused on the

interactions of patients and

consumers with health

information systems,

catalyzed by mobile

technologies and the

Internet (31).

Patients log acute and late

toxicities during and after

MRIgRT in applications built

for their phones.

our group did not demonstrate the same advantage between
simulation MRI and simulation CT, at least in the head and
neck (17). This should not imply that rigid registration is
adequately accurate, since we also found that the registration
error (whether by deformable or rigid means) may not be
within the target tolerance recommended by the American
Association of Physicists in Medicine (AAPM) Task Group 132
(Dice similarity coefficient > 0.8) (54). Perhaps registration was
poor because of MR geometric distortion, or perhaps because

not all OARs are clearly delineated on both CT and MRI.
Regardless, this informs our view that sCT may be preferred
to CT-MRI co-registration for RT dose deposition calculation,
pending needed standardizations as discussed above.

WORKFLOW CONSIDERATIONS FOR
INTEGRATED MR LINEAR
ACCELERATORS

The “holy grail” of MRL RT is to see the target at setup, adapt
the plan as needed, and gate by watching anatomic movement
while the beam is on. The experience of the Department of
Radiation Oncology atWUSTL, which introduced the first 0.35 T
tri-cobalt-60 MRIgRT system (ViewRay, Oakwood Village, OH,
USA) in the USA (6), provides great insight into adaptive MRL
clinical informatics challenges. In a Phase I trial intended to
demonstrate the temporal feasibility of MRI-guided stereotactic
body radiation (SBRT), median on-table time per fraction was
79min and consisted of MR set-up, physician arrival, patient
localization, re-segmentation, re-planning, quality assurance
(QA), and beam on-time (3). Almost all fractions (81/97)
were adapted based on the patient’s anatomy-of-day to avoid
irradiating OARs. Despite fear that patients would not tolerate
fractions longer than 80min, all 20 patients completed their
treatments as prescribed.

MRL RT has evolved into a dominant indication for
abdominal and breast cancers at WUSTL, primarily because
motion gating and daily adaptation prevent OAR dose constraint
violations (10). The MRL has also prevented violations in
hypofractionated lung tumor stereotactic radiotherapy, and
enabled adaptive GTV reductions by as much as 65% (55).
However, adaptation remains time-intensive. Current systems
require physician attendance during every fraction (56), which
would not be sustainable at sites that lack sufficient physician
and support staff. Three studies from the University of Alberta
examined whether automated ROI segmentation can decrease
the burden on physician time. In the first, a pulse-coupled neural
network (PCNN) was developed to segment lung tumors in
the context of adaptive MRL RT (57). The PCNN achieved a
strong Dice Similarity Index (DSI) of 0.87–0.92, but it required
training on a unique dataset of manually-generated contours
per patient. A follow-up study improved DSI (58) with a pre-
segmentation deformable registration methodology, but still
required a physician to segment lung tumor across multiple
image frames. In the third study, DSI and other conformality
metrics improved using a fully convolutional neural network
(FCNN), but the FCNN still needed to be trained on 30
manual contours per patient. While these studies demonstrate
that automated segmentations of lung tumors for MRL RT
can achieve high fidelity, they may not hasten adaptive, online
MRL workflow. In contrast, a WUSTL novel tri-convolutional
neural network architecture capable of segmenting liver, kidneys,
stomach, bowel, and duodenum did reducemanual segmentation
time by 75% at WUSTL (59).

Intra and inter-observer variation in segmentation quality
has been documented using many imaging modalities in pelvic
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FIGURE 3 | This patient was reirradiated for a rectal adenocarcinoma recurrence on a hybrid magnetic resonance-guided linear accelerator. The planning image (top)

is an electron density imputation based on the simulation MRI (bottom).

(60, 61), lung (62), breast (63), head-and-neck (60, 64), and
brain (65) RT planning. In the specific context of MRL for
lung stereotactic body RT, Wee et al. (66) found no significant
intra or inter-observer variation in manual segmentations
of images acquired on a 0.35 T MRL. However, only two
radiation oncologist observers were compared, for only one ROI
(gross tumor volume) (66), limiting the generalizability of the
study conclusion.

To hasten MRL re-planning, WUSTL simplified the number
of planning objectives by grouping OAR structures into a single
structure (67). This both increased PTV coverage and simplified
re-planning by reducing the computational burden of satisfying
a greater number of competing objectives. This work was specific
to pancreatic cancer planning objectives, but the approach may
be amenable to re-planning for other sites.

Intrafraction motion management/gating is a hotly
anticipated MRL advantage. Han et al. (68) applied 3D-Rotating

Cartesian K-space MRI (4D-ROCK-MRI) in an MRL RT
workflow to improve lung tumor motion tracking. 4D-ROCK-
MRI improved image quality and motion tracking and decreased
lung cancer GTV variability compared with 4D-CT, which
suffers from 2D-slice “stitching” artifact. The authors reason that
it might capture motion better than 2D-CINE MRI because it
acquires data over a 7min interval, while the latter screens less
than a minute of data. Cusumano et al. (69) compared 4D-CT
and 2D-cine MR motion data acquired at the time of simulation
with complete 2D-cine MR datasets acquired over entire
MRIgRT treatment courses. Simulation 2D-cine MR appeared
better than simulation 4D-CT, though not significantly. Patients
with large motion amplitudes at the time of simulation tended
to have more variable amplitudes throughout their treatment
course, but even targets with steady amplitudes frequently drifted
from the motion trajectory calculated at simulation. Drift was
as severe as 1.6 cm craniocaudally and 1.2 cm anteroposteriorly,
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which highlights the importance of continual IGRT monitoring
throughout treatment. Palacios et al. (70) tracked adrenal
metastases and discovered that one-third of the time anatomy
positioning violated OAR or target dose constraints. van Sornsen
de Koste et al. (71) followed lung, adrenal, and pancreatic tumor
GTVs with 2D-cine MRI. In 90% of cases these tumors oscillated
no more than 6mm anteroposteriorly and 9mm craniocaudally.
Mean coverage was better than 94% of the GTV volume for all
three tumor types (coverage was defined as a 3mm isotropic
GTV expansion).

ART discussions encompass many other considerations
beyond the scope of this paper, but we highlight one more:
both US commercial hybrid MRL systems use what Heukelom
et al. (5) define as “serial ART” (i.e., daily images are registered
to a planning scan serially without interval dose accumulation)
but can conceivably be utilized for “triggered ART” (when
fixed interval re-planning offline occurs) or “cascade ART”
(when serial deformed dose is integrated from prior treatments).
Consequently, a need for new ways of visualizing and reporting
dose and morphometric alterations will soon arise. Centers that
lack MRL machines but are interested in MRIgRT for abdominal
cancers may find the workflow outlined in Heerkens et al. (72)
informative. This phase I trial demonstrated a favorable toxicity
profile (no treatment-attributable grade 3 acute or late toxicities)
in 20 patients with unresectable pancreatic cancer who received
24 Gy/3 fx SBRT planned with multiparametric MRI sequences
and sagittal cine MRI.

RADIOMICS STANDARDIZATION: A
PRESSING INFORMATICS CHALLENGE

The use of imaging biomarkers for diagnosis and prognosis
is the field known as radiomics (73), or radiogenomics if the
biomarkers are both radiomic and genomic (74, 75). MRI
radiomics features have predicted tumor histopathology (76,
77), improved region-of-interest (ROI) auto-segmentation (78),
automated radiotherapy planning (79) and predicted outcomes
(e.g., survival, toxicity) (80–82). However, standardization
of radiomics feature parameters is needed across radiation
oncology, radiology, and nuclear medicine disciplines (83). In a
systematic review of MRI radiomics applications, Jethanandani
et al. concluded that MRI radiomics studies suffer from lack
of standardization at multiple stages of image acquisition
and processing, including MRI scanner sequence, scanner
vendor, and scan acquisition parameters. There is currently
no way to reliably compare between MRI radiomics studies
(84). MRI has not nearly enjoyed the attention given to
CT and PET radiomics standardization. Traverso et al. (85)
systematically reviewed studies that assessed the repeatability and
reproducibility radiomics features, finding only 1/41 papers (86)
that investigated MRI.

Radiomics models should be commissioned from their
ideation with a clinical decision support use case in mind (87).
Studies designed to maximize the likelihood of a statistically
significant finding at the expense of clinical generalizability
ignore that practical implementation is a greater obstacle than

discovery. To illustrate, one study that discriminated triple-
negative from other breast cancer types using radiomics features
ostensibly aspires to be a diagnostic alternative to biopsy (88),
but would need to be less expensive yet no less accurate—a
steep challenge.

Radiomics feature stability should be benchmarked on public,
multi-institutional datasets (85, 89). For example, Bakas et al.
(90) publicly provided radiomics features manually extracted
from neuroradiologist segmentations of glioblastomas and low-
grade gliomas for benchmarking future studies of these cancers.
Stability should be benchmarked per anatomic site, since features
that are repeatable and reproduceable at one site may degrade in
the context of another.

INITIATIVES FOR FAIRER DATA

Inter-institutional findable, accessible, interoperable, reusable
(FAIR) (91) and high-quality data is essential for establishing
the clinical value of MRIgRT. However, political, financial, and
legal obstacles silo data within institutions (92) and ethical
questions surrounding health data analytics, particularly by tech
institutions currently not subject to the same patient privacy laws
as healthcare institutions, are unresolved (93, 94). The need for
FAIR data is not exclusive to MRIgRT: FAIR data are critical
for achieving the vision for machine learning in healthcare
widely (95–97).

A recent AAPM council observed that RT data increase as
cancer patients survive longer and genomic data move toward
mainstream clinical use (98). The council predicted, “Whereas
success in medical research in the past has favored very large
single institutions that can develop a critical mass of knowledge
and resources in close physical proximity, diffuse networks of
institutions able to generate and share information will have an
advantage in the future” (emphasis added). We now conclude
with a discussion of two emerging initiatives for FAIRer data:
“distributed learning,” a method for inter-institutional machine
learning, and Fast Healthcare Interoperability Resources (FHIR,
pronounced “fire”) a healthcare data standard.

Distributed Learning
Distributed learning refers to training machine learning models
on multi-institutional data without sharing the data (99–101).
The key is that the statistical weights and parameters of the
machine learning model travel between institutions, not the
data. Distributed learning is an option method for generating
statistical models for emerging technologies, such as MRLs (7, 8).
Distributed learning is possible between horizontally-partitioned
data (same features, different patients) or vertically-partitioned
data (different features, same patients) (101, 102).

FHIR
Conceived in 2014, FHIR is a specification for health data
formatting (i.e., XML and JSON) and messaging (i.e., RESTful
application programming interfaces). FHIR-conforming data are
retrievable between health information technology softwares
(103), and FHIR may soon be a mandated EHR specification
(104). FHIR provides a standard for storing and querying
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radiotherapy data objects independent of vendor, such as total
dose, or DICOM-RT structure sets. Conformity with FHIR
also makes it possible to build applications that integrate
health information technologies. For example, Substitutable
Medical Applications and Reusable Technologies (SMART) is
an EHR app platform built on FHIR (105). SMART delineates
authorization, authentication, and user interface specifications
for FHIR-conforming apps. Because RT treatment planning and
information systems are usually separate from EHRs (98, 106),
initiatives like SMART on FHIR envision a future where it is
possible to build RT task-specific apps into EHRs (107). Open-
source, FHIR-conforming applications may be one platform for
scaling MRIgRT software.
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Prostate cancer treatment planning can be performed usingmagnetic resonance imaging

(MRI) only with sCT scans. However, sCT scans are computer generated from MRI

data and therefore robust, efficient, and accurate patient-specific quality assurance

methods for dosimetric verification are required. Bulk anatomical density (BAD) maps

can be generated based on anatomical contours derived from the MRI image. This study

investigates and optimizes the BAD map approach for sCT quality assurance with a

large patient CT and MRI dataset. 3D T2-weighted MRI and full density CT images of 54

patients were used to create BAD maps with different tissue class combinations. Mean

Hounsfield units (HU) of Fat (F: below −30 HU), the entire Tissue [T: excluding bone (B)],

and Muscle (M: excluding bone and fat) were derived from the CT scans. CT based

BAD maps (BADBT,CT and BADBMF,CT) and a conventional bone and water bulk-density

method (BADBW,CT) were compared to full CT calculations with bone assignments to 366

HU (measured) and 288 HU (obtained from literature). Optimal bulk densities of Tissue

for BADBT,CT and Bone for BADBMF,CT were derived to provide zero mean isocenter

dose agreement to the CT plan. Using the optimal densities, the dose agreement of

BADBT,CT and BADBMF,CT to CT was redetermined. These maps were then created for

the MRI dataset using auto-generated contours and dose calculations compared to CT.

The average mean density of Bone, Fat, Muscle, and Tissue were 365.5 ± 62.2,−109.5

± 12.9, 23.3± 9.7, and−46.3± 15.2 HU, respectively. Comparing to other bulk-density

maps, BADBMF,CT maps provided the closest dose to CT. Calculated optimal mean

densities of Tissue and Bone were −32.7 and 323.7 HU, respectively. The isocenter

dose agreement of the optimal density assigned BADBT,CT and BADBMF,CT to full density

CT were 0.10 ± 0.65% and 0.01 ± 0.45%, respectively. The isocenter dose agreement

of MRI generated BADBT,MR and BADBMF,MR to full density CT were−0.15± 0.90% and

−0.16 ± 0.65%, respectively. The BAD method with optimal bulk densities can provide

robust, accurate and efficient patient-specific quality assurance for dose calculations in

MRI-only radiotherapy.

Keywords: MRI-only planning, synthetic CT, bulk density, anatomical structure, quality assurance, dosimetric

verification
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INTRODUCTION

Magnetic resonance imaging (MRI) only treatment planning is of
current interest to reduce systematic registration errors between
CT and MRI and improve workflows (1–4). MRI-only treatment
planning involves generation of synthetic CT (sCT), since it is not
straightforward to convert MRI to electron densities of different
tissue classes which are necessary for photon dose calculation in
treatment planning systems (TPS).

Different methods have been introduced to create sCT scans
for prostate radiotherapy planning. Bulk-density planning was
initially investigated as a method for sCT generation (5–10).
These studies applied a density of water to the body with an
additional separate density for bone. Atlas-based methods
involve pair-wise image registration of CT and MRI scans
based on anatomical structures to form the atlas, registration
of atlas MRI scans to target MRI scan, and mapping the
estimated Hounsfield unit (HU) values based on the atlas CT
data (11–14). Patch based methods involve feature extraction
and patch partitioning from interpatient group-wise affine
registration (10, 15). The target feature patches are selected
using the approximate nearest neighbor search from the training
cohort and sCT patches are generated using the multipoint-wise
aggregation scheme. Tissue-classification methods have been
developed which assign a single density to each tissue class or
assign the continuousHU value based on tissue class probabilities
(2). Calibration-type voxel methods use mapping of the MRI
signal to HU, however, these require initial identification
of bone and surrounding tissue regions with application of
separate mapping functions (16). More recently deep learning
approaches show promise particularly for generation speed
(17, 18). Information on sCT generation methods are available
from recent review articles (19, 20).

However, sCT scans are computer generated from large-field-
of-view MRI data which can contain artifacts due to image
non-uniformities and magnetic field inhomogeneities which can
be both scanner and patient dependent (21, 22). They must
perform accurately for the variation in patient anatomy that is
present in the population and this remains a challenge (23). A
recent failure modes and effects analysis (FMEA) of MRI-only
planning identified that generation of sCT propagated 46 unique
failure modes with 15 failure modes having high risk priority
numbers (24). This was significantly more failure modes than
the conventional workflow. While CT scanning is a robust and
consistent technique, the robustness of sCT is not as high or
as well-understood and clinical implementation should proceed
with appropriate verifications. Therefore, a quality assurance
method that could validate sCT on a patient-specific basis
would be desirable. Such a method would ideally fulfill the
following criteria: be independent of the sCT method; robust
to patient anatomical variations; insensitive to MRI scanner
artifacts; efficient to perform; easy to automate; and accurate

within clinically acceptable limits.

The bulk-density approach is potentially an ideal candidate

to achieve the above criteria for quality assurance of sCT. Most
studies that have been performed for bulk-density assignment
however have had relatively small patient datasets and assigned

TABLE 1 | Patients and image acquisition parameters.

Patients Group 1 (n = 39) Group 2 (n = 15)

Age 58 ∼ 78 year (69 ± 4.7 year) 58 ∼ 83 year (72 ± 6.5 year)

Weight 54 ∼ 115.4 kg (87.1 ±

13.2 kg)

62 ∼ 122 kg (90.2 ± 17.3 kg)

Imaging year 2012 ∼ 2014 2017 ∼ 2018

Imaging

parameters

or sequence

CT 32 patients: GE

LightSpeedRT

(140 kVp; 2.5mm slice

thickness)

7 patients: Toshiba Aquilion

(120 kVp; 2.0mm

slice thickness)

3 patients: GE LightSpeedRT

(140 kVp; 2.5mm slice

thickness)

6 patients: Toshiba Aquilion

(120 kVp; 2.0mm slice

thickness)

6 patients: Siemens

SOMATOM

(120 kVp; 2.0mm

slice thickness)

MRI Siemens Skyra 3.0 T

3D T2-weighted SPACE (Sampling perfection with

application optimized contrasts using different flip angle

evolution) sequence

Echo time (TE) = 102ms; Repetition time

(TR) = 1,200ms; Flip angle = 135◦; Field of view

(FOV) = 430mm; Slice thickness = 1.6mm

Treatment plan 39 IMRT 11 IMRT, 4 VMAT

arbitrary or literature derived values for the densities (5, 6, 8,
9, 25). Improved agreement to CT dose has been demonstrated
with calculation of bone density using effective path-length
calculations suggesting that accurate dose calculations are
achievable (8).

In this study, we investigate and optimize the bulk-density
planning approach to develop a method for patient-specific
quality assurance of sCT. Two separate bulk-density methods
are investigated with two and three tissue classes, respectively. A
large patient cohort of 54 prostate patients is used to measure
and determine optimal bulk HU values for the tissue classes
that minimize differences with full CT dose calculations. The
method is tested using MRI scan assignment of the optimal bulk
HU values for the 54 patients following automatic segmentation
of bone and body contours. It is referred to here as the bulk
anatomical density (BAD) map method.

METHODS

Patient Data
This study used CT and MR data of 54 prostate cancer patients
measured in clinical studies. All data was acquired under ethics
board approval with informed consent. Detailed patient data
and imaging parameter settings are shown in Table 1. These
patient MRI scans were previously acquired for development and
validation of sCT generation for MRI-only planning or for a
prospective study of MRI-only workflow implementation (26).

Bulk Anatomical Density Maps
The role of the BAD map in quality assurance of the MRI-only
workflow is shown in Figure 1.

The BAD method is an extension of the conventional bulk-
density map. Up to three tissue classes have been investigated

Frontiers in Oncology | www.frontiersin.org 2 October 2019 | Volume 9 | Article 99745

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Choi et al. BAD Method for sCT QA

FIGURE 1 | Proposed MRI-only radiation therapy workflow with suggested quality assurance steps for sCT dose verification using the bulk anatomical density (BAD)

method.

(Bone, Muscle, and Fat). BAD maps can be made with different
tissue class combinations by assigning the bulk HU values
to either CT or MRI patient scans; (1) BADBW (Bone and
Water), (2) BADBT (Bone and the entire Tissue), and (3)
BADBMF (Bone, Muscle, and Fat). The BAD methods are
compared to the conventionally used methods and are shown in
Figure 2. Derivation of the method has been performed using CT
scan data.

Mean Density of Tissue Classes
Tissue segmentation was performed on CT scans to determine
mean HU values. CT images were segmented into different tissue
classes based on the HU values: Bone (B: >100 HU); Fat (F:
HU below −30 HU), and the entire tissue (T: including Fat and
Muscle but excluding Bone) areas. Muscle area (M: excluding
Bone and Fat) was found using a Boolean operation of [Bc ∩
Fc] within body. These were performed using the automatic
contouring tools of Varian Eclipse (Varian Medical Systems, Palo
Alto, CA, USA). According to Kim et al., HU of adipose tissue,
including both subcutaneous and visceral, is within a range of
−140 to −30 HU (27). Note that, the Muscle volume includes
other organ structures such as bladder and rectum (with gas/air).

The population average mean HU values (±1 standard
deviation) of each structure were; Bone = 365.5 ± 62.2 HU,
Fat = −109.5 ± 12.9 HU, Muscle = 23.3 ± 9.7 HU, the entire
Tissue (T) = −46.3 ± 15.2 HU. Using the department’s HU to
electron-density conversion curve within the Eclipse TPS these
HUs are corresponding to the relative electron densities of 1.17
(Bone), 0.91 (Fat), 1.03 (Muscle), and 0.97 (the entire Tissue) and
physical densities of 1.23 g/cm3 (Bone), 0.92 g/cm3 (Fat), 1.04
g/cm3 (Muscle), and 0.98 g/cm3 (the entire Tissue).

Derivation of Optimal Densities
To determine the optimal bulk-density values a linear fitting
method was employed with the assumption that the dose change
is approximately proportional to tissue density change at least
over small ranges. The BADBW,CT, BADBT,CT, and BADBMF,CT

were created using the mean values for the tissue classes as

determined above. Additionally they were also generated with
a separate bone value of 288 HU that was derived using
effective path lengths by Lambert et al. (8) and the equation
presented by Thomas (28). Assigned densities were rounded
up since fractional values are not accepted on planning system
(Varian Eclipse).

Here, 6 separate BAD maps were created as follows:
BADBW,CT [Bone= 288 HU; Tissue= 0 HU (Water)], BADBT,CT

(Bone = 288 HU; Tissue = −46 HU), BADBMF,CT (Bone = 288
HU; Muscle = 23 HU; Fat = −109 HU), and BADBW,CT [Bone
= 366 HU; Tissue = 0 HU (Water)], BADBT,CT (Bone = 366
HU; Tissue = −46 HU), BADBMF,CT (Bone = 366 HU; Muscle
= 23 HU; Fat = −109 HU). IMRT treatment plans previously
developed on the corresponding patient CT or sCT scans were
then copied to the BAD maps and dose was recalculated on the
BAD maps using the same monitor units and fluences. The same
plan dose was also calculated on the gold-standard CT scan.

The mean differences in dose to isocenter for the BAD
maps and the CT scan of all 54 patients were determined and
plotted. Figure 3A illustrates a linear plot for each BAD map
method with bone density as the x-axis. This plot can be used
to determine an approximately optimal bone density for the
methods using the intercept for zero mean dose difference to CT.
The calculated optimal bone densities for BADBW,CT, BADBT,CT,
and BADBMF,CT were approximately 127.2, 463.8, and 323.7 HU,
respectively. The averaged measured mean density of bone was
365.5± 62.2 HU, and therefore the derived optimal bulk-density
of bone value of 324 HU (rounded up) was subsequently only
used for the BADBMF maps, and the measured value of 366 HU
(rounded up) was retained for the BADBW and the BADBT maps.

Figure 3B shows similar plots for the BADBW,CT and
BADBT,CT maps but with the x-axis changed to the Tissue values.
These maps are analogous in that the anatomical regions used
are identical. This allows for determination of the optimal density
for Tissue for BADBT,CT maps from the intercept for zero mean
dose difference. The calculated optimal densities of the Tissue
were approximately −22.0 and −32.7 HU with bone densities of
288 and 366 HU, respectively. For subsequent BADBT maps the
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FIGURE 2 | CT based BAD maps. Colors represent the bulk-density assignments on different structures.

measured bone value of 366 HUwas used and therefore the tissue
density of−33 HU (rounded up) was adopted i.e., BADBT (Bone
= 366 HU; Tissue = −33 HU). HU of 324 is corresponding to
relative electron densities of 1.16 and physical densities of 1.20
g/cm3 while HU of −33 is corresponding to relative electron
densities of 0.97 and physical densities of 0.99 g/cm3.

Dosimetric Accuracy for Optimal BADCT

Maps
Using the optimal densities and CT derived anatomical contours,
two BADCT maps [BADBT,CT (Bone = 366 HU; Tissue = −33
HU) and BADBMF,CT (Bone = 324 HU; Muscle = 23 HU; Fat
= −109 HU)] were created and tested for all 54 patients. As
described above, doses were recalculated on these BADmaps and
compared to CT calculation. Isocenter doses of each plan were
compared to the corresponding CT dose.

Dosimetric Accuracy for BADMR Maps
The method was then applied to the large-field-of-view T2-
weighted MRI scans for the patients. Two BADMR maps
[BADBT,MR (Bone = 366 HU; Tissue = −33 HU) and
BADBMF,MR (Bone = 324 HU; Muscle = 23 HU; Fat = −109
HU)] were created analogous to CT above (Figure 4). To derive
the anatomical contours for density assignment, the automatic
MRI body and bone contouring method that was developed in
a previous sCT study was utilized (13). For the BADBMF,MR the
fat contour created on the anatomically (rigid) registered CT
was used for density assignment. This will require replacement
with an MRI based method in the future, for example using

DIXON scans, however these were not available at this time. It
is assumed that the segmentation of fat in MRI will correspond
to the fat utilized here. The treatment plan on CT was copied
directly over to the BADMR maps and isocenter doses of each
map were compared with the corresponding CT plan. The 3D
Gamma comparison metric was used for dose comparisons in
all voxels (29). This used varying gamma criteria 3%, 3mm, 2%,
2mm, 1%, 1mm, a low dose threshold of 20% for inclusion, and
the CT dose was used as the reference. A 15mm erosion operator
was used to remove the region close to the skin border from
the calculation as this gives large gamma discrepancies due to
contour differences.

RESULTS

Dosimetric Accuracy for BADCT Maps
Using Measured Densities
The isocenter point dose results are shown in Table 2 and
Figure 5 for the six BADCT maps for measured (non-optimal)
mean HU values and the same maps but with bone density
of 288. The BAD map with three tissue classifications (BMF)
provided the closest matching to the full density CT plans with
smaller variations compared to other two bulk-densitymaps (BW
and BT). However, significant systematic differences to CT are
still evident particularly for the first two methods. The literature
bone density performs slightly better for the BW map while the
measured mean bone density performs better for the BT map
while there is no clear winner for the BMF map.
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FIGURE 3 | (A) Linear relationships between the mean isocenter dose differences of BADBW,CT, BADBT,CT, and BADBMF,CT maps to full density CT for two bone

density values. The x-intercepts represent the optimal bulk bone density of each method. (B) Linear relationships between the mean isocenter dose differences of

BADBW,CT and BADBT,CT maps to full density CT. The x-intercepts represent the optimal bulk Tissue density for BADBT,CT.

Dosimetric Accuracy for Optimal BADCT

Maps
Figure 6 shows the results for two optimal density BADCT maps
[BADBT,CT (Bone, B = 366 HU; Tissue, T = −33 HU) and
BADBMF,CT (Bone, B = 324 HU; Muscle, M = 23 HU; Fat, F =

−109 HU)]. Significant improvements were observed for both
optimal BAD maps and the isocenter dose differences to CT
were observed as 0.10 ± 0.65 and 0.01 ± 0.45%, respectively.
The interquartile ranges (IQR) were from −0.34% to 0.65% and
−0.39% to 0.41%, respectively.

Dosimetric Accuracy for BADMR Maps
With the optimal density assignment, the isodose differences to
full density CT plan were observed to be −0.15 ± 0.90% on

BADBT,MR and −0.16 ± 0.65% on BADBMF,MR (Figure 7). The
IQR of both BADMR maps were within ±0.7%; BADBT,MR was
from −0.65 to 0.31%, while BADBMF,MR was from −0.60 to
0.22%. The mean differences and standard deviations are slightly
larger than the CT derived BAD maps which would be expected
due to the different anatomical contours used for MRI. Results of
gamma analysis pass-rate are shown in Table 3.

DISCUSSION

In this study, the BAD method was developed to map bulk
densities to anatomical structures using data measured from
54 prostate cancer patients. A linear interpolation method was
used to determine the optimal HU values to give approximately
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FIGURE 4 | T2-weighted MR based BAD maps with optimal density values. Colors represent the bulk-density assignments on different structures. BADBT,MR (Bone,

B = 366 HU; Tissue, T = −33 HU) and BADBMF,MR (Bone, B = 324 HU; Muscle, M = 23 HU; Fat, F = −109 HU).

TABLE 2 | Mean (±1 standard deviation) isocenter dose difference for BAD maps

from full density CT plan using measured (non-optimal) densities (Water, W = 0

HU; Tissue, T = 46 HU; Muscle, M = 23 HU; and Fat, F = −109 HU) and two

bone densities, measured (B = 366 HU) and literature (B = 288 HU).

BADCT plan Isocenter dose difference to CT (%)

B = 288 HU B = 366 HU

BW −0.80 ± 0.69 −1.19 ± 0.69

BT 0.87 ± 0.63 0.49 ± 0.63

BMF 0.18 ± 0.45 −0.21 ± 0.45

zero mean isocenter dose agreement to CT. Using the optimal
HU values, an improvement in isocenter dose agreement was
observed when compared with using measured mean HU
values. Particularly, the three tissue class BADBMF method
provided the closest dose agreement to conventional CT but
the two class BADBT still gave acceptable agreement. Both
optimal bulk-density assigned BADMR maps provided mean
dosimetric differences within 0.2% to conventional CT with
standard deviations within 0.9%. Therefore, both methods can
be considered for dose verification and patient-specific quality
assurance of sCT scans. To use the BADBT with MRI-only
workflows only requires that the body and bone contours on
a large-field-of-view MRI scan are segmented and this can be
automated with atlas or similar methods. The generation of
the BAD map could potentially be fully automated. It meets
the criteria outlined above for a method for quality assurance
of sCT (independence; robustness; insensitive to scan artifacts;
efficient and easy to automate; and accurate within clinically
acceptable limits). In principle, the results here also suggest that
this method may be adequate in accuracy for sCT generation for
dose calculation inMRI-only workflows however these scansmay
not be suitable for image-guidance.

The linear interpolation method used makes the assumption
that the isocenter dose is a linear function of the particular
tissue density that is modified. However, this is clearly an
oversimplification of dose deposition processes and this can be
seen in the results. The optimal densities do not result in exactly
zero dose difference to CT dose for the optimal BADCT maps
although the difference is within 0.1%. To obtain a mean of zero
an iterative process could be conducted although this would be
extremely time consuming for negligible benefit. Furthermore,
when applied to MRI scans where the bone contours are derived
using an entirely different method, the mean isocenter dose to
CT is modified further with a decrease in the BAD map doses to
isocenter for the same patients when compared to CT. This could
be due to the MRI bone contour being larger than the CT bone
contour which is often observed in clinical practice although
other factors could also contribute including the body contour.

The methodology was derived using HU which corresponds
to the sCT literature. The Eclipse TPS converts these to relative
electron density (RED) using our in-house conversion and
therefore the RED values as well as physical density are stated
in the manuscript.

These results can be compared with other bulk-density
methods reported on previous studies. The early reported works
in MRI-only planning used bulk-density assignment to CT or
MRI but with limited datasets, and in some cases homogeneous
CT calculations (5–7). Kim et al. used bulk-density assignment to
water and bone for 15 prostate patients with 300 HU assigned
to bone that was measured as the mean value within femoral
head contours on CT. The PTV (D95%) differences were 1.9%
(9). Lambert et al. studied 39 prostate patients and for their CT
dataset with a density of water and a density of 1.19 g/cm3 for
bone found amean dose isocenter difference to CT of 0.2% which
is lower than that found here using the same density value (8).
The reason for this is not entirely clear, it could be related to
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FIGURE 5 | Isocenter dose difference to CT for BADCT methods using measured (non-optimal) densities with bone, B, as 288 HU (A) and 366 HU (B). The other

tissue densities used were: Water, W = 0 HU; Tissue, T = 46 HU; Muscle, M = 23 HU; and Fat, F = −109 HU. The cross mark “×” represent the mean of the results,

the horizontal bar inside the box is the median, the extent of the boxes represents the interquartile range (IQR) between the first quartile (Q1) and the third quartile (Q3),

and the ends of whiskers represent the minimum and maximum range.

FIGURE 6 | Isocenter dose differences to CT for optimal density BADCT maps. BADBT,CT (Bone, B = 366 HU; Tissue, T = −33 HU) and BADBMF,CT (Bone, B = 324

HU; Muscle, M = 23 HU; Fat, F = −109 HU).

changes in TPS calculation algorithms. Their paper used two
separate planning systems and dose calculation algorithms have
since improved.

There is general lack of consensus on the density to assign to
bone and as we have shown here consideration of three tissue
classes yields better results. The optimal density is likely to be

influenced by the method used to determine the anatomical
contour, the method used to determine the optimal density
(mean or path length), the volume and location of the anatomical
structure, i.e., all bone or just femur, and the TPS algorithm. In
many cases these details are not currently given in the relevant
literature. An assessment of the sensitivity of bulk-density
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FIGURE 7 | Isocenter dose differences to CT for optimal density BADMR maps. BADBT,MR (Bone, B = 366 HU; Tissue, T = −33 HU) and BADBMF,MR (Bone, B = 324

HU; Muscle, M = 23 HU; Fat, F = −109 HU). In the presence of outliers, the ends of whiskers indicate the lower (Q1 – 1.5 × IQR) and upper (Q3 + 1.5 × IQR) limits.

TABLE 3 | Gamma analysis pass-rate results for comparison between BADMR maps and CT dose calculations.

BADBT,MR BADBMF,MR

3%/3 mm 2%/2 mm 1%/1 mm 3%/3 mm 2%/2 mm 1%/1 mm

Mean (%) 99.9 ± 0.2 99.3 ± 1.1 90.7 ± 10.2 99.9 ± 0.2 99.6 ± 0.6 93.8 ± 8.6

Min (%) 99.1 94.6 58.8 99.3 97.2 58.5

BADBT,MR (Bone, B = 366 HU; Tissue, T = −33 HU) and BADBMF,MR (Bone, B = 324 HU; Muscle, M = 23 HU; Fat, F = −109 HU).

planning to these factors would be of interest. When the method
derived here was applied to MRI data using a different bone
contouring algorithm the results were similar which suggest that
it is relatively robust to the segmentation method and variations
in the bone contour. The method is simple to perform using
standard anatomical contouring techniques and TPS system
reporting of mean densities to these contours. Therefore, the
method can be used to determine an optimal density for any
particular center’s practice if necessary.

This study used a large patient dataset of 54 CT scans to
determine the optimal HU values and validation with 54 patient
large-field-of-view MRI scans. Both optimal bulk-density values
for bone and the entire tissue are within the variations of the
average mean bulk-density calculated from the cohort. Thus,
these would be valid for future applications particularly for those
male patients weighing between 54 and 122 kg. A consideration
would be to apply these values to an external patient CT/MRI
dataset for further validation.

One limitation of the study is that the fat contour from the
registered CT scan was used for generation of the BADBMF,MR

map. For fat class segmentation on MRI, fast DIXON scans
could be incorporated into the MRI acquisition protocol for
future study to generate three-class BADMR maps to improve the
dose calculation accuracy, in particular to reduce the standard
deviation of the results when compared to CT dose.

Application of automated bone segmentation on MRI may
cause dosimetric inaccuracy for the BADMR maps. More accurate
segmentation can potentially be achieved via manual contouring
however this is time consuming and the level of accuracy can
vary depending on the level of expertise and experience of
individuals (10, 30).

Previous studies have demonstrated the accuracy of the atlas-
based automatic segmentation method that was used for this
study. The automated bone contours had mean Dice similarity
coefficient scores of 0.91 ± 0.03 and the mean absolute surface
distance of 1.45 ± 0.47mm when compared to expert drawn
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manual contours (14). Automatic MRI bone segmentation has
become an important component of many sCT generation
methods due to its efficiency and accuracy. Korhonen et al. and
Koivula et al. also used an atlas-based method for their dual
model method for sCT generation and the average PTV mean
dose differences of their sCTs to CT were 0.3 ± 0.2% and −0.6
± 0.4%, respectively (16, 31). Currently, commercially available
sCT generation products, for example the FDA-approved Philips
Magnetic Resonance for Calculating Attenuation (MRCAT)
software package, use a model-based segmentation method for
delineating bony structures from the patient’s body outline from
mDIXON water, fat, and in-phase images (23, 32).

Dose calculation on BAD map could be improved if the
density of gas within the rectum was considered. However,
most centers routinely control the magnitude of rectal gas
through patient preparation prior to scanning or voiding and
rescanning. In many cases. the gas may be atypical of treatment
and therefore the dose calculation may not reflect treatment
dose. Some centers override the density of gas in the rectum
for dose calculations. This is a general problem for radiotherapy
planning and can be managed in the same way as conventional
CT based planning with the advantage that for MRI-only
treatment planning rescanning does not require additional
patient dose.

In summary, the BAD map is a technique that utilizes
anatomical structures for generating BAD maps for patient-
specific dose calculations to compare to sCT. With the optimal
density assignments, it provides clinically acceptable dose
agreement to the conventional full density CT based plans.
The three-class BAD model (Bone, Muscle, and Fat) performs
best however the two-class BAD model (Bone, Tissue) is
also acceptable. The BAD method can provide accurate dose
calculations for verifying sCT for clinical use in MRI-only
workflows. It has currently been implemented as a quality

assurance method in a multi-center trial of prostate stereotactic
radiation therapy (NINJA) that includes an MRI-only sub-study.
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Magnetic resonance spectroscopic imaging (SI) is a unique imaging technique that

provides biochemical information from in vivo tissues. The 1H spectra acquired from

several spatial regions are quantified to yield metabolite concentrations reflective of

tissue metabolism. However, since these metabolites are found in tissues at very low

concentrations, SI is often acquired with limited spatial resolution. In this work, we test

the hypothesis that deep learning is able to upscale low resolution SI, together with

the T1-weighted (T1w) image, to reconstruct high resolution SI. We report on a novel

densely connected UNet (D-UNet) architecture capable of producing super-resolution

spectroscopic images. The inputs for the D-UNet are the T1w image and the low

resolution SI image while the output is the high resolution SI. The results of the D-UNet

are compared both qualitatively and quantitatively to simulated and in vivo high resolution

SI. It is found that this deep learning approach can produce high quality spectroscopic

images and reconstruct entire 1H spectra from low resolution acquisitions, which can

greatly advance the current SI workflow.

Keywords: super-resolution, magnetic resonance spectroscopic imaging (SI), deep learning (DL), magnetic

resonance spectroscopy (1H MRS), artificial intelligence

1. INTRODUCTION

Magnetic resonance imaging (MRI) continues to be a versatile modality capable of providing
anatomical, metabolic, and functional information from various regions of the body in vivo.
In particular, magnetic resonance spectroscopic imaging (SI) (1) is able to yield important
data regarding the metabolism of different tissues, and has been especially useful for studying
the metabolism of the human brain (2). Some important biochemicals, or metabolites, in the
brain include N-acetyl aspartate (NAA), glutamate (Glu), glutamine (Gln), creatine (Cr), choline
(Ch), and myo-Inositol (mI) (3). Each metabolite plays an important role in regulating energy
consumption in the brain, and some metabolites also play critical functional roles, including roles
as neurotransmitters (4). It is well-known that metabolic changes occur in parallel with anatomical
changes for a myriad of pathologies (2), and these metabolic changes may even occur before
structural changes are detected.While SI has continued to be an active area of research over the past
several decades, there are still major roadblocks into standardizing this technique and including it
into clinical protocols.
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One of the major disadvantages of SI is the long acquisition
duration associated with obtaining spectra from several voxels
of interest. This is primarily due to the fact that many of
the important metabolites are found in the brain at low
concentrations; these metabolites are typically present in the
brain at 1–12 mM concentrations (3). Therefore, in order to
accurately detect these biochemicals, several signal averages have
to be obtained or larger voxel volumes have to be acquired to
improve the signal to noise ratio (SNR) for the experiment.
As a result, spatial resolution tends to be coarse for many SI
sequences. This low resolution, coupled with other technical
problems such as partial volume effects, hinders the overall
diagnostic capabilities of the SI technique.

There have been many advances in the technological
implementation of SI that allow for faster acquisition and better
spatial resolution. One of the primary acceleration methods is
echo planar spectroscopic imaging (EPSI) (5, 6), which collects
spectral data from an entire line of k-space in a single repetition
time (TR) utilizing an echo planar readout. This spatio-spectral
acquisition approach has also been applied in non-cartesian
SI methods, such as spiral acquisitions (7), concentric circular
acquisitions (8), and rosette acquisitions (9). In addition, parallel
imaging (10–12) can also be used to accelerate the collection
of SI data. Sensitivity encoding (SENSE) has been applied in
combination with EPSI (13) to facilitate even faster acquisition
times. Recently, research has also focused on the application of
various sampling schemes that allow for reduced scan time (14–
18). Some studies (19, 20) have even demonstrated protocols
capable of obtaining spectroscopic images at 64x64 or 128x128
resolution in less than 20 min. Although these advances have
improved the field significantly, SI is still understandably seen as
a low SNR, low resolution technique.

In order to combat the limits of the experimentally
acquired resolution, many post-processing methods have been
developed for super-resolution SI (21–27). These methods
have mainly focused on model-based reconstruction methods
and regularized reconstruction approaches. While many super-
resolution methods are independent of the acquisition protocols,
there are some techniques, such as the spectroscopic imaging
by exploiting spatio-spectral correlation (SPICE) method (18),
that show reconstruction benefits by employing inter-dependent
sequences. Unfortunately, the majority of super-resolution
methods either tend to be very complicated to implement, or
generally show poor reconstruction results. Since experimental
acquisitions have many technical challenges, there is also a large
concern over the true gold standard for these super-resolution
techniques. Without a true standard of comparison, which is a
large problem in the spectroscopic imaging field, many studies
qualitatively and quantitatively compare their methods with less
ideal standards such as bicubic interpolation.

Deep learning is an advancing field that has shown
extraordinary results for image processing (28–30).
Convolutional layers and networks are capable of extracting
valuable features from images, and can further process
these features into labels or other images for classification,
segmentation, and other uses. One network that has been
extremely beneficial for the field of automated medical imaging

segmentation is the UNet (31), which allows for a pixel-wise
transformation of an input image into an output image.
Essentially, deep learning excels at computing an unknown
transformation by using a large example dataset, often referred
to as a training set. We hypothesize that UNet, or some other
deep neural networks are able to upscale low resolution SI (LRSI),
together with the T1-weighted (T1w) image, to produce high
resolution SI (HRSI). To test this hypothesis the biggest challenge
is that a large, publicly available SI dataset is unavailable and
difficult to acquire experimentally. In order to create this data
set, HRSI (128x128 pixels) and LRSI (16x16 pixels or some other
low resolution) experiments would have to be performed on
thousands of diverse patients with different pathologies, which
is not feasible. Thus, it is seemingly impossible to perform deep
learning for super-resolution SI.

In this paper, we report a novel work on the development of a
deep learning technology capable of producing super-resolution
spectroscopic images. An SI generator is used to produce LRSI
and HRSI data in order to train and test a deep learning model.
Using this data, a UNet taking advantage of densely connected
layers (D-UNet) is built and trained. The inputs for the D-
UNet are the T1w image and the low resolution SI image
while the output is the high resolution SI. The results of the
D-UNet reconstruction are compared both qualitatively and
quantitatively to simulated and in vivo high resolution SI data.

2. METHODS

2.1. Spectroscopic Imaging Dataset
Two different MRI data sets were utilized to produce synthetic SI
data for developing the deep learning model. The first MRI data
set comprised of 27 axial slices from the MATLAB MRI dataset.
MR images as well as white matter (WM) and gray matter (GM)
masks from the open access series of imaging studies (OASIS)
project (32), which contained 416 axial images from subjects
ranging in age from 18 to 96 years old, were also used. From
these limited data, 102,169 SI datasets were synthesized using an
SI generator, the details of which are found below.

2.2. Spectroscopic Imaging Generator
The SI generator was designed to address the lack of T1w images,
as well as the lack of paired LRSI and HRSI data. First, the
generator created augmented T1w (aT1w), white matter (WM),
and gray matter (GM) images from an input T1w image. Then,
the generator would produce a matched LRSI and HRSI for the
aT1w image.

2.2.1. Augmenting T1w Images
An input T1w image is first segmented into WM and GM
images via an intensity based approach. First, the maximumWM
intensity (WMmax), and theminimumGM intensity (GMmin) are
determined from the image. Then,WMandGM images aremade
by applying the following:

WM =

(S− GMmin

WMmax

)
·M (1)

GM =

(
1−WM

)
·M (2)
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Above, S is the original signal intensity of the input T1w image,
andM is a mask for the brain region only, and is applied through
an element-wise multiplication. The above equations ensure that
the elements of both the WM and GM images range from zero
to one, and are representative of the percentage of WM or GM
present in any voxel.

Then, the SI generator modifies the input T1w image to
produce an aT1w image. The contrast of the T1w image is altered
by the following:

aT1w = R
(
Sr1n + L

)
(3)

Here, Sn is the normalized input T1w signal and r1 is a random
number between 0.5 and 2.5. R() is a rotation and field of
view (FOV) truncation transformation that rotates the image
randomly in the range of –15◦ to 15◦ and randomly truncates the
image in the range of 0 to 40 pixels in any direction. L is a matrix
that represents up to 6 lesions of varying intensity, location, and
size. Since this lesion matrix is random, the aT1w image may or
may not contain any hyper-intense or hypo-intense regions. The
same transformation used in Equation (3) is also applied to the
WM and GM images.

2.2.2. Production of Matched LRSI and HRSI Maps
In order to produce data useful for clinical applications, the SI
generator operated under an assumption that is biologically valid:
WM and GM regions of the brain have metabolism associated
with biochemical concentrations (33). With this assumption, a
given metabolite could be more concentrated inWM vs. GM, less
concentrated inWM vs. GM, or equally concentrated inWM and
GM regions.

Working with this biological assumption, a high resolution
metabolite map is generated by adding a random ratio of theWM
and GM images together:

HRSI = r2 ∗WM + (1− r2) ∗ GM + B+ r3 ∗ L (4)

In Equation (4), r2 is a random number between 0 and 1. B is a
matrix that adds a random signal bias into the metabolite map,
which helps to simulate the presence of more metabolite signal
from the anterior or posterior, as well as the left or right brain
regions. L is the same lesion matrix used in Equation (3), and r3
is a random number between –1 and 1.

Finally, the HRSI is downsampled to the desired low
resolution via k-space truncation. Random noise is also added to
this low resolution k-space data before a Fourier transformation
is used to bring this data back to the spatial domain. Next, the
low resolution image is upscaled to the same resolution as the
HRSI using nearest-neighbor interpolation to yield the final low
resolution SI.

It is important to note that because of the variables r1, r2, r3,
and L, it is possible to produce several different matched aT1w
images, HRSI, and LRSI from the same input T1w image. In
addition, the same aT1w image can give rise to a large number
of matched HRSI and LRSI, and thus this transformation is a
one tomany transformation. Therefore, a single input T1w image
can produce hundreds of unique datasets for training a deep
learning model.

2.3. Densely Connected UNet (D-UNet)
Architecture and Training
The UNet architecture (31) is typically implemented for
segmentation purposes, however it primarily operates by
performing pixel-wise transformations on input images,
which is applicable to the SI super-resolution problem. Using
standard convolutional and max pooling layers, the UNet first
continuously convolves and pools the input image until the image
reaches a small size, which aids in extracting valuable global
features. Next the image is scaled up through a combination of
up-pooling, transpose convolutions, and feature concatenations.
This second process helps to identify vital local features so that
the UNet can refine the image at a finer resolution. However, due
to the number of features necessary for this process, the classical
UNet suffers from extremely long training times, overfitting
issues, and potential inefficiencies when tuning the weights.
Therefore, this study utilized densely connected convolutional
layers (34) to develop the novel densely connected UNet (D-
UNet) architecture, and the workflow for training is shown in
Figure 1. Densely connected networks carry over features from
layer to layer, allowing for all previous information to be used
for determining important features. The general architecture of
the D-UNet used in this study is shown in Figure 2. The D-UNet
utilized 32 feature maps at every max pooling layer. In addition,
all convolutional layers made use of the ReLU activation function
(30) and used a dropout (35) of 0.1. Certain features, shown in
green and orange in Figure 2, were copied over to the following
layers, and were also concatenated later on in the network. In
total, three max pooling layers were used for the D-UNet. Since
low resolution SI experiments can have diverse resolutions,
three identical D-UNets were made to upscale low resolution
spectroscopic images for acquisitions with 16x16, 24x24, and
32x32 spatial points.

The D-UNet required two inputs: a rescaled (128x128 points)
T1w image and the corresponding LRSI image (16x16, 24x24,
or 32x32 points) upscaled using nearest-neighbor interpolation
(128x128 points). The predicted output of the D-UNet was a
denoised HRSI image (128x128 points). For training, aT1w,
HRSI, and LRSI were created from the SI generator, as described
above. The Adam optimizer (36) was used with a learning rate set
to 1× 10−3, and mean squared error (MSE) was used as the cost
function, which determined the difference between the D-UNet
output and the desired output:

MSE =

∑∑ (O−HRSI)2

m2
(5)

Above,O is the output of the D-UNet,HRSI is the true simulated
high resolution SI, andm is the output dimension of the network,
which in this case is 128. The summations are performed over
both dimensions to yield a single value. The network was trained
on an 8GB Quadro K5200 graphical processing unit (GPU) using
the Keras (37) and Tensorflow (38) packages in Python 3.6.

Two datasets were made for the development and evaluation
of the three D-UNets: a training dataset and a testing dataset. The
training dataset comprised of 102,000 data from the SI generator
using 135 axial images. The testing dataset used 169 different
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FIGURE 1 | The workflow for training the D-UNet model is shown. The SI generator provides a dataset consisting of an augmented T1w image, a low resolution

spectroscopic image, and a ground truth high resolution spectroscopic image. The spectroscopic images already show the distribution of a particular metabolite (or

the distribution of a particular spectral point), such as choline, and therefore do not contain a spectral dimension. Then, the network transforms the aT1w (128x128

pixels) and LRSI (128x128 pixels after nearest-neighbor interpolation) into an initial HRSI reconstruction (128x128 pixels). In the example above, the LRSI and HRSI

reconstruction have in-plane spatial resolutions of 1.4 × 1.4 cm2 and 1.7 × 1.7 mm2, respectively. This reconstruction is compared to the ground truth, and the mean

squared error is calculated. Utilizing this error, the model changes the weighting parameters for the features, and continues training by using a different dataset. After

training on 102,000 datasets, the model weights are refined and the reconstruction errors are minimized.

FIGURE 2 | The general D-UNet architecture is displayed. Each forward convolution consisted of a convolutional layer and a concatenation process. This

concatenation carries over important features which can be used to make the next layer more intelligent. In addition to local concatenations, certain features were

concatenated to deeper layers in the network. More specifically, every feature map that is produced from a convolution is carried over to the end. Maxpooled features

are not, since a higher resolution of the feature already exists. This allows for prior information to improve the overall reconstruction quality. In order to use the most

information possible, the last convolutional layer contains all of the carried over features.

Frontiers in Oncology | www.frontiersin.org 4 October 2019 | Volume 9 | Article 101057

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Iqbal et al. Super-Resolution SI Utilizing Deep Learning

axial images (independent from the training set) from the OASIS
project, and 169 matched aT1w, HRSI, and LRSI images were
produced via the SI generator. Each of the three D-UNets were
trained for a total of 102 epochs. For this study, an epoch was
defined as a new set of 1,000 matched HRSI and LRSI data.
The first two epochs were trained using a batch size of one to
ensure that the network would not fall into a local minimum.
The remaining 100 epochs were trained with a batch size of 10.
Varying batch size in this manner has been shown to help reduce
the number of epochs necessary for training, while also reducing
the need for hyper-parameter tuning (39).

2.4. D-UNet Evaluation and Comparison
Metrics
2.4.1. Testing Set Evaluation
The three D-UNets evaluated all 169 matched images (aT1w and
LRSI) to produce reconstructed high resolution spectroscopic
images (Recon16x16, Recon24x24, and Recon32x32). These
reconstructed images were compared to the ground truth
HRSI using mean squared error. This process was repeated
with varying noise levels inserted into the input LRSI in
order to determine the role of noise on the reconstruction
process. Example low resolution spectroscopic images can
be seen in Figure 3. The reconstructed images were also
compared to zero-filling and bicubic interpolation to assess the
improvement of the D-UNet results over standard methods.
For this comparison, both zero-filling and bicubic interpolation
were applied to an LRSI of 32x32 points to generate the 128x128
interpolated images.

2.4.2. Spectral Reconstruction Evaluation
In addition, the three D-UNets were used to reconstruct
magnitude spectra point-by-point from low spatial resolution to
high spatial resolution. Magnitude spectra were used because the
model was not trained for evaluating real and imaginary numbers
simultaneously. From the test set, a single subject was used to
generate high resolution chemical maps of the major metabolites,
including NAA, Glu, Gln, Cr, Ch, and mI. GAMMA simulation
(40) was used to simulate the spectra for these metabolites using
an echo time (TE) = 30 ms, spectral bandwidth of 2,000 Hz,
and time points = 512 for a magnetic field strength (B0) of 3T.
Also, the spectra were exponentially line broadened to roughly
8 Hz. These spectra were then distributed spatially based on
their respective high resolution maps, and were transformed to
produce LRSI. The T1w image and LRSI were input into the
three D-UNets to produce Recon16x16, Recon24x24, and Recon32x32
spectral data. Two example spectra were extracted from these
reconstructed images and compared to the simulated ground
truth using mean squared error.

2.4.3. In vivo Evaluation
Finally, high resolution spectroscopic images were acquired on
a 7T whole-body MR scanner (Magnetom, Siemens Healthcare,
Erlangen, Germany) using a previously published protocol (20).
The Institutional Review Board (IRB) at the Medical University
of Vienna approved the study and ten healthy volunteers (mean
age = 31.7 years old) signed written and informed consent

forms. All experiments were performed in accordance with
relevant guidelines and regulations. The protocol utilized free
induction decay based MR spectroscopic imaging (41) with TR
= 200 ms for a total scan time of 21 min. After acquisition,
residual lipids were removed using ℓ2 regularization (42) and the
spectra were quantified using the LCModel (43) package to yield
concentrations for several metabolites. Therefore, high resolution
(128x128 pixels, 1.7 × 1.7 mm2) metabolite maps for NAA, Cr,
Ch, Glu, Gln, and mI were obtained. These metabolite maps
were down-sampled to 32x32 resolution images and were input
into the 32x32 D-UNet along with corresponding T1w images to
yield Recon32x32 for all datasets. These reconstructed images were
then compared to the experimentally acquired HRSI using mean
squared error as described in Equation (5). In addition, Glu/Cr
and Ch/Cr ratios for both the reconstructed and experimentally
acquired images were measured over all ten subjects. These ratios
were investigated as a function of T1w intensity, which directly
corresponds to the ratio of WM and GM in the brain. Finally,
correlations between the reconstructed and experimental results
were performed to yield the correlation coefficients (r) for the
Glu/Cr and Ch/Cr ratios.

3. RESULTS

3.1. Training Results
Due to the novel D-UNet architecture, the mean squared error
loss rapidly converged close to a reasonable value after only 2
epochs for all three networks, and the loss functions are shown
in Figure 4. The loss continued to decrease with more epochs
when a larger batch size was used for the remaining 100 epochs.
From Figure 4, it is clear that the final loss was better for
the 32x32 D-UNet than the 24x24 or 16x16 D-UNets. This is
theoretically expected because higher initial resolution should
aid in the estimation of unknown points, and this is true for
conventional resolution enhancement techniques as well. While
a low dropout was used in the architecture, overfitting was not
a primary concern for the D-UNet training framework because
of the reduced number of weighting parameters in the model.
The results from the testing dataset also highlight the fact that the
D-UNet training was generalized and applicable to never before
seen data.

3.2. Test Set Results
Figure 5 displays the results from the three different D-UNet
reconstructions, as well as the results of the standard zero-filling
and bicubic interpolation methods. In order to provide a more
stringent comparison, both zero-filling and bicubic interpolation
were applied to the 32x32 low resolution metabolite maps instead
of the lower resolution 16x16 or 24x24 metabolite maps. All of
the D-UNet reconstructions are able to determine the abnormally
high signal from the lesion shown in the T1w image. While zero-
filling outperforms both bicubic interpolation and the 16x16 D-
UNet, both the 24x24 and 32x32 D-UNets yield better results
than zero-filling.

To demonstrate the capability of the SI generator, Figure 6
shows a sample of the possible images produced from the same
aT1w image. The Recon32x32 images are also shown, as well as
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FIGURE 3 | Low resolution spectroscopic images generated using the SI generator are shown. To show the effect of different random noise levels, all other random

parameters were the same between the three images. Low noise level, medium noise level, and high noise level were classified as 2–5, 15–20, and 30–40% of the

maximum signal intensity, respectively.

FIGURE 4 | The loss functions for the 16x16 D-UNet (red), 24x24 D-UNet (blue), and the 32x32 D-UNet (black) are shown. All three loss functions drop significantly in

the first 2 epochs, and then gradually decrease as the training continues. Overfitting is not an issue with the current training method, because each epoch contains a

new set of 1,000 data. Therefore, the network does not see any dataset more than once. While more epochs could be used, the loss function flattens after 70

epochs, which implies that further training will yield minimal improvement.

difference maps between the HRSI and Recon32x32. It is clear
that the SI generator is capable of producing a wide variety of
SI images that mimic biochemicals that are more prominent in
GM, more prominent in WM, or equally prominent in both
tissue types.

In addition, a quantitative comparison between these methods
is shown in Table 1. Noise level was varied to determine the
effect of noise on the super-resolution methods. Low noise
level, medium noise level, and high noise level were classified
as 2–5, 15–20, and 30–40% of the maximum signal intensity,
respectively. From Table 1, the 32x32 D-UNet demonstrated the
best performance at every noise level. At medium noise levels,
the 24x24 D-UNet outperformed zero-filling, and at high noise
levels both the 16x16 D-UNet and 24x24 D-UNet outperformed
both zero-filling and bicubic interpolation.

3.3. Spectral Reconstruction Results
The ability of the D-UNets to reconstruct spectra at high
spatial resolutions are highlighted in Figure 7. The 32x32
D-UNet reconstructs the lesion and contra-lateral white
matter spectra reliably. In contrast, the 16x16 D-UNet
underestimates the white matter spectrum. The 24x24 D-
UNet performs very similarly to the 32x32 D-UNet, however
it overestimates the Ch and mI signals in the lesion spectrum
by roughly 20%. Overall, the mean squared error for the
healthy white matter spectrum was 0.34, 0.030, and 0.0085
for the 16x16 D-UNet, 24x24 D-UNet, and 32x32 D-UNet,
respectively. For the lesion spectrum, the mean squared
error was 0.051, 0.36, and 0.13 for the 16x16 D-UNet,
24x24 D-UNet, and 32x32 D-UNet, respectively. From a
quantitative standpoint, all three D-UNets would be able to
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FIGURE 5 | The results of the three D-UNets are shown for an example test subject. The augmented T1w image is used in conjunction with the three low resolution

images as inputs for the three D-UNets. The reconstructed HRSI (16x16 High Res, 24x24 High Res, and 32x32 High Res) are shown below their respective low

resolution images. In addition, zero-filling and bicubic interpolation were applied to the 32x32 LRSI to produce 128x128 interpolated images. Error maps are produced

by subtracting the reconstructed images and the ground truth high resolution image (High Res). The 16x16 High Res displays much more error than the 24x24 and

32x32 High Res images. This is mostly due to better local signal refinement at the location of the lesion for the 24x24 and 32x32 reconstructions.

determine the abnormally elevated Ch, as demonstrated from
the metabolite maps.

3.4. In vivo Results
The ability of the 32x32 D-UNet to reconstruct the LRSI
of Cr, NAA, Glu, Gln, Ch, and mI for the in vivo data is
shown in Figure 8. This figure shows the reconstructed images,
experimental HRSI, and difference maps between the two for
each metabolite for one healthy volunteer. All reconstructed
images retain the metabolite signals from the low resolution
maps, and also show regional changes similar to the HRSI.
For example, Glu is more concentrated in the GM and less
concentrated in the WM, which is a well-known regional
difference in the brain (33). Another well-known regional
difference is that Ch is more concentrated in WM regions,
which is apparent in both the reconstructed and experimental
images. Figure 9 shows reconstructions with low, average, and
large MSE values. In general, lower SNR metabolites appeared to
have a larger MSE value compared to higher SNR metabolites.
From a quantitative standpoint, the average MSE values over
the ten volunteers for Cr, NAA, Glu, Gln, Ch, and mI were
0.0048, 0.0042, 0.0060, 0.0079, 0.0059, and 0.0056 respectively.
These errors are displayed in Figure 10D and plotted against the
average MSE values obtained for the testing set using different

noise levels (low, medium, high). It is clear that the MSE values
are in most cases comparable to simulated test images with 2–
20% noise, with the exception of Gln which is most comparable
to test images with 35% noise.

Figure 10 also shows the Glu/Cr and Ch/Cr ratios as
a function of the T1w intensity averaged over the ten
volunteers. The ratios are taken after normalization of the
metabolites as part of the super-resolution reconstruction,
which is why Ch/Cr appears larger than Glu/Cr in the
figure. The trend shows that with higher WM content, Glu/Cr
decreases while Ch/Cr increases. The correlation between the
experimental HRSI and Recon results are shown in Figure 10C.
Quantitatively, both Glu/Cr and Ch/Cr ratios have high squared
correlation coefficients, r2 > 0.99. This highlights the fact
that important biological relationships are preserved in the
reconstructed images.

4. DISCUSSION

Although SI provides invaluable information regarding
the biomolecular processes of tissues in vivo, experimental
limitations have greatly hindered the integration of this method
into standard clinical protocols. This study demonstrates a
technique capable of overcoming one of the greatest challenges
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FIGURE 6 | From one augmented T1w image, the generator is capable of producing multiple ground truth high resolution (High Resolution SI) images and low

resolution (Low Resolution SI) images, a small sample of which are shown. In this example, the top row shows images where metabolite signal is higher in WM. In the

middle row, the metabolite signal is equal in WM and GM, whereas the metabolite signal is higher in the GM in the bottom row. Since a single input T1w image can

produce many augmented T1w images, the generator allows for an exponentially large number of unique training data. The reconstruction for each aT1w image and

LRSI is performed with the 32x32 D-UNet to yield the reconstructed HRSI images (Reconstructed). The difference maps are produced by subtracting the

reconstructed and ground truth images.

TABLE 1 | The mean squared error between the high resolution ground truth

(HRSI) and several methods are tabulated.

Method Noise Level

Low Medium High

Zero-Fill from 32x32 1.109 1.652 4.505

Bicubic from 32x32 2.794 3.129 3.820

16x16 D-UNet 1.863 2.420 2.761

24x24 D-UNet 1.139 1.316 1.745

32x32 D-UNet 0.7460 0.9722 1.599

These values are the total sum of the mean squared error over 169 test subjects. The

32x32 D-UNet reconstruction outperforms all of the other methods. With higher random

noise present in the LRSI, the 16x16 and 24x24 D-UNets outperform both zero-filling and

bicubic interpolation. It is important to note that this is true even though the zero-filling

and bicubic interpolation methods are applied to a 32x32 image. Bold values indicate the

method with the lowest mean squared error for each comparison.

in SI, which is poor spatial resolution. By utilizing a deep
learning framework, it is shown in Figures 5–9 that high
resolution spectroscopic images can be produced from the
combination of low resolution spectroscopic images and
T1w images. In addition, as seen in Figure 7, it is possible
to reconstruct spectra at higher spatial resolutions. The
reconstruction method also preserves important regional
metabolic differences and shows low errors for in vivo
reconstructions, as shown in Figure 10. This deep learning
super-resolution method was compared to both zero-filling
and bicubic interpolation, and proved to be better than these
methods for all noise levels.

Deep learning requires large datasets, which are not readily
available for SI. Unfortunately, there is also a lack of ground truth
for high resolution spectroscopic imaging due to the fact that
experimental results may contain chemical shift displacement
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FIGURE 7 | Magnitude spectral reconstructions using the three D-UNets are shown for two voxels. The voxel locations for the white matter and lesion spectra are

displayed in the T1w image as red points. The spectra generated from the ground truth (red), the 16x16 (blue), 24x24 (green), and 32x32 D-UNets (black) for the

1.5–4.3 ppm range are displayed. For spatial comparison, the choline metabolite maps for each method are also shown. All metabolite maps are scaled from 0 to 1.

The 24x24 and 32x32 D-UNet reconstructions over-estimate the amount of choline in the lesion. However, the 16x16 reconstruction under-estimates the amount of

metabolite signal in the healthy white matter region.

artifacts, B0 inhomogeneity issues, partial volume effects, low
signal to noise ratios, water contamination, or other forms of
signal contamination. It is also prohibitively long to scan at
high resolution (128x128) without using several acceleration
methods, making a ground truth impossible to obtain from the
human brain with current technology. Therefore, an SI generator
was developed to simulate training and testing data from a
publicly available dataset. By including various probabilistic
transformations, such as contrast variations, metabolic signal
changes, and FOV variations, the SI generator was capable of
providing a diverse and large dataset for the training of the
three D-UNets. These data may not be entirely realistic, and
this generator must be validated more rigorously in the future.
For this study, the dataset does seem to be representative of real
acquisitions, as seen from the in vivo results.

The Recon32x32 and HRSI experimental images are very
similar, as seen from Figures 8–10. The reconstructed images
show better resemblance to the anatomical T1w images,
including cerebral spinal fluid localization. However, both the
Recon32x32 and HRSI experimental images provide similar
quantitative results, as seen in Figure 10. Theoretically, the
Recon32x32 images would require 1

16 th to
1
4 th the time to acquire,

depending on the acceleration methods implemented. Therefore,
it is important to note that aside from super-resolution, the D-
UNet may also be used as a means to accelerate a spectroscopic

imaging protocol in the future. Additionally, the reconstructed
in vivo images are denoised while retaining essential metabolic
information for different tissues of the brain, which may be
desirable for certain applications.While the simulated and in vivo
data demonstrate that the reconstruction method is accurate, one
of the main disadvantages of this work is that it has not been
validated in vitro. This is due to the fact that a high resolution
SI phantom similar to the human brain is not available. Since
the D-UNet model is trained using in vivo anatomy, it is not
capable of reconstructing high resolution images from unrealistic
geometries. Therefore, future work will focus on the development
of a realistic, high resolution SI phantom for validation.

Even though the D-UNets outperformed zero-filling and
bicubic interpolation, these models may not be perfect for HRSI
reconstruction primarily due to experimental imperfections.
As seen from Table 1, error increases as a function of noise.
Intuitively, chemicals that are found in the body at lower
concentration may have larger reconstruction errors than
chemicals with higher SNR, which is also supported by the in vivo
results shown in Figure 9 where the Gln reconstructed images
have higher error than the other metabolite images. Therefore,
prediction accuracy is limited by the quality of the original
LRSI. Also, while the in vivo results have low mean-squared
errors, it is important to note that down-sampling from a high
resolution acquisition decreases potential acquisition problems
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FIGURE 8 | An in vivo example of a healthy volunteer is used to demonstrate the potential application for the D-UNet. The experimental high resolution SI (HRSI) data

was acquired at 128x128 resolution using an accelerated acquisition protocol (20). This data was then down-sampled to produce 32x32 low resolution SI (LRSI)

metabolite maps for Cr, NAA, Glu, Gln, Ch, and mI. Together with the T1w image, the low resolution metabolite images were used to reconstruct high resolution

spectroscopic images (Recon) using the 32x32 D-UNet model. The difference maps between the Recon and HRSI images (Diff) are also shown.

FIGURE 9 | Three reconstructions showing low MSE (top), average MSE (middle), and large MSE (bottom) are shown for three different volunteers. In general, lower

MSE were observed for metabolites with higher signal-to-noise ratios such as NAA, whereas larger MSE values were calculated for low SNR metabolites such as Gln.

The different MSE values are highlighted by the errors seen in the difference maps.
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FIGURE 10 | The Glu/Cr (A) and Ch/Cr (B) signals averaged over ten subjects are shown for the experimentally acquired images (HRSI) and the images

reconstructed from low resolution 32x32 images (Recon). The signals are shown as a function of the T1w intensity, which is representative of the gray and white

matter content of the voxel. The red dotted line represents the point at which the gray matter content equals the white matter content in a voxel. The correlation

between the HRSI and Recon values are plotted (C) with linear fits. For both Glu/Cr and Ch/Cr, the r2 values of the fits are above 0.99. Finally, the mean squared error

for the ten subjects calculated between the HRSI and Recon for each metabolite map (D) is displayed. The dotted black lines reflect the MSE from the testing set for

different noise values (low, medium, and high).

such as lipid contamination and partial volume effects. Therefore,
it is expected that a prospectively acquired low resolution data set
will yield higher errors when reconstructed using the D-UNet.
This must be evaluated in a more rigorous study where both low
resolution and high resolution experimental SI data are acquired.

Of course, the original resolution of the experimental SI
plays a large role in the reconstruction process. While 24x24
and 32x32 matrices provide relatively accurate high resolution
reconstructions, the 16x16 resolution does not perform as well.
This suggests that there is a lower bound necessary to accurately
upscale high resolution SI. This might be true for other super-
resolution techniques (21), so a more thorough comparison
between this deep learning method and other methods may aid
in identifying this lower bound. Furthermore, results may be
biased by the quantitative methods implemented to produce
the LRSI before the super-resolution process is performed.
This bias could be removed in the future by developing a
deep learning based approach to metabolite quantitation (44).
However, it may be worthwhile to explore the differences
between common one dimensional spectral quantitation

programs, such as LCModel (43) or TARQUIN (45), on the
upscaling process.

From the spectral reconstruction results shown in Figure 7, it
is apparent that some metabolites are over- and under- estimated
during the reconstruction process. Therefore, clinical diagnosis
based on the D-UNet reconstruction must be made with caution,
as results from this method could lead to false positives or false
negatives. Before basing diagnosis on the D-UNet reconstruction,
the process should be evaluated in vivo in a well-known brain
cancer pathology to assess the rates of false positives or false
negatives detected by experienced radiologists in the field.

The deep learning method presented in this study may be
useful for other super-resolution transformations in the field
of medical imaging. This is especially true for spectroscopic
imaging of other nuclei, such as 13C and 31P, where lower
SNR results in low spatial resolution acquisitions. Recently,
accelerated hyper-polarized 13C spectroscopic imaging has
shown to be promising for imaging prostate cancer (46, 47), and
this technique could benefit by using the D-UNet model. In
addition, 31P spectroscopic imaging has also been used to image
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cancer (48, 49). The main drawback, again, is the lack of SNR to
adequately acquire high spatial resolution data. High resolution
acquisition schemes have been proposed for 31P spectroscopic
imaging (50), and theD-UNetmodel could provide an alternative
for improving spatial resolution. The same SI generation process
could be used for training for these other nuclei, however
different anatomical sites must be included (breast, prostate, etc.)
to yield accurate results depending on the desired application.

The same principles discussed in this work may also apply to
positron emission tomography (PET) (51). It is well-known that
the radioactive tracer is more prominent in certain tissues and
lesions, and positrons from this tracer travel some distance before
annihilating to produce the PET signal. The distance between the
source and the annihilation can be thought of as a partial volume
effect. This model can potentially be used to learn how to remove
this partial volume effect artifact, and this would be applicable for
CT-PET or MR-PET acquisitions. Ultimately, this deep learning
model allows for the acquisition of high quality images without
increasing the scan time or improving the hardware of the
imaging system.

5. CONCLUSION

The D-UNet model presented in this study allows for the
reconstruction of accurate super-resolution magnetic resonance
spectroscopic images from the human brain. Utilizing this
method, we demonstrate that a simulated, low resolution
chemical map can be transformed together with the T1w image
to produce a high resolution chemical map. This method
demonstrates better accuracy than typical zero-filling and bicubic
interpolation methods. Furthermore, we demonstrate that the
accuracy of this model holds when evaluating our method on
retrospective in vivo data. This model still needs to be validated

on prospective in vivo data in the future. After further in vitro
and in vivo validation, this method may be utilized for denoising,
scan acceleration, and improved tissue delineation.
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Background: Multi-parametric MRI provides non-invasive methods for response

assessment of soft-tissue sarcoma (STS) from non-surgical treatments. However,

evaluation of MRI parameters over the whole tumor volume may not reveal the full extent

of post-treatment changes as STS tumors are often highly heterogeneous, including

cellular tumor, fat, necrosis, and cystic tissue compartments. In this pilot study, we

investigate the use of machine-learning approaches to automatically delineate tissue

compartments in STS, and use this approach to monitor post-radiotherapy changes.

Methods: Eighteen patients with retroperitoneal sarcoma were imaged using

multi-parametric MRI; 8/18 received a follow-up imaging study 2–4 weeks after

pre-operative radiotherapy. Eight commonly-used supervised machine-learning

techniques were optimized for classifying pixels into one of five tissue sub-types using

an exhaustive cross-validation approach and expert-defined regions of interest as a gold

standard. Final pixel classification was smoothed using a Markov Random Field (MRF)

prior distribution on the final machine-learning models.

Findings: 5/8 machine-learning techniques demonstrated high median cross-validation

accuracies (82.2%, range 80.5–82.5%) with no significant difference between these

five methods. One technique was selected (Naïve-Bayes) due to its relatively

short training and class-prediction times (median 0.73 and 0.69ms, respectively

on a 3.5 GHz personal machine). When combined with the MRF-prior, this

approach was successfully applied in all eight post-radiotherapy imaging studies

and provided visualization and quantification of changes to independent STS

sub-regions following radiotherapy for heterogeneous response assessment.
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Interpretation: Supervised machine-learning approaches to tissue classification

in multi-parametric MRI of soft-tissue sarcomas provide quantitative evaluation of

heterogeneous tissue changes following radiotherapy.

Keywords: magnetic resonance imaging, soft-tissue sarcoma, artificial intelligence, cancer heterogeneity,

radiotherapy, imaging biomarkers

INTRODUCTION

Soft-tissue sarcoma (STS) is a rare form of cancer that
develops in connective tissues. Approximately 3,300 new
cases are diagnosed every year in the UK and the 5-years
survival rate is ∼53% (1). STS tumors are often highly
heterogeneous with variable tissue components that include
cellular tumor, fat, necrosis, and cystic change. In patients
undergoing non-surgical treatments, such as radiotherapy and
systemic drug treatments, conventional imaging methods of
assessing treatment response are limited as responding tumors
may not change in size, or may even grow (pseudoprogression),
after treatment (2–4). Hence, more effective and non-invasive
methods for assessing treatment response are desired in trials
of non-surgical treatments, such as combined radiotherapy
with systemic agents. This is particularly difficult since
the response of any tumor can be heterogeneous, with
different components of a tumor responding differently to the
same treatment.

Magnetic resonance imaging (MRI) is widely used in soft-
tissue sarcoma, owing to its excellent soft-tissue contrast.
Quantitative MRI techniques enable non-invasive investigation
of the entire tumor and can provide information about
the biological properties of tumors through functional
measurements. For example, maps of apparent diffusion
coefficient (ADC) derived from diffusion-weighted MRI inform
on tissue cellularity, with lower ADC values observed in
highly cellular or more aggressive regions within tumor (5).
Using contrast enhanced MRI, the time course of T1 signal
enhancement after intravenous injection of gadolinium-based
contrast agent provides estimates of tumor perfusion and
permeability (6). By applying the Dixon MRI techniques,
the presence of fat in sarcomas can also be measured and
quantified (7).

However, evaluation of multi-parametric quantitative MRI
averaged over the entire tumor may not reveal the extent
of heterogeneous changes following treatment. By combining
quantitative MRI techniques that inform on different aspects
of tumor properties (e.g., diffusion-weighted MRI, contrast
enhanced MRI and Dixon MRI), it is possible identify sub-
components of tumors demonstrating cellular, vascular or fatty
phenotypes before and after treatment, thereby enabling tracking
and monitoring of the heterogeneity of tumors in response
to treatment.

The aim of this pilot study is to evaluate supervised machine
learning methods for tissue classification of multi-parametric
MRI measurements in soft-tissue sarcomas, and use these
methods to quantify post-treatment changes in a cohort of
patients treated with radiotherapy.

MATERIALS AND METHODS

Patient Cohort
Eighteen patients with retroperitoneal sarcomas were included in
this prospective single-center study (11 male patients and seven
female patients; age range 43–76). The study was approved by a
national Research Ethics Committee, and all patients gave their
written informed consent to participate. Tumors included 14
liposarcomas, two leiomyosarcomas, one spindle cell sarcoma,
and one synovial sarcoma. All patients underwent an MRI
examination at baseline. In eight patients who were treated with
pre-operative radiotherapy (50.4Gy in 28 fractions) anotherMRI
examination was performed 2–4 weeks after the final fraction of
radiotherapy and prior to surgery; 10 patients were treated by
surgery alone.

Imaging Protocol
Patients were scanned on a 1.5 T Siemens MAGNETOM Aera
MRI scanner (Siemens Healthcare AG, Erlangen, Germany).
Anterior body matrix and posterior spine matrix receive coils
were used for image acquisition. Following axial and coronal
anatomical T1-weighted and T2-weighted imaging sequences,
functional imaging was performed and consisted of diffusion-
weighted imaging (DWI), Dixon imaging, and pre- and post-
contrast T1-weighted imaging sequences. Images were acquired
with a field of view that fully covered the tumor volume;
parameters are described in Appendix A and further detailed by
Winfield et al. (8) (a second imaging station was used if necessary
for large tumors). Post-Gadolinium (Gd) T1-weighted images
were acquired 4min after injection of a Gd-based contrast agent
(Dotarem, 0.2 ml/kg body weight, administered at 2 ml/s using a
power injector).

Image Analysis
Maps of apparent diffusion coefficient (ADC) were calculated
from the DWI and fat-fraction (FF) from Dixon images:

FF =
Sfat

Sfat + Swater
× 100% (1)

where Sfat and Swater represent the fat and water signals,
respectively. Maps of fractional enhancement (EF) were
calculated from the pre- and post-Gd T1-weighted images using
the following equation:

EF =
Spost − Spre

Spost + Spre
× 100% (2)

where Spre and Spost are the signal intensities in pre- and post-Gd
T1-weighted images, respectively (9). Volumes of interest (VOIs)
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FIGURE 1 | (Left) An illustration of our decision tree used to define habitats within our sarcoma population. Classes 3 and 4 were not further divided as

cystic/necrotic regions and fat do not enhance in post-Gd images. ADC is not evaluable in fat- suppressed DWI. (Right) Images from one patient with a

dedifferentiated liposarcoma showing examples of training ROIs positioned in regions corresponding to habitat 1 (red) and habitat 3 (blue). Training ROIs (2 cm2) were

drawn on either the fat fraction (FF), apparent diffusion-coefficient (ADC), or enhancing fraction (EF) maps, and then transposed onto other maps.

were defined for each tumor by an expert radiologist with 16
years of experience, outlining the whole tumor on every slice on
which the tumor appeared on axial T2-weighted images; VOIs
were transferred to ADC, FF, and EF maps. All parameter maps
were rescaled to ensure values were in the range [0, 1] using
the following linear transformations: ADC → ADC/3 × 10−3

mm2/s, EF→ (EF+ 100)/200%, and FF→ FF/100%. No spatial
registration was performed between parameter maps as adequate
spatial alignment was verified by a consultant radiologist with
experience in STS MRI.

Tissue Classification
We defined four possible tissue classes for the STS volumes as
illustrated in Figure 1, reflecting the aim of segmenting cellular
tumor (low ADC, classes 1 and 2) from necrotic/cystic regions
(high ADC, class 3), fat (class 4). The cellular tumor was further
separated into enhancing (class 1) and non-enhancing (class 2),
which may have different biological behavior (2). In addition,
we defined a further class to represent the combinations of
MRI parameters that were not part of the training data, called
“novelties” (10) (class 5). Training data for building the machine-
learning classifiers were defined by placing square regions of
interest (ROIs) with area 1–2 cm2 (45–100 voxels) in regions that
exemplified each class, at locations far from visible boundaries

(Figure 1). Training ROIs were drawn by a clinical scientist with
more than 6 years of experience in tumor analysis and confirmed
by a consultant radiologist with 16 years of experience. Between
1 and 4 ROIs were placed in each tumor depending on the
classes present, providing a total of 36 ROIs across all 18 patients’
baseline scans.

Eights machine-learning (ML) techniques were evaluated for
classifying the tissue type for each voxel in this pilot supervised
classification exercise using the Scikit-Learn software package
(11): Logistic Regression (LR), Support Vector Machine (SVM
with a radial basis function), Random Forest (RF), k-Nearest
Neighbor (kNN), Kernel Density Estimation (KDE), Naïve-
Bayes (NB), and a 20-node, three-layer, fully-connected Neural
Network (NN). We also tested a variant of the KDE method
where the hyperparameter (bandwidth) was automatically
selected using Silverman’s approximation (12). To ensure that
techniques were sensitive to novelties (voxels that do not
represent any of the classes defined in this study), data for
an additional 15 ROIs were synthesized by randomly sampling
from a uniform distribution covering the intrinsic range of the
parameters: EF ∈ [−100, 100] (%), FF ∈ [0, 100] (%), ADC ∈ [0,
3] (×10−3 s/mm2). All data were normalized to the range [0, 1]
prior to training of algorithms. An exhaustive cross-validation
approach was used for evaluating classification performance of
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TABLE 1 | Median training and prediction times for each of the machine-learning techniques used in this study over the range of hyper-parameters tested (5th and 9th

percentiles provided in parentheses).

ML technique Median training time

in ms (5th−95th perc.)

Median prediction

time in ms

(5th−95th perc.)

Hyper-parameter

(range considered for optimization)

Logistic regression (LR) 9.51

(5.50, 12.58)

0.06 (0.05, 0.11) C: Inverse of the regularization strength (10−3–1010)

Support vector machine (SVM) 208.69

(96.01, 1,745.5)

12.94

(5.19, 29.81)

C: Penalty parameter that favors smoother decision

boundaries when set to a smaller value (10−3–105)

Neural network (NN) 412.23

(47.72, 465.35)

0.24

(0.22, 0.33)

α: A L2-regularization parameter that attempts to reduce

over-fitting. Smoother decision boundaries with larger

values (10−8–105)

Naïve-Bayes (NB) 0.73

(0.70, 1.26)

0.69

(0.66, 1.23)

None

Random forest (RF) 399.98

(7.35, 7,304.26)

4.74

(0.23, 86.40)

N Estimators: The number of trees being used in the

forest (10–1,000)

k-Nearest neighbor (kNN) 1.73

(1.64, 2.39)

6.00

(1.20, 67.10)

N: The number of closest training data (Euclidean

distance) considered to be neighbors of the data being

predicted (10–1,000)

Kernel density estimation (KDE) 1.57

(1.44, 2.55)

11.33

(6.15, 55.62)

Bandwidth: The standard-deviation of the Gaussian

kernel used for fitting a KDE model (10−4–101)

Automatic KDE (aKDE) 1.81

(1.54, 2.82)

30.84

(26.83, 36.94)

None: Bandwidth is automatically calculated using

Silverman’s approximation

Training times are estimated for 1,350–3,000 samples in each case, whilst prediction times are for 135–300 samples (validation step). A brief description of the hyper-parameter used

in each case is provided (if applicable), with range test provided in parentheses. Computation times are from a 3.5 GHz personal machine with 16 GB of memory and an Intel Iris Plus

graphics card.

each of the machine-learning techniques: For each training cycle
voxels from one ROI of each class were selected as a validation
set, and the MLmethod under investigation was trained on voxel
values from the remaining ROIs. This process was repeated for
each unique combination of validation ROIs providing a total of
2,240 training/validation cycles. This process was repeated over
the range of hyper-parameters considered for each ML method
(see Table 1 for a list of the hyper-parameters considered and
their range, along with training/prediction times for eachmodel),
and the hyper-parameter that provided the highest median
accuracy, defined as the percentage of voxels correctly classified
in the validation ROI set, was chosen for further investigation.
The data for one patient, for whom 3 different ROI classes had
been drawn, was left out of this training/validation phase in
order to evaluate the accuracy of these ML methods in an unseen
case; this left a total of 33 ROIs for cross-validation analysis.
Comparison between methods was achieved using a two-tailed
Student’s t-test (p < 0.05 for significance).

Once the optimum hyper-parameter was selected and
models had been trained, they were used to classify the
entire tumor volume in all patients, providing a map of
the suspected STS tissue sub-type at each voxel location
(13) for radiological review. Results were visualized using
(i) 3D surface rendering and (ii) color-coded masks overlain
on Multi-Planar Reformats (MPRs) of the anatomical images
acquired (T2-HASTE). To reduce the level of classification
noise observed in the derived habitat maps, a classification de-
noising algorithm was used by applying a Markov Random
Field (MRF) model to the machine-learned classifications
(see Appendix B for the theoretical justification underlying

this model, with Python code provided as supplementary
file “ml_utilities.py”).

RESULTS

The cross-validation accuracy for the ranges of hyper-parameters
tested in each of the machine-learning methods is demonstrated
in Figure 2. For both kNN and KDE methods, optimum hyper-
parameters can be established (number of neighbors = 34
and bandwidth = 0.75, respectively). For the remaining ML
methods, a plateau is reached in the cross-validation accuracy
indicating relative insensitivity to the choice of hyper-parameter
after some threshold. Figure 2 also demonstrates the accuracy
of each machine learning method on the test ROIs ignored
during training: RF classification scored the highest in this
case with a test accuracy of 98.1%, and SVM, NN and kNN
methods demonstrating slightly lower accuracies of 96.3, 93.2,
and 89.4% respectively.

Figure 3 demonstrates the cross-validation accuracy for
each of the classes independently and for all classes combined,
using the optimal hyper-parameters in each case. The results
are sorted in order of ascending median accuracy. NB scored
the highest in two out of five tissue classes: (3) high ADC, and
(4) fatty tissue, whilst kNN scored highest for discriminating
enhancing, well-vascularised (1) from non-enhancing, poorly
vascularised (2) tumor tissue. The performance for all tissue
types combined demonstrates that in general there is little
to choose between 5/8 of these classification methods (NB,
NN, KDE, NN, SVM), whilst logistic regression (LR) and
random forest classifiers perform poorly in comparison
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FIGURE 2 | Demonstration of cross-validation accuracies over the range of hyper-parameters tested in this study. For the Kernel Density Estimation and k-Nearest

Neighbor methods, an optimum hyper-parameter can be identified. For the remaining techniques, a hyper-parameter limit is identified by the presence of a plateau in

the validation accuracy curve. Solid curves represent median values, shaded areas demonstrate the interquartile range and dashed lines represent the 5th and 95th

percentiles of the validation accuracy measurements. The optimum hyper parameter is annotated on each sub-plot with the corresponding validation accuracy shown

in the top-left.

across the tissue sub-types considered. Of the five methods,
the Naïve-Bayes (NB) classifier was chosen for further
investigation due to its relatively short training and prediction
times (Table 1).

Figure 4 compares the classification results of the NB classifier
with and without MRF correction on the test-patient that was

not included in the initial training of our machine-learning
approaches. It is evident that the application of a MRF reduces
the classification noise induced when the classifier is applied
on a voxel-wise basis without taking into consideration the
correlations that are likely to occur between neighboring voxels.
This figure also demonstrates the convergent properties of the
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FIGURE 3 | Comparison of the validation accuracy for the different machine learning (ML) techniques applied to our labeled training-set data. Methods are compared

for each tissue label separately (colored as per Figure 1) and for all tissue types combined (white). Boxplots demonstrate the distribution of validation accuracies

(derived using a randomized cross-validation approach) following optimization of hyper-parameters (bold-lines represent median, shaded areas indicate the

inter-quartile range and whiskers the 5th/95th percentiles). Methods are ordered from left to right in order of increasing median accuracy (**p < 0.005, ***p < 0.0005).

MRF algorithm, which converged after a median of 27 iterations
in this case.

We used the NB classifier, in combination with ourMRF class-
label de-noising algorithm, to investigate the changes occurring
to each of the tissue habitats in three patients who received a post-
treatment MR exam following radiotherapy (Figure 5). Patient 1
demonstrated STS consisting of mostly viable tumor with high
vascularity (class 1 in red), with a necrotic core (class 3 in blue).
Following treatment, there was no clear change in the volume
of either of these tissue types, nor any change in the ADC (as
depicted through a pie-chart in the figure), indicating that the
patient did not respond well to treatment. Patient 2 demonstrated
with a highly heterogeneous STS, with a mix of tissue classes
(1), (2), and (3). Following treatment, there is a clear increase in
the proportion of non-enhancing tissue, suggestive of disruption
to the vascular supply of the tumor following radiotherapy.
When combined with an observed increase in ADC for the
remaining well-vascularized tissue, this may provide evidence
of tumor response to radiotherapy, regardless of the absence
of any significant change in tumor volume (5.7% reduction

following treatment). Patient 3, however, demonstrated highly
fatty, well-differentiated liposarcoma, which has been well-
described through our approach; no change is found following
radiotherapy. Results for all eight patients are provided
in Appendix C.

DISCUSSION

Soft-tissue sarcoma is a highly heterogeneous disease, and there
remains a lack of appropriate imaging biomarkers for monitoring
the success of therapy. Novel therapeutic agents or radiotherapy
may not result in a significant change in tumor size, but in
a heterogeneous change in the tumor composition. In this
technical development study, we have investigated the use of
a number of machine-learning approaches for automatically
segmenting the heterogeneous tissue compartments within
STS, thereby providing a map that aims to characterize the
tumor microenvironment for radiological review. This approach
facilitates the quantification of changes in ADC, fat-fraction and
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FIGURE 4 | Demonstration of the improvement to tissue sub-region classification following Markov Random Field (MRF) correction of the Naïve-Bayes classifier. This

figure demonstrates results for the patient that was not included in the training of our machine-learning approaches (test data). Spie-charts (14) demonstrate the

proportion of each tissue sub-compartment within the entire volume as the angle of each segment, whilst the mean ADC of each tissue sub-type is represented by the

radius of each segment (note that the ADC of the fat/yellow tissue sub-type from fat-suppressed diffusion-weighted imaging studies should not be interpreted as it will

be heavily noise-corrupted; only the proportion/angle of this tissue sub-type is informative). The far-right plot demonstrates the number of voxels that change

classification following each iteration through the MRF fitting algorithm across all axial images in this patient: it is evident that the algorithm converges after a finite

number of iterations.

enhancement-fraction estimated through co-registered, multi-
parametricMRI occurring in each of the segmented tissue classes,
and may provide a novel response biomarker in STS.

Out of the eightmachine-learning approaches we investigated,
we found that 5/8 methods did not outperform each other in
terms of segmentation accuracy. This is likely due to the fact that
our data is intrinsically low-dimensional (only three parameters
per-voxel: ADC, enhancement-fraction and fat-fraction), and
most of the techniques provide enough degrees of freedom to
account for the variation of these parameters for the different
classes investigated for STS. This is supported by the relatively
poor performance of logistic regression, which was unable to
model the full complexity of the data space.

In addition, we have investigated inclusion of the estimated
class probabilities from machine-learning classification methods
into a Markov Random Field framework, which allows for de-
noising of the estimated habitat maps by introducing a spatial
prior distribution on the segmented regions. This technique
provided smoother classification maps when compared to
classification based purely on the trained ML architectures alone.
This approach could well be extended to any other machine-
learning task where the classifications of a group of input data
are not expected to be independent (15–17).

Although previous authors have investigated the role of
machine learning for the segmentation of sarcoma using MRI
data, these reports focused on the utility of dynamic contrast-
enhanced MRI alone, and did not exploit the multi-parametric
capabilities of MRI for determining a more complete habitat
image of the tumor, as explored here (18, 19). Moving forward,

there is a clear need to explore a larger patient population for
further validation of the methods described in this article. This
should include multi-center studies to determine the sensitivity
of the technique to images acquired from multiple vendors and
at different institutions (20). Another important consideration is
when MRI studies should be performed following neoadjuvant
radiotherapy in order to observe a measureable treatment-
induced change; the effects of treatment may not manifest
immediately after the final radiation dose. However, the
timing of imaging after neoadjuvant radiotherapy is limited
by surgery, which is typically performed at 4–6 weeks post-
treatment. Imaging following radiotherapy to non-resectable
disease may enable insight into later effects. The segmentation
methodology would also benefit from repeatability testing to
determine its sensitivity as a radiotherapy response biomarker
(21). A limitation of this study is that one expert radiologist
generated training data samples in the patients investigated,
and so further work may investigate the user-repeatability for
generating gold-standard training data. The regions chosen
for training data would ideally be validated through post-
operative histopathological confirmation of the tissue type in that
region. There may also be scope for including more complex
deep-learning approaches for producing habitat maps for soft-
tissue sarcoma, including methods, such as U-Net convolutional
networks (22), but these techniques would require a much larger
cohort size, which may be unfeasible in a population with
a rare cancer type. Lastly, the cohort of eight patients who
received radiotherapy had STS tumors that were predominantly
well-vascularized, and future randomized studies should include
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FIGURE 5 | A demonstration of our proposed habitat classification scheme on three patients applied before and after radiation therapy. Spie charts are presented

with a radius equal to the mean ADC of the given tissue sub-compartment; dotted lines on the post-treatment Spie charts show the ADC of that tissue sub-type in the

pre-treatment data. Multi-planar reformat habitat maps are overlain on T2 HASTE MR-images acquired within the same patient study. Patient 1 demonstrates a

patient with a liposarcoma where a necrotic core is clearly identified (blue) within a majority of strongly enhancing solid tumor (red) prior to treatment. Although

there is a marginal increase in the volume of the necrotic core, there little overall change is observed following treatment.Patient 2 demonstrates data from a pleomorphic

(Continued)
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FIGURE 5 | sarcoma where there is a clear heterogeneous pattern observed with the majority of the disease consisting of strongly enhancing tumor. Following

treatment, there is a marked increase in the proportion of poorly vascularized (green) and necrotic tissue. Within the remaining strongly enhancing tumor after

radiotherapy, an increase in mean ADC is observed indicative of treatment response. Patient 3 demonstrates a well-differentiated liposarcoma with the majority of the

tumor consisting of fatty tissue before and after treatment. Results for all eight patients (including these three exemplary patients)with pre-/post-radiotherapy imaging

are provided as supplementary information in Appendix C.

patients with more heterogeneous tumor phenotypes. However,
the full cohort of this study, which included patients for whom
no radiotherapy was delivered, provided sufficient examples of
each tissue class to evaluate this technological development.

Modern advances in artificial intelligence and machine-
learning are anticipated to improve automatic segmentation
accuracies in the next few years, and supersede conventional
image-processing methods for extracting regions of interest
in medical imaging datasets. We have demonstrated that a
variety of simple machine-learning approaches can be used
to automatically extract sub-regions in a highly heterogeneous
tumor phenotype, and that quantification of the volume
and ADC within these regions may provide a radiotherapy
response biomarker in soft-tissue sarcoma. Tools, such as
these will facilitate clinical decision making for a disease
that can be difficult to manage, and thus may promote
personalized treatment regimens and improve patient outcome.
Intra-tumoural heterogeneity confounds the interpretation of
treatment response in many other, more common cancers;
provided sufficient data is acquired, we envisage that these
methods will be highly applicable in many prospective cancer
studies investigating tumor response to targeted therapeutics.
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Respiratory-Correlated (RC) vs.
Time-Resolved (TR)
Four-Dimensional Magnetic
Resonance Imaging (4DMRI) for
Radiotherapy of Thoracic and
Abdominal Cancer
Guang Li*, Yilin Liu and Xingyu Nie

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States

Recent technological and clinical advancements of both respiratory-correlated (RC) and

time-resolved (TR) four-dimensional magnetic resonance imaging (4DMRI) techniques

are reviewed in light of tumor/organ motion simulation, monitoring, and assessment in

radiotherapy. For radiotherapy of thoracic and abdominal cancer, respiratory-induced

tumor motion, and motion variation due to breathing irregularities are the major

uncertainties in treatment. RC-4DMRI is developed to assess tumor motion for treatment

planning, whereas TR-4DMRI is developed to assess both motion and motion variation

for treatment planning, delivery and assessment. RC-4DMRI is reconstructed to provide

one-breathing-cycle motion, similar to 4D computed tomography (4DCT), the current

clinical standard, but with higher soft-tissue contrast, no ionizing radiation, and less

binning artifacts due to the use of an internal respiratory surrogate. Recent studies

have shown that its spatial resolution has reached or exceeded that of 4DCT and

scanning time becomes clinically acceptable. TR-4DMRI is recently developed with an

adequate spatiotemporal resolution to assess tumor motion and motion variations for

treatment simulation, delivery and assessment. The super-resolution approach is most

promising since it can image any organ/body motion, whereas RC-4D MRI are limited

to resolve only respiration-induced motion and some TR-4DMRI approaches may more

or less depend on RC-4DMRI. TR-4DMRI provides multi-breath motion data that are

useful not only in MR-guided radiotherapy but also for building a patient-specific motion

model to guide radiotherapy treatment using an non-MR-equipped linear accelerator.

Based on 4DMRImotion data, motion-corrected dynamic contrast imaging and diffusion-

weighted imaging have also been reported, aiming to facilitate tumor delineation for

more accurate radiotherapy targeting. Both RC- and TR-4DMRI have been evaluated for

potential clinical applications, such as delineation of tumor volumes, where sufficiently

high spatial resolution and large field-of-view are required. The 4DMRI techniques are

promising to play a role in motion assessment in radiotherapy treatment planning,

delivery, assessment, and adaptation.

Keywords: 4DMRI, radiation therapy (radiotherapy), tumor motion assessment, treatment planning and delivery,

respiratory motion and motion variation
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INTRODUCTION

Respiratory motion management is a critical component
for radiotherapy of malignant tumors in the thorax and
abdomen, including lung, liver, pancreatic, and adrenal cancer.
Clinical strategies for motion management include breath-hold,
abdominal compression, as well as 4D imaging techniques for
targeting internal tumor volume (ITV), respiratory gating, and
tumor tracking (1–3). For motion assessment of a mobile tumor,
4D imaging is necessary to provide a patient-specific motion
margin for treatment. In image-based treatment planning,
respiratory-correlated (RC) four-dimensional computed
tomography (4DCT) is the current clinical standard to
assess respiratory-induced tumor motion. In image-guided
radiotherapy (IGRT) using a conventional medical linear
accelerator (Linac), 4D cone-beam CT (4D CBCT) may be
applied for patient setup, while periodic MV/kV imaging,
intrafractional motion review (IMR), and video-based optical
surface imaging may be applied for intrafractional motion
monitoring (3). Recently, magnetic resonance imaging (MRI)
has been increasingly applied for MR-based planning and MR-
guided radiotherapy (MRgRT), and various 4DMRI techniques
have been developed, including respiratory-correlated (RC) and
time-resolved (TR) 4DMRI.

Similar to 4DCT, RC-4DMRI is reconstructed by binning
partial volumetric images or k-space data, such as 2D MR
slice images, based on the signal from a respiratory surrogate
assuming periodic respiration. However, RC-4DMRI provides
higher soft-tissue contrast to visualize gross tumor volume
(GTV) and nearby organs at risk (OARs) without ionizing
radiation, higher image quality with less binning artifacts
by using an internal respiratory surrogate to eliminate the
uncertainties from an imperfect external-internal correlation,
and higher precision in assessing the primary superior-inferior
motion within image slices by imaging in the sagittal or coronal
directions. Unlike 4DCT and RC-4DMRI, dynamic or TR-
4DMRI does not assume periodic motion because it captures
the images of a moving object on the fly. Therefore, TR-4DMRI
is ideal to assess respiratory motion, which is often irregular.
Furthermore, organ motion can be driven jointly by other
involuntary motions, such as cardiac and digestive motions,
or voluntary body motion. These motions are either random
in nature or having a different rhythm; neither correlates well
with respiration. So, the GTV/OAR motion may be complex
and non-periodical. Therefore, TR-4DMRI is useful to assess
respiratory motion in multi-breathing cycles with irregularities
but no binning artifacts, providing higher 4DMRI image quality
for GTV/ITV delineation and more realistic GTV/OAR motion
for treatment planning and dose delivery assessment.

Historically, dynamic 3D cine MRI was first studied for
imaging respiratory motion through direct acquisition (4). This
would be the most desirable 4D imaging form to assess organ
motion regardless it is regular or irregular, simple or complex,
and voluntary or involuntary because it does not assume
periodic motion and does not need any respiratory surrogate
for reconstruction. However, only low spatial resolution 3D cine
was achieved because it was limited by the slow physical MR

relaxation and large clinical field of view, even though parallel
imaging and view-sharing approximation were applied. Despite
the recent development of state-of-the-art MRI techniques (5–
7), the basic limit of MR acquisition speed is still present.
Facing the fundamental challenge, alternative approaches were
developed to circumvent this limitation, including a super-
resolution (SR) approach to achieving higher spatiotemporal
resolution by combining two sets of MRI image series with
complementary strength in either high temporal or high spatial
resolution (8, 9). The dynamic 3D cine images acquired with low
spatial resolution in free-breathing (FB) of a patient serve as the
motion template tomap the high spatial resolution from a breath-
hold (BH) 3DMRI image of the same patient through deformable
image registration (DIR).

In this short review article, we will start with a discussion
on RC-4DMRI developments in section Respiratory-Correlated
(RC) 4DMRI, with a different emphasis from two recent review
articles on the RC-4DMRI (10, 11). The focus of this review
will be on different approaches to reconstruct TR-4DMRI, with
emphasis on the SR approach and its potentials, and on the
discussion and comparison with RC-4DMRI in section Time-
Resolved (TR) 4DMRI. The utility of the TR-4DMRI in clinical
research and potentials in clinical applications will be discussed
in section Clinical Evaluations and Applications of RC- and TR-
4DMRI. Finally, we will summarize the recent advancements and
provide an outlook for future development in the 4DMRI field.

RESPIRATORY-CORRELATED (RC) 4DMRI

Respiratory-correlated 4DMRI consists of several 3D images
covering different respiratory states of one breathing cycle of a
patient, similar to 4DCT. The similarity and difference among
4DCT, 2D/3D cine MRI, as well as RC- and TR-4DMRI are
summarized in Table 1. It is worthwhile to mention that the use
of an internal MR navigator as the surrogate reduces binning
artifacts because it eliminates the uncertainty from the external-
internal correlation if an external surrogate is used (12). In
addition, the versatility of MR acquisition and reconstruction
allows different ways for sorting the 2D MR slice images: (1)
scanning k-space data via Cartesian, Radial, or Spiral acquisition,
(2) orienting acquisition in axial, sagittal or coronal directions,
(3) binning in image space or k-space, and (4) reconstructing the
images prospectively or retrospectively.

In a prospective approach, the acquisition intends to fill the
table with the row of respiratory state and the column of image
slice. When all the table elements are acquired, the acquisition
and reconstruction of RC-4DMRI are completed. Hu et al.
developed a prospective T2-weighted 4D-MRI method with a
respiratory amplitude-based triggering system to gate 2D MRI
image acquisition (13). Either an internal or external surrogate
can be applied, but the former produced superior image quality
than the latter (12). In a retrospective approach, similar to 4DCT
scan, more scans than a cycle may be acquired to reconstruct
complete 3D images in all respiratory states. Cai et al. proposed
a T2/T1-weighted 4DMRI retrospective phase sorting method
that used body area extracting from images as the respiratory
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TABLE 1 | Comparison of RC-4DMRI, 2D/3D cine MR, TR-4DMRI with 4DCT and 2D kV/MV.

Category Sub-category 4DCT RC-4DMRI 2DkV/MV 2D cine 3D cine TR-4DMRI

Acquisition Scanning Projection 2D slice Projection 2D slice 3D volume 3D

Moving Couch Yes No No No No No

Ionizing Radiation Yes No Yes No No No

Preferred Scan

Directions∧
Axi Axi/Sag/Cor Obl/Sag/Cor Obl/Sag/Cor Sag/Cor Sag/Cor

3D Recon# FBP iFFT NA NA iFFT iFFT

4D Recon# Binning Binning NA NA NA SR

Contrast Lung& High High (T2) Low Mid Mid High (T2)

Abdomen& Low High Low High High High

Motion Respiratory

Surrogate

External Internal (/External) NA NA NA NA

Cyclical Motion

Assumption

Yes Yes No No No No

Binning Artifacts$ High Low No No No No

Multi-breathing

Cycles

No No Yes Yes Yes Yes

∧Preferred scan directions include Axial (Axi), Sagittal (Sag), Coronal (Cor), and oblique (Obl). The coronal scan is often used in 3D cine due to shorter anterior-posterior separation of

the human body.
#Reconstruction methods using the filtered back project (FBP), inverse fast Fourier transform (iFFT), and super-resolution (SR) methods.
&T1 or balanced steady-state free-precession (bSSFP) MR contrasts are used for real-time scan.
$High binning artifacts for irregular breathers in 4DCT. Low binning artifacts in RC-4DMRI when using an internal navigator with the Cartesian acquisition and No binning artifacts when

using self-navigator in the Golden-angle radial acquisition.

surrogate (14). Van de Lindt et al. reported a self-sorting coronal
4DMRI technique for MR-Linac (15).

The reconstruction of RC-4DMRI in k-space can also be
categorized as either prospective or retrospective. Akçakaya et al.
developed a 4DMRI k-space respiratory gating method using
an internal navigator as the surrogate to prospectively gate the
acquisition of the central k-space data (16). Liu et al. developed a
strategy that retrospectively reorders k-space data of MR images
based on respiratory trajectories, allowing for finer segmentation
of data in the time domain (17).

Recently, efforts have been devoted to making RC-4DMRI
scan more efficient with higher image resolution and quality.
Feng et al. developed a golden-angle radial acquisition technique
with compressed sensing (CS) using local self-navigator(s) to
resolve both respiratory and cardiac motions in RC-4DMRI (or
5D MRI) (18–20). Because of using radial acquisition, which
is insensitive to motions, the RC-4DMRI images are essentially
free from binning artifacts. Golden-angle acquisition and multi-
navigators facilitate the CS scheme of reconstruction to resolve
both respiratory and cardiac motions. Similarly, Wang et al.
reported a spatiotemporal k-space scan and sorting technique
to enhance RC-4DMRI image quality (21). Han et al. reported a
rotating Cartesian k-space (ROCK) 4DMRImethod that provides
a 50× 40× 30 cm3 field of view, 1.2× 1.2× 1.6 mm3 voxel size,
8 respiratory states, and 5min scan time (22, 23). This method
was equivalent to spiral acquisition and was validated with a
4D phantom and tested in volunteers and patients, producing
1.0 ± 0.5mm error at the diaphragm in comparison with
2D cine image. Mickevicius and Paulson compared 4 different
4DMRI image reconstruction algorithms and found that the
two with CS outperformed the conventional techniques (24).

A similar conclusion was reported by Weiss et al. comparing
conventional and CS-based liver scans using navigator-gated
4DMRI acquisition with a 1.2 × 1.2 × 3.0 mm3 resolution (25).
Van Reeth et al. studied the proof of concept of an SR approach
to achieve isotropic image resolution by combining anisotropic
scans (26). Freedman et al. also developed an SR approach to
gain T2w RC-4DMRI with an isotropic resolution (1.0 × 1.0 ×

1.0 mm3) by combining 2 acquisitions in axial and sagittal scans
at 1.5× 1.5× 5.0 mm3 resolution (27).

So far, the image resolution is approaching or exceeding that
of 4DCT, while the binning artifacts have been substantially
reduced or virtually eliminated and scanning time has become
clinically acceptable. With the advantages of soft-tissue contrast
enhancement and elimination of ionizing radiation, RC-4DMRI
technique has been increasingly tested in the clinic and have the
potential to play a role in clinical applications (10, 11, 28, 29).
However, RC-4DMRI shares the same limitation of one breathing
cycle as 4DCT, while using a snapshot of patient respiration
as the average motion has been questioned for its validity and
reliability (30–32).

TIME-RESOLVED (TR) 4DMRI

Breathing irregularity has been recognized as a major clinical
issue in radiotherapy because it causes a tumor to move
differently from the motion assessment achieved at treatment
simulation, so that the treatment delivery may not follow the
treatment plan. Clinically, it has been observed that substantial
breathing irregularities may occur, leading to a possible large
variation in tumormotion (30–32). In addition, patient breathing
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FIGURE 1 | A schematic graph of three reconstruction methods for time-resolved (TR) 4DMRI. (A) Super-resolution (SR) approach, (B) dynamic keyhole approach,

and (C) motion modeling approach.

irregularities during motion simulation may affect RC-4DMRI
image quality, which further affects tumor delineation, although
it has been improved using internal navigator as the respiratory
surrogate (12). On the contrary, TR-4DMRI provides multi-
breath motion assessment and may immune from breathing
irregularities if it is based on SR reconstruction. The major
advantages of TR-4DMRI are summarized in Table 1. As direct
acquisition of 3D cine suffers from low spatial resolution, three
alternative methods have been developed to reconstruct TR-
4DMRI with a clinically-adequate spatiotemporal resolution.
Taking the advantage of 4D patient anatomy redundancy,
incomplete but near real-time scans are sufficient to recover
the missing information from a priori knowledge of the patient
for TR-4DMRI reconstruction, as illustrated in Figure 1. It
should be emphasized that only the SR approach (Figure 1A)
is independent of RC-4DMRI without assuming motion
periodicity, while the other two approaches depend on RC-
4DMRI in various degrees for library building (Figure 1B) or
motion modeling (Figure 1C).

Super-Resolution (SR) 3D-Cine-Guided
TR-4DMRI Reconstruction
Super-resolution is a concept that has been proven effective
to enhance the resolution of an imaging modality beyond
its physical limitation (33). It achieves this objective by
combining two image sets with complementary resolution
strength using an independent method so that both strengths

will appear in the final synthesized image. The SR concept was
applied to overcome the physical limitation of dynamic 3D
cine MRI (8).

Li et al. reported an SR approach to reconstruct TR-4DMRI by
combining two sets of MRI images with high temporal resolution
(3D cine at 2Hz and 5 × 5 × 5 mm3) in free-breathing (FB) and
high spatial resolution in breath-hold (BH, at 2 × 2 × 2 mm3)
through DIR (8), as shown in Figure 1A. Therefore, the resulting
TR-4DMRI image will have a high spatiotemporal resolution
(2Hz and 2 × 2 × 2 mm3). In this approach, the dynamic FB
3D cine serves as targeting templates for DIR to map the high-
resolution tissue texture from BH to FB images. Because the FB
image records the actual organ motion without any restriction
on the motion type, so this approach can image both regular
or irregular organ motions, including breathing irregularities
in multiple respiratory cycles. This method has been improved
with enhanced deformation range for respiratory motion (9).
Furthermore, the MR contrasts can be extended beyond T1w,
including T2w TR-4DMRI (34). Therefore, the SR-based TR-
4DMRI technique is promising to provide the accurate history
and statistics of actual GTV/OAR motions during treatment
simulation and/or treatment delivery.

Library-Matching Dynamic Keyhole
TR-4DMRI Reconstruction
The dynamic keyhole method is derived from the conventional
keyhole approach, a view-sharing technique, which divides the
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k-space into the central (low frequency) and peripheral (high
frequency) regions, where only the central data need to be newly
acquired and updated while the peripheral data can be acquired
separately and shared. The dynamic keyhole method requires
anatomical matching between the central and peripheral k-space
data so that the aliasing artifacts caused by anatomy mismatch
can be minimized (35, 36).

Lee et al. reported a dynamic keyhole method by image
matching at the moving diaphragm in a pre-acquired high-
resolution RC-4DMRI library (37, 38). A 1D keyhole was
applied to combine the central and peripheral k-space data to
produce a dynamic TR-4DMRI image set. Liu et al. studied the
dynamic volumetric keyhole method as a k-space SR approach
for accelerated TR-4DMRI reconstruction without DIR (39).
The RC-4DMRI image was applied to create the motion library
with high-resolution, however the library can also be created
by the TR-4DMRI images. Therefore, limited dependency of
this approach to the RC-4DMRI exists. The major advantage of
this approach is the fast reconstruction comparing with DIR-
based reconstruction.

Comparing with CS, the keyhole method is inferior in both
image quality and acceleration (36). Using statistical power in
resolving sparse, incoherent signals is superior to mechanically-
separated high- and low-frequency regions in the k-space. Yip
et al. incorporated a dynamic view-sharing technique into the CS
framework and developed a sliding-window prior-data-assisted
CS (SW-PDACS) technique to track lung tumor motion (40,
41). In this approach, the k-space was divided into 3 regions,
central, middle and peripheral regions for random sampling
covering different parts of the k-space, allowing partial k-space
update continuously. Therefore, dynamic cine can be acquired
with reduced sampling and reconstructed by view sharing with
acceptable image quality.

Model-Based 2D-Cine-Guided TR-4DMRI
Reconstruction
A third method to reconstruct TR-4DMRI image is based on a
motion model that is built on the RC-4DMRI and dynamic 2D
cine to guide the model to deform to provide 4D volumetric
images. Therefore, this method is fully dependent on RC-4DMRI.
Dynamic 2D cine has been utilized for motion assessment and
MR-guided radiotherapy on anMR-Linac (MRL) system (42, 43).
The frame rate of 4Hz is available in current commercial systems,
although recent studies have shown that the temporal resolution
can be further improved (6, 44).

Although 2D cine images are insufficient for volumetric
motion assessment of GTV and OAR for treatment planning
or treatment delivery, the missing volumetric data can be
obtained from prior 4DMRI scans of the same patients.
Harris et al. reported a method to retrieve the volumetric
information from RC-4DMRI by building a patient-specific
respiratory motion model, which can be deformed using
the dynamic 2D cine as the guidance (45). This method
requires RC-4DMRI, DIR, and principal component
analysis (PCA) to build the motion model, similar to a
method that was developed in 4DCT (46). Stemkens et al.

reported the same technique of TR-4DMRI but focusing
on abdominal tumor (47) and 4DMRI can be also used for
dynamic contrast-enhanced (DCE) imaging for better tumor
delineation (48).

Other 2D cine-guided reconstruction methods of TR-4DMRI
were also reported under certain clinical conditions and
assumptions. Paganelli et al. acquired interleaved orthogonal
2D cine images, deformed them to an RC-4DMRI library, and
extrapolated the 2D displacement vector fields (DVFs) for 3D
image reconstruction (49). When deformation is small, 2D cine
may be close to the same phase as a 3D image within volumetric
RC-4DMRI (50). Park et al. used local rigid registration in a
small region of interest that contains the tumor to retrieve the
tumor motion to study internal-external motion correlation (51).
The method served the purpose of extracting the tumor motion,
but it may inherit a higher degree of uncertainty for full-image
reconstruction, especially for motion that does not correlate well
with respiration.

CLINICAL EVALUATIONS AND
APPLICATIONS OF RC- AND TR-4DMRI

High soft-tissue contrast in RC-4DMRI facilitates tumor/organ
delineation and registration for treatment planning. Zhang et al.
reported organ segmentation based on T2w RC-4DMRI (28),
including the heart, lungs, liver, and stomach in 10 volunteers
and evaluated manual and DIR-propagated organ segmentation
using STAPLE algorithm. A 95% confident-level ground truth
was created to quantify the quality of individual contour with
specificity, sensitivity, and Jaccard index. The DIR-propagated
contours were found as good as human contours owing to
the high soft-tissue contrasts in T2w 4DMRI. Zhang et al.
also reported lung tumor delineation in 10 patients from 6
radiation oncologists and compared the results with those from
4DCT and T1w breath-hold images (29). All images were
acquired on the simulation day within 2 h. It was found that
T2w RC-4DMRI produced a similar GTV to 4DCT but with
a much smaller variation among physicians, while T1w MRI
based GTV is about 25% smaller. In addition, the tumor
motion variation can be quite large, leading to a very different
ITV. Gao et al. studied an accelerated 4DMRI for treatment
planning (44). An abdominal tumor and two kidneys were
delineated and compared between two acceleration imaging
techniques with quantification of positioning, volume difference,
Dice similarity index and mean distance to the agreement. Liu
et al. explored the 4D diffusion-weighted imaging (DWI) MRI
imaging for tumor delineation (52). A 4D digital phantom
and volunteers were tested for the feasibility. The clinical
workflow for RC-4DMRI has been investigated for MR-only
treatment planning since only one-cycle motion is provided,
like 4DCT (53), by converting MR voxel intensity to tissue
electronic density for dose calculation and generating digitally-
reconstructed radiography (DRR) with visualized fiducials for
patient setup (43).

Assessment of radiotherapy treatment has also been
performed using a TR-4DMRI technique since it records
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exactly what happens during the beam-on time in MRL
treatment. Thomas et al. reported the patient intra- and inter-
fractional motion variations using dynamic 2D cine during
3-5 fraction SBRT treatments (30). Mostafaei et al. studied
that the localization of the gallbladder is affected by both
respiratory and peristaltic motions (32). The 2D cine images
can be converted to volumetric TR-4DMRI using the DIR-PCA
approach (Figure 1C) for retrospective treatment evaluation.
Kontaxis et al. reported a strategy to perform online intrafraction
replanning for free-breathing stereotactic body radiation therapy
using MRL (54). The dosimetry consequence of motion variation
from treatment planning viewpoint was studied using RC- and
TR-4DMRI, in comparison with the ITVmethod based on 4DCT
(55). Substantial dosimetry variations in ITV-based planning
were found when the tumor motion range varied by 5mm, and
this is worthwhile for further evaluations.

In scanning proton therapy, motion interplay effect was found
substantial (56) and respiratory-gated proton therapy may be a
viable solution (57). Dolde et al. applied five repeated RC-4DMRI
to simulate and evaluate motion variation and dose delivery in
proton therapy (57). It was also found that the residual error of
2-3mm in DIR has a large impact on dose assessment owing to
the high dose conformality with a sharp dose falloff outside of the
target for most proton plans (58).

For patient motion simulation, Stam et al. reported using 2D
cine MRI to characterize kidney motions in FB (59). Park et al.
reported that using an external surrogate to predict an internal
tumor motionmay suffer from its insensitivity to internal motion
variation and a phase mismatch (51). Wilms et al. reported using
multivariate regression approaches for diffeomorphic estimation
of internal tumor motion based on surrogates (60). Milewski
et al. reported a large phase shift between the external and
internal motion based on the internal navigator echo (1D cine)
and bellows data during FB 4DMRI acquisition and successfully
enhanced the external-internal motion correlation by correcting
the phase shift (61). Interestingly, the phase shift was found to
be relatively stable over 7–13min despite breathing irregularities.
These studies could lead to the development of a robust patient-
specific motion model for respiratory gating in the clinic.

TR-4DMRI provides actual patient breathing motion images
over multiple breathing cycles, and therefore serves as an
imaging tool for real-time motion monitoring in MRL and
provides motion data for building a patient-specific breathing
motionmodel for tumormotion prediction in non-MRL systems.
Clinically, the scanning time of TR-4DMRI is determined by
how much patient motion statistics is needed. This technique
suggests that dynamic 3D/2D cine can be converted to volumetric
TR-4DMRI with adequate spatiotemporal resolution for more
clinical evaluations, including GTV and OAR motion and
motion variations for radiotherapy treatment planning and
delivery. An MR simulator or an MRL provides simulation
or treatment motion images, which are useful for treatment
planning, assessment of treatment delivery, and building a
patient-specific multi-breath motion model.

The technical development and clinical application of RC-
and TR-4DMRI are currently at their infancy and require further
explorations to fully realize their potentials in radiotherapy with

new clinical workflows. Like any other techniques, the RC-
and TR-4DMRI have their own limitations, which may lead to
future research for improvements. For RC-4DMRI, the major
limitations are a single breathing cycle, long acquisition time,
and minor MR image distortion, while image resolution has
been substantially improved to reach or exceed that of 4DCT.
For TR-4DMRI, the major limitations include spatial image
uncertainty and image reconstruction time owing to the DIR-
based method, while the k-space or GPU-based reconstruction
approaches may provide viable solutions. In clinical applications,
physician training on target delineation based on 4DMRI images
is essential to fully realize the value of the new techniques,
because most radiation oncologists are trained for CT-based
target delineation. Currently, dedicated MR simulators are only
available in a few academic institutions but not in community
clinics/hospitals, while MRL machines are even fewer in the
world. Regardless of the dimension and form of MRI images,
radiotherapy applications require reliable conversion from MR
voxel intensity to tissue electron density for accurate radiation
dose computation, especially for MR-only treatment planning.
Despite these technical and financial limitations, RC- and TR-
4DMRI are promising to play a role in radiotherapy because
the unparallel ability to differentiate tumorous tissue from its
surrounding normal tissues and to image patient continuously
without motion periodicity assumption.

SUMMARY AND FUTURE PERSPECTIVE

Both RC- and TR-4DMRI have been developed in recent years
and continued to be further studied in the future, especially
for high spatial-resolution RC-4DMRI with reduced binning
artifacts and high spatiotemporal-resolution TR-4DMRI with
improved reconstruction. These 4DMRI techniques have been
and will be evaluated under clinical conditions for applications,
including tumor/organ delineation and motion assessment for
treatment planning and treatment dose evaluation. These allow
online or offline adaptive planning and treatment, using 4DMRI-
based assessment of the delivered dose to a mobile tumor and
surrounding OARs. High soft-tissue contrast and high spatial
resolution of RC-4DMRI are useful to improve clinical target
delineation, especially in the central thoracic and abdominal
regions where 4DCT suffers from the inability to distinguish a
tumor from surrounding healthy tissues. Because of the one-
cycle motion image of RC-4DMRI similar to 4DCT and the
fact of 5 years in advance of TR-4DMRI development, RC-
4DMRI is more likely to be first applied to the clinic in the
near future.

The main advantage of TR-4DMRI over RC-4DMRI is that
it provides multi-breath motion images during the patient
simulation and/or treatment. As common breathing irregularities
may cause large uncertainties in radiotherapy, the TR-4DMRI
technique can serve as a tool to assess and monitor motion
irregularities in MRL, aiming to improve treatment accuracy.
In light of MRL development, there is a strong clinical need to
further develop TR-4DMRI and to make it clinically available
to prospectively guide and retrospectively assess radiation
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therapy treatment. Based on the multi-breath motion data
from the simulation, a patient-specific motion model can be
built that would be useful to provide intrafractional tumor
motion guidance for non-MR Linac systems. With more
representative motion assessment from TR-4DMRI, respiratory
gating or tumor tracking could reliably be applied so that the
motion margin can be reduced, resulting in more OAR sparing
and thus allowing more potent dose prescription to treat a
mobile tumor.
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Background and purpose: Adaptive radiotherapy (ART) can compensate for the

dosimetric impacts induced by anatomic and geometric variations in patients with

nasopharyngeal carcinoma (NPC); Yet, the need for ART can only be assessed during the

radiation treatment and the implementation of ART is resource intensive. Therefore, we

aimed to determine tumoral biomarkers using pre-treatment MR images for predicting

ART eligibility in NPC patients prior to the start of treatment.

Methods: Seventy patients with biopsy-proven NPC (Stage II-IVB) in 2015 were enrolled

into this retrospective study. Pre-treatment contrast-enhanced T1-w (CET1-w), T2-w

MR images were processed and filtered using Laplacian of Gaussian (LoG) filter before

radiomic features extraction. A total of 479 radiomics features, including the first-order

(n = 90), shape (n = 14), and texture features (n = 375), were initially extracted

from Gross-Tumor-Volume of primary tumor (GTVnp) using CET1-w, T2-w MR images.

Patients were randomly divided into a training set (n = 51) and testing set (n = 19).

The least absolute shrinkage and selection operator (LASSO) logistic regression model

was applied for radiomic model construction in training set to select the most predictive

features to predict patients who were replanned and assessed in the testing set. A double

cross-validation approach of 100 resampled iterations with 3-fold nested cross-validation

was employed in LASSO during model construction. The predictive performance of each

model was evaluated using the area under the receiver operator characteristic (ROC)

curve (AUC).

Results: In the present cohort, 13 of 70 patients (18.6%) underwent ART. Average

AUCs in training and testing sets were 0.962 (95%CI: 0.961–0.963) and 0.852 (95%CI:

0.847–0.857) with 8 selected features for CET1-w model; 0.895 (95%CI: 0.893–0.896)

and 0.750 (95%CI: 0.745–0.755) with 6 selected features for T2-w model; and 0.984

(95%CI: 0.983–0.984) and 0.930 (95%CI: 0.928–0.933) with 6 selected features for joint
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T1-T2 model, respectively. In general, the joint T1-T2 model outperformed either CET1-w

or T2-w model alone.

Conclusions: Our study successfully showed promising capability of MRI-based

radiomics features for pre-treatment identification of ART eligibility in NPC patients.

Keywords: radiomics, nasopharyngeal carcinoma, adaptive radiation therapy, tumor shrinkage, magnetic

resonance imaging

INTRODUCTION

Due to the high proximity of the primary NPC tumor
to the surrounding critical organs (spinal cord, brainstem,
parotid glands) and metastatic neck lymph nodes, NPC is
rarely treated surgically; radiation therapy (RT) remains the
mainstay of NPC treatment (1). Intensity-modulated radiation
therapy (IMRT) with/without induction chemotherapy (IC)
or adjuvant chemotherapy (AC) is currently the standard of
care for NPC patients (1). In clinical practice, RT treatment
plans are tailor-made based on anatomic information of
individual patients from their pre-treatment planning computed
tomography (CT) images to maximize the radiation dose
to tumor while protecting nearby critical structures and
maintaining sufficiently high dose coverage to surrounding
nodal targets.

However, an abundance of research has shown that significant
anatomic and geometric variations are not uncommon
throughout the course of RT for NPC due to either body
weight loss (BW loss) or tumor regression (2–8). Radiation-
induced mucositis is a common and debilitating complication
for RT to HNC patients, which can lead to severe pain and
difficulty in eating, largely affecting one’s nutritional intake
and resulting in significant BW loss. A prospective study
reported a 37% of BW loss > 5 kg by the end of treatment
(9). Patients having significant BW loss tends to accompany

with reduced skin separation at various levels of cervical spine

and neck (10), causing positional variability due to possible

head movement inside the thermoplastic cast. Consequently,

such variations would leave the issue of whether the contour

deviations induced significant dose deviations in target or

organs at risk. For tumor regression, Hu et al. (6) conducted a

retrospective study and reviewed the planning CT and re-CT
images of 40 re-planned NPC patients and confirmed the
significant clinical-target-volume shrinkage of 35.1%. Murat
et al. (11) also reported median percentage change in GTV
of HNC patients for primary (26.8%), nodal (43.0%), and
total (31.2%) GTVs. Indeed, when significant tumor shrinkage
occurs, those critical organs might move into the original
high dose region, leading to deleterious dosimetric impact
on the surrounding organs (3, 4, 12) and/or insufficient dose
delivery to targets (4, 13). ART can compensate for these
dosimetric impact and maintain desirable therapeutic index.
The clinical and dosimetric benefits of ART for HNC and NPC
cancer patients have been widely reported (14–17). Yet, the
implementation of ART is limited by several reasons. First, the
choice to ART can be resource intensive and time-consuming

for repeat imaging, re-contouring, re-planning, and analyzing
dosimetric impacts between previous and new treatment plans,
adding significant clinical burden and cost of patient care to an
oncology center. Hence, performing ART on a patient basis is
clinically impractical, especially for some busy units. Second,
due to the nature of multifactorial ART eligibility, there is no
universal selection protocol for ART that can be applied to all
hospitals. In this regard, a huge amount of efforts has been
constantly made to identify possible ART criteria for HNC and
NPC cancer patients (5–7, 11, 18–21) to facilitate the clinical
application of ART. Despite that, the current ART practice in
most oncology centers, particularly for those busy units, is not
efficient. The need for ART of each patient can now be only
assessed during the RT treatment. Therefore, pre-treatment
identification of high-risk NPC patients for ART is crucially
favorable to achieve optimal personalized RT treatment, enabling
radiation oncologists to more effectively and accurately prescribe
ART for NPC patients and streamline resources management in
clinical settings.

Recently, the field of radiomics together with rapid machine
learning paradigms have increasingly gained popularity in
the community of medical research, paving the way toward
precision and personalized medicine (22). Radiomics, first
introduced by Lambin et al. (22), is now shifting the
role of medical imaging beyond the traditional diagnostic
purposes. It allows for transformation of digitally encrypted
medical images into mineable high-dimensional data, which
can then be quantitatively analyzed to decode concealed
genetic and molecular traits for decision making in oncology
(23). While the predictive powers of radiomics in both
cancer diagnosis and disease progression have been widely
investigated (24–28), an extremely limited effort has yet
been made to identify cancer patients for ART. Given the
evidence of significant tumor shrinkage between two CT
scans along RT treatment for re-planned NPC patients,
we hypothesize that radiomic features extracted from 3-
dimensional tumor volume contain predictive biomarkers for
tumor shrinkage following cancer treatment—an implication
for ART.

To our best knowledge, there is no research to include
radiomics in predicting ART eligibility for NPC patients
and its tumoral predictive biomarkers for ART has not
been explored before. The objective of our study was to
identify tumoral radiomic features using multi-parametric MR
images, which are capable of predicting the ART eligibility
for NPC patients. A study flow of current study is shown in
Supplementary Figure 1.
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METHODS AND MATERIALS

A Predefined Hypothesis
Radiomic features extracted from 3-dimensional tumor volume
contain predictive biomarkers for tumor shrinkage following
cancer treatment—an implication for ART.

Patients
Patient Source
The current research was approved by the Human Subjects
Ethics Sub-committee of the Hong Kong Polytechnic University
and Kowloon Central/Kowloon East Cluster Research Ethics
Committee of the Hospital Authority. This is a retrospective
study, based on analyses of anonymized radiographic data and
clinical data, the requirement for individual informed consent
was waived. A total of 100 newly diagnosed patients with biopsy-
proven (II-IVB) NPC (According to 7th edition of American
Joint Committee on Cancer/Union for International Cancer
Control TNM staging system) who received primary radiation
therapy with/without chemotherapy at the Department of
Clinical Oncology of Queen Elizabeth Hospital (QEH) between
April 2015 and February 2016 were retrospectively reviewed.
Based on the inclusion and exclusion criteria (IEC), 70 eligible
patients were enrolled in the current study and randomly
stratified into training (n = 51) and testing (n = 19) sets,
as illustrated in Figure 1 (Details of the IEC is described in
Supplementary Material).

Patient Data
Patient clinical data, including demographic information
(age, gender) and tumor characteristics (T stage, N stage,
histological subtype); imaging data (planning CT images, pre-
treatment CET1-w and T2-w MR images); treatment-related
data (contouring data, treatment machine, treatment strategies,
dose fractionation scheme); outcome data (re-plan status and any
replan-related medical records) were retrospectively collected.

Treatment
In general, patients with early-stage (I-II, n = 3) tumors were
treated with curative RT alone, while those with advanced-
stage (III-IVB, n = 67) were treated with radical concurrent
chemoradiotherapy (CCRT), with/without IC or AC. Pre -
treatment MRI and planning CT scans were performed within a
week prior to the start of IC treatment for target delineation and
during the last cycle of IC treatment, respectively. In our dataset,
7 out of 70 patients received IC, while only one underwent
ART procedures, who subsequently refused further IC after
completion of the first cycle due to repeated vomiting. See
Supplementary Material for details of the chemotherapy and
RT regimen.

Clinical Endpoint
The clinical endpoint of this study was defined as the re-plan
status of patients: whether or not a patient received ART during
RT treatment at the discretion of radiation oncologist.

FIGURE 1 | Inclusion and exclusion criteria used in the current study.
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Multifactorial ART Eligibility
A daily megavoltage CT (MVCT) or cone beam CT (CBCT) or
planar orthogonal X-rays was taken for all patients to correct
for positional variations and to assess anatomic or geometric
changes throughout the entire treatment chain. Additionally,
weekly records of body weight were made to assess whether
significant body weight loss (BWL > 10%) occurred.

The Radiation Oncology team reviewed daily scans on a
regular basis, considering BWL of individual patients. When
BWL > 10% occurred, possibly accompanied with noted change
in body or neck contour, significant lymph nodes regression
and/or loss of neck tissue, an adaptive review process was
initiated, where the original plan was re-calculated on the MVCT
scan for initial dosimetric evaluation to determine whether
further actions (re-CT and/or re-plan) or continuous monitoring
were appropriate. Patients who did not receive any actions from
the first review session were then proceeded with original plan
until the next review session for another dosimetric evaluation.
On plan review, radiation oncologist assessed the geometric,
volumetric and dosimetric variations of both target and organs
at risk (OARs) structures through both visual inspection and
dosimetric evaluation. The decision to generate a re-plan was at
the discretion of the treating radiation oncologist. Considerations
influencing ART implementation included risks of insufficient
primary and nodal targets coverage, overdose to critical organs
(such as spinal cord, optic chiasm, and brainstem), increase of
high skin dose areas over neck, and unfit of thermoplastic cast
for patient immobilization.

In our dataset, 39 (of 100) patients were initially enrolled into
the adaptive review processes, while only 16 ultimately received
re-planned procedures. Among the 16 patients, 13 were enrolled
in our study, the replans were mostly done during week 4–5 and
after the 20th fraction on average A diagram of leading causes
for ART implementation are illustrated in Figure 2. A detailed
qualitative summary of how those 39 patients were screened and
selected can be found in Supplementary Material.

MRI Acquisition and Segmentation
All 70 patients were scanned with 1.5-T MRI (Avanto, Siemens,
Germany) at QEH. We acquired T2-w and CET1-w Digital
Imaging and Communications in Medicine (DICOM) images
archived using Picture Archiving and Communication System
(PACs). The MR images acquisition parameters can be found
in Supplementary Material. Intravenous contrast enhanced
computed tomography (CT) simulation was performed at 3mm
intervals from the vertex to 5 cm below the sternoclavicular notch
with a 16-slice Brilliance Big Bore CT (Philips Medical Systems,
Cleveland, OH). All segmentations (tumor, nodal volume and
other organs-at-risk) were manually delineated on axial CT
slices by an experienced radiation oncologist (with >20 years
of experience), which was then fused with MR images for
further processing.

MRI Image Preprocessing
Before extracting radiomic features, all MR images were
processed using 3DSlicer (version 4.11.0). Isotropic resampling
was performed by linear interpolation to obtain a voxel size of

1 × 1 × 1mm to account for variations in scanning parameters
between studied MR series. MRI inhomogeneity correction was
applied to account for the locally varying intensity using N4ITK
algorithm. To ensure meaning comparison of the extracted
features values across all patients, intensity normalization was
conducted using brainstem as a reference ROI, which was chosen
because its signal intensity is comparatively homogeneous. The
existing contour of the brainstem structure for RT planning
purpose was modified to exclude air. Image discretization with
a fixed bin width of 5 to maintain constant intensity resolution
across resampled images. Apart from the original images, image
reconstructions were performed using Laplacian of Gaussian
(LoG) filter with sigma values of 2, 3, 4, 5mm to extract
features at multiple scales of resolution, from fine, medium
to coarse.

Feature Extraction and Preprocessing
A total of 479 radiomic features were extracted from GTVnp
on CET1-w and T2-w MR images, respectively, using
SlicerRadiomics in 3D Slicer (version 4.11.0). A representative
example of axial pre-treatment MR images with GTVnp contour
is shown in Figure 3. Extracted features included shape features
(n = 14), first-order intensity features (n = 90), and texture
features (n = 375) (See Supplementary Material for a detailed
listing of extracted features). All extracted radiomics features
were centered and scaled to a value with a mean of 0 and a
standard deviation of 1 (z-score transformation) before further
analysis using R software (version 3.5.2).

Feature Selection and Model Optimization
Methodology
To avoid over sensitive model, we removed highly inter-
correlated radiomics features. By using the R package “caret,”
we computed Pearson correlation coefficient (PCC) based on a
correlation matrix to quantify the pair-wise correlations. If two
radiomic features appeared a strong correlation with an absolute
correlation coefficient (r) ≥ 0.9, we removed the feature with
the largest mean absolute correlation. As a result, we obtained
a primary feature set of 53 from 479.

Following this, we applied Least Absolute Shrinkage and
Selection Operator (LASSO) algorithm in R package “glmet” to
select the most predictive radiomic features based on the ART
status of patients in the training set. The LASSO is typically
applied to select high-dimensional biomarkers, and coefficients
of the regression variables were penalized in the process of
regularization to minimize the prediction error. The ratio of
patients who did not receive ART (n = 57) to those who
did (n = 13) was 4, approximately. Considering the imbalance
data, we adopted our three-step feature screening strategy, as
illustrated in Figure 4, to construct CET1-w, T2-w, and joint
T1-T2 based radiomic models. The first two steps aimed to
further eliminate less/least predictive features in terms of their
frequency of occurrence among hundreds of generated models.
With the reduced features, we performed PCC with r ≥ 0.8
to avoid highly correlated features in our final models. Lastly,
model trainings were performed with reduced number of input
features using a double cross-validation approach, similar to the
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FIGURE 2 | An illustrative example of clinical decision on ART implementation.

FIGURE 3 | Axial pre-treatment morphological MR images of a 44-year-old man with undifferentiated carcinoma of NPC (T3N2M0). Features of radiomics were

extracted from the primary tumor area -GTVnp (red overlay). From left to right: CET1-w and T2-w MR image, respectively.

one adopted by Xu et al. (29) In short, 100 random sampling
was conducted to balance the class distribution within the cross-
validation partitions, which would result in a distribution of
AUC values across the generated models and hence allow us to
assess the model performance. A 3-fold nested cross-validation

was performed with 20 repetition to determine the optimal value
for the model tuning parameter (λ). As a result, a total of
2,000 models were generated for each input set of features (See
Supplementary Material for feature screening methodology). In
total, 8 sets of radiomic features with number of variables ranging
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from 3 to 10 were analyzed for the prediction capability in terms
of AUCs using box and whisker plots and 95 percent confidence
interval (CI).

Statistical Analysis
The statistical correlations between available clinical data and
replan status were assessed using univariate logistic regression.
All statistical analyses were performed using R software (version
3.5.2). The following R packages were used: The glmnet package
was used for LASSO logistic regression. The caret package was
used to perform Pearson correlation study. The ROCR package
was employed to perform ROC analysis. All statistical tests were
two-sided, and P-values of <0.05 were considered significant.

RESULTS

The demographic and tumor characteristics of 70 NPC
patients are summarized in Table 1. Thirteen (18.6%) patients
who underwent ART procedure were included. There is no
statistical association between the available clinical data and
re-plan incidence.

Figure 5 displays the AUC distributions for each feature
set (from 3 to 10 features). Figures 5A–C shows the box and
whisker plots of the three types of models (CET1-w, T2-w, and
joint T1-T2) for training set; Figures 5D–F are for testing set;
Figures 5G–I visualizes the range of 95% CI of AUCs in both
training and testing sets for the three types of models. The
optimal feature sets for each type of models were determined
considering the overall distribution of AUC values and its
stability.When adding onemore feature to the current feature set
made no/less difference to the AUC values, the current feature set
was considered as the optimal feature set that would give optimal
predictive performance of our models. Selected features for each
model are listed in Table 2.

Average AUC values in training and testing sets were 0.962
(95%CI: 0.961–0.963) and 0.852 (95%CI: 0.847–0.857) with
8 selected features for CET1-w model; 0.895 (95%CI: 0.893–
0.896) and 0.750 (95%CI: 0.745–0.755) with 6 selected features
for T2-w model; and 0.984 (95%CI: 0.983–0.984) and 0.930
(95%CI: 0.928–0.933) with 6 selected features for joint T1-T2
model, respectively.

DISCUSSION

We successfully revealed the predictive capability of MRI-based
radiomics in ART eligibility using our dataset. Eight features
were identified for CET1-w model, including 2 shape features
(sphericity, maximum 2D diameter slice) and 6 LoG-based
features which include 3 first-order features (kurtosis, skewness)
and 3 texture features (GLCM and GLDM). Six features were
selected for T2-w model, including 2 shape features (sphericity,
elongation) and 4 LoG-based features which include 1 first-order
feature (kurtosis) and 3 texture features (GLDM, NGTDM).
Six features were chosen for joint T1-T2 model, including 1
first-order feature (kurtosis) and 5 LoG-based features which
consist of 2 first-order features (kurtosis, skewness) and 3 texture
features (GLCM, GLDM), as shown in Table 2. With these

TABLE 1 | Patient characteristics in the present cohort.

Clinical

factor

Category Number

(Percent)

P-values

Gender Male 50 (71.4%) 0.2558

Female 20 (28.6%)

Age in

years

<51 21 (30%) 0.386

51–70 42 (60%)

>70 7 (10%)

T stage T1 2 (2.9%) 0.554

T2 2 (2.9%)

T3 50 (71.4%)

T4 16 (22.8%)

N stage N1 5 (7.1%) 0.859

N2 56 (80%)

N3 9 (12.9%)

Overall

stage

Stage II 3 (4.3%) 0.535

Stage III 43 (61.4%)

Stage IV 24 (34.3%)

Histology Type I 3 (4.3%) 0.827

Type II 1 (1.4%)

Type III 66 (94.3%)

Treatment EBRT-alone 14 (20%) 0.8411

CCRT 37 (52.9%)

CCRT + AC 11 (15.7%)

IC + CCRT 7 (10%)

Others 1 (1.4%)

Initial

weight

(kg)

(average

± SD)

Replan Group 61.6 ± 15.5 0.929

Non-replan Group 61.9 ± 12.2

EBRT, External Beam Radiation Treatment; CCRT, Concurrent Chemotherapy Radiation

Treatment; IC, Induction Chemotherapy; AC, Adjuvant Chemotherapy; Type I, Keratinizing

squamous cell carcinoma; Type II, Non-keratinizing differentiated carcinoma; Type III,

Non-keratinizing undifferentiated carcinoma.

selected features, we achieved average AUCs of 0.962 (0.852),
0.895 (0.750), 0.904 (0.930) in training (testing) set for CET1-
w, Tw-2 and joint T1-T2 models, respectively, representing a
promising result for pre-treatment prediction of ART eligibility
in NPC patients.

Multiple groups have confirmed that significant tumor
shrinkage occurs during RT, triggering the need for ART. Hu
et al. (6) reviewed the planning CT and re-CT images of 40
re-planned NPC patients and confirmed the significant clinical-
target-volume shrinkage of 35.1%. Murat et al. (11) reported
median percentage change in GTV of HNC patients for primary
(26.8%), nodal (43.0%), and total (31.2%) GTVs. Lee H et al.
confirmed average volume reduction of GTVnp of 45.9 cm3 (pre-
RT) to 26.7 cm3 (third week of RT) in 159 NPC patients. All these
studies have suggested that tumor shrinkage serves as a favorable
ART criterion. However, only a few studies have developed ART
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FIGURE 4 | Feature selection and model optimization methodology. Superscript “a”: T for training cohort; V for validation cohort. “b”: The number inside the

parentheses is either “1” or “0,” representing “re-planned” and “not re-planned” patients; Numbers in front of the parentheses indicate number of patients. “c”: 25

features remained in feature set 1c for CET1-w-based model; while 28 and 39 for T2-w-based and Joint T1-T2-based models, respectively. “d”: 16 features remained

in feature set 2 for CET1-w-beased model; while 13 and 22 for T2-w-based and Joint T1-T2-based models, respectively.

selection strategies based on the tumor volume reduction. Murat
et al. (11) developed a decision tree for tumor shrinkage for
HNC patients, incorporating initial target volumes and other
clinical factors; although an accuracy of 88% was reported in
predicting the tumor shrinkage in 48 patients, the validity was not
tested and some of the clinical factors used may not be available
in other clinics, such as tumor growth pattern (endophytic or
exophytic), hindering the generalizability of the decision tree.
Recently, Ramella et al. (30) explored the radiomic capability for
ART in lung cancer patients and reported that radiomic features
extracted from planning target volume (PTV) of lung cancer on
CT images were capable of distinguishing patients between ART
and non-ART group with AUC of 0.82, on the ground of tumor
shrinkage during treatment. To our best knowledge, this study
is the first to include radiomics in predicting ART eligibility for
NPC patients and its tumoral predictive biomarkers for ART has
not been explored before. Our promising results are also in line
with the work done by Ramella et al. (30)

In our experience, we observed that the joint T1-T2 radiomic
model outperformed either CET1-w or T2-w alone model
in terms of AUCs in both training and testing sets. From
Figures 5G–I, it can be observed that the joint T1-T2 model

gives a more consistent variation in 95% CI of AUCs against
different feature sets in both training and testing sets, suggesting
that joint T1-T2 model might be the preferable predictive system
among the others. Another interesting observation was that the
majority (5 of 6) of the selected features in the joint T1-T2 model
were from CET1-w images, suggesting that features from CET1-
w images might be more predictive than those from T2-w images.
A possible reason could be attributed to the inherent limitation
of LASSO; when pairwise correlations exist between predictors,
the LASSO picks one correlated predictor and ignores the rest.
To account for this, we performed another PCC with r ≥ 0.8
prior to part III in our feature selection methodology (Figure 4)
to avoid highly correlated features in our final models. Further
investigations on the feature selection methodology will be part
of our future studies.

On the other hand, NPC radiomics studies onMR images have
been widely studied, focusing mainly on prediction of prognosis
(disease progression) and treatment response to either induction
chemotherapy (IC) or chemo-radiotherapy, while prediction
of the need for replanning has not been previously reported.
Besides, each study developed a unique radiomic signature
for the same outcome prediction, which limits the feasibility
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FIGURE 5 | Distribution of AUC values in training and testing cohorts against different number of features in the constructed models from 100 resampled iterations of

20-repeated 3-fold cross validation (CET1-w model: first column, T2-w model: second column, and Joint T1-T2 model: third column). The box and whisker plots in

first (A–C) and second rows (D–F) display the AUC distributions with varying number of selected features in training cohort and testing cohort, respectively; the plots

in third row (G–I) displays 95% confidence interval and average AUCs for both cohorts against number of selected features in the models.

to directly compare all the resultant features between studies.
However, interestingly, categories of resultant features might
be different depending on prediction outcomes, which might
explain our results to some extent. For prognostic prediction,
texture features were obviously dominant in their final radiomic
signatures relative to first-order and shape features, and GLCM
(Gray-Level Co-occurrence Matrix) was the only shared-feature
category between studies. A possible rationale might be that
the texture features were considered to reflect intra-tumor
heterogeneity by depicting the spatial arrangement of voxels
(regularity) and variability of local intensity within tumor,
which was acknowledged as a characteristic of malignancy. For
prediction of treatment response, while GLCMwere still the only
common resultant feature category between studies, however,
first-order features were dominant in final radiomics signature.
Wang et al. investigated the capability of MRI-based radiomic
signatures to predict early response to IC for NPC patients
using T1-w, CET1-w, and T2-w MR images. Among the 15
features selected in their joint-T1-CET1-T2-w model, 7 were
first-order features, three were GLCM features, and the rest
were Gabor and wavelet features. Another radiomic study by
Hou et al. (31) exploring feasibility of CECT-based biomarkers
to predict therapeutic response of esophageal carcinoma to
chemo-radiotherapy reported that first-order features (skewness

and/or kurtosis) were identified as significant parameters for
differentiating SDs (stable disease) from PRs (partial response)
and SDs from CRs (complete response). In both studies,
the tumor response was assessed according to the Response
Evaluation Criteria in Solid Tumors (RECIST), which takes into
account the reduction of tumor size following treatment. Similar
to our study, we hypothesized that the image-based tumoral
biomarkers are predictive to tumor shrinkage.

In our results, shape features (e.g., Sphericity, Elongation,
Maximum 2D diameter slice) and/or first-order features (e.g.,
kurtosis and skewness) were generally dominant relative to
texture features in our models, which is consistent with
results from abovementioned radiomic studies for treatment
response prediction. Interestingly, kurtosis and/or skewness and
GLCM-based features are the common features shared in all
three models. Kurtosis and skewness measure the peakiness
and asymmetry of the histogram, respectively, while GLCM
features quantify the spatial gray-level variation within local
neighbors on a pixel basis. Nevertheless, the understanding of
the meaningfulness of these features, especially in relation to
the prediction outcome, is still largely unknown and deserves
further investigations.

This study has several limitations. Firstly, the heterogeneity
of image acquisition and reconstruction protocols and ART
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TABLE 2 | Table of selected features in CET1-w, T2-w, and joint T1-T2 radiomics models.

MRI series Selected radiomics features CET1-w model T2-w model Joint T1-T2 model

CET1-w Original shape Sphericity X

CET1-w Original shape Maximum 2D Diameter Slice X

CET1-w Log-sigma-2-0-mm-3D glcm MCC X X

CET1-w Log-sigma-2-0-mm-3D first-order Kurtosis X X

CET1-w Log-sigma-3-0-mm-3D first-order Skewness X X

CET1-w Log-sigma-4-0-mm-3D first-order Kurtosis X

CET1-w Log-sigma-5-0-mm-3D gldm Dependence Entropy X

CET1-w Log-sigma-5-0-mm-3D gldm Small Dependence Low Gray Level Emphasis X X

CET1-w Original first-order Kurtosis X

T2-w Original shape Sphericity X

T2-w Original shape Elongation X

T2-w Log-sigma-2-0-mm-3D gldm Large Dependence High Gray Level Emphasis X

T2-w Log-sigma-2-0-mm-3D glcm Imc1 X

T2-w Log-sigma-3-0-mm-3D ngtdm Strength X

T2-w Log-sigma-5-0-mm-3D first-order Kurtosis X

T2-w Log-sigma-3-0-mm-3D glcm Idn X

strategies in different medical centers limit the generalizability
of the identified models and reproducibility of the selected
features. In future study, we will perform testing on different
datasets obtained from other oncology departments with patients
undergoing MRIs on different scanners. Secondly, the rate of
adaptive replannings in the small cohort is relatively low. A
more convincible conclusion could be drawn by recruiting
larger cohorts with more balanced dataset between patients who
underwent replan and those did not, which will be part of
our future efforts. Lastly, the retrospective nature of this study
might account for the potential bias. However, the novelty of
this study was to highlight the capability of using pre-treatment
MRI radiomic features to predict which patients undergoing
radiotherapy for NPC were selected for ART. In future study,
radiomics features from other ROIs and other pertinent non-
radiomic clinical data, such as volumetric and dosimetric data
of tumor and nearby organs (e.g., lymph nodes and parotid
glands), and geometric relations among these structures, will be
incorporated into our radiomics models in future to yield a more
comprehensive prediction.

CONCLUSION

The present study successfully demonstrated promising
capability of MRI-based radiomics for pre-pretreatment
identification of ART eligibility in NPC patients. In particular,
the joint T1-T2 model with 6 selected radiomic features appears
to be the preferable predictive system over other studied models.
This would allow radiation oncologists to more effectively and
accurately prescribe ART on individual patient basis to achieve
true personalized radiotherapy for NPC patients, meanwhile
streamlining resources management in clinical settings. In
future work, multi-institution prospective studies with larger
patient sample are warranted to improve the clinical efficacy of
our models.
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Purpose: The purpose of the research was to assess the prognostic value of

three-dimensional (3D) texture features based on diffusion-weightedmagnetic resonance

imaging (DWI) for esophageal squamous cell carcinoma (ESCC) patients undergoing

concurrent chemo-radiotherapy (CRT).

Methods: We prospectively enrolled 82 patients with ESCC into a cohort study. Two

DWI sequences (b = 0 and b = 600 s/mm2) were acquired along with axial T2WI and

T1WI before CRT. Two groups of features were examined: (1) clinical and demographic

features (e.g., TNM stage, age and sex) and (2) changes in spatial texture characteristics

of the apparent diffusion coefficient (ADC), which characterizes gray intensity changes

in tumor areas, spatial pattern and distribution, and related changes caused by CRT.

Reproducible feature sets without redundancy were statistically filtered and validated.

The prognostic values associated with overall survival (OS) for each parameter were

studied using Kaplan-Meier and Cox regression models for univariate and multivariate

analyses, respectively.

Results: Both univariate and multivariate Cox model analyses showed that

the energy of intensity histogram texture (IHIST_energy), radiation dose, mean of

the contrast in distance 1 of 26 directions (m_contrast_1), extreme difference

of the homogeneity in distance 2 of 26 directions (Diff_homogeneity_2), mean

of the inverse variance in distance 2 of 26 directions (m_lnversevariance_2),

high-intensity small zone emphasis (HISE), and low-intensity large zone emphasis

(LILE) were significantly associated with survival. The results showed that 6 texture

parameters extracted from the ADC images before treatment could distinguish among

high-, medium-, and low-risk groups (log-rank χ
2 = 9.7; P = 0.00773). The biased

C-index value was 0.715 (95% CI: 0.708 to 0.732) based on bootstrapping validation.
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Conclusions: The ADC 3D texture feature can be used as a useful biomarker to predict

the survival of ESCC patients undergoing CRT. Combining ADC 3D texture features with

conventional prognostic factors can generate reliable survival prediction models.

Keywords: esophageal squamous cell cancer, texture analysis, magnetic resonance imaging, diffusion-weighted

magnetic resonance imaging, chemo-radiotherapy

INTRODUCTION

Esophageal squamous cell carcinoma (ESCC) is a disease
with increasing incidence, and the diagnosis still carries a
poor prognosis despite advances in therapy (1). Currently,
chemo-radiotherapy (CRT) is the standard treatment for locally
advanced unresectable ESCC. Due to tumor heterogeneity, these
patients usually do not have the same response to a specific
therapy. Thus, many patients may receive therapy that provides
no benefit to them. Recently, a major research focus has been
on how to provide individualized therapy. Individualized therapy
requires the development of biomarkers to predict treatment
prognosis and outcome. Imaging biomarkers, particularly those
based on functional imaging techniques that can characterize
biological effects at the cellular level, offer great potential to
improve individualized therapy (2).

Diffusion-weighted magnetic resonance imaging (DWI) is a
powerful MR functional imaging sequence sensitive to water
diffusion (3) that can detect morphological changes in tumors
at the molecular or cellular level. DWI has been studied for its
potential to evaluate the treatment response to CRT for several
types of cancers, including rectal cancer (4, 5). The quantitative
apparent diffusion coefficient (ADC) map is obtained from two
different b values to remove the T2 “shine-through” effects. This
can allow quantitative assessment for a treatment response. The
ADC can also be used to characterize hypercellularity, distinguish
cystic lesion and solid regions, and monitor the change in
cellularity within the tumor over time (6). A recent study found
that the ADC map can be used to qualitatively assess the tumor
area and detect metastatic lymph nodes (LNs) in esophageal
cancer (EC) (7).

Recently, the application of texture analysis (TA) in tumor
diagnostics has caught the attention of clinical researchers.
Texture is an important feature of images that has been used
in qualitative and quantitative classification and analysis of
materials in industry and medicine. Medical applications of
TA provide a quantitative means to analyze and characterize
the properties of tumor tissues and their physiological and
pathological stages (8). Previous studies have reported that
texture analysis can predict the treatment response and predict
patient survival (9–11). It was reported that 3D texture analysis
can be more useful than 2D analysis in characterizing intra-
tumor heterogeneity (12). In the study of ESCC, because the
esophagus is a tubular organ, 3D TA is expected to provide richer
spatial heterogeneity information than slice samples.

The objective of this study was to prospectively investigate the
prognostic value of 3D DWI features in ESCC patients treated
with CRT. By studying different types of global and regional

3D features, we evaluate their potential prognostic value in
correlation with patient survival.

MATERIALS AND METHODS

Clinical Characteristics of the Patients
Eighty-two patients with newly diagnosed ESCC treated with
CRT between 2010 and 2014 were initially enrolled in this
prospective study. The inclusion criteria for the study included
the following: (1) a confirmed diagnosis of ESCC with tissue
pathology; (2) TNM staging according to AJCC 6th Edition,
2002; (3) a Karnofsky performance status (KPS) score >70; (4)
no distant metastases under routine medical care; (5) informed
consent to have DWI examinations before and during the course
of CRT. Ten patients were excluded from the study because
of a contraindication to MRI examination, such as those with
pacemakers, metal objects, or a claustrophobic disorder. The
clinical and treatment characteristics of the qualified 72 patients
are summarized in Table 1. The mean age at the time of diagnosis
was 62.8 ± 9.1 years (median, 62.5 years; range, 45–84 years).
The male patients comprised 69.4%. Fifty-nine patients had T3
or T4 primary lesions, 53 patients were determined to have N1
(61%) with lymph node metastases, and 11 and 8 patients were
at the N0 and N2 stages, respectively. No patient had distant
metastases (Table 1).

MRI Acquisition
MR imaging in expiration breath-hold was performed before
starting the treatment for tumor staging. The following imaging
protocols were used:

• 2D T1-weighted fast low-angle shot (FLASH) sequence
(TR/TE, 140/2.5 ms; flip angle, 70◦; slice number, 24; gap:
5mm; matrix, 512× 384; field of view (FOV), 380× 285mm);

• Axial TSE T2-weighted MRI (T2WI; slice thickness, 4mm;
slice number, 24; gap: 5mm; TR/TE, 1580/72 ms; flip angle,
140◦; matrix: 512× 512; FOV, 400× 400mm);

• DWI obtained in the axial planes using a single-shot spin-
echo echo planar (SE-EPI) technique (TR/TE, 6800/70ms;
slice thickness, 4mm; zero gap; matrix, 128 × 88; FOV, 430
× 295mm); the b values (diffusion-sensitive factor) of 0 and
600 s/mm2 were selected according to a previous pathological
study at our institution (13), showing that the tumor lengths
measured using a DWI scan of b = 600 s/mm2 were close to
the real tumor lengths based on a surgical specimenwith a high
concordance with pathology. As shown in Figure 1, the DWI
scan with b = 600 s/mm2 has a good image quality relative to
the other DWI scans with b= 800 s/mm2 or 1,000 s/mm2.
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TABLE 1 | Clinical and treatment characteristic.

Prognostic factors N %

No. of patients 72

AGE

>=62 38 52.8

<62 34 47.2

SEX

Male 50 69.4

Female 22 30.6

LESION LENGTH

<=5.5 cm

>5.5 cm

PRIMARY SITE

Cervical 2 2.8

Upper esophagus 24 33.3

Middle esophagus 35 48.6

Lower esophagus 11 15.3

TNM STAGE

T2 13 18.1

T3 20 27.8

T4 39 54.2

N0 11 15.3

N1 53 73.6

N2 8 11.1

M0 72 100

Treatment characteristics

RADIATION DOSE

50Gy at 2 Gy/fx 1 1.4

54Gy at 1.8 Gy/fx 5 6.9

54Gy at 2 Gy/fx 2 2.8

56Gy at 2 Gy/fx 1 1.4

57.6Gy at 1.8 Gy/fx 1 1.4

59.4Gy at 1.8 Gy/fx 4 5.6

60Gy at 2 Gy/fx 47 65.3

61.2Gy at 1.8 Gy/fx 5 6.9

63Gy at 2 Gy/fx 6 8.3

RADIATION TYPE

IMRT 58 80.6

3DCRT 14 19.4

3DRT, 3 dimensional conformal radiation therapy; IMRT, intensity modulated radiation

therapy; fx, fraction.

Motion artifacts were minimized by acquiring all images with
breath hold in the expiration phase. Because the tumor volumes
could change slightly at the breath hold, two DWI scans with
b = 0 and b = 600 were acquired in one cycle, improving the
estimation of signal decay. This was expected to provide sufficient
imaging information to describe tumor heterogeneity.

Image Preprocessing
An image preprocessing procedure was performed that included
tumor segmentation and intensity normalization. The MRI
data set in the DICOM format was imported into MATLAB

(The Math Works Inc., Natick, MA). An in-house-developed
radiomics image analysis program implemented in MATLAB
was used for TA (available for share, https://pan.baidu.com/
s/1Tl_PsXrQj-OBJt-1cNjaZQ). The method used in this study
is described in the Data Supplement. To perform reliable
measurements, as suggested by Collewet et al. (14), the MRI data
were kept in the raw data form, and voxels within the tumor
region with intensities outside the range µ ± 3δ were excluded
in subsequent texture computations. Voxel intensity values were
typically resampled in four discrete values (16, 32, 64, or 128):

p (x) =



Range×

I (x) −min i
i∈2

max i
i∈2

−min i+ 1
i∈2



 (1)

where “Range” is the discrete values chosen (16, 32, 64, or 128),
I (x)is the intensity of the original image, and2 is the set of pixels
in the delineated area. The use of different resampling schemes
was tested. As discussed in the Data Supplement, 32 discrete
values for renormalization produced the most reliable results.

Tumor Delineation Using MRI Data
The tumor was delineated based on abnormal regions from T2-
weighted imaging (T2WI), DWI and ADC maps. Axial ADC
maps were generated using an Extended SiemensMRWorkspace
workstation. The lesions showed relatively higher signals on
DWI maps and lower signals on ADC maps. Pre-CRT MRI was
first evaluated using the combination of corresponding T2WI
and ADC images and matching between DWI and ADC to
correctly position the regions of interest (ROIs) in the primary
tumor. Axial T2 images in the same plane were referenced by
the observers due to a lack of anatomic details because of the
low signal-to-noise ratio (SNR) on DWI or ADC. Therefore, the
registration accuracy between ADC/DWI and T1WI/T2WI was
important for the process, which relies on careful registration by
the alignment of local bone structures between ADC and T2WI
images. The ROI was drawn along the border of the low signal
of the tumor on the b = 600 mm/s2 ADC images to cover the
entire tumor area of each selected slice, avoiding regions with
distortions or artifacts by verifying the lesion boundaries on
T2WI. Delineation of the lesions was performed independently
by two observers. Manual delineations were performed using
MIM software (MIMvista Corp, Cleveland, OH). Independent
samples t-test or the Kruskal-Wallis H test, where appropriate,
was used to assess the differences between the features generated
by reader 1 and those by reader 2, as well as between the twice-
generated features by reader 1. Inter- and intra-class correlation
coefficients (ICCs) were used to evaluate the intra- and inter-
observer agreements of the contour agreement and feature
extraction. ICC values >0.80 indicated good agreement. A free-
hand ROI was drawn along the border of the low signal of
the tumor on the b = 600 images to cover the entire tumor
area of each selected slice, by referencing T2WI to verify the
lesion boundaries and ensure inclusion of the entire tumor
area (Figure 2).
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FIGURE 1 | The DWI scans of b = 600, 800, 1,000 s/mm2 from the same patient (82 years old, male, T3N0M0).

FIGURE 2 | A free-hand ROI was drawn along the border of the low signal of the tumor on the b = 600 images to cover the entire tumor area of each selected slice.

(A,B) show image heterogeneity by the histogram (C). (D) illustrates a tumor slice of the resulting resampled ROI for each of these discretization ranges.

Texture Analysis
From ADC images, four subset features were extracted (Table 2)
to characterize tumor heterogeneity at global and regional
levels using first-order and higher order statistics. These
parameters were used to predict the patient response to CRT
and survival. Global information was described by intensity
histogram parameters (IHIST), including variance, mean, energy,
entropy, skewness, and kurtosis, while regional information was
characterized by intensity size-zone variability features (ISZFs).
Regional heterogeneity information included intensity variability

in the size and tumor zones [see Tixier et al. (15) for the
mathematical definition of the regional heterogeneity formula
used in this study]. Local heterogeneity information was derived
using the co-occurrence of the gray-level co-occurrence matrix
(GLCM) and gray-level gradient co-occurrence (GLGCM).
Twenty-six gray-level co-occurrence matrices were computed in
the direction of the 26 uniform distributions on the sphere from
each voxel data area. GLGCM was acquired in the original ADC
image, and the corresponding gradient image of the ADC image
and 15 Haralick features (16) were extracted from GLGCM. To

Frontiers in Oncology | www.frontiersin.org 4 October 2019 | Volume 9 | Article 105798

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Li et al. Advanced Methods Used for ESCC

TABLE 2 | Extracted texture features.

IHIST GLCM* GLGCM* ISZFs

Mean Mean/diff energy Small gradient emphasis Small zone emphasis

Variance Mean/diff entropy Large gradient emphasis Large zone emphasis

Median Mean/diff correlation No homogeneity of gray Gray intensity change

Maximum Mean/diff contrast No homogeneity of gradient Zone size change

Minimum Mean/diff homogeneity Energy Zone percentage

Up quarter value Mean/diff variance Mean of gray High intensity emphasis

Down quarter value Mean/diff mean Mean of gradient Low intensity small zone emphasis

Energy Mean/diff inertia Variance of gray High intensity small zone emphasis

Entropy Mean/diff cluster shade Variance of gradient Low intensity large zone emphasis

Skewness Mean/diff cluster tendency Correlation of gradient High intensity large zone emphasis

Kurtosis Mean/diff max probability Entropy of gray

Mean/diff inverse variance Entropy of gradient

Mean/diff inverse difference moment Mix entropy

Mean/diff sum mean Inertia

Mean/diff sum entropy Inverse difference moment

Mean/diff difference entropy

IHIST, Intensity histogram texture; GLCM, gray level co-occurrence matrix; GLGCM, gray level gradient co-occurrence; ISZFs, Intensity size-zone variability features; diff, the extreme

difference of feature.

*128 GLCM features are constructed by 64 mean values and 64 extreme difference values. Similarly, 60 gray gradient features were extracted from GLGCM.

obtain isotropy properties, the mean value and difference in the
maximum and minimum value from the same Haralick features
were computed in 26 directions and four distances (1, 2, 4, and
8 voxel distance). One hundred twenty-eight GLCM features
were constructed by 64 mean values and 64 extreme difference
values. Similarly, 60 gray gradient features were extracted
from GLGCM. One hundred twenty-eight local heterogeneity
features of co-occurrence matrices characterized variations in the
intensity between consecutive voxels. For texture reporting with
GLCM, the notation convention “method”_“feature”_“number”
was used; for example, themean of the contrast in distance 2 of 26
directions would be identified by m_contrast_2 and the extreme
difference of cluster shade in distance 1 of 26 directions would
be identified by Diff_clustershade_1. The GLGCM features were
identified by GLGCM_“feature”_“distance”; the small gradient
emphasis in distance 4 would be identified by GLGCM_Small
gradient emphasis_4. The histogram-related features would be
abbreviated by IHIST_“feature”; for instance, the histogram
energy feature would be identified by IHIST_energy. The detailed
feature information is shown in Table 2. The algorithms for
texture feature extraction are described in theData Supplement.

Feature Selection Methods
In this study, 229 features in four categories were selected.
Notably, not all the features required evaluation because many
features would be irrelevant or redundant. Therefore, the number
of features tested must be reduced by feature extraction. The
three major reasons to perform feature reduction are as follows:
(1) to reduce the training time; (2) to improve the robustness; and
(3) to enhance the reliability.

To assess texture feature reproducibility, Fried DV’s method
was used to perform test-retest scans from 10 independent

patients (17). The results are shown in the Data Supplement.
Reproducibility of the characteristic parameters is an important
characteristic in repeated experiments. In this study, a
concordance correlation coefficient (CCC) value >0.9 was
considered to guarantee reproducibility. Another consideration
was the use of a defined “dynamic range” (DR) metric to select
highly differentiated features. Similar to CCC, DR≥ 0.9 indicates
that this feature has a large dynamic range (18). The R2 of simple
regression was equal to the square of the Pearson correlation
coefficient. Values close to 1 indicate that the data points were
close to the fitted line. These features were grouped by R2

between them. We recursively repeated the process to cover all
features. We also calculated R2 between the remaining features to
quantify the dependencies. Using the above methods, 38 features
were chosen in the penalized model with highly reproducibility
and a dynamic range.

To avoid an inadequate sample size to train and test, the
“leave one out” cross validation method was used to test the
model stability. Using many features, it was difficult to predict
which parameters would be useful to indicate patient treatment
responses and survival. Therefore, it was necessary to reduce the
number of features to improve the predictability and reliability
for analysis. The least absolute shrinkage and selection operator
(LASSO) method was used to select the most useful predictive
features from the primary data set.

The abovementioned features and clinically relevant
features were entered into a penalized multivariate Cox
proportional hazards model (Adaptive Elastic Net Cox model)
that simultaneously performs covariate selection in addition to
model development. The Adaptive Elastic Net method for the
Cox model has a grouping effect (19, 20). By minimizing the
opposite number of the Cox model first, and then adding the
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appropriate penalty, the Elastic Net estimator for the Cox model
was obtained:

β̂ (EN) = argmin






1

n

n∑

i=1





−β

TXi + ln




∑

j∈Ri

exp
(
β
TXj

)









+ λ1‖β‖1 + λ2‖β‖
2





(2)

Statistical Analysis
Statistical analysis was performed using SPSS19.0 (IBM, Armonk,
New York, United States) for Windows and R software (version
3.2.3; http://www.Rproject.org). The R packages (hdnom v 4.1,
survival v 2.39-5, penalized v 0.9-47 and survcomp v 1.20.0) were
used. OS was calculated from the date of the initial diagnosis to
the date of death or time for the most recent follow-up, if the
patients were still alive. The reported statistical significance levels
were all two-sided, with statistical significance set at 0.05.

RESULTS

Overall Therapeutic Response and Survival
After the completion of CRT, an overall therapeutic response
(TE) was estimated according to the RECIST 1.1 standard (21).
Thirty-six patients (50%) were determined to have a complete
response (CR), and 36 (50%) patients had a partial response (PR).
The overall effective response rate was 100.0%.

All patients were followed up for over 1 year, and 27 patients
(37.5%) were followed over 2 years. The median follow-up time
was 16.5 months. The 1 and 2 year OS rates for all patients
were estimated at 72.2 and 34.7%, respectively. According to the
overall treatment response (CR, PR), the 1 and 2 year survival
rates of CR patients were 86.1 and 38.9%, respectively, and those
of PR patients were 58.3 and 30.1%, respectively. Significant
differences were found between the two groups (log-rank test; χ2

= 4.153, P = 0.042).

Prognostic Value of ADC Radiomics Data
The possible association of ADC map features with survival
was explored by Kaplan-Meier survival analysis. No significant
correlation was found between any ADC value measurement
(ADCmean, ADCup, ADCdown, ADCmin, ADCmax) in ESCC
patients undergoing CRT (P = 0.224, 0.534, 0.549, 0.328, 0.369).
The results of the log-rank analysis of conventional prognostic
factors for OS in univariate analysis are given in Table 3.

Age, sex, tumor site, TNM stage, and treatment type
were not significant prognostic factors according to the
results of univariate analysis. In univariate analysis, the
GTV (Gross Tumor Volume size), pathology lesion length,
therapeutic effect and radiation dose were significant prognostic
factors. Univariate analysis of image texture showed that the
IHIST_energy, m_contrast_1, m_Cluster shade_2, Diff_Clusetr
Tendency_2, Diff_homogeneity_2, m_lnversevariance_2, Small
gradient emphasis_1, GLGCM_small gradient emphasis, high-
intensity small zone emphasis (HISE) and low-intensity large

TABLE 3 | Conventional prognostic factors for patients.

Variables OS,% P-value Hazard ratio 95% CI

1 year 2 year Lower Upper

GENDER

Male 74 34 1

Female 68.2 36.4 0.325 0.710 0.360 1.403

AGE

>=62 66.7 25 1

<62 77.8 44.4 0.168 1.002 0.991 1.055

TUMOR SITE

Cervival 50 50 1

Upper esophagus 79.2 33.3 0.884 0.851 0.098 7.356

Middle esophagus 71.4 34.3 0.626 1.284 0.469 3.513

Lower esophagus 63.6 36.4 0.499 1.394 0.531 3.658

PATHOLOGY LESION LENGTH

<=5 (40) 77.5 35 1

>5 (32) 65.6 34.4 0.005 1.149 1.042 1.268

T STAGE

T2 0.85 0.38 1

T3 0.75 0.3 0.9042 1.0763 0.4629 2.5024

T4 0.66 0.36 0.2153 1.6345 0.7702 3.4688

N STAGE

N0 70 40 1

N1 73.6 34.0 0.835 1.135 0.345 3.728

N2 77.8 44.4 0.741 1.172 0.458 2.996

TNM stage I–II 78.1 34.4 1

III 67.5 35 0.120 1.274 0.939 1.727

GTV

<=40.35 83.3 36.1 1

>40.35 61.1 33.3 0.015 0.476 0.261 0.868

TE

CR 86.1 38.9 1

PR 58.3 30.6 0.042 1.851 1.024 3.346

RADIATION DOSE

>=60 81.5 40.7 1

<60 44.4 16.7 0.050 0.916 0.807 1.015

RADIATION TYPE

IMRT 69.0 32.8 1

3DCRT 85.7 42.9 0.906 1.043 0.516 2.108

3DRT, 3 dimensional conformal radiation therapy; IMRT, intensity modulated radiation

therapy; GTV, Gross Tumor Volume; TE, therapeutic effect. The bold values show that

the P ≤ 0.05.

zone emphasis (LILE) demonstrated a statistically significant
difference in association with the OS rates.

Feature Selection
Thirty-eight texture features were reduced to 6 nonzero
coefficients in the LASSO model with potential predictors based
on 72 patients in the primary cohort. The detailed results used in
this study were reported in theData Supplement.

To further define the predictive values of ADC, multivariate
Cox regression model analysis was performed using adjusted
clinical factors. Table 4 lists the multivariate analysis results.
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TABLE 4 | Multivariate analysis of prognostic factor for patients with ESCC.

Variables B SE Wald df P-value Hazard ratio 95% CI

Lower Upper

Radiation dose −0.125 0.067 5.112 1 0.026 1.211 0.925 1.326

IHIST_energy −0.056 0.021 7.482 1 0.007 0.952 0.911 0.995

m_contrast_1 0.146 0.028 19.47 1 0.001 1.152 1.128 1.195

Diff_homogeneity_2 −0.022 0.002 8.824 1 0.003 0.963 0.941 0.981

m_Inverencevariance_2 0.036 0.014 4.06 1 0.034 1.042 1.002 1.13

HISE −0.053 0.018 8.016 1 0.004 0.942 0.913 0.952

LILE 0.067 0.033 9.735 1 0.003 1.085 1.033 1.139

IHIST_energy, the energy of intensity histogram texture; m_contrast_1, the mean of contrast in distance 1 of 26 directions; Diff_homogeneity_2, the extreme difference of homogeneity

in distance 2 of 26 directions; m_Inverencevariance_2, the mean of inverse variance in distance 2 of 26 directions; HISE, high intensity small zone emphasis; LILE, low intensity large

zone emphasis.

Validation of Model Performance
The study used the “hdnom” package to assess the model
performance by time-dependent AUC using the “leave one
out” cross-validation method. We validated the Adaptive Elastic
Net multivariate Cox model performance every 6 months.
Figure 3 shows the mean, median, maximum, minimum, and
25 and 75% quartiles of time-dependent AUC at each time
point across all fold predictions. The median and mean values
could be considered the bias-corrected estimation of the model
performance. The “leave one out” validation could ensure robust
results. The figure shows that themedian andmean values at each
evaluation time point were relatively close. The results showed
that the model had a relative high AUC value at each time point.
The study used resampling methods of “leave one out” cross
validation for internal model calibration. We split the samples
into three risk groups according to the adaptive Elastic Net
multivariate Cox model. The model calibration results (median
of the predicted survival probability; median of the observed
survival probability by the Kaplan-Meier method with 95% CI)
are shown in Figure 4. The C-index for the prediction model was
0.720 (95% CI: 0.713 to 0.731) for the primary cohort, which was
confirmed to be 0.715 (95% CI: 0.708 to 0.732) via bootstrapping
validation. We used the Kaplan-Meier survival curve and values
in the risk table to further analyze the survival differences among
different risk groups. Here, we plotted the Kaplan-Meier survival
curve and assessed the amount of risk in three risk groups from 1
to 3 years (Figure 5; χ2 = 9.7, Log-rank P = 0.00773).

DISCUSSION

DWI is a powerful MR sequence that provides unique
information related to tumor cellularity and the integrity of the
cellular membrane. The technique can be applied widely to detect
and characterize tumors and to monitor the treatment response
(6). The ADC map can be acquired by two DWIs (e.g., b values
of 0 and 600 mm/s2) using an MR workstation. The ADC map
is independent of the magnetic field strength and can overcome
the effects of T2 shine-through, thus allowing more meaningful
comparison of the results. We also performed experiments using
800 mm/s2 and 1,000 mm/s2 (Figure 1). However, the results

FIGURE 3 | The mean, median, maximum, minimum, and 25 and 75%

quartiles of time-dependent AUC at each time point across all fold predictions.

were not reliable, the stability of the parameters was not high,
and the repeatability was not good. The possible reasons for the
above situation may be that a higher b value will introduce much
more noise in chest tumors.

Recent investigations have demonstrated that the
pretreatment ADC value may be applied as a biomarker to
predict and detect early the treatment response in ESCC, but the
results remain controversial. Koyama et al. (22) reported that
tumors with a lower pretreatment ADC value and a higher signal
intensity at DWI responded better to treatment. Koh et al. (6)
discussed the mechanism of this phenomenon and showed that
tumors with a high pretreatment ADC value were likely to be
more necrotic than those with a low ADC value. Necrotic tumor
tissues are frequently hypoxic, acidotic and poorly perfused,
leading to diminished sensitivity to CRT. However, not all studies
support this hypothesis. Aoyagi et al. studied 80 patients with
advanced EC and found that tumors with a higher pretreatment
ADC value responded better to treatment (23). They also
performed a further study and found that the pretreatment ADC
value was not significantly different between the responder and
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FIGURE 4 | The median of the predicted survival probability and the median of

the observed survival probability by the Kaplan-Meier method with 95% CI.

The x axis depicts the observed value; the y axis depicts the predicted values

in the corresponding point.

FIGURE 5 | The Kaplan-Meier survival curves and evaluation of the number at

risk from 1 to 3 years for the three risk groups using the “hdnom” package in R

software. The p-value of the log-rank test is 0.00773.

non-responder groups (24). Wang et al. also found no direct
correlation between the pretreatment ADC value and treatment
response in EC (25). The reasons for the controversy could be

that simple ADC values only show limited information (one
dimensional information) that only reflect variability (high or
low), not including geometric distribution. Texture features can
overcome the above defects, having the potential to show and
quantify pixels or the voxel geometric distribution. With the
development of imaging analysis, much evidence has suggested
that TA can aid clinicians in cancer diagnosis (26), staging (27),
prognoses (28), and response assessments (15). In our study of
82 patients with the diagnosis of ESCC, interestingly, we showed
that the pretreatment DWI texture features can provide useful
prognostic information for ESCC patients. Finally, previous
studies were mostly focused on limited tumor areas, such as
contouring ROIs in the largest section, rather than the global
tumor volume. In our study, to compensate for the 2D texture
feature defects (12, 29, 30), 3D texture parameters were chosen
to evaluate the prediction potentials.

We first analyzed the intensity histogram features with
highly reflected distribution of ADC values. The other texture
features mainly focused on the local and regional scales, which
were used to analyze the interrelationship between pairs of
voxels and arrangement of voxels. From microscopy, the
order of voxels reflected local non-uniformities. Our analysis
showed that IHIST_energy, m_contrast_1, Diff_homogeneity_2,
m_Inversevariance_2, HISE, and LILE have strong and
independent associations with the OS rates. The IHIST_energy
measures the homogeneity of gray distribution. The higher value
depicts more homogeneity than the lower one. m_Contrast_1
is a measure of the contrast or amount of local variation
present in the ADC. The tumor usually has a large amount
of local variations present in the image compared with the
normal part. The other parameters (Diff_homogeneity_2,
m_Inversevariance_2) were a measure of homogeneity of the
image. This represents the change in the tumor gray level and
reflects the aggregation of tumor cells on the macro level. The
HISE measures the joint distribution of small zones and high
gray-level values. The LILE has opposite characteristic to HISE
and measures the joint distribution of large zones and high gray-
level values. These features represent spatial ADC variability in
esophageal tumors, explaining why these ADC texture features
are better prognostic factors than simple global ADC values.

The OS variation in ESCC patients treated with CRT is
highly related to tumor heterogeneity due to its intra-tumor
spatial variation in the cellularity, angiogenesis, extravascular,
extracellular matrix, and areas of necrosis. The high tumor
heterogeneity was shown to have a poorer prognosis and
treatment resistance (31). Ganeshan et al. (32) found that tumor
heterogeneity in EC could be reflected by TA. Our study showed
that six 3D texture parameters extracted from ADC maps can
distinguish among the high-, median-, and low-risk group (Log-
rank χ

2 = 9.7; P = 0.00773). The idea behind this performance
is that texture parameters can reflect the movement of water
molecules and tumor heterogeneity. This may become a major
mechanism to explain why texture parameters can accurately
associate with the OS of ESCC.

To ensure the model’s stability, the test-retest method was
used to test the selected feature stability in the feature selection
step. In the model validation step, the “leave one out” cross
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validation for both model validation and model calibration was
used. Compared with the general sampling test (splitting their
data into test and validation sets), the LASSO regularization
scheme was used to prevent over fitting (33).

This study has an important clinical significance.
Uncertainties remain in the treatment of ESCC, including
the scope of the radiotherapy target area, the dose of radiation
therapy, the consolidation chemotherapy maintenance period,
the assessment of the clinical effect and so on. The cause of the
above uncertainty remains a lack of effective means to describe
ESCC heterogeneity. The texture features combined with
conventional prognostic factors may present a more accurate
predictive tool. Our research showed that texture features can be
used to evaluate the prognosis of ESCC after CRT at the early
phase. However, our study is limited by several factors, the most
important of which is the prospective nature of the assessment
using a relatively small group of patients. It is necessary to
expand the sample size for further study to clearly explore the
relationship between the global ADC value and OS. Another
limitation of this study is that the tumor regions of interest
were drawn manually; inter- and intra-observer variation could
be reduced if automated methods were used in the future,
particularly for multicenter studies.

CONCLUSIONS

Based on the ADC images, the texture parameters extracted by
computer semi-automatic extraction are related to ESCC patient
survival. This study confirms that the combination of ADC
textures (histogram feature, GLCM feature, and ISZF feature)
and conventional prognostic factors (radiation dose) can be used
to generate robust models to predict OS. Future work needs
to further verify the practical value of related parameters in
clinical application.
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This work describes a novel application of MR-guided online adaptive radiotherapy

(MRgoART) in the management of patients whom urgent palliative care is indicated

using statum-adaptive radiotherapy (STAT-ART). The implementation of STAT-ART, as

performed at our institution, is presented including a discussion of the advantages and

limitations compared to the standard of care for palliative radiotherapy on conventional

c-arm linacs. MR-based treatment planning techniques of STAT-ART for density overrides

and deformable image registration (DIR) of diagnostic CT to the treatment MR are

also addressed.

Keywords: online adaptive radiotherapy, MRgoART, MR-guidance, MRgRT, ART, MR-guided radiotherapy,

palliative radiation, deformable image registration

INTRODUCTION

The American Cancer Society estimated that annually in 2019 there are 1.76 million new cases of
cancer with 606,880 cancer deaths (1). Most cancer deaths are associated with a decreased quality
of life and painful end-of-life, likely due to loco-regional or metastatic disease progression (2, 3).
Palliative radiotherapy (RT) allows for the management of patients with advanced stage cancer.
Palliative RT directly relieves obstructions, bleeding, and cancer-related pain for patients not a
candidate for or responding to opioid medication (2–13).

As the sensitivity and accuracy of cancer detection and subsequently cancer treatments
progressively improve, the life expectancy for cancer patients is steadily rising even with metastatic
disease (3). Thus, the continued management of these patients is of great importance (3). Due to
multiple steps in standard radiation planning processes, palliative treatment may take 3–7 days
post-consultation before the first treatment fraction is performed (3). Improving the palliative RT
workflow by utilizing advanced technology to offer rapid, same day treatment can reduce the pre-
treatment time period, allowing for near-immediate pain-relief and an improved quality of life for
these patients.

The MRIdianTM cobalt and more recently released MRIdian linac (ViewRay Inc.,
Cleveland, OH) is an MR-guided radiotherapy (MRgRT) platform that integrates magnetic
resonance imaging (MRI), radiotherapy delivery, treatment planning, image registration,
and treatment record and delivery into a single unit (14, 15). The integrated approach
enables MR-guided online adaptive radiotherapy (MRgoART), where the care team designs
and delivers a treatment plan based on patient anatomy and position at the time
of treatment setup [Mittauer et al. (under review); (16, 17)]. MRgoART, or simply
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online adaptive radiotherapy (ART), offers the opportunity for
rapid and accurate palliative online adaptive radiation therapy,
i.e., statum-ART (STAT-ART).

The purpose of this work is to describe a potential paradigm
change in the management of palliative care in radiotherapy
using STAT-ART. The implementation of STAT-ART, as
performed at our institution, is presented including a discussion
of the advantages and limitations compared to the standard of
care for palliative radiotherapy performed on conventional c-
arm linacs. MR-based treatment planning techniques for density
overrides and deformable image registration (DIR) of diagnostic
CT to the treatment MR are also addressed.

CONVENTIONAL LINAC WORKFLOW FOR
URGENT PALLIATIVE TREATMENT

Conventional radiotherapy workflow utilizes a serial-based
process map. Tasks are performed through multiple applications
and platforms (i.e., PACS, simulator system, image registration
software, segmentation software, treatment planning system,
treatment delivery system, quality assurance software, record,

FIGURE 1 | Workflow of three proposed methods of STAT-ART (left) compared to the standard of care for palliative treatment as performed on a conventional c-arm

linac (right).

and verify system). Each step of the serial radiotherapy workflow
is executed by a unique stakeholder (i.e., physician, physicist,
dosimetrist, therapist).

The workflow process for conventional radiotherapy utilizing
a c-arm linac will be briefly detailed here and is displayed in
Figure 1. When a patient presents for initial consultation with
their radiation oncologist, previously acquired diagnostic scans
are reviewed at the time of consultation. Following consultation,
the patient receives a CT simulation appointment in which a
CT scan is acquired for purposes of treatment planning and
treatment setup localization. Image registration of the diagnostic
data to the planning CT scan is often performed to aid the
physician in segmentation of the target and relevant surrounding
anatomy. On the planning CT scan, the dosimetrist creates
a treatment plan which subsequently undergoes plan quality
review by the physician and physicist in addition to a quality
assurance (QA) assessment. The patient is brought in for their
treatment appointment, where x-ray based imaging is performed
to localize the patient into the position as acquired at the time of
the CT simulation, followed by radiotherapy treatment delivery.

To accelerate the radiotherapy process when a patient presents
with urgent obstructions, bleeding, and/or pain, the above
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workflow is consolidated at the potential cost of the overall
treatment plan quality. The treatment plan complexity is often
limited for palliative cases to a parallel-opposed beam geometry
with rectangular fields, defined by jaws alone rather than the use
of more sophisticated multileaf collimation (MLC). Such plans
are advantageous for simplifying other radiotherapy workflow
processes such as simulation, setup, and treatment. However,
utilizing more conformal planning and delivery techniques with
more beam angles and more sophisticated collimation schemes
can reduce dose to uninvolved organs and tissues.

As previously described, the standard of care utilizes a
workflow of acquiring a CT simulation of the patient in setup
position followed by a treatment planning session. The process
may take several hours to several days. Additional steps to
accelerate the process for urgent palliative radiotherapy include
forgoing the simulation scan and performing 2D treatment
planning based on 2D MV imaging on the radiotherapy
treatment unit and calculation of dose to an arbitrary point
within the patient. Without knowledge of spatial orientation
of the tumor in treatment position, large target margins, and
non-conformal dose distributions are required.

STAT-ART WORKFLOW FOR URGENT
PALLIATIVE TREATMENT

Overview of STAT-ART Workflow
The STAT-ART workflow takes advantage of the MRgoART
features of the MRIdian to enable efficient adaptive planning
capabilities and expedite the overall workflow [Mittauer

et al. (under review); (16, 17)]. Prior to patient arrival and
consultation, the generalized workflow (Figure 1) includes either
generation of a patient-specific pre-plan or selection of a
preexisting non-patient specific template plan. For the patient-
specific pre-plan generation, the radiation oncologist performs
segmentation of the target volume on the diagnostic dataset
followed by the medical physicist or dosimetist performing the
treatment planning (i.e., beam geometry, defining MLC aperture,
beam weight optimization, and dose normalization). Details of
the planning technique is described in the following sections.

Following consultation, the patient is setup in an arbitrary
treatment position and localized using and a 3D volumetric
balanced steady-state free precession sequence (TrueFISP)
MR scan (Figure 2) (18). A template-plan or pre-plan from
the diagnostic scan is then adapted online based on the
actual treatment geometry including updates to segmentation,
beam apertures, optimization, and/or dose normalization. A
plan quality visual inspection and calculation-based QA are
performed for plan fidelity (17), followed by treatment delivery.
The STAT-ART workflow will be dependent on institutional
resources and MRgoART staffing model, and is generally
executed in real-time by multiple staff members including
a combination of therapist(s), a medical physicist, and a
radiation oncologist.

Planning Technique
Development of the STAT-ART protocol has emphasized
efficiency. For the pre-plan generation, segmentation performed
by the radiation oncologist is kept to a minimum with only two
regions of interest requiring contouring: external or skin and

FIGURE 2 | Clinical STAT-ART case of a pelvic bony metastasis treated to 8Gy in a single fraction to the planning target volume in green. Comparison of diagnostic

CT used for pre-planning (top right) and improved gross disease visualization on the TrueFISP treatment planning MR obtained using the MRIdian (top left). The

resulting dose distribution for STAT-ART plan of a six-beam cobalt-60 dose distribution (bottom left) in comparison to a conventional plan with 10MV AP/PA beams

(bottom right). The STAT-ART plan shows a marked reduction of the high dose volume, particularly in anterior regions of normal tissues.
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a target volume. Initial planning of the pre-plan or template
plan is performed by the medical physicist or dosimetrist with
a single isocenter and 3D conformal beams defined by the MLC
(19, 20). 3D conformal planning of the pre-plan or template
plan involves defining an isocenter point of interest, inputting
beams, setting gantry angles for ideal geometry, defining theMLC
aperture, optimization of beam weights, and a Monte Carlo dose
calculation with magnetic field corrections. As previously noted,
online adaptive is then performed to make the corresponding
plan adjustments to the patient’s on table anatomy through
segmentation updates to the target and corresponding plan MLC
aperture shape and beam weight through plan re-optimization.

Typically, STAT-ART treatment plans use a six-beam
arrangement, equivalent to two gantry positions for the three
60Co sources on the MRIdian cobalt. For the MRIdian linac,
the higher dose rate has enabled comparable delivery times
to the MRIdain cobalt even with an increase in gantry
rotation required for the six-beam arrangement. Due to the
utilization of 3D conformal planning technique, STAT-ART
plans have similar delivery times to conventional AP/PA beam
arrangements while allowing for more comparatively superior
dose distributions (Figure 2).

Electron Density for MR-Based Planning
MR-based planning requires electron density information for
dose calculation purposes. We present three strategies (Figure 1)
in the STAT-ART workflow for density propagation using bulk
density overrides or deformable image registration for respective
homogenous or heterogenous dose calculations.

Bulk Density Override
For non-thoracic based anatomical sites, a single bulk density
override of the external region of interest to water can be used
for electron density propagation. In this method of STAT-ART,
a diagnostic CT scan or even a diagnostic MR scan can be
utilized as the primary dataset of the STAT-ART pre-plan. The
deformation of the CT scan to the MR scan in MRgoART
is eliminated; advantageous when large anatomical mismatches
are anticipated and therefore eliminates the need and time to
perform manual density corrections. During the online adaptive
process with a single bulk density override, the external contour
is simply defined based on the treatment MR scan, enabling an
efficient and robust method of density propagation.

Deformation of Diagnostic CT to MR of the Day
An alternative to density override(s) is to utilize electron
density information obtained from a diagnostic CT scan. In
the MRgoART workflow of the MRIdian, the pre-plan primary
dataset of the diagnostic CT scan is deformably registered to the
frame of reference of the treatment MR scan utilizing an inverse-
consistent, free-form multi-modality DIR with a similarity
metric of mutual information and regularization proportional
to the Jacobian of the deformation vector field [Mittauer
et al. (under review)].

Beyond anatomical setup differences that may require manual
density corrections, additional deformation challenges may
include a limited field of view on the diagnostic CT scan

with missing tissue information. When density corrections are
necessary during the time of adaptation, an available override
contour of air, bone, and/or soft tissue may be utilized to enable
manual electron density edits. It is recommended to input such
empty contours with pre-defined electron density of respective
air, bone, and soft tissue to the pre-plan to enable the approach of
manual electron density edits during online adaptation.

Deformation of Template CT to MR of the Day
When prior diagnostic imaging is not readily accessible, a
template plan based on the anatomical site of interest (i.e., pelvis,
abdomen, thorax, extremity, etc.) can be adapted to the patient’s
setup at the time of treatment. The alternative method of utilizing
a template plan eliminates the time for pre-plan generation, and
may be most applicable for urgent palliative cases providing
machine availability. The deformation workflow of the CT scan
to the treatment MR scan remains the same as the above method,
with larger potential for density corrections to be required.

DISCUSSION

Adoption of Hypofractionated Palliative
Care Toward Single Fraction
In a recent review of palliative radiotherapy, Rich et al.
found the adoption of a single fraction course underutilized
compared to conventional fractionated course (21), even with
recent recommendations (22–24) emphasizing a single-fraction
or short-course palliative care. The movement toward a single
fraction course for palliative radiotherapy enables two key
benefits: cost-reduction and patient time and convenience (21,
25–27). As patients with oligometastatic disease live longer, the
need for amore sophisticated, short-course planning and delivery
approach is evident over historical parallel-opposed techniques
of 30Gy in 10 fractions.

With MR linacs becoming more common place (28), the
adoption of a single fraction course with MR-guidance is a
viable approach. The STAT-ART workflow leverages existing
volumetric imaging from radiology, eliminating an additional
simulation CT. The STAT-ART technique utilizes routine clinical
MRgRT workflows, i.e., adaptive radiotherapy. Moreover, MR-
guidance enables greater confidence based on real-time image
guidance and greater dose conformality, supporting a single
fraction approach. A randomized trial comparing efficacy and
toxicity between single fraction palliative care on CT-based IGRT
vs. MR-based IGRT has yet to be conducted. While several
randomized single fraction vs. multiple fraction trials have been
carried out, the concerns of toxicities and efficacy of the 8Gy
in 1 fraction regimen still remain. Shuja et al. and Howell
et al. described utilization of 3–5 cm margin and <2 cm margin,
respectively, from the radiographic involvement for single
fraction palliative radiotherapy on conventional c-arm linac
modalities (29, 30). The superior bony metastasis visualization
combined with improved soft tissue visualization allow for
greater precision and enable the utility of a reduced margin in
MRgRT of 0.3–0.5 cm as previously demonstrated by Mittauer
et al. (16). Howell et al. specifically cited radiation oncologists’
concerns of gastrointestinal (GI) toxicities associated with 8Gy in
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a single fraction (30). The online adaptive capabilities, to visualize
adjacent organs at risk (OARs) and modify dose based on
neighboring GI OARs, combined with a smaller margin required
due to the reduction in setup uncertainty enable MR-guided
single fraction radiotherapy a clear benefit.

Furthermore, to manage the increase in the number of
oligometastatic patients, reducing the number of treatments
to fewer fractions could potentially lessen the overall burden
on hospitals, and ultimately reduce the number of machines
required per patient population.

STAT-ART at the University of
Wisconsin-Madison
Our STATART program at the University ofWisconsin-Madison
was implemented in October 2015 on the MRIdian cobalt,
and since then transitioned to the MRIdian linac. Our initial
experiences of the STAT-ART program have been briefly reported
by Hill et al. (31) and De Costa et al. (32), and includes a
retrospective review of the first 18 patients treated with STAT-
ART from October 2015 to November 2016.

The indication for STAT-ART included patients with
metastatic cancer presenting with pain, obstruction, and
bleeding. The majority of STAT-ART patients were treated with a
prescription of 8Gy in a single fraction. STAT-ART planning and
treatment delivery was typically >30min between the patient
entering and exiting the treatment vault, compared with a mean
time from CT simulation to delivery of first treatment of 29.5 h
(95% CI, 23.7–35.2) for a similar sample of urgent palliative
cases planned and treated with the conventional radiotherapy
workflow. The median delivery time of STAT-ART was 122 s (N
= 18 patients).

Excellent clinical outcomes were observed and were in line
with historical and sampled controls: pain reduction in 11 of 14
patients, improvement of obstructive symptoms in 3 of 3 patients,
and hemostasis in 1 of 1 patient. Overall, physician and patient
response to the program has been positive, as plan quality has
improved while time commitments have been comparable to
or less than a conventional simulation-and-treatment workflow.
Future efforts include characterizing the dose difference to organs
at risk and conformality metrics between STAT-ART plans and
conventional parallel-opposed beam geometries.

MR-Based Planning for Bony Metastases
MR-based treatment planning offers better soft tissue contrast for
target delineation as compared to CT simulation (16). However,
one particularly interesting finding of the STAT-ART program
has been the ability of the MRIdian TrueFISP MR sequences
used for treatment planning to identify contrast other than in
soft tissues, as shown in Figure 2 for bony metastases. Because
pre-plan contours are routinely updated to encompass disease
identified on the treatment planning MR, the ability to target
disease in bone has been invaluable.

Additional Workflow Advantages
Through performing treatment planning, contouring, image
registration, and treatment delivery on a single platform such
as the MRIdian system not only can allow for improvement in

clinical efficiency, but also possibly allow for the decrease in the
clinical errors from the use of multiple modalities and planning
systems. The MRIdian system eliminates the time and need
for treatment planning by dosimetry when utilizing template
plans. Furthermore, simulation is done in the true treatment
position on MRIdian, an advantage over conventional linac-
based RT, enabling both enhanced contrast for target delineation
and reduction of setup uncertainties.

Dose Calculation and Deformation
Considerations
There are limitations in dose calculation accuracy of STAT-
ART when performing bulk density overrides or using deformed
diagnostic CT data. For example, with a bulk density override
of water for patient anatomy of the pelvis and abdomen, the
calculation error is likely on the order of 2%; as demonstrated
by Lee et al. for pelvis with absolute dose differences ranging
0–5% inside the planning target volume for uniform density
override of water compared to dose calculated on the respective
CT scan (33). Larger magnitude of errors would present for other
anatomical sites such as thorax/lung. Here, deformation of the
diagnostic CT to the treatment MR would be more appropriate.

Electron density propagation of the diagnostic CT to the
treatment MR presents has additional uncertainties. The image
value to density conversion may not be characterized for the
energy spectrum and/or applicable CT scanner of the diagnostic
CT dataset at hand. While it may be feasible to characterize
all CT scanners in an institution’s radiology department, the
body of work would be non-trivial and not inclusive of scanners
from outside institutions for patients referred for treatment. A
potentially more practical approach would be to incorporate CT
energy-dependent image value to density table (IVDT) curves, as
inter-scanner dependences are minimal to image value variation
and on the order of acceptable dose calculation uncertainties
for palliative care. A phantom with a range density inserts can
be utilized to quantify the Hounsfield unit values as a function
of CT energy. Repeat monoenergetic CT scans over an energy
range would be acquired to benchmark the IVDT dependent
curves. During initial planning the user would then select the
respective IVDT curve based on the DICOM tag of the patient’s
diagnostic CT.

A limitation of the fidelity of the propagation of electron
density is the overall voxel resolution. Partial-voxel effects can
influence the deformable image registration quality as can
be propagated from the initial diagnostic CT scan and/or in
the resultant deformed CT, resampled in the resolution and
frame of reference of the treatment planning MR. The user
is recommended to note the influence partial-voxel effects on
deformed electron density accuracy and the potential impact on
dose calculation accuracy.

Another challenge of the deformable image registration of
the diagnostic CT to the treatment MR is the large anatomical
differences between the scans. Figure 2 highlights the posterior
anatomical deformations between the curved tabletop of the
diagnostic CT and the flat tabletop of the radiotherapy system.
Additional deformation differences may include patient arm
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position or even missing tissue due to limited field of view on
the diagnostic CT scan. All of these require review of the CT-MR
deformation and may require additional effort and time during
the online adaptive workflow to manually correct the electron
density using segmentation and overrides.

Challenges to Implementation
The STAT-ART program relies on capabilities of MRgoART.
This work has been presented based on the platform of the
MRIdian system as has been implemented at our institution.
Modified practice of STAT-ART for other systems with CT/MR
on rails or other IGRT systems can be employed. The work to
commission and to implement the deformable image registration
and dose calculation of MRgoART has been previously
described [Mittauer et al. (under review)].

There is some potential for errors to occur in the MRgoART
workflow since the plan is adapted on the fly. However,
for clinical MRgRT users, MRgoART has become a routine
part of everyday workflow (34). The MRgoART utilizes a
secondary calculation-based QA to verify plan fidelity. For
3D conformal plans this follows conventional radiotherapy
workflow as more sophisticated measurement-based QA are not
necessary if the beammodel has been appropriately characterized
and validated. Secondly, calculation-based methods have been
previously shown to be in line with measured-based QA for the
MRgoART process (17).

Another unique consideration when implementing
MRgoART and STAT-ART is the overall time the patient is
on the table in the treatment position. While the STAT-ART
process rapidly decreases the time from consultation to treatment
for these urgent palliative cases, the “table time” may be longer
due to the adaption process. Some patients may not tolerate the
20–30min on the treatment table as required for the STAT-ART
process due to symptomatic pain.

Alternative Rapid Palliative RT on
TomoTherapy
The University of Virginia have implemented a rapid palliative
radiotherapy technique using CT-based IGRT of TomoTherapy
(Accuracy Inc, Madison, WI) with their “STAT RAD” program
(2, 3). The STAT RAD workflow utilizes the on-board MVCT
capabilities of TomoTherapy to simulate the patient in treatment
position followed by rapid treatment plan generation, quality
assurance of the plan with exit dosimetry through the on-
board CT detector, and treatment delivery. Since the treatment
planning capabilities are not integrated into the simulation and

delivery console, plan generation is performed on a separate work
station, eliminating an online adaptive approach. The University
of Virginia has successfully piloted the program with 50 patient
treats reported to date in 2012 (3).

CONCLUSION

The integration of a simulator, treatment planning system, and
delivery system into a single platform enables the opportunity
of STAT-ART, a rapid-access treatment for patients presenting
with urgent palliative needs. Electron density information
for MR-based planning of STAT-ART without formal CT
simulation can be incorporated with either a bulk density
override or deformable image registration of diagnostic CT to
the treatment MR. The online adaptive features of STAT-ART
enable adaptation of a preexisting pre-plan or template plan,
reducing the time pressure for urgent palliative radiotherapy.
Another key advantage of MRgoART is the superior plan and
treatment quality as real-time plan adaptation is performed
to the anatomy at treatment compared to the simulation day
anatomy as performed in conventional radiotherapy. STAT-
ART has great potential in the management of the palliative
radiotherapy, making efficient use of both staffing time and
resources and expediting palliative care with similarly successful
clinical outcomes.
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Purpose: FDG-PET adds to clinical factors, such tumor stage and p16 status, in

predicting local (LF), regional (RF), and distant failure (DF) in poor prognosis locally

advanced head and neck cancer (HNC) treated with chemoradiation. We hypothesized

that MRI-based quantitative imaging (QI) metrics could add to clinical predictors of

treatment failure more significantly than FDG-PET metrics.

Materials and methods: Fifty four patients with poor prognosis HNCs who were

enrolled in an IRB approved prospective adaptive chemoradiotherapy trial were analyzed.

MRI-derived gross tumor volume (GTV), blood volume (BV), and apparent diffusion

coefficient (ADC) pre-treatment and mid-treatment (fraction 10), as well as pre-treatment

FDG PETmetrics, were analyzed in primary and individual nodal tumors. Cox proportional

hazards models for prediction of LRF and DF free survival were used to test the additional

value of QI metrics over dominant clinical predictors.

Results: The mean ADC pre-RT and its change rate mid-treatment were significantly

higher and lower in p16– than p16+ primary tumors, respectively. A Cox model

identified that high mean ADC pre-RT had a high hazard for LF and RF in p16– but

not p16+ tumors (p = 0.015). Most interesting, persisting subvolumes of low

BV (TVbv) in primary and nodal tumors mid-treatment had high-risk for DF (p <

0.05). Also, total nodal GTV mid-treatment, mean/max SUV of FDG in all nodal

tumors, and total nodal TLG were predictive for DF (p < 0.05). When including

clinical stage (T4/N3) and total nodal GTV in the model, all nodal PET parameters

had a p-value of >0.3, and only TVbv of primary tumors had a p-value of 0.06.
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Conclusion: MRI-defined biomarkers, especially persisting subvolumes of low BV,

add predictive value to clinical variables and compare favorably with FDG-PET imaging

markers. MRI could be well-integrated into the radiation therapy workflow for treatment

planning, response assessment, and adaptive therapy.

Keywords: MRI, head and neck cancer, radiation therapy, imaging biomarker, adaptive therapy

INTRODUCTION

Locoregional failure (LRF) remains a clinical challenge for
poor prognosis locally advanced squamous cell carcinoma
of the head and neck (HNSCC) treated with definitive
chemoradiation therapy (CRT) (1). It is important to identify
imaging markers of LRF that identify patients and tumor
subvolumes that may benefit from intensified locoregional
therapy in the form of radiation boost, targeted systemic therapy,
or surgical intervention.

We and others have been developing prognostic and
predictive imaging markers of PET and MRI for LRF, distant
metastases, progression free survival (PFS), and overall survival
(OS) (2-20). Retrospective studies of pre-treatment FDG-
PET that quantify cellular glucose metabolism have identified
metabolic tumor volume (MTV), total lesion glycolysis (TLG),
and mean/max standard uptake value (SUV) in MTV as
prognostic for LRF, PFS, and OS in HNSCC (2–6). Furthermore,
FDG-PET has been incorporated into standard of care work-up
and follow-up for HNSCC (7, 8). Functional MRI incorporating
diffusion and perfusion parameters is an emerging advanced
imaging modality in HNSCC. In particular, apparent diffusion
coefficient (ADC) correlates with locoregional and distant
progression (9–11). Poorly perfused and low oxygenation tumors
have been shown to be associated with LRF and worse survival
outcomes (12–18).

Despite this progress, it has been difficult to determine which
imaging biomarkers should be used to individualize treatment
for the patients with locally advanced HNSCC. Most head
and neck cancer imaging studies to date include heterogeneous
populations of various disease sites, stages, and prognosis. Few
imaging studies investigate how p16 status affects imaging
parameters pre- and mid-treatment. With respect to ADC in
particular, no study to date has evaluated ADC changes during
RT for p16+ vs. p16– tumors. A single study investigated ADC
differences between HPV+ and HPV– HNSCC, including only
6 HPV+ patients (8%), and found that pre-treatment ADC in
HPV+ HNSCC patients was significantly lower than in HPV–
patients (19). Furthermore, at the tumor and subtumor level,
there is no report on imaging biomarker differences between
tumors with local, regional, or distant failure as site of first
failure compared to disease free patients. This is an important
issue, as it would help stratify the patients for local or systemic
intensified or de-intensified therapy. Finally, poorly perfused
tumor subvolumes are largely spatially distinct from areas of
high FDG uptake and high restricted water diffusion in the
same patients, and the spatial correlation between high glucose
metabolism and high restricted water diffusion varies greatly

from patient to patient (20, 21). These studies question whether
both FDG PET and MRI biomarkers are necessary to guide
adaptive RT in HNSCC.

This study aimed to (1) investigate p16+ effects on imaging
parameters and their early response rates; (2) assess differences
between imaging biomarkers of tumors with local, regional
or distant progression and those with no evidence disease
(NED), and (3) compare the predictive values of MRI and
PET biomarkers. We hypothesized that p16+ status could affect
imaging biomarkers and their early response rates, and MRI-
based QI metrics could add to clinical predictors of treatment
failure more significantly than FDG-PET metrics for local,
regional and distant failure.

METHODS

Patients
Imaging analysis was performed on 54 patients [median age of
61 years; 7 females; 31 p16+ (57%)] with advanced HNSCC
who were enrolled in a randomized phase II clinical trial
between March 2014 and January 2018 (Table 1). The trial was
approved by the Institutional Review Board of the University of
Michigan, including a parallel imaging study to investigate the
predictive values of QI metrics for tumor progression. Written
consent was obtained from all enrolled patients. Eligibility
included patients with p16+ T4/N3 squamous cell carcinoma
of oropharynx or locally advanced p16– HNSCC if planned to
undergo definitive CRT. All patients were evaluated for p16 status
by immunohistochemistry. After completion of CRT, patients
were followed up every 2–3 months per standard care for
oncologic outcomes as well as toxicity. Tumor recurrences were
scored as LF, RF, or DF, or a combination thereof.

MRI and PET Acquisition
Patients underwent FDG-PET/CT scans pre-RT within 4 weeks
of RT as a part of standard care. Clinical FDG-PET/CT scans were
performed on various PET scanners by following the standard
clinical protocol (22).

MRI scans were acquired pre-RT (within 2 weeks) and at
fraction 10 (20Gy) as a part of the protocol. All MRI scans
were acquired on a 3T scanner (Skyra, Siemens Healthineers),
including anatomic, diffusion weighted (DW), and DCE T1-
weighted imaging series. All patients were scanned in the
treatment position using an individual-patient immobilization
5-point mask and bite block or aquaplast mold as required for
treatment. DW images were acquired with spatial resolution of
∼1.2 × 1.2 × 4.8mm and b-values of 50 and 800 s/mm2 by
either a 2D spin-echo single shot echo-planar pulse sequence or
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TABLE 1 | Patient characteristics.

Variable Mean Range Median

Age 61 31–85 61

Smoking pack years 37 0–150 30

Gross tumor volume

Primary tumor (CC) 77 10–595 61

Nodal tumor (CC) 22 0.4–242 6

Category Count Percentage %

Primary tumor site Nasopharynx 3 5

Oral cavity 6 11

Oropharynx 35 65

Larynx 2 4

Hypopharynx 6 11

Nasal sinonasal 2 4

p16 Negative 23 43

Positive 31 57

Smoking status Never 6 11

Former 34 63

Current 14 26

T stage 1 1 2

2 2 4

3 6 11

4 45 83

N stage 0 6 11

1 3 6

2 38 70

3 7 13

Dose 70 in 35 Fx 34 63

80 in 35 Fx 20 37

Chemo Carboplatin 26 48

Cisplatin 28 52

a readout segmentation of long variable echo-trains (RESOLVE)
pulse sequence that reduced geometric distortion (23). Sixty T1-
weighted DCE image volumes were acquired using a 3D gradient
echo pulse sequence in a sagittal orientation with voxel size∼1.5
× 1.5 × 2.5mm during an injection of one standard dose of Gd-
DTPA. Post-Gd T1-weighted images were acquired in the axial
plane with spatial resolution of 0.875 × 0.875 × 3.3mm by a 2D
fast spin echo sequence with fat saturation.

Image Analysis and Registration
Blood volume (BV) maps were quantified from DCE-MRI using
the modified Tofts model implemented in an in-house imFIAT
Analysis Tool, which was validated using a digital reference
object (24). ADC maps were calculated from DW images with
b-values of 50 and 800 to mitigate the perfusion effect by
using in-house software that was technically validated in a QIN
collaborative project (25). Since using the individual-patient
immobilization devices reduced gross movement of head and
neck during scanning dramatically, BV and ADC maps were
reformatted to match voxel-by-voxel of post-Gd T1-weighted
images acquired in the same session using coordinates in DICOM

headers. SUV of FDG-PET was calculated. Pre-RT FDG-PET/CT
and mid-treatment MR images were co-registered to pre-RT
post-Gd T1-weighted images using rigid body transformation
and mutual information. Target displacement errors, including
image mis-registration and geometric distortion in ADC maps,
between image series were assessed and reported previously
(20). Reproducibility of BV maps was 16%, which was reported
previously (26).

Tumor Volumes and Subvolumes
Gross tumor volume (GTV) of primary and nodal disease
was contoured individually on post-Gd T1-weighted images
by treating attending head and neck radiation oncologists and
reviewed by the trial PI (MM). For this cohort of patients with
locally advanced HNSCC, gross cystic or necrotic regions and
tumor invasion into blood vessels occurred in many tumors, and
therefore were excluded from the GTVs for following analyses of
quantitative image (QI) metrics by applying simple thresholds.
For the ADC analysis, a threshold of >2.7 × 10−3 mm2/s (10%
below free water diffusion) was used to exclude gross necrosis
and blood vessels, and a threshold of <0.0001 × 10−3 mm2/s
was used to exclude air. Then, a low BV subvolume of the GTV
(TVBV) was created using a threshold of BV <7.64 ml/100 g
reported previously based upon a histogram analysis (16). The
low ADC subvolume of the GTV (TVADC) was defined as ADC
< 1.2 × 10−3 mm2/s based on an ADC-histogram analysis (20),
which is also consistent with the mean ADC reported by others
(21). A MTV was defined as FDG SUV >50% of a value averaged
over 4 voxels with maximum SUVs (MTV50).

Quantitative Imaging Metrics
QI metrics in tumor volumes and their mid-treatment changes
were analyzed for prediction of LF, RF, and DF. Tumor volume
metrics included GTV, TVBV, TVADC, MTV50. Mean values of
ADC and BV in GTV excluding blood vessels and necrosis, mean
and max SUVs in MTV50, and TLG of MTV50 were calculated
for each primary or nodal tumor as well as for all tumors in
each patient.

Treatment
The patients were randomized to a standard arm of RT (70Gy in
35 fractions) or an experimental arm. In the experimental arm, a
union of the persisting TVBV pre-RT to 2 weeks and persisting
TVADC pre-RT to 2 weeks received 2.5Gy per fraction for the
last 15 of 35 fractions. If the union of persisting subvolumes
pre-RT to 2 weeks was <1 cc, the patient was entered into an
observation arm and treated by the standard RT (70Gy in 35
fractions). Patients were planned to receive weekly cisplatin 40
mg/m2, and patients considered to be cisplatin ineligible were
treated with weekly carboplatin AUC2.

Statistical Analysis
First, we assessed the p16 effect on imaging parameters and
parameter change rates at 2 weeks compared to pre-RT using
the Mann-Whitney U-test. Secondly, we assessed whether MRI
and PET biomarkers had similar predictive values for LRF
and DF free survival. For the analysis of LRF, most previous
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analyses considered either LF, RF, or LRF as an event, of which
the model was useful for stratification of the patients but not
for stratification of the tumors for intensified adaptive RT.
Tumor progression could occur in one or a few treated tumors
(primary or nodal tumor) or in none. Therefore, we applied Cox
proportional hazards models to individual (primary or nodal)
tumors for prediction of failure. The individual tumor failure
free rate (ITFFR) was defined from the start of RT to the date
of progression of the tested (primary or nodal) tumor. ITFFR
times were censored for all tumors from a patient at the earlier
of DF, death or last follow-up. Whether primary and nodal
tumors can be analyzed together was tested for each imaging
parameter. To compare the predictive values of MRI and FDG
PET biomarkers, imaging metrics were assessed one at a time
in models also including p16 as a co-variable, which is the most
important clinical variable for LRF (27–29). Distant failure free
survival (DFRS) was defined as the time interval from the start
of RT to the date of DF. The Cox models were fitted including a
single QI metric and clinical stage T4/N3 vs. other (non-T4/N3)
as the sole clinical variable (30–32), and entering one imaging
parameter at a time. Each QI metric was summed up or averaged
over all nodal tumors for volume-related or intensity-related
metrics, respectively. In the DFFS model, patients were censored
at the first occurrence of any local or regional failure, death or
last follow-up. If there were any significant differences of imaging
parameters between p16– and p16+ tumors, we considered an
interaction term in the Cox model or an analysis in different
Cox models as appropriate. Since multiple comparisons were
made, p-values were corrected using false discovery rate (FDR)
control, and corrected p < 0.10 were considered significant.
Finally, we assessed if there were any significant differences of
imaging biomarkers between the tumors that never progressed,
those that demonstrated local or regional progression, and those
that were locoregionally controlled but metastasized distantly.
This landmark analysis used outcomes at 18 months as a cutoff.
The tumors were excluded from the analysis if the tumor had
local or regional progression after 18months or the tumor had no
progression but the follow-up was shorter than 18months. As the
data were not Gaussian distributed, non-parametric tests were
used: Kruskal-Wallis test for the three-group comparison and
Wilcoxon rank test for the comparison between local or regional
failure and NED. The p-values were corrected with FDR control,
and<0.1 were considered as significant. Since 37% of the patients
received higher doses, we tested the dose effect before performing
the proposed analyses.

RESULTS

Treatment Failure
This cohort of 54 patients with locally advanced HNSCC had
large primary GTVs with a median value of 60.5 cc (range: 10.2–
595.2 cc; SD: 86.8 cc; Table 1), which was several times greater
than most reported studies (2–6, 9–11, 33). Eleven patients
(20%) (3 p16+) have had local recurrence. Nine patients (17%)
(2 p16+) have had regional recurrence, including one patient
(p16–) who failed regionally at two separate treated lymph
node locations, and 2 (1 p16– and 1 p16+) who had RF at

the locations of non-enlarged/non-FDG avid nodes before RT.
Fourteen patients (7 p16+) had distant failure with or without
local and regional failure. All cases with LF or RF alone were
confirmed pathologically, and distant metastases were diagnosed
pathologically or by overt radiographic presentation. Twelve
patients have died of HNC (3 p16+), and one patient died
cancer-free of other causes. For the patients who did not have
progression at the time of analysis, median follow-up was 24
months (range: 10–58 months).

Effects of p16 on Imaging Parameters and

Change Rates
We found that both baseline ADC and ADC change after
radiation were significantly different between p16+ and p16–
primary tumors. The p16– primary tumors had significantly
greater mean ADCs pre-RT [1.48 ± 0.05(SEM) µm2/ms], and
significantly smaller rates of increase after 10 fractions of RT
(10.0%± 1.2%) than p16+ primary tumors (1.34± 0.04µm2/ms
and 21.2% ± 3.1%, p = 0.04, and p = 0.009, respectively).
However, there was no significant difference in mean ADC
between p16– and p16+ nodal tumors pre-RT or at 2 weeks as
well as ADC increased rates (p> 0.7), see Figure 1. Pre-RTGTVs
of p16– primary tumors (75 ± 12.1 cc) as well as change rates
at 2 weeks (−16.2% ± 3.9%) were similar to p16+ ones (79.2 ±

18.9 cc, and−16.7%± 3.3%, respectively). Mean GTVs as well as
change rates at 2 weeks for p16– and p16+ nodal tumors were not
significantly different (p > 0.5), 24.1± 8.1 cc and 21.1± 5.9 cc of
GTVs and −22.4% + 6.7% and −16.5% + 4.5% of change rates
for respective p16– and p16+ nodal tumors Also, there was no
significant difference in other imaging parameters between p16+
and p16– primary or nodal tumors (p> 0.1). Examples of images
are shown in Figure 2.

Predictive Values of MRI and PET Imaging

Parameters for Local and Regional

Progression
First, we did not detect significant difference in local and regional
control rates between two-dose arms yet so that the patients who
received different doses were analyzed together. For prediction
of local progression, mean ADC pre-RT of primary tumors was
the only parameter found significant in a univariate Cox model.
Since there was no significant difference in mean ADC between
primary and nodal tumors, we combined primary and nodal
tumors in a single model (53 primary tumors and 82 nodal
tumors). For prediction of ITFFR, considering the p16 effect
on mean ADC of primary tumors, the Cox model included
p16 status, pre-RT mean ADC, and the interaction of pre-RT
mean ADC and p16 status. We found that p16 had a significant
effect on tumor control (HR p16+ vs. p16– of 0.21, p = 0.005),
pre-RT mean ADC had a significant effect in p16– tumors
(HR per 1 SD increase in ADC = 1.9, p = 0.015) but no
effect in p16+ tumors (HR = 1.0, p = 1.0). The interaction
between p16 status and ADC was not statistically significant
(p= 0.24, Table 2).

Since QI metrics other than mean ADC were significantly
different between primary and nodal tumors (p < 0.05), the QI
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FIGURE 1 | (A) Mean ADC in p16– and p16+ primary tumors pre-RT and after 10 fractions (2 weeks) of radiation therapy. (B) Mean ADC in p16– and p16+ nodal

tumors pre-RT and after 10 fractions (2 weeks) of radiation therapy. (C) Mean ADC change rates in p16– and p16+ primary and nodal tumors after 10 fractions of

radiation therapy compared to pre-treatment. *p < 0.05, **p < 0.01.

FIGURE 2 | Post Gd T1 weighted images (left), ADC (second left), blood volume (second right), and SUV (right) FDG PET pre-RT (top) and after 10 fractions of

radiation therapy (bottom). GTV: magenta; low BV subvolume: yellow; low ADC subvolume: cyan; MTV: red. Note persistent low BV and low ADC subvolumes after

10 fractions of radiation therapy (yellow arrows).

metrics of nodal tumors were tested separately for prediction of

regional failure free rates. In Cox models of 82 nodal tumors
with p16 status as a co-variate, GTV pre-RT and at 2 weeks,

TVBV at 2 weeks, mean and max SUV in MTV50 pre-RT, MTV50

pre-RT, TLG pre-RT, and change in GTV at 2 weeks vs. pre-RT
were significant with p < 0.07 with FDR control, see Table 3.

It is interesting to note that GTV pre-RT and at 2 weeks as

well as mean SUV and TLG pre-RT have the highest c-index
(> 0.9). However, MTV50 and TLG as well as TVBV were strongly

correlated with GTV pre-RT (range of r between 0.88 and 0.90),
suggesting that these metrics are not independent of GTV. The
mean and max SUV in MTV50 were strongly correlated each
other (r= 0.98) but modestly correlated with GTV pre-RT (range
of r between 0.65 and 0.67).

Predictive Values of Imaging Biomarkers

for Distant Progression
For prediction of distant progression, Cox models identified that
TVBV of primary tumors at 2 weeks, total TVBV of all nodal
tumors pre-RT and at 2 weeks, total GTV of all nodal tumors at 2
weeks, mean and max SUV of all nodal MTV50 pre-RT, and TLG
pre-RT of all nodal tumors had a nominal p < 0.05 without FDR.
With FDR control, total GTV of all nodal tumors at 2 weeks,
mean and max SUV of all nodal MTV50 pre-RT, and TLG pre-
RT had a p < 0.1, see Table 4. We tested whether the significant
predictors could provide any complimentary information to
clinical stage of T4/N3 and the sum of all nodal GTVs at 2 weeks
for prediction of DF, and found that neither total TVBV, normean
and max SUV, nor total TLG of all nodal tumors had a p < 0.3,
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TABLE 2 | Cox model of mean ADC effects.

Coef HR Lower 95% Upper 95% p-value

p16+ effect* −1.578 0.206 0.069 0.618 0.005

ADC effect for p16– 0.645 1.905 1.135 3.198 0.015

ADC effect for p16+ 0.000 1.000 0.383 2.611 1.0

ADC*p16 effect interaction

(ratio of ADC effects

between p16+ and p16–)

−0.644 0.525 0.177 1.553 0.2

*At mean ADC value.

TABLE 3 | Cox models for RFFS.

Hazard

ratio

C index Pr(>|z|)nominal

P-value

P-value with

FDR adjustment

GTV preRT 1.120 0.90 0.02 0.05*

GTV 2 weeks 1.142 0.91 0.001 0.01*

TVBV 2 weeks 1.514 0.88 0.005 0.02*

MTV50 preRT 1.524 0.88 0.03 0.07*

Mean SUV preRT 1.406 0.90 0.005 0.02*

Max SUV preRT 1.238 0.88 0.008 0.02*

TLG preRT 1.073 0.90 0.001 0.01*

Change in GTV 1.288 0.72 0.004 0.02*

82 nodal tumors were included in the analysis. Change in GTV was after 10 fractions of

RT compared to preRT. *Indicates significant.

TABLE 4 | Cox models for DFFS.

Hazard ratio Pr(>|z|) P with FDR

PRIMARY TUMOR

Mean BV 2 weeks 0.797 0.008 0.18

NODAL TUMOR

Sum of TVBV preRT 1.290 0.05 0.15

Sum of GTVs 2 weeks 1.091 0.01 0.07*

Sum of TVBV 2 weeks 1.290 0.02 0.12

Mean SUV of all MTV50 pre 1.363 0.01 0.09*

Max SUV of all MTV50 pre 1.233 0.01 0.09*

TLG of all MTV50 pre 1.054 0.02 0.09*

T4/N3 was included as a co-variable. *Indicates significant.

and only TVBV of primary tumors at 2 weeks showed marginally
significant (p= 0.06).

Imaging Biomarkers for Differentiation of

Tumors With LF (or RF), DF, and NED
For primary tumors, the subvolumes of low BV pre-RT showed
a descending trend from LF, DF, and NED with a marginally
significant p-value of <0.06 without FDR control, see Table 5.
Figure 3 shows the subvolumes of low BV of primary tumors
with LF, DF, and NED pre-RT and at 2 weeks as well as its change
rates after 10 factions of RT. Post ad hoc analysis showed that
the change rates of low BV subvolume were significant smaller in

primary tumors with DF (−0.05%± 0.16%) than tumors with LF
(−0.49 ± 0.08%) and tumors with NED (−0.45 ± 0.09%) with p
values of <0.03 and <0.015, respectively.

For nodal tumors, GTV pre-RT and at 2 weeks, the subvolume
of low BV pre-RT, mean ADC at 2 weeks, mean BV at 2 weeks,
and mean/max SUV of MTV50 pre-RT were different among DF,
RF, and NED groups with p < 0.05 without FDR control and p≤
0.1 with FDR control, see Table 5. Again, GTV of nodal tumors
was a strongest parameter to differentiate the three groups with
different outcomes. Regarding the difference between DF and RF
groups, only mean BV values at 2 weeks had a p < 0.05 without
FDR control but p> 0.1 with FDR control. Figure 4 showsGTVs,
the subvolumes of low BV, mean ADC, and mean BV of nodal
tumors with RF, DF, and NED pre-RT and at 2 weeks. Figure 5
shows mean SUV, max SUV, and TLG of nodal tumors with RF,
DF, and NED pre-RT.

DISCUSSION

In this study, we investigated p16 effects on MRI and PET
QI metrics, imaging biomarker differences as a function of
tumor control (local, regional, or distant), and the predictive
values between MRI and PET biomarkers for tumor progression
in locally advanced poor prognosis HN cancers. Our cohort
of patients had large tumor volumes compared to previously
reported literature (2–6, 9–11, 33). We found the p16– primary
tumors had elevated ADC values pre-RT and low early response
rates compared to p16+ tumors; the latter of which has not been
previously reported. Also, high mean ADC value pre-RT is a
hazard for local and regional failure of p16– tumors. Multiple
MRI and PET imaging parameters (including GTV, ADC, BV,
SUV, and TLG) predicted RF and DF, but the nodal GTV defined
on anatomic MRI was the strongest predictor. Most interesting,
we report for the first time that the persistent low BV in primary
and nodal tumors during the early course of CRT is associated
with high-risk for distant failure. In order to identify patients
who may benefit from intensified local therapy in the form of
a radiation boost or surgical intervention, or from intensified
systemic therapy (30, 34), we analyzed the significant imaging
predictors found in Cox modeling for differentiation of the
tumors that were controlled compared to those with LF, RF, or
DF. The performance of MRI related parameters is stronger than
PET parameters. Although PET is a part of standard care, MRI
could play an important role from treatment planning, to early
response assessment, and boost target definition.

We found a p16 effect on ADC and ADC change rates during
the early course of RT. The p16– primary tumors had significantly
greater mean ADC values pre-RT and smaller increases in ADC
after 2 weeks of CRT than p16+ primary tumors. Furthermore,
the p16– tumors from patients with local or regional failure
had significantly greater mean ADC values pre-RT and mid-
treatment than those from disease free patients. These results
are consistent with previous reports that the pre-RT high ADC
is negatively prognostic for HN cancers (9–11). A recent study
shows that ADC is significantly and inversely correlated with
cell density but also significantly and positively correlated with
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TABLE 5 | Differences of imaging biomarkers among tumors with LF (or RF), DF, and NED.

Median

DF

(n = 12)

Median

LF

(n = 10)

Median

NED

(n = 30)

KW test

P value

KW test

P value with

FDR

WR test

P value

WR test

P value with

FDR

Primary tumor

TVBV pre 11.37 24.24 7.10 0.06 0.3 0.08 0.3

DF

(n = 17)

LF

(n = 8)

NED

(n = 57)

KW test

P value

KW test

P value with

FDR

WR test

P value

WR test

P value with

FDR

Nodal tumor

GTV pre 8.68 32.14 5.78 0.01* 0.1* 0.07 0.5

GTV 2 weeks 6.57 24.94 3.97 0.02* 0.1* 0.08 0.5

Change in GTV −1.07 −1.27 −0.44 0.83 0.9 0.8 0.8

TVBV pre 2.77 4.77 1.77 0.02* 0.1* 0.2 0.5

TVBV 2 weeks 1.94 7.40 1.18 0.06 0.1 0.2 0.5

Mean ADC pre 1.38 1.40 1.19 0.06 0.1 0.9 0.9

Mean ADC 2 weeks 1.55 1.64 1.35 0.02* 0.1* 0.4 0.6

Mean BV pre 8.26 10.11 10.21 0.46 0.6 0.5 0.6

Mean BV 2 weeks 8.83 13.33 10.93 0.04* 0.1 0.04* 0.5

Mean SUV of MTV50 pre 3.91 5.38 2.35 0.02* 0.1* 0.3 0.5

max SUV of MTV50 pre 5.96 7.92 3.50 0.03* 0.1 0.3 0.6

TLG of MTV50 pre 0.718 3.245 0.420 0.11 0.2 0.3 0.5

Tumor volume is a unit of cc. ADC is in unit of 10−3 mm2/s. BV is in unit of (ml/100 g). SUV of FDG is in unit of g/ml. TLG is in unit of 100 g. *Indicates significant.

FIGURE 3 | Box and Whisker plots of the subvolumes of low BV in primary tumors with local failure (blue), distant failure (orange), and no evidence disease (gray)

pre-RT (A) and after 10 fractions of radiation therapy (B). (C) Plots the change rates of the low BV subvolumes after 10 fractions of radiation compressed to pre-RT.

the percentage area of stroma in laryngeal and hypopharyngeal
carcinoma (35). The former finding has been reported previously
in animal studies, prostate cancer and lymphomas (36–39), and
is related to restricted water diffusion due to high cellularity.
The latter finding suggests that a large percentage area of stroma
in HN cancers is associated with a high ADC. Stroma has
been shown to be negatively prognostic in several cancers, to
promote tumor growth and invasion, and to potentially protect
tumors from delivery of chemotherapy (40–45). ADC behaviors
in the p16– tumors could be explained by their increased stroma.
HPV-related oropharynx cancers are histologically basaloid in

histology with significant tumor lymphocytic infiltration, which
is associated with improved prognosis (46, 47) and decreased
ADC. ADC, although a promising QImetric for differentiation of
local and regional failure, and even distant failure, is affected by
multiple biologic and physiologic factors, including cell density
and stroma as well as cyst and necrosis (In this study, we excluded
grossly cystic and necrotic regions for QI metric analysis).

The low BV in primary tumors and persisting during the
early course of RT have reported previously to be associated
with LF (12–17). However, there is no report that the low BV
and its low response rate in HNSCC during the early course
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FIGURE 4 | Box and Whisker plots of the GTVs (A,B), the subvolumes of low BV (C,D), mean ADC (E,F), and mean BV (G,H) of nodal tumors with RF (blue), DF

(orange), and NED (gray) pre-RT and at 2 weeks.

FIGURE 5 | Box and Whisker plots of the mean SUV (A), max SUV (B), and TLG (C) of nodal tumors with RF (blue), DF (orange), and NED (gray) pre-RT.

of RT is associated with DF. The subvolumes of low BV in
primary tumors show a descending trend from LF, to DF and
NED. The response rate of low BV could be used to differentiate
the tumor at high-risk for LF or DF from NED, and thereby
adapting intensified local or systematic therapy for the patients
with different progression risks.

Pretreatment FDG QI metrics, including MTV, TLG and
mean/max, have been reported to be correlated with PFS and
OS in the patients with HN cancers treated with CRT (3–6).
We found that the high mean/max SUV and large TLG in
nodal tumors were risk factors for nodal failure, and that the
sum of TLG over all nodal MTVs was a negative prognostic
factor for DFFS, which is consistent with several previous reports
(2–4). Although TLG accounts for both the size and SUV
of MTV, we found that nodal TLG was strongly correlated

with MRI-defined GTV, and nodal GTV was the strongest
predictor for RF in our study. For prediction of RF and DF,
several other MRI parameters (including GTV, ADC, and BV)
perform as well as FDG PET related parameters. When including
T4/N3 and total nodal GTV in the Cox model, no other
imaging parameters including PET were found to be significant.
Finally, there were no FDG PET related parameters that could
predict LF.

Radiomics analysis of CT and PET features is another area of
imaging analysis that could provide complimentary information
to the present study. Radiomics analysis that extracts the large
amounts of quantitative textural features from CT, PET, and
MRI has been investigated for the prediction of local control,
PFS, and OS in head and neck cancers (48–52). Through the
feature selection and reduction processes, a small number of
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features have been found to have prognostic or predictive value.
These features include general categories of statistical energy,
shape compactness, gray level non-homogeneity, and gray level
non-uniformity. These features may represent different tumor
phenotypes. However, it is hard to link the feature to tumor
physiology, pathology and biology. Furthermore, radiomics
approaches require a large amount of high quality image data,
and high-throughput.

A limitation of the present analysis includes RT boost
of tumor subvolumes with persistent low BV and low ADC
on our clinical trial. This could affect QI metrics that are
identified for prediction of treatment failure. We will perform
this analysis on patients who are on the standard treatment
arm when the trial is completed and the data have matured.
Nevertheless, we found that persistent low BV in primary and
nodal tumors carries a high-risk for nodal and distant failure,
the low response rate of low BV has a high-risk for distant
failure, and the low response rate of ADC is for p16– primary
tumors. MRI derived biomarkers perform at least as well as
FDG PET defined ones. As MRI based planning is already well-
integrated into radiation therapy, our findings suggest that MRI
based response assessment will be a valuable guide in adaptive
radiation therapy.
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Purpose: The aim of this study was to identify and rank discriminant radiomics

features extracted from MR multi-modal images to construct an adaptive model for

characterization of Dominant Intra-prostatic Lesions (DILs) from normal prostatic gland

tissues (NT).

Methods and Materials: Two cohorts were retrospectively studied: Group A consisted

of 98 patients and Group B 19 patients. Two image modalities were acquired using a

3.0T MR scanner: Axial T2 Weighted (T2W) and axial diffusion weighted (DW) imaging.

A linear regression method was used to construct apparent diffusion coefficient (ADC)

maps from DW images. DILs and the NT in the mirrored location were drawn on each

modality. One hundred and sixty-eight radiomics features were extracted from DILs

and NT. A Partial-Least-Squares-Correlation (PLSC) with one-way ANOVA along with

bootstrapping ratio techniques were recruited to identify and rank the most discriminant

latent variables. An artificial neural network (ANN) was constructed based on the optimal

latent variable feature to classify the DILs and NTs. Nineteen patients were randomly

chosen to test the contour variability effect on the radiomics analysis and the performance

of the ANN. Finally, the trained ANN and a two dimension (2D) convolutional sampling

method were combined and used to estimate DIL-NT probability map for two test cases.

Results: Among 168 radiomics-based latent variables, only the first four variables

of each modality in the PLSC space were found to be significantly different between

the DILs and NTs. Area Under Receiver Operating Characteristic (AUROC), Positive

Predictive and Negative Predictive values (PPV and NPV) for the conventional method

were 94%, 0.95, and 0.92, respectively. When the feature vector was randomly

permuted 10,000 times, a very strong permutation-invariant efficiency (p < 0.0001)

was achieved. The radiomic-based latent variables of the NTs and DILs showed no

statistically significant differences (Fstatistic < Fc = 4.11 with Confidence Level of 95% for
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all 8 variables) against contour variability. Dice coefficients between DIL-NT probability

map and physician contours for the two test cases were 0.82 and 0.71, respectively.

Conclusion: This study demonstrates the high performance of combining radiomics

information extracted from multimodal MR information such as T2WI and ADC maps,

and adaptive models to detect DILs in patients with PCa.

Keywords: radiomics, multiparametric MRI (mpMRI), prostate cancer, intraprostatic lesion, artifical neural

network (ANN)

INTRODUCTION

Radiation Therapy (RT) has been proven to be an effective form
of treatment for prostate cancer (PCa) and still is considered
as one of the standard treatment options available. The current
practice is to treat the entire prostate with a homogeneous dose
distribution (1, 2). Escalated dose conformal radiotherapy has
shown an advantage in biochemical progression-free survival but
it is associated with the increase in acute and late toxicities (3).
Simultaneous dose escalation to the dominant intra-prostatic
lesions (DILs), while maintaining acceptable doses to the whole
prostate gland has potential to improve therapeutic ratio for
prostate cancer patients. A median dose to the entire gland
could prevent the disease recurrence in the prostate from satellite
tumors and significantly reduce the side effects associated with
escalated radiation dose to the entire gland. A boosting dose to
the DIL can maintain the effectiveness of focal therapy to treat
the DIL that is the main determinant for tumor progression and
prognosis. For this strategy to be successful, key requirements are
the ability to accurately and reliably identify clinically significant
tumors in the prostate gland.

Among different imaging techniques, Magnetic Resonance
Imaging (MRI) is used increasingly and provides clinicians
and researchers with useful information for delineation of
the prostate gland and clinically significant tumors in PCa
patients (1, 2, 4). While multi-parametric (MP) MRI is well-
established (5, 6) for detection of lesions and for staging of
the disease, the sensitivity for small and lower grade lesions
as well as spare tumors has been low (7) and MP-MRI
has failed to improve the detection accuracy of lesions in
the central gland (8). Furthermore, accurate and automatic
delineation of DILs from prostate glandular tissue which is not a
common practice, still remains a challenge. Radiomics analysis,
which is defined as the post-processing for high throughput
extraction of textural and intensity-based information from
medical images, can play a central role toward detecting
biomarkers for diagnosis and/or therapy of patients with
cancer (9, 10).

This study aims to identify discriminant radiomics features
in the real radiomics-feature space and the latent-variable
space (constructed from radiomics features in the space of
Partial Least Square Correlation, PLSC) for construction
of an adaptive model to classify DILs and NTs. The
discriminant feature set in the PLSC latent-variable space
can also be used for intra-tumoral segmentation and treatment
response evaluation.

METHODS AND MATERIALS

Patient Population, and Pre-processing
A total of hundred-seventeen patients consisted of the following
two groups were studied:

Group A: This group consisted of 98 PCa patients collected
in Radboud University Nijmegen Medical Centre (11) and
evaluated with Computer-Aided Diagnosis (CAD) (12, 13). Each
MR study was read and reported by or under the supervision
of an expert radiologist (Barentsz), with more than 20 years
of experience in prostate MR. The radiologist indicated areas
of suspicion with a score per modality using a point marker.
If an area was considered likely for cancer a biopsy was
performed. All biopsies were performed under MR-guidance
and confirmation scans of the biopsy needle in situ were
made to confirm accurate localization. Biopsy specimen were
subsequently graded by a pathologist and the results were used as
ground truth. Gleason grade groups for these patients are listed
in Table 1, GroupA.

All MR studies included T2-weighted (T2W) and diffusion-
weighted (DW) imaging. The images were acquired on two

TABLE 1 | Gleason Grade Group and PSA level of PCa patients for the two

groups are shown in the table.

Gleason grade group No. of patients

GROUP A

1 30

2 39

3 19

4 5

5 5

GROUP B

1 5

2 7

3 3

4-5 4

PSA level No. of patients

<4 5

4-10 8

10–20 2

>20 4

The PSA levels are not available for group A.
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different types of Siemens 3T MR scanners, the MAGNETOM
Trio and Skyra. T2W images were acquired using a turbo spin
echo sequence and had a resolution of around 0.5mm in plane
and a slice thickness of 3.6mm. the DWI series were acquired
with a single-shot echo planar imaging sequence with a resolution
of 2mm in-plane and 3.6mm slice thickness and with diffusion-
encoding gradients in three directions. Three b-values were
acquired [50, 400, and 800 (sec-mm−2)], and subsequently, the
ADC map was calculated by the scanner software. All images
were acquired without an endorectal coil, as per the PI-RADS
guidelines for acquisition of prostate MRI (14).

Group B: Consisted of 19 patients (age range: 56–84, mean:
67) collected in our hospital, presented with increased PSA
levels, suspicion in MR images, and biopsy-proven localized
prostate carcinoma with no prior treatment. PSA and Gleason
score of these patients are listed in Table 1, GroupB. All
patients underwent an MP MRI study. An ultrasound guided
needle biopsy was performed to confirm the diagnosis. Among
19 patients, 15 had histopathologically identified cancer in
peripheral zone and 4 in the central gland. Two image modalities
were acquired from the pelvis of all patients using a 3.0 T MR
scanner (Ingenia, Philips Medical System, Best, the Netherlands)
using small field of view as follows: Axial T2W Images (T2WI)
acquired with Fast-Spin-Echo (TE/TR: 4389/110ms, Flip Angle:
90◦ with image resolution of 0.42 × 0.42 × 2.4 mm3) and
axial Diffusion Weighted Images (DWI) with two b-values
[TE/TR:4000/85ms, FA:90◦, 1.79 × 1.79 × 0.56 mm3, b-values:0
and 1000 (sec-mm−2)]. The voxel-wise Apparent Diffusion
Coefficient (ADC) map was constructed using two DWIs with
two b-values. A large field of view transverse T2W sequences was
also acquired to access the pelvic bones and lymph nodes. Image
registration and lesion contouring was performed on in-house
developed software.

Data Contouring and Harmonization
For each patient of group B, a radiologist with over 20 years of
experience evaluated the axial T2WI and ADC maps and used
the following criteria for delineation of DIL: Areas with a well-
circumscribed, hypo-intense with the highest Gleason score in
the prostate on T2WI and ADC map. DIL and the equivalent
region in contralateral (normal prostatic glandular tissues, NT)
were contoured on axial T2WI and ADC maps, respectively.
To harmonize the data and make them independent from MR
scanner gains (can affect weighted images), for each patient of
both groups, the signal intensity of their DIL was normalized to
the mean value of their corresponding normal volume prior to
the radiomics analysis.

Radiomics Analysis
All data processing was performed off-line using a commercial
software package (MATLAB 2016a, the MathWorks Inc., Natick,
MA, 2000). For each patient, 168 radiomics features (15),
from eight different categories, were extracted from DIL and
NT volumes contoured on ADC maps and T2W images. The
8 feature categories (15), as detailed below and in Table 2,
were classified as follows: Intensity Based Histogram Features
(IBHF−9 features), Gray Level Run Length (GLRL−7 features),

Law’s Textural information (LAWS−18 features), Discrete
Orthonormal Stockwell Transform (DOST−18 features), Local
Binary Pattern (LBP−6 features), Two-Dimensional Wavelet
Transform (2DWT−48 features), Two Dimensional Gabor Filter
(2DGF−40 features), and Gray Level Co-Occurrence Matrix
(GLCM−22 features) (15).

Feature Selection and Statistical Analysis
A Partial Least Square Correlation (PLSC) (16) technique
combined with one-way analysis of variance (ANOVA) were
recruited to identify the most discriminant PLSC latent variables
constructed from radiomics features extracted from NTs and
DILs of multimodal MR information (T2WI and ADC map).
PLSC method which is also called as projection to latent
structures, can relate the information present in two MR
modalities in which collect measurements on the same set
of observations (16, 17). The goal of the PLSC is to find
pairs of latent vectors with maximal covariance and with the
additional constraints that the pairs of latent vectors made
from two different indices are uncorrelated and the coefficients
used to compute the latent variables are normalized. As
shown in Figure 1, two observation matrices were constructed
using 168 radiomics features extracted from the two image
modalities (T2WI and ADC) from total patients. A singular
value decomposition (SVD) technique was used to analyze
the common and discriminant information between the two
observation matrices. For each MR modality, a latent vector
was computed by the SVD technique and then it was tested by
the ANOVA (with homoscedasticity assumption and confidence
level of 0.95) to identify the most discriminant features in latent
variable space between the features extracted from DIL and NT
volumes in both groups. The Holm–Bonferroni method (18) was
also used for circumventing the problem ofmultiple comparisons
for the p-values. This method of p-value adjustment controls the
familywise error rate and offers a uniform test, which is more
powerful than the classic Bonferroni correction (18). Using the
discriminant latent variable set identified by ANOVA, an optimal
feature set for both modalities was identified and constructed.

Feature Ranking Using Bootstrapping
Ratio Technique
A bootstrapping ratio (16, 19, 20) and permutation test (10,000
times randomly repeated) were performed on the latent vectors
of the features sets (extracted from T2WI and ADC) and the
SVD was computed for each configuration and distribution of
eigen values was used to estimate the ranking and efficiency of the
radiomics features against random permutation. For radiomics
feature ranking, bootstrap ratios were computed by dividing the
mean of the bootstrapped distribution of a significant latent
variable by its standard deviation. The bootstrap ratio is akin to
a Student t criterion and so if a ratio is large enough (>2.00;
because it roughly corresponds to 95% of confidence level for a
t-test) then the variable is considered significant/important for
the dimension. The bootstrap estimates a sampling distribution
of a statistic by computingmultiple instances of this statistic from
bootstrapped samples obtained by sampling with replacement
from the original sample (16, 19, 20).
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TABLE 2 | Eight different radiomics feature categories along with a short explanation of each category is shown in this table.

Category Number of radiomics

features

Radiomics features

IBHF 9 features Nine features are extracted from histogram of the pixel intensity values: 1-Mean, 2-Standard Deviation, 3-Skewness,

4-Kurtosis, 5-Entropy, 6-Central Moment of 3rd order, 7- Central Moment of 4th Order, 8- Central Moment of 5th Order, 9-

Central Moment of 6th Order.

GLRL 7 features Seven Gray Level Run Length texture descriptors were constructed based on the following emphasizes: Short Run

Emphasis (SRE), Long Run Emphasis (LRE), Gray Level Non-Uniformity (GLN), Run Percentage (RP), Run Length

Non-Uniformity (RLN), Low Gray Level Run Emphasis (LGRE), and High Gray Level Run Emphasis (HGRE).

LAWS 18 features Nine textural maps were constructed by filtering the image data using the following convolution kernels: L5 = [1 4 6 4 1], E5

= [−1 −2 0 2 1], S5 = [−1 0 2 0 −1], R5 = [1 −4 6 −4 1] and then, 18 LAWS textural features were computed by applying

and combining the energy and entropy operators on these maps as following: L5E5/E5L5, L5R5/R5L5, E5S5/S5E5, S5S5,

R5R5, L5S5/S5L5, E5E5, E5R5/R5E5, and S5R5/R5S5.

DOST 18 features The two-dimensional matrix of DOST coefficients was divided into nine equal segments and the energy and entropy of each

segment was averaged over the tumor volume and eighteen features (nine energy along with nine entropy) were generated

and used as the DOST radiomics features.

LBP 6 features Local Binary Pattern algorithm with a radial filter (eight-neighborhood) was used to generate a two-dimensional LBP map

and Entropy, Entropy, Mean, Standard Deviation, Skewness, and Kurtosis of the LBP maps were used as the six LBPF

radiomics features.

2DWT 48 features Two-dimensional Wavelet Transform with six decomposition levels for four different information attributes (Multi-resolution

image, vertical, horizontal, and diagonal) was used to generate 24 maps of 2DWT information. Energy and entropy of the

information maps were calculated and used as the 48 2DWT radiomics features.

2DGF 40 features Two-dimensional Gabor (2DG) filter with five different scales for four different orientations generated 20 maps. Energy and

entropy of the maps was averaged over the tumor volume and used as the 2DGT radiomics features.

GLCM 22 features Gray-Level-Co-occurrence Matrix (GLCM) was generated and the following 22 features were measured from the GLCM

using an 8-bit depth quantization: 1-Autocorrelation, 2-Contrast, 3-Correlation (2), 4-Correlation (1), 5-Cluster Prominence,

6-Cluster Shade, 7-Dissimilarity, 8-Energy, 9-Entropy, 10-Homogeneity (1), 11-Homogeneity (2), 12-Maximum probability,

13-Sum of squares(Variance), 14-Sum average, 15-Sum variance, 16-Sum entropy, 17-Difference variance, 18-Difference

entropy, 19-Information measure of correlation (1), 20-Information measure of correlation (2), 21-Inverse difference

normalized, and 22-Inverse difference moment normalized.

Artificial Neural Networks: Architecture
Optimization, Training, and Validation
Strategies
Eight latent variables constructed from the radiomics
information were identified as the optimal feature set and
were used as the input to an artificial neural networks (ANN)
with a feed-forward multilayer perceptron (MLP) architecture
and back-propagation training algorithm (21) for classification
of DILs and NTs. In this type of ANN, the nodes are organized
in multiple layers; The ANN used in our study had three layers:
the input layer, single intermediate layer, and the output layer
(21, 22). Nodes were interconnected by weights in such a way
that information propagates from one layer to the next, passing
through a sigmoid (bipolar) activation function (22). Learning
rate and momentum factors were set to control the internode
weight adjustments during training (learning rate: 0.01, and
Momentum: 0.01). A back propagation learning strategy (21)
was employed for training the ANN in a supervised mode. In
this strategy, a trial set of weights (the weight vectors, one vector
for each layer of the ANN) was proposed. The initial weights
were assigned randomly, and the same set of initial weights
was saved and used for different trial during the leave-one-out
method. The weight vectors were then adjusted to minimize
some measure of error (in this case the Mean Square Error,
MSE) between the output of the ANN and the training set. This

procedure was performed iteratively across the entire data set
using a batch processing mode to improve the convergence
rate and the stability of training. The weight changes obtained
from each training case were accumulated, and the weights
updated after the entire set of training cases was evaluated. Batch
processing improves stability, but with a tradeoff in reduction of
the convergence (21–23).

Two different training and validation strategies were recruited
and tested as follows:

Strategy 1: Leave-One-Out Cross-Validation (LOOCV)

method, which is a particular case of the Leave-P-Out Cross

Validation (called as Exhaustive Method) was employed for
training, testing, and ANN architecture optimization (21, 22, 24–

26). LOOCV was recruited to find the optimal structure,

termination error, and validation of the ANN. As shown in

Figure 2, this approach leaves one data point out of training
data, i.e., if there are N data points in the original sample then,

N-1 samples are used to train the model and 1 point is used as

the validation. This is repeated for all combinations in which

original sample can be separated this way, and then the error
is averaged for all trials, to give overall effectiveness with less

estimated bias (27). This method is generally preferred over the

Leave-P-Out Cross Validation when the sample size is small
since it does not suffer from the intensive computation, as
number of possible combinations is equal to number of data

Frontiers in Oncology | www.frontiersin.org 4 November 2019 | Volume 9 | Article 1313126

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Bagher-Ebadian et al. Adaptive Detection of Prostate Cancer

FIGURE 1 | The flowchart demonstrates different steps for the extraction of radiomics features from T2W images and ADC maps for DILs and normal tissues. As

shown in this figure, for each MR modality, 168 radiomics features are extracted from normal and DIL volumes. The optimal feature set for the two MR modalities are

identified using ANOVA applied on the latent variables generated by the PLSC technique for features with Silhouette coefficient of 0.5 and greater.

points in original sample or N (28). Finally, to evaluate the
stability of the optimal ANN against optimal number of training
epochs, a series of ROC curves were generated by applying a

threshold at the output of the randomly (100 times) trained
ANN. The, the optimal cut-point which is the point closest-to-
corner in the ROC plane was calculated. The optimal cut-point
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FIGURE 2 | This figure demonstrate three major phases as follows: Training, optimization, and evaluation phases for the ANN using the leave-one-out technique and

area under correct classification fraction.

defines as the point minimizing the Euclidean distance between
the ROC curve and the (0, 1) point (29). As the sensitivity
(true positives) increases, the ANN can identify more cases
with DIL, while the accuracy on identifying NTs (specificity)
are sacrificed. Cut-points dichotomize the test values, so this
provides the classification (DIL or not). Simultaneous assessment
of sensitivity and specificity is used to estimate the cut-point
value which is considered as optimal when the point classifies
most of the individuals correctly (29, 30).

To measure how accurately the ANN matched the whole
input dataset with the entire identifier set, the ANN’s Correct-
Classification-Fraction (CCF: True Positive plus True Negative,
TP+TN) curve was generated at different levels of epochs during
the LOOCV procedure. The area under Receiver-operating
characteristic (AUROC, Az-value) curves (21, 22, 24, 25) for the
ANN that is an index of predictive performance, was used to
compare the ANN’s performance in determining the optimal
architecture of the ANN, and also finding the termination error
(avoid overfitting) for training the optimal ANN.

Strategy 2: For each discriminant latent variable, the data
of the patient group A (96 patients) was split 100 times into
training and validation components. In each data split, two-
thirds (67%) of the entire dataset was randomly sampled and
used as a training set and the remaining one-third (33%) was
used as the unseen cohort or validation dataset (31). Using the
training and validation sets for each of the 100 iterations, the
ANN was trained and validated separately for each discriminant
latent variable. The same procedure was repeated for the set
of eight latent variables. The AUROC, Positive Predictive value
(PPV) and Negative Predictive value (NPV) were computed
for each trial and were averaged to evaluate ANN classification
performance for each discriminant latent variable and the set of
eight latent variables.

All data processing and classifier implementation were
performed using a series of in-house codes developed in the
MATLAB environment.

Testing of Data Harmonization, Feature
Consistency, and Generalization Error
Data harmonization refers to all efforts to combine different
datasets collected by different scanners in different institutions.
Finally, in order to test the consistency of the identified
discriminant latent variables against the data harmonization
and also testing the performance of the classifiers against
prospective/unseen datasets (ANN generalization error), the
following sub-analysis was conducted: An ANN was trained
using the eight discriminant latent variables (constructed from
radiomics information) extracted from patients information
of group A. The trained ANN was then applied on the
eight discriminant latent variables (constructed from radiomics
information) extracted from patient information of group B (as
test set or unseen patient cohorts). Ultimately, a ROC analysis
was performed on the predictions of the trained ANN and
AUROC, NP, and PP values for the unseen testing cohort (group
B) were calculated.

Contour Variability Test
Nineteen patients were randomly chosen from hundred-
seventeen patients and their DIL and NT contours were modified
by scaling the contours by a factor of 1.2 in all directions
followed by a 1 voxel shift in all directions and their modified
contours were used to repeat the radiomics and PLSC analyses
and ANOVA method was used to test the sensitivity of the latent
variables against contour variability.

Frontiers in Oncology | www.frontiersin.org 6 November 2019 | Volume 9 | Article 1313128

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Bagher-Ebadian et al. Adaptive Detection of Prostate Cancer

TABLE 3 | Feature ranking based on the PLSC and Bootstrapping techniques for

the first 10 significant radiomic features of two MR modalities.

Feature

no.

Image

modality

Radiomics

feature

Radiomics feature

category

Bootstrapping

ratio (mean/std)

1 T2WI LBP_Energy LBP 21412.01

2 ADC Map LBP_Energy LBP 410.83

3 T2WI RLN GLRL 159.69

4 ADC Map RLN GLRL 70.32

5 T2WI GLN GLRL 35.29

6 T2WI HGRE GLRL 35.28

7 ADC Map DOST_ENTROPY_22 DOST 25.13

8 ADC Map ENG_GAB02 2DGF 22.99

9 ADC Map LBP_KURTOSIS LBP 22.95

10 T2WI LBP -KURTOSIS LBP 22.92

Tumor Probability Map
The trained ANN and a two dimension (2D) convolutional
sampling method window size = 25 × 25) were combined and
used to estimate DIL-NT probability map for two test cases.
Dice coefficients between the DIL contours and the DIL patch
estimated from the probability maps (Pthr > 0.001) for the two
cases were calculated and compared.

RESULTS

A flowchart demonstrating different steps for extracting
radiomics features from T2W images and ADC maps for DILs
and NTs are shown in Figure 1. As shown in the figure, for
each MR modality, 168 radiomics features were extracted from
each of the NTs and DILs and finally, the optimal discriminant
latent feature set for the two MR modalities were identified
using a PLSC technique and ANOVA. Table 3 shows feature
ranking results based on the PLSC and bootstrapping ratio
techniques for the first 10 significant radiomic features of two
MRmodalities. Figures 3A,B demonstrate the scatter plots of the
first three PLSC latent variables for T2WI and ADC, respectively.
Figures 3C,D demonstrate the permutation tests for the inertia
explained by the PLSC of the T2WI and ADC map along with
their observed inertia for the 10,000 permutations.

Figure 4A shows correct classification fraction (CCF = TP +

TN) of the optimal ANN at different training epochs for LOOCV
technique. The epoch corresponding to 10% change in plateau for
the optimum architecture (8:5:1) was used as the stopping epoch
(epoch= 17) of the ANN. Figure 4B shows TP, TN, false positive
(FP), and false negative (FN), of the optimal ANN at different
training epochs.

The AUCCF values for different ANN structures for LOOCV
technique are shown in Figure 4C. As shown in this figure, the
ANN with five neurons in its only hidden layer shows the highest
performance (Az = 0.95) and is chosen as the ANN with optimal
structure. Figure 4D shows the average AUROC of the ANN
generated for randomly (100 times) trained ANNs along with
the optimal cut-point (OCP = 0.96). Given the average AUROC
(Az test ∼ 0.96), the optimal cut-point of the ANN, and the

eigen value distributions for the randomly permuted (10,000
permutations) radiomics features, the generalization error of the
ANN was about 4% with a very strong permutation-invariant
efficiency, p < 0.0001) against the order of the latent variables.

AUROC, PPV, and NPV for the conventional method were
94%, 0.95, and 0.92, respectively. ROC analyses for eight
individual latent variables (4 for T2WI and 4 for ADC) are shown
in Figure 5. Figures 5A–D demonstrate the ROC analyses of
the ANN for the first 4 latent variables constructed from T2WI
for 100 random iteration corresponding to a different division
of training and validation data of group A while Figures 5E–H
depict the corresponding information for the ADC map. Table 4
shows AUROC, NPV, and PPV values along with their confidence
intervals measured for each individual latent variable for 100
iterations (each corresponding to a different division of training
and validation datasets).

As shown in Figure 5I, for the conventional training and
validation method, the average AUROC, PPV and NPV were
95%, 0.96, and 0.93, respectively. Figure 5J shows the response
of the trained ANN (group A) when it was applied on group B.
The performance of the trained ANN (using group A dataset)
when it was applied on the unseen data cohort (group B) was:
Sensitivity/Specificity = 0.95/0.94. The radiomic-based latent
variables of the NTs and DILs showed no statistically significant
differences (Fstatistic for all 8 latent variables were smaller than
Fcritical = 4.11, with Confidence Level of 95%) against contour
variability. Figures 6A–F, illustrate T2WI, ADC map, and lesion
probability map for a slice of prostate gland of two different
patients estimated by the trained ANN using a 2D-convolutional
sampling method (window size = 25 × 25). Dice coefficients
between DIL-NT probability map and physician contours for the
two test cases were 0.82 and 0.71, respectively.

DISCUSSION

Recent studies have shown that cancerous tissues are spatially
heterogeneous due to factors, such as cell structures, genes,
protein contents, cell morphologies, tumor microenvironment,
and physiology (32). Indeed, themain purpose of using radiomics
is to reveal and extract additional information from medical
imaging modalities, associated with macroscopic and microscopic
image-based features that have the potential to serve as surrogates
for pathophysiological and radiological parameters, such as
tumor heterogeneity level, pathology, response to a given
therapy, decoration and distribution of information in images,
and structural and image-based patterns in digital images. In our
study, given the variation and nature of the radiomics features,
we extracted multi scale information in form of features from the
prostate gland to characterize normal prostatic tissue and tumor
phenotypes from multi model MRI.

The PLSC technique used in this study allowed the finding
of shared information between the two image modalities
(T2WI and ADC). This approach is equivalent to a correlation
problem (16, 17, 33) and provided descriptive features from
multivariate information in form of latent variables which
are optimal linear combinations of the variables extracted
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FIGURE 3 | (A,B) Clusters of NTs and DILs for each latent variable are well-separated with less diffusivity. It confirms that the distribution of the identified latent

variable (PLSC-ANOVA) in the feature space is well-matched to its own cluster (less scattered) and poorly diffused to its neighboring clusters for the MR modalities.

(C,D) Show the results of the permutation tests for the inertia explained by the PLSC of T2WI and ADC map for 10,000 permutations. As shown in the subfigures, the

observed value (shown by vertical arrows) were never obtained in the 10,000 permutations for both modalities. Therefore, it is concluded that PLSC extracted a

significant amount of common variance between these two modalities with P < 0.0001.

from the two image modalities. Partial least square (PLS)
method that benefits from projecting feature information on
latent structures, relates the information present in two data
tables (modalities) that collect measurements on the same set
of observations (16). PLSC latent variables constructed on
the basis of radiomics information extracted from DIL and
NT consists of all radiomics features and can help reveal
variations of descriptive features or discriminant parameters
for classification of DIL from NT. An adaptive classifier (such
as ANN) provides capability of implicitly detecting complex
non-linear relationships between dependent and independent
radiomics variables (already found as optimal feature set in latent
variable space) and their variations, modeling their non-linear
changes as well as detecting all possible interactions between

the predictor variables. As shown in Figures 3A,B, clusters of
NTs and DILs for each latent variable are well-separated with
less diffused marginal points in the feature space. It confirms
that the distribution of the identified latent variable (PLSC-
ANOVA) in the PLSC space is well-matched to its own cluster
(less scattered) and poorly diffused to its neighboring clusters.
Figures 3C,D show the results of the permutation tests for the
inertia explained by the PLSC of T2WI and ADC map for
10,000 permutations. The observed value (shown by vertical
arrows) were never obtained in the 10,000 permutations for
both modalities. Therefore, it is concluded that PLSC technique
was able to successfully extract significant amount of common
variances between these two modalities with p-value smaller
than 0.0001.
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FIGURE 4 | (A) Shows true positive plus true negative (TP+TN) of the optimal ANN (8:5:1) at different training epochs. (B) Shows true positive, true negative, false

positive, and false negative of the optimal ANN at different training epochs. (C) Demonstrates the area under receiver operating characteristic (AUROC, Az test) value

for different ANN structures. As shown in this figure, the ANN with five neurons in its only hidden layer shows the highest performance and is chosen as the optimal

ANN. (D) Shows the average ROC of the optimal ANN along with optimal-cut-point of the ANN.

Recruitment of PLSC technique and ANOVA in this
study allowed robust comparison and revealing of the
correlation and descriptive power of different radiomics
features extracted from the two MR modalities, while providing
more predictive accuracy and a much lower chance of
risk for the two sets of features affecting each other. The
major limitations could be the sensitivity to the relative
scaling of the descriptor variables that was addressed by
the standardization and harmonization steps prior to the
feature extraction.

Recent studies (34–39) have shown that ADC measurements
are affected by the user selected repetition time (TR) values,
especially if it is comparable to the relaxation time. The degree
of TR dependence is also codependent on another parameter

called number of diffusion preparation pulses. Similar to TR

dependence of ADC values, it is expected that there could be
an echo time (TE) dependence on ADC values. In fact, Wang
et al. (39) found a modest correlation between TE and ADC
values in the prostate. It has been shown that tissue specific
relaxation time parameters such as T1 and T2 and imaging
parameters such as TR and TE affects the optimum b-value for
different anatomies, tissues, and even lesion types within the
same organ. Therefore, since the ADC value could be highly
and “non-linearly” affected by the MR imaging parameters (34–
39), in this study, as part of data harmonization, normalization
to normal volume was performed to suppress the effect of the
MR imaging parameters on the ADC values. Such normalization
made the ANN independent and less sensitive to theMR imaging
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FIGURE 5 | (A–D) Depict ROC curves corresponding to 100 iterations each corresponding to a different division of training and validation datasets for ANN for the

T2WI latent variables number 1–4. (E–H) depict ROC curves corresponding to 100 iterations each corresponding to a different division of training and validation

datasets for ANN for the ADC latent variables number 1–4. As shown in this figure for each modality, from left to right as the order of latent variable increases the

information content or discrimination power of the variable for classification deceases. (I) illustrates a family of ROC curves for 100 iterations, each corresponding to a

different division of training and validation datasets for ANN for all 8 latent variables. (J) shows the response of the trained ANN against an unseen/prospective dataset

(trained with group A and tested with group B).

parameters for prospective patients whom could be scanned with
different scanners or different imaging parameters.

As shown in Figure 5 and according to the statistical measures
reported in Table 4, as it is expected, for each modality, from
left to right (Figures 5A–D or Figures 5E–H), as the order
of the latent variable increases the information content or
discrimination power of the variable for DIL classification
deceases. As shown in Table 4 and Figure 5, the analysis results

strongly confirm that compared to T2WI modality, the ADC
modality is more discriminative with higher information content
for the classification of DILs and NTs.

The application of novel machine learning techniques
such as Bayesian approach, Support vector machine (SVM)
kernels: polynomial, radial base function (RBF) and Gaussian
and Decision Tree for detecting prostate cancer have been
proposed by several research groups (40–42). Moreover, different
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TABLE 4 | This table shows AUROC, NPV, and PPV values along with their confidence intervals measured for each individual latent variable for 100 iterations (each

corresponding to a different division of training and validation datasets).

Latent variable AUROC AUROC-CI PPV PPV-CI NPV NPV-CI

First latent variable (T2WI) 0.87 0.86–0.89 0.86 0.84–0.88 0.78 0.76–0.79

Second latent variable (T2WI) 0.79 0.72–0.85 0.84 0.78–0.90 0.71 0.68–0.74

Third latent variable (T2WI) 0.76 0.75–0.80 0.72 0.67 0.74 0.72 0.70–0.74

Fourth latent variable (T2WI) 0.66 0.64–0.68 0.58 0.57–0.60 0.69 0.65–0.73

First latent variable (ADC) 0.91 0.90–0.92 0.88 0.85–0.90 0.82 0.80–0.84

Second latent variable (ADC) 0.88 0.86–0.89 0.87 0.85–0.89 0.81 0.80–0.83

Third latent variable (ADC) 0.79 0.72–0.87 0.80 0.75–0.85 0.83 0.81–0.86

Fourth latent variable (ADC) 0.74 0.72–0.76 0.66 0.64–0.67 0.81 0.78–0.85

FIGURE 6 | (A–F) illustrate T2WI, ADC map, and lesion probability map for a slice of prostate gland for two different patients estimated by the trained PLSC-ANN

using a 2D-convolutional sampling method (window size = 25 × 25).

features extracting strategies are proposed to improve the
DIL detection performance (40). ANNs have been used in
different fields on a variety of tasks such as computer vision,
speech recognition, machine translation, social network filtering,
medical diagnosis, and in many other domains. There have
been numerous applications of ANNs within medical decision-
making (26, 43, 44). It has been shown that ANNs have unique
properties including robust performance in dealing with noisy or
incomplete input patterns, high fault tolerance, and the ability
to generalize from the training data (26, 43). The adaptive
model constructed in this study can benefit from the ANN’s
properties stated above and can distinguish DILs from NTs
with almost uniform sensitivity at different levels of specificities
(see Figures 4A,B, 5I). The stability (lesions being non-patchy
and uniform) of the predicted DILs and NTs in the probability
maps (shown in Figure 6) clearly confirm the robustness of
the PLSC-ANN technique in information extraction from the
two MR modalities. The proposed ANN in this study was
trained without any data augmentation. The results implied that

the trained ANN can also evaluate any suspicious lesion in
different zones of the prostate gland (PZ or TZ) regardless of its
Gleason score.

Our study also confirms that the most discriminant features
are textural-based features and given the bootstrapping feature
ranking results, it can be concluded that frequency or
arrangement-based features (LBP, GLRL, DOST, and 2DGF, see
Table 3, a measure of the decoration or disorder of information
distribution within a region), that are associated with subtle and
descriptive information content of the two imagemodalities, play
a key role in discrimination of DIL from NT. Also, we did not
include morphological features such as volume, shape, solidity,
convexity, eccentricity, and etc. in order to eliminate any possible
biasing result from the manual contouring of DILs and NTs.

In this study, DIL and the NT contours were separately drawn
on each image modality. While such a process could increase
the chance of contour variability and negatively increase the
variation of the data, it had an advantage that the two image
modalities (T2W images and ADCmap) did not necessarily need
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to be co-registered to each other prior to the radiomic analysis
and adaptive modeling and therefore, the analysis results were
not negatively affected by any possible co-registration errors.
DILs and NTs contoured on unregistered image modalities were
directly used for training and testing of the ANN. We only co-
registered the two image modalities (T2WI and ADCmap) using
rigid co-registration [affine transform (45)] method for the two
test cases (see Figure 6) to predict DIL-NT probability map using
the trained ANN and 2D-convolutional sampling method.

The currentmajor computer aided diagnosis systems recorded
AUROC performance ranging from 0.77 to 0.89 and the focus
was to detect lesions in the peripheral zone. Most image features,
either individually or in combination that were effective in the
differentiation of prostate cancer, are volume averaged quantities
such as the 10th percentile of the ADC, T2W signal intensity
skewness (46). Niaf et al. studied texture features extracted from
MP-MRI on 30 fully annotated patients using four different
feature selection and classification methods (47). They could
achieve a diagnostic performance of 0.89 but the study was
limited to the peripheral zone only. The performance was poorer
due to the overfitting problem when all features were used
for classification.

In this study, despite using 117 subjects (two cohorts: 96, and
19) with two different training and validation strategies, there are
still several challenges as follows: Compared to the number of
radiomics features, the study is limited by the number of patients,
which will impact the optimal features selected, and also might
render a predictive model susceptible to Type II errors. A larger
sample size will also allow the construction of a more reliable
ANN in order to draw a reliable and unequivocal conclusion.

In this study, two different training and validation strategies
were recruited and the strong agreement between the analysis
results confirmed the robustness of the identified features. In
the first strategy, employing the LOOCV method in this study,
allowed us to use a high proportion of the available training
data fraction (1–1/K = 0.99 for K = 117), for training, while
making use of all the data in estimating the generalization error
or agreement. The cost is that the process can be lengthy, since
we need to train and evaluate the network K times. Typically,
according to the literatures, K≈ 10 is considered reasonable (48).
In this study, K was set to 117 for 117 patients (one case with
DIL and NT in each fold) and the ANN had a single output, to
predict the outcome. The radiomics features selected might be
impacted by the intensities, size of the contour, and contrast of
the NT. Since the region of interests were delineated manually,
the accuracy and variability of the ROIs could impact on the
optimal feature selection and the training results.

The Az-test for the average ROC analysis of the ANN is 1%
higher than the Az-test of the optimal ANN (see Figures 3C,D).
This is due to the difference between the way the two tests are
conducted: for average AUROC, each NT or DIL from each
subject is considered as a sample (thus the total samples are equal
to 234) while in the ordinary Az-test for the optimal ANN, pair
of NT and DIL for each subject is considered as a sample (thus
the total samples are equal to 117). Strong agreement between
the statistical measures of the LOOCV and conventional methods
and also the high predictive power of the trained ANN (group A)

when it was applied on group B (as prospective or unseen data
cohort), confirm the consistency and high information content
of the discriminant features identified in this study.

The 2D-convolutional sampling analysis results presented in
Figure 6, imply that the trained-ANN is capable of estimating the
DIL and normal tissue probabilities when the target contour (the
2D window) consists of a mixed radiomic information extracted
from DIL and normal tissue.

ANN was implanted as a classifier since it has high tolerance
against variation of input feature components and contours
(according to the contour variability test results) while they are
less sensitive to random noise (49), which allows the construction
of a variation- and noise-insensitive adaptive classifier with
higher accuracy and speed. Most importantly, ANN considers
non-linear relationships among input data that cannot always be
recognized by conventional analyses. Results of the permutation
test also imply that the discriminant features used for training,
are reliable and efficient for classification.

CONCLUSION

In conclusion, this study demonstrates the high performance
of combining radiomics analysis, PLSC technique and adaptive
model for extracting and ranking features from multimodal
MR information such as T2WI and ADC maps to detect DILs
and NTs in patients with PCa. The radiomics information
of ADC modality was proved to have higher discrimination
power compared to the corresponding features extracted from
T2WI modality. Results are suggestive that the integration of
quantitative image analysis methods such as radiomics analysis
and PLSC technique when combined with an adaptive model
can help identify imaging biomarkers and show great potential to
help clinicians improve the classification of clinically significant
prostate lesions for therapy of prostate cancer.
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Purpose: There is an emerging interest of applying magnetic resonance imaging (MRI)

to radiotherapy (RT) due to its superior soft tissue contrast for accurate target delineation

as well as functional information for evaluating treatment response. MRI-based RT

planning has great potential to enable dose escalation to tumors while reducing

toxicities to surrounding normal tissues in RT treatments of nasopharyngeal carcinoma

(NPC). Our study aims to generate synthetic CT from T2-weighted MRI using a deep

learning algorithm.

Methods: Thirty-three NPC patients were retrospectively selected for this study with

local IRB’s approval. All patients underwent clinical CT simulation and 1.5T MRI within

the same week in our hospital. Prior to CT/MRI image registration, we had to normalize

two different modalities to a similar intensity scale using the histogram matching

method. Then CT and T2 weighted MRI were rigidly and deformably registered using

intensity-based registration toolbox elastix (version 4.9). A U-net deep learning algorithm

with 23 convolutional layers was developed to generate synthetic CT (sCT) using 23 NPC

patients’ images as the training set. The rest 10 NPC patients were used as the test set

(∼1/3 of all datasets). Mean absolute error (MAE) and mean error (ME) were calculated to

evaluate HU differences between true CT and sCT in bone, soft tissue and overall region.

Results: The proposed U-net algorithm was able to create sCT based on T2-weighted

MRI in NPC patients, which took 7 s per patient on average. Compared to true CT,

MAE of sCT in all tested patients was 97 ± 13 Hounsfield Unit (HU) in soft tissue,

131 ± 24 HU in overall region, and 357 ± 44 HU in bone, respectively. ME was

−48 ± 10 HU in soft tissue, −6 ± 13 HU in overall region, and 247 ± 44 HU in bone,

respectively. The majority soft tissue and bone region was reconstructed accurately

except the interface between soft tissue and bone and some delicate structures in

nasal cavity, where the inaccuracy was induced by imperfect deformable registration.

One patient example was shown with almost no difference in dose distribution using

true CT vs. sCT in the PTV regions in the sinus area with fine bone structures.
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Conclusion: Our study indicates that it is feasible to generate high quality sCT

images based on T2-weighted MRI using the deep learning algorithm in patients

with nasopharyngeal carcinoma, which may have great clinical potential for MRI-only

treatment planning in the future.

Keywords: synthetic CT (sCT), magnetic resonance imaging (MRI), deep learning, convolutional neural network

(CNN), nasopharyngeal carcinoma (NPC), U-net

INTRODUCTION

There is an emerging interest in applying magnetic resonance
imaging (MRI) during radiation treatment (RT) (1, 2). This is
mainly because MRI can provide superior soft tissue contrast
without ionizing radiation. MRI offers more consistent and
accurate target delineation in head and neck cancers, brain
tumors, sarcomas, and tumor sites in the abdomen and pelvis
(3–6). It has been reported that applying MRI to RT has
great benefits to improve radiation dosimetry and to increase
therapeutic ratio, such as reducing toxicity to critical organs
and enabling dose escalation to tumor sites to achieve survival
gains (4, 7). In addition, not only anatomical but also functional
information can be obtained non-invasively using MRI, which
makes MRI suitable for quantitative and longitudinal evaluation
of treatment response (8–10). Therefore, MRI integrated with the
conventional CT-sim in RT planning has become an essential step
in modern RT process (1–3).

As we know, nasopharyngeal carcinoma (NPC) is a common
malignancy in Southeast Asia. Integrating MRI to RT in
patients with NPC can be especially helpful due to its relatively
complicated target structures and surrounding critical normal
tissues. Accurate delineation of critical structures and tumors in
NPC may not only help patients gain survival but also improve
life quality. However, there are multiple challenges in integrating
MRI to clinical RT. The acquisition time of MRI pulse sequences
is typically much longer than CT, since the MRI scanning
protocol generally includes not only localizer, T1 weighted, T2
weighted, diffusion weighted imaging (DWI) but also dynamic
contrast enhanced (DCE) sequences. Also, parameters of MRI
pulse sequences such as bandwidth, TR, TE and the receiver coils
need to be manipulated based on patients’ anatomical sites or
pathological examinations. MRI in general is more technically
challenging to radiation physicists and physicians compared to
CT. Hence, MRI technologists may need more time to adjust
complex parameters or to optimize coils during anMRI scan (11).
Secondly, MRI is inherently susceptible to motion artifact and
geometric distortion (1, 2, 11, 12). For example, the geometrical
uncertainty of ∼2 and 2–3mm was observed for the brain and
pelvic sites, respectively (13, 14). Such systematic errors can lead
to RT target miss and compromise local control.

Another well-known challenge lies in the conversion of
electron density or HU values in synthetic CT based on MR
images. CT images can be used for radiation treatment planning
is because they can be directly scaled to photon attenuation
map. However, MRI does not provide such information (11, 12).
Currently there are three methods of mapping HU based on the

intensity of MR images (15, 16): atlas-based (17), voxel-based
(18), and hybrid type (19). The atlas-based method of producing
synthetic CT images may require CT to MRI registration where
CT and MRI atlas scan pair can correspond anatomically (17).
In contrast, voxel-based method is focused on using voxel by
voxel mapping based on intensity or spatial location of the MRI
images acquired from different MRI pulse sequences (18). The
hybrid method combines atlas- and voxel-based methods, where
deformable registration from the atlas-based method and local
pattern recognition from the voxel-based method are applied
to obtain attenuation information in the MR images. From this
point of view, our proposed deep learning method where both
registration and voxel-by-voxel patterns are learned through
U-net, can be considered as the hybrid method.

In fact, machine learning and deep learning have been applied
to many medical fields including radiation oncology (20), which
has main components of data, model, cost or loss of the
model, and model optimizer. Topics of how to apply and what
are the challenges of machine learning, neural networks, and
artificial intelligence (AI) to the clinical RT process have been
discussed previously on the red journal (21). Here we aim to
apply deep learning algorithms such as the U-net convolution
neural network (CNN) approach to convert T2-weighted MRI to
synthetic CT.

MATERIALS AND METHODS

To convert the T2-weighted MRI to synthetic CT images, there
were four major steps in our method illustrated in Figure 1:
(1) MR image normalization into the similar intensity scale; (2)
voxel-based rigid and deformable registration for CT and MRI;
(3) U-net model training with 2/3 datasets; (4) U-net model
testing with the rest 1/3 datasets and evaluation of the synthetic
CT images.

Data Acquisition
Thirty-three nasopharyngeal carcinoma (NPC) patients were
retrospectively selected for this study with the approval of our
hospital’s internal review board (IRB). All patients underwent
CT simulation in the head-first supine position with the Civco
5-point head, neck and shoulder mask on a GE Discovery
CT scanner (Milwaukee, WI, USA) prior to RT planning with
resolution of 512 × 512, slice thickness of 2.5mm, 120 kVp and
300 mAs. Within the same week of CT acquisitions, diagnostic
MRI was obtained using 1.5 T Siemens Avanto MRI scanner
(Erlangen, Germany) in our hospital, where T2 weighted MRI
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FIGURE 1 | The workflow diagram of generating synthetic CT from T2-weighted MRI using U-net.

FIGURE 2 | The architecture of U-net used in this study. The size of input images is 512*512*1 pixels. Blue box is multi-channel feature map, and the number on the

top-left of the box is channel number. White box is batch normalization. Gray box is leaky ReLU. Green box is dropout module.

was acquired using fat-saturated (FS) turbo spin echo (TSE) with
resolution of 256× 256 and slice thickness of 5 mm.

Image Preprocessing
Prior to the rigid and deformable registration between T2
weighted MRI and CT images, we had to normalize the two
imaging sets of different modalities to a similar intensity scale
using the histogram matching method (Figure 1’s first step:
MRI normalization). Although lacking of a normalized intensity
scale of MRI had no impact on clinical diagnosis provided by
radiologists, it would influence the quality of image registration
and deep learning, which highly depended on the similarity
of image intensity between MRI and CT to achieve high-
quality results. We used histogram matching method, which was
independent of patients’ image sets and specific brands of the
MRI scanner used (22). In our study, the normalization process
took account of all the NPC patients’ samples by identifying
10 decile landmarks in the histogram of each MR image and
calculated the mean values of each landmark as the standard
scale. It was used to transform the MR images of the same
protocol and body region to the standard scale (23).

To conduct rigid and deformable registration of the MRI
and CT imaging modalities, we used an open source image
registration package called elastix (version 4.9) (24, 25), where the
traditional iterative intensity-based image registration method
was applied. For all NPC patients, the rigid image registration
was performed followed by deformable registration. In the
rigid registration, multi-resolution registration method was used,
and the optimizer was adaptive stochastic gradient descent. In
the deformable registration, multi-metric and multi-resolution
registration method was used with advanced Mattes mutual
information as the similarity metrics and transform bending
energy penalty for smooth displacement (26) (Figure 1’s second
step: Image registration).

After image normalization and image registration steps
described as the above, a U-net deep learning method was
developed to generate synthetic CT from T2-weightedMRI using
23 convolutional layers of CNN, shown in Figure 2. To train and
evaluate the U-net model, the 33 patients’ dataset were randomly
divided into two groups: 23 were used as the training set (∼2/3 of
the total datasets) and the rest 10 were used as the test set (∼1/3
of the total datasets) (Figure 1’s third and fourth steps).
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FIGURE 3 | The comparison of CT and synthetic CT for two representative MR images. (A) MR image in the neck region; (B) real CT image aligned with (A);

(C) synthetic sCT converted from MR image (A); (D) difference map between (B,C); (E) MR image in the head region; (F) real CT image; (G) synthetic sCT image;

(H) difference map between (F,G). Gray bar in (H) indicated the mapping from CT number to gray scale in the difference maps.

U-Net as a Deep Learning Algorithm
The U-net CNN structure consists of a contracting path and
an expansive path (27), shown in Figure 2. The contracting
path follows the typical architecture of a convolutional
network. It consists of the repeated application of two
3 × 3 convolutions (unpadded convolutions), each followed
by a rectified linear unit (ReLU) and a 2 × 2 max
pooling operation with a stride of 2 for down-sampling.
At each down-sampling step, we doubled the number of
feature channels.

In contrast to the contracting path, the expansive path is
composed of an up-sampling of the feature map followed
by a 2 × 2 convolution (i.e., “up-convolution”) that halved
the number of feature channels, a concatenation with the
correspondingly cropped feature map from the contracting
path, and two 3 × 3 convolutions, each followed by a
ReLU. The cropping is necessary due to the loss of border
pixels in every convolution. At the final layer, a 1 × 1
convolution was used to map each 64-component feature
vector to the desired number of classes. In the final layer,
a convolution was used to map the feature to the desired
value, which was the intensity of the synthetic CT. Therefore,
in the expansive path, a large amount of image features
was used to reconstruct a new image of the same size as
the input one. The implementation of our U-net was shown
in Figure 2.

Here we used batch normalization and leaky ReLU in our
network, which was different from the classical U-net (27).
Our U-net was developed in Keras framework which was a
high-level neural network API with Tensorflow as the backend.
In total, the U-net network in our study had 23 convolutional
layers. To allow a seamless tiling of the output segmentation
map, we also selected the input tile size such that all 2 × 2
max-pooling operations were applied to a layer with an even
x- and y-size.

Evaluation
The 33 NPC patients were randomly divided into two groups:
23 as the training set and 10 as the test set. The U-net model
described in the previous section was trained through feeding
MRI and CT images from the training set into the neural
network. The synthetic CTs were generated using the trained
model for the test set.

To visually inspect the difference between true CT and
synthetic CT, difference maps were generated. The pixel intensity
of the difference map was the absolute difference between real CT
and synthetic CT. Darker region in the difference map indicated
smaller errors of CT values or HU number in the region of
synthetic CT, and vice versa.

The mean absolute error (MAE) and mean error (ME)
were used to quantify the absolute difference and mean
difference within the body, respectively. The body masks were
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FIGURE 4 | The comparison of true CT and synthetic CT for bone. The first column is true CT images. The second column is the synthetic CT images. The third

column is the difference maps. (A–C) Showed bone in the neck region. (D–F) Showed bone in the head and nasal region. Gray bar indicated the mapping from CT

number to gray scale in the difference maps.

generated using OTSU’s thresholdingmethod andmorphological
operations (28, 29).

MAE =
1

n

n∑

i=1

∣
∣CT (i) − sCT(i)

∣
∣ (1)

ME =
1

n

n∑

i=1

(CT (i) − sCT(i)) (2)

where n is the total number of pixels within the body outline.
CT(i) is the ith pixel in real CT image, and sCT(i) is the ith pixel
in the synthetic sCT.

To further evaluate the accuracy of synthetic CTs in different
tissues, the threshold of 300 HU was used on the true CT images
to separate the bone and soft tissues. The MAEs andMEs in bone
and soft tissues were calculated, respectively.

RESULTS

Comparison of True CT and Synthetic CT

Images
An example of the T2-weighted MRI, true CT-sim, synthetic
CT, and MAE differences in the axial view of two representative
slices was shown in the first to fourth column in Figure 3. Soft

tissues in the synthetic CT (Figures 3C,G) had similar intensities
as the true CT (Figures 3B,F). The major difference between true
CTs and synthetic CTs was in the air-bone and bone-soft tissue
interface (Figures 3D,H: the MAE map).

Figures 4, 5 showed the axial view for bone and soft tissues,
respectively. The bone structures in synthetic CTs was well-
reconstructed by our model, such as the nasal bone (Figure 4E)
and bone marrow (Figures 4B,E). The soft tissues in synthetic
CTs had the similar intensity as the real ones (Figures 5B,E).
However, the interface between bone and soft tissues had higher
deviation, and the delicate structures in nasal cavity were blurred
in the synthetic CTs (Figure 5B). The majority soft tissue and
bone region was reconstructed accurately except the interface
between soft tissue and bone and some delicate structures in
nasal cavity, where the inaccuracy might be induced by imperfect
deformable registration.

Quantitative Analysis
The summary of HU difference between the true CT and
synthetic CT images was listed in Table 1. Compared to true
CT, MAE of sCT in the 10 tested patients was 97 ± 13 HU
in soft tissue, 131 ± 24 HU in overall region, and 357 ±

44 HU in bone, respectively. ME was −48 ± 10 HU in soft
tissue, −6 ± 13 HU in overall region, and 247 ± 44 HU in
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FIGURE 5 | The comparison of true CT and synthetic CT for soft tissues. The first column is true CT images. The second column is the synthetic CT images. The third

column is the difference maps. (A–C) Showed soft tissue in the head and nasal region. (D–F) Showed soft tissues in the neck region. Gray bar indicated the mapping

from CT number to gray scale in the difference maps.

bone, respectively. As shown in Table 1, MAE and ME varied
in different patients. The synthetic CTs of Patient #1 had the
lowest deviation in overall body, bone, and soft tissues (overall
body: MAE = 91; bone: MAE = 300; soft tissue: MAE = 75;
unit: HU). The synthetic CTs of Patient #3 had the largest
deviations in overall body, bone, and soft tissues (overall body:
MAE = 170; bone: MAE = 430; soft tissue: MAE = 118;
unit: HU).

We also calculated ME to evaluate the average errors
of each patient. In most patients (patient #1, 2, 4, 5, 6,
7, 9, 10), the synthetic CTs overestimated the CT number
in the overall body region. Only in 2 patients (patient #3,
8), the CT number in synthetic CTs were underestimated,
especially in the bone region. We noted that the CT number
of bones in synthetic CTs was underestimated, while CT
number of the soft tissues was overestimated using our
U-net algorithm.

The GPU-based U-net model was trained with 23 patients’
datasets using 20 h. The average time for each test patient was
only 7 s. The total time of converting T2-weighted MRI to
sCT for all 10 test patients using our deep learning algorithm
was <1 min.

DISCUSSION

We have developed a feasible deep learning algorithm for
converting MRI to HU maps to facilitate the MR-only treatment
planning in the future. Based on the performance metrics such as
MAE and ME, our soft tissue and overall region had acceptable
HU differences. However, the bone region had larger errors due
to less pixels of bone area compared to those of soft tissue and
hence much less samples for training. In addition, bone regions
have a large range of HU values, typically from several hundreds
to several thousandHU numbers, whichmakes the trainingmore
difficult than the narrower range of HU numbers in soft tissue.
One way to improve the results in the bone region is to separately
train soft tissue and bone (30); another approach is to acquire
ultrashort TE (UTE) MRI sequence to obtain better labeling of
the bone region in MR images (31).

As mentioned in the previous review articles by Edmund

et al. (15), there is no obvious favorable method among different

types of MRI contrast(s) in the generation of synthetic CT to

increase the accuracy. The reason we use the 2D images of T2-
weighted MRI to generate synthetic CT images is simply due to
its popularity in the existing radiotherapy workflow for target
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TABLE 1 | Summary of all 10 test patients.

MAE: soft tissue MAE: bone MAE: overall region ME: soft tissue ME: bone ME: overall region

Patient 1 75 300 91 −32 191 −15

Patient 2 98 323 126 −58 178 −26

Patient 3 118 430 170 −49 312 15

Patient 4 109 370 145 −55 279 −8

Patient 5 79 303 100 −34 227 −6

Patient 6 104 369 136 −39 258 −1

Patient 7 93 343 120 −43 242 −9

Patient 8 93 421 158 −61 293 12

Patient 9 105 363 137 −50 274 −5

Patient 10 95 352 128 −57 217 −20

Mean ± SD 97 ± 13 357 ± 44 131 ± 24 −48 ± 10 247 ± 44 −6 ± 13

delineation. In our study, it took 20 h to train the U-net model
with 23 patients’ MRI and CT datasets. The average time for
each test patient was only 7 s. The total time of converting T2-
weighted MRI to sCT for all 10 test patients using our deep
learning algorithm was<1min, which has great clinical potential
for online MRI conversion in the future.

It has been noticed by Edmund et al. (15) that the current
performance metrics such as MAE and Dice do not reflect the
corresponding dosimetric and geometrical agreement between
the true CT and synthetic CT. Therefore, more unambiguous
metrics should be developed, where the results should not depend
on the selected CT number threshold (for example, our study
used HU = 300 as the threshold for bone and soft tissue).
Another concern of the synthetic CT methods is about the
clinical implementation to the existing RT workflow. For the
brain, it has been shown that a bulk density assignment may
be sufficient for RT treatment planning (32). However, the head
and neck region is more challenging in planning with many
close-orientated organs at risk (OAR). Therefore, we may need
more accurate HU maps in the conversion using the pixel-based
deep learning method. We noticed there were underestimations
in bones and overestimations in soft tissues. The use of L2
distance (mean squared error) as the loss function could cause
the image blurring, which tended to predict an average CT value
of both bone and soft tissues. The low prediction accuracy in the
interface could be due to the errors of image registration and
suboptimal prediction model. To encourage less blurring and
improve the prediction accuracy, the L1 distance and a more
complicated neural network with more fitting parameters could
be introduced.

We have noticed several limitations in this study. First, the co-
registration ofMRI and CT-sim imagesmay introduce systematic
errors. It has been reported that MRI-CT co-registration may
introduce geometrical uncertainties of ∼2mm for the brain and
neck region (13) and of 2–3mm for prostate and gynecological
patients (14). Although our MRI and CT were acquired within
the same week and similar scan position, the T2-weighted MRI
was acquired in the department of diagnostic radiology without
head and neck masks and without the flat couch top, the patients’
chin position of CT-sim was still slightly different from that
of MRI. Therefore, the rigid and deformable registration using

the open source software could introduce geometrical errors,
which makes the U-net downstream more difficult to accurately
map HU values pixel-by-pixel. Furthermore, MRI has more
geometrical distortion inherently compared to CT due to its
gradient non-linearity and magnetic field inhomogeneity (33). In
addition, patients inside the MRI bore can introduce geometrical
distortion from susceptibility effect and chemical shift, which
is difficult to correct. The traditional way of applying MRI to
radiation treatment planning (RTP) is to acquire diagnostic MRI
and then to conduct deformable image registration of MRI to the
planning CT. The patient position of diagnostic MRI scans may
be different from that of CT-sim or treatment position, which
can introduce systematic errors (3, 34). Therefore, in order to
minimize error and increase accuracy of deep learning-based
MRI conversion to CT, we should use the MRI simulation with
exactly the same immobilization devices as the CT simulation,
which will be possible in 6 months when we have an in-
department new MRI simulator.

The second limitation lies in the U-net deep learning
algorithm. Deep learning algorithms are widely available, such
as deep convolutional network (what we used), recurrent neural
network (RNN), deep residual network (DRN), generative
adversarial network (GAN), long/short term memory (LSTM).
However, they may be susceptible to overfitting, difficult to
interpret, or issues of accuracy. It has been reported that the deep
CNN method competed favorably compared to the atlas-based
method in the MRI conversion process (29). Here we used U-
net CNN in the synthetic CT generation from T2-weighted MRI.
However, U-net only interprets the non-linear mapping between
MR and CT images through the training process. GAN, for
example, has great potential to develop a better understanding of
the non-linear relationship by generating images and improving
the output through the discriminative algorithm (35). In the
future, the structure of deep learning networks can be optimized
to enhance accuracy and reduce the non-linear mapping error in
the MRI conversion of CT numbers.

The third limitation is the sample size. It has been observed
in our study that increasing the sample size can significantly
improve the image quality and accuracy of the synthetic CT. For
example, we started with 13 patients as the training set and later
increased the sample size to 23 patients in the training set. The
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FIGURE 6 | The dose distribution and DVH comparison between true CT and synthetic CT in an example NPC patient. Three slices of true CT are shown on the left

(A,C,E); Three corresponding slices of synthetic CT are shown on the right (B,D,F). The DVH comparison based on true CT and synthetic CT is shown in (G). The

translucent red region is high-risk PTV with prescription dose of 69.96Gy; the translucent green region is intermediate-risk PTV with prescription dose of 60Gy; the

translucent blue region (not shown in axial views here) is low-risk PTV with prescription dose of 54.4Gy. DVH with squares and triangles is based on true and synthetic

CT, respectively.
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MAE of HU difference map has been decreased significantly.
Also, we didn’t use image augmentation to increase data sets
in our study, which may help to improve the accuracy of MRI
conversion to synthetic CT.

In order to compare the dose distribution using true vs.
synthetic CT, one patient example was selected with the tumor
in the sinus area and nearby fine bone structure (Figure 6). The
mean HU value difference between true CT and sCT in the
bone region was 191. The mean difference between true CT
and sCT in the soft tissue region was 32. The treatment plan
using the true CT was constructed with two full RapidArc in
the Eclipse TPS v13.5 (Varian Medical Systems) and clinically
approved by radiation oncologists. The dose distribution was
subsequently recalculated based on sCT in the same treatment
planning system. The three PTV regions, which were high-risk,
intermediate-risk, and low-risk PTVs, as shown in DVH and
isodose lines in Figure 6, had almost no difference between true
and synthetic CT. For instance, the difference of D98% between
the high-risk, intermediate-risk, and low-risk PTVs using true
CT and sCT was <1%.

In summary, a promising method of synthetic CT generated
from MRI has been proposed. Our pixel-based U-net deep
learning algorithm of converting T2-weighted 2D MRI to HU
mapping shows clinical potential of feasibility and simplicity
with acceptable accuracy in soft tissue and overall region in the
nasopharyngeal cancer site, which can be improved in the future
by increasing the sample size of training data, acquiring same
setup position of CT-sim vs. MRI-sim, and applying advanced
neural networks such as GAN for better non-linear mapping.
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Purpose: Quantitative MRI reflects tissue characteristics. As possible changes during

radiotherapy may lead to treatment adaptation based on response, we here assessed if

such changes during treatment can be detected.

Methods and Materials: In the hypoFLAME trial patients received

ultra-hypofractionated prostate radiotherapy with an integrated boost to the tumor

in 5 weekly fractions. We analyzed T2 and ADC maps of 47 patients that were acquired

in MRI exams prior to and during radiotherapy, and performed rigid registrations based

on the prostate contour on anatomical T2-weighted images. We analyzed median T2

and ADC values in three regions of interest (ROIs): the central gland (CG), peripheral zone

(PZ), and tumor. We analyzed T2 and ADC changes during treatment and compared

patients with and without hormonal therapy. We tested changes during treatment for

statistical significance with Wilcoxon signed rank tests. Using confidence intervals as

recommended from test-retest measurements, we identified persistent T2 and ADC

changes during treatment.

Results: In the CG, median T2 and ADC values significantly decreased 12 and 8%,

respectively, in patients that received hormonal therapy, while in the PZ these values

decreased 17 and 18%. In the tumor no statistically significant change was observed. In

patients that did not receive hormonal therapy, median ADC values in the tumor increased

with 20%, while in the CG and PZ no changes were observed. Persistent T2 changes in

the tumor were found in 2 out of 24 patients, while none of the 47 patients had persistent

ADC changes.

Conclusions: Weekly quantitative MRI could identify statistically significant ADC

changes in the tumor in patients without hormonal therapy. On a patient level few

persistent T2 changes in the tumor were observed. Long-term follow-up is required to

relate the persistent T2 and ADC changes to outcome and evaluate the applicability of

quantitative MRI for response based treatment adaptation.

Keywords: quantitative MRI, ultra-hypofractionated prostate radiotherapy, MRI changes, T2 mapping, ADC

mapping, hormonal therapy
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INTRODUCTION

Whole gland dose escalation for prostate cancer has shown to
result in increased biochemical control rates, but is associated
with increased toxicity (1). Focal dose escalation may benefit
patient outcome without compromising toxicity levels compared
to conventional treatment. This hypothesis is currently tested
in the FLAME trial (2) where patients received an integrated
boost up to 95Gy to the visible tumor in addition to a whole
gland dose of 77Gy in 35 treatment fractions. With advancing
insight in prostate tumor radiobiology, hypofractionated prostate
radiotherapy is increasingly performed (3, 4). With ultra-
hypofractionation, the therapeutic ratio between tumor control
and toxicity increases even further due to the low α/β
ratio of prostate cancer. Several ultra-hypofractionation trials
have demonstrated similar toxicity as compared to standard
fractionation, with reduced treatment time (5–8). Also, non-
inferiority has already been demonstrated (7, 8). For intermediate
to high-risk disease, the combination of ultra-hypofractionation
with a focal dose escalation to the tumor as conducted in the
FLAME trial may even result in better outcomes. Therefore,
ultra-hypofractionation was combined with a focal boost to the
tumor to treat intermediate to high-risk prostate cancer in the
hypoFLAME trial.

In prostate cancer long term follow-up of at least 5 years
is required to evaluate treatment outcome. If changes in the
prostate occur at an early stage during treatment and are related
to outcome, treatment adaptation for prostate cancer could
be considered.

Quantitative MRI is known to reflect tissue characteristics.
Diffusion weighted imaging (DWI) and T2 mapping are suitable
quantitative MRI techniques to investigate tissue properties in
the prostate (9, 10). Through DWI a quantitative apparent
diffusion coefficient (ADC) map can be obtained that represents
water diffusion between cells and allows to discriminate between
malignant and benign prostate tissue. Furthermore, the ADC
value of tumor tissue was found to relate to aggressiveness of the
disease (11). With T2 mapping a spatial distribution of T2 values
can be calculated that are unique to biological tissues. T2 was for
example found to correlate with hypoxia (12, 13). Since prostate
tumors have different properties from benign prostate tissue, T2
mapping has the potential to discriminate between benign and
malignant tissue.

Since quantitative MRI reflects tissue characteristics, tissue
changes due to treatment may be visible on quantitative MRI as
well. Therefore, quantitative MRI has the potential to generate
imaging biomarkers for treatment response assessment. Before
investigating this potential role for quantitativeMRI, the first step
is to identify if any changes in the tumor during treatment can be
detected on quantitative MRI.

To identify changes in the prostate during treatment, in
the hypoFLAME trial we acquired quantitative MRI data at
each weekly fraction of radiation and tracked quantitative
MRI values during the course of treatment. Since concurrent
hormonal therapy may affect these MRI values (14), we also
investigated the influence of hormonal therapy on tissue changes
during radiotherapy.

METHODS AND MATERIALS

Patient Characteristics
We collected data of 73 patients from two institutions
who participated in the hypoFLAME trial (clinicaltrials.gov
NCT02853110). All patients had biopsy-proven, clinically
localized, intermediate to high-risk prostate cancer (15). Patients
were excluded if they had a contraindication for performing an
MRI examination, if no tumor nodule was visible on MRI or
if placement of fiducial markers was unsafe. Other exclusion
criteria were ≥5mm seminal vesicle invasion, lymph node or
distant metastasis, or an iPSA of more than 30 ng/mL. Also
patients that received previous pelvic irradiation or underwent
transurethral resection of the prostate (TURP), or patients with
an International Prostate Symptom Score (IPSS) > 15 or an
World Health Organization (WHO) >2 were not included in the
trial. We obtained approval from the institutional review boards
and written informed consent from all included patients.

Treatment Delivery
Patients were treated in the University Medical Center in Utrecht
(UMCU, n = 36) and the Netherlands Cancer Institute in
Amsterdam (NKI, n = 37). Dual-arc VMAT treatment was
delivered once per week with 35Gy in five fractions to the
prostate, with an integrated focal boost up to 50Gy to the
visible tumor on MRI. Position verification of the prostate was
performed prior to each radiation fraction using gold fiducial
markers visible on cone-beam CT. In the UMCU 10 out of
36 patients received concurrent hormonal therapy for a period
of 6–36 months, in the NKI these were 31 out of 37 patients.
Hormonal therapy was typically started 2–6 weeks prior to the
start of radiotherapy.

Scanning Protocol
Prior to treatment patients received a planning CT scan andMRI
exam, including a T2-weighted scan and a diffusion weighted
imaging (DWI) scan. In the NKI also a T2 mapping sequence
was performed. In both institutions patients were scanned on a
3T Philips Ingenia MRI scanner. Specifications of the scanned
MRI sequences are listed in Table 1. To track changes in the
prostate and tumor during treatment, a weekly repeat MRI exam
was scanned at each treatment fraction that included the same
image sequences as the pretreatment MRI exam.

Calculation of T2 and ADC Maps
The DWI scans were acquired with different protocols as
described in Table 1. For consistency between institutions we
only considered b-values between 200 and 800 s/mm2. In the
NKI cohort we calculated the ADC maps using b = 200 and 800
s/mm2, in the UMCU cohort we calculated the ADC maps using
b= 300, 500, and 800 s/mm2.

In the NKI cohort we derived quantitative T2 maps from the
T2 mapping sequence. For calculation of the T2 map we applied
an in-house developed weighted logarithmic fitting algorithm to
determine the T2 value per voxel in the image (16).
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TABLE 1 | Specifications of MRI sequences in the UMCU and NKI.

UMCU NKI

T2-WEIGHTED (TSE)

Voxel size (mm3 )

Acquired 0.6 × 0.7 × 3 0.7 × 0.7 × 3

Reconstructed 0.5 × 0.5 × 3 0.4 × 0.4 × 3

FOV (mm3) 200 × 200 × 90 / 282 × 282 × 75–90

230 × 230 × 141–150

TE / TR (ms) 90–100 / 3,770–8,620 120 / 3,690–7,930

T2 MAPPING (MULTI-ECHO SPIN-ECHO)

Voxel size (mm3 )

Acquired 0.8 × 0.8 × 3 / 1.0 × 1.0 × 3

Reconstructed 0.4 × 0.4 × 3 / 0.6 × 0.6 × 3

FOV (mm3) 170 × 170 × 60

TE / TR (ms) 32 / 2,470–4,150

Echo spacing (ms) 16

Echoes (n) 12

DWI (SINGLE-SHOT EPI)

Voxel size (mm3 )

Acquired 3.0 × 3.0 × 4 2.3 × 2.4 × 3

Reconstructed 2.5 × 2.5 × 4 1.1 × 1.1 × 3

FOV (mm3) 256 × 256 × 66 256 × 256 × 60–66

TE / TR (ms) 62–93 / 3,400–4,940 62 / 2,860–5,410

b-values (s/mm2 ) 0, 100, 300, 500, 800, 1,000 0, 200, 800

FOV, field of view; TE, echo time; TR, repetition time. For T2 mapping patients were

consistently scanned with one of the reported voxel sizes.

Image Registration
We registered all images to the pretreatment images to allow
for tracking of prostate and tumor changes during treatment.
All registrations were performed rigidly with in-house developed
software using mutual information as the cost function, and
registrations were manually adapted whenever required. Within
each MRI exam the b = 0 s/mm2 image from the DWI
was selected, since it contained most anatomical information,
and registered to the T2-weighted image. We applied the
transformation matrix obtained from registration to the ADC
map to register it to the T2-weighted image. From the T2 echo
image series the image with echo time closest to the echo time of
the T2-weighted image (TE= 120ms) was selected and registered
to the T2-weighted image. We applied the transformation matrix
to the T2 map to register it to the T2-weighted image. From each
repeat MRI exam we registered the T2-weighted image to the
pretreatment T2-weighted image.

Delineations
We delineated the prostate and the peripheral zone on T2-
weighted MRI and labeled the remaining part of the prostate as
central gland (CG). The delineation of the tumor was based on
multi-parametric MRI. CG, PZ, and tumor together are referred
to as ROIs throughout this study.

Image Analysis
We resampled the registered images to 1mm isotropic voxels.
This allowed for exclusion of an isotropicmargin of 2mm around

TABLE 2 | Number of patients per institution from which T2 and ADC maps were

available for analysis, separated by hormonal therapy (HT or No HT).

UMCU NKI All

T2

HT 21 21

No HT 3 3

All 24 24

ADC

HT 4 24 28

No HT 15 4 19

All 19 28 47

each ROI that was considered to minimize the impact of residual
registration errors. We extracted the median value within each
ROI on T2 and ADC. We determined the population median
value for each time point during treatment. Per patient we
normalized the values to the pretreatment value to examine the
relative behavior over time. We stratified by patients with and
without hormonal therapy to investigate the influence on T2 and
ADC changes during hypofractionated radiotherapy.

On a patient level we identified significant trends using
confidence intervals for T2 and ADC defined by literature
values. These confidence intervals were derived from test-retest
measurements. For T2 we used a confidence interval of 11% as
found by van Houdt et al. (17). For ADC we used a value of
47% as recommended by the Quantitative Imaging Biomarkers
Alliance (QIBA) (18). These confidence intervals separate real
changes in T2 and ADC values from measurement imprecision
with 95% confidence. We subsequently determined the number
of patients in which T2 and ADC changes were outside the
confidence intervals at any time point during treatment and were
persistent until week 5.

Statistics
We performed Wilcoxon signed rank tests to identify if changes
per ROI were statistically significant during treatment. We
applied a Bonferroni correction to account for multiple testing
(nine tests), considering p < 0.0056 as significance level.
All image analysis and statistical tests were performed using
MATLAB (MathWorks, Natick, MA, USA).

RESULTS

We did not perform analysis on 15 patients for whom <3 out of
6 MRI exams were scanned. Eleven patients were not analyzed
since they were scanned with two different DWI scanning
protocols during acquisition of pretreatment and repeatMRI.We
could not analyze T2 values of four patients since pretreatment
T2 maps were not acquired. Table 2 summarizes the number of
patients per institution available for analysis.

The T2-weighted images, T2 and ADCmaps from one patient
are shown in Figure 1 for all time points. A decrease in contrast
within the prostate can be observed in all three image sequences
over the course of treatment, which reduces the conspicuity of
the tumor from the surrounding prostate tissue.
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FIGURE 1 | Example of T2-weighted images, and T2 and ADC maps of the prostate prior to treatment (pre-RT) and at each repeat MRI exam (weeks 1–5) of a patient

treated at the NKI. The entire prostate, the boundary between PZ and CG and the tumor are delineated in red, blue, and yellow, respectively.

TABLE 3 | Population median and interquartile range (between brackets) of

median T2 (in ms) and ADC values (in 10−3 mm2/s) in the CG, PZ, and tumor on

pretreatment quantitative MRI.

T2 (ms) ADC (10−3 mm2/s)

NKI UMCU NKI

CG 93 (19) 1.30 (0.13) 1.09 (0.18)

PZ 110 (26) 1.37 (0.19) 1.24 (0.24)

Tumor 80 (9) 1.07 (0.20) 0.90 (0.28)

Statistically significant differences between institutions are indicated in bold.

Median values of T2 and ADC in the CG, PZ, and tumor
during pretreatment imaging are shown in Table 3. We observed
statistically significant differences in the CG and PZ between the
ADC values in the UMCU cohort and the NKI cohort.

T2 and ADC values normalized to the pretreatment values are
shown in Figure 2. In the CG we observed a median decrease of
12% on T2 and 8% on ADC in patients that received hormonal
therapy. T2 and ADC values at week 5 were significantly lower
compared to pretreatment values. For patients that received no
hormonal therapy, the median ADC value decreased 4% and this
was not statistically significant.

In the PZ we observed similar behavior. In patients with
hormonal therapy the median T2 and ADC value decreased
significantly with 17 and 18%, respectively, while in patients
without hormonal therapy we observed a non-significant
decrease in ADC of 5%.

In the tumor the behavior was different from CG and PZ.
Median increases of 5 and 7% on T2 and ADC maps were
found for patients with hormonal therapy, and these were not
statistically significant. For patients without hormonal therapy,

on ADC we observed a median increase of 20% that was
statistically significant.

Due to the low number of patients that were scanned with
a T2 mapping sequence and received no hormonal therapy,
we did not test statistical significance of T2 changes in these
patients. On an individual patient level we found that 14 out of
21 patients who received hormonal therapy, showed persistent
T2 changes larger than 11% during treatment. These were 11
patients with persistent changes in the CG, 12 in the PZ and one
in the tumor. For the three patients without hormonal therapy,
two patients had persistent T2 changes, from which one showed
changes in the CG, two in the PZ, and one in the tumor. In
total 67% of the 23 patients showed persistent T2 changes during
treatment. In contrast, on ADC maps for both patients with and
without hormonal therapy we observed no changes outside the
confidence interval of 47%.

DISCUSSION

In this study we analyzed changes in the prostate as observed
on quantitative MRI during hypofractionated radiotherapy with
an integrated boost to the tumor. Using repeated imaging we
observed changes in median T2 and ADC values that depended
on the use of hormonal therapy. The changes we observed
can explain the reduced tumor conspicuity that is observed
after primary radiotherapy. However, depending on hormonal
therapy this can be explained by either normalization of tumor
characteristics or by a decrease of normal prostate tissue values.
For patients who received hormonal therapy, we observed a
reduction of T2 and ADC values in the PZ, while values in the
tumor did not change significantly. However, for patients who
did not receive hormonal therapy, we found that ADC values
increased significantly in the tumor, but not in the PZ.
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FIGURE 2 | Median normalized T2 (top) and ADC value (bottom) per patient with respect to pretreatment imaging (week 0). Median values of patients with (blue) and

without (orange) hormonal therapy are plotted as solid lines. Interpolated values are displayed with dashed lines. Confidence intervals of 11 and 47% for T2 and ADC,

respectively, are plotted as horizontal dashed lines.

The pretreatment ADC values were significantly different
between the two institutions. This may be a consequence of the
DWI scanning protocols. The b-values in both protocols were
similar with b = 200 and 800 s/mm2 in the NKI and b = 300,
500, and 800 s/mm2 in the UMCU. However, the acquisition
voxel size in the UMCU protocol was 2.2 times larger than in the
NKI protocol. This resulted in a different signal to noise ratio and
could contribute to differences in ADC values (19).

In the literature a similar variation between ADC values
was found. In one study median ADC values in the tumor of
1.08 ± 0.39 · 10−3 mm2/s (mean ± SD) prior to treatment
are reported (20). ADC values in the untreated healthy PZ
were 1.8 ± 0.4 · 10−3 mm2/s. Other studies found values of
1.6 ± 0.2 · 10−3 mm2/s in the healthy prostate of untreated
patients (21, 22). Again differences in DWI protocol as well
as image reconstruction methods may have contributed to the
existing variation.

We observed different trends in patients that did and did
not receive hormonal therapy. Hormonal therapy however
correlated with the institution where patients were treated.
In the UMCU 4 out of the 19 patients received hormonal
therapy, while in the NKI this was 24 out of the 28 patients.
Because of this unbalanced distribution we could not separate
hormonal therapy from institution to explain the differences
in normalized ADC value behavior during treatment. This
was also the reason we did not compare the T2 values

for patients with and without hormonal therapy in the
NKI cohort.

One study describes prostate and tumor changes on MRI
during treatment. Foltz et al. (23) reported an early treatment
response in the entire prostate and CG, plus a progressive
response in the PZ and tumor toward the end of treatment. A
statistically significant change in the tumor was found after 6
weeks on ADC. Early treatment response in the tumor was not
observed on either T2 or ADC. While there were differences
in the overall treatment duration, the frequency of imaging and
the time between radiotherapy fractions compared to our study.
Our quantitativeMRI results indicate similar behavior.We found
progressive T2 changes in the PZ and late ADC changes in the
tumor. This qualitative comparison is only indicative though,
since the use of hormonal therapy was not reported in Foltz
et al. (23).

Here we analyzed the T2 and ADC changes in prostate
and tumor only during treatment. Dinis Fernandes et al. (16)
reported late changes on quantitative MRI in recurrent prostate
cancer patients that were scanned at least 2 years after primary
treatment. Adjuvant hormonal therapy was given in 82% of the
patients but ended at least 1 year before the MRI examination.
Changes in CG and PZ regions on both T2 and ADC maps
were found and reduced contrast between PZ and tumor on
T2 maps was observed. Median T2 values in the CG, PZ and
tumor decreased by 29, 19, and 5%, while we observed statistically
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significant decreased values of 12 and 17% in the CG and PZ and
no statistically significant change in the tumor. For ADC values
a reduction of 5–9% in CG, PZ and tumor was observed 2 year
after treatment. In our study we observed a decrease of 8 and
18% in the CG and PZ in case of hormonal therapy, while an
increase of 20% was found in the tumor in absence of hormonal
therapy. Based on these findings we expect further reduction of
T2 values in the CG and PZ after treatment, as well as post-
treatment changes in ADC. Also the treatment fractionation and
both timing and duration of hormonal therapy may contribute to
the discrepancies between both studies. Follow-up of patients in
our study will be required to confirm if changes on T2 and ADC
correlate with long term biochemical recurrence free survival.

We implemented a rigid registration method to align
all images to the pretreatment T2-weighted image. More
accurate registration methods like deformable registration could
be more appropriate when registering between MRI exams.
Deformable registrationwould account for possible deformations
of the prostate between MRI exams and allow for voxel-level
analysis. However, as a result of treatment we experienced
intensity changes on T2-weighted images that lead to incorrect
deformations we were unable to manually adapt. Therefore, we
applied rigid registrations instead and minimized registration
inaccuracy via removal of an isotropic margin around each ROI,
which required resampling of all images. Since we performed
our analysis on ROI level, we expect limited impact of both the
registration method and the image resampling on our results.

Using quantitative MRI, on a population level we were
able to find significant ADC changes in the intraprostatic
tumors of patients that did not receive hormonal therapy
during hypofractionated radiotherapy. However, early during
treatment, when treatment adaptation could be considered, no
significant change was identified in the tumor. We did observe
only two individual patients that showed persistent T2 changes
in the tumor, while no individual patients showed persistent
ADC changes in the tumor. On ADC we did observe several
patients with early and progressive trends in the tumor although

these trends were within the confidence intervals. If these
trends are continued after treatment and exceed the confidence
intervals, a possible relation between early treatment response
and clinical outcome could be established. Follow-up is therefore
desired for assessing the potential role of quantitative MRI
for adaptation of hypofractionated radiotherapy based on early
treatment response.
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Purpose: Unique characteristics of MRI-linac systems and mutual interactions between

their components pose specific challenges for their commissioning and quality

assurance. The Australian MRI-linac is a prototype system which explores the inline

orientation, with radiation beam parallel to the main magnetic field. The aim of this work

was to commission the radiation-related aspects of this system for its application in

clinical treatments.

Methods: Physical alignment of the radiation beam to the magnetic field was fine-tuned

and magnetic shielding of the radiation head was designed to achieve optimal

beam characteristics. These steps were guided by investigative measurements of the

beam properties. Subsequently, machine performance was benchmarked against the

requirements of the IEC60976/77 standards. Finally, the geometric and dosimetric data

was acquired, following the AAPM Task Group 106 recommendations, to characterize

the beam for modeling in the treatment planning system and with Monte Carlo

simulations. The magnetic field effects on the dose deposition and on the detector

response have been taken into account and issues specific to the inline design have

been highlighted.

Results: Alignment of the radiation beam axis and the imaging isocentre within 2mm

tolerance was obtained. The system was commissioned at two source-to-isocentre

distances (SIDs): 2.4 and 1.8m. Reproducibility and proportionality of the dose

monitoring system met IEC criteria at the larger SID but slightly exceeded it at the shorter

SID. Profile symmetry remained under 103% for the fields up to ∼34 × 34 and 21 × 21

cm2 at the larger and shorter SID, respectively. No penumbra asymmetry, characteristic

for transverse systems, was observed. The electron focusing effect, which results in

high entrance doses on central axis, was quantified and methods to minimize it have

been investigated.

Conclusion: Methods were developed and employed to investigate and quantify the

dosimetric properties of an inline MRI-Linac system. The Australian MRI-linac system

has been fine-tuned in terms of beam properties and commissioned, constituting a key

step toward the application of inline MRI-linacs for patient treatments.

Keywords: MRI-linac, commissioning, beam characterization, dosimetry, magnetic field
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INTRODUCTION

Limitations of image-guidance based on MV and kV radiation
beams prompted development of systems combining linear
accelerators and Magnetic Resonance Imaging (MRI) scanners
(1). These hybrid systems, MRI-linacs, offer superior soft tissue
contrast for visualization of the tumor and of the organs at
risk which can be used for daily plan adaptation and/or real-
time imaging during the treatment dose delivery. Four MRI-
linac designs exist to date, employing a range of magnetic
field strengths and two beam-to-magnetic-field orientations:
perpendicular (or transverse) and parallel (or inline) and have
been recently reviewed by Liney et al. (2). Two transverse
systems: Unity (Elekta, UK) (3) and MRIdian (Viewray, USA)
(4) are now available commercially and used clinically, while the
two inline designs: Aurora RT (MagnetTx Oncology Solutions,
Canada) (5) and Australian MRI-Linac (6) are at the research
prototype stage.

Unique characteristics of these systems and mutual
interactions between their components pose specific challenges
for their commissioning and quality assurance. The foremost is
the compatibility of the dosimetric equipment with the magnetic
field due to the presence of ferrous materials or unscreened
mechanical or electrical components. Furthermore, the hybrid
nature of the MRI-linac treatment units requires the assessment
of their concurrent functionalities, for instance dose deposition
during imaging, congruence of the imaging and radiation
isocentres, RF interference or gantry movement effect on the
magnetic field homogeneity (7). And finally, the presence of the
magnetic field also affects the radiation beam generation (8, 9)
and the dose deposition (10, 11).

Magnetic field influence on dose deposition is dependent

on the radiation beam orientation relative to the magnetic
field and on its strength. In brief, the trajectories of both the

contaminant electrons as well as of the secondary electrons are
altered by the Lorentz force. In transverse MRI-linacs, this causes
the electron paths between collisions to become curved and
results in: (1) shifted and asymmetric beam penumbra (10), (2)

decreased build-up distance (10), (3) skin dose reduction within
and possible increase outside the primary beam (12, 13), and (4)

localized dose increase at high-to-low density interfaces due to
the electron-return effect (ERE) (14). Inline MRI-linacs instead
minimize or even exploit some of these effects. The Lorenz force
causes the electrons to spiral around the magnetic field direction
and successive energy losses in collisions lead to the shrinkage of
their helical orbits (11) which results in: (1) reduction of the beam
penumbra (11), (2) dose enhancement on the beam central axis
(CAX), especially in low density materials (15), (3) reduction in
the dose deposition perturbations due to density heterogeneities
(11) and focusing of the contaminate electrons around the
radiation beam axis (16, 17). In both perpendicular and parallel
orientations these effects, unfamiliar in conventional radiation
therapy, require characterization during commissioning.

It should be emphasized that, both the dose deposition in
matter as well as the response of the dosimeters are affected by
the magnetic field. The trajectories of electrons traversing their
active volume change, however this change may be different in

the materials constituting the detector (e.g., air cavities in ion
chambers, silicon wafers in diode detectors etc.) than in the
surrounding medium. As a result, the reading of the detector
may not represent the dose that would be deposited in the
medium in its absence. Furthermore, many detectors are not
symmetric; therefore the change in their response is dependent
on their orientation in the magnetic field. These effects have
been observed for various types of detectors (18–22) and must
be considered both in absolute (21, 23, 24) as well as in
relative dosimetry (25). Additionally, air gaps present between
the dosimeter and the surrounding material have been shown to
influence the detector response (26, 27).

The interaction of the radiation beam and magnetic field
renders the commissioning of a MRI-linac a custom task
requiring adaptation of existing methods and considerate choice
of dosimetric equipment. To date no guidelines on this new type
of technology are available (7). For a commercial transverseMRI-
linac, dosimetric (28), and imaging-oriented (7) commissioning
have been described recently. Inline systems, owing to the
fundamental difference in their design, have a set of specific
properties which have to be addressed. For the Australian MRI-
linac, a high field prototype exploring the inline configuration,
the imaging performance, also in the presence of the radiation
beam, has been investigated previously (29). The aim of this work
was 2-fold:

(i) to demonstrate the dosimetric properties characteristic to an
inline configuration; and

(ii) to commission the radiation-related aspects of the Australian
MRI-linac for its application in clinical treatments,
in particular:

(a) to fine-tune the system for optimal characteristics of the
radiation beam;

(b) to characterize the its dosimetric components and the
radiation beam according to international standards for
medical linear accelerators; and

(c) to acquire base data for beam modeling in the
treatment planning system (TPS) and with Monte Carlo
(MC) method.

MATERIALS AND METHODS

The Australian MRI-Linac
The Australian MRI-Linac consists of a dedicated open bore
1 T magnet (Agilent, UK) and a linear accelerator Linatron-MP
(Varex, USA) with a stand-alone, clinical multi-leaf collimator
(MLC) Millennium (Varian Medical Systems, USA). While the
design permits radiation beam entry (and patient positioning) in
either orientation, the current system employs inline orientation
with a fixed horizontal beam and patient entry through the
magnets gap. The system is not equipped with secondary
collimators (jaws) and the MLC leaves travel in a horizontal
(x) direction with no collimator rotation possible. Uniquely,
the linac and the MLC are mounted on rails with a docking
system, allowing variation of the source-to-isocentre distance
(SID) between 3.2 and 1.8m and enabling measurements at
different magnetic field strengths (2, 29).
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The Linatron-MP generates flattening filter free (FFF) photon
beams at two nominal energies (4 and 6MV) and the pulse
repetition frequency between 50 and 400 for the 4MV beam
and 50 and 200 for the 6MV beam. For clinical application,
only the 6MV beam and trigger rate 200 will be used and all
the measurements reported in this manuscript were performed

FIGURE 1 | Layout of the Australian MRI-linac with a coordinate system

originating at the system’s isocentre overlaid.

with these settings. Machine output is calibrated by the vendor to
deliver 1Gy at dmax at 1m distance per monitoring unit (MU) for
an open field (as the linac is equipped with primary 30◦ conical
collimator only) in∼0 T magnetic field.

The conceptual design of the Australian MRI-linac and the
coordinate system, originating at the isocentre, used in this work
are shown in Figure 1 and further details of the system can be
found elsewhere (2, 16).

Phantoms and Detectors
For geometrical tests a combination of MRI and MV visible
phantoms was used: (1) a dedicated MRI phantom (Leeds Test
Objects, UK) consisting two chambers separated by 2 cm thick
wall with five narrow bore holes connecting them and filled
with MRI visible solution (Figure 2A) and (2) two acrylic plates
with embedded fiducial markers for MV visibility (Figure 2B). A
stand-alone EPID XRD 1640 AL7-M (PerkinElmer, USA) with
a pixel matrix of 1,024 × 1,024 and pixel size 0.4mm was
used for the tests which involved imaging of the measurement
setup components using the radiation beam. EPID images
were processed using ImageJ software (National Institutes of
Health, USA).

For point dose measurements a Farmer-type chamber FC65-
G (Scanditronix-Wellhöfer, USA), positioned vertically either in
a manual 2D water tank (for absolute does measurements) or in
solid water blocks (for relative dose measurements), connected
with a bias of 300V CEP to a Unidos (PTW, Freiburg, Germany)
electrometer was used. Whenever the solid water setup was used,

FIGURE 2 | Dedicated phantoms and setups used in this work: (A) MRI phantom and (B) MV phantom used for system alignment, (C) stand for vertical positioning of

the solid water slabs, (D) setup used for MOSkinTM measurements and a close-up od one of the MOSkinTM detectors, (E) setup used for microDiamond

measurements, and (F) solid water pieces used for the measurements with microDiamond.
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the chamber holder was filled with water to avoid the presence of
air gaps. The chamber and the electrometer were independently
characterized for reproducibility and linearity using a well type
strontium source prior to measurements. Finally, the chamber
is traceable to the National Physical Laboratory (NPL, UK) and
has been calibrated in a 6MV FFF beam both in 0 T and in 1 T
field (30).

For electron contamination characterization and entrance
dose measurements a synthetic microDiamond 60019 (PTW,
Germany) was used connected to a Unidos electrometer with
a bias of 0V was oriented with the long axis parallel to the
beam. The detector’s sensitive volume is 2.2mm in diameter and
1µm thick and the effective point of measurement (EPOM) is
at 1mm depth and has been determined to be unaffected by the
magnetic field (31). While an increased angular dependence for
the diamond detector response in a transverse 1.5 T field has been
observed (31), which was deemed relevant for relative dosimetry
at distant off-axis positions or at different gantry angles, Monte
Carlo simulations indicate that this effect is minimized in
inline orientation (22). For higher resolution information, these
measurements were complemented with the data acquired
using MOSkinTM detectors (Figure 2D), developed at Centre
for Medical Radiation Physics (CMRP) of the University of
Wollongong, which feature an EPOM of 0.07mm. These
detectors were used with their own readout system measuring
their gate threshold voltage. As their sensitivity to radiation dose
decreases over large voltage ranges, the readout was corrected by
taking a reference reading at the beginning and end of each set
of measurements. The MOSkinTM detectors have been recently
shown to agree with EBT3 films in 1 T inline magnetic field and
were deemed suitable for relative dose measurements (32). For
both, microDiamond andMOSkinTM measurements customized
solid water blocks were used adapted to host the detectors and to
enable measurements depth variation (Figures 2D–F).

For beam symmetry and flatness assessment as well as for
some profile measurements, the Starcheck maxi MR array (PTW,
Germany) was used. The array consists of 707 vented ionization
chambers arranged, with 3mm resolution, along the principal
axes and the diagonals of a 40 × 40 cm2 area and designed
for use in magnetic fields of up to 1.5 T. It was characterized
for reproducibility, linearity, sensitivity to misalignment, and
geometrical fidelity, based on the IEC60731 (33), both in a 1 T
field on the Australian MRI-linac and in a 0 T field on a 6MV
Elekta (Elekta, UK) clinical linear accelerator at the Liverpool
Cancer Therapy Centre. Different orientation of individual
detectors in detector arrays leads to non-negligible artifacts in
profile measurements (34) for transverse MRI-linacs, however
these effects have not been observed for the AustralianMRI-linac
employing an inline configuration. The profiles were analyzed
with the Mephysto (PTW, Germany) software accompanying
the detector.

Beam depth and cross profiles were acquired using
GafchromicTM EBT3 films (Ashland, USA) placed in solid water
blocks, as standard scanning water tanks are not compatible
with the MRI-linac systems, due to the presence of metallic
components and size restrictions. A dedicated stand (Figure 2C)
was constructed to keep the solid water blocks tightly together

for the profile measurements in order to eliminate the presence
of air gaps. The relative response of the EBT3 films has been
shown to be unaffected by the magnetic field (35, 36). The batch
of films used was calibrated using a 6MV beam on an Elekta
linear accelerator at the Liverpool Cancer Therapy Centre. The
film handling and analysis followed published recommendations
(37, 38). The films were scanned using a Perfection V700 Photo
(Epson, Japan) flatbed scanner with resolution of 72 dpi and in
48-bit RGB format and all scanner color corrections turned off.
A black paper frame was used to position the films at a consistent
area of the scanner bed. The orientation of all films was kept
constant and aligned to within±5◦. A thin glass plate was placed
on top of the films during digitization in order to keep the
films flat on the scanner bed. Films were processed and profiles
were extracted using ImageJ software (National Institutes of
Health, USA).

System Optimization
Magnetic Shielding Optimization
The fringe field affects the radiation beam generation and
transport in the linac (8, 9, 39). In particular, (1) it may deflect
the electrons produced by the electron gun and reducing the
stream of electrons injected to the waveguide and hence the beam
output and (2) it may shift the incidence of the electron beam on
the target and lead to the deformation of the resulting photon
beam profiles and output loss as the beam passes through the
primary collimator. Initially, these effects have been reduced by
magnetic shielding placed around the target area outside of the x-
ray head housing. However, at shorter SIDs (i.e., in higher fringe
field) magnetic shielding closer to the target was necessary. To
ensure clinically acceptable beam characteristics at the shortest
SID, a shield to be placed directly above the beam centerline has
been prototyped first, using sheets of µ-metal (Magnetic Shield
Corporation, USA), and later manufactured out of iron and fixed
to ensure stability and reproducibility. The design of the shield
was guided by measurements of the beam output and of the
profile symmetry using the Starcheckmaxi−MR array. For these
measurements, the detector array was placed at the isocentre
with build-up material equivalent to 10 cm of water and 10 cm
of backscatter material behind it and profiles of varying field sizes
were acquired at different SIDs.

System Alignment
Alignment of the radiation beam with the MRI scanner imaging
isocentre was a two-step process. First, the MRI phantom
was scanned using a T1-weighted spin-echo sequence in XZ
(resolution: 0.9 × 0.9 × 5mm) and XY (resolution: 0.8 ×

0.8 × 5mm) planes and realigned iteratively until its position
matched the localization of the imaging isocentre. The in-room
lasers were then set to indicate the imaging isocentre using
the external markings on the phantom. Next, fiducial marker
phantoms were added to the setup at the proximal and the distal
end of the bore and the whole setup was imaged (at different
SIDs) using the EPID placed behind the bore (Figure 4A). Based
on the projections of the fiducial markers the position of the
radiation source was calculated and the linatron was iteratively
re-aligned to achieve the best congruence of the radiation
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isocentre with the imaging isocentre over the range of SIDs.
Finally, the half-blocked fields were imaged with EPID placed at
two distances: behind the bore and in front of the bore and MLC
center position at the isocentre was calculated based on these
images to guide the iterative re-alignment of the MLC assembly
and fine-tuning of the MLC central axis parameter in the MLC
control software.

Field Size and Leaf Width Calibration
Due to a non-standard distance between the radiation source and
theMLC, the magnification factor to apply on the field sizes set in
the MLC control software had to be determined. It was obtained
by the measurement of the actual field sizes produced by a set of
square fields defined in the control software for standard clinical
geometry for Millennium MLC, referred to in the reminder of
this manuscript as nominal field sizes, using the EPID placed at
the distance of 100 cm from the radiation source. The resulting
calibration factors were then extrapolated to other SIDs and
verified using films placed at the isocentre on the surface of the
solid water phantom.

Functional Performance Characteristics
System characteristics have been benchmarked at commissioned
SIDs against the applicable requirements either using or adapting
the methods specified in the IEC 60976/977 standard (40,
41). Non-applicable tests included: electron radiation beams,
dependencies on angular positions (collimator, gantry), moving
beam RT, indicators (light field, front pointer, etc.) not present
in the current system and patient support system constituting a
separate development.

Dose Monitoring System
Reproducibility, proportionality, field size dependence and
stability of the dose monitoring system were assessed using
the chamber FC65-G placed in a solid water holder at the
isocentre with 10 cm build-up and 10 cm backscatter material.
1 Gy irradiations with fields of ∼10 × 10 cm2 were performed
for the reproducibility measurements and with ∼20 × 5 and
∼5 × 20 cm2 fields for the field size dependency measurements.
Proportionality was assessed over a range of doses from 0.1 to
10Gy. Stability after a high absorbed dose was assessed as the
difference in measurements prior to and after a 30min period
of irradiation and stability throughout the week was assessed
through measurements on 5 subsequent days following 3 h of
stand-by mode. All stability tests have been performed at dose
of 1Gy for an ∼10 × 10 cm2 field. Additionally, the magnitude
of the magnetic field at the position of the monitoring chamber
was recorded using a VGM gaussmeter (AlphaLab, USA).

Depth Dose Characteristics
Percentage depth dose (PDD) curves for ∼10 × 10 cm2 and
maximum field sizes were acquired using EBT3 films placed in
solid water blocks and aligned parallel to the beam axis at SSD
= SID−10 cm. PDDs were extracted along the beam central
axis and at ±3.5 cm off-axis in order to assess the depth of
dose maximum (dmax) and the penetrative quality, defined as
depth at which the dose amounts to 80% of the maximum dose
(Dmax) (40, 41). Additionally, films placed at the surface of the

phantom perpendicular to the beam direction were used for
surface dose measurements.

Increased dose in the initial few centimeters around the beam
central axis due to the contaminant electron focusing in the
fringe field of the magnet has been previously both, modeled
(11, 42) and observed experimentally on an earlier (16) and the
current prototype (32). To characterize this effect in detail for the
current system and to explore possiblemethods tomitigate it (off-
axis irradiation, use of bolus), microDiamond and MOSkinTM

detectors were used. The detectors were placed in solid water
blocks adapted to enable data acquisition at variable depths or
covered with increasing layers of kapton tape.

Beam quality was characterized using tissue phantom ratio
(TPR20/10) measured using the FC65-G ion chamber in solid
water using a field closest to 10× 10 cm2 and the dose of 1 Gy.

Beam Uniformity
Beam symmetry and flatness were measured using the
StarcheckmaxiMR array for fields closest to 5 × 5, 10 × 10,
30 × 30 cm2, and the maximum field size at commissioned
SIDs. The detector array was placed at the isocentre with water
equivalent material amounting to 10 cm of build-up and 10 cm of
back scatter. Beam symmetry was determined as the maximum
ratio of the doses at any two positions symmetrical to the beam
axis and flatness as the ratio between the maximum and the
minimum dose inside the flattened area (40, 41).

Beam penumbra (20–80%) was measured at the isocentre at
10 cm depth. For fields of ∼5 × 5 and 10 × 10 cm2 it was
extracted from EBT3 films placed perpendicular to the beam
axis within solid water blocks. For the 30 × 30 cm2 and the
maximum commissioned field sizes, which exceed the size of the
solid water blocks, penumbrameasured with the StarcheckmaxiMR

array and dedicated build-up plates is reported. In order to apply
the standard 20–80% definition for penumbra evaluation, only
the field edge sections of the FFF profile have to be considered
(43). This was achieved by identifying the profile inflection points
using amethodwhich calculates the third derivative of the profile,
proposed by Fogliata et al. (44), and renormalizing profiles to
these points.

Isocentre
Congruence of the imaging and radiation isocentre, expressed
as horizontal (x) and vertical (y) offset between the beam focal
position and the in-room lasers, was measured using the setup
and methods described in section System Alignment.

Geometry of the Beam Limiting System
Symmetry of the opening around the imaging isocentre and
parallelism of the leaves to the in-room lasers have been tested
here, since the current system is not equipped with diaphragms.
These tests have been performed using the setup and methods
described in section System Alignment. The latter was measured
as the angle between the line defined by the projection of the
fiducials and projection of the MLC CAX in EPID images (see
Figure 6) using ImageJ software.

Base Data Acquisition
Beam characterization has been performed at commissioned
SIDs and SSD = SID−10 cm following the AAPM Task Group
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106 recommendations (45). Non-applicable procedures included
elements not available in the current system: measurements of
tray and wedge factors, tests of the light field and radiation field
concurrence and characterization of the electron beams. In the
initial clinical phase, the MRI-linac will be used only for static
3D conformal treatments, hence only the acquisition of the input
data relevant for such treatments is reported in this work.

Depth Dose Characteristics and Surface Dose
PDDs were measured for square fields of up to∼18× 18 cm2 and
two rectangular fields of ∼18 × 6 and ∼6 × 18 cm2 using EBT3
films placed in solid water blocks and aligned parallel to the beam
axis. Additionally, films placed at the surface of the phantom
perpendicular to the beam direction were used for surface dose
measurements. PDDs were extracted along the central axis.

Beam Profiles
Beam profiles were acquired for square fields of up to ∼18 ×

18 cm2 and two rectangular fields of ∼18 × 6 and ∼6 × 18
cm2 at depths of 1, 5, 10, and 20 cm. EBT3 films were placed
perpendicular to the beam direction in solid water blocks.

Tissue Phantom Ratios
Beam quality measurements as required by IEC
60976/977 standard (40, 41) were addressed as part of
functional performance characterization in section Depth
Dose Characteristics.

Output Factors
Total scatter factors were measured in solid water using the
FC65-G ion chamber and the microDiamond detector for field
sizes from the smallest available to ∼25 × 25 cm2. Collimator
scatter factors were measured at 10 cm depth using the FC65-G
ion chamber in a GEC-ESTROmini phantom placed horizontally
(46). Results were normalized to the field closest to 10× 10 cm2.

Beam Output Calibration
Absolute dosimetry was performed following the TRS-398
protocol (47). Output was measured in a manual 2D water
tank in 10 cm depth under isocentric conditions for square
fields closest to 10 × 10 cm2 using FC65-G ion chamber
calibrated in the magnetic field and traceable to NPL as described
above. Corrections for polarity, recombination, ambient room
conditions and magnetic field were applied. Polarity was
measured via acquisition of output with opposite polarizing
potentials (−300 and +300V) applied to the chamber and
yielded kpol = 1.0005. Recombination was measured via the two
voltage method using polarizing potentials of −300 and −100V
and yielded ks = 1.0015. Calibration in 1 T yielded a kB factor
of 0.99 (30). Correction of kFFF = 1.003 was used for FFF beam
volume averaging effects. A CC13 chamber was used to normalize
the output between measurements.

MLC Characterization
Positional accuracy of the MLC (symmetry around the isocentre
and tilt) has been assessed as described in section Geometry of the
Beam Limiting System and beam penumbra was measured with
EBT3 films as described in section Beam Uniformity.

The MLC transmission measurements were performed using
a method similar to one described by Arnfield et al. (48) and
Patel et al. (49) with leaves fully closed and the gap between
the opposing leaf pairs displaced to one side. Average MLC
transmission was measured using the FC65-G ion chamber
placed in solid water perpendicular to the leaf travel direction
at the isocentre at depth of 11 cm. Simultaneously, the intra-
and interleaf leakage was measured using an EBT3 film placed
at 10 cm depth.

RESULTS

System Optimization
Magnetic Shielding Optimization
Figure 3 shows the profiles of a nominal 11 × 11 cm2 field
acquired at different SIDs with only external magnetic shielding
(dotted lines) and with optimized internal magnetic shielding
(solid lines). The shielding significantly improved the profile
symmetry even at shortest SID and reduced the beam output
loss in the target area. It should be noted however that, located
relatively far from the electron gun, it was not effective in
reducing the beam loss occurring there. Based on these results the
system has been commissioned at two SIDs: at 2.4m, where full
range of fields (up to 34.3 × 34.0 cm2 at the isocentre) fulfilled
the symmetry criteria, and at 1.8m, where fields of up to 21.4
× 21.2 cm2 fulfilled the symmetry criteria. The measurements
reported in the reminder of this manuscript have been performed
at these two SIDs, unless stated otherwise.

System Alignment
TheMRI scans of the alignment phantomwith the grid indicating
the imaging isocentre superimposed are shown in Figure 4B and
the measured agreement was better than 1mm.

The physical change in position of the linatron relative to the
origin axis over the rail length was 2mm horizontally (x) and
3mm vertically (y).

Example composite portal images, showing the projections
of the fiducial markers (as indicators of the laser positions) and
of the edges of half blocked fields formed by the MLC, are
shown in Figure 4C. Composite images were created as: |image

negativexblocked – imagepositivexblocked| + |imagenegativeyblocked –
imagepositiveyblocked| allowing visualization of the MLC axes.
Alignment of radiation isocentre and the MLC center relative
to the positioning lasers for different SIDs is summarized in
Figure 5. The results indicate a variation of the radiation focal
spot offset (circles in Figure 5) from to the laser with changing
SID of up to 1.5 ± 2.5mm in the horizontal (x) direction and
1.4 ± 1.8mm in the vertical (y) direction, except at SID of 1.8m
where it reached 2.1 ± 1.6mm. This leads to the variation of the
position of the MLC CAX projection with changing SID, which
in the horizontal (x) direction could be compensated for using an
SID specific parameter setting in the MLC control software.

Offsets of the MLC CAX projection position with respect
to the lasers measured in EPID images acquired in front of
the magnet bore (z = −167.6 cm) and behind the magnet bore
(z = 130.1 cm) (bars in Figure 5) were used to interpolate
the MLC CAX projection at the isocentre (z = 0 cm) (×’s in
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FIGURE 3 | (A) Horizontal (x) and (B) vertical (y) profiles of a nominal 11 × 11 cm2 field acquired at different SIDs with only external magnetic shielding (dotted lines)

and with optimized internal magnetic shielding (solid lines).

FIGURE 4 | (A) Schematic representation of the phantom setup used for geometrical alignment of the system (B) MR scans of the alignment phantom in x-z plane

(left) and x-y plane (right) showing the bore holes aligned to the imaging isocentre (indicated by the superimposed grid) (C) example composite portal images showing

the projections of the fiducial markers (aligned to the in-room lasers) and of the edges of half blocked fields formed by the MLC for SID of 2.4m (left) and SID of 1.8m

(right). Composite images are created as: |imagenegativexblocked – imagepositivexblocked | + |imagenegativeyblocked – imagepositiveyblocked | allowing visualization of the MLC axes.

Figure 5). In the horizontal (x) direction it was within 0.4 ±

1.9mm at all SIDs. In the vertical (y) direction it was within 1.8
± 2.2mm at all SIDs except the largest two (3.2 and 3.0m).

Field Size and Leaf Width Calibration
The measured field sizes were 7.2% larger in horizontal
(x) and 6.1% larger in vertical (y) direction than the
nominal field sizes. Extrapolated to the two commissioned

SIDs this yielded magnification factors of 2.638 and 2.612
in horizontal and vertical direction for SID of 2.4m
and 1.944 and 1.924 in horizontal and vertical direction
for SID of 1.8m. This was incorporated in the TPS in
the definition of the MLC leaf projection widths in the
isocentre plane.

The full width half maximum of the surface profiles acquired
using EBT3 film for fields closest to 10× 10 cm2: 10.6× 10.5 cm2
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FIGURE 5 | System alignment for all SIDs (A) in the horizontal (x) and (B) in the vertical (y) direction.

FIGURE 6 | Dose output linearity (A) at SID of 2.4m and (B) at SID of 1.8m. Different symbols indicate regions of applicability of the absolute and the relative

deviation criterion according to IEC60976 (39).

at SID of 2.4m and 9.7× 9.6 cm2 at SID of 1.8mwere 10.6× 10.1
and 9.7× 9.6 cm2 respectively.

Functional Performance Characteristics
Dose Monitoring System
For reproducibility, proportionality and stability measurements
fields of 10.6 × 10.5 and 9.7 × 9.6 cm2 were used for SID of
2.4 and 1.8m, respectively. Short term reproducibility of the
monitoring chamber calculated as a coefficient of variation (40)
was 0.29% at SID of 2.4m and 0.49% at SID of 1.8m. Output
after high absorbed dose showed a decrease in of 1.2 ± 0.4%
at SID of 2.4m and 1.1 ± 0.4% at SID of 1.8m. Stability
throughout the week was 1.0 ± 0.6% at SID of 2.4m and 2.6
± 0.6% at SID of 1.8m. Stability after a full day of intensive
commissioning measurements yielded 1.7 ± 0.4 and 2.8±1.0%
output decrease at SID of 2.4 and 1.8m, respectively, however
such intensive clinical use of the system is not foreseen outside of
commissioning or annual quality assurance. Figure 6 shows the
dose output linearity, calculated as per IEC60977 (41), for both
commissioned SIDs. At SID of 2.4m, linearity was better than
0.2% above 1Gy and better than 0.006Gy below 1Gy. At SID of
1.8m, linearity was better than 0.4% above 1Gy and better than
0.016Gy below 1Gy.

For the measurements of the dependence on the field shape,
fields of 5.3 × 20.9 and 21.1 × 5.2 and 5.8 × 19.2 and 19.4 ×

5.8 cm2 were used for SID of 2.4 and 1.8m, respectively. Variation

with the field size shape was 1.3± 0.4% at SID of 2.4m and 0.0±
0.5% at SID of 1.8 m.

The fringe field magnitude at the location of the
monitoring chamber was ∼15 and 45 mT for SID of 2.4
and 1.8m, respectively.

Depth Dose Characteristics
The dose distributions acquired using EBT3 films in the region of
∼±10 cm around the beam CAX, normalized at depth of 10 cm,
at SID of 2.4m for field sizes of 10.6 × 10.5 and 34.3 × 34.0 cm2

are shown in Figures 7A,B and at SID of 1.8m for field sizes
of 9.7 × 9.6 and 21.4 × 21.2 cm2 in Figures 7C,D. The higher
dose around the central axis at small depths caused by electron
focusing is visible.

The surface doses (normalized to 10 cm depth) measured
using EBT3 filmswere: 430% for 10.6× 10.5 cm2 field and 1,024%
for 34.3 × 34.0 cm2 at SID of 2.4m and 576% for 9.7 × 9.6 cm2

field and 1,068% for 21.4 × 21.2 cm2 at SID of 1.8m. Measured
±3.5 cm off-axis, at SID of 2.4m these values were reduced to
79% for 10.6 × 10.5 cm2 field and 143% for 34.3 × 34.0 cm2 and
at SID of 1.8m to 72% for 9.7 × 9.6 cm2 field and 103% for
21.4 × 21.2 cm2. The radius at which the surface dose becomes
lower than the dose at 10 cm depth was between 2.6 cm for 10.6
× 10.5 cm2 field and more than 6 cm for 34.3 × 34.0 cm2 field at
SID of 2.4m and between 2.6 cm for 9.7× 9.6 cm2 field and 4 cm
for 21.4× 21.2 cm2 at SID of 1.8 m.
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FIGURE 7 | The dose distributions acquired in the region of ±10 cm around the beam CAX, normalized at depth of 10 cm, (A,B) at SID of 2.4m for field sizes of 10.6

× 10.5 and 34.3 × 34.0 cm2 and (C,D) at SID of 1.8m for field sizes 9.7 × 9.6 and 21.4 × 21.2 cm2.

FIGURE 8 | Investigations of the entrance dose at SID of 2.4m with varying bolus placement (A) with microDiamond for a 10.6 × 10.5 cm2 field at SID of 2.4m

(normalized at depth of 5 cm) and (B) with MOSkinTM and microDiamond detector for a 7.9 × 7.8 cm2 field (normalized at depth of 2 cm).

High dose deposited in the initial section of the PDD by
the contaminant electrons focused around the beam central
axis hinders the determination of the depth of dmax and of the
penetrative quality of the beam in the radiation field according to
the IEC 60976/977 standard (40, 41). As estimates, these values
were extracted±3.5 cm off-axis yielding: 1.47 cm for field 10.6×
10.5 cm2 and 1.54 cm for field 34.3 × 34.0 cm2 at SID of 2.4m
and 1.45 cm for field 9.7 × 9.6 cm2 and 1.49 cm for field 21.4 ×

21.2 cm2 at SID of 1.8m. The penetrative quality was 7.19 cm for
the 10.6 × 10.5 cm2 at SID of 2.4m and 7.02 cm for the 9.7 ×

9.6 cm2 at SID of 1.8m.
Use of a bolus placed upstream of the entrance surface

to mitigate the presence of the contaminant electrons was
investigated. Bolus thickness of 2 cm was selected based on the
observed penetration depth of the electrons. Figure 8A shows
the initial section of the PDD acquired using the microDiamond
detector for a 10.6 × 10.5 cm2 field at SID of 2.4m with bolus
placed 20, 10, 5, 2, and 1 cm upstream from the surface of
the phantom. Measurements were normalized to the dose at
5 cm depth due to the contaminant electrons affecting the dose

maximum position. The presence of the bolus lead to a significant
reduction of the electron hotspot: from more than 220% at 1mm
depth to about 120–130%, depending on the distance at which
the bolus was placed. Placing the bolus close to the surface, i.e.,
reducing the length of the air column where new electrons can
be generated, resulted with lower surface dose, however only
down to a distance of∼5 cm upstream from the phantom surface.
Figure 8B shows higher resolution data (normalized at depth
of 2 cm) acquired with the MOSkinTM detector, which reveal
presence of a further dose enhancement and steep dose fall-off
within the initial 1mm of the PDD, i.e., at depths smaller than
the EPOM of the microDiamond.

For TPR20/10 measurements fields of 10.6 × 10.5 and 9.7 ×

9.6 cm2 were used for SID of 2.4 and 1.8m, respectively. The
measured TPR20/10 values were 0.633 ± 0.001 at SID of 2.4m
and 0.634± 0.004 at SID of 1.8m.

Beam Uniformity
Results of the beam symmetry and flatness measurements
performed with the StarcheckmaxiMR array are summarized in
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TABLE 1 | Beam symmetry, flatness and penumbra at depth of 10 cm at SID

of 2.4m.

Field size

(cm2)

Symmetry (%) Flatness Penumbra (cm)

x y x y x y

5.3 × 5.2 100.4 100.3 1.04 1.03 1.06+

0.90*

0.66+

0.73*

10.6 × 10.5 100.4 100.5 1.08 1.08 1.35+

1.10*

0.86+

0.84*

29.0 × 28.7 101.8 100.6 1.17 1.15 n.a.+

1.48*

n.a.+

1.29*

34.3 × 34.0 102.2 100.4 1.22 1.22 n.a. +

1.49*

n.a. +

1.23*

*Measured with Starcheck maxi MR.

+ Measured with film.

TABLE 2 | Beam symmetry, flatness and penumbra at depth of 10 cm at SID of

1.8m.

Field size

(cm2)

Symmetry (%) Flatness Penumbra (cm)

x y x y x y

5.8 × 5.8 101.4 100.8 1.05 1.04 0.89+

0.86*

0.56+

0.67*

9.7 × 9.6 102.0 101.6 1.10 1.09 1.02+

0.94*

0.74+

0.76*

21.4 × 21.2 101.5 102.9 1.18 1.18 n.a.+

1.17*

n.a.+

1.01*

*Measured with Starcheck maxi MR.

+ Measured with film.

Table 1 for SID = 2.4m and in Table 2 for SID of 1.8m. At
the larger SID, the IEC criteria for symmetry were fulfilled for
fields up to 34.3 × 34.0 cm2 while at shorter SID for fields up
to 21.4× 21.2 cm2.

Beam penumbra measured with films (for field sizes not
exceeding the size of the solid water blocks) and with the
Starcheck array (for all investigated field sizes) at 10 cm depth
is summarized in Table 1 for SID of 2.4m and in Table 2 for
SID of 1.8m. The results obtained with films and with the array
agree on average within 1mm. In the direction perpendicular to
the leaf motion (y), where the penumbra is steeper, compared to
the direction perpendicular to the leaf motion (y), the penumbra
values were 3mm lower when measured with films and 4mm
lower when measured with the array.

Isocentre
Offset of the radiation focal spot from the lasers defining the
position of the imaging isocentre was 0.0 ± 2.1mm in the
horizontal (x) and 0.6 ± 2.1mm in the vertical (y) direction at
SID of 2.4m and −1.4 ± 1.6mm in the horizontal and 2.1 ±

1.6mm in the vertical direction at SID of 1.8m.

Geometry of the Beam Limiting System
Offset of the projection of the MLC center from the lasers
defining the position of the imaging isocentre was 0.0 ± 2.1mm
in the horizontal (x) and 0.8± 2.1mm in the vertical (y) direction

at SID of 2.4m and−0.1± 1.6mm in the horizontal and−0.2±
1.6mm in the vertical direction at SID of 1.8m. The MLC bank
tilt was 0.28◦ measured at SID of 2.4m and 0.13◦ measured at
SID of 1.8m.

Beam Base Data Acquisition
Based on the surface dose measurements performed as part
of the functional characteristic tests, the base data relevant
for beam modeling (PDDs, beam profiles and absolute dose
calibration) was acquired for both cases: without and with
the electron absorbing bolus placed 5 cm upstream from the
surface of the phantom, as currently its use is foreseen for first
patient treatments.

Depth Dose Characteristics and Surface Dose
Example PDD curves measured at SID of 2.4m for field sizes 2.6
× 2.6, 10.6 × 10.5, 18.5 × 18.3, and 34.3 × 34.0 cm2 normalized
to the 10.6 × 10.5 cm2 field at a depth of 10 cm are shown in
Figure 9A without and Figure 9B with the bolus. Example PDD
curves measured at SID of 1.8m for field sizes 1.9 × 1.9, 9.7 ×

9.6, 17.5× 17.3, and 21.4× 21.4 cm2 normalized to the 9.7× 9.6
cm2 field at depth of 10 cm are shown in Figure 9C without and
Figure 9D with the bolus.

Beam Profiles
Example profiles acquired at depths of 1, 5, 10, and 20 cm at
SID of 2.4m for field sizes 2.6 × 2.6, 10.6 × 10.5, and 18.5 ×

18.3 cm2 normalized to the CAX value of the profile of the 10.6
× 10.5 cm2 field at 10 cm depth are shown in Figures 10A–C.
Example profiles acquired at SID of 1.8m for field sizes 1.9 ×

1.9, 9.7 × 9.6, and 17.5 × 17.3 cm2 normalized to the CAX
value of the profile of the 9.7 × 9.6 cm2 field at 10 cm depth are
shown in Figures 10D–F. Horizontal (x) half-profiles are shown
on the negative and corresponding vertical (y) half-profiles on the
positive x axis. Only data measured without the bolus is shown.

Tissue Phantom Ratios
Results of the beam quality measurements required by
IEC 60976/977 standard (40, 41) are presented as part of
functional performance characterization in section Depth
Dose Characteristics.

Output Factors
Field size output factors were measured for fields between 2.6
× 2.6 and 26.4 × 26.1 cm2 at SID of 2.4m and normalized to
the field of 10.6 × 10.5 cm2. At SID of 1.8m, the field sizes
between 1.9 × 1.9 and 25.3 × 25.0 cm2 were used and the results
were normalized to the field of 9.7 × 9.6 cm2. The total (SCP)
and collimator (SC) scatter factors measured under isocentric
conditions are shown in Figure 11.

At SID of 2.4m the total scatter factors measured with the ion
chamber and with the microDiamond detector showed a very
good agreement for field sizes down to ∼5 × 5 cm2, with an
average deviation of 0.3%. Below, at field size of 2.6 × 2.6 cm2,
the ion chamber underestimated the output by 5.1%. At SID of
1.8m the agreement between ion chamber and microDiamond
was good down to field size of ∼4 × 4 cm2, with an average
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FIGURE 9 | PDDs measured (A) without (B) with the bolus at SID of 2.4m for field sizes 2.6 × 2.6, 10.6 × 10.5, 18.5 × 18.3, and 34.3 × 34.0 cm2 (normalized to the

10.6 × 10.5 cm2 field at a depth of 10 cm) and (C) without and (D) with the bolus at SID of 1.8m for field sizes 1.9 × 1.9, 9.7 × 9.6, 17.5 × 17.3, and 21.4 ×

21.2 cm2 (normalized to the 9.7 × 9.6 cm2 field at a depth of 10 cm).

deviation of 0.2%. Below, at field size of 1.9 × 1.9 cm2, the ion
chamber underestimated the output by 17.9%.

Beam Output Calibration
Beam output calibration was performed at a field size of 10.6 ×

10.5 and 9.7× 9.6 cm2 for SID of 2.4 and 1.8m, respectively. The
measured beam output was 0.1376 ± 0.0002 Gy/MU at SID of
2.4m and 0.0915± 0.0002Gy/MU at SID of 1.8m. The respective
factors measured with the electron absorbing bolus in place were
0.1247 ± 0.0001Gy/MU at SID of 2.4m and 0.0830 ± 0.0001
Gy/MU i.e., 9.42 and 9.37% lower.

MLC Characterization
Positional accuracy of the MLC (symmetry around the isocentre
and tilt) is presented in section Geometry of the Beam Limiting
System and the measured beam penumbra values in section
Beam Uniformity.

Average transmission through the leaves, relative to an open
field dose, measured with the EBT3 film (averaged within a radius
of 2.5 cm around the center of the field) at SID of 2.4m was
1.06% and at SID of 1.8m 1.17%. The corresponding ion chamber
measurements were slightly higher and yielded 1.23 and 1.52%,
respectively. Interleaf transmission peak-to-peak amplitude was
∼0.4% at SID of 2.4m and 0.3% at SID of 1.8m (Figure 12).

DISCUSSION

This work is the first report on the dosimetric characterization of
an inline MRI-linac system.

The Australian MRI-linac features a rail system which enables
variation of the source-to-isocentre distance. The largest distance
(3.2m) corresponds to the decoupling of the MRI and linac
components (B ≈ 0 T). On the other hand, the fringe field at
the linac location for the shortest distance (1.8m) influences
the electron transport, and therefore radiation beam generation
in the linac, leading to output loss and profile distortion.
In order to utilize the shortest SIDs, physical alignment of
the radiation beam to the magnetic field was fine-tuned
and magnetic shielding of the radiation head was optimized.
Aligning and shielding allowed the system commissioning at
two SIDs: at 2.4m where full range of field sizes fulfilled
the symmetry criteria and at 1.8m where fields up to ∼21
× 21 cm2 fulfilled the symmetry criteria, but the clinical
treatments will benefit from smaller leaf width projection and
sharper penumbra.

Alignment of the radiation field and the imaging isocentre
below the 2mm tolerance specified in IEC standard was obtained:
the deviation of the center of MLC shaped fields from the
isocentre was 0.0 ± 2.1mm in the horizontal (x) and 0.8 ±

2.1mm in the vertical (y) direction at SID of 2.4m and −0.1
± 1.6mm in the horizontal (x) and −0.2 ± 1.6mm in the
vertical (y) direction at SID of 1.8m. These offsets stem from
the limitations of physical linac and MLC assembly alignment
and vary with the SID due to factors such as: residual angle
between the rail system, the linac and the magnetic field axis
as well as the influence of the fringe field on the electron
beam in the linac and hence on its point of incidence on
the target. While in the horizontal (x) direction this could be
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FIGURE 10 | Profiles in the horizontal (x) direction (solid lines) and in the vertical (y) direction (dotted lines) measured without the bolus at the surface and at depths of

1, 5, 10, and 20 cm (A–C) at SID of 2.4m for field sizes 2.6 × 2.6, 10.6 × 10.5, and 18.5 × 18.3 cm2 (normalized to CAX value of the 10.6 × 10.5 cm2 field at a depth

of 10 cm) and (D–F) at SID of 1.8m for field sizes 1.9 × 1.9, 9.7 × 9.6, and 17.5 × 17.3 cm2 (normalized to CAX value of the 9.7 × 9.6 cm2 field at a depth of 10 cm).

Note: the secondary y-axis was used for surface profiles and primary y-axis was used for all remaining profiles.

minimized by software-controlled adjustment of the MLC axis,
in the vertical direction (y) a compromise in the MLC height
placement was made. MLC leakage yielded 1.06% at SID of
2.4m and 1.17% at SID of 1.8m measured with film and 1.23%
at SID of 2.4m and 1.52% at SID of 1.8m when measured
with an ionization chamber. In similar measurement, Arnfield
et al. (48) reported a value of 1.34 ± 0.03% for the same
MLC model.

Profile symmetry was better than 103% for the commissioned
field size ranges and the flatness values of 1.03–1.22 were
comparable with values reported for a 6MV FFF beam in

literature (50). Penumbra values could be measured with films,
offering high spatial resolution, only for a subset of fields required
by IEC standard. For an ∼10 × 10 cm2 field the penumbra
was 1.35 cm in the leaf motion direction (x) and 0.86 cm in the
direction perpendicular to the leaf motion (y) at SID of 2.4m
and 1.02 cm in the leaf motion direction and 0.74 cm in the
direction perpendicular to the leaf motion at SID of 1.8m. For
comparison, penumbra values measured for the same field size
on a commercial transverse 1.5 T system, equipped with an Elekta
Agility MLC, with an SID of 1.4m determined using artificial
flattening were between 0.74 and 0.87 cm (28). No penumbra
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FIGURE 11 | Total (SCP) and collimator (SC) scatter factors (A) at SID of 2.4m and (B) at SID of 1.8m.

FIGURE 12 | Leakage dose (relative to an open field dose) through a closed MLC (A) at SID of 2.4m and (B) at SID of 1.8m.

asymmetry and profile shift, characteristic for transverse systems
(28), has been observed, which simplifies beam modeling in the
TPS for inline systems.

The dose monitoring system of the Linatron-MP consists
of a single, parallel plate, unsealed monitoring chamber.
Reproducibility and proportionality of the chamber met the IEC
criteria. However, at shorter SID, the long-term stability over 1
week reached 2.6 ± 0.6%, exceeding the IEC defined tolerance.
An independent monitoring chamber is currently being installed
to mitigate this for patient treatments as well as to ensure dose
monitoring redundancy as per IEC requirements (40, 41). Fringe
field effects on beam the beam properties (e.g., presence of
the focused electrons, backscatter) and on the dose monitoring
system response required a separate beam output calibration at
the two commissioned SIDs. Beam quality instead remained the
same at both distances (TPR20,10 was 0.633 ± 0.001 at SID of
2.4m and 0.634 ± 0.004 at SID of 1.8m) within measurement
uncertainty. It should be noted that in inline configurations,
similar to transverse systems, TPR20,10 as opposed to %dd(10)x
is more applicable as beam quality measure. Although, contrarily
to transverse systems, photon build-up remains unaffected by the
inline magnetic fields, determination of dmax and Dmax may be
confounded by the presence of electron focusing. In this work, as
an approximate estimate the value of dmax measured off-axis was
reported and amounted to 1.47 cm at SID of 2.4m and 1.45 cm
at SID of 1.8m for ∼10 × 10 cm2 fields. For comparison, a

reduced dmax of 1.3 cm was reported for a 7MV FFF beam of a
commercial 1.5 T transverse system (28).

Electron focusing effect, modeled (42) and observed
experimentally (16, 32), was quantified and methods to minimize
it have been investigated. Surface dose enhancement around the
central axis was observed, which was dependent on the field size
and reached 400–600% for 10 × 10 cm2 fields and more than
1,000% for largest fields, relative to the dose at 10 cm depth. This
could be counteracted by placing of an absorbing bolus upstream
of the phantom or by irradiation using off-axis fields. The former
resulted in significant reduction of the entrance dose although
keeping the maximum dose value on the surface: ∼140–150%
for ∼10 × 10 cm2 fields and 160% for small fields, relative to the
dose at 10 cm depth. The efficacy of the latter is dependent on the
off-axis distance: the distance at which the surface dose becomes
lower than the dose in 10 cm depth was between 2.6 cm for 10.6
× 10.5 cm2 field and more than 6 cm for 34.3 × 34.0 cm2 field at
SID of 2.4m and between 2.6 cm for 9.7× 9.6 cm2 field and 4 cm
for 21.4× 21.2 cm2 at SID of 1.8m.

For absolute dose measurements, the correction factor kB was
applied to the ionization chamber reading. However, it should
be emphasized, that the effect of the magnetic field on the
dosimeters and the sensitivity to the detector orientation has been
shown to be less pronounced in inline as compared to transverse
configuration (19, 20). To avoid the effect of air gaps, the chamber
holder has been filled out with water whenever applicable in this
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work. Nevertheless, it should also be noted that these effects have
been shown to be smaller for the inline relative to the transverse
configuration: 0.4% (30) compared to 0.7–1.2% (26).

The beam base data acquired with the bolus has been inserted
into Pinnacle (Philips Healthcare, The Netherlands) TPS system
for beammodeling, as currently its use is foreseen for first patient
treatments. This data as well as data acquired without the bolus
will be instead used to improve and validate the MC model of
the system.

Last but not least, while this work focuses of strictly
dosimetric aspects of the Australian MRI-linac, its imaging
performance, including potential interactions between imaging
and beam delivery, had been described previously (29). It
should also be emphasized that the integration of the whole
system has been tested and that the first live animal treatments
have been conducted recently (51), as a further step prior to
clinical treatments.

CONCLUSION

Owing to the fundamentally different design, the inline systems
display a different set of dosimetric issues as compared to
transverse designs, most notably: no field shift and penumbra
asymmetry, no build-up depth reduction, no electron return
effect, the presence of electron focusing, weaker effects on
detector response and less pronounced air gap effects. In
this work, the methods were developed and employed to
experimentally investigate and demonstrate these properties
for the first time on an inline MRI-linac system. The
collected measurements were used to fine-tune and commission
the radiation related aspects of the Australian MRI-linac,

constituting a key step toward the application of inline MRI-
linacs for patient treatments.
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