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Editorial on the Research Topic

Application of Optimization Algorithms in Chemistry

Molecular structure optimization, fitting potential energy functions to ab initio and experimental
data, and spectral assignment are among the hardest optimization tasks in molecular sciences.
These are fundamental problems in chemistry, but they can also be relevant in molecular physics
and biochemistry. In past decades, several methodologies have been proposed to help in the
above mentioned tasks, and some of them are already incorporated into computational tools,
such as GMIN (Wales and Scheraga, 1999; Wales, 2010), Gradient Embedded Genetic Algorithm
or GEGA (Alexandrova and Boldyrev, 2005), OGOLEM (Hartke, 1993; Dieterich and Hartke,
2017), Birmingham Cluster Genetic Algorithm or BCGA (Johnston, 2003; Shayeghi et al., 2015),
Evolutionary Algorithm for Molecular Clusters or EA_MOL (Llanio-Trujillo et al., 2011; Marques
and Pereira, 2011), Global Reaction Route Mapping or GRRM (Ohno and Maeda, 2006, 2019),
Automated Mechanisms and Kinetics or AutoMeKin (Martínez-Núñez, 2015a,b; Martínez-Núñez,
2020), and Genetic Algorithm fitting or GAFit (Rodríguez-Fernández et al., 2017, 2020). Most of
these computational programs are interfaced with well-known packages that perform electronic-
structure calculations and, hence, allow for a direct assessment of the semi-empirical, density
functional theory (DFT) or ab initio energy of the system during the optimization process. Another
relevant methodology to explore low-energy landscapes is the parallel-tempering Monte Carlo
technique, which has been also applied in the calculation of thermodynamic properties.

Global geometry optimization studies are, now, being extended to systems of increasing
complexity. In particular, global optimization algorithms have been applied to a great diversity
of chemical systems, including atomic and molecular clusters as well as colloidal aggregates
and biomolecules. Nonetheless, optimization work needs, in general, a large number of
computational resources and, hence, improvements in algorithms to relieve the burden. Major
challenges are concerned with the treatment of systems with increasing size and incorporating
higher levels of theory in the molecular model. Also, multi-component aggregates pose an
important combinatorial problem and require novel optimization strategies. Although the use
of state-of-the-art spectroscopic techniques to probe the structure of clusters has allowed for
close collaborative work involving computational and experimental achievements, there is still
room for greater improvement in this effort. In particular, comparisons between theoretical and
experimental spectroscopic data will benefit from significant improvements in algorithms devoted
for the spectral assignment.
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Pursuing those purposes, we believe the collection of papers
for the present Research Topic illustrates the broad scope of
computational strategies for global optimization applications in
chemistry. All contributions describe optimization strategies for
a great diversity of chemical systems.

Basin-hopping (BH) is able to generate a coarse-grained
mapping of a potential energy surface (PES) in terms of local
minima, which can then be used to gain insights into molecular
dynamics and thermodynamic properties as pointed out by
Zhou et al. in their contribution. These authors also show how
unsupervisedmachine learning tools can be employed to enhance
BH searches, which result in more efficient identification of local
minima and transition states connecting them.

Jana et al. employ a particle swarm optimization (PSO)
method to search for small Cn clusters. PSO is another useful
algorithm for a stochastic search in multidimensional space.
The method has proven efficient in hard optimization problems
compared with traditional methods.

Hernández-Rojas and Calvo also employ BH method, this
time to predict low-energy structures of adamantane clusters
by using both coarse-grained and atomistic potential models.
Although coarse-grained models are appealing for the complex
clusters that are studied, the comparisonwith atomistic potentials
shows that some relevant structural details are not captured by
the former.

As for seeking conformational minima of flexible acyclic
molecules, Ferro-Costas and Fernández-Ramos propose an
algorithm that combines a systematic variation of torsion angles
with aMonte Carlo search. This methodology has been applied to
calculate multi-structural partition functions of several alcohols
ranging from n-propanol to n-heptanol and was also tested with
the amino acid L-serine.

Panadés-Barrueta et al. put forward a fully automated method
to generate highly-accurate semiempirical potential energy
surfaces. They use global optimization techniques and automated
PES sampling algorithms to refine specific reaction parameters

of semi-empirical Hamiltonians, which can be subsequently
employed in quantum dynamics studies.

In turn, Wang et al. carry out a microsolvation study of
Na+ with water by applying a genetic algorithm combined with
density functional theory to obtain low-energy structures of the
clusters. Also, a new genetic algorithm is proposed by Silva
et al. for the prediction of structures of nanoparticles. This
work explores the efficacy of new evolutionary operators to treat
Lennard-Jones and carbon clusters.

Khatun et al. develop a global optimizer which grows the
cluster by adding atoms one by one. The method is tested
by studying transition-metal clusters and binary and ternary
nanoalloys of such elements.

Cova and Pais review and discuss deep learning strategies
for optimizing the prediction of chemical patterns, which
includes accelerated literature searches, analysis and prediction
of physical and quantum chemical properties, transition states,
chemical structures, chemical reactions, and also new catalysts
and drug candidates.
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Modified Particle Swarm
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Carbon Clusters, Cn (n = 3–6, 10)

Gourhari Jana 1, Arka Mitra 2, Sudip Pan 3, Shamik Sural 4* and Pratim K. Chattaraj 1,5*
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of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, India, 3 Fachbereich

Chemie, Philipps-Universität Marburg, Marburg, Germany, 4Department of Computer Science and Engineering, Indian
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Particle Swarm Optimization (PSO), a population based technique for stochastic search
in a multidimensional space, has so far been employed successfully for solving a variety
of optimization problems including many multifaceted problems, where other popular
methods like steepest descent, gradient descent, conjugate gradient, Newton method,
etc. do not give satisfactory results. Herein, we propose a modified PSO algorithm for
unbiased global minima search by integrating with density functional theory which turns
out to be superior to the other evolutionary methods such as simulated annealing, basin
hopping and genetic algorithm. The present PSO code combines evolutionary algorithm
with a variational optimization technique through interfacing of PSO with the Gaussian
software, where the latter is used for single point energy calculation in each iteration
step of PSO. Pure carbon and carbon containing systems have been of great interest
for several decades due to their important role in the evolution of life as well as wide
applications in various research fields. Our study shows how arbitrary and randomly
generated small Cn clusters (n = 3–6, 10) can be transformed into the corresponding
global minimum structure. The detailed results signify that the proposed technique is
quite promising in finding the best global solution for small population size clusters.

Keywords: global minimum energy structures, density functional theory, carbon clusters, particle swarm

optimization, multi-threaded code, Metaheuristic Algorithm, Gaussian

INTRODUCTION

Over the past decades, studies on nature-inspired swarm intelligence based meta-heuristic
algorithms have become a topic of paramount interest in the allied research fields. To date, various
optimization problems have been addressed using these algorithms and these have turned out to be
an important tool in analyzing physical systems, in solving the complex problems and in searching
for the best solution from a set of all possible feasible solutions. Particularly, global optimization
(GO) has become very challenging in the development of computational fields. Search for the
globally optimal solution is more crucial than that for a local optima as the former corresponds
to the correct and desirable solution. Fundamentally, GO methods can be divided into two broad
classes, namely (i) deterministic algorithms and (ii) stochastic algorithms. Although deterministic
methods are capable of providing a guaranteed global optimum solution, the necessary properties
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of objective function and some constraints are required as well.
On the other hand, stochastic methods can provide successful
results in finding the global best solution without consideration
of any assumption of differentiability and continuity of objective
function. Until now, several stochastic methods such as genetic
algorithms (GA) (Holland, 1992; Grüninger and Wallace, 1996;
Ursem, 2000; Deb et al., 2002; Poli and Langdon, 2002; Dilettoso
and Salerno, 2006; Krug et al., 2010), simulated annealing (SA)
(Woodley et al., 1999; Abraham and Probert, 2006; Glass et al.,
2006; Oganov and Glass, 2006; Trimarchi and Zunger, 2007),
differential evolution (DE) (Storn, 1996; Storn and Price, 1997;
Price et al., 2006; Rocca et al., 2011), harmony search (HS) (Geem,
2000, 2001, 2006; Geem et al., 2001, 2005; Diao and Shen, 2012;
Gholizadeh and Barzegar, 2013; Hadwan et al., 2013; Manjarres
et al., 2013; Nekooei et al., 2013; Wang and Li, 2013; Hoang et al.,
2014; Fattahi et al., 2015; Weyland, 2015; Assad and Deep, 2016),
ant colony optimization (ACO) (Colorni et al., 1992; Dorigo,
1992; Dorigo and Di Caro, 1999; Zlochin et al., 2004; Dorigo
and Birattari, 2010; Korošec et al., 2012), cuckoo search (CS)
(Payne and Sorensen, 2005; Yang and Deb, 2009; Inderscience,
2010), bat algorithm (BA) (Altringham et al., 1996; Richardson,
2008; Yang, 2010a,b), artificial bee colony optimization (ABC)
(Karaboga and Basturk, 2007, 2008; Omkar et al., 2011; Fister and
Žumer, 2012; Li G. et al., 2012), honey bee mating optimization
(HBMO); (Pham et al., 2005; Haddad et al., 2006; Afshar et al.,
2007; Jahanshahi and Haddad, 2008; Marinakis and Marinaki,
2009; Pham and Castellani, 2009, 2014, 2015; Bitam et al.,
2010; Gavrilas et al., 2010; Marinaki et al., 2010; Chakaravarthy
and Kalyani, 2015; Nasrinpour et al., 2017; Rajasekhar et al.,
2017), and multi-colony bacteria foraging optimization (MC-
BFA) (Chen et al., 2010) have been developed and used in various
research fields including global optimization purpose. Moreover,
some advanced and more promising methods are continuously
being proposed including random sampling method (Pickard
and Needs, 2006, 2007, 2008), minima hopping (Kirkpatrick
et al., 1983; Pannetier et al., 1990), basin hopping (Nayeem
et al., 1991; Wales and Doye, 1997), meta-dynamics (Martonák
et al., 2003, 2005; Guangneng et al., 2005), data mining (Mujica
and Needs, 1997) and Particle Swarm Optimization (PSO)
(Kennedy and Eberhart, 1995, 1999; Kennedy, 1997; Shi and
Eberhart, 1998; Eberhart and Shi, 2001; Li, 2007; Özcan and
Yilmaz, 2007; Poli, 2007, 2008; Barrera and Coello, 2009; Li M.
et al., 2012; Qu et al., 2012; Bonyadi and Michalewicz, 2017),
modified PSO (Zheng et al., 2007), adaptive particle swarm
optimization (APSO) (Zhan et al., 2009), multi-dimensional PSO
for dynamic environments (Zhi-Jie et al., 2009; Kiranyaz et al.,
2011; Bhushan and Pillai, 2013), which indeed show different
numerical performances.

Out of these numerous techniques, PSO is a very renowned
iterative process which works intelligently by utilizing
the concept of exploring and exploiting together in the
multidimensional search space for finding optimal or near-
optimal solutions. The learning strategies of this technique for
the searching of structural information are very much suitable
and reliable in an active area of GO research. This evolutionary
computational method was first invented by Kennedy and
Eberhart (1995) and Kennedy (1997) in the mid 1990s on
graceful collaborative motion of biological populations rooted on

the concept of “information sharing and collective intelligence.”
This adaptive metahurestic technique emphasizes on overcoming
the energy barriers, particularly by the upgradation of positions
and velocities following the individual or personal best which
again follows the global best one. After several developments
(Reeves, 1983; Reynolds, 1987; Heppner and Grenander, 1990;
Millonas, 1993; Clerc, 1999; Eberhart and Shi, 2000; Banks et al.,
2007; Bui et al., 2007; Khan and Sadeequllah, 2010), adaptation
(Wang et al., 2011), modifications (like niching with PSO Brits
et al., 2002; Engelbrecht and Van Loggerenberg, 2007; Sun et al.,
2007; Nickabadi et al., 2008; Wang J. et al., 2009; Wang Y. et al.,
2009) single solution PSO (Liu and Wang, 2006; AlRashidi and
El-Hawary, 2007; Li and Li, 2007; Liu B. et al., 2007; Liu D.
et al., 2007; Petalas et al., 2007; Schutze et al., 2007; Zhang et al.,
2007; Zhang and Wang, 2008; Benameur et al., 2009) and multi-
objective optimization (Cai et al., 2004, 2009; Call et al., 2007;
Chandrasekaran et al., 2007; Abido, 2009; Alatas and Akin, 2009;
Dehuri and Cho, 2009; De Carvalho et al., 2010; Goh et al., 2010;
Briza and Naval, 2011; Chen et al., 2011), constraint optimization
with PSO (Cao et al., 2004; AlRashidi and El-Hawary, 2006;
Sun and Gao, 2008; Ma et al., 2009; Sivasubramani and Swarup,
2009), discrete PSO (Yin, 2004; Yeh, 2009; Yeh et al., 2009; Unler
and Murat, 2010), dynamic environment of PSO (Shao et al.,
2004, 2008; Zhang et al., 2006; Chen et al., 2007; Liu X. et al.,
2007; Yang et al., 2007; Du and Li, 2008; Wang and Xing, 2008;
Zhao et al., 2008; Cheng et al., 2009; Wang Y. et al., 2009; Bae
et al., 2010) and parameterization (Eberhart and Shi, 2001; Shi,
2001; Trelea, 2003; Li-Ping et al., 2005; Talbi, 2009; Pedersen,
2010; Bansal et al., 2011) on the original PSO, more recently
global optimization of small boron clusters (B5 and B6) using
a more advanced PSO approach has been reported with great
success (Mitikiri et al., 2018).

On the other hand, the investigation on pure carbonmolecules
existing in various structural forms (chains/cyclic rings) has
been a matter of great interest in the research area of organic,
inorganic and physical chemistry (Weltner and Van Zee, 1989)
as the study and production of carbon-riched molecules in the
laboratory are notoriously difficult due to their high reactivity
and transient like behavior. They are also very important in
astrophysics, particularly in connection with the chemistry of
carbon stars (Bernath et al., 1989), comets (Douglas, 1951), and
interstellar molecular clouds (Bettens and Herbst, 1997). Long
carbon chains are also believed to act as carriers of diffuse
interstellar bands (Fulara et al., 1993). Moreover, carbon clusters
are also important constituents in hydrocarbon flames and
other soot-forming systems (Kroto and McKay, 1988) and they
play an important role in gas-phase carbon chemistry where
they serve as intermediates for the production of fullerenes,
carbon tubes, thin diamond and silicon carbide films (Koinuma
et al., 1996; Van Orden and Saykally, 1998). Therefore, the
study about the structures and stabilities of carbon clusters is
very important to thoroughly understand the complex chemical
environment of such systems and also to shed light into the
remarkable bonding capability of carbon which is able to form
single, double and triple bonds. They together make the study
on the structural information of carbon clusters in the field
of theoretical research a subject of immense interest and it
started before the development of fullerene chemistry (Pitzer and
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Clementi, 1959; Weltner and Van Zee, 1989; Martin et al., 1993;
Hutter et al., 1994).

Due to the reduction in angle strain, carbon clusters larger
than C10 are likely to exist as monocyclic rings, while smaller ones
possess low-energy linear structures. Moreover, it was reported
that for small clusters with even number of carbon atoms such as
C4, C6, and C8, the cyclic form is either the lowest energy isomer
or almost isoenergetic to their linear counterparts (Raghavachari
and Binkley, 1987; Watts et al., 1992; Hutter and Lüthi, 1994;
Pless et al., 1994; Martin and Taylor, 1996). In this study, we have
checked the efficiency of our newly developed multi-threaded
PSO code, written in python, and augmented by Gaussian 09
program package (Frisch et al., 2013) to locate global minimum
energy structures for Cn clusters (n= 3–6). Particularly, we want
to test our code for the system where two minima are located at
two deep well points on the PES as in the case of C6 cluster. We
kept the cluster size small in order to compare the performance
of our code to other popular evolutionary simulation techniques
such as SA, GA, and BH.

CURRENTLY PROPOSED AND

IMPLEMENTED PSO TECHNIQUE

Initially, random structures are generated within certain range
(−3, 3) in a multidimensional search space followed by
upgradation of velocity and position vectors through swarm
intelligence. After completion of every iteration, energy of each
particle is calculated and a convergence criterion is verified with
the help of the Gaussian 09 package interfaced with the present
PSO algorithm. Individual best and global best positions are
updated. If the energy values of successive 30 iterations remain
same, the program automatically terminates. Finally a new set of
initial structures are generated from the related output structures
and the process is continued till the self-consistency is achieved.

In order to check the efficiency of our proposed PSO method
over some most familiar GO methods like advanced BH, SA, and
GA methods, the results for C5 cluster have been analyzed, as a
reference system.

A COMPARATIVE ACCOUNT OF THE

CURRENT PSO METHOD WITH OTHER

EXISTING APPROACHES

We have made the computer experiment to compare our
proposed PSO with the other popular evolutionary simulation
techniques such as SA, GA and advanced BH.

Comparison of Performances of PSO and

GA
(a) The most important distinction between our proposed

DFT-PSO with GA is the sharing of information. In GA,
chromosomes share information with each other, whereas in
PSO the best particle informs the others and the information
of variables is stored in small memory. Again, PSO search for
the global best solution is unidirectional, while GA follows
the parallel searching process.

(b) In contrast to GA, PSO does not use any genetic kind
of operator, i.e., crossover and mutation, and the internal
velocity leads the particle to the next better place.

(c) PSO implementation is more simple and easier than GA as it
deals with few parameters (like position and velocity only).

(d) GA provides satisfactory results in case of combinatorial
problems, PSO being less suitable there.

(e) PSO takes much less time to execute and the convergence
rate is also faster than that of GA.

A previous study by Hassan et al. (2005) has been further
recommended for more clarity and reliability of the efficiency of
PSO over GA.

Comparison of Performances of PSO and

SA
In SA technique, a small perturbation is given to cluster
entity at each successive step, and energy estimation is carried
out consecutively. Acceptance of perturbation depends on the
obtained energy value. If the obtained energy is better than the
previous one, the perturbation as well as the move with low cost
is accepted. Otherwise, the process excludes it and the Boltzmann
probability distribution is applied at a given temperature. The
particle (individual cluster) in SA takes much time to generate
different lower energy structures. The temperature decreases
during the whole course of the process very slowly and at the
end of the run it attains the least value. In contrast, such kind of
perturbation or temperature variable is not present in PSO. Both
exploitation and exploration techniques drive the particle in PSO,
while only exploitation is used in SA. So, there are more chances
to trap the particles in local minima in case of SA being a single-
based technique than PSO. On the other hand, PSO, being the
population based technique, is able to swarm wherever (different
places of mountain or lower point of valleys) be the particle in the
search space.

Comparison With Basin Hopping
Wales and Doye jointly described basin hopping algorithm (Berg
and Neuhaus, 1991; Wales and Doye, 1997; Doye et al., 1998)
which has become a popular stochastic search process to find
out the desired global best solution of an object function. This
method is basically a Monte Carlo technique, which works in a
perturbative and iterative manner. At first, a random coordinate
of a particle is considered. Then, random perturbation is applied
to the configuration considering the fact that the particle remains
in a local basin which is then followed by the minimization
of energy functional to get a better solution. Energy estimation
is again carried out and the process is repeated until the best
configuration or the lowest energy structure is achieved. The
most important thing is that the applied perturbation should be
large enough to get out of a local basin.

ALGORITHM AND COMPUTATIONAL

DETAILS

At the beginning, a set of random coordinates of Cn clusters
(particles) with random positions and velocities are considered.
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The newer sets of coordinates are updated through PSO run
to find out global best position or configuration. The local
best configuration (pbest) or that having the lowest energy value
obtained locally so far is stored in a small memory variable
which is then followed by the searching of global best (gbest)
configuration (among the set of pbest) through an exploration
technique. Ultimately, the best optimal solution is achieved.

The new velocities (vt+1
i ) and positions (xt+1

i ) of particles in
ith generation obey the following equations where xti and vti are
the current position and velocity.

vt+1
i = w ∗ vti + d1 ∗ ε1 ∗ (pbest − xti)+ d2 ∗ ε2 ∗ (gbest − xti) (1)

xt+1
i = xti + vt+1

i (2)

ε1 and ε2 are chosen randomly in between (0,1). The tendency
of a particle to remain in its current position is called inertia
coefficient denoted by w. d1 and d2 (which can be modified as
per requirement) which are referred to as individual coefficient

TABLE 1 | PSO Parameters.

Parameters Value

Population (Npop) 10

Inertia Coefficient (w) 0.4–0.8

Individual coefficient of acceleration (d1) 2

Global coefficient of acceleration (d2) 2

Random Coefficients (ε1; ε2) [0,1]

of acceleration and global coefficient of acceleration, respectively.
These two coefficients guide the particles to meet convergence so
that all the candidate solutions in the problem space efficiently
achieve the global minimum (see Table 1).

After the completion of each PSO run, optimization of global
best structural units of Cn clusters (n = 3–6) are performed at
the B3LYP (Lee et al., 1988; Becke, 1993)/6-311+G∗ level in the
Gaussian 09 program.

Each randomly generated cluster unit is considered as a
particle. In Figure 1 (x0, x1, x2,. . . x3n−1), particle comprises n
atoms. Here, the coordinates of ith atom are (x3i, x3i+1, x3i+2).

PARALLEL IMPLEMENTATION

One of the major advantages of using PSO as proposed in
this paper over some of the classical optimization techniques is
its parallelizability. The same implementation of the algorithm
can be executed on machines having single core (serial
implementation) or ones with multiple cores (laboratory grade
clusters) or high performance computing (HPC) systems.
Changing a couple of header parameters in the program is
sufficient tomake it portable across a wide range of platforms.We
have tested both a serial as well as a parallel implementation of
our programs. Results on parallel implementation are reported.
It may be noted that our PSO algorithm implemented in
Python invokes the Gaussian software as a system call. Each
such parallel call, one for each particle of the PSO algorithm,
causes a new instance of Gaussian to be executed. The number
of cores on which each Gaussian instance runs is dependent
on the available number of processor cores. However, at the

FIGURE 1 | A schematic representation of a cluster in multidimensional search space.
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TABLE 2 | The randomly chosen 10 different molecular frameworks of Cn (n = 3–6, 10) with singlet and triplet spin multiplicity converge to the global minimum energy
structures (Bond lengths are given in Å unit and the relative energies, 1E w.r.t the global minimum energy structures in brackets are given in kcal/mol).

Clusters Initial structure Final structure using PSO Final optimized energy (bond lengths)

C3 cluster

D∞h, S
(E = −114.0769 a.u.)

C4 cluster

D∞h, T
E = −152.1320 a.u.

[0.0]

D∞h, S
E = −152.1036 a.u.

[17.8]

D2h, S
E = −152.1062 a.u.

[16.2]

(Continued)
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TABLE 2 | Continued

Clusters Initial structure Final structure using PSO Final optimized energy (bond lengths)

C5 cluster

D∞h, S
E = −190.2546 a.u.

[0.0]

C2v, S
E = −190.1350 a.u.

[75.1]

C6 cluster

D∞h, T
E = −228.3181 a.u.

[0.0]

D∞h, S
E = −228.2969 a.u.

[13.3]

D3h, S
E = −228.3071 a.u.

[6.9]

(Continued)
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TABLE 2 | Continued

Clusters Initial structure Final structure using PSO Final optimized energy (bond lengths)

C10 cluster

D10h, S
(E = −380.7543 a.u.)

All coordinates are provided in Supporting Information. (Experimental bond lengths and angles are provided within the parenthesis in the final optimized structure).

end of every iteration, PSO has to recompute the best and
global best positions of individual particle before updating the
velocity values from which the new positions of the particles
are determined. These are done by reading the output log files
generated by Gaussian for each particle. This implies that the
results of all the parallel invocations of Gaussian need to be
completed before the iteration-end processing can be done. We
have implemented appropriate synchronization mechanisms to
enable such parallel implementation and hence, the code base is
portable across multiple platforms.

COMPUTATIONAL SETUP

All our computations were carried out on a single server having
two Intel 2.70 GHz Xeon E5-2697 v2 processors and 256 GB of
RAM. Each processor has 12 cores. Leaving aside a few cores for
operating system and other housekeeping processes, wemade use
of 30 threads for executing our PSO algorithm. A PSO population
size of 15 particles implies that 2 threads could be used for
each instance of Gaussian. Also, 8 GB of RAM was dedicated
to each such instance. As mentioned before, the number of PSO
particles, RAM assignment and the number of threads for each
Gaussian call are set as input hyper parameters. The completely
parameterized implementation of PSO has been done in Python

invoking Gaussian for energy calculation in a multi-threaded
environment. This is one of the unique features of our work,
which has not yet been reported in the literature for stable
structure prediction of Cn, to the best of our knowledge.

RESULTS AND DISCUSSION

In our study, each Cn cluster unit (each individual unit) is
considered to be a swarm particle in amultidimensional potential
energy surface (PES) where the stationary points (maxima,
minima, and higher order saddle points) are connected. The
randomly generated individual particle is governed by a position
vector and a velocity vector. Again, each position vector
representing a candidate solution in the hyperspace starts
searching for the optima of a given function of several variables
by updating generations in iterative process without much of
any assumption leading to a minimum energy structure. After
iteration the particle driven by a velocity vector changes its
search direction. The position and velocity vectors together
store the information regarding its own best position or the
local best position (called pbest) seen so far and a global best
position (called gbest) which is obtained by communicating with
its nearest neighbors. Further, the advancement of particles
toward the global best position is attained via particle swarm
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optimizer ideology and they gravitate toward the global best
solution with the help of the best variable memory values. Our
proposed PSO implementation explores rapidly without being
entrapped in local optima and executes extensively, followed
by immediate convergence to the desired objective value, the
global optima.

The results of global optimization of Cn clusters (n= 3–6, 10)
considering a maximum of 1,000 runs starting from the random
choices of input configuration are shown in Table 2. The global
stable structure (best solution) can be obtained by fulfilling the
termination criteria along the convex function of the information
matrix when one of the particles reaches the target. Initially,
10 different random configurations have been chosen by setting
random initial positions and velocities of all particles followed by
the Gaussian interfaced PSO driven operation to get the global
optimum structure (see Table 2).

It is a very fascinating aspect that Gaussian optimization
technique works in such a way that the guess structure
can be stuck at local minima which may or may not be
the global minimum. But, it is obvious that our proposed
modified PSO implementation converges to the most stable
structure where all the particles exist in a given range in the
multidimensional hyperspace. However, sometimes atoms of
the randomly generated particles (each individual cluster unit)
are not in the limit of bonding perception and they might

overlap on each other. In order to understand whether the
atoms remain in the same molecular framework or not, we
have connected the randomly deployed particles with solid lines
in the following figures and they do not necessarily imply
true bonds (see Table 2). In case of C3 cluster, the structure
obtained after the end of the PSO run (linear, D∞h point group)
exactly matches with the structure obtained after the final G09
optimization in terms of bond length and energy. C5 cluster
also shows linear geometry with D∞h point group and singlet
electronic state after final optimization step. A significantly
higher energy cyclic isomer is also found in this case. On
the other hand, C4 and C6 clusters (containing even number
of C atoms) give both linear (D∞h) and ring structures (D2h

for C4 and D3h for C6). Corresponding energies and bond
lengths are provided in Table 2. The computed geometrical
parameters and minimum energy structures match excellently
with the previously reported experimental results (Raghavachari
and Binkley, 1987; Watts et al., 1992; Hutter and Lüthi, 1994;
Pless et al., 1994; Martin and Taylor, 1996; Van Orden and
Saykally, 1998). For both C4 and C6 clusters, the lowest energy
isomer has linear form in triplet state, whereas the linear singlet
state is 17.8 (C4) and 13.3 (C6) kcal/mol higher in energy
than the corresponding triplet forms. In addition to the small
cluster systems, we have also checked the efficiency and the
robustness of our implemented PSO code to find the global

TABLE 3 | Comparison of PSO results with other more popular evolutionary GO techniques as applied to the C5 cluster starting from the corresponding local minima
structures.

Comparison in terms of Advanced basin

hopping (BH)

Simulated annealing

(SA)

Modified PSO

Execution time to locate the global minimum (GM) 305,140 s 12,959 s 8,898 s

Energy of the global minimum
(Energy after completion of iterations)

−190.2546 a.u.
(−190.2460 a.u.)

−190.2546 a.u.
(−189.5141 a.u.)

−190.2546 a.u.
(−190.2436 a.u.)

Number of iterations needed to get a structure close to GM 1,703
(converged)

92
(not converged)

331
(converged)

FIGURE 2 | Single point energy evolution landscape of C5 cluster during each generation of convergence at the B3LYP/6-311+G* level.
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minimum for a relatively larger sized cluster, C10. The results
show that the present code can successfully locate the desired
D10h symmetric ring structure which is the most stable isomer
in this case.

In the present context, we have also carried out DFT-SA and
DFT-BH methods considering same object energy function as
in our proposed PSO method to compare the obtained results
(see Table 3). The tabulated values clearly reflect that the present
PSO method is superior to other methods based on the time to
locate the GM, energy values after completion of all runs of the
studied methods and the number of iteration steps needed to get
the final structure.

A representative plot of C5 cluster (as reference) is given
below to ensure the fulfillment of convergence criteria up to 600
iteration steps (see Figure 2).

CONCLUSION

This systematic study for the searching of the most stable
carbon based small clusters describes the effectiveness of the
application of our proposed PSO technique. Currently employed
less expensive and relatively less complicated computational
method generates a vast potential search space depending only
on the position and velocity variables. Our proposed method
opens a new vista to find out global minimum energy structures
effectively and accurately within a given multidimensional
configuration search space. PSO implementation without much
of any assumption like constraints of symmetry and externally
imposed factors like temperature, pressure, etc. performs suitably
and converges to a single configuration that presumably is
a global minimum energy structure or may exactly fit it
after Gaussian optimization. PSO can be used as a fast post-
processing technique to get a global minimum or close to
global minimum structure. In fact, in this study we have
introduced a new easy implementation and computationally less
expensive approach for the reduction of iteration steps to obtain
global best configurations of small carbon clusters with exact
energy values.
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Ce Zhou, Christian Ieritano and William Scott Hopkins*
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Evolutionary algorithms such as the basin-hopping (BH) algorithm have proven to be

useful for difficult non-linear optimization problems with multiple modalities and variables.

Applications of these algorithms range from characterization of molecular states in

statistical physics and molecular biology to geometric packing problems. A key feature

of BH is the fact that one can generate a coarse-grained mapping of a potential energy

surface (PES) in terms of local minima. These results can then be utilized to gain

insights into molecular dynamics and thermodynamic properties. Here we describe how

one can employ concepts from unsupervised machine learning to augment BH PES

searches to more efficiently identify local minima and the transition states connecting

them. Specifically, we introduce the concepts of similarity indices, hierarchical clustering,

and multidimensional scaling to the BH methodology. These same machine learning

techniques can be used as tools for interpreting and rationalizing experimental results

from spectroscopic and ion mobility investigations (e.g., spectral assignment, dynamic

collision cross sections). We exemplify this in two case studies: (1) assigning the infrared

multiple photon dissociation spectrum of the protonated serine dimer and (2) determining

the temperature-dependent collision cross-section of protonated alanine tripeptide.

Keywords: serine dimer, polyalanine, collision cross section, IRMPD, hierarchical clustering, potential energy

surface, global optimization, vibrational spectroscopy

INTRODUCTION

Molecular global optimization (GO) to identify the chemically-relevant species on hypergeometric
potential energy surfaces (PESs) provides both rationalizations and predictions of experimental
observations by relating thermodynamic and kinetic properties to the accessible local minima and
the transition states (TSs) that connect them (Scheraga, 1992; Piela et al., 1994; Wales and Doye,
1997; Wales and Scheraga, 1999). Basin-hopping (BH) is a technique for GO that is based on the
iterative approach of performing random perturbation of geometric coordinates, local optimization
of a model potential energy function, and accepting or rejecting the perturbed coordinates based on
the value of the minimized function (Wales and Doye, 1997;Wales et al., 1998;Wales and Scheraga,
1999; Lecours et al., 2014). Use of the BH algorithm for searching molecular PESs was outlined
by Wales and Doye in their 1997 article “Global Optimization by Basin-Hopping and the Lowest
Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms,” (Wales and Doye,
1997) which describes how the technique transforms the PES into a collection of interpenetrating
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staircases wherein each stair/plateau on the transformed surface
is associated with a stationary point (usually local minimum)
of the original potential energy landscape. Figure 1 shows a
flow diagram outlining the general procedure of the BH search
algorithm. The key feature of the BH algorithm is the inclusion
of assessment criteria for accepting or rejecting a newly distorted
input geometry. One of these criteria is the definite replacement
of the lowest energy structure identified by the BH routine with
the currently optimized structure if that structure has a lower
energy. A second key criterion is a conditional acceptance of
the distorted geometry by assessing the statistical accessibility of
the optimized structure based on a pre-defined energy window.
For example, one can define a Boltzmann distribution at a given
temperature with respect to the current lowest energy structure
and assess the probability of accessing the newly generated
stationary point. Thus, the BH algorithm has a bias toward low
energy structures and is a good option for identifying the global
minimum (GM) and local minima that may be present in an
ensemble under thermal equilibrium conditions.

To further improve the efficiency of a BH search, one can
include additional criteria for assessment of distorted molecular
geometries prior to optimization. For example, one might
choose to reject structures in which inter-atomic distances are
less than some pre-defined threshold, or one might choose
to define an interaction volume to prevent molecular/cluster
dissociation (Lecours et al., 2014). It is also common to select
specific degrees of freedom (DoFs) for random distortion while
freezing others; one might choose to search the conformational
space defined by molecular dihedral angles while leaving the
distances between chemically bonded atoms fixed (Hopkins
et al., 2013, 2015). There are several other works which employ
more dramatic changes to the underlying BH algorithm. For
example, Leary proposed a version in which only the replacement
criterion is employed in the evaluation (i.e., no statistically
accessible energy window is specified) (Leary, 2000). In other
works, Röder and Wales propose a mutational BH algorithm
to optimize biomolecules (Röder and Wales, 2018), and Kim
et al. combine BH with Coulomb matrix analysis to sample
reaction intermediates (Kim et al., 2014). While these variants
have all been successful in the task at hand, the fact that the basic
BH algorithm often requires tailoring highlights the inherent
drawbacks in the BH methodology.

One principal short-coming of the BH algorithm that
practitioners must be aware of is that the method is not
deterministic; i.e., identifying the GM via a finite, stochastic
search is not guaranteed. Confidence in BH search results come
from a satisfactory agreement with experimental observations
and/or the consistency of results from several parallel simulations
with different initial conditions. A second potential short-
coming is the fact that, due to performance considerations,
BH calculations are often conducted with relatively low-
level model chemistries (e.g., molecular mechanics), which
may not be accurate enough for certain molecular systems.
Finally, practitioners must be aware that a BH search may be
kinetically trapped in a local potential minimum if the thermal
energy (viz. temperature) of the simulation is set too low.
In fact, in some cases BH searches of PESs are non-ergodic

FIGURE 1 | The general procedure of the basin-hopping algorithm. Elow is the

energy of the lowest energy species identified to that point in the search (i.e.,

the current global minimum, GM).

regardless of simulation temperature. For example, consider
the case of protonated para-aminobenzoic acid, which can
exhibit protonation on either the carbonyl oxygen atom or
the amine nitrogen atom in the gas phase (Tian and Kass,
2009; Schmidt et al., 2011; Campbell et al., 2012, 2016).
If one were to assume that the protonation site of para-
aminobenzoic acid were the nitrogen center (as is the case in
protic solution) and model the system as a molecular cation
using a molecular mechanics force field, the O-protonated
isomer (which is the gas phase global minimum) would
not be identified without modifying the atomic connectivity
during the BH search (Tian and Kass, 2008; Campbell et al.,
2012, 2016). To overcome this systematic limitation, one
must treat the charge-carrying proton as a separate moiety
in the simulation and/or augment the BH framework with
the chemical intuition of the user (i.e., manually identify
both prototropic isomers and conduct BH searches for each
of them).
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Here, we describe how the basin-hopping algorithm can be
employed to reliably model gas phase cluster and molecular
systems for comparison with observations from spectroscopy
and ion mobility experiments. To model our experimental
observations, we require theoretical predictions from a collection
of local minima, which do not necessarily include the global
minimum, and an efficient method to find matches between
the predictions and the observations. In some cases, it is also
desirable to identify the TSs that connect minima to assess
thermodynamic accessibility of the various isomers / conformers.
These two requirements present two notable challenges for the
BH methodology. The first challenge, related to the principal
short-coming mentioned above, is the necessity to accurately
track the explored regions of the PES. In doing so, one not only
identifies a set of local minima, but also gains useful information
for directing the BH search toward regions of the PES that are
relatively unexplored. The second challenge is the accurate and
efficient identification of the TSs that connect local minima. To
overcome these challenges, we collect the nuclear configuration
data that is generated during the BH search and utilize this data as
described in Section Augmenting the BH Algorithm. Specifically,
in Section Assessing Geometric Similarity we describe how one
can utilize similarity functions and hierarchical clustering, which
are concepts generally associated with unsupervised machine
learning, to assess the uniqueness of the local minima and guide
PES searches. We then discuss the interpolation of geometries
to identify intermediate local minima and to create guess
geometries for TS searches in Section Interpolating Intermediate
Geometries. In Section Application of BH Search Results, we
outline our methods for employing our BH results to assign the
spectral carriers (Section Case Study 1: The IR Spectrum of the
Protonated Serine Dimer) and to model temperature-dependent
structures (Section Case Study 2: Dynamic Collision Cross
Section of Protonated Alanine Tripeptide) of geometrically-
fluxional species. Finally, we summarize our perspective and
highlight open questions in Section Conclusions.

AUGMENTING THE BH ALGORITHM

As mentioned in section Introduction, several variations to the
BH algorithm have been proposed to address specific challenges
in searching complex potential energy landscapes (Leary, 2000;
Kim et al., 2014; Röder and Wales, 2018). For our purposes,
where it is necessary to identify a collection of local minima
that are representative of the species present in experimental
ensembles, we require a faithful mapping of the molecular PES.
To improve the efficiency and PES coverage of the BH algorithm,
we introduce a method of comparing the geometries of local
minima. This comparison, which is derived from a similarity
function, provides a more rigorous identification of unique
isomeric species and insight into which regions of the PES may
require additional exploration.

In analogy to the spatial distance between two locations on
a map, a similarity function quantifies the similarity of two
conformations, A and B, in conformation space. The function,
usually denoted as d(A,B), is non-negative (d (A,B) ≥ 0),

symmetric (d (A,B) = d(B,A)) and has zero value only when
two identical elements are evaluated (d (A,A) = 0) (Locatelli
and Schoen, 2013). The similarity function can be used in one
of three ways: qualification, quantification, and interpolation.
Qualification usage implies that the function need only tell if
two input structures are identical. Quantification usage provides
a metric for howmuch difference is there between two structures;
for example, is structure A more similar to structure B than
to structure C? Interpolation usage means that, given two
structures, A and B, and an arbitrary interpolation factor, λ ∈

(0, 1), there exist one or more structures, C, satisfying:

d (A,B) =
1

λ
d (A,C) =

1

1− λ
d (B,C) (1)

If the function d satisfies triangular inequality d (A,B) +

d (B,C) ≥ d(A,C)), the structure C is unique, and d is a
metric of the conformation space (Choudhary, 2003). Note that
special treatment is required if A and B have different numbers
of atoms (i.e., if A and B are of different dimension); this
tends not to be the case in simulations of chemical systems.
The interpolation mechanism is of central importance not
only to a number of GO algorithms, such as particle swarm
optimization (Eberhart and Yuhui, 2001), differential evolution
(Storn and Price, 1997), and DIRECT (Jones et al., 1993), but
also to unsupervised machine learning techniques such as the
self-organizing map (Kohonen, 1990) and the growing neural
gas (Martinez and Schulten, 1991; Fritzke, 1994). In qualitative
comparisons, the similarity function need only account for the
translational, rotational, and permutational invariance under
a given molecular representation; structural equivalence only
occurs between species of identical composition. Such invariance
properties are either embedded in the mathematical definition
of the molecular representation or they are achieved via
manually aligning the two molecular systems prior to evaluating
their similarity. Examples of such representations include the
conventional skeletal chemical formula and the SMILEs code
used in compound database systems (Weininger, 1988; Rahman
et al., 2009; Heller et al., 2013). In quantitative comparisons, the
similarity of two structures is specified by a real number. These
similarity indices are useful in discriminating visited regions of
the PES (e.g., well-sampled vs. poorly-sampled regions), which
can be assessed using unsupervised machine learning analyses
like hierarchical clustering and multidimensional scaling (MDS)
(Wickelmaier, 2003; Borg and Groenen, 2005). Most similarity
functions used for quantitation purposes are defined by the
normal (e.g., the root-mean-square deviation of atomic positions,
RMSD) (Kabsch, 1976) or reciprocal (e.g., the Coulomb matrix)
(Montavon et al., 2012) interatomic distances, although electron
density-based similarity functions have found use in drug
discovery (Cereto, 2015; Kumar and Zhang, 2018). To implement
structural interpolation, the back conversion from desired
similarity constraints to a concrete structure is required. This
technique enables generation of intermediate geometries for TS
calculations (e.g., QST3) (Peng and Bernhard Schlegel, 1993;
Peng et al., 1996), and it can also be used to guide BH searches
of specified regions of the PES along isomerization pathways
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between two isomers. Furthermore, by implementing structural
interpolation, one creates the opportunity to incorporate other
GO techniques (e.g., particle swarm optimization) (Kennedy
and Eberhart, 1995; Call et al., 2007; Shi et al., 2019) and
machine learning techniques (e.g., growing neural gas) (Martinez
and Schulten, 1991; Fritzke, 1994) into the BH algorithm. In
practice, rather than an explicit analytical approach, structure
interpolation can be achieved implicitly via local optimizations
with a tolerable loss of accuracy. In our research, to efficiently
use the nuclear configuration information from the BH
simulation, we introduce both Euclidean distance matrix-based
and cosine distance-based similarity functions together with the
necessary techniques to accomplish structural interpolation. The
mathematical and implementation details are described below.

Assessing Geometric Similarity
To begin assessing the similarity between two molecular
geometries, one must first select an appropriate similarity
function. One option, the Euclidean distance matrix
representation (D) of a molecule, is simply the collection
of all interatomic distances as per (Gentle, 2007):

Dij = |
⇀ri −

⇀rj| (2)

where ⇀ri and ⇀rj are the positional vectors (in Cartesian
coordinates) of atoms i and j. Within the distance matrix
representation, the similarity function is defined as the sum of
the absolute difference between each atom pair for structures A
and B:

d (DA,DB) =

∑

i, j > i|DA,ij −DB,ij| (3)

The distance matrix is a symmetric matrix with diagonal
elements of zero. This representation is translationally and
rotationally invariant, but not permutationally invariant (viz.
identical nuclei are not necessarily chemically equivalent). Thus,
in practice, the atom labeling should be adjusted such that the
similarity index (the value of the similarity function) of the
two input molecules is minimized. It should be noted that the
memory requirement of this representation scales quadratically
with the number of atoms. Consequently, the distance matrix
approach is not a good choice for dealing with very large systems.

A second option is to represent the molecular nuclear
configuration as a vector,

⇀

R (Fu and Hopkins, 2018), containing
the mass-weighted distance between each atom and the
molecular center-of-mass:

⇀

RCOM =

∑mi
i

⇀ri
∑

imi
(4)

⇀

Ri = mi|
⇀ri −

⇀

RCOM| (5)

Where mi and
⇀r i are the mass and the distance to the center-

of-mass for the ith atom. Given that the mass-weighted distance
vector representation is in the center-of-mass frame, one can then
calculate the cosine distance between the vectors for isomers A
and B as per:

d(
⇀

RA,
⇀

RB) =

cos−1
(

s(
⇀

RA,
⇀

RB)
)

π
(6)

Where

s(
⇀

RA,
⇀

RB) =

⇀

RA ˙
⇀

RB
∣

∣

∣

⇀

RA

∣

∣

∣

∣

∣

∣

⇀

RB

∣

∣

∣

(7)

Again, this representation is translationally and rotationally
invariant. However, care should be taken to ensure that the
identity of the ith atom is retained throughout the BH search
so that one compares the same atoms in each unique geometric
structure. Alternatively, one might choose an operational
conventionwhereby the resulting vector is sorted (e.g., smallest to
largest values) prior to calculating cosine distance; this introduces
a permutational invariance to the treatment for low symmetry
systems. In contrast to the quadratic scaling of the distance
matrix, the mass-weighted distance vector scales linearly with
number of atoms. However, as a trade-off, the mass-weighted
distance vector representation is less effective than the distance
matrix approach in discriminating between conformers of highly
symmetric species. For example, the mass-weighted distance
vector representation is unable to distinguish square planar
and tetrahedral conformations of methane given identical C–
H bond length. Nevertheless, the uniqueness of the isomer-
vector correspondence is still largely guaranteed in most cases in
which only low symmetry structures are considered, particularly
when relative energies are also considered in distinguishing
isomeric/conformeric species.

The cosine similarity (Equation 7) ranges from −1 (meaning
exactly opposite) to +1 (meaning identical). However, in
practice, the cosine similarity for real molecular structures ranges
from 0 to 1 since the center-of-mass vector is constructed
from real space distances, which are always positive. Thus,
two identical structures exhibit mass-weighted distance vectors
with zero angular distance between them, and angular distances
between vectors increase as the differences between the
geometric structures of the associated isomers increase. For
example, consider the isomers cis-1,2-difluoroethene, trans-
1,2-difluoroethene, and 1,1-difluoroethene shown below in
Figure 2. By inspection, one can identify that the mass-weighted
distance vectors for the cis-1,2-difluoroethene and trans-1,2-
difluoroethene isomers (RA, RB) are more like one another than
they are to that of the 1,1-difluoroethene isomer (RC). This is
confirmed when calculating the cosine distances (see Table 1).

Calculating the distances between molecular structures
facilitates analysis through agglomerative hierarchical clustering
(Day and Edelsbrunner, 1984). This analysis provides a visual
representation of the similarity of geometric structures—via
production of a dendrogram plot—and therefore provides some
insight into which species occupy similar regions of the potential
energy landscape with respect to the mass-weighted nuclear
coordinates. There are several methods available for analysis via
agglomerative hierarchical clustering (Day and Edelsbrunner,
1984). One option for this analysis is the weighted pair group
method with arithmetic mean (WPGMA), developed by Sokal
and Michener (Michener and Sokal, 1957; Sokal and Michener,
1958). In each iteration of the WPGMA algorithm, the two
nearest species (P and Q) are combined into a higher-level group
P ∪ Q, thereby reducing the dimension of the m × m distance
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FIGURE 2 | The structures of (top) cis-1,2-difluoroethene, (middle)

trans-1,2-difluoroethene, and (bottom) 1,1-difluoroethene. (Inset Tables)

atomic coordinates and the mass-weighted distance vectors. Geometries

were optimized at the PM6 level of theory as implemented in Gaussian 16

(Frisch et al., 2016).

matrix (e.g., Table 1) by one row and one column. The distance
between group P∪Q and another group R is the arithmetic mean
of the distances between the members of P ∪ Q and R, i.e.,:

d(P∪Q),R =
dP,R + dQ,R

2
(8)

In the case of difluoroethene (Figure 2 and Table 1), the
smallest cosine distance of 0.042 between the cis- and trans-
1,2-difluoroethene isomers would lead to their clustering as P
∪ Q, and the distance between this higher-level group and the
1,1-difluoroethene isomer would be (0.09497 + 0.10219)/2 =

0.09858. A dendrogram showing the hierarchical clustering of the
isomers of difluoroethene is provided in Figure 3. By inspection
of the dendrogram one can immediately see that the cis- and
trans- isomers of 1,2-difluoroethene isomers are more closely
related geometrically than either of these isomers is related
to 1,1-difluoroethene.

Interpolating Intermediate Geometries
When searching complex PESs to find local minima or TSs, it is
sometimes useful to interpolate geometries that are intermediate
to two previously identified isomers. For example, consider the

TABLE 1 | The cosine distance matrix for cis-1,2-difluoroethene,

trans-1,2-difluoroethene, and 1,1-difluoroethene.

Distance cis-1,2-difluoro trans-1,2-difluoro 1,1-difluoro

cis-1,2-difluoro 0 0.04200 0.09497

trans-1,2-difluoro 0.04200 0 0.10219

1,1-difluoro 0.09497 0.10219 0

Geometries were optimized at the PM6 level of theory as implemented in Gaussian 16

(Frisch et al., 2016).

FIGURE 3 | The cosine distance dendrogram for difluoroethene. Molecular

geometries were optimized at the PM6 level of theory as implemented in

Gaussian 16 (Frisch et al., 2016).

case in which a set of isomeric species has been identified, but
one is very dissimilar from the others as determined by the
geometric analysis described above. This might indicate that the
BH search has become kinetically trapped and more attention
should be paid to the region of the PES associated with the
isolated structure. It is then useful to explore the PES between
the more extensively mapped region and the region associated
with the isolated structure to search for intermediates along
the isomerization pathway and/or identify barriers to isomer
interconversion. For the purpose of generating initial guess
structures for the BH algorithm or for QST3 TS calculations,
precise interpolation is not always necessary; (Peng and Bernhard
Schlegel, 1993; Peng et al., 1996) most of the time interpolation
can be accomplished implicitly, thereby improving the efficiency
of the PES mapping. Currently, we have implemented two classes
of implicit interpolation methods, one based on Monte Carlo
sampling and the other based onmolecular dynamics simulation.

Since the acceptance criteria are replaceable as a standard
module in the evaluation part of the BH framework, instead of
searching for low energy structures, one can choose to sample
structures between two givenminima on the PES within specified
similarity constrains. Thus, a Monte Carlo with minimization
approach can be established along a specified path/region of
the PES. By applying an upper threshold to the distance of
the sampled structure from the minima, one can constrain the
search to a hyperdimensional ellipsoidal space between the two
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minima of interest. Within the distance matrix representation,
the interpolation can also be accomplished with optimization
on an interpolated artificial force field. Similar to the idea of
the artificial force induced reaction (Maeda et al., 2014), the
interpolated structure is obtained by minimizing a molecular
mechanics-type force field, V :

V(DC) =
χ

rij

(

DC,ij − rij
)2

(9)

where χ is an arbitrary constant that facilitates optimization, and
DC,ij and rij, are the actual and expected interatomic distance
of the interpolated structure. rij is constructed from the two
minima, DA and DB and the interpolation factor, λ (0 ≤ λ ≤ 1)
as per:

rij = λDA,ij + (1− λ)DB,ij (10)

The force field is thus a collection of harmonic terms whose force
constant is inversely proportional to rij. Compared to the Monte
Carlo approach, using this force field approach in conjunction
with standard geometry optimization techniques is expected to
be more efficient at identifying intermediate structures owing to
the reduced and more pertinent search space.

APPLICATION OF BH SEARCH RESULTS

Experimental measurements are typically concerned with
probing ensembles, rather than single molecules. Consequently,
it is necessary to identify which structures are present in the
probed ensemble and the relative populations of those species.
This can be particularly challenging for chemical systems that
are kinetically trapped in a relatively high-energy region of the
PES and for systems that are fluxional (i.e., those that can easily
access multiple minima on the experimental time scale). To
demonstrate the potential of our augmentation to the original BH
method, we describe our efforts to model the infrared multiple
photon dissociation (IRMPD) spectrum of proton-bound serine
dimer and the temperature-depending collision cross section
(CCS) of protonated alanine tripeptide, [AAA+H]+.

Case Study 1: The IR Spectrum of the
Protonated Serine Dimer
IRMPD spectroscopy has become one of the most effective
techniques for determining the structure of molecular ions
(Jašíková and Roithová, 2018). Ion spectra are recorded
by isolating a specified m/z species in an ion trap and
monitoring the fragmentation efficiency of the molecular ion
as a function of the frequency of a probe laser, which
passes through the ion trap, intersecting with the ion cloud
(Lemaire et al., 2002; Oh et al., 2005; Polfer, 2011). Thus,
IRMPD spectroscopy is a type of action spectroscopy whereby
molecular fragmentation is interpreted as a signature of photon
absorption. A detailed description of the technique is available
in references (Aleese et al., 2006) and (Macaleese and Maître,
2007). By probing in the IR region, one obtains information
on the frequencies of fundamental vibrational transitions, which
may then be compared with the harmonic (and sometimes

anharmonically-corrected) vibrational frequency predictions
of electronic structure software packages. This, in turn,
facilitates structural assignment based on the similarity between
computed and measured spectra, and the identification of
distinguishing/diagnostic spectral features.

Spectroscopic investigation of amino acids and amino acid-
containing clusters continues to be an active field of research
owing to the biological relevance of these systems (Nanita and
Cooks, 2006; Mino et al., 2011; Stedwell et al., 2013; Sunahori
et al., 2013; Armentrout et al., 2014; Seo et al., 2017, 2018;
Heiles et al., 2018; Jašíková and Roithová, 2018; Ma et al.,
2018; Scutelnic et al., 2018). In particular, serine has received
a great deal of attention owing to the implication of the serine
octamer in homochiral genesis (i.e., the origin of L-amino acid
chiral preference in nature) (Counterman and Clemmer, 2001;
Sunahori et al., 2013; Seo et al., 2017; Scutelnic et al., 2018).
Indeed, the Bowers and von Helden groups recently published
a series of high-profile studies detailing the assignment of the IR
spectra for cryogenically-cooled protonated serine octamer, [Ser8
+ H]+, and protonated serine dimer, [Ser2 + H]+ (Seo et al.,
2017, 2018; Scutelnic et al., 2018). To demonstrate the utility of
our augmented BH approach for searching PESs and assigning
IR spectra, we employed our methodology to study [Ser2 +H]+.

To begin, preliminary B3LYP/6-311++G(d,p) optimizations
were conducted for neutral and protonated serine monomers
to obtain partial charges for utilization with the molecular
mechanics force field. For neutral monomers, both canonical
and zwitterionic initial guesses were employed, and only the
canonical structures were obtained. For the protonated isomers,
initial guesses protonated at the carbonyl group, the amine group,
and the side-chain hydroxyl group were optimized; all resulted
in an amine-protonated structure, in agreement with previously
published results (Noguera et al., 2001). After the optimizations,
the atomic partial charges were calculated using the CHelpG
partition scheme to reproduce the electrostatic potential at the
near exterior of the van der Waals radial surface (Breneman
and Wiberg, 1990). DFT optimizations were run in parallel,
threaded across 8 cores, and required approximately 1 hour
per calculation. Following pre-optimization and partial charge
calculations for the monomers, both moieties were combined to
produce the protonated dimer for treatment with the BH code.
To search the potential energy landscape, dihedral angles in both
moieties were given random rotations of−5◦ ≤ φ≤+5◦ on each
iteration of the BH algorithm. The neutral moiety was also given
random rotations of −5◦ ≤ θ ≤ +5◦ around its body-fixed x–,
y–, and z –axes, and random translation of −0.5 Å ≤ η ≤ +0.5
Å in each of the x–, y–, and z–directions. This ensures that the
relative orientations of the two moieties are also sampled. For
geometry optimization, the custom-written BH code interfaces
with the Gaussian software package where the AMBER force-field
is used as the model potential (Wang et al., 2006; Frisch et al.,
2009). Following an initial run of 1,000 steps at a thermal energy
of E ≈ 0.43 eV (T = 5,000K) to generate candidate structures,
several parallel BH runs of 10,000 steps were run at a thermal
energy of E ≈ 0.09 eV (T = 1,000K) to search the PES. In total,
more than 60,000 cluster geometries were sampled.

To benchmark the augmented BH algorithm, eight standard
BH simulations of 5,000 steps were conducted and structural
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TABLE 2 | The results of eight (BH + interpolation) simulations of [Ser2 + H]+.

Simulation # Isomers found Global minimum (Hartree)

BH + Interpolation BH Interpolation

1 70 16 −0.25984 −0.25940

2 74 19 −0.25984 −0.25593

3 60 8 −0.25984 −0.25572

4 67 22 −0.25969 −0.25984

5 62 32 −0.25969 −0.25984

6 76 17 −0.25984 −0.25967

7 67 6 −0.25984 −0.25515

8 51 28 −0.25969 −0.25809

Geometries were optimized at the PM7 level of theory (Frisch et al., 2016). Bold values

emphasize the lowest energy value among all the isomers obtained from the total of 8

searches.

interpolation was subsequently applied to the unique isomers
identified at the PM7 level of theory. Unique [Ser2 + H]+

isomers were identified based on energetic differences (1E ≥

10−5 Hartree) and by using a value of 50.0 Å as the similarity
threshold between isomer pairs within the Euclidean distance
matrix (vide supra). Isomer pairs with Euclidean distances of
more than 150.0 Å were candidates for structural interpolation.
Due to the large number of potential isomer pairs (∼6,000
for each BH simulation), we chose to randomly select only
300 pairs to test the interpolation methodology. For each pair,
the midpoint structure (λ = 0.5) was located as described
above and optimized at the PM7 level of theory. The optimized
geometry of the interpolated structure was then compared to
those in the original BH set using the same energy and Euclidean
distance thresholds as employed previously. The results of the
eight parallel (BH + interpolation) simulations are summarized
in Table 2.

There are two observations worth noting in Table 2. Firstly,
the isomer sets that were identified by the standard BH algorithm
are augmented considerably by post-simulation interpolation; on
average 19 new isomers were identified by interpolating between
the 300 randomly selected isomer pairs found by standard BH
simulations. Secondly, although the global minimum structure
was identified in only five of the eight standard BH simulations of
5,000 steps, introducing post-simulation interpolation improved
the rate of identifying the [Ser2 + H]+ global minimum to seven
out of eight simulations.

Following BH simulation, the 200 unique lowest energy
structures were carried forward to re-optimization at the
B3LYP/6-311++G(d,p) + GD3 level of theory (Becke, 1988,
1993; Grimme et al., 2010). This treatment reduced the total
number of unique isomers to 40. To ensure that these structures
were local minima on the PES (i.e., no negative eigenvalues
in the Hessian matrix, rather than TSs which have one
negative Hessian eigenvalue), harmonic frequency calculations
were undertaken. These calculations also served to predict the
vibrational (viz. IR) spectra of the isomers and to estimate
thermochemical corrections (see sections 1.1 and 1.2 of the
Supplementary Materials for details). Using the optimized
geometries from the density functional theory calculations, the
distance matrix (as described in Equations 2, 3) was constructed.

Linkages for hierarchical clustering were then determined using
Ward’s minimum variance method as implemented in the
Orange software package (https://orange.biolab.si/) (Demsar
et al., 2013), which at each step finds the pair of clusters that
leads to the minimum increase in total within-cluster variance
after merging (Ward, 1963). The resulting dendrogram, which
is plotted in Figure 4, clearly shows four distinct groups of
geometric structures; these groups are highlighted in blue, red,
green, and orange. To better visualize the data, we have also used
multi-dimensional scaling to create a 2D plot of the clustered
data (Wickelmaier, 2003; Borg and Groenen, 2005). Based on
this hierarchical clustering analysis, we clearly see that the BH
algorithm identified several local minima associated with four
distinct regions of the [Ser2 + H]+ PES. The lowest energy
isomer in each of these four regions (viz. isomers 1, 6, 14, and
22) are highlighted and labeled on the MDS plot. This type of
analysis provides insight with respect to how thoroughly a region
of the PES has been searched. For example, if only one or two
data points were identified in the blue region of the MDS plot,
one might decide to initialize an additional BH run starting
from one of the previously identified geometries. Moreover, this
analysis can help guide interpolation efforts to identify TSs or
geometries associated with stable intermediates between two
previously identified minima. For example, upon inspection of
the MDS plot shown in Figure 4, one can identify two outliers
associated with the red group (in the top left of the red section)
and one outlier associated with the green group (bottom left of
the green section). In principle, one might choose to explore
the region between these features and the more closely clustered
structures on the MDS plot via the methods described in section
Interpolating Intermediate Geometries. We choose not to do so
here, however, because these three structures are associated with
isomers 38, 39, and 40 (the highest energy species in our set).

Having identified four low energy geometric groupings
associated with the [Ser2 +H]+ PES, we can then visually inspect
the structures to rationalize their association via hierarchical
clustering. In doing so, we find that the clustered species are
associated with four distinct binding motifs, which we label
motifs 1 (orange), 2 (blue), 3 (green), and 4 (red). The 3D
structures and 2D chemical structures for the lowest energy
isomer in each group is provided in Figure 5. Motifs 1 and 3 are
associated with bidentate complexation between the ammonium
group of the protonated moiety and the neutral moiety. In the
case of motif 1, the ammonium group forms intermolecular
hydrogen bonds with the amino group and the hydroxyl group
of the neutral moiety. In contrast, motif 3 forms intermolecular
hydrogen bonds with the hydroxyl group and the carboxylic
acid group of the neutral moiety. Motifs 2 and 4 are associated
with monodentate complexation between the ammonium group
of the protonated moiety and the neutral moiety. These two
binding motifs differ in terms of the relative orientations of the
two serine moieties and with respect to the presence of a O–
H•••N intramolecular hydrogen bond (IMHB) in the neutral
moiety (motif 2) versus a O–H•••O IMHB in the neutral
moiety (motif 4).

To determine which (if any) of the computed [Ser2 +

H]+ isomers are observed experimentally, calculated harmonic
vibrational spectra were compared against the experimental
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FIGURE 4 | (Left) The distance dendrogram for the protonated serine dimer. Isomer numbers are indicated for each branch of the dendrogram. (Right) A

multi-dimensional scaling 2D projection of the hierarchical clustered data. Isomers are numbered in order of increasing energy above the global minimum (isomer 1).

Standard Gibbs energies (in parentheses) are reported in kJ mol−1. Calculations were conducted at the B3LYP/6-311++G(d,p) + GD3 level of theory as

implemented in Gaussian 09 (Frisch et al., 2009).

IRMPD spectrum using the methodology outlined by Fu and
Hopkins (2018) The experimental spectrum employed was a
concatenation of the spectra recorded by Seo et al. in the 1,000–
1,900 cm−1 region and by Sunahori et al. in the 3,200–3,800
cm−1 region (Sunahori et al., 2013; Seo et al., 2018). These
spectra were digitized using a custom-written python script from
figures in their respective publications, interpolated in 2 cm−1

intervals, then normalized such that the maximum intensity in
each region was set to 1. Calculated IR spectra were first scaled
using appropriate frequency scaling factors and broadened with
a Lorentzian line shape of 15 cm−1 FWHM (Andersson and
Uvdal, 2005; Fu and Hopkins, 2018), and then were similarly
interpolated and normalized. The intensity vectors (i.e., y-
values) of the computed spectra were then compared with the
experimental spectrum by taking the Euclidian distance (dEuc)
between the intensity vectors and assigning a scaled similarity
index as per:

Scaled Similarity = 1−

(

dEuc − dMin
Euc

)

(

dMax
Euc − dMin

Euc

) (11)

Where dMin
Euc is the minimum Euclidean distance amongst the

set of vectors and dMax
Euc is the maximum Euclidean distance

amongst the set of vectors following subtraction of the minimum

distance. This treatment generates a scaled similarity index
that ranges between 0 (worst match) and 1 (best match). The
scaled similarities for the computed [Ser2 + H]+ isomer spectra
are plotted in Figure 6. Inspection of Figure 6 indicates that
Isomer 6 yields a significantly better match to the experimental
spectrum than do other isomers. Moreover, we find that four

of the five best matches are provided by isomers associated

with binding motif 2. This suggests that, despite the fact that
motif 1 is associated with the lowest energy region of the [Ser2
+ H]+ PES at T = 298K and P = 1 atm, the region of the
PES associated with motif 2 is predominantly populated in ion
trap experiments.

Figure 7 plots the experimental IRMPD spectrum for [Ser2 +
H]+ and the computed spectra for isomers 1, 6 (best match), 14,
and 22—the lowest energy isomers associated with each of the
four binding motifs. The diagnostic peaks, which are highlighted
in blue in Figure 7, are associated with the HNH angle bending
motions (ca. 1,450 cm−1) and N–H bond stretching motions (ca.
3,250 cm−1) of the ammonium and amino groups. Although
isomer 1 is the global minimum structure based on standard
Gibbs energies, the spectrum of isomer 6 (+5.6 kJmol−1) is much
more representative of the experimental spectrum. This was also
noted by Sunahori et al., who identified isomer 6 in their study
(Sunahori et al., 2013). Kong et al. also identified isomer 6 in

Frontiers in Chemistry | www.frontiersin.org 8 August 2019 | Volume 7 | Article 51927

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zhou et al. Augmenting Basin-Hopping With ML

FIGURE 5 | The lowest energy isomers for each low energy binding motif of

the protonated serine dimer. Motifs 1 and 3 show bidentate coordination

between the two moieties, whereas motifs 2 and 4 exhibit monodentate

coordination between the two moieties.

their work, but apparently did not consider it in their spectral
assignment (Kong et al., 2006). Note that harmonic spectra were
scaled by 0.9679 in the 1,000–2,000 cm−1 region and 0.95 in the
3,000–4,000 cm−1 region, as recommended by NIST and based
on previous work for similar systems (Andersson and Uvdal,
2005; Fu and Hopkins, 2018).

It is necessary to highlight three caveats for the above example
of identifying the spectral carrier of [Ser2 + H]+. First, to create
the experimental spectrum that we used in our assignment,
we collated the results of two separate studies (Sunahori et al.,
2013; Seo et al., 2018). It is not necessarily true that the same
ensemble populations were produced under the experimental
conditions employed in both of these studies. However, given
that isomer 6 provides the best match to both regions of the
experimental spectrum, it seems to be that instrument conditions
were similar in these two cases. A second consideration is the fact
that peak intensities in IRMPD spectra are not necessarily well-
modeled by computed absorption spectra owing to the fact that
IRMPD intensities are dependent on absorption cross sections
and the coupling efficiency for accessing dissociative channels.
(Parneix et al., 2013) The methodology outline above assumes
that the computed linear absorption intensities are representative
of IRMPD intensities or, barring that, that the IRMPD intensities

FIGURE 6 | Scaled Euclidean similarities of computed harmonic vibrational

spectra to experimental IRMPD spectra for the protonated serine dimer.

Isomer 6 gives the best match and Isomer 38 gives the worst match amongst

the 40-isomer set. Isomers are ordered in increasing energy from left to right in

each motif.

FIGURE 7 | Experimental IRMPD spectra and computed harmonic vibrational

spectra for the protonated serine dimer. The experimental spectra were

adapted from Seo et al. (2018) and Sunahori et al. (2013). The computed IR

spectra are associated with the lowest energy isomer for each of the four

binding motifs. Scaling factors of 0.9679 and 0.95 were employed for the

1,000–1,900 cm−1 and 3,200–3,800 cm−1 regions, respectively (Andersson

and Uvdal, 2005; Fu and Hopkins, 2018).

for a given band vary similarly from the computed intensity for
all isomeric species. Finally, the above treatment also assumes
that the computed harmonic frequencies suitably model the
experimental spectrum. The validity of this assumption depends
on the accuracy of themodel chemistry and on the anharmonicity
of the system being studied. While the [Ser2 +H]+ is apparently
well-modeled by the B3LYP/6-311++G(d,p) + GD3 approach
employed here, one should in general be aware of the anharmonic
nature of hydrogen bonds and shared protons (Schofield et al.,
2005; Oomens et al., 2009; Steill et al., 2011; Ieritano et al., 2016).
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Case Study 2: Dynamic Collision Cross
Section of Protonated Alanine Tripeptide
Ion mobility spectrometry (IMS) is widely employed in the
detection of illicit substances and for structural elucidation of
ions (Collins and Lee, 2002; Verkouteren and Staymates, 2011;
Lapthorn et al., 2013; Lanucara et al., 2014; Cumeras et al.,
2015; Cajka and Fiehn, 2016; Paglia and Astarita, 2017). The
success of IMS in determining analyte structure relies on accurate
modeling of ion structure and subsequent calculation of CCSs for
comparison with those determined experimentally. Experimental
CCSs are obtained by relating the ion mobility, K, to CCS via the
Mason-Schamp Equation (Mason and Mcdaniel, 1988; Ieritano
et al., 2019b):

K =

√
18π

16

√

1

mion
+

1

mgas

ze
√

kbT

1

�avg

1

N
(12)

Where mgas is the mass of the buffer gas, N is the number
density of the gas, mion is the mass of the ion, z is the ion
charge state, e is the elementary charge, kb is the Boltzmann
constant, T is the temperature, and �avg is the orientationally-
averaged CCS. Typically, ion structures are viewed as rigid
and ensembles are approximated as being composed of only
a single structure in cases where multiple distinct signals are
unresolved. This view is somewhat tenuous, particularly in the
differential mobility spectrometry (DMS) variant of IMS wherein
rapidly oscillating electric field conditions drive separations
based on mobility differences between the high- and low-field
portions of the applied waveform (Guevremont and Purves,
1999; Guevremont, 2004; Krylov et al., 2007, 2009; Krylov
and Nazarov, 2009; Hopkins, 2015, 2019). The phenomenon
of differential ion mobility is still not well-understood, and
there is as yet no first principles model (Guevremont and
Purves, 1999; Guevremont, 2004; Krylov et al., 2007, 2009;
Krylov and Nazarov, 2009; Hopkins, 2015, 2019). However,
one can view the effective temperature of an analyte ion in
terms of the changing field conditions; the ion is relatively
cold under low-field conditions and relatively hot under high-
field conditions (Viehland and Mason, 1995; Robinson et al.,
2008; Hopkins, 2019). By estimating ion temperatures with
two-temperature theory (Robinson et al., 2008; Siems et al.,
2016), we find that field-induced heating leads to effective ion
temperature variations in the range of 300–800K during one duty
cycle of the commonly applied maximum electric field in the
DMS cell (Hopkins, 2019). The variation in electric field, and
therefore effective ion temperature, affects the ion mobility in
two ways, the most obvious being the reduction of mobility with
increasing temperature as predicted by Equation (12). Somewhat
more subtle is the fact that �avg must also be temperature-
dependent since at elevated temperatures ions are able to access
a larger region of the associated PES (assuming equipartition
amongst the various DoFs of the molecule). Consequently,
to accurately model an ion’s �avg , one must identify which
geometric structures are accessible under the given experimental

conditions and estimate the contribution of that structure to the
time-averaged CCS of the ion.

If we consider the case of protonated alanine tripeptide,
[AAA + H]+, there are several internal DoFs associated with
dihedral angle rotations that can yield a variety of conformations.
Upon application of the BH algorithm to search the PES of
the [AAA + H]+ molecular ion, followed by re-optimization
of the candidate structures at the B3LYP/6-31++G(d,p) +

GD3 level of theory (Becke, 1988, 1993; Grimme et al., 2010),
fourteen low energy conformations were identified. These
structures are shown in Figure 8 along with their relative
standard Gibbs energies (in kJ mol−1) (see sections 2.1 and
2.2 of the Supplementary Materials for details). Calculating the
cosine distances between the various mass-weighted distance
vectors and subsequent application of WPGMA agglomerative
hierarchical clustering yields the dendrogram plot shown in
Figure 8. Five unique sets of conformers are highlighted in the
dendrogram. The set highlighted in yellow, of which the global
minimum conformer is a member, contains compact structures
that are stabilized by an IMHB between the protonated N-
terminus and the carbonyl oxygen atom of the C-terminus.
The set highlighted in green also contains relatively compact
structures, but hydrogen bonding instead occurs between the
protonated N-terminus and the hydroxyl group of the C-
terminus. The set highlighted in red, on the other hand,
contains elongated structures (i.e., the N- and C-termini do not
interact). Conformers 6 and 9 (blue and orange, respectively) are
intermediate species between the compact species (yellow and
green sets) and the elongated species (red set). In the case of
conformer 6, the N-terminus forms an IMHB with the nearest
amide carbonyl rather than with the C-terminus. In contrast, the
C-terminus of conformer 9 forms an IMHBwith the most distant
amino nitrogen instead of with the N-terminus.

If we calculate the relative Gibbs energies of the [AAA + H]+

conformers as a function of temperature, an interesting picture
emerges. Owing to differences in the entropic contributions
to the Gibbs energies, at low temperature the compact, H-
bonded conformers associated with the yellow group are the
dominant species in the ensemble, whereas at high temperature
the elongated, non-H-bonded species in the red group dominate.
One can estimate the relative populations of the various
conformers via (Oh and Zeng, 1999; Vehkamäki, 2006; Hopkins,
2019):

Ni = N0e
−

1Grel
kBT (13)

Where N0 is the relative population of the lowest energy
cluster (usually set to 1), Ni is the relative population of the
ith cluster, 1Grel is the Gibbs energy of formation relative to
the lowest energy cluster, and kB is Boltzmann’s constant. By
calculating the relative populations of the clusters as a function
of temperature (at a constant pressure of P = 1 atm), one can
produce a temperature-dependent relative population plot as
shown in Figure 9.

Figure 9 shows that at ca. T= 420K [AAA+H]+ conformer
3 becomes the most populated species in the ensemble (i.e.,
the global minimum structure on the Gibbs energy surface). As
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FIGURE 8 | (Left) The cosine distance dendrogram for protonated alanine tripeptide, [AAA+H]+. (Right) Molecular geometries and relative standard Gibbs energies

(kJ mol−1; in parentheses). Calculations were conducted at the B3LYP/6-311++G(d,p) + GD3 level of theory as implemented in Gaussian 16 (Frisch et al., 2016).

Conformers are numbered in order of increasing energy relative to that of the global minimum (GM) structure.

the temperature increases further, conformer 3 is increasingly
stabilized with respect to conformers 1 (the low T global
minimum) and 2. At temperatures above 660K, conformers
1 and 2 become minor contributors to the overall ensemble
population in favor of conformers 3 and 8. This “tilting” of the
Gibbs energy landscape as a function of temperature essentially
decants the conformers associated with the yellow set into the
red set (see Figure 8) as field-induced ion temperature increases,
and back again as the temperature decreases during the low
field portion of the oscillating DMS waveform. This dynamic
process of peptide unfolding and re-folding yields a dynamic
temperature-dependent ion CCS that, along with the effect of
increased carrier gas viscosity at higher temperature (Mason
and Mcdaniel, 1988; Hopkins, 2019), gives rise to differential
mobility behavior. If one assumes that the ion quickly reaches
thermal equilibrium, which is likely given the conditions of
the DMS cell (1 atm of carrier gas), one can estimate the
temperature-dependent ion CCS as a sum of the Boltzmann-
weighted conformer CCSs (Ieritano et al., 2019a). This is
plotted for [AAA + H]+ in Figure 10. It is worth noting
that the experimentally-measured T ≈ 293K value of �ave(N2)
= 151 Å2 (Bush et al., 2012) is well-modeled by the T =

300K Boltzmann-weighted sum of the various isomer CCSs as
calculated using the MobCal-MPI code (https://uwaterloo.ca/
hopkins-lab/mobcal-mpi), �Boltzmann(N2) = 151.3 Å2 (Ieritano

et al., 2019b). In comparison, the calculated CCS for the static
global minimum structure is �Boltzmann(N2) = 148.7 Å2. This
demonstrates that even at a relatively low fixed temperature, there
is some benefit in considering the relative populations of the
conformeric species present in the experimental ensemble.

SUMMARY

Because the PESs of complex, fluxional molecular systems tend
to be characterized by multiple funnels (viz. collections of
closely related local minima), the BH framework has proven
to be an effective search and optimization strategy (Locatelli,
2005; Olson et al., 2012). However, owing to the stochasticity
of the algorithm, which is predominantly due to the random
perturbative component, it is sometimes useful to introduce
additional criteria which limit the regions of exploration on
the PES. This has been traditionally accomplished by exploring
specific degrees of freedom (e.g., dihedral rotations) on the
potential energy landscape and by introducing a thermal energy
distribution as a probabilistic means of accepting/rejecting
random geometric perturbations. We have also introduced
techniques from unsupervised machine learning, specifically
distance matrices and hierarchical clustering, to further augment
the BH algorithm. Although currently implemented as a separate
module, these machine learning augmentations will in the
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FIGURE 9 | The relative populations of the low energy conformers of

protonated alanine tripeptide, [AAA+H]+, as estimated via Gibbs energy

calculations over the temperature range T = 300–800K. Calculations were

conducted at the B3LYP/6-311++G(d,p) + GD3 level of theory as

implemented in Gaussian 16 (Frisch et al., 2016). Conformers are numbered in

order of increasing energy relative to that of the global minimum (GM; i.e.,

conformer 1) structure.

future be incorporated for on-the-fly geometric analyses, which
would ultimately provide additional control and efficiency during
execution of the search algorithm afforded by reducing the
search space to pertinent regions connecting known stationary
points. This is particularly useful in identifying intermediate
local minima and TSs between known isomers. Moreover,
utilizing these same methods post-BH provides deep insights
into the relation between stationary points and how these are
partitioned on the potential energy landscape. This can be
of great benefit in modeling experimental ensembles and in
rationalizing the observation of kinetically-trapped species and
dynamic molecular geometries.

In this manuscript we highlight the power of the BH
framework in two case studies: (1) assigning the spectral
carrier(s) of the IRMPD spectrum of [Ser2+H]+ and (2)
modeling the temperature-dependent collision cross sections of
[AAA+H]+. In case study 1, we show that a thorough mapping
of the potential energy landscape is warranted to identify the
species probed in gas phase ion spectroscopic studies of weakly-
bound clusters. In the case of the protonated serine dimer, rather
than observing the lowest energy isomer (as expected based on
standard Gibbs energies), Seo et al. and Sunahori et al. observed
a species that was associated with a relatively remote, higher
energy region of the cluster PES (Sunahori et al., 2013; Seo et al.,
2018). It is still an open question as to whether this was due to
kinetic trapping during production or formation of this species
in situ due to field-induced heating within the ion traps. In case
study 2, we show that mapping PESs to identify low energy
conformer geometries, which were subsequently refined at a
higher level of quantum chemical theory, provides insight into
how molecular geometry changes with increasing temperature.
For [AAA+H]+, increasing the temperature of the system results
in the dissociation of IMHBs and the formation of larger
elongated structures compared to the compact H-bonded species

FIGURE 10 | The Boltzmann-weighted CCS of [AAA + H]+ as a function of

temperature at P = 1 atm. The dashed blue line shows the

orientationally-averaged CCS, �ave, measured in N2 at room temperature

(T ≈ 293K) (Bush et al., 2012).

favored at low temperature. We also demonstrate that modeling
molecular collision cross sections as a Boltzmann-weighted sum
of the CCSs for accessible conformers provides an accurate
estimate of those measured experimentally (0.3 Å2 difference). It
should be noted that this treatment assumes that the accessible
conformers are readily interconvertible, and that thermal
equilibrium is quickly established. In principle, one could
also employ the interpolation techniques described in section
Interpolating Intermediate Geometries to calculate barriers to
interconversion and validate this assumption. However, the fact
that our calculations yield results that are in excellent agreement
with experimental measurements indicates that, in this case, the
assumption is valid.

Ultimately, the BH framework is a useful approach to
characterizing the structures and dynamics of chemical systems
which exhibit PESs of high dimensionality. Examples of such
systems range from weakly-bound nanoclusters to biological
macromolecules. We note that, despite the success of our current
implementation, the development of the BH framework by
ourselves and others is ongoing. We expect that further tuning
will improve general performance and, owing to the versatility of
the method, that BH performance for specific tasks will continue
to improve by tailoring key features of the algorithm.
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We present Specific Reaction Parameter Multigrid POTFIT (SRP-MGPF), an automated
methodology for the generation of global potential energy surfaces (PES), molecular
properties surfaces, e.g., dipole, polarizabilities, etc. using a single random geometry
as input. The SRP-MGPF workflow integrates: (i) a fully automated procedure for the
global topographical characterization of a (intermolecular) PES based on the Transition
State Search Using Chemical Dynamical Simulations (TSSCDS) family of methods;i (ii)
the global optimization of the parameters of a semiempirical Hamiltonian in order to
reproduce a given level of electronic structure theory; and (iii) a tensor decomposition
algorithm which turns the resulting SRP-PES into sum of products (Tucker) form with the
Multigrid POTFIT algorithm. The latter is necessary for quantum dynamical studies within
the Multiconfiguration Time-Dependent Hartree (MCTDH) quantum dynamics method.
To demonstrate our approach, we have applied our methodology to the cis-trans

isomerization reaction in HONO in full dimensionality (6D). The resulting SRP-PES has
been validated through the computation of classical on-the-fly dynamical calculations as
well as calculations of the lowest vibrational eigenstates of HONO as well as high-energy
wavepacket propagations.

Keywords: PES, sums-of-products, tensor-decomposition, quantum dynamics, reparametrized semiempirical,

TSSCDS, global optimization

1. INTRODUCTION

A detailed knowledge of the topography of a Potential Energy Surface (PES) is a highly desirable
prerequisite for the simulation of any dynamical process. Topography on its own, however,
does not fully determine the behavior of a system and dynamics calculations become mandatory
(Tuckerman et al., 2002; Peláez et al., 2014). Furthermore, for an accurate theoretical description of
molecular processes (spectroscopy, reactivity), one should, if possible, resort to nuclear quantum
dynamics calculations (Gatti, 2014). In the specific case of vibrational problems, powerful methods
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based on the resolution of the time-independent Schrödinger
equation exist such as vibrational self-consistent field/vibrational
configuration interaction (VSCF/VCI) (Rauhut, 2007; Neff and
Rauhut, 2009), vibrational second-order perturbation theory
(VPT2) (Barone, 2005) and vibrational coupled-cluster theory
(Christiansen, 2004). For an extensive and recent review of
some of them, the reader is referred to a recent publication
(Puzzarini et al., 2019). However, owing to our interest in
describing chemical processes, we shall turn our attention toward
methods able to describe wave packet propagations. In this
context, within the last few years, we have experienced a boost
in dynamical methodologies capable of describing the dynamics
of molecular systems up to medium-large size, ranging from
semiclassical (Levine et al., 2008; Shalashilin, 2010) to fully
quantal (Gatti, 2014). With respect to the latter, by far, the
most popular approaches nowadays are those based on, or
related to, the grid-based Multiconfiguration Time-Dependent
Hartree (MCTDH) algorithm (Beck et al., 2000). In MCTDH,
a molecular wavefunction (WF) is expanded in a basis of time-
dependent nuclear orbitals. Taken MCTDH as reference, two
powerful multiconfigurational methods exist. On the one hand,
the partially grid-based G-MCTDH method in which some of
the time-dependent basis functions are substituted by (typically
frozen) Gaussians functions (G) (Burghardt et al., 2008), and
the Variational Multiconfigurational Gaussian (vMCG) method
(Richings et al., 2015) (and its direct-dynamics (DD) extension)
which are grid-free and use Gaussian functions only. For the
sake of completeness, one should mention the recent and
promising direct-dynamics approach of MCTDH by Richings
and Habershon (2018).

It should be evident that the quality of the results of any
dynamical calculation is limited by the accuracy and efficiency
of the underlying electronic structure method used to represent
the PES, either globally (as in grid-based methods) or locally (on-
the-fly approaches). When expressed globally on a grid, formally
as a multidimensional tensor, the limitation lies on the number
of dynamical degrees of freedom and the possibility of fitting
the PES to an appropriate functional form. In the case of on-
the-fly methods, on the other hand, the number of degrees
of freedom (DOF) it is not the main limiting factor but the
number of electrons, in other words, the level of theory and
its performance in the form of electronic structure software
calls (energies, gradients, Hessians) at each time-step. This fact
constrains on-the-fly approaches to modest levels of theory.

Obtaining a fit for a high-dimensional PES is a complex
and tedious task. Whatever the approach, any fitting procedure
requires a more or less large set of reference values (molecular
energies and/or gradients and, possibly, properties such as
dipoles) which will constitute the data to which an algorithm will
try to fit a given function. Ad hoc analytical functions are usually
added to the resulting fit in order to ensure a correct physical
behavior, for instance in the asymptotic regions, or to guarantee
a correct periodicity of the potential as in the case of rotors.
Focusing on the fitting methods typically used in combination
with nuclear quantum dynamical approaches, many techniques
have been proposed. To name but a few, popular methods
include the permutationally invariant polynomials (Braams and

Bowman, 2009), the interpolating moving least-squares (Dawes
et al., 2007), the triatomics-in-molecules approximation (Sanz-
Sanz et al., 2013), Shephard interpolation schemes (Frankcombe
and Collins, 2011). Moreover, for more than a decade now,
Neural Network (NN) approaches have (re)gained preeminence
being triggered by the pioneering work of Manzhos and
Carrington (2006) and, very recently, their application to
MCTDH by Pradhan and Brown (2017). In this line, Jiang and
Guo have gone a step further and have developed a NN approach
with implicit nuclear permutational symmetry (Jiang and Guo,
2014). For the sake of completeness, one should mention the
works of Rauhut (2004) and Sparta et al. (2010) in which PESs
for vibrational calculations are generated in an automated and
adaptive fashion. Powerful and accurate as these methods are, a
high degree of expertise is still required to master and to apply
these techniques, particularly for medium-large systems (≥6D),
thus preventing them from a wider-spread use. Furthermore, in
studies where external fields (e.g., a laser) are needed, surfaces
of molecular properties are also required and, as a consequence,
extra fits are necessary.

In this work, we present Specific Reaction Parameter
Multigrid POTFIT (SRP-MGPF), a method which provides a
well-balanced solution to the aforementioned issues. SRP-MGPF
is able to generate a chemically-accurate PES as well as the
same-level-of-theorymolecular properties surfaces, starting from
a single input geometry and requiring minimal intervention of
the user. In this sense, we can safely affirm that the procedure
is quasi black-box in nature. SRP-MGPF relies on three main
steps: (i) generation of a set of reference geometries (energies
and properties); (ii) reparametrization of a semiempirical
Hamiltonian (Specific Reaction Parameter Hamiltonian, SRP)
based on the previous information; and (iii) tensor-decomposing
the SRP with MGPF. We shall focus on the standard MCTDH
method for which a global PES needs to be fitted into some
kind of functional form and, typically, refitted to a grid.
Furthermore, our results can also be directly applied to any on-
the-fly methodology. It should be highlighted at this point that
reparametrized semiempirical Hamiltonians have been typically
used in direct dynamics studies as well as in kinetic studies
(Rossi and Truhlar, 1995; Troya, 2005; Rodríguez-Fernández
et al., 2017). Moreover, semiempirical Hamiltonians have been
successfully used in describing dynamics on electronically excited
states (Toniolo et al., 2003; Silva-Junior and Thiel, 2010). It
should be stressed that SRPmethods qualify as quantum chemical
ones. As such an SRP does not include, necessarily, any fitting
functions. Hence, the SRP parameters obtained through our
fitting process will define a level of electronic structure close to
a high-level reference one.

In our approach, as generator set for the reference fitting
points, we employ the so-called Reaction Network (RXN)
(Martínez-Núñez, 2015b), i.e., the complete set of stationary
points (minima, transition states,. . . ) of a PES. The RXN captures
the main topographical (even topological) features of the target
PES and thus constitutes a sensible choice for the reference set.
Characterization of the topography of a PES is, however, not an
evident task. To this end, we make use of the recently developed
Transition State Search Using Chemical Dynamics Simulations
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(TSSCDS) (Martínez-Núñez, 2015a,b) method which relies on
the efficient sampling of configuration space combined with
a graph-theory based identification of transition state (TS)
structures, which are finally optimized and the corresponding
Minimum Energy Paths obtained with standard methods. The
TSSCDS approach has been recently extended to specifically
study van der Waals complexes (vdW) or, more generally, non-
covalently bound systems (vdW-TSSCDS) (Kopec et al., 2019).

A set of optimal semiempirical Hamiltonian parameters
is then obtained by global minimization of the Root-Mean
Square Error (RMSE) between a set of reference ab initio
energies, for instance, (on the RXN-derived geometries) and the
corresponding SRP ones. The SRP approach to PESs presents
interesting features that make it very appealing when compared
to formally higher-level methods (Density Functional Theory,
DFT, or ab initio). First, SRPs are fast-computing parametrized
electronic structure methods, some of the integrals are neglected
while the remaining are parametrized to reproduce high-level
results. As such, they typically exhibit a correct physical behavior.
Second, in contrast to other fitting procedures (for instance
based on any kind of polynomial expansions or neural networks),
SRPs exhibit a correct behavior outside the fitting boundaries, if
the SRP parameters remain somewhat physical (small variation
with respect to their reference values). Third, by varying
the SRP parameters we can simultaneously fit both energies
and the molecular properties accessible to the semiempirical
software. It should be highlighted that in the usual approach
energies and properties (e.g., dipole) are computed at a set
of reference geometries and then need to be independently
fitted to either potential energy surfaces or property surfaces
(x-dipole, y-dipole, etc.). In contrast, in our method a single
optimization process suffices to yield a simultaneous fit of all
properties simultaneously, provided that information on the
desired properties is included in the reference data. Last, but not
least, the number of parameters is independent of the number
of atoms. They only depend on the number of different atoms
(and possibly on their chemical function) and, as such, it is in a
sense not affected by the curse of dimensionality. In our specific
approach, we have used as base model chemistry the Parametric
Method 7 (PM7) method as implemented in the OpenMOPAC
software package (Stewart, 2016). This choice is justified by the
quality of the obtained results as well as its efficiency in terms of
computational time (PM7 is orders of magnitude faster than ab
initiomethods) (Stewart, 2013).

The final step, specific for grid-based methods, is the tensor-
decomposition of the SRP-PES into an appropriate form. To this
end, we utilize the Multigrid POTFIT (MGPF) algorithm (Peláez
and Meyer, 2013), succinctly described in section 2.3. MGPF
has been successfully applied to the computation of vibrational
eigenstates (Peláez et al., 2014), infrared (IR) spectra (Peláez
and Meyer, 2017), and electron dynamics including continuum
(Haller et al., 2019) With SRP-MGPF, owing to the extreme
efficiency of the semiempirical calculations, we can directly
generate the SRP-PES on a grid.

This manuscript is structured as follows. In section 2 we
provide a succinct introduction to the methods employed in
our workflow. In section 3, which presents the application

of our novel methodology to the HONO molecule in full-
dimensionality, we carefully discuss all specific aspects related to
the actual calculations. Section 4 concludes the paper and gives
some hints on future developments and possible applications of
the method.

2. THEORY AND COMPUTATIONAL
DETAILS

Our automatedmethodology for computing a global PES consists
of three steps: (1) automatic and global determination of
stationary points (minima and transition states), as well as the
corresponding Intrinsic Reaction Coordinate paths (IRCs), the
so-called Reaction Network (RXN); (2) reparametrization of a
semiempirical Hamiltonian (SRP) to reproduce a desired level of
electronic structure theory (e.g., ab initio) using the RXN and
neighboring points; and (3) tensor-decomposition of the SRP
Hamiltonian with the MGPF algorithm. It should be noted that
after stage (2), we already have a global PES which can be used
in conjunction with any type of on-the-fly dynamics scheme.
We shall describe in the following each of the above mentioned
stages. First of all, we shall discuss our specific procedure for
the reparametrization of semiempirical Hamiltonians. Then, we
shall present our way of generating a set of reference points
based on the RXN obtained using the (vdW-)TSSCDS method
(Martínez-Núñez, 2015a,b). Subsequently, we shall discuss how
we integrate this information in combination with the NLOpt
(Johnson, 2011) library and the openMOPAC software (Stewart,
2016) to produce an optimal set of SRP parameters. The resulting
SRP-PES is then interfaced with MCTDH through the Multigrid
POTFIT program (Peláez and Meyer, 2013) thus generating a
SRP-MGPF PES on the grid and in sums-of-product (SOP) form.

Finally, it should be highlighted that, for the graphical
representations, we have made extensive use of the SciPy
scientific tools by Jones et al. (2001).

2.1. Global Optimization of Semi-empirical
Hamiltonians Parameters
Semiempirical potentials can be seen as parametrized Hartree-
Fock methods in which some of the electronic integrals are either
neglected or replaced by parameters obtained as fitting constants
using large sets of reference data (high-level ab initio calculations
and/or experimental data) (Stewart, 2013; Thiel, 2014). In this
sense, semiempirical methods lie somewhere between force fields
and ab initio methods (Stewart, 2013). Owing to the lower
amount of integral calculations, semiempirical methods are
orders of magnitude faster than ab initio methods and, hence,
they are routinely used in the study of large systems (Christensen
et al., 2016). In addition to this, with a suitable configuration
interaction formalism, semiempirical methods can also be used
for the study of excited states (Toniolo et al., 2003; Silva-Junior
and Thiel, 2010). A milestone in the usage of semiempiricals
was achieved by Rossi and Truhlar (1995) who introduced the
idea of reparametrizing a semiempirical Hamiltonian in order
to reproduce a given high-level ab initio level of theory for a
specific chemical reaction (or family thereof), hence the name of

Frontiers in Chemistry | www.frontiersin.org 3 August 2019 | Volume 7 | Article 57637

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Panadés-Barrueta et al. Specific Reaction Parameter Multigrid POTFIT

Specific Reaction Parameter (SRP) Hamiltonians. Since then, this
technique has been successfully applied to the study of chemical
reactions of large-dimensional systems using classical dynamics
(Layfield et al., 2008) as well as to kinetic studies (Rodríguez-
Fernández et al., 2017). In the present work, we go a step further
and will use the SRP approach for the generation of a PES
suitable for quantum dynamical studies. To this end, we used the
publicly available non-linear global optimization library NLOpt
(Johnson, 2011) to reparametrize the PM7 semiempirical model
(Stewart, 2013) as implemented in openMOPAC (Stewart, 2016).
The choice of PM7 responds not only to its proven accuracy but
also to the fact that it includes diatomic parameters in addition to
the standard atomic ones, thus providing extra flexibility to the
optimization process (Stewart, 2013). Hereafter, we shall refer to
the set of SRP parameters as {ζi}

D
i=1, being D the total number

of parameters. It is important to notice that the latter depends
on the number of atom types and not on the dimensionality
of the system. It should be stressed that we are dealing with a
fitting functionwhich has an implicit physical character (HF-like)
and, as such, it is expected to yield a global qualitatively-correct
behavior and to require less fitting points than other traditional
fitting approaches.

The problem that concerns us is thus the global optimization
of a deterministic non-linear objective function χ(ζ ): RD

→

R, Equation (1), with a bounded parameter space (ζi ∈

[ζmin
i , ζmax

i ], i = 1, . . . ,D). In our specific case, we do not
make use of the derivatives of this target function since: (i)
the analytical expressions are unavailable; (ii) their numerical
determination would be expensive and, more importantly,
complicated due to the highly-corrugated character of the RMSE
landscape (see Figure 1). We shall consider then a derivative-free
optimization algorithm (Rios and Sahinidis, 2013). As general
expression of the objective function (χ) we have considered
a rms-like function (see Equation 1) composed by two terms:
(i) a first one accounting for the error in the energies and (ii)
a the second one corresponding to the error in the harmonic
frequencies of the stationary points of the PES, with respect to
our reference calculations.We have observed that the inclusion of
the latter helps to preserve the correct topography of the PES, for
instance the first order saddle point character of transition states.

χ0(ζ ) =

√

√

√

√

n
∑

i=1

ωE(E
ab
i ) · [Eabi − E

srp
i (ζ )]2

n
+

m
∑

j=1

ωF(1Fj) · [F
ab
j − F

srp
j (ζ )]2

m

(1)

where ζ is a vector containing the semiempirical parameters
and n,m represent the number of (relative) energy data points
(Eab/srp) and harmonic frequencies (Fab/srp), respectively, the
labels referring to ab initio (ab) and semiempirical (srp) data. The
weighting functions ωE(E

ab
i ) and ωF(1Fj) (with 1Fj = Fabj −

F
srp
j ) have been defined as exponential step functions:

f (x) =







1 x ≤ α

eβ(x−α) x > α

(2)

FIGURE 1 | Graphical representation of the optimization process of the set of
SRP parameters ({ζ }). The vertical axis displays the RMSE between our
reference data and our target function (see Equation 3), which in the figure
depends just on two parameters (ζ1, ζ2). Non-overlapping clusters (red dots
enclosed in a red circle) of walkers (red dots) are generated. In each cluster,
the optimal solution is locally minimized (red dotted curved arrows) and
compared to the rest of solutions. For a large enough number of clusters,
convergence to the global minimum is guaranteed. In this representation, we
have used a modified Ackley function (Ackley, 1987).

where α,β are parameters adjusted a priori and x corresponds to
the selected argument (Eabi ,1Fj). However, in practice, we have
obtained satisfactory results with a much simpler expression:

χ1(ζ ) =

√

√

√

√

n+m
∑

i=1

ωG(G
ab
i ) · [Gab

i − G
srp
i (ζ )]2

n+m
(3)

where Gi = Ei||Fi are the components of a vector constructed
by concatenating the vectors of energies and harmonic
frequencies, respectively. As strategy, we have performed a
global optimization step followed by local optimizations in order
to refine the results. For the former, we used the Multi-Level
Single-Linkage (MLSL) algorithm (Kan and Timmer, 1987) and
for the latter we used the Bound Optimization BY Quadratic
Approximation (BOBYQA) (Powell, 2009).

2.2. Automated Generation of the Set of
Reference Points
In the following, we shall describe our automated methodology
for the generation of a set of fitting points for the
reparametrization of a semiempirical Hamiltonian. In brief,
we propose the use of the whole set of stationary points of a
given PES, the so-called RXN (Martínez-Núñez, 2015a,b; Kopec
et al., 2019), as initial set from which neighboring geometries
spanning the region of configuration space of interest will be
generated. The main advantage of our method is that starting
from a single initial input geometry, a global Potential Energy
Surface is generated.

We propose as first step the determination of the ensemble
of stationary points (RXN) on a given PES which will be
used as seed for the subsequent generation of the remaining
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FIGURE 2 | One-dimensional representation of the TSSCDS procedure. A low level (LL) PES (upper energy curve, in red) is sampled starting from a given minimum
(geometry indicated by a red dotted line). Classical random trajectories (black arrows) in combination with a graph theory based method (Bond Breaking/Formation
Search, BBFS Martínez-Núñez, 2015a,b) lead to the determination of TS candidate structures (marked as x in red bold font), compatible with the total energy of the
trajectories, from which LL optimizations are started. Subsequent optimization at the desired high-level (HL) are performed using the LL TS as guess structures.

fitting points. Indeed, the stationary points correspond to
the molecular configurations which carry the most relevant
topographical information of a given PES and, as such, make
ideal candidates for fitting purposes. Finding stationary points,
however, is a very tedious task which heavily relies on large
amounts of chemical intuition. Fortunately, a family of methods
for the automated determination of the RXN has been recently
proposed, the so-called Transition State Search Using Chemical
Dynamics (TSSCDS) (Martínez-Núñez, 2015a,b) as well as its
generalization, vdW-TSSCDS (Kopec et al., 2019). The former
is optimal for the study of unimolecular processes whereas the
latter has been specifically designed to study non-covalently
bound systems. The workflow in both cases is analogous
(see Figure 2) and the difference lies in the way transition
states (TSs) are characterized. Starting from an initial random
geometry (or small set thereof), a large number of high-
energy classical trajectories is run using a low-level (LL) of
electronic structure theory (semiempirical in our case, other
methods are also possible) to compute the forces. The geometries
along these trajectories are analyzed by a graph-theory based
algorithm (Bond Breaking/Formation Search, BBFS Martínez-
Núñez, 2015a,b; Kopec et al., 2019) which detects conformations
in which bonds are broken and/or formed. It should be
highlighted that this step is precisely what determines the
difference between TSSCDS and vdW-TSSCDS. In the former,
a square connectivity matrix based on covalent distances is
defined, whereas in the latter this matrix takes block-diagonal

form and includes both covalent and non-covalent (van der
Waals) distances, thus allowing for the determination of non-
covalent saddle points. The so-determined structures, candidates
to TSs, are optimized at the LL and subsequently reoptimized
at an appropriate higher level of theory, say, ab initio or DFT.
Obviously, this process can be continued by further refinements.
From this set of final high-level TSs, IRC calculations connecting
minima are performed. And, as a result of this, the so-called
Reaction Network (RXN) is obtained, that is, all stationary
structures together with their connectivities compatible with a
given total energy (that of the initial classical trajectories). For
further details on the method, the interested reader is referred to
the original publications (Martínez-Núñez, 2015a,b; Kopec et al.,
2019). As indicated, the RXN will serve us as initial set from
which the full set of fitting points will be generated. The total
number of stationary points (NRXN) is:

NRXN = nmin + nTS + nasymp + . . . , (4)

where nX , (with X=min, TS, asymp,. . .) is the number of minima,
transition states (TS), asymptotic products, respectively. This
initial set will be extended by systematically adding a set of
neighboring geometries. This can be achieved in different ways.
In our case, we have chosen to distort each of the NRXN points
following an n-body type of scheme inspired by a previous
work (Pradhan and Brown, 2017). The novelty of our procedure
lies in the fact that we observe convergence in the RMSE at

Frontiers in Chemistry | www.frontiersin.org 5 August 2019 | Volume 7 | Article 57639

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Panadés-Barrueta et al. Specific Reaction Parameter Multigrid POTFIT

each order of the expansion. As it will be clear later, this
convergence provides us with an efficient error control and allows
to determine a minimal number of fitting points necessary to
achieve a given RMSE. The total number of fitting points (Nref )
can be calculated as:

Nref = NRXN ·
[

f
∑

i∈1D

N
(1D)
i +

f
∑

i∈2D

N
(2D)
i + . . .

]

+ rnd(fD)

+

nTS
∑

i

NIRC
i +

nasymp
∑

i

N(asymp)
+ . . . (5)

where f is the number of degrees of freedom of the molecular
system, N is the number of generated reference geometries
of a given type, for instance, NnD are grid points from a n-
dimensional (D) grid and NIRC

i are the IRC points stemming
from TSi, rnd(fD) are random geometries in the full-D
configuration space, n is the number of stationary points of
a kind. Considering, for instance, a normal mode or internal
coordinate local representation, 1D would refer to displacements
along each mode/coordinate (leaving the remaining coordinates
fixed at their equilibrium values) and nD refers to grids of
points generated through simultaneous displacement along n
modes/coordinates, leaving the remaining fixed as before.

Our goal is now to determine the minimum number of fitting
points leading to the smallest possible RMSE (defined as the
difference between reference PES and SRP-PES), or, in other
words, the optimal set of SRP parameters ({ζopt}). It should be
emphasized that we are dealing with moderate-size configuration
spaces, in our specific case HONO (6D), the parameter space
is 34-dimensional. Hence, in order to systematically search for
the global minimum in SRP parameter space ({ζ }), we increase
the number of reference points in a controlled way according
to the following prescription. Starting with the PM7 parameters
({ζPM7}) as initial guess, the RMSE(ζ ) landscape is explored in
a first stage using a small number of ab initio reference data
and a big number of iterations (typically of the order of 105)
of the non-linear optimization algorithm (MLSL in our case).
This allows to locate the most-likely candidate parameter set to
global minimum. The latter is used as a guess in subsequent local
optimization stages (BOBYQA). At each of these, extended sets of
points are generated in the form of nD distortions. At each level
(1D, 2D, etc.) and for each set, we carry out local optimizations,
compare the resulting RMSEs and take as optimal the number of
points (set) that leads to a satisfactory value of RMSE, in the form
of convergence, thus guaranteeing the condition of minimum
number of points.

2.3. Generation of the SRP-MGPF Potential
Energy Surface
As any other grid-based method, MCTDH quantum dynamics
relies on a discretization of the configuration space known as
primitive grid (Kosloff, 1988). In an f -dimensional molecular
system (typically f = 3N-6, with N being the number of atoms),
a set of iκ = 1, . . . ,Nκ grids points is defined for the κ-th
DOF with κ = 1, . . . , f . In other words, a given grid point

I ≡ (i1, . . . , if ) has an associated molecular configuration (Q ≡

(qi, . . . , qf )). The wavefunction in MCTDH is expressed in a
two-layer scheme, a first one in terms of time-dependent single-
particle basis functions (SPFs, {ϕ(κ)

}):

9(q1, . . . , qf , t) =
∑

j1

. . .

∑

jf

Aj1···jf (t)

f
∏

κ=1

ϕ
(κ)
j (qκ , t) (6)

and a second in which each SPF is, in turn, expressed in a
time-independent basis set ({χ (κ)(qκ )}):

ϕ
(κ)
jκ

(qκ , t) =

Nκ
∑

iκ=1

c
(κ)
jκ iκ

(t)χ
(κ)
iκ

(qκ ) (7)

the latter, typically, Discrete Variable Representation (DVR)
functions (Beck et al., 2000; Light and Carrington, 2000). In
this frame, each grid point iκ (κ-th DOF, q(κ)) is associated
to a localized time-independent basis function (χ (κ)(q(κ))).
Obviously, a minimum number of basis functions, or conversely
grid points must exist to achieve the numerical convergence of a
given calculation. Such grid representations imply that quantities,
particularly the PES, are represented by f -dimensional tensors,
where f is the number of DOF. If each DOF is represented by
10 grid points, a tensor of 10f grid points would be necessary
to represent the PES. It should be clear at this point that that
generation of such a high-dimensional PES tensor directly from
electronic structure (i.e., quantum chemistry) codes is, nowadays,
a prohibitively-long process.

Apart from diminishing the computational time associated
to each quantum chemical calculation, solutions to this issue
must imply a reduction in the number of grid points necessary
to achieve an accurate grid representation of the PES. This
can be achieved in two ways. When considering a more or
less localized region of the PES (i.e., centered around a given
minimum), local approaches such as the Quartic Force Field
representation (QFF) can be used. This is the case when
computing vibrational eigenenergies and/or eigenstates (Barone,
2005; Ávila and Carrington, 2009; Neff and Rauhut, 2009). On the
other hand, when more global representations are needed (e.g.,
spectroscopy in multi-well problems, reactivity, etc.) one has to
resort to more elaborated forms such as tensor-decomposition
algorithms (Kolda and Bader, 2009) or Neural Networks (NN)
representations (Manzhos et al., 2006). Two examples of this
have been recently proposed for a 6D problem (HONO). With
respect to the former, Baranov and Oseledets have used a Tensor-
Train tensor-decomposition approach (Baranov and Oseledets,
2015) and Pradhan and Brown have illustrated the use of an
exponential NN ansatz to represent the same PES (Pradhan and
Brown, 2017). In both cases, the number of data-points (i.e., high-
level ab initio calls) needed to perform the fit was of the order of
∼ 104. Upon an increase of the dimensionality of the problem,
this last figure is expected to increase, at least, polynomically,
hence preventing the use of these techniques for larger systems.

Our method deals with the aforementioned issues by
combining an extremely efficient level of electronic structure,
a reparametrized semiempirical Hamiltonian, with an efficient
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TABLE 1 | Number and description of the fitting points used in each
SRP-optimization stage and the algorithm used in the process.

No.

points

Class of points Type of

optimization

53 core Global/Local

367 1D + core Local

546 1D + 2D + core Local

648 1D + 2D + rnd(6D) + core Local

954 1D + 2D + rnd(6D) + LIIC-IRC + core Local

1084 1D + 2D + rnd(6D) + LIIC-IRC + rnd(LIIC) + core Local

Structures have been generated within a set of fixed boundaries defined in Table 3. The

initial set of geometries (labeled core) consists on 53 points, namely: MIN1, MIN2, TS1,

1D- and 2D-distorted structures using the latter as reference geometries [26 1D, 14 2D],

and 10 6D-randomly distorted (rnd(6D)) geometries. The number of points at each new
set is cumulative. It includes nD-distorted geometries (n = 1, 2, 6), LIIC structures and

distortions thereof [noted as rnd(LIIC)]. The algorithm for global optimization is MLSL and

for local is BOBYQA (see section 2.1). The number of iterations in the global step has

been set up to 100,000 and in the local one to 2,000.

and accurate tensor decomposition scheme, Multigrid POTFIT
(MGPF) (Peláez and Meyer, 2013). This tensor decomposition
algorithm transforms a multidimensional function (e.g., PES)
into Tucker product form (Equation 8) in an quasi black-
box manner. MGPF, implemented in the MCTDH software
package (Worth et al., 2016), avoids running over the full
(primitive) MCTDH grid and, instead, uses a series of coarser
(nested) grids using a number of PES data-points comparable
to the aforementioned methods. However, the big difference is
that in our case we shall perform SRP calls, in other words,
our ab initio method will have the computational cost of a
semiempirical one. In fact, as shown by our results (see Table 1
in section 3.1), we need no more than hundreds of high-level
electronic structure calls in comparison to the tenths of thousands
points required by previous methods. This, obviously, leads
to a (small) error inherent to the SRP approximation, but in
contrast permits the extension of our approach toward higher-
dimensional systems with a little more effort. In the following
lines, we shall describe the actual MGPF approach that we
have used.

In MGPF, we use a sum-of-products or Tucker expansion for
the PES:

V =

[m1 ,...,mf ]
∑

j1 ,...,jf

Cj1,...,jf

f
∏

κ=1

v
(κ)
j (8)

which, in tensor notation, can be written as:
Kolda and Bader (2009)

V = C ×1 v
(1)T

×2 v
(2)T

· · · ×f v
(f )T (9)

There C is the so-called core tensor and v
(κ) are the expansion

basis sets for the κ-th DOF. The reader is referred to the
original article for a full description of the method and its
capabilities (Peláez and Meyer, 2013). More specifically, our
current application uses a bottom-up approach to MGPF (Peláez

and Meyer, in preparation). The MGPF basis sets ({ṽ(κ)}) can be
expressed as:

ṽ
(κ)

= ρ(κ)′ρ(κ)−1
v
(κ) . (10)

There we have introduced potential density matrices of the form:
Peláez and Meyer (2013)

ρ
(κ)
kk′

: =

∑

Iκ

VIκ
k
VIκ

k′
κ = 1, . . . , f . (11)

where the first index (k) runs along the primitive grid in ρ(κ)′

and along the coarse one in ρ(κ). The transpose of these basis sets
reads then:

ṽ
(κ)T

= v
(κ)T (ρ(κ)′ρ(κ)−1)T (12)

Substituting in the MGPF expansion VMGPF of the form Equation
(9), we unitarily transform both the MGPF basis set (ṽ) and the
MGPF core tensor (C) using the complete basis v: Peláez and
Meyer (in preparation)

Ṽ
MGPF

= C ×1 (v
(1)T

v
(1))ṽ(1)

T
×2 (v

(2)T
v
(2))ṽ(2) · · · ×f (v

(f )T
v
(f ))ṽ(f ) (13)

It should be noted that this transformation does not change the
representation. Then one obtains:

Ṽ
MGPF

= V ×1 γ̃
(1)T

×2 γ̃
(2)T

· · · ×f γ̃
(f )T (14)

where V is the tensor of the energies on the coarse grid and

γ̃ (κ)=ρ(κ)′ρ(κ)−1 is the newMGPF basis set. Both quantities, core
tensor (V) and potential density matrices are directly computed
by interfacing theMGPF routine ofMCTDH to the openMOPAC
software package.

2.4. Calculation of Vibrational Properties:
Eigenenergies and Eigenstates
To provide a stringent test to the quality of our series of
chemically accurate SRP-PES, in addition to RMSEs we have
also computed ground and vibrationally excited eigenstates and
compared them to those of the reference PES (Richter et al.,
2004). These vibrational calculations have been computed using
the Heidelberg version of the MCTDH software package (Worth
et al., 2016) using our SRP-MGPF PES, as described above.
It should be highlighted that the problem we are considering
(HONO) features a double well and, consequently, single-
reference approaches (e.g., QFF) are not well-suited to its study.

The calculation of the vibrational eigenstates and
eigenenergies has been performed by propagating a guess
WF in negative imaginary time using the so-called Improved
Relaxation method (Meyer and Worth, 2003; Meyer et al.,
2006). The MCTDH equations of motion (EOM) are here
obtained through a time-independent variational principle. As
a result, the propagated configuration interaction coefficients
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FIGURE 3 | MP2/cc-pVDZ (intermediate HL) structures of HONO automatically obtained using the TSSCDS algorithm on a PM7 (LL) PES. Target geometries in the
cis-trans isomerization region (MIN1, MIN2, TS1) were subsequently reoptimized at the CCSD(T)/cc-pVQZ (final HL) level of theory.

(A, see Equation 6) are obtained through diagonalization of the
Hamiltonian in the basis of the configurations:

∑

L

〈8J |H|8L〉AL = EAJ , (15)

and the single-particle basis functions (SPFs) are evolved in
imaginary time using the standard MCTDH EOM (Beck et al.,
2000). This iterative procedure is repeated until convergence
in the energy. Moreover, a block version of this algorithm,
the so-called Block Improved Relaxation, can be used to
converge several eigenstates simultaneously, thus leading to the
determination of a set of vibrationally excited states.

3. RESULTS AND DISCUSSION

In this section, we present the application of the SRP-MGPF
methodology to the actual computation of the HONO (6D)
PES for the cis-trans isomerization region, which has become a
benchmark for this type of studies (Baranov and Oseledets, 2015;
Pradhan and Brown, 2017). In the following subsections, we shall
discuss the details on the generation of the fitting reference set of
points, the reparametrization of the semiempirical Hamiltonian
(SRP), and the technical details concerning the direct MGPF
tensor decomposition of the SRP-PES into Tucker form. It should
be stressed that the novelty and robustness of our approach
resides in the fact that requires a minimum intervention of
the user, thus qualifying as a quasi-black box approach. For
the time being, we have interfaced the software openMOPAC
to the MCTDH software package through the use of the
MGPF tensor decomposition algorithm (Peláez and Meyer,
2013), hence allowing quantum dynamical simulations on a
SRP-MGPF PES.

3.1. Computation of the SRP-MGPF PES
for the cis-trans Isomerization Region in
the HONO System (6D)
The first stage in our automated fitting procedure has been the
determination of the stationary points of HONO, accomplished
through the use of the TSSCDS package (Barnes et al., 2019),
as described in section 2.2. Starting from a single random input
geometry, LL guess structures have been obtained (see Martínez-
Núñez, 2015a,b for a detailed discussion). Figure 3 presents
the corresponding MP2/cc-pvDZ structures. The relevant
geometries for our study cis (MIN1), trans (MIN2) as well as
the TS connecting them (TS1) have been reoptimized at the
CCSD(T)/cc-pVQZ level of theory. Their geometrical parameters
and harmonic frequencies are presented in Tables S10–S13. The
reason behind the choice of this level of theory is that we
have taken as model chemistry the CCSD(T)/cc-pVQZ quality
analytical PES of Richter et al. (2004)

The generation of the remaining reference geometries and
corresponding energies has been done according to our heuristic
approach described in section 2.2. A set of geometries in the form
of nD-product grids (n=1, 2) and 6D-random structures have
been generated using the three lowest energy stationary points
of HONO as pivotal geometries, namely: cis, trans-conformers
and the corresponding TS (see Figure 3: MIN1, MIN2, and TS1,
respectively). Moreover, the reaction path among them has been
taken into account through a piecewise Linear Interpolation in
Internal Coordinates (LIIC) (Soto et al., 2006) between the cis-TS
and TS-trans pairs of stationary points (see Figure S1) as well as
a cloud of distorted structures around them. To ensure that the
latter remain close to the reaction path (LIIC), each i-th geometry
along the LIIC has been generated by distorting along a set of
directions resulting from the linear combination of the normal
modes of the end structures according to:

1EQi = (1− Xi) · EQinit + Xi · EQfin
EQ ∈ R

3N−7
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where EQfin =TS1, EQinit =MIN1/MIN2. Xi is a number that
depends on the distance to the end structure. The closer to
EQfin the more 1EQ resembles the normal modes of the end
structure (TS1). Each of our LIIC consists of 50 points and the
aforementioned distance is simply taken as the ordinal i within
the LIIC. It should be noted that the torsion mode has not
been included (3N − 7 modes in total), since it approximately
corresponds to the reaction coordinate. Finally, for a given
displacement (1EQ), the geometries around the i-th geometry
along the LIIC have been computed as:

ERi = ER
(0)
i +

3N−7
∑

j=1

fj · 1EQi,j

where ER
(0)
i is the original geometry of the i-th point of the LIIC, fj

is a small random factor, and 1EQi,j is the j-th component of 1EQi.
This systematic manner of generating reference points serves

us to control the convergence of the RMSE error at each
expansion order, in other words, how insensitive the RMSE is
to an increase in the density of points in specific directions (or
combinations thereof). This, in turn, provides us with a good
estimate of the lowest possible number of reference geometries
at each stage. In Table 1, we present the different convergence
stages in terms of number of fitting points used together with
the associated optimization algorithm. As it can be observed, at
each specific stage, we either increase the density of points in
the indicated directions (modes/coordinates) or add a new class
of points in the form of a LIIC, for instance.

The first stage consists on a global optimization (MLSL)
followed by a local one (BOBYQA) using a small number of
judiciously chosen points: the RXN and a cloud of random
geometries around them, adding up to a total of 53 points.
This has enabled a very large number of iterations (105). The
underlying hypothesis behind this calculation is that a reasonable
and cheap estimate of the global minimum (set of SRP parameters
yielding the minimum RMSE) can be obtained. Our best set of
parameters at this stage (ζ 53, where 53 is the number of fitting
points) yielded an initial RMSE of 806.8 cm−1 (Table S1). In
the subsequent stages, we have performed local optimizations
(BOBYQA) with 2,000 iterations. Before proceeding any further,
we would like to justify the use of a global algorithm exclusively
at the first stage, in other words, ζ53 must indeed correspond
to a set near the global minimum or a local deep minimum.
First, from a computational perspective, it should be noted
that a small number of fitting points is ideally suited for this
task. Second, we have performed calculations justifying this fact.
Table S2 (column 2) presents the BOBYQA variation of the
RMSE for an increasing number of 1D-sets of fitting points.
It can be observed that upon increase of this number, from
192 until 2088 fitting points, the RMSE monotonically decreases
from 482.13 cm−1 till 365.13 cm−1. According to our reasonings
above, one should take the SRP parameters of the last set of
points (ζ 1542 or ζ 2088) corresponding to the best RMSE of the
1D-series. For the sake of efficiency, we considered the ζ 1542.
With this set of SRP parameters, we recomputed the whole
series of RMSEs for the different sets of 1D-points and we

observed a very close agreement with the BOBYQA values,
except for the 192 set. This shows that indeed all sets of
parameters of this series (from ζ 367 on) lie within the same
RMSE landscape region (see Figure 4) and, in turn, validates our
initial approach with a small number of representative points.
One can then safely conclude that just 367 fitting points are
necessary to improve the SRP-fitting at the 1D-level. Hence,
subsequent 2D optimizations will start with the (ζ 367) set. A
detailed description of all stages and RMSE values is presented
in Tables S1–S9. A somewhat more complete information can
be obtained through the cumulative error computed by addition
of the RMSEs resulting form the configurations up to a certain
energy value (see Figure 5). It can observed that for all sets of
parameters, with the exception of ζ 53, the RMSEs remain below
the limit of chemical accuracy (1 kcal/mol≈ 350 cm−1) within
the targeted PES region (cis-trans isomerization). Moreover, in
the last stage we have removed all structures with energies
above 5000 cm−1 (above the classical barrier) and included an
extra set of random points around the stationary points. This
new set of points has been used to BOBYQA reoptimize the
SRP. We observe a clear improvement of the RMSE in such
a way that, up to 8000 cm−1, the RMSE is inferior to the
chemical accuracy level. The correctness of these results has been
supported by a calculation using a validation set consisting of
1200 6D random points with energies below 12000 cm−1 for
which the same pattern is obtained. We have also compared the
geometries and harmonic frequencies of all stationary points at
the reference ab initio level of theory and at the SRP level for each
stage. Geometries are displayed in Tables S10–S12 and harmonic
frequencies are shown in Table 2. As it can be observed, SRP
does indeed improve, in terms of both geometrical parameters
and harmonic frequencies, with respect to the original PM7
and, furthermore, we obtain a very good agreement with the
reference ab initio data. This is particularly true for the last
stage (ζ 1084).

To finalize this section, we present in Figure 6 a comparison
of 2D projections of the cis-trans isomerization regions for:
(i) the reference surface, (ii) the SRP-PES(ζ 1084); and (iii) the
PM7 semiempirical Hamiltonian. These contour plots have been
obtained through orthogonalization of the two LIIC vectors used
in Figure 6. The positive effect of the reparametrization can be
clearly observed: while PM7 provides a blurred description of the
TS region, the SRP-PES reproduces it correctly.

3.1.1. Classical Molecular Dynamics on the SRP-PES
As a first test of the quality of the SRP-PES, we have carried out
classical molecular dynamics simulations for the HONO system
in full dimensionality using the VENUS96 software package
(Hu et al., 1991). Classical trajectories have been run using the
reference PES (Richter et al., 2004). The energies of the so-
obtained geometries have been subsequently computed at the
SRP-PES level and compared to the original calculation. Starting
from the equilibrium geometries of the cis and trans isomers,
we have propagated for 1 ps each trajectory with a time-step
of 5fs. The vibrational energy of each starting geometry was
classically distributed in a random way between all normal
modes using the option normal mode sampling of the VENUS
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FIGURE 4 | Percentage of variation of the SRP parameters with respect to the original PM7 ones. Each fitting stage is represented by its optimal parameters, ζN,
where N is the number of points used in the process (see Table 1). On abscissas we present the label of semiempirical parameters for the different type of atoms in
HONO. Standard semiempirical parameter labeling has been used (Stewart, 2013). Parameters from USSH until HSPO correspond to a single type of atom whereas
parameters labeled ALPBXY and XFACXY correspond to two-atom ones (atom X and atom Y).

FIGURE 5 | Cumulative RMSE for each SRP-fit labeled by its set of parameters, ζN, where N is the number of points used in the fit (see Table 1). The last set (ζVS)
corresponds to the validation set. The red dotted horizontal line represents the value of the chemical accuracy (1 kcal/mol≈ 350 cm−1).

software. We have computed 10 trajectories per isomer, each
isomer having 4 different vibrational energies (5, 10, 15, and
20 kcal/mol) thus making a total of 80 trajectories and 16,080
geometries. In Figure 7, we present a comparison of the variation

of the potential energies along two of these trajectories. As it
can be observed, the PM7 largely deviates from the reference
calculation both in their relative values and the phase, whereas
SRP-PES follows closely the ab initio values. In particular, it
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TABLE 2 | Harmonic frequencies of the normal modes of each stationary point at the CCSD(T)/cc-pVQZ ab initio level of theory and corresponding values for the PM7
method and the SRPs in the different stages of the optimization.

Harmonic frequencies (cm−1)

Ab initio ζPM7 ζ53 ζ367 ζ546 ζ648 ζ954 ζ1084

TS

-599.2 -553.6 -581.0 -565.1 -568.7 -570.3 -573.3 -606.8

559.1 621.7 512.2 467.1 465.5 463.6 463.8 597.2

791.2 1021.3 654.7 649.5 652.7 653.6 654.9 738.4

1122.3 1175.3 1174.3 1092.3 1099.8 1095.8 1106.8 1195.4

1728.0 1839.5 1763.8 1705.8 1709.4 1710.5 1711.0 1737.9

3785.3 2801.7 3747.9 3568.9 3585.3 3585.0 3586.4 3736.2

cis

648.7 589.0 615.4 613.0 616.1 618.2 619.3 622.5

687.9 629.2 724.9 712.0 718.4 716.0 718.4 698.9

901.9 1084.8 745.3 715.4 721.0 721.7 728.4 854.2

1350.9 1346.0 1316.4 1252.5 1255.9 1253.7 1262.3 1369.5

1675.5 1823.5 1725.5 1693.2 1696.6 1698.3 1701.6 1719.1

3632.1 2802.9 3668.9 3504.6 3519.8 3520.0 3521.4 3667.3

trans

574.8 455.9 517.1 515.2 517.1 518.1 521.6 540.5

633.1 609.8 533.3 515.2 519.1 523.7 528.3 602.5

839.6 1096.0 730.5 736.6 741.7 744.7 748.9 835.1

1319.3 1308.8 1232.9 1130.0 1136.9 1131.6 1148.4 1264.6

1732.6 1826.5 1715.9 1666.7 1670.2 1671.9 1674.8 1704.7

3790.8 2828.3 3815.8 3662.7 3678.9 3680.9 3682.9 3796.1

FIGURE 6 | Comparison of the 2D projections of the cis-trans isomerization region for: (i) reference PES (Richter et al., 2004) (left panel); (ii) SRP-PES (ζ1084 ) (middle
panel); and (iii) PM7-PES (right panel). These projections have been obtained by orthonormalization of two linear interpolation (LIIC) vectors as described in Soto et al.
(2006).

is remarkable the fact that for low energies PM7 presents a
large amount of structures with energies below the value of the
global minimum, the trans conformer. To finalize this subsection,
we would like to provide some performance features of the
SRP-PES which directly show the efficiency of the underlying
openMOPAC software. In the case of theHONO, from an average
of the order of ∼104 points, we have obtained a mean CPU-
time of 10−2 s per single-point energy. Moreover, Hessians are
computed in less than a second. This properties make SRP
approaches suitable for any on-the-fly type of calculation. In
particular, we are currently exploring their use with non-grid
based quantum dynamical methods such as the Direct-Dynamics
Variational Multiconfigurational Gaussian (DD-vMCG) method
(Richings et al., 2015).

3.2. Full Quantum Analysis of the
Vibrational Properties of the SRP-PES for
the cis-trans HONO System (6D)
To further assess the quality of our SRP-PES we have computed
vibrational properties by means of MCTDH quantum dynamical

calculations and the results have been compared to the ones

from the reference PES (Richter et al., 2004). More specifically,

ground and excited vibrational states as well as vibrational
spectra, in the form of Fourier transforms of autocorrelation

functions. At this point, it should be recalled that our main goal

is not to achieve spectroscopical accuracy but to provide PESs,
in a fully automated fashion, accurate enough to disentangle

chemical processes.
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3.2.1. MGPF Tensor Decomposition of the HONO 6D

PES
To interface the SRP-PES with the MCTDH quantum dynamics
software package, we have used the Multigrid POTFIT tensor
decomposition algorithm (Peláez and Meyer, 2013). More
specifically, all PES calls within the MGPF workflow have been
addressed directly to the openMOPAC software package using
an external set of optimal SRP parameters. In other words, at
each grid point, i.e., configuration, a SCF process is performed.
Of course, this is only possible due to the high efficiency of the
underlying PM7 frame. This fact, precisely, has allowed us to
circumvent the issues encountered in previous studies in which
the ab initio energies were generated directly from a quantum
chemical calculation thus severely limiting the level of theory
which could be applied.

We have carried out bottom-upMGPF calculations Peláez and
Meyer (2013) to the different SRP-PESs at different parameter
optimization stages. In Table S14, we present a comparison in
terms of CPU time and memory needs for a reference exact
Tucker decomposition (using POTFIT, PF) (Jäckle and Meyer,

FIGURE 7 | Comparison of ab initio (blue line), PM7 (green line), and SRP-PES
(ζ1084) (orange line) energies for the geometries generated in classical
on-the-fly trajectories of HONO(6D) with total energies (randomly distributed
among all modes) of 10 and 20 kcal/mol starting at: (A) the trans-conformer
and (B) the cis-conformer.

1996) and the different MGPF tensor decomposition levels that
we have used in this work. The full primitive grid, needed in
PF, consists of 2.804· 107 points. In contrast, the coarse grids in
MGPFs include every third, fourth, or fifth fine grid point for
each DOF. These coarse grids have been labeled ev3, ev4, and
ev5 and consist of 172,800, 51,200, and 18,432 coarse grid points,
respectively. The MGPF partial grids increase these figures by
a factor <10. This is due to the fact that the contracted mode
lies fully in the fine grid (see section IIIB in Peláez and Meyer,
2013). Hence, as expected, MGPF is orders of magnitude less
demanding that an exact decomposition. The global RMSE values
show that MGPF PES are accurate, cheap and, more importantly,
add a very small (global, full grid) error to the PES. Finally, it
should also be highlighted that none of our SRP-PES present
energies below the global minimum (trans conformer), whereas
the PM7 does. In other words, PM7 presents artificial PES
structure when compared to the reference one.We have observed
that even the simplest SRP optimization corrects this wrong
behavior.

3.2.2. MCTDH Quantum Molecular Dynamics on the

SRP-MGPF
As discussed in section 2.3, MCTDH requires the discretisation
of the configuration space. The HONO (6D) molecule has been
represented in internal coordinates (see Figure 8) as in previous
works (Peláez and Meyer, 2013; Pradhan and Brown, 2017),
and a Discrete Variable Representation (DVR) grid has been
defined accordingly (see Table 3). We have performed ground
and excited eigenstate vibrational calculations for the reference
PES, the PM7-MGPF PES as well as for selected SRP-MGPF
PES using the Improved Relaxation algorithm and its Block
version, as implemented in the Heidelberg version of MCTDH
(Meyer et al., 2006). We have combined the physical modes
into logical particles as follows: [φ=15], [dOH=10] [u2, dON=25],
[u1, dNO=25], where the number represents the number of single-
particle functions (SPFs) and ui = cos θi (see Figure 8). In all
cases, the initial wave packet has been propagated in negative
imaginary time (see section 2.4) during 500 fs.

With respect to ground state energies, the reference PES yields
a value of 4367.7 cm−1 for the Zero Point Energy (ZPE) and the
PM7-MGPF PES a value of 3221.3 cm−1, well off the analytical
one. We attribute this discrepancy to the artificial structure of

FIGURE 8 | Definition of the internal coordinates of HONO used in this work.
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the PES revealed by the presence of negative energies (geometries
with energies below the global minimum, trans conformer) as
discussed in section 3.2.1) and clearly illustrated in Figure 7.
On the other hand, concerning the SRP-MGPF PESs, a nice
convergence can be observed upon increase of the number
of fitting points, toward a final value of 4332.8 cm−1 which
compares well with the analytical one. It is also remarkable that a
simple fit using only 53 fitting points already leads to a qualitative
improvement with respect to PM7. Moreover, our results show
that the ZPE values are somewhat insensitive to the size of the
coarse grid (cf. last three rows of Table 4). Consequently, we shall
use hereafter the ev5 SRP-MGPF scheme.

We have also computed the 20 lowest-lying vibrational
eigenstates of HONO (Table 5). It should be noted that this
energy interval spans all HONO fundamentals except the OH
stretching mode. For this, we have considered four different
PES, namely: (i) PM7-MGPF, SRP-MGPF with ζ 53 and ζ 1084,
as well as the reference (exact) PES. The first remark to be
done is that the original PM7-MGPF PES fails to predict
the initial vibrational state corresponding to the ground state
of the cis conformer (Richter et al., 2004). In contrast,
even at the minimum level of reparametrization (ζ 53), this

TABLE 3 | Definition of the MCTDH primitive grid: HO denotes a harmonic
oscillator (Hermite) and cos a cosine Discrete Variable Representation (DVR) basis
functions.

DOF DVR N Range

dOH HO 18 [1.30, 2.45]

dNO HO 13 [1.90, 2.60]

u2 HO 13 [-0.65, -0.10]

dON HO 16 [2.10, 3.25]

u1 HO 18 [-0.65, 0.25]

φ cos 32 [0, 2π /2]

N is the number of primitive (fine) grid points. The range represents the first and last grid

points in atomic units for the distances and φ is the torsion angle in radians. Cosines of

the valence angles have been used: ui = cos θi . See Figure 8 for the definition. Physical

degrees of freedom have been combined into logical modes or particles according to the
following scheme: [φ], [dOH ] [u2,dON ], [u1,dNO ]. The first particle (φ) has been contracted
in MGPF (see section IIIB in Peláez and Meyer, 2013).

TABLE 4 | Ground state energies of HONO using PESs of different quality.

Set MGPF ZPE (cm−1)

ζPM7 ev4 3221.3

ζ53 ev4 4070.7

ζ648 ev4 4095.0

ζ1084 ev4 4332.8

ζ1084 ev5 4330.8

ζ1084 ev3 4332.9

The first column indicates the set of SRP parameters used, labeled by its set of

parameters, ζN , where N is the number of points used in the fit (see Table 1). The second

column presents the size of the MGPF coarse grid: evn indicates a coarse grid in which

every (ev) n-th fine grid point has been considered (see section 3.2.1). The final column

presents the Zero Point Energies (ZPE) for each of the previous PES.

eigenstate is obtained. Furthermore, this incorrect behavior
worsens upon increase of the energy. In fact, eigenenergies
are off by several hundreds of cm−1 in almost the its whole
range. This can be readily understood by simple observation
of the 2D contour plots of the cis-trans region of the PES
(see Figure 6). In contrast, both SRP-MGPFs nicely follow the
reference values and, what is more important, the discrepancies
(of the order of tens of cm−1) do not increase but remain, in
average, constant.

Finally, to take into account higher excited vibrational states,
we have computed a vibrational spectrum by Fourier transform

TABLE 5 | Comparison of the 20 lowest vibrational eigenvalues of HONO for
different PESs denoted by its set of parameters, ζN, where N is the number of
points used in the fit (see Table 1).

Vibrational eigenenergies (cm−1)

ζPM7 ζ53 ζ1084 Analytical

0.0 0.0 0.0 0.0

593.6 163.0 88.5 94.1

794.3 604.7 597.1 600.8

1070.6 693.2 703.9 710.7

1151.5 706.9 822.3 795.9

1186.3 888.9 917.9 944.1

1365.9 1134.3 1012.5 1055.4

1403.1 1204.8 1189.7 1188.1

1641.3 1221.6 1234.7 1264.9

1659.6 1263.0 1317.9 1306.6

1751.1 1308.9 1363.5 1312.8

1773.1 1361.6 1417.2 1385.3

1811.5 1395.7 1451.1 1404.8

1869.9 1424.9 1530.5 1547.9

1968.7 1426.3 1607.7 1574.9

2011.4 1612.4 1633.9 1640.9

2060.3 1656.9 1690.9 1689.9

2118.1 1698.3 1743.0 1726.0

2136.5 1748.6 1778.7 1762.4

2226.5 1842.0 1785.8 1779.7

2253.3 1853.0 1807.3 1829.0

RMSE 360.2 58.4 24.5 –

N/A – [42.0] –

MAD 53.7 38.3 23.7 –

N/A – [25.5] –

Energies have been computed by MCTDH Block Improved Relaxation (see section 2.4).

All PESs have been MGPFitted using a coarse grid consisting on 18,432 points, the so-

called ev5 (see section 3.2.1). The first column presents the PM7-MGPF values (PM7),

second and third correspond to SRP-MGPF with ζ 53 and ζ 1084, respectively. The last

column presents the corresponding eigenenergies obtained using the analytical surface by

Richter et al. (2004). The last four rows present the RMSE and themean-absolute deviation

(MAD) of each set of eigenvalues with respect to the analytical ones. The values in square

brackets indicate the RMSE and MAD values taking into account the corresponding

OH stretching anharmonic frequencies. The latter have been obtained through Fourier

transform of an autocorrelation function (see Figure 9): (i) Analytical: 3533.8 cm-1 and (ii)

ζ 1084: 3695.7 cm-1. It should be noted that the PM7 values could not be determined

(indicated by N/A) owing to a wrong behavior of the PM7-PES at this energy range

(see Figure 9).
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FIGURE 9 | Vibrational spectra computed as the Fourier transform of the
autocorrelation function obtained after excitation of one quantum in the OH
stretching vibration centered the cis conformer region: (i) green line
corresponds to the PM7-MGPF PES; (ii) orange line to the SRP-MGPF (ζ1084)
PES; and (iii) blue line, the reference PES (ab initio) (Richter et al., 2004).

of the autocorrelation function corresponding to the dynamics
of a wave packet generated by excitation of a quantum of
energy in the OH stretching mode in the cis region of the
potential. As observed (Figure 9), the PM7-MGPF spectrum is
radically different to that of the reference PES, whereas the SRP-
MGPF one shows the correct behavior. Apart from the, certainly
not unexpected, shift in energy, both reference PES and SRP-
MGPF reveal that the OH mode is practically uncoupled from
the rest.

4. CONCLUSIONS AND FUTURE
PROSPECTS

We have introduced Specific Reaction Parameter Multigrid
POTFIT (SRP-MGPF) a methodology which permits the
generation of global chemically accurate Potential Energy
Surfaces in sums-of-products (Tucker) form in a quasi black-
box manner starting from a random input geometry. The SRP-
MGPF workflow combines: (i) the automated determination of
stationary points of a Potential Energy Surface (PES); (ii) the
reparametrization of a Semiempirical Hamiltonian (SRP) using
high-level ab initio data; and (iii) direct tensor-decomposition
of the resulting SRP-PES with the Multigrid POTFIT (MGPF)
algorithm. The resulting surface can be used with any on-the-
fly dynamical software or, after MGPF, with grid-based quantum
dynamical method, in particular the Multiconfiguration Time-
Dependent Hartree (MCTDH) method. We have proven the
validity of this method by fitting the SRP-MGPF PES for the
HONO system in full dimensionality (6D) and reproducing,
to a good agreement, the vibrational properties of a surface
of CCSD(T)/cc-pVQZ quality. Current work deals with the
extension of the method to treat coupled electronic excited

states. To finalize, it should be highlighted that SRP-MGPF
provides an inexpensive and accurate enough means of
performing full-dimensional chemically meaningful quantum or
classical simulations.
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The Structure of Adamantane
Clusters: Atomistic vs.
Coarse-Grained Predictions From
Global Optimization

Javier Hernández-Rojas 1* and Florent Calvo 2

1Departamento de Física e IUdEA, Universidad de La Laguna, San Cristóbal de La Laguna, Spain, 2Univ. Grenoble Alpes,

CNRS, LIPhy, Grenoble, France

Candidate structures for the global minima of adamantane clusters, (C10H16)N,
are presented. Based on a rigid model for individual molecules with atom-atom
pairwise interactions that include Lennard-Jones and Coulomb contributions, low-energy
structures were obtained up to N = 42 using the basin-hopping method. The results
indicate that adamantane clusters initially grow accordingly with an icosahedral packing
scheme, followed above N = 14 by a structural transition toward face-centered cubic
structures. The special stabilities obtained at N = 13, 19, and 38 are consistent with
these two structural families, and agree with recent mass spectrometry measurements on
cationic adamantane clusters. Coarse-graining the intermolecular potential by averaging
over all possible orientations only partially confirm the all-atom results, themagic numbers
at 13 and 38 being preserved. However, the details near the structural transition are
not captured well, because despite their high symmetry the adamantane molecules are
still rather anisotropic.

Keywords: global optimization, coarse-grained (CG) model, molecular clusters, potential energy surface (PES),

all-atom computer simulations

1. INTRODUCTION

Global optimization is an important topic in the physical and chemical sciences, whether we want
to refine a force field, predict the native structure of a protein or the crystal structure of some
condensed material, or find a practical solution to machine learning problems (Andricioaei and
Straub, 1996; Huber and McCammon, 1997; Doye and Wales, 1998; Wales and Hodges, 1998;
Wawak et al., 1998; Klepeis and Floudas, 1999; Liwo et al., 1999; Nigra and Kais, 1999; Wales
and Scheraga, 1999; Middleton et al., 2001; Hernández-Rojas and Wales, 2003; James et al., 2005;
Fadda and Fadda, 2010; Heiles and Johnston, 2013; Wu et al., 2014; Ballard et al., 2016, 2017; Das
and Wales, 2016). The case of atomic and molecular clusters is enlightening because such systems
exhibit strong finite-size effects, with lowest-energy structures that can depend sensitively and
non-monotonically with increasing number of constituents (Stillinger andWeber, 1982, 1984; Tsai
and Jordan, 1993b). In particular, efficient global optimization algorithms should be able to explore
complex energy landscapes with hierarchical or multifunnel character (Dittes, 1996; Nymeyer et al.,
1998; Hamacher and Wenzel, 1999; Wenzel and Hamacher, 1999; Xu and Berne, 1999; Stolovitzky
and Berne, 2000; Goedecker, 2004; Cheng et al., 2009; Wang et al., 2010; Oakley et al., 2013).
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The difficulties in practically solving the global optimization
problem for atomic and molecular systems are at least 2-fold.
Firstly, the number of available local minima is thought to
increase exponentially with size, making systematic enumeration
virtually impossible already above a few tens of particles
(Hartke et al., 1998; Wales and Hodges, 1998; Nigra and
Kais, 1999; Hodges and Wales, 2000; James et al., 2005;
Hernández-Rojas et al., 2006, 2016; Hernández-Rojas and
Wales, 2014; Bartolomei et al., 2017). Tsai and Jordan thus
evaluated that the 147-atom Lennard-Jones cluster could have
more than 1060 minima (Tsai and Jordan, 1993a). Secondly,
the various structural families generally form different funnels
in the landscape separated by high energy barriers, making
the sampling problem particularly severe, with conventional
simulation methods such as basic molecular dynamics or Monte
Carlo, even supplemented with simulated annealing protocols,
simply unsuccessful (Wales, 2003).

One additional difficulty arises in molecular systems, even
described as rigid bodies, because of the interplay between
translational and orientational degrees of freedom. In some
cases, the molecules themselves are such that they impose
drastic constraints on the collective arrangements that can be
adopted by the clusters, starting with the dimer. This occurs,
e.g., for planar polycyclic aromatic hydrocarbons (PAHs), which
tend to assemble into columnar motifs (Rapacioli et al., 2006;
Hernández-Rojas et al., 2016; Bartolomei et al., 2017), or
conversely for rodlike molecules, such as CO2 (Maillet et al.,
1998). Even for molecules as relatively simple as water, for which
the interactions would seem fairly well-known, water cluster
structures are notoriously non-trivial due to the importance and
anisotropy of the hydrogen bond (Hartke et al., 1998; Wales and
Hodges, 1998; Nigra and Kais, 1999; Hodges and Wales, 2000;
James et al., 2005).

In the present work we are interested in clusters of
the adamantane molecule (C10H16). Adamantane is a small
hydrocarbon molecule with pure sp3 hybridized carbon atoms
arranged in a tetrahedral point group, often referred to as a
diamondoid. It has a very high thermal stability, and could
be found in deep petroleum sources (Dahl et al., 1999, 2010)
as well as astrophysical media (Blake et al., 1988; Allamandola
et al., 1993; Bauschlicher et al., 2007; Pirali et al., 2008; Steglich
et al., 2011). The adamantane molecule is also involved in alkane
chemistry (Fokin and Schreiner, 2002), is a versatile building
block for larger supramolecular assemblies (Tominaga et al.,
2014; Pichierri, 2018) and was found to have some interesting
potential in nanomedicine after functionalization (Grillaud et al.,
2014; Spilovska et al., 2016; Lee et al., 2018), or even as wheels of
nanocars (Chu et al., 2013).

Adamantane clusters were recently synthesized in the
cryogenic environment of helium nanodroplets, in which
they could be size-selected after ionization by an electron gun
(Goulart et al., 2016). In a first approximation, adamantane
is roughly spherical and interacts with other molecules
via non-covalent forces of the dispersion-repulsion type,
with additional Coulomb contributions arising from the
partial charges carried by the hydrogen and carbon atoms
having different electronegativities. No particular electron
delocalization is expected between different molecules,

although in the cationic clusters some polarization effects are
obviously expected.

So far, the structure of adamantane clusters has not been
characterized at the atomistic level of details, but indirect
structural information could be drawn from the experimental
mass spectra, which show special abundances at the sizes
of 13, 19, and 38 molecules. While the former two magic
numbers are compatible with icosahedral arrangements, the
latter is strongly indicative of a close-packed face-centered cubic
structure, suggesting a size-induced structural transition taking
place above only a few tens of molecules. Icosahedral-to-cubic
transitions are common in atomic and molecular clusters, as they
convey the increasing energetic penalty that the highly connected
icosahedral structures have to sustain, eventually in favor of less
connected but also less strained close-packed structures (Doye
et al., 1995; Ikeshoji et al., 2001; Calvo and Carré, 2006). Such
a transition has been identified as being strongly influenced by
the range of the interparticle potential (Doye et al., 1995; Doye
and Wales, 1996). In the present case of adamantane, which has
a significant molecular extension while the dispersion interaction
is comparatively short-ranged, close packing thus seems natural.

However, the experimental magic numbers do not provide
any insight into the orientational ordering within the clusters,
and in particular whether the tetrahedral symmetry plays any
role on the structures. In order to shed some light onto
the relative importance of the translational and orientational
degrees of freedom and their interplay, and more generally to
confirm whether adamantane clusters do indeed correspond
to the speculated structures, we have carried out a systematic
global optimization investigation in the size range up to 42
molecules, using the basin-hoping method as our main tool. Two
complementary strategies have been employed, namely an all-
atom (AA) approach based on a rigid body description, and a
highly simplified, coarse-grained (CG) model averaging over all
possible orientations.

At the all-atom level, our calculations predict that adamantane
clusters are most stable as icosahedra until 14 molecules are
reached, and above which the structural arrangement becomes
close packed. The special stabilities in the mass spectra are
reproduced by the second-energy difference in our all-atom
model. At the coarse-grained level, differences appear already
above six molecules, although both the icosahedral and cubic
motifs at sizes 13 and 38 are correctly reproduced. Comparison
between the two models confirms the important role played
by the orientational degrees of freedom, despite adamantane
being of a rather high symmetry, and shows that the close-
packed structures are ideally composed of planes with alternating
molecular orientations, a feature that the coarse-grained model is
obviously unable to capture.

This paper is organized as follow. We present the potential
energy surfaces in section 2 and the methodology employed in
the global optimization in section 3. The results are discussed in
section 4, and we summarize our conclusions in section 5.

2. POTENTIAL ENERGY SURFACES

Complete global optimization using an explicit description
of electronic structure is unfeasible for systems containing
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hundreds or thousands of atoms, which furthermore can
adopt many nearly degenerate local minima. For the present
system, and using the model described just below, more than
20 local minima are found just for the adamantane dimer
within 2 kJ/mol of the putative global minimum. Moreover,
the interactions between neutral adamantane molecules are
essentially non-covalent in nature, a notorious issue in quantum
chemistry dealing with large molecules. However, the closed-
shell electronic structure of the adamantane molecule makes
classical force fields particularly attractive for modeling the
potential energy surface. A primary assumption usually made at
low temperatures relevant for cryogenic environments is to treat
the molecules as rigid bodies, with all vibrations frozen. In this
work, two models were considered for the interactions between
adamantane molecules.

2.1. All-Atom Model
Following the traditional approach of classical force fields,
we assume that adamantane molecules interact with each
other through a sum of pairwise forces comprising repulsion-
dispersion and Coulomb contributions. The interaction Vab

between two rigid adamantane molecules a and b is thus
expressed by a Lennard-Jones (LJ) part applied between all atoms
from a and b, plus electrostatic interactions between partial
charges originating from the electronegativity difference between
carbon and hydrogen atoms:

Vab =

∑

i,j>i

{

4εij

[

(

σij

rij

)12

−

(

σij

rij

)6
]

+
qiqje

2

4πε0rij

}

, (1)

where qi and qj are the partial charges on site i of molecule a and
site j of molecule b, respectively, rij is the Cartesian separation
between the two sites. In the above expression, all sums were
implicitly assumed to be between atoms from differentmolecules:
no intramolecular potential acts for such rigid molecules.

The LJ parameters between sp3 carbon and hydrogen atoms
are taken from the popular OPLS force field (Jorgensen et al.,
1996), and read εCC = 0.458 kJ/mol, εHH = 0.066 kJ/mol,
σCC = 3.4 Å, σHH = 2.649 Å, Lorentz-Berthelot combination
rules providing the complementary values for C-H interactions.
The partial charges on individual atoms and the equilibrium
geometry of isolated adamantane were obtained from a quantum
chemical calculation at the DFT/M06-2X/6-311G(d,p) level of
theory. They read qC = −0.71 and qH = +0.14 for carbon
and hydrogen atoms in CH2 groups, and qC = +0.70 and
qH = −0.055 for carbon and hydrogen atoms in CH groups, in
units of the electron charge magnitude.

2.2. Comparison With Electronic Structure

Calculations
To assess the accuracy and relevance of our simple force field,
we have performed dedicated quantum chemical calculations
for the adamantane dimer using various levels of theory.
Density-functional theory (DFT) is probably the most practical
method to deal with such molecules, and here we have
chosen the modern functionals PBE0 (Adamo and Barone,

1999), wB97xD (Chai and Head-Gordon, 2008), and M06-2X
(Zhao and Truhlar, 2008) as implemented in the Gaussian09
software package (Frisch et al., 2016). While PBE0 does not
include explicit dispersion corrections, it performs very well for
multipolar descriptions. Both wB97xD and M06-2X are expected
to describe non-covalent interactions satisfactorily. Perturbation
theory was also employed, using the spin-component-scaled
method SCS-MP2 (Grimme, 2003) with basis set superposition
errors accounted for using the counterpoise method, as
implemented in NWCHEM (Valiev et al., 2010). For these four
methods, the two basis sets 6-311G(d,p) and aug-cc-pvDZ were
employed independently.

From the resulting geometries, the basic geometric properties
of distance r between centers of mass and relative orientations
measured by the orientational order parameter κ , as defined
below in section 3.2, were evaluated. The interaction energy Eint
was also determined from the total energies of the optimized
monomer and dimer using the standard equation

Eint = Edimer − 2Emonomer, (2)

and the resulting values for r, κ and Eint are given in Table 1.
Unsurprisingly, we find a significant spreading among the

DFT results, with a marked dependence of the interaction energy
on the functional used, and notably a factor >4 between PBE0
and wB97xD results, SCS-MP2 and M06-2X data lying in-
between those extremes. The weaker binding predicted by PBE0
is consistent with this functional not properly accounting for
dispersion interactions. Basis set effects further contribute to
some variations, although with one magnitude lower. The strong
differences between the predictions of PBE0 and wB97xD are
comparable to those obtained earlier in other intermolecular
interactions problem involving fullerenes and hydrogen (Kaiser
et al., 2013; Calvo et al., 2018b).

The force field based on OPLS with multipolar contributions
obtained from partial charges derived from DFT performs
very satisfactorily against the not-so-extreme quantum chemical
predictions from M06-2X and SCS-MP2 both in terms of energy
and geometry. The good performance of the force field against the

TABLE 1 | Interaction energy and geometric properties of the adamantane dimer,
as predicted by different quantum chemical methods and by the present empirical
potential.

Method Eint (kJ/mol) r (Å) κ

DFT/PBE0/6-311G(d,p) −5.19 6.83 −0.31

DFT/PBE0/aug-cc-pvDZ −7.70 6.59 −0.33

DFT/wB97xD/6-311G(d,p) −21.33 6.05 −0.25

DFT/wb97xD/aug-cc-pvDZ −24.72 6.02 −0.26

DFT/M06-2X/6-311G(d,p) −12.97 6.14 −0.27

DFT/M06-2X/aug-cc-pvDZ −17.66 6.07 −0.27

SCS-MP2/6-311G(d,p) −9.97 6.26 −0.31

SCS-MP2/aug-cc-pvDZ −8.81 6.66 −0.26

Force field −14.92 6.22 −0.36

The orientational order parameter κ is defined in section 3.2.
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Minnesotta functional M06-2X is also consistent with an earlier
study on microhydrated RNA precursors (Bacchus-Montabonel
and Calvo, 2015) where this quantum chemical method was
found to perform better than MP2 against coupled cluster
reference data. Together with the difficulty of obtaining more
accurate electronic structure properties for the present 52-atom
dimer system, these results indicate that our simple model is
chemically reliable.

2.3. Coarse-Grained Model
The high symmetry of adamantane encourages us to attempt
a simplified description based on a coarse-grained model
of the previous all-atom potential. Such an approach has
been highly successful in the past for isotropic molecules
such as C60, for which simple analytical expressions can
be obtained for the integrals (Girifalco, 1991). Here we
consider a spherical pointlike version, in which the effective
potential is obtained by spherical averaging over the relative
orientations of the two molecules, at fixed distance between
their centers of mass. Averaging was performed using a
random sampling procedure employing 106 independent
orientational configurations.

In Figure 1, the variations of the CG potential are
represented against increasing distance, together with the
geometry of the equilibrium adamantane dimer obtained at the
AA level.

The energy and equilibrium position in the AA model, also
highlighted in the figure, show that the CGmodel underestimates
the binding energy by about one order of magnitude, owing to
the strong repulsion between peripheral hydrogen atoms, and
presents an equilibrium position at a larger distance. The effective
potential is very steep, as also expected for an interaction between
sizeable molecules. It has thus an effectively short range, which
should favor close packing (Doye et al., 1995).

FIGURE 1 | Spherically averaged potential energy curve of the adamantane
dimer (red circles) and its best fit giving the coarse-grained potential (black
line). The minimum energy in the all-atom model is shown as a blue circle, and
the inset highlights the distance range where the potential is minimum. The
tetrahedral symmetry of adamantane molecules in the dimer geometry is also
shown.

The CG potential can be fitted into a simple expression only
dependent on the interparticle distance r as

Ṽab = A exp[−α(r − r0)]− fcut

(

C6

r6
+

C8

r8

)

, (3)

with a short-range cut-off function fcut that reads

fcut =

{

exp
[

−(1− d/r)2
]

if r < d

1 if r ≥ d
(4)

The optimal parameters of the CG potential were found
to be A = 0.0468 kJ/mol, α = 8.86 Å−1, r0 = 9.405 Å,
C6 = 423040.5 kJ· mol−1

·Å6, C8 = 56522581.1 kJ· mol−1
·Å8,

d = 8 Å.

3. GLOBAL OPTIMIZATION

The global energy minima were located using the basin-hopping
(BH) or Monte Carlo plus minimization method (Li and
Scheraga, 1987; Wales and Doye, 1997). The implementation of
BH for adamantane clusters differs for the AA and CG potentials
due to the presence of orientational degrees of freedom for the
former.

3.1. Survey by Basin-Hopping
Basin-hopping is a stochastic algorithm that transforms the PES
into a collection of basins of attraction and explore them by
random large amplitude, collective moves between minima. This
transformed PES preserves all local minima, including the global
minima, and the search proceeds by successive applications of the
Monte CarloMetropolis acceptance rule to the locally minimized
energies. The BH method has been successfully applied to a
plethora of atomic andmolecular clusters in the past (Wales et al.,
2000; Wales, 2003).

For the CG potential, only translational moves have to be
considered, and several series of 105 local minimizations were
carried out for each cluster size, the fictitious temperature
parameter being set such as kBT = 0.5 kJ/mol. No strong
influence of this parameter was found here.

For the AA model, the translational and rotational moves
can be either managed on a similar footing, or distinguished
from one another. In the most general version, a random move
thus consists of perturbing all positions of the centers of mass
and rotating the molecules, both displacements being performed
simultaneously before local minimization is carried out. Here we
have chosen to represent the orientational degrees of freedom

using angle-axis coordinates Ek = (n, ℓ,m), a vector that defines
a rotation axis passing through the center of mass and with
magnitude of the rotation given by θ =

√

n2 + ℓ2 +m2,
relative to a fixed reference frame. This angle-axis representation
provides a general framework for rigid body isotropic site-site
potentials (Wales, 2005; Chakrabarti and Wales, 2009). The
advantage of angle-axis coordinates is that they do not suffer
from the so-called gimbal lock problem appearing with Euler
angles when rotational axes can become equivalent. Using
this framework, the orientational moves consist of perturbing
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all components of the angle-axis vector producing a new

orientation, Ek′ = (n′, ℓ′,m′), but with the constraint that the new
angle θ

′
=

√

n′2 + ℓ′2 +m′2 remains between 0 and 2π .
Test runs performed for the 12-molecule cluster and

employing 5 × 104 BH steps allowed us to evaluate suitable
parameters for the basin-hopping optimizations with the AA
model, namely kBT = 1.5 kJ/mol, giving an acceptance ratio of
about 20%. Unfortunately, above size 21 the algorithm was found
less efficient, and lower-energy structures could be occasionally
found simply by removing molecules from neighboring size
clusters and conducting short BH runs. We thus implemented an
alternative strategy in which the centers of mass positions were
borrowed from the CGminima, purely orientational moves being
allowed in the subsequent BH minimization. Here only 104 BH
collective steps were performed for each cluster size.

The results reported below are thus the results of three
combined approaches relying on basin-hopping but altering
the entire set of degrees of freedom, only the orientations, or
exploring the random removal of one molecule followed by
further local search. The orientational minimization was also
used to produce all-atom clusters with a specific translational
ordering but lying in a different funnel as the global minimum.
In practice it allowed us to generate icosahedral and cubic clusters
in a broader size range, providing further insight into the related
structural transition. In all our BH searches, the geometry was
reset to the local minimum before a random perturbation was
attempted again.

3.2. Structural Indicators
For the analysis of cluster minima, different order parameters
and structural indicators were considered to probe the extent of
translational and orientational orderings. The bond-orientational
order parameter Q6 involves the relative positions of the
molecular centers of mass and is useful to discriminate
icosahedral and cubic packings (Calvo et al., 2018a). It is
defined as

Q6 =

(

4π

13

m=6
∑

m=−6

∣

∣Q̄6m

∣

∣

2

)1/2

, (5)

where

Q̄6m =
1

Nb

∑

rij<7.5 Å

Y6m(θij,φij), (6)

Nb being the number of bonds defined when the distance between
of center of masses of two adamantane molecules is lower than
7.5 Å. Y6m(θij,φij) is the spherical harmonic function of degree 6
and orderm. TheQ6 parameter can be evaluated for both the AA
and CG structures.

An orientational order parameter respecting the tetrahedral
symmetry of adamantane was constructed to measure the extent
of alignment within the clusters. More precisely, and following
Fel (Fel, 1995), for each molecule a we associate four unit vectors

En
(a)
k

pointing along the four tetrahedral directions, with Cartesian

coordinates n
(a)
k,α

with α = x, y, and z. From these coordinates a

3-rank tensor Q
(a)
3 is constructed as

Q
(a)
3,α,β ,γ =

4
∑

k=1

n
(a)
kα
n
(a)
kβ
n
(a)
kγ
. (7)

For a set of molecules, an orientational order parameter κ that
is tetrahedrally invariant is defined by considering the pairs of
nearest-neighbor molecules as

κ =
9

32nnn

∑

a<b,rab<7.5 Å

Tr Q
(a)
3 Q

(b)
3 , (8)

where nnn is the number of nearest-neighbor molecules.
The prefactor ensures that κ = 1 if all molecules are
tetrahedrally aligned.

In addition to purely geometric indicators, energetic
parameters were also evaluated to measure the relative
stability of the clusters, and quantify the role of orientational
strain (vide infra).

4. RESULTS

The putative global minima of adamantane clusters were
obtained with full atomistic details up to size 42. All structures
are available in the Supplementary Material. The much less
expensive coarse-grained model was able to provide reliable
structures in a significantly broader range, although the trends
above 42 remain essentially unchanged and will not be discussed
specifically.

4.1. Energetic Stability
To estimate the relative stability of different cluster sizes,
we evaluated the second-energy derivative of the PES,
1

2E(N) = EN+1 + EN−1 − 2EN , where EN is the energy of
the global minimum for (C10H16)N . Maxima in 1

2 correspond
to clusters with enhanced stability, and are thus closely related
to special abundances experimentally measured by mass
spectrometry.

The variations of 12E with increasing size N are presented in
Figure 2, as obtained by both the AA and CG models.

From this figure it is clear that the two models do not predict
the same special stabilities in the entire size range considered,
except at N = 38. Prominent peaks in the AA model at N = 13,
19, 24, or 29 are not present in the coarse-grained description,
and in the range around 30 the differences are rather systematic
between the AA and CG models.

The energetic data obtained with atomistic details are
essentially consistent with experimental data, indicating that our
modeling of adamantane clusters is realistic. The contrasted
behaviors between the two models suggest that the mutual
orientations of the adamantane molecules play a significant role
on the cluster structures.

4.2. Main Structural Motifs
Selected structures obtained with the AA and CG models are
presented in Figure 3, notably for N = 13 and 38 but also
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N = 14, 15 and N = 26, which illustrate the differences between
the two descriptions. While the true atomic positions are used
for the AA structures, we used fuzzy tetrahedra to represent the
adamantane molecules in the CG model.

For N = 13, the structure in both models corresponds to
an icosahedral packing, however for the CG model the structure
does not strictly belong to the Ih point group, the symmetry
being lowered due to the important strain within the cluster. In
the AA description the molecules manage to adopt appropriate
orientations that bring the translational structure closer to the
perfect icosahedron.

At size 14 both models predict a qualitatively different
structural motif, as a capped icosahedron with all atoms,
but showing a decahedral arrangement after coarse-graining.

FIGURE 2 | Second-energy derivative vs. cluster size for the all-atom and
coarse-grained models.

Decahedral motifs are known to occur as an intermediate packing
scheme on the way from the highly coordinated, but highly
strained icosahedra to the low coordinated and weakly strained
close packed structures (Doye et al., 1995). Their presence in the
CG model is thus not accidental.

At size 15 the all-atommodel now predicts a cubic motif while
the isotropic potential still yields a (doubly capped) decahedron.
The cubic translational arrangement is preserved at sizes 16
and beyond, while the coarse-grained model further experiences
some structural changes. At sizes 26 and above, bothmodels favor
close-packed cubic structures, leading to the perfect truncated
octahedron at N = 38 as a strong magic number. These
results thus support the interpretation of experimental mass
spectra from the Scheier group (Goulart et al., 2016), namely
that adamantane clusters exhibit icosahedral and cubic packing
as their main structural motifs, at low and large sizes, respectively.
Our results indicate that icosahedral packing is the dominant
motif only up toN = 14, and that orientational effects are already
non-negligible at this size.

4.3. Structural Analysis
To shed more light onto the respective roles of translational and
orientational orderings on the stable structures of adamantane
clusters, and to clarify the effects of coarse-graining, we now
consider the structural order parameters introduced in section
3.2 in comparison between the two models. Near size 14
where the icosahedral-cubic transition takes place, additional
but metastable structures were generated as belonging to the
icosahedral and cubic families, by performing basin-hopping
global optimization with orientational moves only.

The bond-orientational order parameter Q6 is shown against
increasing cluster size for both models in Figure 4.

Within the all-atom description, Q6 exhibits irregular,
essentially decreasing variations during the completion of

FIGURE 3 | Remarkable structures obtained for selected adamantane clusters with 13–15, 26, and 38 molecules, in the all-atom and coarse-grained models.
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icosahedral packing at N = 13. Above this size, Q6 reaches
about 0.58 and stays constant at this value, indicating that the
face-centered cubic structure is robust and regular with no point
defect or stacking fault.

In the CG model, Q6 displays the same value as in the AA
description up to size 7, indicating that translational structures
are identical. Differences above the critical size of N = 14 show
that the cubic packing is less ideal for the CG model, except near
size 40 where Q6 reaches the same value as in the AA model.
As confirmed by visual inspection along the lines of Figure 3,
decahedral packings are often found, with a signature on Q6

being lower than ∼0.4, except for N = 24–28, N = 34, and
N > 36 for which the cubic motif is lower in energy, Q6 being
also higher.

The differences between the AA and CG models further
support that orientational ordering plays a role in establishing the
close-packed translational ordering itself. To further explore this
aspect, the order parameter κ was evaluated for atomistic global
minima, the results of which are depicted in Figure 5 against
cluster size.

Similar to Q6, the orientational order parameter displays
irregular variations during the completion of the icosahedron
at N = 13, with positive and negative values alike. The
tetrahedra in this size range thus do not possess any robust
and specific orientational preference. Once the cubic packing is
set at N ≥ 15, and as was the case for the translational order
parameter, κ reaches an essentially constant value close to−0.25,
with fluctuations of magnitude no greater than 0.05.

This stability further indicates that the clusters adopt a
constant growth scheme. However, the negative value of κ also
shows that the tetrahedral molecules do not display a single,
common orientation within the cluster, as otherwise κ would be
closer to unity. To illustrate the specific orientational ordering,
we have represented in Figure 6 another set of clusters obtained
for both the AA and CG models, and chosen at sizes for which

FIGURE 4 | Bond-orientational order parameter Q6 obtained from the relative
positions of the centers of mass of adamantane clusters in the all-atom and
coarse-grained models. The values obtained for metastable icosahedral and
cubic conformations near the corresponding transition are also shown.

the AA description predicts special stabilities, namely 19, 24,
and 29. In the AA model, the atomic details were replaced by
equivalent tetrahedra, contrasting with the fuzzy tetrahedra in the
CG model.

In this size range, the coarse-grained potential predicts both
decahedral (19 and 29) and cubic (24) motifs. The structures
obtained with the AA model show the same close-packed
motif, with clusters of a given size that are subparts of larger
global minima. More interestingly, and as suggested by the
indicators previously discussed, the molecules show two different
possible orientations that alternate between planes in the largest

FIGURE 5 | Tetrahedral order parameter κ between nearest-neighbor
molecules in adamantane clusters, as obtained from the all-atom model. The
values obtained for metastable icosahedral and cubic conformations near the
corresponding transition are also shown.

FIGURE 6 | Selected adamantane clusters for which the second energy
derivative shows peaks in the 19–29 size range. In the all-atom model,
molecules were replaced by their equivalent tetrahedra to emphasize
orientational ordering.
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clusters. While molecules with the same orientation within
a same plane are next nearest neighbors, nearest-neighbor
molecules precisely belong to different planes and present parallel
contact faces.

However, in the dimer at equilibrium (see Figure 1), the
two tetrahedra do not display such a relative orientation, and
instead rotate in order to maximize dispersive attractions while
minimizing Coulomb repulsion between the (positively charged)
peripheral hydrogens. In clusters, this difference in relative
orientations gives rise to orientational strain (Calvo et al., 1999),
which the system exploits to minimize the overall energy while
deviating from the ideal orientations that would be adopted in
absence of environment.

We have quantified the importance of strain in adamantane
clusters by removing from their total potential energy the
contribution between nearest-neighbor pairs, as if these pairs
were at equilibrium (including their orientational degrees of
freedom) (Doye et al., 1995). Omitting the contribution of non-
nearest neighbors, the strain energy Vstrain reads

Vstrain =

nn only
∑

a<b

Vab − nnnVmin, (9)

where Vmin denotes the minimum energy in the dimer at
equilibrium.

In order to compare the two models, we have deemed more
suitable to further normalize the strain energy by the magnitude
of the dimer binding energy, considering thus a strain factor
Vstrain/|Vmin| instead of the absolute strain energy. The variations
of the strain factor with increasing size are represented in
Figure 7 for both models.

With the coarse-grained description, which ignores
orientational degrees of freedom, most structures are either
icosahedral or decahedral and thus exhibit moderate strain

FIGURE 7 | Strain energy normalized by dimer energy, as a function of cluster
size and for the all-atom and coarse-grained models. The equivalent
tetrahedra in the equilibrium dimer geometry are depicted. The values
obtained for metastable icosahedral and cubic conformations near the
corresponding transition are also shown.

(Doye et al., 1995), cubic packings being characterized with a
very low strain factor. In this respect, the strain factor is an even
more direct probe of close packed structures than Q6 previously
considered.

In contrast, the all-atom model shows strongly increasing
strain as the cluster size increases, with a peak at N = 14
and a change in slope above this size. The growing strain
conveys the inability of the adamantane molecules to respect
their ideal mutual orientation in the equilibrium dimer. However,
in fairness it should be recognized that this orientation is not
so meaningful as soon as the cubic motif is established. If
instead of the equilibrium dimer we had artificially chosen the
orientations between nearest neighbor in close-packed clusters
to define the strain energy, the strain factor would be much
reduced and similar to the value in the CG model, but the
values in icosahedral structures would become negative and
less physical.

5. CONCLUDING REMARKS

The remarkable thermodynamical and chemical stability of
adamantanemakes it a valuable building block of supramolecular
materials, including non-covalent molecular clusters. Recent
mass spectrometry measurements under the cryogenic
conditions of helium droplets have found magic numbers
for cationic adamantane clusters at the sizes of 13, 19, and 38
molecules, as well as others higher suggesting close packed
geometries (Goulart et al., 2016). In the present work, we have
modeled (neutral) adamantane clusters using a rigid body
description and a site-site pairwise force field comprising the
traditional Lennard-Jones potential for repulsion-dispersion
forces with Coulomb interactions acting between partial charges.
A spherically averaged coarse-grained model was also developed,
producing an effective pair potential that allows an efficient
exploration of the translational structure of adamantane clusters.
The all-atom force field was successfully validated against
quantum chemistry calculations, which incidentally highlighted
the difficulty of producing accurate and reliable interaction
energies and geometries for such rather large non-covalent
edifices.

Using the basin-hopping algorithm, the putative global
minima of (C10H16)N clusters were found to follow icosahedral
packing up to N = 14 and sharply change into close-packed
cubic structure above this size. Translational and orientational
order parameters indicate that cubic structures are stabilized by
having molecules with two possible orientations in alternating
planes. This feature is obviously absent with the CGmodel, which
predicts numerous decahedral structures in the intermediate
range 14–35, before the structure eventually also adopts the close-
packed cubic motif; this intermediate decahedral phase is absent
from the all-atom structures.

Comparison between the all-atom and coarse-grained models
highlights and explains the importance of orientational strain
in the structure of adamantane clusters, in particular the
sharp transition toward the cubic motif which arises due to
a combination between the short range of the potential and
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the optimal orientations presented by the nearest-neighbor
molecules with tetrahedral facets parallel to one another.

Here we have neglected the cationic nature of the adamantane
clusters in the mass spectrometry experiments, but in a first
approximation it could be accounted for by adding a polarization
contribution and assuming the N-molecule cationic cluster to
be made of a single cationic molecule surrounded by N − 1
neutral ones. Such an additional contribution would bind the
first solvation shell more strongly, possibly leading to some
structural distortion, and could even modify the details of the
icosahedral-to-cubic transition, but would probably not change
the qualitative picture or the special stabilities found at 13
or 38. Further efforts should also be devoted to making the
basin-hopping optimization method even more efficient for the
present clusters. Although we have focused on the chemical
physics rather than the algorithmic efficiency, it was clear
that basin-hopping in its conventional approach was struggling
to locate the correct molecular orientations in medium- to
large-size clusters. Having analyzed the structures, such a
deceiving efficiency appears more clearly and is most likely due
to the collective nature of the orientational ordering in the
clusters, where the orientation is constant within a plane but
alternates between planes. Tailored moves that incorporate such
a specificity should enable much larger clusters to be addressed in
the future.
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Structural, thermodynamic, and vibrational characteristics of water clusters up to six

water molecules incorporating a single sodium ion [Na+(H2O)n (n = 1–6)] are calculated

using a comprehensive genetic algorithm combined with density functional theory on

global search, followed by high-level ab initio calculation. For n≥ 4, the coordinated water

molecules number for the global minimum of clusters is 4 and the outer water molecules

connecting with coordinated water molecules by hydrogen bonds. The charge analysis

reveals the electron transfer between sodium ions and water molecules, providing

an insight into the variations of properties of O–H bonds in clusters. Moreover, the

simulated infrared (IR) spectra with anharmonic correction are in good agreement with the

experimental results. The O–H stretching vibration frequencies show redshifts comparing

with a free water molecule, which is attributed to the non-covalent interactions, including

the ion–water interaction, and hydrogen bonds. Our results exhibit the comprehensive

geometries, energies, charge, and anharmonic vibrational properties of Na+(H2O)n (n =

1–6), and reveal a deeper insight of non-covalent interactions.

Keywords: hydrated sodium cluster, stabilization energy, anharmonic effect, IR spectra, natural bond orbital

INTRODUCTION

Hydrated ion clusters widely exist in oceans and living organisms, especially hydrated sodium ion
clusters, which are important in the control of blood pressure, cell permeability, neuronal activity,
and other somatic functions (Jensen, 1992; Feller et al., 1994; Pohl et al., 2013). Understanding
the behavior of hydrated sodium ion clusters is helpful to uncover the mechanism of some key
biochemical reactions (Mano and Driscoll, 1999; Snyder, 2002; Dudev and Lim, 2010; Payandeh
et al., 2011). A number of experimental (Dzidic and Kebarle, 1970; Tang and Castleman, 1972;
Schulz et al., 1986, 1988; Blades et al., 1990; Hertel et al., 1991; Patwari and Lisy, 2003; Vaden
et al., 2004; Mancinelli et al., 2007) and theoretical (Perez et al., 1983; Arbman et al., 1985;
Lybrand and Kollman, 1985; Cieplak et al., 1987; Probst, 1987; Bauschlicher et al., 1991; Dang
et al., 1991; Perera and Berkowitz, 1991; Hashimoto and Morokuma, 1994; Glendening and Feller,
1995; Kim et al., 1995; Ramaniah et al., 1998; Carrillo-Tripp et al., 2003; Lee et al., 2004; Rao
et al., 2008; Neela et al., 2012; Biring et al., 2013; Dinh et al., 2014; Soniat et al., 2015; Fifen and
Agmon, 2016) studies on hydrated sodium ion clusters have been reported, particularly on the
global minima. A global minimum can be determined by obtaining the stabilization energies of
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isomers. In experiments, comparing enthalpies is the most
direct method to obtain thermodynamic information to deduce
stabilization energies. With a high-pressure mass spectrometer
containing a thermionic alkali ion source, Dzidic and Kebarle
reported the enthalpies and entropies of hydrated sodium ion
clusters for n = 1–6 in gas phase (Dzidic and Kebarle, 1970).
With the hydration number increasing, the binding energy per
water molecule decreases. Glendening and Feller calculated the
stabilization energies and stabilization enthalpies of Na+(H2O)n
(n = 1–6) at various levels of theory (Glendening and Feller,
1995), in which the RHF and MP2 levels with the 6-31+G∗ basis
set reproduced the experimental values obtained by Dzidic and
Kebarle well (Dzidic and Kebarle, 1970).

For the structures of hydrated sodium ion clusters, the
coordination number is of particular appeal to studies in different
phases. In liquid water, the coordination number of a sodium
ion is about 5.5 ± 0.5 based on molecular dynamics simulation
(Mancinelli et al., 2007; Megyes et al., 2008; Bankura et al., 2013,
2014; Lev et al., 2013; Galib et al., 2017; Liu et al., 2019). However,
in gas-phase clusters, the coordination number is 4 from ab
initio calculations at 0 K (Kim et al., 1995; Neela et al., 2012;
Soniat et al., 2015; Fifen and Agmon, 2016). The structures of
Na+(H2O)n (n = 1–4), all the water molecules surrounding the
sodium ion, were firstly reported by Bauschlicher et al. from ab
initio calculation (Bauschlicher et al., 1991). For Na+(H2O)5,
4+1+0 (the structures of isomers are presented in the form
of n1+n2+n3, where n1, n2, and n3 are the numbers of
water molecules in the first, second, and third solvation shells,
respectively) is supported as the global minimum by most ab
initio calculations at 0 K (Hashimoto and Morokuma, 1994; Kim
et al., 1995; Lee et al., 2004; Rao et al., 2008; Neela et al., 2012;
Biring et al., 2013; Soniat et al., 2015; Fifen and Agmon, 2016),
and 5+0+0 is deemed to be concomitant with 4+1+0 at 298K
(Kim et al., 1995; Fifen and Agmon, 2016). For n = 6, at 0 K,
several recent ab initio calculations stated that 4+2+0 (with
D2d symmertry) is the global minimum (Lee et al., 2004; Rao
et al., 2008; Biring et al., 2013; Soniat et al., 2015; Fifen and
Agmon, 2016), which was proposed by Lybrand and Kollman
(1985) based on RWK2 potential (Reimers et al., 1982). However,
Neela et al. sustained 5+1+0 to be the global minimum for n
= 6 calculated at MP2/cc-pVTZ level of theory (Neela et al.,
2012). At room temperature, Kim et al. found that 5+1+0
possesses better stability than 4+2+0 by HF/TZ2P (Kim et al.,
1995). Differently, Fifen and Agmon indicated that 4+1+1 is
dominant, calculated at MP2/6-31++G(d,p) (Fifen and Agmon,
2016).

The infrared (IR) spectra are available in distinguishing the
cluster isomers. For hydrated sodium ion clusters, the feature
peaks of O–H stretching mode could accurately provide the
structure information of clusters (Huang and Miller, 1989;
Patwari and Lisy, 2003; Vaden et al., 2004; Miller and Lisy,
2008a,b; Ke et al., 2015), in which the non-covalent interactions,
including ion–water interaction and hydrogen bond, weaken
the O–H bonds, causing redshifts for O–H stretching vibration
modes and producing different feature peaks for different
structures (Muller-Dethlefs and Hobza, 2000; Vaden et al., 2002,
2004, 2006; Kozmutza et al., 2003; Bush et al., 2008; Miller

and Lisy, 2008a), Using a custom-built, triple-quadrupole mass
spectrometer as well as ab initio calculations, Lisy et al. reported
the IR spectra of Na+(H2O)n (n= 2–5) and Na+(H2O)nAr (n=

2–5) (Miller and Lisy, 2008a,b; Ke et al., 2015). For n= 4, 3+1+0
is the stable structure with bent hydrogen bonds (Miller and Lisy,
2008a). Recently, through straightforward IR spectra for n = 5,
they speculated that 4+1+0 and 3+1+1 could be concomitant at
75K (Ke et al., 2015).

In spite of many works having been conducted for
Na+(H2O)n (n = 1–6), the global minima of n = 4–6 remains
unclear. Moreover, the non-covalent interaction and electron
transfer in hydrated sodium ion clusters have not been discussed
in detail, which can elucidate the principle of the shifts of O–H
stretching frequency. In this paper, the comprehensive genetic
algorithm combinedMP2method is used to determine the global
minima of Na+(H2O)n (n= 1–6) and simulate their anharmonic
vibrational frequencies. Furthermore, charge transfer inside the
clusters through NBO analysis and charge density difference
are contained, aiming to reveal the principle of non-covalent
interactions effecting on the O–H bonds.

METHODS

In this work, some of the structures of the Na+(H2O)n (n = 1–
6) clusters are adopted from previous literatures (Bauschlicher
et al., 1991; Glendening and Feller, 1995; Ke et al., 2015;
Fifen and Agmon, 2016). To obtain more isomers for n = 4–
6, a global search with the comprehensive genetic algorithm
(CGA, Zhao et al., 2016) combined with DMol3 program
(Delley, 2000) based on DFT was executed. The CGA method
is described in our previous review in detail (Zhao et al., 2016).
For each cluster size with n ≥ 4, we took 10 independent
global searches, and for each search, we maintained mating and
mutation operations on a population of eight members of up
to 3000 GA iterations. Since the Becke-Lee-Yang-Parr (BLYP,
Becke, 1988; Lee et al., 1988) functional would provide similar
relative energies to MP2 (Møller and Plesset, 1934) method
(see Table S1), the generalized gradient approximation (GGA)
with the BLYP functional and p- and d- polarization functions
(DNP) basis sets were employed to optimize the clusters’ isomers
in CGA search without symmetry constraint. Considering the
calculation cost, zero-point energy (ZPE) was not contained in
global search.

Our previous work proved that MP2 is a reasonable method
to obtain the energies and properties of small hydrogen-bonded
systems (Liu et al., 2013; Shi et al., 2017, 2018). Since the
geometrical optimization at augmented correlation-consistent
polarized valence double-zeta (aug-cc-pVDZ, Dunning, 1989;
Kendall et al., 1992) and aug-cc-pVTZ provide almost the
same structures (see Table S2), MP2/aug-cc-pVDZ method was
utilized to optimize the isomer structures. Single-point energies
of these clusters were computed at MP2/aug-cc-pVQZ and
MP2/aug-cc-pVDZ levels.

Within harmonic approximation, MP2 calculation usually
overestimates the frequencies relative to the experiment,
especially for the high frequencies in IR spectra, and may

Frontiers in Chemistry | www.frontiersin.org 2 September 2019 | Volume 7 | Article 62463

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Wang et al. Hydrated Sodium Ion Clusters

leave out some peaks. Hence, we calculated the IR spectra with
anharmonic correction at MP2/aug-cc-pVDZ level at 298K via
second-order vibrational perturbation theory (VPT2, Barone,
2005; Barone et al., 2010), as well as to obtain ZPE and thermal
correction at 298 K.

For visualizing the bonding strength between the two atoms
intuitively, NBO (Carpenter and Weinhold, 1988; Reed et al.,
1988) was calculated at MP2/aug-cc-pVQZ level, as well as
to obtain the Wiberg bond order (Wiberg, 1968). All the
calculations aforementioned were performed in the Gaussian 09
package (Frisch et al., 2013).

Charge density differences of 1+0+0, 2+0+0, 3+0+0,
3+1+0, 4+0+0, and 4+1+0 were calculated using GGA and
Perdew–Burke–Ernzerhof (PBE, Perdew et al., 1996) functional,
the projector-augmented wave potentials (Blochl, 1994) with an
energy cutoff of 500 eV, as implemented in Vienna Ab-initio
Simulation Package (VASP, Kresse and Furthmuller, 1996). Only
Ŵ point is k-point with a vacuum layer of over 15 Åwas employed
in our calculation. The charge density difference is given by:

1ρ = ρcluster − ρNa+ − ρH2O (1)

where ρcluster , ρNa+ , and ρH2O are the charge density
of entire hydrate cluster, sodium ion and all the water
molecules, respectively.

RESULTS AND DISCUSSION STRUCTURES

We re-optimized all the isomer clusters obtained from CGA
search using the MP2/aug-cc-pVDZ method. The optimized
structures and symmetries of Na+(H2O)n (n = 1–6) are present
in Figure 1. Due to the high computational cost, we used the
total energies computed at theMP2/aug-cc-pVQZ//MP2/aug-cc-
pVDZ+ZPE level to rank the energy order of all the isomers.
Table 1 lists the relative energies at 0 K and 298K calculated
at MP2/aug-cc-pVQZ, MP2/aug-cc-pVDZ, and BLYP/DNP
levels, respectively.

For n = 1–3, the global minima, i.e., 1+0+0, 2+0+0, and
3+0+0, all the water molecules surround the sodium ions and
locate at equivalent positions without hydrogen bonds, which are
similar to those in previous reports (Hashimoto and Morokuma,
1994; Kim et al., 1995; Rao et al., 2008; Neela et al., 2012; Soniat
et al., 2015; Fifen and Agmon, 2016).

For n = 4, CGA has located 3+1+0 and 4+0+0 isomers.
Among them, 3+1+0 was the better result in all ten CGA
global searches, which possesses lower energy than 4+0+0
without ZPE correction (see Table S1). In most previous
reports by ab initio calculations, 4+0+0 was argued to be
the most stable of the structures (Hashimoto and Morokuma,
1994; Kim et al., 1995; Ramaniah et al., 1998; Lee et al.,
2004; Rao et al., 2008; Kamarchik et al., 2011; Neela et al.,
2012; Fifen and Agmon, 2016), whereas Miller and Lisy
reported that the IR spectrum of Na+(H2O)4 is similar to
that of 3+1+0 at 300K (Miller and Lisy, 2008a). From
Table 1, at 0 K, our MP2 calculation manifests that 4+0+0 is
lower in energy by 1.36 kcal/mol, while 4+0+0 and 3+1+0
possess almost equal energies at 298K. As shown in Figure 1,

TABLE 1 | Relative energies (in units of kcal/mol) of Na+(H2O)n (n = 1–6) at 0K

and 298K calculated at MP2/aug-cc-pVQZ, MP2/aug-cc-pVDZ and BLYP/DNP

levels, respectively.

MP2/aug-cc-pVQZ MP2/aug-cc-pVDZ BLYP/DNP

0 K 298 K 0 K 298 K 0 K 298 K

1+0+0 0 0 0 0 0 0

2+0+0 0 0 0 0 0 0

3+0+0 0 0 0 0 0 0

4+0+0 0 0 0 0 0 0

3+1+0 1.36 0.04 3.30 1.98 3.32 2.00

4+1+0 0 0 0 0 0 0

3+1+1 2.00 1.48 3.61 3.09 2.68 2.16

3+2+0(1) 2.09 1.50 3.18 2.59 2.47 1.88

5+0+0(1) 2.77 2.51 2.53 2.28 4.16 3.90

5+0+0(2) 2.99 2.41 3.52 2.94 4.81 4.22

3+2+0(2) 2.99 2.68 3.95 3.64 3.55 3.24

4+2+0(1) 0 0 0 0 0 0

4+1+1 1.05 1.72 0.73 1.41 0.14 0.81

4+2+0(2) 1.25 1.40 1.15 1.31 1.63 1.79

4+2+0(3) 2.22 0.76 4.58 3.12 4.48 3.02

5+1+0(1) 2.30 2.15 2.22 2.08 3.76 3.61

4+2+0(4) 3.45 3.28 3.57 3.40 3.37 3.20

6+0+0 4.19 3.92 3.93 3.67 6.56 6.30

5+1+0(2) 4.32 4.66 4.45 4.79 5.10 5.43

4+0+0 has four equivalent water molecules surrounding the
sodium ion, while 3+1+0 is evolved by 3+0+0 connecting
a water molecule with two coordinated water molecules by
hydrogen bonds.

For n = 5, six isomers are contained in our calculation:
4+1+0, 3+1+1, two 3+2+0 structures, and two 5+0+0
structures with different symmetries. 4+1+0 was the best
structure in all ten CGA searches, and had the lowest energy
at 0 K. 3+1+1, 3+2+0(1), and 5+0+0(1) possess the relative
energies of 2.00, 2.09, and 2.77 kcal/mol, respectively. Besides,
3+2+0(2) and 5+0+0(2) have equal relative energies of 2.99
kcal/mol. At 298K, 5+0+0(2) possesses a lower energy than
5+0+0(1), and the energetic order of the other isomers
doesn’t change. At the BLYP/DNP level of theory, 3+2+0(1)
becomes the second lowest energy structure, and 3+2+0(2)
has lower energy than 5+0+0(1) and 5+0+0(2) at 0 K. In
Figure 1, it is noteworthy that the global minimum structure
4+1+0 has an extra water molecule located at outer shell of
4+0+0. 3+1+1 structure has a water molecule connecting
with the outer water molecule in 3+1+0 via a hydrogen
bond. Similarly, 3+2+0(1), with Cs symmetry, has a water
molecule connecting the isolated coordinated water molecule in
3+1+0, and 3+2+0(2) has a water molecule located beside a
coordinated water molecule with a hydrogen bond of 3+1+0.
5+0+0(1) structure has three water molecules form a water
cycle via hydrogen bonds, and the other two coordinated water
molecules are isolated opposite the water cycle. Differently,
5+0+0(2) has only one isolated coordinated water molecule,

Frontiers in Chemistry | www.frontiersin.org 3 September 2019 | Volume 7 | Article 62464

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Wang et al. Hydrated Sodium Ion Clusters

FIGURE 1 | The structures and symmetries of Na+(H2O)n (n = 1–6) optimized at MP2/aug-cc-pVDZ level of theory. Blue, red, and green balls denote hydrogen,

oxygen, and sodium atoms, respectively. The black dashed lines represent hydrogen bonds.

with the other four water molecules constituting a quaternary
water cycle.

For n = 6, we found eight isomers, 4+1+1, 6+0+0, two
5+1+0 structures, and four 4+2+0 structures with different
symmetries: D2d, Cs, C2, and C1. In all ten CGA searches,
4+2+0(3) had the best solution with the lowest energy at
MP2/aug-cc-pVQZ without ZPE (see Table S1). From Table 1,
at 0 K, 4+2+0(1) has the lowest energy, while the relative
energies of 4+1+1 and 4+2+0(2) are 1.05 and 1.25 kcal/mol,
respectively. The other five isomers possess relative energies
of over 2 kcal/mol. At 298K, 4+2+0(3) becomes the second
lowest energy structure rather than 4+1+1, with the relative
energy of only 0.76 kcal/mol. Four isomers with four coordinated
water molecules have lower stabilization energies both at 0 K
and 298K, indicating that four coordination is more favorable
for n = 6. Compared to MP2/aug-cc-pVQZ, the calculations
at BLYP/DNP shows that 4+2+0(4) has lower energy than

4+2+0(3) and 5+1+0(1). Besides, 6+0+0 possesses the highest
relative energy of 6.56 kcal/mol, which is obviously higher than
the total energy interval at MP2/aug-cc-pVQZ (4.32 kcal/mol).
Combining with the relative energies of n = 5, BLYP/DNP gives
the same global minima and similar energetic order to MP2/aug-
cc-pVQZ. However, BLYP/DNP would overestimate the energies
of the 5 and 6 coordinated structures, indicating that the CGA
search tends to provide the isomers with 3 and 4 coordinated
water molecules. Since the previous ab initio calculations show
that the coordination number is 4 at 0 K (Kim et al., 1995; Neela
et al., 2012; Soniat et al., 2015; Fifen and Agmon, 2016), the
CGA search at BLYP/DNP could provide the global minima
and other reliable isomers. As seen in Figure 1, 4+2+0(1) is
a water molecule via hydrogen bonds connecting with the two
coordinated water molecules in 4+1+0. Three coordinated water
molecules in 4+2+0(2) connect the two outer water molecules
via hydrogen bonds, and the oxygen atoms in these five water
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molecules locate in a flat with the sodium ion approximatively.
4+2+0(3) with C2 symmetry forms a water cycle via hydrogen
bonds between two coordinated water molecules and the two
outer water molecules. Besides, 4+2+0(4) with lowest symmetry
has a coordinated water molecule without hydrogen bond.
The 4+1+1 structure is a water molecule connecting with
the outer water molecule in 4+1+0 via a hydrogen bond.
In addition, 5+1+0(1) is an extra water molecule located at
the outer shell of 5+0+0(1), connecting with the two isolated
coordinated water molecules. 5+1+0(2) is just a water molecule
connecting with the isolated coordinated water molecule in
5+0+0(2) via a hydrogen bond. 6+0+0 could transform from
the perfect S6 symmetry to D3 symmetry, with two water cycles
on two sides of the sodium ion, in accordance with previous
calculations based on the polarizable electropole model (Perez
et al., 1983).

The bond lengths present interesting variation trends as
summarized in Table 2. The r(Na–O) increases strictly with the
increasing of coordination number, indicating the decreasing
of average ion–water interaction. For the structures with two
water shells, if a coordinated water molecule is the proton-
donor in a hydrogen bond system, the r(Na–O) should be
shorter. In contrast, if the oxygen atom forms a hydrogen
bond, the r(Na–O) should become longer. For the r(O–H)s,
each average r(O–H) of water molecules in clusters is longer
than the r(O–H) of free water molecules (0.966 Å), which stems
from the non-covalent ion–water interaction. Meanwhile, the
hydrogen bonds also stretch the O–H bonds and make the water
molecules asymmetric.

CHARGE ANALYSIS

For elucidating the non-covalent interactions in hydrated sodium
ion clusters, Figure 2 and Table 3 show the NBO overlapping
3D schematic diagrams and electron transfers of 1+0+0.
Figures 2A,B depict the 2s orbital of sodium ion overlaps the O–
H anti-bonding orbitals of water molecule, resulting in electron
transfer from the sodium ion to the water molecule. In contrast,
Figures 2C,D depict the O–H bonding orbitals overlap to the
empty orbital of sodium ion, resulting in electron transfer
from the water molecule to the sodium ion. From Table 3, the
amplitude of E(2) manifests that electron transfer from water
molecules, including the electrons in O–H bonding orbitals and
the oxygen atom’s lone pair electron orbitals, to sodium ions is
larger than that from sodium ions to water molecules, which
synergistically weakens and stretches the O–H bonds of 1+0+0.

For revealing the strength of O–H bonds intuitively, the
Wiberg bond order in 1+0+0 (0.740) is smaller than that in
a free water molecule (0.790), indicating that the sodium ion
weakens the O–H bonds, in accordance with the results from
NBO analysis.

To show the charge transfer of the whole clusters directly, the
charge density difference of 1+0+0, 2+0+0, 3+0+0, 3+1+0,
4+0+0, and 4+1+0 is presented in Figure 3. The electrons from
coordinated water molecules assemble at the location between
sodium ions and water molecules near the side of oxygen atoms.

TABLE 2 | Average distances between sodium ions and oxygen atoms [r(Na–O)],

distances between sodium ions and each oxygen atoms [r(Na–O)] and O–H bond

lengths [r(O–H)] of coordinated water molecules in Na+(H2O)n (n = 1–6)

optimized at MP2/aug-cc-pVDZ level of theory.

Symmetry r(Na–O)/Å r(Na–O)/Å r(O–H)/Å

H2O C2v 0.966

1+0+0 C2v 2.275 2.275 0.968

2+0+0 D2d 2.302 2.302(2) 0.968

3+0+0 D3 2.335 2.335(3) 0.968

3+1+0 C2 2.322 2.344 0.968

2.311(2) 0.965 0.975

3+1+1 Cs 2.316 2.347 0.967

2.300(2) 0.965 0.979

3+2+0(1) Cs 2.312 2.287 0.956 0.982

2.234(2) 0.956 0.974

3+2+0(2) C1 2.313 2.351 0.967

2.314 0.965 0.976

2.273 0.970 0.978

4+0+0 S4 2.370 2.370(4) 0.967

4+1+0 C2 2.364 2.378(2) 0.967

2.350(2) 0.966 0.974

4+1+1 C1 2.361 2.384(2) 0.967

2.338(2) 0.965 0.978

4+2+0(1) D2d 2.359 2.359(4) 0.965 0.974

4+2+0(2) Cs 2.359 2.379 0.967

2.361(2) 0.965 0.975

2.337 0.970

4+2+0(3) C2 2.411 2.317(2) 0.965 0.974

2.505(2) 0.967 0.981

4+2+0(4) C1 2.391 2.335 0.968

2.416 0.966 0.972

2.339 0.966 0.976

2.392 0.966 0.984

5+0+0(1) C1 2.436 2.466(3) 0.967 0.970

2.408 0.967 0.976

2.371 0.967

5+0+0(2) C2 2.460 2.486(4) 0.967 0.972

2.355 0.967

5+1+0(1) C1 2.439 2.491(3) 0.967 0.971

2.360(2) 0.965 0.974

5+1+0(2) C1 2.472 2.516(4) 0.967 0.973

2.296 0.965 0.981

6+0+0 D3 2.485 2.485(6) 0.967 0.971

The numbers in the parentheses in the line of r(Na–O)/Å represent that there are equivalent

water molecules in this number. The two bond lengths in the line r(O–H)/Å represent that

hydrogen bond stretches one O–H bond in this water molecule.

The electron dissipation mostly happens near the hydrogen
atoms, proving that the strengths of O–H bonds become weaker.
In addition, the charge density difference of 3+1+0 and 4+1+0
show that the electrons also assemble at the location between the
outer water molecules and the sodium ions, indicating that the
ion–water interaction also reduces the strength of the O-H bonds
in the outer water molecules.
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FIGURE 2 | The NBO overlapping and electron transfer in 1+0+0 calculated at the MP2/aug-cc-pVQZ level of theory. (A) Na+1 (s)→ σ
*(O2-H3). (B)

Na+1 (s)→ σ*(O2-H4). (C) σ(O2-H3)→ Na+1 (sp0.66)*. (D) σ(O2-H4)→ Na+1 (sp0.66)*.

TABLE 3 | The electron transfer and second-order perturbation energies (E(2),

expressing the electron delocalization and the extent of charge transfer between

different orbitals, in units of kcal/mol) between different natural bond orbitals of

1+0+0 calculated at MP2/aug-cc-pVQZ level of theory.

Donor orbital Acceptor orbital E(2)

Na+1 (s) σ*(O2-H3) 0.09

Na+1 (s) σ*(O2-H4) 0.09

Na+1 (p) σ*(O2-H3) 0.05

Na+1 (p) σ*(O2-H4) 0.05

σ(O2-H3) Na+1 (sp0.66)* 0.45

σ(O2-H3) Na+1 (p)* 0.15

σ(O2-H3) Na+1 (sp1.55d3.85f2.27g1.41)* 0.12

σ(O2-H4) Na+1 (sp0.66)* 0.45

σ(O2-H4) Na+1 (p)* 0.15

σ(O2-H4) Na+1 (sp1.55d3.85f2.27g1.41)* 0.12

O2(s) Na+1 (sp0.66)* 0.27

O2(p) Na+1 (pd0.35f0.25g0.44) 0.20

O2(sp
1.02) Na+1 (sp0.66)* 1.90

The * in sodium ion orbitals represent that the orbitals are empty. The subscripts of the

atoms correspond to the serial numbers in Figure 2.

VIBRATIONAL SPECTRA

Vibrational spectrum is an intuitionistic method, providing
deeper insight into structure differences and non-covalent
interactions (Fan et al., 2019), especially O–H stretching
vibration modes for hydrated sodium ion clusters. Therefore,

FIGURE 3 | Charge density difference of six small hydrated sodium ion

clusters. Yellow and blue spaces represent the electron accumulation and

depletion regions, respectively.

the experimental Na+(H2O)n isomers can be determined by
comparing the simulated IR spectra and experimental spectra.
Our discussion focuses on the high-frequency region (>3,200
cm−1) in IR spectra, which contains the O–H stretching vibration
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modes and can generally be measured in experiments (Ke et al.,
2015).

At first, Figure 4 shows the IR spectra of 1+0+0, 2+0+0,
3+0+0, and a free water molecule with anharmonic correction.

FIGURE 4 | Anharmonic correctional IR spectra of 1+0+0, 2+0+0, 3+0+0

and a free water molecule calculated at MP2/aug-cc-pVDZ level of theory.

The two O–H stretching vibrational modes are asymmetric (the
higher peaks near 3,700 cm−1) and symmetric (the lower peaks
near 3,620 cm−1) modes for each structure, and the other peaks
are caused by anharmonic correction. Compared to the free water
molecule, the asymmetric vibration modes of the three clusters
possess redshifts, stemming from the ion–water interactions. The
redshifts become smaller with the increasing of coordination
number and r(Na–O) in Table 2.

For n = 4, the spectra of 4+0+0 and 3+1+0, as well as
the experimental spectrum of Na+(H2O)4 at 300K (Miller and
Lisy, 2008a) are given in Figure 5. The two modes of 4+0+0
reproduce the two outstanding peaks of experimental spectrum
well. Moreover, the lower peak of the experimental spectrum
confirms the small fraction of the existence of 3+1+0. Therefore,
4+0+0 dominates in the experiment at 300K, and 3+1+0 is
concomitant with 4+0+0, in accordance with the almost equal
energies at 298K in Table 1.

Figure 6 shows the IR spectra of six isomers for n = 5 with
anharmonic correction, as well as the experimental spectrum
(Miller and Lisy, 2008a). Apparently, no single structure
could reproduce the experimental spectrum well. Among, the
vibrational modes of 3+1+1 are able to correspond three
peaks of the experimental spectrum (Miller and Lisy, 2008a),
hence 3+1+1 possesses the most possibility of existing in
experiment. However, no mode in 3+1+1 could reproduce
the experimental peak near 3,560 cm−1, while all the other
five structures have vibrational modes near 3,560 cm−1.
Combining with the relative energies in Figure 1, 4+1+0,
the global minimum, could be the main contributor to the
peak at 3,560 cm−1, in accordance with the conclusion
in previous reports (Ke et al., 2015; Fifen and Agmon,
2016). Therefore, 4+1+0 and 3+1+1 are concomitant in
experiments, which are the two lowest energetic structures at
298K in Table 1.

FIGURE 5 | Anharmonic correctional IR spectra of 3+1+0, 4+0+0 calculated at MP2/aug-cc-pVDZ level of theory and experimental spectrum.
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FIGURE 6 | Anharmonic correctional IR spectra of 4+1+0, 3+1+1, 3+2+0(1), 5+0+0(1), 3+2+0(2), and 5+0+0(2) calculated at MP2/aug-cc-pVDZ level of theory

and experimental spectrum.

For n = 6, Figure 7 shows the IR spectra of all the eight
isomers presented in Figure 1. Due to all the coordinated
water molecules being equivalent to 4+2+0(1) in Figure 1,
only two distinct peaks can be observed. Similar to 3+1+1,
4+1+1 possesses an obvious peak at 3340.5 cm−1 caused by
O–H stretching of the water molecule in the second shell.
4+2+0(2) has no peak under 3,500 cm−1 because the hydrogen
bonds are not strong enough to make the water molecules
distinctly asymmetric, while the three feature peaks, 3371.5,
3395.4, and 3460.2 cm−1, of 4+2+0(3) are generated by the O–
H stretching in the water cycle. Because of the hydrogen bonds
between the outer molecule and coordinated water molecules
in 5+1+0(1), the spectrum has two modes at 3513.3 and
3525.6 cm−1, which can’t be found in 5+0+0(1). Due to no
equivalent water molecule in 4+2+0(4), the O–H stretching
vibration modes with different frequencies make the spectrum
more complex than the others. 6+0+0 has a spectrum similar
to that of 5+0+0(2) in Figure 6, corresponding to the similar
water cycles in both structures. Unlike 5+0+0(2), 5+1+0(2)
has a significant peak at 3390.0 cm−1 which is the O–H
stretching mode of the proton-donating coordinated water
molecule, indicating that the hydrogen bond between the outer

water molecule and the coordinated water molecule is strong
in 5+1+0(2).

CONCLUSION

In this work, we investigate the geometries, energies, charges,
and anharmonic vibrational properties of Na+(H2O)n (n = 1–
6). The CGA search and geometrical optimization for the cluster
isomers provide accurate stable structures of Na+(H2O)n (n =

1–6). At 0 K and 298K, for n = 1–4, all the water molecules in
global minima are coordination water molecules, surrounding
the central sodium ions. Meanwhile, 4+1+0 and 4+2+0(1)
are the global minima of n = 5 and 6, respectively. Thus, the
coordination number of global minima of hydrated sodium ion
clusters is 4 for n ≥ 4.

The non-covalent interactions, including ion–water
interactions and hydrogen bonds, weaken the O–H bonds,
resulting in longer bond lengths, lower bond orders, and
redshifts of the O–H stretching mode in IR spectra. The
simulated IR spectra with anharmonic correction can reproduce
the experimental results well. The results show that 4+0+0
dominates for Na+(H2O)4, while 3+1+1 and 4+1+0 should
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FIGURE 7 | Anharmonic correctional IR spectra of eight isomers for n = 6

shown in Figure 1 calculated at MP2/aug-cc-pVDZ level of theory.

be concomitant for Na+(H2O)5 in experiments. The present
study executes a believable simulation of structures and
vibrational spectra, and provides a comprehensive insight
into the non-covalent interactions including ion–water

interaction and hydrogen bonds of hydrated sodium
ion clusters.
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We have developed an algorithm to automatically build the global minimum and other
low-energy minima of nanoclusters. This method is implemented in PyAR (https://
github.com/anooplab/pyar) program. The global optimization in PyAR involves two parts,
generation of several trial geometries and gradient-based local optimization of the trial
geometries. While generating the trial geometries, a Tabu list is used for storing the
information of the already used trial geometries to avoid using the similar trial geometries.
In this recursive algorithm, an n-sized cluster is built from the geometries of n−1 clusters.
The overall procedure automatically generates many unique minimum energy geometries
of clusters with size from 2 up to n using this evolutionary growth strategy. We have
used our strategy on some of the well-studied clusters such as Pd, Pt, Au, and Al
homometallic clusters, Ru-Pt and Au-Pt binary clusters, and Ag-Au-Pt ternary cluster.
We have analyzed some of the popular parameters to characterize the clusters, such
as relative energy, singlet-triplet energy difference, binding energy, second-order energy
difference, and mixing energy, and compared with the reported properties.

Keywords: global optimization, PyAR, nanocluster, binary cluster, ternary cluster, nanoalloys, cluster builder

1. INTRODUCTION

A major focus in modern nanoscience is to understand the properties of materials on the atomic
scale (Eberhardt, 2002). Subnanometer scale metal clusters are of great interest due to their
structural and electronic properties (Baletto and Ferrando, 2005), which makes them useful for
applications in various field like nanotechnology, electronics, medical device and catalysis (Saha
et al., 2012). The atomic clusters may comprise of atoms of the same element such as in fullerenes
or atoms of different elements as in nanoalloys (Johnston, 2002). A molecular-level understanding
of small nanoclusters would provide insights into the largely empirical field of nanoscience.

Theoretical study of nanoclusters can help us to understand the smooth transition from atoms
to bulk materials, especially the size-dependent evolution of the properties (Jortner, 1992; Edwards
et al., 1998). The primary input for the theoretical study is their geometry. While determining the
geometry of nanoclusters by experiments is extremely difficult, the atomic structure of clusters can
be predicted theoretically by geometry optimization tools that are specifically designed for global
optimization (Zhao et al., 2017).

Global optimization of functions is an essential part of various research fields and have many
real-life applications (Floudas andGounaris, 2008; Barbati et al., 2012; Khare and Rangnekar, 2013).
The global optimization (GO) is the process of finding the best solution, “global maximum” or
“global minimum” (GM), based on one or more criteria for a mathematically formulated function
(Jäger et al., 2018). The global optimization in our context refers to finding themost stable geometry
for a particular cluster, that is the lowest energy atomic arrangements on the potential energy
surface (PES). The global minima of atomic clusters (Davis et al., 2015; Shayeghi et al., 2015a) are
essential as these are often the most likely structure to be formed in the experiment. Thus, finding

73

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2019.00644
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2019.00644&domain=pdf&date_stamp=2019-09-27
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:anoop@chem.iitkgp.ac.in
https://doi.org/10.3389/fchem.2019.00644
https://www.frontiersin.org/articles/10.3389/fchem.2019.00644/full
http://loop.frontiersin.org/people/747428/overview
http://loop.frontiersin.org/people/809237/overview
http://loop.frontiersin.org/people/680086/overview
https://github.com/anooplab/pyar
https://github.com/anooplab/pyar


Khatun et al. A Global Optimizer for Nanoclusters

the global minimum and other low-lying minima on the PES is
helpful to interpret the experimental results (Shayeghi et al., 2014,
2015b; Götz et al., 2016).

The efficiency of geometry optimization (GO) algorithm
is crucial for the success in the attempts to understand the
cluster science. Some of the popular GO algorithms are Genetic
Algorithms (GA) (Johnston, 2003), Basin Hopping (BH) (Wales
and Scheraga, 1999), Particle Swarm Optimization (PSO) (Lv
et al., 2012; Shi et al., 2019), Artificial Bee Colony (ABC) (Zhang
and Dolg, 2015), Simulated Annealing (Kirkpatrick et al., 1983),
Threshold Algorithms (Schön et al., 1996) etc. These general GO
algorithms are employed in the studies of metal clusters with
varying degrees of success. As for any applications of GO, there is
no universal method that works for all the molecular systems in
chemistry and is an open area of research.

A major challenge in any GO method is the computational
complexity, the exponential increase in the search space with
system size (Doye and Wales, 1998). A GO algorithm must
combine a locally confined search with the wide exploration
of the regions without revisiting the same regions (Heiles
and Johnston, 2013) in the PES in a computationally effective
way. The fine balance of local search and global exploration
is required. The re-examination of a minimum only gives
redundant information wasting computational resources. On the
other hand, confining the search only to a small neighboring
area does not allow the algorithm to find the GM in other
funnels on the PES. Metadynamics algorithms overcome the
revisiting problem by adding time-dependent repulsive bias
potential function of collective variables to discourage revisiting
the already visited areas. Tabu-search based algorithms (Glover,
1986, 1989, 1990) store the information of previously visited areas
to avoid the searching of the already explored region.

In this article, we explain our strategy to find the global
minima geometries of atomic clusters—unary, binary and ternary
nanoclusters. We have combined two strategies to improve the
efficiency: the Tabu-search algorithm to reduce the time spent
on the already found minima and a novel recursive approach
to reduce the search space by making use of the solutions from
the smaller problem. That is, we build the solutions of n sized
cluster based on the solutions of n − 1 sized cluster. This way,
the unique geometries of cluster size n can be built bottoms-up
starting from the single atom. This method is particularly useful
for studying the evolution of structure and properties with the
growth of cluster size. We have discussed the implementation
and the validation by applying on the known metallic clusters.
We have compared the geometries and a few representative
properties of the clusters generated by our algorithm with the
reported geometries and corresponding properties.

2. THEORETICAL APPROACH

2.1. Cluster Building and Optimization
Our method for the global optimization of the geometries
of atomic clusters is an adaptation of our approach for the
automated exploration of reaction and aggregation implemented
in PyAR (Nandi et al., 2017; Anoop, 2019) program. In this
section, we will explain the philosophy and implementation of

the aggregatormodules used for the building of nanoclusters
(Figure 1). The global optimization for nanoclusters in PyAR
involves two parts, generation of several trial geometries and
gradient-based local optimization of these trial geometries. In
our algorithm, the search for solutions of n-sized cluster make
use of the solutions from the search on the n − 1 sized clusters.
At each cycle, the problem is reduced to find the best relative
orientations between two species. This approach is analogous to
finding the solution of the traveling salesman problem with N
cities by adding one more city to the solution of the problem with
N-1 cities. The overall procedure automatically generates several
unique minimum energy geometries of clusters with size up to n
using our evolutionary growth strategy.

This process can be imagined as growing the cluster by adding
atoms one by one. The method is similar to the cluster-fusion
algorithm of Solov’yov et al. (2004). When the second atom is
added to the first one, there is only one possible geometry and
there is only one variable—the distance between the atoms. The
trial geometry for the dimer is generated as follows. The first atom
(called as seed) is placed at the origin of the Cartesian coordinate
system. For placing the second atom (named monomer), the
value for the x-coordinate is generated as a random number
between 0 and 1. Then, the value of x is increased in small steps
of 0.1 Å until x is larger than the sum of covalent radii of both
atoms (x > (Ra + Rb)). This way, the second atom is placed in
the X-axis at a distance of no close-contact between the atoms.

The third atom could be placed anywhere in the xy-plane
at a distance from the existing atoms of the dimer avoiding
close-contacts. Here, the dimer is the seed, and the atom is
the monomer. The xy-plane (the search space) is divided into
four quadrants. The new atoms are placed in each quadrant
sequentially. The quadrant is chosen by generating random
numbers for x and y coordinates within a suitable range to fit
a particular quadrant. The new coordinates created by these
random numbers are normalized so that the point is at a unit
distance from the origin. As described above, the third atom
initially placed at this position is translated away from the origin
to avoid any close contacts.

The search space for the addition of the fourth atom and
further on is three-dimensional. The 3D space around the
trimer (and larger n’mers) is divided into eight octants. The
new atoms are placed in random positions at unit distance
from the origin in each of these octants sequentially. The
reason for dividing the space into octants is to distribute
the new trial geometries evenly so that even with a few trial
geometries, there is a chance of exploring different region
of space and getting dissimilar geometries. This way, N trial
geometries are generated. N is a user-provided parameter. All
the trial geometries will be optimized using local, gradient-based
optimizers. The optimizations are done by the interfaced software
as described later in this section.

Some of the optimized geometries obtained by the gradient-
based optimization of these trial geometries may belong to the
same minima in the PES, with small differences in geometrical
parameters depending on the convergence criteria. Comparison
of geometries based on Cartesian coordinates such as RMSD
of the atomic positions may fail because the optimization may
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FIGURE 1 | The flowchart for the cluster building method.
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reorient the molecule, and the Cartesian coordinates are not
rotationally invariant. Besides, the same geometry with different
ordering of atoms will also be shown as different geometries
by such comparisons. Therefore, we have implemented various
molecular representations to find the similarity.

One of such representations that we have used in this work
is the molecular fingerprints, computed as follows. An n-by-n
matrix, known as Coulomb matrix (Rupp et al., 2012; Sadeghi
et al., 2013), is made in which the off-diagonal elements are the

pairwise Coulomb repulsions
ZiZj
Rij

, and the diagonal elements

are Z2.4
i /2. The Zi and Zj are the core charge of atom i and j.

The Coulomb matrix is diagonalized. The sorted eigenvalues are
considered as the molecular fingerprints. The fingerprint is used
as the feature vector for clustering algorithm (see below) and
the euclidean distance between the fingerprints is used as the
measure of similarity.

Using the molecular fingerprint representation, these
optimized geometries are analyzed and clustered into groups (up
to 8 clusters) of similar geometries using clustering algorithms
(Nandi et al., 2018) in Scikit-learn (Pedregosa et al., 2011) python
library. The most stable geometry from each of these clusters are
selected as the minima for this n’mer and the most stable among
the minima is the global minimum geometry for this n’mer. All
of these minima are considered for further growth by adding a
new atom. This way the degree of freedom of n’mer (3N − 6) is
reduced to 3.

Besides the reduction in complexity, the other significant
improvement to increase the efficiency is to avoid revisiting the
already visited regions. In our context, we store all the randomly
created points and compare the new point with the stored points.
For a reasonable comparison, all the positions are generated at
a unit distance from the origin, i. e. positions lie on the surface
of the sphere of a unit radius (1 Å). If the new position is within
the threshold distance from any of the stored positions, the new
position is rejected. This threshold distance is initially set as 0.3Å
and is increased by 5 % in each cycle. As this idea is adapted
from Tabu-search algorithm (Glover, 1986, 1989, 1990), the list
of stored positions is referred as the Tabu list. This method of
filtering the position makes sure that the trial geometries are
sufficiently dissimilar.

TheN trial geometries created by the method explained above
will be optimized with the electronic structure programs that
are interfaced with PyAR. Currently we have interfaced with
Gaussian 09/16 (Frisch et al., 2016), MOPAC (Stewart, 2016),
PSI4 (Turney et al., 2012), ORCA (Neese, 2018), Turbomole
(Furche et al., 2014), XTB (Grimme et al., 2017). The user
can choose the program and the methods (functional-basis set,
semiempirical method). There are few rounds of optimizations.
The full set of trial geometries will be initially optimized by loose
convergence setting. After filtering similar geometries based on
the similarity based on molecular fingerprints, a smaller set of
selected geometries will be optimized with standard convergence
criteria. In principle, we can also make the automatic procedure
to use initial screening with fast and less accurate methods
followed by calculations with slow and more accurate methods
on a smaller number of geometries.

The methodology described above is for the homometallic
clusters. We have extended the procedure to create the binary,
ternary and other heteroatomic clusters that are even more
interesting and challenging. For making binary clusters, we use
both the input atoms as the seed and the monomer instead
of one being the seed and the other as the monomer. The
procedure, implemented as binary_aggregator, generates
all combinations of binary clusters of size ranging from A1B1
to AmBn. The algorithm first treats “A” as the seed and “B” as
the monomer and repeats the cycle until the number of “B”
atoms reaches n. Hence, the row of the matrix is built ranging
from A1B1 till A1Bn. When B is considered as seed and A as
the monomer, another row is built ranging from A1B1 till AmB1.
Similarly, by using AxBy, x <m and y < n, other rows of thematrix
can be generated.

We added another layer over the binary_aggregator
to build the ternary clusters by including a third element. The
ternary_aggregator operates analogously by adding the
element C sequentially to each combination of binary clusters
made by binary_aggregator. The new monomer is added
until it reaches its desired size of the third element. Thus, for
each of the binary cluster (AiBj; i = 1-m, j=1-n), the 3rd element
is added as a monomer to generate ternary clusters ranging
from (AmBnC1) to (AmBnCl) where l is the maximum number
of element C.

Current procedures for binary and ternary clusters
are expensive because we used exhaustive enumeration.
Exhaustive exploration is required until we find some
guiding principles for understanding the mixing behaviors
of these alloys.

2.2. Properties of Clusters
The relative stabilities of the clusters built using the above
described methods can be calculated using the following
popular parameters.

2.2.1. Homometallic Clusters

2.2.1.1. Relative energy (RE/eV):
The energy of a cluster compared with the most stable isomer
(GM). The higher RE means a lower stability.

2.2.1.2. Singlet triplet energy difference (1EST/eV):
The energy difference between the singlet and triplet state is
1EST = Etriplet − Esinglet . The cluster with a positive 1EST has
a singlet ground state, and the cluster with a negative 1EST has a
triplet ground state.

2.2.1.3. Binding energy per atom (BE/eV):
The binding energy per atom (BE or BEPA) is calculated by
Equation (1):

BE =
1

N
[En − nE1] (1)

where, En is energy of n atomic cluster; n is the cluster size or
aggregation number; E1 is the energy of an atom.
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2.2.1.4. Second-order energy difference (δ2E(n), SOD/eV):
The SOD indicates the higher stability of a cluster of N atoms
relative to its heavier and lighter neighbors. Therefore, δ

2E(n)
is more relevant in interpreting experimental mass spectral
intensities than the BE (Rogan et al., 2005). Large maxima of
δ
2E(n) shows the higher probability of finding these clusters.

δ
2E(n) = En+1 + En−1 − 2En (2)

where, En+1 is the total energy of n + 1 atomic cluster; En−1 is
the total energy of n− 1 atomic cluster; En is the total energy of n
atomic cluster; and n is the cluster size.

2.2.2. Energy Parameters for Binary and Ternary

Nanoalloys

2.2.2.1. Binding energy per atom (BE/eV):
The BE for binary and ternary clusters (Song et al., 2005;
Demiroglu et al., 2017) is given by Equations (3) and (4):

Eb =
1

N
[Etot(AmBn)−mEtot(A1)− nEtot(B1)] (3)

Eb =
1

N
[Etot(AmBnCl)−mEtot(A1)− nEtot(B1)− lEtot(C1)]

(4)

where,m, n, and l are the numbers of A, B, and C atoms; Etot(A1),
Etot(B1), and Etot(C1) are the electronic energies of a single A, B
or C atom and N is the total number of atoms (N = m + n + l)
in the particular cluster.

2.2.2.2. Mixing energy (ME/eV):
The mixing energy (Song et al., 2005; Pacheco-Contreras et al.,
2018) is an indicator of the stability of the binary cluster with
respect to its unary counterpart, given by Equation (5):

δ = Etot(AmBn)−m
Etot(Am+n)

m+ n
− n

Etot(Bm+n)

m+ n
(5)

where, Etot(AmBn) is the total energy of the alloy, Etot(Am+n) and
Etot(Bm+n) are the total energies of the pure metal clusters, A and
B of the same size (m+n). A negative value of δ means a decrease
of energy upon mixing and therefore, a favorable mixing.

3. COMPUTATIONAL DETAILS

We used the PyAR program to build the clusters, primarily with
the Tight-Binding semi-empirical method, GFN-xTB, with the
XTB program (Grimme et al., 2017). This combination is denoted
as PyAR|XTB. In a few cases, the selected geometries from
PyAR|XTB were reoptimized using PBE0 (Adamo and Barone,
1999) functional and def2-TZVP basis set with the ORCA4.0.1.2
(Neese, 2018) program. These minima from PBE0/def2-TZVP
was characterized as true minima with no imaginary frequency.
This combined method is denoted as PyAR|XTB||PBE0. We have
used another combination where the clusters are built using
the ORCA program as the interface using the PBE functional
or the BP86 (Perdew, 1986; Becke, 1988) functional and the
def2-SVP basis set (Weigend and Ahlrichs, 2005), denoted as

PyAR|ORCA. We have added Grimme’s dispersion corrections
(D3-BJ) (Grimme et al., 2011) in all DFT calculations. We have
used effective core potential (ECP) (Pettersson et al., 1983) in
the DFT calculations to add the relativistic effect for all the
transition metals.

4. RESULTS AND DISCUSSION

We have built various metal clusters—homometallic
nanoclusters, bimetallic and trimetallic nanoalloys. In this
work, our focus was to validate our approach for its ability
to generate the global minimum (GM) and other unique
local minima and reproduce the qualitative trends in various
properties. Therefore, we have chosen the clusters and alloys that
are studied extensively—Pd, Au, Pt, and Al homometallic clusters
and Ru-Pt, Au-Pt, Ag-Au-Pt nanoalloys. We have compared
the GM geometries and few other low-lying local minima with
the corresponding reported geometries. We calculated few
properties such as relative energy, binding energy, singlet-triplet
energy difference, second-order energy difference, and mixing
energy of the clusters and alloys made by our program and
compared with the values and trends reported in the literature.
Due to the difference in electronic structure theories in different
studies, differences are expected in absolute numbers, but overall
trends were similar.

4.1. Homometallic Nanoclusters
4.1.1. Palladium
The first example for this study of nanoclusters is the palladium
nanoclusters. We have located the unique geometries of Pdn
(n=2–15) clusters using our algorithm implemented in PyAR
program. We used two different methods for the global
optimization, PyAR|XTB and PyAR|ORCA(PBE). We have also
used a two-layer approach in which the search for geometries is
done by one method and the selected geometries are optimized
again at a different method. For example in the method named
as PyAR|XTB||PBE0, the search was done with PyAR|XTB and
the geometries selected by this method were further optimized
with PBE0. We have employed two more DFT functionals in this
study, PyAR|XTB||B3LYP and PyAR|XTB||M06.We have further
compared the geometries of Pdn clusters in singlet and triplet
electronic states. The global minimum geometries of singlet Pdn
clusters are shown in Figure 2.

Only one minimum was found for triatomic palladium
clusters, Pd3, which has a triangular geometry. The shape of
Pd3 is slightly distorted from the equilateral triangle with the
base angle of 59.9◦; such non-equilateral geometry was also
reported by Nava et al. (2003). The average bond length and bond
dissociation energy are 2.54 Å and 2.57 eV at PBE0/def2-TZVP
compared to the values from CAS/MRSDCI level calculation
(Balasubramanian, 1989) which are 2.67 Å and 3.28 eV.

As the cluster size grew, the program has selected more than
one unique structures for clusters with n = 4–15. The relative
energies (RE, the energy compared to the global minimum
isomer) of all the non-global-minimum geometries are shown
in Figure 2, along with the results from Nava et al. (2003)
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FIGURE 2 | Relative energies (RE/eV), the energy of the optimized isomer compared with the energy of their respective global minimum isomer, of palladium clusters
of size (n = 4− 15). The corresponding RE reported using BP86/SVP (Nava et al., 2003) is also plotted for comparison. Global minimum geometries of size
n = 3− 15 atoms are shown. The geometries are obtained by using PyAR|XTB calculation followed by optimization at PBE0/def2-TZVP.

for comparison. All the larger Pdn clusters, n > 3, have three-
dimensional global minima. Some of these GM geometries are
discussed below.

The most stable structure for Pd4 cluster is tetrahedral.
Bond dissociation energy is 4.77 eV at PBE0/def2-TZVP level
compared to 5.07eV at the MRSDCI level calculations (Dai and
Balasubramanian, 1995). The bond length is 2.62 Å at PBE0/def2-
TZVP, 2.68 Å at MRSDCI (Dai and Balasubramanian, 1995)
and 2.61 Å using other DFT calculations (Xiao et al., 1999). We
found another minimum, a bicyclic, non-planar, butterfly-like
geometry, not reported before, which is 0.50 eV higher in energy
than the tetrahedral GM structure. Global minimum geometry
of Pd5 is trigonal bipyramid. The average bond length in this
geometry is 2.74 Å, and the binding energy of the TBP structure
we calculated at PBE0/def2-TZVP is 1.34 eV, similar to the
reported values from the DFT calculation (Wen et al., 2018) using
GGA functional (BP/DNP), 2.704 Å and 1.73 eV, respectively.
The Pd6 cluster has an octahedral global minimum. Thus,
the most symmetric platonic geometries–trigonal, tetrahedral,
trigonal bipyramidal, and octahedral–are the global minima
for Pd3-Pd6.

The most stable geometry of Pd7 from the PyAR|XTB
calculations is pentagonal bipyramidal (PBP), but is a non-
platonic geometry, octahedral core with one cap when PBE and
PBE0 methods were used. The PBP was not a minimum, and the
trigonal bipyramid with two caps is the next higher energy isomer
that has a RE of 0.13 eV compared to GM in PBE0. In the triplet

state, the PBP is the most stable structure at BP86 (Nava et al.,
2003) and BLYP (Rogan et al., 2005) levels. According to Nava
et al. (2003), the mono-capped octahedral and bicapped-TBP
Pd7 are only 0.03eV and 0.05eV higher in energy, respectively,
compared to the most stable PBP.

The symmetric dodecahedral geometry was found to be the
lowest energy cluster for Pd8. From Pd8 to Pd13, pentagonal
bipyramidal (PBP) based structures dominate the global minima.
For Pd13, the most symmetrical icosahedral structure is not the
GM in our calculation (R.E. = 0.21 eV), in agreement with the
calculations by Nava et al. (2003) and Reveles et al. (2012) in
which the symmetric geometry is higher in energy compared to
the most stable geometry by 0.13 eV (BP86/SVP) and 0.16 eV
(PBE/DZVP), respectively. The Pd14 has an icosahedral core with
one cap.

We have calculated the selected geometries in the triplet state
as the report (Nava et al., 2003) suggested that many of the
Pd clusters have triplet ground states. The 1EST is shown in
Figure S1. In PBE0, all Pdn clusters have negative 1EST , i. e.
have triplet ground state, except for Pd atom. The ground state
of the Pd atom has a closed-shell electronic configuration. The
dimer is well established as a triplet ground state in the literature
(Lin et al., 1969; Zacarias et al., 1999; Nava et al., 2003), which is
reproduced by our DFT result as well—the singlet Pd2 has higher
energy (0.45 eV) than its triplet state. The dissociation energy of
dimer is 0.64 eV which is in agreement with the experimental
dissociation energy 0.73 ± 0.26 eV (Lin et al., 1969) as well as
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FIGURE 3 | (A) Variation of binding energy (BE; eV/atom) with the cluster size for the most stable palladium cluster obtained with different methods. ∗ values from
Nava et al. (2003). (B) Second order energy difference (eV) plotted as a function of cluster size (n) for the lowest-energy isomers of singlet and triplet state. The
geometries obtained using PyAR|XTB calculation were re-optimized at PBE0/def2-TZVP.

various density functional calculations done by Zacarias et al.
(1999). The GFN-xTB results, however, showed that all the Pdn
clusters, except Pd6, have singlet ground state. The1EST in GFN-
xTB is large positive for n = 1, 3, and 5, but are slightly positive for
n = 2, 4, 7–15. Thus, 1EST is not well represented by GFN-xTB
in this Pdn clusters.

The binding energy per atom (BE/eV) increases as the
cluster grows, the trend consistently reproduced by all methods
(Figure 3A), GFN-xTB, BP86 (Nava et al., 2003), PBE, PBE0,
B3LYP, and M06 calculations. The most stable geometries as well
as the qualitative features in the overall binding energies gives us
a promising strategy for the building of large scale clusters. We
can use a two-stage approach where a semiempirical calculations
is used for the exploration of minima using PyAR, followed by
the optimization in DFT for the selected geometries.

The second order energy difference (SOD; Figure 3B) is useful
for understanding the stability of cluster with size n compared
to the clusters with size n − 1 and n + 1. The computed SOD
for Pdn cluster shows that Pd2, Pd4, Pd6 are more stable than its
neighbors. The clusters with even number of atoms are relatively
more stable than the ones with odd number of atoms. This
observation is in agreement with Rogan et al. (2005) and Wen
et al. (2018) which showed that Pd2, Pd4, and Pd6 are relatively
stable than their neighbors.

In short, the study of Pdn clusters show that the GM structures
obtained by our methodology are in good agreement with
those from the reported GM structures by other studies (Nava
et al., 2003; Rogan et al., 2005). We have studied three more
homometallic clusters, Au, Pt and Al, and we have focused
different aspects of each clusters below.

4.1.2. Gold
After the study of Pd nanoclusters, we have applied our method
to explore the minima of gold clusters using PyAR|XTB(GFN-
xTB) and PyAR|ORCA(BP86/def2-SVP). We have generated
geometries up to n = 10 with PyAR|DFT and up to 20 with

PyAR|GNF-xTB. The GM structures for n = 4−8 obtained from
our calculations in both the methods are identical with reported
structures from CCSD(T) calculations Shi et al. (2010), Baek et al.
(2017). Au4 obtained as a rhombus type structure. The global
minimum of gold pentamer is W-shaped, and the hexamer is a
planar triangle. The GM of Au7 has an Au capped the edge of
planar triangular Au6. The Au8 has GM where an Au is capped
to each edges of a square.

For Au3, the PyAR|BP86 run found triangular and bent
geometries. While, the global minima at CCSD(T) level is
triangular (Baek et al., 2017), our results at BP86, PBE and
PBE0 shows the bent geometry as GM. The bent structure was
not a minima with PyAR|GFN-xTB and M06 functional, the
optimization resulted in a triangular geometry. Thus, other than
Au3, all the other geometries for Aun; n = 4 − 8 have identical
geometries in GFn-xTB and DFT.

The bond length of gold dimer is calculated as 2.472 Å by
GFN-xTB and 2.543 Å by BP86 which are in good agreement
with the experimental value 2.490 Å. One of the important energy
parameters, cohesive energy (CE) of Au2 is 1.117 eV by our BP86
calculation. This is comparable with 1.1481 eV at the CCSD(T)
level (Shi et al., 2010) and 1.1524 eV from experiment (Bishea
andMorse, 1991). The CE by GFN-xTB, 4.005 eV, is too high. For
the gold trimer, the calculated CE is 1.172 eV, the reported results
are 1.161 eV (Shi et al., 2010) and 1.255 eV (James et al., 1994).
Au4 has a CE of 1.487 eV, comparable with the CCSD(T) value
of 1.556 eV (Shi et al., 2010). While the results from our BP86
calculations follow the trend with the reported CCSD(T) (Shi
et al., 2010) and experimental (Bishea and Morse, 1991; James
et al., 1994) results, the GFN-xTB overestimates the CE.

The GM geometries shown in Figure 4 reveal that the gold
clusters have flat GM up to the cluster size of ten atoms. Al11
has a 3D geometry. Thus, our approach is able to capture the
structure evolution from 2D geometry to 3D geometry that can
be attributed to the use of multiple unique seed geometries to
build the clusters rather than using only the GMgeometry. All the
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FIGURE 4 | The global minimum structures of Aun; n = 2–20, obtained by the global search using PyAR|XTB.

selected geometries of Au10 and Au20 is shown in Figure S2. The
lowest-energy isomers of Au10 below 0.4 eV include planar and
3D geometries—the best two are planar. As we have seen above,
while the Pd clusters prefer 3D geometries throughout the size
range we have studied, the gold clusters remain flat for small sizes,
up to 10 in GFN-xTB and BP86 levels.

To study the effect of the number of orientations (N) used in
the run, we carried out separate runs with different values of N.
As the size of the cluster increases, theN becomesmore andmore
important. For example, the GM (shown with ∗∗ in Figure S2A

produced by one of the PyAR|XTB run with N = 8 is only one
of the local minima, not a GM, in the GA-DFT study (Shayeghi
et al., 2015a). However, another run withmore orientations along
with GFN-xTB resulted in the GM from the GA-DFT and other
calculations (Gotz et al., 2013; Shayeghi et al., 2015a). Similar run
with DFT also produced the latter GM. The effect is more evident
in the Au20 cluster.

The Au20 has a highly symmetric tetrahedral (Td) geometry
which is one of the most often found structures in the
experiment (Gruene et al., 2008) and is one of the most stable
geometry in various theoretical calculations (Assadollahzadeh
and Schwerdtfeger, 2009; Shayeghi et al., 2015a). The lowest-
energy Au20 isomers in the range below 0.5 eV are shown
in Figure S2B). Our geometries are comparable to the ones
from previously studied GA-DFT, BH-DFT calculations and the
experimental result (Gruene et al., 2008; Shayeghi et al., 2015a;
Zhao et al., 2017).

The search for global minimum using only eight orientations
was able to locate the tetrahedral global minimum geometry of
Au20, however, not always. By varying the number of orientations
in the search—N = 8, 16, 32, and 64—we checked the probability

of getting the global minimum. When the orientation number
is 32, GM structure was found in a single run. As one can
anticipate, the possible ways in which the new atom can be
added to the (n − 1)th cluster increases on increasing the cluster
size. Therefore, we have to increase the number of orientation
With increasing cluster size. We have illustrated this by plotting
the binding energy per atom for the runs with number of
orientation as 8, 16, 32, and 64 (Figure 5A). We have made
an option auto for the number of orientation N in which N
doubles after each cycle starting with eight in the first cycle,
then N increases as 16, 32, 64, 128, 256 and up to a maximum
of 512.

4.1.3. Platinum
We studied platinum nanoclusters as the next example as the
Pt-based nanoclusters are useful materials with applications
in various heterogeneous catalysis. Jennings and coworkers
performed GA-DFT searches on small-sized (Ptn, n = 3–6)
platinum clusters to find their GM structures. The study showed
that Pt clusters have non-singlet ground states, and the geometry
of GM’s can vary for different spin multiplicity (Jennings and
Johnston, 2013). Thus, we have performed three different global
minimum searches with multiplicities 1, 3, and 5 on Ptn; n = 3–6
with PyAR|XTB.

We have observed different global minima for different
multiplicities (Figure 6) for Pt4 and Pt5, in agreement with
the GA-DFT study. The Pt3 has the same triangular geometry
in singlet and triplet states, and singlet is the ground state.
There are two geometries, 4a and 4b for Pt4. The 4b has
the lowest energy in its singlet state. The ground state of
4a is a triplet, however, it is higher in energy than the
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FIGURE 5 | Binding energy per atom (eV/atom) for (A) Aun; n = 2–20 with the number of orientations (N = 8, 16, 32, and 64) and for three different runs done on (B)

platinum and (C) aluminum using PyAR|XTB(GFN-xTB) calculation.

FIGURE 6 | Low energy structures found for pure Pt clusters, from Pt3 to Pt6, with different spin multiplicities. ∗Only singlet state was converged for 5a. Relative
energies (RE/ev) and average bond lengths (Å) of singlet, triplet, and quintet states shown in normal, italics, and bold fonts.

singlet-4b. The 5a is minima only in singlet state. The
GM for Pt5 is 5b in triplet state. The Pt6 has a triplet
ground state (5b).

4.1.4. Aluminum
The last example for the homometallic cluster in this article is the
aluminum cluster. We have built the global minimum structures
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FIGURE 7 | Global minimum structures of Aln; n = 3–8, obtained by the global search using PyAR|XTB, PyAR|BP86, and reported results (Ahlrichs and Elliott, 1999).

of Al nanoclusters up to Al12 with PyAR|XTB, and up to Al8 with
PyAR|BP86. There are several theoretical studies on Al clusters at
various levels of theory, such as Sutton-Chen empirical potential
(Joswig and Springborg, 2003), DFT (Ahlrichs and Elliott, 1999;
Rao and Jena, 1999), and CCSD(T) (Shinde and Shukla, 2014;
López-Estrada and Orgaz, 2015).

The most stable structure for the trimer, Al3 is triangular in
both the calculations, PyAR|(XTB, BP86). The bent and linear
isomers are 0.53 eV and 0.63 eV higher in energy compared to the
most stable structure at BP86/def2-SVP level. We found a planar
rhombus geometry for Al4 with PyAR|BP86 in agreement with
the reported ab initiomethods. PyAR|GFN-xTB calculation gave
a slightly different non-planar rhombus geometry as the most
stable structure, but tetrahedron is a minima at GA-Sutton Chen
potential. The GM of Al5 is a planar W-shaped structure in our
calculation (PyAR|(XTB, BP86)) in agreement with the reported
minima from ab initio calculations.

The GM of Al6 by PyAR|XTB is a TBP with an edge-cap, but
PyAR|BP86 calculation gave a crown-shaped structure as GM

(Figure 7). The structure of Al6 reported by Jones and Ahlrichs
(Jones, 1993; Ahlrichs and Elliott, 1999) is a distorted octahedron,
not in agreement with any of our minima. For Al7, the trigonal
bipyramid with two capped atoms is the GM at PyAR|XTB, while
PyAR|BP86 produced a mono-capped octahedron that matched
with the reported minima. The octamer Al8 showed capped
trigonal bipyramid as the minima by PyAR|XTB, octahedral core
with two edge-capped by PyAR|BP86 that matched with SC
potential (Joswig and Springborg, 2003) and DFT studies (Jones,
1993; Ahlrichs and Elliott, 1999).

4.1.5. General Features
We have studied various features of the approach to finding the
global minima of metal nanoclusters. In gold and aluminum
clusters, we have compared different methods. All the methods,
including semiempirical, produced the same global minima
for gold clusters, while the GM was highly dependent on the
method for Al clusters. Hence, the choice of appropriate method
is crucial.
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Some of the clusters have different structural motifs for
different sizes. Our method was able to capture the changes in
the structural motifs. The global minima for gold clusters were
flat upto the size of ten and were 3D geometries afterwards.
In order to check these structural changes, we have carried out
PyAR|XTB calculation on carbon clusters. We have observed
minima corresponding to linear, monocyclic, tricyclic, and the
bowl shapes (Figure S3).

We have checked the variation in binding energy per atom
on varying the number of orientations (N) in the Au cluster
(Figure 5A). The use of more orientations was crucial, especially
for the larger clusters. We have then checked the variation in BE
for three separate runs for Pt and Al clusters. While the plot of BE
for each run (Figure 5B) shows nearly perfect overlapping lines
for Pt clusters, the BE’s sightly differ for Al clusters (Figure 5C).

As the cluster size increases, the search space increases. Hence,
either increase the N, or carry out multiple runs, to ensure that
most of the local minima are found that increases the chance of
finding the global minima. Between these two options, increasing
N is better as the Tabu list ensures that the trial geometries are
dissimilar, while multiple runs may end up in exploring the same
local minima more often.

4.2. Binary Clusters
The mixing of two elements may result in properties that are
different from the pure forms of each elemental clusters. In
the case of binary clusters, we have to consider all different
compositions between two elements. Here we have exhaustively
explored all combinations in AiBj, where 1 ≤ i ≤ m; 1 ≤ j ≤ n;

FIGURE 8 | The optimized global minimum geometries of Ru-Pt binary clusters of size 2–7.
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FIGURE 9 | (A) Binding energy per atom (eV/atom) with increasing size from 2 to 14 and (B) mixing Energy vs. number of Ru atom for Ru-Pt binary clusters.

the cluster size N = m + n, for ruthenium-platinum and gold-
platinum binary clusters. One notable feature in the geometries is
that, one of the elements tends to become part of the core, while
the other tends to be on the surface. The other property of interest
is the mixing energy that shows the stability of binary clusters
compared to that of the pure unary clusters.

4.2.1. Ruthenium-Platinum Binary Clusters
The binary Ru-Pt nanoalloys showed remarkable enhancement
in catalytic activity for CO oxidation (Arico et al., 2001; Liu et al.,
2006), compared to when platinum is used in its pure form as a
catalyst (Bion et al., 2008), and avoids some of the drawbacks. We
applied our method for building binary clusters implemented in
binary_aggregator in PyAR to build Ru-Pt binary system
with the interface to XTB program using GFN-xTB method. We
built the Ru-Pt binary clusters up to a total cluster size of 14,
i.e., Ru1Pt1 · · · Ru7Pt7. The lowest energetic clusters are shown
in Figure 8 for a size of 2 to 7.

The general features of the GM geometries match with the
reported trend (Demiroglu et al., 2017). In general, the Ru prefers
to occupy the core of the clusters with the maximum number
of bonds. The Pt, on the other hand, minimizes its number of
bonds by seeping on to the surface, having at most three bonds.
This observation is in accordance with the higher cohesive energy
of Ru (6.74 eV) compared to Pt. (5.84 eV) (Kittel, 2005). The
binding energy of the Ru2 dimer is lower than that of Pt2, 2.00
eV and 1.94 eV, and the Ru-Pt has the higher binding energy
than both (2.13 eV) (Demiroglu et al., 2017). The GM geometries
from PyAR|XTB maintain these qualitative features although
the individual structures are not identical with the reported
structures fromDemiroglu et al., as most of these geometries have
high spin ground states andwe have considered only singlet states
(Demiroglu et al., 2017).

For the cluster size of four, all the combinations of (Ru,Pt)4
have similar, non-planar bitriangular geometries. Ru-Ru bond is
shorter in Ru2Pt2, but two Pt atoms prefer to stay away from
each other. For cluster size higher than four, the geometry of GM
changes with composition. As the composition of Ru increases

in (Ru, Pt)5, the structure changes from planar to 3-D. Similar
planar structures were found for Ru1Pt4 and Ru2Pt3. For cluster
sizes with six and seven atoms also, the clusters with a higher
composition of Ru have 3-D structures.

The binding energy per atom increases with the cluster size
for (Ru, Pt)N binary cluster in the range that we have considered,
up to total cluster size 14. Figure 9A shows the average binding
energy vs. cluster size of the Ru-Pt clusters, which includes all
the selected unique isomers along with GM. The highest BE for
each cluster size increases as the cluster grows and gains the
highest stability at nine and then again at 13. Our semi-empirical
results are in qualitative agreement with the reported DFT results
(Demiroglu et al., 2017).

We have calculated the mixing energy (δ), the excess energy
of nanoalloy over the pure cluster of the same size, for RuPt
binary clusters of size N = m + n = 2–7. The effect of mixing
Ru with Pt in small clusters calculated as a function of Ru atoms
for all compositions of RumPtn from 2 6 N 6 7 clusters
are plotted in Figure 9B. The mixing is favorable when δ is
negative. In our calculation, mixed clusters are more stabilized
than the pure clusters except for Ru5Pt1 and Ru5Pt2. The DFT
calculation by Demiroglu et al. (2017), on the other hand, shown
positive mixing energy for Ru3Pt1. Ru-Pt diatomic molecule
is more stable than the pure Ru2 or Pt2 dimer. The clusters
with one Ru atom (Ru1PtN) more stable than the other possible
combinations forN = 2, 5, and 7. Two Ru atomsmade the binary
clusters more feasible when N = 3, 4, and 6. Therefore, (Ru, Pt)N
binary clusters with a lesser composition of Ru atoms (one or
two) are more favorable in our calculation using semi-empirical
method (PyAR|GFN-xTB).

4.2.2. Platinum-Gold Binary Clusters
Platinum-Gold nanoalloys are one of the most studied binary
clusters because of their catalytic properties, for example, as a
catalyst for CO adsorption (Logsdail et al., 2009; Kaizuka et al.,
2010). Song et al. have studied the bonding properties of CO on
Pt-Au binary clusters (Song et al., 2005). The catalytic activity
of a cluster largely depends on the electronic properties. By
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FIGURE 10 | Optimized geometries of Pt-Au clusters from size 2–7 obtained using PyAR|XTB program. Binding energies (eV/atom) from GFN-xTB, and from DFT
(PW91/PAW) result (Song et al., 2005) in parathesis.

introducing gold atom in the pure platinum cluster, the electronic
properties and thereby, catalytic activity is enhanced.

We have built the (Pt, Au)N binary clusters; N = 2–14 using
PyAR|XTB. The lowest energy structures of N = 2–7 are shown
in Figure 10. For (Pt,Au)3 cluster, the Pt2Au has a triangular

geometry with Pt-Pt and Pt-Au bonds, while the PtAu2 has
a bent structure with both the Au atoms bonded to Pt and
has long Au-Au distance. PtAu3 has a planar structure with
a triangle of PtAu2 and an exocyclic Au attached to Pt. The
other (Pt,Au)4 structures, Pt2Au2 and Pt3Au1 has similar bicyclic
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FIGURE 11 | (A) Binding energy per atom (eV/atom) with increasing size from 2 to 14 and (B) mixing energy vs. number of Au atom for Pt-Au binary clusters.

quasi-planar structures. Among the (Pt,Au)5 clusters, Au2Pt3and
Au3Pt2 where the composition of either gold or platinum is 60%
have similar geometries as GM. The (Pt,Au)5 with 80% gold
compositionmakes the structure having a triangular base, but the
higher percentage of platinum changes the geometry to a fused
four-and-three-membered rings.

As the cluster grows in size, the composition of the alloy will
show significant effects on the structure and other properties. For
cluster sizes of six and seven atoms, the structures with a higher
composition of gold prefer to form planar-like structure. When
the composition of Pt is maximum, the cluster tends to acquire
a 3D geometry. While Au occupies external sites, Pt occupies the
core sites. Apart from these general features, the GM geometries
from our study do not match well with the global minimum
geometries reported in the literature (Song et al., 2005), due to
the different level of theory applied (GFN-xTB vs PW91/PAW)
for studying the clusters.

We estimated the average binding energy for (Pt, Au)N
clusters (N = 2–14) using PyAR|GFN-xTB. The cluster gains
the highest stability when it reaches the size nine and again at
size 14 in Figure 11A. We compared our results (PyAR|XTB)
with the DFT results by Song et al. (2005). Binding energies
of planar Pt1Au3, Pt2Au2, and Pt3Au1 are shown in 10
with the corresponding reported values. The planar minima
of Pt4Au1, Pt3Au2, and Pt2Au3 are in agreement with the
reported geometries.

We have calculated the mixing energy—the stability of mixed
cluster compared to its pure form—for the (Pt, Au)N clusters.
Most of the GM geometries with combinations of PtmAun (2 6

m + n 6 7) clusters have negative mixing energy, except for
Pt1Au2, Pt1Au3 (Figure 11B). Hence, the mixing is, in general,
favorable. For cluster size up to seven, the clusters with one or
two Pt atoms have the highest stability.

4.3. Ternary Aggregate
The catalytic activity of metal nanoclusters can be enhanced by
introducing a second element as well as a third element. Some
ternary metal clusters were shown to have higher activity than

their unary or binary counterparts (Fang et al., 2011). However,
the details of the mechanisms for the enhanced activity is largely
unknown as even the structural details of these binary, ternary
or other heterometallic clusters are unknown. Finding the global
minima of the ternary cluster is even more difficult as compared
to the unary and binary systems. Ternary cluster, AlBmCn (l +
m + n = N), can have geometries different from their unary or
binary counterparts and can have different structures for different
compositions. This high level of complexity in the PES is a
challenge for the high-level theoretical calculations to explore
the surfaces efficiently. There is a lot to be learnt about the
ternary clusters; computational chemistry can serve greatly in
this endeavor.

We have studied Platinum-Gold-Silver clusters as an example
for a ternary system to validate the ternary_aggregator
module implemented in PyAR program. We have built the Pt-
Ag-Au cluster of total size up to 15 using xTB interface. In the
GM geometries, Pt and Ag are near the core, while Au atoms
are in the periphery. As we have discussed in the binary systems,
these preferences can be attributed to the bond strengths. The
bond strength calculated at GFN-xTB level follows the order:
Ag-Ag (-5.19 eV) > Pt-Pt (-4.4 eV)> Au-Au(-3.9 eV); the bond
energy is given in parenthesis. The geometries of the most stable
ternary clusters are shown in Figure 12. Most of the structures
are quasi-planar or three-dimensional. The general features of the
minima are in accordance with the studies by Pacheco-Contreras
et al. using Basin Hopping global search with Gupta Potential (as
the force field), and using DFT for final optimization for more
accuracy (Pacheco-Contreras et al., 2018).

5. CONCLUSIONS

We have developed a methodology to build the unique
geometries of nanoclusters and nanoalloys. The clusters are
built by adding atoms one-by-one starting from one atom
up to the desired size. The following steps are involved in
the method: (a) For adding an atom to the N-sized cluster,
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FIGURE 12 | Ternary clusters of Ag, Au, and Pt generated using PyAR|XTB program.

several trial orientations are generated by placing the atom
at different random positions around the cluster, (b) These
orientations are then optimized by gradient-based methods by
the interfaced electronic structure programs, (c) From all the
optimized geometries, the similar geometries are removed, the
unique structures are selected by clustering algorithms, and
these selected geometries are used for the next cycle. These
steps (a–c) are repeated to add an atom to all the selected seed

molecules. This atoms are added until the cluster grows to the
desired size. The similarity between the molecules are compared
using the molecular representation based on fingerprints of the
Coulomb matrix.

We studied nanoclusters of palladium, gold, platinum, and
aluminum, binary clusters of Ru-Pt and Au-Pt, and ternary
clusters of Ag-Au-Pt. The method is shown to produce all the
reported global minimum structures, along with other minima,
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when we used the same or similar electronic structure methods
and the same spin-states. Differences were seen when we used
the semiempirical GFN-xTB method to compare the reported
structure and properties fromDFT or CCSD(T) studies. We have
also evaluated some popular properties such as binding energy
per atom, mixing energy, and compared with the reported ones.

We have varied some of the parameters in our approach
for comparison of efficiency in finding the global minima and
other properties of metal nanoclusters. We have compared
different electronic structure methods, semiempirical and a few
DFT functionals, in gold and aluminum clusters. While all the
methods produced the same global minima for gold clusters, the
geometries of maximum stability were highly dependent on the
method for Al clusters. The method dependency was also seen
in identifying the ground spin-state in Pt clusters. Thus, we can
use less expensive methods such as semiempirical methods or
empirical potentials for the clusters which do not change the
ground-state multiplicity, and for which these methods give good
results comparable to high-level ab initio or DFT methods. We
can also use a two-layer approach where the initial search is
done by cheaper methods, and the selected geometries can be
optimized at a higher level.

We checked the effect of varying the number of orientations
by comparing the binding energy per atom in the Au clusters. The
study showed that as the cluster size increase more orientations
has to be used for better results. In the same way, the result from
different runs may vary if a small number of orientations are
used, as was found by comparing the BE for three separate runs
for Pt and Al clusters. As the cluster size increases, the search
space increases and hence either number of orientations has to
be increased or multiple runs have to be carried out to ensure
that most of the local minima are found to increase the chance of
finding the global minima.

A major potential challenge in such cluster-growing methods
is the ability to capture the changes in structural motifs. We have
seen that the GM’s in Aun clusters changed from 2D to 3D on
going from n = 10–11. We also found similar structural changes

in carbon clusters, 1D linear geometry, to 2D ring structures, and
3D structures including bowl-shaped geometries.

Thus, by building the cluster of size n by exploring three
degrees of freedom involving the relative orientations of n − 1
and one atom gives the minima obtained by exploring 3N-6
degrees of freedom by the other methods. The direct comparison
of complexity for the n-sized cluster is not meaningful because
we have to add the complexity for exploring each of the clusters
of size up to n. The major limitation our method is that it can
be more expensive for building a cluster of a particular size of n
as the method has to build all the clusters from size 2 to n. This
method may not be very useful if one is only interested in only
the n-sized cluster. Our method, however, is useful for studying
the evolution of properties with growing cluster size.
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A new procedure is suggested to improve genetic algorithms for the prediction

of structures of nanoparticles. The strategy focuses on managing the creation of

new individuals by evaluating the efficiency of operators (o1, o2,...,o13) in generating

well-adapted offspring. This is done by increasing the creation rate of operators with

better performance and decreasing that rate for the ones which poorly fulfill the task of

creating favorable new generation. Additionally, several strategies (thirteen at this level of

approach) from different optimization techniques were implemented on the actual genetic

algorithm. Trials were performed on the general case studies of 26 and 55-atom clusters

with binding energy governed by a Lennard-Jones empirical potential with all individuals

being created by each of the particular thirteen operators tested. A 18-atom carbon

cluster and some polynitrogen systems were also studied within REBO potential and

quantum approaches, respectively. Results show that our management strategy could

avoid bad operators, keeping the overall method performance with great confidence.

Moreover, amongst the operators taken from the literature and tested herein, the genetic

algorithm was faster when the generation of new individuals was carried out by the twist

operator, even when compared to commonly used operators such as Deaven and Ho

cut-and-splice crossover. Operators typically designed for basin-hopping methodology

also performed well on the proposed genetic algorithm scheme.

Keywords: cluster optimization, quantum genetic algorithm (QGA), evolutionary operator management, Lennard-

Jones clusters, polynitrogen structure optimization

1. INTRODUCTION

Clusters are aggregates of atoms or molecules whose structures remain between those of discrete
atoms and of the bulk material (Johnston, 2003). Moreover, their properties are composition and
size dependent. Palladium, for instance, is non-magnetic in the solid state, but its counterpart
clusters may have non-zero magnetic moment (Moseler et al., 2001). Among the wide range
of interesting cluster applications one could mention magnetic resonance imaging (Lu et al.,
2017), water oxidation (Zhao et al., 2017), magnetic storage (Bader, 2006), and catalysis (Pelegrini
et al., 2016). In addition, clusters are promising in the development of nanomachines (Rieth
and Schommers, 2002), Islas et al. and Merino et al., for example, showed the stability of boron
wheels (Islas et al., 2007; Jiménez-Halla et al., 2010), while the latter researchers also studied the
aromaticity of such particles and the rotational motion of these rings with respect to each other,
comparing their behavior to a wankel motor (Jiménez-Halla et al., 2010). However, for most of
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computational chemistry techniques, atomic coordinates
are needed for the calculation of clusters properties, and
hence one must know the cluster structure. Finding the
geometries of small clusters is a challenging task and
requires a combination of theoretical and experimental
techniques (Götz et al., 2012; Heiles et al., 2012).

It is generally assumed that clusters adopt the lowest energy
structure (Lazauskas et al., 2017). Accordingly, finding such
structure is a matter of finding the global minimum of an
appropriate potential energy surface (PES). Modeling such PES
within a quantum approach rapidly becomes computationally
prohibitive, therefore empirical analytic expressions are usually
employed to describe the interactions between the particles
composing the clusters. Examples of these potentials are the
Lennard-Jones (Jones and Ingham, 1925), Morse (Morse, 1929),
and REBO (Brenner et al., 2002; Kosimov et al., 2010; Bonnin
et al., 2019; Jiang et al., 2019; Lin et al., 2019) potentials, the
latter being a more complex one which has gained prominence
due to its applicability to describe graphene potential energy
surfaces (Jiang et al., 2019; Lin et al., 2019).

Once the way to compute the energy of the system has been
defined, one must minimize it. There are several techniques that
enable global minima search, such as big bang methodology
(BB) (Lazauskas et al., 2017), basin-hopping (BH) (Rondina and
Da Silva, 2013) and evolutionary algorithms, such as genetic
algorithms (GA) (Johnston, 2003). Especially, GAs have been
successfully applied to predict chemical structures from clusters
to protein folding (Johnston, 2003; Louis and McDonnel, 2004;
Heiles et al., 2012; Silva et al., 2014b; Borguesan et al., 2015; Song
et al., 2018). Even so, finding the global minimum associated
with these chemical systems implies efficiently exploring themost
reasonable portions of their PES, which still is a challenging task.
Therefore, new algorithms are constantly being developed.

2. RELATED WORK

It is already well discussed in the literature that, in order to
guarantee efficiency in convergence and appropriate exploration
of the PES associated with atomic and molecular clusters,
evolutionary algorithms employed in global optimization
problems must ensure population diversity (Hartke, 1999; Cheng
et al., 2004; Grosso et al., 2007; Pereira and Marques, 2009;
Marques et al., 2018). Therefore, estimating how similar are
the structures composing the evolving population can provide
valuable information to assist the evolutionary procedure. In the
work of Hartke (1999), it is proposed that a minimum degree
of exploration of the PES is ensured by making part of the
population always composed by mutants. That means a set of
structures that have been randomly modified will be present
throughout the evolutionary procedure, regardless of whether
they are better adapted or not. In the same work, a minimum
energy difference between structures is established to maintain
diversity, as well as a balance between optimization performance
and exploration of the PES is proposed through the simultaneous
use of a random operator such as Deaven and Ho (1995)
cutting plane and a biased version of this operator in which

the cluster is separated into its best and worst halves. Hartke
(1999) also proposes a measure based on the two-dimensional
projections of clusters structures that can distribute different
types of geometries into niches. Thus, different ranges of values
can be assigned to different types of geometries, allowing the
evaluation of structure similarities and enabling one to avoid
population stagnation.

Cheng et al. (2004) propose that structure similarity checking
should always be based on topological information, and
that measurements of the distance between energy minimum
structures should be carried out by comparing numerical
values associated with structure similarities. In their work, a
connectivity table for cluster similarity checking is proposed, in
which the connectivity information of a cluster is characterized
according to the number of atoms having i nearest neighbors
within the cluster. By using this connectivity table together
with the evaluation of the fitness of each individual, they
managed to balance diversity and convergence efficiency.
Pereira and Marques (2009) state that one should consider
structural information for estimating dissimilarities among
cluster structures when searching for energy minima within
an evolutionary algorithm approach, instead of taking into
account fitness values. They have employed a combination of
an evolutionary approach with a local search method that uses
derivative information to search for the nearest local minimum
without requiring any previous knowledge about the problem
being solved. The authors show that maintaining diversity is the
main issue to guarantee effectiveness, which was carried out by
the application of three distinct distance measures to estimate the
dissimilarity between structures.

As for recent advances in the development of genetic
algorithms, Heiles et al. coupled Plane-Wave Self-Consistent
Field (PWscf) package with Birmingham Cluster Genetic
Algorithm (BCGA), allowing the study of Au-Ag nanoalloys
through density functional theory (Heiles et al., 2012). Zayed
et al. implemented what they called universal genetic algorithm,
making use of Python’s large collection of libraries and of
the scaling capabilities of a pool genetic algorithm (Zayed
et al., 2017). Vilhelmsen and Hammer proposed an
inexpensive strategy to eliminate similar structures from
the population (Vilhelmsen and Hammer, 2012). Lazauskas
et al. proposed a pre-screening to eliminate structures
with high probability of convergence failure during local
minimization (Lazauskas et al., 2017).

In the past we proposed two new operators, namely
annihilator and history operators (Guimarães et al., 2002), that
demonstrated along the years (Lordeiro et al., 2003; Rodrigues
et al., 2008; Silva et al., 2014a,b) to be quite efficient for
determining global minima in atomic and molecular cluster
studies where many local minima were present. Regarding the
creation of new individuals, one can observe a broad variation
among methodologies available in the literature. In general, each
operator application rate is kept constant throughout the GA
execution. For instance, Wang et al. used the values 0.5, 0.3,
and 0.2 for mating, mutation and exchange rates, respectively,
in their global minimization (Wang et al., 2018). Zhao et al.
propose values between 10% and 30% for mutation rate (Zhao
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et al., 2016), while in an outline of the evolutionary principles
of GAs, Heiles and Johnston describe a parameter that defines
the probability of mutation, pmut (Heiles and Johnston, 2013).
Let ntot be the total number of individuals to be created after
energy minimization of an arbitrary generation; among them,
pmutntot individuals are created by mutation operators, while
(1−pmut)ntot are created by crossover or recombinationmethods,
on average (Heiles and Johnston, 2013). Finally, Rondina et al.
used a dynamic strategy to manage operators in a basin-hopping
technique (Rondina and Da Silva, 2013).

In this work, we propose amethod with dynamicmanagement
of evolutionary operators for genetic algorithms that, in
principle, could lead to a more efficient way to survey the PES
of atomic and molecular clusters than our previous older GA
version (Guimarães et al., 2002; Lordeiro et al., 2003). The
paper is divided as follows: section 3 outlines a standard GA
procedure, gives the details of our algorithm and describes all
the operators employed as well as the management strategy
proposed. The comparison between the different builds tested
and the evaluation of their behavior according to the model
system employed are presented and discussed in section 4. The
main conclusions are gathered in section 5.

3. METHODOLOGY

3.1. Genetic Algorithm Procedure
A standard GA procedure is defined by three main steps.
The first step is initialization, when an initial population of
individuals is generated. The second step is selection, where
all individuals are ranked according to their fitness and, in
the present work, the 25% worst are eliminated. The third
step is the creation of new individuals, where, in general,
operators are applied to individuals that survived the selection
step to generate new structures. We call operators all ways
of generating a new member of the population. Desirable
operators are the ones which efficiently span the potential energy
surface of the system representatively. This can be done in
different ways to which different concepts are associated and
will be discussed further on. After creation step, the whole
population is submitted to selection again and the cycle is
repeated (Johnston, 2003).

One can find a wide variety of genetic algorithms in
which the basic structure just described has been customized
to improve performance or to meet some specific needs. In
fact, the generation of the initial population may not always
be completely random (Johnston, 2003; Chen et al., 2013);
the measure of the quality of the individuals (fitness) might
be given by different mathematical approaches (Burton and
Vladimirova, 1998; Jin et al., 2002; Yan and Wang, 2010),
and its upper and lower limits may be fixed or scaled in
each generation according to the current population (Johnston,
2003). The selection of individuals to be eliminated or to
generate offspring may depend on their fitness values in
different ways, as well as various methods are available
for choosing parents for mating (Saini, 2017). Furthermore,
subpopulations can be evolved in parallel and exchange

individuals along the procedure, simulating migration in natural
populations (Chen et al., 2013). These few examples, and
all their possible combinations, illustrate the versatility of
genetic algorithms.

In this work, however, we concentrate mainly on the
creation of new individuals within an approach focused on
the study of atomic and nanoalloy clusters. Our approach
changes the creation rate of each operator employed on the
fly, favoring the better ones. In order to do so, we first
performed a study over 13 evolutionary operators collected
in the literature (Deaven and Ho, 1995; Michalewicz, 1996;
Wales and Doye, 1997; Johnston, 2003; Takeuchi, 2007; Kim
et al., 2008; Ye et al., 2011; Chen et al., 2013; Rondina
and Da Silva, 2013) and evaluated the performance of all
proposed builds within a 26 and 55-atom Lennard-Jones
potential clusters (LJ26 and LJ55) approach and a simple
evolutionary scheme.

We have employed a primary GA framework and focused
on the outcomes of each operator, both individually tested
and jointly implemented, when tackling simple systems such
as LJ26 and LJ55. We have also briefly approached the harder
LJ38 system, the C18 cluster employing the more complex
REBO potential and applied our management strategy within
a quantum approach to polynitrogen systems. The scheme of
the genetic algorithm implemented in this work is presented in
Figure 1, and each of its steps will be discussed in the following
sessions. The program was written in C++ and the calculations
were made on an Unix computer. For the polynitrogen cases,
however, a more robust algorithm (Silva et al., 2018) was
chosen (coupled to GAMESS-US, Schmidt et al., 1993). In the
future we intend to both extend this approach to molecular
nanoclusters and enhance the efficiency of our algorithm by
improving each of its steps with typical strategies (Johnston,
2003) that help avoiding unnecessary computational effort and
assist convergence.

3.2. Initialization
Following Cai et al. (2002), each individual of the initial
population is created by randomly generating atoms inside a
mathematical sphere of radius R, defined by Equation (1):

R = re

[

1

2
+

(

3N

4π
√
2

)
1
3

]

(1)

where N is the number of atoms and re is a parameter related
to the equilibrium distance between atoms, here set to 1.0.
Additionally, a restriction was added to prevent atoms from
being generated very close to each other. The minimum distance
allowed between two atoms at this step is 0.8 (dimensionless
units adopted).

3.3. Selection and Stop Condition
In the present work, two analytic potentials were chosen to define
the potential energy surfaces to be explored, namely the Lennard-
Jones and REBO potentials. The adjustment of the parameters
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FIGURE 1 | A flowchart of our genetic algorithm procedure.

associated with the operators tested, as well as the evaluation
of the employed builds were carried out using Lennard-Jones
empirical potential (Equation 2) with reduced units (ǫ = σ = 1).

E = 4ǫ
∑

i<j

[

(

σ

rij

)12

−

(

σ

rij

)6
]

(2)

REBO potential was used further on to test the ability of
the proposed builds to reach the global minimum in a
more complex problem, the C18 cluster. This potential is
described in detail in Brenner et al. (2002) and Kosimov
et al. (2010), and it has been implemented with support from
the Atomic Simulation Environment (ASE) library (Larsen
et al., 2017). Among the options available in this simulation
environment, we opted for the implementation of REBO present
in Atomistica library. We have used dlib (King, 2009) library
with limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) algorithm for local minimizations. In each generation,
individuals were sorted by potential energy and the 25%
worst were eliminated. From the remaining population, parent
individuals are chosen for mating employing an uniform
selection method, in which they are selected randomly uniformly

from the current population. Individuals are also selected for
mutation in the same manner. Although each operator has its
own probability of acting over the population in each generation,
it governs only the operator creation rate, but not the choice of
an specifically ranked individual to act on.

Two stopping criteria were defined for the developed genetic
algorithm. The first one is satisfied when the global minimum
is achieved, which is already known for the Lennard-Jones 26,
38, and 55-atom cases studied here (−108.315616, −173.928427,
and −279.248470, respectively), whose structures are shown
in Figure 2. Also, the most stable structure for the 18-atom
carbon cluster is known to be a planar monoring (shown in
Figure 3), with binding energy equal to−108.3726 eV (Kosimov
et al., 2010). The other criterion is fulfilled when 3,000 local
minimizations are performed for C18 and the smaller Lennard-
Jones cluster, and 5,000 local minimizations for the larger
Lennard-Jones clusters. Usually, the global minimum is not
known, and thus another termination criterion must be defined.
For the polynitrogen cases tested, for example, the procedure is
stopped either if it reaches 400 generations or if an individual
remains as the one with the lowest energy for 20 consecutive
generations (Silva et al., 2018). However, the former described
stopping criteria are suitable for this work because performance
was evaluated according to the number of local minimizations
(NLM) needed to reach the global energy minimum. Therefore,
after reaching this point (which is already known), additional
calculations are not necessary. This performance assessment
suggested here was also used by Chen et al. (2013) for the
proposition of a new crossover operator, where a sphere is used
to cut and splice the parent structures, rather than a plane.

3.4. Management
The method we propose to manage the application of operators
within the evolutionary procedure is based on setting, on the
fly, the creation rate of each operator employed according to
their outcomes. When a new individual is generated, its energy
is compared to the average energy of the entire population that
survived the previous selection step. If the energy of the new
individual is lower than this average energy, more individuals
will be created with that operator in the next generation. If, on
the other hand, the energy of the new individual is above that
average, the related operator suffers a decrease in its creation rate.
The function chosen to describe how the creation rate of each
operator oj changes along the evolutionary procedure (from the
current to the next generation) is piecewise-defined:

υij

(

1Eij
)

=















υmax, 1Eij < −1Emax
(

υmax
1Emax

)

1Eij, −1Emax < 1Eij < 1Emax

−υmax, 1Eij > 1Emax

(3)

where υij is the i
th contribution to the variation of the creation

rate of operator j. 1Eij is the energy difference between the new
individual i, created by oj, and the average of the population that
survived the previous selection step. Themaximum allowed value
for the variation of the creation rate of any operator employed in
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FIGURE 2 | Well-known global energy minimum structures of the (A) 26-atom,

(B) 38-atom, and (C) 55-atom Lennard-Jones clusters.

the algorithm was defined as υmax and here set to 0.9. 1Emax,
here set to 2.0, is the energy difference that triggers maximum
variation. Thus, the new creation rate (pj) of each operator oj is
defined according to Equation (4):

pj = p′j +
1

N

N
∑

i

υij(1Eij) (4)

where p′j is the creation rate of operator j in the previous

generation, and N is the number of individuals it has created in
the current generation.

After all creation rates have been modified, their sum is
normalized to one. Lastly, new individuals are created by the rule
pjntot , where pj is the creation rate of operator j and ntot is total
number of individuals that must be created.

3.5. Operators
Traditionally, the creation of new individuals is done in two
different manners: through crossover or mutation (Johnston,

FIGURE 3 | Most stable structure for C18 cluster: a planar

single-ring (Kosimov et al., 2010).

2003). Crossover combines two individuals from the population
to produce new ones, simulating the combination of genetic
information from the parents to generate offspring. Mutation
modifies the coordinates of a single individual from the
population to generate a new one, avoiding population
stagnation. It simulates the introduction of new genetic material
to the population. In this work, three types of operators are used:
crossover, which produces a new individual combining other two;
mutation, which produces a new individual from a single one;
and immigration, which creates a new individual from scratch,
simulating migration in natural environment.

The following operators are of crossover type. They take two
individuals (k and l) from the remaining population, chosen
randomly from the group of the previous selection step survivors,
to generate a new one (m).

a. Arithmetical crossover (ARCR) (Michalewicz, 1996): let x(k)

be the cartesian coordinate vector of individual k, x(l) the
cartesian coordinate vector of individual l and x

(m) the
cartesian coordinate vector of the new cluster m. ARCR acts
to generate a new individual with the following rule: x(m)

=

0.5(x(k) + x
(l)).

b. Plane-cut-splice crossover (PCCR) (Deaven and Ho, 1995):
a plane is randomly defined separating the atoms of cluster
k into two groups. Another random plane is defined for
cluster l, also separating its atoms into two groups. The groups
generated from cluster kmust have the same number of atoms
of those generated from cluster l. Then, equivalent groups are
exchanged between clusters k and l to generate the new cluster
m with the correct number of atoms.

c. Sphere-cut-splice crossover (SCCR) (Chen et al., 2013):
analogous to PCCR, but using a sphere instead of a plane.
A mathematical sphere is defined to separate cluster k into
two groups of atoms, one that lies in the inner part of the
sphere and other that lies in its outer region. The same
sphere is generated for cluster l. If the inner part of both
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progenitor clusters contains the same number of atoms, they
are interchanged to generate a new individualm.

d. Two points crossover (TWCR) (Johnston, 2003): the
coordinates of the atoms composing each of the
selected individuals for mating must be arranged in a
one-dimensional array. Then, two random integers are
generated: s1 = [1, (3N − 1)] and s2 = [(s1 + 1), 3N]. The
notation [a, b] means that a random number between a and b,
in a uniform distribution, must be generated. The coordinates
of cluster k that lie between s1 and s2 are replaced by those of
cluster l that lie on the same range.

e. Uniform crossover (UNCR) (Johnston, 2003): when
generating the new individual x

(m), each new coordinate

(x
(m)
i

) has a specific probability of coming from each of its
parents. In the present approach the new individual has 70%

chance of coming from cluster k (x
(k)
i
) and 30% chance of

coming from cluster l (x
(l)
i
).

The following operators are of mutation type. They take one
individual, k, also chosen randomly from selection step survivors,
to generate a new one,m.

a. Angular operator (AO) (Wales and Doye, 1997): this operator
acts on 1–5% of the total number of atoms in the cluster,
chosen randomly. Each selected atom is displaced randomly
over the surface of a sphere of radius Ri (equal to the distance
of the atom to the geometric center of the cluster) centered in
the geometric center of the particle.

b. Cartesian displacement operator (CDO) (Rondina and Da
Silva, 2013): this operator acts on 1 to N atoms, chosen
randomly. N is the total number of atoms in the cluster. Each
selected atom is modified by the following equation:

r
(m)
i

= r
(k)
i

+ S rmin( [−1,+1 ] ı̂ + [−1,+1 ] ĵ

+ [−1,+1 ] k̂) (5)

where r
(m)
i

are the new coordinates of the cluster’s ith atom,

r
(k)
i

are the former coordinates of that same atom, S is an

arbitrary parameter, here set to 0.2, ı̂, ĵ and k̂ are the cartesian
unit vectors, and rmin is the distance to the nearest atom to
which the operator will act. Again, the notation [−1,+1 ]
means that a random number with uniform distribution must
be generated between−1 and+1.

c. Dynamic mutation (DYM) (Johnston, 2003): this operator
acts on all atoms of the selected individual according to the
following equation:

r
(m)
i

= [ ( 1− δ ), ( 1+ δ ) ] r
(k)
i

(6)

where r
(m)
i

are the new coordinates of the cluster’s ith atom,

r
(k)
i

are the former coordinates of that same atom and δ is an
arbitrary parameter, here set to 0.10.

d. Geometric center displacement operator (GCDO) (Kim et al.,
2008; Rondina and Da Silva, 2013): this operator acts on 1 to
N atoms, chosen randomly. N is the total number of atoms

in the cluster. Each selected atom is modified by the following
equation:

r
(m)
i

= r
(k)
i

+ [ (αmax − αmin )

(

Ri

Rmax

)w

+ αmin ] rmin êi ( θi,ϕi ) (7)

where r
(m)
i

are the new coordinates of the cluster’s ith atom,

r
(k)
i

are the former coordinates of that same atom, rmin is

the distance between the ith atom and its nearest neighbor,
Ri is the distance between the ith atom and the geometric
center of the particle, Rmax is the distance between the center
of the particle and its furthest atom, αmax, αmin and w are
arbitrary parameters, here set to 0.2, 0.7, and 2.0, respectively,
and êi(θi,ϕi) is a unit vector generated randomly in a spherical
distribution.

e. Interior operator (IO) (Takeuchi, 2007; Ye et al., 2011): this
operator moves a single atom toward the particle’s nucleus.
Let Ri be the distance between the ith atom and the geometric
center of the particle. Atom i is moved to a random position
on the surface of a sphere of radius [ 0.01, 0.10 ]Ri, centered on
the geometric center of the particle.

f. Surface angular operator (SAO) (Ye et al., 2011): this operator
moves a single atom toward the surface of the cluster. Let Rmax

be the distance between the geometric center of the particle
and its furthest atom. Selected atom, i, is moved to a random
position on the surface of a sphere with radius Rmax, centered
on the geometric center of the particle.

g. Twist operator (TO) (Johnston, 2003; Rondina and Da Silva,
2013): a random plane is defined to separate the selected
cluster into two portions, not necessarily with the same sizes.
Then, one of these portions is rotated randomly around the
axis formed by the normal to that plane. In this work, the
angle of rotation, θ , was generated randomly between 0.10π
and 0.50π .

The following operators are of immigration type. They create a
new individual,m, from scratch.

a. Immigration (IMM and IMM0) (Cai et al., 2002): this operator
generates a new individual in the same manner the initial
population is created. Namely, atoms are generated randomly
inside a sphere of radius defined by Equation (1). Two types
of immigration are defined: IMM and IMM0. IMM has a
restriction that prevents atoms from being created closer than
0.8 Å to each other. IMM0 does not have any restriction.

3.6. Test Methodology
In order to implement this new methodology for a GA
based on the management of various mathematical operators,
several builds were designed using the operators just described,
individually and combined. Several tests were performed as
well. All tests followed the same protocol in which the genetic
algorithm was executed 50 times with different random number
seeds. As described in section 3.3, the chosen systems were the
general case studies of 26 and 55-atom clusters with binding
energy governed by a Lennard-Jones empirical potential (LJ26
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and LJ55) with ǫ = σ = 1 (reduced units). Two stopping
conditions were used: finding the global minimum or reaching
3,000 local minimizations for LJ26 or 5,000 local minimizations
for LJ55. The cluster population was kept constant in 40
individuals, 10 of them being eliminated at each generation
and replaced by the available creation operators. The initial
population was randomly generated using the method described
in section 3.2.

Three different builds were proposed and used to test the
management methodology described in section 3.4, namely
AUTO5, AUTO7, and AUTO13. The numbers indicate how
many creation operators were employed in each build. AUTO5
is composed by the following operators: TO, IO, PCCR, SAO,
and IMM. AUTO7 is composed by: TO, IO, PCCR, SAO, IMM,
AO, and GCDO. Finally, AUTO13 build is composed by all the
operators tested herein: TO, IO, PCCR, SAO, IMM, AO, GCDO,
TWCR, CDO, SCCR, UNCR, ARCR, and DYM. We have also
run the same build of our previous work, here named PREV,
which is composed of 70% SCCR, 20%DYM, and 10% IMM, kept
fixed throughout the GA execution (Silva et al., 2015). Operator
acronyms were defined in section 3.5.

4. RESULTS AND DISCUSSION

Results yielded by all builds tested are presented in Table 1

for the LJ26 case. ̂NLM is the average number of local energy
minimizations needed to achieve convergence to the global
minimum, σ

−
x is the standard error, defined as the standard

deviation divided by the square root of the total number of
samples, and Nfails is the percentage of seeds employed that did
not achieve convergence for a specific build. For those cases that
failed to converge NLM was defined as the maximum allowed
number of local minimizations plus one (3001). However,
unconverged runs were not taken into account to obtain ̂NLM .
The results are presented primarily in ascending order of Nfails;

secondarily, in ascending order of ̂NLM .
We call attention to builds TO, IO, PCCR, AUTO5, AUTO7,

SAO, and IMM, which managed to find the global minimum on
every run. On the other hand, DYMwas the only one that failed to
properly converge on all test runs with different values assigned
to the δ parameter. Acting on all atoms of the selected individual
at once seems to be an ineffective mutation for our purpose.

Twist operator (TO) was the one with lowest ̂NLM , however,
it overlaps with interior operator (IO) if we take their standard
errors into account. Within the same analysis, standard errors
show that IO performed similarly to PCCR and AUTO5, which
in turn were essentially equivalent to AUTO7 and SAO. Since
the global minimum of LJ26 is approximately of spherical shape,
it favored interior (IO) and surface angular (SAO) operators,
explaining their good performances. In order to compare our
top ranked build (TO) with the widely used plane-cut-splice
(PCCR), which did not overlap considering their standard errors,
we have used one-tailed p-value approach (Chaubey, 1993) and
calculated that the twist operator build was better than plane-cut-
splice crossover build with a 90% confidence level. To ensure that
this comparison would be valid, we had previously tested for the

TABLE 1 | Results of tests performed on our GA builds for LJ26.

Build ̂NLM* σ−
x Nfails(%)

TO 186 17 0

IO 205 16 0

PCCR 246 32 0

AUTO5 246 39 0

AUTO7 264 27 0

SAO 264 23 0

IMM 297 39 0

AO 272 33 2

AUTO13 434 61 2

GCDO 357 66 4

PREV** 720 120 6

UNCR 1,096 135 12

TWCR 634 62 16

CDO 739 113 16

SCCR 371 71 28

IMM0 1,242 197 52

ARCR 390 71 80

DYM 3,001 0 100

̂NLM indicates the average number of local minimizations needed to reach the global

minimum. σ−

x indicates the standard error and Nfails indicates the relative number of times

the global minimum was not reached.

*The unconverged runs were removed from the calculation of these averages. This

removal may compromise the analysis when Nfails is nonzero.

**Previous work Silva et al. (2015).

normality of the data generated by these builds using the Ryan-
Joiner test (Yap and Sim, 2011), and the normality hypothesis
was accepted within a significance level of 0.01 with less than
five percent of discrepant data removed. The PCCR proposed by
Deaven and Ho (1995), however, still had a good performance,
since its build managed to find the global minimum on every
run and presented one of the lowest ̂NLM values. This operator
is employed in most of modern genetic algorithms (Johnston,
2003; Heiles and Johnston, 2013) and had its robustness already
reevaluated, showing good results (Froltsov and Reuter, 2009).

The geometric center displacement operator (GCDO)
presented better performance than the cartesian displacement
operator (CDO). The parameters associated with each of
these methods were refined before final test in both cases.
The better GCDO performance could be explained by the
two additional parameters available for tuning compared to
CDO. The uniform crossover (UNCR), two points crossover
(TWCR) and arithmetical crossover (ARCR) were not originally
developed for cluster studies, and, among them, TWCR was
the one that presented the best performance. They make up the
worst performing group within the LJ26 approach along with
CDO, SCCR, IMM0, and DYM.

Still for the LJ26 case, the sphere-cut-splice crossover (SCCR)
performed poorly, which was expected since Chen et al.
indeed reported that this operator is more suitable for larger
clusters (Chen et al., 2013). In our previous work (Silva et al.,
2015), the employed build (PREV) was mainly composed by
SCCR, but also counted with the immigration operator and a
different evolutionary scheme. Within the present GA approach,
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our PREV build presented worse performance ( ̂NLM = 720) than
SCCR-only build ( ̂NLM = 371) when it comes to the average
number of local minimizations needed to reach global minimum.
Nevertheless, the PREV build presented better reliability than
SCCR-only on finding the correct cluster structure, since the
failure rate of the latter (28%) was almost five times greater than
that of the former (6%). If we took the unconverged runs into
consideration to calculate ̂NLM

∗
, PREV would go from ̂NLM =

720 to ̂NLM
∗
= 857, while SCCR would go from ̂NLM = 371

to ̂NLM
∗

= 1107. The improvement of our PREV build over
the SCCR-only could be explained by the joint presence of the
IMM operator in the PREV build, which had better performance
here and was responsible for the creation of 10% of ntot in
each generation in our previous work. The immigration operator
(IMM) itself was the fifth most efficient in the present study.
However, it is important to note that the restriction that prevents
atoms from being created too close to each other was decisive
in its performance. Without such restriction, ̂NLM goes from 297
(IMM) to 1242 (IMM0). Besides, IMM0 failed to converge on
52% of the trials within the LJ26 approach.

In our PREV build we were focused on the development
of a GA to be coupled with electronic structure methods.
Therefore, we needed to generate reasonable structures from
the very beginning, while keeping population diversity within
an unbiased analysis. That is because bad structures may easily
lead to unconverged energy calculations or local minimizations
in a quantum approach, unlike the empirical potential case,
in which the energy may always be obtained analytically. On
the other hand, avoiding completely stochastic contributions to
the evolutionary procedure could prevent us from finding new
energy minima, typically hard to guess if one has no previous
information about the system. Seeking for good cost-effectiveness
relation was essential to survey the ab initio potential energy
surface associated with atomic clusters without calling upon
empirical potentials. However, that was a difficult task to fulfill
employing specific operators with fixed creation rates.

Exploring different possibilities of combining these
evolutionary operators together may provide more flexibility
to the algorithm and hence allow more thorough sampling of
the PES in a single run. In the first instance, we are mostly
interested in evaluating solely the contribution of the operators
to the general performance of genetic algorithms. From this
perspective, we can evaluate the behavior of our AUTO5,
AUTO7, and AUTO13 builds within the highly unbiased GA
scheme adopted here, in which the simplest rules were used
to generate the population, to rank it and to select individuals
for mating and mutation, as well as for predation. Through the
graphs presented in Figures 4–6, we can assess the variations
in the creation rate of each operator within our management
strategy along different GA runs (chosen randomly) concerning
the LJ26 system. Figure 4 refers to AUTO5, Figure 5 to AUTO7
and Figure 6 to AUTO13.

In general, these creation rates undergo great variations
during the first generations and converge to smaller oscillations
within a narrower range as the process advances. This can be
better noticed when the number of generations needed to reach
the global minimum is greater, such as in Figure 5C. In the

FIGURE 4 | Evolution of the creation of new individuals for AUTO5 build

throughout three different runs of the LJ26 system, corresponding to the (A)

third, (B) thirty-ninth and (C) ninth random number seed employed. Nc is the

number of individuals created with that operator and Ng is the generation

index. In general, the graphs show large variation in creation rates in the first

generations and smaller variations at the end of the simulations.

graphs of Figure 4 one can also notice the importance of TO
to the AUTO5 build, which indeed was the responsible for
the largest average creation rate in several runs of that build
concerning the LJ26 system. Still about AUTO5, it is interesting to
note that some operators seem to be more important at different
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FIGURE 5 | Evolution of the creation of new individuals for AUTO7 build throughout three different runs of the LJ26 system, corresponding to the (A) thirty-seventh,

(B) forty-fourth and (C) ninth random number seed employed. Nc is the number of individuals created with that operator and Ng is the generation index. In general,

the graphs show large variation in creation rates in the first generations and smaller variations at the end of the simulations.

stages of the evolutionary procedure, while others seem to be
more systematic. In Figures 4A,C it can be seen that the creation
rate of IMM, for example, is larger at the beginning and decreases
as the system evolves, while essentially the opposite behavior can
be observed for IO in Figures 4A,B. IMM creates individuals
totally randomly, and thus it could be expected to yield better
results in a stage where the population is not sufficiently evolved.

IO and TO, in turn, were the ones that presented the best
performances when evaluated individually within the GA scheme
employed here to approach the LJ26 system, which is consistent
with their behaviors within AUTO5 build.

Among the builds proposed to test our management
methodology, AUTO7 seems to be the most balanced one. For
the simple LJ26 case, for example, its performance has been
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FIGURE 6 | Evolution of the creation of new individuals for AUTO13 build throughout three different runs of the LJ26 system, corresponding to the (A) seventeenth, (B)

thirty-ninth and (C) ninth random number seed employed. Nc is the number of individuals created with that operator and Ng is the generation index. Except for the

peculiar behavior of the DYM operator, the graphs show generally larger variation in creation rates in the first generations and smaller variations at the end of the

simulations. The number of generations to reach the global minimum was, on average, greater than that required for the other builds.

essentially equivalent to that of AUTO5, as one can see from ̂NLM

in Table 1 and from the number of generations needed to reach
convergence, shown in Figure 5. Besides, it has presented, on
average, more homogeneous creation rates among its operators
throughout the generations when compared to AUTO5 and
AUTO13. AUTO7 collects not only the operators that presented
the best results when evaluated individually, but also those that

failed to converge for some of the random number seeds tested,
despite presenting comparable good performance according to
̂NLM (and considering the standard errors). Along with keeping
overall performance, this combination allowed a desirable
diversity of operator outcomes. Furthermore, this specific
combination of operators could enhance the performance of
individual ones, such as SAO, which presented the largest
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TABLE 2 | Results of tests performed on our GA builds for LJ55.

Build ̂NLM* σ−
x Nfails(%)

IO 559 32 0

TO 559 53 0

GCDO 571 41 0

AUTO7 653 37 0

AUTO5 660 46 0

PCCR 775 42 0

AO 830 60 0

SAO 1,380 109 0

AUTO13 864 74 4

TWCR 1,419 190 28

CDO 1,724 223 44

̂NLM indicates the average number of local minimizations needed to reach the global

minimum. σ−

x indicates the standard error and Nfails indicates the relative number of times

the global minimum was not reached.

*The unconverged runs were removed from the calculation of these averages. This

removal may compromise the analysis when Nfails is nonzero.

average creation rate in two out of the three runs shown
in Figure 5.

From the comparison between Figures 4–6 one can also
notice that AUTO13 generally required a considerably larger
number of generations to reach global minimum than AUTO7
and AUTO5, which was already expected due to the results
shown in Table 1. Excluding the DYM operator, the graphs
in Figure 6 also show generally larger variations in creation
rates in the first generations and more steady behavior in later
generations. However, by analyzing the graphs in Figure 6, we
can conclude that the presence of operators that performed
badly when evaluated individually indeed contributed to the
worse performance of AUTO13. Operators such as CDO, UNCR,
and DYM managed to create individuals good enough to raise
their creation rates, but not sufficiently good to reach the global
minimum. These inadequate operators undermined the action
of the most suitable ones to perform the original task of finding
the lowest energy structure effectively. This means that AUTO13
frequently got stucked in local minima and probably would
not be the best choice to tackle a system for which not much
information is already available.

A study completely analogous to that presented so far was
carried out for the 55-atom case (LJ55) and the results yielded
by the builds tested are presented in Table 2. Only the builds
that successfully converged in more than 50% of the trial runs
are presented. For those cases that failed to converge NLM was
defined as the maximum allowed number of local minimizations
plus one (5001). Again, unconverged runs were not taken into
account to obtain ̂NLM . The results are presented primarily in
ascending order of Nfails; secondarily, in ascending order of ̂NLM .

The results obtained for LJ55 are essentially consistent with
those obtained for the LJ26 case. IO and TO were again the
ones with best performances and, along with GCDO, AUTO7,
AUTO5, PCCR, AO, and SAO, make up the builds that
managed to find the global minimum on every run. Among
the ones proposed to test our management strategy, AUTO7

and AUTO5 performed equivalently again and, once more,
outperformed AUTO13. Just as done in the 26-atom case, we
have also compared our top ranked builds (IO and TO) with
the widely used plane-cut-splice (PCCR) for the 55-atom case
using one-tailed p-value approach (Chaubey, 1993). This time,
our automated builds (AUTO5 and AUTO7) did not overlap with
PCCR when taking their standard errors into account, thus we
have also compared AUTO7 (which was essentially equivalent to
AUTO5) with PCCR using one-tailed p-value approach. Again,
we have previously tested for the normality of the data generated
by these builds using the Ryan-Joiner test (Yap and Sim, 2011),
and the normality hypothesis was accepted within a significance
level of 0.1 without data discard. IO and TO were better than
PCCR with a 99% confidence level, while AUTO7 was better than
PCCR with a 95% confidence level.

For this larger system, TWCR, CDO, UNCR, ARCR, and
DYM performed even worse than they did for the LJ26 case,
as expected due to the increase in difficulty to find the global
minimum as the number of degrees of freedom of the system
increases. This time, however, IMM also performed badly
and could not converge a significant amount of runs. On
the other hand, AO and GCDO did not fail in any run as
they did in the previous case. Again, SCCR performed badly,
although it was expected to improve when approaching larger
systems (Chen et al., 2013).

Although we have separated operators into classes (crossover,
mutation, and immigration) in section 3.5, no distinction was
made among them when it comes to the number of individuals
created by each type in each generation. This was always set
on the fly according to our management strategy described in
section 3.4 (or kept fixed for the builds with single operators).
As a result, mainly mutation type operators presented good
performances within our GA approach, both individually and
within the builds composed by various operators. Furthermore,
operators that act fully in a random way performed generally
better than more complex ones which involve, for example,
parameterized mathematical expressions or simply parameters
to be defined. The latter may be more suitable for less unbiased
GA schemes than the one employed here. Excepting PCCR,
crossover operators were greatly outperformed, possibly because
they need more elaborate methods to select parents for mating
to properly yield results. ARCR and SCCR, for instance, did
not present high values for ̂NLM , but they did present high
Nfails. This indicates that these operators might be more sensible
to the fitness of the selected parents. Finally, regarding the
IMM operator, it is reasonable to expect that it would perform
worse for larger systems, since the probability of randomly
generating good structures would undoubtedly decrease with the
number of atoms.

The management strategy proposed in this work proved
to be efficient. The performance of AUTO5, for example,
approached the average taken over the performance of its
individual operators (TO, IO, PCCR, SAO, and IMM) for
the LJ26 case. This was measured by taking the average
value of ̂NLM over the five cited operators, which equals
240, while ̂NLM associated with AUTO5 was 246. For
AUTO7 ( ̂NLM = 264) we have a similar scenario: the
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FIGURE 7 | Evolution of the creation of new individuals for AUTO5 build throughout three different runs of the LJ55 system, corresponding to the (A) seventeenth, (B)

thirty-ninth and (C) forty-fourth random number seed employed. Nc is the number of individuals created with that operator and Ng is the generation index. TO stands

out again among the operators of AUTO5 build, followed by SAO and IO.

average of ̂NLM over its individual operators equals 261.
On the other hand, AUTO13 ( ̂NLM = 434) considerably
outperformed the average of its operators ( ̂NLM = 620)
and, furthermore, presented only 2% of convergence failure,
despite being composed by various operators that showed high
failure rate.

For the LJ55 case, some operators that presented high
values of Nfails when employed individually were still added to
AUTO5, AUTO7, and AUTO13 builds. In order to compare
the performances of these builds with those of their individual
operators, however, only the ones shown in Table 2 were taken
into consideration. Thus, for AUTO5 ( ̂NLM = 660) it was
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FIGURE 8 | Evolution of the creation of new individuals for AUTO7 build throughout three different runs of the LJ55 system, corresponding to the (A) third, (B)

seventeenth and (C) thirty-ninth random number seed employed. Nc is the number of individuals created with that operator and Ng is the generation index. AUTO7

was also the most balanced build for the LJ55 case, presenting wider diversity of operator outcomes.

measured by taking the average value of ̂NLM over IO, TO, PCCR,
and SAO, that equals 818; for AUTO7 ( ̂NLM = 653), the average
value of ̂NLM was taken over IO, TO, GCDO, PCCR, AO, and
SAO, which equals 779; for AUTO13 ( ̂NLM = 864), the average
value of ̂NLM was taken over IO, TO, GCDO, PCCR, AO, SAO,

TWCR, and CDO, which equals 977. For the larger LJ55 cluster,
all AUTO builds outperformed the average of their operators.
These numbers would favor even further the AUTO builds if
the operators omitted from Table 2 had been taken into account.
This time, despite having individually ineffective operators in
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FIGURE 9 | Evolution of the creation of new individuals for AUTO13 build throughout three different runs (randomly chosen) of the LJ55 system. Nc is the number of

individuals created with that operator and Ng is the generation index. In (A) the DYM operator does not act significantly and convergence is reached quickly. In (B,C),

again, the DYM operator disturbs the evolutionary procedure causing the number of generations needed to reach the global minimum to be greater than that required

for the other builds, on average.

their compositions, all AUTO builds managed to enhance the
overall performance.

We have also attempted to perform the same study for
LJ38. However, it has a double funnel energy landscape (Chen

et al., 2013) and hence is a more complicated system to be
approached by our simple GA scheme. Therefore, none of our
builds managed to converge to the global energy minimummore
than 50% of the 50 trial runs. Builds such as ARCR, UNCR and
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TABLE 3 | Average number of local minimizations needed to reach the global

minimum (̂NLM ) for the C18 cluster together with the failure rate (Nfails ) for each

employed build in reaching that minimum.

Build ̂NLM* Nfails(%)

PCCR 1,815 26

AUTO7 1,667 34

AUTO5 2,073 50

AO 1,964 60

AUTO13 1,420 60

GCDO 1,175 62

IO 1,757 66

TO 1,735 86

CDO 1,065 88

TWCR 2,120 92

SCCR 908 94

PREV** 1,505 96

IMM 3,001 100

SAO 3,001 100

ARCR 3,001 100

UNCR 3,001 100

DYM 3,001 100

For all cases, 50 different random number seeds were executed employing the same

parameters of the previous studied systems.

*The unconverged runs were removed from the calculation of these averages. This

removal may compromise the analysis when Nfails is nonzero.

**Previous work (Silva et al., 2015).

DYM, for example, failed 100% of the trials, while AUTO5 was
the best build and managed to find the LJ38 global minimum
48% of the times. This is because four out of the five operators
that compose AUTO5 build were the ones that presented the
highest individual convergence rates. In fact, they were evenmore
effective than AUTO7 and AUTO13. It is interesting to notice,
however, that the remaining AUTO5 operator, SAO, failed 94% of
the times for the LJ38 case. It shows that, despite contaminated by
an operator that performed badly individually, AUTO5 managed
to outperform every other build when approaching the LJ38
system. Once more we have evidence that our management
strategy may enhance the overall performance of the method
through a synergic action of suitable operators.

Analogously to the LJ26 case, we can also assess the variation
in the creation rate of the operators within each AUTO build
along different GA runs (chosen randomly) regarding the LJ55
system. These results are shown in Figure 7 for AUTO5, Figure 8
for AUTO7 and Figure 9 for AUTO13.

For the 55-atom cluster one can still see greater variations
in the creation rate of AUTO5 operators up to half of the
generations of the runs shown in Figures 7B,C. In the same figure
(mainly in panels a and c) it can be noticed the same trend
observed for the IMM operator when approaching LJ26 with
AUTO5 build: it has higher creation rates at the beginning and
it gets lower as the system evolves. Again, TO was the responsible
for the largest average creation rate for this build, which can be
inferred from the graphs of Figure 7. This is also consistent with
the results presented in Table 2, where TO appears as the one

FIGURE 10 | Local energy minima correctly found by QGA-7 for (A) N4, (B)

N6, and (C) N8.

with best performance when approaching LJ55, along with IO.
The interior operator, however, has the third largest average value
for the creation rate in this case, being overcome, surprisingly,
by SAO. This exemplifies that the combination of operators
may enhance their individual performance. From the graphs of
Figure 7 one can also note that SAO influenced mainly the initial
stages of the presented runs.

AUTO7 was the most balanced build for LJ55, as well as it
was for LJ26. It presented more homogeneous distribution of
peaks throughout the generations in the graphs of Figure 8 when
compared to the other AUTO builds. None of its operators has
been systematically the one with the greatest average creation
rate within the evaluated runs. AUTO7 has also required less
generations than AUTO5 and AUTO13, on average, to reach
convergence, as it can be seen by comparing the graphs in
Figures 7–9. From the same comparison, we can see that
AUTO13 was again the build that generally required more
generations to find the global minimum.

Through the analysis of Figures 9B,C, it becomes clear
that DYM operator disturbed the evolutionary procedure and
prevented these runs from converging earlier. In fact, Figure 9
shows three distinct scenarios: in (a) SCCR dominates the process
from the beginning and leaves no room for DYM. Accordingly,
the GA converges in only 26 generations. In (b) DYM also
starts with low creation rate, but it increases rapidly within a
few generations and basically dominates the process from the
24th generation on. The GA converges after 119 generations. In
(c) DYM already starts with high creation rate and, although
it oscillates and goes through a minimum for approximately
20 generations, it increases again and dominate the process
until convergence is reached after 153 generations. As well as it
happened to the 26-atom case, the algorithm has spent several
generations trapped in local minima while the unsuitable DYM
operator prevents other operators from acting and reestablishing
the needed population diversity. By all means, it is interesting to
notice that AUTO13 managed to find the correct LJ55 structure
mainly under the influence of operators that failed almost 100%
of the times they were tested individually.

In Table 3 one can find the average number of local
minimizations needed to reach the lowest energy structure of
C18, as well as the failure rate (Nfails) of each build employed
here to tackle the C18 system within the REBO potential
approach. This failure rate indicates the relative number of
times the global minimum was not reached by our algorithm.
For the C18 case, this minimum corresponds to the carbon
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FIGURE 11 | Evolution of the creation of new individuals for QGA-7 throughout three different runs of the N4 system, corresponding to the following random number

seeds employed: (A) 17, (B) 29 and (C) 6217. Nc is the number of individuals created with that operator and Ng is the generation index.

atoms arranged in a planar single ring (Kosimov et al., 2010).
This cyclocarbon molecule was indeed synthetized by Kaiser
et al. using atom manipulation by eliminating carbon monoxide
from a cyclocarbon oxide molecule, and characterized by high-
resolution atomic force microscopy (Kaiser et al., 2019).

We observed that operators leading geometries toward
spherical shape were disadvantaged. TO, for example, which
had performed well in the previous cases, performed poorly in
the present one. That is because torsions would take atoms off
the plane, which is not consistent with the energy minimum
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FIGURE 12 | Evolution of the creation of new individuals for QGA-7 throughout

three different runs of the N6 system, corresponding to the following random

number seeds employed: (A) 9, (B) 29 and (C) 6217. Nc is the number of

individuals created with that operator and Ng is the generation index.

for the present system, which is planar. IMM, for instance,
which generates atoms randomly inside a sphere, could not
reach the global minimum in any run, as one could expect.
SAO operator is also biased to generate spherical structures,
and could not find the planar energy minimum in any run.
Analogous argument can be used for the poor performance of

FIGURE 13 | Evolution of the creation of new individuals for QGA-7 throughout

three different runs of the N8 system, corresponding to the following random

number seeds employed: (A) 29, (B) 62 and (C) 666. Nc is the number of

individuals created with that operator and Ng is the generation index.

SCCR and PREV, for example. On the other hand, the best
results for the C18 case were obtained by the PCCR build,
probably due to the use of planes to slice each parent cluster in
crossover step.

The builds proposed in the present work (AUTO5, AUTO7,
and AUTO13) presented essentially the same behavior observed
in the previous cases, in which the stability of results is
maintained, benefiting the best operators and avoiding the worst
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ones for each specific case. Our management strategy provides
the useful advantage of versatility to the optimization algorithm.
Despite the best performances for the cases tested here have
been obtained by builds composed by individual operators, the
AUTO builds can make the algorithm more adaptable to a wider
range of problems. Therefore, we believe that our management
strategy would be useful to improve the exploration of PES
associated with more complex systems when applied together
with a more robust GA framework, which consists the next step
of our research.

Based on the analysis carried out so far, we have chosen
AUTO7 to apply our strategy within a quantum approach. In
order to do so, we have incorporated this build to a more robust
GA scheme, namely QGA, which was also coupled to GAMESS-
US (Schmidt et al., 1993) and adapted to approach dissociative
systems. We have already used QGA to approach polynitrogen
systems and to predict good candidates for high energy density
materials (HEDM) (Silva et al., 2018), and now we intend to
run QGA with AUTO7 (referred to as QGA-7 from now on) to
reproduce some energy minima found in our previous work and
to evaluate the behavior of the operators along the generations.
These polynitrogens are atomic nitrogen clusters, which means
that they form structures with nitrogen atoms connected to each
other mainly by single or double bonds. Therefore, these clusters
consist of local energy minima on the PES, while the global
minimum consists of the dissociated system into N2 molecules.

In Figure 10 one can find the structures corresponding to local
energy minima on the PES associated with N4, N6 and N8 that
we managed to reproduce with QGA-7 within a DFT approach
employing B3LYP exchange and correlation functional and 6-
31G basis set. Besides that, the variation in the creation rate of
the operators within QGA-7 along different GA runs (chosen
randomly) regarding the N4 system is shown in Figure 11. The
same analysis concerning the N6 and N8 systems are presented in
Figures 12, 13, respectively.

The graphs in Figure 11 show almost periodic oscillations
in the creation rate of each operator involved in QGA-7. These
oscilations have essentially constant amplitude for each operator
over the entire evolutionary procedure, and are also quite
homogeneous among the different ones. This, along with the
large number of generations needed to reach convergence for
such a small system, indicates stagnation. This can be explained
by the fact that the D2h structure (Figure 10A) for tetranitrogen
is not that far from the much more stable 2N2 system within
a random structure generator scheme perspective. Since QGA-
7 was prepared so as not to allow these N2 fragments to get
too far apart from each other, several quasi-degenerate structures
may be generated before the optimum distance between these
two moieties is reached. Nevertheless, QGA-7 still converged
within the criterium established (an individual remained as the
one with the lowest energy for 20 consecutive generations),
and the operators that stood out, on average, were SAO, PCCR
and IMM.

Differently from the behavior presented by the N4 system,
the creation rate of the operators for the N6 and N8 cases
resembled that observed for the LJ26 system, with greater
variations along the first generations which stabilize to become

smaller oscillations until convergence is reached. In fact, QGA-
7 found the correct structures much more efficiently for these
cases than for tetranitrogen. If we do not take into consideration
the noisy initial part of the evolutionary procedure, it can be
seen that, in general, the operators that stood out were PCCR
and SAO. It is interesting to notice that SAO had an important
role both in the Lennard-Jones and in the quantum approach
of atomic clusters, while PCCR stood out mainly within the
quantum approach and TO and IO stood out mainly within the
classical approach.

Although we performed only a few simple tests with QGA-
7, our management strategy applied to a more complex GA
scheme and within a quantum approach was consistent with our
primary tests on Lennard-Jones clusters. The results obtained so
farmay guide us toward the next steps to improve our algorithms,
incorporate more efficient builds and enhance its performance to
approach more complex systems.

Some well-identified problematic cases [such as LJ38, LJ75−77,
LJ98, LJ102−104 and some short-ranged Morse clusters (Hartke,
1999; Cheng et al., 2004; Pereira and Marques, 2009)] must
still be properly addressed in order to ensure that our strategy
is indeed effective in exploring potential energy surfaces in
a more extensive way. To do so, it is interesting that our
algorithm become independent of extra information about
the problem and less system-specific, that is more versatile,
while maintaining population diversity (Lee et al., 2003;
Grosso et al., 2007). We are currently implementing a new
step in which all structures involved in each generation
will be compared to each other so that we can evaluate
structure similarities and avoid population stagnation. Within
this future approach, even enantiomers may be told apart,
and population diversity will be greatly enhanced. Different
rules for the variation of the application rate of operators
will also be tested, and not only the energy of the offspring
may be compared to the average energy of the previous
population, but also the capability of the applied operator
to generate diverse structures. Furthermore, employing a less
deterministic selection step, together with a combination of
crossover and mutation operators to generate descendants may
be also essential to help our algorithm tackle these harder
optimization scenarios.

Nevertheless, the management strategy proposed in this work
has already proved to be quite promising. Despite some single
operator builds have performed better than the management
methodologies tested (AUTO) for the LJ26 and LJ55 cases, this
may not hold for larger and more complex systems, as well as
for ab initio or DFT-based genetic algorithms. We propose that
greater versatility might be essential to efficiently sample the
PES and to avoid stagnating into a population with serious (SCF
or structure optimization) convergence problems, mainly in the
first generations.

5. CONCLUSIONS

We have developed a method that manages the creation rate
of evolutionary operators within a genetic algorithm procedure
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on the fly. Its performance was evaluated on 26 and 55-
atom Lennard-Jones clusters (LJ26 and LJ55) and the obtained
results show that our strategy proved to be quite efficient.
Moreover, we have assessed thirteen operators available in
the literature and, within our simple and highly ubiased
GA approach, twist operator was faster than commonly used
Deaven and Ho’s plane-cut-splice crossover. Also, interior
and surface operators, formerly designed for basin-hopping
methodology (Takeuchi, 2007; Ye et al., 2011), performed well
in our genetic algorithm scheme, although they may have been
favored due to the essentially spherical shape of the global energy
minima approached.

Three different builds were proposed to test our management
strategy, namely AUTO5, AUTO7, and AUTO13, where the
numbers indicate how many creation operators were employed
in each build. For the LJ26 case, the performances of AUTO5
andAUTO7 approached the average taken over the performances
of their individual operators. This was measured by taking
the average value of ̂NLM (average number of local energy
minimizations) over the cited individual operators. On the other
hand, AUTO13 considerably outperformed the average of its
operators and, furthermore, presented only 2% of convergence
failure, despite being composed by various operators that showed
high failure rate.

For the LJ55 case, some operators that presented high failure
rates when employed individually were still added to AUTO5,
AUTO7, and AUTO13 builds. However, in order to compare
the performances of these builds with those of their individual
operators, only the latter ones that successfully converged in
more than 50% of the trial runs were taken into consideration.
Following this protocol, all AUTO builds outperformed the
average of their individual operators. The numbers would favor
even further the AUTO builds if all the individual operators
tested had been taken into account, regardless of their failure
rates. This time, despite having individually ineffective operators
in their compositions, all AUTO builds managed to enhance the
overall performance.

When tackling the C18 system, which presents a planar ring
structure as the lowest energy minimum, we could observe
that operators that relied mainly on spherical-based creation or
transformations of individuals performed poorly, as one could
expect. Our management strategy benefited the most appropriate
operators and avoided the worst ones, making the algorithm
more adaptable and versatile.

These results indicate that our management strategy could
benefit from the advantages of the employed operators without
loosing overall performance. It may actually enhance the overall
performance and help to better explore the parameter space
through the diverse combinations of appropriate evolutionary
operators and efficient genetic algorithm schemes.

When approaching systems where the global minimum is
not known, it is generally hard to tell which operator is the
most suitable or efficient to promote GA convergence. Thus,
employing several techniques combined and properly managing
their application throughout the evolutionary procedure could
be the best approach. Among the proposed builds, AUTO7,
which combines diversity with speed, was the one chosen
to be incorporated in a more robust GA scheme to test
our strategy within a quantum approach to polynitrogen
systems. This application of our management strategy was
consistent with our simpler approach involving Lennard-Jones
clusters. We have also managed to find correct polynitrogen
structures and to evaluate the behavior of the creation rate
of the operators involved in the proposed build within the
quantum approach.

With the results yielded by this study we may be able to
improve our builds by combining more appropriate operators,
as well as our genetic algorithm itself, by implementing more
efficient steps that could lead to faster convergence. This would
be useful for further cluster studies, which may include ab initio
and DFT potential energy surface survey.
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Computational Chemistry is currently a synergistic assembly between ab initio

calculations, simulation, machine learning (ML) and optimization strategies for describing,

solving and predicting chemical data and related phenomena. These include accelerated

literature searches, analysis and prediction of physical and quantum chemical properties,

transition states, chemical structures, chemical reactions, and also new catalysts and

drug candidates. The generalization of scalability to larger chemical problems, rather

than specialization, is now the main principle for transforming chemical tasks in multiple

fronts, for which systematic and cost-effective solutions have benefited from ML

approaches, including those based on deep learning (e.g. quantum chemistry, molecular

screening, synthetic route design, catalysis, drug discovery). The latter class of ML

algorithms is capable of combining raw input into layers of intermediate features, enabling

bench-to-bytes designs with the potential to transform several chemical domains. In

this review, the most exciting developments concerning the use of ML in a range of

different chemical scenarios are described. A range of different chemical problems and

respective rationalization, that have hitherto been inaccessible due to the lack of suitable

analysis tools, is thus detailed, evidencing the breadth of potential applications of these

emerging multidimensional approaches. Focus is given to the models, algorithms and

methods proposed to facilitate research on compound design and synthesis, materials

design, prediction of binding, molecular activity, and soft matter behavior. The information

produced by pairing Chemistry and ML, through data-driven analyses, neural network

predictions and monitoring of chemical systems, allows (i) prompting the ability to

understand the complexity of chemical data, (ii) streamlining and designing experiments,

(ii) discovering new molecular targets and materials, and also (iv) planning or rethinking

forthcoming chemical challenges. In fact, optimization engulfs all these tasks directly.

Keywords: machine-learning, deep-learning, optimization, models, molecular simulation, chemistry

INTRODUCTION

Patterns are ubiquitous in Chemistry. From the crystalline structures of solid forms to the branched
chains of lipids, or the complex combinations of functional groups, chemical patterns determine the
underlying properties of molecules and materials, essential to address important issues of societal
concern. Artificial Intelligence (AI), and machine learning (ML) in particular, are committed to
recognizing and learn from these patterns (Mitchell, 2014; Rupp, 2015; Goh et al., 2017; Li et al.,
2017; Butler et al., 2018; Fleming, 2018; Gao et al., 2018; Kishimoto et al., 2018; Popova et al., 2018;
Aspuru-Guzik et al., 2019; Elton et al., 2019; Gromski et al., 2019; Mater and Coote, 2019; Schleder
et al., 2019; Venkatasubramanian, 2019).
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Recent evidence on the most interesting and challenging
prospects for accelerating discoveries in various chemistry fields,
reported under “Charting a course for chemistry” (Aspuru-
Guzik et al., 2019), indicate that the terms often used by the
scientific community for describing the future trends in their
field of research include “big data,” “machine learning,” and
“artificial intelligence.”

It is recognized that ML is already boosting computational
chemistry, at different levels. Different aspects have been
affected, and it is not easy to summarize developments in a
consistent way. In what follows, the main areas in which ML
has been employed are enumerated. These are extracted from
recent contributions, that can be regarded as complementary
and providing an overall perspective of the applications.
These include different approaches for (i) understanding and
controlling chemical systems and related behavior (Chakravarti,
2018; Fuchs et al., 2018; Janet et al., 2018; Elton et al., 2019;
Mezei and Von Lilienfeld, 2019; Sanchez-Lengeling et al., 2019;
Venkatasubramanian, 2019; Xu et al., 2019; Zhang et al., 2019),
(ii) calculating, optimizing, or predicting structure-property
relationships (Varnek and Baskin, 2012; Ramakrishnan et al.,
2014; Goh et al., 2017; Simões et al., 2018; Chandrasekaran
et al., 2019), density functional theory (DFT) functionals, and
interatomic potentials (Snyder et al., 2012; Ramakrishnan et al.,
2015; Faber et al., 2017; Hegde and Bowen, 2017; Smith et al.,
2017; Pronobis et al., 2018; Mezei and Von Lilienfeld, 2019;
Schleder et al., 2019), (iii) driving generative models for inverse
design (i.e., produce stable molecules from a set of desired
properties) (White and Wilson, 2010; Benjamin et al., 2017;
Kadurin et al., 2017; Harel and Radinsky, 2018; Jørgensen et al.,
2018b; Kang and Cho, 2018; Li et al., 2018b; Sanchez-Lengeling
and Aspuru-Guzik, 2018; Schneider, 2018; Arús-Pous et al., 2019;
Freeze et al., 2019; Jensen, 2019), (iv) screening, synthesizing, and
characterizing new compounds and materials (Ahneman et al.,
2018; Coley et al., 2018a; Granda et al., 2018; Segler et al., 2018;
Li and Eastgate, 2019), (v) improving catalytic technologies and
analytical tools (Li et al., 2017; Gao et al., 2018; Huang et al., 2018;
Durand and Fey, 2019; Freeze et al., 2019; Schleder et al., 2019),
(vi) developing quantum algorithms for molecular simulations,
and (vii) progressing quantum sensing (Ramakrishnan et al.,
2014; Ramakrishnan and Von Lilienfeld, 2017; Xia and Kais,
2018; Ahn et al., 2019; Christensen et al., 2019; Mezei and Von
Lilienfeld, 2019; Zaspel et al., 2019; Zhang et al., 2019), just to
name a few examples. In fact, Chemistry is a data-rich area,
encompassing complex information which is often unstructured
and poorly understood.

Deep learning (DL) approaches can also be particularly useful
to solving a variety of chemical problems, including compound
identification and classification, and description of soft matter
behavior (Huang et al., 2018; Jha et al., 2018; Jørgensen et al.,
2018b; Popova et al., 2018; Segler et al., 2018; Zhou et al.,
2018; Chandrasekaran et al., 2019; Degiacomi, 2019; Elton et al.,
2019; Ghosh et al., 2019; Mater and Coote, 2019; Matsuzaka and
Uesawa, 2019; Xu et al., 2019).

The design of generalized cause/effect models, and the
scaling-up of the contributions that are being made, containing
high-dimensional data, and following the open-science basis

(i.e., completely accessible, with precise metadata and practical
formats) are critical challenges, that may, however, facilitate the
routine implementation of datamining in chemistry and expedite
new discoveries.

The amount and quality of chemical data generated by
experiments and simulations have been the mainstay of the new
data-driven paradigm, that establishes the bridge between theory,
experiment, computation, and simulation.

This review describes, in a critical and comprehensive
way, relevant contributions carried out recently and involving
the development of chemistry ML approaches. An exhaustive
account of the theoretical foundations and applications published
in the early years of AI and ML in Chemistry falls beyond the
scope of this review. The reader is referred to Lecun et al. (2015),
Coveney Peter et al. (2016), Goh et al. (2017), Elton et al. (2019),
Gromski et al. (2019), and Mater and Coote (2019) for a full
description of these efforts.

Until 10 years ago, only a few 100 studies on the use of ML
in Chemistry were published, resulting from the contributions
made over four decades. In 2018, ca. 8,000 articles in the Web
of Science database included these keywords, corresponding to
an increase in ca. 35% for just one decade. In this review, there is
room to mention only a small fraction of these applications.

Despite the increasing number of works on the topic, the
models proposed and practices carried out by chemists are
entailing serious concerns (Chuang and Keiser, 2018a). Several
technical challenges, pitfalls, and potentials of ML, and also the
reliability of the results, have been discussed by some authors
(Ahneman et al., 2018; Chuang and Keiser, 2018a,b; Estrada
et al., 2018) corroborating some critical remarks on the fragility
of purely data-based approaches (Microsoft, 2018). “If data can
speak for themselves, they can also lie for themselves.” This
reflects the need for an in-depth understanding of chemical
patterns, data-driven and theory-driven models, and algorithms,
before their application.

Although significant progress has been made connecting
specific neural network predictions to chemical input features,
understanding how scientists should analyze and interpret these
models to produce valid and conclusive assumptions about the
system under study, still remains to be fully defined.

Co-occurring Machine-Learning
Contributions in Chemical Sciences
Scientific production covering ML-based approaches for dealing
with chemical patterns has increased exponentially in recent
years. However, the establishment and understanding of holistic,
or macro insights on the major research trends in Chemistry sub-
fields, are critical tasks. The challenge relies on how the analysis
of these sub-fields, with thousands published works, reveals
the most prominent applications supported by ML approaches
(Butler et al., 2018; Chmiela et al., 2018; Chuang and Keiser,
2018a; Coley et al., 2018a; Gao et al., 2018; Lo et al., 2018;
Panteleev et al., 2018; Xia and Kais, 2018; Ceriotti, 2019; Chan
et al., 2019; Christensen et al., 2019; Gallidabino et al., 2019; Häse
et al., 2019; Iype and Urolagin, 2019; Mezei and Von Lilienfeld,
2019; Schleder et al., 2019; Stein et al., 2019a; Wang et al., 2019).
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In Figure 1 an overview of the information generated during
the last decade and ranked in the research domain of “Science
Technology” of the Web of Science database, is presented.

The purpose of assessing the different facets of ML in
Chemistry across the respective sub-fields is 3-fold: (i) to be
able to quickly identify areas that have benefited most from the
development and implementation of ML approaches, and those
that still lack of such an optimization, as evidenced by the type of
outcome, (ii) to identify the most relevant ML outcomes in each
sub-field, and (iii) to assess the dynamics of ML outcomes over
the 2008–2019 period and how these are related, giving rise to
relevant research trends.

An extensive literature search on ML contributions in 30
Chemistry sub-fields is carried out, using a global set of
270 co-occurring keywords, each composed of three main
terms, machine learning, type of outcome and the sub-field in
which they co-occur (e.g., first co-occurrence: Machine learning
AND Quantum chemistry AND Quantum models, second
co-occurrence: Machine learning AND Medicinal Chemistry
AND Molecular screening). A total of 5,279 contributions
(including books, articles, reviews, editorials and letters)
on ML in Chemistry, with 81,248 citations, and published
between 2008 and June 30, 2019, are found in the worldwide
Web of Science database, corresponding to a 4-fold increase
over the previous four decades. Considering the compiled
data and the selected Chemistry fields (organic, inorganic,
physical, analytical, and biochemical), nine different ML
outcomes embracing the most frequent chemical challenges are
defined, including (i) text mining and system description, (ii)

quantitative structure-activity/property relationships, (iii) DFT
functionals and interatomic potentials, (iv) generative models
and inverse molecular design, (v) molecular screening, (vi)
synthesis/characterization of new compounds and materials,
(vii) catalytic technologies, (viii) analytical techniques, and (ix)
quantum models, algorithms, and quantum sensing. Note how
these have a strong relation with the seven overall applications
presented above (i–vii).

The heatmap represented in Figure 1 reflects the impact of
each type of ML outcomes on Chemistry sub-fields. The analysis
of co-occurring keywords is thus performed in order to find
the number of publications that appeared simultaneously in the
selected sub-field. This relation is established with greater or
lesser impact depending on the frequency of each set of keywords
in the selected time-span.

The natural clusters generated from the most important
co-occurring relationships are also identified. Considering the
dendrogram for the Chemistry sub-fields, it can be observed that
these are organized in two main groups, which discriminates,
in general, classical Chemistry sub-fields (organic, inorganic,
and physical) from analytical and biochemical sub-fields. This
structure suggests a significant similarity in the type of ML
outcomes within each group. Group 1 have benefitted from a
significant production on catalytic technologies, DFT functionals
and interatomic potentials, quantum models and quantum
sensing. The most representative ML outcomes in group 2
are associated to text mining, analytical techniques, generative
models and inverse design, molecular screening, structure
activity relationships, and synthesis of new compounds and

FIGURE 1 | A holistic view of ML-based contributions in Chemistry. The clustering heatmap displays the relative counts of ML outcomes, within each area of

Chemistry (organic, inorganic, analytical, physical, and biochemistry), in the 2008–2019 (30 June) period. Data are expressed as fractions of the highest number of

publications, including articles, reviews and books, containing specific co-occurring keywords, and following a standard normalization procedure. Hierarchical

clustering with Euclidean distances and Ward linkage was performed on both Chemistry sub-fields and type of application. Co-occurrences are colored using a

yellow-to-red color scheme. Highest and lowest relative contributions correspond to 1 (red) and 0 (yellow) values, respectively.
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materials. Examination of the similarity between the type of ML
outcomes reveals that there are threemain groups, corresponding
to (i) text mining, analytical techniques, generative modes
and inverse design, and molecular screening (group 1), (ii)
structure-activity relationships and synthesis of new compounds
and materials (group 2), and (iii) catalytic technologies, DFT
functionals and interatomic potentials, and quantummodels and
quantum sensing (group 3).

Historically, researchers have introduced numerical
approximations to Schrödinger’s equation, and the popular DFT
calculations in ab initio approaches. However, the computational
cost inherent to these classical approximations have limited the
size, flexibility, and extensibility of the studies. Larger searches
on relevant chemical patterns, have been successfully conducted
since several research groups have developed ML models and
algorithms to predict chemical properties using training data
generated by DFT, which have also contributed to the increase
of public collections of molecules coupled with vibrational,
thermodynamic and DFT computed electronic properties (e.g.,
Behler and Parrinello, 2007; Rupp et al., 2012; Behler, 2016;
Hegde and Bowen, 2017; Pronobis et al., 2018; Chandrasekaran
et al., 2019; Iype and Urolagin, 2019; Marques et al., 2019;
Schleder et al., 2019).

Based on the heatmap it can be determined that
groups of Chemistry sub-fields have similar, but distinct
ML-based contributions.

The increase in chemical data and scientific documents
has boosted data mining and text mining processes to

manage the huge amount of chemical information and to
extract useful and non-trivial knowledge in different scenarios
(Krallinger et al., 2017).

It is interesting to inspect if certain ML outcomes are
produced in combination with each other.

In this context, the strongest correlation (0.97), shown
in Figure 2, is observed between text mining and molecular
screening, which is to be expected as a large number of molecules
has been collected and screened systematically, by combining
different text mining processes and chemoinformatics techniques
(e.g., pharmacophore-based similarity and docking). These
integrated approaches have allowed (i) extracting and collecting,
in a systematic and high-throughput way, the available chemical
and biological information from different sources (e.g., scientific
documents) (Krallinger et al., 2017; Grzybowski et al., 2018),
(ii) predicting activity based on chemical structure (Granda
et al., 2018; Simões et al., 2018; Arús-Pous et al., 2019; Gromski
et al., 2019; Lee et al., 2019; Li and Eastgate, 2019), and (iii)
selecting promising molecular targets and candidates for further
experimental validation (e.g., in vitro tests) (Ramakrishnan et al.,
2014; Gupta et al., 2018; Segler et al., 2018; Brown et al., 2019;
Elton et al., 2019; Li and Eastgate, 2019; Schleder et al., 2019; Xu
et al., 2019).

Other strong correlations are found between generrative
models & inverse design and the two abovementioned ML
applications, molecular screening (0.95) and text mining (0.93).
This can be explained by the fact that many researchers have
proposed machine learning frameworks based on a variety of

FIGURE 2 | Pairwise Pearson correlations between the different types of ML outcomes in Chemistry, produced in the 2008–2019 (30 June) period (darker colors

reflect stronger correlations).
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generative models for modeling molecules, which differ in the
respective model structure and in the selected input features
(Kadurin et al., 2017; Gupta et al., 2018; Jørgensen et al., 2018b;
Arús-Pous et al., 2019; Brown et al., 2019; Jensen, 2019; Xu et al.,
2019).

Also relevant are the correlations between generative models
and inverse design and synthesis of new compounds and
materials (0.90), and between generative models and inverse
design and analytical techniques (0.85). The former relation
evidences the significant effort that has been made on
applying ML models, in particular those based on accurate
DL architectures, to find and select lead molecules (e.g.,
drugs), displaying desired properties (Varnek and Baskin, 2012;
Mitchell, 2014; Rupp, 2015; Lo et al., 2018). These properties
are to be translated into a more simplified information on
the molecular structures, and encoded into the respective
chemical fingerprint (i.e., a set of binary characteristics of
molecules). The process continues with the screening of the
available databases for finding molecules that possess similar
fingerprints to the generated ones. Generative models and
deep neural networks (DLNs) have thus allowed generating
molecules and promising candidates for useful drugs, basically
from scratch, making it possible to “design perfect needles
instead of searching for a needle in a haystack” (White and
Wilson, 2010; Benjamin et al., 2017; Gómez-Bombarelli et al.,
2018; Harel and Radinsky, 2018; Kang and Cho, 2018; Li et al.,
2018b; Merk et al., 2018; Nouira et al., 2018; Popova et al.,
2018; Sanchez-Lengeling and Aspuru-Guzik, 2018; Schneider,
2018).

It is also observed that there are other ML contributions
that are interrelated: structure activity relationships with (i)
molecular screening and (0.84), (ii) synthesis/characterization of
new compounds and materials (0.78), and (iii) generative models
and inverse design (0.75), DFT functionals and interatomic
potentials with quantum models and quantum sensing (0.83),
and synthesis/characterization of new compounds and materials
with analytical techniques (0.79).

Both generative models and analytical techniques have been
extensively used in the qualitative/quantitative search of patterns
underlying chemical systems (Elton et al., 2019; Ghosh et al.,
2019; Stein et al., 2019a,b). It should be noted the use data
from large repositories (e.g., Protein Data Bank and Cambridge
Structural Database) and ML methods are not new (Hiller et al.,
1973; Gasteiger and Zupan, 1993; Behler, 2016). The latter
have been employed as classification tools in pioneering works,
encompassing, for e.g., the analysis of spectra (Thomsen and
Meyer, 1989), quantification of structure-activity relationships
(QSARs) (Agrafiotis et al., 2002), and prediction of binding sites
of biomolecules (Keil et al., 2004).

The range of ML applications is now quite extended as a
result of a deep integration of ML in analytical, theoretical and
computational chemistry. Despite of some initial skepticism in
understanding the foundations and structure of ML methods,
their use has been accelerated and maturated in recent years
essentially due to their suitability to new applications and
industry needs, including chemical and pharmaceutical sectors.

MACHINE LEARNING FOR OPTIMIZATION:
CHALLENGES AND OPPORTUNITIES

Designing models from chemical observations to study, control,
and improve chemical processes and properties is the basis
of optimization approaches. The understanding of chemical
systems, and the respective underlying behavior, mechanisms
and dynamics, is currently facilitated by the development
of descriptive, interpretative, and predictive models, i.e.,
approximations that represent the target system or process.
Applications of such models have included the (i) optimization
of reaction parameters and process conditions, e.g., changing
the type of reagents, catalysts, and solvents, and also varying
systematically, concentration, addition rate, time, temperature,
or solvent polarity, (ii) suggestion of new reactions based on
critical functional groups, (iii) prediction of reaction/catalyst
design, and optimization of heterogeneous/homogeneous
catalytic reactions, (iv) acceleration and discovery of new
process strategies for batch reactions, (v) establishment of
trade-offs in the reaction rate and yield of organic compounds,
(vi) description and maximization of the production rate and
conversion efficiency of chemical reactions, (vii) prediction of
the potential toxicity of different compounds, and also the (viii)
rational design of target molecules and guided exploration of
chemical space (Kowalik et al., 2012; Houben and Lapkin, 2015;
Houben et al., 2015; Zielinski et al., 2017; Häse et al., 2018; Min
et al., 2018; Zhou et al., 2018; Ahn et al., 2019; Choi et al., 2019;
Gromski et al., 2019; Matsuzaka and Uesawa, 2019).

ML provides the tools to scrutinize and extract useful
information to be employed in modeling and system-solving
solutions (Artrith and Urban, 2016; Ward and Wolverton,
2017). In Chemistry domains, researchers have had access to
multidimensional data of unprecedented scale and accuracy, that
characterize the systems/processes to be modeled. A collection of
different examples of optimization based on ML approaches can
be found in Kowalik et al. (2012), Houben and Lapkin (2015),
Houben et al. (2015), Cortés-Borda et al. (2016),Wei et al. (2016),
Benjamin et al. (2017), Ahneman et al. (2018), Gao et al. (2018),
Granda et al. (2018), Min et al. (2018), Ahn et al. (2019), Elton
et al. (2019), Matsuzaka and Uesawa (2019).

Specifically, ML contributions have involved a variety of
systems including drugs (Griffen et al., 2018), polymers (Li et al.,
2018a), polypeptides (Grisoni et al., 2018; Müller et al., 2018),
energetic materials (Elton et al., 2018), metal organic frameworks
(He et al., 2018; Jørgensen et al., 2018a; Shen et al., 2018), and
organic solar cells (Jørgensen et al., 2018a).

Advances in analytical methods, laboratory equipment
and automation have rapidly improved the performance of
experimental procedures (e.g., miniaturizing experiments for
reactions, and connecting analytical instruments to advanced
software based on decision-making algorithms and optimization
tools) (Stevens et al., 2010; Smith et al., 2011; Richmond et al.,
2012; Houben and Lapkin, 2015). The implementation of
ML-based approaches have allowed developing innovative
capabilities, such as cost-effective experiments, advanced
algorithms for automation, and designing of experiments,
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chemoinformatics tools for dealing with high-dimensional
analytical data, and accelerated in situ/in line analysis of
chemical transformations (e.g., polymerization reactions,
heterogeneous catalytic processes, aggregation of nanoparticles)
(Houben and Lapkin, 2015; Häse et al., 2018).

However, there are critical challenges that ML in Chemistry
must face, including the control of experiments, the detailed
description of chemical space, the flexibility and generalization
of models, robustness, and accuracy of predictions, and
the establishment of effective cross-disciplinary collaborations
(Montavon et al., 2013; Hansen et al., 2015; Kishimoto et al., 2018;
Smith et al., 2018a).

A clear definition of ML, as well as the distinction from other
purely mathematical regression methods is not straightforward,
and can be associated to some degree of arbitrariness (Behler,
2016). Standard ML methods include, artificial neural networks,
support vector machines, and Gaussian processes, which have
contributed to the rational design of compounds and materials,
and to the improvement of computational frameworks (Goh
et al., 2017; Mater and Coote, 2019). The latter have been applied
for e.g., in QSAR models and drug design (Kadurin et al., 2017;
Chen et al., 2018; Fleming, 2018; Green et al., 2018; Gupta
et al., 2018; Li et al., 2018b; Lo et al., 2018; Popova et al., 2018;
Simões et al., 2018) aiming at identifying systems, molecules
andmaterials with optimal properties (e.g., conductivity, aqueous
solubility, bioavailability, bioactivity, or toxicity) (Kadurin et al.,
2017; Freeze et al., 2019). This can bemade via extensive searches,
in large databases, of latent relationships between the atomic
structures. The structures, can thus be encoded using multiple
descriptors, and target properties.

The possibilities of applying ML for optimization in
Chemistry are endless. There are studies focused on ML
approaches for inferring on the optimized geometry of a system
(Zielinski et al., 2017; Venkatasubramanian, 2019), and finding
minima on complex potential energy surfaces (Chen et al., 2015;
Chmiela et al., 2018; Kanamori et al., 2018; Xia and Kais, 2018;
Hughes et al., 2019), such as those of large water clusters (Bose
et al., 2018; Chan et al., 2019).

The most innovative aspects of ML in Chemistry are related
to the availability of large volumes of theoretical data (e.g.,
electrostatic energy contributions in force fields, atomic charges,
structural properties, and representations of the potential
energies), obtained from automatic and accurate electronic
structure calculations (Behler, 2016).

However, the intricate nature of the configuration space and
its exponential dependence on system size and composition,
have hampered the screening of the entire set of candidate
structures directly by electronic structure calculations (Behler,
2016; Welborn et al., 2018).

Signs of Controversy
Despite the usefulness of ML approaches being indisputable,
with the promise to modernize molecular simulations,
synthesis, materials science, and drug discovery, the respective
endorsement and practical aspects in some chemical sub-fields is
far from consensual (Ahneman et al., 2018; Chuang and Keiser,
2018a,b).

Ten years ago, there were only a few publications on
applications of ML in Chemistry, but currently there are
thousands of published works. The controversy has highlighted
the potential (instructive) pitfalls of some practices using
ML. It has been argued that ML algorithms may lead to
overestimated performances and deficient model generalizations,
due to their sensitivity to the presence of maze-like variables
and experimental artifacts (Chuang and Keiser, 2018a). For
instance, Ahneman et al. (2018) have recently designed a ML
model to predict yields of cross coupling reactions with high
accuracy, containing isoxazoles, as reaction inhibitors, which
were incorporated for assessing the robustness of the reaction.
Input data for the proposed algorithm included yields and
reagent parameters of 3,000 reactions, such as NMR shifts,
dipole moments, and orbital energies. The most significant
features of the proposed algorithm were found to be the
descriptors of additives. However, the experimental design of
this original work has been contested by Chuang and Keiser
(2018b), who warned for potential artifacts associated to the
original work. These authors demonstrated that the model also
identified reaction additives as the descriptors displaying the
greatest impact on the reactions, suggesting that high additive
feature contributions cannot be discriminated from the hidden
structure within the dataset, i.e., the procedure of the original
paper was not sufficient for establishing isoxazole additives as
the most important descriptors (Chuang and Keiser, 2018b). A
meticulous preprocessing of input data and validation of the
model hypothesis was then suggested. The Y-randomization test
in the original work was taken into account just the information
rooted in the structure of the data set, irrespective to the intended
outcome. The classical approach based on multiple hypotheses
to assess alternative descriptions of the performance of the ML
model was implemented (Chuang and Keiser, 2018b). The effect
of different reaction parameters (e.g., additives, catalyst, and
aryl halide) in an extensive combinatorial layout generated over
several independent reactions was duly explored, providing the
underlying structure of the data (Chuang and Keiser, 2018b).

An alternative assumption considering that ML algorithms
deal with patterns within the experimental design, instead of
learning from the most relevant chemical features was therefore
investigated. It was concluded that ML is prone to explore
data irrespective to their size and structure. This aspect was
illustrated by extracting and replacing the chemical features
(e.g., electrostatics, NMR shifts, dipole moments) from each
molecule with random (Gaussian distributed) numeric strings.
It was shown that the predictions were similar to the original
ones. Chuang and Keiser (2018a) have also introduced technical
and conceptual standpoints, including the use of adversarial
controls to evaluate the predictive performance of ML models,
focusing on the design of rigorous and deliberated experiments,
ensuring accurate predictions from suitable and significant
models (Chuang and Keiser, 2018a). By revising the original
information, a number of variations of the test sets was
introduced by Estrada et al. (2018) for assessing the performance
of predictions, considering alternatives to the random-forest
model. It was therefore demonstrated that ML models are in fact
quite sensitive to such imposed features, and the reagent-label
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models are relevant representations of the data set and useful for
comparing performances in generalization assessments.

The original assumptions regarding the significance and
validity of the random-forest (chemical-feature) model to
describe important and general chemical features were also
confirmed (Estrada et al., 2018).

A lesson that chemists may draw from such constructive
discussions is that as the size of the data set increases,
the performance of ML models also increases, but with
the possibility of obtaining unexpected results and irrelevant
patterns, as the rules for ML algorithms to detect and deal with
potential technical and conceptual gaps are not well-established.
Specifically, the description of chemical reactivity underlying a
data set is required in order to ensure the reaction prediction,
by using data and reagent-label models to evaluate the scope and
restraints of chemical characterization.

ML provides new opportunities to increase the quality and
quantity of chemical data, which are essential to promote
optimization, implementation of rational design and synthetic
approaches, prioritization of candidate molecules, decision-
making, and also for guiding of innovative ideas.

Deep Learning, Deep Chemistry
In this section, an introductory overview into the core concepts of
DL, andDLNs is provided. Focus is given to the unique properties
of DL, that distinguish these algorithms from traditional machine

learning approaches, with emphasis on chemical applications
rather than providing theoretical and mathematical details.

ML is a branch of computer science dedicated to the
development of algorithms capable of learning and making
decisions on complex data (Samuel, 1959; Mitchell, 1997). This
learning process involves specific tasks that are commonly
classified in (i) supervised learning, for establishing the
relationship between input and output data (e.g., linear
regressions and classification techniques), (ii) unsupervised
learning, for finding hidden patterns or features in data,
without any previous information on such characteristics
and interrelations (e.g., clustering and dimension reduction
techniques), and (iii) reinforcement learning, for performing
a particular task through repeated dynamic interactions e.g.,
optimization of molecules (Zhou et al., 2018) and chemical
reactions (Zhou et al., 2017).

Deep learning is a fast-moving sub-area of ML, focused
on sophisticated learning and extrapolation tasks, fostered by
the wide range of chemistry literature, open-source code, and
datasets (Goh et al., 2017).

The ability of DL to establish the relevant phenomena,
expedite chemical reactions, and predict relevant properties,
optimal synthesis routes, solve critical analytical uncertainties,
and reduce costs and resources, is invaluable in Chemistry.
Its success in modeling compound properties and
reactions, depends, among other aspects, on the access to

FIGURE 3 | Schematic representation of an artificial neuron (top), and a simple neural network displaying three basic elements: input, hidden and output layers

(bottom-left), and a deep neural network showing at least two hidden layers, or nodes (bottom-right). The calculation is performed through the connections, which

contain the input data, the pre-assigned weights, and the paths defined by the activation function. If the result is far from expected, the weights of the connections are

recalibrated, and the analysis continues, until the outcome is as accurate as possible.
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comprehensive, historical repositories of published chemical
data (Venkatasubramanian, 2019).

There are barriers to be surpassed, including cleaning data,
production of meaningful and accurate chemical information
(free of bias), lack of standardization of chemical data, expertise
and familiarity with ML and DL in chemistry sectors, and also
lack of collaboration opportunities) (Mater and Coote, 2019).

The majority of DL algorithms currently developed are based
on artificial neural networks (Lecun et al., 2015).

DLNs are now a proving-ground for research in chemical
sciences (Goh et al., 2017; Jha et al., 2018; Popova et al., 2018;
Segler et al., 2018; Elton et al., 2019; Mater and Coote, 2019;
Xu et al., 2019). Similarly to artificial neural networks, DLNs are
produced to resemble the brain, in which the information passes
through a series of interconnected nodes comparable to neurons
(Lecun et al., 2015). Each node analyzes segments of information
and transfer that information to adjacent nodes (see Figure 3).

The computational model consists of multiple hidden layers
(in higher number comparing to more conventional approaches)
which confer the ability of DLNs to learn from highly complex
data and perform correlation and reduction. This means that the
algorithm discovers correlated data, while discarding irrelevant
information. Each layer combines information collected from
the previous layer, and subsequently infers on the respective
significance and send the relevant information to the next layer.
The hidden term is used to represent layers that are not direct
neighbors of the input or output layers.

The process allows constructing increasingly complex and
abstract features, by adding layers and/or increasing the number
of neurons per layer. However, the use of more than a
single hidden layer requires determining error attributions and
corrections to the respective weights. This is carried out via
a backpropagation, i.e., a backward process starting from the
predicted output, and back through the neural network (Goh
et al., 2017). In this process a gradient descent algorithm is
employed to determine the minimum in the error surface created
by each respective neuron, when generating the output. Note
that, this gradient descent approach is conceptually similar to
the steepest descent algorithm implemented in classical MD
simulations (Goh et al., 2017). The major difference lies on the
use of an iterative process, in which an error function of the
target output of the neural network is minimized, and the weights
of the neurons are updated, instead of iteratively minimizing
an energy function and updating atomic coordinates for
each step.

A complete description of the main core concepts and
architecture of DL applied to chemistry is given in Goh et al.
(2017) and Mater and Coote (2019).

Other interesting reviews covering theoretical aspects (Goh
et al., 2017), available descriptors and datasets, and also
comparing model performances (Wu et al., 2017) have been
published. Moreover, a wide range of ML applications, including
drug design (Ekins, 2016; Chen et al., 2018; Fleming, 2018),
synthesis planning (Coley et al., 2018a), medicinal chemistry
(Panteleev et al., 2018), cheminformatics (Lo et al., 2018),
quantum mechanical calculations (Rupp, 2015), and materials
science (Butler et al., 2018) have been collected.

A summary of the main contributions of DL for solving
relevant chemical challenges, as well as an illustration of
the general components of a DL framework are presented
in Figure 4.

DL algorithms are particularly attractive for accelerating
discoveries in pharmaceutical, medicinal and environmental
chemistry (El-Atta and Hassanien, 2017; Goh et al., 2017;
Klucznik et al., 2018; Miller et al., 2018; Panteleev et al., 2018;
Smith et al., 2018b; Wu and Wang, 2018; Molga et al., 2019),
since they have made possible, for e.g., to simulate millions of
toxic compounds and identify those compounds displaying target
properties, safely, economically, and sustainably. These types of
applications have been thoroughly revised in various publications
and will not be further addressed in what follows [see for e.g.,
(Kadurin et al., 2017; Chen et al., 2018; Fleming, 2018; Green
et al., 2018; Gupta et al., 2018; Li et al., 2018b; Lo et al., 2018;
Panteleev et al., 2018; Popova et al., 2018; Smith et al., 2018b)].

DL is not only a cost-cutting effort, but also an innovative
source of new perspectives.

CUTTING-EDGE APPLICATIONS

In recent years, ML has been evoked in chemistry-related
tasks. The use of ML and, in particular, DL-based approaches
across prediction of binding, activity and other relevant
molecular properties, compound/material design and synthesis,
as well as applications of genetic algorithms are highlighted in
what follows.

Researchers in chemical sciences have started exploring the
capabilities of ML using data collected from computations
and experimental measurements. Data mining is traditionally
adopted to explore high-dimensional data sets, in order to
identify and establish relevant connections for the chemical
features of compounds and materials.

Other more ambitious approaches, including quantum
mechanics, which integrates physics-based computations (e.g.,
DFT) and ML methods in the search for novel molecular
components, have also been implemented (Curtarolo et al., 2013).

Amongst the major achievements of DL in Chemistry, are the
outstanding performances in predicting activity and toxicity, in
the context of the Merck activity prediction challenge in 2012,
and the Tox21 toxicity prediction challenge launched by NIH
in 2014, respectively. In the former, DL was very successful in
the competition outperforming Merck’s internal baseline model.
In the second challenge, DL models also achieved top positions
(Goh et al., 2017).

Similarly to what happens to the majority of the modern
computational chemists who no longer build their own code
to perform MD simulations or quantum chemical calculations,
due to the existence and availability of well-established software
packages, DL researchers have also use several software packages
for training neural networks including Torch, Caffe, Theano, and
Tensorflow (Goh et al., 2017).

Apart from the influence of software improvements, the
continuous growth of chemical data in public databases, such
as PubChem and Protein Data Bank has also facilitated the
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FIGURE 4 | Overview of (top) the contribution of DL algorithms for solving different chemical challenges and the respective tasks, and (bottom) the general

components of a DL framework, including the input data, the learning model able to interpret the data and the prediction space, from which the model performance

can be inspected. The model represents an optimization cycle containing interconnected components: prediction, evaluation, and optimization. Reprinted with

permission from Mater and Coote (2019). Copyright (2019) American Chemical Society.

raise of ML and DL applications in Chemistry, including
quantum chemistry, property prediction and materials design,
drug discovery, QSAR, virtual screening, and protein structure
prediction (Goh et al., 2017; Christensen et al., 2019).

Improving Computational and Quantum
Chemistry
Computational chemistry is naturally a sub-field that has been
increasingly boosted by the advances and unique capabilities of
ML (Rupp et al., 2012; Ramakrishnan et al., 2014, 2015; Dral et al.,
2015; Sánchez-Lengeling and Aspuru-Guzik, 2017; Christensen

et al., 2019; Iype and Urolagin, 2019; Mezei and Von Lilienfeld,
2019; Zaspel et al., 2019).

Also, recent progresses have enabled the acceleration of

MD simulations (atomistic and coarse-grained), contributing to

increase knowledge on the interactions within quantum many-
body systems and efficiency of DFT-based quantum mechanical

modeling methods (Bartók et al., 2010, 2013; Behler, 2011a,b,
2016; Rupp et al., 2012, 2015; Snyder et al., 2012; Hansen et al.,
2013, 2015; Montavon et al., 2013; Schütt et al., 2014; Alipanahi
et al., 2015; Botu and Ramprasad, 2015b; De et al., 2016; Faber
et al., 2016; Sadowski et al., 2016; Wei et al., 2016; Brockherde
et al., 2017; Chmiela et al., 2017, 2018; Smith et al., 2017; Wu
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et al., 2017; Gómez-Bombarelli et al., 2018). This field is still in
its infancy and have offered invaluable opportunities for dealing
with a wide range of challenges and unsolved questions, including
but not limited to model accuracy, interpretability, and causality.

For instance, the prediction of the refractive index of ionic
liquids based on quantum chemistry calculations and an extreme
learning machine (ELM) algorithm has been conducted (Kang
et al., 2018). Specifically, 1,194 experimental data points for 115
ionic liquids at different temperatures were collected from more
than 100 literature reports. Quantum chemistry calculations were
performed for obtaining the structures and descriptors of the
ionic liquids. Themodel was designed using a stepwise regression
algorithm and the R2 and AARD% values were 0.841 and 0.855%,
respectively. It was found that prediction of the refractive index
was significantly affected by ionic liquid anions, comparing to
the cations. Better performances were achieve using the ELM
algorithm, with the R2 and AARD% values of 0.957 and 0.295%,
respectively (Kang et al., 2018).

ML has also contributed for modeling the water behavior,
shedding light on important phenomena related to water
molecules interactions and the resulting density. Morawietz et al.
(2016) have calculated ice’s melting point from fundamental
quantum mechanics, demonstrating the predictive power of
ab initio MD simulations and highlighting the critical role
of van der Waals forces (Morawietz et al., 2016). It was
evidenced that ice occupies a larger volume than liquid water
as hydrogen bonds display water molecules in a rigid 3D
network. These hydrogen bonds weaken when ice melts, and
water molecules approximate, becoming dense with an extreme
value at 4◦C (Morawietz et al., 2016). Note that these processes
can also be rationalized resorting to ab initio MD approaches
based on DFT; however, such calculations are associated to
highly demanding computations. In addition to this, DFT
approaches are not able to accurately reproduce minute but
relevant van der Waals forces. The same authors have trained
a neural network to reproduce DFT results with less computer
power, and employed a previously-existing van der Waals
correction. Water density changes, hydrogen bond network
flexibility, and competition effects in terms of the nearest
shell’s contraction, after cooling, were explained based on the
simulations (Morawietz et al., 2016).

One of the current challenges is to answer the question
of whether chemical-physical properties, that often require
quantum mechanics (e.g., dipole moments, binding and
potential energies, and thermodynamics), can be represented and
predicted by ML methods (Hansen et al., 2013, 2015; Montavon
et al., 2013; Faber et al., 2016; Iype and Urolagin, 2019; Jaquis
et al., 2019). Several attempts have been made on the topic with
some successful examples (Rupp et al., 2012; Faber et al., 2017).

Rupp et al. (2012) have developed a model based on
nuclear charges and atomic positions for predicting molecular
atomization energies of various organic compounds. A matrix
composed of molecular elements and configuration was built,
describing the potential energy of each individual atom and
the Coulomb repulsion between nuclear charges. A non-linear
regression scheme was employed for solving and mapping the
molecular Schrödinger equation.

The regression models were trained and compared to
atomization energies calculated with hybrid DFT, transforming
a 1-h run (on average) of hybrid DFT per each atomization
energy into milliseconds using ML. Cross-validation over more
than seven thousand organic molecules yielded a mean absolute
error below 10 kcal/mol. The authors have trained the ML
algorithm on a set of compounds in a database, comparing the
respective matrices to determine differences between molecules,
so as to develop a landscape of such differences. Based on the
atomic composition and configuration, the unknown molecule
can be positioned in the landscape and the respective atomization
energy can be estimated by the contributions (weights) obtained
from the differences between the unknown and all known
molecules (Rupp et al., 2012).

More recently, the impact of selecting regressors and
molecular representations on the construction of fast ML models
of several electronic ground-state properties of organic molecules
has also been investigated (Faber et al., 2017). The performance
of each combination between regressor, representation, and
property was evaluated with learning curves, which allowed
reporting out-of-sample errors, as a function of the size if
the training set (ca. 118 k molecules). The QM9 database
(Ramakrishnan et al., 2014) was used for extracting themolecular
structures and properties at the hybrid DFT level of theory,
and included data on dipole moment, polarizability, enthalpies
and free-energies of atomization, HOMO/LUMO energies and
gap, heat capacity, zero point vibrational energy, and the highest
fundamental vibrational frequency.

Several regression methods including linear models (Bayesian
ridge regression and elastic net regularization), random-forest,
kernel ridge regression, and neural networks (graph convolutions
and gated graph networks) were tested. It was concluded that
out-of-sample errors were strongly affected by the molecular
properties, and by the type of representation and regression
method. Molecular graphs and graph convolutions displayed
better performances for electronic properties, while kernel
ridge regression and histograms of dihedrals were suitable for
describing energy-related properties [see Faber et al. (2017) for
details on other relevant combinations]. Predictions based on
the ML model for all properties have shown lower deviations
from DFT (B3LYP) than the latter deviated from experiment.
MLmodels displayed thus an improved prediction accuracy than
hybrid DFT, since experimental or explicitly electron correlated
quantum data were available.

In terms of drug development Brockherde et al. (2017)
have developed a ML algorithm for predicting the behavior
of molecules with potential to be used as pharmaceuticals
and in the design of new molecules, able to enhance the
performance of emerging energetic materials, including solar
cells, battery technologies, and digital displays. The main goal
was to identify the underlying patterns in the molecular behavior,
by employing the ML algorithm for understanding atomic
interactions within a molecule and using such information to
predict new molecular phenomena.

Specifically, the algorithmwas created and trained on the basis
of a small sample set of the molecule under study, and applied
to simulate the intricate chemical behavior within selected
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molecules, including malonaldehyde. A directed learning of the
density-potential and energy-density maps was conducted, as
illustrated in Figure 5, and the first MD simulation of with a ML
density functional on malonaldehyde was performed, allowing to
describe the intramolecular proton transfer process (Brockherde
et al., 2017).

In more detail, one of the key tasks in atomistic modeling
is the prompt and automated analysis of the simulation
results, in order to provide a comprehensive understanding
of the behavior of individual atoms and target collective
properties. The main supervised and unsupervised machine-
learning methods directed at classifying and coarse-graining of
molecular simulations were recently summarized and discussed
in Ceriotti (2019). A schematic overview of these methods, and
also of a workflow reflecting the application of a ML scheme to
an atomic-scale system is presented in Figure 6.

Also relevant is the development of improved molecular
force fields, commonly used in MD simulations, using ML.
On the other hand, the intrinsic operational aspects of MD
simulations, in which the dynamic evolution of the chemical
system is detailed in a fixed period of time, and for which
interparticle forces and potential energies are often estimated
using interatomic potentials, or molecular mechanics force fields,
are perfectly suited for ML. In fact, some of the timesteps
can be used as a training phase for estimating consecutive
ones, assuming that each of the timesteps of MD simulation
is strongly correlated with the preceding timestep and is
adequate for sampling the phase space rapidly and accurately,
allowing to estimate any meaningful property (Behler, 2016).
MD simulations often sample abnormal, but probably relevant
configurations, requiring the implementation of a decision tool
for dealing with the unusual configuration, and from which ML
may turn off and start learning (Botu and Ramprasad, 2015a;
Smith et al., 2018a). These conditions have also been previously
discussed and applied to ab initio MD (Botu and Ramprasad,
2015a).

In MD, the energies and forces for a vast number of
atomic configurations are required, which can be obtained
by performing the electronic structure calculations along the
trajectory, or by evaluating the direct functional relation between
the atomic configuration and the energy (Mansbach and
Ferguson, 2015). This analytic expression, defined before running
the simulation, is often recognized as a force field, an interatomic
potential, or a potential-energy surface. Calculations of electronic
structures are very demanding, even for DFT. DFT-based ab
initio MD simulations are restricted to a few 100 atoms and
shorter simulation times (Ahn et al., 2019).

The requirements for calculating ML potentials are very
similar to conventional empirical potentials, and are duly
discussed in Behler (2016). More recent conventional force
fields are developed and validated for very specific systems,
being limited by the functional form upon which they were
constructed. On the other hand, despite requiring a training
set, ML-based force fields are adaptive and more robust upon
configurations not previously sampled (Botu and Ramprasad,
2015a). Furthermore, these force fields can be extended rapidly
to different types of atoms and molecules, as they can learn and

apply the physical laws, rather than starting from strarch (Botu
et al., 2017).

Several improved force fields, and accurate predictions
of thermodynamics and kinetics signatures, as well as their
influence in molecular structures have been provided by
performing ML-based atomistic and ab initio MD simulations.
For instance, Chmiela et al. (2018) have incorporated spatial and
temporal physical symmetries into a gradient-domain machine
learning (sGDML) model for constructing flexible molecular
force fields from high-level ab initio calculations, with a great
potential to be used to improve spectroscopic accuracy in
molecular simulations. The sGDMLmodel was able to reproduce
global force fields at quantum-chemical CCSD(T) level of
accuracy and produced converged MD simulations with fully
quantized electrons and nuclei (Chmiela et al., 2018).

The parameterization of force fields and semiempirical
quantum mechanics have also been performed integrating ML
and evolutionary algorithms (Wang et al., 2019), which were
successfully applied in MD (Wang et al., 2019). Constructing
coarse-grained molecular models has been a common approach
to extend the time/length-scales accessible to large or complex
systems (Wang et al., 2019). These models have allowed
establishing suitable interaction potentials for properties of high-
resolution models or experimental data. Wang et al. (2019) have
reformulated coarse-graining as a supervised machine learning
problem, by using statistical learning theory for decoupling the
coarse-graining error, and cross-validation for choosing and
comparing the performance of distinct models. For that purpose,
the authors developed a DL model, that learned coarse-grained
free-energy functions and was trained by a force-matching
strategy (see Figure 7).

The proposed framework automatically learned multiple
terms necessary for accurate coarse-grained force fields, i.e.,
was able to keep relevant invariances and incorporate physics
knowledge, avoiding the sampling of unphysical structures.

The class of coarse-grained directed neural networks can thus
be trained with the force-matching principle and can encode
all physically relevant invariances and constraints, including
invariance of (i) the free-energy and mean force with respect to
translation of the molecule, (ii) the free-energy and variance of
the mean force associated to molecular rotation, and considering
(iii) the mean force being a conservative force field generated by
the free-energy, and (iv) a prior energy for preventing deviations
of the simulations with coarse-grained neural networks into
unphysical state space regions, i.e., states displaying overstretched
bonds or clashing atoms, which are captured out of the
training data.

The proposed strategy also outperformed classical coarse-
graining approaches, which generally failed to capture relevant
features of the free-energy surface, providing the all-atom
explicit-solvent free-energy surfaces estimated with models
including just a few coarse-grained beads, in the absence of
solvent (Wang et al., 2019).

The integration of ML in MD simulations have also been
useful for understanding the rate and yield of chemical reactions
and providing key mechanistic details (Christensen et al., 2019;
Häse et al., 2019). For instance, an unsupervised ML analysis
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FIGURE 5 | (A) Illustrative summary of the mappings proposed by Brockherde et al. (2017). E[v] is a conventional electronic structure calculation, i.e., Kohn–Sham

density functional theory (KS-DFT) and is represented by the bottom vector. The ground-state energy is determined by solving KS equations given the external

potential, v. E[n] corresponds to the total energy density functional. The Hohenberg–Kohn map n[v] (red vector) from external potential to its ground state density is

also presented. (B) Top: graphical representation of the dependency of the energy error on the number of training points (M), for ML-OF and ML-HK, considering

different basis sets for the one-dimensional problem. Bottom: errors in the Perdew-Burke-Ernzerhof (PBE) energies and the ML maps as a function of interatomic

spacing, R, for H2 with M = 7. (C) Schematic illustration of the strategy for obtaining predictions based on the proposed machine learning Hohenberg–Kohn (ML-HK)

map. Molecular geometry is represented by Gaussians, several independent Kernel ridge regression models allows predicting each basis coefficient of the density.

The performance of data-driven (ML) and common physical basis representations for the electron density is assessed.

tool based on Bayesian neural networks (BNNs) was proposed
by Häse et al. (2019) to extract relevant information from ab
initio MD simulation of chemical reactions (Häse et al., 2019).
BNNs have been optimized to predict a specific outcome of an ab
initio MD simulation corresponding to the dissociation time of
the unmethylated and tetramethylated 1,2-dioxetane molecules,
from the initial nuclear geometry and velocities. Predictions
based on BNNs showed that an earlier dissociation was related
to the planarization of the two formaldehyde moieties and also to
the symmetric shortening of the C–O bonds, respecting the octet
rule, i.e., the relation between bond order and bond length and
orbital hybridization (Häse et al., 2019).

Rupp et al. (2012) have developed a ML algorithm based
on non-linear statistical regression to predict the atomization
energies of organic molecules. The proposed model employed
a subset of seven thousand elements of the database, and
a library of more than 100 stable and synthetically-tractable
organic compounds. The target data used to train the model
included atomization energies of the compounds calculated
using the PBE0 hybrid functional. Cartesian coordinated and
nuclear charge were used as descriptors in a “Coulomb” matrix
representation. A mean-absolute error accuracy of 14.9 kcal/mol
was achieved using a small fraction of the compounds for the
training set. Similar accuracy, ca. 15.3 kcal/mol, was obtained

Frontiers in Chemistry | www.frontiersin.org 12 November 2019 | Volume 7 | Article 809123

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Cova and Pais Optimizing the Prediction of Chemical Patterns

FIGURE 6 | (I) Schematic representation of the main components of atomistic ML. (a) the inputs of the model are structures A or local environments X, (b) the

mathematical representation of the inputs, based on vectors of features |X 〉, a measure of similarity d, or a kernel k, (c) the ML model, controlled by a series of

parameters θ, and trained based on a set of inputs. (II) An overview of the clustering methods, including (a) a set of data points clustered according to their hidden

common features, (b) a density-based clustering for identifying maxima in the probability distribution of inputs, (c) distribution-based clustering for finding a model of

the data distribution based on the combination of clustering probabilities, and (d) hierarchical clustering for identifying natural clusters of the inputs. (III) Summary of

dimensional reduction techniques, including principal component analysis (PCA) for establishing the most relevant subspace retaining the largest fraction of the input

data variance, (b) a kernel-based method, (c) multidimensional scaling for reproducing in low dimension the similarity between high-dimensional data points.

Reprinted with permission from Ceriotti (2019).

considering an external validation set of 6,000 compounds
showing the potential transferability of the model within in-class
compounds. It was notable to outline QM-calculated energies,
with a mean-absolute error of ca. 15 kcal/mol, without using the
Schrodinger Equation in the ML algorithm. It was also suggested
that the DLNs-based model should outperform the traditional
ML-approach (Goh et al., 2017).

More recently, an alternative approach based ML algorithms
for supplementing existing QM algorithms was proposed
(Ramakrishnan et al., 2015). A 1-learning approach, involving
a ML correction term was developed. Such correction was used
in DFT calculated properties for predicting the corresponding
quantity at the G4MP2 level of theory. This combined
QM/ML approach gathers approximate but fast legacy QM

approximations and big-data based QM estimates, trained on
results across chemical space, despite being applied using only
traditional ML algorithms (Ramakrishnan et al., 2015).

Gómez-Bombarelli et al. (2018) have applied DL for
generating and optimizing functional compounds, such as drug-
like molecules. The proposed model allowed converting discrete
representations of molecules from and into a multidimensional
continuous representation, and generating new molecules for
exploration and optimization.

A DLN was trained on a a large set of existing chemical
structures to build an encoder, which converts the discrete
representation of a molecule into a continuous vector, a
decoder, that transforms the continuous vector into discrete
molecular representations (e.g., SMILES string), and a predictor,
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FIGURE 7 | (I) Machine-learned coarse-graining of dynamics in (a) a two-dimensional potential, showing the (b) exact free-energy along x, comparison of (c) the

instantaneous forces and the learned mean forces using feature regression and coarse-grained neural network models with the exact forces, and (d) the

potential-of-mean-force along x, predicted by feature regression, and coarse-grained neural network models with the exact free energy. (II) Free-energy profiles and

representative structures of alanine dipeptide simulated using all-atom and machine-learned coarse-grained models: (a) free-energy reference as a function of the

dihedral angles, obtained from the histograms of all-atom simulations, (b) standard coarse-grained model using a sum of splines of individual internal coordinates, (c)

regularized coarse-grained neural network models, (d) unregularized networks, (e) representative structures extracted from the free-energy minima, from atomistic

simulation (ball-and-stick representation) and regularized coarse-grained neural network simulation (licorice representation). (III) Free-energy landscape of Chignolin

for the different models, obtained from the (a) all-atom simulation, as a function of the first two TICA coordinates, (b) spline model, as a function of the same two

coordinates used in the all-atom model, (c) coarse-grained neural network model, as a function of the same two coordinates. (d) Comparison of the one-dimensional

free-energy profile as a function of the first TICA coordinate, reflecting the folding/unfolding transition, for the all-atom (blue), spline (green), and coarse-grained neural

network models (red). (e) Representative Chignolin conformations in the three minima from (a–c) all-atom simulation and (a′-c′) coarse-grained neural network model.

Reprinted with permission from Wang et al. (2019).

which estimates chemical properties from the latent continuous
vector representation of the molecule. These representations
allowed generating new chemical structures automatically by
employing simple operations in the latent space (e.g., decoding
random vectors, perturbing defined chemical structures, and
interpolating between molecules), and applying gradient-based
optimization for a oriented-search of functional molecules
(Gómez-Bombarelli et al., 2018).

DLNs have also been applied for exploring the molecular

conformational space of proteins. Some authors (Degiacomi,
2019) have demonstrated that generative neural networks trained

on protein structures, extracted from molecular simulation,

can be employed to create new conformations complementing
pre-existing ones. The model was trained and tested in a
protein-protein docking scenario to account for specific motions
occurring upon binding.

The fewer examples of DLNs applications in quantum
chemistry suggest that it is still in an earlier stage of development

compared to other approaches including computational
structural biology and computer-aided drug design.

Planning and Predicting Reactions and
Routes
Some practical questions in organic chemistry have been
addressed by ML approaches, including the identification of the
most suitable synthesis method for a specific compound and the
optimal conditions (reactants, solvent, catalyst, temperature, and
among others) for ensuring region/chemo/stereo selectivity and
obtaining the highest yields, estimating the precise rate, yield
and time for the reaction, predicting major/minor product, and
also evaluating similarity between reactions (Wei et al., 2016;
Ahneman et al., 2018).

Making predictions in reactive chemical systems can also
resort to DL. Segler and Waller (2017) and Segler et al.
(2018) have predicted reaction rules considering fundamental
substructures of reactants and products, allowing to return a

Frontiers in Chemistry | www.frontiersin.org 14 November 2019 | Volume 7 | Article 809125

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Cova and Pais Optimizing the Prediction of Chemical Patterns

product, given a reactant as input, and vice versa. In simple terms,
a reaction rule is a pattern guiding the interaction process for
a set of reactants and suggesting potential chemical products.
As the knowledge available in often inaccurate, such rules are
often ambiguous or even incomplete (Kishimoto et al., 2018).
However, there are some successful examples, such as the recent
outcomes of Chematica. Grzybowski et al. (2018) have assembled
the relevant transformations that connect chemical species into
a large network. The latter have codified and organized the
known pathways through chemical space and displays nodes of
molecules, elements and chemical reactions, collected by linking
reactants to products on the basis of core reactions.

The Chematica platform comprises network theory, high-
performance computing, artificial intelligence, and expert
chemical knowledge to accelerate the design of synthetic
pathways leading to new targets. However, the experimental
verification of the respective predictions was carried out recently
(Grzybowski et al., 2018). The authors have described the
results of a systematic approach in which synthetic pathways
leading to eight targets with distinct structures and of medicinal
relevance were designed without human supervision and
experimentally validated. There are other prominent products
such as ChemPlanner, and Synthia created from databases of
rules for chemical transformations. Both platforms incorporate
ML algorithms and allows navigating through chemical space
using those rules and suggesting to the user possible ways to
synthesize a target molecule. Synthia also employs MD, quantum
mechanics, and electronic properties to infer on the viability of
a transformation and on the stability of an intermediate along a
synthesis route (Klucznik et al., 2018).

Reaction prediction and retrosynthesis are the mainstays of
organic chemistry. Retrosynthesis has been used for planning
synthesis of small organic molecules, in which target molecules
are recursively converted into progressively simpler precursors
(Segler andWaller, 2017). However, the results obtained from the
in silico version of this process are not, in general, adequate. Rule-
based procedures have been extensively employed for solving,
computationally, both reaction prediction and retrosynthesis.
However, reactivity conflicts are often generated, since reaction
rules tend to ignore the molecular context. It is often difficult
to predict how a compound would behave in practice, unless
an experiment is carried out (Granda et al., 2018). Evaluating
a candidate sequence of reaction steps means that the synthesis
of a given compound is also difficult. In chemical synthesis
planning, Szymkuć et al. (2016) have discussed these issues.
Segler and Waller have reported (Segler et al., 2018) that the
prioritization of the most suitable conversion rules, as well as
the approach to conflicting or complexity raising issues can be
achieved by learning with DLNs. The authors have trained their
model on ca. three million reactions, exhibiting accuracies of 97
and 95% for reaction prediction and retrosynthesis, respectively,
on a validation set of ca. one million reactions. Following this
procedure, the same authors have applied Monte Carlo tree
search and symbolic artificial intelligence to find retrosynthetic
routes. DLNs were trained on the whole set of published organic
reactions (Segler et al., 2018).

Coley et al. (2017, 2018b) have performed DL with features
based on the alterations of reactants and have determined scores
for putative products. The product was modeled as a true target
molecule (product) if it was generated by a reaction covered
by the patent literature, and as a false product otherwise. More
recently Coley et al. (2018b) have put forward a new definition
addressing the synthetic complexity in order to compare with
the expected number of reaction steps required for producing
target molecules, with known compounds as reasonable starting
materials. Specifically, a neural network model was trained on 12
million reactions from the Reaxys database, imposing a pairwise
inequality constraint and showing that the products of published
chemical reaction are, on average, more synthetically complex
than their corresponding reactants.

A graph-link-prediction-based procedure was formulated
by Savage et al. (2017) to predict candidate molecules
(reactants), given a target molecule (product) as input and
to discover adequate synthesis routes for producing the
targets. This was employed over the Network of Organic
Chemistry constructed from eight million chemical reactions
described in the US patent literature in the 1976–2013 period
(Savage et al., 2017). The proposed evaluation demonstrated
that Factorization Machines, trained with chemistry-specific
information, outperforms similarity-based methods of chemical
structures. In these approaches, a fingerprint is built from
a graphical representation of the molecule, containing the
respective structural information and chemical features. The
latter can be selected using different approaches (Morgan, 1965;
Rogers and Hahn, 2010). Some neural graph fingerprints have
displayed significant predictive performance (Duvenaud et al.,
2015). The detection of molecular active substructures (e.g.,
a moiety impacting on a disease and a moiety that confers
structural stability) can also be performed with ML (Duvenaud
et al., 2015).

Researchers have also designed a chemical-handling robot
for screening and predicting chemical reactivity using ML.
The authors have found four novel reactions, demonstrating
the respective potential in discovering reactions. Chemical
reactions related to many different pathways can lead to a
desired molecule. To find the best pathways, discovering new
chemical reactivity is crucial to make the processes that produce
chemicals, pharmaceuticals and materials more sustainable,
environmentally-friendly and efficient. However, discovering
new reactions is usually an unpredictable and time-consuming
process that’s constrained by a top-down approach involving
expert knowledge to target a particular molecule.

Other researchers (Granda et al., 2018) have created an
organic synthesis robotic ML system able to explore the reactivity
several reagents from the bottom-up with no specific target. By
performing ca. 10% of 969 possible reactions from a set of 18
reagents, the proposed system allowed predicting the reactivity
of the remaining 90% of reactions with an accuracy of 86%.
The database was continuously updated by performing multiple
experiments based on the reactivity data collected. This allowed
discovering new reactions that were inspected to isolate and
characterize the new compounds (Granda et al., 2018).
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Supporting Analytical Chemistry and
Catalysis
Analytical chemistry is possibly the area corresponding to the
longest history, but also one that mostly displays embryonic
applications of ML. A large number of statistical analyses andML
expert systems have been implemented in analytical chemistry for
a long time (e.g., comparing and classifying mass spectra, NMR,
or IR through assessments on available compounds) (Lipkowitz
and Boyd, 1995; Mayer and Baeumner, 2019). Until recently, ML
approaches were mainly employed to explain chemical reactions
and to provide valuable predictive insights. Currently, it is
possible to predict unexpected reactive outcomes, or relevant
mechanistic insights for catalytic processes. A survey of some of
these contributions can be found in Durand and Fey (2019).

Other groups (Ghosh et al., 2019) have proposed DL methods
for predicting molecular excitation spectra. Considering the
electronic density of the states of 132 k organic compounds, the
authors have built three different neural network architectures:
a multilayer perceptron (MLP), a convolutional neural network
(CNN), and a DLNs. The coordinates and charge of the atoms in
each molecule were used as inputs for the neural networks. The
DLNs reached the best performance with a root-mean-square
error (RMSE) of 0.19 eV, while MLP and CNN were able to learn
spectra with a RMSE of 0.3 and 0.23 eV, respectively. Both CNN
and DLNs allowed identifying subtle variations in the spectral
shape. The structures of 10 k organic molecules previously
unseen were scanned and the instant predictions on spectra were
obtained to identify molecules for further applications (Ghosh
et al., 2019).

A new computational approach, denoted as quantitative
profile-profile relationship (QPPR) modeling, and based on
ML techniques, has been proposed for predicting the pre-
discharge chemical profiles of ammunition components from
the components of the respective post-discharge gunshot
residue (Gallidabino et al., 2019). The predicted profiles can be
compared with other measured profiles to perform evidential
associations in forensic investigations. Specifically, the approach
was optimized and assessed for the prediction of GC-MS profiles
of smokeless powders (SLPs) obtained from organic gunshot
residues, considering nine ammunition types. A high degree
of similarity between predicted and experimentally measured
profiles was found, after applying 14ML techniques, with a
median correlation of 0.982 (Gallidabino et al., 2019). Receiver
operating characteristic (ROC) analysis was employed to assess
association performances, and allowed comparing predicted–
predicted and predicted–measured profiles, producing areas
under the curve (AUCs) of 0.976 and 0.824, respectively,
in extrapolation mode. On the other hand, AUCs of 0.962
and 0.894 were obtained in the interpolation mode. These
results were approximated to the values obtained from the
comparison of the measured SLP profiles (AUC = 0.998),
demonstrating excellent potential to correctly associate evidence
in a number of different forensic situations (Gallidabino
et al., 2019). The advantages of this approach are numerous
and may be extended to other fields in analytical sciences
that routinely experience mutable chemical signatures,

including the analysis of explosive devices, toxicological
samples and environmental pollutants (Gallidabino et al.,
2019).

The integration of ML-based algorithms in a chemosensor has
also pointed out the future of ML and the artificial internet of
things applicability, i.e., optimized sensors, linked to a central
data analysis unit via wireless (Mayer and Baeumner, 2019).

Additionally, researchers have used ML to develop tools for
predicting catalytic components and dynamics. For instance,
the identification and prediction of ligands for metal-catalyzed
coupling reaction have been conducted for designing a
synthetic economic and ecological route, with the potential
to be expanded into a system of pharmaceutical interest
(Durand and Fey, 2019). Durand and Fey have recently
summarized calculations of several ligand descriptors, focusing
on homogeneous organometallic catalysis. Different approaches
for calculating steric and electronic parameters were also
reviewed and assessed, and a set of descriptors for a wide range of
ligands (e.g., 30 monodentate phosphorus (III) donor ligands, 23
bidentate P,P-donor ligands, and 30 carbenes) were collected.

Different case studies covering the application of these
descriptors, including maps and models and DFT calculations,
have been discussed, demonstrating the usefulness of descriptor-
oriented studies of catalysis for guiding experiments and
successfully evaluate and compare the proposed models (Durand
and Fey, 2019).

Li and Eastgate (2019) have designed a ML-based tool for

acting on transition metal-catalyzed carbon–nitrogen coupling

reactions encompassing phosphine ligands, which are often

involved in pharmaceutical syntheses. The data set of the

systemwas composed of literature documents reporting coupling
reactions with phosphine ligands. The input variables were the
molecular features of ligand electrophiles and nucleophiles, and
the phosphine ligands were de output obtained in successful
reactions. The tools used substrate fingerprints, to build a
multiclass predictive model and identify the ligands prone to
function in a Pd-catalyzed C–N coupling reaction. The resulting
probabilities were associated to the corresponding ligand (cPMIs)
to determine a probability-weighted predicted holistic PMI for
the transformation, considering the synthesis of the ligand.
This novel ML approach were developed for estimating the
probability of success for ligands, given specified electrophile and
nucleophile combinations, illustrated in the a Pd-catalyzed C–N
coupling context. The neural network allowed thus improving
the predictive performance of the top-N accuracy over other
ML approaches. Further application of this tool will foster the
development of frameworks based on criteria-decision analytics,
optimizing the design of manufacturing processes.

Designing catalysts using computational approaches is also
a major challenge in chemistry. Conventional approaches have
been restricted to calculate properties for a complex and
large number of potential catalysts. More recently, innovative
approaches for inverse design have emerged, for finding
the desired property and optimizing the respective chemical
structure. The chemical space has been explored by combining
gradient-based optimization, alchemical transformations, and
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ML. These efforts have been duly reviewed in the context of
inverse design and relevance to developing catalytic technologies
(Freeze et al., 2019). These approaches have offered new
opportunities for identifying catalysts using efficient methods
that circumvent the need for high-throughput screening and
reduce the array of compounds and materials displaying the
target properties and can be experimentally validated. For
instance, inverse design can be employed formodulating catalytic
activity via alterations in the first and second coordination
spheres of the catalyst binding site (e.g., functionality of catalytic
cofactors in enzymes).

One possible approach to inverse design is to use the
synthetic accessibility score, commonly used for drug
molecules, in the scoring functions of inverse design for
ensuring synthetic feasibility. For that purpose, empirical
parameters can be used to describe molecules without the
cost of using 3D coordinates for an entire structure and
without using a model to describe the complex interactions
from geometries.

The major progress on inverse design relies on optimization
algorithms, which govern the process for exploring a specific
space, improving identification rates of parameters that allows
optimizing the value of the scoring function. For example, the
Classical Optimal Control Optimization algorithm, used for
global energy minimization, is based on the diffeomorphic
modulation under the observable-response-preserving
homotopy algorithm, and lead the classical dynamics of a
probe particle, driven by an external field for reaching the
optimal value of a multidimensional function, by adjusting
iteratively field control parameters over the gradient of the
scoring function related to the controls. However, the respective
use for scoring functions in inverse design applications still
remain a challenge (Freeze et al., 2019). Scoring functions
allow correlating molecular descriptors to catalytic properties
for finding catalysts via gradient-based optimization. In a
simple example, similar molecules often display distinct
catalytic activity due to subtle effects that must be detected
by scoring functions. Such effects may be determined by
combining experimentation to build adequate training sets
of systems with different values of selected properties for
determining feature sets able to detect such properties.
ML can also be used to evaluate performance scores for
GA-based methods.

The application of autoencoders have allowed transforming
SMILES representations of compounds into a continuous latent
space in order to optimize chemical properties, including
synthetic accessibility score and Quantitative Estimation of Drug
Likeness. Additionally, by resorting to gradient-based methods
the latent space can be intersected to predict new candidate
structures for being synthesized and tested.

The integration of inverse design, gradient-based
optimization and ML is a very promising strategy to
shorten the long path toward catalyst discovery (Freeze
et al., 2019). Also, other related methods that have been
implemented to scrutinize the chemical space for drug

development can be applied for catalyst discovery, as described in
Freeze et al. (2019).

CONCLUDING REMARKS

This review has sought to provide a sample of ML approaches
that support the major research trends in Chemistry, especially in
computational chemistry, focusing on DLNs. Such an approaches
have offered the possibility of solving chemical problems that
cannot be described and explained via conventional methods.
In the last few years, the application of ML to the optimization
and prediction of molecular properties has become very popular,
since more researchers are trained and acquired technical skills
to develop and use such methods. ML applications are area-
dependent and follow, in fact, a more or less obvious pattern.
For instance, medicinal chemistry excels in structure-activity
relationships. In other words, each sub-field is progressing
essentially in activities that belong to its core subjects. It seems
that these fields are evolving naturally, and we cannot identify
significant disruptive trends.

Despite the historical route of ML methods involving
the implementation of clustering or dimensionality reduction
approaches, to provide a simple, low dimensional, or coarse-
grained representations of structural and dynamical patterns
of complex chemical systems, the interplay between innovative
ML-driven predictions and molecular simulations can be
combined to make time-consuming electronic calculations
feasible, obtain accurate interatomic potentials on complex
systems, and provide a rational design ofmolecules andmaterials.
However, the convergence between different ML algorithms
is a major challenge to achieve a definite progress in the
chemistry fields.

Unsupervised learning may also contribute to elucidate
the operating aspects of supervised algorithms, while
supervised approaches may contribute to the formulation
of objective metrics to evaluate the performance of
unsupervised approaches.

In Chemistry DL is still at an incipient stage, particularly in
computational chemistry, although the pace of contributions has
been increasing very recently. One of the major challenges is the
disparity, quality and interpretability of the generated outcomes.
Paired with the sophistication and ability of GPU-accelerated
computing for trainingDLNs and themassive growth of chemical
information used for training DLNs, it is anticipated that
DL algorithms will be an invaluable engine for computational
chemistry. DL uses a hierarchical cascade of non-linear functions
allowing to learn representations and capture the required
features from raw chemical data, necessary for predicting target
physicochemical properties.

Considering the recent effort on the topic, DL models have
been implemented in various Chemistry sub-fields, including
quantum-chemistry, compound and materials design, with
superior performances to conventional ML algorithms. There
is still tremendous room for improved model accuracy and
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interpretability. While industrial sectors will continue driving
many advances, academia will continue playing a critical role
in supplying innovative technical and practical contributions, as
well as in fostering cross-disciplinary cooperation.
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We propose an algorithm that is a combination of systematic variation of the torsions and

Monte Carlo (or stochastic) search. It starts with a trial geometry in internal coordinates

and with a set of preconditioned torsional angles, i.e., torsional angles at which minima

are expected according to the chemical knowledge. Firstly, the optimization of those

preconditioned geometries is carried out at a low electronic structure level, generating

an initial set of conformers. Secondly, random points in the torsional space are generated

outside the “area of influence” of the previously optimized minima (i.e., outside a

hypercube about each minima). These random points are used to build the trial structure,

which is optimized by an electronic structure software. The optimized structure may

correspond to a new conformer (which would be stored) or to an already existing one.

Initial torsional angles (and also final ones if a new conformer is found) are stored to

prevent visiting the same region of the torsional space twice. The stochastic search can

be repeated as many times as desired. Finally, the low-level geometries are recovered

and used as the starting point for the high-level optimizations. The algorithm has

been employed in the calculation of multi-structural quasi harmonic and multi-structural

torsional anharmonic partition functions for a series of alcohols ranging from n-propanol

to n-heptanol. It was also tested for the amino acid L-serine.

Keywords: conformational search, hindered rotors, torsional anharmonicity, stochastic methods, geometrical

optimization

1. INTRODUCTION

Flexible molecules have many conformational minima which can be easily reached by torsional
motions of the molecular framework in the potential energy surface (PES). For the last few years,
there are methods, as the multi-structural harmonic-oscillator (MS-HO) approximation (Zheng
et al., 2011a), which take into account the characteristics of all these equilibrium structures.
Specifically, the MS-HO method incorporates the rotational and vibrational (rovibrational)
partition function of each of the conformers within the rigid-rotor harmonic-oscillator
approximation. This is a substantial improvement over the one-well harmonic oscillator (1W-HO)
approximation in which the structure of the absolute minimum is the only one to be considered
(Ferro-Costas et al., 2018b).

Locating all conformers is just the first step toward the evaluation of more accurate rovibrational
partition functions. For instance, it has been shown that MS-HO partition functions improve
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over 1W-HO ones (Ferro-Costas et al., 2018b), additionally
torsional anharmonicity should be also included (Yu et al.,
2011; Zheng et al., 2011b; Zheng and Truhlar, 2013) to increase
the accuracy of the results. The most reliable methods that
incorporate torsional anharmonicity can only be applied to a
reduced number of torsional degrees of freedom (Fernández-
Ramos, 2013) and they require more information of the
PES than just the minima. For instance, the extended two-
dimensional torsional method (E2DT) (Simón-Carballido et al.,
2017), implemented in the Q2DTor program (Ferro-Costas et al.,
2018a), needs a fine grid of points for the construction of
the torsional PES. The procedure also includes the location of
all stationary points (i.e., minima, saddle points and maxima
in the 2D-PES).

Therefore, the amount of information needed from the PES
depends on the method, and it is crucial to devise algorithms
that allow an efficient construction of such PES. For example,
when the number of torsional degrees of freedom is only 2,
so the E2DT method can be applied, geometry scans at a
regular number of points along the PES can be carried out.
These scans involve partial optimizations in which all degrees of
freedom are optimized except the two torsional modes. When
the torsional global PES is calculated by systematic mapping,
if possible, it is essential to reduce the number of points to
be calculated. This reduction depends on molecular geometry
aspects as conformational enantiomerism, internal symmetry
of the rotors and molecular symmetry. The rules to replicate
points of a PES under some symmetry conditions are given
in Ferro-Costas et al. (2018a). As the number of torsional
degrees of freedom increases, the amount of information needed
from the PES should be reduced in order to keep the problem
tractable. For those cases, the multi-structural torsional method
is a good choice (Zheng et al., 2012, 2013), because the model
is built assuming that the only information at hand is the set of
conformational minima.

This work is concerned with the search of conformational
structures in the torsional PES of flexible acyclic molecules
with more than 2 torsions (typically up to 10). Having the
equilibrium geometries, it is possible to calculate accurate
rovibrational partition functions in a wide range of temperatures.
In this sense, the algorithm is not limited to the search of
the most stable equilibrium structures, O’Boyle et al. (2011)
which are the only ones that are relevant at low temperatures.
It seeks for all conformers, because they are required for the
calculation of partition functions at high temperatures and for
the evaluation of torsional anharmonicity. Unfortunately, this
algorithm cannot deal with large biological systems or with
conformations originated from ring puckering (Kolossváry and
Guida, 1996; Watts et al., 2010). For that purpose there is an
extense list of algorithms and programs (see Loferer et al., 2007;
Friedrich et al., 2019 and references therein).

The algorithm here presented is a combination of a systematic
method that locates intuitively expected conformers plus a
Monte Carlo method that finds unanticipated ones. A detailed
description of the algorithm is given in the following section. The
series of alcohols ranging from n-propanol to n-heptanol and the
amino acid L-serine have been selected to test the algorithm.

2. DESCRIPTION OF THE ALGORITHM

The target systems for this algorithm are flexible acyclic
molecules characterized by t dihedral angles. Internal rotations
about these dihedrals guide the system toward different
conformations; each of them being represented by a t-
dimensional point 8 = (φ1, · · · ,φτ , · · · ,φt), where the τ -th
dihedral angle runs from 1 to t.

The various geometries involved in the algorithm are:

• 8
R: the reference geometry, i.e., the initial geometry provided

by the user.
• 8

G1 : a guess geometry during the systematic search. The total
number of structures generated is K1 of which K⋆

1 are the
ones that pass the tests (see section 2.1) and turn into trial
geometries. Notice that K⋆

1 ≤ K1.
• 8

G2 : a guess geometry during the stochastic search. The total
number of geometries generated is K2 of which K⋆

2 are the
ones that pass the tests (see section 2.1) and turn into trial
geometries. Notice that K⋆

2 ≤ K2.
• 8

0
k⋆ : the k

⋆-th trial geometry, k⋆
= 1, . . . ,K⋆

;K⋆
= K⋆

1 + K⋆

2 .

The pool of trial geometries is represented by {80
k⋆}.

• 8
⋆: a trial geometry to be optimized.

• 8
⋆,opt: a trial geometry 8

⋆ after optimization.
• 8

eq
j : : the j-th equilibrium conformer, j = 1, . . . , J. The pool of

such conformers is represented by {8
eq
j }.

• 8
st
p : the p-th stored point, p = 1, . . . , P;P = K⋆

1 + K⋆

2 + J.
The pool of stored points is the union of the previous two sets,
{8

st
p } = {8

eq
j } ∪ {8

0
k⋆}.

The setup of the algorithm is schematically shown in the flux
diagram of Figure 1. It starts with a reference geometry given
in the Z-matrix format where the t target torsions must be
defined unambiguously. Only in this manner, it is possible to
define the8

R torsional point univocally. Otherwise, the torsional
analysis cannot be carried out. The algorithm consists of two well
differentiated searching methods: systematic and stochastic.

2.1. The Tests
A guess structure, either 8

G1 or 8
G2 , in general denoted as

8
G, must complete two tests before being considered a trial

geometry 8
⋆:

1. The connectivity test: excludes structures having unphysical
bond lengths (for instance, structures with superimposed
atoms) or structures with different connectivity than the
reference geometry. The detection and exclusion of these
type of structures is carried out through the adjacency (or
connectivity) matrix of the guess geometry, A(8G), which is
compared to that of the reference structure, A(8R). Only if
these two matrices are equal:

A(8R) = A(8G) (1)

the guess geometry passes the test. We highlight the
importance of generating an adequate reference structure,
as its connectivity matrix is used to accept or discard
guess geometries.
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FIGURE 1 | Flux diagram of the conformer search algorithm.

2. The similarity test: performs a comparison between the guess
point and the pool of the P stored points. If 8

G falls outside
of all the hypercubes generated about each stored point, the
geometry is accepted. For hypercubes with edge size of 2d, this
test is positive if:

∃ τ : |(φτ )
G
− (φτ )

st
p | > d, p = 1, · · · , P (2)

An optimized trial geometry,8⋆,opt, must complete three tests.

1. The connectivity test: assures that the optimized and reference
geometries share the same connectivity.

2. The redundancy test: compares the current geometry with the
pool of the J optimized equilibrium torsions. If

∃ τ :(φτ )
⋆,opt
6= (φτ )

eq
j , j = 1, · · · , J (3)

then 8
⋆,opt is a candidate for being a new equilibrium

structure in the torsional PES.
3. The Hessian test: assures that the optimized geometry is a

new minimum. The electronic structure software is used to
calculate the Hessian matrix; if the normal-mode frequencies

of the diagonalized matrix are all real, the optimized structure
is a minimum.

Notice that the order in which the tests are carried out is
important because if the optimized structure fails to pass the first
two tests, no time is lost in the evaluation of the Hessian matrix.

2.2. Systematic Search
The first part of the algorithm consists of a systematic search
that makes use of a pool of K1 initial structures, each of them
characterized by a set of torsional angles 8

G1 which have their
origin on basic molecular structure analysis. If there are Pτ initial
chemical-intuitive guesses for a given torsion τ , the total number
of preconditioned guesses is:

K1 =

t
∏

τ=1

Pτ (4)

For instance, for a four sp3 carbon linear chain, the expected
location of the minima is at dihedral angles of 180◦ and ±60◦,
which correspond to the anti (antiperiplanar ot T) and gauche
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(synclinal or G±) positions, and therefore Pτ = 3 for the
torsion. Notice that only dihedral angles that generate new
distinguishable structures should be included. In this context,
methyl groups should be ignored because its internal rotation
only generates indistinguishable structures. For instance, in the
case of n-butanol we only need to consider three torsions (t = 3),
each of them with three intuitive positions (T, G+, and G−), that
is P1 = P2 = P3 = 3. Therefore, the number of geometries to be
generated within the pool is K1 = 27.

During the generation of the initial structures, the algorithm
should take into account the characteristics of the molecular
geometry, as for instance, molecular symmetry. Returning to
the previous example, the molecule of n-butanol has one
structure given by the dihedrals (TTT) which has a plane of
symmetry and, therefore, it belongs to the Cs point group
symmetry. As a consequence, all structures, with exception of
(TTT), have conformational enantiomers, that is, distinguishable
optical isomers with the same electronic structure properties.
Therefore, it is sufficient to locate one of the two isomers.
The conformational enantiomer of the 8 structure is the −8

structure (i.e., the value of the dihedral angle for each torsion is
set to 360◦ − φτ ). For instance, structure (TG+G-) has structure
(TG-G+) as enantiomer. Consequently, only 14 of the 27 initial
structures need to be tried. In general, for a molecule with
a plane of symmetry, the initial number of structures of the
preconditioned systematic search is reduced to (K1 + 1)/2.
The rest of the structures are automatically generated from the
calculated ones.

Each of the K1 structures leads to a guess point, 8G1 , which
is the current candidate to turn into a new minimum in the
PES upon geometry optimization. If this point fails to pass the
connectivity or the similarity tests, it is discarded. Otherwise,
8

G1 is a suitable structure to be optimized by the electronic
structure software:

8
⋆
← 8

G1 (5)

and the {80
k⋆} pool is updated:

{8
0
k⋆} ← {8

0
k⋆} ∪ {8

⋆
} (6)

During the systematic search the similarity test only involves
{8

eq
j } and not {8

st
p }. The reason is that the hypercubes generated

from these structures do not overlap.
If 8

⋆ successfully converges to an equilibrium structure,
8

⋆,opt, and passes all the required tests, then the resulting
geometry is added to the list of conformers and the pool of
equilibrium torsions is updated:

{8
eq
j } ← {8

eq
j } ∪ {8

⋆,opt
} (7)

2.3. Stochastic Search
The algorithm can perform a series of K2 cycles performing
a Monte Carlo search after the systematic procedure. At every
cycle, the algorithm generates t random numbers, which are the
components of the torsional point 8G2 . Once they are generated,
the procedure follows the same pattern as the systematic search.

In this case, the similarity test accesses to the {8st
p } pool, not just

to the equilibrium structures, because it cannot be assured that
the new point falls outside of the “area of influence” of previous
trial geometries.

We highlight that it is possible to run several batches of the
Monte Carlo search, each of them with different specifications
for the hypercube edge size (2d).

2.4. Electronic Structure Calculations
The algorithm assumes that the initial set of conformers will
be obtained at a low electronic structure level (LL). Those
equilibrium geometries can be used as the starting point of
high-level (HL) electronic structure calculations. Therefore, the
LL calculations should produce a torsional PES which, at least
qualitatively, has a similar topology than the HL torsional PES.
For molecules of the size presented in this work, Hartree-Fock
(HF) calculations are affordable as the LL. Other reason to
choose HF as the LL is that they tend to overestimate torsional
barriers, as well as to produce more minima than electronic
correlated methods. However, we notice that the LL search is not
restricted to HF. Molecular mechanics, semiempirical methods
or other ab initiomethods could be used as LL, depending on the
molecular system and on the available computational resources.
In principle, the algorithm was designed for locating minima
in the torsional PES of flexible acyclic systems with up to 10
torsions. Bigger systems would require substantial computational
cost. Two straightforward ways of reducing computer time are
the parallelization of the algorithm and/or the use of inexpensive
LL methods.

For the n-alcohols series and L-serine, HF/3-21G was chosen
as the LL method. For n-alcohols the set of the {8

eq
j } conformers

was re-optimized employing the MPWB1K functional (Zhao
et al., 2004) in combination with the 6-31+G(d,p) basis set (Hehre
et al., 1972). In the case of serine, B3LYP/6-31++G∗∗ was the
method of choice with the objective of establishing a direct
comparison with previous calculations (Najbauer et al., 2015).
Geometry optimizations and frequency calculations were carried
out with the Gaussian 09 package (Frisch et al., 2004).

3. MULTI-STRUCTURAL PARTITION
FUNCTIONS

It has been shown that for flexible molecules the incorporation
of multiple conformers may have a substantial impact in the
magnitude of the partition functions, thermochemical properties
and thermal rate constants. The algorithm has been designed
to obtain all the torsional PES minima of the molecule. After
this information is accessible, it is possible to calculate multi-
structural (MS) partition functions, i.e., partition functions that
include multiple torsional conformers. Here we are concerned
with the calculation of the MS partition functions using
the following approximations: the harmonic-oscillator (MS-
HO), the quasi-harmonic (MS-QH), and the coupled torsional
anharmonic (MS-T(C); Zheng and Truhlar, 2013). Any of these
methods, named in increasing order of accuracy, provides more
reliable values of thermochemical properties than methods based
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on just one well. In the MS-HO approximation the rovibrational
partition function is given by

QMS−HO
=

Jc
∑

jc

Qrot
jc
QHO
jc

e−βUjc (8)

where Jc is the total number of conformers and Ujc is
the relative energy of conformer jc relative to the global
minimum. Without lost of generality, it is possible to sum
just over all the distinguishable structures J that are not
conformational enantiomers

QMS−HO
=

J
∑

j

wjQ
rot
j QHO

j e−βUj (9)

where wj = 1 if the j structure is unique and wj = 2 if it has a
conformational enantiomer. The rigid rotor rotational partition
function Qrot

j is given by

Qrot
j =

8π2

σrot,j

(

1

2π h̄2β

)3/2 √

Irot1,j I
rot
2,j I

rot
3,j (10)

where h̄ is the Planck’s constant divided by 2π , and β = (kBT)
−1,

with kB being the Boltmann’s constant and T the temperature;
σrot,j is the symmetry number of rotation (Fernández-Ramos
et al., 2007) and Iroti,j (i= 1, 2 or 3) is the i-th principal moment of

inertia of conformer j.
The harmonic oscillator partition QHO

j is

QHO
j = Q̃HO

j e
−βE

HO
j (11)

where

Q̃HO
j =

3N−6
∏

m=1

1

1− e−βh̄ωm,j
(12)

is the HO vibrational partition function calculated by taking
the zero-point energy (ZPE) as the reference energy, which is
given by

E
HO
j =

3N−6
∑

m=1

1

2
h̄ωm,j (13)

whereN is the number of atoms, and ωm,j is the HO frequency of
them-th normalmode in the j-th conformer. A variant of theMS-
HO partition function is the MS-QH one, in which the harmonic
frequencies are multiplied by a scale parameter λ

ZPE which is
dependent on the electronic structure method and that it was
previously parametrized to reproduce experimental ZPEs. Thus,

Q
QH
j = Q̃

QH
j e
−βE

QH
j (14)

Q̃
QH
j =

3N−6
∏

m=1

1

1− e−βh̄λZPEωm,j
(15)

E
QH
j = λ

ZPE
3N−6
∑

m=1

1

2
h̄ωm,j (16)

and therefore

QMS−QH
=

J
∑

j

wjQ
rot
j Q

QH
j e−βUj (17)

The MS-T(C) rovibrational partition function includes torsional
anharmonicity on the HO or QH partition functions through a

multiplicative factor F
MS−T(C)
cl,j

. For the QH case, it is given by

QMS−T(C)
=

J
∑

j=1

Qrot
j Q

QH
j F

MS−T(C)
cl,j

(18)

where

F
MS−T(C)
cl,j

=

t
∏

η=1

fj,η =

t
∏

η=1

q
RC(C)
j,η

q
CHO(C)
j,η

(19)

The fj,η factors are expressed as the ratio between the classical
reference anharmonic (RC) and classical harmonic oscillator
(CHO) torsional partition functions. Although the reference
classical partition function involves some approximations, it
incorporates couplings in the kinetic and potential energies
between the torsions. Therefore, in flexible systems with multiple
torsional modes, the MS-T(C) entails a substantial improvement
over the MS-QH method.

4. RESULTS AND DISCUSSION

The automatic protocol presented in this work was adopted
to study the n-alcohols from 3 (n-propanol) to 7 (n-heptanol)
carbon atoms. For the calculation of the partition functions, the
frequencies were scaled by the recommended factor λ

ZPE
=

0.951 (Alecu et al., 2010). With the exception of n-propanol and
n-butanol, the number of previous studies on the conformations
of n-alcohols is scarce. Thus, additionally to the seek for
conformational minima of n-alcohols, we have benchmarked our
algorithm against a previous study on the conformations of the
amino acid L-serine, a molecule presenting several functional
groups (section 4.2). However, we will center our attention on the
n-alcohols when discussing about the efficiency of the algorithm.

4.1. Efficiency of the Algorithm
A summary about the efficiency of the algorithm for n-
alcohols is provided in Table 1. In it, J1 and J2 represent the
number of conformers found in the systematic and in the
Monte-Carlo searchings, respectively. Similarly, JLL and JHL

are the total number of conformers found at LL and HL,
respectively. We highlight that the number of conformers shown
in Table 1 excludes enantiomeric structures. Consequently, the
total number of conformers is given by 2JHL − 1. The relative
total energy of the HL conformers is represented in Figure 2 for
the five n-alcohols. We refer to the Supplementary Material for
a list containing the electronic energy and Cartesian coordinates
of all the HL conformers.

For the case of n-heptanol, according to the chemical intuition
and excluding enantiomers, a total of (36 + 1)/2 = 365
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TABLE 1 | Number of conformers obtained for the n-alcohol series that illustrate

the efficiency of the algorithm.

Alcohol t K1 K⋆
1 J1 K2 K⋆

2 J2 JLL JHL

n-propanol 2 5 5 5 200 80 0 5 5

n-butanol 3 14 14 14 200 167 1 15 15

n-pentanol 4 41 39 38 400 377 15 53 48

n-hexanol 5 122 110 106 4,500 3,988 59 165 153

n-heptanol 6 365 307 297 5,500 4,664 192 489 465

See text for details about nomenclature.

FIGURE 2 | Number of conformers of n-alcohols and their relative total energy.

conformers are expected. The algorithm discarded 58 of them
as a result of very strained geometries which did not pass
the connectivity test. Therefore, geometric optimizations were
performed on 84% of the initial geometries of which 97% of
them led to a new conformer. From these results, we can state
that the systematic search is very efficient because almost every
geometry optimization that was carried out translated into a
new conformer. This result is not surprising as the starting
geometries of the systematic search arise from well-established
chemical knowledge.

The performance of the stochastic search is more difficult
to estimate. About 15% of the generated geometries were
immediately discarded through the connectivity test saving a
considerable amount of computational time. Notice that “all”
minima with torsional angles lying close to the preconditioned
values have already been found, so only about 4% of the geometry
optimizations led to new conformers. However, this result should
not be taken as poor performance of the algorithm, but as an
inherent difficulty associated with the search of new conformers
in partially explored PESs. Every new batch of calculations
produces less new minima, and the algorithm is stopped when
no new conformers are found. However, even in this situation,
the location of all the conformers is not guaranteed.

Regarding to the HL optimizations from the LL geometries,
we observe that the procedure is quite effective: for the five

n-alcohols, more than 90% of the LL geometries leaded to a new
HL conformer.

4.2. Benchmarking
Studies regarding to the conformational flexibility of n-alcohols
beyond n-butanol are scarce in the literature. Even for n-
butanol, some of these previous studies (see Black and Simmie,
2010) pointed toward the existence of 14 conformers (27
considering enantiomers), which are the number of conformers
encountered after a systematic search. However, the total number
of conformers is 15. This last conformer appears after a
stochastic search.

Chen at al. (2015) claimed that n-pentanol has 41 minima,
which are the hypothetical number of conformers generated
by T, G+ and G- configurations for each of the torsions. Our
algorithm, discarded two of them in the systematic search and
encountered 38 conformers at HL. The stochastic search located
another 10 conformers to reach a total of 48 conformers. The
algorithmmay discard some initial geometries if they do not pass
the connectivity test; however, if there are minima close to these
strained geometries, they will be encountered during the Monte
Carlo search.

For n-hexanol there is a very recent work by Vaskivskyi
et al. (2019), who made a systematic search starting from 122
structures and found 111 different conformers. Our algorithm
located a total of 153 minima at the HL, 106 in the systematic
search and 47 in the Monte Carlo search.

To the best of our knowledge this is the first work dealing with
the conformational flexibility of n-heptanol.

Najbauer et al. (2015) reported the 14 conformers of L-serine
with the lowest Gibbs free energies at 0 K, 1Go

0K, calculated
at the B3LYP/6-31++G∗∗ level. Our algorithm found a total
of 72 LL conformers, number that was reduced to 60 (listed
in the Supplementary Material) after the HL reoptimizations,
also at the B3LYP/6-31++G∗∗ level. Of the total number of
conformers obtained at the HL, 32 of them are within the range
of free energies reported by Najbauer et al. (2015) (see Table 2).
Specifically, Najbauer et al missed 18 conformers within a free
energy window of 4 kcal/mol.

4.3. Multiple Wells and Torsional
Anharmonicity
The number of conformers increases with the size of the system,
as shown in Table 1, although this does not imply that all of them
are required in the calculation of thermodynamic properties. The
importance of each of the j-th conformers can be estimated by its
contribution, χj, to the MS-QH partition function:

χj =
wjQ

rot
j Q

QH
j eUj/kBT

∑

j wjQ
rot
j Q

QH
j eUj/kBT

=
wje
−Gj/kBT

∑

j wje
−Gj/kBT

(20)

where Gj is the rovibrational Gibbs free energy of the
j-th conformer:

Gj = Uj − kBT ln
[

Qrot
j Q

QH
j

]

(21)
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TABLE 2 | L-serine low-energy conformers sorted out according to their relative

harmonic Gibbs free energies at 0 K (in kcal/mol) calculated at the

B3LYP/6-31++G** level.

This work (φ1,φ2,φ3,φ4,φ5 ) 1Go
0 K Najbauer et al.

1 (178, 289, 181, 044, 278) 0.00 1

2 (355, 145, 293, 082, 092) 0.17 2

3 (356, 145, 064, 305, 092) 0.56 3

4 (180, 306, 294, 314, 217) 0.92 4

5 (183, 100, 177, 043, 283) 1.56 5

6 (001, 108, 181, 179, 149) 1.61 6

7 (183, 194, 296, 068, 308) 1.63 7

8 (357, 145, 175, 185, 091) 1.68 8

9 (003, 106, 182, 281, 148) 1.71 9

10 (180, 181, 058, 291, 297) 2.12 10

11 (181, 306, 297, 187, 312) 2.20

12 (358, 139, 176, 272, 097) 2.27

13 (184, 323, 299, 083, 317) 2.39 11

14 (178, 161, 066, 295, 190) 2.47

15 (179, 302, 072, 303, 294) 2.64 12

16 (179, 127, 290, 316, 206) 2.73

17 (184, 214, 292, 062, 085) 2.74

18 (181, 318, 075, 296, 208) 2.77

19 (179, 126, 292, 181, 309) 3.06 13

20 (006, 316, 065, 189, 224) 3.12

21 (177, 282, 182, 283, 039) 3.22

22 (177, 280, 179, 174, 045) 3.25

23 (358, 144, 170, 077, 090) 3.26

24 (177, 043, 288, 066, 310) 3.27

25 (184, 321, 174, 168, 192) 3.30

26 (180, 169, 175, 172, 178) 3.32

27 (177, 261, 051, 066, 287) 3.36

28 (179, 245, 058, 190, 286) 3.48

29 (177, 293, 074, 306, 041) 3.65

30 (182, 125, 067, 309, 058) 3.72

31 (007, 318, 061, 083, 221) 3.82

32 (183, 318, 176, 278, 187) 3.97 14

See the Supplementary Material for the labeling of the five dihedral angles,

(φ1,φ2,φ3,φ4,φ5 ). Last column labels the 14 lowest-energy conformers according to the

work of Najbauer et al. (2015).

We highlight that χj also represents the relative population of the
j-th conformer.

The conformers of each alcohol can be sorted out according to
their χj value in such a way that χj ≥ χj+1. Considering an error
of 10% as acceptable in the evaluation of the MS-QH partition
functions, it is possible to estimate the minimum number of
conformers needed to recover 90% of the partition function.
This number can be factorized into conformers obtained by
the systematic method and into conformers obtained by the
stochastic algorithm. The analysis has been performed in the
range of temperatures between 100 and 2,500 K and it can be
found in Table 3. For the specific case of n-heptanol the values
are plotted in Figure 3A.

At the low temperatures regime, the number of conformers
that contribute to the free energy is small, and most of them
belong to the pool of conformations obtained in a systematic

TABLE 3 | Minimum number of HL conformer needed to achieve
∑

χj ≥ 0.9 at

300, 1,000, and 2,500 K.

300 K 1,000 K 2,500 K

System J1 J2 J1 J2 J1 J2

n-propanol 5 0 5 0 5 0

n-butanol 10 0 12 0 13 0

n-pentanol 20 0 29 1 31 5

n-hexanol 40 0 75 12 84 20

n-heptanol 94 0 199 45 218 81

The minimum number is split into conformers obtained by the systematic (J1) and

stochastic (J2 ) algorithms, respectively.

FIGURE 3 | (A) Minimum number of n-heptanol conformers needed to

achieve
∑

j χj ≥ 0.9 (solid line). Conformers collected by the systematic

(dashed line) and stochastic (dash-dotted line) method are also indicated.

(B) Contribution to the MS-QH partition function of the conformers found

during the stochastic search of n-alcohols.

manner. In fact, the stochastic method is not needed for
n-propanol and n-butanol in the whole range of temperatures
studied here. For n-heptanol (Figure 3A), we notice that (i) the
importance of conformers obtained by the stochastic method is
negligible at temperatures smaller than 700 K, (ii) even at higher
temperatures, only 64% of the total number of conformers are
needed to recover 90% of the MS-QH partition function.
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It is obvious that the stochastic algorithm is less efficient than
the systematic procedure. Consequently, locating conformers
arising from the stochastic search requires higher computational
cost. Unfortunately, this search is compulsory for the largest
alcohols studied. The equilibrium structures retrieved by the
stochastic search account for 0, 7, 21, 31, and 37% of the
total for n-propanol to n-heptanol HL structures, respectively.
As expected (see Figure 3B), their contribution increases with
temperature, as well as with system size. However, if we
concede deviations up to 10% in the partition function, these
conformations are essential for both n-hexanol (from 1,100 K)
and n-heptanol (from 900 K), but not for the small n-alcohols.

In order to study the repercussion of the multiple wells
and torsional anharmonicity in the n-alcohol series, we have
employed the MsTor program (Zheng et al., 2013), which can
handle the calculation of MS-QH and MS-T(C) and partition
functions. The effect of multiple wells was analyzed through the
QMS−QH and Q1W−QH ratio, where 1W-QH refers to the quasi-
harmonic version of the absolute minimum. The evolution of
this ratio with temperature is plotted in Figure 4A. The chart
shows that the one-well approximation is unsatisfactory even
at very low temperatures. The impact of the system size is
also substantial; the single conformer approximation turned out
worst with longer carbon chains. For instance, at 1,000 K, this
ratio increases from 8 to 164 when moving from n-propanol
to n-heptanol.

We have also analyzed the variation of theQMS−T(C)
/QMS−QH

ratio with temperature (Figure 4B). Both partition functions
are multi-structural, so they include the whole set of
conformers. Therefore, the ratio shows the impact of the
torsional anharmonicity in the partition functions. Torsional
anharmonicity is slightly smaller than the unity at low
temperatures (between 0.8 and 1.0) and increases to about 1.4 for
n-hexanol and n-heptanol at 700 K. At higher temperatures the
ratio declines again. The reason for this behavior is that at high
temperatures the density of states of the hindered rotor partition
function diminish with increasing temperature, whereas the
density of states of the harmonic oscillator remains constant.
Therefore, it is crucial to incorporate torsional anharmonicity
in the harmonic partition function to retrieve the correct high
temperature behavior (Figure 4C). As a general rule, there
are two factors that require careful consideration: number of
conformations, and torsional anharmonicity. We subscribe to
the comment of S. J. Klippenstein, who in a recent review stated
(Klippenstein, 2017) “Historically, the uncertainties in theoretical
predictions have been dominated by uncertainties in the barrier
height predictions, but this is no longer the case. Uncertainties in
the partition function evaluations are now often of comparable or
even larger magnitude.”

5. CONCLUSIONS

In this work we have presented a combined algorithm able
to locate all torsional conformers of medium-size acyclic
molecules. The algorithm accepts two different strategies

FIGURE 4 | Alcohols partition function ratios plotted at several temperatures:

(A) QMS−QH
/Q1W−QH; (B) QMS−T(C)

/QMS−QH; and (C) QMS−T(C)
/Q1W−QH.

for the generation of trial structures: a systematic one,
based on the chemical knowledge, and a stochastic one.
The torsional PES is efficiently visited, avoiding previously
explored areas.

This algorithm was tested in the series of n-alcohols ranging
from n-propanol to n-heptanol, as well as in L-serine. We
have encountered that the number of conformers arising from
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the stochastic search is not negligible for n-hexanol and n-
heptanol. At the low temperatures regime the contribution
to the partition function of the conformers found during
the stochastic search is negligible. However, at medium/high
temperatures, their exclusion can lead to significant errors. In
combination with the MSTor program, the algorithm allows
an efficient computation of the MS-QH and MS-T(C) partition
functions. The results indicate that the one-well approximation
substantially underestimates the magnitude of the partition
function when compared with the multi-structural methods. In
the case of L-serine, the algorithm was able to locate additional
conformers to those described in recent works. In fact, within
a range of 4 kcal/mol, the algorithm was able to locate 32
conformers, unlike to the 14 conformers previously reported.
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Ferro-Costas, D., Martínez-Núńez, E., Rodríguez-Otero, J., Cabaleiro-Lago,

E., Estévez, C. M., Fernández, B., et al.(2018b). Influence of multiple

conformations and paths on rate constants and product branching ratios.

thermal decomposition of 1-propanol radicals. J. Phys. Chem. A 122, 4790–

4800. doi: 10.1021/acs.jpca.8b02949

Friedrich, N.-O., Flachsenberg, F., Meyder, A., Sommer, K., Kirchmair,

J., and Rarey, M. (2019). Conformator: a novel method for the

generation of conformer ensembles. J. Chem. Inf. Model. 59, 731–742.

doi: 10.1021/acs.jcim.8b00704

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A.,

Cheeseman, J. R., et al.(2004). Gaussian 09, Revision A.02. Wallingford, CT:

Gaussian, Inc.

Hehre, W. J., Ditchfield, R., and Pople, J. A. (1972). Self-consistent molecular

orbital methods. XII. Further extensions of Gaussian-type basis sets for use in

molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261.

doi: 10.1063/1.1677527

Klippenstein, S. J. (2017). From theoretical reaction dynamics to

chemical modeling of combustion. Proc. Combust. Inst. 36, 77–111.

doi: 10.1016/j.proci.2016.07.100

Kolossváry, I., and Guida, W. C. (1996). Low mode search. an efficient, automated

computational method for conformational analysis: application to cyclic and

acyclic alkanes and cyclic peptides. J. Am. Chem. Soc. 118, 5011–5019.

doi: 10.1021/ja952478m

Loferer, M. J., Kolossváry, I., and Aszódi, A. (2007). Analyzing the performance

of conformational search programs and compound databases. J. Mol. Graph.

Model. 25, 700–710. doi: 10.1016/j.jmgm.2006.05.008

Najbauer, E. E., Bazsó G., Apóstolo, R., Fausto, R., Biczysko, M., Barone,

V., et al.(2015). Identification of serine conformers by matrix-Isolation

IR sspectroscopy aided by near-infrared laser-induced conformational

change, 2D correlation analysis, and quantum mechanical anharmonic

computations. J. Phys. Chem. B 119, 10496–10510. doi: 10.1021/acs.jpcb.

5b05768

O’Boyle, N. M., Vandermeersch, T., Flynn, C. J., Maguire, A. R., and Hutchison,

G. R. (2011). Confab - systematic generation of diverse low-energy conformers.

J. Cheminformat. 3:8. doi: 10.1186/1758-2946-3-8

Simón-Carballido, L., Bao, J. L., Alves, T. V., Meana-Pañeda, R., Truhlar

T. G., and Fernández Ramos, A. (2017). Anharmonicity of coupled

torsions: the extended two-dimensional torsion method and its use to

assess more approximate methods. J. Chem. Theory Comput. 13, 3478–3492.

doi: 10.1021/acs.jctc.7b00451

Vaskivskyi, Y., Chernolevska, Y., Vasylieva, A., Pogorelov, V., Pratakyte, R.,

Stocka, J., et al.(2019). 1-Hexanol conformers in a nitrogen matrix: FTIR

study and high-level ab initio calculations J. Mol. Liq. 278, 356–362.

doi: 10.1016/j.molliq.2019.01.059

Watts, K. S., Dalal, P., Murphy, R. B., Sherman, W., Friesner, R. A., and Shelley,

J. C. (2010). Confgen: a conformational search method for efficient generation

Frontiers in Chemistry | www.frontiersin.org 9 January 2020 | Volume 8 | Article 16142

https://www.frontiersin.org/articles/10.3389/fchem.2020.00016/full#supplementary-material
https://doi.org/10.1021/ct100326h
https://doi.org/10.1002/jcc.21410
https://doi.org/10.1021/jp513027r
https://doi.org/10.1063/1.4798407
https://doi.org/10.1007/s00214-007-0328-0
https://doi.org/10.1016/j.cpc.2018.05.025
https://doi.org/10.1021/acs.jpca.8b02949
https://doi.org/10.1021/acs.jcim.8b00704
https://doi.org/10.1063/1.1677527
https://doi.org/10.1016/j.proci.2016.07.100
https://doi.org/10.1021/ja952478m
https://doi.org/10.1016/j.jmgm.2006.05.008
https://doi.org/10.1021/acs.jpcb.5b05768
https://doi.org/10.1186/1758-2946-3-8
https://doi.org/10.1021/acs.jctc.7b00451
https://doi.org/10.1016/j.molliq.2019.01.059
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Ferro-Costas and Fernández-Ramos Conformational Search Algorithm

of bioactive conformers. J. Chem. Inf. Model. 40, 534–546. doi: 10.1021/ci10

0015j

Yu, T., Zheng, J., and Truhlar, D. G. (2011). Multi-structural variational

transition state theory. Kinetics of the 1,4-hydrogen shift isomerization of

the pentyl radical with torsional anharmonicity. Chem. Sci. 2, 2199–2213.

doi: 10.1039/c1sc00225b

Zhao, Y., Lynch, B. J., and Truhlar, D. G. (2004). Hybrid meta density

functional theory methods for thermochemistry, thermochemical kinetics,

and noncovalent interactions: the MPW1B95 and MPWB1K models and

comparative assessments for hydrogen bonding and van derWaals interactions.

J. Phys. Chem A 108, 6908–6918. doi: 10.1021/jp048147q

Zheng, J., Meana-Pañeda, R., and Truhlar, D. G. (2013). Mstor version 2013: a new

version of the computer code for the multi-structural torsional anharmonicity,

now with a coupled torsional potential. Comput. Phys. Commun. 184, 2032–

2033. doi: 10.1016/j.cpc.2013.03.011

Zheng, J., Mielke, S. L., Clarkson, K. L., and Truhlar, D. G. (2012).Mstor: a program

for calculating partition functions, free energies, enthalpies, entropies, and

heat capacities of complex molecules including torsional anharmonicity.

Comput. Phys. Commun. 183, 1803–1812. doi: 10.1016/j.cpc.2012.

03.007

Zheng, J., and Truhlar, D. G. (2013). Quantum thermochemistry: multistructural

method with torsional anharmonicity based on a coupled torsional

potential. J. Chem. Theory Comput. 9, 1356–1367. doi: 10.1021/ct3

010722

Zheng, J., Yu, T., Papajak, E., Alecu, I. M., Mielke, S. L., and Truhlar,

D. G. (2011a). Practical methods for including torsional anharmonicity in

thermochemical calculations on complex molecules: the internal-coordinate

multi-structural approximation. Phys. Chem. Chem. Phys. 13, 10885–10907.

doi: 10.1039/c0cp02644a

Zheng, J., Yu, T., and Truhlar, D. G. (2011b). Multi-structural thermodynamics of

C-H bond dissociation in hexane and isohexane yielding seven isomeric hexyl

radicals. Phys. Chem. Chem. Phys. 13, 19318–19324. doi: 10.1039/c1cp21829h

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Ferro-Costas and Fernández-Ramos. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Chemistry | www.frontiersin.org 10 January 2020 | Volume 8 | Article 16143

https://doi.org/10.1021/ci100015j
https://doi.org/10.1039/c1sc00225b
https://doi.org/10.1021/jp048147q
https://doi.org/10.1016/j.cpc.2013.03.011
https://doi.org/10.1016/j.cpc.2012.03.007
https://doi.org/10.1021/ct3010722
https://doi.org/10.1039/c0cp02644a
https://doi.org/10.1039/c1cp21829h
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: info@frontiersin.org  |  +41 21 510 17 00 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover
	Frontiers eBook Copyright Statement
	Application of Optimization Algorithms in Chemistry
	Table of Contents
	Editorial: Application of Optimization Algorithms in Chemistry
	Author Contributions
	Funding
	Acknowledgments
	References

	Modified Particle Swarm Optimization Algorithms for the Generation of Stable Structures of Carbon Clusters, Cn (n = 3–6, 10)
	Introduction
	Currently Proposed and Implemented PSO Technique
	A Comparative Account of the Current PSO Method with Other Existing Approaches
	Comparison of Performances of PSO and GA
	Comparison of Performances of PSO and SA
	Comparison With Basin Hopping

	Algorithm and Computational Details
	Parallel Implementation
	Computational Setup
	Results and Discussion
	Conclusion
	Data Availability
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Augmenting Basin-Hopping With Techniques From Unsupervised Machine Learning: Applications in Spectroscopy and Ion Mobility
	Introduction
	Augmenting the BH Algorithm
	Assessing Geometric Similarity
	Interpolating Intermediate Geometries

	Application of BH Search Results
	Case Study 1: The IR Spectrum of the Protonated Serine Dimer
	Case Study 2: Dynamic Collision Cross Section of Protonated Alanine Tripeptide

	Summary
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Specific Reaction Parameter Multigrid POTFIT (SRP-MGPF): Automatic Generation of Sum-of-Products Form Potential Energy Surfaces for Quantum Dynamical Calculations
	1. Introduction
	2. Theory and Computational Details
	2.1. Global Optimization of Semi-empirical Hamiltonians Parameters
	2.2. Automated Generation of the Set of Reference Points
	2.3. Generation of the SRP-MGPF Potential Energy Surface
	2.4. Calculation of Vibrational Properties: Eigenenergies and Eigenstates

	3. Results and Discussion
	3.1. Computation of the SRP-MGPF PES for the cis-trans Isomerization Region in the HONO System (6D)
	3.1.1. Classical Molecular Dynamics on the SRP-PES

	3.2. Full Quantum Analysis of the Vibrational Properties of the SRP-PES for the cis-trans HONO System (6D)
	3.2.1. MGPF Tensor Decomposition of the HONO 6D PES
	3.2.2. MCTDH Quantum Molecular Dynamics on the SRP-MGPF


	4. Conclusions and Future Prospects
	Data Availability
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	The Structure of Adamantane Clusters: Atomistic vs. Coarse-Grained Predictions From Global Optimization
	1. Introduction
	2. Potential Energy Surfaces
	2.1. All-Atom Model
	2.2. Comparison With Electronic Structure Calculations
	2.3. Coarse-Grained Model

	3. Global Optimization
	3.1. Survey by Basin-Hopping
	3.2. Structural Indicators

	4. Results
	4.1. Energetic Stability
	4.2. Main Structural Motifs
	4.3. Structural Analysis

	5. Concluding Remarks
	Data Availability
	Author Contributions
	Funding
	Supplementary Material
	References

	Hydrated Sodium Ion Clusters [Na+(H2O)n (n = 1–6)]: An ab initio Study on Structures and Non-covalent Interaction
	Introduction
	Methods
	Results and Discussion Structures
	Charge Analysis
	Vibrational Spectra
	Conclusion
	Data Availability
	Author Contributions
	Funding
	Supplementary Material
	References

	A Global Optimizer for Nanoclusters
	1. Introduction
	2. Theoretical Approach
	2.1. Cluster Building and Optimization
	2.2. Properties of Clusters
	2.2.1. Homometallic Clusters
	2.2.1.1. Relative energy (RE/eV):
	2.2.1.2. Singlet triplet energy difference (ΔEST/eV):
	2.2.1.3. Binding energy per atom (BE/eV):
	2.2.1.4. Second-order energy difference (δ2 E(n), SOD/eV):

	2.2.2. Energy Parameters for Binary and Ternary Nanoalloys
	2.2.2.1. Binding energy per atom (BE/eV):
	2.2.2.2. Mixing energy (ME/eV):



	3. Computational Details
	4. Results and Discussion
	4.1. Homometallic Nanoclusters
	4.1.1. Palladium
	4.1.2. Gold
	4.1.3. Platinum
	4.1.4. Aluminum
	4.1.5. General Features

	4.2. Binary Clusters
	4.2.1. Ruthenium-Platinum Binary Clusters
	4.2.2. Platinum-Gold Binary Clusters

	4.3. Ternary Aggregate

	5. Conclusions
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	A New Genetic Algorithm Approach Applied to Atomic and Molecular Cluster Studies
	1. Introduction
	2. Related Work
	3. Methodology
	3.1. Genetic Algorithm Procedure
	3.2. Initialization
	3.3. Selection and Stop Condition
	3.4. Management
	3.5. Operators
	3.6. Test Methodology

	4. Results and Discussion
	5. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	Deep Learning for Deep Chemistry: Optimizing the Prediction of Chemical Patterns
	Introduction
	Co-occurring Machine-Learning Contributions in Chemical Sciences

	Machine Learning For Optimization: Challenges and Opportunities
	Signs of Controversy
	Deep Learning, Deep Chemistry

	Cutting-Edge Applications
	Improving Computational and Quantum Chemistry
	Planning and Predicting Reactions and Routes
	Supporting Analytical Chemistry and Catalysis

	Concluding Remarks
	Author Contributions
	Funding
	References

	A Combined Systematic-Stochastic Algorithm for the Conformational Search in Flexible Acyclic Molecules
	1. Introduction
	2. Description of The Algorithm
	2.1. The Tests
	2.2. Systematic Search
	2.3. Stochastic Search
	2.4. Electronic Structure Calculations

	3. Multi-Structural Partition Functions
	4. Results and Discussion
	4.1. Efficiency of the Algorithm
	4.2. Benchmarking
	4.3. Multiple Wells and Torsional Anharmonicity 

	5. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Back Cover



