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Editorial on the Research Topic

Bioinformatics Analysis of Single Cell Sequencing Data and Applications in Precision Medicine

Next-generation sequencing (NGS) technology has been successfully applied in disease diagnostics,
oncological immunotherapy, and drug repurposing, especially for precision medicine where
optimized medication is tailored to individual patients. Recently, the development of single cell
techniques makes it possible to examine gene expression and mutation at individual cell resolution,
which provides an unprecedented opportunity to study cell development and differentiation, and
reveal cell-to-cell heterogeneity during disease development, treatment, and drug response for
individual patients. With the exponential increase of single cell sequencing data, it is critical to
develop appropriate bioinformatics and machine learning tools to mine the rules behind them.
However, due to the technical barriers in single cell sequencing and the noisy nature of raw
sequencing data, this task is challenging especially in the context of disease diagnosis and
drug development.

To promote the translation and efficient usage of single cell sequencing data to precision
medicine, it is necessary to develop new analysis tools for analyzing and integrating multi-level
single cell data including DNA, RNA, protein, and so on, comparing existing methods and results
derived from different studies, and enhancing disease diagnostics and drug development. For
example, the quality control, normalization, differential gene calling, and clustering methods are
quite different between single cell sequencing and traditional bulk cell sequencing. Thus, it is critical
to develop a best practice specifically for dealing with single cell sequencing data. For disease
treatment, it is also important to identify disease driver genes common to all cell types as well as
those specific to a particular cell type or subgroup as revealed by single cell techniques, based on
existing or novel network and machine learning-based methods. Finally, more translational work
should be done to bridge the bioinformatics analyses and clinical applications for single
cell researchers.

To provide a platform bridging single cell analysis and translational studies, we organized this
special issue, in which 11 manuscripts have been accepted for publication. Firstly, Zen and Dai
presented a comprehensive review on scRNA-seq associated biological experiments as well as
computational methods for evaluating disease heterogeneity. They described the early impact of
such technologies as well as a variety of common methods applicable to upstream and downstream
processes. Upstream processes include several computational methods related to the detection and
removal of technical noise given commonly assumed statistical distributions. In addition, the
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authors overviewed the recent adoption of methods to combat
the statistical effects of batched experiments and zero-inflated
data. Downstream processes include methods to integrate
transcriptomic information with several other types of data
such as epigenetic or spatial. They also introduced several
clustering and pseudotemporal ordering methods. Finally, the
authors conducted a small study comparing a handful of
clustering and pseudotemporal analysis methods on four
marginally related datasets due to their significance to
disease systems.

Z. Wang et al. introduced a newly built database, SCDevDB,
which provides the analysis results of single-cell gene expression
profiles in different human developmental processes. This
database mainly contains the gene expression profiles across 35
development stages as well as the differential gene analysis for 24
developmental pathways.

The manuscript by Finnegan et al. utilized single-cell RNA-seq
data from 22,338 human foreskin keratinocytes to study
transcription factor networks during the keratinocyte transition
from the basal to the differentiated state. Their analysis uncovered
novel players and novel roles of transcription factors in the
intricate orchestration of keratinocyte differentiation and shed
lights in elucidating disease and cancer processes.

Wu et al. designed a framework for evaluating 14 commonly
used gene expression normalization methods, achieving consistency
in the evaluation results using both bulk RNA-seq and scRNA-seq
data. This framework was implemented as R package for researchers
to choose the best normalization method.

X. Wang et al. identified 91 ethylene-responsive factors
(ERFs) in F. vesca, based on which they provided evolutionary
analysis, expansion analysis and expression analysis, especially
for the influences of tandem duplication mechanism on
expansion of ERF gene family.

Yin et al. focused on identification of novel breast cancer
predisposition genes, which is of great significance in
understanding the pathogenesis of breast cancer. The authors
reanalyzed published whole exon sequencing data to screen
susceptible genes, followed with experimental and functional
validation. The most striking finding in the article is the
discovery of NCK1 as a novel breast cancer gene and the
authors successfully correlated its expression and function
with carcinogenesis.

Bope et al. provides a comprehensive review of genomic
resources that have been established with respect to African
individuals and their genomic data. This review presents an
interesting perspective, and road map concerning the
developments and studies that are needed in order to
complement and promote efforts related to implementing
Clinical Genomics in Africa.

Mercatelli et al. conducted a pan-cancer analysis to
investigate the predictive power of gene expression on somatic
Frontiers in Genetics | www.frontiersin.org 25
mutations and copy number variations. They showed that
genomic alterations could be modeled by gene expression
across several human cancers using machine learning
algorithms, and single-cell sequencing data can increase the
performance of the model.

Chen et al. investigated the gene expression profiles of
patient-derived tumor xenograft (PDX) models originated
from eight tissues using machine learning algorithms, and
showed that the specificity of primary tumor site was preserved
in PDX models.

Cheng et al. provided a comprehensive review of recently
technologies and literature of human microbiome. Firstly, the
technologies producing the microbiome big data were reviewed.
Secondly, the connections of the microbiota with different host
organs were discussed. After that, the association of microbiota
with the clinical medicine was discussed, with a special focus on a
few major microbiota-associated diseases. Lastly, the future
research trends were proposed.

Liu et al. conducted an integrated bioinformatics analysis on
the public epithelial ovarian cancer (EOC) data collected from
GEO; they identified potential biomarkers for evaluating EOC
prognosis and bioactivate compounds for EOC treatment. Their
study provides an example of bioinformatics analysis in
promoting cancer research.
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Data normalization is a crucial step in the gene expression analysis as it ensures the
validity of its downstream analyses. Although many metrics have been designed to
evaluate the existing normalization methods, different metrics or different datasets by
the same metric yield inconsistent results, particularly for the single-cell RNA sequencing
(scRNA-seq) data. The worst situations could be that one method evaluated as the
best by one metric is evaluated as the poorest by another metric, or one method
evaluated as the best using one dataset is evaluated as the poorest using another
dataset. Here raises an open question: principles need to be established to guide the
evaluation of normalization methods. In this study, we propose a principle that one
normalization method evaluated as the best by one metric should also be evaluated
as the best by another metric (the consistency of metrics) and one method evaluated
as the best using scRNA-seq data should also be evaluated as the best using bulk
RNA-seq data or microarray data (the consistency of datasets). Then, we designed a
new metric named Area Under normalized CV threshold Curve (AUCVC) and applied it
with another metric mSCC to evaluate 14 commonly used normalization methods using
both scRNA-seq data and bulk RNA-seq data, satisfying the consistency of metrics and
the consistency of datasets. Our findings paved the way to guide future studies in the
normalization of gene expression data with its evaluation. The raw gene expression data,
normalization methods, and evaluation metrics used in this study have been included
in an R package named NormExpression. NormExpression provides a framework and
a fast and simple way for researchers to select the best method for the normalization
of their gene expression data based on the evaluation of different methods (particularly
some data-driven methods or their own methods) in the principle of the consistency of
metrics and the consistency of datasets.

Keywords: gene expression, normalization, evaluation, R package, scRNA-seq
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INTRODUCTION

Global gene expression analysis provides quantitative
information about the population of RNA species in cells
and tissues (Lovén et al., 2012). High-throughput technologies
to measure global gene expression levels started with Serial
Analysis of Gene Expression (SAGE) and are widely used with
microarray and RNA-seq (Gao et al., 2014). Recently, single-cell
RNA sequencing (scRNA-seq) has been used to simultaneously
measure the expression levels of genes from a single cell,
providing a higher resolution of cellular differences than what
can be achieved by bulk RNA-seq, which can only produce
an expression value for each gene by averaging its expression
levels across a large population of cells (Gao, 2018). Raw gene
expression data from these high-throughput technologies must
be normalized to remove technical variation so that meaningful
biological comparisons can be made. Data normalization is a
crucial step in the gene expression analysis as it ensures the
validity of its downstream analyses (Lovén et al., 2012). The
differential expression analysis or the co-expression analysis
using the same dataset could produce significant different
genes using different data normalization methods. Although
the significance of data normalization in the gene expression
analysis has been demonstrated (Bullard et al., 2010), how to
select a successful normalization method is still an open question,
particularly for scRNA-seq data.

Basically, two classes of methods are available to normalize
gene expression data using global normalization factors. They
are the control-based normalization and the average-bulk
normalization. The former class of methods assumes the total
expression level summed over a pre-specified group of genes
is approximately the same across all the samples. The latter
class of methods assumes most genes are not significantly
Differentially Expressed (DE) across all the samples. The control-
based normalization often uses RNA from a group of internal
control genes (e.g., housekeeping genes) or external spike-
in RNA [e.g., ERCC RNA (Jiang et al., 2011)], while the
average-bulk normalization is more commonly used for their
universality. Five average-bulk normalization methods designed
to normalize bulk RNA-seq data are library size, median
of the ratios of observed counts that is also referred to as
DESeq (Anders and Huber, 2010), Relative Log Expression
(RLE), upper quartile (UQ), and Trimmed Mean of M values
(TMM) (Robinson et al., 2010). Recently, three new methods
were introduced as Total Ubiquitous (TU), Network Centrality
Scaling (NCS), and Evolution Strategy (ES) with the best
performance among 15 tested methods (Glusman et al., 2013).
To improve scRNA-seq data normalization, Lun et al. (2016)
introduced a new method using the pooled size factors (Pooled)
and claimed that their method outperformed the library size
method, DESeq and TMM. Bacher et al. (2017) addressed
that using existing normalization methods on scRNA-seq data
introduced artifacts that bias downstream analyses. Then,
another new method SCnorm was introduced and claimed
to outperform MR, Transcripts Per Million (TPM), scran,
SCDE, and BASiCS using both simulated and case study data
(Bacher et al., 2017).

Although many metrics have been designed to evaluate
the relative success of these methods, different metrics or
different datasets yield inconsistent evaluation results. Here raises
another open question: principles need to be established to
guide the evaluation of normalization methods. Glusman et al.
(2013) proposed that a successful normalization method should
simultaneously maximize the number of uniform genes and
minimize the correlation between the expression profiles of
gene pairs. Based on this criterion, they presented two novel
and mutually independent metrics to evaluate 15 normalization
methods and achieved consistent results using bulk RNA-seq data
(Glusman et al., 2013). In this study, we designed a new metric
named Area Under normalized CV threshold Curve (AUCVC)
and applied it with another metric mSCC (see section “Materials
and Methods”) to evaluate 14 commonly used normalization
methods using both scRNA-seq and bulk RNA-seq data from
the same library construction protocol. The evaluation results
by both AUCVC and mSCC achieved consistency. In addition,
the evaluation results using both scRNA-seq and bulk RNA-
seq data also achieved consistency. So, we propose a principle
that one normalization method evaluated as the best by one
metric should also be evaluated as the best by another metric
(the consistency of metrics) and one method evaluated as the
best using one dataset should also be evaluated as the best
using another dataset (the consistency of datasets). The datasets
using different protocols (RNA-seq, scRNA-seq, or microarray)
need to be used to validate the consistency, which is beyond
the scope of this study. As many new normalization methods
are being developed, researchers need a fast and simple way
to evaluate different methods, particularly some data-driven
methods or their own methods, rather than obtain information
from published evaluation results, which could have biases or
mistakes, e.g., misunderstanding of RLE, UQ and TMM (see
section “Results”). To satisfy this demand, we developed an R
package NormExpression including the raw gene expression data,
normalization methods and evaluation metrics used in this study.
This tool provides a framework for researchers to select the
best method for the normalization of their gene expression data
based on the evaluation of different methods in the principle
proposed in this study.

RESULTS

Basic Concepts
In total, 14 normalization methods have been evaluated in this
study. They are Housekeeping Genes (HG7), External RNA
Control Consortium (ERCC), Total Read Number (TN), Total
Read Count (TC), Cellular RNA (CR), Nuclear RNA (NR),
median of the ratios of observed counts (DESeq), Relative Log
Expression (RLE), UQ, Trimmed Mean of M values (TMM),
Total Ubiquitous (TU), Network Centrality Scaling (NCS),
Evolution Strategy (ES), and SCnorm (see section “Materials
and Methods”). Currently, most methods with a few exceptions
(e.g., SCnorm) are used to normalize a raw gene expression
matrix (n samples by m genes) by multiplying a global
normalization factor to each of its columns, yielding a normalized
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gene expression matrix (Figure 1A). In different methods,
the definitions of normalization factor, scaling factor and size
factor are inconsistent and need to be explained here. Both the
normalization factor defined in the package NormExpression and
the scaling factor defined in a previous study (Glusman et al.,
2013) are the global normalization factors (Figure 1A). As the
library size methods, TN, TC, CR, or NR can be used to estimate a
library size, which represents the amount of total RNA in a cDNA
library from a sample. HG7, ERCC, DESeq, TU, NCS, and ES
produce a pseudo library size (in Figure 1B), which represents
the relative amount of total RNA. Library size is also named
as size factor in the Bioconductor package DESeq (Anders and
Huber, 2010). In general, HG7, ERCC, TN, TC, CR, NR, DESeq,
TU, NCS, and ES produce the global normalization factor by

FIGURE 1 | Basic concepts. (A) A raw gene expression matrix can be
transformed into a normalized gene expression matrix by the multiplication of
a global factor fj to each column. Each column represents the expression
levels of all genes from a sample and each row represents the expression
levels of a gene across all samples. (B) As the library size methods, TN, TC,
CR, or NR can be used to estimate a library size Nj. The library size methods
(TN, TC, CR, and NR) produce the global normalization factor fj by the
reciprocal of library size Nj. HG7, ERCC, DESeq, TU, NCS, and ES produce a
pseudo library size Nj

∗, which represents the relative amount of total RNA.
RLE, UQ, and TMM produce a normalization factor sj to normalize the library
size Nj and the global normalization factor for data normalization should be
106/Njsj. Q75 represents the third quartile Q3. For all methods, log represents
the natural logarithm.

the reciprocal of library size or pseudo library size. RLE, UQ,
and TMM in the Bioconductor package edgeR (Robinson et al.,
2010) produce normalization factors to normalize the library
sizes and the global normalization factors for data normalization
should be calculated by one million multiplying the reciprocal of
normalized library sizes (Figure 1B). However, the normalization
factors produced by RLE, UQ, and TMM have been wrongly used
as the global normalization factors in previous studies (Li et al.,
2015). The NormExpression package includes such modifications
as below to integrate the above normalization methods. DESeq,
RLE, UQ, and TMM have been modified to ignore zero values
to be fit for the scRNA-seq data processing. As NR is the best
among the library size methods (TN, TC, CR, and NR), RLE, UQ,
and TMM use NR to estimate library sizes. As HG7 and ERCC
produce pseudo library sizes (Figure 1B) as TN, TC, CR, and
NR, their normalization factors are amplified by one million for a
uniform representation (Figure 1B). The resulting normalization
factors of all 14 methods except SCnorm need to be further
normalized by their geometric mean values (Figure 1B). After
further normalization, RLE is identical to DESeq and presented
as DESeq (RLE) or DESeq∗ in this study. It has been confirmed
that all the modifications do not change the evaluation results.

Evaluation of 14 Normalization Methods
In the previous study, Glusman et al. (2013) had quantified the
success of normalization methods by the number of uniform
genes (see section “Materials and Methods”) and used the
Coefficient of Variation (CV) cutoff 0.25 to determine the number
of uniform genes for each method. This metric was designed
based on the theory that the relative values among different
normalization methods are quite stable, although the absolute
number of uniform genes depend on the cutoff value. However,
it is almost impossible to determine a CV cutoff for scRNA-
seq data as CV in scRNA-seq data has a much larger dynamic
range than in bulk RNA-seq data. Inspired by Area Under the
receiver operating characteristic Curve (AUC) (Gao et al., 2009),
we designed a new metric named Area Under normalized CV
threshold Curve (AUCVC) to evaluate normalization methods.
Using one scRNA-seq dataset scRNA663 and one bulk RNA-
seq dataset bkRNA18 (see section “Materials and Methods”),
we applied AUCVC and another metric mSCC (see section
“Materials and Methods”) to evaluate 14 normalization methods
and then we compared the evaluation results by mSCC with
those by AUCVC to assess the consistency of datasets and the
consistency of metrics.

The non-zero ratio cutoffs (see section “Materials and
Methods”) from 0.2 to 0.9 for scRNA663 and from 0.7 to 1
for bkRNA18 were used to produce AUCVCs of all methods
(Figures 2A,B). Among 14 methods, TU, NCS, and ES are
parameter-dependent approaches, which use the occurrence
rate, upper and lower cutoffs as three parameters (see section
“Materials and Methods”). For each non-zero ratio cutoff, TU
used the maximum AUCVC to determine the optimal ones
by testing all possible combinations of three parameters. In
addition, the calculation only considered each combination of
three parameters which produced more than 100 ubiquitous
genes (see section “Materials and Methods”) for scRNA663 and
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FIGURE 2 | Consistency of metrics and consistency of datasets. The non-zero ratio cutoffs from 0.2 to 0.9 for scRNA663 and from 0.7 to 1 for bkRNA18 were used
to produce AUCVCs and mSCCs. All the normalization methods were classified into three groups based on their AUCVC values sorted in descending order (from the
best to the poorest) using one scRNA-seq dataset scRNA663 (A) and one bulk RNA-seq dataset bkRNA18 (B). These methods were also classified into three
groups based on their mSCC values sorted in ascending order (from the best to the poorest) using one scRNA-seq dataset scRNA663 (C) and one bulk RNA-seq
dataset bkRNA18 (D). GAPDH is not applicable to scRNA-seq data due to zero counts of GAPDH present in many samples. All the numbers are accurate to two
decimal places, the marginal differences are reflected by their orders. The raw gene expression data (None) was also used to produce AUCVCs and mSCCs for
comparison. After further normalization, RLE is identical to DESeq and presented as DESeq (RLE) or DESeq∗ in this study.

more than 1,000 for bkRNA18. The occurrence rate cutoff was
tested from 0.2 to 0.6 for scRNA663 at interval of 0.1 and set to
1 for bkRNA18. The lower cutoff was tested from 5 to 40% and
the upper cutoff was tested from 60 to 95% at interval of 5%. For
each non-zero ratio cutoff, NCS and ES used the occurrence rate,
lower and upper cutoffs determined by TU, when TU achieved
the maximum AUCVC.

The evaluation results using both scRNA663 and bkRNA18
showed consistency (the consistency of datasets) that all methods
except HG7, TN and SCnorm were classified into three groups,
based on their AUCVC values sorted in descending order
(Figures 2A,B). The first group including TU, NCS and ES
achieved the best performances. TU, NCS and ES, which had only
been evaluated using bulk RNA-seq data in the previous study
(Glusman et al., 2013), were evaluated by our new metric AUCVC
as the best normalization methods using both scRNA-seq and
bulk RNA-seq data. The second group including ERCC, TC, CR,
NR, DESeq, RLE, UQ, and TMM achieved medial performances
using both scRNA663 and bkRNA18. In the second group, ERCC,
TC, CR, and NR outperformed DESeq, RLE, UQ, and TMM
using scRNA663 but underperformed them using bkRNA18. The
third group achieved the poorest performances, including TN,
SCnorm and None (the raw gene expression data) for scRNA663
(Figure 2A), and HG7, GAPDH and None for bkRNA18
(Figure 2B). The evaluation results of HG7, TN, and SCnorm did
not achieve the consistency using scRNA663 and bkRNA18. HG7
and GAPDH achieved the poorest performances using bkRNA18,
suggesting that a predefined set of housekeeping genes may not be
appropriate guides for the normalization of bulk RNA-seq data.
However, it could be coincidental that HG7 was classified into
the first group using scRNA663. TN underperformed the second
group of methods using scRNA663 but outperformed it using
bkRNA18. SCnorm was designed to improve the normalization
of scRNA-seq data but it performed poorer using scRNA-seq data
than bulk RNA-seq data. Particularly, SCnorm ranked the first
in the best group by its AUCVC to normalize bkRNA18 when
the non-zero ratio cutoffs were set to 0.7 or 0.8 (Figure 2B),

but ranked the last in the poorest group to normalize scRNA663
when the non-zero ratio cutoffs were set to 0.2–0.4 (Figure 2A).
SCnorm claimed that it is not designed to process datasets
containing more than 80% zero counts. However, scRNA663 was
build using the Smart-seq2 scRNA-seq protocol, which contained
the least zero counts among current scRNA-seq protocols.

The evaluation results (Figures 2C,D) by mSCC were
consistent with those by AUCVC (the consistency of
metrics). This proved that a successful normalization method
simultaneously maximizes the number of uniform genes and
minimizes the correlation between the expression profiles of gene
pairs. We selected the best evaluation results using scRNA-seq
data (the none-zero ratio cutoff = 0.2) and bulk RNA-seq data
(the none-zero ratio cutoff = 1) in Figure 2 for visualization
using NormExpression (Figure 3). Then, we calculated the
Spearman’s rank Correlation Coefficients (SCCs) between all
the normalization factors except that using SCnorm. Using
1-SCCs as distances, hierarchical clustering of 13 normalization
factors showed equivalent classification into the same groups
(Figures 3E,F) as those by AUCVC and by mSCC (Figure 2).
From Figure 3, it can be seen that while all normalization
methods except HG7, GAPDH and None performed without
much differences using bulk RNA-seq data (Figures 3B,D),
they had significant differences in the performances using
scRNA-seq data (Figures 3A,C). These differences suggest that
although scRNA-seq provides a higher resolution of cellular
differences, it is more challenging to select the best method
for the normalization of scRNA-seq data. In addition, these
differences provided an explanation as to why scRNA-seq data
and bulk RNA-seq data from the same samples resulted in
different results in many previous studies. From Figure 3, it
also can be seen that the best mSCC (TU-normalized) using
scRNA-seq data still had a certain distance from 0 (Figure 3C),
while the best mSCC (TU-normalized) using bulk RNA-seq data
was close to 0 (Figure 3D). Therefore, further studies need to be
conducted to investigate whether we can obtain the best mSCC
using scRNA-seq data close to 0 as that using bulk RNA-seq
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FIGURE 3 | Visualization of evaluation results. A normalization method with a higher AUCVC produced a lower median of Spearman’s rank Correlation Coefficient
(mSCC) between the normalized expression profiles of ubiquitous gene pairs using both scRNA-seq (A,C) and bulk RNA-seq data (B,D). Using 1-SCCs as
distances, hierarchical clustering of 13 normalization factors showed equivalent classification into the same groups (E,F) as those by AUCVC and by mSCC
(Figure 2). SCnorm was not applicable to be used to calculate SCCs, as it produced a factor matrix rather than a factor vector as 13 other methods. GAPDH is not
applicable to scRNA-seq data due to zero counts of GAPDH present in many samples. The raw gene expression data (None) was also used to produce AUCVCs
and mSCCs for comparison. After further normalization, RLE is identical to DESeq and presented as DESeq (RLE) or DESeq∗ in this study.

data. If we cannot, what is the reason? And is it the nature of
scRNA-seq data that result in this bias from 0?

To further test our principle, we searched other performance
metrics in the published papers. The Bioconductor package
scone (Cole et al., 2018) provides eight metrics to evaluate the
normalization methods using scRNA-seq data. Among eight
metrics, three are based on clustering properties and three
other metrics are associated with control genes or QC metrics.
Only two metrics based on global distributional properties
can be used as general metrics. These two metrics are named
as mean squared median relative log-expression (RLE_MED)
and variance of inter-quartile range (IQR) of RLE (RLE_IQR).
The evaluation results (Supplementary File 1) of three groups
(particularly TU and ES) by RLE_MED were consistent with
those by mSCC and by AUCVC using both scRNA-seq and bulk
RNA-seq data. However, the evaluation results (Supplementary
File 1) by RLE_IQR were not consistent with those by mSCC
and by AUCVC. This suggests that mSCC, AUCVC, RLE_MED
can be used together for method evaluation to test the
consistency of metrics.

Implementation and Availability
The raw gene expression data, normalization methods
(except NCS, ES and SCnorm) and evaluation metrics
(AUCVC and mSCC) have been included in the R package
NormExpression. The data process in this study is provided in
detail (Supplementary File 1). All the methods except NCS and

ES have been implemented in R programs for their running on
R platforms of any version. DESeq uses an R program from the
Bioconductor package DESeq (Anders and Huber, 2010), which
has been modified to process scRNA-seq data. RLE, UQ and
TMM use R programs from the Bioconductor package edgeR
(Robinson et al., 2010), which have been modified to process
scRNA-seq data. NCS and ES had been implemented in Perl
programs with multiple dependencies on Perl modules (Glusman
et al., 2013), which have been modified into stand-alone programs
for Linux systems (Supplementary File 2). SCnorm uses the
Bioconductor package SCnorm (Bacher et al., 2017).

NormExpression can be used in three modes: normalization
without evaluation, normalization with simple evaluation or
normalization with complete evaluation. In the first mode, TU is
recommended for the normalization of gene expression data, as
it has been already ranked as the best method for both scRNA-seq
and bulk RNA-seq data. In the second mode, AUCVC is used to
select the best method from 10 normalization methods, which are
HG7, ERCC (if available), TN, TC, CR, NR, DESeq (RLE), UQ,
and TMM. TN, NCS, ES, and SCnorm are not used in the second
mode, as the evaluation results of TN and SCnorm cannot achieve
consistency, and NCS and ES have similar performances to TU
but are much more time consuming. In the third mode, AUCVC
and mSCC are used to select the best method from TU and at
least 10 normalization methods. The normalization with simple
evaluation determines the best method based on AUCVC values,
while the normalization with complete evaluation determines the

Frontiers in Genetics | www.frontiersin.org 5 April 2019 | Volume 10 | Article 40010

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00400 April 26, 2019 Time: 14:50 # 6

Wu et al. An R Package NormExpression

best method in the principle of the consistency of metrics and
the consistency of datasets. As a result of a complete evaluation,
the tables of AUCVC and mSCC (Figure 2) are required for the
method selection.

MATERIALS AND METHODS

Datasets
In a previous study (SRA: SRP113436), 831 single-cell samples
and 18 bulk samples had been sequenced using the Smart-
seq2 scRNA-seq protocol. In this study, we built a scRNA-seq
dataset including 663 single cells from colon tumor tissues and
10 single cells from distal tissues (>10 cm) as control. The
data of 166 single-cell samples were removed, as each of them
contained NR less than 100,000 reads. The data of two single-
cell samples were removed, as each of them contained simulated
ERCC RNA less than 0 reads. We also built a bulk RNA-seq
dataset including nine samples from colon tumor tissues and
nine samples from distal tissues. The cleaning and quality control
of both scRNA-seq and bulk RNA-seq data were performed
using the pipeline Fastq_clean (Zhang et al., 2014) that was
optimized to clean the raw reads from Illumina platforms. Using
the software STAR (Dobin et al., 2013) v2.5.2b, we aligned all
the cleaned scRNA-seq and bulk RNA-seq reads to the human
genome GRCh38/hg38 and quantified the expression levels of
57,992 annotated genes (57,955 nuclear and 37 mitochondrial).
Mitochondrial RNAs should have been, but were not discarded
to test the robustness of normalization methods. Non-polyA
RNAs and small RNAs (<200 bp) were not discarded either,
although the Smart-seq2 protocol theoretically had only captured
polyA RNAs. In addition, the expression levels of 92 ERCC RNAs
and the long non-coding RNA (lncRNA) MDL1 in the human
mitochondrial genome (Gao et al., 2017) were also quantified.
ERCC RNA had been spiked into 208 single-cell samples before
library construction; the expression levels of 92 ERCC RNAs
in other 455 single-cell samples and 18 bulk samples were
simulated by linear regression. Finally, the two datasets were
named scRNA663 (58085 × 663) and bkRNA18 (58085 × 18),
and used as raw gene expression data in this study. As these two
datasets were obtained by sequencing the libraries using the same
protocol and samples from the same group of patients, they had
great values to be used to evaluate normalization methods and
assess the consistency of datasets. Researchers can select the best
method for the normalization of their gene expression data or
evaluate different methods using the data of 57,955 nuclear genes.

Normalization Methods
The library size methods (TN, TC, CR, and NR) use the gene
expression level summed over total genes in a sample as the
library size to calculate the normalization factor. HG7, ERCC and
TU use the gene expression level summed over these pre-selected
genes in a sample as the pseudo library size (see section “Results”).
NR only counts reads which can be aligned to nuclear genomes,
while CR counts reads which can be aligned to both nuclear
and mitochondrial genomes. TC counts reads which can be
aligned to 92 ERCC RNAs, nuclear and mitochondrial genomes

(TC = CR + ERCC). TN uses the number of all reads which
can be aligned to 92 ERCC RNAs, nuclear and mitochondrial
genomes. The pre-selected genes used by HG7, ERCC and TU are
seven housekeeping genes, 92 ERCC RNAs and the ubiquitous
genes (described below), respectively. Seven genes (UBC, HMBS,
TBP, GAPDH, HPRT1, RPL13A, and ACTB) in HG7 had been
used to achieve the best evaluation result among those using
all possible combinations of tested housekeeping genes in the
previous study by Glusman et al. (2013). ERCC RNA is a set of
commonly used spike-in RNA consisting of 92 polyadenylated
transcripts with short 3′ polyA tails but without 5′ caps (Jiang
et al., 2011). A single housekeeping gene GAPDH was used for
comparison in the evaluation of normalization methods using
bulk RNA-seq data, but it was not applicable to scRNA-seq data
due to zero counts of GAPDH present in many samples. The raw
gene expression data (None) was also used to produce AUCVCs
and mSCCs for comparison.

Uniform Genes and Ubiquitous Genes
A gene is defined as uniform when the Coefficient of Variation
(CV, Formula 1) of its expression values across all samples is
not more than a cutoff (Glusman et al., 2013). To determine the
number of uniform genes using scRNA-seq data containing a
high frequency of zeros, NormExpression only considers genes
with non-zero ratios not less than a cutoff. The non-zero ratio of
one gene should be calculated as the number of its all non-zero
expression values divided by the number of total samples.

Ubiquitous genes are defined as the intersection of a trimmed
sets of all samples (Glusman et al., 2013). This trimmed set of
genes are selected for each sample by (1) excluding genes with
zero values, (2) sorting the non-zero genes by their expression
levels in that sample, and (3) removing the upper and lower ends
of the sample-specific expression distribution. Glusman et al.
(2013) determined the optimal parameters by testing all possible
combinations of lower and upper cutoffs at interval of 5% to
maximize the number of resulting uniform genes using one bulk
RNA-seq dataset. The size of a scRNA-seq dataset is usually very
large, which could result in a very small or even empty set of
ubiquitous genes, as the number of ubiquitous genes depends
on the sizes of datasets. To identify the ubiquitous genes using
scRNA-seq data, we defined a parameter named occurrence rate,
governing the minimal fraction of trimmed sets in which a gene
must appear to be considered ubiquitous. In NormExpression,
TU includes three parts. The first part determines the optimal
parameters by testing all possible combinations of occurrence
rate, lower and upper cutoffs to maximize AUCVC (described
below) instead of the number of resulting uniform genes. The
second part uses the optimal occurrence rate, upper and lower
cutoffs to obtain the ubiquitous genes. The third part uses
the ubiquitous genes to calculate the TU normalization factor.
NormExpression only use the raw gene expression data to
obtain the ubiquitous genes, which are used to calculate the TU
normalization factor and to evaluate all methods. In addition, the
same ubiquitous genes are used by NCS and ES to obtain the
NCS and ES normalization factors, respectively. These ubiquitous
genes are also used by TU, NCS and ES to produce their mSCCs
for method evaluation.
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AUCVC and mSCC
In the previous study, Glusman et al. (2013) designed two novel
and mutually independent metrics, which were the number of
uniform genes and Spearman’s rank Correlation Coefficients
(SCCs) between expression profiles of gene pairs. The basic
theory underlying these two evaluation metrics is that a successful
normalization method simultaneously maximizes the number
of uniform genes and minimizes the correlation between the
expression profiles of gene pairs. In this study, we designed a
new metric AUCVC instead of the number of uniform genes
and used the median of Spearman’s rank Correlation Coefficients
between the normalized expression profiles of ubiquitous gene
pairs (mSCC) instead of observation of SCC distributions
for method evaluation. On default settings, NormExpression
randomly selected 1,000,000 ubiquitous gene pairs to calculate
the mSCCs for method evaluation (Figures 3C,D).

AUCVC (Figures 3A,B) is created by plotting the number of
uniform genes (y-axis) at each normalized CV (Formula 2) cutoff
(x-axis). As a high or a low normalized CV cutoff produces more
false or less true uniform genes, it is reasonable to consider the
overall performance of each method at various cutoff settings
instead of that at one specific cutoff setting. In Formula 1 and
2, symbols have the same meanings as those in Figure 1 and n∗
does not count zero elements in each sample.
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√√√√ 1
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n∑
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Through linkage and candidate gene screening, many breast cancer (BC) predisposition
genes have been identified in the past 20 years. However, the majority of genetic risks
that contribute to familial BC remains undetermined. In this study, we revisited whole
exome sequencing datasets from non-BRCA1/2 familial BC patients, to search for
novel BC predisposition genes. Based on the infinite mutation model, we supposed that
rare non-silent variants that cooccurred between familial and TCGA-germline datasets,
might play a predisposition contributing role. In our analysis, we not only identified
novel potential pathogenic variants from known cancer predisposition genes, such
as MRE11, CTR9 but also identified novel candidate predisposition genes, such as
NCK1. According to the TCGA mRNA expression dataset of BC, NCK1 was significantly
upregulated in basal-like subtypes and downregulated in luminal subtypes. In vitro,
NCK1 mutants (D73H and R42Q) transfected MCF7 cell lines, which attributed to the
luminal subtype, were much more viable and invasive than the wild type. On the other
side, our results also showed that overall survival and disease-free survival of patients
with NCK1 variations might be dependent on the genomic context. In conclusion,
genetic heterogeneity exists among non-BRCA1/2 BC pedigrees and NCK1 could be a
novel BC predisposition gene.

Keywords: breast cancer, non-BRCA1/2, NCK1, predisposition gene, invasion

INTRODUCTION

Breast cancer (BC) is the most malignant cancer type, affecting women worldwide (30%) and is
the secondary cause of death in women (14%) (Siegel et al., 2018). Although most BC patients
are sporadic, about 10–15% of BC s show familial aggregation (Kiiski et al., 2014; Lynch et al.,
2015). High penetrance genes, such as BRCA1 and BRCA2, contribute about 20% to the etiology
of familial BC (Mavaddat et al., 2010; Rizzolo et al., 2011; Melchor and Benitez, 2013). While
linkage analyses failed to identify any compelling evident region of linkage in non-BRCA1/2 BC
pedigrees (Antoniou and Easton, 2006). According to candidate gene screening, other high or
moderate penetrance genes, such as TP53, PALB2, STK11, ATM, and CHEK2 have been identified
(Stratton and Rahman, 2008; Melchor and Benitez, 2013). With the application of Whole Exome
Sequencing (WES), several novel BC predisposition genes have been identified from BC pedigrees,
which further confirms that non-BRCA1/2 familial BC is highly heterogeneous.

An evaluation of potential predisposition roles of germline variants is challenging. First, to
distinguish disease-causative variants from the non-pathogenic ones during WES analysis usually
involves a series of filtering steps, including in silico prediction; however, such filtering steps
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might cause over-filtering or be misleading (Bamshad et al.,
2011). For instance, on one hand, in silico predictions might
not be sensitive enough to detect all deleterious or damaging
variants; on the other hand, the in silico predicted damaging
variants might not be clinically pathogenic (Rahman, 2014).
Second, to identify predisposition factors usually starts with an
inspection of familial aggregation datasets, followed by a case-
cohort confirmation (Kiiski et al., 2014); however, variants may
be misclassified as having a uncertain significance due to their
extreme rarity and heterogeneity. The efficiency of predisposition
gene identification cannot be promoted significantly by simply
increasing sample size. Third, incidental findings, which are not
related to the observed phenotype of the patient, also complicate
the analysis of the WES result (Kohane et al., 2006).

The American College of Medical Genetics and Genomics-
Association for Molecular Pathology (ACMG-AMP) based
guidelines have been widely used in variant classification
(Hampel et al., 2015). Recently, ACMG-AMP-based variant
classification rules have also been used in familial BC (Maxwell
et al., 2016) and pan-cancer datasets (Huang et al., 2018).
Of note, a co-segregation status of a germline variant is also
important for variant classification (Jarvik and Browning, 2016).
Pan-cancer studies have provided valuable sources to inspect
tumor initiation and progression (Weinstein et al., 2013). An
integrative analysis of germline and somatic variants could
help to decipher tumor progression (Kanchi et al., 2014). We
supposed that the co-occurrence between non-silent familial co-
segregation variants and TCGA derived germline datasets could
provide supporting evidence for a predisposition. Furthermore,
pan-cancer datasets would also provide additional clues and
evidence. Given that, we reanalyzed the WES datasets including
10 familial non-BRCA1/BRCA2 BC pedigrees (Gracia-Aznarez
et al., 2013; Hilbers et al., 2013), manually evaluated variants as
recommended (Hampel et al., 2015), and performed data mining
on pan-cancer datasets.

In our analysis, some recently published BC predisposition
genes, including MRE11 (Bartkova et al., 2008), CTR9 (Hanks
et al., 2014), were recalibrated in our results, but were missed
in the original publication. In addition, we identified novel
cancer predisposition genes, such as NCK1. NCK1 encodes
the cytoplasmic adaptor protein NCK1, which contains Src
homolog2 and 3 (SH2 and SH3) domains. As an adaptor,
NCK1 mediates multiple signals from receptors, including EGFR,
PDGFR, to downstream effectors and the overexpression of Nck
in the NIH 3T3 cell line showed oncogenic features (Li et al.,
1992). In mammalians, most Nck1 effectors are involved in
cytoskeletal dynamics (Li et al., 2001). For instance, Nck1 is
involved in actin cytoskeletal remodeling via the WASp/Arp2/3
complex, which in turn causes the polarization and directional
migration of the cell (Lapetina et al., 2009). Interestingly, the
mutation NCK1 (p.D73H) identified from the BC pedigree
(F2887) is located in an N-WASP activation motif (Okrut et al.,
2015). Therefore, we supposed that NCK1 (p.D73H) might
impact cell invasion. MCF7 cell lines, which are non-invasive,
transfected with NCK1 mutants and were much more viable and
invasive, in vitro. In conclusion, our results support that NCK1
could be a candidate cancer predisposition gene.

MATERIALS AND METHODS

Whole Exome Sequencing Datasets
In this study, we reanalyzed WES data of non-BRCA1/BRCA2 BC
pedigrees (Gracia-Aznarez et al., 2013; Hilbers et al., 2013). Ten
pedigrees with at least two independent patients applied to whole
exome sequencing were involved in this study. The raw data
of pedigrees (2887, 3311, RUL36, and RUL153) are available at
National Centre for Biotechnology Information (NCBI) Sequence
Read Archive (SRA) database (Project ID: PRJEB3235). The raw
data of pedigrees (NIJM6, NIJM8, RUL39, RUL70, RUL79, and
RUL154) were transmitted with permission. The authority of the
datasets about those pedigrees belongs to the original authors.

Variant Calling, Annotation, and
Evaluation
We mapped the WES reads against the human reference genome
(hg19) using BWA mem mode, with parameters set as default (Li
and Durbin, 2009) and preprocessed as recommended (McKenna
et al., 2010). Mindful that highly quality off-target variants could
be identified from WES (Guo et al., 2012), we generated all exon
regions with flanking 100 bp via UCSC Table browser supplied to
GATK for variant calling. We combined VQSR (Variant Quality
Score Recalibration) and a hard filters to filter out potential
false positive variants. The parameters are summarized in the
Supplementary Table S1. The variants were then annotated with
ANNOVAR (Wang et al., 2010) and classified as recommended
(Hampel et al., 2015). The databases involved in annotation
and the variant classification methods are summarized in the
Supplementary Table S1.

Vector Construction, Cell Culture, and
Transfection
Full-length NCK1 was cloned from pLX304 to MSCV-5′HA (3×).
We generated point mutants of NCK1 (p.D73H and p.R42Q)
via site-directed mutagenesis with primers designed by Primer
X1. All the vectors were confirmed via Sanger sequencing. For
lentivirus production, the NCK1 mutants containing MSCV
vectors were co-transfected with pCMV-VSVg and GAG/pol
plasmids into 293FT cells by Lipo2000. Cell lines were cultured
at 37◦C under 5% CO2 in DMEM, high glucose medium (Gibco)
with 10% (v/v) fetal bovine serum (FBS; Gibco) and penicillin G
(100 U/ml, Gibco) and streptomycin (100 ug/ml, Gibco).

Cell Viability Assay and Transwell
Invasion Assay
Cell viability was assessed with MTT colorimetric assay
(Ameresco), at time periods of 6 days. The optical absorbance
was measured at 562 nm on a spectrophotometer (Biotek), and
the reference wavelength at 630 nm. All the experiments were
performed in triplicate and repeated three times. Cell invasion
assays were performed using 24-well transwell (8 µm pore,
Corning) that were coated with 1:10 diluted Matrigel Matrix (BD
Biosciences). A total of 2 × 104 cells, in 200 µL of serum-free

1http://www.bioinformatics.org/primerx/
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DMEM medium, were added into the upper transwell chamber,
and 500 µL of 10% FBS DMEM medium containing 1 µg/mL
EGF was added into the lower chamber. After incubation for
48 h, the cells were fixed in 4% paraformaldehyde and stained
with 0.1% crystal violet. The cell images were taken at five
random microscopic fields (Olympus, 10×). All experiments
were repeated three times. The Student’s t-test was used to test
whether the difference was significant.

NCK1 Mutation Analysis
TCGA-germline variants were retrieved by subtracting the non-
TCGA variants (ExAC-non-TCGA) from the whole dataset
(ExAC) (Lek et al., 2016). Pan-cancer somatic mutations of
NCK1 were retrieved from cBioportal (Cerami et al., 2012). We
performed a hotspot analysis on NCK1 somatic mutations via
the R package DominoEffect (Buljan et al., 2018). The flanking
regions were determined after normalizing the gene length and
impaired residues by function calculate boundary (Buljan et al.,
2018). In order to evaluate substitution tolerance of NCK1
mutations, position specific score matrix (PSSM) was generated
by PSI-BLAST (Altschul et al., 1997). For a given missense
mutation, we obtained the score difference between the mutation
and wild type residue: 1S = S mutation – S wild−type. We generated
10,000 sets of three random mutations of NCK1 and evaluated the
mean score for each set.

NCK1 Mutation Burden Analysis
To perform mutation burden analysis of NCK1 germline
mutations in a cancer-cohort and normal controls, we retrieved
the allele count and allele number of corresponding NCK1
mutations from the general cohort, control-cohort, non-cancer
cohort collected from the Genome Aggregation Database
(genomAD) (Karczewski et al., 2019). The cancer-cohort specific
allele count and allele number of NCK1 mutations was obtained
by deducting the non-cancer cohort from the general cohort.
A Fisher test was used to test the occurrence of non-silent
mutations in NCK1 across the cohorts mentioned above.

NCK1 Expression Analysis
As described before (Chen et al., 2016), the mRNA expression
level in NCK1 (RNA-seq V2) of 99 tumor-normal matched BC
samples were retrieved from the Cancer Genome Atlas database
(Weinstein et al., 2013) and the RSEM normalized result were
applied to the downstream analysis. Among them, 95 patients
owned inferred PAM50 subtypes (Netanely et al., 2016).

RESULTS

Re-evaluation Variants Identified From
Familial Breast Cancer Patients
We reanalyzed published Whole Exome Sequencing datasets
from 10 non-BRCA1/2 BC pedigrees (Gracia-Aznarez et al.,
2013; Hilbers et al., 2013). Two samples per pedigree were
applied to whole exome sequencing, and the kinship of the
samples varied from 0.016 to 0.25 (Table 1). We set those rare TA
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non-silent variants, shared between patients per pedigree, as
candidate co-segregated ones. To reduce incidental findings, we
first focused on the genes that had been assigned with pathogenic
supporting evidence (Supplementary Table S1), especially the
known cancer predisposition genes (Rahman, 2014). Second, we
filtered for variants with uncertain clinical significance, which
must show in both the familial and TCGA germline dataset.
The detailed variant filtering and classification parameters are
summarized in Supplementary Table S1.

In our analysis, we found that seven out of 10 pedigrees
had potential co-segregated pathogenic variants in known
cancer-associated genes (Table 1 and Supplementary Table S1),
including CHEK2, ATM, MRE11, and CTR9, and some other
cancer-associated genes, such as IGF2R and CHRNA3 (Table 1
and Supplementary Table S1). Interestingly, we found that
XRCC2 (p.R91W) and ATM (p.A2798D) co-occurred in the
ExAC TCGA-germline dataset (Table 1 and Supplementary
Table S1). Furthermore, the XRCC2 (p.R91W) was also reported
in the original publication (Hilbers et al., 2012) and an
independent pedigree (Park et al., 2012), which further confirmed
our approach was effective. Finally, we identified a novel
candidate gene, NCK1, from pedigree F2887 (Table 1 and
Supplementary Table S1). NCK1 (p.D73H) occurred once in
about 7000 TCGA samples, but did not show up in more than
60,000 control samples (Supplementary Table S2). Generally, we
succeeded in identifying potential cancer predisposition variants
from eight in 10 pedigrees in the evaluation.

Most of the Somatic and Germline
Mutations in NCK1 Were Intolerant
So far, few publications have reported the cancer predisposition
role of NCK1. First, we inspected the NCK1 variants in the
genome aggregation database (genomAD), which contained the
cancer patient cohort and provided detailed cohort information,
such as non-cancer, control (Supplementary Table S2). We could
therefore retrieve the allele counts and allele numbers of the
corresponding variants recorded in genomAD for enrichment
analysis (Supplementary Table S2). Additionally, we only
focused on the high-quality variants, which were marked as a pass
in both the exome and genome datasets. The NCK1 mutations
were significantly enriched in the cancer cohort, non-cancer
cohort, and general cohort in comparison to the control cohort
(Fisher-test; P < 0.001) (Supplementary Table S2).

Second, we inspected the occurrence of somatic mutations
in NCK1 among pan-cancer datasets since the somatic event
is another important factor involved in cancer progression.
According to pan-cancer datasets, 0.3% of patients had NCK1
somatic mutations, including 102 non-silent mutations from 97
patients, and four fusion variants impaired NCK1 in four patients
(Figure 1A). NCK1 mutations were enriched in some cancer
types, including uterine endometrioid carcinoma (P = 1e−16),
stomach adenocarcinoma (P = 6.679e−06), cutaneous melanoma
(P = 2.63e−05), but not BC (P > 0.05) (Supplementary Figure
S1; Binominal test). Among these mutations, residue 42 is the
most frequent in somatic, and residue 73 mutated in both the BC
pedigree and the cancer cohort (Figures 1A,B). Given the rarity
of the NCK1 germline and somatic mutations, we supposed that
mutations in NCK1 might be intolerant.

To confirm that supposition, we generated a position
specific score matrix (PSSM) via PSI-BLAST (Altschul et al.,
1997) and predicted the damaging effect with SIFT (Ng and
Henikoff, 2003) and PolyPhen2 (Adzhubei et al., 2010). In silico,
PolyPhen2 predicted that those two were possibly damaging,
and SIFT predicted that those two mutations were tolerant.
Paradoxically, the residue D73 and R42 are conserved among
100 vertebrates according to MultiZ alignment (Supplementary
Figure S2; Rosenbloom et al., 2015), and the residue R42
and D73 are both conserved in NCK1 and NCK2, which is
the paralog of NCK1, but not conserved in the orthologs in
Caenorhabditis elegans and Drosophila melanogaster (Figure 1C).
According to PSSM, both germline and somatic mutations
of NCK1 were more intolerant than randomly modeling
mutations (Figure 1D), and substitution score of NCK1 D73H
(1S = −3) and NCK1 R42Q (1S = −1) both are negative.
In vitro, we found that both the mutants could increase cell
viability (Figures 1E,F); therefore, both the NCK1 mutations
should be deleterious.

Role of NCK1 Variations in Tumor
Progression
Based on the “20/20” rule (Vogelstein et al., 2013), which means
that more than 20 percent missense were located in recurred
residues (Figures 1A,B), we supposed that NCK1 might have an
oncogenic role. According to hotspot analysis of NCK1 somatic
mutations, we found that the residue 42 turned to be a hotspot
site (P < 0.001) (Supplementary Table S3). Indeed, NCK1-
D73H and NCK1-R42Q transfected MCF7 cell lines showed
significantly increased cell viability in comparison with wild
type (Figures 1E,F). In addition, NCK1 contains an N-WASP
activation motif (Okrut et al., 2015), where the residue D73
locates. Given this, we supposed that NCK1 might involve
in tumor invasion.

To further prove that, we assessed the NCK1 mRNA
expression level among 99 tumor-normal matched samples
from TCGA-BRCA. However, the expression of NCK1 mRNA
in tumor samples was significantly lower than the matched
normal samples (Figure 2A), which was also observed across
different tumor stages (Figures 2B–D). Mindful that BC is
a molecular heterogenous cancer type, we retrieved PAM50
subtypes of the corresponding samples (Netanely et al., 2016).
We found that NCK1 was significantly upregulated in the
basal-like subtype (Figure 2E). No significant difference was
observed in the Her2 subtype (Figure 2F), but the expression
of NCK1 was still significantly downregulated in the Luminal A
(Figure 2G) and Luminal B subtype (Figure 2H), especially in
Luminal A. In this study, both NCK1-R42Q and NCK1-D73H
transfected MCF cell lines, which are luminal subtypes, and
showed a significantly increased invasion ability (Figures 3A,B).
Recently, Morris et al. (2017) reported that the deficiency of
Nck in MDA-MB-231, which is a basal-like subtype, could
delay BC progression and metastasis, which was consistent
with our results - given that NCK1 also plays a vital
role in tumor invasion. Finally, we inspected the survival
status of the patients with NCK1 variations, including CNVs,
somatic mutations, and a Z-score normalized mRNA expression
level, via cBioPortal (Gao et al., 2013). We found that the
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FIGURE 1 | NCK1 mutation diagram and potential functional effect. (A) Mutation diagram of NCK1 collected in cBioportal (Pan-Cancer). (B) Mutation diagram of
germline mutations in NCK1, including all TCGA-germline variants and NCK1 D73H, identified in familial breast cancer pedigree (F2887). (C) Multiple sequence
alignment of sequence flanking NCK1 D73 residue. (D) Distribution of substitution score (1S) of NCK1 based on Position Specific Score Matrix. (E and F) The cell
viabilities in all groups of mutant over-expression assay about R42Q (E) and D73H (F) at different time points (0, 1, 2, 3, 4, 5, and 6 days). Data were expressed as
mean ± standard deviation (SD) of experiments with triplicates. Asterisks indicate significant increasing of cell viability in mutant (R42Q and D73H) transfected MCF7
cells compared with wild type transfected MCF7 cells (Student’s t-test; P < 0.01). Model: random mutations generated by in silico, non-TCGA germline: variants
collected in ExAC non-TCGA dataset; TCGA-germline: variants collected in ExAC, but not in the ExAC non-TCGA dataset; Somatic: somatic variants
collected in cBioportal.

patients with both NCK1 variations and TP53 mutations had
poorer overall survival (P < 0.05) and disease-free survival
(P < 0.05) (Figures 3C,D). In general, the roles of NCK1 in
tumor progression could be genomic context dependent and
differentiated in cancer types.

DISCUSSION

Intense efforts have been dedicated to identifying BC genes;
however, more than 50% of familial BC heritability is still
undetermined (Melchor and Benitez, 2013). Furthermore, non-
BRCA1/2 familial BC patients are highly heterogeneous. For
instance, we found CHEK2 mutations from four pedigrees,

including pedigree RUL153, NIJM6, NIJM8 and RUL70
(Supplementary Table S4). The CHEK2 (p.T367fs) in pedigree
NIJM8 appears to be homozygous but was only identified in
one patient. Two separate CHEK2 variants were identified from
members of pedigree NIJM8 (Supplementary Table S4). In
RUL70, we also identified a CHEK2 mutation from only one
patient. However, the confident predisposition variant in XRCC2
(Table 1) identified from another CHEK2 positive pedigree
(NIJM6) further complicate the evaluation. CHEK2 (p.T367fs)
was not co-segregated across all patients in RUL153, which
was explained as a phenocopy (Gracia-Aznarez et al., 2013).
Although CHEK2 (p.T367fs) is a well-known BC predisposition
gene (Meijers-Heijboer et al., 2002), the co-segregation status of
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FIGURE 2 | Expression spectrum of NCK1 in 99 tumor-normal paired samples across different stage and subtypes. (A) All; (B) Stage I; (C) Stage II; (D) Stage III and
IV; (E) basal-like; (F) Her2; (G) LumA (LuminalA); and (H) LumB (LuminalB).

the variant has turned out to be negative among those pedigrees.
Due to the patients in RUL70 and NIJM6, NIJM8 has been
reported with a chromosome 22 gain like profile (Hilbers et al.,
2013), where CHEK2 locates, and we therefore suppose that
structural variants might also contribute.

During our analysis, we also identified some likely pathogenic
variants in recently established cancer predisposition genes, such
as MRE11 (Bartkova et al., 2008; Damiola et al., 2014) and CTR9
(Hanks et al., 2014). MRE11A, encoded by MRE11, acting as
a component of the MRN (MRE11A-RAD50-NBN) complex,
which plays a vital role in DNA double-strand break repair
(Yuan et al., 2012). Dysfunction of the MRN complex could
promote BC invasion and metastasis (Gupta et al., 2013). In
pedigree RUL036, we identified two candidate predisposition
genes, including ATM and CTR9. Although the ATM variant
occurred in the TCGA-germline dataset, multiple in silico tools
predicted it to be benign or tolerant. CTR9 was first reported
as a Wilms tumor predisposition gene, and the mutations are
almost truncated (Hanks et al., 2014). As it occurs in the
Wilms tumor, we also identified a splicing site mutation in
CTR9. Interestingly, evidence indicates that CTR9 plays an
import role in regulating the estrogen signaling pathway, which
promotes estrogen receptor α (ERα) positive BC progression
(Zeng and Xu, 2015). In addition, we found a rare non-silent
mutation in IGF2R. IGF2R is a polymorphic imprinting locus
in humans (Xu et al., 1993), which indicates that individuals
with IGF2R imprinted, might have increased cancer susceptibility
(Feinberg, 1993). CHRNA3 encodes an α type subunit of the

nicotinic acetylcholine receptor. Polymorphisms in CHRNA3
have been associated with increased smoking initiation risk
and increases susceptibility to lung cancer (Hung et al., 2008).
Given the heterogeneity in BC, the predisposition genes might
have different disease-causative mechanisms and predisposition
factors of non-BRCA1/2 pedigrees might be multifactorial, such
as gene-environment interaction.

In our study, we mainly focused on gene NCK1, because
few reports suggest the underlying predisposition role of NCK1
mutations. As an adaptor, NCK1 mediated multiple signaling
pathways, especially actin dynamic and organization involved in
invadopodia formation and maturation (Stylli et al., 2009; Oser
et al., 2010). The SH2 domain of NCK1 involves the recognition
of cell surface receptors and transduces signals to downstream
effectors (Li et al., 2001). The SH3 domain of NCK1 usually
interacts with downstream effectors, most of which involves the
actin cytoskeletal dynamic. For instance, NCK1 is required for
EGFR-mediated cell migration and tumor metastasis (Huang
et al., 2012). And the metastasis-promoting role of NCK1 has
been reported in multiple cancer types, such as colorectal cancer
(Zhang et al., 2017) and BC (Morris et al., 2017). Interestingly,
NCK1 also have connections to the hotspot mutation of PIK3CA.
Wu et al. reported that oncogenic mutations of PIK3CA mediate
tumor cell invasion through cortactin (Wu et al., 2014), which
is a partner of NCK1 in invadopodia maturation (Oser et al.,
2010). Therefore, NCK1 might be an invisible participant in
tumor progression, because NCK1 mutations rarely occur in
cancer patients.
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FIGURE 3 | Roles of NCK1 in tumor progression might be context dependent. (A) Images of MCF7 cells migrated from transwell membrane (B) Cell count and
quantitative analysis of the migrated MCF7 cells. Patients with both NCK1 aberrations and TP53 mutations showed a much poorer overall survival (C) and
disease-free survival (D). Selected patients: patients with both NCK1 aberrations and TP53 mutation. Unselected patients: patients with only NCK1 aberrations.
Scale bar: 200 µm. Data are depicted as mean ± standard deviation (SD).

On the one hand, overexpression of NCK1 shows oncogenic
roles (Li et al., 1992), and the high expression of NCK1, at
least in basal-like BC, contributes to tumor proliferation and
metastasis (Morris et al., 2017). In our study, we identified a
mutation in a motif that is involved in N-WASP activation, which
is involved in invadopodia maturation (Okrut et al., 2015). Our
results showed that both the NCK1 mutants (D73H and R42Q)
indeed promote cell proliferation and invasion in vitro. We
propose that NCK1 not only contributes to cancer predisposition
but is also involved in cancer progression and prognosis. In
addition, our results also suggest that the tumor-promoting
role of NCK1 might be a cancer subtype dependent. On the
other hand, downregulation of NCK1 might also be pathogenic,
but in different mechanisms. For instance, Nck degradation
could prevent cancer cells from apoptosis (Li et al., 2013) and
regulate actin dynamics (Buvall et al., 2013). Furthermore, NCK1
played important roles in angiogenesis (Zhang et al., 2017;
Xia et al., 2018) and even has an unexpected link to CHEK2
activation (Kremer et al., 2007).

Traditional approaches to identify underlying predisposition
genes usually involves allele frequency filtering and in silico
prediction and the sequences involved in the comparative
analysis could also impact the final accuracy. Although we
identified some novel candidate cancer predisposition variants,
the power to confirm the predisposition role of those variants
was limited. Because most of candidate cancer predisposition
variants identified in our analysis turn out to be familial specific,
which indicates that the power to establish a novel predisposition
variant depends on an extremely large sample size (Guo et al.,
2016). For instance, the variant NCK1 (p.D73H), identified
from the pedigree F2887, occurred once in about 7,000 cancer
samples, but not in about 60,000 controls according to the
genomAD datasets. The predisposition role of NCK1 mutations
was ignored probably because of its rare occurrence. In general,
our results support NCK1 as a candidate cancer gene; however,
the underlying mechanisms requirefurther investigation. In
addition, we imagine that many more cancer genes like NCK1
might exist.
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Genomic medicine is set to drastically improve clinical care globally due to high
throughput technologies which enable speedy in silico detection and analysis of clinically
relevant mutations. However, the variability in the in silico prediction methods and
categorization of functionally relevant genetic variants can pose specific challenges
in some populations. In silico mutation prediction tools could lead to high rates
of false positive/negative results, particularly in African genomes that harbor the
highest genetic diversity and that are disproportionately underrepresented in public
databases and reference panels. These issues are particularly relevant with the recent
increase in initiatives, such as the Human Heredity and Health (H3Africa), that are
generating huge amounts of genomic sequence data in the absence of policies to
guide genomic researchers to return results of variants in so-called actionable genes
to research participants. This report (i) provides an inventory of publicly available Whole
Exome/Genome data from Africa which could help improve reference panels and
explore the frequency of pathogenic variants in actionable genes and related challenges,
(ii) reviews available in silico prediction mutation tools and the criteria for categorization
of pathogenicity of novel variants, and (iii) proposes recommendations for analyzing
pathogenic variants in African genomes for their use in research and clinical practice. In
conclusion, this work proposes criteria to define mutation pathogenicity and actionability
in human genetic research and clinical practice in Africa and recommends setting up an
African expert panel to oversee the proposed criteria.

Keywords: African genome, incidental findings, actionable variants, whole exome sequencing, whole genome
sequencing, precision medicine, pathogenicity

INTRODUCTION

High throughput technologies in “omics” research are expected to improve clinical care
globally through genomic medicine. However, the categorization and criteria to infer variants’
pathogenicity differs around the world and can pose specific challenges in some populations
(Dorschner et al., 2013; Green et al., 2013; MacArthur et al., 2014; Amendola et al., 2015;
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Hunter et al., 2016; Ichikawa et al., 2017; Kwak et al., 2017;
Lacaze et al., 2017; Tang et al., 2018). Particularly, in
African genomes that harbor the highest genetic diversity,
it is possible that most in silico prediction tools could lead
to the highest rate of false positive/negative results (Martin
et al., 2018). The H3Africa Consortium has significantly
contributed to reducing the dearth of genomic research on the
African continent by supporting African genomics researchers
and developing policies (Dandara et al., 2014; H3Africa,
2017). However, in the current genomics landscape, it is
particularly challenging to interpret some variants found in
African genomes, i.e., to determine whether that variant is
common or rare, benign or pathogenic. Firstly, approaches to
determine the rareness of a variant are based on exploring
publicly available genome reference databases in which African
data are under-represented (Lek et al., 2016; Popejoy and
Fullerton, 2016). In addition, most of the current well-
established bioinformatics tools, variant calling pipelines, are
benchmarked using non-African populations and most of
the variants deposited in the public database are from non-
African populations (Pabinger et al., 2012; Bao et al., 2014).
Secondly, the high genetic diversity of African populations
means that genomic studies are likely to detect many novel
variants that are yet to be described in current public
databases (Lebeko et al., 2017). Thirdly, there is a lack
of evidence-based policies and guidelines to inform the
characterization of actionable genes in African genomic research.
A guideline on feeding back findings was recently developed
by H3Africa; while this is a commendable achievement, it
lacks the support of published empirical evidence1. This
latter point is particularly important given the recent call
from the American College of Medical Genetics (ACMG) to
investigate pathogenic variants in so-called actionable genes
that could potentially have direct clinical benefit, and to
return the results to research participants (ACMG, 2013). This
will open up a series of ethically relevant questions (Kiezun
et al., 2012; MacArthur et al., 2014; Parker and Kwiatkowski,
2016), such as the definition of actionability and relevance
to personalized medicine in a context of often scarce human
and material resources, and ill-equipped healthcare systems
(Masimirembwa et al., 2014).

To address these multiple challenges, and particularly
that of variant interpretation in African genomes, it is
appropriate to develop new pipelines using African genetics
data or to benchmark existing bioinformatics pipeline tools
using African populations to account for African genetic
diversity. This paper aims to (i) provide an inventory of
existing Whole Exome/Genome data from Africans that
could help develop an African reference genome build,
improve reference panels, and explore the frequency of
pathogenic variants in actionable genes and related challenges;
(ii) review available in silico prediction mutation tools and
criteria for categorization of pathogenicity of novel variants;
and (iii) propose recommendations for analyzing pathogenic

1https://h3africa.org/wp-content/uploads/2018/05/H3Africa%20Feedback%
20of%20Individual%20Genetic%20Results%20Policy.pdf

variants in African genomes for their use in research and
clinical practice.

CURRENT CHALLENGES OF WES/WGS
DATA INTERPRETATION IN AFRICANS

Mastering of genome sequencing pipelines and downstream
analysis are important for inferring meaningful information,
such as detection of variants in medically relevant genes, from
high throughput data such as Next Generation Sequencing
(NGS), Whole Exome Sequencing (WES), or Whole Genome
Sequencing (WGS). However, data processing, deep sequencing,
and meticulous downstream analysis of WES/WGS still
constitute a challenge in most of the current pipelines and
tools. In addition, there are still some challenges, such as
the interpretation of rare missense variants, reliability, and
accuracy of pipelines for sequence alignments, variant calling,
and data analysis, for the WES and WGS data of African
populations (Wang et al., 2013; Rabbani et al., 2014; Bertier
et al., 2016; Popejoy and Fullerton, 2016). To address some of
these challenges, a plethora of bioinformatics algorithms and
pipelines have been developed (Pabinger et al., 2012; Hentzsche
et al., 2016; Xu, 2018). Current practice is to use existing variant
calling pipelines, but this raises a number of questions, including
how are universally reliable and accurate current WES/WGS
bioinformatics tools and pipelines benchmarked using non-
African data? What is the true proportion of African population
data in the current reference genome builds that are publicly
available, taking into account the variable level of admixture of
African Americans who tend to be considered proxies of Africans
in these databases [the Genome Reference Consortium Human
Genome (GRCh3) and University of California, Santa Cruz
(UCSC)] (Kuhn et al., 2009; Fujita et al., 2011; Leipzig, 2017)?
Addressing these challenges will require that genomic research
communities from the African continent develop an African
benchmark bioinformatics pipeline to analyze genomic data
that includes genetic diversity found in the African populations,
and engage in a major effort in constructing an African-specific
reference panel.

African populations in current reference panels are not
representative of more differentiated population groups within
Africa. Variant calling from NGS data is based on alignment
to a single reference genome, which is problematic for diverse
regions or populations, such as African populations. There is
great opportunity in improving read alignment and variant
calling for African genomes. A genome reference graph for
alignment and variant calling may capture natural variation
among populations, particularly populations of high diversity
with low level of linkage disequilibrium.

Repetitive DNA sequences are abundant in a broad range of
species, from bacteria to mammals, and they cover nearly half
of the human genome. The other main issue is that repeats have
always presented technical challenges for sequence alignment and
assembly programs. NGS projects, with their short read lengths
and high data volumes, have made these challenges more difficult.
From a computational perspective, repeats create ambiguities in
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alignment and assembly, which, in turn, can produce biases and
errors when interpreting results. Simply ignoring repeats is not
an option, as this creates problems of its own and may mean
that important biological phenomena are missed. Variation in
repeats can alter the expression of genes, and changes in the
number of repeats have been linked to certain human diseases.
Unfortunately, the molecular characterization of these repeats
has been hampered by technical limitations related to cloning,
sequencing techniques, and alignment algorithms (Dilthey et al.,
2014; Marcus et al., 2014; Church et al., 2015; Paten et al., 2017).

Fortunately, the number of genomic researchers in Africa is
on the rise, which has led to an increase in African genomic
data and publications (The H3Africa Consortium, 2014; Uthman
et al., 2015; Mulder et al., 2016; Ndiaye Diallo et al., 2017).
The increase in African genomic research has the potential
to narrow the research gap between Africa and the rest of
the world and can also improve implementation of genomic
medicine. Therefore, we propose to use the available data to
(i) develop Bioinformatics tools using African data, particularly
for populations from sub-Saharan Africa who have the highest
genetic diversity and low levels of admixture with European or
Asian populations; (ii) benchmark existing tools using available
African population data; and (iii) there is an urgent need for a
centralized repository of publicly available African genomic data
with annotated variants based on their pathogenicity, in order
to increase our understanding of continental genomic diversity
(Jongeneel et al., 2017; Mulder et al., 2017; Ahmed et al., 2018). To
help initiate such endeavors we have provided here an inventory
of African Whole Exome and Whole Genome data that are
currently available to our knowledge (Table 1).

IN SILICO PREDICTION OF MUTATIONS
AND CHALLENGES

The accuracy of variant calling pipelines (Li et al., 2009; DePristo
et al., 2011; Wei et al., 2011; Garrison and Marth, 2012; Koboldt
et al., 2012; Wilm et al., 2012; Lai et al., 2016) is a major
step prior to the downstream in silico prediction of mutations.
Nevertheless, a challenge remains in downstream NGS variant
calling analysis, i.e., to distinguish pathogenic mutations and rare
non-pathogenic variants from most of the annotating variant
calling pipelines. The accuracy of in silico prediction of rare and
actionable disease-causing genetic variants for the detection of
pathogenic rare mutations and polymorphisms is the greatest
challenge. Variant calling pipelines generate large numbers
variations erroneously, which may contain rare, common genetic
variants, false positives, and false negatives (Dong et al., 2015).
Further downstream analysis such as variant annotations, variant
filtrations, and prioritization methods are conducted to annotate
variant genomic features, gene symbols, exonic functions, and
amino acid modifications (Bao et al., 2014). Different in silico
prediction algorithms are implemented to annotate disease-
causing mutations based on the following information from
the variants: (i) sequence homology (Reva et al., 2011), (ii)
protein structure (Ng and Henikoff, 2006; Teng et al., 2009),
(iii) evolutionary conservation (Cooper et al., 2010), (iv) the

frequency of pathogenicity (Kobayashi et al., 2017), and (v)
change in ancestry. Most of the in silico prediction methods
interact with public databases to incorporate updated variant
information in order to enhance annotation prediction efficiency.
The incorporated information is mainly the minor allele
frequency (MAF), experimental clinical assay information and
deleterious prediction of variants (Pabinger et al., 2012). The
majority of in silico prediction tools provide a reduced number
of annotations from large background errors of detected
variants. To annotate, filter, and prioritize accurately variant
calling, researchers developed pipelines combined with different
annotation tools and databases. Germline and somatic mutation
databases, such as ANNOVAR (Wang et al., 2010; Yang and
Wang, 2015), Human Gene Mutation Database2, dbSNP3 (Sherry
et al., 2001), and GENEKEEPER4 and others are important
for evaluating variants. Liu et al. (2011) developed a robust
database called dbNSFP, which combines the prediction scores
of six prediction algorithms namely SIFT (Kumar et al., 2009),
PolyPhen-2 (Adzhubei et al., 2010), LRT (Chun and Fay, 2009),
MutationTaster (Schwarz et al., 2010), Mutation Assessor (Reva
et al., 2011), FATHMM (Chun and Fay, 2009; Shihab et al., 2013),
and conservative score tools namely GERP++ (Davydov et al.,
2010), SiPhy (Garber et al., 2009), and PhyloP (Doerks et al.,
2002) and then compiles the scores of these tools into one (Liu
et al., 2011). ClinVar is a commonly used database for germline
variants, namely pathogenic and benign and provides related
clinical and experimental information5 (Landrum et al., 2016).

After annotation, it is recommended to filter annotated
variants from many tools using two approaches (i) free
hypothesis, to cast the vote of the annotated variant filters
for “Deleterious or damaging disease-causing (D)” or “disease-
causing automatic (A)” among annotation prediction tools based
on a defined cut-off (∼50%); and (ii) non-free hypothesis, which
provides a list of known genes of the studies with another level
of prediction cut-off (∼25%). The cut-off for both hypotheses
is study related.

In silico prediction of mutations in the context of African
populations introduces additional specific challenges that are
partly related to the use of non-African populations to
benchmark in silico prediction pipelines and the low proportion
of African population data in most of the interrogated databases.
Another challenge when working with African population data
is the annotation of common variants specific to African
populations, which can be considered as pathogenic variants
when using public databases. This emphasizes the need for
a guideline, which defines approaches to infer pathogenicity
variants in African populations.

Predicting Pathogenic Variants and
Challenges
In the literature and in most annotation databases, the
classification of pathogenicity differs (Sherry et al., 2001;

2http://www.hgmd.cf.ac.uk/ac/index.php
3https://www.ncbi.nlm.nih.gov/projects/SNP/
4https://kewinc.com/analytics/
5https://www.ncbi.nlm.nih.gov/clinvar/
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TABLE 1 | Published whole exome and genomes data from sub-Saharan Africa.

Country Region Individuals References

Exomes

Botswana Southern Africa 164 Retshabile et al., 2018

Uganda Southern Africa 150 Retshabile et al., 2018

Ghanaian Western Africa 1032 Kodaman et al., 2017

Tunisia North Africa 7 19 Hamdi et al., 2018 Ben Rekaya et al., 2018

Morocco North Africa 3 Bousfiha et al., 2017

Cameroonian Central Africa 179 Sickle Cell Disease Project (Unpublished)

Congo Central Africa 23 Sickle Cell Disease Project (Unpublished)

Black Xhosa (SA) Southern Africa 25 Hearing Impairment Project (Unpublished)

African Caribbean (ACB) Caribbean 98 1000 Genomes project

Esan in Nigeria (ESN) Western Africa 111 1000 Genomes project

Mende in Sierra Leone (MSL) Western Africa 98 1000 Genomes project

Yoruba in Ibadan, Nigeria (YRI) Western Africa 100 1000 Genomes project

Luhya in Webuye, Kenya (LWK) East Africa 106 1000 Genomes project

African Ancestry in Southwest USA (ASW) North America 68 1000 Genomes project

Gambia in Western Division, The Gambia
(GWD)

Western Africa 120 1000 Genomes project

African American North America 761 Auer et al., 2012

Genomes

Baganda, Banyarwanda, Barundi (Uganda);
Luhya, Kikuyu, Kalenjin (Kenya); Sotho, Zulu
(South Africa); Yoruba, Igbo (Nigeria);
Ga-Adangbe (Ghana); Jola, Fula, Wolof,
Mandika (Gambia); Amhara, Oromo, Somali
(Ethiopia)

Sub Sahara (Eastern Africa,
Southern Africa, Western
Africa, Southern Africa)

320 Gurdasani et al., 2015

Kombo (Gambia) Western Africa 2560 Jallow et al., 2009

South Africa Southern Africa 13 Kramvis et al., 2002

Ovamboland (Namibia) Angola Madagascar Southern Africa Southern Africa
Madagascar

23 2 1 Kramvis et al., 2005

Algeria, Morocco, Libya, Tunisia, Tuareg Congo,
Gabon, Cameroun, Nigeria

Northern Africa Sub Sahara 25 59 Fadhlaoui-Zid et al., 2013

Uganda Zimbabwean Sub Sahara 112 174 Venner et al., 2016

Mandinka II, Serehule, Bambara, Malike, FulaII,
FulaI, MandikaI, Wollof, Serere, Manjogo, Jola
Mossi, Kasem, Yoruba, Namkam, Semi-Bantu,
Akans, Bantu Kauma, Chonyi, WabondeI,
Kambe, Luhya, Maasai, Wasambaa, Giriama,
Mzigua Ari, Anuak, Sudanese, Gumuz Oromo,
Somali, Wolayta, Afar, Tigray, Amhara Nama,
Karretjie, Khomani, Malawi, Herero, Khwe, Ixu,
HU/’Hoansi, Amaxhosa Sebantu

West African Niger-Congo
Central West African
Niger-Congo East Africa
Niger-Congo East Africa
Nilo-Saharan East Africa
Afroasiatic Khoesan

2504 Busby et al., 2016

African American African American 35370 Ng et al., 2014

Ethiopian (Weth) Sub Sahara 120 Tekola-Ayele et al., 2015

South Africa Southern Africa 24 (8 Colored, 16 Black) Choudhury et al., 2017

Wang et al., 2010; Yang and Wang, 2015; Landrum et al., 2016;
McLaren et al., 2016). Nevertheless, a common strategy to define
pathogenicity involves combining results from many annotation
pipelines (Lebeko et al., 2017). Further downstream analyses
are gene network analysis and gene enrichment. The purpose
of these analyses is to investigate the level of interactions
between genes and the annotated variants associated with
human phenotypes and then mine affected biological processes,
networks, pathways, and molecular functions (Bindea et al., 2009;
Warde-Farley et al., 2010; Lebeko et al., 2017).

In the comprehensive standards and guidelines, ACMG and
the Association for Molecular Pathology (AMP) define the
nomenclature for variants (Table 2). Recommendations for
laboratories and clinicians to return incidental findings (IFs)
has led to interest toward defining criteria and mechanisms
for evaluating pathogenicity and the frequencies of IFs in
different populations. For example, Dorschner et al. (2013)
analyzed actionable pathogenic variants in 500 European
and 500 participants of African descent using exome data.
The classifications for pathogenicity (Table 2) included allele
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TABLE 2 | Variants pathogenicity categorization.

References Categorization Interpretation

Dorschner et al., 2013 Pathogenic Allele frequency of the identified variant is below cutoff AND
segregation can be found in at least two unrelated families

Likely pathogenic variant of uncertain
significance (VUS)

Allele frequency of the identified variant is below cutoff AND
identified in at least three unrelated individuals

VUS Allele frequency of the discovered variant is below cutoff AND
present in less than three unrelated affected individuals

Likely benign VUS Allele frequency of the identified variant is below cutoff AND/OR
seen in combination with a known pathogenic mutation

Richards et al., 2015 ACGM and AMP Pathogenic very strong Null variant (non-sense, frameshift, initiation codon, single or
multiexon deletion) in a gene is a known mechanism of disease

Pathogenic strong Similar amino acid modification which was previously considered as
pathogenic variant independent of nucleotide change

Pathogenic moderate Localize in a mutational critical region and very important functional
domain without benign variation

Pathogenic supporting Cosegregation with disease located in many affected family
members in a gene well known to be the cause the disease

Benign standalone Allele frequency is greater than 5% in Exome Sequencing Project,
1000 Genomes Project, or Exome Aggregation Consortium

Benign strong Allele frequency is greater than expected for disorder

Benign supporting Missense variant in a gene for which primarily truncating variants
are known to cause disease

frequency of the variants, segregation evidence, and the number
of the patients affected with the variants and their status as a
de novo mutation. The results showed major discrepancies in
the frequencies of pathogenic variants among Europeans versus
Africans, with an estimated frequency of ∼3.4% for those of
European descent and ∼1.2% for those of African descent.
In a similar study, Amendola et al. (2015) investigated IFs in
6503 with 4300 Europeans and 2203 individuals of African
descent. In addition, functionally disruptive variant categories
were added which represent the expected pathogenic variants as
truncating and misplace-causing variants. To validate the results,
a comparative analysis was conducted with other clinical and
research genetic laboratories and in silico pathogenicity scores.
The results also showed that those of African descent had a
scientifically lower proportion (nearly 50%) of a pathogenic
variant in actionable genes compared to European participants.
This lower proportion found in both studies could be due to
the underrepresentation of populations of African descent in the
literature and publicly available databases.

Taking into account the high level of admixture of European
ancestry among African Americans and the highest level of
diversity among Africans, and poor representativity in public
databases as well little clinical genetic research from Africa
that is publicly available, it is likely that a similar study could
even lead to a much lower proportion of IFs in sub-Saharan
African populations. This indicates that there is an urgent need
to improve criteria to categorize the pathogenicity when studying
African populations, stressing for example investigating an
appropriate number of ethnically matched control populations.

Variants Actionability and Challenges
The Clinical Genome Resource (ClinGen) defines actionability as
clinically prescribed interventions specific to the genetic disorder

under consideration that is effective for prevention or delay of
clinical disease, lowered clinical burden, or improved clinical
outcomes in a previously undiagnosed adult and suggested
a metric to score clinical actionability (Hunter et al., 2016).
Interventions include patient management (e.g., risk-reducing
surgery), surveillance, or specific circumstances the patients
should avoid (e.g., certain types of anesthesia). The actionability
includes interventions to improve outcomes for at-risk family
members. Genetic testing recommendations for at-risk family
members alone, however, were not considered sufficient to meet
the criteria for actionability. In addition, actionability did not
include reproductive decision-making.

Alternatively, the 100,000 Genomes Project protocol defines
actionable genes as variants with a significant potential to
prevent disease morbidity and mortality, if identified before
symptoms become apparent. The variants with potentially
severe impacts are clinically actionable causes of rare disease,
where a healthcare intervention or screening programs might
prevent an untoward outcome. The variants are known to result
in illness or disability that is clinically significant, severely or
moderately life threatening and clinically actionable. It should
be emphasized that the exact criteria for considering whether
a variant is considered actionable or not, and serious or not,
is context-dependent and in some instances only emerges
during the process of seeking ethical approval for the study
(Genomics England, 2017).

The accepted process consists of defining actionability of
the variant and a pathogenicity classification criterion. Both
processes are evaluated, inspected and validated by a group of
experts (Richards et al., 2015; Hunter et al., 2016). In the African
context with highly genetically diverse populations, there is a
need to update the proposed scoring metric to take into account
the scarcity of health care professionals with medical genetics and
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genetic counseling skills, poorly equipped health facilities with a
major disparity between urban and rural setting, and generally
inadequate health systems.

RETURN OF INCIDENTAL FINDINGS
AND CHALLENGES IN AFRICA

Next Generation Sequencing analysis could contribute to
the improvement of patient care. This development has
blurred the line between genomics and healthcare; the global
recommendations on the identification and the return of IFs have
raised some ethical concerns for genomic researchers, clinicians,
and the public health authority. Prior to returning IFs, there is
a need to have clear guidelines and recommendations on a list
of potentially actionable genes and define how, what and when
IFs should be returned (Ness, 2008; ACMG, 2013, 2015; Souzeau
et al., 2016; Nowak et al., 2018). Wolf et al. (2008) published
a paper, proposing a framework supporting disclosure of IFs to
guide researchers particularly on informed consent, the handling
process and the responsibility of institutional review boards.
The process on informed consent regarding incidental findings
returns is a separate ethical debate that will require appropriate
consideration by various stakeholders through, for example, an
African and international experts panel meeting with the aim to
address (a) the definition of actionability in the context of Africa,
(b) the priority list of conditions and related gene variants that
are actionable in Africa, (c) the criteria for molecular validation
of the variants found in genomic research for clinical use, (d)
the clinical environment necessary for returning such results
and by which category of health professionals, as most African
settings do not have medical genetic services, and (e) the process
of wording and integrating informed consent for incidental
findings in genomic research in Africa. In the United States,
the ACMG has provided a guideline and recommendations to
evaluate the cost-effectiveness of returning pathogenic variants
for 56 specific genes considered medically actionable (ACMG,
2013, 2015). In Europe, the EuroGenTest and the European
Society of Human Genetics recently presented guidelines for
diagnostic NGS, including a rating system for diagnostic tests
(Matthijs et al., 2016). In the United Kingdom, the Association
for Clinical genetic Science (ACGS) has also released a guideline
for the evaluation of pathogenicity and reporting of sequence
variants in clinical molecular genetics (Wallis et al., 2013).
To the best of our knowledge, there are no evidence-based
recommendations for African researchers and clinicians on how
to report IFs (de Vries and Pepper, 2012; Sookrajh et al.,
2015). This is not a surprise due to the fact that African
populations and the diaspora are underrepresented in most of
the genetics studies, which questions the universal applicability of
the genetic findings in large genome studies, disease association
and evolutionary genetic studies (Need and Goldstein, 2009;
Rosenberg et al., 2010; Dorschner et al., 2013; Tiffin, 2014;
Manrai et al., 2016).

Prior to proposing guidelines on the return of IFs for
the African populations, researchers and clinicians should first
conduct multiple genetics studies to characterize the nature of

genes for both monogenic and complex diseases on multiple
African populations. The results of such studies should first
identify the frequency of pathogenic variants in actionable gene
lists as defined, e.g., by the ACMG, annotate, and filter genes.
An expert panel should validate the list of pathogenic and
actionable variants, then conduct a comparative analysis with
results from non-African populations (ACMG, 2013; Green et al.,
2013; Kalia et al., 2017). The next step could be to define novel
actionable genes and variants that are relevant to Africa, e.g.,
sickle cell disease or APOL1 variants. Only after completing the
aforementioned steps, African researchers and clinicians will be
able to provide a comprehensive and clear guideline on which
putative pathogenic genes may be returned. It should be noted
that the framework on the return of IFs should covert different
aspects such as ethical guidelines and genetic counseling. Due to
the high diversity in the African population, the classification of
pathogenic and actionable variants for the return of secondary
findings is more challenging due to the following additional
factors: (i) contextualizing the African definition of pathogenicity
and actionable genes, (ii) the choice of control cohort for the
validation among African populations (iii) the power of the
sample size for the case and control cohort, and (iv) a list
of actionable genes of the most prominent diseases in the
African populations. These questions need to be considered and
addressed prior to the development of African actionable gene
standards and guideline for IFs. The guidelines and the list of
African populations’ actionable genes to be returned as IFs is a
major milestone toward personalized medicine.

CONCLUSION AND PERSPECTIVES

The power of high-throughput genomic technologies,
particularly DNA sequencing, has potential to bridge the
gap between genomic research and clinical care. However,
this blurry line has opened several technical and ethical
questions and concerns, especially in the context of African
genomic research. With the highest genetic diversity found
in individuals and communities across the African continent,
the use of personalized medicine will be beneficial both to the
continent and worldwide. The state of WES and WGS on the
continent is in the early stages in terms of available genetic
data, publications on genetic conditions, appropriately designed
pipelines and bioinformatics tools. The process of handling IFs
should be clearly discussed and defined by the African research
community, clinicians, specifically on the categorization of the
pathogenicity, and actionability of genes and variants in order to
take advantage of the genomic technology.

We have provided a list of available WES and WGS data
that can help in initiating, the development of bioinformatics
pipelines suitable for African population genomic data, quantify
the frequency of pathogenic and so-called actionable genes,
and to develop appropriate policies for their investigation in
genomic research. This requires African researchers and experts
to be encouraged to share and make data available in public
databases. This once again is an urgent call to set an African
expert panel to categorize and refine criteria for pathogenicity
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and African actionability in human genetic research in Africa.
We recommend that experts should prioritize the following steps:
(1) define better criteria for classification of pathogenicity, and
actionability, including relevant genes lists, that can be explored
and return as IFs to research participant in Africa; (2) benchmark
existing variant calling and in silico prediction pipelines for
African genomic data or develop new pipelines using African
data; (3) use hypothesis and non-hypothesis approaches in silico
mutation prediction to avoid false positive mutation; (4) develop
an African reference panel; and (5) Sanger sequencing to be done
on the new variants for validation.
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The trillions of cells in the human body can be viewed as elementary but essential 
biological units that achieve different body states, but the low resolution of previous 
cell isolation and measurement approaches limits our understanding of the cell-specific 
molecular profiles. The recent establishment and rapid growth of single-cell sequencing 
technology has facilitated the identification of molecular profiles of heterogeneous cells, 
especially on the transcription level of single cells [single-cell RNA sequencing (scRNA-
seq)]. As a novel method, the robustness of scRNA-seq under changing conditions will 
determine its practical potential in major research programs and clinical applications. 
In this review, we first briefly presented the scRNA-seq-related methods from the point 
of view of experiments and computation. Then, we compared several state-of-the-art 
scRNA-seq analysis frameworks mainly by analyzing their performance robustness on 
independent scRNA-seq datasets for the same complex disease. Finally, we elaborated 
on our hypothesis on consensus scRNA-seq analysis and summarized the potential 
indicative and predictive roles of individual cells in understanding disease heterogeneity 
by single-cell technologies.

Keywords: cellular heterogeneity, complex diseases, single-cell RNA sequencing, network, integration

INTRODUCTION

It is known that an adult human body consists of trillion cells of different types and origins, and 
each of them plays its respective role in the body system. These cells can be viewed as basic but 
essential biological units supporting different body states, e.g., health, disease, or the response to 
therapy. Decades ago, the low resolution of cell isolation and measurement technologies limited 
our understanding of the cell-specific molecular profiles and their importance in cellular systems, 
causing humans to always underestimate disease heterogeneity.

In recent years, the establishment and the rapid growth of single-cell sequencing technology 
have led to the efficient and inexpensive identification of molecular profiles of individual cells (Bose 
et al., 2015; Baran-Gale et al., 2018; Svensson et al., 2018). In particular, the transcription of single 
cells (Wu et al., 2014; Ziegenhain et al., 2017) is a novel and fast evolving field. Single-cell RNA 
sequencing (scRNA-seq) attracts increasing attention to the identification and characterization of 
cells on an individual level rather than on a population level (Saliba et al., 2014; McDavid et al., 2016; 
Raj et al., 2018; Torre et al., 2018).

The research field of single cells, e.g., identifying cell types, recognizing cell markers, and tracing 
cell origins, is currently undergoing rapid development. New knowledge on cells can improve our 
understanding of biological systems by changing our perspective from the traditional population level 
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to the individual cellular level. It can further provide novel insights 
into old biological and biomedical questions (Raj et al., 2018). For 
example, with scRNA-seq data rather than bulk transcriptome 
data, we can detect genes with conserved expression levels across 
individual cells (Lin Y. et al., 2017). Single-cell transcriptomics 
could even uncover the diverse transcriptional states of immune 
cells and their coordination during immune responses (Vegh 
and Haniffa, 2018). In addition, simultaneous measurements of 
transcription along with genomic and epigenetic profiling at the 
single-cell level (Clark et al., 2016) is expected to be developed 
soon and will provide groundbreaking biological insights into 
these basic blocks building the biological body (Hemberg 2018).

In this quickly evolving field, many reviews have focused on 
the biotechnological applications of scRNA-seq and in silico 
gene expression analysis. The program goals of the Common 
Fund-supported Single Cell Analysis Program from the National 
Institutes of Health point out the impact of resolving tissue 
heterogeneity at the cellular level (Roy et al., 2018). Different 
scRNA-seq protocols have their strengths and disadvantages under 
respective settings (Saliba et al., 2014; Bacher and Kendziorski, 
2016). The pre-processing approaches of sparse and row-rank 
scRNA-seq data (Zhang L. et al., 2018), normalization methods 
(Vallejos et al., 2017), and batch effect corrections (Dal Molin and 
Di Camillo, 2018; Haghverdi et al., 2018) have all been carried out for 
a wide range of comparisons and evaluations. Finally, the cell type 
clustering algorithms, cell marker identification, and cell trajectory 
reference also have their target-specific evaluation approaches for 
the deconvolution of biological system heterogeneity (Menon 
2018; Papalexi and Satija, 2018). In addition, integrative impacts 
of whole scRNA-seq protocols and analysis methodologies have 
undergone in-depth assessments (Dal Molin et al., 2017; Svensson 
et al., 2017; Todorov and Saeys, 2018).

These current developments and achievements of scRNA-
seq motivated us to investigate the individual cell types, cell 
signatures, cell origins in time and space, and cell communication 
strategies. Meanwhile, as a novel method, its robustness under 
different conditions (e.g., when applied to different datasets) 
will determine its actual practical potential in major research 
programs (e.g., the Precision Medicine Initiative or the Human 
Brain Project) (Poo et al., 2016; Sankar and Parker, 2016) or in 
clinical applications (e.g., diagnosis or prognosis of complex 
diseases) (Zeng et al., 2016). Thus, in this review paper, we 
discussed scRNA-seq from the point of view of experiments 
and computation. Then, on independent scRNA-seq datasets for 
the same complex disease (i.e., diabetes), we compared several 
state-of-the-art scRNA-seq analysis frameworks mainly by the 
robustness of their performances in the identification of cell 
types and markers. Lastly, we elaborated on our hypothesis on 
consensus scRNA-seq analysis and summarized the potential 
indicative and predictive roles of characteristic cells in 
understanding disease heterogeneity by single-cell technologies.

MATERIALS AND METHODS

A recent review has demonstrated the principle and potential of 
scRNA-seq in a wide range of studies, including development, 

physiology, and disease (Potter 2018). It concluded that the data 
noise and cell number are the main limitations in scRNA-seq 
studies, and many research fields would benefit from its continuous 
development. In contrast, this work concentrated on the scRNA-seq-
based study from the two angles of experiments and computation. 
Especially, the robustness of scRNA-seq under changing conditions 
will decide its practical potential, e.g., in precision medicine. Thus, 
different from a previous report (Potter 2018), we further compared 
several state-of-the-art scRNA-seq analysis frameworks and 
included our hypothesis on the performance consensus.

scRNA-seq-Associated Biological 
Experiments
scRNA-seq is becoming a widely used genome-wide technology to 
detect cellular identities and dynamics, e.g., cell subpopulations, 
cell state marker genes and pathways, cell state transitions, and cell 
trajectories (Nguyen et al., 2018). This sustained improvement of 
the sensitivity, flexibility, and efficiency of scRNA-seq will help 
to resolve many biological and biomedical research questions on 
the individual cell level.

On the one hand, the rapid development of experimental 
protocols of scRNA-seq expands the measurement of mRNA 
levels to many associated fields of study (Fuzik et al., 2016; 
Hashimshony et al., 2016; Ilicic et al., 2016; Bagnoli et al., 2018; 
Han et al., 2018; Hayashi et al., 2018; Sasagawa et al., 2018). 
Especially, scRNA-seq applications have provided new insights 
into conventional biological questions, e.g., cellular heterogeneity. 
New cell types have been more widely recognized than previously 
expected (Burns et al., 2015; Usoskin et al., 2015; Rheaume 
et  al., 2018), and gene expression levels corresponding to old 
and new cell types have uncovered many biological functions 
and mechanisms that were overlooked in conventional cell 
population studies (Nelson et al., 2016; Li H. et al., 2017); single-cell 
transcriptomic characteristics can reveal more time-dependent 
features of a biological system (Zeisel et al., 2015; Zeng et al., 2017; 
Lescroart et al., 2018; Liu D. et al., 2018), whereas the pseudo-time 
of single cells would mimic the actual dynamic biological process 
(Kowalczyk et al., 2015; Cacchiarelli et al., 2018). Taking all of 
the above novelties together, we can deepen our understanding 
on the complex mechanisms underlying cell-to-cell variation. 
These complex dynamic responses are controlled by regulatory 
cell-to-cell communication, which is also responsible for cellular 
heterogeneity (Shalek et al., 2014).

Measuring Regulatory Elements in a Single Cell
Cell-specific transcriptional signals might be regulated by the 
high-order structural folding of nucleosomes (Nagano et al., 
2017; Lando et al., 2018), which can be investigated by combining 
scRNA-seq with other single-cell approaches (Stevens et al., 2017; 
Liu T. et al., 2018; Mezger et al., 2018). Of note, current scRNA 
profiling methods usually destroy cells during the analysis 
process, hindering the measurement of temporal gene expression 
changes. However, some information on biological dynamics 
will always be present in the data. For example, the continuum 
of molecular states in a population can reflect the trajectory or 
pseudo-time of a typical cell, so various methods increase their 
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power by reconstructing the trajectory by quantification of a 
group of cells in multiple static snapshots (Weinreb et al., 2018).

Measuring Post-transcriptional Regulations 
in a Single Cell
Understanding nongenetic cellular heterogeneity will help to 
characterize complete biological mechanisms in live cells, but 
little knowledge is available on the heterogeneity of regulatory 
modifications between individual cells. For example, microRNAs 
(miRNAs) are small RNAs that regulate gene expression in a post-
transcriptional manner and might reduce cell-to-cell variability 
on the protein level by repressing mRNA translation or promoting 
mRNA degradation. Although the wet experimental evidence 
for the roles of miRNA in individual cells is limited, great efforts 
have been made to investigate such regulatory modifications in 
single cells (Fan et al., 2015). For instance, single-cell Quartz-
Seq technology was developed to identify different kinds of 
nongenetic cellular heterogeneity in a quantitative manner 
(Sasagawa et al., 2013). Single-cell small RNA sequencing and 
analysis techniques have supplied much evidence that miRNAs 
could be potential molecular biomarkers for indicating the type 
and state of particular cells (Faridani et al., 2016). Moreover, using 
a combination of scRNA-seq data and mathematical modeling, it 
is also possible to detect key miRNAs as cell type-specific post-
transcriptional regulators (Rzepiela et al., 2018).

Measuring Upstream Regulatory Factors in a Single 
Cell
Individual cells within different subpopulations can show 
significant variations when responding to external stresses, but 
the nature of this cellular heterogeneity is not clear, especially the 
remarkable alterations in the transcriptional architecture (Xue et al., 
2013; Edsgard et al., 2016; Gasch et al., 2017). Fortunately, scRNA-
seq provides high resolution to genetics by linking phenotypes to 
cell-specific gene functions, and the genetic screening of single 
cells can even be realized now (Birnbaum 2018; Raj et al., 2018). For 
example, the Perturb-seq was designed to combine scRNA-seq and 
CRISPR-based perturbations to detect individual perturbations 
causing target gene changes, gene signature appearances, genetic 
interaction rewiring, and cell state transitions (Dixit et al., 2016), 
e.g., discovering previously unknown immune circuits (Jaitin et al., 
2016). Next, the allele-sensitive scRNA-seq could recognize clonal 
and dynamic monoallelic expression patterns (Reinius et al., 2016) 
or analyze allele-specific cis-control in genome-wide expressions 
(Deng et al., 2014; Jiang et al., 2017). Besides, focusing on the 
quantitative trait locus (QTL), the computational tool demuxlet 
was implemented to perform expression QTL (eQTL) analysis, 
which can identify natural genetic variation within multiplexed 
droplet scRNA-seq to evaluate cell type-specific gene expression 
changes (Kang et al., 2018). Similarly, some new cell type-specific 
“co-expression QTLs” have even been detected according to the 
genetic variants, significantly altering co-expression relationships 
(van der Wijst et al., 2018).

Measuring Downstream Regulation in a Single Cell
The cell-to-cell regulatory communication plays important roles 
in cellular diversity across diverse biological systems, which is an 

important factor in the evolution of observed cell types. scRNA-
seq provides a powerful tool to analyze particular regulatory 
mechanisms and their downstream influence in a corresponding 
subset of cells (Chu et al., 2016; Korthauer et al., 2016; Enge 
et al., 2017; Severo et al., 2018). For example, the integration of 
transcription factor expression, chromatin profiling, and sequence 
motif analysis can be effective to identify the cell-specific genomic 
regulation underlying cell-specific gene expression (Sebe-Pedros 
et al., 2018). Similarly, the integration of information about 
single-cell transcriptomics and cell-free plasma RNA provides 
the potential to uncover longitudinal cellular dynamics of cells in 
complex biological processes or pathological development (Tsang 
et al., 2017). Next, a two-part method combining a generalized 
linear model and gene set enrichment analysis on single-cell 
data provided evolutionary insights in gene co-expression 
by experimental treatments (Finak et al., 2015). In addition, 
benefitting from time-course data obtained by scRNA-seq, it is 
possible to characterize the fate decision and transcriptional 
control of self-renewal, differentiation, and maturation of 
particular cells (Su et al., 2017), and transient cellular states 
corresponding to asynchronous cellular responses can be 
observed under conditional perturbations (Rizvi et al., 2017).

scRNA-seq-Associated Analytic 
Computations
As seen in the above summary, scRNA-seq technologies are 
swiftly developing. They are greatly beneficial to the investigation 
of transcriptional landscapes at the single-cell level, where they 
are able to profile cell-to-cell variability in cell populations 
and characterize unexpected heterogeneity of transcription in 
originally thought homogeneous cell populations. Although many 
computational methods for analyzing scRNA-seq data have been 
extensively developed, tested, and validated on simulated datasets, 
scRNA-seq protocols are still complex so that bias will easily 
occur in downstream analysis. In fact, computational models 
and tools available for the design and analysis of scRNA-seq 
experiments (Table 1) have their advantages and disadvantages 
in various settings, and many questions have yet to be solved 
in this exciting area (Bacher and Kendziorski, 2016). Similar to 
other high-throughput sequencing technologies, the general 
actions on scRNA-seq data include several key steps before the 
follow-up analysis for single cells (Jia et al., 2017; Li Y. H. et al., 2017; 
McCarthy et al., 2017; Chen W. et al., 2018; Vu et al., 2018), i.e., pre-
procession (e.g., zero imputation) (Li and Li, 2018; Van den Berge 
et al., 2018), quality control (e.g., variation analysis) (Brennecke 
et al., 2013; Ding et al., 2015; Jiang et al., 2016; Eling et al., 2018; 
Lu et al., 2018), normalization (Bacher et al., 2017; Cole et al., 
2017; Haghverdi et al., 2018; Tian et al., 2018), and visualization/
simulation (Zappia et al., 2017). Although scRNA-seq studies 
have provided revolutionary tools to assist researchers to address 
scientific questions previously hard to investigate directly, several 
computational challenges are beginning to arise.

Challenge of Cluster Analysis of Single Cells
The detection of cell types from heterogeneous cells is an 
important step in the development of scRNA-seq data analysis 
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in biological research (Marinov et al., 2014; Lin C. et al., 2017; Jin 
et al., 2018; Kiselev et al., 2019). Different methods use distinct 
characteristics of data and gain varying outcomes in terms of both 
the number of clusters and the cluster assignment of cells (Ntranos 
et al., 2016; Kim et al., 2018; Risso et al., 2018). Many approaches, 
such as SAFE clustering (Yang et al., 2018), DendroSplit (Zhang 
J. et al., 2018), scmap (Kiselev et al., 2018), MetaNeighbor (Crow 
et al., 2018), scVDMC (Zhang H. et al., 2018), CIDR (Lin P. et al., 
2017), SC3 (Kiselev et al., 2017), scLVM (Buettner et al., 2015), 
and RaceID (Grun et al., 2015), have been developed to promote 
the efficiency of clustering single cells. They promote the 
clustering consensus, interpretability, subjectivity, comparability, 
and replicability. However, the biological significance, number 
estimation, and computational speed of such clustering analysis 
still require significant improvements (Duan et al., 2018).

Challenge of Identity Analysis of Single Cells
scRNA-seq has brought transcriptome research to a higher 
resolution as the “up or down” expression pattern can be 
examined at the single-cell level (Chen L. et al., 2018; Xie et al., 
2019). The projection of high-dimensional data into a low-
dimensional subspace will be a powerful strategy for mining 
such extensive data (Zeng et al., 2016; Yip et al., 2018; Yu and 
Zeng, 2018). Statistic-based approaches, such as PowsimR (Vieth 

et al., 2017), BPSC (Vu et al., 2016), Linnorm (Yip et al., 2017), 
and Oscope (Leng et al., 2015), have been established to evaluate 
differential expression among individual cells. Especially, latent 
factor-based analysis will be useful to find hidden biological 
signals and corresponding gene components from scRNA-seq 
samples (Buettner et al., 2017; Yu, 2018). However, to guarantee 
the biological meaning of detected cell identities, it is still 
necessary to discriminate the real and dropout zeros in scRNA-
seq data (Miao et al., 2018). It is also essential to identify the 
combination of binary and continuous regulation in individual 
cells (Wu et al., 2018) and to integrate the nonlinear projection 
with prior-known biological knowledge (Li X. et al., 2017).

Challenge of Trajectory Analysis of Single Cells
The single-cell experiments provide a great chance to rebuild 
a sequence of changes in a dynamical process of the biological 
system from individual “snapshots” of cells (Matsumoto et al., 
2017; Gong et al., 2018). The construction of a pseudo-temporal 
path as cell orders would be a useful way to characterize 
dynamical gene expression in a heterogeneous cell population, 
assuming the existence hypothesis of gradual transition of the 
cell transcriptome (Specht and Li, 2017; Herring et al., 2018; 
Shindo et al., 2018; Strauss et al., 2018). For example, based on 
the minimum spanning tree approach, the Tools for Single Cell 

TABLE 1 | List of computational tools for single-cell RNA sequencing (scRNA-seq) analysis.

Category ID Access Code and citation

Pre-procession scater Bioconductor R (McCarthy et al., 2017)
scPipe Bioconductor R (Tian et al., 2018)
GRM http://wanglab.ucsd.edu/star/GRM R (Ding et al., 2015)

Cell clustering SAFEclustering http://yunliweb.its.unc.edu/safe/ R (Yang et al., 2018)
DendroSplit Github Python (Zhang J. et al., 2018)
clusterExperiment Bioconductor R (Risso et al., 2018)
scmap Bioconductor R (Kiselev et al., 2018)
scVDMC Github Matlab (Zhang H. et al., 2018)
CIDR Github R (Lin P. et al., 2017)
scClustBench http://www.maths.usyd.edu.au/u/SMS/bioinformatics/software.html R (Kim et al., 2018)
SNN-Cliq http://bioinfo.uncc.edu/SNNCliq Matlab & Python (Xu and Su, 2015)

Cell marking MAST Github R (Finak et al., 2015)
SC2P Github R (Wu et al., 2018)
DEsingle Bioconductor R (Miao et al., 2018)
powsimR Github R (Vieth et al., 2017)
BPSC Github R (Vu et al., 2016)
Sincell Bioconductor R (Julia et al., 2015)

Cell ordering dynverse Github R (Saelens et al., 2018)
Progra Github R (Gong et al., 2018)
p-Creode Github Python (Herring et al., 2018)

Pipeline SINCERA https://research.cchmc.org/pbge/sincera.html R (Guo et al., 2015)
SCell Github Exe (Diaz et al., 2016)
Falco Github Python (Yang et al., 2017)
ASAP Github R & python (Gardeux et al., 2017)
SIMLR Github R & Matlab (Wang et al., 2017; Wang B. et al., 2018)
SEURAT http://satijalab.org/seurat/ R (Butler et al., 2018)
Monocle Bioconductor R (Trapnell et al., 2014; Qiu et al., 2017a; Qiu et al., 

2017b)
DPT http://www.helmholtz-muenchen.de/icb/dpt R & Matlab (Haghverdi et al., 2016)

B-cell receptor 
reconstruction

VDJPuzzle bitbucket R & Python (Rizzetto et al., 2018)
bracer Github Python (Lindeman et al., 2018)

Network 
inference

SCODE Github R (Matsumoto et al., 2017)
LEAP CRAN R (Specht and Li, 2017)
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Analysis is developed for in silico pseudo-time reconstruction in 
scRNA-seq analysis (Ji and Ji, 2016). As an iterative supervised 
learning algorithm, FateID can recognize the cell fate preference 
by quantifying the lineage-specific probabilistic biases (Herman 
et al., 2018). By unsupervisedly selecting feature genes and 
judging the location and number of branches and loops, SLICER 
is able to infer highly nonlinear trajectories (Welch et al., 2016). 
However, many opportunities still exist to develop these current 
methods, particularly detecting complex trajectory topologies, 
linking pseudo-time and real-world time, determining baseline 
points, estimating transition possibility, and recognizing 
progression trends with tipping point (Zeng et al., 2013).

Challenge of Origin Analysis of Single Cells
The origin and nature of signals leading to pattern formation 
and self-organization is an essential question in developmental 
or stem cell biology. The answer would be recovered from the 
gene expressions of individual cells with spatial locations in a 
particular tissue (Vergara et al., 2017; Chen Q. et al., 2018). On the 
one hand, from the technological point of view, several methods 
have been designed for recording the spatial information of 
cells. The spatial transcriptomic technology and computational 
deconvolution can be combined to detect distinct expression 
profiles corresponding to different tissue components (Berglund 
et al., 2018). One technique that performs RT-LAMP reactions 
on a histological tissue section can preserve the original spatial 
location of the nucleic acid molecules to become an effective 
tissue analysis tool (Ganguli et al., 2018). Another technique is 
based on a panel of zonated landmark genes, where the lobule 
coordinates of mouse liver cells can be inferred according to their 
transcriptome, whereas the zonation profiles of all liver genes 
can also be characterized with high spatial resolution (Halpern 
et al., 2017). On the other hand, from the analytic point of view, 
supervised methods have been shown to be efficient, inferring 
the potential spatial distribution of cells. On the foundation of 
a reference gene expression database, e.g., the gene expression 
atlas for positional gene expression profiles within cells, an 
scRNA-seq-based high-throughput method has been applied to 
identify the spatial origin of cells (Achim et al., 2015). Obviously, 
spatial labeling technologies still need further technological 
developments for more easy and accurate testing, and the spatial 
classification and prediction of cells require more elaborate and 
efficient mathematical and computational models.

Challenge of Integrative Analysis of Single Cells
Understanding the genetic and cellular processes and programs 
driving the differentiation of diverse cell types and organ 
formation is a major challenge in developmental biology (Kelsey 
et al., 2017, Velten et al., 2017, Duren et al., 2018, Liu L. et al., 2018). 
Frameworks and software are required to perform dimension 
reduction, clustering, and visualization on scRNA-seq data to 
improve biological interpretability (Gardeux et al., 2017; Wang 
et al., 2017). Numerous methods have been implemented for 
analyzing scRNA-seq data in a whole life-cycle manner (Guo 
et al., 2015; Diaz et al., 2016; Leng et al., 2016; Yang et al., 2017). 
SparseDC solves a unified optimization problem so that it can 
carry out three tasks simultaneously, e.g., identifying cell types, 

tracing expression changes across conditions, and identifying 
marker genes for these changes (Barron et al., 2018). BigSCale 
implements a scalable analytical framework to handle millions 
of cells, so it can overcome large data challenges by the directed 
down-sampling strategy on index cell transcriptomes (Iacono 
et al., 2018). In addition to these usual analytic routines for 
conventional targets, more diverse integration models are 
required for data-driven, model-driven, hypothesis-driven, and 
combinatory bioinformatics mining in single-cell data.

Understanding Disease Heterogeneity by 
scRNA-seq Analysis
For questions in the biological and biomedical fields, human 
cancers are especially considered complex ecosystems where the 
basic elements (cells) exist in different disease states characterized 
by phenotypes and genotypes. As is well known, conventional 
methods have their limits when measuring and quantifying the 
diverse tumor (cell) composition in patients, e.g., traditional bulk 
expression profiles have to average the cells within each tumor. 
Nowadays, scRNA-seq provides a powerful technique to detect 
critical cell differences and deconvolve such cellular heterogeneity 
in disease tissues. Therefore, one important benefit obtained from 
scRNA-seq is the possibility to decipher tumor architecture (Cloney 
2017), so that it might overcome intratumoral heterogeneity, which 
hampers the success of precision medicine and is therefore a huge 
challenge in cancer treatment (Patel et al., 2014; Kim et al., 2016; 
Zong, 2017). Actually, in the context of cancer, mRNA can be used 
to identify malignant cells and diverse tumor-tissue compositions; 
such tumor compositions could indicate the cancer-associated 
cells and types determining tumor characteristics (Young et al., 
2018). Thus, scRNA-seq-based methods could be widely applied 
in clinical decision support (Tirosh et al., 2016a; Filbin et al., 2018; 
Krieg et al., 2018; Pellegrino et al., 2018).

 i) Tumor mechanism investigation. One general framework can be 
used to decipher differences between multiple classes of human 
tumors by decoupling cancer cell genotypes, phenotypes, and 
the composition of tumor microenvironment (Venteicher et al., 
2017). One single-cell analysis method has provided some 
insights into the cellular architecture of oligodendrogliomas 
and their function in development regulation, which 
potentially is compatible with the cancer stem cell model and 
its consideration in disease management (Tirosh et al., 2016b).

 ii) Tumor subtype recognition. To deconvolve the cellular 
composition of a solid tumor from bulk gene expression 
data using reference gene expression profiles from tumor-
derived scRNA-seq data, many cell types or subtypes must be 
identified accurately (Schelker et al., 2017). For example, one 
scRNA-seq study of triple-negative breast cancer identified 
the individual subpopulations with respective gene expression 
phenotypes and corresponding genotype driver candidates, 
whose associated signature genes can predict long-term 
outcomes (Karaayvaz et al., 2018).

 iii) Tumor immune therapy. Single-cell analyses have suggested 
distinct patterns in the tumor microenvironment, e.g., the 
breast cancer transcriptome has shown a wide range of 

37

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Computational Probe of Disease HeterogeneityZeng and Dai

6 July 2019 | Volume 10 | Article 629Frontiers in Genetics | www.frontiersin.org

intratumoral heterogeneity that is reshaped by both immune 
and tumor cells in a closely communicated microenvironment 
at a single-cell resolution (Chung et al., 2017). An unbiased 
scRNA-seq analysis has detected human dendritic cells and 
several monocyte subtypes in the human blood to permit 
more accurate immune monitoring in health and disease 
(Villani et al., 2017). In a more special field, the single-cell 
transcriptional information in B-cell lineages might have 
broad applications involved in vaccine design, antibody 
development, and cancer treatment (Rizzetto et al., 2018; 
Upadhyay et al., 2018).

 iv) Tumor virus-environment recognition. Indeed, the interaction 
between a host and a pathogen is a highly dynamical process, 
so the potential association between a pathogen and cancer 
is worthy of profound investigation. An scRNA-seq-based 
method, scDual-Seq, has been proposed to capture host 
and pathogen transcriptomes simultaneously (Avital et al., 
2017). In different mouse models, the hypothetical virus-
host interaction events have been found to play some key 
regulatory role in virus phenotypes involved in complex 
diseases by tracking viral RNA at single-cell resolution within 
the immune system (Douam et al., 2017).

Of course, the translational usage of scRNA-seq is not limited 
to the field of tumor biology or complex human diseases; it is 
expected to have great potential and to enjoy a wide range of 
applications in biological and biomedical fields, such as infant 
development, health and wellness, and disease monitoring.

Design of Hypothesis and Theory Study 
on scRNA-seq Analysis Robustness
As is well known, scRNA-seq analysis is used to compare the 
expression levels of multiple genes at single-cell resolution 
(Tang et al., 2009). Different from the conventional population-
based biological technologies for gene expression measurement 
(e.g., bulk gene expression), scRNA-seq is able to distinguish 
the expression differences between individual cells rather than 
tissues. With the continuous development of such technology, 
the testing cost is decreasing, whereas the number of cells that can 
simultaneously be tested is increasing exponentially. Some recent 
reviews have summarized these technological developments 
and protocol improvements in scRNA-seq analyses (Svensson 
et al., 2017; Ziegenhain et al., 2017; Svensson et al., 2018). An 
inspiring observation is that the number of tested cells and the 
number of detected genes can vary significantly depending 
on the corresponding experimental platforms. For example, 
SMART-seq2 is able to detect about 10,000 genes and achieve 
the highest accuracy, but the number of cells analyzed by this 
method is only 100 to 1,000 (Picelli et al., 2013; Picelli et al., 
2014). In contrast, Drop-seq is able to test more than 10,000 cells 
simultaneously, but the number of genes detected is usually less 
than 5,000 (Macosko et al., 2015). Recently, several commercial 
platforms, such as 10X Genomics Chromium, Fluidigm C1, and 
Wafergen ICELL8, were available for scRNA-seq analysis with 
the capability to measure hundreds to millions of cells through a 
simple and fast workflow.

Researchers are usually required to select the suitable 
experimental protocol to design the follow-up scRNA-seq analysis 
based on corresponding biological questions:

i) If one aims to discover new cell types with distinct expression 
patterns, more cells should be tested because it is impossible 
to find rare cell types from only a few hundred cells by chance.

ii) If one aims to analyze the changes in gene expression between 
different cell types or developmental stages or to analyze the 
gene interactions to find some key regulatory genes, more 
genes have to be measured with high accuracy.

iii) If one aims to analyze particular cell types by isolating a subset 
of cells for sequencing, fluorescence-activated cell sorting or a 
similar technology needs to be used to select the cells with cell 
type-specific cell surface markers.

To evaluate and investigate the robustness of different scRNA-
seq analysis methods, we have carried out two comparisons on 
multiple scRNA-seq datasets.

The aim of the first comparison is to discuss the experimental 
factors for scRNA-seq analysis. As is well known, the accuracy 
of RNA-seq data analysis is dependent on the experimental 
methods, especially the sequencing depth and dropout rate. To 
test these experimental factors before further evaluation, we 
compared four datasets on two different experimental platforms: 
GSE81608 (Xin et al., 2016) and GSE83139 (Wang et al., 2016) 
on an Illumina HiSeq 2500 and GSE86469 (Lawlor et al., 2017) 
and GSE81547 (Enge et al., 2017) on an Illumina NextSeq 500. 
All of these datasets come from the single-cell studies of human 
pancreatic islet cells so that their computational results will be 
comparable, and the number of clusters for each method was fixed 
to be the same as the number of biological classes corresponding 
to each dataset, as shown in Table 2.

The aim of the second comparison is to discuss the analytic 
approaches for scRNA-seq analysis. The performance of 
dissimilar methods on different real datasets of the same complex 
disease is important to evaluate, because performance robustness 
will be strictly required for biomedical studies and applications. 
Thus, we have employed several widely used methods in a few 
public scRNA-seq datasets from complex disease studies, which 
are listed in Table 3. According to the above summary, we 
actually evaluated the performances on cell cluster, cell identity, 
and cell trajectory. These methods’ parameter settings are listed 
in the supplementary files (Supp 1).

 i) For cell clustering analysis, traditional methods, such as 
hierarchical clustering, k-means, and scRNA-seq-induced 
SIMLR (Wang et al., 2017; Wang B. et al., 2018), SNN-Cliq 
(Xu and Su, 2015), and SEURAT (Butler et al., 2018) have 
been evaluated and compared.

 ii) For cell pseudo-time analysis, the Monocle (Trapnell et  al., 
2014; Qiu et al., 2017a; Qiu et al., 2017b) and diffusion 
pseudo-time (DPT) (Haghverdi et al., 2016) have been tested 
and compared.

Of note, to quantitatively measure and compare the analysis 
accuracy of cell clusters from different methods, the conventional 
adjusted rand index (ARI) is applied. Given a dataset of n cells, 
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the experimentally determined cell types are X1, X2, …, Xr and the 
calculated clusters are Y1, Y2, …, Ys. The number of cells that belong 
to cell type Xi is denoted as ai, the number of cells  that  belong 
to cluster Yj is denoted as bj, and the number of cells that belong to 
both Xi and Yj is denoted as nij, which means nij = |Xi ∩ Yj|. Then, the 
ARI is calculated as follows:
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RESULTS AND DISCUSSION

Experimental Factors for scRNA-seq 
Analysis
The experimental processes of the four datasets presented in 
Table 2 are briefly summarized below.

 1) For GSE81608 (Xin et al., 2016), islets were handpicked and 
enzymatically digested; during RNA in situ hybridization, the 
cells were permeabilized and hybridized with combinations 
of mRNA probes and a multiplex fluorescent kit was used to 
amplify the mRNA signal. Sequencing was performed on an 
Illumina HiSeq2500 in rapid mode by multiplexed single-
read run with 50 cycles.

 2) For GSE83139 (Wang et al., 2016), human islets require 
careful sample acquisition and preparation; the SMART-seq 

method was used for first-strand cDNA synthesis and 
polymerase chain reaction (PCR) amplification. All of the 
libraries were sequenced on the Illumina HiSeq 2500 with 
100 bp single-end reads.

 3) For GSE86469 (Lawlor et al., 2017), islets are systematically 
acquired, processed, and dissociated; then, single-cell 
processing is carried out on the C1 single-cell Autoprep 
system. All of the sequencing was performed on an Illumina 
NextSeq500 using the 75-cycle high-output chip.

 4) For GSE81547 (Enge et al., 2017), the experimental models 
and human pancreas or islet samples were conducted in 
accordance with guidelines; during flow cytometry, isolated 
human islets were dissociated into single cells by enzymatic 
digestion using Accumax (Invitrogen). Next, single-cell RNA-
seq libraries were generated as described in the literature, and 
barcoded libraries were pooled and subjected to 75 bp paired-
end sequencing on the Illumina NextSeq instrument.

Of course, the whole experimental process should be consistent; 
however, the scRNA-seq wet experiments in different studies 
were conducted with different parameters and under different 
circumstances, which are worthy of future evaluation. Although 
sequencing platforms are only one part of the scRNA-seq 
experiment, we tried to include them for the comparison study in 
this work. In Table 2, we see that there is no obvious performance 
difference between two experiment platforms; however, the 
accuracy (i.e., ARI) seems to increase when the number of 
detected genes becomes large for almost all of the tested methods, 
which is consistent with a previous conclusion (Potter, 2018) and 
implies that the influence of sequencing depth is very important 

TABLE 2 | Clustering performances of four datasets with different experiment methods represented as adjusted rand index (ARI).

GSE81547 GSE83139 GSE81608 GSE86469

Experiment platforms NextSeq 500 HiSeq 2500 HiSeq 2500 NextSeq 500
Number of cells 2,282 635 1,600 617
Number of detected genes per cell on 
average

3,281 5,638 5,706 8,339

Number of potential cell types* 6 8 4 7
Hierarchical clustering 0.34 0.25 0.46 0.63
k-means 0.34 0.27 0.44 0.48
tSNE+k-means 0.37 0.34 0.54 0.72
SIMLR 0.34 0.32 0.51 0.61
SNN-Cliq 0.10 0.31 0.05 0.61
SEURAT 0.31 0.31 0.45 0.89

*GSE81547 includes alpha cells, beta cells, delta cells, acinar cells, mesenchyme cells, and ductal cells. GSE83139 includes alpha cells, beta cells, delta cells, PP cells, acinar cells, 
mesenchyme cells, ductal cells, and dropped cells. GSE81608 includes alpha cells, beta cells, delta cells, and PP cells. GSE86469 includes alpha cells, beta cells, delta cells, PP 
cells, acinar cells, stellate cells, and ductal cells.

TABLE 3 | Summary of evaluation datasets on human complex diseases.

Data ID Purpose Platform #scRNA-Seq #Class

GSE69405 scRNA-seq identifies subclonal heterogeneity in anticancer drug 
responses of lung adenocarcinoma cells

HiSeq 2500 176 3

GSE73121 scRNA-seq in optimizing a combinatorial therapeutic strategy in 
metastatic renal cell carcinoma

HiSeq 2500 118 3

GSE81608 scRNA-seq on human islet cells revealing type 2 diabetes genes HiSeq 2500 1600 4
GSE83139 scRNA-seq of the human endocrine pancreas HiSeq 2500 635 8
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in the experimental protocol for follow-up data analysis. Of note, 
the parameter setting for each compared method in this work is 
outlined in the supplementary files (Supp 1).

Analytic Approaches for scRNA-seq 
Analysis
First, it can be seen that the datasets after dimension reduction 
by t-distributed stochastic neighbor embedding (tSNE) (Maaten 
and Hintton, 2008) exhibit better performances in conventional 
k-means clustering than the initial dataset, which is due to the 
noise reduction of scRNA-seq data. Dimension reduction can 
be used in the visualization of such phenomena, which reduces 
one dataset from high-dimensional data space to two- or three-
dimensional data space. Figure 1A illustrates the performances 
of principal component analysis (PCA) and tSNE on multiple 
datasets. It is clear that tSNE, a nonlinear method, can usually 
achieve better visualization effects than PCA, a linear method. 
This is because tSNE can group the cell points from one class 
cluster together and keep the cell points from different classes 
separated from each other. The quantitative measurement of the 
influence of PCA and tSNE by the Davies-Bouldin index also 
supported this conclusion, as shown in the supplementary files 
(Supp 2). Of note, due to the large computational complexity of 
nonlinear methods, the general strategy for large data analysis 
includes two steps. The first is to reduce the dimension to 20 to 50 
by PCA, and the second is to reduce such moderate dimension to 
2 to 3 by tSNE. This strategy is expected to achieve a good balance 
between computational performance and resource consumption.

Second, in the cell clustering analysis, the analyzed genes are 
selected that exhibit expression in at least three cells, so that most 
genes have actually been used. For hierarchical clustering, k-means, 
tSNE+k-means, and SIMLR, the number of clusters for each 
method was fixed to be the same as the number of biological classes 
corresponding to each dataset, as shown in Table 3. For SNN-Cliq 
and SEURAT, the parameters were adjusted to guarantee that the 
number of final clusters was the same as the number of biological 
classes in those datasets, as shown in Table 3. In other words, the 
number of clusters for every method is the same for one dataset to 
make different methods fairly comparable to ARI. As seen in Figure 
1B, it is obvious the performances of tSNE+k-means, SIMLR, and 
SEURAT were better than those of others with higher ARI values 
in most scRNA-seq datasets. In addition, although tSNE+k-means, 
SIMLR, and SEURAT have similar performances with regard to 
ARI, they usually accurately detected different true classes (Figure 
1C). This means different methods would have different analysis 
preferences due to different underlying mathematical or biological 
frameworks and explanations of scRNA information.

Third, scRNA-seq data follow a time series and the expression 
of cells may change continuously. For this kind of dataset, some 
statistical methods can be used to order the cells one by one along a 
trajectory, which is called pseudo-time or pseudo-trajectory. This 
mathematical model has been widely applied in developmental 
biology to reconstruct the differentiation processes and find 
the key time point of differentiation (Cannoodt et al., 2016). In 
addition, cell pseudo-time analysis can also be used in studies 
of cancer and diabetes to reconstruct the occurrence and 

transformation processes of complex diseases. Thus, the Monocle 
and DPT have been carried out for pseudo-time analysis on 
multiple scRNA-seq datasets; these two computational methods 
are dependent on entirely different principles. In this cell pseudo-
time analysis, the most expression-variable genes are selected 
as feature genes for downstream analysis. As shown in Figure 
1D, the feature genes exhibit great differences between datasets 
with different biological backgrounds; however, the two datasets 
on similar biological phenotypes still have much overlap (i.e., 
the feature genes from two datasets related to tumor cells with 
treatments or those from two datasets associated with diabetes). 
Of note, using human pancreas scRNA-seq datasets in another 
platform (i.e., GSE86469 and GSE81547; Table 2) as controls, the 
top 50 selected feature genes from the total four datasets indeed 
had more overlapping genes, as listed in the supplementary files 
(Supp 3). In Figure 1E, it is seen that both Monocle and DPT 
are able to reconstruct the pseudo-time with branches, and DPT 
seems to obtain more accurate results as the cells of the same cell 
type tend to group together. Meanwhile, the pseudo-time and 
branch point seem to be clearer in the analyses of Monocle. Of 
note, the performance of pseudo-time analysis will be strongly 
influenced by the selected feature genes. In this comparison, 
the most expression-variable genes were used, but usually it 
would be much better to select the feature genes based on the 
prior biological knowledge in each case study. Furthermore, the 
consistency of pseudo-time results from different methods is 
considered and evaluated. As shown in Figure 2, the correlations 
between the first principal components of the pseudo-time 
results from Monocle and DPT have been calculated. Then, the 
estimation similarities of cell orders in particular cell classes 
from different methods are compared. It is obvious that the cell 
order correlations have huge variances in a wide range among 
different prior-known cell classes. In addition, two other pseudo-
time methods, Wanderlust (Bendall et al., 2014) and SCUBA 
(Marco et al., 2014), were also applied to reconstruct the pseudo-
time trajectory of single cells without branch, as discussed in the 
supplementary files (Supp 4). The observations and conclusions 
were similar. Thus, in the pseudo-time analysis, consensus 
performance of dissimilar methods is weak currently.

CONCLUSION

scRNA-seq has opened a new way to study complex biological 
phenomena on the single-cell level, which will be especially 
helpful in the research of complex diseases. However, to 
enhance its performance in actual applications, e.g., in the clinic, 
several improvements are still required. For cell clustering and 
identification, gene networks rather than separate genes would be 
more important and reliable to characterize cell states (e.g., network 
biomarkers for disease subtypes) (Zeng et al., 2014; Zeng et al., 
2016). For the cell order, the start or end point of pseudo-time is 
still a manual judgment, and the auto-determination of these time 
points will render these methods more flexible and applicable (e.g., 
temporal driving for disease causality) (Yu et al., 2017; Wang et al., 
2018; Setty et al., 2019). The branch point of pseudo-time also 
requires more models on critical transitions (e.g., tipping point for 
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FIGURE 1 | Summary of performance comparison.
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disease transition) (Zeng et al., 2013; Li et al., 2014). Particularly, 
the assembling method with good consensus on different datasets 
is expected to provide more robust integrative scRNA-seq methods 
for biological and biomedical studies (e.g., pattern fusion for disease 
heterogeneity) (Shi et al., 2017; Guo et al., 2018).
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Cancer is a disease often characterized by the presence of multiple genomic alterations, 
which trigger altered transcriptional patterns and gene expression, which in turn sustain 
the processes of tumorigenesis, tumor progression, and tumor maintenance. The links 
between genomic alterations and gene expression profiles can be utilized as the basis to 
build specific molecular tumorigenic relationships. In this study, we perform pan-cancer 
predictions of the presence of single somatic mutations and copy number variations using 
machine learning approaches on gene expression profiles. We show that gene expression 
can be used to predict genomic alterations in every tumor type, where some alterations 
are more predictable than others. We propose gene aggregation as a tool to improve the 
accuracy of alteration prediction models from gene expression profiles. Ultimately, we 
show how this principle can be beneficial in intrinsically noisy datasets, such as those 
based on single-cell sequencing.

Keywords: NGS (next generation sequencing), genomics, cancer, TCGA, single-cell sequencing

INTRODUCTION

Cancer is a molecular disease occurring when a cell or group of cells acquire uncontrolled 
proliferative behavior, conferred by a multitude of deregulations in specific pathways (Hanahan 
and Weinberg, 2011). As is implied by such a broad definition, cancer is a highly heterogeneous 
disease, showing remarkably different molecular, histological, genetic, and clinical properties, 
even when comparing tumors originating from the same tissue (Meacham and Morrison, 2013). 
Many cancers are characterized by the presence of single nucleotide or short indel mutations 
and/or copy number alterations, which appear somatically at the early stages of oncogenesis 
and can drive tumor progression (Bozic et al., 2010). Cancers can be broadly divided in two 
classes: the M class, where point mutations are prevalent, and the C class, where copy number 
variations (CNVs) are more numerous and are often associated with TP53 mutations. Tumor 
class influences anatomic location. Most ovarian cancers, for example, belong to the C class, 
while most colorectal cancers belong to the M class, although many exceptions do exist  
(Ciriello et al., 2013).

The Cancer Genome Atlas (TCGA) project (Chang et al., 2013) has recently undergone a 
major effort to collect vast amounts of information on thousands of distinct tumor samples. The 
TCGA data collection, commonly referred to as the “pan-cancer” dataset, provided the scientific 
community with an avalanche of data on DNA alterations, gene expression, methylation status, 
and protein abundances among others, with the critical mass necessary to identify rarer driver 
tumorigenesis effects in many types of cancers (Brennan et al., 2013; Cancer Genome Atlas 
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Network, 2015; Leiserson et al., 2015). By combining all 33 
TCGA datasets, Bailey and colleagues (Bailey et al., 2018) 
recently outlined a pan-cancer map of which mutations can be 
drivers for the progression of cancer.

The availability of thousands of samples measuring many 
different variables in cancer has allowed scientists to generate 
statistical models of relationships between different molecular 
species. A pan-cancer correlation network between coding 
genes and long noncoding RNAs, for example, sheds light on 
the function of non-coding parts of the transcriptome (Liu 
and Zhao, 2016). More recently, mutations on transcription 
factors (TFs) have been linked to altered gene expressions 
and phosphoprotein levels in 12 TCGA tumor type datasets 
(Osmanbeyoglu et al., 2017). Network approaches have been 
applied to identify clusters of coexpressed genes, shared by 
multiple cancer types (Kim and Kim, 2018). Several studies 
have sought to characterize the relationships between genomic 
status and expression levels in cancer, trying to identify 
commonalities across different cancer types (Ghazanfar and 
Yang, 2016; Sharma et al., 2018). In particular, Alvarez and 
colleagues (Alvarez et al., 2016) have postulated that the effect 
of genomic alterations in cancer can be more readily assessed 
by aggregating gene expression profiles into transcriptional 
networks, rather than by profiles taken separately.

While the association between genomic events and gene 
expression is proven in several scenarios, it remains to be 
seen if it can be assessed in scenarios where fully quantitative 
readouts are unavailable, such as low-coverage samples. One 
of these scenarios is single-cell sequencing (Nawy, 2013), often 
carried out in experiments where thousands of mutations are 
generated via a system of pooled CRISPR-Cas9 knockouts 
(Datlinger et al., 2017).

To our knowledge, there is no study trying to identify 
relationships between all genomic alteration events (somatic 
mutations/indels and CNVs) and global gene expression 
across cancers. In this study, we use 24 TCGA tumor datasets 
to investigate whether gene expression can be used to predict 
the presence of specific genomic alterations in several 
cancer tissue contexts. To this end, we leverage the current 
availability of a vast family of machine learning algorithms 
(Kuhn, 2008). We investigate whether some gene alterations 
can be better modeled than others and whether using 
grouped gene expression profiles as aggregated variables can 
effectively identify specific genomic alterations. Finally, we 
test whether predicting mutations and CNVs can be carried 
out in an intrinsically noisy single-cell RNA-Seq (scRNA-Seq) 
transcriptomics datasets.

RESULTS

Collection of Pan-Cancer Dataset
We downloaded the most recent version of the TCGA 
datasets available on Firehose (v2016_01_28), encompassing 
mutational, CNV, and gene expression data. Initially, we 
organized the expression data as a matrix of 9,642 samples 

and 20,531 genes, visualized in Figure 1A using T-distributed 
stochastic neighbor embedding (TSNE; van der Maaten and 
Hinton, 2008) clustering and two-dimensional (2D)-density 
estimates for each tumor type. As observed before (Chen et 
al., 2018), the transcriptional properties of TCGA tumors 
separate tumor types by tissue of origin. In particular, two 
tumor types segregate into two subgroups: breast cancer, 
which subdivides into a major luminal cluster and a smaller 
(in terms of samples collected) basal cluster (Perou et al., 
2000); and esophageal carcinoma, which roughly subdivides 
into adenocarcinomas and squamous cell carcinomas  
(TCGA network, 2017).

We then aggregated the single nucleotide and short indel 
somatic mutation data from the same samples for which we 
had collected gene expression. As is widely known, TP53 is 
the most mutated gene in human cancer (Figure 1B), followed 
by PIK3CA, SYNE1, and KRAS. As shown before (Ciriello 
et al., 2013), some tumor types are characterized by a high 
presence of somatic mutations. In particular, lung squamous 
carcinoma (LUSC), mesothelioma, and esophageal cancer 
carry at least one of these events in almost 100% of the samples 
in the TCGA dataset. In the figure, we filtered out commonly 
known nondriver mutations (Lawrence et al., 2013), such as 
those happening in long genes like TTN and OBSCN, but we 
kept them in all following analyses for the sake of completion. 
A representation of all mutated genes, including blacklisted 
ones, is available in Figure S1. Some tumors are characterized 
by the prevalence of a mutation in a specific gene, such as the 
G-protein coding BRAF in thyroid carcinoma (Kimura et al., 
2003) or IDH1, translating into isocitrate dehydrogenase, in 
low-grade glioma (Yan et al., 2009).

Finally, we obtained readouts of CNV status for all TCGA 
samples. CNVs can have different extensions in terms of 
nucleotides affected and can sometimes encompass entire 
chromosomes (Shlien and Malkin, 2009) and the thousands 
of genes therein. In order to limit the number of variables to 
a more meaningful subset, we assigned a CNV score to every 
gene, according to the copy number score of the genomic 
region most overlapping with the University of California, 
Santa Cruz-annotated gene boundaries (genome version 
hg19). We then tested models for all genes affected by a 
CNV in at least 10 samples [extending what was previously 
done in Chen et al. (2014)]. In order to make CNV variables 
comparable with the mutational ones, we defined a cutoff 
for presence or absence by using the log2(CNV) threshold of 
0.5, which roughly corresponds to at least one copy gain for 
amplifications, and at least one copy loss for deletions (see 
Materials and Methods). We then reported their abundance in 
the pan-cancer dataset, distinguishing between amplifications 
(Figure 1C) and deletions (Figure 1D). As previously shown 
(Ciriello et al., 2013), virtually all ovarian cancer samples are 
characterized by at least one CNV event. Among the most 
amplified genes, we find the oncogenes SOX2 (Bass et al., 2009), 
EGFR (Bell et al., 2005), and MDM2 (Momand et al., 1998), 
and also a noncoding gene, PVT1, the most amplified gene 
in breast cancer, with proven but as-of-yet uncharacterized 
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proto-oncogenic effects (Colombo et al., 2015; Li et al., 2017). 
Among the most deleted genes (Figure 1D), we observe well-
known tumor-suppressor genes, such as CDKN2A (Usvasalo 
et al., 2008; Mistry et al., 2015) and PTEN (Zhao et al., 2017; 
Wang et al., 2018).

Modeling Cancer Alterations With Gene 
Expression
After collecting all the expression and genomic alteration data 
from TCGA, we set out to generate models that are able to predict 
the presence or absence of each event by virtue of gene expression 
data in the contexts of all collected tumor types.

We tested several modeling algorithms for classification 
using the aggregator platform for machine learning caret 
(Kuhn, 2008) in the bladder cancer mutational dataset 
(Robertson et al., 2017). In our rationale, we tested at least 

one algorithm from every major machine learning family 
(decision trees, support vector machine, neural networks, and 
linear models; see Methods for a full list). We observed that 
all models provide better-than-random predictions for the 
majority of mutational events, in terms of area under the ROC 
curve (AUROC) (Figure  2) (Fawcett, 2006). For the bulk of 
the subsequent analysis, we selected the top-scoring algorithm 
in this test, the gradient boost modeling algorithm (gbm), a 
well-established tree-based boosting model (Friedman, 2001), 
due to its robustness and speed of implementation. In all our 
test runs (Figure 2 for bladder cancer and Figure S2 for liver 
hepatocellular carcinoma), gbm models are not significantly 
different (in terms of AUROC comparison, two-tailed Wilcoxon 
Test p > 0.1) from other well-performing algorithms, such as 
linear discriminant analysis or support vector machine.

We therefore calculated gbm models for all tumor types of 
at least 100 samples with co-measured expression and CNV or 

FIGURE 1 | The Cancer Genome Atlas (TCGA) dataset used. (A) T-distributed stochastic neighbor embedding (TSNE) clustering of TCGA samples based on gene 
expression profiles. The 2D median of each tumor type is indicated using the TCGA tumor code. Subset size is indicated in brackets next to tumor type names to 
the right. (B) Table of most somatically mutated genes across TCGA tumor samples, in terms of number of samples where the gene is somatically mutated with 
altered protein product sequence. (C) Table of most amplified genes across TCGA tumor samples. (D) Table of most deleted genes across TCGA tumor samples. 
The fraction of total TCGA samples carrying a gene-targeting event is indicated to the right of panels (B–D), and the fraction of samples where more than 0.5% of 
the genes is affected by the panel event type is indicated to the bottom of panels (B–D).
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mutations, which included 24 of the 33 TCGA tumor types. The 
models were predictive of genomic events observed in no less 
than 5% and no more than 95% of the patients in the dataset, 
and at least in 10 samples. Our results show that in all tumor 
types, a machine learning algorithm based on gene expression 
is consistently better than a random predictor (AUROC line at 
0.5) at correctly classifying tumor samples for the presence or 
absence of specific genomic alteration events (Figure 3 and 
Supplementary Table S1).

We focused on TP53 somatic alteration models not only 
because this tumor suppressor gene is frequently mutated or lost 
in cancer (Figure 1) but also because its loss of function is one 
of the most common driver events associated to tumorigenesis 
(Petitjean et al., 2007). In our study, TP53 mutations are well 
modeled in many of these tumor types (Figure 3), being the most 
well-predicted mutational event in both acute myeloid leukemia 
and low-grade glioma. In these tumors, loss-of-function somatic 
mutations of TP53 have been recurrently found as driver events 
for tumor initiation (Venneti and Huse, 2015; Metzeler et al., 
2016 ). We could also model the presence of a copy loss of TP53 
in sarcoma, which can be predicted with an accuracy of 70%. 
Ovarian and pancreatic cancer datasets presented exceptional 
cases, where TP53 is mutated virtually in all patients (next to 
95%) (Cole et al., 2016; Cicenas et al., 2017). This presents a 
challenge for the modeling algorithm, as there are not enough 
wild-type samples to perform a robust training (TP53 model 
performances in these tumors are close to 0.5, i.e. randomness).

We further focused on models predicting KRAS, a very 
important oncogene whose protein product is fundamental 
in transmitting proliferation signals in the early steps of the 
mitogen-activated protein kinase cascade (Tsuchida et al., 1982). 
KRAS’s role in cancer is caused by specific point mutations in 

its guanosine triphosphate-binding domain, which make it 
constantly active and therefore a deregulated signal transducer 
for proto-oncogenic pathways (Kranenburg, 2005). Our results 
confirm the key role of KRAS-targeting somatic mutations, 
which are well modeled by gene expression in KRAS-driven 
tumors: colon, lung, pancreas, stomach, and testicular cancers, 
as well as cervical squamous carcinoma (Prior et al., 2012) 
(Figure 3). Less commonly, the oncogenic activity of KRAS can 
be increased by amplification in ovarian cancer (Huang et al., 
2012) and LUSC (Wagner et al., 2011). Our results show that 
patients can be well separated between KRAS-amplified and 
KRAS-normal using gene expression in these two tumor types, 
confirming the presence of a transcriptionally defined subset of 
patients with KRAS copy number gains.

In general, the observed high variability between somatic 
mutations and CNVs roots is due to the fact that not all genomic 
alterations are disease drivers, and some are simply passenger 
events (Bozic et al., 2010), located either close to the amplified 
oncogene/deleted tumor suppressor gene, or hypermutated 
due to deficits in the DNA damage repair mechanisms (Chae 
et al., 2016), such as the case of skin melanoma (Guan et 
al., 2015). Differences between mutation and CNV model 
performances in individual cancer types may be due to the 
specific characteristics of these. For example, LUSC initiation 
and progression tend to depend on copy number alterations 
(Ciriello et al., 2013) rather than somatic mutations, which is 
highlighted by the highest performance of CNV-predicting 
transcription-based models over mutation-predicting 
ones (Figure 3). However, the biological heterogeneity 
observed within cancer datasets does not allow for perfect 
generalizations, such as tumor types driven exclusively by 
CNVs or mutations (Smith and Sheltzer, 2018).

FIGURE 2 | Performance of 11 machine learning algorithms in binary classification of mutated/nonmutated samples using gene expression predictor variables in the 
bladder cancer dataset. Each point corresponds to a specific mutation/model. Performance is indicated as AUROC: area under the receiver operating characteristic 
curve.
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We noted a tendency where models for more frequent CNV 
events yielded a greater predictive power (Figure S3), a tendency 
not observed for somatic mutation models. We then tested if 
known tumor-related genes, such as those curated by the Cancer 
Gene Census (Futreal et al., 2004) are better modeled than 
the rest of the genome. There is no difference in mutation and 
amplification results, but for deletion events, oncogenes yield 
weaker models (Wilcoxon test, p = 0.0037, Figure S4), and tumor 
suppressor genes yield generally stronger models (p = 0.00050). 
This is in agreement with the central paradigm of cancer, where a 
tumor suppressor gene deletion can be one of the driving events 
of tumorigenesis and tumor progression (Sager, 1989). On the 
other hand, deletion of tumor-promoting oncogenes is generally 
unfavorable for tumor progression, and so, generally speaking, it 
should be present only as a passenger event, unlikely to determine 
global gene expression and tumor fate.

Modeling Specific Alterations With Noise 
Addition
In order to understand whether cancer-related genomic alterations 
can be modeled by gene expression in scenarios with lower 

signal-to-noise ratio, we artificially perturbed the TCGA gene 
expression dataset via the addition of Gaussian noise and then 
proceeded to build models to predict the presence of TP53 mutations 
in breast cancer, the largest dataset in TCGA by number of samples.

As expected, the addition of uniform random Gaussian noise 
to the gene expression matrix has a detrimental effect on the 
amount of information left for modeling the presence of TP53 
somatic mutations (Figure 4A).

We then decided to test several permutations of noise 
addition on the same breast cancer expression data, by each 
time aggregating genes into networks defined a priori in the 
same context, using a Tukey biweight robust average method 
(Irizarry et al., 2006) on weighted gene correlation network 
analysis (WGCNA) clusters (Langfelder and Horvath, 2008) 
and the VIPER algorithm (Alvarez et al., 2016) on ARACNe-AP 
networks (Lachmann et al., 2016). It is important to note that 
WGCNA clusters are completely nonoverlapping and yield 
generally a lower number of aggregated variables than VIPER 
clusters, which are groups of genes possibly shared by other TF 
clusters and that collectively yield the global expression of a TF 
target set (dubbed as a proxy for “TF activity” in the original 
VIPER manuscript; Alvarez et al., 2016).

FIGURE 3 | Performance of gbm models for each genomic alteration event in TCGA, predicted as a function of each tumor gene expression. Boxplots indicate distribution 
median, upper and lower quartile. Alterations targeting TP53 and KRAS are indicated. Numbers on top of the violin plots indicate the number of models generated.
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Our results show that gene expression, VIPER activity, and 
WGCNA clusters yield very similar models for predicting 
TP53 mutations in breast cancer (Figure S5). The amount 
of information contained in the input variables is therefore 
comparable. Adding noise to the input expression matrix, 
however, and then aggregating the resulting noise-burdened 
genes into VIPER or WGCNA clusters (see Materials and 
Methods), provides robustness to the models (Figure 4B). 
Similar results with higher variances (possibly due to the smaller 
size of the datasets) can be observed for EGFR amplifications 
in glioblastoma (Figure S6) and LUSC (Figure S7), for PVT1 
amplifications in ovarian cancer (Figure S8) and for PTEN 
deletions in sarcoma (Figure S9). In all these examples, however, 
the performance of the simple WGCNA/Tukey aggregation is 
closer (if not worse) to that of simple gene expression.

An alternative way to reduce the information content from 
an NGS gene expression dataset is to reduce the number of read 
counts from each sample. This operation reflects either a low-
coverage bulk RNA-Seq experiment or an experiment arising 
from single-cell sequencing (Pollen et al., 2014). In particular, 
single-cell RNA-Seq (scRNA-Seq) is characterized by the dropout 
phenomenon (Risso et al., 2018) wherein genes expressed in the 
cells are sometimes not detected at all. In order to simulate such 
scenarios, we down-sampled each RNA-Seq gene count profile 
from the largest TCGA dataset (breast cancer) to a target aligned 
read number using a beta function, which allows for reduction 
coupled with random complete gene dropouts (Figure 5A). We 
then modeled again the presence of TP53 mutations using gene 
expression (Figure 5B). We found out that models based on 
standard unaggregated gene expression experience an accuracy 
drop at around 30M reads, while aggregating genes using 
VIPER (but not with WGCNA) allows for better-than-random 

accuracies even at 3M reads, confirming the benefits of gene 
aggregation in low-coverage RNA-Seq, as previously found e.g. 
for sample clustering (Bush et al., 2017).

Mutation Prediction in Single-Cell Data
Based on the results from the pan-cancer analysis, where we 
predicted sample mutations based on pooled RNA-Seq gene 
expression patterns, we decided to extend the same approach on 
single-cell datasets. Recently, the CROP-Seq methodology has been 
introduced (Datlinger et al., 2017), allowing for the measurement 
of cell-specific transcriptome-wide gene expression and mutations 
induced by CRISPR-Cas9 (Ran et al., 2013), thanks to the concurrent 
sequencing of CRISPR-Cas9 guide RNAs. We therefore tested the 
capability of gbm models to predict mutations using gene expression 
variables in two independent single-cell datasets. The first dataset 
(dubbed “Datlinger”) was extracted from the Jurkat cell line derived 
from human T lymphocytes (Datlinger et al., 2017). The second 
one (dubbed “Shifrut”) derived from primary unstimulated T cells 
from a human donor (Shifrut et al., 2018). We removed cell unique 
molecular identifier counts and cell cycle as common confounding 
effects of single-cell datasets (Tirosh et al., 2016) (Figure S11). We 
generated a regulatory transcription network using ARACNe-AP 
on the RNA-Seq Cancer Cell Line Encyclopedia dataset (CCLE; 
Barretina et al., 2012), which comprises 1,021 distinct human cell 
lines. Using the CCLE network, we aggregated gene expression 
from the single-cell datasets using the VIPER algorithm and 
implemented the resulting TF-centered VIPER activity profiles 
to build prediction models for the Crop-Seq-detected mutations. 
Parallelly, we built models using un-aggregated variance stabilizing 
transformation (vst)-normalized gene expression data. Our results 
show that gbm models based on VIPER activity variables globally 

FIGURE 4 | Performance of a TP53 somatic mutation gbm model upon Gaussian noise addiction. (A) Receiver operating characteristic (ROC) curves (and area 
under the curve) upon addition of increasing levels (in terms of SD of a Gaussian distribution with mean = 0) of Gaussian noise. (B) AUROCs of the model with 
increasing noise, calculated using gene expression (black line) or aggregated gene expression using the WGCNA (green line) or VIPER (red line) algorithms.  
Error bars indicate the standard deviation of AUROC distribution.
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FIGURE 5 | Performance of a TP53 mutation gbm model upon down-sampling of the TCGA breast cancer RNA-Seq dataset. (A) for a single TCGA sample (TCGA-
A1-A0SB-01) with 43.8 gene mapping reads, the down-sampling algorithm is applied for multiple target read quantities. X-axis shows the count for each gene in 
the original sample and Y-axis in the down-sampled output. (B) AUROCs of the model with decreasing read numbers, calculated using gene expression (black 
line) or aggregated gene expression using the WGCNA (green line) or VIPER (red line) algorithms. Error bars indicate the standard deviation of AUROC distribution. 
Pseudocounts of 0.1 are added in order to show zero counts as −1 in log10 scale.
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achieve a significantly higher performance in both the Datlinger (p 
= 8.0 × 10−85) and Shifrut datasets (p = 2.2 × 10−117) when compared 
with models obtained from gene expression data (Figure 6). For 
specific mutations (TUBB gene, CDKN1B), the VIPER aggregation 
based on CCLE ARACNe networks seems to be particularly 
beneficial to increase the performance of mutation prediction 
models based on gene expression, while for a few mutations, such 
as RUNX1, the CCLE-based networks significantly decrease the 
model performance.

DISCUSSION

In this paper, we tested a framework to investigate the complex 
relationships between genetic events and transcriptional 

deregulation through machine learning approaches. We 
demonstrated as a generalized proof-of-principle that genomic 
alterations can be modeled by gene expression across several 
human cancers through several machine learning algorithms and, 
specifically, that a gbm approach seems optimal for the task. In 
the process, we generated a collection of models for each genomic 
alteration in each cancer context, showing that the best predicted 
alterations are not necessarily targeting known oncogenes or 
tumor suppressors. Interestingly, we show how the aggregation of 
gene expression profiles in groups of coexpressed genes, via the 
ARACNe/VIPER or WGCNA methods, makes the models more 
robust and more resistant to perturbations such as Gaussian noise 
or artificial down-sampling. Finally, we have shown how the same 
aggregation principle can have beneficial effects in predicting 
the presence of mutations in intrinsically noisy scenarios, both 

FIGURE 6 | Performance as AUROC of gbm models to predict mutations in CROP-Seq datasets using gene expression (red bars) and VIPER activity (blue bars) 
derived from CCLE expression data in Datlinger (A) and Shifrut (B) datasets. The p-value of paired Wilcoxon tests between all VIPER and expression AUROCs 
in each dataset is reported, as well as the average of all expression models (red solid line) and all VIPER activity models (blue dashed line). Error bars report the 
standard deviation of 100 AUROCs generated from multiple partitioning of training/test sets. Error bars indicate the standard deviation of AUROC distribution.
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with artificial noise introduction and read reduction. At the same 
time, we have shown that expression-based mutation prediction 
can be modeled out in single-cell sequencing contexts, which 
can be considered as real cases of noisy datasets. The capability 
of predicting mutations based on scRNA-Seq is, however, 
reduced when compared with datasets derived from pooled cells 
sequencing, as those provided by the TCGA dataset: the average 
performances of TCGA models (Figure 3) generally rest on a 
range between 0.6 and 0.9 AUROC, while the performance of 
CROP-Seq models fall on an average value of 0.55 (Figure 6).

As transcriptional and signaling networks themselves gain 
diagnostic value, particularly for complex, multigenic diseases 
such as cancer (Alvarez et al., 2016), the network characteristics 
of coexpressed genes gain similar importance. A growing 
realization within the field of systems biology is that the activity 
and characteristic features of a given genomic network stem from 
the activity of smaller constituent subnetworks, and to this end, 
aggregated gene coexpression sets can constitute a novel and key 
focal point in network analysis overall (Wang et al., 2015).

The performance of gene aggregation methods has been tested 
before for sample clustering in RNA-Seq read reduction scenarios 
(Alvarez et al., 2016) but never in this specific task nor in a pan-
cancer or a single-cell context. As a principle, the usage of robust 
averages of predefined coexpressed genes can be applied in any 
context where reliability of gene expression data is necessary, 
from differential expression to pathway enrichment analyses.

Using transcriptional networks with VIPER has been shown 
to be beneficial to increase the biological interpretability and 
reduce experimental noise in low-coverage sequencing setups 
such as the PLATE-Seq technique (Bush et al., 2017). We expect 
gene aggregation methods to further complement other RNA-seq 
noise reduction techniques (Ding et al., 2015), particularly those 
designed for scRNA-Seq data analysis. These include several 
recently published methods such as the deep count autoencoder 
(Eraslan et al., 2019), the factorial single-cell latent variable model 
(Buettner et al., 2017), the UnifiedRNA-Sequencing Model (Zhu 
et al., 2018), the single-cell Gene Expression Analysis app (Cai, 
2019), the Ordering Effect gene Finder (Leng et al., 2016), and 
k-nearest neighbor smoothing (Wagner et al., 2017). Results 
obtained via computationally elegant techniques such as these 
stand to benefit from the inclusion of the types of network 
interaction features that we outlined previously.

Our analysis, while testing expression-based and network-
based models for the entirety of frequent genomic alteration 
events in the TCGA dataset, is however limited to the presence/
absence of single events considered separately. Patient tumor 
samples are often characterized by the co-occurrence of several 
mutations, CNVs, or a combination of those (Ciriello et al., 
2013). In the future, generating models on a specific combination 
of genomic alterations will likely require larger clinical datasets, 
where each combination is represented in enough samples 
to allow for model training. This combinatorial approach for 
understanding the relationship between cancer genome and 
transcriptome will be beneficial in the context of personalized 
medicine, whereas every patient is considered separately (N-of-1 
dataset), as it is characterized by a specific mutational landscape 
(Kristensen et al., 2014).

A recent study has shown, in agreement to our findings, that the 
highest part of cancer transcriptional variations are due to genomic 
alterations (copy number alterations and also somatic mutations) 
(Sharma et al., 2018) but also to epigenetic features and altered TF 
and µRNA balances. Those findings can explain why our results 
(Figure 3) highlight a highly variable performance depending on 
the modeled alterations and rare perfect models (max AUROCs 
rarely go above 0.9), while at the same time showing a generally 
better-than-random performance of expression-based prediction 
of genomic alterations (AUROC median and first quartiles >0.5). 
The notion that relationships between genomic alterations and 
gene expression profiles can be modeled across different cancer 
scenarios, as well as in single-cell and noisy contexts, may have 
important repercussions in diagnostics and quantification studies 
of heterogeneous cell populations, where theoretically a single 
quantitative expression experiment can be used to predict the 
presence or absence of a mutation.

MATERIALS AND METHODS

Data Processing
We obtained raw expression counts, mutation, and CNV raw 
data from TCGA using the Firehose portal (gdac.broadinstitute.
org). Raw counts were normalized using variance stabilizing 
transformation as described before (Giorgi et al., 2013). Somatic 
mutations not changing the amino acid sequence of the protein 
product were discarded. We flagged genes blacklisted by the 
MutSig project (Lawrence et al., 2013), such as TTN, ORs, MUCs 
as false positives, and removed them from further analysis 
(except the most mutated in the pan-cancer dataset, shown in 
Figure  S1). CNV tracks were associated to the targeted gene 
using the GenomicRanges R package (Lawrence et al., 2013). 
Gene-centered CNVs were then associated to the expression 
profile of the gene itself. Genes affected by a CNV in more than 
10 samples were used in the rest of the analysis. Samples with 
more than 0.5% of the genes in the genome somatically amplified, 
deleted, or mutated were deemed “hypermodified,” and the total 
number was shown in Figure 1 bottom bars.

Clustering analysis was carried out on the TCGA tumor 
samples using the expression profiles of 1,172 TFs defined by 
gene ontology terms “transcription factor activity, sequence-
specific DNA binding” (GO:0003700) and “nuclear location” 
(GO:0005634) (Ashburner et al., 2000).

The dataset expression profiles were visualized after TSNE 
transformation (van der Maaten and Hinton, 2008) with 1,000 
iterations using a 2D kernel density estimate for coloring different 
tumor types (Duong, 2007). Oncogenes and tumor suppressor 
genes were obtained from the COSMIC Cancer Gene Census in 
October 2018 (Futreal et al., 2004).

Modeling
We used the R caret package (Kuhn, 2008) v 6.0-81 as the 
platform to run all our predictive models in a standardized and 
reproducible way. Default parameters for model training were 
used. Binary classifiers were built to predict the presence/absence 
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of mutation, amplification, and deletion events. The CNV value 
provided by TCGA corresponds to log2(tumor coverage) – 
genomic median coverage. The threshold for amplification/
deletion presence was set to 0.5.

Data partitioning was performed once for each tumor 
type, with 75% of the samples used for training and 25% for 
test purposes. Training was performed using 10-fold cross-
validation. Technical model robustness was assessed with a 
bootstrap approach as well (resampling of the patient samples 
with repetition). This was done in a smaller test scenario (bladder 
cancer mutation models) using the caret implementation of 100 
bootstraps per mutation model (Figure S10). Bootstrap models 
have a slightly lower but not significantly different performance 
(AUROC Wilcoxon test p = 0.121) when compared with full 
dataset models. Recursive feature elimination was carried out by 
the default caret implementation on the 10,000 highest variance 
gene expression tracks. The algorithms used (and R packages 
implementing theme) were:

• Bayesian generalized linear model
• Tree models from genetic algorithms
• Gradient boost modeling (gbm)
• Generalized linear model
• k-nearest neighbors
• Linear discriminant analysis
• Neural networks
• Neural networks with feature extraction
• Random forest
• Linear support vector machine
• Radial support vector machine

In order to reduce information from the gene expression 
profiles, we adopted two strategies. The first, shown e.g. in 
Figure 4B, adds random Gaussian noise to the expression tracks, 
with a variable standard deviation (indicated as “Gaussian noise 
level”). Each model run after noise addition was run 100 times 
to allow for various data partitions. The second strategy (Figure 
5) reduced the number of reads mapped to each gene in order to 
obtain expression samples with decreased total gene counts. In 
order to do so, we applied to each gene in each sample a down-
sampling factor from a beta distribution:

1 11 1

B
x x

( , )
( )

α β
α β− −−

where B is the beta function, acting as a normalization constant, 
x is the raw gene expression count in a particular sample, α is the 
first shape parameter, and β the second shape parameter. In order 
to reduce the total sample coverage to the desired level, β is set to 
0.1 and α is set to:

α β=
−

f r
f r
/
/1

where f is the desired number of reads and r is the total number of 
reads in the sample. A real case example of this beta distribution 
is shown in Figure S11.

Aggregation Algorithms
We used ARACNe-AP (Lachmann et al., 2016) to generate 
TF-centered networks on each of the VST-normalized TCGA 
expression datasets. TFs were selected via gene ontology as 
described before, with p-value for each network edge set to 10−8. 
ARACNe networks were then used to obtain an aggregated value 
of TF activity for each sample using the VIPER algorithm (Alvarez 
et al., 2016) that reports the collective gene expression level 
changes of each TF-centered network vs. the mean expression of 
each gene in the dataset. Only TF networks with at least 10 genes 
(excluding the TF) were included.

WGCNA clusters of genes were constructed using the 
WGCNA package (Langfelder and Horvath, 2008) with default 
parameters and minimum network size set to 10. To obtain a 
robust median expression value for each WGCNA cluster in each 
sample, we used Tukey’s biweight function as implemented by 
the R affy package (Gautier et al., 2004).

Single-Cell Analysis
We generated TF regulatory networks using ARACNe-AP as 
described before on the CCLE dataset available at https://portals.
broadinstitute.org/ccle/data, raw counts version 2018-09-29, 
normalized by variance-stabilizing transformation (Pollen et al., 
2014).

We downloaded raw RNA-Seq counts and guide RNA mutation 
data from single-cell CROP-Seq datasets, specifically: 1) the 
Datlinger dataset available on Gene Expression Omnibus (GEO) 
series GSE92872 (Datlinger et al., 2017), and 2) the Shifrut dataset 
was obtained from a healthy donor and is available as raw counts 
and cell-specific guide RNA from GEO sample GSM3375483 
(Shifrut et al., 2018). Both single-cell CROP-Seq datasets were 
normalized using the R package Seurat with default parameters 
(Satija et al., 2015), as follows: a global-scaling normalization 
method (“LogNormalize”) was applied on raw gene counts for 
each cell; then, the values were multiplied by a scale factor (10,000 
by default), and the results were log-normalized. These values were 
then regressed by two variables: unique molecular identifier counts 
and cell cycle, using cell cycle markers from (Tirosh et al., 2016). 
As an example of the Seurat regression, the TSNE representation of 
the Datlinger dataset before and after normalization clearly shows 
the removal of cell cycle bias effects (Figure S12).

Gradient boost modeling (gbm) was applied to each CROP-Seq 
dataset by aggregating cells carrying mutations on the same genes 
and using wild-type cells as control. Performance of gbm models 
using VIPER and expression variables was compared using a two-
tailed Wilcoxon test on 100 repetitions of training/test set splits 
before cross-validation for model testing (Hanley and McNeil, 1982).

Methods Availability
All code used to generate the analysis and the figures of this 
paper is available in the online materials as Supplementary Code.

DATA AVAILABILITY

Publicly available datasets were analyzed in this study. This data 
can be found here: https://gdac.broadinstitute.org/
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FIGURE S1 | Table of most somatically mutated genes across TCGA tumor 
samples, in terms of number of samples where the gene is somatically mutated 
with altered protein product sequence. This table includes also MutSig-
blacklisted genes (in gray) such as Titin (TTN), Obscurin (OBSCN), and Mucin 
genes.

FIGURE S2 | Performance of 11 machine learning algorithms in binary 
classification of mutated/nonmutated samples using gene expression predictor 
variables in the liver hepatocellular carcinoma dataset. Each point corresponds to 
a specific mutation/model. Performance is indicated as AUROC: area under the 
receiver operating characteristic curve.

FIGURE S3 | Relationship between alteration models and alteration frequency in 
the pan-cancer dataset, for mutations (left), amplifications (center), and deletions 
(right).

FIGURE S4 | Performance of pan-cancer alterations models globally (left) and 
for MutSig genes, COSMIC oncogenes, and COSMIC tumor suppressors. The 
y-axis indicates rank-transformed AUROC values. Asterisks indicate a significant 
(<0.01) difference between a distribution and the global “other genes” distribution 
according to two-tailed Wilcoxon tests.

FIGURE S5 | ROC curves for gbm TP53 models in breast cancer, using original 
expression data, VIPER aggregation (TF “activity”), and WGCNA aggregation 
(robust Tukey biweight average of clusters).

FIGURE S6 | AUROCs of EGFR amplification gbm prediction models in 
glioblastoma with increasing noise, calculated using gene expression (black line) 
or aggregated gene expression using the WGCNA (green line) or VIPER (red line) 
algorithms.

FIGURE S7 | AUROCs of EGFR amplification gbm prediction models in lung 
squamous carcinoma (LUSC) with increasing noise, calculated using gene 
expression (black line) or aggregated gene expression using the WGCNA (green 
line) or VIPER (red line) algorithms.

FIGURE S8 | AUROCs of PVT1 amplification gbm prediction models in ovarian cancer 
with increasing noise, calculated using gene expression (black line) or aggregated gene 
expression using the WGCNA (green line) or VIPER (red line) algorithms.

FIGURE S9 | AUROCs of PTEN deletion gbm prediction models in sarcoma with 
increasing noise, calculated using gene expression (black line) or aggregated 
gene expression using the WGCNA (green line) or VIPER (red line) algorithms.

FIGURE S10 | Distribution of gbm models AUROCs for predicting bladder 
cancer mutations. Left: original models shown in the main study (Figures 2 and 
3). Right: performance of models with bootstrap. The p-value of a two-tailed 
Wilcoxon test between the two distributions is indicated.

FIGURE S11 | Beta distribution used to down-sample the 43.8M reads breast 
cancer sample TCGA-A1-A0SB-01 to 10M reads. The gray line shows the ratio 
between the target coverage and the original coverage.

FIGURE S12 | TSNE representation of the Datlinger CROP-Seq dataset before 
(A) and after (B) removal of cell cycle-specific markers. Colors indicated the 
predicted cell cycle phase according to the Seurat pipeline [79].

SUPPLEMENTARY TABLE S1 | AUROCs for each event in the pan-cancer 
TCGA dataset (24 tumor types with at least 100 samples with co-measured 
genomic and expression data. The sheet name indicates the tumor type and 
genomic alteration type (mut: somatic mutation, amp: amplification, del: deletion).

SUPPLEMENTARY CODE | R and bash code snippets used in this study.
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Patient-derived tumor xenograft (PDX) mouse models are widely used for drug screening. 
The underlying assumption is that PDX tissue is very similar with the original patient 
tissue, and it has the same response to the drug treatment. To investigate whether the 
primary tumor site information is well preserved in PDX, we analyzed the gene expression 
profiles of PDX mouse models originated from different tissues, including breast, kidney, 
large intestine, lung, ovary, pancreas, skin, and soft tissues. The popular Monte Carlo 
feature selection method was employed to analyze the expression profile, yielding a 
feature list. From this list, incremental feature selection and support vector machine (SVM) 
were adopted to extract distinctively expressed genes in PDXs from different primary 
tumor sites and build an optimal SVM classifier. In addition, we also set up a group of 
quantitative rules to identify primary tumor sites. A total of 755 genes were extracted 
by the feature selection procedures, on which the SVM classifier can provide a high 
performance with MCC 0.986 on classifying primary tumor sites originated from different 
tissues. Furthermore, we obtained 16 classification rules, which gave a lower accuracy 
but clear classification procedures. Such results validated that the primary tumor site 
specificity was well preserved in PDX as the PDXs from different primary tumor sites were 
still very different and these PDX differences were similar with the differences observed in 
patients with tumor. For example, VIM and ABHD17C were highly expressed in the PDX 
from breast tissue and also highly expressed in breast cancer patients.

Keywords: Patient-derived tumor xenograft, gene expression profile, Monte Carlo feature selection, support 
vector machine, rule learning algorithm

INTRODUCTION

Patient-derived tumor xenograft (PDX) mouse models, developed by implanting patients’ in vivo 
tumor tissues into immune-deficient mice (Harris et al., 2016), are widely used in tumor biology 
and drug screening. Compared with cancer cell lines, PDX mouse models can maintain the original 
tumor development conditions immensely with appropriate tumor microenvironment that mimics 
similar regulatory factors, which are identified in the primary tumor site in vivo (Coats et al., 2017). 
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Furthermore, with the development of humanized-xenograft 
models, PDX-humanized mouse models compensate for one of 
the prominent shortcomings of traditional PDX mouse models—
the absence of immune regulation and selection—thereby 
accomplishing the accurate simulation on tumorigenesis in vivo 
(Jung et al., 2018).

As the PDX mouse model has more advantages in the 
oncology research field compared with traditional routines, 
various typical PDX mouse models have been successfully set 
up with their respective tumor tissues. Early in 2011, Nature 
Medicine published a systematic analysis (DeRose et al., 2011) on 
the pathological and biological characteristics of tumor tissues 
implanted into an immune-deficient mouse model as PDX. 
Such study confirmed that the PDX mouse model can basically 
reflect the same pathological processes during the initiation and 
progression of breast cancer, validating the significance of such 
model in the field of tumor research. Furthermore, PDX mouse 
models have been applied to various tumor subtypes, including 
colorectal cancer, pancreatic cancer, and pediatric cancer (Scott 
et al., 2017). Studies on such tumor subtypes have also confirmed 
that tumor tissues developed in a PDX mouse model have quite 
similar pathological and biological characteristics with tumor 
tissues in situ, though without immune selective pressure. 
Overall, PDX mouse models have been accepted as one of the 
most significant methods for tumor research.

In the field of oncology research, wide attention has been 
paid to gene expression characterizations. Different tumors 
have different expression pattern of functional tumor-associated 
genes as tumor-specific expression profile. Given the distinctive 
microenvironment and environmental selection pressure of 
human bodies and immune-deficient mice, the expression profile 
of a PDX mouse model has been confirmed to be different from 
the expression spectrum of tumor in situ (Ben-David et al., 2017). 
As mentioned above, different tumor subtypes have different 
tumor-specific expression profiles in vivo. However, after the 
selection and passaging in the mouse microenvironment, it 
is quite reasonable to speculate that tumor tissues of different 
subtypes may be differentially selected and lose/gain various 
differentially expressed genes (DEGs), thus generating a novel 
tumor subtype-specific expression profile (Ben-David et al., 
2017). Although various studies have attempted to identify 
tumor subtype-specific biomarkers based on the expression 
profile of tumor tissues in PDX mouse models for years, no direct 
evidence or studies have revealed whether tumor tissues from 
different primary tumor subtypes can maintain tumor-specific 
DEGs during the passaging of PDX mouse models. Moreover, 
it is not clear whether such identified tumor-specific DEGs are 
all derived from the primary tumor tissues or from murine 
microenvironment selection.

To solve the problem, the most convenient way is to explore 
whether DEGs identified in PDX tumor tissues can still distinguish 
different tumor subtypes as potential biomarkers. Herein, we 
selected eight tumor subtypes originating from different tissues, 
including breast, kidney, large intestine, lung, ovary, pancreas, 
skin, and soft tissues, for the identification of DEGs in the PDX 
mouse model based on a study (Gao et al., 2015) on PDX tumor 
expression profile. Several advanced computational methods were 

used in this study, including the Monte Carlo feature selection 
(MCFS) (Draminski et al., 2008), incremental feature selection 
(IFS) (Liu and Setiono, 1998), and support vector machine 
(SVM) (Cortes and Vapnik, 1995). As a result, a group of highly 
related genes was identified, which may be distinctively expressed 
in different tumor subtypes as PDX tumor tissue. Furthermore, 
several quantitative rules were set up for the identification of 
different xenograft tumor subtypes by a specific set of functional 
distinctive genes. The results reported in this study further 
validated that PDX mouse models may be a relatively effective 
and practical mouse model in the field of tumor studies and may 
be favorable to be applied to indicate DEGs from primary tumor 
tissues between different tumor subtypes.

MATERIALS AND METHODS

Dataset
We downloaded the expression data of 20,502 genes in eight 
PDX tumor tissues: (1) kidney, (2) skin, (3) ovary, (4) soft tissue, 
(5)  breast, (6) pancreas, (7) lung, and (8) large intestine. The 
number of samples in each tissue is shown in Table 1. A total of 
594 samples were considered in this study. The high-throughput 
screening data using PDX were obtained from the Gene Expression 
Omnibus (GEO) with accession number GSE78806 (Gao et al., 
2015). To investigate whether the primary site of tumor has great 
influences on PDX, we compared the gene expression profiles of 
PDX from different primary sites.

Feature Selection
Many genes are specifically expressed in the tissues; that is, 
some genes are closely related to certain tissues. To identify 
highly related genes for different tissues, we first used the MCFS 
(Draminski et al., 2008) method to analyze the expression data 
of 20,502 genes, obtaining a feature list and several classification 
rules. Then, the two-stage IFS (Liu and Setiono, 1998) method 
was applied to yield optimum features (genes), wherein the SVM 
(Cortes and Vapnik, 1995) exhibited a strong discriminative 
power for samples from different tissues.

Monte Carlo Feature Selection
MCFS (Draminski et al., 2008) is a type of feature selection 
method. As mentioned in the section Dataset, 594 samples were 

TABLE 1 | Number of samples for each of the eight tissues.

Tissue Number of samples

Breast 79
Kidney 41
Large intestine 121
Lung 99
Ovary 52
Pancreas 94
Skin 46
Soft tissue 62
Total 594
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investigated in this study, and each sample was represented by 
20,502 features. Thus, the dataset we studied is a high-dimensional 
dataset. The MCFS method is ideal in dealing with this type of 
dataset (Draminski et al., 2008). To date, this method has been 
applied to deal with several biological problems (Cai et al., 2018; 
Chen et al., 2018a; Chen et al., 2018c; Pan et al., 2018). In this 
study, it was also adopted to analyze all features and rank them 
for supervised classifiers.

MCFS constructs decision tree classifiers for many bootstrap 
sets that are randomly selected from the original sample set, and 
each tree is grown from a randomly selected feature subset with 
m features of original M features, where m is much less than M. 
During the process, p decision trees are generated on a training 
set randomly selected from a bootstrapping dataset and a feature 
subset. The above process is repeated t times to obtain t feature 
subsets. In total, p × t decision trees can be constructed.

The relative importance (RI) indicates the importance of each 
feature, which mainly considers the number of times that the 
feature is involved in growing the p × t decision trees. The RI 
score of a feature g can be calculated using the following formula:
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where wAcc is the weighted accuracy across all classes, ng(τ) 
indicates a node using feature g in decision tree τ, IG(ng(τ)) is 
the information gain of ng(τ), no.in τ is the number of training 
samples in τ, and no.in ng(τ) is the number of samples in node 
ng(τ). u and v are two weighting factors, and we used their 
default setting of u = v = 1.

A feature assigning a high MI value means that it is quite 
important. To extract most important features, the MCFS method 
adopts a permutation test on class labels. In detail, in a round 
of permutation test, a permutation of class labels is assigned to 
samples and the MCFS method is executed on the dataset with 
new labels, producing a maximal RI value. After several rounds, 
many maximal RI values are generated. The threshold, indicating 
high significance level of features, is determined by the one-sided 
Student’s t test. Features receiving the RI value larger than such 
threshold are selected and termed as informative features. These 
features are deemed to be essential for the investigated dataset. 
For a detailed description, please refer to Dramiński et al. (2011).

The informative features are extracted according to the 
essential properties of the dataset. However, for a given classifier, 
these features are not always optimal. Thus, we further ranked all 
features in a list according to their MI values in a way that features 
with high MI values receive high ranks in the list, whereas those 
with low MI values are placed at the bottom of the list. Here, we 
formulated the obtained feature list yielded by MCFS method as

 F f f fN= [ , , , ],1 2   (2)

where N is the total number of features (N = 20,502 in this study). 
This list was used in the IFS method to select optimal features for 
a given classifier.

In this study, the program of the MCFS method was retrieved 
from http://www.ipipan.eu/staff/m.draminski/mcfs.html.

Rule Learning
Aside from analyzing features and ranking them in a list, the 
program of the MCFS method also integrates a rough set-
based rule learning procedure. Based on informative features, 
the Johnson reducer algorithm (Ohrn, 1999) was used to select 
some important features that can give competitive classification 
performance compared with all informative features. After that, 
Repeated Incremental Pruning to Produce Error Reduction 
(RIPPER) algorithm (Cohen, 1995) produced the rules with the 
above-selected features. Each of these rules describes a relation 
between conditions (the left-hand side of the rule) and the outcome 
(the right-hand side). For example, a rule can be presented as an 
IF–THEN relationship based on expression values: IF Gene1 ≥ 
6.4 AND Gene2 ≥ 4.8 THEN subtype = “kidney.” Following these 
rules, all samples can be easily classified. In addition, compared 
with black-box machine learning methods, the classification 
rules can provide a clearer classification procedure and help in 
understanding the expression differences among different tissues.

Incremental Feature Selection
The MCFS method only analyzes the importance of each feature 
and ranks them in a feature list. For a classification problem, it 
is necessary to extract some optimal features to comprise the 
feature subspace. Meanwhile, different classifiers require different 
optimal features. In view of this, the IFS (Liu and Setiono, 1998) 
method was employed in this study. The IFS method always 
integrates a supervised classifier to screen optimal features 
for accurately classifying samples from different groups. In 
the original IFS method, it first constructs a series of feature 
subsets according to a feature list in a way that the latter subset 
is produced by adding one feature to the former one. Then, for 
each feature subset, the supervised classifier is executed on the 
dataset, in which samples are represented by features in the 
subset. Finally, the feature subset yielding the best performance 
is selected as the optimal feature set. However, this procedure 
is time-consuming, especially when the number of features is 
quite large. Accordingly, we adopted a two-stage IFS method to 
approximately complete the procedure of finding optimal feature 
set in this study, which are described below.

In the first stage, several feature subsets with a large step 
(e.g., 10) were constructed. In detail, we constructed the 
feature subsets, denoted as F F Fm1

1
2
1 1, , ,…  where m = [N/10] and 

F f f fi i
1

1 2 10= ×{ , , , } , that is, the ith feature subset contains the 
top 10 × i features in F. Then, for each of these feature subsets, 
the selected classifier was trained and evaluated on the samples 
that were represented by features in this set using 10-fold cross-
validation (Kohavi, 1995; Chen et al., 2018b; Chen et al., 2018d; 
Guo et al., 2018; Pan et al., 2018; Wang et al., 2018; Zhao et al., 
2018; Zhao et al., 2019). According to the results of these feature 
subsets, a feature number interval [min, max], on which the 
classifier provided satisfied the prediction performance, can be 
obtained. The size of the optimal feature set was in this interval 
with a high probability. In the second stage, based on the above 
feature number interval [min, max], another series of feature 
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subsets was produced, denoted as F F Fmin min max, , ,2
1

2 2
+  , in which 

the latter subset contains one more feature than the former 
one. Similarly, the classifier was trained and evaluated on these 
subsets, like the first stage. We can obtain a feature subset with 
the best performance. For convenience, features in this set were 
still called optimal features, whereas the corresponding classifier 
was termed as the optimal classifier.

SVM
As mentioned in the section Incremental Feature Selection, the 
IFS method required a supervised classifier. Here, we selected the 
classic classifier, SVM (Cortes and Vapnik, 1995). The SVM is a 
popular supervised learning method that distinguishes samples 
based on a set of features, and it is widely used to deal with many 
biological problems (Pan and Shen, 2009; Chen et al., 2017b; Cui 
and Chen, 2019). The basic principle is to infer a hyperplane with 
maximum margin between two classes of samples. In reality, 
most of the data are non-linear in low-dimensional space. In 
this case, all samples are mapped to a high-dimensional space 
using kernel function, such as Gaussian kernel. In this space, 
a linear function can be found to perfectly separate samples of 
two classes. The original SVM is mainly developed for binary 
classification. For multi-class classification, the “One Versus 
the Rest” strategy is adopted. In detail, it constructs m binary 
SVM classifiers for m classes, where each classifier is trained to 
separate samples in one class from the rest using the samples of 
that class as positive samples and other samples as negative ones. 
For an unseen sample, m probability scores can be yielded by m 
SVM classifiers, and the label with the highest probability score 
is assigned to the unseen sample.

Performance Measurement
For a classification problem with multiple classes, the basic 
measurement is the individual accuracy for each class, which is 
defined as

 
ACC M
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i

i
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where ACCi represents the individual accuracy of the ith class, 
Mi represents the number of correctly predicted samples in the 
ith class, and Ni represents the total number of samples in the ith 
class. Furthermore, the overall accuracy can completely evaluate 
the prediction performance, which is formulated by
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Although the overall accuracy can completely evaluate the 
prediction quality, it is not a fair measurement when the class 
sizes are of great difference. According to Table 1, the biggest 
class (“Large intestine”) is about three times as many as the 

smallest class (“Skin”). In this case, the overall accuracy was not 
a good choice to assess the prediction quality. Thus, we further 
employed Matthew’s correlation coefficient (MCC) in multi-
class (Gorodkin, 2004). It is a generalization version of MCC 
proposed by Matthew (Matthews, 1975; Chen et al., 2017a; Zhao 
et al., 2018; Zhao et al., 2019). It is known that the classic MCC 
is a balanced measurement even if the class sizes vary greatly. 
The MCC in multi-class keeps such merit. Suppose we have 
n samples (i = 1, 2,…, n) and C classes (j = 1, 2,…, C). Let X =  
(xij)n×C be the predicted classes of samples and xij ∈{0,1} be a binary 
value. xij is equal to 1 if the sample i is predicted to belong to class j; 
otherwise, the value xij is 0. The matrix Y = (yij)n×C is defined as the 
true classes of samples, where the binary variable yij = 1 means that 
the sample i belongs to class j; otherwise, it is set to 0.

According to matrices X and Y, the MCC can be defined as 
follows:
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where x j  and y j  are the mean values of members in the j-th 
column of X and j-th column of Y, respectively.

RESULTS

In this study, a computational investigation on the gene expression 
data of samples in eight PDX tumor tissues was performed. The 
entire procedure is illustrated in Figure 1.

Results of MCFS Method
To evaluate the investigated features mentioned in the section 
Dataset on discriminating samples from different tissues, the 
MCFS method was used to analyze and rank them in descending 
order according to their RI values. The obtained feature list is 
provided in Supplementary Table 1.

Furthermore, the MCFS method produced 530 informative 
features by determining the threshold of RI value as 0.0155. 
Based on these features, the Johnson reducer and RIPPER 
algorithms can generate some classification rules. To evaluate 
the performance of the rules yielded by these two algorithms, 
10-fold cross-validation was performed thrice. The confusion 
map for such test to classify samples into eight tissues is shown 
in Figure 2. The MCC was 0.794. The individual accuracies for 
eight tissues and overall accuracy are shown in Figure 3. It can 
be seen that the performance of the rules yielded by Johnson 
reducer and RIPPER algorithms was acceptable. Thus, we further 
used Johnson reducer and RIPPER algorithms to generate 16 
classification rules with 530 informative features based on all 
samples, which are listed in Table 2. The performance of these 
rules was evaluated by self-consistency; i.e., these rules were 
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FIGURE 1 | The entire procedures to investigate the gene expression data of samples in eight PDX tumor tissues. These data were first analyzed by the Monte 
Carlo feature selection method, producing a feature list and informative features. The feature list was used in the incremental feature selection method to extract 
optimal features for support vector machine (SVM) and construct the optimal SVM classifier. For informative features, the Johnson reducer and Repeated 
Incremental Pruning to Produce Error Reduction (RIPPER) algorithms were applied on them to generate classification rules.

FIGURE 2 | Confusion map for classifying samples into eight tissues via the classification rules yielded by Johnson reducer and Repeated Incremental Pruning to 
Produce Error Reduction (RIPPER) algorithms, evaluated by 10-fold cross-validation thrice.
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applied to samples to make classification. We obtained the MCC 
of 0.949. The individual and overall accuracies are illustrated in 
Figure 3. It can be observed that the predicted results yielded by 
self-consistency were much better than those of 10-fold cross-
validation. It is reasonable because in self-consistency, samples 
were classified by the rules generated by themselves.

Results of the IFS Method
Based on the Johnson reducer and RIPPER algorithms, 
classification rules were generated. However, their performance 
was not very high. Thus, we further applied SVMs to classify 
samples from different tissues by integrating the selected features 
from two-stage IFS method. In the first stage, the feature sets 
containing multiples of 10 features were constructed, and 
the SVM was trained on the dataset, in which samples were 
represented by features in these sets. The 10-fold cross-validation 
was adopted to evaluate the performance of SVM. The predicted 
results were counted as individual accuracy for each tissue, 
overall accuracy, and MCC described in the section Performance 
Measurement, which are provided in Supplementary Table 2. 
For easy observation of the performance of SVM under different 
feature sets, a curve was plotted in Figure 4A, in which the 
number of used features was termed as X-axis and MCC as 
the Y-axis. The curve first follows a sharp increasing trend and 
eventually becomes stable. To clearly illustrate the increasing 
trend at the beginning of this curve, we plotted the part of the 
curve between X-axis 10 and 2000 in Figure 4B. The highest 
MCC is 0.986 when the top 780 features were used. Around 
780, the MCCs were also very high. Thus, we determined the 

FIGURE 3 | The individual and overall accuracies of the classification rules yielded by Johnson reducer and Repeated Incremental Pruning to Produce Error 
Reduction (RIPPER) algorithms, evaluated by self-consistency and 10-fold cross-validation.

TABLE 2 | Sixteen produced classification rules for distinguishing samples from 
different tissues.

Rules Criteria Tissues

Rule-1 ANGPTL4 ≥ 6.409
BHMT2 ≥ 4.826

Kidney

Rule-2 UPK1A ≥ 6.474 Kidney
Rule-3 PAX3 ≥ 3.401

MIA ≥ 3.562
Skin

Rule-4 BHMT2 ≥ 5.125
ANXA10 ≥ 3.820

Skin

Rule-5 PAX8 ≥ 3.217
ADAM10 ≥ 5.994

Ovary

Rule-6 TRADD ≤ 3.210
ASRGL1 ≥ 6.703

Ovary

Rule-7 CPVL ≥ 7.240
CDX1 ≤ 2.111

Ovary

Rule-8 F11R ≤ 4.935
VSNL1 ≤ 4.528

Soft tissue

Rule-9 HSD17B11≤5.122
ITGA2 ≤ 6.021

Breast

Rule-10 VIM ≥ 8.697
ABHD17C ≥ 3.622

Breast

Rule-11 ADAM28 ≥ 3.637
BTBD6 ≤ 7.581

Pancreas

Rule-12 CXCL5 ≥3.927
PCDH1 ≥ 4.141

Pancreas

Rule-13 LOC102724689 ≥ 7.396 Pancreas
Rule-14 MSN ≥ 5.037

PDGFC ≥ 1.903
BCL2L15 ≤ 5.317

Lung

Rule-15 TP73-AS1 ≥ 3.462
ADAM10 ≥ 6.134

Lung

Rule-16 Other conditions Large intestine
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feature number interval as [700, 900]. The second stage of the IFS 
method constructed a second set of feature subsets with a step 
1 within feature number interval [700, 900]; that is, all feature 
sets containing 700–900 features were constructed. SVM and 
10-fold cross-validation were adopted to test the discriminating 
ability of each feature set. The obtained measurements, including 

individual accuracy for each tissue, overall accuracy, and MCC, 
are listed in Supplementary Table 3. Similarly, we also plotted 
a curve, as shown in Figure 4C. The highest MCC is still 0.986; 
however, it can be achieved only by using the top 755 features. 
Therefore, these 755 features were termed as optimal features, 
and the SVM classifier based on these features was the optimal 

FIGURE 4 | Curves illustrating the performance of SVM on different feature sets. The X-axis represents the number of features participating in the classification; the 
Y-axis represents the MCC. (A) The whole curve illustrating the performance of SVM on feature sets containing multiples of 10 top features. (B) Part of the curve 
between X-axis 10 and 2000. When the top 780 features are used, the MCC reaches the highest (0.986). (C) The curve illustrating the performance of SVM on 
feature sets containing 700–900 top features. When the top 755 features are used, the MCC reaches the highest (0.986).
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SVM classifier. The detailed performance of such optimal 
classifier is illustrated in Figure 5, from which we can see that all 
samples in pancreas and skin were correctly classified, and most 
samples in other tissues were also predicted correctly, indicating 
the effectiveness of this classifier.

Superiority of the Optimal Features
The optimal SVM classifier adopted 755 features to represent 
samples. To further indicate the importance of these features, 

we randomly produced 1000 feature subsets, each of which 
contained 755 features. For each subset, an SVM classifier was 
constructed, and we evaluated its performance via 10-fold cross-
validation. The obtained 1000 MCCs are illustrated in Figure 6 
(black circles), in which the MCC yielded by the optimal SVM 
classifier is also listed (red circle). It can be observed that the 
MCC yielded by the optimal SVM classifier was higher than all 
other MCCs. In addition, it was also higher than the threshold of 
high significance level (p value < 0.05), indicating that these 755 
features were significant.

FIGURE 5 | Bar chart illustrating the individual accuracy on each tissue and overall accuracy yielded by the optimal SVM classifier and the classifier with informative 
features.

FIGURE 6 | MCCs obtained by the optimal SVM classifier and 1000 SVM classifiers on 1000 randomly generated feature subsets. The red circle represents the 
MCC yielded by the optimal SVM classifier and black circles represent MCCs produced by SVM classifiers on randomly generated feature subsets. The blue line 
represents the threshold of high significance level (p value < 0.05).
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Besides, the MCFS method can produce informative features for 
each given dataset. For our dataset, 530 informative features were 
obtained. An SVM classifier can be constructed on these features. 
Such classifier was also evaluated by 10-fold cross-validation. The 
MCC was 0.984, which was lower than that of the optimal SVM 
classifier (0.986). The individual accuracies for eight tissues and 
overall accuracy are illustrated in Figure 5, from which we can 
see that each measurement was no higher than that of the optimal 
SVM classifier. It is implied that the optimal SVM classifier was 
superior to the classifier with informative features. The IFS method 
is useful to extract optimal features for a given classifier.

DISCUSSION

Based on a new study (Gao et al., 2015) on the expression profile 
of various tumor subtypes in PDX models, we deeply analyzed this 
profile for the accurate identification of eight different candidate 
tumor subtypes using several advanced computational methods in 
the present study. On the one hand, a list of effective genes that may 
directly contribute to the qualitative distinction of different tumor 
subtypes was screened out. On the other hand, we also identified 
a group of quantitative rules for the accurate identification of each 
tumor subtypes. This section provides an extensive analysis on the 
extracted genes and quantitative rules via literature reviewing.

Analysis of Optimal Features (Genes)
For constructing an optimal SVM classifier, the top 755 features 
(genes) were used to represent samples. However, analyzing 
them individually is challenging. By carefully checking the 
performance of SVM classifiers in the first stage of the IFS 
method, we found that the MCC achieved 0.980 when the top 
350 features were used. Thus, we believed that these 350 features 
were more important than the other 405 features. However, it is 
still impossible to analyze these 350 features one by one. Here, we 
selected the most important genes, that is, the top 10 genes, listed 
in Table 3, to provide an extensive analysis.

The top gene is IFFO1, which may have a unique expression 
pattern in eight tumor tissues. IFFO1, encoding a primordial 
component of the cytoskeleton and nuclear envelope, has been 
detected with specific methylation patterns and expression 

profiles in the PDX mouse model of lung cancer (Anglim et al., 
2008) and ovarian cancer (Houshdaran et al., 2010), but not 
in other tumor tissues, indicating that the specific expression 
pattern of this gene may be a potential biomarker for identifying 
lung cancer and ovarian cancer.

The gene CDX1 has also been predicted to contribute to 
distinguishing different PDX tumor tissues at the expression level. 
With relatively high expression level in small intestine and colon 
tissues, CDX1 plays a role in the differentiation of the intestine 
(Jones et al., 2015). As for its expression in different PDX tumor 
tissues, this gene has relatively high expression in large intestine-
associated tumor tissues of PDX mouse model, confirming the 
potential distinguishing effect of such gene (Rankin et al., 2004).

HSD17B11, encoding short-chain alcohol dehydrogenases, 
has been widely reported to participate in androgen metabolism 
during steroidogenesis (Rotinen et al., 2011). As for its 
contribution on tumorigenesis and specific role during PDX 
implantation, this gene has only been identified in both primary 
and implanted tumor tissue of the prostate (Hilborn et al., 2017) 
and breast tumorigenesis (Rotinen et al., 2011), implying that 
such gene may distinguish different tumor tissues.

CHMP4C is reported to be involved in multi-vesicular body 
formation and endosomal cargo sorting (Yu et al., 2009). As for 
its specific expression pattern in different tumor tissues, this gene 
has a unique pathological expression profile in multiple tumors 
of the urine system, implying that CHMP4C may be an effective 
marker for identifying kidney-associated tumor from other 
tumor subtypes derived from other tissues (Fujita et al., 2017).

CLIP4, encoding one of the components of the cytoplasmic 
linker protein family, participates in regulating the cellular 
compartmentalization of the AKT kinase family involved in 
tumorigenesis (Saber et al., 2016). Such gene has been confirmed 
to have a unique expression pattern in various tumor PDX mouse 
models, including clear cell renal cell carcinomas (kidney) (Ahn 
et al., 2016), lung adenocarcinoma (lung) (Saber et al., 2016), and 
gastric cancer (stomach) (Chong et al., 2014), implying that this 
gene may be a biomarker for some tumor subtypes investigated 
in this study.

PAX8, encoding a transcription factor of the paired box (PAX) 
family, has been predicted to be a potential identification marker 
for the distinction of different tumor tissues in PDX mouse 
models (Narumi et al., 2010). Recent studies (Butler et al., 2017) 
confirmed that the overexpression of such gene may directly 
induce the initiation and progression of ovarian cancer in PDX 
mouse models, distinguishing tumorigenesis of such tissue from 
the other seven tumor tissues.

GUCY2C, encoding a membrane-associated guanylate kinase, 
participates in immune regulation, including T-cell receptor-
mediated T-cell activation and proliferation (Snook et al., 2012). As 
for its tissue-specific distribution in the PDX mouse model, recent 
studies (Witek et al., 2014) confirmed that in the large intestine 
(especially colon tissue), the high expression level of such gene in 
the PDX model indicates that such mouse model was implanted 
with an invasive large intestine-associated tumor subtype.

The next gene MLANA encodes a GPR143-associated 
functional protein contributing to the maintenance of expression, 
stability, trafficking, and processing of melanocyte protein PMEL 

TABLE 3 | Top 10 features (genes) yielded by the MCFS method.

Rank Gene 
symbol

Description RI

1 IFFO1 Intermediate Filament Family Orphan 1 0.4515
2 CDX1 Caudal Type Homeobox 1 0.4263
3 HSD17B11 Hydroxysteroid 17-Beta Dehydrogenase 11 0.4047
4 CHMP4C Charged Multivesicular Body Protein 4C 0.4042
5 CLIP4 CAP-Gly Domain Containing Linker Protein 

Family Member 4
0.4025

6 PAX8 Paired Box 8 0.4024
7 GUCY2C Guanylate Cyclase 2C 0.4023
8 MLANA Melan-A 0.3857
9 F11R F11 Receptor 0.3689
10 NR3C1 Nuclear Receptor Subfamily 3 Group C 

Member 1
0.3646
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(Witek et al., 2014). As for its relationship with different tumor 
tissues in the PDX mouse model, a recent study (Hollingshead 
et al., 2014) confirmed that such gene may distinguish melanoma 
and various skin-derived tumor subtypes in the PDX mouse 
model from the other seven tumor subtypes.

F11R, as a regulator of cell-to-cell adhesion in epithelial cell 
sheets, has been reported to encode a multi-functional protein 
that interacts with reovirus (Birse et al., 2017), integrin LFA1 
(Gerhardt and Ley, 2015), and platelets (Kedees et al., 2005). As 
for its distinctive function for different PDX tumor tissues, recent 
studies (Jansen et al., 2009) confirmed that in the PDX models 
of glioblastoma (soft-tissue-derived tumorigenesis), F11R has a 
unique expression pattern compared with other tumor tissues.

NR3C1, encoding a tissue-specific transcriptional activator, 
has been widely reported to be involved in chromatin remodeling 
(Geng et al., 2016) and cell proliferation in tissues in situ (Souza 
et al., 2014). As for its distinctive expression pattern in different 
tumor tissues, such gene has a relatively high expression pattern 

in various tumor subtypes, including lung cancer (Lajoie et al., 
2014) and kidney cancer (Zaravinos et al., 2014), compared with 
other tumor subtypes.

Overall, based on advanced computational methods, we screened 
out a group of effective tumor-associated genes that may distinguish 
different tumor subtypes from PDX mouse models. From the 
discussions on the top 10 genes, we confirmed that other optimal 
features (genes) may also be important biomarkers for distinguishing 
different tumor subtypes that need further investigation.

Analysis of Classification Rules
Apart from qualitative biomarkers to distinguish different 
tumor subtypes in the PDX mouse model, we also summarized 
16 classification rules for further quantitative analysis. To show 
the inner relationship between genes involved in these rules, we 
draw a rule network via Ciruvis (Bornelov et al., 2014), which 
is illustrated in Figure 7. Based on the detailed expression 

FIGURE 7 | Rule networks for 16 classification rules generated by Ciruvis.
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profile data in other similar studies, most of the 16 rules can be 
confirmed by their rationalities, reflecting the relative expression 
pattern of such genes involving the rules. The detailed analysis on 
each rule is shown below.

The first two rules are for the identification of PDX tumor 
tissues originating from kidney-associated tumor. According 
to these two quantitative rules, ANGPTL4 should have higher 
expression pattern and the expression level of BHMT2 and 
UPK1A should also be up-regulated. According to recent single-
cell RNA sequencing data of the PDX mouse model (Zhu et al., 
2017), the expression patterns of the three genes have all been 
confirmed to have corresponding expression level.

The following two rules are for the identification of skin-
derived PDX tumor tissues. Four genes named PAX3, MIA, 
BHMT2, and ANXA10 have been screened out as potential 
parameters for the identification of skin-associated PDX tumors. 
Based on recent sequencing publications, all four genes have been 
reported to be upregulated, conforming to these rules (Tso et al., 
2014). The combination of such four parameters may improve 
the efficacy and accuracy for the quantitative identification of 
skin-derived tumor-implanted PDX mouse model. As for the 
detailed FPKM value, the dataset provided by similar studies 
(Wyatt et al., 2014) also corresponds with our rules.

The next three rules describe the expression pattern of ovarian 
cancer. As we have analyzed above, PAX8, encoding a functional 
transcription factor, has a uniquely high expression pattern in 
ovarian-cancer-derived PDX tumor tissues, corresponding with 
Rule-5 (Narumi et al., 2010). As for the other five parameters, a 
recent study (Dobbin et al., 2014) revealed the specific expression 
pattern of ovarian cancer after screening the PDX mouse 
microenvironment. According to recent literature, although the 
expression profile of CDX1 (as one of the parameters mentioned 
above) cannot indicate ovarian cancer alone, the combination 
of CDX1 and CPVL may be specifically enough to recognize 
ovarian-tumor-derived PDX mouse tumor tissues (Dobbin et al., 
2014). According to the dataset provided by such study, the 
remaining four parameters (ADAM10, TRADD, ASRGL1, and 
CPVL) have also been validated to basically match our rules.

Only one rule involving two genes may contribute to the 
identification of soft-tissue-derived PDX tumor tissues. F11R, as 
we have analyzed above, has been confirmed to have a relatively 
low expression pattern in the PDX tumor tissue derived from 
soft tissue, which is somewhat different from those derived from 
other tissues, validating the accuracy and efficacy of this rule 
(Jansen et al., 2009). A similar expression pattern has also been 
identified for the remaining soft-tissue-specific expressing gene 
VSNL1 (Sarver et al., 2015), corresponding with this rule.

The following two rules contribute to the identification of 
breast cancer in the PDX mouse model. Four genes, namely, 
HSD17B11, ITGA2, VIM, and ABHD17C, are involved in these 
rules. The low expression of HSD17B11 and ITGA2 and the high 
expression of VIM and ABHD17C have all been validated by 
recent sequencing studies on breast cancer (Rotinen et al., 2011), 
reflecting the accuracy of these two rules.

The expression levels of five genes (ADAM28, BTBD6, CXCL5, 
PCDH1, and LOC102724689) comprise three rules for the 
identification of pancreatic-tissue-derived PDX tumor tissues. 

According to another dataset (Martinez-Garcia et al., 2014), the 
quantitative parameter of such five genes have been basically 
validated. Among such five genes, PCDH1 is the most effective 
tumor-associated gene, contributing to pancreatic cancer with 
abnormal promoter methylation status and participating in 
FGFR-associated signaling pathways (Zhang et al., 2014).

The two remaining rules contribute to the identification of 
lung-tissue-derived PDX tumor tissues. Five genes, namely, MSN, 
PDGFC, BCL2L15, TP73-AS1, and ADAM10, were screened out as 
candidate parameters. Various studies have revealed the expression 
pattern of lung cancer in PDX mouse model at either the single 
cell or bullet level (Bradford et al., 2016). By comprehensively 
analyzing such expression profiles of the five candidate genes, the 
expression levels of such five genes in lung-cancer-derived PDX 
tumor tissues correspond to the quantitative rules. Furthermore, 
if the expression profile of a certain PDX tumor tissue does not 
satisfy any of the conditions we mentioned above, such PDX tumor 
tissue may be derived from the large intestine.

Overall, we quantitatively analyzed the 16 rules reported in this 
study. Several rules can be supported or validated by recent RNA 
sequencing datasets on PDX tumor tissues, validating the efficacy 
and accuracy of these rules. Combining the qualitative analysis 
presented in the section Analysis of Optimal Features (Genes), we 
not only identified a group of highly related PDX tumor-specific 
biomarkers at the expression spectrum level but also for the first 
time attempted to build a systematic distinctive standard for 
the quantitative identification of PDX tumor originating from 
different tissue subtypes. The genes and rules that we screened out 
not only can provide a new tool for the identification of PDX-
derived tumors originating from different primary tissues but also 
reveal the distinctive expression characteristics and expression 
profile stability of PDX-derived tumor tissues compared with the 
primary ones, validating the efficacy and practicability of the PDX 
mouse model in tumor studies.
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Single-Cell Transcriptomics Reveals 
Spatial and Temporal Turnover 
of Keratinocyte Differentiation 
Regulators
Alex Finnegan 1†, Raymond J. Cho 2†, Alan Luu 1, Paymann Harirchian 2,3, Jerry Lee 2,3, 
Jeffrey B. Cheng 2,3*‡ and Jun S. Song 1*‡

1 Department of Physics, Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, 
IL, United States, 2 Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States, 
3 Veterans Affairs Medical Center, San Francisco, CA, United States

Keratinocyte differentiation requires intricately coordinated spatiotemporal expression 
changes that specify epidermis structure and function. This article utilizes single-cell RNA-
seq data from 22,338 human foreskin keratinocytes to reconstruct the transcriptional 
regulation of skin development and homeostasis genes, organizing them by differentiation 
stage and also into transcription factor (TF)–associated modules. We identify groups 
of TFs characterized by coordinate expression changes during progression from the 
undifferentiated basal to the differentiated state and show that these TFs also have 
concordant differential predicted binding enrichment in the super-enhancers previously 
reported to turn over between the two states. The identified TFs form a core subset of 
the regulators controlling gene modules essential for basal and differentiated keratinocyte 
functions, supporting their nomination as master coordinators of keratinocyte differentiation. 
Experimental depletion of the TFs ZBED2 and ETV4, both predicted to promote the basal 
state, induces differentiation. Furthermore, our single-cell RNA expression analysis reveals 
preferential expression of antioxidant genes in the basal state, suggesting keratinocytes 
actively suppress reactive oxygen species to maintain the undifferentiated state. Overall, 
our work demonstrates diverse computational methods to advance our understanding of 
dynamic gene regulation in development.

Keywords: Single-cell analysis, transcription regulation, keratinocyte, antioxidant, differentiation

INTRODUCTION

Keratinocytes, the predominant cell type of mammalian epidermis, regulate their gene expression 
programs to fulfill specialized cellular functions within the different epidermal strata. Additionally, 
they must balance self-renewal against cell loss, given the epidermis’ intrinsic replacement rate of ~28 
days in normal human skin. How keratinocytes dynamically govern the hierarchy of self-renewal, 

Abbreviations: TF, transcription factor; BK, basal keratinocyte; DK, differentiated keratinocyte; SE, super-enhancer; ROS, 
reactive oxygen species; GO, gene ontology; cpm, counts per million; TSS, transcription start site; CAGE, cap analysis of 
gene expression.
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differentiation, and maturation remains poorly understood. 
This article reconstructs the dynamic gene regulatory network 
rearrangements that occur with keratinocyte differentiation by 
analyzing human foreskin single-cell RNA-seq (scRNA-seq) data.

Basal keratinocytes (BKs) comprise the basal layer, the 
innermost layer of the epidermis. Basal keratinocytes divide 
at controlled rates that are thought to be heterogeneous across 
progenitor cells, ranging from rarely dividing self-renewing stem 
cells to rapidly cycling transit amplifying cells (Alcolea and Jones, 
2014). In addition to replicating, BKs constitute the basement 
membrane, which is critical for adhesion of the epidermis and 
dermis and participate in intercellular signaling required for 
maintaining tissue homeostasis. Upon differentiation, differentiated 
keratinocytes (DKs) exit the cell cycle and travel from the basal 
layer through the more superficial spinous and granular layers 
culminating in cornification/cell death. During the differentiation 
process, keratinocytes synthesize components necessary for 
epidermal barrier function, including desmosomes (specialized 
adhesion structures) in the spinous layer, secretory organelles called 
lamellar granules that contain lipids and enzymes, and keratohyalin 
granules, which contain proteins such as loricrin—the latter two 
providing vital components of the cornified lipid envelope of the 
epidermis’ outer stratum corneum layer.

At the transcriptomic level, the stratum-specific expression 
patterns of many key Keratinocyte Genes are known, but regulators 
of these genes are still being identified (Lopez-Pajares et al., 
2015). Constructing the dynamic regulatory network of relevant 
transcription factors (TFs) and their target genes thus remains an 
active area of investigation. Previous studies have used various 
genomic and epigenomic data to construct regulatory networks. 
For example, Lopez-Pajares et al. (2015) analyzed the time-series 
transcriptome of experimentally differentiated keratinocyte 
cultures and identified regulatory relations of genes based on 
temporal coexpression patterns. Joost et al. (2016) advanced this 
approach to the single-cell level in murine epidermis, identifying 
TFs varying with differentiation pseudotime and constructing 
gene modules using correlation-based expression similarity. In in 
vitro keratinocyte epigenomic studies, Cavazza et al. (2016) and 
Klein et al. (2017) mapped typical enhancers and super-enhancers 
(SEs)—large clusters of enhancers characterized by strong 
activating histone modifications, enrichment of cell type–specific 
TF motifs, and regulation of cell type–specific genes (Hnisz et 
al., 2013). Both works identified dramatic changes in sets of 
SEs between the BK and DK states and developed regulatory 
networks based on patterns of TF binding/motif enrichment 
in SEs and proximities of SEs to gene loci (Cavazza et al., 2016; 
Klein et al., 2017). More recently, the single-cell Perturb-ATAC 
method revealed changes in regulatory element chromatin 
accessibility during keratinocyte differentiation and targeted 
genetic perturbation (Rubin et al., 2019); these data permitted the 
grouping of TFs with correlated binding site accessibility during 
differentiation, the inference of interactions between TFs, and the 
detection of synergy in perturbations of chromatin accessibility 
(Rubin et al., 2019).

While regulation by TFs and epigenetic modifications 
ultimately determine gene expression, changes in redox state and 
abundance of reactive oxygen species (ROS) may help guide the 

transition from basal to differentiated states (Bigarella et al., 2014). 
For instance, Hamanaka et al. (2013) demonstrated that reducing 
ROS through inhibition of oxidative phosphorylation impairs 
epidermal differentiation and increases proliferation of basal cells 
and that treatment of cultured keratinocytes with antioxidants 
impairs differentiation. Likewise, Bhaduri et al. (2015) established 
MPZL3 and FDXR as proteins localizing to the mitochondria and 
inducing keratinocyte differentiation by increasing ROS levels. 
These findings demonstrate opposing roles of ROS and antioxidants 
in regulating differentiation; however, a genome-wide time-course 
examination of genes potentially modulating differentiation via 
their antioxidant function has not yet been described.

In this article, we use our recently generated scRNA-seq data 
assaying expression in 22,338 human foreskin keratinocytes 
(Cheng et al., 2018) to identify regulators of keratinocyte 
differentiation and computationally infer dynamic TF networks 
controlling gene expression patterns required for keratinocyte 
development and function. We find that expression turnover of 
established and predicted keratinocyte regulators coincides with 
previously reported change in SE sets between the BK and DK 
states (Klein et al., 2017). Depletion of two predicted positive 
regulators of BKs—ZBED2 and ETV4—leads to differentiation 
of BKs in the absence of external differentiation-inducing queues. 
The pattern of differential TF binding-motif enrichment between 
BK- and DK-specific SEs follows the pattern of TF state-specific 
expression, leading us to develop gene regulatory networks for 
TFs. These networks recapitulate known and previously predicted 
regulatory relationships and also identify novel regulators 
of differentiation stage–specific functions. In particular, our 
predicted regulation of cadherins by ETV4 suggests that ETV4’s 
established role of controlling cadherin-mediated cell sorting in 
branches of the neuronal lineage (Livet et al., 2002; Helmbacher, 
2018) may extend to keratinocytes. Supporting the role of cellular 
antioxidants in suppressing ROS levels, we find that genes related 
to antioxidant function are preferentially expressed in BK cells 
and also uncover differences in subcellular localization between 
antioxidant genes exclusively expressed in BK state and those in 
DK state.

RESULTS

A Subset of Keratinocyte-Specific 
Transcription Factors Shows Expression 
and Binding Patterns Coupled to State-
Specific Epigenomes
To identify expression patterns of key TFs across distinct 
keratinocyte transcriptomic states, we examined a set of 49 
established and 44 candidate Keratinocyte regulators, to which 
we refer below as Keratinocyte TFs. Established keratinocyte 
regulators were obtained from a previous publication (Klein et al., 
2017); Candidate TFs were identified based on keratinocyte-
specific RNA expression in the FANTOM5 (Functional ANnoTation 
Of the Mammalian genome) cell atlas (Fantom Consortium 
et al., 2014) (Methods; Supplementary File 1: Figure S1; 
Supplementary File 2: Tables S1, Table S2). Our approach 
of selecting candidates based on cell type–specific expression 
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aimed to increase the confidence that changes in TF expression 
across single-cell transcriptional states reflect rewiring of gene 
regulatory networks guiding keratinocyte differentiation and to 
reduce false positives in subsequent identification of TF targets 
from correlation analysis.

We clustered foreskin keratinocytes into eight stages via 
approximate spectral clustering of imputed scRNA expression 
values (Figure 1A; Supplementary File 1: Figure S2; Methods). 
As observed previously (Cheng et al., 2018), marker gene 
expression profiles indicated that these stages largely agreed with 
known keratinocyte states including a BK state (corresponding 
to stages 1−3), a mitotic state (stage 4), and a DK state (stages 
5−7) (Supplementary File 1: Figure S3). The mitotic state had 
markedly increased levels of cyclins as well as the histone H2A 
isoform HIST2H2AC known to be required for proliferation 
of undifferentiated mammary epithelial cells (Monteiro et al., 
2017). Additionally, the mitotic state had high expression of 

basal markers (KRT5, KRT14) and intermediate expression of 
early differentiation markers (KRT1, KRT10), suggesting it is a 
rapidly cycling subpopulation in transition from the BK to DK 
states (Supplementary File 1: Figure S3). This interpretation 
is supported by in situ hybridization experiments that have 
identified basal and suprabasal expression of the mitotic marker 
gene MKI67 (Cheng et al., 2018). Stage 8 reproduced the “channel” 
cluster, identified previously as a novel keratinocyte cell state not 
on the classic differentiation trajectory (Cheng et al., 2018).

Hierarchical clustering of Keratinocyte TFs that exhibit 
dynamic expression across stages 1 to 7 clearly separated the 
TFs with peak expression in the BK state from those with peak 
expression in the DK state (Figure 1B), with a sharp transition 
occurring in the mitotic state (stage 4). This pattern of expression 
turnover coincided with the dramatic change in distribution of 
active SEs between the BK and DK states (previously identified 
from differential histone modification patterns of H3K4 

FIGURE 1 | Turnover in Keratinocyte TF expression is temporally and spatially coupled to turnover in SEs. (A) Imputed single-cell expression vectors of 22,338 
foreskin keratinocytes projected onto first two principal components; stage membership was assigned by k-means–based approximate spectral clustering. 
(B) First seven rows show log-transformed stage-wise mean imputed expression of dynamic Keratinocyte TFs normalized across stages. Bottom row shows the 
magnitude and direction of differential motif enrichment between BK and DK SEs. Gray and black cells correspond to TFs without a known binding motif and TFs 
not differentially enriched between SE sets, respectively. Columns are organized by hierarchical clustering on first seven rows (Methods). (C−E) Log fold-change 
in stage-wise mean imputed expression between stage 4 (mitotic state) and other stages for established keratinocyte epigenetic regulators (C), H2A.Z (D), and a 
subset of components of SWR1 remodeler complex (E). See also Supplementary File 1: Figures S1−4.
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monomethylation, H3K4 trimethylation and H3K27 acetylation) 
(Cavazza et al., 2016; Klein et al., 2017). We therefore hypothesized 
that the TFs with peak expression in each state may function 
through direct binding of state-specific SEs, thereby coupling the 
transcriptional and epigenetic developmental programs. To test 
this hypothesis, we first compared the distributions of TF motif 
occurrence counts (scaled by SE length) between BK and DK SEs 
and identified 21 and 14 TFs with motifs significantly differentially 
enriched between BK and DK SEs, respectively. Next, we assigned 
to each of these TFs a direction and magnitude of differential 
motif enrichment (Figure 1B last row, Supplementary File 3: 
Clustering transcription factor expression trajectories and super-
enhancer differential motif enrichment). Grouping the TFs into 
two expression clusters as shown in Figure 1B, we found that 
the direction and magnitude of TF differential motif enrichment 
in BK versus DK SEs generally agreed with each cluster’s peak 
expression in BK versus DK state (p = 0.043, one-sided Mann-
Whitney U test); intuitively, the left (magenta) and right (green) 
expression branches in Figure 1B contained more magenta and 
more green boxes, respectively, in the last row of Figure 1B. 
This finding, made possible by single-cell analysis, supported 
the premise that Keratinocyte TF expression and chromatin 
conformation accessibility are coordinated during transition 
between keratinocyte cell states.

Next, we identified potential regulators of the switch in 
state-specific SEs by examining the stage-wise expression of 
established keratinocyte epigenetic regulators and found several 
of them, including EZH2, DNMT1, and UHRF1, to have a strong 
expression spike in the mitotic state (Ezhkova et al., 2009; Sen 
et al., 2010) (Figure 1C). Additionally, we found that H2A.Z and 
components of the SWR1 remodeling complex, responsible for 
depositing this enhancer-associated histone subunit, attained 
peak expression in the mitotic state (Figures 1D, E). Although 
the sharp increase in the expression of H2A.Z and other histone 
subunits in this state may be partially explained by the abundance 
of rapidly dividing cells, the concurrent peak expression of 
SWR1 components suggested active reorganization of enhancer 
activities prior to differentiation. Together, these single-cell 
results highlighted epigenetic remodelers functioning during the 
mitotic state, potentially to facilitate the turnover of SEs between 
the BK and DK states.

Knockdown of ETV4 and ZBED2, 
Predicted Promoters of the BK State, 
Induces Differentiation
To validate the regulatory function of Candidate Keratinocyte TFs, 
we ranked the TFs based on their predicted ability to promote the 
BK state. Candidates were assigned a differentiation-promoting 
score by first identifying highly correlated keratinocyte-specific 
regulatory targets and summing their log fold changes between 
DK and BK states, accounting for the sign of correlation 
(Methods; Supplementary File 1: Figure S4). We filtered out 
TFs with low expression in undifferentiated keratinocyte cultures 
(<5 FPKM) and knocked down four of the top five remaining 
TFs with greatest BK-promoting strength (strong negative 

differentiation-promoting score) using RNAi in the absence of 
external differentiation queues.

Depletion of ETV4 and ZBED2 transcripts resulted in a 
significant increase in mRNA expression of the early differentiation 
marker KRT10 by 3.84- and 4.17-fold, respectively, compared with 
control cells transfected with nontargeting siRNA (Figures 2A, B). 
Depletion of ETV4 also showed a significant increase (2.49-fold) 
in the mRNA expression of the late differentiation marker FLG, 
with ZBED2 depletion also showing a similar trend (Figure 2B). 
These results confirmed the strong progenitor-promoting function 
of ETV4 and ZBED2, synthetic reduction of which induced 
spontaneous differentiation of keratinocytes.

Depletion of BNC1 and HOXC11 transcripts did not 
significantly change the mRNA level of KRT10 or FLG 
(Figures 2C, D), suggesting that the regulatory effects of these 
TFs do not extend to these differentiation markers or that BNC1 
and HOXC11 protein expression was not diminished enough 
to have an effect. Nevertheless, previous knockout of BNC1 
in mouse significantly decreased the number of proliferating 
keratinocytes in the cornea of the eye (Zhang and Tseng, 2007). 
Therefore, we conclude that BNC1 likely promotes the BK 
state in foreskin, although its regulatory targets remain to be 
experimentally characterized.

Previous reports supported our prediction of the role of SOX9 
and IRX4 in keratinocyte differentiation (Supplementary File 1: 
Figure S4). For example, overexpression of SOX9 in keratinocytes 
has been shown to suppress the late differentiation maker genes IVL 
and LOR (Shi et al., 2013). Likewise, IRX4 was previously predicted 
to regulate keratinocyte proliferation and hemidesmosome assembly 
based on correlation with functionally annotated genes across a 
large set of publicly available mouse RNA-seq data (Lachmann et al., 
2018). Moreover, knockdown of the differentiation-promoting TF 
GRHL3 in calcium-induced keratinocyte primary cells resulted 
in a gain of SEs strongly enriched for the IRX4 motif (Klein et al., 
2017), suggesting antagonism between IRX4, and this established 
prodifferentiation TF. Overall, our prioritization of Candidate TFs 
revealed novel keratinocyte regulators and provided additional 
candidates for follow-up experiments.

Gene Modules in the Basal Network 
Promote Tissue Architecture, Control 
of Hippo Signaling, and Progression to 
the Mitotic State
We next sought to assign function to Keratinocyte TFs with motifs 
enriched in state-specific SEs based on their scRNA-seq expression 
correlation with a set of potential regulatory targets. This set was 
composed of the Keratinocyte TFs themselves and an additional 
747 genes differentially upregulated in FANTOM5 keratinocytes 
compared with other cell types (Methods; Supplementary File 2: 
Table S2 ). Focusing first on the regulatory network governing 
the BK state and its progression to the mitotic state, we clustered 
the Keratinocyte TFs with enriched motifs in BK SEs based on 
their expression similarity across single cells in stages 1 to 4. We 
then clustered the regulatory targets into gene modules based on 
the similarity of their correlations to the TFs. Organizing the TF/
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target correlation matrix by TF and gene modules (Supplementary 
File 1: Figure S5A) yielded submatrices with strong correlation/
anticorrelation delineated by module boundaries. Thresholding 
on the average correlation strength calculated across gene/TF 
pairs for each TF and gene module, we identified activating and 
inhibiting relationships between 13 TF and 23 target gene modules 
(Supplementary File 1: Figure S5 (B–D); Supplementary File 2: 
Table S3; Supplementary File 3: Regulatory network construction).

Figure 3A shows regulatory relationships for four gene 
modules enriched in gene ontology (GO) terms (Figure 3B) 
(see Supplementary File 2: Table S4 for full GO output). 
Gene Module 1 was highly expressed in all BK stages and 
contained genes important for anchoring cells to the basement 
membrane and extracellular matrix via hemidesmosomes 
and other cell junctions, genes encoding extracellular 
signaling molecules, and genes participating in the key Hippo 
and PI3K intracellular signaling pathways. Transcription 
factors predicted to activate Module 1 genes recapitulated 
several established and independently predicted regulatory 
relationships. For example, TP63 and JUND are known 
to positively regulate ITGB4 and LAMA3A, respectively 
(Virolle et al., 1998; Carroll et al., 2006), whereas IRX4 and 
JUND are both predicted regulators of hemidesmosome 
assembly (Lachmann et al., 2018).

Notably, four of the six genes in the Hippo pathway (AJUBA, 
WNT7A, WNT7B, and WNT3) and seven of the eight genes in 
the PI3K pathway (ITGA3, LAMB4, LAMB3, FGFR2, COL4A6, 
ITGB4, and LAMA3) were expressed as extracellular or cell 
membrane–associated proteins. Given that these pathways 
involve signaling via intracellular posttranslation modification, 
this result suggested that the primary mechanism for pathway 
modulation at the transcriptional level might be via changing 
the expression of extracellular signaling molecules and the cell 
membrane proteins that transduce these signals. Examining 
the position of Module 1 genes in the Hippo signaling pathway 
(Kanehisa et  al., 2017) illustrated this mechanism and showed 
that Module 1 genes promoted the pro-proliferative Hippo-OFF 
signaling state (Supplementary File 1: Figure S6). Specifically, 
the Module 1 cell membrane–associated protein AJUBA and 
intracellular protein RASSF6 are known to repress MST1/2, 
allowing nuclear localization of YAP/TAZ, which defines the 
pro-proliferative Hippo-OFF state (Meng et al., 2016). In the 
nucleus, TFs activated downstream of Module 1 extracellular 
WNT signaling proteins (WNT7A, WNT7B, and WNT3) can 
interact with YAP to promote pro-proliferative genes, including 
the Module 1 gene CCND2 (Kanehisa et al., 2017).

Module 2 genes were enriched for keratins and rose sharply in 
expression at stage 4. Consistent with the strong mitotic signal at 

FIGURE 2 | Evaluation of predicted keratinocyte regulators via siRNA knockdown. (A) RNA was harvested 4 days after transfection from primary human 
keratinocyte culture treated with ETV4, ZBED2, or negative control siRNA. Quantitative polymerase chain reaction analysis showed significant (p < 0.05, Student 
t test) knockdown of ETV4 and ZBED2 mRNA relative to nontargeting siRNA transfected cells. (B) Expression of KRT10 and FLG transcript following siRNA 
knockdown of ETV4 or ZBED2, relative to control. Asterisks indicate p < 0.05 (Student t test). (C) same as (A) but for BNC1 and HOXC11. (D) Knockdown of 
BNC1 and HOXC11 did not significantly change expression of differentiation marker genes KRT10 and FLG. Error bars indicate 1 standard deviation calculated 
over four replicates.
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this stage, two of the three keratins in this module (KRT6A and 
KRT6B) were previously implicated in rapid keratinocyte division 
(Bolognia et al., 2017). Moreover, KRT6A and KRT6B were also 
shown to suppress keratinocyte migration during wound repair 
(Rotty and Coulombe, 2012), suggesting that the sharp rise in 
KRT6A/B expression in stage 4 and its fall beyond stage 5 could 
help inhibit migration of this mitotic cell population from the 
basal layer (Supplementary File 1: Figure S7). The proposed 
mechanism of impaired migration may explain how this mitotic 
population remains in or near the basal layer, despite expressing 
spinous layer markers (e.g., KRT1 and KRT10) at higher levels 
than BK cells (Supplementary File 1: Figure S3).

Previous publications confirmed the function of several 
transcriptional regulators predicted for Gene Module 2. For 
example, TP63 knockdown was shown to increase the expression 
of KRT6A in human keratinocyte cell lines (Barbieri et al., 2006). 
Similarly, conditional knockout of glucocorticoid receptor 
NR3C1 in mouse keratinocytes was shown to increase the 
expression of KRT6A, KRT6B, and KRT77, another keratin in the 
Gene Module (Sevilla et al., 2013).

Gene Module 4 was enriched for MAPK signaling genes 
(CRKL, FGF11, GADD45A, FLNB, DUSP7, and MYC) and 
rose sharply in expression at stage 2. The overall effect of 
Module 4 gene expression on MAPK signaling was complex, 
with FGF11 and GADD45A activating the ERK and JNK 
pathways (Kanehisa et al., 2017); DUSP7 inhibiting ERK, JNK, 
and p38 pathways (Amit et al., 2007; Kanehisa et al., 2017); 
and CRKL and FLNB serving structural functions. Moreover, 
different outcomes have been reported for activation of MAPK 
signaling by Module 4 genes. On the one hand, activation 
of JNK and P38 pathways by the DNA damage response 
gene GADD45A can promote apoptosis and cell cycle arrest 
(Hildesheim et al., 2002). On the other hand, activation of ERK 
signaling by growth factor FGF11 may promote proliferation 
(Kim et al., 2008). These results, together with our finding of 
Gene Module 4 regulation by multiple TF modules, including 
MAPK regulatory targets FOS, JUN (Amit et al., 2007), and 
FOSL1 (Gillies et al., 2017), suggested complex regulation with 
multiple feedback mechanisms in controlling proliferation, 
differentiation, and apoptosis.

FIGURE 3 | Basal keratinocyte network analysis identifies gene and TF modules specific to basal functions. (A) Regulation of four GO-enriched gene modules by 
TF modules, represented as a directed graph. Gene module nodes show log-transformed stage-wise mean imputed expression normalized across stages 1 to 7 
with shading of 1 standard deviation interval. Transcription factor modules list their TF constituents. Arrows indicate regulation with width proportional to predicted 
strength of activation (red) or inhibition (blue). (B) Minus log of adjusted p values for selected GO terms enriched in each gene module. See also Supplementary 
File 1: Figure S5.
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Gene Modules in the Differentiated 
Network Promote Keratinization, Barrier 
Formation, and Down-Regulation of Basal 
State Signaling
We next constructed regulatory relationships among gene and 
TF modules for the DK state using the same method described 
above, calculating gene correlations across cells in stages 4 to 7 and 
restricting attention to TFs with motifs enriched in DK-specific 
SEs (Methods). This analysis identified activating and inhibiting 
relationships among 21 gene and 9 TF modules (Supplementary 
File 1: Figure S8; Supplementary File 2: Table S3). Figure 4A shows 
regulatory relationships for six gene modules enriched in GO terms 
(Figure 4B) (see Supplementary File 2: Table S4 for full GO output).

Gene Module 1 decreased in expression with differentiation 
and was enriched for GO terms associated with intercellular signal 
receptors and intracellular signaling cascades. Many  Module 

genes associated with these terms were also seen to function in 
basal state signaling pathways. For example, Module genes in 
the Hippo pathway included cell membrane–associated AJUBA, 
WNT7B, and DLG5 (Elbediwy et al., 2016; Kwan et al., 2016; 
Kanehisa et al., 2017). Module genes in the MAPK pathway 
included receptor tyrosine kinases FGFR3 and DDR1 (Hilton 
et  al., 2008; Duperret et al., 2014), the kinases MAPKBP1 
and TNK1 (Hoare et al., 2008; Lecat et al., 2012), the receptor 
ADIPOR1 (Shibata et al., 2012), and the phosphoprotein and 
TF ATF5. The decreasing expression of this signaling module 
thus reflected a shift in the primary cellular function upon 
differentiation, with basal cells balancing self-renewal and 
amplification via abundant signaling between and within 
cells, while differentiated cells began suppressing signaling 
proteins in favor of those needed for barrier function. Several 
positive regulators of this Module are known to promote cell 

FIGURE 4 | Differentiated keratinocyte network analysis identifies gene and TF modules specific to differentiated functions. (A) Regulation of six GO-enriched gene 
modules by TF modules, represented as a directed graph. Gene module nodes show log-transformed mean stage-wise imputed expression normalized across 
stages 1 to 7 with shading of 1 standard deviation interval. Transcription factor modules list their TF constituents. Arrows indicate regulation with width proportional 
to predicted strength of activation (red) or inhibition (blue). (B) Minus log of adjusted p values for selected GO terms enriched in each gene module. See also 
Supplementary File 1: Figure S8.
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cycling, making them plausible regulators of the associated 
MAPK and Hippo pathways. These regulators included KLF16, 
which suppresses cyclin-dependent kinase inhibitor CDKN1A 
(Sakaguchi et al., 2005), and MYC, whose knockdown prevents 
keratinocyte proliferation (Wu et al., 2012).

Gene Module 4 also decreased with differentiation and was 
enriched for genes involved in EGF-like calcium binding and 
cell adhesion. Cell adhesion genes included several members of 
the cadherin superfamily: CDH3, FAT1, and DSG3. Predicted 
activators of this Module included our experimentally validated 
TF ETV4 (Figure 2B), which was previously shown to positively 
regulate cadherins in mouse spinal cord motor neurons, 
promoting segregation of cells with similar function (Livet et al., 
2002; Helmbacher, 2018). Moreover, it was also demonstrated 
that ETV4 can positively regulate RUNX1, another Module 4 
gene (Helmbacher, 2018). These findings thus supported that the 
cadherin regulatory function of ETV4 in the neuronal lineage 
may extend to keratinocytes.

Gene Module 3 increased its expression with differentiation 
and was enriched for genes related to the formation of cornified 
envelope and DK function. For example, the protein products of 
LOR, SPRR1B, and CSTA in this module are peptides cross-linked 
in the cornified envelope, while the keratinocyte differentiation 
protein ACER1 hydrolyzes ceramides, abundant in the granular 
layer, producing free sphingoid bases with antimicrobial 
function (Houben et al., 2006). Two other important epidermis 
development genes in this module were KLK7 and CALML5; 
KLK7 degrades cellular adhesions of the cornified layer, favoring 
desquamation (Caubet et al., 2004), and CALML5 is thought to 
regulate differentiation by mediating cytoplasmic sequestration 
of YAP1 and initiating the antiproliferative Hippo-ON state 
(Sun et al., 2015). This gene module did not have positive TF 
regulators in our network, but had two sets of negative regulators 
(Modules 3 and 4). Of note, TF Module 4 contained SP3, ETS1, 
and SMAD4 that were previously shown to interact physically 
and suppress hematopoiesis (Morikawa et al., 2013; Raz et al., 
2014). Our analysis thus indicated that steady reduction of 
these TFs contributed to the de-repression of Module 3 genes 
during differentiation.

Gene Module 5, like Module 3, increased its expression with 
differentiation and was negatively regulated by TF Modules 3 
and 4. It contained genes primarily involved in barrier function, 
with several of these genes (DEGS2, CERS3, ABCA12, TMEM79) 
functioning in lipid synthesis and transport via the lamellar 
granule system. Other module members were involved in cell-
cell adhesion (desmosomal proteins DSC1, DSG1, and PERP), 
tight junctions (CLDN1 and CLDN8), and desquamation 
(serine-proteases KLK8, KLK11) (Kishibe et al., 2007). Finally, 
the module also contained the enzymes TGM3 and CASP14 that 
promote cornification, DK-specific signaling molecules genes 
KRTDAP and DMKN (Matsui et al., 2004; Tsuchida et al., 2004), 
and the antimicrobial gene DEFB1 (Ali et al., 2001). Apart from 
negative regulation by TF Modules 3 and 4, Gene Module 5 was 
positively regulated by TF Module 5. This TF module includes 
RORA, which is known to positively regulate ABCA12 and 
other genes functioning in the granular lipid barrier (Dai et al., 
2013). Our analysis thus identified Modules 3 and 5 genes as key 

components of keratinocyte terminal differentiation coordinately 
regulated by TFs that may preferentially localize in DK-specific 
SEs to either suppress or promote terminal differentiation.

Antioxidant Gene Expression Is Enriched 
in the Basal State and Coupled to the 
Spatial Organization of Epidermis
Given the documented role of ROS and antioxidants in 
modulating keratinocyte differentiation (Hamanaka et al., 
2013; Bhaduri et al., 2015), we also used our scRNA-seq data to 
examine coordination between antioxidant gene expression and 
differentiation state. Clustering of annotated antioxidant genes 
(Carbon et al., 2009) selected for dynamic expression across 
stages identified three distinct expression clusters (Figure 5A, 
Methods). The majority of antioxidant genes (20 of 32) belonged 
to the magenta cluster with peak expression in the basal state. 
The size of this cluster was significantly larger than expected by 
chance (p = 8.5 × 10-4, Methods), suggesting that antioxidant 
genes were preferentially expressed in the basal state to preserve 
self-renewal capacity by preventing ROS accumulation (Bigarella 
et al., 2014). In support of this conclusion, the magenta cluster 
contained the gene SOD2 whose conditional knockout in mouse 
keratinocytes has been shown to induce cellular senescence and 
elevate the expression of differentiation marker genes at wound 
sites (Velarde et al., 2015).

The remaining two clusters (orange and green) attained peak 
expression in stages 4 to 5 and stages 5 to 7, respectively. Given the 
putative role of magenta class genes in preserving the basal state, 
we sought to identify distinct functions for these late peaking 
clusters. Gene ontology analysis revealed that magenta cluster 
proteins were enriched in organelle lumens; by contrast, green 
cluster gene products were enriched in cytoplasmic vesicles, 
with a similar trend holding for the group of all genes not in the 
magenta cluster (Figure 5B; Supplementary File 2: Table S5). 
This difference in cellular localization reflected potential 
differences in function, with magenta cluster proteins localized 
in key organelles to prevent the initiation of differentiation and 
green cluster proteins diffused throughout the cytoplasm to 
mitigate environmental oxidative stress and protect basal cells. 
Supporting this interpretation, the genes not in the magenta 
cluster were enriched for the GO term “response to oxidative 
stress” (Figure 5B).

DISCUSSION

Keratinocyte function in the basal and differentiated states depends 
on complex transcriptional regulation involving TFs, epigenetic 
modifications, and environmental queues from ROS levels and 
other stimuli. In this work, we have integrated bulk epigenetic 
profiles and single-cell expression data to better understand the 
coordination of these regulatory mechanisms. In particular, by 
considering known and predicted keratinocyte-specific TFs, 
we have uncovered that the turnover of this master set of TFs 
upon differentiation is coupled to the reported transition from 
BK to DK SEs. We have confirmed that synthetically suppressing 
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the TFs ZBED2 and ETV4, identified in this work as crucial 
promoters of the basal state, leads to acute differentiation of BKs. 
We have also prioritized candidate promotors of differentiation 
that may be studied in subsequent experiments.

The single-cell transcriptomic data have also allowed us to 
identify a population of mitotic cells containing sharp expression 
spikes for established keratinocyte epigenetic regulators EZH2, 
DNMT1, and UHRF1, as well as for the enhancer-associated 
histone H2A.Z and the SWR1 remodeling complex that deposits 
the histone variant. The fact that EZH2, DNMT1, and UHRF 
peak expression coincides with the temporal stage of TF and 
SE turnover underscores the importance of these genes and 
helps localize their activity during differentiation pseudotime. 
Moreover, the co-occurrence of H2A.Z and SWR1 complex 
hypertranscription with this turnover suggests that these genes 
may have a previously unappreciated role in epigenetic regulation 
of keratinocyte transition from BK to DK states.

Network analysis has shown that TFs with differential binding 
in BK versus DK SEs regulate distinct sets of gene modules 
enriched for important keratinocyte functions. Consistent with 
previous studies, our BK network analysis has highlighted the 
role of TP63 in basement membrane adhesion and regulation of 
intercellular signaling pathways including WNT (Wu et al., 2012), 
as well as the importance of Hippo signaling in BKs (Elbediwy 
et al., 2016). Meanwhile, our DK analysis has identified regulators 
of terminal differentiation gene modules and implicated ETV4 in 

regulating cadherin superfamily genes, in a manner similar to its 
established function in motor neurons of the spinal cord (Livet 
et al., 2002; Helmbacher, 2018). The role of spinal cord cadherins 
in segregating cells by function suggests that a subset of ETV4 
targets may also mediate epidermal cell sorting to assign specific 
keratinocyte functions to each epidermal layer.

As a proxy for measuring the degree of ROS suppression at each 
keratinocyte stage, we have demonstrated preferential expression 
of antioxidant genes in the BK state and uncovered differences in 
patterns of subcellular localization between BK- and DK-specific 
antioxidant genes. Notably, BK-specific antioxidant proteins tend 
to preferentially localize in organelles, such as the mitochondria, 
where they may control redox levels or the transduction of redox 
signals, preventing the onset of differentiation. This finding 
complements previous results that increased expression of select 
proteins localizing to the mitochondria promotes differentiation 
by increasing ROS levels (Bhaduri et al., 2015). By contrast, 
DK-specific antioxidant proteins tend to localize in cytoplasmic 
vesicles where they may be more important for epidermal barrier 
function than for regulation of differentiation.

Our integrative models of transcriptional regulation have 
shown that keratinocyte cell fate determination requires 
coordinating the expression level of critical TFs with the 
availability of their binding motifs in differentiation state-
specific SEs. The inferred regulatory networks have provided 
insights into the transcriptional regulation of key genes essential 

FIGURE 5 | Peak expression of dynamic antioxidant genes is enriched in the BK state. (A) Log-transformed stage-wise mean imputed expression of dynamic 
antioxidant genes normalized across stages. Columns are organized by hierarchical clustering (Methods). (B) Minus log of unadjusted p values (Methods) for 
selected GO terms enriched in selected gene sets clustered from (A). Asterisks indicate significance at 0.05 threshold.
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for skin homeostasis and function. We have thus demonstrated 
that computational analyses of single-cell transcriptomic 
profiles in the context of other genomic and epigenomic 
data provide a powerful method for reconstructing cellular 
differentiation processes.

MATERIALS AND METHODS

Keratinocyte Isolation and Primary Culture
Primary human keratinocytes were isolated from neonatal 
foreskin surgical tissue discards obtained with written informed 
consent using protocols approved by the UCSF institutional 
review board (#10-00944). Following the method of Lowdon et al. 
(2014), skin was incubated overnight at 4 °C in 25 U/ml dispase 
solution (Corning Life Sciences, Corning, NY). Next, epidermis 
was mechanically separated from the dermis and incubated 
in 0.05% trypsin for 15 min at 37 °C. Dissociated epidermal 
cells were filtered with a 100  μm nylon cell strainer (Corning 
Life Sciences) and then cultured in keratinocyte growth media 
(KGM; medium 154CF supplemented with 0.07 mM CaCl2 and 
Human Keratinocyte Growth Supplement; Life Technologies, 
Waltham, MA).

Data Accession and Cell Selection
Raw counts of scRNA-seq data used in this study were 
obtained from the European Genome-phenome Archive 
(EGAS00001002927). The data were generated using Chromium 
Single Cell 3′ v2 libraries (10X genomics) from three human 
epidermal samples collected at each of four anatomical locations/
disease conditions. Sequence demultiplexing resulted in counts 
of unique molecular identifiers (UMIs) for genes and noncoding 
RNA in more than 100,000 cells [see Cheng et al. (2018) for 
details]. Cell filtering and identification of keratinocytes followed 
Cheng et al.(2018), with 92,889 passing quality control metrics 
and 85,345 of these identified as keratinocytes based on average 
marker gene expression in published cell clusters. This manuscript 
mainly focuses on the foreskin data from this data set.

RNAi Knockdown of Predicted TFs
ON-TARGETplus siRNA pools targeting ETV4, ZBED2, BNC1, 
and HOXC11 as well as the ON-TARGETplus Nontargeting 
Control siRNA #1 were obtained from Dharmacon (Lafayette, 
CO). Pooled keratinocytes from five different individuals were 
seeded at a density of 300,000 cells/ml in 12-well plates. Within 
30 min of plating, 10 nM siRNA plus 5  µL/well of  Hiperfect 
transfection reagent (Qiagen, Germantown, MD) was added. 
Transfections were done in quadruplicates. At 48 hours after 
transfection, siRNA media was removed and replaced with 1 
ml fresh KGM (medium 154CF supplemented with 0.07  mM 
CaCl2 and Human Keratinocyte Growth Supplement; Life 
Technologies). Five days after transfection, total RNA was 
extracted using TRIzol reagent (Life Technologies) following 
the manufacturer’s protocol. cDNA was synthesized using the 
iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA) following 
the manufacturer’s protocol. Quantitative polymerase chain 

reaction was performed with POWER SYBR Green Complete 
Master Mix (Life Technologies) to measure the expression 
levels of the housekeeping gene GUSB, as well as ETV4, ZBED2, 
BNC1, HOXC11, KRT10, and FLG. Each sample was measured 
in triplicate on the Applied Biosystems StepOne System. 
Melting curves were manually inspected to confirm specificity. 
When applicable, the results are presented as mean ± standard 
deviation. Statistical analysis was conducted using GraphPad 
Prism v5.0f (La Jolla, CA). Student t test was used to compare two 
separate sets of independent and identically distributed samples 
with p < 0.05 considered as significant.

Expression Level of Candidate TFs in Cell 
Culture
To assess concordance between Candidate TF’s differentiation-
promoting scores calculated from epidermal scRNA-seq data 
(Results: Knockdown of ETV4 and ZBED2, predicted promoters 
of the BK state, induces differentiation; Supplementary File 3: 
Prioritization of knockdown targets; Figure S4) and changes in 
bulk RNA expression of these TFs during in vitro differentiation, 
we generated RNA-seq expression for primary cultured human 
keratinocytes cultured in basal/proliferating (0.07 mM Ca) or 
high calcium–induced differentiation (1.2 mM Ca) conditions. 
Negative control siRNA-treated keratinocytes were used a 
proxy for normal cultured keratinocytes. Keratinocytes were 
initially seeded at a density of 100,000 and 150,000 cells in 
12-well plates using KGM with 0.07 mM Ca. Within 30 min of 
plating, 10 nM of either ON-TARGETplus Nontargeting Control 
siRNA #1 or 2 mixed with 2.5 µl/well of Hiperfect transfection 
reagent was added. At ~48 h after transfection, subconfluent 
100,000-cell wells  were harvested using  0.5 ml TRIzol reagent 
(Life Technologies) for RNA extraction as per manufacturer’s 
protocol. At ~48 h after transfection, the 150,000-cell wells had 
reached confluency, and the media was replaced with 1 ml fresh 
KGM with 1.2 mM Ca. After 24 h of exposure to high 1.2 mM 
calcium, the confluent cells were also harvested using 0.5 ml 
TRIzol reagent, and RNA-seq was performed. RNA-seq library 
preparation was performed using KAPA Biosystems Stranded 
RNA-Seq Kits and RiboErase HMR (Roche, Pleasanton, 
CA) with 300 to 1,000 ng of total RNA. To minimize batch 
effects, technical duplicate libraries were generated for each 
sample. Ribosomal RNA was depleted by hybridization of 
complementary DNA oligonucleotides plus treatment with 
RNase H and DNase to remove ribosomal RNA duplexed to 
DNA and original DNA oligonucleotides, respectively. RNA 
fragmentation was conducted using heat and magnesium. Using 
random primers, first-strand complementary DNA (cDNA) 
synthesis was conducted followed by second-strand synthesis, 
and A-tailing was added to the 3′ ends using dAMP. Fragments 
were amplified using appropriate adapter sequences via ligation-
mediated polymerase chain reaction. Then, the libraries were 
quantitated with either Quant-iT dsDNA or Qubit dsDNA HS 
assay kits (Life Technologies). Quality assessment was performed 
using the LabChip GX Touch HT microfluidics platform 
(Perkin Elmer, Waltham, MA). 2  ×  150 base pair sequencing 
on a NovaSeq 6000 instrument was performed on libraries 
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with a PhiX Control v3 (Illumina, San Diego, CA). The RNA-
Seq by Expectation Maximization algorithm (Li and Dewey, 
2011) was used to quantify gene expression in terms of FPKM 
for technical replicates in both biological conditions. Change in 
expression between the differentiation-promoting (1.2 mM Ca) 
and non–differentiation-promoting (0.07 mM Ca) conditions 
was quantified as the log2 ratio of gene expression averaged over 
technical replicates (Figure S4).

Identification of Keratinocyte-Specific 
Genes and Transcription Factors
Our objective of uncovering regulators and regulatory 
mechanisms specific to the keratinocyte lineage prompted us 
to focus analysis on genes and TFs with increased expression in 
keratinocytes compared with other types of primary cells. On 
the one hand, focusing on keratinocyte-specific genes and TFs 
had two benefits: first, it permitted discovery of gene modules 
particular to keratinocyte functions; and, second, it reduced false 
positives in our identification of keratinocyte regulators from 
single-cell data by adding a filter for specificity of expression 
across primary cells. On the other hand, recognizing that some 
TFs known to be important for keratinocyte regulation may also 
function in other cell types, we supplemented the data-driven 
identification of Keratinocyte TFs with a set of established 
keratinocyte regulators from the literature.

Identification of genes and TFs with significantly increased 
expression in keratinocytes used the expression data from the 
FANTOM consortium (Fantom Consortium et al., 2014). Relative 
log expression–normalized expression values for transcription 
start sites identified from cap analysis of gene expression 
(CAGE) experiments were obtained from http://fantom.gsc.
riken.jp/5/datafiles/latest/extra/CAGE_peaks/hg19.cage_peak_
phase1and2combined_tpm_ann.osc.txt.gz. Restricting to 495 
human primary cell samples not marked for exclusion from 
expression analysis in Table S2 of (Fantom Consortium et al., 
2014), we computed gene-level expression values by associating 
with each gene’s EntrezID the sum of CAGE peak expression 
values annotated with that ID. We used the Mann-Whitney U 
test to identify genes and TFs differentially expressed in three 
keratinocyte samples relative to the remaining 491 samples (due 
to our interest in epidermal keratinocytes, we excluded the oral 
keratinocyte sample from consideration). A list of annotated 
TFs (Zhang et al., 2015) was used to distinguish TFs from other 
protein coding genes and noncoding RNA. Genes and TFs with 
Benjamini−Hochberg false discovery rate (FDR) less than 0.05 
and increased average expression in keratinocytes were selected 
and filtered to include only those with at least 1 UMI (raw data) 
in at least 1% of all single-cell keratinocytes (Supplementary File 
2: Table S1). This differential expression and filtering procedure 
yielded 793 genes, termed FANTOM genes, and 49 TFs.

The set of differentially expressed TFs, prior to filtering 
for minimum scRNA-seq expression level, contained several 
members of the HES superfamily: HES2, HES5, and HES7. Of 
these, only HES2 passed the filter. However, we observed that 
two other superfamily members, HES1 and HES4, were robustly 
expressed and possessed dynamic expression patterns across 

our single-cell data (Figure 1). For this reason and because 
HES genes are targets of Notch signaling that has an established 
function in keratinocyte differentiation (Watt et al., 2008), we 
elected to add HES1 and HES4 to the set of 49 TFs. Below, we 
refer to the full set of 51 TFs as FANTOM TFs. We supplemented 
our FANTOM TFs with additional 49 TFs previously shown to 
regulate keratinocyte differentiation (Klein et al., 2017). Lowly 
expressed TF were filtered using the threshold on single-cell 
expression as described above. We refer to this set as Klein TFs.

From these FANTOM genes, FANTOM TFs, and Klein TFs, we 
constructed the final three sets for further analysis. The set termed 
Keratinocyte TFs consisted of the union of FANTOM TFs and Klein 
TFs and was used to study the dynamics of TF expression across 
single-cell stages, as well as for regulatory network analysis. The set 
termed Candidate Keratinocyte TFs consisted of FANTOM TFs 
not in the set of Klein TFs and was the focus of TF prioritization and 
validation. Finally, the set termed Keratinocyte Genes consisted of 
the union of Keratinocyte TFs and FANTOM genes and comprised 
the set of candidate target genes for regulatory network analysis.  
Supplementary File 1: Figure  S1 illustrates the construction 
of these sets, and Supplementary File 2: Table S2 lists the  
sets’ genes.

Summary of scRNA-Seq Data Processing 
and Analysis
Imputed gene expression was calculated as in Cheng et al. (2018). 
Briefly, we used the ZINB-WaVE algorithm (Risso et al., 2018) 
to obtain a low-dimensional, bias-corrected representation of raw 
singe-cell data, which were then used to construct a distance-based 
measure of cell similarly and perform imputation with the MAGIC 
algorithm (version 0.0) (van Dijk et al., 2018). Next, we selected 
foreskin keratinocytes based on their membership in expression-
based clusters previously characterized as keratinocytes in 
(Cheng et al., 2018). We identified differentiation stages within 
this cell population by applying principal components analysis 
followed by k-means–based approximate spectral clustering (Yan 
et al., 2009) (Supplementary File 3: Identification of keratinocyte 
stages). To reduce false positives in downstream correlation 
analysis, we removed outlier cells from the eight keratinocyte 
stages identified by clustering, reduced MAGIC’s imputation time 
parameter, and reimputed (Supplementary File 1: Figures S9–10; 
Supplementary File 2: Table S6; Supplementary File 3: 
Calculation of gene correlations).

To construct Figures 1 and 5, Keratinocyte TFs and antioxidant 
genes were filtered for dynamic expression based on stage-wise log 
fold change and clustered using Pearson correlation distance among 
vectors of log-transformed stage-wise mean imputed counts per 
million (cpm) (Supplementary File 3: Clustering transcription 
factor expression trajectories and super-enhancer differential 
motif enrichment, antioxidant analysis). To prioritize Candidate 
Keratinocyte TFs for experimental validation, TFs were ranked 
by the sum of signed log-fold change of their target Keratinocyte 
Genes during differentiation (positive sign for activation, negative 
sign for repression). Targets were identified based on strength 
of TF-gene correlation/anticorrelation (Supplementary File 3: 
Prioritization of knockdown targets).
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Regulatory analysis for the BK state used Keratinocyte TFs with 
motifs enriched in BK-specific SEs compared with DK-specific 
SEs and Keratinocyte Genes not down-regulated in the BK state 
compared with the DK state (Methods: Differential expression). 
Identification of gene and TF modules in the BK state used 
hierarchical clustering on signed expression similarity scores 
calculated as soft-thresholded Pearson correlation (Zhang and 
Horvath, 2005) of log-transformed imputed expression across cells 
in stages 1 to 4. We identified regulatory relationships between gene 
and TF modules by considering the distribution of magnitudes of 
mean similarity scores between all TF-gene module pairs:

mean TF Modules, B Gene Modu
i A j B

i j
∈ ∈

∈ ∈
,

, :S A lles{ }
where, following the notation of Supplementary File 3: 
Regulatory network construction, si,j denotes the signed similarity 
score of TF i and target gene j (Supplementary File 1: Figure 
S5B). Regulatory relationships were assigned for module pairs 
exceeding the threshold illustrated in Supplementary File  1: 
Figure S5(C, D). Regulatory analysis for the DK state used an 
analogous method [Supplementary File 1: Figures S8(B–D)]. 
Further details are given in Supplementary File 3: Regulatory 
network construction.

Source code used to generate results is available at https://
github.com/jssong-lab/kcyteReg.

Differential Expression
We used differential expression analysis to identify Keratinocyte 
Genes specific to the BK (union of stages 1, 2, 3) and DK (union 
of stages 5, 6, 7) states. First, log (cpm + 1) of nonimputed 
expression values was calculated for Keratinocyte Genes and for 
other genes with at least 3 UMIs in 20 foreskin keratinocytes. 
Next, we used limma-trend version 3.23.9 (Ritchie et al., 2015) 
to obtain moderated log2 fold-change values between the two 
states, as well as adjusted p values for differential expression 
tests (Supplementary File 2: Table S7). Finally, we defined 
Keratinocyte Genes specific to the BK versus DK states to be those 
genes differentially expressed at 5% FDR and with magnitudes of 
moderated log2 fold change greater than 0.25.

Gene Ontology Analysis
We used the DAVID GO resource (Huang da et al., 2009) to 
determine functional enrichment in BK and DK gene modules, 
as well as in clusters of antioxidant genes with similar dynamic 
gene expression patterns. For BK and DK gene modules, we used 
the R library RDAVIDWebService (Fresno and Fernandez, 2013) 
to query DAVID with backgrounds composed of members of 
each gene module and a common control set of 12,516 expressed 
genes with at least 1 UMI in at least 1% of all keratinocytes. 
Bar plots in Figures 3B and 4B show selected GO terms with 
Benjamini−Hochberg adjusted p < 0.05. Supplementary File 2: 
Table S4 provides the full DAVID output for all gene modules 
identified for the BK and DK states. Gene ontology analysis for 
clusters of dynamically expressed antioxidant genes used the 
set of 65 antioxidants with at least 1 UMI in at least 1% of all 

keratinocytes (Supplementary File 2: Table S2). Because of the 
small sizes of gene sets and the large number of enrichment tests 
performed by DAVID, we did not find any significant enrichment 
after Benjamini-Hochberg correction for multiple hypothesis 
testing. We therefore reported uncorrected p values for selected 
GO terms in Figure 5B; Supplementary File 2: Table S5 provides 
the full DAVID output.
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Ethylene-responsive factors (ERFs) play important roles in plant growth and development 
and in responses to abiotic stresses. However, little information was available about the ERF 
genes in woodland strawberry (Fragaria vesca), a genetic model plant for the Fragaria genus 
and Rosaceae family. In this study, 91 FveERF genes were identified, including 35 arrayed in 
tandem, indicating that tandem duplication is a major mechanism for the expansion of the 
FveERF family. According to their phylogenetic relationships with AtERFs from Arabidopsis 
thaliana, the tandem FveERF genes could be grouped into ancestral and lineage-specific 
tandem ones. The ancestral tandem FveERFs are likely derived from tandem duplications 
that occurred in the common ancestor of F. vesca and A. thaliana, whereas the lineage-
specific ones are specifically present in the F. vesca lineage. The lineage-specific tandem 
FveERF duplicates are more conserved than the ancestral ones in sequence and structure. 
However, their expression in flowers and fruits is similarly diversified, indicating that tandem 
FveERFs have diverged rapidly after duplication in this respect. The lineage-specific tandem 
FveERFs display the same response patterns with only one exception under drought or 
cold, whereas the ancestral tandem ones are largely differentially expressed, suggesting 
that divergence of tandem FveERF expression under stress may have occurred later in 
the reproductive development. Our results provide evidence that the retention of tandem 
FveERF duplicates soon after their duplication may be related to their divergence in the 
regulation of reproductive development. In contrast, their further divergence in expression 
pattern likely contributes to plant response to abiotic stress.

Keywords: ERF genes, tandem duplication, divergence, expression pattern, woodland strawberry

INTRODUCTION

Plants are sessile organisms and cannot escape from environmental stresses, which can negatively 
impact their survival, development, and productivity. As such, plants have evolved mechanisms to 
respond and adapt to stress at the physiological and biochemical levels (Figueiredo et al., 2012). 
Ethylene-responsive factors (ERFs) are transcription factors that have been shown to play critical 
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roles in stress response and during plant growth and development 
(Brown et al., 2003; Chakravarthy et al., 2003; Agarwal et al., 
2006; Chen G et al., 2008; Chen J. Q et al., 2008; Sun et al., 2014; 
Tan et al., 2018).

The ERF family belongs to the APETALA2/ERF (AP2/ERF) 
superfamily, which also contains the AP2 and RAV families 
(Weigel, 1995). ERF family proteins contain only one AP2/ERF 
domain, while the AP2 family contains proteins with a double 
tandem-repeated AP2 domain and the RAV family contains an 
additional B3 DNA-binding domain along with a single AP2/ERF 
domain (Matías-Hernández et al., 2014). In Arabidopsis thaliana, 
the ERF family is divided into 10 groups (I to X) based on 
phylogeny and gene/protein structure analyses (Nakano et al., 
2006). ERF family genes have diverse expression patterns during 
plant growth and development (Wilson et al., 1996; Liu et al., 
1998; Banno et al., 2001), as well as in response to abiotic stresses, 
such as drought, cold, and high salinity (Song et al., 2005; Novillo 
et al., 2007; Golldack et al., 2011; Licausi et al., 2013).

Tandem gene duplication is one of the main gene-duplication 
mechanisms in eukaryotes and has contributed to the prevalence 
of gene family clusters (Fortna et al., 2004; Fan et al., 2008). The 
number of tandem duplicates in plants varies from 451 (4.6% of 
gene content) in Craspedia variabilis to 16,602 (26.1% of gene 
content) in apple (Malus × domestica) (Yu et al., 2015). Genome-
wide analysis in A. thaliana has revealed that genes that expanded 
mainly through tandem duplication tend to be involved in 
plant responses to abiotic and biotic stresses (Hanada et al., 
2008). To the contrary, transcription factors including ERFs are 
preferentially retained after whole-genome duplication (WGD) 
rather than tandem duplication (Maere et al., 2005; Jourda 
et  al., 2014; Charfeddine et al., 2015). Nevertheless, studies in 
A. thaliana and cucumber show that tandem-duplication events 
have also played an important role in the expansion of the ERF 
gene family (Nakano et al., 2006; Hu and Liu, 2011).

Duplicate genes experience relaxed negative selection 
following duplication (Carretero-Paulet and Fares 2012). 
Increased rates of evolution, via divergence of gene sequence, 
structure, and so forth, have been observed in duplicate gene 
copies (Carretero-Paulet and Fares, 2012; Wang et al., 2013). 
Divergence in expression patterns of duplicate genes is affected 
by their functional categories, duplication mechanisms, species, 
and other factors (Wang et al., 2012a). Studies in A. thaliana and 
rice show that expression divergence among tandem duplicates 
occurs shortly after duplication (Ganko et al., 2007; Li et al., 2009), 
and its overall level is similar to that of WGD duplicates but lower 
than that of duplicates from other mechanisms (Wang et  al., 
2012b). There is no significant correlation between expression 
divergence of tandem duplicates and their synonymous 
substitution rates, a proxy for the time of duplication (Ganko 
et al., 2007; Panchy et al., 2016). This indicates that young and old 
tandem duplicates have a similar level of expression divergence. 
However, this observation is mainly based on expression analysis 
in developmental tissues/organs; whether it is the case for 
expression patterns under stressed conditions remains unclear.

Cultivated strawberry (Fragaria × ananassa) is a popular 
crop worldwide; however, genetic analysis of cultivated 
strawberry is extremely complicated due to its octoploid genome 

(2n = 8x = 56), with as many as four diploid ancestors. Nowadays, 
woodland strawberry (Fragaria vesca) is emerging as a model 
fruit crop plant species. It has a small diploid genome (240 Mb, 
2n = 2x = 14) with a widely available genome sequence (Shulaev 
et al., 2011) and a short reproductive cycle (14–15 weeks in 
climate-controlled greenhouses). In this study, we performed a 
comprehensive analysis of the ERF family in F. vesca, including 
phylogeny, chromosomal localization, gene structure, motif, 
duplication mechanism, and expression profiling. Tandem 
FveERF genes were grouped into ancestral and lineage-specific 
tandem ones and subjected to expression pattern analysis 
during reproductive development and in response to drought 
or cold stress. The results of this study should be useful towards 
future analyses of the divergence and functions of ERF genes, 
particularly tandem duplicated ERF genes in strawberry.

MATERIALS AND METHODS

Identification of AP2/ERF Genes 
in F. vesca
The F. vesca genome sequence and corresponding annotations 
were downloaded from the DOE Joint Genome Institute website 
(http://genome.jgi.doe.gov/). First, the full alignment file for the 
AP2 domain (PF00847) obtained from the Pfam database (Finn 
et al., 2016) was used to build an HMM file using the HMMER3 
software package (Eddy, 1998). Second, HMM searches were 
performed against the local protein databases of F. vesca using 
the HMMER3 package. Moreover, we checked the physical 
localizations of all candidate genes and rejected redundant 
sequences with the same chromosome location and short 
proteins (length < 100 aa). Finally, sequences of all matching 
proteins were again analyzed in the Pfam database to verify 
the presence of AP2 domains. AP2 domains were also detected 
by the SMART (http://smart.embl-heidelberg.de/) database 
with an E-value cutoff of 10−10. After the above four steps, the 
identified protein sequences  that contained the core domains 
(AP2 domain) of known AP2/ERFs were regarded as putative 
homologs in the study.

Gene Structure and Chromosomal 
Localization of FveERF Genes
Exon/intron information and chromosomal location of FveERF 
genes were extracted from the F. vesca genome annotation 
database. The data were then plotted using the MapInspect 
software (http://mapinspect.software.informer.com/). Tandem 
duplicate FveERFs were defined as FveERFs in any gene pair 
that is located within 100 kb of each other and separated by 
no more than 10 non-homologous intervening genes (Hanada 
et al., 2008). Fgenesh (http://www.softberry.com) was used to 
re-annotate the intergenic regions between putative tandem 
FveERF duplicates, to clarify whether there are any unannotated 
intervening genes. If the number of non-homologous intervening 
genes based on genome annotation and our re-annotation results 
is no more than 10, we consider the pair of FveERFs as tandem 
duplicate genes. The tandem ERF genes in Malus × domestica, 
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Prunus mume, Populus trichocarpa, Brassica rapa, Vitis vinifera, 
Solanum tuberosum, and Oryza sativa were identified based 
on the same criterion without re-annotation of the intergenic 
regions. Besides, the tandem AtERF genes in A. thaliana were 
retrieved from the study by Nakano et al. (2006).

Phylogenetic Analyses of ERF Genes from 
F. vesca and A. thaliana
The sequences of 146 AP2/ERF proteins from A. thaliana, identified 
by Nakano et al. (2006), were used for comparative analysis in the 
study. Full-length amino acid sequences of the AP2/ERFs from 
F. vesca and A. thaliana were aligned using ClustalX2.0 (Larkin 
et al., 2007) and MAFFT [version 7, Katoh and Standley (2013)], 
respectively, with default parameters. A maximum-likelihood 
(ML) phylogeny based on the ClustalX alignment (Figure S1A) 
and a aBayes phylogeny based on the MAFFT alignment 
(Figure  S1B) were constructed, respectively, using the PhyML 
software (version 3.0, Guindon et al., 2010). Both phylogenies 
show a same grouping of the FveAP2/ERF superfamily. Next, 
full-length amino acid sequences of the identified FveERFs were 
aligned with those of the AtERFs using ClustalX2.0 and MAFFT, 
respectively. The JTT+G+I substitution model was identified as 
the optimal model of amino acid sequence evolution using the 
program MODELGENERATOR (Keane et al., 2006) with four 
gamma categories (Jones et al., 1992). ML phylogenies based on 
the ClustalX (Figure 2) and MAFFT alignments and an aBayes 
phylogeny based on the MAFFT alignment (Figure S2) were 
constructed, respectively, using the PhyML software with the 
model. The reliabilities of the ML phylogenies and the aBayes 
phylogenies were tested using bootstrapping with 100 replicates 
and Bayes posterior probabilities, respectively.

Motif Analysis of FveERF Proteins
The MEME5.0.1 online program (http://meme-suite.org/) was 
used for the identification of motifs in the FveERF protein 
sequences. The optimized parameters were employed for the 
analysis as follows: number of repetitions: any; maximum 
number of motifs: 15; and the optimum width of each motif: 
between 6 and 50 residues (Bailey et al., 2015).

Synteny Analysis
Synteny analysis of the F. vesca genome was conducted locally 
using a method similar to the one used by the plant genome 
duplication database (PGDD, http://chibba.agtec.uga.edu/
duplication/, Lee et al., 2013). First, BLASTP was performed to 
search for potential homologous gene pairs (E < 10−5, top five 
matches) in F. vesca genome. Then, the homologous pairs were 
used as input for MCScanX to identify syntenic chains and types 
of duplication mechanisms (Tang et al., 2008; Wang et al., 2012a).

Calculation of Pi, Ka, Ks, and Ka/Ks 
Values of FveERF Genes
Pairwise nucleotide divergence among paralogs was estimated by 
Pi using DnaSP v4.0 (Rozas et al. 2003). To analyze evolutionary 

rates of tandem duplicate FveERFs, the coding sequences of 
FveERF genes were aligned on the basis of the corresponding 
aligned protein sequences using the PAL2NAL software (Suyama 
et al. 2006). The ratio of nonsynonymous substitutions per 
nonsynonymous site (Ka) to synonymous substitutions per 
synonymous site (Ks) in tandem gene pairs was calculated by 
using the yn00 program of the PAML package (Yang, 1997). 
Generally, a Ka/Ks ratio >1 indicates positive selection, and a 
ratio <1 indicates negative or purifying selection, while a ratio of 
1 indicates neutral evolution.

Expression Pattern of FveERF Family 
Genes and Correlation Analysis
Expression data of FveERF genes among different stages and 
tissues of F. vesca flowers and early fruits were retrieved from the 
SGR database (http://bioinformatics.towson.edu/strawberry/). 
The heat map was created using the log2 “relative RPKM (reads 
per kilobase per million) values” of individual FveERF genes. 
For a detailed description of the stages and tissues, please see 
http://bioinformatics.towson.edu/strawberry/newpage/Tissue_ 
Description.aspx. According to Kang et al. (2013), a gene with an 
RPKM value lower than 0.3 was regarded not to be expressed in 
a certain stage or tissue. A gene with RPKM values higher than 
0.3 in at least two stages or tissues was regarded as an expressed 
gene during flower or early-fruit development. Statistical tests of 
differences between expression levels of tandem/clustered and 
other FveERFs, and of ancestral and lineage-specific tandem 
FveERFs were performed using t-test. The correlation between 
expression patterns of tandem duplicate genes was evaluated by 
calculating correlation coefficients of the expression data, where 
the RPKM values lower than 0.3 was not included.

Growth Conditions, Plant Material 
Collection, and Abiotic Treatments
All plant material was collected from a seventh-generation 
inbred line of F. vesca ‘Ruegen’ (kindly provided by Janet 
Slovin). Plants were grown in 10 cm × 10 cm pots in a 
growth chamber on a 16-h light (22 °C)/8-h dark (20 °C) 
cycle with 65% relative humidity. Light (~160 µmol m−2 s−1) 
was supplied by sodium lamps. Four developmental stages 
of Ruegen receptacles were collected for quantitative PCR 
(qPCR) analysis: little white (white flesh with green achenes, 
~20 DPA), pre-turning (white flesh with red achenes, ~DPA), 
pink (light pink flesh with red achenes, ~27 DPA), and red 
(flesh is all red, ~29 DPA) stages. All samples were collected 
and immediately put into liquid nitrogen.

Prior to abiotic stress treatments, strawberry seedlings were 
grown on solid MS media in the growth chamber on a 16-h 
light (22 °C)/8-h dark (20 °C) cycle for 1 month. Cold stress 
treatments were carried out as described in Gu et al. (2016). For 
drought stress treatments, the seedlings were removed from the 
media, placed on filter paper under dim light and 30% humidity, 
and collected after 1, 3, and 8 h of dehydration. Following abiotic 
stress treatment, plant materials were immediately put into liquid 
nitrogen prior to RNA processing.
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RNA Extraction and Quantitative RT-PCR 
(qRT-PCR) Analysis
The RNA of stress-treated seedlings was isolated using a 
TaKaRa MiniBEST Plant RNA Extraction Kit. Nine FveERFs 
from all the lineage-specific tandem repeats (all six genes 
from two tandem repeats plus three genes randomly selected 
from the six-gene tandem repeat, mrna08071–mrna08075 
and mrna08077, Table  S1) were selected for qRT-PCR 
analyses. As most lineage-specific tandem FveERFs belong to 
group 9, the nine ancestral tandem FveERFs in groups 9 and 
10 were selected for comparison. qRT-PCR primers for these 
genes are listed in Table S1. Expression of the four lineage-
specific tandem FveERFs that are very lowly expressed in early 
fruits (mrna04911, mrna04913, mrna08873, and mrna08876) 
was not examined in the fruit-ripening stages. qRT-PCR 
was performed using SYBR Premix Ex Tag (TaKaRa) using 
cDNA as the template. Results were analyzed using the −ΔΔCT 
method with GAPDH gene expression as an internal reference 
(Livak and Schmittgen, 2001; Amil-Ruiz et al., 2013). Three 
biological and three technical replicates were used.

RESULTS

Genome-Wide Identification of ERF Genes 
in F. vesca
To identify the ERF family members in F. vesca, the full-length 
alignment of the AP2/ERF domain (PF00847) was downloaded 
and used to search the F. vesca proteome. A total of 115 proteins 
were considered as AP2/ERF candidates, containing at least one 
AP2/ERF domain. Maximum-likelihood (ML, Figure S1A) and 

aBayes (Figure S1B) phylogenetic trees were created, respectively, 
based on the ClustalX and MAFFT alignments of these 115 AP2/
ERF candidates and 146 AP2/ERF proteins from A. thaliana. 
Both phylogenies show the same grouping of the AP2/ERF 
superfamily in F. vesca. According to these phylogenies, as well as 
their domain compositions, 91 proteins were classified as F. vesca 
ERFs (FveERFs), and the other 24 proteins were grouped to the 
AP2, RAV families or soloists (Table S2).

Chromosomal location analysis demonstrates that, except 2 
FveERF genes found within unanchored chromosome sequences, 
the other 89 FveERFs are unevenly distributed among the seven 
F. vesca chromosomes (Figure 1). The number of FveERF genes on 
each chromosome has little relationship with chromosome length 
(correlation coefficient = 0.24), but is positively correlated with the 
number of tandem-arrayed FveERFs (correlation coefficient = 0.90). 
For example, LG5 and LG7, the two chromosomes with the largest 
numbers of FveERF genes (20 and 17, respectively), also contain 
the largest numbers of tandem FveERFs (13 and 9, respectively), 
whereas LG1 has the least number of FveERF genes (five) and has 
no tandem ones. This indicates that the uneven distribution of 
FveERFs is mainly due to the location of their tandem members. In 
total, 38.5% (35/91) of FveERF genes are arrayed in tandem repeats, 
strongly suggesting that a high proportion of FveERF genes are 
derived from tandem duplication events.

Expansion of the FveERF Gene Family
To study the relationships among FveERF genes, phylogenetic trees 
were constructed based on the ClustalX and MAFFT alignments 
of full-length FveERF and AtERF protein sequences, using ML 
(Figure  2) and aBayes (Figure S2) methods, respectively. All the 
phylogenies display similar grouping of the FveERF gene family, 

FIGURE 1 | Locations of FveERF genes on the Fragaria vesca chromosomes. The size of a chromosome is indicated by its relative length. Tandemly duplicated 
genes are indicated with a red bar.
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which is generally in consistence with the classification of Arabidopsis 
ERF genes (Nakano et al., 2006; Table S2). We further classified 
the FveERF genes of the 11 groups (groups 1–11) into two types: 
I) FveERFs that form phylogenetic clusters with other FveERFs and 
II) those that do not form clusters with other FveERFs but group 
with AtERF or AtERF and FveERF gene branch(es) (Table  S3). 
The clustering of the type I FveERFs is likely a result of lineage-
specific expansions of these genes in F. vesca. In contrast, type II 
FveERF genes are likely direct descendants of the ancestral genes 
in the common ancestor of A. thaliana and F. vesca and remain as 
single copies in the F. vesca genome. Among the 91 FveERFs, 24 
genes, which form 10 phylogenetic clusters, belong to type I, and 
the remaining 67 genes belong to type II. This suggests that about 
one quarter of the FveERFs are involved in the expansions specific 
to the Fragaria lineage, while the rest three quarters likely have not 
expanded following the split of Arabidopsis and Fragaria lineages.

Chromosome location of the type I FveERFs shows that 11 
(45.8%) of the 24 lineage-specific expanded FveERF genes are 
arrayed in tandem with their phylogenetically clustered genes. For 
instance, mrna08071–mrna08075 that form two clusters in group 
9 of the phylogeny (mrna08071 and mrna08072 for one cluster 
and mrna08073–mrna08075 for another, Figures 2 and S2) are 
located in a six-gene tandem repeat on chromosome 2 (Figure 1). 
These genes are likely derived from tandem duplications, and 
are hereafter referred to as lineage-specific tandem FveERFs. 
However, not all the type I FveERFs located in tandem repeat are 
lineage-specific tandem FveERFs. For instance, the type I gene 
mrna29735 is phylogenetically clustered with mrna21403 (Figures 
2 and S2) but is arrayed in tandem with mrna29738 (Figure 1). 
The relationship among these three genes suggests that a tandem 
duplication gave rise to the gene pair mrna29735 and mrna29738 
rather than the lineage-specific gene pair of mrna29735 and 

FIGURE 2 | Maximum-likelihood phylogeny of the ERF proteins from Fragaria vesca and Arabidopsis thaliana. The phylogeny was constructed based on the amino 
acid sequences of full-length FveERF and AtERF proteins with 100 bootstrapping replicates. Bootstrap values greater than 50 are indicated on the nodes. Green 
and orange arcs indicate different groups of ERF proteins. Blue and black branches represent FveERF and AtERF proteins, respectively. 
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mrna21403. The MCScanX analysis indicates that, among the 
twelve non-tandem type I FveERFs, seven genes including 
mrna21403 likely are derived from dispersed duplications, while 
the rest five are likely from segmental duplications (Table S3). 
Collectively, tandem duplication is the major mechanism for the 
lineage-specific expansion of the FveERF gene family.

In addition to the type I lineage-specific tandem FveERFs, 23 
(34.3%) of the 67 type II FveERF genes that have not undergone 
lineage-specific expansion also reside in tandem repeats on 
chromosomes (Figure 1, Table S3). For example, the type II 
FveERFs mrna10841 and mrna10845 in group 9 are located in a 
two-gene tandem repeat on chromosome 2. Interestingly, their 
phylogenetically clustered AtERF orthologs (AT5G47220 and 
AT4G17500 for mrna10841; AT5G47230 and AT4G17490 for 
mrna10845, Figures 2 and S2) are also arrayed in tandem on A. 
thaliana chromosomes (AT5G47220 and AT5G47230; AT4G17500 
and AT4G17490). Therefore, it is very likely that mrna10841 and 
mrna10845 are derived from ancestral tandem duplications in the 
most recent common ancestor of A. thaliana and F. vesca and are 
maintained in tandem following the split of the two lineages.

There are a total of 15 tandem type II FveERF genes having 
tandem AtERF orthologs (Figures 2 and S2, Table S3), indicating 
they are derived from ancestral tandem repeats. Among them, 
two genes are tandemly arrayed with type I FveERF genes, i.e., 

mrna29738 tandem with mrna29735, and mrna08077 tandem 
with mrna08071–mrna08075 (Figure 1). This suggests that 
these type I genes are involved in both ancestral and lineage-
specific tandem duplications. On the other hand, the rest 10 
tandem type II FveERFs are phylogenetically clustered with 
their AtERF orthologs which are not arrayed in tandem. We still 
considered these 10 FveERFs to originate from ancestral tandem 
duplications, because the A. thaliana genome has undergone 
extensive chromosomal rearrangements (del Pozo and Ramirez-
Parra, 2015) which would lead to non-tandem arrangements of 
AtERF orthologs. Therefore, at least 34.1% (31 of all 91) FveERF 
genes can be classified into ancestral tandem FveERFs.

Taken together, we define the tandem FveERF genes that 
cluster with each other in the phylogenies as lineage-specific 
tandem FveERFs, while the tandem FveERFs phylogenetically 
clustering with their AtERF orthologs or retaining in singletons 
as ancestral tandem FveERFs. From the above analyses, the total 
35 tandem FveERFs include 11 lineage-specific ones and 29 
ancestral ones, with 5 belonging to both.

Motif and Gene Structures of FveERF Genes
We analyzed motif structures of the FveERF proteins, with 15 
conserved motifs (motifs 1–15) identified using MEME suite 

FIGURE 3 | Schematic diagram of amino acid motifs of tandem FveERF proteins. Motif analysis was performed using MEME5.0.1 as described in the Materials and 
Methods. Proteins whose genes located in the same tandem repeat are grouped together. Mrna08077 forms an ancestral tandem repeat with mrna08071–mrna08075.
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(Figures 3, S3, and S4). Motifs 1–4 correspond to the AP2/ERF 
domain and have been identified in nearly all FveERF proteins. 
The four lineage-specific tandem FveERF pairs show differences 
in the arrangement of zero to four motifs (an average of 1.75), 
where totally only four motifs have been differentially identified. 
In contrast, the ancestral tandem pairs have differences in 1–6 
(an average of 3.26) of the 12 differentially distributed motifs, 
which include motifs 1–4 that are key to the AP2/ERF domain. 
The average number of FveERFs in an ancestral or lineage-
specific tandem repeat is similar (2.5 for ancestral vs. 2.75 for 
lineage-specific tandem repeat). However, the motif analysis 
demonstrates that the protein structure of the ancestral tandem 
FveERFs is more divergent than that of the lineage-specific 
tandem ones.

With respect to gene structure, 24 (26.4%) of the 91 
FveERF genes possess introns (Table S3). The average 
number of introns per intron-containing FveERF is 1.83. 
Around half of these genes (13 of 24) contain a single intron, 
with others contain two to three except for one that contains 
eight. These intron-containing FveERFs are located on 
chromosomes 1–6 as well as the unanchored scaffold (Table 
S3). None are found on chromosome 7, which houses the 
second-most (17) FveERF genes. All genes within the four 
lineage-specific tandem FveERF pairs have same numbers 
of introns with their counterparts, whereas in about half of 
the 11 ancestral tandem FveERF pairs exon/intron structures 
are different, indicating that the gene structures of ancestral 
tandem FveERFs have diverged.

Expression Profiles of FveERF Genes 
in Flowers and Fruits
To investigate the expression profiles of FveERF genes, we 
downloaded and analyzed the transcriptomic data of F. vesca 
flowers and early fruits (Hollender et al., 2012; Darwish et al., 2013; 
Kang et al., 2013). All the FveERF genes have RPKM values larger 
than 0.3 in at least two flower-development stages (Figure 4); thus, 
we consider all FveERFs to be expressed during flower development 
in F. vesca (see Materials and Methods). In contrast, RPKM values 
for 18 (19.8%) FveERFs are lower than 0.3 throughout early-stage 
fruit development. The expression levels of FveERFs in tissues 
of flowers and early fruits (Figure S5) are similar to those in the 
stages. These results indicate that most, if not all, FveERF genes are 
involved in flower development, whereas ~20% of FveERFs may 
not participate during early-stage fruit development.

The expression levels of tandem or phylogenetically clustered 
genes are significantly different from those of the non-tandem/
clustered FveERFs (all p < 0.001 from t-test). Moreover, among 
the 33 FveERFs with low expression levels (RPKM values <1 in 
at least two thirds of the 13 stages of reproductive development, 
Figure 4), 81.8% (27) either cluster on the phylogeny or are arrayed 
in tandem on chromosomes. Meanwhile, 60.1% of the 47 tandem 
or clustered FveERFs have low expression levels, 4.4-fold higher 
than the percentage of low-expression genes among the other 44 
FveERFs (13.6%). This percentage increases to 81.8% (9 of 11) for 
lineage-specific tandem FveERFs, 0.8-fold higher than for ancestral 
tandem FveERFs (45.8%). Consistently, the expression levels of 
lineage-specific tandem FveERFs are also significantly lower than 

FIGURE 4 | Expression profiles of FveERF genes in different stages of Fragaria vesca flowers and early-stage fruits. (A and B) The mRNA levels of the non-
tandem (A) and tandem/phylogenetically clustered (B) FveERF genes. Genes located in the same tandem repeat or in a phylogenetic cluster are grouped together. 
Mrna08077 forms an ancestral tandem repeat with mrna08071–mrna08075. Mrna21403 forms a phylogenetic cluster with mrna29735. Data were retrieved from 
http://bioinformatics.towson.edu/strawberry/ (Hollender et al., 2012; Darwish et al., 2013; Kang et al., 2013). Expression levels were calculated in the log2 scale. For a 
detailed description of the stages, please see http://bioinformatics.towson.edu/strawberry/newpage/Tissue_Description.aspx.
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those of the ancestral ones (p < 0.001). These results demonstrate 
that the expression levels of tandem or clustered FveERFs are lower 
than those of the other FveERFs during reproductive development, 
with lineage-specific tandem FveERFs having the lowest expression.

The expression patterns of tandem FveERF pairs are less 
diversified  than those of the non-tandem ones in a same group 
in flowers and early fruits (Figures 4 and S5). More than 75% 
non-tandem FveERF gene pairs in a group show diversified 
expression patterns (data not shown), while approximately 50% of 
tandem FveERF pairs have positive correlated expression patterns 
(correlation coefficient >0.5, Table S4). Further, this percentage 
is nearly the same for both the ancestral tandem FveERF gene 
pairs and the lineage-specific tandem ones. This suggests that 
the expression patterns of ancestral and lineage-specific tandem 
FveERF duplicates diverge to similar degrees in flowers and early-
stage fruits, regardless of the increased age and evolutionary history 
of ancestral duplicates.

We further investigated expression patterns of the ancestral 
and lineage-specific tandem FveERFs (see Materials and Methods 
for the selection of the tandem FveERFs) during the fruit-
ripening stages of F. vesca using qRT-PCR (Figure 5A). The five 

lineage-specific tandem FveERFs have very low expression (< 1 × 
10−4 when using FveGAPDH as the reference gene) throughout the 
ripening stages. Five of the nine ancestral tandem FveERFs have no 
detectable expression during these stages, whereas the remaining 
four (found within two tandem repeats) exhibit much higher 
expression (Figure 5B). These expression patterns are roughly in 
accordance with the expression patterns for FveERFs in early fruits 
(Figures 4 and 5B). Therefore, the tandem FveERF genes are most 
likely consistently expressed throughout fruit development and 
ripening stages.

Expression of Tandem Duplicated FveERF 
Genes Under Drought/Cold Stress
ERF transcription factors play important roles in abiotic stress 
response (Lata and Prasad, 2011). We treated the F. vesca 
seedlings with either cold or drought stress, and characterized 
the expression of nine lineage-specific and nine ancestral 
tandem FveERFs (see Materials and Methods for the selection 
of the tandem FveERFs, Figure 6). Similar to in fruits, lineage-
specific tandem FveERFs have very low expression levels in F. 

FIGURE 5 | Expression profiles of tandem FveERF genes during fruit ripening. (A) The schematic diagram for the four stages of fleshy fruits investigated in B. 
(B) The expression levels of tandem FveERF genes relative to GAPDH, measured by quantitative RT-PCR and displayed in the log2 scale. Genes located in the 
same tandem repeat are grouped together. Mrna08075 forms an ancestral tandem repeat with mrna08071 and mrna08072. Three biological replicates and three 
technical replicates were obtained for each data point.
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vesca seedlings, regardless of treatment (Table S5). Six of the 
nine lineage-specific tandem FveERFs (mrna04911, mrna04913, 
mrna08071, mrna08072, mrna08075 and mrna08876) have no 
detectable gene expression under either or both stresses, while 
only one ancestral tandem FveERF (mrna11440) is undetectable 
under drought stress. Further, among the expressed FveERFs, 
the average expression level of ancestral tandem ones is 
approximately 100-fold higher than that of the lineage-specific 
tandem ones (Figure 5B). These results suggest that FveERF 
genes generated by recent tandem duplications may generally 
have low expression levels.

We have observed that the ancestral tandem FveERF pairs 
are differentially expressed following stress treatment, cold or 
drought (Figure 6 and Table S6). The ancestral tandem pair 
of mrna11440, mrna11441, and mrna11442 displays divergent 
expression patterns following both stress treatments, while the 
other three pairs are only differentially expressed following either 
cold or drought stress. In contrast, all lineage-specific tandem 
FveERF pairs exhibit similar stress-response expression patterns, 
except for mrna04913 (compared to mrna04916 or mrna04917) 
following dehydration (Figure 6 and Table S6). Based on these 
data, FveERF duplicates from ancestral tandem duplications seem 
to have diverged in their responses to abiotic stress, whereas most 
lineage-specific tandem genes have not.

DISCUSSION

This is the first study identifying ERF genes in woodland 
strawberry (F. vesca). A total of 91 FveERFs have been identified 
and divided into 11 groups based on phylogenetic and motif 
analyses. The percentage of ERF genes in total protein-coding 
genes in F. vesca (0.28%, Figure 7) is similar to the percentages 
found in two other Rosaceae family plants, plum [Prunus mume, 
0.29% (Du et al., 2013)] and apple [Malus × domestica, 0.31% 
(Zhuang et al., 2011)], but lower than those in Brassicaceae family 
species, such as A. thaliana [0.44% (Nakano et al., 2006)] and 
Brassica rapa [0.58% (Song et al., 2013)]. The higher percentage 
of AtERF genes is likely a result of the polyploidization events 
during the evolution of A. thaliana, as 75% of them are proposed 
to have been preferentially retained after WGDs (Nakano et al., 
2006). As being transcription factor genes, ERFs would have 
been retained at a higher than average level after WGD, but not 
after tandem duplication (Panchy et al., 2016). However, the 
apple genome that has undergone a recent WGD event does not 
contain higher percentage of ERF genes than F. vesca. Our results 
demonstrate that more FveERF genes are involved in tandem 
duplication than in WGD/segmental duplication, suggesting that 
tandem duplication is the major mechanism contributing to the 
expansion of the FveERF gene family.

FIGURE 6 | Expression profiles of FveERF genes in response to drought and cold. The expression levels relative to GAPDH were measured by quantitative RT-PCR. 
Three biological replicates and three technical replicates were obtained for each data point. Asterisks above the error bars indicate significant differences between 
the treated and untreated (0h) samples (*p < 0.05; **p < 0.01; ***p < 0.001). Mrna08075 forms an ancestral tandem repeat with mrna08071 and mrna08072. The 
genes with expression levels lower than 1 × 10−4 at most time points of the treatment are not shown.
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The percentage of tandem FveERFs in total FveERFs is similar 
to that of PmuERFs in plum and of VvERFs in grapevine (Vitis 
vinifera), a little higher than that in apple and poplar (Populus 
trichocarpa), and much higher than that in A. thaliana and B. 
rapa (Figure 7). F. vesca, plum and grapevine have not undergone 
any WGDs after the triplication event (γ) probably shared by all 
core eudicots (Bowers et al., 2003; Jaillon et al., 2007; Cenci et 
al., 2010), while apple and poplar have undergone WGD once 
(Tuskan et al., 2006; Velasco et al., 2010) and A. thaliana and 
B. rapa have undergone WGD at least twice (Bowers et al., 2003). 
Therefore, the percentage of tandem ERF genes retained seems to 
be negatively correlated with occurrences of the polyploidization 
events, possibly because of the rearrangement of chromosomal 
sequences after WGD.

The higher percentage of tandem ERF genes in F. vesca than 
in A. thaliana is mainly due to a greater number of ancestral 
tandem ERFs (31 vs. 17), rather than lineage-specific tandem 
ones (11 vs. 11). Further, all ancestral tandem AtERFs have 
tandem FveERF orthologs, whereas there are 10 ancestral tandem 
FveERFs whose AtERF orthologs are not arrayed in tandem. This 
number difference of tandem orthologs suggests that the more 
ancestral tandem ERF genes in F. vesca than in A. thaliana are 
due to more rearrangements or losses of the ancestral tandem 
AtERFs. Extensive rearrangement and loss of chromosomal 
segments have occurred in A. thaliana during its rediploidization 
after polyploidization (del Pozo and Ramirez-Parra, 2015). 
Ancestral tandem AtERFs are defined as those derived from 
tandem duplications in the common ancestor of F. vesca and 
A. thaliana, which occurred prior to the twice polyploidization 
of the Arabidopsis lineage. Hence, the ancestral tandem AtERFs 
have experienced at least once rediploidization, leading to the 
number difference of ancestral tandem ERF genes between F. 
vesca and A. thaliana. Altogether, genomic rearrangement during 
rediploidization following polyploidization is an important 
factor affecting the retention of ancestral tandem ERF genes. The 

higher retention of tandem FveERFs than tandem AtERFs may be 
largely attributed to no polyploidization occurred in F. vesca after 
the divergence of core eudicots.

The discrimination of ancestral and lineage-specific 
tandem FveERF genes provides us with a good tool to compare 
the divergence of tandem FveERF duplicates generated at 
different times. As expected, the average values of pairwise 
nucleotide divergence, synonymous nucleotide substitutions 
per synonymous site (Ks), and non-synonymous substitutions 
per nonsynonymous site (Ka) between lineage-specific tandem 
FveERF pairs are significantly lower than those between 
ancestral tandem FveERF pairs, respectively (Table S7). 
Moreover, lineage-specific tandem FveERF genes maintain 
higher similarities of exon/intron and motif structures than 
the ancestral tandem ones. These results indicate that sequence 
and structure divergences of ancestral tandem FveERFs are 
higher than those of lineage-specific tandem FveERFs. None of 
the ancestral tandem AtERFs contain an intron (Nakano et al., 
2006). In contrast, 35.5% (11 of 37) ancestral tandem FveERFs 
have an average number of 2.36 introns. Particularly, half of 
ancestral tandem FveERF pairs show variable exon/intron 
structures. Thus, it seems that intron gain/loss has occurred 
more frequently in the evolutionary histories of FveERF genes 
compared to AtERFs, which may play a role in the divergence of 
FveERFs, especially for ancestral tandem ones.

Tandem duplicates are proposed to have higher expression 
correlation than the duplicates derived from most of the other 
mechanisms (Wang et al., 2012b). However, our analyses show 
that the expression correlation of lineage-specific tandem 
FveERFs in flowers and fruits is lower than that of other 
lineage-specific expanded FveERFs, but is similar to that of the 
ancestral tandem ones (Table S4). The studies on expression 
patterns of tandem duplicates in other families, such as the 
C2H2 zinc-finger gene family in rice (Agarwal et al., 2007) and 
the phosphatidylethanolamine binding protein (PEBP) family 

FIGURE 7 | Percentages of tandem ERF genes in the nine species investigated. ERF% shows the percentage of ERF genes in the total gene set. The 
Taxonomy Common Tree constructed online by Taxonomy Browser in the National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/
Taxonomy/CommonTree/wwwcmt.cgi) is on the left. The branch length is not proportional to the evolutionary time. Green box, whole-genome duplication; 
yellow box, whole-genome triplication.
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in soybean (Wang et al., 2015), also demonstrate that ancestral 
and lineage-specific tandem duplicates have similarly highly 
diversified expression patterns in developmental tissues. These 
results support that expression of tandem FveERF duplicates in 
reproductive development has diverged shortly after duplication.

Previous studies have suggested that expression divergence of 
the tandem duplicates has little relationship with their Ks values 
(Ganko et al., 2007), mainly based on expression analyses in 
developmental tissues/organs. Our results with respect to tandem 
FveERF expression in reproductive development are consistent 
with this suggestion. However, the results under stressed conditions 
show different patterns. All expressed lineage-specific tandem 
FveERF duplicates exhibit same response patterns upon drought 
or cold treatment with only one exception, whereas the ancestral 
ones diverge at a much higher level (Table S6). This suggest that 
expression divergence of tandem FveERFs under stress may have 
occurred later, but evolved faster, than in reproductive development. 
In addition to growth and development, ERFs are also important in 
the regulation of abiotic stress responses in plants (Lata and Prasad, 
2011). Although the roles of the sampled tandem FveERFs in abiotic 
stress responses have not been revealed so far, the A. thaliana groups 
containing their AtERF orthologs have been shown with functions 
in tolerance to abiotic stress. Moreover, the tandem FveERFs show 
induced or reduced expression after drought and cold treatments, 
supporting that they likely play roles in the responses to these 
stresses. Therefore, the high expression divergence of the ancestral 
tandem FveERFs under stress conditions could contribute to the 
responses of F. vesca to abiotic stresses.

Besides, with respect to expression levels, no matter under stress 
conditions or in reproductive development, high proportions 
of lineage-specific tandem FveERF pairs are undetectable. 
Comparatively, all ancestral tandem FveERF pairs, at least one 
of the members, are expressed at much higher levels. Expression 
levels of the ancestors of the undetectable lineage-specific tandem 
FveERFs are unknown; analyses on their orthologs in A. thaliana 
and other plants may provide indication that whether recent 
tandem duplication is a main cause of such low expression levels 
of these lineage-specific tandem FveERF pairs. On the other 
hand, like in expression patterns, the divergence in expression 
levels of the expressed lineage-specific tandem FveERFs is at 
similar levels with the ancestral tandem ones in flower and fruit 
stages, but lower under abiotic stressed conditions (Table S5). 
Thus, the expression divergence of tandem FveERF duplicates 
is probably slower under stress conditions than in reproductive 
development at early stage after the duplication.

CONCLUSIONS

In this study, the ERF gene family in F. vesca was identified and 
analyzed, especially for their tandem members. Compared with 
ancestral tandem FveERFs, the lineage-specific tandem FveERFs 
are more conserved in sequence, structure, and expression 
under abiotic stress, whereas are similarly highly diversified 
in expression during reproductive development. These results 
suggest that the retention of tandem FveERF duplicates soon 
after their duplication may be related to their divergence in the 
regulation of reproductive development. On the other hand, 
their further divergence in response patterns to abiotic stresses 
likely contributes to stress responses of F. vesca. This provides 
new insights into the expression divergence between tandem 
duplicates in plants.
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Insights Into Single-Cell Gene 
Expression Profiles During Human 
Developmental Processes
Zishuai Wang †, Xikang Feng † and Shuai Cheng Li *
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Single-cell RNA-seq studies profile thousands of cells in developmental processes. 
Current databases for human single-cell expression atlas only provide search and 
visualize functions for a selected gene in specific cell types or subpopulations. These 
databases are limited to technical properties or visualization of single-cell RNA-seq 
data without considering the biological relations of their collected cell groups. Here, we 
developed a database to investigate single-cell gene expression profiling during different 
developmental pathways (SCDevDB). In this database, we collected 10 human single-
cell RNA-seq datasets, split these datasets into 176 developmental cell groups, and 
constructed 24 different developmental pathways. SCDevDB allows users to search the 
expression profiles of the interested genes across different developmental pathways. It 
also provides lists of differentially expressed genes during each developmental pathway, 
T-distributed stochastic neighbor embedding maps showing the relationships between 
developmental stages based on these differentially expressed genes, Gene Ontology, 
and Kyoto Encyclopedia of Genes and Genomes analysis results of these differentially 
expressed genes. This database is freely available at https://scdevdb.deepomics.org

Keywords: single cell, gene expression, development, database, cell type, differential expression

INTRODUCTION
In developmental biology, gene expression changes during the developmental process is an 
important feature to understand developmental questions such as cell growth, cell differentiation, 
cell fate decisions, etc. (Ko, 2001; Merks and Glazier, 2005; Gittes, 2009). Recently, high-throughput 
RNA sequencing technique has been widely used to study gene expression in developmental 
processes (Spitz and Furlong, 2006). Bulk RNA sequencing typically uses hundreds to millions of 
cells and reveals only the average expression level for each gene across a large population of cell 
populations (Wang and Bodovitz, 2010; Sanchez and Golding, 2013). Single-cell RNA-seq measures 
the distribution of expression levels for each gene across a population of cells and provides a more 
accurate representation of cell-to-cell variations instead of the stochastic average (Saliba et al., 2014). 
Therefore, single-cell RNA-seq is particularly apposite for developmental biology (Liu et al., 2014; 
Griffiths et al., 2018).

High-resolution single-cell transcriptome analysis has been performed during many developmental 
processes including preimplantation development from oocyte to morula (Xue et al., 2013; Yan 
et  al., 2013), early forebrain and mid/hindbrain cell differentiation from human embryonic stem 
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cells (hESCs) (Yao et al., 2017), and digestive tract development 
from human embryos between 6 and 25 weeks (Gao et al., 2018), 
etc. These studies not only revealed many biological features, 
including developmental processes, signaling pathways, cell cycle, 
and transcription factor networks but also provided resources 
to investigate the gene expression patterns during different 
developmental processes. Therefore, there is a strong need for a 
web resource that curates and provides single-cell gene expression 
profiles during different developmental processes.

So far, several web resources for human single-cell transcriptome 
data have been reported. scRNASeqDB contains 38 datasets 
covering 200 human cell lines or cell types and 13,440 samples 
(Cao et al., 2017). The single-cell expression atlas, launched by the 
European Bioinformatics Institute (https://www.ebi.ac.uk/gxa/
sc/home), contains 52 single-cell RNA-Seq studies, consisting of 
61,073 cells from 9 different species. The single-cell centric database 
“SCPortalen” covers 23 human single-cell transcriptomics datasets 
that are publicly available from the International Nucleotide 
Sequence Database Collaboration sites (Abugessaisa et al., 2017). 
PanglaoDB integrated 209 human single-cell datasets consisting 
of gene expression measurements from cells originating from a 
common biological source or experiment (Franzén et al., 2019). 
However, users of these databases can only query gene expression 
in specific cell types or population heterogeneity processed by the 
authors. Researchers who are interested in gene expression changes 
during a specific developmental process are not easily able to extract 
these dynamic features from these databases.

Here, we developed a database to investigate single-cell gene 
expression profiling during different developmental processes 
(SCDevDB). In this database, we collected 10 human single-cell 
RNA-seq datasets, split these datasets into 176 developmental cell 
groups, and constructed 24 different developmental pathways. 
Users of SCDevDB are easy to view the expression changes of 
their interested genes showed with a boxplot. In addition, users 
can also download differentially expressed (DE) genes during each 
developmental pathway, the T-distributed stochastic neighbor 
embedding (t-SNE) map constructed with these genes, Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis results of these differentially expressed (DE) genes. 
This database is publicly available at https://scdevdb.deepomics.org. 
It helps researchers within the fields of developmental biology to 
facilitate gene expression studies in human single cells.

MATERIAlS AND METHODS

Transcriptomic Data Collection
We searched the National Center for Biotechnology Information 
Gene Expression Omnibus database using the successfully utilized 
keywords, single-cell RNA-seq, single-cell RNA-seq, single-cell 
transcriptome, and selected the species to humans. In this study, 
we only focused on the normal human developmental processes; 
thus, we abnegated experiments using tumor and other samples 
treated with chemical reagents. After carefully reviewing the 
resultant papers and datasets, we obtained 10 datasets for human 
single-cell RNA-seq using normal cell type, tissue, or organs. These 
datasets including human cell groups related to the nervous system, 

digestive system, the heart, the brain, hESC, cell lines, and others. 
Single cells originating from the same cell lines, tissue regions, or 
organ regions at the same developmental time points are treated 
as a cell group. Based on this rule, we classified the 18,413 single 
cells into 176 cell groups (Supplemental Table S1). Cell groups 
originating from the same cell lines, tissue regions, or organ regions 
but at different developmental time points were regarded as one 
developmental stage. Therefore, the 176 cell groups were merged 
into 35 developmental stages (Supplemental Table S1).

Data Processing and Gene Expression 
Profiling Analysis
For the selected RNA-Seq experiments, the gene expression 
matrices were also retrieved from the Gene Expression Omnibus. 
For cells in datasets where the fragments per kilobase of exon per 
million reads mapped (FPKM) were available, we computed the 
TPM for gene i in cell j, according to:

 TPM FPKM
FPKMi

i

j j
=

∑








 ×106

 

This conversion enables the units to be consistent for dataset-
to-dataset comparison. Then, for each dataset, we merged cells 
originating from the same tissue or organ into one file and 
performed imputation using the R package single-cell analysis 
via expression recovery with default parameters. Single-cell 
analysis via expression recovery takes in a matrix and performs 
library size normalization during denoising step, which can 
reduce noise including sequencing depth, the number of cells, 
and cell composition (Huang et al., 2018). We eventually got 176 
different files which are consistent with 176 different cell groups.

Differential Gene Expression and 
T-SNE Analysis
For each developmental pathway, we merged the expression data 
of all developmental stages in this pathway into one file. Then, 
we conducted DE gene analysis between cell groups in the same 
developmental pathway using Monocle, which will do all needed 
normalization steps internally, with default parameters (Qiu 
et al., 2017). We extracted expression data of the DE genes and 
performed t-SNE analysis with different perplexity for different 
process (Pedregosa et al., 2011).

GO and KEGG Enrichment Analysis
The symbol names of DE genes were used as the gene list input into 
R packages “GOstats” (Falcon and Gentleman, 2006) and “KEGG.
db” (Carlson et al., 2016) for GO and KEGG analysis, respectively. 
We selected the “ontology” parameter as “BP,” “MF,” and “CC” for 
GO analysis and “pvalueCutoff” parameter as 0.5 for both GO and 
KEGG analysis. Top 20 significantly enriched GO terms and KEGG 
terms were selected to show potential functions of DE genes.

Database Construction
The SCDevDB website was built using the Django Python 
Web framework (https://www.djangoproject.com) coupled 
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with the MySQL database. The front-end interface was 
developed based on the Bootstrap open source toolkit 
(https://getbootstrap.com). The web interactive visualization 
graphs were developed using Plotly JavaScript Open Source 
Graphing Library (https://plot.ly/javascript/). SCDevDB was 
published using the Apache http server and is accessible at 
https://scdevdb.deepomics.org/.

RESUlTS

Datasets Summary and the Developmental 
Tree Construct
At the time of this publication, the database contains 10 
datasets covering 18,413 single cells and 176 cell groups (see 
Methods). According to the notation of the data resources, 
we classified these cell groups into 35 developmental stages. 
Every mammalian individual is developed from the totipotent 
zygote. Mammalian preimplantation development is a complex 
process including a series of cell divisions from 1 to 2 cells, 2 
to 4 cells, 4 to 8 cells, 8 to 16 cells, and 16 cells to blastocyst 

(Niakan et al., 2012). After that, nearly all of the human tissues 
are original from embryoblast (hESC). Then, a developmental 
tree was constructed based on the development process of the 
multicellular organism (Hall, 2012) (Figure 1). Specifically, 
we first considered the developmental process from oocyte to 
hESC as the root process; then, the left 27 developmental stages 
were classified into 24 different developmental pathways by 
combining with the root process (Supplemental Table S1). The 
detailed cell number in each stage is shown in Figure 2, and 
the datasets summary is available at https://scdevdb.deepomics.
org/data-summary/.

User Interface to the SCDevDB
In order to provide users easy access to the SCDevDB, we 
designed an interface to allow users to perform basic operations, 
such as searching, viewing, and downloading data. SCDevDB 
is composed of two functional pages: “Gene Expression 
Search” page and “Differential Gene List Collection” page. 
The web interface of SCDevDB is summarized in Figures 3 
and 4.

FIGURE 1 | The developmental tree. Figures of the brain, heart and digestion originate from Wikimedia Commons (https://commons.wikimedia.org/wiki/Main_Page). 
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FIGURE 2 | Statistics of cell numbers of 35 developmental stages.

FIGURE 3 | Overview of the gene expression search page. (A) Searching result of the gene “MYL2”. (B) Boxplot shows expression level distribution of MYL2 during 
developmental process by clicking the image. (C) The function of removing uninterested developmental stages by clicking the name of the stage listed in the figure 
legend. (D) An example of double clicking on a stage name.
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FIGURE 4 | Overview of the differential gene list collection page. (A). T-distributed stochastic neighbor embedding (t-SNE) maps showing the relationships between 
developmental stages based on these differentially expressed genes. (B). Top 20 Gene Ontology (GO) terms of differential expression genes. (C). Top 20 Kyoto 
Encyclopedia of Genes and Genomes (KEGG) terms of differential expression genes.
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Query Function to Search Gene 
Expression Across 35 Developmental 
Stages
In this page, users can view whether an interested gene is expressed 
in different developmental stages by giving a gene symbol (e.g., 
APMAP) or an Ensembl ID (e.g., ENSG00000101474) in the 
searching input box. The searching result will be displayed in the 
developmental tree. Specifically, if the searched gene (“MYL2” 
gene as an example) is not expressed at one stage, the stage 
image will be disabled and cannot be clicked (the light-colored 
images in Figure 3A). Furthermore, the interactive boxplot 
of gene expression level along with a selected developmental 
pathway is available by clicking the stage image (Figure 3B). To 
illustrate the interactive function of this boxplot, we took the 
distribution of the MYL2 expression during left ventricle process 
as an example. Clicking on the stage name “Left_Ventricle_E7w” 
listed in the graph legend can remove the boxplot data of this 
stage (Figure 3C). This function allows users to compare their 
interested stages. Moreover, double clicking on a stage name 
allows users to view detail gene expression value of this stage 
(Figure 3D). These boxplots can be download in PNG format 
for further usage.

Differential Gene list Collection for 24 
Developmental Pathways
In this study, we performed DE gene analysis for 24 
developmental pathways. Finally, 24 differential gene lists were 
collected into the SCDevDB. Users can download these gene 
lists by clicking the Download button in Differential Gene List 
Collection page. Moreover, we performed t-SNE analysis using 
these differential gene lists, and the result is displayed using an 
interactive scatterplot (Figure 4A). Subsequently, GO and KEGG 
enrichment analysis of the DE genes were performed using R 

packages, and top 20 significantly enriched GO or KEGG terms 
were selected to show potential functions of these DE genes 
(Figures 4B, C). In addition, tables showing all of the GO or 
KEGG terms are also available and free to download on the 
“Differential Gene List Collection” page. These scatterplots and 
bar chart can be downloaded in PNG format for further usage.

Case Study
Myosin light chain-2 (MYL2, also called MLC-2) is a protein that 
belongs to the EF-hand calcium binding protein superfamily 
and exists as three major isoforms encoded by three distinct 
genes in mammalian striated muscle (Sheikh et al., 2015). 
Diseases associated with MYL2 include cardiomyopathy, 
familial hypertrophic, and congenital fiber-type disproportion 
(Flavigny et al., 1998; Weterman et al., 2013). Here, we used 
this gene as an interested example to test the functions of 
SCDevDB. Previous studies using bulk-seq data have shown 
that MYL2 is highly expressed in tissue of muscles including 
skeletal muscle, myocardial, and smooth muscles (Hsu et al., 
2012; Lindholm et al., 2014; Renaudin et al., 2018). Searching 
result of the SCDevDB is consistent with these studies as shown 
in Figure 3A. Moreover, comparing with the expression levels 
in cells of the atriums, MYL2 has higher levels in cells of the 
ventricles (Figure 5). This result indicated that MYL2 can be 
used as a marker gene to distinguish ventricle and atrium cells 
in subpopulation analysis.

hESC lines has been used as a source of cells for regenerative 
medicine, as well as valuable tools for drug discovery and for 
understanding human development and disease (Allegrucci and 
Young, 2006). Notably, H9 is one of the first five lines derived in the 
University of Wisconsin, i.e. H1, H7, H9, H13 and H14 (Denning 
et al., 2003), which has been used as an important material in 
many publications (Amit et al., 2000; Gafni et al., 2013; Kim et al., 

FIGURE 5 | Comparison of MYL2 expression distributions between atrium cell types and ventricle cell types.
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2014). In our “Differential Gene List Collection” page, when we 
selected the “H9_Cell_Line” developmental pathway, the t-SNE 
map indicates that H9 cell lines are distinct from preimplantation 
cell types (Figure 4A). This result is reasonable as the H9 cell line 
are different from embryonic stem cells in expression levels of 
various genes (Telugu et al., 2013). Our GO and KEGG analysis 
results showed that the potential functions of the DE genes 
during the H9_Cell_Line developmental pathway were enriched 
in developmental-related biology processes including cellular 
metabolic process, nucleobase-containing compound metabolic 
process, RNA transport, and cell cycle pathways.

CONClUSION
In summary, unlike previous databases, SCDevDB is an interactive 
database providing human single cell resources to profiling gene 
expression distributions in different developmental pathways. 
This database also provides DE gene lists in each developmental 
pathway, t-SNE map, and GO and KEGG enrichment analysis 
based on these differential genes. We believe that this database 
will facilitate researchers within the fields of developmental 
biology to investigate gene expression changes during human 
developmental pathways in the single-cell level.
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With the development of high-throughput sequencing technologies as well as various 
bioinformatics analytic tools, microbiome is not a “microbial dark matter” anymore. 
In this review, we first summarized the current analytical strategies used for big-data 
mining such as single-cell sequencing and metagenomics. We then provided insights 
into the integration of these strategies, showing significant advantages in fully describing 
microbiome from multiple aspects. Moreover, we discussed the correlation between gut 
microbiome with host organs and diseases, confirming the importance of big-data mining 
in clinical practices. We finally proposed new ideas about the trend of big-data mining in 
microbiome using multi-omics approaches and single-cell sequencing. The integration 
of multi-omics approaches and single-cell sequencing can provide full understanding 
of microbiome at both macroscopic level and microscopic level, thus contributing to 
precision medicine.

Keywords: big data, microbiome, metagenomics, single-cell sequencing, precision medicine

STRATEGIES FOR BIG-DATA MINING

The human gut microbiome has been confirmed to highly correlate with human health and diseases, 
through influencing human metabolism, nutrition, physiology, and immune function (Hooper and 
Gordon, 2001; Bäckhed et al., 2005; Manichanh et al., 2012). Hence, the characterization of the 
human gut microbiome, as well as its correlation with diseases, has fascinated a great number of 
researchers to explore. However, the human gut microbiome consists of approximately 15,000 to 
36,000 species of bacteria (Frank et al., 2007), with the total number of bacterial cells ranging from 
1013 to 1014, which is of the same order as the number of human cells (3.0 × 1013) (Sender et al., 2016). 
The gut microbiome also contains more than 100 times more genes, compared with 25,000 genes 
in humans (Gill et al., 2006). Considering this big data of the gut microbiome, sequencing would 
be a promising technology for mining it, rather than the traditional cultural methods. Sequencing 
is the precondition for obtaining raw genetic materials of the gut microbiome, followed by genetic 
assembly and taxonomic and functional annotations. Several strategies are currently used for big-
data mining in microbial communities from different perspectives as follows (Table 1).
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Amplicon Sequencing
Amplicon sequencing uses specific marker genes of microbes 
such as 16S ribosomal RNA for bacteria and Internal Transcribed 
Spacer (ITS) for fungi. This sequencing method mainly answers 
“who is there” in an uncultured microbial community by 
assigning reads to reference reads. However, low-resolution level 
(cannot reach to species or strain level) of amplicon sequencing, 
as well as its disability in functional annotation, largely limits 
its application. Therefore, current solution for this problem is 
to combine the amplicon sequencing and the metagenomic 
sequencing. Researchers can first use relatively low-cost 
amplicon sequencing to have a preliminary understanding of 
the composition of the targeted microbial community, thus 
determining the hypothesis. Subsequently, they can perform 
metagenomic sequencing to confirm the hypothesis from a 
perspective of both phylogeny and functions.

Metagenomic Sequencing
The shotgun metagenomic sequencing process consists of DNA 
extraction from all cells in a community, DNA fragmentation, 
DNA sequencing, and sequence analysis such as marker gene 
analysis, binning, or contig assembly to obtain the taxonomic 
composition. Metagenomic sequencing not only can shed 
light on “who is there” at a high resolution to strain level, but 
also “what are they doing.” The metagenomic reads encoding 
proteins can be predicted for functional annotation, through 
various ways including gene fragment recruitment, protein 
family classification, and de novo gene prediction (Sharpton, 
2014). The disadvantages of metagenomics sequencing are as 
follows. First, there are limitations of short reads produced by 
next-generation sequencing and the complexity in sequence 
assembly, especially when multiple strains are present (Sczyrba 
et al., 2017). For instance, the closely related genomes in 
a community might represent genome-sized approximate 
repeats. Second, metagenomic sequencing cannot obtain high 
genome coverage and might even lose genomes of low abundant 
microbes, owing to the high genomic richness and evenness in a 
community (Mende et al., 2016). Third, functional genes of one 

microbe cannot be fully linked to its phylogeny. There are two 
solutions for these problems. First, long-read sequencing can 
solve the ambiguity in sequence assembly (Bertrand et al., 2019). 
A recent method named OPERA-MS (Bertrand et al., 2019), 
which combines nanopore-sequenced long reads and Illumina-
sequenced short reads through a hybrid metagenomic assembler, 
succeeds to promote the accuracy of strain-resolved assembly 
and obtains genomes with higher coverage. The second solution 
is to combine metagenomics with single-cell sequencing, which 
can reconstruct how DNA is compartmentalized into cells and 
link functions to their corresponding species (Tolonen and 
Xavier, 2017).

Single-Cell Sequencing
The first step of single-cell sequencing is to isolate the individual 
cells, using serial dilution, microfluidics, flow cytometry, 
micromanipulation, or encapsulation in droplets (Bäckhed 
et al., 2005). The following steps include DNA extraction, whole-
genome amplification, DNA sequencing, and sequence analysis 
such as alignment and assembly. Owing to the fact that minimum 
requirement of high-throughput sequencing is micrograms, 
which is more than the femtograms of DNA a bacterial cell 
generally contains, amplification of the minute amounts of DNA 
of the cell is necessary (Xu and Zhao, 2018). For this purpose, 
a non–polymerase chain reaction–based DNA amplification 
method multiple displacement amplification (MDA) (Dean et al., 
2002) uses random hexamer primers annealed to the template 
and a high-fidelity polymerase of the Bacillus subtilis phage phi29 
(Blanco et al., 1989). The Phi29 DNA polymerase can work at a 
moderate isothermal condition, with a high-strand displacement 
activity and an inherent 3′–5′ proofreading exonuclease activity, 
thus ensuring enough genome coverage with lower amplification 
error for the following sequencing analysis.

The major advantage of single-cell sequencing is that it 
can generate a high-quality genome for species with low 
abundance, which might be lost by the metagenomic sequencing. 
Additionally, this method can discriminate and validate 
the functions of individuals within the community, linking 

TABLE 1 | The overview of pros and cons of current widely used methods for dissecting microbiome.

Methods Advantages Disadvantages Solution

Amplicon sequencing

(1) Relatively low cost;
(2) Taxonomic annotations of uncultured 
microbial communities.

(1) Low resolution: cannot identify microbes at 
species or stain level;
(2) Cannot realize functional annotations of 
microbial communities.

(1) Combined with metagenomics;
(2) Use PICRUSt to obtain predicted 
metagenomics and functional annotations.

Metagenomic 
sequencing

(1) Taxonomic and functional annotations 
of uncultured microbial communities;
(2) Obtain the full genetic repertoire of the 
microbial communities.

(1) Difficulties in metagenome assembly and 
taxonomically and functionally assign accurately;
(2) Lack of high genome coverage;
(3) Cannot link all the functional genes of one 
microbe to its phylogeny. 

(1) Long-read sequencing and improved 
algorithms for assembly;
(2) Combined with single-cell sequencing.

Single-cell 
sequencing

(1) Taxonomic and functional annotations 
of uncultured microbes at cell level;
(2) Generate a high-quality genome for 
microbes with low abundance;
(3) Dissect virus-host interactions of 
uncultured microbes.

(1) Difficulties in cell sorting;
(2) Easily influenced by contaminated DNA;
(3) Uneven read coverage, chimeric reads caused 
by MDA. 

(1) Combined with metagenomics;
(2) Improved experimental operation and 
various computational approaches to 
control DNA contamination and errors 
caused by MDA. 
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these functions to specific species. Moreover, the single-cell 
sequencing can simultaneously recover bacterial genomes and 
extrachromosomal genetic materials in a cell, dissecting virus–
host interactions at cell level (Yoon et al., 2011). Single-cell 
sequencing has already led to many novel findings such as the 
discovery of bacteria with an alternative genetic code (Campbell 
et al., 2013), the ability to observe which gut microbial cells use 
host-derived compounds (Berry et al., 2013), and the ability to 
quantify the absolute taxon abundances of the gut microbiome 
(Props et al., 2017).

However, the single-cell sequencing also has limitations as 
follows. First, cell sorting is a complicated and time-consuming 
process. Isolating cells from solid medium such as swabs, 
biopsies, and tissues remains challenging (Tolonen and Xavier, 
2017). Second, the amplification step using MDA might magnify 
the DNA contamination. DNA contamination is mainly from the 
tainted specimen at the step of cell sorting, polluted reagents or 
laboratory apparatuses, and microbes in the environment. The 
solution for the contamination is to keep strictly clean of the 
work area with extra precaution. In addition, the reaction volume 
can be moderately reduced to increase the ratio of targeted 
DNA to the contaminated DNA. Moreover, contaminated DNA 
can be partly removed by aligning the reads to the reference of 
potentially contaminated DNA of human and environment. The 
third limitation is that the MDA procedure would cause highly 
uneven read coverage and increased formation of chimera reads 
that links nonadjacent template sequences; thus, conventional 
genome-assembly algorithms are not suitable for single-cell data. 
The solution for uneven read coverage is to normalize the reads 
by trimming the reads according to their k-mer depth, which has 
been integrated to several assembly algorithms such as SPAdes 
(Bankevich et al., 2012). The solution for chimera reads is to 
identify and remove the chimeras. Owing to the lack of reference 
genome of a certain number of cells, metagenomic sequencing 
can provide the contigs as reference for identifying chimeras.

The Integration of Single-Cell Genomics 
and Metagenomics
The metagenomics represents the whole genome of all 
microbes in the environment, while single-cell genomics 
refers to the genomes of individuals cells that may or may not 
contain the full genetic repertoire in the microbiota. Hence, 
the integration of these two technologies can make up for 
each other’s shortcomings (Figure 1). For instance, reads and 
contigs of metagenomics can improve the genome assembly 
of single-cell genomics (Mende et  al., 2016). Conversely, 
single-cell genomics can serve as scaffolds for comparison 
or recruitment of metagenomics when reference genomes 
are unavailable (Swan et al., 2013; Roux et al., 2014). Several 
studies have generated much-improved microbe genome 
assemblies from a variety of microbial communities, using 
the integration of single-cell genomics and metagenomics 
(Dupont et al., 2012; Nobu et al., 2015). The disadvantage of 
this integration is that the potential errors of both methods 
would be gathered, thus requiring more sophisticated methods 
to deal with.

The Integration of Metagenomics and 
Three-Dimensional Genomics
Metagenomics can quantify the genetic materials of a microbial 
community, while the Hi-C sequencing can identify all chromatin 
interactions of the community, producing three-dimensional 
(3D) genome, reflecting both the genetic content and topological 
chromatin structures into digital information (Belaghzal et al., 
2017). The integration of metagenomics and 3D genomics can 
fully display the composition and structure of genomes of a 
microbial community. Moreover, a recent study performed Hi-C 
for single-cell analysis, to capture 3D genomes of individual cells 
(Nagano et al., 2017).

Microbial Multi-Omics Analysis
With advances in high-throughput sequencing technologies and 
bioinformatics approaches, researchers are now able to perform 
comprehensive analysis in microbial communities, named as 
“multi-omics analysis.” This analysis integrates metagenome, 
metatranscriptome, metaproteome, and metabolome. The 
metagenome displays the taxonomic composition in a 
microbial community and predicted functional expression. The 
metatranscriptome, metaproteome, and metabolome can confirm 
the predicted functions, further unveiling how microbes work in 
a community. These omics can provide significant information 
about a microbial community from different perspectives. For 
instance, the microbial communities of twins with Crohn disease 
have been analyzed at phylogenetic, functional, and metabolic 
levels, using 16S sequencing (Dicksved et al., 2008; Willing 
et al., 2009; Willing et al., 2010), metagenomics, proteomics 
(Erickson et al., 2012), and metabolomics (Jansson et al., 2009).
The subjects with Crohn disease contain a microbial community 
with lower microbial diversity, depletion of Faecalibacterium 
prausnitzii, and lower expression levels of proteins involved in 
butyrate metabolism (Erickson et al., 2012). At the metabolite 
level, thousands of metabolites such as the bile acids (BAs) that 
were detected higher in diseased subjects can distinguish healthy 
subjects from subjects with Crohn disease (Jansson et al., 2009). 
Therefore, the integration of these omics is necessary for fully 
detecting microbial community. In a recent study, researchers 
succeeded to correlate the process of permafrost thawing with 
microbial composition and functions, using “multi-omics 
analysis” (Hultman et al., 2015).

THE CONNECTION BETWEEN 
MICROBIOTA AND THE HUMAN BODY

The dietary intake (Wu et al., 2011; Liu et al., 2018) and 
environmental exposure such as administration of antibiotics 
(Pérez-Cobas et al., 2012; Raymond et al., 2016) can largely 
influence human gut microbiota. The gut microbiota would then 
respond to these factors, producing signals adjusting human 
distal organs including liver (Khalsa et al., 2017), brain (Dinan 
and Cryan, 2017), and lung (Budden et al., 2017), as described 
in Figure 2. Both of microbes’ own structural components and 
metabolites produced by them can serve as the signal molecules. 
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FIGURE 1 | The integration of single-cell sequencing and metagenomics makes them complement each other. Single-cell sequencing could provide metagenomics 
with reference scaffolds, while metagenomics could ameliorate the genome assembly of single-cell sequencing.
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These signals can affect distal organs metabolism either directly 
or by signaling through nerves or hormones from the gut 
(Schroeder and Bäckhed, 2016).

Gut–Liver Axis
The gut microbiota was confirmed to adjust liver metabolism 
(Kim et al., 2007; Khalsa et al., 2017). BAs, for example, derived 
from cholesterol in the liver, can be modified by microbiota in 
the distal small intestine and colon (Schroeder and Bäckhed, 
2016). Primary BAs will be deconjugated by the ileal gut 
microbiota after they are secreted into the small intestine, 
which makes them manage to escape the reabsorption and 
then be subjected to further chemical modification by colonic 
microbiota (Midtvedt, 1974; Swann et al., 2011). BAs are capable 
of activating nuclear receptors such as farnesoid X receptor 
(FXR) and G-protein–coupled receptors (GPCRs), which 
are associated with host metabolism (Fiorucci et al., 2009). 
The activation of FXR can suppress the rate-limiting step in 

BA synthesis through a gut microbiota–liver feedback loop, 
thus controlling the BA levels (Kim et al., 2007). Additionally, 
TGR5, one of GPCRs, predominately recognizes secondary 
BAs, which is associated with increased thermogenesis in brown 
adipose tissue (Broeders et al., 2015). The adjustment of the gut 
microbiota on the liver is important, while the response of liver 
cells is important as well, which can be described using single-
cell sequencing. A recent study used single-cell RNA sequencing 
on T cells from hepatocellular carcinoma patients to identify 11 
T-cell subsets with special molecular and functional properties, 
thus contributing to the prediction of their clinical responses in 
liver cancer (Zheng et al., 2017).

Gut–Brain Axis
The association between the brain and other organs depends 
on complex pathways consisting of the dual autonomic 
nervous system and endocrine. The gut–brain axis is defined 
to encompass afferent and efferent neural, endocrine, and 

FIGURE 2 | Communications between the gut microbiome and distal organs. Various factors such as environmental exposure and dietary intake can modulate gut 
microbiota. The change of gut microbiota will bring a certain number of effects on distal organs through signals molecules consisting of their structural components 
such as lipopolysaccharide (LPS) and their metabolites such as SCFAs.
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nutrient signals between the central nervous system and the 
gastrointestinal system (Romijn et al., 2008). Several studies have 
shown that the gut microbiota influences our brain morphology 
and stress response and even causes the stroke (Schroeder and 
Bäckhed, 2016) via the gut–brain axis. As for brain morphology, 
most studies were performed using mice due to the challenges 
in humans. Through the comparison between germ-free mice 
and colonized mice, the gut microbiota has been found to 
cause alterations in the structural integrity of the amygdala and 
hippocampus (Luczynski et al., 2016). Germ-free mice displayed 
increased hippocampal neurogenesis and hypermyelination 
of the prefrontal cortex (Hoban et al., 2016). Moreover, a 
more permeable blood–brain barrier (BBB) in germ-free mice 
suggests that the gut microbiota is also capable of modulating 
the BBB (Braniste et al., 2014). In respect to stress response, 
Bifidobacterium longum was observed to activate the vagus 
nerve to reduce anxiety-like behavior independently of brain-
derived neurotrophic factor (Bercik et al., 2011). Moreover, 
different community members may have distinct influences on 
the stress response. For instance, when young germ-free mice 
with originally elevated stress response were colonized with 
Bifidobacterium infantis at an early developing stage, the stress 
response was then diminished. But when they were colonized 
with enteropathogenic Escherichia coli, their stress responses 
were observed to aggravate (Sudo et al., 2004). As to the stroke, 
87% are ischemic and caused by interruption of the blood supply 
to the brain. A study displayed that ischemic brain injury in 
mice can be reduced by antibiotic-induced alterations in the 
gut microbiota (Benakis et al., 2016), which provided us with a 
potential therapeutic method in the future. The characterization 
of brain cells is important for researchers to further explore 
the gut–brain axis. Recently, a study performed single-cell 
sequencing, integrated with multi-omics on the human brain, 
providing new insights into complex processes in the brain (Lake 
et al., 2018).

Gut–Lung Axis
The conception of the gut–lung axis has emerged these years, 
which still needs more investigations to excavate mechanisms. 
First, dietary intake can shape both the gut microbiota and the 
airway microbiota (Marsland et al., 2015). On the one hand, 
dietary fiber intake leads to an increased level of short-chain 
fatty acids (SCFAs), which is associated with shifts in both gut 
microbiota and airway microbiota (Trompette et al., 2014). 
On the other hand, a high-fat diet has been confirmed to 
correlate with compositional changes in intestinal microbiota 
and elevated allergic airway inflammation (Myles et al., 2013). 
Second, the gut–lung axis contains several interactions among 
microbiota, metabolites, immune cells, and the lung. Bacterial 
metabolites such as SCFAs, with the ability to reach other organs 
via the bloodstream, are able to exert their anti-inflammatory 
properties. Additionally, the microbial seeding from the 
intestinal microbiota into the airways makes these bacteria able 
to act on local immune cells to shape their responses (Marsland 
et al., 2015). Moreover, migrating immune cells are capable 
of acquiring information directly from microbiota and the 

concomitant local cytokine response to adjust inflammatory 
response, which shapes immune responses at distal sites such as 
the lung (Trompette et al., 2014; Budden et al., 2017). Scientists 
have correlated allergic asthma, one of the lung diseases, with the 
gut microbiota. A study displayed that a fecal transplant from 
a child at risk of asthma into germ-free mice resulted in severe 
lung inflammation after challenge with ovalbumin (Arrieta et al., 
2015). Moreover, another study showed that the impacts by 
recurrent antibiotic treatment on the diversity of the microbiota 
early in life (Fouhy et al., 2012) have been confirmed to strongly 
correlate with the development of an asthmatic phenotype later 
in life (Fanaro et al., 2003). There are still a certain number of 
unknown mechanisms in the gut–lung axis, which provides us 
with a lot of potential therapeutic methods against lung diseases.

MICROBIOTA AND CLINICAL MEDICINE

Gastrointestinal Disease
The intestine is a critical organ in the human’s body, whose 
functions involve the uptake of nutrients and water. The 
intestinal barrier (Figure 3), as the essential barrier of the 
intestine, prevents the transfer of harmful substances and 
pathogens. Pathogenic bacteria may cause the disruption of 
this barrier resulting in increased intestinal permeability. 
Enteropathogenic E. coli (EPEC), for instance, causes a loss 
of enterocyte microvilli and the formation of a raised pedestal 
structure for firm bacterial attachment (Lapointe et al., 2009). In 
addition, enterohemorrhagic E. coli also possesses an attaching 
and effacement locus but with less profound effects on the 
barrier (Kaper and Nataro, 2004). Moreover, enteroaggregative 
E. coli and enterotoxigenic E. coli can cause diarrhea through 
effects on chloride secretion in the intestinal epithelium 
(Dubreuil, 2012). The single-cell sequencing helps to identify the 
pathogenic microbes at the intestinal lumen. The main antibody 
isotype named immunoglobulin A (IgA), which is produced 
at mucosal surfaces, can bind those pathogenic microbes in 
the intestinal lumen. The cell sorting then uses a fluorescent 
anti-IgA antibody, followed by 16S rDNA sequencing to 
identify the isolated pathogenic microbes (Palm et al., 2014). 
Furthermore, metagenomic sequencing can also be performed 
on these isolated microbes to identify the basis of immunogenic 
differences between and within microbes. Similarly, the elevated 
IgG coating of gut bacteria has also been observed in patients 
with sepsis and Crohn disease system (Zeng et al., 2016). 
Therefore, the single-cell sequencing is a promising method to 
correlate microbes with host immune response for precision 
medicine (Tolonen and Xavier, 2017).

Thrombosis
The risk of thrombosis has been observed to be correlated with 
the plasma levels of trimethylamine (TMA)–N-oxide (TMAO) 
in humans (Zhu et al., 2016). Especially, the gut microbiome is 
critically involved in the generation of TMAO (Tang et al., 2013). 
The gut microbiome can process certain dietary nutrients such 
as phosphatidylcholine, choline, and carnitine specifically to 
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procedure TMA, which is absorbed in the gut and converted in 
the liver to TMAO by hepatic flavin-containing monooxygenases 
(Tilg, 2016). In humans, foods such as meat and eggs have been 
associated with an increased risk of major cardiovascular events 
in patients with proven coronary heart disease (Tang et al., 2013). 
In addition, administration of antibiotics can markedly reduce 
the plasma levels of TMAO.

Hepatitis B Virus
Hepatitis B virus (HBV), as one of the most common infectious 
agents worldwide, has been associated with the gut microbiome 
(Chou et al., 2015). Scientists have found that viral clearance 
heavily depends on the age of exposure. According to the control 
experiments of adult and young mice, the results showed an 
immune-tolerating pathway to HBV that prevailed in young 
mice with immature gut microbiota. After the establishment of 
gut bacteria, the mature gut microbiota in adult mice stimulated 
liver immunity, resulting in rapid HBV clearance (Chou et  al., 
2015). Therefore, full understanding of the interaction of 

virus–host may help us with the therapy for HBV. The single-cell 
sequencing can serve as a powerful method to explore the virus–
host interaction (Labonte et al., 2015).

Depression
Depressive episodes correlate with dysregulation of the 
hypothalamic–pituitary–adrenal (HPA) axis (Barden, 2004) and 
resolution of depressive systems with normalization of the HPA 
axis (Heuser et al., 1996; Nickel et al., 2003). The gut microbiota 
has been confirmed to play a part in both the programming 
of the HPA axis early in life and stress reactivity over the life 
span (Foster and Neufeld, 2013). The stress response system is 
functionally immature at birth and then develops throughout 
the postnatal period, which coincides with the intestinal 
bacterial colonization. Stress can increase intestinal permeability, 
providing bacteria with an opportunity to translocate across the 
intestinal mucosa and directly access both immune cells and 
neuronal cells of the enteric nervous system (Gareau et al., 2008; 
Teitelbaum et al., 2008).

FIGURE 3 | Intestinal barrier and affecting factors. The intestinal barrier, as an essential barrier against harmful pathogens and substances in the intestine, mainly 
consists of the mucus layer, the epithelial layer, and the underlying lamina propria. The intestinal lumen contains antimicrobial peptides (AMPs), secreted IgA, and 
commensal bacteria, which prevent the colonization of pathogens. A mucus layer covers the intestinal surfaces as a physical barrier. The epithelium is composed of 
a single layer of cells sealed by tight junction proteins such as occludin and claudin inhibiting paracellular passage. M cells and intraepithelial lymphocytes are also 
contained in this layer. The lamina propria harbors lots of immune cells. Factors including food allergens, lipopolysaccharides (LPS), and pathogenic bacteria such as 
EPEC effect on the intestinal barrier function.

115

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Single-Cell Genomics and MetagenomicsCheng et al.

8 October 2019 | Volume 10 | Article 972Frontiers in Genetics | www.frontiersin.org

AIDS
The gut microbiota has been recently observed to be associated 
with human immunodeficiency virus (HIV) disease progression 
(Vujkovic-Cvijin et al., 2013). Scientists identified a dysbiotic 
mucosal-adherent community enriched in Proteobacteria and 
depleted of Bacteroidia members that were associated with 
markers of mucosal immune disruption, T-cell activation, 
and chronic inflammation in HIV-infected subjects. This 
dysbiotic community was evident among HIV-infected subjects 
undergoing highly active antiretroviral therapy (Vujkovic-Cvijin 
et al., 2013). Furthermore, the extent of dysbiosis correlated with 
two established markers of disease progression including the 
activity of the kynurenine pathway of tryptophan catabolism and 
plasma concentrations of the inflammatory cytokine interleukin 
6 (Vujkovic-Cvijin et al., 2013). Hence, a link between mucosal-
adherent colonic bacteria and immunopathogenesis during 
progressive HIV infection deserves better investigations.

Cancer
Gut microbes have been reported to be correlated with a certain 
number of cancers related to human stomach (Helicobacter 
pylori), liver (Opisthorchis viverrini, Clonorchis sinensis), and 
bladder (Schistosoma haematobium) (Bhatt et al., 2017). H. pylori 
infections, for instance, can lead to gastritis and gastric ulcers 
(Marshall et al., 1984), which is considered as the precursor of 
gastric cancer. Nevertheless, H. pylori was also observed to protect 
against esophageal adenocarcinoma, by influencing stomach pH 
and ameliorating acid reflux (Vaezi et al., 2000). Hence, owing to 
the participation of microbes in multiple biological processes, the 
oncogenicity of microbes should be discussed and determined by 
multi-omics approaches.

THE TREND OF BIG-DATA MINING FOR 
MICROBIOME

In the past, owing to limitations in abilities to obtain and 
process microbial big data, scientists were not able to obtain a 
full understanding of the microbiota. Neither the sequencing 
technologies nor the analysis tools can meet the high dimensional 
complicacy of the intestinal microbiota. Nowadays, the high-
throughput sequencing technologies, such as MDA (Dean et al., 
2002) for single-cell sequencing, and numerous statistical analysis 
tools, such as QIIME for 16S sequencing data (Caporaso et al., 2010) 
and MetaPhlAn (Segata et al., 2012) for metagenomics data, make 

it possible to unveil the microbiota from various perspectives. The 
integration of the current sequencing methods would be necessary 
to conduct a comprehensive study on microbiota in the future. 
First, the taxonomic information at various levels can be obtained 
by amplicon sequencing and metagenomic sequencing. Second, 
the functional annotation can be predicted by metagenomics 
and confirmed by the multi-omics including metagenome, 
metatranscriptome, metaproteome, and metabolome. Third, the 
connection between functions and phylogeny of a single microbe cell 
can be established by single-cell sequencing. Finally, the interactions 
between all chromosomes can be detected by Hi-C sequencing. 
The integration of these methods can answer the questions “who 
is there,” “what are they doing,” and “how are they doing” from a 
macroscopic level of overall microbial composition and microscopic 
level of single microbe cell and even the single chromosome. The 
comprehensive analysis of big data, followed by strict in vivo and in 
vitro experiments, is required to determine the causality of clinical 
diseases by microbes for specific medicine. Moreover, a standard 
pipeline for the integration of these methods proposed in the future 
can produce a huge amount of data sets. The big-data sets across 
continents provide the spatial characteristics, and the big-data sets in 
the long-term investigations provide the characteristics at time scale.
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Identification of Potential Biomarkers 
in Association With Progression and 
Prognosis in Epithelial Ovarian Cancer 
by Integrated Bioinformatics Analysis
Jinhui Liu 1†, Huangyang Meng 1†, Siyue Li 1†, Yujie Shen 2, Hui Wang 1, Wu Shan 1, 
Jiangnan Qiu 1, Jie Zhang 1 and Wenjun Cheng 1*

1 Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 2 Department of 
Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China

Epithelial ovarian cancer (EOC) is one of the malignancies in women, which has the highest 
mortality. However, the microlevel mechanism has not been discussed in detail. The 
expression profiles GSE27651, GSE38666, GSE40595, and GSE66957 including 188 
tumor and 52 nontumor samples were downloaded from the Gene Expression Omnibus 
database. The differentially expressed genes (DEGs) were filtered using R software, and we 
performed functional analysis using the clusterProfiler. Cytoscape software, the molecular 
complex detection plugin and database STRING analyzed DEGs to construct protein-protein 
interaction network. We identified 116 DEGs including 81 upregulated and 35 downregulated 
DEGs. Functional analysis revealed that they were significantly enriched in the extracellular 
region and biosynthesis of amino acids. We next identified four bioactive compounds 
(vorinostat, LY-294002,trichostatin A, and tanespimycin) based on ConnectivityMap. Then 
114 nodes were obtained in protein–protein interaction. The three most relevant modules 
were detected. In addition, according to degree ≥ 10, 14 core genes including FOXM1, 
CXCR4, KPNA2, NANOG, UBE2C, KIF11, ZWINT, CDCA5, DLGAP5, KIF15, MCM2, 
MELK, SPP1, and TRIP13 were identified. Kaplan–Meier analysis, Oncomine, and Gene 
Expression Profiling Interactive Analysis showed that overexpression of FOXM1, SPP1, 
UBE2C, KIF11, ZWINT, CDCA5, UBE2C, and KIF15 was related to bad prognosis of EOC 
patients. CDCA5, FOXM1, KIF15, MCM2, and ZWINT were associated with stage. Receiver 
operating characteristic (ROC) curve showed that messenger RNA levels of these five genes 
exhibited better diagnostic efficiency for normal and tumor tissues. The Human Protein Atlas 
database was performed. The protein levels of these five genes were significantly higher in 
tumor tissues compared with normal tissues. Functional enrichment analysis suggested that 
all the hub genes played crucial roles in citrate cycle tricarboxylic acid cycle. Furthermore, 
the univariate and multivariate Cox proportional hazards regression showed that ZWINT was 
independent prognostic indictor among EOC patients. The genes and pathways discovered 
in the above studies may open a new direction for EOC treatment.

Keywords: epithelial ovarian cancer, bioinformatical analysis, differentially expressed genes, prognosis, Cmap, 
protein–protein interaction, biomarker
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InTrODUCTIOn

Ovarian cancer is the second most common female malignant 
tumor in the world and the most common cause of death among 
female malignant tumors (McAlpine et al., 2014). With the 
development of the times, although surgery and other treatment 
methods have been improved, the treatment effect and prognosis 
of advanced ovarian cancer patients are very poor due to the 
difficulty in the diagnosis of ovarian cancer (Allemani et al., 
2015; La Vecchia, 2017).

Gene expression microarray, as a means of efficient large-scale 
acquisition of genetic data, has been generally used to collect and 
study gene chip expression profiling data of many human cancers. 
New methods are provided by microarrays for studying tumor-
associated genes, molecular targeting, molecular prediction, and 
therapy. The integration of databases where researchers have 
published their research data containing several gene expression 
chips allows for a more in-depth study of molecular mechanisms 
(Nannini et al., 2009; Petryszak et al., 2014).

In this study, we downloaded four gene expression datasets, 
GSE27651, GSE38666, GSE40595, and GSE66957 from The 
National Center for Biotechnology Information Gene Expression 
Omnibus (GEO) database. R software and Bioconductor 
software package was used to integrate chip data, combined 
with R package clusterProfiler, to mine gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
pathway. The core genes were screened from the protein–
protein interaction (PPI) network of differentially expressed 
genes (DEGs). Finally, survival analysis was performed using a 
Kaplan–Meier plotter to further validate core genes. The genes 
and pathways discovered in the above studies may open a new 
direction for EOC treatment.

MATErIAl AnD METhODs

Data Collection and Data Preprocessing
The raw data for GSE27651, GSE38666, GSE40595, and 
GSE66957 were integrated for the analysis. The gene chip was 
obtained from the GEO database (http://www.ncbi.nlm.nih.gov/
geo/). GSE27651 included 43 cancer tissues and 6 normal tissues, 
dataset GSE38666 included 25 cancer tissues and 20 normal 
tissues, dataset GSE40595 included 63 cancer tissues and 14 
normal tissues, and dataset GSE66957 included 57 cancer tissues 
and 12 normal tissues. They were functioned by Affymetrix 
Human Genome U133 Plus 2.0 Array [transcript (gene) version] 
(Affymetrix, Santa Clara, CA, USA) (Harbig et al., 2005). Robust 
multiarray average approach was performed for background 
correction and normalization (Irizarry et al., 2003). The original 
GEO data was then converted into expression measures using 
affy R package (Gautier et al., 2004).

Differentially Expressed genes
The “limma” R language package was utilized to detect the 
DEGs between EOC samples and normal samples in GEO 
database (Ritchie et al., 2015). We set the adjusted P < 0.05 and 

|log2 fold change (FC)| )1 as the cutoff criteria. Online Wayne 
diagram was used for identifying the common DEGs among 
GSE27651, GSE38666, GSE40595, and GSE66957. The drawing 
of the heatmap was done through the “heatmap” package of R 
3.4.4.(Galili et al., 2018)

gO Term and KEgg Pathway Enrichment 
Analysis
The function and pathway enrichment of the candidate genes were 
analyzed and annotated using the DAVID database (https://david.
ncifcrf.gov/). GO annotations were performed on the screened 
DEGs using the DAVID online tool and clusterProfiler (Yu et al., 
2012). Analysis of KEGG pathway of DEGs was performed using 
clusterProfiler. We set p < 0.05 as a significant criterion.

Comprehensive Analysis of PPI network 
and Functional Analysis
STRING (http://www.string-db.org/) was used to assess PPI 
information (Szklarczyk et al., 2015). In addition, Cytoscape 
software visualized the results to show the relationship between 
DEGs. The molecular complex detection (MCODE) plugin 
was used to search for cluster subnets. We used the following 
parameters: node score cutoff = 0.2, degree cutoff = 2, max. 
depth = 100 and k-core = 2. We further used the clusterProfiler 
to perform functional analysis of the genes in the hub module.

Identification of Potential Drugs
The EOC gene signature was used to query ConnectivityMap 
(CMap) to find potential drugs for use in patients. The CMap 
database is a computer simulation method of predicting the 
potential drugs that may induce or reverse a biological state that 
encoded by the gene expression signature (Lamb et al., 2006). 
The different probe components commonly found between EOC 
tissue samples and normal tissue samples, then used to search 
the CMap database, are divided into the up- and downregulated 
groups. An enrichment score representing similarity is finally 
calculated. The positive connectivity score illustrates that the 
drug is capable of inducing cancer in human. On the contrary, the 
negative link score illustrates that the drug is able to reverse the 
cancer procedure. The negative connectivity score was indicated 
potential therapeutic value. Tomographs of these candidate 
molecular drugs were investigated in Pubchem database https://
pubchem.ncbi.nlm.nih.gov/).

Validation of hub genes
To find key genes that play an important role in EOC, we used 
Gene Expression Profiling Interactive Analysis (GEPIA) and 
Kaplan–Meier analysis to analyze the expression and prognosis 
of 14 hub genes in EOC. GEPIA is based on 9,736 tumors and 
from cancer genomic map [The Cancer Genome Atlas (TCGA)] 
and genotype-tissue expression (Tang et al., 2017). We found 
eight key genes whose expression levels were consistent with the 
prognosis and was further validated in ONCOMINE database. 
(www.oncomine.org) (Rhodes et al., 2007) and The Human 
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Protein Atlas (http://www.proteinatlas.org/) (Lindskog, 2015). 
Among them, five genes were associated with stage in our study 
based on GEPIA. Finally, ROC curve analysis was done to 
distinguish normal and cancer tissues.

gene set Enrichment Analysis
In TCGA set validation, EOC samples were divided into two 
groups according to the median expression level. In order to 
identify potential function of the hub gene, we conducted a Gene 
set enrichment analysis (GSEA) (http://software.broadinstitute.
org/gsea/index.jsp) (Subramanian et al., 2007) analysis to test 
whether a series of preferentially defined biological processes 
were enriched in the gene rank derived from DEGs between the 
two groups. In addition, we employed “clusterProfiler” package 
in R to handle the data of gene sets and use “Enrichplot” package 
to visualize the enriched pathways of the key genes. The adjusted 
P < 0.05 was set as the cutoff criterion.

rEsUlT

Identification of DEgs in EOC and the 
Enrichment of These genes
Four data sets were obtained from the National Center for 
Biotechnology Information GEO database containing tumor 
tissue samples and normal ovarian tissue samples: GSE27651, 
GSE38666, GSE40595, and GSE66957. Then, the R package 
named “limma” was processed for analysis with adjusted 
P < 0.05 and |log2FC| >1. All DEGs were displayed in volcano 
maps (Figure S1). Top 200 genes in four databases were 
displayed in the heatmap (Figure S2). A total of 116 genes 
were finally obtained including 81 upregulated genes and 35 
downregulated genes in the EOC tissue samples compared to 
the normal ovarian tissue samples (Figure 1). The data used 
to create Figure 1 can be seen in Table S1. We also performed 
clusterProfiler package to do the functional analysis. In GO 
analysis, the hub upregulated genes were highly enriched in 
acetylcholine receptor regulator activity, neurotransmitter 
receptor regulator activity, and vitamin binding (Figure 2A); 
the hub downregulated genes were significantly enriched in 
peptidase activator activity, collagen binding and transcription 
factor activity, and RNA polymerase II distal enhancer 
sequence-specific binding (Figure 2B). The data used to create 
Figure 2B can be seen in Table S2. In KEGG analysis, the hub 
upregulated genes were significantly enriched in biosynthesis 
of amino acids and carbon metabolism (Figure 2C); the hub 
downregulated genes were significantly enriched in retinol 
metabolism (Figure 2D). The above research results can guide 
us to further study the significance of DEGs in EOC.

gO and Pathway Enrichment Analysis  
of DEgs
To clarify the major functions of these DEGs, we first explored 
the associated biological processes and KEGG pathways. The 
top highly enriched GO terms were divided into three groups: 
biological process (BP), cellular component (CC), and molecular 

function (MF) (Figure 3A). The most enriched GO terms in 
biological process was “transcription from RNA polymerase 
II promoter” (P < 0.05), that in cellular component was 
“extracellular space” and “cell proliferation” (P < 0.05), and that 
in molecular function was “sequence-specific DNA binding” 
(P < 0.05) (Figures 3B, D). We further obtained 10 significantly 
enriched GO terms with a P < 0.05. The DEGs included in the 
top 10 GO terms were shown in the Figure 3C. All the GO terms 
were exhibited in Table S4.

In the KEGG analysis, the DEGs were mostly enriched 
in biosynthesis of amino acids, carbon metabolism, arginine 
biosynthesis, Wnt signaling pathway, alanine, aspartate, and 
glutamate metabolism, and glycine, serine, and threonine 
metabolism (Figure 3E).The pathway–protein network is shown 
in Figure 3F.

FIgUrE 1 | A total of 116 commonly changed differentially expressed genes 
(DEGs) which were divided into up- and down-regulated groups, were identified 
from four transcription profile datasets (GSE27651, GSE38666, GSE40595, and 
GSE66957) using online website. Calculate and draw custom Venn diagrams 
(available online: http://bioinformatics.psb.ugent.be/webtools/Venn/). Statistically 
significant DEGs were defined with adjusted P < 0.05 and |log2FC| > 1 as the 
cutoff criterion. (A) Up-regulated genes (B) Down-regulated genes.
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related small Molecule Drugs screening
We divided the 116 differentially expressed genes consisting 
of 35 downregulated genes and 81 upregulated genes into 
two groups, up- and downregulated, which were substituted 

into the CMap network tool. Among these highly significant 
correlated molecules, vorinostat, LY-294002, trichostatin A, and 
tanespimycin showed higher negative correlation with EOC. 
They all might have the potential therapeutic effects on EOC 

FIgUrE 2 | Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the up- and downregulated DEGs. (A) GO analysis 
of upregulated genes associated with epithelial ovarian cancer (EOC). (B) GO analysis of downregulated genes associated with EOC. (C) KEGG analysis of 
upregulated genes associated with EOC. (D) KEGG analysis of downregulated genes associated with EOC.
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FIgUrE 3 | GO enrichment and KEGG analysis of DEGs in EOC. (A) GO analysis divided DEGs into three functional groups: molecular function, biological 
processes, and cell composition. (B) The bubble plot of enriched GO terms. The z-score is assigned to the x-axis, and the negative logarithm of the P value to the 
y-axis, as in the barplot (the higher the more significant). The size of the displayed circles is proportional to the number of genes assigned to the term. Green circles 
correspond to the biological process, red indicates the cellular component, and blue shows the molecular function category. (C) The top 10 GO terms of DEGs 
in EOC. The outer circle shows a scatter plot for each term of the logFC of the assigned genes. Red circles display upregulation and blue ones downregulation. 
(D) Distribution of DEGs in cervical cancer for different GO-enriched functions. (E) KEGG analysis of DEGs. (F) The pathway–protein network of DEGs.
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(Table 1). Three-dimensional structure of the top 4 candidate 
molecule drugs was found in Pubchem database and shown in 
Figures 4A–D.

PPI network and Cluster Analysis
STRING website screened 114 DEGs into PPI complex, which 
demonstrated 114 nodes and 157 edges (Figure 5A), and 30 
important proteins were identified (Figure 5B). After that, we 
applied the MCODE, and three clusters were obtained. Among 
them, cluster 1 contained 11 core proteins and got the highest 
score in these clusters (Figure 6A), cluster 2 contained 5 proteins 
(Figure 6B), and cluster 3 contained 3 proteins (Figure 6C). 
These results may indicate that the 19 DEGs influence EOC.

We further performed the functional analysis of cluster 1. 
In GO analysis, the DEGs of cluster 1 were mostly enriched in 
microtubule motor activity, motor activity, and microtubule 
binding (Figure 7A). In KEGG analysis, the DEGs of cluster 1 
were mostly enriched in DNA replication and cell cycle 
(Figure 7B). All pathways of significant molecule in cluster 1 are 
shown in Table S3.

hub gene Validation
To further demonstrate the effect of these genes in EOC, 
we performed survival analysis on all the 114 DEGs first 
(Table S5), and 14 genes were obtained as candidate genes 
according to degree ≥10. Then, CDCA5, FOXM1, KIF11, 
KIF15, MCM2, SPP1, UBE2C, and ZWINT, which showed 
higher expression in CESC samples compared with normal 
samples (Figure 8), were negatively relative to overall survival 
of EOC patients (Figure  9). Patients with higher expression 
levels were worse than patients with lower expression levels. 

Similarly, overexpression of CDCA5, FOXM1, KIF11, 
KIF15, MCM2, SPP1, UBE2C, and ZWINT in tumors was 
significantly associated with progression-free survival in EOC 
patients (Figure 10). Expression analysis of cervical cancer 
versus normal performed on ONCOMINE also showed that 
expression of these eight genes were screened higher in EOC 

TABlE 1 | Results of ConnectivityMap (CMap) analysis.

rank CMap name Mean N Enrichment P value

1 vorinostat −0.477 12 −0.639 0
2 LY-294002 −0.25 61 −0.393 0
3 trichostatin A −0.359 182 −0.347 0
4 tanespimycin −0.297 62 −0.307 0
5 folic acid 0.66 4 0.889 0.00014
6 gentamicin 0.613 4 0.886 0.00016
7 harmol 0.584 4 0.877 0.00034
8 amantadine 0.518 4 0.837 0.00109
9 trazodone −0.63 4 −0.911 0.00124
10 hycanthone 0.449 4 0.823 0.00167

FIgUrE 4 | Three-dimensional diagram of the three most significant drugs. (A) Vorinostat, (B) LY-294002, (C) trichostatin A, (D) tanespimycin.

FIgUrE 5 | Protein–protein interaction (PPI) network analysis. (A) Using the 
STRING online database, a total of 161 DEGs were filtered into the DEGs PPI 
network. (B) Degree of the top 30 nodes in the PPI network.
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sample (Figure 11). Interestingly, we also found that five genes 
CDCA5, FOXM1, KIF15, MCM2, and ZWINT were relative 
to EOC stage by GEPIA analysis (Figure 12). In addition, we 
performed survival analysis based on stage I–II and stage III–
IV. The results showed that the high expression of five hub 
genes was significantly worse than that of low expression in 
the stage I/II, but there was no statistical significance in stage 
III/IV (Figure S3). Immunohistochemistry also suggested 
that, compared with normal tissues, the protein expression 
level of these five genes were obviously higher in tumor tissues 
(Figure 13). In addition, ROC curve analysis was implemented 

to evaluate the capacity of hub genes to distinguish EOC and 
normal tissues in GES66957, CDCA5, FOXM1, KIF15 and 
MCM2, exhibiting better diagnostic efficiency for normal and 
tumor tissues, and the combined diagnosis of these five genes 
was more effective. The value of AUC was 0.858 (Figure 14A). 
However, efficiency of the ROC analysis between stage I–II and 
stage III–IV was weak (Figure S4). In addition, the univariate 
and multivariate Cox proportional hazards regression showed 
that the ZWINT was an independent prognostic indicator for 
overall survival among EOC patients (Table 2).

gene set Enrichment Analysis
To identify the potential function of these five genes in TCGA 
OV databases, GSEA was conducted to search KEGG pathways 
enriched in the highly expressed samples. As a result, 10 gene 
sets “citrate cycle tricarboxylic acid (TCA) cycle,” “homologous 
recombination,” “steroid biosynthesis,” “pentose phosphate 
pathway,” “glyoxylate and dicarboxylate metabolism,” “RNA 
polymerase,” “hypertrophic cardiomyopathy,” “dilated 
cardiomyopathy,” and “drug metabolism cytochrome P450” were 
enriched (Figure 14B) (adjusted P < 0.05).

DIsCUssIOn

Although surgery and other treatment methods have been 
improved, the treatment effect and prognosis of advanced 
ovarian cancer patients are very poor due to the difficulty in 
the diagnosis of ovarian cancer. Although many microlevel 
studies have been carried out, they are not yet mature. In this 
study, we integrated four gene chips from GEO databases and 
selected 116 DEGs between tumor and nontumor samples 
(81 expression levels were upregulated and 35 expression 
levels were downregulated), and further functional analysis  
was performed.

GO analysis displayed that the upregulated DEGs were 
mainly enriched in acetylcholine receptor regulator activity, 
and the downregulated genes were highly enriched in 
peptidase activator activity. The KEGG analysis showed that 
the upregulated DEGs were highly involved in biosynthesis of 
amino acids, while the hub downregulated genes were highly 
enriched in retinol metabolism.

Acetylcholine receptor regulator activity is often mentioned 
in lung cancer (Wang and Hu, 2018). Peptidase activator activity 
has been shown to be involved in the regulation of prostate 
cancer (Fuhrman-Luck et al., 2016). Biosynthesis of amino acids 
also has a relationship with the treatment of tumors (Manig et al., 
2017). Retinol metabolism has been shown to be associated with 
breast cancer and gallbladder cancer (Chen et al., 1997). These 
key pathways are related to the occurrence and development of 
human tumors but have not been studied in detail in EOC, so 
functional analysis has certain guiding significance.

Several small molecules with potential therapeutic efficacy 
against EOC were identified. Among them, the most relevant 
vorinostat, LY-294002, trichostatin A, and tanespimycin had 
been shown to have different degrees of association with tumors. 

FIgUrE 6 | A significant module selected from protein–protein interaction 
network. (A) Cluster 1, (B) cluster 2, (C) cluster 3.
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FIgUrE 7 | (A) GO analysis of these significant molecule in cluster 1. (B) KEGG analysis of these significant molecule in cluster 1.
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Vorinostat is a small molecule inhibitor of both class I and II 
histone deacetylase enzymes (Munster et al., 2001) that functions 
by altering acetylation, affecting apoptotic pathways (Finnin et al., 

1999). Vorinostat, which has been approved by the US Food and 
Drug Administration, is used to treat a variety of malignancies 
including ovarian cancer (Ma et al., 2017). LY-294002 has no 

FIgUrE 9 | Overall survival (OS) curves of eight hub genes. (A) CDCA5, (B) FOXM1, (C) KIF11, (D) KIF15, (E) MCM2, (F) SPP1, (g) UBE2C, (h) ZWINT.

FIgUrE 8 | Gene Expression Profiling Interactive Analysis (GEPIA) was performed to validate higher expression of eight hub genes in EOC samples compared with 
normal samples. Red box was the cancer tissue group, gray was the normal tissue group, and asterisk represented p < 0.01. The dots represented expression in 
each sample. (A) CDCA5, (B) FOXM1, (C) KIF11, (D) KIF15, (E) MCM2, (F) SPP1, (g) UBE2C, (h) ZWINT.
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clinical applications at present. Trichostatin A, as a histone 
deacetylase inhibitor, has been shown to exhibit anticancer effects 
in combination with radiotherapy or chemotherapy (Ranganathan 
and Rangnekar, 2005; Hajji et al., 2008). In the early 1990s, there 
were experiments that demonstrated that tanespimycin had 
antitumor activity against various human-derived tumor cell lines 
(Erlichman, 2009). The above three drugs have been identified 
to have antitumor effect in the past. The PPI network analyzed 
DEGs and displayed 114 nodes. The MCODE plug-in filtered out 
three related modules. The correlation of module 1 was the most 
significant. We performed survival analysis on 11 genes which 
belong to module 1 and found that patients with these DEG 
disorders had a poor prognosis. Among these genes, CDCA5, 
FOXM1, KIF15, MCM2, and ZWINT were the most reported 
genes associated with cancer progression, including EOC. ROC 
curve analysis demonstrated these genes had better diagnostic 
efficiency for normal and tumor tissues, and the combination 
of diagnosis was more effective. Meanwhile, the univariate and 
multivariate Cox proportional hazards regression showed that 
ZWINT was an independent prognostic indictor among EOC 
patients. Besides, GSEA suggested that the five genes were mostly 
enriched in citrate cycle TCA cycle, homologous recombination, 
and steroid biosynthesis.

Interestingly, the study by Ren JG et al. found that citrate 
suppressed tumor growth through inhibition of glycolysis, the TCA 
cycle and the insulin-like growth factor-1 receptor pathway (Ren 
et al., 2017). Homologous recombination deficiency was closely 
related to ovarian cancer and breast cancer (Zhao et al., 2017; Da 
et al., 2018). These examples show that the results of GESA analysis 
can be used as a reference for oncogenesis studies to some extent.

Cell-division cycle-associated 5 (CDCA5), also known as 
sororin, is thought to play a critical role in ensuring the accurate 

separation of sister chromatids during the S and G2/M phases 
of the cell cycle through interactions with cohesin and cdk1 
(Schmitz et al., 2007; Borton et al., 2016). CDCA5 has also 
been shown to interact with ERK as well as cyclin E1, a critical 
regulator of the G1/Smitotic checkpoint (Schmitz et al., 2007; 
Nguyen et  al., 2010; Borton et al., 2016). Recent studies have 
correlated the expression of CDCA5 with tumorigenesis and 
tissue invasion in several cancers, including oral squamous cell 
cancer, nonsmall cell lung cancer, urothelial cell carcinoma, and 
gastric cancer (Chang et al., 2015; Tokuzen et al., 2016). However, 
the gene has not been reported in ovarian cancer and deserves 
further study.

FOXM1 is a member of the forkhead box (Fox) transcription 
factor family, which is known as an oncogene involved in breast 
cancer, cervix cancer, prostate cancer, and so on. In agreement with 
previously published studies (Lok et al., 2011; Wen et al., 2014; Zhao 
et al., 2014; Zhou et al., 2014; Chiu et al., 2015), our experimental 
findings demonstrated that FOXM1 was overexpressed in EOC 
and negatively associated with prognosis of EOC patients.

KIF15 is the breast cancer tumor antigen and is necessary 
for the maintenance of spindle bipolarity (Scanlan et al., 2001). 
KIF15 supports K5I resistance in HeLa cells (Sturgill et al., 2016), 
which is shown to act as target for endocrine therapy-resistant 
breast cancer (Zou et al., 2014). The same result existed in lung 
adenocarcinoma and may play a vital role in regulating the cell 
cycle (Bidkhori et al., 2013). Our study reported for the first time 
that KIF15 expressed higher in EOC and led to the bad outcome 
of EOC patients.

Minichromosome maintenance (MCM) 2 is one of six related 
proteins that comprise the MCM complex (MCM2-7), which has an 
essential role in DNA replication (Bochman and Schwacha, 2008). 
Previous studies using human samples have established MCM2 as 

FIgUrE 10 | Progression-free survival (PFS) survival curves of eight hub genes. (A) CDCA5, (B) FOXM1, (C) KIF11, (D) KIF15, (E) MCM2, (F) SPP1, (g) UBE2C, 
(h) ZWINT.
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a proliferation marker of cancer cells. High expression of MCM2 
level in malignant tumors, including ovarian cancer, is associated 
with several clinicopathological parameters such as advanced tumor 
grade, advanced stage, and poor prognosis (Davies et al., 2002; 
Going et al., 2002; Dudderidge et al., 2005; Majid et al., 2010; Abe et 
al., 2015). In our study, we also found that MCM, which had higher 
expression in EOC, was relative to bad outcome of EOC patient.

ZWINT belongs to the kinetochore complex and is a protein that 
interacts with ZW10 and participates in chromosome movement 
(Woo et al., 2015). Endo et al. found that ZWINT promoted cell 
growth, and targeting KWINT inhibited breast cancer cell growth 
(Endo et al., 2012). There is also a bioinformation research that 

reported this gene in OC, which is similar to ours. In summary, 
CDCA5, FOXM1, KIF15, MCM2, and ZWINT was involved in 
cell mitosis and supported our research results by affecting the cell 
cycle regulation of tumor pathogenesis.

There are several limitations in our study as follows. First, 
there is an urgent need for biological experiments to validate our 
results because our research is based on data analysis. Second, 
we lack the molecular mechanisms for these genes, and we 
will incorporate these for further exploration. In the future, we 
will further design experiments (including PCR, Western blot, 
immunohistochemistry, etc.) based on specific mechanisms, 
conduct in-depth research, and improve the inadequacies.

FIgUrE 11 | Eight hub genes expression within EOC across multiple datasets by Oncomine. (A) CDCA5, (B) FOXM1, (C) KIF11, (D) KIF15, (E) MCM2, (F) SPP1, 
(g) UBE2C, (h) ZWINT.
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FIgUrE 12 | Violin plot showing five key genes expression in different major pathological stages of EOC. The y-axis represents log2 (TPM + 1). (A) CDCA5, (B) 
FOXM1, (C) KIF15, (D) MCM2, (E) ZWINT.
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FIgUrE 13 | Immunohistochemistry of the five key genes based on the Human Protein Atlas. (A) Protein levels of CDCA5 in tumor tissue (staining: low; intensity: 
weak; quantity: > 75%). Protein levels of CDCA5 in normal tissue (staining: not detected; intensity: weak; quantity: < 25%). (B) Protein levels of FOXM1 in tumor 
tissue (staining: high; intensity: strong; quantity: > 75%). Protein levels of FOXM1 in normal tissue (staining: medium; intensity: moderate; quantity: 75–25%);. (C) 
Protein levels of KIF15 in tumor tissue (staining: medium; intensity: moderate; quantity: > 75%). Protein levels of KIF15 in normal tissue (staining: not detected; 
intensity: weak; quantity: < 25%). (D) Protein levels of MCM2 in tumor tissue (staining: high; intensity: strong; quantity: > 75%). Protein levels of MCM2 in normal 
tissue (staining: medium; intensity: moderate; quantity: 75–25%). (E) Protein levels of ZWINT in tumor tissue (staining: high; intensity: strong; quantity: > 75%). 
Protein levels of ZWINT in normal tissue (staining: low; intensity: weak; quantity: > 75%).

FIgUrE 14 | (A) Receiver operating characteristic (ROC) curve analysis and area under the curve (AUC) statistics were implemented on different databases to 
evaluate the capacity of key genes to distinguish EOC and normal tissues. (B) GSEA was applied to obtain biological process enriched in five key genes with highly 
expressed samples.
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COnClUsIOn

In our study, we adopted 4 GEO chips to demonstrate 116 DEGs. 
Then, we comprehensively analyzed GEPIA, ONCOMINE, 
and other databases. We identified that CDCA5, FOXM1, 
KIF15, MCM2, and ZWINT were related to EOC. At the same 
time, our study also analyzed the potential new drugs for the 
treatment of ovarian cancer based on the DEGs. In a word, our 
research proved that bioinformatics analysis might open up new 
directions for cancer research. More therapeutic targets will be 
tapped if further clinical trials are combined.
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sUPPlEMEnTArY FIgUrE 1 | Volcano map of DEGs on the basis of |fold 
change| > 1 and a corrected P-value <0.05. (A) GSE27651 (B) GSE38666 © 
GSE40595 (D) GSE66957. Red dots represented the upregulated DEGs. Green 
dots represented the down-regulated DEGs. Black dots represented noDEGs.

sUPPlEMEnTArY FIgUrE 2 | Hierarchical clustering heatmap of top 200 DEGs. 
(A) GSE27651 (B) GSE38666 © GSE40595 (D) GSE66957. Red indicates that the 
expression of genes is relatively upregulated, green indicates that the expression 
of genes is relatively downregulated, and black indicates no significant changes in 
gene expression.

sUPPlEMEnTArY FIgUrE 3 | The survival analysis based on stage I-II and 
stage III-IV. The one on the left in the figure was survival analysis based on stage 
I-II, the right one was stage III-IV.

sUPPlEMEnTArY FIgUrE 4 | ROC analysis between stage I-II and stage III-IV. 

TABlE 2 | Univariate and multivariate analyses of the correlation of CDCA5, FOXM1, KIF15, MCM2, and ZWINT expression with overall survival (OS) among epithelial 
ovarian cancer patients.

Variables Univariate analysis Multivariate analysis

hr 95%CI P hr 95%CI P

Age (≤60 vs. >60) 1.358 1.038–1.775 0.025 1.275 0.944–1.722 0.113
Stage (stages I and II vs. stages III and IV) 1.095 0.647–1.852 0.735 0.938 0.542–1.622 0.819
Grade (G1 and G2 vs. G3 and G4) 1.373 0.904–2.084 0.137 1.185 0.752–1.868 0.464
CDCA5 0.991 0.965–1.018 0.517 1.003 0.960–1.048 0.888
FOXM1 1.002 0.992–1.013 0.648 1.006 0.990–1.021 0.440
KIF15 0.991 0.910–1.079 0.842 1.002 0.885–1.134 0.977
MCM2 0.998 0.988–1.008 0.675 1.002 0.990–1.014 0.692
ZWINT 0.982 0.965–0.999 0.038 0.977 0.956–0.998 0.035

Bold values indicate P < 0.05. HR, hazard ratio; CI, confidence interval.
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