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Editorial on the Research Topic

Autonomous Health Monitoring and Assistance Systems with IoT

INTRODUCTION

The sustainability of the current healthcare system is being challenged by the growing percentage of
the aging population. In addition to the financial sustainability entailed by such a trend, other
challenges include the long delays in servicing patients, the consequent late detection of serious
health issues, and the necessity of hospitalization. Despite certain risks, the majority of elderly people
prefer to age in their own homes. As a matter of fact, studies show that elderly people who choose to
keep living independently have longer life expectancies than those who join elderly homes. All these
put together emphasize the need to develop technological solutions that autonomously monitor and
enhance the well-being of the elderly in their homes.

The uptake of the Internet of Things (IoT) opens new opportunities for how technology can
assist people in improving their health and well-being along with improving the cost-
effectiveness and quality of health and social services. These technological advancements
result in various low-cost sensory equipment that benefit the healthcare of the aging
population. Such technological innovation contributes to the development of applications,
such as the administration of medication, voice command technologies, telemedicine, and others
based on artificial intelligence. In particular, machine learning and predictive analysis combined
with IoT will play an important role in the early detection of suspicious signs that, if left
untreated, can lead to mobility, mental, and cognitive issues. Other applications may aggregate
the high frequency, messy, and intermittent data. Such data can then be incorporated in the
Electronic Health Record. To enhance privacy, such records can potentially be based on
Blockchain platforms and shared with healthcare professionals. Concerns such as scalability,
security, and systems interoperability need to be dealt with urgently in order to achieve
sustainable healthcare systems.

The identification of the latest developments in this highly interdisciplinary field of research is the
theme of the present Research Topic, that is, autonomous health monitoring and assistive systems
with IoT. It aims at covering two main aspects of the topic: information systems and artificial
intelligence. The former covers the advancement with respect to IoT-related technologies and
information systems in terms of scalability, security, and interoperability, while the latter covers
novel approaches and applications based on machine and deep learning.
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PAPERS INCLUDED IN THIS RESEARCH
TOPIC

Wang et al. review automatic elderly fall detection systems from
the point of view of data collection, data transmission, sensor
fusion, data analysis, security, and privacy. They point out that
one of the biggest challenges in this field is the collection of a data
set with realistic instances of elderlies’ falls. Moreover, it turns out
that while various approaches have been proposed, most of them
rely on single sensors and work offline. They speculate that better
performance is likely to be achieved by focusing on fusing the data
from various visual and non-visual portable sensors.

Schiza et al. survey the use that has been made of virtual reality
techniques for neurological rehabilitation. Dementia, stroke,
spinal cord injury, Parkinson’s, and multiple sclerosis are the
diseases considered in the review. Such diseases are the ones that
appear most promising for virtual reality applications and have
been the most investigated in the literature. The outlook that
emerges from the research work of Schiza and colleagues is
positive with clear signs of virtual reality being an effective,
low-cost, and scalable support for rehabilitation.

Turečková et al. propose a convolutional neural network
augmented by deep supervision and attention gates for the
segmentation of abdomen computed tomography (CT) images.
The system is highly beneficial for medical experts and helps
them toward better diagnosis of various pathologies. By means of
extensive experiments they conclude that their proposed
methodology achieves a reliable organ and tumor
segmentation from CT scans. They report state-of-the-art
performance on various segmentation tasks. Notable is the
increase in precision of tumor segmentation.

Cappiello et al. propose a data model suited for modern health
monitoring systems where patient data is generated in the
periphery of the network. This is crucial for monitoring
patients who are not hospitalized. In the model, the
patient-generated data is assessed by quality metrics that are
context dependent. The proposed model is assessed using actual

user data regarding daily physical activities of healthy young
people.

CONCLUSION

The articles in this special issue show significant progress toward
establishing interdisciplinary research. In particular they
encourage interdisciplinary efforts coming from the fields of
information systems, distributed systems, artificial intelligence,
machine learning, deep learning, software architectures, image
processing, virtual reality, monitoring of health, and well-being,
among others. The findings presented in these articles also
highlight the potential for future advances in each individual
field of research as well as at the interface of all relevant research
disciplines. If future research places the emphasis on how to serve
the healthcare sector and, most importantly, the patients through
innovative AI-driven applications, we envision enormous leaps
and accumulation of scientific results, software systems, and data.
Combined together, they will have a significant societal impact
and scientific relevance.
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Recent advancements in Virtual Reality (VR) immersive technologies provide new tools

for the development of novel and promising applications for neurological rehabilitation.

The purpose of this paper is to review the emerging VR applications developed

for the evaluation and treatment of patients with neurological diseases. We start by

discussing the impact of novel VR tasks that encourage and facilitate the patient’s

empowerment and involvement in the rehabilitation process. Then, a systematic review

was carried out on six well-known electronic libraries using the terms: “Virtual Reality

AND Neurorehabilitation,” or “Head Mounted Display AND Neurorehabilitation.” This

review focused on fully-immersive VR systems for which 12 relevant studies published

in the time span of the last five years (from 2014 to 2019) were identified. Overall,

this review paper examined the use of VR in certain neurological conditions such as

dementia, stroke, spinal cord injury, Parkinson’s, and multiple sclerosis. Most of the

studies reveal positive results suggesting that VR is a feasible and effective tool in the

treatment of neurological disorders. In addition, the finding of this systematic literature

review suggested that low-cost, immersive VR technologies can prove to be effective for

clinical rehabilitation in healthcare, and home-based setting with practical implications

and uses. The development of VR technologies in recent years has resulted in more

accessible and affordable solutions that can still provide promising results. Concluding,

VR and interactive devices resulted in the development of holistic, portable, accessible,

and usable systems for certain neurological disease interventions. It is expected that

emerging VR technologies and tools will further facilitate the development of state of the

art applications in the future, exerting a significant impact on the wellbeing of the patient.

Keywords: virtual reality, head-mounted display (HMD), fully-immersive systems, neurorehabilitation, review –

systematic

INTRODUCTION

In recent years, Virtual reality (VR) technology has gained recognition as a useful tool for cognitive
research, evaluation, and rehabilitation. A relatively new and a less explored area of VR applications
is rehabilitation, helping patients who have lost some of their physical, and/or cognitive abilities to
regain these. VR systems allow users to interact in various sensory environments and to obtain
real-time feedback on their performance without exposing them to risks while using computer
technology. The simulated environments offered via VR technology make it possible for patients to
participate in activities in settings and environments like those encountered in real life. In addition,
VR tools can be used to record accurate measurements of the user performance and to deliver
greater therapeutic stimulation to users.
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Some VR applications used in healthcare are for easing pain,
anxiety, and distraction where the patient can find himself
in an environment of their preference. These applications can
provide better mental health and finer quality of life to the
patient. Other VR applications are used for cognitive training
and patient can work their cognitive abilities by playing a game,
while also integrating physical excise aspects. Finally, one of
the most complex application solutions in healthcare with VR
are physical and neurological rehabilitation. These applications
provide functional goals programmed into the virtual reality
interactive games, and patients will be able to have a much more
fun and engaging therapy experience that will help them rebuild
their neurological pathways and inevitably give them the exercise
and workout they need. Some examples of these applications can
be driving assessment after brain injury where the patient tries
to regain his ability to drive. This example can help the patient
for his cognitive, motor, and sensory factors. Another common
application is the virtual classroom scenario which consists a
standard rectangular classroom environment containing desks, a
teacher, a blackboard, a side wall with large windows etc. Within
this scenario, children’s attention performance can be assessed
while a series of typical classroom distracters are systematically
controlled and manipulated within the Virtual Environment
(VE) (Weber, 2019).

Although the use of VR applications is increasing, to the
best of our knowledge no systematic review has investigated
the use of consumer-oriented fully-immersive VR applications
in neurorehabilitation in the past few years along with their
effect of these on cognition. To address this gap, the present
review examines emerging VR applications developed for the
evaluation and intervention of patients suffering from certain
neurological diseases.

There are three types of VR systems (Ma and Zheng, 2011):
(i) Non-immersive VR systems, is a desktop computer based
3D graphical system which allows the user to navigate the
VE that is displayed on a computer screen, typically with the
keyboard and the mouse; (ii) Semi-immersive systems project
the graphical display onto a large screen, and may rely on some
forms of gesture recognition system to implement more natural
interactions; (iii) Fully-immersive systems in which the users’
vision is fully enveloped, creating a sense of full immersion via
a head-mounted display (HMD).

Consumer-oriented fully-immersive VR technologies have
advanced quite significantly in the past five years (Table 1).
These new affordable immersive VR technologies could provide
an ideal solution for real clinical settings (Anthes et al.,
2016 and Matsangidou et al., 2017). Affordable hardware
and open source software prescribe the resources needed to
introduce new VR applications. These concepts have successfully
managed to address past problems and limitations especially
regarding the level of immersiveness and user’s interaction in VR
applications (Figure 1).

Wireless HMDs, haptic input devices, virtual sensory vests
omnidirectional treadmills, accurate, and precise tracking
systems and optical scanners for gesture-based interaction
are nowadays considered to be among the most prominent
trends in the field of VR (Anthes et al., 2016). Importantly,

most of these technologies incorporate precise and robust
sensory data acquisition that can be used in a wide range of
applications including medicine, sports training, education, and
physical/mental rehabilitation.

The objective of this paper was to carry out a systematic
review of emerging VR applications developed over the
last 5 years, covering selected neurological diseases. More
specifically, this review paper covers the following diseases:
dementia, stroke, spinal cord injury, Parkinson’s, and multiple
sclerosis. The paper is organized as follows. Section Literature
Review Method covers the literature review methodology
in neurological disorders. Section Review of VR Studies in
Neurological Diseases presents the results of the literature
review and discusses the findings under the following three
subsections: the effectiveness of VR in neurorehabilitation,
Virtual Environments (VE), VR and interactivity devices, and
intervention strategies and system evaluation. Section Emerging
Technologies covers briefly the VR emerging technologies and
the introduction of intelligent decision making and adaptive
feedback in forthcoming VR applications. Finally, section
Concluding Remarks provides some concluding remarks of
the study.

LITERATURE REVIEW METHOD

The review was conducted based on Bargas-Avila and Hornbæk
(2011) and Cochrane methodologies (Khan et al., 2001; Deeks
et al., 2008), which consisted of the following five phases.

Procedure
Phase 1: Potentially Relevant Publications Identified

Electronic Libraries
We searched six electronic libraries, to cover a balanced range
of disciplines, including computer science/engineering, medical
research, and multidisciplinary sources. The libraries which
included in the review were:

1. ACM Digital Library (ACM)
2. Google Scholar
3. IEEE Xplore (IEEE)
4. MEDLINE
5. PubMed
6. ScienceDirect (SD).

We restricted the search to a timeframe of five years (2014–2019),
since we are aiming in only in fully immersive VR technologies
have emerged for consumer use during this time (see examples
given in Table 1).

Search terms
Our aimwas to search for neurorehabilitation techniques that use
immersive VR technology. Therefore, we have used the following
two queries exactly to the aforementioned six libraries:

– Virtual Reality AND Neurorehabilitation
– Head Mounted Display AND Neurorehabilitation.
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TABLE 1 | Selected VR technologies and indicative costing according to Amazon accessed September 2019.

VR technology Release date Cost Company Website

Google cardboard 25/06/2014 $5.71–$39.95 Google, US https://vr.google.com/cardboard/get-cardboard/

Oculus gear VR 27/11/2015 $129.99 Oculus, US https://www.oculus.com/gear-vr/

Oculus rift 28/03/2016 $399 Oculus, US www.oculus.com/en-us/rift/

HTC vive 05/04/2016 $599–$1199 HTC, US www.htcvive.com

Sony playstation 13/10/2016 $469.95–$549.95 Sony, AU www.playstation.com/en-au/explore/playstation-vr/

Oculus GO 06/12/2016 $199–$249 Oculus, US https://www.oculus.com/go/

FIGURE 1 | Selected VR HMDs from left to right, the Oculus GO, Oculus Quest, HTC VIVE wireless adapter, and PICO Neo.

TABLE 2 | Number of publications identified per library.

ACM Google scholar IEEE MEDLINE PubMed SD

Virtual reality AND neurorehabilitation 39 172 115 3 335 220

Head mounted display AND Neurorehabilitation 24 0 112 0 11 63

Total findings 1,094

Search procedure
The above terms were searched in the following fields: full text (if
available), title, abstract and keywords.

Search results
The total search that returned in phase 1 can be seen in
Table 2. At the end of this phase, all corresponding PDFs were
downloaded for the analysis to be conducted.

Phase 2: Publications Retrieved for Detailed

Evaluation

First exclusion
A total of 1,069 articles were further analyzed after excluding
manually 25 articles with wrong years entries.

Second exclusion
Duplicate publications across libraries (e.g., different libraries
producing the same result) and within each library (e.g., different
terms producing the same result within the same library)
were removed.

We removed 32 duplicate publications across libraries, ending
up with 1,047 different articles. After removing 36 duplicates
within each library we ended up with 1,001 different articles.

Third exclusion
We narrowed the entries down to the original full articles
that were written in English. We excluded 645 articles that we
did not have access to the full length, 46 review articles, 37
articles that were not in English, and 18 articles that were not
full peer-reviewed articles (e.g., referred to workshops, posters,
presentations, magazine articles, theses). With these criteria, we
excluded 746 articles. The remaining 255 articles comprised of
journal and conference articles.

Phase 3: Publications to Be Included in the Analysis

Final exclusion
The focus on this review was placed on fully-immersive
VR systems, therefore we excluded articles which used non-
immersive or semi-immersive VR systems. Based on these
criteria, we excluded 163 further articles which did not use fully-
immersive VR technology and 8 articles that did not specify the
type of VR equipment. We also excluded 24 articles that were
not relevant to a nervous system injury linked to functional
disability. Finally, we excluded 48 irrelevant articles that appeared
in the first phase and were not excluded during the second
phase filtering. These articles appeared in our search because they
contain relevant words to the ones that we searched for, but did
not match with the specific technology content. Based on these
restrictions, in this phase we removed 240 irrelevant publications.

Frontiers in Robotics and AI | www.frontiersin.org 3 October 2019 | Volume 6 | Article 1008

https://vr.google.com/cardboard/get-cardboard/
https://www.oculus.com/gear-vr/
www.oculus.com/en-us/rift/
www.htcvive.com
www.playstation.com/en-au/explore/playstation-vr/
https://www.oculus.com/go/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Schiza et al. Virtual Reality in Neurological Diseases

FIGURE 2 | Article identification and selection flow diagram.
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As a result, we ended up with 12 relevant articles (10 journal
articles and, 2 conference articles) (Figure 2).

Phase 4: Data Collection
In this phase, we extracted all the relevant information from the
articles for the analysis to be conducted. Specifically, for each
study, we recorded the objectives, the sample size, the condition
or the population characteristics, the content of the VEs used,
the interactivity devices used, the methodology/interventions the
study was based on, other instruments used and the key findings.
Moreover, we labeled each study, based on the result as positive
(+), negative (-), or neutral ().

Phase 5: Data Analysis
Descriptive statistics were used to characterize the data from
Phase 4. Thematic analysis was used as well to categorize our
findings in themes, i.e., the population’s characteristics, the types
of the VEs, the interactivity devices used in the study, and the key
findings. Inter-coder reliability was carried out to determine the
correspondence of coding across researchers (between first and
second author). Using the Cohen’s Kappa formula, a reliability of
0.81 was computed.

REVIEW OF VR STUDIES IN
NEUROLOGICAL DISEASES

All 12 studies examined the use of VR in samples with conditions
of a nervous system injury linked to functional disability. In
particular, most of the studies examined the use of VR for people
living with dementia (PwD) (n = 4), stroke (n = 3), spinal cord
injury (n= 2), parkinson’s (n= 1), multiple sclerosis (n= 1), and
phantom upper limb pain (n = 1). Table 3 presents the sample
size and the participant characteristics for each study.

The Effectiveness of Virtual Reality in
Neuro-Rehabilitation
Overall, VR seems to show a promising potential for Neuro-
Rehabilitation (Table 4). Ten out of 12 studies illustrated positive
outcomes in the use of VR for the treatment of nervous system
injury linked to functional disability. While the other two
outlined the opportunities and challenges inherent to the design
and use of VR with people with dementia and their careers
(Hodge et al., 2018), and they used VR only as a tool to support
the intervention for the treatment of stroke (Saleh et al., 2017).

Detailed analysis of the studies revealed that specific
characteristics of the population, such as the type of disease,
influence the study objectives, and the outcomes. With respect
to the four studies of dementia, it was shown that all the
studied objectives examined the feasibility of VR for people
living with dementia (4/4). The feasibility of VR technology
for people with dementia was examined with two different
approaches. Two out of four studies (Hodge et al., 2018; Tabbaa
et al., 2019) evaluated the technology feasibility from a patient-
centered designed perspective targeting a human-computer
interaction audience, whereas the rest of the studies adopted
a psychology/psychiatric perspective to evaluate VR’s feasibility
(Mendez et al., 2015; Rose et al., 2019). All studies concluded

TABLE 3 | Sample size/participants characteristics.

Study Sample Participant characteristics

Dementia

Hodge et al., 2018 7 Dementia: 4 PwD; 3 Family Members

Mendez et al., 2015 5 Dementia

Rose et al., 2019 24 Dementia: 8 PwD; 16 Caregivers

Tabbaa et al., 2019 24 Dementia: 8 PwD; 16 Caregivers

Multiple Sclerosis

Peruzzi et al., 2016 8 Multiple sclerosis

Parkinson

Kim et al., 2017 33 Parkinson: 11 PD; 11 Healthy Young

Adults; 11 Healthy Older Adults

Stroke

Gamito et al., 2017 20 Stroke

Saleh et al., 2017 14 Stroke

Standen et al., 2017 27 Stroke: Arm dysfunction

Spinal Cord Injury

Donati et al., 2016 8 Spinal cord injury

Pozeg et al., 2017 40 Spinal cord injury: 20 SCI; 20

Healthy—Control

Phantom Upper Limb Pain

Ichinose et al., 2017 9 Phantom upper limb pain

that findings evidenced the clinical feasibility of VR for people
with several stages of dementia. No adverse effects were stated,
and high rates of pretense/immersion and positive emotional
responses were reported.

Dementia was not the only disease that studies examined the
feasibility of VR. From the review, it was found that multiple
stroke (Standen et al., 2017), Parkinson (Kim et al., 2017),
and sclerosis (Peruzzi et al., 2016) diseases were also linked to
feasibility studies of VR. The results were in line with dementia
studies. Importantly the VR’s effectiveness was further enhanced
by a study that examined the feasibility of long term (8 weeks)
home-based VR of arm rehabilitation following stroke indicating
that VR can be used as a personalized solution in home-based
contexts (Standen et al., 2017).

VR was also used for neuropsychological rehabilitation based
on a cognitive training program for stroke patients (Gamito et al.,
2017). The results suggested that VR can be used as a cognitive
training tool illustrating significant improvements in attention
and memory functions. VR was also tested as a walk again
rehabilitation tool for spinal cord injury patients. It demonstrated
significant regain in voluntary motor control which resulted in
walking improvements (Donati et al., 2016).

Finally, VR revealed promises in response to the treatment of
phantom limb pain, since it was shown that tactile feedback via
VR visual feedback was able to diminish pain and improve the
analgesic effect of the affected limb (Ichinose et al., 2017).

Virtual Environments, Virtual Reality, and
Interactivity Devices
The VR devices used for the treatment of nervous system
injury linked to functional disabilities were eMagin Z800 (3/12),
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TABLE 4 | VR effectiveness.

Study Objectives Results Label

Dementia

Hodge et al., 2018 (1) Design VR experiences for PwD; (2) Explore

the reactions of PwD to VR; (3) Design a

personalized experience.

Outline opportunities and challenges are inherent to the

design and use of VR experiences with people with

dementia and their careers.

()

Mendez et al., 2015 Assess the feasibility of VR and

VR-Socialization for PwD.

(1) No adverse effects reported; (2) High rates of

presence reported; (3) PwD tended to the greater verbal

elaboration of answers in VR compared to real-world

interviews.

(+)

Rose et al., 2019 Feasibility of VR for PwD. (1) VR was tried and accepted by PwD; (2) PwD viewed

VR as a ‘change in the environment’ and would use it

again; (3) PwD experienced pleasure during and after VR

and increased alertness because of VR; (4) Findings

evidenced the clinical feasibility of VR for PwD.

(+)

Tabbaa et al., 2019 (1) Discuss the appeal and the impact of VR for

PWD; (2) Present VR design opportunities,

pitfalls, and recommendations for future

deployment in healthcare services; (3)

Demonstrate the potential of VR for PWD in

locked settings.

VR is a feasible solution for PWD in long-term care. (+)

Multiple Sclerosis

Peruzzi et al., 2016 Assess the feasibility of VR treadmill for MS. (1) Gait speed and stride length improved; (2) The ability

to overcome obstacles was improved; (3) VR treadmill is

feasible and safe for MS.

(+)

Parkinson

Kim et al., 2017 Evaluate the safety of using VR for longer bouts

of walking for individuals with PD.

(1) No adverse effects reported; (2) Lower Stress levels

reported; (3) PD patients can successfully use VR during

walking.

(+)

Stroke

Gamito et al., 2017 Test the effectiveness of a VR for

neuropsychological rehabilitation, a cognitive

training program.

(1) Significant improvements in attention and memory

functions; (2) The findings provide support for the use of

VR cognitive training in neuropsychological rehabilitation.

(+)

Saleh et al., 2017 Test the interactions between regions in the

brain that may be important for modulating the

activation of the ipsilesional motor cortex

during MVF.

Significant mirror feedback modulation of the ipsilesional

motor cortex arising from the contralesional parietal

cortex, in a region along the rostral extent of the

intraparietal sulcus.

()

Standen et al., 2017 Feasibility of home-based VR of arm

rehabilitation following stroke.

Significant improvement in the final Motor Activity Log. (+)

Spinal Cord Injury

Donati et al., 2016 Investigate the clinical impact of the Walk Again

Rehabilitation, based on VR BMI.

(1) Neurological improvements in somatic sensation; (2)

Regained voluntary motor control in key muscles; (3)

Improvement in walking index; (4) 50% of patients

upgraded to paraplegia classification.

(+)

Pozeg et al., 2017 Investigate changes in body ownership and

chronic neuropathic pain in SCI using VR.

(1) SCI is less sensitive to multisensory stimulations

inducing illusory leg ownership (2) Leg ownership

decreased with time for SCI. (3) No differences between

groups in global body ownership detected.

()

Phantom Upper Limb Pain

Ichinose et al., 2017 Investigate the analgesic effect produced by

tactile feedback using visual feedback.

(1) The pain was significantly lower during the VR

Condition; (2) VR somatosensory feedback can improve

the analgesic effect of the affected limb.

(+)

Google Cardboard (3/12), and Oculus Rift (3/12). The rest of
the studies did not specify the VR equipment (3/12). Almost
half of the studies (5/12) did not use any interactivity equipment
and they used VR only to transport the patient into a different
environment. Two studies used a Virtual Glove as interactivity
device and the rest of the studies (5/12) used Xsens sensors,

Vizard, Keyboard, EEG-based BMI, and Kinect to allow the user
to interact with the VE.

From the analysis it was derived that most of the dementia
studies used a Google Cardboard (3/4) (Hodge et al., 2018; Rose
et al., 2019; Tabbaa et al., 2019) and an eMagin Z800 (1/4)
(Mendez et al., 2015) VR device with no interactivity sensors
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TABLE 5 | Virtual reality, interactivity devices and content.

Study Virtual environments VR device Interactivity devices

Dementia

Hodge et al., 2018 (1) A simple apartment, which allowed participants to turn their head and

see out of a window; (2) A park, based on a local park in the area; (3) A

tropical beach with a horse running along the sand.

Google cardboard No

Mendez et al., 2015 The PwD was seated in a chair at the end of the conference table and told

that they would be interviewed by the five avatars. They were asked to

answer their questions as if they were real people. The avatars asked a

series of questions.

eMagin Z800 No

Rose et al., 2019 (1) Cathedral; (2) Forest; (3) Sandy beach; (4) Rocky beach; (5) Countryside. Google cardboard No

Tabbaa et al., 2019 (1) Cathedral; (2) Forest; (3) Sandy beach; (4) Rocky beach; (5) Countryside. Google cardboard No

Multiple Sclerosis

Peruzzi et al., 2016 A tree-lined trail with obstacles to appear on the trail. eMagin Z800 Xsens

Parkinson

Kim et al., 2017 A cityscape with buildings, animated avatars, and a straight sidewalk.

Participants were able to freely look around the scene while walking.

Oculus rift Vizard

Stroke

Gamito et al., 2017 Several daily life activities: (1) Buy several items; (2) Find the way to the

minimarket; (3) Find a virtual character dressed in yellow; (4) Recognize

outdoor advertisements; (5) Digit retention.

eMagin Z800 Keyboard

Saleh et al., 2017 Hand mirror visual feedback in VR. Not stated Virtual glove

Standen et al., 2017 (1) Space-race: Pronation and supination of the hand to guide a spacecraft

through obstacles; (2) Sponge-ball: Open their fist and extend their fingers

to release a ball to hit a target. (3) Balloon-pop: Balloon was grasped and

popped by moving it to a pin.

Not stated Virtual glove

Spinal Cord Injury

Donati et al., 2016 A 1st person’s perspective virtual avatar body with rich visual and tactile

feedback.

Oculus rift EEG-based BMI

Pozeg et al., 2017 Virtual Avatar as a 3rd person perspective. Not stated No

Phantom Upper Limb Pain

Ichinose et al., 2017 Repeatedly touched a target object with the affected limb, by converting via

Mirror Visual Feedback the movements of the intact limb.

Oculus rift Kinect

(4/4). Simple VEs with natural scenes were used by most of the
studies (3/4). Based on these findings (Table 5) we can conclude
that VR’s feasibility for people with dementia does not require any
expensive VR equipment and interactivity devices.

Patients with Parkinson (Kim et al., 2017) and multiple
sclerosis (Peruzzi et al., 2016) were assigned to use Oculus Rift
and eMagin Z800 VR devices paired with Xsens and Vizard
sensors respectively. Both studies simulated walking VEs. A study
with spinal cord injury patients (Donati et al., 2016) also used
walking VEs based on EEG-based BMI interactivity device and
an Oculus Rift HMD.

Two studies, with stroke (Saleh et al., 2017) and Phantom
Limb pain Patients (Ichinose et al., 2017) used VR Oculus rift
paired with Cyberlove and Kinect sensors, as an alternative
solution toMirror Box therapy. In mirror box therapy the patient
was instructed to be seated in front of a mirror. The mirror’s
orientation was parallel to the patient’s midline. At this position,
the patient could see through the mirror the reflection of his/her
unaffected body part. The affected body part was hidden beside

the mirror and under the mirror box. This position created the
visual illusion that the affected body part is working properly
since visual cues were created through the mirror and from

the opposite side of the unaffected body part in response to
the brain’s commands (Ramachandran, 2005). VR replicated the
traditional mirror box in a technologically advanced version.
More specifically, the mirror box was replaced by the VE and
sensors to reproduce the movements of the unaffected body part.
To conclude, the type of disease affects the selection of VEs, the
VR and the interactivity devices.

Intervention Strategies and System
Evaluation
The intervention strategies were divided in: (i) single testing,
where the patient was exposed to the VR system only once, and
(ii) multiple testings’ where the patient used of the system for a
long period of time incorporated into the rehabilitation training
(i.e., from 6 weeks or up to a year) (Table 6).

In the aforementioned studies, dealing with people living
with dementia, the feasibility of VR technology (3/4) was tested
only once. Therefore, the intervention strategies were mostly
associated with the development and the design of the technology
from a patient-centered perspective (Hodge et al., 2018; Rose
et al., 2019; Tabbaa et al., 2019). In particular, researchers
along with clinical staff (Rose et al., 2019; Tabbaa et al., 2019)
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TABLE 6 | Intervention strategies and system evaluation materials.

Study Intervention Strategies Evaluation Materials

Dementia

Hodge et al., 2018 Single Intervention: VR Experiencing and co-design testing. (1) Field notes; (2) Audio recordings; (3) Interviews.

Mendez et al.,

2015

Single Intervention: PwD answered questions that were given by

avatars.

(1) Interviews by VR avatars; (2) Heart Rate; (3) Self-reports: Arousal,

Stress, Anxiety, Anger, Fatigue, Attention; (4) Interviews; (5) University of

California at Los Angeles Structured Insight Interview; (6) Emotional

Insight; (7) Mini-Mental State Examination; (8) Clinical Dementia Rating

Scale; (9) Functional Activities Questionnaire; (10) Frontal Assessment

Battery; (11) Frontal Systems Behavior Scale; (12) Wisconsin

Card Sort Test.

Rose et al., 2019 Single Intervention: VR exposure as feasibility testing. (1) Overt Aggression Scale-Modified for Neurorehabilitation; (2) St

Andrews Sexual Behavior Assessment; (3) Observed Emotion Rating

Scale; (4) Time; (5) Semi-structured Interviews.

Tabbaa et al.,

2019

Single Intervention: VR exposure as feasibility testing. (1) Overt Aggression Scale-Modified for Neurorehabilitation; (2) Observed

Emotion Rating Scale; (3) Semi-structured Interviews (based on the

System Usability Scale, Presence); (4) Observations.

Multiple Sclerosis

Peruzzi et al.,

2016

Six Weeks Training: Subjects were asked to walk over-ground in the

gait analysis laboratory under two conditions: (a) at comfortable speed;

(b) while serially subtracting the number “3” from a predefined 3-digit

number.

Pre, Post, and Follow-up: (1) Collect Marker Trajectories and Ground

Reaction Forces; (2) Joint kinematic Parameters (peak values of the

kinematic curves); (3) Kinetic Parameters (maximum values of the joint

moments and power during gait phases); (4) Six-minute Walk Test; (5)

Square Step Test; (6) Expanded Disability Status Scale.

Parkinson

Kim et al., 2017 Single Intervention: VR exposure of four bouts of 5min walking to

assess the feasibility of the VR walking.

(1) Movement Disorder Society Unified Parkinson’s Disease Rating Scale;

(2) Self-Selected Walking Speed; (3) Mini-Balance Evaluation Systems

Test; (4) 14-item Balance Assessment for Dynamic Balance and Gait; (5)

Activities-Specific Balance Confidence; (6) Center of pressure; (7)

Simulator sickness questionnaire; (8) Stress Arousal Checklist; (9)

Presence.

Stroke

Gamito et al.,

2017

Six Weeks Training: Randomly divided into 2 conditions: (1) VR 60

cognitive stimulation; (2) control waiting list.

(1) Wechsler Memory Scale; (2) Toulouse–Pieron Test; (3) Rey Complex

Figure.

Saleh et al., 2017 Single Intervention: A VR goal-directed finger flexion movement with

their unaffected hand while observing real-time visual feedback of the

corresponding (veridical) or opposite (mirror) hand.

fMRI

Standen et al.,

2017

Eight Weeks Training: Randomly divided into 2 conditions: (1) VR

employing infrared capture to translate the position of the hand into

gameplay or usual care; (2) Control - usual care.

(1) Wolf Motor Function Test; (2) Nine-Hole Peg Test; (3) Motor Activity

Log; (4) Nottingham Extended Activities of Daily Living.

Spinal Cord Injury

Donati et al., 2016 12 Months Training: (1) an immersive virtual reality environment in which

a seated patient employed his/her brain activity, recorded via a

16-channel EEG, to control the movements of a human body avatar,

while receiving visuotactile feedback; (2) identical interaction with the

same virtual environment and BMI protocol while patients were upright,

supported by a stand-in-table device; (3) training on a robotic body

weight support (BWS) gait system on a treadmill; (4) training with a

BWS gait system fixed on an overground track; (5) training with a

brain-controlled robotic BWS gait system on a treadmill; (6) gait training

with a brain-controlled, sensorized 12 degrees of freedom robotic

exoskeleton. Clinical evaluation started on the first-day patients began

training (Day 0) and was repeated after 4, 7, 10, and 12 months.

(1) American Spinal Injury Association; (2) Impairment Scale; (3)

Semmes-Weinstein Monofilament Test; (4) Temperature Evaluation; (5)

Lokomat L-force Evaluation; (6) Thoracic-Lumbar Scale; (7) Walking Index

Spinal Cord Injury II; (8) Spinal Cord Independence Measurement III; (9)

McGill Pain Questionnaire; (10) Visual Analog Scale; (11) Medical

Research Council scale; (12) Modified Ashworth Scale; (13) Lokomat

L-stiff Evaluation for spasticity; (14) World Health Organization Quality of

Life Assessment Instrument-Bref; (15) Rosenberg Self-Esteem Scale; (16)

Beck Depression Inventory.

Pozeg et al., 2017 Single Intervention: 2 × 2 repeated measures design, we manipulated

the synchrony between the stroking of the virtual legs

(synchronous/asynchronous) and the participant’s back location

(lower/upper back). In the synchronous condition, the stroking of the

virtual legs was synchronized with the stroking of the participant’s

back. In the asynchronous condition, the visuotactile stimulation was

delayed 1 s.

Questionnaires: (1) Body Illusions Studies; (2) Body ownership; (3) Visual

Analog Scale; (4) Cambridge Depersonalization Scale.

Phantom Upper Limb Pain

Ichinose et al.,

2017

Single Intervention: Randomly divided in 3 conditions: (1) VR—applied

tactile feedback to their cheek when their virtual affected limb touched

a virtual object; (2) Control A—tactile feedback was either applied to

their intact hand (Intact Hand Condition); (2) Control B—Not applied at

all (No Stimulus Condition).

Pre and Post: McGill Pain Questionnaire.
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and patients with dementia (Hodge et al., 2018) designed a
VR system responsible to expose the patient into a different
environment. All four studies used observation notes along
with interview materials to evaluate the effectiveness of the
system. Quantitative scales, such as arousal, stress, anxiety, anger,
fatigue, and attention self-reports were also used to enhance the
qualitative data (Figure 3).

The feasibility of VR was also tested for older adults with
parkinson’s enhanced by a walking task on a treadmill (Kim et al.,
2017). Thirty-three participants (11 healthy young, 11 healthy
older adults, and 11 individuals with PD) were recruited for this
study and assigned to a 20min walking tasks on a treadmill while
watching a virtual city scene. Comparisons were made between
the three different populations.

Patients with multiple sclerosis were asked to performwalking
tasks on a treadmill watching a VR environment representing a
tree-lined trail under a comfortable speed (Peruzzi et al., 2016).
They were also asked to perform another walking task while
serially subtracting the number “3” from a predefined 3-digit
number. During the intervention, patients were required to pass
obstacles aerating on the trail, while several dynamic distractors
were also added to the VE to challenge the patient’s attention.
Each patient used a personalized environment based on personal
gait problems (i.e., decreased foot clearance, obstacle avoidance,
and problems with planning). Successful and unsuccessful passes,
as determined by the inertial measurements, were rendered to
the subject during the trial with visual and auditory feedback.
A cognitive concurrent task was added by asking the subject to
memorize the route to follow, which was shown to them prior
to the trial. The training lasted for 6 weeks with each session to
last about 45min, with pre, post and follow-up materials to assess
walking endurance and obstacle negotiation (Figure 4).

Apart from VR for walking tasks, interventions were also
focused on affected upper limb training for patients dealing
with stroke and phantom limb pain. In particular, Saleh et al.
(2017) evaluated the effectiveness of VR with mirror visual
feedback as a single intervention with the aim to facilitate
recovery of disordered movement and stimulate activation of
under-active brain areas due to stroke. During the experiment,
patients were instructed to move the non-paretic hand’s finger
and watched the back-projected visual stimuli reflected in a
mirror within the VR environment. The finger motion was back-
projected onto a screen, showing two virtual hand models. On
a given trial, the motion of the unaffected hand actuated one
of the VR hands, located on the same (Veridical), or opposite
(Mirror) side relative to the actual hand. The “move” prompt
was displayed for the duration of the trial event (5s), and the
“rest” prompt was displayed for the duration of the rest period
(random 4–7-sec jittered). Subjects were instructed to complete
the movement within the “move” epoch. Each scanning run
included eight repetitions of four randomly interleaved visual
feedback conditions and evaluated based on brain scanning
reports. Similarly, mirror visual feedback was also used for
phantom limb pain. Patients were instructed to touch via VR
a virtual target. Once again during the experimental condition
patients were instructed to move the non-affected hand to touch
the virtual target and watched back in the VR the affected hand to

perform the task. Pre and Post pain scales were used to evaluate
the effectiveness of the system (Figure 5).

Finally, cognitive training intervention was also used via
VR for the treatment of stroke (Gamito et al., 2017). The VR
system was developed based on a serious games application
for cognitive training, enhanced with attention and memory
tasks consisting of daily life activities. The cognitive training
VR scenarios were invented to train cognitive functions such as
working memory tasks (i.e., buying several items), visuospatial
orientation tasks (i.e., finding the way to the minimarket), and
selective attention tasks (i.e., finding a virtual character dressed in
yellow), recognition memory tasks (i.e., recognition of outdoor
advertisements) and calculation (i.e., digit retention). Twenty
stroke patients were randomly assigned to two conditions:
exposure to the intervention and waiting list control to evaluate
the effectiveness of using VR for cognitive training. Several scales
were used to identify the effectiveness of the system (Figure 6).

EMERGING TECHNOLOGIES

Virtual Reality Input and Output Devices
New and emerging hardware developments are not yet
commercially available. However, it is still possible to identify
the technological trends particularly under the two main VR
categories of input and output devices.

Input devices mostly refer to the controllers that are often
enhanced by haptic feedback and hand and body tracking. A
second input category is the navigation devices that bring to the
user the illusion of moving through endless spaces within VEs
such as one-direction and omnidirectional treadmills and passive
low-friction surfaces, or “slidemills.” Slidemill refers to devices
like treadmills with the difference that the surface under the user’s
foot is static, therefore, the interface feels less natural and thus less
immersive. Another form of input tracking system is hand and
body tracking devices. User’s posture estimation using inertial
measurement units (IMUs) combinedwithmagnetic tracking can
be used to provide a reasonable self-representation in HMDs that
elevates the feeling of realism in VEs. Finally, gesture tracking
devices range from data gloves, with strain gauges or fiber optics
that are often used combined with technologies using optical
tracking and electromyography (EMG) signals that capture wrist
movements with very promising prospects for VR applications in
different fields especially for physical and cognitive rehabilitation.

Output devices primarily focus on the visual displays or more
precisely wired or mobile HMDs when considering the VR field.

Wired HMDs specifications concentrate on quality factors like
resolution, Field of View (FOV) or weight. SomewiredHMDs are
equipped with cameras for Augmented Reality (AR) applications
and can be used as video see-through displays. Recently, the
tendency in large VR companies is to include also eye tracking
in the visual displays (e.g., Tobii VR1, Steam FOVE2, and SMI
Eye tracking3).

1https://vr.tobii.com/
2https://www.getfove.com/
3https://www.smivision.com/
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FIGURE 3 | Actual figure from Rose et al. (2019) paper, presenting the five options of VR environments given to patients with dementia.

FIGURE 4 | Actual figure from Peruzzi et al. (2016) paper, presenting (a) The experimental set-up; (b) The virtual environment.

FIGURE 5 | Actual figure from Saleh et al. (2017) paper, presenting (a) the experimental set-up and equipment; (b) the virtual mirror feedback.
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FIGURE 6 | Actual figure from Gamito et al. (2017) paper, presenting the nine virtual cognitive trainings.

On the other hand, mobile HMD systems run the applications
wirelessly and without the need to be connected to a PC. Usually,
these systems rely on smartphone technologies combined
with ergonomically designed smartphone cases for stand-alone
systems. Some examples of such standalone systems that have
been released since 2018 include the Oculus Go4, Oculus Quest5,
HTC VIVE focus6, Pico Neo7, and Xiaomi MI VR8. In addition
to the later standalone systems, some manufacturers designed
mobile devices with the option to use wireless adaptors for
remote connection of the HMDs with PCs that run the VR
applications (e.g., the HTC VIVE wireless adapter option9).
Another important category of the output device are systems
that include haptic and multi-sensory feedback. Haptic devices
usually focus on a different sensory system with approaches
that exist in the form of vests including Vibro-tactile elements.
Ubiquitous displays providing sensory haptic feedback has also
been undertaken like for instance, the example of viewing the
effort to develop a system that generates airflow around the user
to simulate weather conditions based on the application that the
user is experiencing.

Other multisensory displays include head-mounted masks
with the ability to produce different scents to further increase
the feeling of immersion to the user as it was described by
(Badler et al., 1992). Examples for multisensory devices involve
integrated systems that blow cool and warm air in the users
face or even combine ultrasonic ionizing systems that generate
water mist (Matsukura et al., 2011). In addition, significant
scientific research is being published with respect to olfactory
information integrated into VR displays to increase the user’s
sense of presence in VR (Chen, 2006; Nakaizumi et al., 2006).

4https://www.oculus.com/go/
5https://www.oculus.com/quest/
6https://enterprise.vive.com/ca/vivefocus/
7https://www.pico-interactive.com/neo
8https://www.mi.com/global/mivr1c/
9https://www.vive.com/eu/wireless-adapter/

Intelligent Systems and Adaptive Feedback
Adaptation in a system involves a set of interacting entities that

together can respond to changes and usually includes processing

of feedback information from the output of the system to readjust

the states of the system in a next time instance forming what
is as “controlled close loops.” Control loops in adaptive systems
andmachine learning aremostly used for prediction, recognition,

detection, and optimization (Vaughan et al., 2016).
A recent literature review regarding the integration of

computational intelligence and adaptation with VR technologies

clearly demonstrated the prospects of achieving high impact
results when combining these elements in application areas such

as medicine, education training and gaming (Vaughan et al.,
2016). Especially in applications that require trainee-specific and

individual adaptive content, automation, machine learning and

data driven features can guide feedback information to the inputs
of autonomous systems and build new and customized training
sessions based on individual requirements (Vaughan et al., 2016).

Some examples of self-adaptive systems in VR applications
include automatically generated haptic, visual and auditory
feedback signals that are used to modify the virtual scenarios
and trigger methods to adapt the environmental behavior
(e.g., Luzanin and Plancak, 2014). In addition, sensory
information from assessment and scoring mechanisms,
objectively facilitate the design of more optimum setups
with automatically generating user-centered content
(Wanzel et al., 2002; Vaughan et al., 2015).

Considering the above, adaptation and machine learning

elements in rehabilitation tasks are very well suited because of

the need to engage users and to intelligently adapt exercises

based on user’s progress (Borghese et al., 2013; Pirovano et al.,
2013). In addition, adaptive feedback in rehabilitation tasks can
supplement the therapist’s input with the creation of a self-
learned virtual therapist (Kallmann et al., 2015). For example,
Borghese et al. (2013) presented an intelligent adaptive solution
with Bayesian networks and fuzzy systems based on Nintendo
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Kinect R© motion sensing controllers for VR rehabilitation games
(IGER) (Borghese et al., 2013).

Other examples include VR neurological rehabilitation
systems that incorporate data mining of user scores and
other measured performance data in a feedback computational
intelligence loop to formulate a training plan for each trainee.

Future trends in virtual rehabilitation prescribe the path of
new research for physiology driven adaptive VR systems this
will allow the development of automated emotion recognition
systems to be integrated in VR applications where the
application responds appropriately to the emotions of their users
(Popovic et al., 2009).

In addition, adaptive VR autonomous systems are currently
enabling the performance of visio-haptic tasks without the
requirement for human operator intervention. Accurate
haptic simulation-based development platforms will inspire
autonomous application with capabilities to convey the
simulated VR information into a real-world haptic environment
(like in surgery in autonomous neuro-rehabilitation tasks).

We consider that the technologies documented in this
section will shape the development of the next generation of
VR applications in rehabilitation. New virtual reality input
devices will provide more complete data sets and signals about
the behavior of the patient demanding intelligent processing,
monitoring and profiling of the patient toward offering a
personalized VR rehabilitation solution. Similarly, new output
devices will facilitate VR applications to be more realistic,
personalized and closer to the rehabilitation needs of the patient.

The aforementioned technologies will shape the development
of state of the art VR rehabilitation services in the framework of
emerging connected health systems and services (Pattichis and
Panayides, 2019) in support of 4P’s medicine (Golubnitschaja
et al., 2016). More specifically, emerging VR applications will
be (Golubnitschaja et al., 2016): (i) predictive: VR systems will
automatically capture data to predict, manage, adapt, and/or
deliver better treatment plans; (ii) pre-emptive: VR solutions will
be designed to monitor vital signs and activities in real time
which will communicate with personal health record archives
and healthcare professionals; (iii) personalized interventions:
new VR applications will enable the offering of best possible,
most optimal, and innovative treatments; (iv) participatory:
patient-centric VR applications will empower patients to be more
active and allow the sharing of experiences. It is expected that
emerging VR applications sharing the 4P’s concept will trigger
the offering of new services and business models for the benefit of
the citizen.

CONCLUDING REMARKS

Recent advances in VR immersive technologies provide
new methods and tools for the development of novel and
promising applications mainly for neurological rehabilitation.
VR interventions have several advantages and are rapidly gaining
ground as popular applications for different disease conditions.
The big advantage of VR applications in rehabilitation is that they

offer a “real-life like environment.” In addition, VR applications
advantages include, control of stimulus presentation, and
response measurements, safe assessment on different unsafe
rehabilitation tasks, easy learning of the tasks to be performed,
standardization of rehabilitation protocols, and enhanced user
interaction and empowerment.

On the other hand, limitations of VR interventions include
that the patient might forget that he/she is in a testing situation
and the difficulty and complexity in generating personalized
training environments. These prescribe some of the existing
challenges to develop low-cost rehabilitation assessment and
monitoring environments and applications. Furthermore, the
development of VR technologies in recent years have resulted
in more accessible and less expensive solutions, which could
still provide positive results. However, the full potential of VR
applications in healthcare still remains to be explored.

The purpose of this research work was to carry out a
systematic review of emerging VR applications developed over
the last 5 years, covering certain neurological diseases. Although,
the final number of studies analyzed is rather small (12), still
valuable input can be gained. It is expected, that the number
of studies in consumer-oriented fully-immersive VR systems
will significantly increase in the near future, given the rapid
progression of development both in the hardware and software
in these technologies.

The findings of this systematic literature review showed
positive and promising results of using VR for rehabilitation
exercise. It also suggests that low-cost, immersive VR
technologies can prove to be effective for clinical rehabilitation in
healthcare and home-based settings with practical implications
and uses. Based on our review we found that dementia studies
used the cheapest VR equipment (Goggles Cardboard) and no
interactivity devices, achieving very good results. In addition,
low-cost VR devices were found to be free of adverse effects,
and high rates of presence/immersion, and positive emotional
responses were reported. Consequently, it is now conceivable
to use VR low-cost technologies with no interactivity devices
to expose people with dementia in different environments, to
improve pleasure and alertness. The application can evolve
based on the needs and available budget one can have. It is also
possible to experience VR outside of a specialized laboratory,
making it more accessible to a wider group of patients
if needed.

Even though most dementia studies used low-cost VR
equipment with no interactivity devices, the rest of the studies
apart from one (Spinal Cord Injury—Pozeg et al., 2017) used the
following VR systems: Xsens, Vizard, EEG-based BM, Cyberlove,
and Kinect sensors. These interactivity devices were responsible
to transport the patients’ movement into the VR environment
in order to enhance the physical or cognitive training. VR and
interactivity devices resulted in the development of a holistic
portable, accessible and usable systems enabling the better
handling of the neurological disorders reported. Furthermore, by
employing machine learning and AI in VR applications, exercise
interventions can be patient’s specific to the treatment needs of
the patient, thus, offering optimal care. Complex virtual therapy
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exercises need to be created with precise control over the stimulus
and cognitive capacity that the user will experience.

Concluding, the main findings of this systematic literature
review indicated that VR technology could be effective in
improving the condition of the patient for certain neurological
diseases. This review study outlined some key factors that
may contribute to the effectiveness of VR applications, such
as the objective of the study linked with the intervention
strategy, the VR technology and interactivity equipment used
in the study and other. It is expected that VR applications in
healthcare will flourish within the next few years, triggering
further investigations in different clinical settings. It is hoped
that these VR applications could also prove to have an
impact on the wellness of the patient that remains to be
thoroughly investigated.
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Falling is among the most damaging event elderly people may experience. With the

ever-growing aging population, there is an urgent need for the development of fall

detection systems. Thanks to the rapid development of sensor networks and the Internet

of Things (IoT), human-computer interaction using sensor fusion has been regarded as

an effective method to address the problem of fall detection. In this paper, we provide

a literature survey of work conducted on elderly fall detection using sensor networks

and IoT. Although there are various existing studies which focus on the fall detection with

individual sensors, such as wearable ones and depth cameras, the performance of these

systems are still not satisfying as they suffer mostly from high false alarms. Literature

shows that fusing the signals of different sensors could result in higher accuracy and

lower false alarms, while improving the robustness of such systems. We approach this

survey from different perspectives, including data collection, data transmission, sensor

fusion, data analysis, security, and privacy. We also review the benchmark data sets

available that have been used to quantify the performance of the proposed methods.

The survey is meant to provide researchers in the field of elderly fall detection using

sensor networks with a summary of progress achieved up to date and to identify areas

where further effort would be beneficial.

Keywords: fall detection, Internet of Things (IoT), information system, wearable device, ambient device, sensor

fusion

1. INTRODUCTION

More than nine percent of the population of China was aged 65 or older in 2015 and within 20 years
(2017–2037) it is expected to reach 20%1. According to the World Health Organization (WHO),
around 646 k fatal falls occur each year in the world, the majority of whom are suffered by adults
older than 65 years (WHO, 2018). This makes it the second reason for unintentional injury death,
followed by road traffic injuries. Globally, falls are a major public health problem for the elderly.
Needless to say, the injuries caused by falls that elderly people experience have many consequences
to their families, but also to the healthcare systems and to the society at large.

As illustrated in Figure 1, Google Trends2 show that fall detection has drawn increasing
attention from both academia and industry, especially in the last couple of years, where a sudden
increase can be observed. Moreover, on the same line, the topic of fall-likelihood prediction is very
significant too, which is coupled with some applications focused on prevention and protection.

1https://chinapower.csis.org/aging-problem/
2https://www.google.com/trends
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FIGURE 1 | Interest of fall detection over time, from January 2004 to December 2019. The data is taken from Google Trends with the search topic “fall detection.” The

values are normalized with the maximum interest, such that the highest interest has a value of 100.

El-Bendary et al. (2013) reviewed the trends and challenges
of elderly fall detection and prediction. Detection techniques are
concerned with recognizing falls after they occur and trigger
an alarm to emergency caregivers, while predictive methods
aim to forecast fall incidents before or during their occurrence,
and therefore allow immediate actions, such as the activation
of airbags.

During the past decades, much effort has been put into these
fields to improve the accuracy of fall detection and prediction
systems as well as to decrease the false alarms. Figure 2 shows
the top 25 countries in terms of the number of publications
about fall detection from the year 1945 to 2020. Most of
the publications originate from the United States, followed by
England, China, and Germany, among others. The data indicates
that developed countries invest more in conducting research in
this field than others. Due to higher living standards and better
medical resources, people in developed countries are more likely
to have longer life expectancy, which results in a higher aging
population in such countries (Bloom et al., 2011).

In this survey paper, we provide a holistic overview of fall
detection systems, which is aimed for a broad readership to
become abreast with the literature in this field. Besides fall
detection modeling techniques, this review covers other topics
including issues pertaining to data transmission, data storage and
analysis, and security and privacy, which are equally important in
the development and deployment of such systems.

The other parts of the paper are organized as follows. In
section 2, we start by introducing the types of fall and reviewing
other survey papers to illustrate the research trend and challenges
up to date, followed by a description of our literature search
strategy. Next, in section 3 we introduce hardware and software
components typically used in fall detection systems. Sections 4
and 5 give an overview of fall detection methods that rely on
both individual or a collection of sensors. In section 6, we address

issues of security and privacy. Section 7 introduces projects
and applications of fall detection. In section 8, we provide a
discussion about the current trends and challenges, followed by a
discussion on challenges, open issues, and other aspects on future
directions. Finally, we provide a summary of the survey and draw
conclusions in section 9.

2. TYPES OF FALLS AND PREVIOUS
REVIEWS ON ELDERLY FALL DETECTION

2.1. Types of Falls
The impact and consequences of a fall can vary drastically
depending upon various factors. For instance, falling whilst either
walking, standing, sleeping or sitting on a chair, share some
characteristics in common but also have significant differences
between them.

In El-Bendary et al. (2013), the authors group the types of falls
in three basic categories, namely forward, lateral, and backward.
Putra et al. (2017) divided falls into a broader set of categories,
namely forward, backward, left-side, right-side, blinded-forward,
and blinded-backward, and in the study by Chen et al. (2018) falls
are grouped in more specific categories including fall lateral left
lie on the floor, fall lateral left and sit up from floor, fall lateral right
and lie on the floor, fall lateral and left sit up from the floor, fall
forward and lie on the floor, and fall backward and lie on the floor.

Besides the direction one takes whilst falling another
important aspect is the duration of the fall, which may be
influenced by age, health and physical condition, along with any
consequences of activities that the individual was undertaking.
Elderly people may suffer from longer duration of falls, because
of motion with low speed in the activity of daily living. For
instance, in fainting or chest pain related episodes an elderly
person might try to rest by a wall before lying on the floor. In
other situations, such as injuries due to obstacles or dangerous
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FIGURE 2 | (A) A map and (B) a histogram of publications on fall detection by countries and regions from 1945 to 2020.

settings (e.g., slanting or uneven pavement or surfaces), an elderly
person might fall abruptly. The age and gender of the subject also
play a role in the kinematics of falls.

The characteristics of different types of falls are not taken into
consideration in most of the work on fall detection surveyed. In
most of the papers to date, data sets typically contain falls that
are simulated by young and healthy volunteers and do not cover
all types of falls mentioned above. The resulting models from
such studies, therefore, do not lead to models that generalize well
enough in practical settings.

2.2. Review of Previous Survey Papers
There are various review papers that give an account of the
development of fall detection from different aspects. Due to
the rapid development of smart sensors and related analytical
approaches, it is necessary to re-illustrate the trends and
development frequently. We choose the most highly cited review
papers, from 2014 to 2020, based on Google Scholar and Web
of Science, and discuss them below. These selected review papers
demonstrate the trends, challenges, and development in this field.
Other significant review papers before 2014 are also covered in
order to give sufficient background of earlier work.

Chaudhuri et al. (2014) conducted a systematic review of fall
detection devices for people of different ages (excluding children)
from several perspectives, including background, objectives, data
sources, eligibility criteria, and intervention methods. More than
100 papers were selected and reviewed. The selected papers were
divided into several groups based on different criteria, such as
the age of subjects, method of evaluation and devices used in
detection systems. They noted that most of the studies were based
on synthetic data. Although simulated data may share common
features with real falls, a system trained on such data cannot reach
the same reliability of those that use real data.

In another survey, Zhang et al. (2015) focused on vision-based
fall detection systems and their related benchmark data sets,
which have not been discussed in other reviews. Vision-based
approaches of fall detection were divided into four categories,
namely individual single RGB cameras, infrared cameras, depth

cameras, and 3D-based methods using camera arrays. Since the
advent of depth cameras, such as Microsoft Kinect, fall detection
with RGB-D cameras has been extensively and thoroughly
studied due to the inexpensive price and easy installation.
Systems which use calibrated camera arrays also saw prominent
uptake. Because such systems rely onmany cameras positioned at
different viewpoints, challenges related to occlusion are typically
reduced substantially, and therefore result in less false alarm
rates. Depth cameras have gained particular popularity because
unlike RGB camera arrays they do not require complicated
calibration and they are also less intrusive of privacy. Zhang et al.
(2015) also reviewed different types of fall detection methods,
that rely on the activity/inactivity of the subjects, shape (width-
to-height ratio), and motion. While that review gives a thorough
overview of vision-based systems, it lacks an account of other
fall detection systems that rely on non-vision sensors such as
wearable and ambient ones.

Further to the particular interest in depth cameras, Cai et al.
(2017) reviewed the benchmark data sets acquired by Microsoft
Kinect and similar cameras. They reviewed 46 public RGB-D
data sets, 20 of which are highly used and cited. They compared
and highlighted the characteristics of all data sets in terms of
their suitability to certain applications. Therefore, the paper is
beneficial for scientists who are looking for benchmark data sets
for the evaluation of new methods or new applications.

Based on the review provided by Chen et al. (2017a),
individual depth cameras and inertial sensors seem to be themost
significant approaches in vision- and non-vision-based systems,
respectively. In their review, the authors concluded that fusion
of both types of sensor resulted in a system that is more robust
than a system relying on one type of sensor.

The ongoing and fast development in electronics have resulted
in more miniature and cheaper electronics. For instance, the
survey by Igual et al. (2013) noted that low-cost cameras
and accelerometers embedded in smartphones may offer the
most sensible technological choice for the investigation of fall
detection. Igual et al. (2013) identified two main trends on how
research is progressing in this field, namely the use of vision
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and smartphone-based sensors that give input and the use of
machine learning for the data analysis. Moreover, they reported
the following three main challenges: (i) real-world deployment
performance, (ii) usability, and (iii) acceptance. Usability refers
to how practical the elderly people find the given system. Because
of the issue of privacy and intrusive characteristics of some
sensors, there is a lack of acceptance for the elderly to live in an
environmentmonitored by sensors. They also pointed out several
issues which need to be taken into account, such as smartphone
limitations (e.g., people may not carry smartphones all the time
with them), privacy concerns, and the lack of benchmark data
sets of realistic falls.

The survey papers mentioned above focus mostly on the
different types of sensors that can be used for fall detection.
To the best of our knowledge, there are no literature surveys
that provide a holistic review of fall detection systems in terms
of data acquisition, data analysis, data transport and storage,
sensor networks and Internet of Things (IoT) platforms, as well
as security and privacy, which are significant in the deployment
of such systems.

2.3. Key Results of Pioneering Papers
In order to illustrate a timeline of fall detection development, in
this section we focus on the key and pioneering papers. Through
manual filtering of papers using the web of science, one can
find the trendsetting and highly cited papers in this field. By
analyzing retrieved articles using citespace one can find that fall
detection research first appeared in the 1990s, beginning with the
work by Lord and Colvin (1991) and Williams et al. (1998). A
miniature accelerometer and microcomputer chip embedded in
a badge was used to detect falls (Lord and Colvin, 1991), while
Williams et al. (1998) applied a piezoelectric shock sensor and a
mercury tilt switch which monitored the orientation of the body
to detect falls. At first, most studies were based on accelerometers
including the work by Bourke et al. (2007). In their work, they
compared which of the trunk and thigh offer the best location to
attach the sensor. Their results showed that a person’s trunk is
a better location in comparison to the thigh, and they achieved
100% specificity with a certain threshold value with a sensor
located in the trunk. This method was the state-of-the-art at
the time, which undoubtedly supported it in becoming the most
highly cited paper in the field.

At the time the trend was to use individual sensors for
detection, within which another key paper by Bourke and Lyons
(2008) was proposed to explore the problem at hand by using a
single gyroscope that measures three variables, namely angular
velocity, angular acceleration, and the change in the subject’s
trunk-angle. If the values of these three variables in a particular
instance are above some empirically determined thresholds, then
that instance is flagged as a fall. Three thresholds were set
to distinguish falls from non-falls. Falls are detected when the
angular velocity of a subject is greater than the fall threshold,
and the angular acceleration of the subject is greater than the
second fall threshold, and the change in the trunk-angle of the
subject is greater than the third fall threshold. They reported
accuracy of 100% on a data set with only four kinds of falls and
480 movements simulated by young volunteers. However, for

those classifiers, which are based solely on either accelerometers
or gyroscopes, are argued to suffer from insufficient robustness
(Tsinganos and Skodras, 2018). Later, Li et al. (2009) investigated
fusion of gyroscope and accelerometer data for the classification
of falls and non-falls. In their work, they demonstrated how a
fusion based approach resulted in a more robust classification.
For instance, it could distinguish falls more accurately from
certain fall-like activities, such as sitting down quickly and
jumping, which is hard to detect using a single accelerometer.
This work had inspired further research on sensor fusion. These
two types of sensors can nowadays be found in all smart phones
(Zhang et al., 2006; Dai et al., 2010; Abbate et al., 2012).

Besides the two non-vision based types of sensors mentioned
above, vision-based sensors, such as surveillance cameras, and
ambience-based, started becoming an attractive alternative.
Rougier et al. (2011b) proposed a shape matching technique
to track a person’s silhouette through a video sequence. The
deformation of the human shape is then quantified from the
silhouettes based on shape analysis methods. Finally, falls are
classified from normal activities using a Gaussian mixture
model. After surveillance cameras, depth cameras also attracted
substantial attention in this field. The earliest research which
applied Time-of-Flight (TOF) depth camera was conducted in
2010 by Diraco et al. (2010). They proposed a novel approach
based on visual sensors, which does not require landmarks,
calibration patterns or user intervention. A ToF camera is,
however, expensive and has low image resolution. Following that,
the Kinect depth camera was first used in 2011 by Rougier et al.
(2011a). Two features, human centroid height and velocity of
body, were extracted from depth information. A simple threshold
based algorithm was applied to detect falls and an overall success
rate of 98.7% was achieved.

After the introduction of Kinect by Microsoft, there was a
large shift in research from accelerometers to depth cameras.
Accelerometers and depth cameras have become the most
popular individual and combined sensors (Li et al., 2018).
The combination of these two sensors achieved a substantial
improvement when compared to the individual use of the
sensors separately.

2.4. Strategy of the Literature Search
We use two databases, namely Web of Science and Google
Scholar, to search for relevant literature. Since the sufficient
advancements have been made at a rapid pace recently, searches
included articles that were published in the last 6 years (since
2014). We also consider, all survey papers that were published
on the topic of fall detection. Moreover, we give an account
of all relevant benchmark data sets that have been used in
this literature.

For the keywords “fall detection”, 4,024 and 575,000 articles
were found for the above two mentioned databases, respectively,
since 2014. In order to narrow down our search to the more
relevant articles we compiled a list of the most frequently used
keywords that we report in Table 1.

We use the identified keywords above to generate the queries
listed in Table 2 in order to make the search more specific to
the three classes of sensors that we are interested in. For the
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TABLE 1 | The most frequently used keywords in the topic of fall detection.

Wearable sensor Visual sensor Ambient sensor Sensor fusion

Fall detection Fall detection Fall detection Fall detection

Falls Falls Falls Falls

Fall accident Fall accident Fall accident Fall accident

Machine learning Machine learning Machine learning Machine learning

Deep learning Deep learning Deep learning Deep learning

Reinforcement

learning

Reinforcement

learning

Reinforcement

learning

Reinforcement

learning

Body area networks Multiple camera Ambient sensor Health monitoring

Wearable Visual Ambient Sensor fusion

Worn Vision-based Ambience Sensor network

Accelerometer Kinect RF-sensing Data fusion

Gyroscope Depth camera WiFi Multiple sensors

Biosensor Video surveillance Radar Camera arrays

Smart watch RGB camera Cellular Decision fusion

Gait Infrared camera Vibration Anomaly detection

Wearable based Health- monitoring Ambience-based IoT

They are manually classified into four categories.

TABLE 2 | Search queries used in Google Scholar and Web of Science for the

three types of sensor and sensor fusion.

Sensor type Query

Wearable-based (Topic): ((“Fall detection" OR “Fall” OR “Fall accident”) AND

(“Wearable” OR “Worn” OR “Accelerometer” OR “Machine

learning” OR “Deep learning” OR “Reinforcement learning”)

NOT “Survey” NOT “Review” NOT “Kinect” NOT “Video” NOT

“Infrared” NOT “Ambient”)

Vision-based (Topic): ((“Fall detection” OR “Falls” OR “Fall accident”) AND

(“Video” OR “Visual” OR “Vision-based” OR “Kinect” OR

“Depth camera” OR “Video surveillance” OR “RGB camera”

OR “Infrared camera” OR “Monocular camera” OR “Machine

learning” OR “Deep learning” OR “Reinforcement learning”)

NOT “Wearable” NOT “Ambient”)

Ambient-based (Topic): ((“Fall detection” OR “Falls” OR “Fall accident”) AND

(“Ambient” OR “Ambient-based” OR “Ambience-based” OR

“RF-sensing” OR “WiFi” OR “Cellular” OR “vibration” OR

“Ambience” OR “Radar” OR “Machine learning” OR “Deep

learning” OR “Reinforcement learning”) NOT “Wearable” NOT

“vision”)

Sensor Fusion (Topic): ((“Fall detection” OR “Falls” OR “Falls accident”) AND

(“Health monitoring” OR “Multiple sensors” OR “Sensor

fusion” OR “Sensor network” “Data fusion” OR “IoT” OR

“Camera arrays” OR “Decision fusion” OR “Health

monitoring” OR “Fusion” OR “Multiple sensors” OR “Machine

learning” OR “Deep learning” OR “Reinforcement learning”))

retrieved articles, we discuss their contributions and keep only
those that are truly relevant to our survey paper. For instance,
articles that focus on rehabilitation after falls, and causes of falls,
among others, are filtered out manually. This process, which is

illustrated in Figure 3, ends up with a total of 87 articles, 13 of
which describe benchmark data sets.

3. HARDWARE AND SOFTWARE
COMPONENTS INVOLVED IN A FALL
DETECTION SYSTEM

Most of the research of fall detection share a similar system
architecture, which can be divided into four layers, namely
Physiological Sensing Layer (PSL), Local Communication Layer
(LCL), Information Processing Layer (IPL), and User application
Layer (UAL), as suggested by Ray (2014) and illustrated in
Figure 4.

PSL is the fundamental layer that contains various (smart)
sensors used to collect physiological and ambient data from
the persons being monitored. The most commonly used
sensors nowadays include accelerometers that sense acceleration,
gyroscopes that detect angular velocity, and magnetometers
which sense orientation. Video surveillance cameras, which
provide a more traditional means of sensing human activity, are
also often used but are installed in specific locations, typically
with fixed fields of views. More details about PSL are discussed
in sections 4.1 and 5.1.

The next layer, namely LCL, is responsible for sending the
sensor signals to the upper layers for further processing and
analysis. This layer may have both wireless and wired methods
of transmission, connected to local computing facilities or to
cloud computing platforms. LCL typically takes the form of
one (or potentially more) communication protocols, including
wireless mediums like cellular, Zigbee, Bluetooth, WiFi, or even
wired connections. We provide more details on LCL in sections
4.2 and 5.2.

IPL is a key component of the system. It includes hardware
and software components, such as micro-controller, to analyze
and transfer data from PSL to higher layers. In terms of
software components, different kinds of algorithms, such as
threshold, conventional machine learning, deep learning, and
deep reinforcement learning are discussed in sections 4.3,
5.3, and 8.1.

Finally, the UAL concerns applications that assist the users.
For instance, if a fall is detected in the IPL, a notification can
first be sent to the user and if the user confirms the fall or does
not answer, an alarm is sent to the nearest emergency caregivers
who are expected to take immediate action. There are plenty of
other products like Shimmer and AlertOne, which have been
deployed as commercial applications to users. We also illustrate
other different kinds of applications in section 7.

4. FALL DETECTION USING INDIVIDUAL
SENSORS

4.1. Physiological Sensing Layer (PSL) of
Individual Sensors
Asmentioned above, fall detection research applied either a single
sensor or fusion by multiple sensors. The methods of collecting
data are typically divided into four main categories, namely
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FIGURE 3 | Illustration of the literature search strategy. The wearable-based queries in Table 2 return 28 articles. The vision- and ambient-based queries return 31

articles, and the sensor fusion queries return 28 articles.

FIGURE 4 | The main components typically present within fall detection system architectures include the illustrated sequence of four layers. Data is collected in the

physiological sensing layer, transferred through the local communication layer, then it is analyzed in the information processing layer, and finally the results are

presented in the user application layer.

individual wearable sensors, individual visual sensors, individual
ambient sensors and data fusion by sensor networks.Whilst some
literature groups visual and ambient sensors together we treat
them as two different categories in this survey paper due to visual
sensors becoming more prominent as a detection method with
the advent of depth cameras (RGBD), such as the Kinect.

4.1.1. Individual Wearable Sensors
Falls may result in key physiological variations of the
human body, which provide a criterion to detect a fall. By
measuring various human body related attributes using
accelerometers, gyroscopes, glucometers, pressure sensors, ECG
(Electrocardiography), EEG (Electroencephalography), or EOG
(Electromyography), one can detect anomalies within subjects.
Due to the advantages of mobility, portability, low cost, and
availability, wearable devices are regarded as one of the key

types of sensors for fall detection and have been widely studied.
Numerous studies have been conducted to investigate wearable
devices, which are regarded as a promising direction to study fall
detection and prediction.

Based on our search criteria and filtering strategy (Tables 1,
2), 28 studies, including eight papers focusing on public data
sets, focusing on fall detection by individual wearable devices
are selected and described to illustrate trends and challenges
of fall detection during the past 6 years. Some conclusions
can be drawn based on the literature during the past 6 years
in comparison to the studies before 2014. From Table 3, we
note that studies applying accelerometers account for a large
percentage of research in this field. To the best of our knowledge,
only Xi et al. (2017) deployed electromyography to detect falls,
and 19 out of 20 papers applied an accelerometer to detect
falls. Although the equipment used, such as Shimmer nodes,
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TABLE 3 | Fall detection using individual wearable devices from 2014 to 2020.

References Sensor Location No. subjects (age) Data sets Algorithms Equipment Alarm

Saleh and Jeannès (2019) Accelerometer Waist 23 (19–30), 15 (60–75) Simulated SVM N/A N

Zitouni et al. (2019) Accelerometer Sole 6 (N/A) Simulated Threshold Smartsole N/A

Thilo et al. (2019) Accelerometer Torso 15 (mean = 81) N/A N/A N/A Y

Wu et al. (2019) Accelerometer Chest and Thigh 42 (N/A), 36 (N/A) Public (Simulated) Decision tree Smartwatch (Samsung

watch)

N/A

Sucerquia et al. (2018) Accelerometer Waist 38 (N/A) Public data sets

Chen et al. (2018) Accelerometer Leg (pockets) 10 (20–26) N/A ML(SVM) Smartphones Y

Putra et al. (2017) Accelerometer Waist 38 (N/A), 42 (N/A) Public data sets ML N N/A

Khojasteh et al. (2018) Accelerometer N/A 17 (18–55), 6 (N/A), 15

(mean = 66.4)

Public (Simulated) Threshold/ML N/A N/A

de Araújo et al. (2018) Accelerometer Wrist 1 (30) N/A Threshold Smartwatch N/A

Djelouat et al. (2017) Accelerometer Waist N/A Collected by authors (Simulated) ML Shimmer-3 Y

Aziz et al. (2017) Accelerometer Waist 10 (mean = 26.6) Collected by authors (Simulated) Threshold/ML Accelerometers (Opal

model, APDM Inc)

N

Kao et al. (2017) Accelerometer Wrist N/A Collected by authors (Simulated) ML ZenWatch(ASUS) Y

Islam et al. (2017) Accelerometer Chest (pocket) 7 (N/A) N/A Threshold Smartphone N/A

Xi et al. (2017) Electro-myography

(sEMG)

Ankle, Leg 3 (24–26) Collected by authors (Simulated) ML EMGworks 4.0 (DelSys

Inc.)

N

Chen et al. (2017b) Accelerometer Lumbar, Thigh 22 (mean = 69.5) Public data sets (Real) ML N/A N/A

Chen et al. (2017b) Accelerometer Chest, Waist, Arm,

Hand

N/A Collected by authors (Simulated) Threshold N/A Y

Medrano et al. (2017) Accelerometer N/A 10 (20–42) Public (Simulated) ML Smartphones N

Shi et al. (2016) Accelerometer N/A 10 (mean = 25) N/A Threshold Smartphone N/A

Wu et al. (2015) Accelerometer Waist 3 (23, 42, 60) Collected by authors (Simulated) Threshold ADXL345

Accelerometer(ADI)

Y

Mahmud and Sirat (2015) Accelerometer Waist 13 (22–23) Collected by authors (Simulated) Threshold Shimmer N/A

ML is the abbreviation of Machine Learning.

F
ro
n
tie
rs

in
R
o
b
o
tic
s
a
n
d
A
I
|w

w
w
.fro

n
tie
rsin

.o
rg

7
Ju

n
e
2
0
2
0
|
V
o
lu
m
e
7
|
A
rtic

le
7
1

26

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Wang et al. Elderly Fall Detection Systems

TABLE 4 | Fall detection using individual vision-based devices from 2014 to 2020.

References Sensor No. subjects (age) Data sets Algorithms Real-time Alarm

Han et al. (2020) Web camera N/A Simulated CNN N/A N/A

Kong et al. (2019) Camera (Surveillance) N/A Public (Simulated) CNN Y N/A

Ko et al. (2018) Camera (Smartphone) N/A Simulated Rao-Blackwellized Particle Filtering N/A N

Shojaei-Hashemi et al. (2018) Kinect 40 (10–15) Public (Simulated) LSTM Y N

Min et al. (2018) Kinect 4 (N/A), 11 (22–39) Public (Simulated) SVM Y N

Ozcan et al. (2017) Web camera 10 (24–31) Simulated Relative-entropy-based N/A N/A

Akagündüz et al. (2017) Kinect 10 (N/A) Public (Simulated) SDU (2011) Silhouette N/A N

Adhikari et al. (2017) Kinect 5 (19–50) Simulated CNN N/A N

Ozcan and Velipasalar (2016) Camera (Smartphone) 10 (24–31) Simulated Threshold/ML N/A N/A

Senouci et al. (2016) Web Camera N/A Simulated SVM Y Y

Amini et al. (2016) Kinect v2 11 (24–31) Simulated Adaptive Boosting Trigger, Heuristic Y N

Kumar et al. (2016) Kinect 20 (N/A) Simulated SVM N/A N

Aslan et al. (2015) Kinect 20 (N/A) Public (Simulated) SVM N/A N

Yun et al. (2015) Kinect 12 (N/A) Simulated SVM N/A N

Stone and Skubic (2015) Kinect 454 (N/A) Public (Simulated+Real) Decision trees N/A N

Bian et al. (2015) Kinect 4 (24–31) Simulated SVM N/A N

Chua et al. (2015) RGB camera N/A Simulated Human shape variation Y N

Boulard et al. (2014) Web camera N/A Real Elliptical bounding box N/A N

Feng et al. (2014) Monocular camera N/A Simulated Multi-class SVM Y N

Mastorakis and Makris (2014) Infrared sensor (Kinect) N/A Simulated 3D bounding box Y N

Gasparrini et al. (2014) Kinect N/A Simulated Depth frame analysis Y N

Yang and Lin (2014) Kinect N/A Simulated Silhouette N/A N

smartphones, and smart watches, often contain other sensors like
gyroscopes and magnetometers, these sensors were not used to
detect falls. Bourke et al. (2007) also found that accelerometers
are regarded as the most popular sensors for fall detection
mainly due to its affordable cost, easy installation and relatively
good performance.

Although smartphones have gained attention for studying
falls, the underlying sensors of systems using them are still
accelerometers and gyroscopes (Shi et al., 2016; Islam et al., 2017;
Medrano et al., 2017; Chen et al., 2018). Users are more likely
to carry smartphones all day rather than extra wearable devices,
so smartphones are useful for eventual real-world deployments
(Zhang et al., 2006; Dai et al., 2010).

4.1.2. Individual Visual Sensors
Vision-based detection is another prominent method. Extensive
effort in this direction has been demonstrated, and some of
which (Akagündüz et al., 2017; Ko et al., 2018; Shojaei-Hashemi
et al., 2018) show promising performance. Although most
cameras are not as portable as wearable devices, they offer other
advantages which deem them as decent options depending upon
the scenario. Most static RGB cameras are not intrusive and
wired hence there is no need to worry about battery limitations.
Work on demonstrating viability of vision-based approaches
have been demonstrated which makes use of infrared cameras
(Mastorakis andMakris, 2014), RGB cameras (Charfi et al., 2012),
and RGB-D depth cameras (Cai et al., 2017). One main challenge
of vision-based detection is the potential violation of privacy due

to the levels of detail that cameras can capture, such as personal
information, appearance, and visuals of the living environment.

Further to the information that we report in Table 4, we
note that RGB, depth, and infrared cameras are the three main
visual sensors used. Moreover, it can be noted that the RGB-D
camera (Kinect) is among the most popular vision-based sensor,
as 12 out of 22 studies applied it in their work. Nine out of
the other 10 studies used RGB cameras including cameras built
into smartphones, web cameras, and monocular cameras, while
the remaining study used an infrared camera within Kinect, to
conduct their experiments.

Static RGB cameras are the most widely used sensors
within the vision-based fall detection research conducted before
2004, although the accuracies of RGB camera-based detection
systems vary drastically due to environmental conditions, such as
illumination changes—which often results in limitations during
the night. Besides, RGB cameras are inherently likely to have a
higher false alarm rate because some deliberate actions like lying
on the floor, sleeping or sitting down abruptly are not easily
distinguished by frames captured by RGB cameras. With the
launch of theMicrosoft Kinect, which consists of an RGB camera,
a depth sensor, and a multi-array microphone, it stimulated a
trend in 3D data collection and analysis, causing a shift fromRGB
to RGB-D cameras. Kinect depth cameras took the place of the
traditional RGB cameras and became the second popular sensors
in the field of fall detection after 2014 (Xu et al., 2018).

In the last years, we are seeing an increased interest in
the use of wearable cameras for the detection of falls. For
instance, Ozcan and Velipasalar (2016) tried to exploit the
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TABLE 5 | Fall detection using individual ambient devices from 2014 to 2020.

References Sensor No. subjects (age) Data sets Algorithms Real-time Alarm

Huang et al. (2019) Vibration 12 (19-29) Simulated HMM Y N/A

Hao et al. (2019) WiFi N/A Simulated SVM Y N/A

Tian et al. (2018) FMCW radio 140 (N/A) Simulated CNN Y N/A

Palipana et al. (2018) WiFi 3 (27-30) Simulated SVM Y N/A

Wang et al. (2017a) WiFi 6 (21-32) Simulated SVM Y N/A

Wang et al. (2017b) WiFi N/A Simulated SVM, Random Forests N/A N/A

cameras on smartphones. Smartphones were attached to the
waists of subjects and their inbuilt cameras were used to record
visual data. Ozcan et al. (2017) investigated how web cameras
(e.g., Microsoft LifeCam) attached to the waists of subjects can
contribute to fall detection. Although both approaches are not
yet practical to be deployed in real applications, they show a
new direction, which combines the advantages of wearable and
visual sensors.

Table 4 reports the work conducted for individual vision-
based sensors. The majority of research still makes use of
simulated data. Only two studies use real world data; the one by
Boulard et al. (2014) has actual fall data and the other by Stone
and Skubic (2015) has mixed data, including 9 genuine falls and
445 simulated falls by trained stunt actors. In contrast to the
real data sets from the work of Klenk et al. (2016) collected by
wearable devices, there are few purely genuine data sets collected
in real life scenarios using individual visual sensors.

4.1.3. Individual Ambient Sensors
The ambient sensor provides another non-intrusive means of fall
detection. Sensors like active infrared, RFID, pressure, smart tiles,
magnetic switches, Doppler Radar, ultrasonic, and microphone
are used to detect the environmental changes due to falling
as shown in Table 5. It provides an innovative direction in
this field, which is passive and pervasive detection. Ultra-sonic
sensor network systems are one of the earliest solutions in
fall detection systems. Hori et al. (2004) argues that one can
detect falls by putting a series of spatially distributed sensors in
the space where elderly persons live. In Wang et al. (2017a,b),
a new fall detection approach which uses ambient sensors is
proposed. It relies on Wi-Fi which, due to its non-invasive and
ubiquitous characteristics, is gaining more and more popularity.
However, the studies by Wang et al. (2017a,b) are limited in
terms of multi-person detection due to their classifiers not being
robust enough to distinguish new subjects and environments.
In order to tackle this issue, other studies have developed
more sophisticated methods. These include the Aryokee (Tian
et al., 2018) and FallDeFi (Palipana et al., 2018) systems. The
Aryokee system is ubiquitous, passive and uses RF-sensing
methods. Over 140 people were engaged to perform 40 kinds
of activities in different environments for the collection of data
and a convolutional neural network was utilized to classify falls.
Palipana et al. (2018) developed a fall detection technique named
FallDeFi, which is based on WiFi signals as the enabling sensing
technology. They provided a system applying time-frequency of

WiFi Channel State Information (CSI) and achieved above 93%
average accuracy.

RF-sensing technologies have also been widely applied to
other recognition activities beyond fall detection (Zhao et al.,
2018; Zhang et al., 2019) and even for subtle movements. Zhao
et al. (2018) studied human pose estimation with multiple
persons. Their experiment showed that RF-pose has better
performance under occlusion. This improvement is attributable
to the ability of their method to estimate the pose of the subject
through a wall, something that visual sensors fail to do. Further
research on RF-sensing was conducted by Niu et al. (2018) with
applications to finger gesture recognition, human respiration
and chins movement. Their research can be potentially used
for applications of autonomous health monitoring and home
appliances control. Furthermore, Zhang et al. (2019) used an
RF-sensing approach in the proposed system WiDIGR for gait
recognition. Guo et al. (2019) claimed that RF-sensing is drawing
more attention which can be attributed to being device-free for
users, and in contrast to RGB cameras it can work under low light
conditions and occlusions.

4.1.4. Subjects
For most research groups there is not enough time and funding
to collect data continuously within several years to study fall
detection. Due to the rarity of genuine data in fall detection
and prediction, Li et al. (2013) have started to hire stunt actors
to simulate different kinds of fall. There are also many data
sets of falls which are simulated by young healthy students as
indicated in the studies by Bourke et al. (2007) and Ma et al.
(2014). For obvious reasons elderly subjects cannot be engaged
to perform the motion of falls for data collection. For most of
the existing data sets, falls are simulated by young volunteers
who perform soft falls under the protection of soft mats on the
ground. Elderly subjects, however, often have totally different
behavior due to less control over the speed of the body. One
potential solution could include simulated data sets created using
physics engines, such as OpenSim. Previous research (Mastorakis
et al., 2007, 2018) have shown that simulated data from OpenSim
contributed to an increase in performance to the resulting
models. Another solution includes online learning algorithms
which adapt to subjects who were not represented in the training
data. For instance, Deng et al. (2014) applied the Transfer
learning reduced Kernel Extreme Learning Machine (RKELM)
approach and showed how they can adapt a trained classifier—
based on data sets collected by young volunteers—to the elderly.
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FIGURE 5 | Different types of methods used in fall detection using individual

wearable sensors in the period 1998–2012 based on the survey of Schwickert

et al. (2013) and in the period 2014–2020 based on our survey. The term

“others” refers to traditional methods that are neither based on threshold nor

on machine learning, and the term “N/A” stands for not available and refers to

studies whose methods are not clearly defined.

The algorithm consists of two parts, namely offline classification
modeling and online updating modeling, which is used to adapt
to new subjects. After the model is trained by labeled training
data offline, unlabeled test samples are fed into the pre-trained
RKELM classifier and obtain a confidence score. The samples
that obtain a confidence score above a certain threshold are used
to update the model. In this way, the model is able to adapt
to new subjects gradually when new samples are received from
new subjects. Namba and Yamada (2018a,b) demonstrated how
deep reinforcement learning can be applied to assisting mobile
robots, in order to adapt to conditions that were not present in
the training set.

4.2. Local Communication Layer (LCL) of
Individual Sensors
There are two components which are involved with
communication within such systems. Firstly, data collected
from different smart sensors are sent to local computing facilities
or remote cloud computing. Then, after the final decision is
made by these computing platforms, instructions and alarms
are sent to appointed caregivers for immediate assistance
(El-Bendary et al., 2013).

Protocol of data communication is divided into two
categories, namely wireless and wired transmission. For the
former, transmission protocols include Zigbee, Bluetooth, Wifi,
WiMax, and Cellular network.

Most of the studies that used individual wearable sensors
deployed commercially available wearable devices. In those
cases, data was communicated by transmission modules built
in the wearable products, using mediums such as Bluetooth
and cellular networks. In contrast to detection systems using
wearable devices, most static vision- and ambient-based studies
are connected to smart gateways by wired connections. These
approaches are usually applied as static detection methods, so a
wired connection is a better choice.

4.3. Information Processing Layer (IPL) of
Individual Sensors
4.3.1. Detection Using Threshold-Based and

Data-Driven Algorithms
Threshold-based and data-driven algorithms (including machine
learning and deep learning) are the two main approaches that
have been used for fall detection. Threshold-based approaches
are usually used for data coming from individual sensors,
such as accelerometers, gyroscopes, and electromyography.
Their decisions are made by comparing measured values from
concerned sensors to empirically established threshold values.
Data driven approaches are more applicable for sensor fusion as
they can learn non-trivial non-linear relationships from the data
of all involved sensors. In terms of the algorithms used to analyze
data collected using wearable devices, Figure 5 demonstrates that
there is a significant shift to machine learning based approaches,
in comparison to the work conducted between 1998 and 2012.
From papers presented between 1998 and 2012, threshold-based
approaches account for 71%, while only 4% applied machine
learning based methods (Schwickert et al., 2013). We believe
that this shift is due to two main reasons. First, the rapid
development of affordable sensors and the rise of the Internet-of-
Things made it possible to more easily deploy multiple sensors in
different applications. As mentioned above the non-linear fusion
of multiple sensors can bemodeled very well by machine learning
approaches. Second, with the breakthrough of deep learning,
threshold-based approaches have become even less preferable.
Moreover, different types of machine learning approaches have
been explored, namely, Bayesian networks, rule-based systems,
nearest neighbor-based techniques, and neural networks. These
data-driven approaches (Gharghan et al., 2018) show better
accuracy and they are more robust in comparison to threshold-
based methods. Notable is the fact that data-driven approaches
are more resource hungry than threshold-based methods. With
the ever advancement of technology, however, this is not a major
concern and we foresee that more effort will be invested in
this direction.

4.3.2. Detection Using Deep Learning
Traditional machine learning approaches determine mapping
functions between extracted handcrafted features from raw
training data and the respective output labels (e.g., no fall or
fall, to keep it simple). The extraction of handcrafted features
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requires domain expertise and are, therefore, limited to the
knowledge of the domain experts. Though such a limitation
is imposed, literature shows that traditional machine learning,
based on support vector machines, hidden Markov models, and
decision trees are still very active in the field of fall detection
that uses individual wearable non-visual or ambient sensors (e.g.,
accelerometer) (Wang et al., 2017a,b; Chen et al., 2018; Saleh
and Jeannès, 2019; Wu et al., 2019). For visual sensors the trend
has been moving toward deep learning for convolutional neural
networks (CNN) (Adhikari et al., 2017; Kong et al., 2019; Han
et al., 2020), or LSTM (Shojaei-Hashemi et al., 2018). Deep
learning is a sophisticated learning framework that besides the
mapping function (as mentioned above and used in traditional
machine learning), it also learns the features (in a hierarchy
fashion) that characterize the concerned classes (e.g., falls and no
falls). This approach has been inspired by the visual system of
the mammalian brain (LeCun et al., 2015). In computer vision
applications, which take as input images or videos, deep learning
has been established as state-of-the-art. In this regard, similar to
other computer vision applications, fall detection approaches that
rely on vision data have been shifting from traditional machine
learning to deep learning in recent years.

4.3.3. Real Time and Alarms
Real-time is a key feature for fall detection systems, especially for
commercial products. Considering that certain falls can be fatal
or detrimental to the health, it is crucial that the deployed fall
detection systems have high computational efficiency, preferably
operating in (near) real-time. Below, we comment how the
methods proposed in the reviewed literature fit within this aspect.

The percentage of studies applying real-time detection by
static visual sensors are lower than that of wearable devices. For
the studies using wearable devices, Table 3 illustrates that six out
of 20 studies that we reviewed can detect falls and send alarms.
There are, however, few studies which demonstrate the ability
to process data and send alerts in real-time for work conducted
using individual visual sensors. Based on Table 4, one can note
that although 40.9% (nine out of 22) of the studies claim that
their systems can be used in real-time only one study showed
that an alarm can actually be sent in real-time. The following
are a couple of reasons why a higher percentage of vision-based
systems can not be used in real time. Firstly, visual data is much
larger and, therefore, its processing is more time consuming than
that of one dimensional signals coming from non-vision-based
wearable devices. Secondly, most of the work using vision sensors
conducted their experiments with off-line methods, and modules
like data transmission were not involved.

4.3.3.1. Summary
• For single-sensor-based fall detection systems most of the

studies used data sets that include simulated falls by young
and healthy volunteers. Further work is needed to establish
whether such simulated falls can be used to detect genuine falls
by the elderly.

• The types of sensors utilized in fall detection systems
have changed in the past 6 years. For individual wearable
sensors, accelerometers are still the most frequently deployed

FIGURE 6 | Different kinds of individual sensors and sensor networks,

including vision-based, wearable, and ambient sensors, along with sensor

fusion.

sensors. Static vision-based devices shifted from RGB to
RGB-D cameras.

• Data-driven machine learning and deep learning approaches
are gaining more popularity especially with vision-
based systems. Such techniques may, however, be
heavier than threshold-based counterparts in terms of
computational resources.

• Themajority of proposed approaches, especially those that rely
on vision-based sensors, work in offline mode as they cannot
operate in real-time. While such methods can be effective in
terms of detection, their practical use is debatable as the time
to respond is crucial.

5. SENSOR FUSION BY SENSOR
NETWORK

5.1. Physiological Sensing Layer (PSL)
Using Sensor Fusion
5.1.1. Sensors Deployed in Sensor Networks
In terms of sensor fusion, there are two categories, typically
referred to as homogeneous and heterogeneous which take input
from three types of sensors, namely wearable, visual, ambient
sensors, as shown in Figure 6. Sensor fusion involves using
multiple and different signals coming from various devices,
which may for instance include, accelerometer, gyroscope,
magnetometer, and visual sensors, among others. This is all done
to complement the strengths of all devices for the design and
development of more robust algorithms that can be used to
monitor the health of subjects and detect falls (Spasova et al.,
2016; Ma et al., 2019).

Frontiers in Robotics and AI | www.frontiersin.org 11 June 2020 | Volume 7 | Article 7130

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Wang et al. Elderly Fall Detection Systems

TABLE 6 | Fall detection by fusion of wearable sensors from 2014 to 2020.

Fusion within wearable sensors

References Sensor No. subjects

(age)

Data sets Algorithms Real-time

(Alarm)

Fusion

method

Platforms

Kerdjidj et al. (2020) Accelerometer, Gyroscope 17 (N/A) Simulated Compressive

sensing

Y (N/A) Feature fusion N/A

Xi et al. (2020) Electromyography, Plantar

Pressure

12 (23–27) Simulated FMMNN,

DPK-OMELM

Y (Y) Feature fusion N/A

Chelli and Pätzold

(2019)

Accelerometer, Gyroscope 30 (N/A) Public

(Simulated)

KNN, ANN,

QSVM, EBT

Y (N/A) Feature fusion N/A

Queralta et al. (2019) Accelerometer, Gyroscope,

Magnetometer

57 (20-47) Public

(Simulated)

LTSM Y(Y) Feature fusion N/A

Gia et al. (2018) Accelerometer, Gyroscope,

Magnetometer

2 (N/A) N/A Threshold Y (Y) Feature fusion N/A

de Quadros et al.

(2018)

Accelerometer, Gyroscope,

Magnetometer

22 (mean = 26.09) Simulated Threshold/ML N/A Feature fusion N/A

Yang et al. (2016) Accelerometer, Gyroscope,

Magnetometer

5 (N/A) Simulated SVM Y (Y) Feature fusion PC

Pierleoni et al. (2015) Accelerometer, Gyroscope,

Magnetometer

10 (22–29) Simulated Threshold Y (Y) Feature fusion ATmega328p

(ATMEL)

Nukala et al. (2014) Accelerometer, Gyroscopes 2 (N/A) Simulated ANN Y (N/A) Feature fusion PC

Kumar et al. (2014) Accelerometer, Pressure

sensors, Heart rate monitor

N/A Simulated Threshold Y (Y) Partial fusion PC

Hsieh et al. (2014) Accelerometer, Gyroscope 3 (N/A) Simulated Threshold N/A Partial fusion N/A

For the visual detection based approaches, the fusion of
signals coming from RGB (Charfi et al., 2012), and RGB-D
depth cameras along with camera arrays have been studied
(Zhang et al., 2014). They showed that such fusion provides
more viewpoints of detected locations, and improves the stability
and robustness by decreasing false alarms due to occluded falls
(Auvinet et al., 2011).

Li et al. (2018) combined accelerometer data from
smartphones and Kinect depth data as well as smartphone
camera signals. Liu et al. (2014) and Yazar et al. (2014) fused
data from infrared sensors with ambient sensors, and data
from doppler and vibration sensors separately. Among them,
accelerometers and depth cameras (Kinect) are most frequently
studied due to their low costs and effectiveness.

5.1.2. Sensor Networks Platform
Most of the existing IoT platforms, such as Microsoft Azure IoT,
IBM Watson IoT Platform, and Google Cloud Platform, have
not been used in the deployment of fall detection approaches by
sensor fusion. In general, research studies on fall detection using
sensor fusion are carried out by offline methods and decision
fusion approaches. Therefore, in such studies, there is no need
for data transmission and storage modules. From Tables 6, 7, one
can also observe that most of the time researchers applied their
own workstations or personal computers as their platforms, as
there was no need for the integration of sensors and real-time
analysis in terms of fall detection in off-line mode.

Some works, such as those in Kwolek and Kepski (2014),
Kepski and Kwolek (2014), and Kwolek and Kepski (2016),
applied low-power single-board computer development
platforms running in Linux, namely PandaBoard, PandaBoard

ES, and A13-OlinuXino. A13-OlinuXino is an ARM-based
single-board computer development platform, which runs
Debian Linux distribution. PandaBoard ES, which is the updated
version of PandaBoard, is a single-board computer development
platform running at Linux. The PandaBoard ES can run different
kinds of Linux-based operating systems, including Android
and Ubuntu. It consists of 1 GB of DDR2 SDRAM, dual USB
2.0 ports as well as wired 10/100 Ethernet along with wireless
Ethernet and Bluetooth connectivity. Linux is well-known for
real-time embedded platforms since it provides various flexible
inter-process communication methods, which is quite suitable
for fall detection using sensor fusion.

In the research by Kwolek and Kepski (2014, 2016), wearable
devices and Kinect were connected to the Pandaboard through
Bluetooth and cable, separately. Firstly, data was collected by
accelerometers and Kinect sensors, individually, which was then
transmitted and stored in a memory card. The procedure of data
transmission is asynchronous since there are different sampling
rates for accelerometers and Kinect. Finally, all data was grouped
together and processed by classification models that detected
falls. The authors reported high accuracy rates but could not
compare with other approaches since there is no benchmark
data set.

Spasova et al. (2016) applied the A13-OlinuXino board
as their platform. A standard web camera was connected to
it via USB and an infrared camera was connected to the
development board via I2C (Inter-Integrated Circuit). Their
experiment achieved excellent performance with over 97%
sensitivity and specificity. They claim that their system can be
applied in real-time with hardware of low-cost and open source
software platform.
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TABLE 7 | Fall detection using fusion of sensor networks from 2014 to 2020.

References Sensor No. subjects

(age)

Data sets Algorithms Real-time

(Alarm)

Fusion

method

Platforms

Fusion within visual sensors and ambient sensors

Espinosa et al. (2019) Two cameras 17 (18-24) Simulated CNN N/A (N) Feature fusion N/A

Ma et al. (2019) RGB camera, Thermal camera 14 (N/A) Simulated CNN N/A (N) Partial fusion N/A

Spasova et al. (2016) Web Camera, Infrared sensor 5 (27-81) Simulated SVM Y (Y) Partial fusion A13-

OlinuXino

Fusion within different kinds of individual sensors

Martínez-Villaseñor

et al. (2019)

Accelerometer, Gyroscope,

Ambient light,

Electroencephalograph,

Infrared sensors, Web

cameras

17 (18–24) Simulated Random

Forest, SVM,

ANN, kNN,

CNN

Feature

fusion

N/A N/A

Li et al. (2018) Accelerometer (smartphone),

Kinect

N/A Simulated SVM,

Threshold

Y (N/A) Decision

fusion

N/A

Daher et al. (2017) Force sensors,

Accelerometers

6 (N/A) Simulated Threshold N (N/A) Decision

fusion

N/A

Ozcan and Velipasalar

(2016)

Camera (smartphone),

Accelerometer

10 (24 -30) Simulated Histogram of

oriented

gradients

Y (Y) Decision

fusion

N/A

Kwolek and Kepski

(2016)

Accelerometer, Kinect 5 (N/A) Simulated Fuzzy logic Y (Y) Feature

fusion, Partial

fusion

PandaBoard

ES

Sabatini et al. (2016) Barometric altimeters,

Accelerometer, Gyroscope

25 (mean = 28.3) Simulated Threshold N/A (N) Feature fusion N/A

Chen et al. (2015) Kinect, Inertial sensor 12 (23–30) Public

Simulated

Ofli et al.

(2013)

Collaborative

representation,

N/A (N) Feature fusion N/A

Gasparrini et al. (2015) Kinect v2, Accelerometer 11 (22-39) Simulated Threshold N (N/A) Data fusion N/A

Kwolek and Kepski

(2014)

Accelerometer, Kinect 5 (N/A) Public

(Simulated)

URF (2014)

SVM, k-NN Y (Y) Partial fusion PandaBoard

ES

Kepski and Kwolek

(2014)

Accelerometer, Kinect 30 (under 28) Simulated Alogorithms Y (N) Partial fusion PandaBoard

Liu et al. (2014) Passive infrared sensor,

Doppler radar sensor

454 (N/A) Simulated

+ Real life

SVM N/A (N) Decision

fusion

N/A

Yazar et al. (2014) Passive infrared sensors,

Vibration sensor

N/A Simulated Threshold,

SVM

N/A (N) Decision

fusion

N/A

Despite the available platforms mentioned above, the majority
of fall detection studies trained their models in an offline mode
with a single sensor on personal computers. The studies in
Kwolek and Kepski (2014), Kepski and Kwolek (2014), Kwolek
and Kepski (2016), and Spasova et al. (2016) utilized single-
board computer platforms in their experiments to demonstrate
the efficacy of their approaches. The crucial aspects of scalability
and efficiency were not addressed and hence it is difficult to
speculate the appropriateness of their methods in real-world
applications. We believe that the future trend is to apply an
interdisciplinary approach that deploys the data analysis modules
on mature cloud platforms, which can provide a stable and
robust environment while meeting the exploding demands of
commercial applications.

5.1.3. Subjects and Data Sets
Although some groups devoted their efforts to acquire data
of genuine falls, most researchers used data that contained
simulated falls. We know that monitoring the lives of elderly
people and waiting to capture real falls is very sensitive and
time consuming. Having said that though, with regards to sensor
fusion by wearable devices, there have been some attempts
which have tried to build data sets of genuine data in real
life. FARSEEING (Fall Repository for the design of Smart and
self-adaptive Environments prolonging Independent living) is
one such data set (Klenk et al., 2016). It is actually the largest
data set of genuine falls in real life, and is open to public
research upon request on their website. From 2012 to 2015,
more than 2,000 volunteers have been involved, and more than
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TABLE 8 | Comparison of different kinds of communication protocol.

Protocol Zigbee Bluetooth WiFi WiMax Cellular network

Range 100 m 10 m 5 km 15 km 10–50 km

Data rate 250–500 kbps 1–3 Mbps 1–450 Mbps 75 Mbps 240 kbps

Band-width 2.4 GHz 2.4 GHz 2.4, 3.7, and 5 GHz 2.3, 2.5, and 3.5 GHz 824–894 MHz/1,900 MHz

Energy consumption Low Medium High N/A N/A

300 real falls have been collected under the collaboration of
six institutions3.

As for the fusion by visual sensors and the combination of
other non-wearable sensors, it becomes quite hard to acquire
genuine data in real life. There was one group which tried
to collect real data by visual sensors, but only nine real falls
by elderly (Demiris et al., 2008) were captured during several
years. The availability of only nine falls is too limited to train a
meaningful model. As an alternative, Stone and Skubic (2015)
hired trained stunt actors to simulate different kinds of falls and
made a benchmark data set with 454 falls including 9 real falls
by elderly.

5.2. Local Communication Layer (LCL)
Using Sensor Fusion
Data transmission for fall detection using sensor networks can
be done in different ways. In particular, Bluetooth (Pierleoni
et al., 2015; Yang et al., 2016), Wi-Fi, ZigBee (Hsieh et al., 2014),
cellular network using smart phones (Chen et al., 2018) and smart
watches (Kao et al., 2017), as well as wired connection have all
been explored. In studies that used wearable devices, most of
them applied wireless methods, such as Bluetooth, which allowed
the subject to move unrestricted.

Currently, when it comes to wireless sensors, Bluetooth has
become probably the most popular communication protocol
and it is widely used in existing commercial wearable products
such as Shimmer. In the work by Yang et al. (2016), data is
transmitted to a laptop in real-time by a Bluetooth module that
is built in a commercial wearable device named Shimmer 2R.
The sampling frame rate can be customized, and they chose
to work with the 32-Hz sampling rate instead of the default
sampling rate of 51.2-Hz. At high sampling frequencies, packet
loss can occur and higher sampling rate also means higher energy
consumption. Bluetooth is also applied to transmit data in non-
commercial wearable devices. For example, Pierleoni et al. (2015)
customized a wireless sensor node, where sensor module, micro-
controller, Bluetooth module, battery, mass-storage unit, and
wireless receiver were integrated within a prototype device of size
70–45–30 mm. Zigbee was used to transmit data in the work by
Hsieh et al. (2014). In Table 8, we compare different kinds of
wireless communication protocols.

31. Robert-Bosch Hospital (RBMF), Germany; 2. University of Tübingen,

Germany; 3. University of Nürnberg/Erlangen, Germany; 4. German Sport

University Cologne, Germany; 5. Bethanien-Hospital/Geriatric Center at the

University of Heidelberg, Germany; 6. University of Auckland, New Zealand.

As for the data transmission using vision-based and ambient-
based approaches, wired options are usually preferred. In the
work by Spasova et al. (2016), a standard web camera was
connected to an A13-OlinuXino board via USB and an infrared
camera was connected to the development board via I2C (Inter-
Integrated Circuit). Data and other messages were exchanged
within the smart gateways through the internet.

For sensor fusion using different types of sensors, both
wireless and cabledmethods were utilized because of data variety.
In the work by Kwolek and Kepski (2014, 2016), wearable devices
and Kinect were connected to the Pandaboard through Bluetooth
and cable, separately. Kinect was connected to a PC using USB
interface and smart phones were connected by wireless methods
(Li et al., 2018). These two types of sensor, smartphone and
Kinect, were first used separately to monitor the same events and
the underlying methods that processed their signals sent their
output to a Netty server through the Internet where another
method was used to fuse the outcomes of both methods to come
to a final decision of whether the involved individual has fallen
or not.

In the studies by Kwolek and Kepski (2014, 2016),
accelerometers and Kinect cameras were connected to a
pandaboard through Bluetooth and USB connections. Then, the
final decision was made based on the data collected from the
two sensors.

5.3. Information Processing Layer (IPL)
Using Sensor Fusion
5.3.1. Methods of Sensor Fusion
Speaking of the fusion of different sensors, there are several
criteria to group them. Yang and Yang (2006) and Tsinganos
and Skodras (2018) grouped them into three categories, namely
direct data fusion, feature fusion, and decision fusion. We divide
sensor fusion techniques into four groups as shown in Figure 7,
which we refer to as fusion with partial sensors, direct data fusion,
feature fusion, and decision fusion.

For the partial fusion, although multiple sensors are deployed,
only one sensor is used to take the final decision, such as the
work by Ma et al. (2019). They used an RGB and a thermal
camera to conduct their experiments, with the thermal camera
being used only for the localization of faces. Falls were eventually
detected only based on the data collected from the regular RGB
cameras. A similar approach was applied by Spasova et al. (2016),
where an infrared camera was deployed to confirm the presence
of the subject and the data produced by the RGB camera was
used to detect falls. There are also other works that used wearable
devices that deployed the sensors at different stages. For instance,
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FIGURE 7 | Four kinds of sensor fusion methods including partial fusion, feature fusion, decision fusion, and data fusion. Partial fusion means that a subset of sensors

are deployed to make decisions, while the other types of fusion techniques use all sensors as input.

in (Kepski and Kwolek, 2014; Kwolek and Kepski, 2014) a fall
detection system was built by utilizing a tri-axial accelerometer
and an RGB-D camera. The accelerometer was deployed to detect
the motion of the subject. If the measured signal exceeded a
given threshold then the Kinect was activated to capture the
ongoing event.

The second approach of sensor fusion is known as feature
fusion. In such an approach, feature extraction takes places
on signals that come from different sensors. Then all features
are merged into long feature vectors and used to train
classification models. Most of the studies that we reviewed
applied feature fusion for wearable-based fall detection systems.
Many commercial products of wearable devices, sensors like
accelerometers, gyroscope, magnetometer are built in one device.
Data from these sensors is homogeneous synchronous with
the same frequency and transmitted with built-in wireless
modules. Having signals producing data with the synchronized
frequency simplifies the fusion of data. Statistical features, such
as mean, maximum, standard deviation, correlation, spectral
entropy, spectral, sum vector magnitude, the angle between y-
axis and vertical direction, and differential sum vector magnitude
centroid can be determined from the signals of accelerometers,
magnetometers, and gyroscopes, and used as features to train a
classification model that can detect different types of falls (Yang
et al., 2016; de Quadros et al., 2018; Gia et al., 2018).

Decision fusion is the third approach, where a chain of
classifiers is used to come to a decision. A typical arrangement
is to have a classification model that takes input from one type
of sensor, another model that takes input from another sensor,
and in turn the outputs of these two models are used as input to
a third classification model that takes the final decision. Li et al.
(2018) explored this approach with accelerometers embedded in
smart phones and Kinect sensors. Ozcan and Velipasalar (2016)
deployed an accelerometer and an RGB camera for the detection

of falls. Different sensors, such as accelerometer, RGB and RGB-
D cameras were deployed in these studies. Decisions are made
separately based on the individual sensors, and then the final
decision is achieved by combining the individual sensors.

The final approach is data fusion. This is achieved by
first fusing the data from different sensors and perform
feature extraction from the fused data. This is in contrast to
feature fusion where data from these sensors is homogeneous
synchronous with the same frequency. Data fusion can be applied
to different sensors with different sampling frequency and data
characteristics. Data from various sensors can be synchronized
and combined directly for some sensors of different types.
Because of the difference in sampling rate between the Kinect
camera and wearable sensors, it is challenging to conduct
feature fusion directly. In order to mitigate this difficulty, the
transmission and exposure times of the Kinect camera are
adapted to synchronize the RGB-D data with that of wearable
sensors by an ad-hoc acquisition software, as was done by
Gasparrini et al. (2015).

Ozcan and Velipasalar (2016) used both partial and feature
fusion. They divided the procedure in two stages. In the first
stage, only the accelerometer was utilized to indicate a potential
fall, then the Kinect camera activates after the accelerometer
flagged a potential fall. Features from both the Kinect camera and
accelerometer were then extracted to classify activities of fall or
non-fall in the second stage.

5.3.2. Machine Learning, Deep Learning, and Deep

Reinforcement Learning
In terms of fall detection techniques based on wearable
sensor fusion, the explored methods include threshold-based,
traditional machine learning, and deep learning. The latter two
are the most popular due to their robustness. The research
by Chelli and Pätzold (2019) applied both traditional machine
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learning [kNN, QSVM, Ensemble Bagged Tree (EBT)] and deep
learning. Their experiments were divided into two parts, namely
activity recognition and fall detection. For the former, their
experiments showed that traditional machine learning and deep
learning outperformed other approaches, which showed 94.1
and 93.2% accuracy, respectively. Queralta et al. (2019) applied
a long short-term memory (LSTM) approach, where wearable
nodes including accelerometer, gyroscope, and magnetometer
were embedded in a low power wide area network, with
combined edge and fog computing. The LSTM algorithm is a
type of recurrent neural network aimed at solving long sequence
learning tasks. Their system achieved an average recall of 95%
while providing a real-time solution of fall detection running
on cloud platforms. Another example is the work by Nukala
et al. (2014) who fused the measurements of accelerometers and
gyroscopes and applied an Artificial Neural Network (ANN) for
the modeling of fall detection.

As for visual sensor based fusion techniques, the limited
studies that were included in our survey applied either traditional
machine learning or deep learning (Espinosa et al., 2019; Ma
et al., 2019) approaches. Fusion of multiple visual sensors from
a public data set was presented by Espinosa et al. (2019), where a
2D CNN was trained to classify falls during daily life activities.

Another approach is reinforcement learning (RL), which
is a growing branch in machine learning, and is gaining
popularity in the fall detection field as well. Deep reinforcement
learning (DRL) combines the advantages of deep learning and
reinforcement learning, and has already shown its benefits in fall
prevention (Namba and Yamada, 2018a,b; Yang, 2018) and fall
detection (Yang, 2018). Namba and Yamada (2018a) proposed
a fall risk prevention approach by assisting robots for the
elderly living independently. Images andmovies with the location
information of accidents were collected. Most conventional
machine learning and deep learning methods are, however,
challenged when the operational environment changes. This is
due to their data-driven nature that allows them to learn how
to become robust mostly in the same environments where they
were trained.

5.3.3. Data Storage and Analysis
Typical data storage devices include SD cards, local storage on the
integration device, or remote storage on the cloud. For example,
some studies used the camera and accelerometer in smartphones,
and stored the data on the local storage of the smarphones
(Ozcan and Velipasalar, 2016; Shi et al., 2016; Medrano et al.,
2017). Other studies applied off-line methods and stored data
in their own computer, and could be processed at a later stage.
Alamri et al. (2013) argue that sensor-cloud will become the
future trend because cloud platforms can bemore open andmore
flexible than local platforms, which have limited local storage and
processing power.

5.4. User Application Layer (UAL) of Sensor
Fusion
Due to the rapid development of miniature bio-sensing devices,
there has been a booming development of wearable sensors
and other fall detection modules. Wearable modules, such

as Shimmer, embedded with sensing sensors, communication
protocols, and sufficient computational ability are available as
affordable commercial products. For example, some wearable-
based applications have been applied to the detection of falls
and for monitoring health, in general. The target of the wearable
devices is to wear and forget. Taking as an example the electronic
skins (e-skins) that adhere to the body surface, clothing-based or
accessory-based devices where proximity is sufficient. To fulfill
the target of wearing and forgetting, many efforts have been put
into the study of wearable systems, such as the My Heart project
(Habetha, 2006), theWearable Health Care System (WEALTHY)
project (Paradiso et al., 2005), the Medical Remote Monitoring of
clothes (MERMOTH) project (Luprano, 2006), and the project by
Pandian et al. (2008). Some wearable sensors are also developed
specifically to address fall detection. Shibuya et al. (2015) used a
wearable wireless gait sensor for the detection of falls. More and
more research work use existing commercial wearable products,
which includes function of data transmission and sending alarms
when falls are detected.

5.4.1. Summary
• Due to the sampling frequency and data characteristic,

there are two main categories for sensor fusion. As
shown in Tables 6, 7, studies by sensor fusion are divided
into fusion by sensor from the same category (e.g.,
fusion of wearable sensors, fusion of visual sensors, and
fusion of ambient sensors) and fusion of sensors from
different categories.

• Subjects in fall detection studies using sensor networks are
still young and healthy volunteers, which is similar to that of
individual sensors. Only one research adoptedmixed data with
simulated and genuine data.

• More wearable-based approaches are embedded with IoT
platforms than that of vision-based approaches because
data transmission and storage modules are built in existing
commercial products.

• For the research combining sensors from different categories,
the combination of accelerometer and Kinect camera is the
most popular method.

• Partial fusion, data fusion, feature fusion, and decision fusion
are four main methods of sensor fusion. Among them, feature
fusion is the most popular approach, followed by decision
fusion. For fusion using non-vision wearable sensors, most
of the studies that we reviewed applied feature fusion, while
decision fusion is the most appealing one for fusing sensors
from different categories.

6. SECURITY AND PRIVACY

Because data generated by autonomous monitoring systems are
security-critical and privacy-sensitive, there is an urgent demand
to protect user’s privacy and prevent these systems from being
attacked. Cyberattacks on the autonomous monitoring systems
may cause physical ormental damages and even threaten the lives
of subjects under monitoring.
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6.1. Security
In this survey we approached the systems of fall detection from
different layers, including Physiological Sensing Layer (PSL),
Local Communication Layer (LCL), Information Processing
Layer (IPL), Internet Application Layer (IAL), and User
Application Layer (UAL). Every layer faces security issues.
For instance, information may leak in the LCL during data
transmission, along with potential vulnerabilities with cloud
storage and processing facility. Based on the literature that we
report in Tables 3–7, most of the studies in the field of fall
detection do not address security matters. Only few studies
(Edgcomb and Vahid, 2012; Mastorakis and Makris, 2014; Ma
et al., 2019) take privacy into consideration. Because of the
distinct characteristics of wired and wireless transmission, it is
still an open problem to find a comprehensive security protocol
which can cover the security issues in both wired and wireless
data transmission and storage (Islam et al., 2015).

6.2. Privacy
As mentioned above, privacy is one of the most important issue
for users of autonomous health monitoring systems. Methods
to protect privacy are dependent on the type of sensor used.
Not all sensors tend to suffer from the issues of privacy equally.
For example, vision-based sensors, like RGB cameras, are more
vulnerable than wearable sensors, such as accelerometers, in
terms of privacy. In the case of a detection system that uses
only wearable sensors, problems of privacy are not as critical as
systems involved with visual sensors.

In order to address the privacy concerns associated with RGB
cameras some researchers proposed to mitigate them by blurring
and distorting the appearances as post-processing steps in the
application layer (Edgcomb and Vahid, 2012). An alternative way
is to address the privacy issue in the design stage, as suggested by
Ma et al. (2019). They investigated an optical level anonymous
image sensing system. A thermal camera was deployed to locate
faces and an RGB camera was used to detect falls. The location of
the subject’s face was used to generate a mask pattern on a spatial
light modulator to control the light entering the RGB camera.
Faces of subjects were blurred by blocking the visible light rays
using the mask pattern on the spatial light modulator.

The infrared camera is another sensor which could protect the
privacy of subjects. Mastorakis and Makris (2014) investigated
an infrared camera built in a Kinect sensor. It only captures
the thermal distribution of subjects and there is no information
on the subject’s appearance and living environment involved.
Other vision-based sensors which could protect privacy are depth
cameras. The fact they only capture depth information has made
them more popular than RGB cameras.

As for the research of fall detection using sensor networks,
different kinds of data are collected when more sensors are
involved. Because of more data collection and transfer involved,
the whole fall detection system by sensor fusion becomes more
complicated and it makes the protection of privacy and security
even harder. There is a trade-off between privacy and benefits of
autonomous monitoring systems. The aim is to keep improving
the algorithms while keeping the privacy and security issues
to a minimum. This is the only way to make such systems
socially acceptable.

7. PROJECTS AND APPLICATIONS
AROUND FALL DETECTION

Approaches of fall detection evolve from personal emergency
response systems (PERS) to intelligent automatic ones. One of
the early fall detection systems sends an alarm by the PERS
push-button, but it may fail when the concerned person loses
consciousness or is too weak to move (Leff, 1997). Numerous
attempts have been made to monitor not only falls but also
other specific activities in autonomous health monitoring.
Many projects have been conducted to develop applications
of autonomous health monitoring, including fall detection,
prediction, and prevention. Some of the aforementioned studies
were promoted as commercial products. Different sensors from
wearable sensors, visual sensors, and ambient sensors are
deployed as commercial applications for fall detection. Among
them, more wearable sensors have been developed as useful
applications. For example, a company named Shimmer has
developed 7 kinds of wearable sensing products aiming at
autonomous health monitoring. One of the products is the
Shimmer3 IMU Development Kit. It is a wearable sensor node
including a sensing module, data transmission module, receiver,
and it has been used by Mahmud and Sirat (2015) and Djelouat
et al. (2017). The iLife fall detection sensor is developed by
AlertOne4, which provides the service of fall detection and one-
button alert system. Smartwatch is another commercial solution
for fall detection. Accelerometers embedded in smartwatches
have been studied to detect falls (Kao et al., 2017; Wu et al.,
2019). Moreover, Apple Watch Series 4 and later versions are
equipped with the fall detection function, and it can help the
consumer to connect to the emergency service. Although there
are few specific commercial fall detection products based on RGB
cameras, the relevant studies also show a promising future in
the field. There are open source solutions provided by Microsoft
using Kinect which could detect falls in real time and have the
potential to be deployed as commercial products. As for ambient
sensors, Linksys Aware apply tri-band mesh WiFi systems to fall
detection, and they provide a premium subscription service as
a commercial motion detection product. CodeBlue, a Harvard
University research project, also focused on developing wireless
sensor networks for medical applications (Lorincz et al., 2004).
The MIThril project (DeVaul et al., 2003) is a next-generation
wearable research platform developed by researchers at the MIT
Media Lab. They made their software open source and hardware
specifications available to the public.

The Ivy project (Pister et al., 2003) is a sensor network
infrastructure from the Berkeley College of Engineering,
University of California. The project aims to develop a sensor
network system to provide assistance for the elderly living
independently. Using a sensor network with fixed sensors and
mobile sensors worn on the body, anomalies by the concerned
elderly can be detected. Once falls are detected, the system sends
alarms to caregivers to respond urgently.

A sensor network was built in 13 apartments in TigerPlace,
which is an aging in place for people of retirement in Columbia,
Missouri, and continuous data was collected for 3,339 days

4https://www.alert-1.com/
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(Demiris et al., 2008). The sensor network with simple motion
sensors, video sensors, and bed sensors that capture sleep
restlessness and pulse and respiration levels, were installed in
some apartments of 14 volunteers. Activities of 16 elderly people
in TigerPlace, whose age range from 67 to 97, were recorded
continuously and 9 genuine falls were captured. Based on the data
set, Li et al. (2013) developed a sensor fusion algorithm. which
achieved low rate of false alarms and a high detection rate.

8. TRENDS AND OPEN CHALLENGES

8.1. Trends
8.1.1. Sensor Fusion
There seems to be a general consensus that sensor fusion provides
a more robust approach for the detection of elderly falls. The
use of various sensors may complement each other in different
situations. Thus, instead of relying on only one sensor, whichmay
be unreliable if the conditions are not suitable for that sensor,
the idea is to rely on different types of sensor that together can
capture reliable data in various conditions. This results in a more
robust system that can keep false alarms to a minimum while
achieving high precision.

8.1.2. Machine Learning, Deep Learning and Deep

Reinforcement Learning
Conventional machine learning approaches have been widely
applied in fall detection and activity recognition, and results
outperform those of threshold-based methods in studies that use
wearable sensors. Deep learning is a subset of machine learning,
which is concerned with artificial neural networks inspired by
the mammalian brain. Approaches of deep learning are gaining
popularity especially for visual sensors and sensor fusion and are
becoming the state-of-the-art for fall detection and other activity
recognition. Deep reinforcement learning is another promising
research direction for fall detection. Reinforcement learning is
inspired by the psychological neuro-scientific understandings
of humans which can adapt and optimize decisions in a
changing environment. Deep reinforcement learning combines
advantages of deep learning, and reinforcement learning which
can provide alternatives for detection that can adapt to the
changing condition without sacrificing accuracy and robustness.

8.1.3. Fall Detection Systems on 5G Wireless

Networks
5G is a softwarized and virtualized wireless network, which
includes both a physical network and software virtual network
functions. In comparison to 4G networks, 5th generation mobile
introduces the ability of data transmission with high speed
and low latency, which could contribute to the development
of fall detection by IoT systems. Firstly, 5G is envisioned to
become an important and universal communication protocol
for IoT. Secondly, 5G cellular can be used for passive sensing
approaches. Different from other kinds of RF-sensing approaches
(e.g., WiFi or radar) which are aimed for short-distance indoor
fall detection, the 5G wireless network can be applied to both
indoor and outdoor scenarios as a pervasive sensing method.
This type of network has already been successfully investigated

by Gholampooryazdi et al. (2017) for the detection of crowd-size,
presence detection, and walking speed, and their experiments
showed accuracy of 80.9, 92.8, and 95%, respectively. Thirdly, we
expect that 5G as a network is going to become a highly efficient
and accurate platform to achieve better performance of anomaly
detection. Smart networks or systems powered by 5G IoT and
deep learning can be applied not only in fall detection systems,
but also in other pervasive sensing and smart monitoring systems
which assist elderly groups to live independently with high-
quality life.

8.1.4. Personalized or Simulated Data
El-Bendary et al. (2013) and Namba and Yamada (2018b) have
proposed to include historical medical and behavioral data of
individuals along with sensor data. This allowed the enrichment
of the data and consequently to make better informed decisions.
This innovative perspective allows a more personalized approach
as it uses the health profile of the concerned individual and it has
the potential to become a trend also in this field. Another trend
could be the way data sets are created to evaluate systems for
fall detection. Mastorakis et al. (2007, 2018) applied the skeletal
model simulated in Opensim, which is an open-source software
developed by Stanford University. It can simulate different kinds
of pre-defined skeletal models. They acquired 132 videos of
different types of falls, and trained their own algorithms based
on those models. The high results that they report indicate that
the simulated falls by OpenSim are very realistic and, therefore,
effective for training a fall detection model. Physics engines, like
Opensim, can simulate customized data based on the height
and age of different subjects and it offers the possibility of new
directions to detect falls. Another solution, which can potentially
address the scarcity of data, is to develop algorithms that can be
adapted to subjects that were not part of the original training set
(Deng et al., 2014; Namba and Yamada, 2018a,b) as we described
in section 4.1.4.

8.1.5. Fog Computing
As to architecture is concerned, Fog computing offers the
possibility to distribute different levels of processing across the
involved edge devices in a decentralized way. Smart devices
that can carry out some processing and that can communicate
directly with each other are more attractive for (near) real-time
processing as opposed to systems based on cloud computing
(Queralta et al., 2019). An example of such smart devices include
the Intel R© RealSenseTM depth camera, which includes a 28
nanometer (nm) processor to compute real-time depth images.

8.2. Open Challenges
The topic of fall detection has been studied extensively during
the past two decades and many attempts have been proposed.
The rapid development of new technologies keeps this topic very
active in the research community. Although much progress has
been made, there are still various open challenges, which we
discuss below.

1. The rarity of data of real falls: There is no convincing
public data set which could provide a gold standard. Many
simulated data sets by individual sensors are available, but
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it is debatable whether models trained on data collected by
young and healthy subjects can be applied to elderly people
in real-life scenarios. To the best of our knowledge, only Liu
et al. (2014) used a data set with nine real falls along with
445 simulated ones. As for data sets with multiple sensors,
the data sets are even scarcer. There is, therefore, an urgent
need to create a benchmark data set of data coming from
multiple sensors.

2. Detection in real-time: The attempts that we have seen in
the literature are all based on offline methods that detect falls.
While this is an important step, it is time that research starts
focusing more on real-time systems that can be applied in
the real-world.

3. Security and privacy: We have seen little attention to the
security and privacy concerned with fall detection approaches.
Security and privacy is therefore another topic which to
our opinion must be addressed in cohesion with fall
detection methods.

4. Platform of sensor fusion: It is still a novice topic with a lot of
potential. Studies so far have treated this topic to a minimum
as they mostly focused on the analytics aspect of the problem.
In order to bring solutions closer to the market more holistic
studies are needed to develop full information systems that
can deal with the management and transmission of data in an
efficient, effective and secure way.

5. Limitation of location: Some sensors, such as visual ones,
have limited capability because they are fixed and static.
It is necessary to develop fall detection systems which
can be applied to controlled (indoor) and uncontrolled
(outdoor) environments.

6. Scalability and flexibility: With the increasing number
of affordable sensors there is a crucial necessity to study
the scalability of fall detection systems especially when
inhomogeneous sensors are considered (Islam et al., 2015).
There is an increasing demand for scalable fall detection
approaches that do not sacrifice robustness or security. When
considering cloud-based trends, fall detection modules, such
as data transmission, processing, applications, and services,
should be configurable and scalable in order to adapt to
the growth of commercial demands. Cloud-based systems
enable more scalability of health monitoring systems at
different levels as the need for resources of both hardware and
software level changes with time. Cloud-based systems can
add or remove sensors and services with little effort on the
architecture (Alamri et al., 2013).

9. SUMMARY AND CONCLUSIONS

In this review we give an account on fall detection systems
from a holistic point of view that includes data collection, data
management, data transmission, security and privacy as well
as applications.

In particular we compare approaches that rely on individual
sensors with those that are based on sensor networks with
various fusion techniques. The survey provides a description

of the components of fall detection and it is aimed to give
a comprehensive understanding of physical elements, software
organization, working principles, techniques, and arrangement
of different components that concern fall detection systems.

We draw the following conclusions.

1. The sensors and algorithms proposed during the past 6 years
are very different in comparison to the research before 2014.
Accelerometers are still the most popular sensors in wearable
devices, while Kinect took the place of the RGB camera and
became the most popular visual sensor. The combination
of Kinect and accelerometer is turning out to be the most
sought after.

2. There is not yet a benchmark data set on which fall detection
systems can be evaluated and compared. This creates a hurdle
in advancing the field. Although there has been an attempt to
use middle-age subjects to simulate falls (Kangas et al., 2008),
there are still differences in behavior between the elderly and
middle-aged subjects.

3. Sensor fusion seems to be the way forward. It provides more
robust solutions in fall detection systems but come with higher
computational costs when compared to those that rely on
individual sensors. The challenge is therefore to mitigate the
computational costs.

4. Existing studies focus mainly on the data analytics aspect and
do not give too much attention to IoT platforms in order to
build full and stable systems. Moreover, the effort is put on
analyzing data in offline mode. In order to bring such systems
to the market, more effort needs to be invested in building all
the components that make a robust, stable, and secure system
that allows (near) real-time processing and that gains the trust
of the elderly people.

The detection of elderly falls is an example of the potential of
autonomous health monitoring systems. While the focus here
was on elderly people, the same or similar systems can be
applicable to people with mobility problems. With the ongoing
development of IoT devices, autonomous health monitoring and
assistance systems that rely on such devices seems to be the key
for the detection of early signs of physical and cognitive problems
that can range from cardiovascular issues to mental disorders,
such as Alzheimer’s and dementia.
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Akagündüz, E., Aslan, M., Şengür, A., Wang, H., and İnce, M. C. (2017). Silhouette

orientation volumes for efficient fall detection in depth videos. IEEE J. Biomed.

Health Inform. 21, 756–763. doi: 10.1109/JBHI.2016.2570300

Alamri, A., Ansari, W. S., Hassan, M. M., Hossain, M. S., Alelaiwi, A., and Hossain,

M. A. (2013). A survey on sensor-cloud: architecture, applications, and

approaches. Int. J. Distribut. Sensor Netw. 9, 917923. doi: 10.1155/2013/917923

Amini, A., Banitsas, K., and Cosmas, J. (2016). “A comparison between heuristic

andmachine learning techniques in fall detection using kinect v2,” in 2016 IEEE

International Symposium onMedical Measurements and Applications (MeMeA)

(Benevento: IEEE), 1–6. doi: 10.1109/MeMeA.2016.7533763

Aslan, M., Sengur, A., Xiao, Y., Wang, H., Ince, M. C., and Ma, X. (2015). Shape

feature encoding via fisher vector for efficient fall detection in depth-videos.

Applied Soft. Comput. 37, 1023–1028. doi: 10.1016/j.asoc.2014.12.035

Auvinet, E., Multon, F., Saint-Arnaud, A., Rousseau, J., and Meunier, J. (2011).

Fall detection with multiple cameras: an occlusion-resistant method based on

3-D silhouette vertical distribution. IEEE Trans. Inform. Technol. Biomed. 15,

290–300. doi: 10.1109/TITB.2010.2087385

Aziz, O., Musngi, M., Park, E. J., Mori, G., and Robinovitch, S. N. (2017).

A comparison of accuracy of fall detection algorithms (threshold-based vs.

machine learning) using waist-mounted tri-axial accelerometer signals from a

comprehensive set of falls and non-fall trials.Med. Biol. Eng. Comput. 55, 45–55.

doi: 10.1007/s11517-016-1504-y

Bian, Z.-P., Hou, J., Chau, L.-P., and Magnenat-Thalmann, N. (2015). Fall

detection based on body part tracking using a depth camera. IEEE J. Biomed.

Health Inform. 19, 430–439. doi: 10.1109/JBHI.2014.2319372

Bloom, D. E., Boersch-Supan, A., McGee, P., and Seike, A. (2011). Population

aging: facts, challenges, and responses. Benefits Compens. Int. 41, 22.

Boulard, L., Baccaglini, E., and Scopigno, R. (2014). “Insights into the role of

feedbacks in the tracking loop of a modular fall-detection algorithm,” in 2014

IEEE Visual Communications and Image Processing Conference (Valletta: IEEE),

406–409. doi: 10.1109/VCIP.2014.7051592

Bourke, A., O’brien, J., and Lyons, G. (2007). Evaluation of a threshold-

based tri-axial accelerometer fall detection algorithm. Gait Post. 26, 194–199.

doi: 10.1016/j.gaitpost.2006.09.012

Bourke, A. K., and Lyons, G. M. (2008). A threshold-based fall-detection

algorithm using a bi-axial gyroscope sensor. Med. Eng. Phys. 30, 84–90.

doi: 10.1016/j.medengphy.2006.12.001

Cai, Z., Han, J., Liu, L., and Shao, L. (2017). RGB-D datasets using Microsoft

Kinect or similar sensors: a survey. Multimedia Tools Appl. 76, 4313–4355.

doi: 10.1007/s11042-016-3374-6

Charfi, I., Miteran, J., Dubois, J., Atri, M., and Tourki, R. (2012). Definition and

performance evaluation of a robust SVM based fall detection solution. SITIS

12, 218–224. doi: 10.1109/SITIS.2012.155

Chaudhuri, S., Thompson, H., and Demiris, G. (2014). Fall detection devices and

their use with older adults: a systematic review. J. Geriatr. Phys. Ther. 37, 178.

doi: 10.1519/JPT.0b013e3182abe779

Chelli, A., and Pätzold, M. (2019). A machine learning approach for fall

detection and daily living activity recognition. IEEE Access 7, 38670–38687.

doi: 10.1109/ACCESS.2019.2906693

Chen, C., Jafari, R., and Kehtarnavaz, N. (2015). “UTD-MHAD: a multimodal

dataset for human action recognition utilizing a depth camera and a wearable

inertial sensor,” in 2015 IEEE International Conference on Image Processing

(ICIP) (Quebec City: IEEE), 168–172. doi: 10.1109/ICIP.2015.7350781

Chen, C., Jafari, R., and Kehtarnavaz, N. (2017a). A survey of depth and inertial

sensor fusion for human action recognition. Multimedia Tools Appl. 76,

4405–4425. doi: 10.1007/s11042-015-3177-1

Chen, K.-H., Hsu, Y.-W., Yang, J.-J., and Jaw, F.-S. (2017b).

Enhanced characterization of an accelerometer-based fall detection

algorithm using a repository. Instrument. Sci. Technol. 45, 382–391.

doi: 10.1080/10739149.2016.1268155

Chen, K.-H., Hsu, Y.-W., Yang, J.-J., and Jaw, F.-S. (2018). Evaluating

the specifications of built-in accelerometers in smartphones on

fall detection performance. Instrument. Sci. Technol. 46, 194–206.

doi: 10.1080/10739149.2017.1363054

Chua, J.-L., Chang, Y. C., and Lim, W. K. (2015). A simple vision-based fall

detection technique for indoor video surveillance. Signal Image Video Process.

9, 623–633. doi: 10.1007/s11760-013-0493-7

Daher, M., Diab, A., El Najjar, M. E. B., Khalil, M. A., and Charpillet, F. (2017).

Elder tracking and fall detection system using smart tiles. IEEE Sens. J. 17,

469–479. doi: 10.1109/JSEN.2016.2625099

Dai, J., Bai, X., Yang, Z., Shen, Z., and Xuan, D. (2010). “PerfallD: a

pervasive fall detection system using mobile phones,” in 2010 8th IEEE

International Conference on Pervasive Computing and Communications

Workshops (PERCOMWorkshops) (Mannheim: IEEE), 292–297.

de Araújo, Í. L., Dourado, L., Fernandes, L., Andrade, R. M. C., and Aguilar, P. A.

C. (2018). “An algorithm for fall detection using data from smartwatch,” in 2018

13th Annual Conference on System of Systems Engineering (SoSE) (Paris: IEEE),

124–131. doi: 10.1109/SYSOSE.2018.8428786

de Quadros, T., Lazzaretti, A. E., and Schneider, F. K. (2018). A movement

decomposition and machine learning-based fall detection system using

wrist wearable device. IEEE Sens. J. 18, 5082–5089. doi: 10.1109/JSEN.2018.

2829815

Demiris, G., Hensel, B. K., Skubic, M., and Rantz, M. (2008). Senior residents’

perceived need of and preferences for “smart home” sensor technologies. Int.

J. Technol. Assess. Health Care 24, 120–124. doi: 10.1017/S0266462307080154

Deng, W.-Y., Zheng, Q.-H., and Wang, Z.-M. (2014). Cross-person activity

recognition using reduced kernel extreme learning machine. Neural Netw. 53,

1–7. doi: 10.1016/j.neunet.2014.01.008

DeVaul, R., Sung, M., Gips, J., and Pentland, A. (2003). “Mithril 2003:

applications and architecture,” in Null (White Plains, NY: IEEE), 4.

doi: 10.1109/ISWC.2003.1241386

Diraco, G., Leone, A., and Siciliano, P. (2010). “An active vision system for

fall detection and posture recognition in elderly healthcare,” in 2010 Design,

Automation & Test in Europe Conference & Exhibition (DATE 2010) (Dresden:

IEEE), 1536–1541. doi: 10.1109/DATE.2010.5457055

Djelouat, H., Baali, H., Amira, A., and Bensaali, F. (2017). “CS-based fall

detection for connected health applications,” in 2017 Fourth International

Conference on Advances in Biomedical Engineering (ICABME) (Beirut: IEEE),

1–4. doi: 10.1109/ICABME.2017.8167540

Edgcomb, A., and Vahid, F. (2012). Privacy perception and fall detection accuracy

for in-home video assistive monitoring with privacy enhancements. ACM

SIGHIT Rec. 2, 6–15. doi: 10.1145/2384556.2384557

El-Bendary, N., Tan, Q., Pivot, F. C., and Lam, A. (2013). Fall detection and

prevention for the elderly: a review of trends and challenges. Int. J. Smart Sens.

Intell. Syst. 6. doi: 10.21307/ijssis-2017-588

Espinosa, R., Ponce, H., Gutiérrez, S., Martínez-Villaseñor, L., Brieva, J.,

and Moya-Albor, E. (2019). A vision-based approach for fall detection

using multiple cameras and convolutional neural networks: a case study

using the up-fall detection dataset. Comput. Biol. Med. 115:103520.

doi: 10.1016/j.compbiomed.2019.103520

Feng, W., Liu, R., and Zhu, M. (2014). Fall detection for elderly person care in a

vision-based home surveillance environment using a monocular camera. Signal

Image Video Process. 8, 1129–1138. doi: 10.1007/s11760-014-0645-4

Gasparrini, S., Cippitelli, E., Gambi, E., Spinsante, S., Wåhslén, J., Orhan, I.,

et al. (2015). “Proposal and experimental evaluation of fall detection solution

based on wearable and depth data fusion,” in International Conference on ICT

Innovations (Ohrid: Springer), 99–108. doi: 10.1007/978-3-319-25733-4_11

Gasparrini, S., Cippitelli, E., Spinsante, S., and Gambi, E. (2014). A depth-

based fall detection system using a kinect R© sensor. Sensors 14, 2756–2775.

doi: 10.3390/s140202756

Gharghan, S., Mohammed, S., Al-Naji, A., Abu-AlShaeer, M., Jawad, H., Jawad, A.,

et al. (2018). Accurate fall detection and localization for elderly people based on

neural network and energy-efficient wireless sensor network. Energies 11, 2866.

doi: 10.3390/en11112866

Frontiers in Robotics and AI | www.frontiersin.org 20 June 2020 | Volume 7 | Article 7139

http://www.sucro.org/homepage/wanghaibo/SDUFall.html
http://www.sucro.org/homepage/wanghaibo/SDUFall.html
https://sites.google.com/view/haibowang/home
https://doi.org/10.1016/j.pmcj.2012.08.003
https://doi.org/10.23919/MVA.2017.7986795
https://doi.org/10.1109/JBHI.2016.2570300
https://doi.org/10.1155/2013/917923
https://doi.org/10.1109/MeMeA.2016.7533763
https://doi.org/10.1016/j.asoc.2014.12.035
https://doi.org/10.1109/TITB.2010.2087385
https://doi.org/10.1007/s11517-016-1504-y
https://doi.org/10.1109/JBHI.2014.2319372
https://doi.org/10.1109/VCIP.2014.7051592
https://doi.org/10.1016/j.gaitpost.2006.09.012
https://doi.org/10.1016/j.medengphy.2006.12.001
https://doi.org/10.1007/s11042-016-3374-6
https://doi.org/10.1109/SITIS.2012.155
https://doi.org/10.1519/JPT.0b013e3182abe779
https://doi.org/10.1109/ACCESS.2019.2906693
https://doi.org/10.1109/ICIP.2015.7350781
https://doi.org/10.1007/s11042-015-3177-1
https://doi.org/10.1080/10739149.2016.1268155
https://doi.org/10.1080/10739149.2017.1363054
https://doi.org/10.1007/s11760-013-0493-7
https://doi.org/10.1109/JSEN.2016.2625099
https://doi.org/10.1109/SYSOSE.2018.8428786
https://doi.org/10.1109/JSEN.2018.2829815
https://doi.org/10.1017/S0266462307080154
https://doi.org/10.1016/j.neunet.2014.01.008
https://doi.org/10.1109/ISWC.2003.1241386
https://doi.org/10.1109/DATE.2010.5457055
https://doi.org/10.1109/ICABME.2017.8167540
https://doi.org/10.1145/2384556.2384557
https://doi.org/10.21307/ijssis-2017-588
https://doi.org/10.1016/j.compbiomed.2019.103520
https://doi.org/10.1007/s11760-014-0645-4
https://doi.org/10.1007/978-3-319-25733-4_11
https://doi.org/10.3390/s140202756
https://doi.org/10.3390/en11112866
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Wang et al. Elderly Fall Detection Systems

Gholampooryazdi, B., Singh, I., and Sigg, S. (2017). “5G ubiquitous sensing:

passive environmental perception in cellular systems,” in 2017 IEEE

86th Vehicular Technology Conference (VTC-Fall) (Toronto: IEEE), 1–6.

doi: 10.1109/VTCFall.2017.8288261

Gia, T. N., Sarker, V. K., Tcarenko, I., Rahmani, A.M.,Westerlund, T., Liljeberg, P.,

et al. (2018). Energy efficient wearable sensor node for iot-based fall detection

systems.Microprocess. Microsyst. 56, 34–46. doi: 10.1016/j.micpro.2017.10.014

Guo, B., Zhang, Y., Zhang, D., and Wang, Z. (2019). Special issue on device-

free sensing for human behavior recognition. Pers. Ubiquit. Comput. 23, 1–2.

doi: 10.1007/s00779-019-01201-8

Habetha, J. (2006). “The myheart project-fighting cardiovascular diseases by

prevention and early diagnosis,” in Engineering in Medicine and Biology Society,

2006. EMBS’06. 28th Annual International Conference of the IEEE (New York,

NY: IEEE), 6746–6749. doi: 10.1109/IEMBS.2006.260937

Han, Q., Zhao, H., Min, W., Cui, H., Zhou, X., Zuo, K., et al. (2020). A two-stream

approach to fall detection with mobileVGG. IEEE Access 8, 17556–17566.

doi: 10.1109/ACCESS.2019.2962778

Hao, Z., Duan, Y., Dang, X., and Xu, H. (2019). “KS-fall: Indoor human fall

detection method under 5GHZ wireless signals,” in IOP Conference Series:

Materials Science and Engineering, Vol. 569 (Sanya: IOP Publishing), 032068.

doi: 10.1088/1757-899X/569/3/032068

Hori, T., Nishida, Y., Aizawa, H., Murakami, S., andMizoguchi, H. (2004). “Sensor

network for supporting elderly care home,” in Sensors, 2004, Proceedings of IEEE

(Vienna: IEEE), 575–578. doi: 10.1109/ICSENS.2004.1426230

Hsieh, S.-L., Chen, C.-C., Wu, S.-H., and Yue, T.-W. (2014). “A wrist-worn

fall detection system using accelerometers and gyroscopes,” in Proceedings of

the 11th IEEE International Conference on Networking, Sensing and Control

(Miami: IEEE), 518–523. doi: 10.1109/ICNSC.2014.6819680

Huang, Y., Chen, W., Chen, H., Wang, L., and Wu, K. (2019). “G-fall: device-

free and training-free fall detection with geophones,” in 2019 16th Annual

IEEE International Conference on Sensing, Communication, and Networking

(SECON) (Boston, MA: IEEE), 1–9. doi: 10.1109/SAHCN.2019.8824827

Igual, R., Medrano, C., and Plaza, I. (2013). Challenges, issues and trends in fall

detection systems. Biomed. Eng. Online 12, 66. doi: 10.1186/1475-925X-12-66

Islam, S. R., Kwak, D., Kabir, M. H., Hossain, M., and Kwak, K.-S. (2015). The

internet of things for health care: a comprehensive survey. IEEE Access 3,

678–708. doi: 10.1109/ACCESS.2015.2437951

Islam, Z. Z., Tazwar, S. M., Islam, M. Z., Serikawa, S., and Ahad, M. A. R.

(2017). “Automatic fall detection system of unsupervised elderly people using

smartphone,” in 5th IIAE International Conference on Intelligent Systems and

Image Processing 2017 (Hawaii), 5. doi: 10.12792/icisip2017.077

Kangas, M., Konttila, A., Lindgren, P., Winblad, I., and Jämsä, T. (2008).

Comparison of low-complexity fall detection algorithms for body attached

accelerometers. Gait Post. 28, 285–291. doi: 10.1016/j.gaitpost.2008.01.003

Kao, H.-C., Hung, J.-C., and Huang, C.-P. (2017). “GA-SVM applied

to the fall detection system,” in 2017 International Conference

on Applied System Innovation (ICASI) (Sapporo: IEEE), 436–439.

doi: 10.1109/ICASI.2017.7988446

Kepski, M., and Kwolek, B. (2014). “Fall detection using ceiling-mounted 3D depth

camera,” in 2014 International Conference on Computer Vision Theory and

Applications (VISAPP), Vol. 2 (Lisbon: IEEE), 640–647.

Kerdjidj, O., Ramzan, N., Ghanem, K., Amira, A., and Chouireb, F. (2020).

Fall detection and human activity classification using wearable sensors

and compressed sensing. J. Ambient Intell. Human. Comput. 11, 349–361.

doi: 10.1007/s12652-019-01214-4

Khojasteh, S., Villar, J., Chira, C., González, V., and de la Cal, E. (2018). Improving

fall detection using an on-wrist wearable accelerometer. Sensors 18:1350.

doi: 10.3390/s18051350

Klenk, J., Schwickert, L., Palmerini, L., Mellone, S., Bourke, A., Ihlen, E. A.,

et al. (2016). The farseeing real-world fall repository: a large-scale collaborative

database to collect and share sensor signals from real-world falls. Eur. Rev.

Aging Phys. Activity 13:8. doi: 10.1186/s11556-016-0168-9

Ko, M., Kim, S., Kim, M., and Kim, K. (2018). A novel approach for outdoor

fall detection using multidimensional features from a single camera. Appl. Sci.

8:984. doi: 10.3390/app8060984

Kong, Y., Huang, J., Huang, S., Wei, Z., and Wang, S. (2019). Learning

spatiotemporal representations for human fall detection in surveillance video. J.

Visual Commun. Image Represent. 59, 215–230. doi: 10.1016/j.jvcir.2019.01.024

Kumar, D. P., Yun, Y., and Gu, I. Y.-H. (2016). “Fall detection in RGB-D

videos by combining shape and motion features,” in 2016 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP) (Shanghai:

IEEE), 1337–1341. doi: 10.1109/ICASSP.2016.7471894

Kumar, S. V., Manikandan, K., and Kumar, N. (2014). “Novel fall detection

algorithm for the elderly people,” in 2014 International Conference on Science

Engineering and Management Research (ICSEMR) (Shanghai: IEEE), 1–3.

doi: 10.1109/ICSEMR.2014.7043578

Kwolek, B., and Kepski, M. (2014). Human fall detection on embedded platform

using depth maps and wireless accelerometer. Comput. Methods Programs

Biomed. 117, 489–501. doi: 10.1016/j.cmpb.2014.09.005

Kwolek, B., and Kepski, M. (2016). Fuzzy inference-based fall detection using

kinect and body-worn accelerometer. Appl. Soft Comput. 40, 305–318.

doi: 10.1016/j.asoc.2015.11.031

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

Leff, B. (1997). Persons found in their homes helpless or dead. J. Am. Geriatr. Soc.

45, 393–394. doi: 10.1111/j.1532-5415.1997.tb03788.x

Li, Q., Stankovic, J. A., Hanson, M. A., Barth, A. T., Lach, J., and Zhou, G. (2009).

“Accurate, fast fall detection using gyroscopes and accelerometer-derived

posture information,” in 2009 Sixth International Workshop on Wearable

and Implantable Body Sensor Networks (Berkeley, CA: IEEE), 138–143.

doi: 10.1109/BSN.2009.46

Li, X., Nie, L., Xu, H., and Wang, X. (2018). “Collaborative fall detection using

smart phone and kinect,” in Mobile Networks and Applications, eds H. Janicke,

D. Katsaros, T. J. Cruz, Z. M. Fadlullah, A.-S. K. Pathan, K. Singh et al.

(Springer), 1–14. doi: 10.1007/s11036-018-0998-y

Li, Y., Banerjee, T., Popescu, M., and Skubic, M. (2013). “Improvement of acoustic

fall detection using kinect depth sensing,” in 2013 35th Annual International

Conference of the IEEE Engineering in medicine and biology society (EMBC)

(Osaka: IEEE), 6736–6739.

Liu, L., Popescu,M., Skubic,M., and Rantz,M. (2014). “An automatic fall detection

framework using data fusion of Doppler radar and motion sensor network,” in

2014 36th Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (Chicago, IL: IEEE), 5940–5943.

Lord, C. J., and Colvin, D. P. (1991). “Falls in the elderly: detection and assessment,”

in Proceedings of the Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (Orlando, FL: IEEE), 1938–1939.

Lorincz, K., Malan, D. J., Fulford-Jones, T. R., Nawoj, A., Clavel, A., Shnayder,

V., et al. (2004). Sensor networks for emergency response: challenges and

opportunities. IEEE Pervas. Comput. 3, 16–23. doi: 10.1109/MPRV.2004.18

Luprano, J. (2006). “European projects on smart fabrics, interactive textiles:

Sharing opportunities and challenges,” in Workshop Wearable Technol. Intel.

Textiles (Helsinki).

Ma, C., Shimada, A., Uchiyama, H., Nagahara, H., and Taniguchi, R.-i. (2019). Fall

detection using optical level anonymous image sensing system. Optics Laser

Technol. 110, 44–61. doi: 10.1016/j.optlastec.2018.07.013

Ma, X., Wang, H., Xue, B., Zhou, M., Ji, B., and Li, Y. (2014). Depth-based human

fall detection via shape features and improved extreme learning machine. IEEE

J. Biomed. Health Inform. 18, 1915–1922. doi: 10.1109/JBHI.2014.2304357

Mahmud, F., and Sirat, N. S. (2015). Evaluation of three-axial wireless-based

accelerometer for fall detection analysis. Int. J. Integr. Eng. 7, 15–20.

Martínez-Villaseñor, L., Ponce, H., Brieva, J., Moya-Albor, E., Núñez-Martínez,

J., and Peñafort-Asturiano, C. (2019). Up-fall detection dataset: a multimodal

approach. Sensors 19:1988. doi: 10.3390/s19091988

Mastorakis, G., Ellis, T., and Makris, D. (2018). Fall detection without people:

a simulation approach tackling video data scarcity. Expert Syst. Appl. 112,

125–137. doi: 10.1016/j.eswa.2018.06.019

Mastorakis, G., Hildenbrand, X., Grand, K., and Makris, D. (2007). Customisable

fall detection: a hybrid approach using physics based simulation and machine

learning. IEEE Trans. Biomed. Eng. 54, 1940–1950.

Mastorakis, G., and Makris, D. (2014). Fall detection system using kinect’s infrared

sensor. J. Realtime Image Process. 9, 635–646. doi: 10.1007/s11554-012-0246-9

Medrano, C., Igual, R., García-Magariño, I., Plaza, I., and Azuara, G. (2017).

Combining novelty detectors to improve accelerometer-based fall detection.

Med. Biol. Eng. Comput. 55, 1849–1858. doi: 10.1007/s11517-017-1i632-z

Min, W., Yao, L., Lin, Z., and Liu, L. (2018). Support vector machine approach

to fall recognition based on simplified expression of human skeleton action

Frontiers in Robotics and AI | www.frontiersin.org 21 June 2020 | Volume 7 | Article 7140

https://doi.org/10.1109/VTCFall.2017.8288261
https://doi.org/10.1016/j.micpro.2017.10.014
https://doi.org/10.1007/s00779-019-01201-8
https://doi.org/10.1109/IEMBS.2006.260937
https://doi.org/10.1109/ACCESS.2019.2962778
https://doi.org/10.1088/1757-899X/569/3/032068
https://doi.org/10.1109/ICSENS.2004.1426230
https://doi.org/10.1109/ICNSC.2014.6819680
https://doi.org/10.1109/SAHCN.2019.8824827
https://doi.org/10.1186/1475-925X-12-66
https://doi.org/10.1109/ACCESS.2015.2437951
https://doi.org/10.12792/icisip2017.077
https://doi.org/10.1016/j.gaitpost.2008.01.003
https://doi.org/10.1109/ICASI.2017.7988446
https://doi.org/10.1007/s12652-019-01214-4
https://doi.org/10.3390/s18051350
https://doi.org/10.1186/s11556-016-0168-9
https://doi.org/10.3390/app8060984
https://doi.org/10.1016/j.jvcir.2019.01.024
https://doi.org/10.1109/ICASSP.2016.7471894
https://doi.org/10.1109/ICSEMR.2014.7043578
https://doi.org/10.1016/j.cmpb.2014.09.005
https://doi.org/10.1016/j.asoc.2015.11.031
https://doi.org/10.1038/nature14539
https://doi.org/10.1111/j.1532-5415.1997.tb03788.x
https://doi.org/10.1109/BSN.2009.46
https://doi.org/10.1007/s11036-018-0998-y
https://doi.org/10.1109/MPRV.2004.18
https://doi.org/10.1016/j.optlastec.2018.07.013
https://doi.org/10.1109/JBHI.2014.2304357
https://doi.org/10.3390/s19091988
https://doi.org/10.1016/j.eswa.2018.06.019
https://doi.org/10.1007/s11554-012-0246-9
https://doi.org/10.1007/s11517-017-1632-z
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Wang et al. Elderly Fall Detection Systems

and fast detection of start key frame using torso angle. IET Comput. Vis. 12,

1133–1140. doi: 10.1049/iet-cvi.2018.5324

Namba, T., and Yamada, Y. (2018a). Fall risk reduction for the elderly by using

mobile robots based on deep reinforcement learning. J. Robot. Network. Artif.

Life 4, 265–269. doi: 10.2991/jrnal.2018.4.4.2

Namba, T., and Yamada, Y. (2018b). Risks of deep reinforcement learning applied

to fall prevention assist by autonomous mobile robots in the hospital. Big Data

Cogn. Comput. 2:13. doi: 10.3390/bdcc2020013

Niu, K., Zhang, F., Xiong, J., Li, X., Yi, E., and Zhang, D. (2018). “Boosting fine-

grained activity sensing by embracing wireless multipath effects,” in Proceedings

of the 14th International Conference on emerging Networking EXperiments and

Technologies (Heraklion), 139–151. doi: 10.1145/3281411.3281425

Nukala, B., Shibuya, N., Rodriguez, A., Tsay, J., Nguyen, T., Zupancic, S., et al.

(2014). “A real-time robust fall detection system using a wireless gait analysis

sensor and an artificial neural network,” in 2014 IEEE Healthcare Innovation

Conference (HIC) (Seattle: IEEE), 219–222. doi: 10.1109/HIC.2014.7038914

Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., and Bajcsy, R. (2013). “Berkeley

MHAD: a comprehensive multimodal human action database,” in 2013 IEEE

Workshop on Applications of Computer Vision (WACV) (Clearwater Beach, FL:

IEEE), 53–60. doi: 10.1109/WACV.2013.6474999

Ozcan, K., and Velipasalar, S. (2016). Wearable camera-and accelerometer-

based fall detection on portable devices. IEEE Embed. Syst. Lett. 8, 6–9.

doi: 10.1109/LES.2015.2487241

Ozcan, K., Velipasalar, S., and Varshney, P. K. (2017). Autonomous fall detection

with wearable cameras by using relative entropy distance measure. IEEE Trans.

Hum. Mach. Syst. 47, 31–39. doi: 10.1109/THMS.2016.2620904

Palipana, S., Rojas, D., Agrawal, P., and Pesch, D. (2018). Falldefi: ubiquitous fall

detection using commodity wi-fi devices. Proc. ACM Interact. Mobile Wearable

Ubiquit. Technol. 1, 1–25. doi: 10.1145/3161183

Pandian, P., Mohanavelu, K., Safeer, K., Kotresh, T., Shakunthala, D.,

Gopal, P., et al. (2008). Smart vest: Wearable multi-parameter remote

physiological monitoring system. Med. Eng. Phys. 30, 466–477.

doi: 10.1016/j.medengphy.2007.05.014

Paradiso, R., Loriga, G., and Taccini, N. (2005). A wearable health care system

based on knitted integrated sensors. IEEE Trans. Inform. Technol. Biomed. 9,

337–344. doi: 10.1109/TITB.2005.854512

Pierleoni, P., Belli, A., Palma, L., Pellegrini, M., Pernini, L., and Valenti, S. (2015).

A high reliability wearable device for elderly fall detection. IEEE Sens. J. 15,

4544–4553. doi: 10.1109/JSEN.2015.2423562

Pister, K., Hohlt, B., Ieong, I., Doherty, L., and Vainio, I. (2003). Ivy-a Sensor

Network Infrastructure for the College of Engineering. Available online at: http://

www-bsac.eecs.berkeley.edu/projects/ivy

Putra, I., Brusey, J., Gaura, E., and Vesilo, R. (2017). An event-triggered machine

learning approach for accelerometer-based fall detection. Sensors 18, 20.

doi: 10.3390/s18010020

Queralta, J. P., Gia, T., Tenhunen, H., and Westerlund, T. (2019). “Edge-AI

in Lora-based health monitoring: fall detection system with fog computing

and LSTM recurrent neural networks,” in 2019 42nd International Conference

on Telecommunications and Signal Processing (TSP) (IEEE), 601–604.

doi: 10.1109/TSP.2019.8768883

Ray, P. P. (2014). “Home health hub internet of things (H 3 IoT): an architectural

framework for monitoring health of elderly people,” in 2014 International

Conference on Science Engineering and Management Research (ICSEMR)

(IEEE), 1–3. doi: 10.1109/ICSEMR.2014.7043542

Rougier, C., Auvinet, E., Rousseau, J., Mignotte, M., and Meunier, J. (2011a).

“Fall detection from depth map video sequences,” in International Conference

on Smart Homes and Health Telematics (Montreal: Springer), 121–128.

doi: 10.1007/978-3-642-21535-3_16

Rougier, C., Meunier, J., St-Arnaud, A., and Rousseau, J. (2011b). Robust video

surveillance for fall detection based on human shape deformation. IEEE Trans.

Circ. Syst. Video Technol. 21, 611–622. doi: 10.1109/TCSVT.2011.2129370

Sabatini, A. M., Ligorio, G., Mannini, A., Genovese, V., and Pinna, L.

(2016). Prior-to-and post-impact fall detection using inertial and barometric

altimeter measurements. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 774–783.

doi: 10.1109/TNSRE.2015.2460373

Saleh, M., and Jeannés, R. L. B. (2019). Elderly fall detection using wearable

sensors: a low cost highly accurate algorithm. IEEE Sens. J. 19, 3156–3164.

doi: 10.1109/JSEN.2019.2891128

Schwickert, L., Becker, C., Lindemann, U., Maréchal, C., Bourke, A., Chiari, L.,

et al. (2013). Fall detection with body-worn sensors. Z. Gerontol. Geriatr. 46,

706–719. doi: 10.1007/s00391-013-0559-8

Senouci, B., Charfi, I., Heyrman, B., Dubois, J., and Miteran, J. (2016). Fast

prototyping of a SOC-based smart-camera: a real-time fall detection case study.

J. Real Time Image Process. 12, 649–662. doi: 10.1007/s11554-014-0456-4

Shi, T., Sun, X., Xia, Z., Chen, L., and Liu, J. (2016). Fall detection algorithm based

on triaxial accelerometer and magnetometer. Eng. Lett. 24:EL_24_2_06.

Shibuya, N., Nukala, B. T., Rodriguez, A., Tsay, J., Nguyen, T. Q., Zupancic, S., et al.

(2015). “A real-time fall detection system using a wearable gait analysis sensor

and a support vector machine (SVM) classifier,” in 2015 Eighth International

Conference on Mobile Computing and Ubiquitous Networking (ICMU) (IEEE),

66–67. doi: 10.1109/ICMU.2015.7061032

Shojaei-Hashemi, A., Nasiopoulos, P., Little, J. J., and Pourazad, M. T. (2018).

“Video-based human fall detection in smart homes using deep learning,” in

2018 IEEE International Symposium on Circuits and Systems (ISCAS) (Florence:

IEEE), 1–5. doi: 10.1109/ISCAS.2018.8351648

Spasova, V., Iliev, I., and Petrova, G. (2016). Privacy preserving fall detection based

on simple human silhouette extraction and a linear support vector machine.

Int. J. Bioautomat. 20, 237–252.

Stone, E. E., and Skubic, M. (2015). Fall detection in homes of older adults

using the Microsoft Kinect. IEEE J. Biomed. Health Inform. 19, 290–301.

doi: 10.1109/JBHI.2014.2312180

Sucerquia, A., López, J., and Vargas-Bonilla, J. (2018). Real-life/real-time

elderly fall detection with a triaxial accelerometer. Sensors 18:1101.

doi: 10.3390/s18041101

Thilo, F. J., Hahn, S., Halfens, R. J., and Schols, J. M. (2019). Usability of a wearable

fall detection prototype from the perspective of older people-a real field testing

approach. J. Clin. Nurs. 28, 310–320. doi: 10.1111/jocn.14599

Tian, Y., Lee, G.-H., He, H., Hsu, C.-Y., and Katabi, D. (2018). RF-based fall

monitoring using convolutional neural networks. Proc. ACM Interact. Mobile

Wearable Ubiquitous Technol. 2, 1–24. doi: 10.1145/3264947

Tsinganos, P., and Skodras, A. (2018). On the comparison of wearable sensor data

fusion to a single sensor machine learning technique in fall detection. Sensors

18, 592. doi: 10.3390/s18020592

Wang, H., Zhang, D., Wang, Y., Ma, J., Wang, Y., and Li, S. (2017a). RT-fall: a real-

time and contactless fall detection system with commodity wifi devices. IEEE

Trans. Mob. Comput. 16, 511–526. doi: 10.1109/TMC.2016.2557795

Wang, Y., Wu, K., and Ni, L. M. (2017b). Wifall: device-free fall detection

by wireless networks. IEEE Trans. Mobile Comput. 16, 581–594.

doi: 10.1109/TMC.2016.2557792

WHO (2018). Falls. Available online at: https://www.who.int/news-room/fact-

sheets/detail/falls

Williams, G., Doughty, K., Cameron, K., and Bradley, D. (1998). “A smart

fall and activity monitor for telecare applications,” in Proceedings of the

20th Annual International Conference of the IEEE Engineering in Medicine

and Biology Society. Vol. 20 Biomedical Engineering Towards the Year

2000 and Beyond (Cat. No. 98CH36286), Volume 3 (IEEE), 1151–1154.

doi: 10.1109/IEMBS.1998.747074

Wu, F., Zhao, H., Zhao, Y., and Zhong, H. (2015). Development of a

wearable-sensor-based fall detection system. Int. J. Telemed. Appl. 2015:2.

doi: 10.1155/2015/576364

Wu, T., Gu, Y., Chen, Y., Xiao, Y., and Wang, J. (2019). A mobile cloud

collaboration fall detection system based on ensemble learning. arXiv

[Preprint]. arXiv:1907.04788.

Xi, X., Jiang, W., Lü, Z., Miran, S. M., and Luo, Z.-Z. (2020). Daily activity

monitoring and fall detection based on surface electromyography and plantar

pressure. Complexity. 2020:9532067. doi: 10.1155/2020/9532067

Xi, X., Tang, M., Miran, S. M., and Luo, Z. (2017). Evaluation of feature extraction

and recognition for activity monitoring and fall detection based on wearable

SEMG sensors. Sensors 17, 1229. doi: 10.3390/s17061229

Xu, T., Zhou, Y., and Zhu, J. (2018). New advances and challenges of fall detection

systems: a survey. Appl. Sci. 8, 418. doi: 10.3390/app8030418

Yang, G. (2018). A Study on Autonomous Motion Planning of Mobile Robot by Use

of Deep Reinforcement Learning for Fall Prevention in Hospita. Japan: JUACEP

Indenpedent Research Report Nagoya University.

Yang, G.-Z., and Yang, G. (2006). Body Sensor Networks. Springer.

doi: 10.1007/1-84628-484-8

Frontiers in Robotics and AI | www.frontiersin.org 22 June 2020 | Volume 7 | Article 7141

https://doi.org/10.1049/iet-cvi.2018.5324
https://doi.org/10.2991/jrnal.2018.4.4.2
https://doi.org/10.3390/bdcc2020013
https://doi.org/10.1145/3281411.3281425
https://doi.org/10.1109/HIC.2014.7038914
https://doi.org/10.1109/WACV.2013.6474999
https://doi.org/10.1109/LES.2015.2487241
https://doi.org/10.1109/THMS.2016.2620904
https://doi.org/10.1145/3161183
https://doi.org/10.1016/j.medengphy.2007.05.014
https://doi.org/10.1109/TITB.2005.854512
https://doi.org/10.1109/JSEN.2015.2423562
http://www-bsac.eecs.berkeley.edu/projects/ivy
http://www-bsac.eecs.berkeley.edu/projects/ivy
https://doi.org/10.3390/s18010020
https://doi.org/10.1109/TSP.2019.8768883
https://doi.org/10.1109/ICSEMR.2014.7043542
https://doi.org/10.1007/978-3-642-21535-3_16
https://doi.org/10.1109/TCSVT.2011.2129370
https://doi.org/10.1109/TNSRE.2015.2460373
https://doi.org/10.1109/JSEN.2019.2891128
https://doi.org/10.1007/s00391-013-0559-8
https://doi.org/10.1007/s11554-014-0456-4
https://doi.org/10.1109/ICMU.2015.7061032
https://doi.org/10.1109/ISCAS.2018.8351648
https://doi.org/10.1109/JBHI.2014.2312180
https://doi.org/10.3390/s18041101
https://doi.org/10.1111/jocn.14599
https://doi.org/10.1145/3264947
https://doi.org/10.3390/s18020592
https://doi.org/10.1109/TMC.2016.2557795
https://doi.org/10.1109/TMC.2016.2557792
https://www.who.int/news-room/fact-sheets/detail/falls
https://www.who.int/news-room/fact-sheets/detail/falls
https://doi.org/10.1109/IEMBS.1998.747074
https://doi.org/10.1155/2015/576364
https://doi.org/10.1155/2020/9532067
https://doi.org/10.3390/s17061229
https://doi.org/10.3390/app8030418
https://doi.org/10.1007/1-84628-484-8
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Wang et al. Elderly Fall Detection Systems

Yang, K., Ahn, C. R., Vuran, M. C., and Aria, S. S. (2016). Semi-supervised near-

miss fall detection for ironworkers with a wearable inertial measurement unit.

Automat. Construct. 68, 194–202. doi: 10.1016/j.autcon.2016.04.007

Yang, S.-W., and Lin, S.-K. (2014). Fall detection for multiple pedestrians using

depth image processing technique. Comput. Methods Programs Biomed. 114,

172–182. doi: 10.1016/j.cmpb.2014.02.001

Yazar, A., Erden, F., and Cetin, A. E. (2014). “Multi-sensor ambient assisted living

system for fall detection,” in Proceedings of the IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP-14) (Florence), 1–3.

Yun, Y., Innocenti, C., Nero, G., Lindén, H., and Gu, I. Y.-H. (2015). “Fall detection

in RGB-D videos for elderly care,” in 2015 17th International Conference on E-

health Networking, Application & Services (HealthCom) (Boston, MA: IEEE),

422–427.

Zhang, L.,Wang, C., Ma,M., and Zhang, D. (2019).Widigr: direction-independent

gait recognition system using commercial wi-fi devices. IEEE Internet Things J.

7, 1178–1191. doi: 10.1109/JIOT.2019.2953488

Zhang, T., Wang, J., Liu, P., and Hou, J. (2006). Fall detection by embedding an

accelerometer in cellphone and using kfd algorithm. Int. J. Comput. Sci. Netw.

Security 6, 277–284.

Zhang, Z., Conly, C., and Athitsos, V. (2014). “Evaluating depth-based computer

vision methods for fall detection under occlusions,” in International

Symposium on Visual Computing (Las Vegas: Springer), 196–207.

doi: 10.1007/978-3-319-14364-4_19

Zhang, Z., Conly, C., and Athitsos, V. (2015). “A survey on vision-based

fall detection,” in Proceedings of the 8th ACM International Conference on

PErvasive Technologies Related to Assistive Environments (Las Vegas: ACM),

46. doi: 10.1145/2769493.2769540

Zhao, M., Li, T., Abu Alsheikh, M., Tian, Y., Zhao, H., Torralba, A., et al. (2018).

“Through-wall human pose estimation using radio signals,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (Long Beach,

CA), 7356–7365. doi: 10.1109/CVPR.2018.00768

Zitouni, M., Pan, Q., Brulin, D., and Campo, E. (2019). Design of a

smart sole with advanced fall detection algorithm. J. Sensor Technol. 9:71.

doi: 10.4236/jst.2019.94007

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Wang, Ellul and Azzopardi. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 23 June 2020 | Volume 7 | Article 7142

https://doi.org/10.1016/j.autcon.2016.04.007
https://doi.org/10.1016/j.cmpb.2014.02.001
https://doi.org/10.1109/JIOT.2019.2953488
https://doi.org/10.1007/978-3-319-14364-4_19
https://doi.org/10.1145/2769493.2769540
https://doi.org/10.1109/CVPR.2018.00768
https://doi.org/10.4236/jst.2019.94007
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


ORIGINAL RESEARCH
published: 28 August 2020

doi: 10.3389/frobt.2020.00106

Frontiers in Robotics and AI | www.frontiersin.org 1 August 2020 | Volume 7 | Article 106

Edited by:

George Azzopardi,

University of Groningen, Netherlands

Reviewed by:

Antonio Greco,

University of Salerno, Italy

Laura Fernáández-Robles,

Universidad de León, Spain

*Correspondence:
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Komínková Oplatková Z and

Rodríguez-Sánchez A (2020)

Improving CT Image Tumor

Segmentation Through Deep

Supervision and Attentional Gates.

Front. Robot. AI 7:106.

doi: 10.3389/frobt.2020.00106

Improving CT Image Tumor
Segmentation Through Deep
Supervision and Attentional Gates
Alžběta Turečková 1*, Tomáš Tureček 1, Zuzana Komínková Oplatková 1 and

Antonio Rodríguez-Sánchez 2

1 Artificial Intelligence Laboratory, Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czechia, 2 Intelligent and

Interactive Systems, Department of Computer Science, University of Innsbruck, Innsbruck, Austria

Computer Tomography (CT) is an imaging procedure that combines many X-ray

measurements taken from different angles. The segmentation of areas in the CT images

provides a valuable aid to physicians and radiologists in order to better provide a

patient diagnose. The CT scans of a body torso usually include different neighboring

internal body organs. Deep learning has become the state-of-the-art in medical image

segmentation. For such techniques, in order to perform a successful segmentation, it

is of great importance that the network learns to focus on the organ of interest and

surrounding structures and also that the network can detect target regions of different

sizes. In this paper, we propose the extension of a popular deep learning methodology,

Convolutional Neural Networks (CNN), by including deep supervision and attention gates.

Our experimental evaluation shows that the inclusion of attention and deep supervision

results in consistent improvement of the tumor prediction accuracy across the different

datasets and training sizes while adding minimal computational overhead.

Keywords: medical image segmentation, CNN, UNet, VNet, attention gates, deep supervision, tumor

segmentation, organ segmentation

1. INTRODUCTION

The daily work of a radiologist consists of visually analyzing multiple anatomical structures
in medical images. Subtle variations in size, shape, or structure may be a sign of
disease and can help to confirm or discard a particular diagnosis. However, manual
measurements are time-consuming and could result in inter-operator and intra-operator variability
(Sharma and Aggarwal, 2010; Jimenez-del-Toro et al., 2016). At the same time, the amount of data
acquired via Computer tomography (CT) and Magnetic resonance (MR) is ever-growing (Sharma
and Aggarwal, 2010). As a result, there is an increasing interest in reliable automatic systems that
assist radiological experts in clinical diagnosis and treatment planning. One of such aids to experts
is medical image segmentation, which consists of voxel-wise annotation of target structures in the
image and it is present inmany recent research work. Yearlymedical image competition challenges1

allow to the computer vision and machine learning experts to access and evaluate medical image
data (Jimenez-del-Toro et al., 2016).

Deep learning techniques, especially convolutional neural networks (CNN), have become
the state-of-the-art for medical image segmentation. Fully convolutional networks (FCNs)

1For example website Grand Challenges in Biomedical Image Analysis gathers multiple competitions;

https://grand-challenge.org.
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(Long et al., 2015) and the U-Net (Ronneberger et al., 2015)
are two of the most commonly used architectures. Their area
of application includes anatomical segmentation of cardiac CT
(Zreik et al., 2016), detection of lung nodules in chest CT
(Hamidian et al., 2017), multi-organ segmentation in CT and
MRI images of the abdomen (Jimenez-del-Toro et al., 2016), and
ischemic stroke lesion outcome prediction based onmultispectral
MRI (Winzeck et al., 2018) among others.

Despite the success of deep CNN techniques, there are
difficulties inherent to their applicability. First, large datasets
are needed for the successful training of deep CNN models.
In medical imaging, this may be problematic due to the cost
of acquisition, data anonymization techniques, etc. Second,
volumetric medical image data require vast computational
resources, even when using graphical computation units (GPU)
the training process is very time-consuming. Therefore, every
new proposal should take into account not only the performance
but also the computational load.

Current CT-based clinical abdominal diagnosis relies on the
comprehensive analysis of groups of organs, and the quantitative
measures of volumes, shapes, and others, which are usually
indicators of disorders. Computer-aided diagnosis and medical
image analysis traditionally focus on organ or disease based
applications, i.e., multi-organ segmentation from abdominal
CT (Jimenez-del-Toro et al., 2016; Hu et al., 2017; Gibson
et al., 2018), or tumor segmentation in the liver (Linguraru
et al., 2012), the pancreas (Isensee et al., 2018), or the kidney
(Yang et al., 2018).

There are two significant challenges in automatic abdominal
organ segmentation from CT images (Hu et al., 2017). One of
such challenges is how to automatically locate the anatomical
structures in the target image because different organs lay
close to each other and can also overlap. Moreover, among
individual patients exists considerable variations in the location,
shape, and size of organs. Furthermore, abdominal organs
are characteristically represented by similar intensity voxels as
identify surrounding tissues in CT images. The other challenge is
to determine the fuzzy boundaries between neighboring organs
and soft tissues surrounding them.

The task of detecting cancerous tissue in an abdominal organ
is even more difficult because of the large variability of tumors
in size, position, and morphology structure. Results are quite
impressive when the focus is on detecting organs; an example of
this is (Isensee et al., 2018), achieving dice scores of 95.43 and
79.30 for liver and pancreas segmentation. On the other hand,
these values drop dramatically when the focus is on detecting
the tumor, where values are as low as 61.82 and 52.12 for their
respective (liver and pancreas) tumor classes. There is also a high
variability on tumor classification depending on the organ, e.g.,
Yang et al. (2018) presents dice scores of 93.1 and 80.2 when the
organ is the kidney and its tumor detection, respectively.

On the other hand, all the organs have a typical shape,
structure, and relative position in the abdomen. The model could
then benefit from an attentional mechanism consolidated in the
network architecture, which could help to focus specifically on
the organ of interest. For this purpose, we incorporated the idea

of attention gates (AG) (Oktay et al., 2018). Attention gates
identify salient image regions and prune feature responses to
preserve only the activations relevant to the specific task and
to suppress feature responses in irrelevant background regions
without the requirement to crop the region of interest.

Many research papers have incorporated attention into
artificial CNN visual models for image captioning (Xu et al.,
2015), classification (Mnih et al., 2014; Xiao et al., 2015), and
segmentation (Chen et al., 2016). In the case of Recurrent Neural
Networks (RNN), Ypsilantis and Montana (2017) presents an
RNN model that learns to sequentially sample the entire X-ray
image and focus only on salient areas. In these models, attention
could be divided into two categories: hard and soft attention. As
described by Xu et al. (2015), hard attention is when the attention
scores are used to select a single hidden state, e.g., iterative
region proposal and cropping. Such an attention mechanism
is often non-differentiable and relies on reinforcement learning
for updating parameter values, which makes training quite
challenging. On the other hand, soft attention calculates the
context vector as a weighted sum of the encoder hidden states
(feature vectors). Thus, soft attention is differentiable, and the
entire model is trainable by back-propagation. The attention
modules which generate attention-aware features presented by
Wang et al. (2017) was the state-of-the-art object recognition
performance on ImageNet in 2017. Huang et al. (2019) presents
a Criss-Cross Network (CCNet) with a criss-cross attention
module and achieves the state-of-the-art results of mIoU score
of 81.4 and 45.22 on Cityscapes test set and ADE20K validation
set, respectively. Grewal et al. (2018) combines deep CNN
architecture with the components of attention for slice level
predictions and achieves 81.82% accuracy for the prediction of
hemorrhage from 3D CT scans, matching the performance of a
human radiologist. Other boosted convolutional neural network
with attention and deep supervision (DAB-CNN) (Kearney et al.,

2019) achieves state-of-the-art results in automatic segmentation
of the prostate, rectum, and penile bulb.

Deep supervision was firstly introduced by Lee et al. (2015)

as a way to deal with the problem of the vanishing gradient in
training deeper CNN for image classification. This method adds

companion objective functions at each hidden layer in addition
to the overall objective function at the output layer. Such a
model can learn robust features even in the early layers; moreover

the deep supervision brings some insight on the effect that
intermediate layers may have on the overall model performance.
Since then, deep supervision was successfully applied in many
vision models. In the case of medical applications, it has been

employed to prostate segmentation (Zhu et al., 2017), to the

liver (Dou et al., 2016), and pancreatic cyst (Zhou et al., 2017)
segmentation in CT volumes, and to brain tumor segmentation
from magnetic resonance imaging (Isensee et al., 2017).

In the present work, we propose a methodology for a

more reliable organ and tumor segmentation from computed
tomography scans. The contribution of this work is three-fold:

• A methodology that achieves the state-of-the-art performance
on several segmentation tasks dealing with organ and tumor
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Turečková et al. Tumor Segmentation in CT Images

segmentation, of special interest is the increase obtained in the
precision of tumor segmentation.

• A visualization of the feature maps from our CNN architecture
to provide some insight into what is the focus of attention in
the different parts of the model for better tumor detection.

• Third and not last, we provide a novel and extended
comparison of CNN architectures for different organ-tumor
segmentation from abdomen CT scans.

2. METHODOLOGY

We will provide the details of the proposed methodology in
this section. Firstly, we will explain the preprocessing and
normalization of the medical image data. Secondly, we will
provide a detailed description of the model architecture, the
attention gates, and the deep supervision layers. The loss
function, the optimizer, and other specifics of interest are detailed
in the following subsection, which also describes patch sampling
and data augmentation techniques utilized in order to prevent
overfitting. The last part shortly outlines inference and how the
image patches are stitched back together. We provide a publicly
available implementation of our methodology using PyTorch at:
github.com/tureckova/Abdomen-CT-Image-Segmentation.

2.1. Data Preprocessing
CT scans might be captured by different scanners in different
medical clinics with nonidentical acquisition protocols; therefore
the data preprocessing step is crucial to normalize the data in a
way that enables the convolutional network to learn suitable and
meaningful features properly. We preprocess the CT scan images
as follows (Isensee et al., 2018):

• All patients are resampled to the median voxel spacing
of the dataset using the third-order spline interpolation
for image data and the nearest neighbor interpolation for the
segmentation mask.

• The dataset is normalized by clipping to the [0.5, 99.5]
percentiles of the intensity values occurring within the
segmentation masks.

• Z-score normalization is applied based on the mean and
standard deviation of all intensity values occurring within the
segmentation masks.

Because of memory restrictions, the model was trained on 3D
image patches. All the models were trained on an 11GB GPU. A
base configuration of the input patch size of 128 × 128 × 128
and a batch size of 2 was chosen to fit our hardware set up.
Then the model automatically adapts these parameters, so they
reflect the median image size of each dataset. We consider two
different approaches:

Full-resolution—the original resolutions of images are used
for the training, and relatively small 3D patches are chosen
randomly during training. This way, the network has access
to high-resolution details; on the other hand, it neglects
context information.
Low-resolution—the patient image is downsampled by a factor
of two until the median shape of the resampled data has less

than four times the voxels that can be processed as an input
patch. 3D patches are also chosen randomly during training. In
this case, the model has more information about the context but
lacks high-resolution details.

2.2. Model Architecture
Deep learning techniques, especially convolutional neural
networks, occupy the main interest of research in the area
of medical image segmentation nowadays and outperform
most techniques. A very popular convolution neural network
architecture used in medical imaging is the encoder-decoder
structure with skip connections at each image resolution level.
The basic principle was firstly presented by Ronneberger et al.
(2015) for segmenting 2D biomedical images; this network was
named U-Net. U-Net traditionally uses the max-pooling to
downsample the image in the encoder part and upsampling in the
decoder part of the structure. The work of Milletari et al. (2016)
extended the model for volumetric medical image segmentation
and replaced the max-pooling and upsampling by convolutions,
creating a fully convolutional neural network named V-Net.
The original U-Net architecture was quickly extended into 3D,
and since then, the literature seems to be using names U-Net
and V-Net interchangeably. In this work, all models work with
volumetric data, and we decided to keep the original architectures
naming and differences:

• UNet—the encoder-decoder structure with the skip
connections using the max-pooling to downsample the
image in the encoder part and upsampling in the decoder part
of the structure.

• VNet—the fully convolutional encoder-decoder architecture
with skip connections.

We follow encoder-decoder architecture choices applied to each
dataset by Isensee et al. (2018). We use 30 feature maps in the
highest layers (the number of feature maps doubles with each
downsampling), and we downsample the image along each axis
until the feature maps have size 8 or for a maximum of 5 times.
The encoder part consists of context modules, and the decoder
part is composed of localization modules. Each module contains
a convolution layer, a dropout layer, an instance normalization
layer, and a leakyReLU.

In addition to original encoder-decoder network architecture,
we add attention gates (Oktay et al., 2018) in the top two
model levels and deep supervision (Kayalibay et al., 2017).
Both extensions are described in the next two subsections. The
structure of proposed network architecture is shown in Figure 1.

2.2.1. Attention Gates
Attention coefficients, αi ∈ [0, 1] emphasizes salient image
regions and significant features to preserve only relevant
activations specific to the actual task. The output of AGs (1)
is the element-wise multiplication of input feature-maps and
attention coefficients:

x̂li,c = xli,c · α
l
i,c (1)
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FIGURE 1 | A block diagram of the segmentation model with attention gates and deep supervision.

FIGURE 2 | A block diagram of additive attention gate (AG) (Oktay et al., 2018). Input features (xl ) are scaled with the attention coefficients (α) computed in AG.

Spatial regions are selected by analyzing both the activations and the contextual information provided by the gating signal (g) which is collected from a coarser

resolution scale. Attention coefficients are resampled to match the resolution of (xl ) by trilinear interpolation.

where αli,c is the attention coefficient (obtained using Equation 3,

below), and xli,c is pixel i in layer l for class c. xli ∈ R
Fl where Fl

corresponds to the number of feature-maps in layer l. Therefore,
each AG learns to focus on a subset of target structures. The
structure of an attention gate is shown in Figure 2. A gating
vector gi is used for each pixel i to determine the regions of focus.
The gating vector contains contextual information to reduce
lower-level feature responses. The gate uses additive attention (2),
formulated as follows (Oktay et al., 2018):

qlatt = ψT(σ1(W
T
x x

l
i,c +WT

g gi,c + bg))+ bψ (2)

αli,c = σ2(q
l
att(x

l
i,c, gi,c,2att)), (3)

where σ1(x
l
i,c) = max(0, xli,c) is rectified linear unit. AG is

characterized by a set of parameters 2att containing: linear
transformationsWx ∈ R

Fl×Fint ,Wg ∈ R
Fg×Fint , ψ ∈ R

Fint×1 and

bias terms bψ ∈ R, bg ∈ R
Fint . σ2(x

l
i,c) =

1

1+exp(−xli,c)
corresponds

to a sigmoid activation function. The linear transformations are
computed using channel-wise 1×1×1 convolutions of the input
tensors. All the AG parameters can be trained with the standard
back-propagation updates.

2.2.2. Deep Supervision
Deep supervision (Kayalibay et al., 2017) is the design
where multiple segmentation maps are generated at different
resolutions levels. The feature maps from each network level

are transposed by 1 × 1 × 1 convolutions to create secondary
segmentation maps. These are then combined in the following
way: First, the segmentation map with the lowest resolution is
upsampled with bilinear interpolation to have the same size as the
second-lowest resolution segmentation map. The element-wise
sum of the two maps is then upsampled and added to the third-
lowes segmentation map and so on until we reach the highest
resolution level. For illustration see Figure 1.

These additional segmentation maps do not primarily serve
for any further refinement of the final segmentation map
created at the last layer of the model because the context
information is already provided by long skip connections. The
secondary segmentation maps help in the speed of convergence
by “encouraging” earlier layers of the network to produce better
segmentation results. A similar principle has been used by
Kayalibay et al. (2017) and Chen et al. (2018).

2.3. Training
Unless stated otherwise, all models are trained with a five-fold
cross-validation. The network is trained with a combination of
dice (5) and cross-entropy (6) loss function (4):

Ltotal = Ldice + LcrossEntropy, (4)

Ldice = −
2

|C|

∑

c∈C

∑
i∈I u

c
i v

k
i∑

i∈I u
c
i +

∑
i∈I v

c
i

, (5)
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LcrossEntropy = −
∑

c∈C

∑

i∈I

(vci log(u
k
i )), (6)

where u is the softmax output of the network and v is a one
hot encoding of the ground truth segmentation map2. Both u
and v have shape I × C with i ∈ I being the number of pixels
in the training patch/batch and c ∈ C being the classes. The
cross-entropy loss speeds up the learning in the beginning of the
training, while the dice loss function helps to deal with the label
unbalance which is typical for medical images data.

The dice loss is computed for each class and each sample in
the batch and averaged over the batch and over all classes. We use
the Adam optimizer with an initial learning rate 3 × 10−5 and l2
weight decay 3×10−5 for all experiments. An epoch is defined as
the iteration over all training images. Whenever the exponential
moving average of the training loss does not improve within the
last 30 epochs, the learning rate is decreased by a factor of 0.2.
We train till the learning rate drops below 10−6 or 1, 000 epochs
are exceeded.

Gradient updates are computed by standard backpropagation
using a small batch size of 2. Initial weights values are extracted
from a normal distribution (He et al., 2015). Gating parameters
are initialized such that the attention gates let pass all feature
vectors at all spatial locations.

2.3.1. Data Augmentation and Patch Sampling
Training of the deep convolutional neural networks from
limited training data suffers from overfitting. To minimize
this problem, we apply a large variety of data augmentation
techniques: random rotations, random scaling, random elastic
deformations, gamma correction augmentation, and mirroring.
All the augmentation techniques are applied on the fly during
training. Data augmentation is realized with a framework
which is publicly available at: https://github.com/MIC-DKFZ/
batchgenerators.

The patches are generated randomly on the fly during the
training, but we force thatminimally one of the samples in a batch
contains at least one foreground class to enhance the stability of
the network training.

2.4. Inference
According to the training, inference of the final segmentation
mask is also made patch-wise. The output accuracy is known to
decrease toward the borders of the predicted image. Therefore,
we overlap the patches by half the size of the patch and also
weigh voxels close to the center higher than those close to the
border, when aggregating predictions across patches. The weights
are generated, so the center position in a patch is equal to one,
and the boundary pixels are set to zero, in between the values are
extracted from a Gaussian distribution with sigma equal to one-
eight of patch size. To further increase the stability, we use test
time data augmentation by mirroring all patches along all axes.

2A one-hot encoding was created from the original ground true segmentation map

in a way, that each image channel contains only one class present in segmentation

map, this way all the classes are represented by value one just in different image

channels. For example, if we have ground true segmentation map of size (1 ×

imSize1×imSize2×imSize3) with three labels: 0, 1, 2. The one-hot encoding would

have the size (3× imSize1× imSize2× imSize3).

TABLE 1 | An overview of image shapes, training setups, and network topologies

for each task.

High resolution Low resolution

Kidney Num. images training 168 168

Num. images validation 42 42

Median patient shape 511× 511× 136 247× 247× 127

Input patch size 160× 160× 48 128× 128× 80

Num. downsampling per axis 5, 5, 3 5, 5, 4

Batch size 2 2

Liver Num. images training 105 105

Num. images validation 26 26

Median patient shape 482× 512× 512 189× 201× 201

Input patch size 96× 128× 128 96× 128× 128

Num. downsampling per axis 5, 5, 5 5, 5, 5

Batch size 2 2

Pancreas Num. images training 224 224

Num. images validation 57 57

Median patient shape 96× 512× 512 88× 299× 299

Input patch size 40× 192× 160 64× 128× 128

Num. downsampling per axis 3, 5, 5 3, 5, 5

Batch size 2 2

3. EXPERIMENTAL EVALUATION AND
DISCUSSION

In order to show the validity of the proposed segmentation
method, we evaluate the methodology on challenging abdominal
CT segmentation problem. We appraise the detection of
cancerous tissue inside three different organs: pancreas, liver,
and kidney.

3.1. CT Scan Datasets
The experiments are evaluated on three different CT abdominal
datasets featuring organ and tumor segmentation classes: kidney,
liver, and pancreas. Each dataset brings slightly different
challenges for the model. More information about each task
dataset, training setups, and concrete network topologies are as
follows (see also Table 1).

3.1.1. Kidney
The dataset features a collection of multi-phase CT imaging,
segmentation masks, and comprehensive clinical outcomes for
300 patients who underwent nephrectomy for kidney tumors
at the University of Minnesota Medical Center between 2010
and 2018 (Heller et al., 2019). Seventy percent (210) of these
patients have been selected at random as the training set for
the 2019MICCAI KiTS Kidney Tumor Segmentation Challenge3

and have been released publicly.
We perform five-fold cross-validation during training: 42

images are used for validation and 168 images for training. The
mean patient shape after the resampling is 511×511×136 pixels

3kits19.grand-challenge.org
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FIGURE 3 | Examples of attention maps (AM) obtained from attention gates in the three topmost levels of the low-resolution VNet (from left to right: full spatial

resolution, downsampling of two and four).

in case of high-resolution and 247 × 247 × 127 pixels in low-
resolution. According to the median shapes, we use 5, 5, and 3
downsampling for each respective image axis in high-resolution
and 5, 5, 4 downsamplings in low-resolution. The patch size in
case of high-resolution is 160×160×48 pixels and 128×128×80
pixels for low-resolution.

3.1.2. Liver
The dataset features a collection of 201 portal-venous-phase CT
scans and segmentation masks for liver and tumor captured at
IRCADHôpitaux Universitaires. Sixty-five percent (131) of these
images have been released publicly as the training set for the
2018 MICCAI Medical Decathlon Challenge4 (Simpson et al.,
2019). This dataset contains a big label unbalance between organ
(liver) and tumor. The inclusion of the dice term in the loss
function (section 2.3) helps to mitigate the negative effects of
such unbalance.

We perform five-fold cross-validation during training: 26
images are used for validation and 105 images for training. The
mean patient shape after the resampling is 482 × 512 × 512
pixels in case of high-resolution and 189 × 201 × 201 pixels in

4medicaldecathlon.com

low-resolution. According to the median shapes, we downsample
five times each respective image axis in both high-resolution and
low-resolution. The patch size in case of high-resolution was
96×128×128 pixels and 96×128×128 pixels for low-resolution.

3.1.3. Pancreas
The dataset features a collection of 421 portal-venous-phase
CT imaging and segmentation masks for pancreas and tumor
captured at Memorial Sloan Kettering Cancer Center. Seventy
percent (282) of these images have been released publicly
as the training set for the 2018 MICCAI Medical Decathlon
Challenge4 (Simpson et al., 2019). This dataset is also class
unbalanced, the background being the most prominent class,
followed by the organ (pancreas) and the tumor as the least
present class. Appearance is quite heterogeneous for pancreas
and tumor. As before, the inclusion of the dice term in the loss
function helps to mitigate the negative effects of such unbalance.

We perform five-fold cross-validation during training: 26
images are used for validation and 105 images for training. The
mean patient shape after the resampling is 96× 512× 512 pixels
in the case of high-resolution and 88 × 299 × 299 pixels in low-
resolution. According to the median shapes, we do 3, 5, and 5
downsampling for each respective image axis in high-resolution

Frontiers in Robotics and AI | www.frontiersin.org 6 August 2020 | Volume 7 | Article 10648

http://medicaldecathlon.com/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
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and 3, 5, 5 downsamplings in low-resolution. The patch size in
case of high-resolution is 40×192×160 pixels and 64×128×128
pixels for low-resolution.

3.2. Visualization of the Activation Maps
The network design allows us to visualize meaningful activations
maps from the attention gates as well as from the deep
supervision layers. The visualizations enable an exciting insight
into the functionality of the convolutional network. The
understanding of how the model represents the input image
at the intermediate layers can help to gain more insight into
improving the model and uncover at least part of the black-box
behavior for which the neural networks are also known.

3.2.1. Visualization of the Attentional Maps
The low-resolution VNet was chosen to study the attention
coefficients generated at different levels of a network trained
on the Medical Decathlon Pancreas dataset. Figure 3 shows the
attention coefficients obtained from three top network levels
(working with full spatial resolution and downsampled two and
four times). The attention gates provide a rough outline of

the organs in top two network levels, but not in the lower
spatial resolution cases. For this reason, in our experiments,
we decided to implement the AG only at two topmost
levels and save the computation memory to handle larger
image patches.

The attention coefficients obtained from two randomly chosen

validation images from each studied dataset are visualized in
Figure 4. All visualized attentionmaps correlate with the organ of

interest, which indicates that the attentionmechanism is focusing
on the areas of interest, i.e., it emphasizes the salient image
regions and significant features relevant for organ segmentation.
In the case of liver segmentation, the attention map correlates
accurately with the organ on the second level while in the
top-level, the attention seems to focus on the organ borders.
In kidney and pancreas datasets, we can observe exactly the
opposite behavior. The attention map from top-level covers
the organ, and the second level attention map focuses on the
borders and the close organ surroundings. This difference is
possibly associated with the different target sizes as the liver is
taking a substantially larger part of the image than the kidney
or pancreas.

FIGURE 4 | Visualization of attention maps (AM) in low-resolution for VNet and two randomly chosen patient images from the validation set of each studied dataset.

For each patient, the left picture shows the attention from the topmost layer (with the highest spatial resolution), and the right picture shows the attention from the

second topmost layer.
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FIGURE 5 | The secondary segmentation maps (SSM) obtained from deep supervision layers of low-resolution VNet for one randomly chosen patient image from the

validation set of the Medical Decathlon Pancreas dataset.

3.2.2. Visualization of the Deep Supervision

Segmentation Maps
The low-resolution VNet was also chosen to study the secondary
segmentation maps created at lower levels of the network trained
on the Medical Decathlon Pancreas dataset. The segmentation
maps are shown in Figure 5. Although the primary aim of
the secondary segmentation maps is not the refinement of the
final segmentation created at the last layer of the model, we
could see the correlation between the occurrence of each label
and the activation in the segmentation maps. The topmost
segmentation map copies the final output. The second and third
levels of activation are noisier, as it would be expected. We could

see higher activations around the pancreas in the tumor class
channels and also higher activations around the borders of the
organ in the background label channel.

The more in-depth segmentation maps in the organ label
channel are more challenging to interpret. The second level
map seems to be inverted, including the pancreas into a darker
part of the input image. On the other hand, the third level
map highlights all the organs present in the image. After
a summation of these two maps, we achieve the desired
highlight of the pancreas. Overall, we could say that all the
secondary segmentation maps have a relevant impact on the
final result.
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3.3. Evaluation Metrics
We use the following metrics score to evaluate the final
segmentation in the subsequent sections: precision, recall, and
dice. Each of the metrics is briefly explained below.

In the context of segmentation, precision, and recall compare
the results of the classifier under test with the ground-true
segmentation by a combination the true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). The
terms positive and negative refer to the classifier’s prediction,
and the terms true and false refer to whether that prediction
corresponds to the ground-truth labels. To summarize, Precision
P (7) and Recall R (8) are determined as follows:

P =
TP

TP + FP
∗ 100, (7)

R =
TP

TP + FN
∗ 100. (8)

This way both the precision and recall are normalized in the
range 〈0, 100〉, higher values indicating better performance.

When applied to a binary segmentation task, the dice
score evaluates the degree of overlap between the predicted
segmentation mask and the reference segmentation mask. Given
binary masks, U and V, the Dice score D (9) is defined as:

D =
2 ∗ |U ∪ V|

|U| + |V|
∗ 100. (9)

In this variant, the dice score lays in the range 〈0, 100〉, higher
values indicating better performance.

3.4. Evaluating Four Architectures and
Three Datasets
Next, we present a comprehensive study of the organ and tumor
segmentation tasks on the three different abdominal CT datasets.
For each dataset, four model variants were trained to show the
impact of the different model architecture choices. The UNet
utilizes max-pooling and the upsampling layers, while VNet is
fully convolutional. Each architecture variant was trained on two
different image resolutions: full-resolution and low-resolution.
For more details about the model variants, please refer to
section 2.2. Moreover, we provide assembly results from the
respective full and low-resolution models. The soft-max output
maps from the full and the low-resolution model variant were
averaged and only then the final segmentation map was created.
Tables 2–4 summarize the results from five-fold cross-validation
for all model variants for the Medical Decathlon Challenge
(MDC) Liver dataset, the Medical Decathlon Challenge Pancreas
dataset and the Kidney Tumor Segmentation Challenge (KiTS)
dataset, respectively.

Due to the prominent inter-variability of position, size,
and morphology structure, the tumor labels segmentation was
less successful than the organ segmentation. We can see
lower score values and also more significant inter-variability
between the folds. The variability is especially high in the
Liver-tumor label, where the lesions are usually divided into

many small occurrences, and missing some of them means
a significant change in the segmentation score results. The
model could benefit from some postprocessing, which may
help to sort out some of the lesions outside the liver organ,
as suggested in Bilic et al. (2019). The overall scores are
the lowest for the MDC Pancreas dataset. The variability in
shape and size of the pancreas makes its segmentation a
challenging task. Nevertheless, the attention mechanism helps
the network to find the pancreas, thus obtaining a reasonably
good performance.

Generally, the performance of the UNet and the fully
convolutional VNet is comparable, but we could observe
slightly better scores achieved by VNet in the MDC Liver
dataset and KiTS dataset while the trend is opposed in
the MDC Pancreas dataset, where the UNet provided
better results than the VNet. Still, when it comes to the
assembly results, the VNet benefits from its trainable
parameters and achieves better results than UNet variant in all
three datasets.

3.5. Performance Comparison
The proposed network architecture was benchmarked against the
winning submission of theMedical Decathlon Challenge (MDC),
namely nnUNet (Isensee et al., 2018) on two tasks: Task03-
Liver and Task07-Pancreas. Table 5 shows the mean dice scores
from five-fold cross-validation for the low and the full-resolution
variants of models as well as the best model presented in either
work. The winning results from nnUNet consist of the combined
prediction from three different models (2D UNet, 3D UNet, and
3DUNet cascade) assembled together. Therefore, we have chosen
to compare also the results from 3D UNet model, whose model
architecture is close to our network to highlight the difference
gained by the network architecture changes, namely attention
gates and deep supervision.

The full- and the low-resolution models with attention
gates (VNet-AG-DSV) achieved higher dice scores for both
labels on the pancreas dataset, of particular interest is that
the tumor dice scores were substantially increased, by three
and seven points in low and full-resolution, respectively. In
the case of the liver dataset, we could see a significant
improvement in the low-resolution case. Attention gates
improved the tumor dice score by seven points while the liver
segmentation precision was comparable. The decrease in dice
score happened only on the tumor class in the full-resolution
case. Finally, if we compare the best models presented in both
papers, our model with attention gates and deep supervision
(VNet-AG-DSV) wins on both datasets, adding nearly three
score points on the liver-tumor class and two points in
pancreas label.

The performance of the model with and without the attention
gates is quantitatively compared in Table 6. We could see that
both the number of parameters and the training and evaluation
time increased just slightly, while the performance improvement
was considerable. We should mention that the decrease in the
number of parameters in the work of Isensee et al. (2018) was
compensated by training the network with larger patch size:
128× 128× 128 pixels versus 96× 128× 128 pixels for the Liver
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TABLE 2 | Kidney Tumor Challenge 2019.

Architecture Kidney label Tumor label

Precision Recall Dice Precision Recall Dice

UNet Low Res. 94.96 ± 0.02 96.22 ± 0.08 95.50 ± 0.01 81.51 ± 2.30 82.62 ± 3.85 79.27 ± 0.30

Full res. 95.55 ± 0.75 97.08 ± 1.21 96.21 ± 0.62 78.83 ± 5.21 81.44 ± 4.63 76.70 ± 2.46

Assembly 96.22 ± 1.32 97.11 ± 1.87 96.25 ± 1.12 83.88 ± 3.01 81.50 ± 6.23 78.68 ± 5.93

VNet Low res. 94.79 ± 0.78 95.07 ± 1.42 94.63 ± 0.88 77.85 ± 3.43 78.51 ± 2.79 74.12 ± 2.66

Full res. 96.01 ± 0.71 96.15 ± 1.19 95.93 ± 0.54 78.77 ± 3.60 79.72 ± 2.57 75.43 ± 1.59

Assembly 96.54 ± 1.06 96.63 ± 1.35 96.43 ± 1.06 82.71 ± 2.80 83.39 ± 8.21 79.94 ± 5.33

Metrics scores from five-fold cross validation.

TABLE 3 | Medical Decathlon Challenge 2018—Task03-Liver.

Architecture Liver label Tumor label

Precision Recall Dice Precision Recall Dice

UNet Low res. 95.01 ± 0.92 95.52 ± 1.38 94.91 ± 1.57 63.65 ± 4.92 58.13 ± 7.66 53.27 ± 4.57

Full res. 95.39 ± 1.03 96.28 ± 1.09 95.80 ± 1.16 58.24 ± 7.23 76.39 ± 9.51 58.87 ± 3.01

Assembly 95.95 ± 0.70 96.66 ± 1.68 96.28 ± 1.01 63.74 ± 9.51 72.86 ± 10.1 60.29 ± 3.85

VNet Low res. 94.96 ± 0.87 95.19 ± 1.75 94.54 ± 1.97 65.17 ± 5.69 59.13 ± 11.5 54.72 ± 6.11

Full res. 94.39 ± 1.23 95.59 ± 1.03 94.86 ± 1.25 61.12 ± 8.33 70.34 ± 9.36 57.74 ± 2.20

Assembly 95.57 ± 0.65 95.80 ± 1.36 95.74 ± 0.89 73.42 ± 5.76 67.41 ± 13.0 64.70 ± 3.08

Metrics scores from five-fold cross validation.

TABLE 4 | Medical Decathlon Challenge 2018—Task07-Pancreas.

Architecture Pancreas label Tumor label

Precision Recall Dice Precision Recall Dice

UNet Low res. 80.39 ± 1.83 83.70 ± 2.02 80.96 ± 2.33 62.18 ± 3.35 58.12 ± 6.12 54.66 ± 4.54

Full res. 80.88 ± 1.66 83.77 ± 0.59 81.15 ± 0.43 60.86 ± 1.41 54.36 ± 3.76 51.66 ± 4.70

Assembly 81.21 ± 0.62 84.51 ± 1.87 81.81 ± 0.98 62.98 ± 3.74 55.84 ± 1.42 52.68 ± 1.89

VNet Low res. 79.36 ± 2.14 82.24 ± 1.71 79.62 ± 1.22 60.53 ± 2.72 55.19 ± 2.85 52.56 ± 2.89

Full res. 79.92 ± 1.05 82.73 ± 1.37 80.09 ± 0.95 64.46 ± 5.23 51.30 ± 3.56 50.14 ± 4.14

Assembly 80.61 ± 0.37 84.10 ± 1.45 81.22 ± 0.64 64.62 ± 3.29 54.39 ± 1.26 52.99 ± 2.05

Metrics scores from five-fold cross validation.

dataset and 96 × 160 × 128 pixels versus 64 × 128 × 128 pixels
for the Pancreas dataset.

3.6. Comparison to the State-of-the-Art
The proposed architecture was evaluated on three publicly
available datasets: Task03-Liver, Task07-Pancreas from Medical
Decathlon Challenge and the Kidney Tumor Segmentation 2019
Challenge dataset to compare its performance with state-of-the-
art methods. Next three subsections summarize the results for
each dataset.

3.6.1. Kidney
Our VNet with attention gates and deep supervision (VNet-AG-
DSV) for the kidney-tumor task (Table 7) participated in the
Kidney Tumor Segmentation Challenge of 2019, achieving a dice
score 96.63 and 79.29 for kidney and tumor label, respectively,
similar to our five-fold cross-validation values of 96.43 ± 1.06

and 79.94 ± 5.33 for kidney and renal tumor, respectively. The
results show the stable transfer of values from validation to test
set, which supports the stability of the model results. Table 7
shows the test set results for three wining submissions compared
to our model. The winning solution by Isensee and Maier-Hein
(2019) uses residual 3DUNet. The major difference from our
solution (apart from architectural model changes) is in the loss
function, which was accommodated to fit the challenge scoring
system. The authors also excluded some cases from the training
set (this was allowed by organizers). Second (Hou et al., 2019)
and third (Mu et al., 2019) submission in KiTS challenge use
some variant of a multi-step solution, where the approximate
position of the kidneys is determined in the first step and only
then is produced the final precise segmentation map. Please note
that we performed nor manual tweaking of the training set nor
any accommodation to the challenge. We can then conclude that
our VNet-AG-DSV showed remarkable performance with the
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TABLE 5 | Comparison of the proposed VNet-AG-DSV to the state-of-the-art

network with similar parameters presented by Isensee et al. (2018).

MDC task03-liver MDC task07-pancreas

Model Liver Tumor Liver Tumor

label label label label

Isensee et al. (2018)—Low res. 94.69 47.01 79.45 49.65

Isensee et al. (2018)—Full res. 94.11 61.74 77.69 42.69

Isensee et al. (2018)—Best

model

95.43 61.82 79.30 52.12

VNet-AG-DSV—Low res. 94.54 54.72 79.58 52.43

VNet-AG-DSV—Full res. 95.95 57.65 80.09 50.14

VNet-AG-DSV—Best model 95.74 64.70 81.22 52.99

All the models were trained on the same dataset, released by Medical Decathlon

Challenge (MDC) and validated in five-fold cross-validation. Higher score from the

comparison of the two models is highlighted in bold.

TABLE 6 | Performance comparison.

UNet UNet-AG-DSV VNet VNet-AG-DSV

Num. parameters [M] 26.2453 26.2917 29.6873 29.7383

Train iteration* [ms] 224.8231 260.6527 297.2699 338.3336

Eval iteration* [ms] 189.7215 217.5776 268.6558 299.3836

*Measured as mean from 100 runs on GeForce GTX 1080 Ti.

TABLE 7 | Test set results from the Kidney Tumor Challenge 2019 leaderboard.

Team Composite dice Kidney dice Tumor dice

Isensee and Maier-Hein (2019) 91.23 97.37 85.09

Hou et al. (2019) 90.64 96.74 84.54

Mu et al. (2019) 90.25 97.29 83.21

VNet-AG-DSV 87.96 96.63 79.29

same architecture that was used for the other two previous tasks,
namely detecting two other organs (pancreas and liver) along
with their tumors (of a different structure to the kidney).

3.6.2. Liver
The liver-tumor dataset was obtained from the Medical
Decathlon Challenge (MDC) happening at the MICCAI
conference in 2018. We analyze the results from various research
papers dealing with liver and liver-tumor segmentation. The Bilic
et al. (2019) in work Liver Tumor Segmentation Benchmark
(LiTS) presents a comparative study of two challenges dealing
with liver and liver-tumor segmentation. Authors note that
not a single algorithm performed best for liver and tumors
simultaneously. The winner of liver segmentation, Tian et al.
achieves the dice score 96.30 and 65.70 for liver and tumor
class, respectively. The winner of the lesion segmentation part,
Yuan et al. gained the dice score of 96.10 and 70.20 for the liver
and tumor classes, respectively. All winning methods in LiTS
benchmark utilized some post-processing steps, most commonly

TABLE 8 | Comprarison of the state-of-the-art methods for liver and liver-tumor

segmentation from CT scans.

Team Composite Dice Liver Dice Tumor Dice

Bilic et al. (2019) 83.15 96.10 70.20

Bilic et al. (2019) 81.00 96.30 65.70

Isensee et al. (2018) 78.63 95.43 61.82

VNet-AG-DSV 80.56 96.37 64.70

*The models were trained and tested on different dataset.

TABLE 9 | Comprarison of the state-of-the-art methods for pancreas and

pancreas-tumor segmentation from CT scans.

Team Composite Dice Liver Dice Tumor Dice

Roth et al. (2018)* - 81.27 -

Oktay et al. (2018)* - 84.00 -

Isensee et al. (2018) 65.71 79.30 52.12

VNet-AG-DSV 67.11 81.22 52.99

*The models were trained and tested on different dataset.

the connected component labeling but also other methods more
specific for the concrete task of liver lesion detection. As shown
in Table 8, our VNet-AG-DSV achieved the dice scores 96.37 and
64.70 for liver and tumor class, respectively. Our method, being
fully automatic and not using hand-tuned post-processing, not
only provides comparable results, it can also be easily transferred
and used on different organ segmentations task as shown next.

3.6.3. Pancreas
In comparison to other abdominal organs, the pancreas
segmentation is a challenging task, as shown by the lower dice
scores achieved in the literature. Roth et al. (2018) introduces
an application of holistically-nested convolutional networks
(HNNs) and achieves the dice score 81.27 ± 6.27. Oktay et al.
(2018) introduces the attention gates for pancreas segmentation
but compared to our solution does not include deep supervision
while differing in other architectural choices. Their network
achieves the dice score 84.00 ± 8.70 for the pancreas label. To
best of our knowledge, there exist no papers dealing with both,
pancreas and pancreas-tumor segmentation, except the ones
submitted for the Medical Decathlon Challenge. The best dice
score for the pancreas, and the pancreas-tumor segmentation,
achieved in this challenge by Isensee et al. (2018) is 79.30 and
52.12, respectively. As shown in Table 9, the dice scores from
our VNet-AG-DSV are 81.22 and 52.99 for pancreas and tumor
label, respectively. Our method beats the nnUNet by Isensee et al.
(2018) in both labels, and its pancreas segmentation result equals
to the methods dedicated only to pancreas detection.

4. DISCUSSION

Conventional artificial neural networks with fully connected
hidden layers take a very long time to be trained. Due to this,
the convolutional neural network (CNN) was introduced. It
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is specifically designed to work with the images by the use
of convolutional layers and pooling layers before ending with
fully connected layers. Nowadays, convolutional neural network
architectures are the primary choice for most of the computer
vision tasks. CNN takes inspiration in biological processes in
that the connectivity pattern between neurons corresponds to the
organization of the animal visual cortex (Hubel andWiesel, 1968;
Fukushima, 1980; Rodríguez-Sánchez et al., 2015). Similarly, as in
the eye, individual neurons respond to stimuli from a restricted
(bounded by the filter size) region of the visual field. These
restricted receptive fields of different neurons partially overlap,
and together they cover the entire visual field.

Image segmentation is one of the most laborious tasks in
computer vision since it requires the pixel-wise classification of
the input image. Long et al. (2015) presents a cully convolutional
neural network for image segmentation, firstly introducing
the skips between layers to fuse coarse, semantic and local,
appearance information. The work of Ronneberger et al. (2015)
extended the idea of skip connections and applied it favorably
in medical image segmentation. The possibility to examine the
image at different image scales proved to be crucial in successful
image segmentation. Due to a volume characteristic of medical
data, the 3D variant of fully convolutional networks with skip
connections was introduced byMilletari et al. (2016). This type of
architecture is the most used CNN in the field of medical image
segmentation since then, scoring best at most leading challenges
dealing with the medical image segmentation in the last years:
The Liver Tumor Segmentation Challenge in 2017 (Bilic et al.,
2019), the Medical Decathlon Challenge in 2018 (Simpson et al.,
2019), and the Kidney Tumor Segmentation Challenge in 2019
(Heller et al., 2019).

The deep supervision presented by Kayalibay et al. (2017)
takes the idea of skip connections and uses it differently. It is
a design where multiple segmentation maps are generated at
different resolutions levels of the network. The feature maps from
each network level are transposed by 1 × 1 × 1 convolutions to
create secondary segmentation maps. These secondary maps are
not intended for any further refinement of the final segmentation
map. Instead, it tries to correct the earlier layers of the network
and “encourage” them to produce better segmentation results,
thus speeding the convergence at training. The deep supervision
is especially useful in tackling the problem of the vanishing
gradient, which usually occurs during the training of very
deep CNN.

Apart from the skip connections, many researches tried to
incorporate the concept of attention into artificial CNN visual
models (Mnih et al., 2014; Xiao et al., 2015; Xu et al., 2015; Chen
et al., 2016). The presence of attention is one of the unique aspects
of the human visual system (Corbetta and Shulman, 2002), which
helps to selectively process the most relevant part of the incoming
information for the task at hand. (Chen et al., 2016) proposes
an attention model that softly weights the features from different
input scales when predicting the semantic label of a pixel. Oktay
et al. (2018) utilized a similar principle in their attention gates
and applied them in medical image segmentation. Attention is
especially helpful in the case of internal organ segmentation from
abdominal computed tomography (CT) scans because abdominal

organs are characteristically represented by similar intensity
voxels in CT scans. The model greatly benefits from the ability
to discard the activation from insignificant parts of the image
and focus on the organ of interest. Eventually, the human expert
would follow the samemethodology: first, find the rough position
of the organ of interest and only then analyze it in detail, as could
be found in the description of the segmentation maps annotating
process for the KiTS challenge (Heller et al., 2019).

5. CONCLUSIONS

This work presents a comprehensive study of medical image
segmentation via a deep convolutional neural network. We
propose a novel network architecture extended by attention gates
and deep supervision (VNet-AG-DSV) which achieves results
comparable to the state-of-the-art performance on several and
very different medical image datasets. We performed extensive
study which analyze the two most popular convolutional
neural networks in medical images (UNet and VNet) across
three different organ-tumor datasets and two training image
resolutions. Further, to understand how the model represents
the input image at the intermediate layers, the activation
maps from attention gates and secondary segmentation maps
from deep supervision layers are visualized. The visualizations
show an excellent correlation between the activation present
and the label of interest. The performance comparison shows
that the proposed network extension introduces a slight
computation burden, which is outweighed by considerable
improvement in performance. Finally, our architecture is
fully automatic and has shown its validity at detecting three
different organs and tumors, i.e., more general than the state
of the art, while providing similar performance to more
dedicated methods.
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Copyright © 2020 Turečková, Tureček, Komínková Oplatková and Rodríguez-

Sánchez. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 14 August 2020 | Volume 7 | Article 10656

https://doi.org/10.4103/0971-6203.58777
https://doi.org/10.1109/CVPR.2017.683
https://doi.org/10.3389/fneur.2018.00679
https://doi.org/10.1109/ICPR.2018.8545143
https://doi.org/10.1007/978-3-319-66179-7_26
https://doi.org/10.1109/IJCNN.2017.7965852
https://doi.org/10.1109/ISBI.2016.7493206
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


ORIGINAL RESEARCH
published: 15 September 2020
doi: 10.3389/frobt.2020.00096

Frontiers in Robotics and AI | www.frontiersin.org 1 September 2020 | Volume 7 | Article 96

Edited by:

George Azzopardi,

University of Groningen, Netherlands

Reviewed by:

Eric Wade,

The University of Tennessee, Knoxville,

United States

Alexander Lazovik,

University of Groningen, Netherlands

*Correspondence:

Pierluigi Plebani

pierluigi.plebani@polimi.it

Specialty section:

This article was submitted to

Sensor Fusion and Machine

Perception,

a section of the journal

Frontiers in Robotics and AI

Received: 11 June 2019

Accepted: 15 June 2020

Published: 15 September 2020

Citation:

Cappiello C, Meroni G, Pernici B,

Plebani P, Salnitri M, Vitali M,

Trojaniello D, Catallo I and Sanna A

(2020) Improving Health Monitoring

With Adaptive Data Movement in Fog

Computing. Front. Robot. AI 7:96.

doi: 10.3389/frobt.2020.00096

Improving Health Monitoring With
Adaptive Data Movement in Fog
Computing

Cinzia Cappiello 1, Giovanni Meroni 1, Barbara Pernici 1, Pierluigi Plebani 1*, Mattia Salnitri 1,

Monica Vitali 1, Diana Trojaniello 2, Ilio Catallo 2 and Alberto Sanna 2

1Dip. Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy, 2Center for Advanced Technology for

Health and Wellbeing, IRCCS San Raffaele Hospital, Milan, Italy

Pervasive sensing is increasing our ability to monitor the status of patients not only

when they are hospitalized but also during home recovery. As a result, lots of data

are collected and are available for multiple purposes. If operations can take advantage

of timely and detailed data, the huge amount of data collected can also be useful

for analytics. However, these data may be unusable for two reasons: data quality and

performance problems. First, if the quality of the collected values is low, the processing

activities could produce insignificant results. Second, if the system does not guarantee

adequate performance, the results may not be delivered at the right time. The goal of

this document is to propose a data utility model that considers the impact of the quality

of the data sources (e.g., collected data, biographical data, and clinical history) on the

expected results and allows for improvement of the performance through utility-driven

data management in a Fog environment. Regarding data quality, our approach aims to

consider it as a context-dependent problem: a given dataset can be considered useful

for one application and inadequate for another application. For this reason, we suggest

a context-dependent quality assessment considering dimensions such as accuracy,

completeness, consistency, and timeliness, and we argue that different applications have

different quality requirements to consider. The management of data in Fog computing

also requires particular attention to quality of service requirements. For this reason, we

include QoS aspects in the data utility model, such as availability, response time, and

latency. Based on the proposed data utility model, we present an approach based on

a goal model capable of identifying when one or more dimensions of quality of service

or data quality are violated and of suggesting which is the best action to be taken to

address this violation. The proposed approach is evaluated with a real and appropriately

anonymized dataset, obtained as part of the experimental procedure of a research project

in which a device with a set of sensors (inertial, temperature, humidity, and light sensors) is

used to collect motion and environmental data associated with the daily physical activities

of healthy young volunteers.

Keywords: data utility, fog computing, data movement, data analytics, data quality, quality of service
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1. INTRODUCTION

The huge potential of the Internet of Things (IoT) paradigm
has been immediately understood and applied in many
domains (Ahmed et al., 2016) to provide advanced sensing
layers, enabling solutions for personal needs (e.g., monitoring
daily activities) (Alaa et al., 2017) as well as services for entire
communities (e.g., smart cities) (Zanella et al., 2014). In the
healthcare domain, IoT has also been adopted to similarly
improve current processes and to provide new services to
patients. However, extensive use of IoT data with continuous
data flows from monitored patients can pose several challenges
in developing effective and performing systems. For instance, the
continuous and real-time monitoring of body parameters has so
far been dedicated only to critically ill patients admitted to an
intensive care unit. In any other case, to reduce the amount of
transmitted data, either the patients are monitored at a lower rate
(e.g., with a daily or weekly visit at the hospital) or, even if the
sensors are able to constantly monitor patients, the monitoring
data are collected from time to time (for example, the data are
sent to the hospital every morning). In addition, the development
of a system becomes more complex if we consider that the
monitoring of a patient could require different types of sensors
from different manufacturers, thus requiring a significant effort
for integrating them and their underlying processes (Vitali and
Pernici, 2016).

Although the IoT paradigm is addressing most of these
challenges by considering the contribution of different
communities, such as device manufacturers, network
managers, internet-based solution providers, and semantic
web researchers (Atzori et al., 2010), additional effort is required
to create a more fruitful collaboration between the sensing
layer and the application layer. While the former is focused on
solving problems related to the observation and measurement
of physical phenomena and the digital representation of such
measurements, the latter is in charge of analyzing the sensed
data to provide information and knowledge. Focusing on the
deployment of this type of systems, the sensing layer is usually
located on the edge, while the application layer is located on
the cloud because it provides a more scalable and reliable
infrastructure. On the other hand, there are situations in which
the analysis (or a part of it) cannot be executed on the cloud.
For example, data could not be moved from the premises for
privacy reasons. Also, in the case of big datasets, moving all the
data to the cloud for processing may take too long. Therefore, a
more articulated deployment of the application layer—involving
both the edge and the cloud—is required. In this context, Fog
Computing (IEEE, 2018) has been introduced as a paradigm
for creating applications able to exploit both the cloud and
edge computational power as well as the devices in between to
create a continuum between the two sides. This is particularly
important in healthcare applications since data related to users
are sensitive by definition. Their analysis and storage must
therefore comply with current regulations, such as the General
Data Protection Regulation (GDPR) (Ducato, 2016). At the
same time, health monitoring solutions should be flexible with
respect to the type of users. For instance, there are situations

(e.g., emergencies) where the ability to provide rapid analysis is
more important than having a 100% accurate result that could
take an unacceptable period of time to be computed. Conversely,
when the data are collected for diagnostic reasons, data accuracy
is more important than their freshness.

The aim of this work is to present how the principles of the
Fog Computing paradigm can be adopted to improve health
monitoring with the aim of providing information at the right
time, in the right place, and with the right quality and format
for the user (D’Andria et al., 2015). For this reason, the proposed
framework is based on two main elements:

• The data utility concept (Cappiello et al., 2017), which
provides a quantitative evaluation of the relevance of the data
obtained as the combination of two factors: (i) data quality,
related to the fitness for use, which includes dimensions like
accuracy, volume, and timeliness, and (ii) Quality of Service
(QoS), related to the performance of the data delivery, which
depends on the mutual location of where the data are stored
and where they are used. Given a data source, not all the users
have the same utility requirements of that data source. Also,
the network can have different impacts on the user experience
when accessing the data source. Given these assumptions, the
data utility is assessed in two steps. First, a Potential Data
Utility (PDU) is calculated to evaluate the data utility of a data
source independently of a specific user. Second, when the user
is known, the PDU is refined to obtain the actual data utility
specific to the user’s requirements.

• A goal-based model (Plebani et al., 2018), which is adopted to
specify the requirements for the application layer with respect
to the data utility. Compared with the typical goal-based
models adopted in requirements engineering, the solution
proposed in this paper also includes an additional treatment
layer, following the methodology proposed in Vitali et al.
(2015), which includes the adaptation actions available and
the impact of the enactment of these actions on meeting
the requirements.

Consequently, the combination of these two components offers
to the Fog environment a tool to select the best strategy for
copying or moving data between the different storage units whilst
also considering the possible transformations required and the
impact of the network. Given the requirements specified for the
application, our framework reacts to their violations by selecting
the best adaptation action. Since we are dealing with a dynamic
environment, the best strategy as well as the impact of an action
over the application requirements can change over time. The
framework also takes this aspect into account.

The proposed approach was evaluated in the healthcare
scenario, where the interests for data could vary for different
users. For example, for a clinical expert monitoring a particular
patient, the data must be detailed and promptly available.
Conversely, when a clinician is performing data analysis for
research purposes, coarse-grained data—requiring less network
bandwidth—may be sufficient.

The rest of the paper is organized as follows. section 2
introduces the main characteristics of Fog Computing to the
reader, while section 3 discusses the motivating example used
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throughout the paper. section 4 focuses on the data utility
concept, and section 5 identifies the adaptation actions that could
affect the datamanagement. section 6 details the characteristics of
the enriched goal-based model used to select the best adaptation
actions, whose evaluation is illustrated in section 7. Finally,
section 8 discusses related work on the data movement in
Fog environments, and section 9 concludes the work outlining
possible future work.

2. FOG COMPUTING

Fog computing is emerging as a paradigm for the design,
development, implementation, and maintenance of applications
that are not necessarily distributed in the same environment—
either cloud or edge—but which could also be allocated to
resources in between (e.g., cloudlets) (IEEE, 2018). This paradigm
has been mainly conceived to have in mind IoT (Internet of
Things)-based applications, which can be organized around four
main layers: (i) the sensors and actuators, where the data are
generated or actions to the environment have effects; (ii) the
Monitoring and Control, where the state of the application is
monitored and controlled; (iii) the Operational Support, where
a deeper analysis of the produced data is performed; and (iv) the
Business Support, where data about different environments are
collected and analyzed as a whole. In particular, when referring
to Fog computing, different deployment models can be adopted
(see Figure 1) with the aim of exploiting not only the resources
available on the cloud but also those on the edge and in the
infrastructure layers connecting these two environments. Based
on this configuration, when the scalability of a solution is a key
issue, a cloud deployment is preferable, as it provides a virtually
unlimited amount of resources. Conversely, when latency must
be reduced asmuch as possible and/or privacy constraints require
that data should not leave the location where they are generated,
a deployment on the resources running on the edge is preferred.

On this basis, the Fog computing paradigm considers a data
flow that mainly moves data from the edge, where the data
are generated, to the cloud, where they are processed. However,
devices on the edge are getting more and more powerful in terms
of computational and storage resources. According to this, Fog
computing takes advantage of these resources by distributing the
computation among the layers. In each layer, data are processed
and analyzed to provide a synthesis for the layer above. In this
way, the amount of data that should be moved decreases layer
by layer. Moreover, the resulting data aggregation enables a
mitigation of the data privacy related issues.

Although there is consensus around this view of Fog
computing, such a paradigm must be more than creating a
data center in the box, i.e., Cloudlets (Satyanarayanan et al.,
2009), to bring the cloud closer to data producers. Instead, Fog
Computing must be seen as a “resource layer that fits between the
edge devices and the cloud data centers, with features that may
resemble either” (Varshney and Simmhan, 2017). In particular,
as discussed in Bermbach et al. (2018), the principles of Service
Oriented Computing can be valuable also for Fog-based solutions
to create a set of services able to simplify the data management

in a Fog infrastructure in terms of new abstraction models able
to hide the details of smart devices living on the edge of the
network that could be very heterogeneous. Moreover, the effort
in Fog computing should also be focused on simplifying resource
management while considering both edge and cloud resources.

In this direction, the DITAS project1 is focusing on improving
data-intensive applications by exploiting the peculiarities of Fog
infrastructures, starting from the observation that most of the
data, especially in IoT scenarios, are generated on the edge
and are usually moved to the cloud to perform the required
analyzes. While doing so can improve the performance of such
data analysis due to the capacity and scalability of cloud-based
technologies, there are situations in which this approach is not
convenient or even impossible. For instance, when the amount of
data to be analyzed is significant, the effect of the network may
be considerable2. Furthermore, for privacy reasons, the owner
of the data may not allow the movement of data outside of the
boundaries of the organization unless they are anonymized and,
in some cases, such an anonymization could hamper the analysis.
On the other hand, limiting the computation to the resources
on the edge could reduce the performance as the amount of
resources, and their capacities are generally limited.

The depicted scenario is perfectly suited to the e-health
domain where the data are heterogeneous (e.g., structured
and unstructured data, images, and videos) and produced by
heterogeneous devices; privacy is another a key issue, and the
analysis of these data is complex, and, in some cases (e.g.,
during emergencies) it must performed quickly. Focusing on a
single data analysis process, the adoption of the Fog computing
paradigm can be helpful. Indeed, the computation can be
organized hierarchically on the devices from the edge to the
cloud, each of them specialized on some operations. Conversely,
this approach cannot be so helpful in case there are many
operators aiming to analyze in different ways the same dataset.
In this case, there is a risk of having several deployments,
each of them attempting to reach a local optimum, without
any coordination in managing the common resources, like the
computational power and the network bandwidth.

Focusing on the optimization of the data movement,
it is fundamental to properly manage the information
logistics (Michelberger et al., 2013), i.e., the delivery of
information at the right time, in the right place, and with the
right quality and format to the user (D’Andria et al., 2015). As
a consequence, user requirements can be defined in terms of
functional aspects, i.e., contents, and non-functional ones, i.e.,
time, location, representation, and quality (Plebani et al., 2017).
To this aim, it is crucial to define a proper set of strategies to
enable data management involving the resources in the Fog to
enforce a given data utility (Cappiello et al., 2017). As shown
in Figure 2, the DITAS project investigates the possibility to
manage the deployment of applications which are based on the

1http://www.ditas-project.eu
2The influence of the network could be impactful to the point of making the

data movement via network intractable. For this reason, Amazon offers a service

called Snowball (https://aws.amazon.com/snowball/) to securely and efficiently

move huge amount of data by physically moving the data storage devices.
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FIGURE 1 | Possible deployment models in Fog Computing (inspired by IEEE, 2018).

same data sources. In this way, the resources in the Fog for a
given application can be organized according to a hierarchical
topology. At the same time, when the same processing is required
for different applications, the deployment approach could either
go for a duplication of the computation nodes or allow a node
to be shared among different applications. Regardless of the
deployment strategy, which is out of the scope of this article,
proper data management among the different nodes involved in
all the considered applications is required due to the motivations
discussed above. For instance, the data coming from the sensors
can be collected in the data storage of a gateway close to the
sensor layer. At the same time, different replicas of these data
have to be put in place to serve some of the fog nodes. Since the
type of computation performed on these nodes can vary, the
frequency and type of data to be transmitted to these nodes can
also vary.

3. MOTIVATING EXAMPLE

To properly introduce the approach proposed in this paper,
we here describe a reference example, related to the usage of
wearable devices as a means of facilitating patient monitoring.
Indeed, in recent years, thanks to technology advances in
the field of miniaturized sensors, various innovative wearable

technologies have been developed. The introduction of such
technologies in daily routines has raised great interest in new
means of data collection in healthcare research and clinical
contexts. Multiple applications for wearable devices have been
identified in different areas of prevention, therapy, and well-
being, ranging from the collection of relevant clinical data such
as heart rate variability (HRV) to daily monitoring of physical
activity. Furthermore, the possibility of collecting environmental
parameters that could affect the subject’s well-being through
wearable devices is considered of great interest. In a recent
H2020 project (I-SEE3), a newwearable device has been proposed
that integrates a series of sensors, including UV, pressure,
accelerometer, gyroscope, and light sensors. As depicted in
Figure 3, in the scenario considered in this paper, the data
collected by the wearable device are sent to a mobile application
via Bluetooth. Part of the data processing is running on the
wearable device and part on the mobile application. The data
collected by the mobile application are daily (automatically) sent
to the cloud. One of the main characteristics of the system is the
presence of the UV sensor. Indeed, prolonged human exposure to
solar UV radiation can have acute and chronic health effects on
the skin, eyes, and immune system. In the long run, UV radiation

3https://isee-project.eu/
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FIGURE 2 | Fog deployment in DITAS.

could also induce an inflammatory eye reaction. During outdoor
activities, it is therefore important to be protected from UV rays
to avoid their harmful effects especially for children, athletes, and
individuals with the pre-maculopatia diagnosis. The availability
of the UV sensor, correctly mounted on the wearable device,
therefore allows the system to collect data on exposure to UV
light during the day, consequently allowing for two interesting
and clinically relevant applications:

• Self-monitoring: the UV sensor measures the amount of
UV-A and UV-B and informs the user, through the mobile
application, about the current UV exposure and related
risk (on the basis of their risk profile, properly computed
thanks to the user information collected through the mobile
app). In case of overexposure, the mobile application alerts
the user and proposes a solution in order to meet the
compliance parameters. Since in the mobile application data
are automatically saved in the cloud, the user could also
verify, through a diary, their UV exposure condition over
the last months. In addition, further useful insights for the
user come from the combined analysis of the large amount of
data collected by other users who experiment similar exposure
conditions, e.g., the user can check their condition with respect
to other people with similar risk profiles (e.g., age, sex, and
photo-type) in the same geographical area. The user can also
define a pool of other users (e.g., family members) who will be
able to access their data.

• Expert-monitoring: the data collected and saved in the cloud
could also be queried by clinical experts (e.g., dermatologists).
Through a specific Web application, clinicians can remotely
monitor patients and, when a risky condition occurs, invite
them for a clinical visit. In this application, the possibility to
access data of a large number of users allows the experts to
obtain insights on different patients populations, based on the
age, the sex, and other relevant features.

Both applications require the analysis of the collected raw data
in order to extract meaningful information (i.e., UV intensity,
time spent under UV, and time over risk thresholds). While
the expert-monitoring application relies on the analysis of data
collected over a long period (i.e., day, week, and month), thus
not requiring a real-time analysis, the self-monitoring application
aims to let the user be aware on their current condition/risk
to get the proper information in real-time in order to act
if alerted.

The self-monitoring application to achieve the objectives
described is based on the characteristics of the users (i.e., age,
gender, type of photo, etc.) and on the data collected by the
sensors. These data are processed to (i) define the user profile (i.e.,
specific thresholds and risk factors) and ii) calculate the exposure.
Note that the user profile is calculated on the mobile application
since the user data are stored in the mobile device while the
exposure calculation is implemented on the wearable device
using the sensor data and then sent to the mobile application.
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FIGURE 3 | Data flow in the motivating scenario.

4. DATA UTILITY

The two applications introduced in section 3 have different users
and, in order to provide them with high-quality output at the
right time and in the right place, these applications must select
proper input data. For this reason, it is possible to associate each
application with requirements relating to the data of interest and
their granularity, as well as to the quality of the service (e.g.,
responsiveness to the request and availability). To represent these
differences and support different applications in a customized
way, we introduce the concept of data utility.

Data utility can be defined as the relevance of data for the
usage context (Cappiello et al., 2017). Relevance is evaluated
by considering the capability of the source to satisfy non-
functional requirements (i.e., data quality and QoS properties)
of the task using the data. Since data utility depends on the
application/user that aims to access data for a specific goal, its
assessment can be theoretically performed only when the usage
context is defined. However, it is possible to identify and assess
some dimensions in order to provide an objective estimation
of the data source utility level, the so called Potential Data
Utility (PDU). The potential data utility provides an estimation
of the quality level of the data contained in the whole data
source. Note that the potential data utility and the data utility
coincide when the user/application aims to use the entire data
source as it is offered. As soon as the usage context is related
to only a portion of the data source, the data utility must be
assessed. However, the potential data utility can be seen as
an aggregated reliability index of the data source. In order to
assess the data utility, a set of relevant dimensions must be
defined. In the following sections, data quality and QoS models
are presented.

4.1. Data Quality Model
Data quality is often defined as “fitness for (intended) use” (Batini
and Scannapieco, 2016), that is, the capability of a dataset to
be suitable for the processes/applications in which it has to be
used. Data quality is a multidimensional concept since different
aspects of the analyzed data must be considered. Such aspects
are modeled through data quality dimensions that are defined to
analyze specific issues and that are assessed through determined
metrics. The literature presents many data quality dimensions
but, traditionally, the most used ones are

• Accuracy: the degree to which a value v is close to a correct
value v′ (Redman, 1996)

• Completeness: the degree to which all the values are present in
the considered dataset

• Consistency: the degree of adherence to logical rules that link
two or more attributes of the considered dataset

• Timeliness: the extent to which the age of data is suitable for
the task at hand (Wang and Strong, 1996).

Note that the data quality model (i.e., the list of considered
dimensions and the metrics for evaluating them) depends on the
type of data source. For example, if we consider sensor networks,
and therefore a scenario like the one considered in this paper
in which the sources generate data streams, it is necessary to
consider that the dataset DS is an infinite sequence of elements
DS = (X1, t1)(X2, t2) . . . , (Xm, tm) in which Xm is, for example,
the set of values detected by the sensors on a wearable device
at the moment tm (Klein and Lehner, 2009). The model defined
for data quality management relies on the concept of “data
quality windows” for which data quality metadata are evaluated
by dividing the stream in windows and assessing the quality of the
k values included in a window. In this context, the metrics related
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to completeness, consistency, and timeliness do not change, while
for the assessment of accuracy the maximum absolute systematic
error a must be defined and a value v is correct if the expected
value v′ is in the range [v − a; v + a] (Klein and Lehner, 2009).
Accuracy is important, but it has to be considered together with
Precision is the degree to which repeated measurements show
the same or similar results. Precision is usually estimated by
considering the standard deviation and might be an additional
information to understand the stability of the measurement
process. In fact, situations in which data are not accurate but
precise may not always reveal malfunctioning sensors but also a
plausible slow change in the observed phenomenon (for example,
the expected temperature is increasing).

4.2. QoS Model
In the present work, the QoS model includes the following
dimensions, which are the most commonly used in evaluating
Quality of Service:

• Availability: it can be defined as “The ability of a functional
unit to be in a state to perform a required function under
given conditions at a given instant of time or over a given
time interval, assuming that the required external resources
are provided” (ISO/IEC, 2010). It usually shows the percentage
of the time that the service is up and operational.

• Response time: it is the amount of time (usually expressed in
seconds or milliseconds) the platform takes to provide the
output of a specific request.

• Throughput: it is generally defined as the total amount of work
completed in a given time. Considering data transmission, it
refers to the data transfer rate.

• Latency: it is the time interval taken to transmit data between
two points in a network.

• Volume: it is defined as the amount of disk space or the number
of entries in a database.

The evaluation of all these dimensions requires a monitoring
platform to provide this information as metadata associated with
the data source.

4.3. Data Utility in Use
In our approach, each dataset DS is firstly associated with a
Potential Data Utility vector:

PDU = (qd1, qd2...qdN) (1)

in which each value qdi provides an estimation of a data quality
or QoS dimension. As stated above, PDU is a set of metadata that
profiles the source without considering the usage context. In this
way, PDU provides aggregated information that helps users to
understand the reliability of the dataset. PDU can thus be a first
driver in the selection of sources if similar datasets are available.

As mentioned above, as soon as the context of use is related to
a portion of the data source, it is necessary to evaluate the data
utility. In fact, when a user aims to search for a dataset, they
will define their functional and non-functional requirements.
The former define the part of the available dataset that the
user intends to access. Considering our scenario, in the self-
monitoring application, the user could be interested only in

the values collected in the last 10 min, while, for the expert
monitoring application, the user can specify an interest for
the data referred to a specific class of customers (for example,
characterized by a specific profile, such as age or gender). Moving
to the non-functional requirements, they refer to the constraints
relating to a series of data quality/QoS dimensions (e.g., response
time less than 5 s) considered relevant for the application/process
in which the data are used. For example, accuracy, precision,
completeness, and consistency are relevant dimensions for
both applications, while timeliness is likely to be relevant
only in the self-monitoring application where up-to-date data
are needed. The description of the application together
with the specified requirements define the usage context. In
this second phase, the source can be associated with the
Data Utility vector (DU) for a given usage context. DU
informs users about the suitability of the dataset in satisfying
their requirements. Note that PDU and DU overlap if the
application/user asks to access the whole dataset, while DU
has to be reassessed if the usage context considers a dataset
DS′ ⊂ DS.

At the run time, data utility should be periodically assessed
in order to detect changes in the quality of data or service. In
our approach, if the utility decreases below a certain threshold,
one or more adaptation actions are triggered as described in
section 5 with the goal of maintaining the data utility at a
satisfactory level.

Note that, especially for what concerns the QoS criteria,
data utility is dependent on the locations in which data are
stored and consumed. In Fog computing, response time, for
example, can significantly vary considering datasets in the
cloud and datasets in the edge. By taking advantage of the
ability to manage datasets in the edge and in the cloud
and to move data between the different layers of the Fog
computing environment, it is possible to trigger an adaptation
action to continuously meet the requirements expressed.
In section 5, such adaptation actions are formally defined
and discussed.

5. ADAPTATION ACTIONS FOR DATA
MANAGEMENT

A key feature of the proposed approach, in addition to the
possibility to express the user requirements in terms of data
utility, is to enforce the proper satisfaction of such requirements
by enabling a set of adaptation actions that can be enacted to
solve or prevent violations of the requirements. In particular,
the actions considered in our approach refer to actions for
moving or copying data, actions for improving the quality of
data, and actions for transforming data to support or speed up
data analysis.

Generally speaking, we refer to the actions that can be enacted
to manipulate the data sources in a fog scenario as adaptation
actions, which are composed of a set of atomic tasks T = DMT ∪

DT T , where (i) DMT are data movement tasks, and (ii) DT T

are data transformation tasks (see Figure 4).
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FIGURE 4 | Adaptation actions. (A) Data movement. (B) Data transformation.

In sections 5.1 and 5.2, we illustrate the atomic tasks for
adaptations actions4.

5.1. Data Movement Tasks
Data movement implies the transfer or the duplication of (a
portion of) a dataset from a storage resource to another one.
For instance, data can be moved from the edge—where they are
generated—to cloud storage, like in the reference example where
the data collected on a smartphone are periodically uploaded
to the cloud. Generally speaking, a data movement task can be
defined as

• The location of the resources involved in the movement from
source a to destination b, which can be classified according to
their layer (either in the edge E or in the cloud C)5.

• The kind of movement applied, e.g., movement of data from
one resource to another (deleting the previous version)Mab or
creation of a replica on different storage resources Dab.

Considering the possible combinations of resource location and
kind of movement, the following eight main relevant tasks are
considered in DMT :

• Move/Duplicate from cloud to edge (MCE/DCE): data are
moved or copied from a cloud to an edge resource.

• Move/Duplicate from edge to cloud (MEC/DEC): data are
moved or copied from an edge to a cloud resource.

• Move/Duplicate from cloud to cloud (MCC/DCC): data are
moved or copied from a cloud to another cloud resource.

4The following notation style is adopted: variables are strings in italic with a

leading non-capital letter (e.g., x, y); sets are strings with the leading letter in the

calligraphic font for mathematical expressions (e.g., G, I).
5For the sake of clarity and without losing generality, in this paper we assume in

the following examples to have a Fog environment composed of only two layers,

i.e., the edge and the cloud. When considering more layers, the formalization of

the data movement slightly changes by introducing an index, which reflects the

position on the hierarchy where the lower values represent the edge and the higher

ones the cloud.

• Move/Duplicate from edge to edge (MEE/DEE): data aremoved
or copied from an edge to another edge resource.

Considering the running example, data movement between two
edge devices occurs when data collected by one user is moved to
another user’s device, for example, to share information between
family members. In addition, data movement between edge and
cloud occurs when data about a user’s activity is moved from their
device to cloud storage. There, the data can be aggregated with
the data of other users to be analyzed in the future by an expert.

The Data Movement tasks introduced in this section are
categories of tasks. It means that they represent a generic
movement according to the type of resources involved. In fact,
categories are useful in aggregating together actions that are
likely to have similar impacts when applied in a specific context.
As discussed in Plebani et al. (2018), when implemented in a
specific scenario and according to the actual resources available,
one or more instances for each category might be instantiated
to represent all possible movements between all the possible
resources. Considering the example of Figure 3, two instances
for the class MCE and MEC are created (since we have two edge
devices connected with a cloud resource); similarly, two instances
for MEE are generated, and no tasks of type MCC are available
since only one cloud location is available in the scenario. The set
of instantiated tasks depends also on the policies defined in the
application context. For instance, in case we want to enable only
movement in one direction, from edge to cloud, the MCE tasks
are not instantiated.

5.2. Data Transformation Tasks
While data movement tasks affect the location of a dataset, in
the case of data transformation tasks a single data source is
affected. In particular, the goal of this type of tasks is to produce
a modified version of the dataset applying some filtering and/or
transformations. More precisely, given a dataset DS where the
degree (the number of domains) is deg(DS), and the cardinality
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(the number of tuples) is card(DS), a transformation task dtt ∈

DT T of a dataset DS produces a new dataset DS′

dtt(DS) → DS′ (2)

On this basis, the transformation tasks could affect both the
intensional and the extensional schema. In fact, in this class of
tasks, data aggregation as well as data projections are included. In
the first case, a set of tuples can be reduced to one (for example,
by averaging a series of observations), which thus reduces
cardinality. In the second case, some columns are removed as
they are considered irrelevant or—in case of privacy problems—
not accessible, thus reducing the degree of the dataset. Here we
define three types of transformation tasks, which have different
effects on the degree and the cardinality. In particular, we are
interested in this work in three main sets of transformations:
(i) data-cleaning-related transformations, (ii) performance-related
transformations, and (iii) security-related transformations,

Data Cleaning related transformations aim to improve the
quality of the data. In a data stream the cleaning tasks can be:

• Inputting missing values: missing values can be fixed by
considering different techniques, such as (a) using unbiased
estimators that estimate missing values without changing
characteristics of an existing dataset (e.g., mean and variance),
(b) using mean or median to replace missing values, or (c)
adopting a specific distribution.

• Outliermanagement: an outlier can be generated since (a) the
value has been incorrectly observed, recorded, or entered in a
dataset, or (b) the value is correct but represents a rare event.
The cleaning task is responsible for discovering outliers and
for deciding between rare data and data glitches. Data glitches
should be removed while rare events should be highlighted.

The former task mainly improves the completeness without
negatively affecting the accuracy. In fact, the inputting techniques
try to insert acceptable values. The latter task has instead a
positive effect on accuracy and precision when data glitches
are discovered. Note that a data cleaning task affects only the
extensional schema of the data source, while the intensional
schema is preserved. In fact, the improvement of data quality
operates at record level [deg(DS′) = deg(DS) and card(DS′) =

card(DS)]. In summary, it is possible to enact a specific cleaning
task on the basis of the dimension that caused a violation. The
enactment of this task is time consuming and expensive in
terms of computational power. Its execution performance might
therefore be different in the edge or in the cloud.

In the considered scenario, data cleaning is a transformation
technique that could be enabled both in the self- and expert
monitoring when data quality requirements are not satisfied.

Performance-related transformations can be enacted to
improve the performance of the enactment of an adaptation
action. One of the main issues with adaptation actions is the
management of high volumes of data that can generate delays and
performance issues. For instance, the volume of data collected by
the IoT and sensors at the edge makes the data movement for
analysis from the edge to the cloud difficult and time consuming,

and, in addition, it might introduce critical delays. For this
reason, it is important to reduce the size of the data to be
moved in order to make this task more agile. Performance related
transformations are:

• Aggregation: the content of a data storage is reduced
using aggregation operations (e.g., average, maximum, and
minimum) summarizing several tuples.

• Reduction: the data volume is reduced by exploiting relations
among data.

Both performance transformations reduce the volume of the data
that must be transferred from the source to the destination.

Aggregation applies classical operators (e.g., average,
maximum, minimum, and sum) to several events collected in
the dataset. The effect is to reduce the volume of the dataset
while affecting the level of detail contained in it. Aggregation
is not reversible (it is not possible to obtain the original data
from the aggregated set). This transformation aims to reduce
the cardinality of the dataset but it does not affect the degree
(deg(DS′) = deg(DS) and card(DS′) < card(DS)).

Reduction is based on the assumption that the information
stored in a dataset may contain related items. In literature, data
reduction is performed mainly on a single signal by varying the
sampling frequency based on the variability of the monitored
variable (Trihinas et al., 2018). We additionally propose to
exploit relations between different variables, which can be
expressed as dependencies among the values of related attributes.
For example, relations are those expressed through functional
dependencies between the data values in a dataset. Functional
dependencies are also used to check consistency in the dataset.
For instance, it is possible to obtain the city and the country
where a user resides from the postal code. A causal relation
between attributes in a dataset can be expressed through an
association rule A H⇒ B expressing that the value of attribute B
depends on the value of attribute A. Association rules are effective
to represent relations between non-numerical attributes that can
get a limited number of values. For numeric values, we instead
apply regression functions to represent the dependencies between
a dependent variable and a set of correlated variables from
which it is possible to calculate its value. Relations can be both
explicit and implicit. Explicit relations are declared by the data
owner, who also provides the association rules for non-numerical
attributes or the regression model for numerical values. Instead,
implicit relations can be detected using data mining and machine
learning techniques.While several approaches exist for extracting
association rules between attributes of a dataset, the detection
of dependencies between numerical values is not trivial (Peng
and Pernici, 2016). Reduction enables to regenerate the original
information, although with some approximations. It might
reduce both the degree and the cardinality (deg(DS′) ≤ deg(DS)
and card(DS′) ≤ card(DS)).

Security-related transformations aim to satisfy security
constraints that might affect a data source when moved from
one location to another. As an example, when data are collected
inside the user device, they contain the information that is
needed to identify a specific person. When these data need to
be moved and stored outside the device, privacy constraints
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might require that sensitive information must be hidden so
that unauthorized customers cannot access it. Security-related
transformations include the following.

• Pseudonymization: data are manipulated to substitute
identifying fields within a data record with artificial identifiers.

• Anonymization: data are manipulated to remove all
possible identifiers.

• Encryption: the data contained in a data storage are
manipulated using encryption algorithms to make them
unreadable to unauthorized users.

None of the security-related transformations affect the
cardinality of the dataset (card(DS′) = card(DS)). Instead,
while pseudonymization and encryption do not affect the degree,
anonymization might remove some of the attributes from the
dataset (deg(DS′) ≤ deg(DS)).

5.3. Defining Relevant Adaptation Actions
Based on the knowledge of the available datasets, their location,
their relations, and the privacy and security constraints, there are
two main aspects that the system design has to take into account
to define suitable adaptation actions based on the atomic tasks
illustrated above:

• Defining the adaptation actions that are relevant in the
considered application domain

• Identifying the most suitable action to perform in a given time.

In this section, we focus on the first problem, discussing the
relevant aspects that must be taken into consideration when
adaptation actions are to be finalized. About the second issue,
section 6 discusses how the goal-based approach is adopted to
drive the execution of the adaptation actions with the aim to
improve data utility.

The different kinds of tasks introduced in this section are the
building blocks for composing an adaptation action. In fact, an
adaptation action can include one or more tasks. More formally,
an adaptation action aa ∈ AA in a specific application context is
defined as a tuple:

aa =< ta,ManT,OptT > (3)

where

• ta ∈ T is the main task of the action and can be either a data
movement or a transformation task.

• ManT ∈ DT T is a set of mandatory tasks that are always
executed with the main task.

• OptT ∈ DT T is a set of optional tasks that can be associated
with the main task.

Both mandatory and optional tasks are transformations applied
to the dataset for complying with the security requirements
or for improving the effect of the main task. As an example,
different privacy and security constraints might apply to each
location, and a datamovement action could therefore also require
some security-related data transformation. For instance, due
to the privacy regulations, data stored on the cloud must be

anonymized, and data collected on a smartphone should thus be
made anonymous by removing any direct reference to the user
(e.g., userid and name) beforemoving them from the user’s device
to the cloud. According to this, we can define an adaptation
action aa1 = {MEC, {anonymization}, {reduction, aggregation}}
composed of a main task ta = MEC, which moves the data
collected by a wearable device from the smartphone of the user
to the cloud storage. The mandatory task anonymization forces
to anonymize the data when the movement is performed. Finally,
Opt = {reduction, aggregation} defines as optional the tasks
reduction and aggregation, both reducing the volume of data to
be moved from the device to the cloud, and this consequently
improves latency and reduces cost.

As already defined, adaptation actions might affect both
the content (data transformation tasks) or the location (data
movement tasks) of a dataset. The argument of an adaptation
action can be a whole dataset or a subset of it. As an
example, when the cloud is fed with the data from the user’s
device, the action could include either a MEC or a DEC.
Considering our scenario, when the storage on the device is
almost full, moving data from the edge to the cloud might
require emptying all the collected data stored in the edge to
be saved in a cloud resource. However, the requirements
of the running applications might be in conflict with this
strategy since some data might be useful locally. For instance,
some of the data should be kept locally to support the
self-monitoring application. Observing the past executions of
the application it is possible to provide information on the
typical behavior expected by the system. Here, we focus on two
main aspects:

• Relevant data: not all the data collected by the sensors at the
edge are used locally. When deciding which data to move
from the edge to the cloud and vice versa, we should take
into account the frequently accessed data. This information is
relevant to improve the performance of the data retrieval. As
an example, when the storage resource at the edge side is full,
we should move some data to the cloud. In doing so, we can
select the data that are less likely to be used in the near future
and keep the other data on the device to keep the data retrieval
latency low.

• Device behavior: in a fog environment, we are often
subject to unreliable connections between the cloud and

the edge. Consequently, the user device can be offline at
some point, making the communication between the cloud

and the edge impossible. Observing the typical behavior of

the devices in terms of connectivity with the cloud, we

can prevent connectivity issues by using this information
when deciding where to place the data. As an example,
statistics and aggregation of monitoring data are usually

performed and stored in the cloud. A customer who wants
to access statistics needs to have an active connection all the

time. If a permanent active connection is not ensured, our

approach can improve the performance by saving an extract
of the statistics back to the edge, thus making it accessible

every time to the customers, even when connectivity is

not present.
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6. IMPROVING E-HEALTH MONITORING
WITH DATA-UTILITY DRIVEN ADAPTATION
ACTIONS

The main goal of each data provider is to offer its services by
meeting consumer demands in terms of data usage. However, Fog
computing is a dynamic environment in which the performance
of the fog nodes can deteriorate and the connections between the
nodes are not reliable or simply not durable due to the mobility
of the fog nodes. This section describes the part of the approach,
proposed in this document, which allows the provider to meet
the users’ data requirements in such a dynamic environment,
choosing the best adaptation action.

We define a goal-based modeling language in order to specify
(i) user requirements, (ii) the adaptation actions that can be
implemented, and (iii) the link between adaptation actions and
user requirements. The information modeled with this language
is the basis for selecting the best adaptation action.

In the literature, several goal-based modeling languages are
defined (Horkoff et al., 2015). However, as far as we know, no
goal-based modeling language allows the definition of adaptation
actions and their impact on goal models. We based the definition
of the language on our extension (Plebani et al., 2018) of BIM
modeling language (Horkoff et al., 2012).

6.1. A Modeling Language to Link User’s
Requirements With Adaptation Actions
Non-functional requirements of applications using the same
dataset are expressed through the concept of data utility
introduced in section 4. For each application, a different set of
dimensions is selected, and the desired value is indicated for each
dimension. When these requirements are not met, our approach
identifies the violations and detects which adaptation actions can
be enacted.

We have chosen a goal-based modeling language to represent
the requirements since this type of language allows for easy
classification of requirements based on users’ objectives (goals)
across different levels of abstraction. This feature allows the
readability of the goal model even by non-technical users.

In a goal model, the goal concept represents an objective to
be achieved. Formally, the set of goals G in a goal model is
defined as

G = {< Name,Metrics >} (4)

where Name is the name of the goal and Metrics a set of metrics
used to assess the goal defined as

Metric = {< Type,Comparator,Measure >} (5)

where Type ∈ Types indicates the type of the metric referring to
the set of data utility dimensions defined in section 4;Measure ∈
IR represents the reference value; Comparator ∈ {<,≤,>,≥
,=} represents the relation between the observed value and the
reference value.

In a goal model, each goal can be decomposed into sub-goals
forming a tree structure, where the root element is called root

goal. Sub-goals represent a set of objectives that, once achieved,
allow the achievement of their parent goal. Root goals specify
the main objectives (requirements) of users and, therefore, must
be satisfied.

The upper part of Figure 5 provides a graphical representation
of the goal-based model formalization applied to the self-
monitoring application described in section 3. Each ellipse
represents a goal that is linked to measurable metrics that
are used to specify when a goal is achieved. For example, the
“High availability” goal is linked to the “Availability >99.5%”
metric, which means that the goal is considered achieved if the
availability of the service is more than 99.5%. The diagram shows
two goal trees. On the left, the goal tree is composed only of a
“Light client” goal, which specifies that the user wants to limit the
volume of the data stored locally in the edge device. On the right,
the target tree represents the user’s data utility requirements, and
it is more complex since it contains a decomposition of the goal
model. For example, “Quality of Service” is a parent goal, while
“Fast response” and “High accessibility” are its sub-goals. Goal
models define two types of decomposition:

• AND-decomposition: all sub-goals must be achieved to
achieve the parent goal;

• OR-decomposition: at least one sub-goal must be achieved to
achieve the parent goal.

It is worth noting that a violation of a single metric—and
therefore of the linked goal—may not imply the violation of the
root goal. For example, if the latency of the provided service goes
above 50 ms while its availability is greater than 99.5%, then the
user’s requirements are not violated since the two metrics are
linked to two goals which OR-decompose the parent goal. The
goal model in the figure requires only one of them to be achieved.

The set of all decompositions are represented by the set
Decompositions that is defined as

Decompositions = {< g, sub, type >} (6)

where:

• g ∈ Goals, is the parent goal;
• sub ∈ P(Goals), belongs to the power set (i.e., the set of all

possible combinations of the elements) of goals and contains
the children goals that decompose the parent goal;

• type ∈ {and, or} is the type of decomposition.

For example, the goal “High data utility” is AND-decomposed in
three goals: “High quality of service,” “Privacy,” and “High data
quality.” This results in the following decomposition:

{High data utility, {High quality of service, Privacy,High data

quality},AND}

The lower part of the model in Figure 5 represents the adaptation
actions that can be enacted in this running example. The
adaptation actions modeled define movement and duplication
between edge devices to cloud storage, and data transformations.
Adaptation actions are represented by boxes with a label that
defines the source, the destination, and the type of action. All
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FIGURE 5 | Example of a goal model.

tasks composing the adaptation action are linked to goals with
relations that specify the positive or negative impact that their
enactment has on the achievement of the goal. For example,
the adaptation action MEC, according to the definition given in
section 5.3, defines an action in which the main task concerns
the movement between the sensors and the cloud. The action is
linked with a positive impact on the “High volume” goal since
the movement of data in the cloud has a positive impact on the
linked metrics. Indeed, storing data in the cloud, instead of in an
edge device, enables the storage of a higher volume of data.

As specified in section 5.3, an adaptation action is associated
with optional and mandatory tasks. In the modeling language
proposed in this paper, these tasks are represented with a box
with double borders on both sides associated with an action:
mandatory tasks have a white background, while optional tasks
have a gray background.

Each action is associated with a link to the goals that represents
the impact of the action over the goal satisfaction. Impacts can be
positive or negative. For each action, Pos ⊆ Goals represents the
set of goals that receive a positive impact when the main task is
executed, and N eg ⊆ Goals represents a set of goals negatively
impacted. Also, Pos ∩ N eg = ∅. Optional and mandatory tasks
inherit impacts of the adaptation actions they are linked to. If
they provide additional or different impacts, links to the affected
goals are represented in the model. For example, the adaptation
actionMEC has one mandatory task “Encryption,” which specifies
that data can be encrypted before moving them. Such task has a
positive impact on the “Privacy” goal since the encryption will
prevent the disclosure of personal data. In this example, the
adaptation action and the linked task have an opposite impact
on the “Privacy” goal. If this is the case, the impact of the task
overcomes the impact of the main task of the adaptation action.
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Impact relations can be designed by experts or learned/refined
automatically by observing the effects of executing a task on the
metrics linked to goal model.

As specified in section 5.3, adaptation actions are enriched
with metadata. These metadata in our model specify two aspects:
the execution time of the action and the economic cost of its
execution. Metadata are represented in the model as dashed
boxes. For example, the adaptation action MEC has attached two
metadata specifying the execution time (i.e., an estimation of
0.3 s per MB) and the cost (i.e., 1$ per TB). According to this,
for each action we can define an element of the metadata set
metaData ∈ MetaData as

metaData =< metaType, IR > (7)

where metaType ∈ {ExecT,Cost} is the set of possible metadata.
Optional and mandatory tasks can change the metadata of the
action to which they are linked.

Formally, we define a task t ∈ T , including impact relations
and meta data:

t =< taskType,Pos,N eg,MetaData > (8)

where taskType is the type of task, as defined in section 5, Pos
and N eg are the positive and negative impacts of the task, and
MetaData are the metadata associated with the task.

At this point we can define a goal model GM :

GM =< G,Decompositions,AA > (9)

6.2. Creation of A Goal-Based Diagram for
Supporting Adaptation Action Selection
The creation of a diagram based on the modeling language
defined in section 6.1 consists of the following phases:

• Creation of the goal model structure that represents
user requirements;

• Specification of the adaptation actions that can be
enacted, complemented with mandatory and optional
tasks and metadata;

• Specification of the impact of adaptation actions and tasks on
the goal model.

In terms of the specification of the goal model, users specify
their requirements based on their objectives. As already described
before, we chose a goal-based modeling language since it can be
used to represent requirements at different levels of abstraction.
Users can thus express abstract requirements in the upper
part of the goal model, while they can specify more concrete
requirements on the lower part nearer to the leaves and up to
the definition of the reference values for the metrics.

The specification of the adaptation actions largely depends on
the infrastructure and on the resources. In section 5.3, we defined
a set of classes that will be instantiated according to the actual
context of execution. Instances of adaptation actions are not
specified in Figure 5 due to space constraints. For example, the
adaptation actionsMEE, which consists in themovement between
two edge devices, will be instantiated by generating two actions

for each possible pair of edge elements authorized to exchange
the data.

6.3. Automated Selection of Adaptation
Actions
The main objective of the proposed goal-based model is to
provide a method for identifying which is the best action to be
enacted in case a goal is violated. In fact, when the violation of a
metric prevents the achievement of the top goal of a goal tree, the
model supports the selection of the best adaptation action to be
implemented in order to remove the violation. This is reflected
by the connections between the upper and the lower layers of
the model. A software component has been developed6 supports
this identification by exploring the tree and the positive/negative
impacts. The selection is divided into the three phases described
below. The software requires the implementation of a monitoring
system that identifies the violations of user requirements.
Phase 1: Selection of the relevant adaptation actions The first
step is to identify the set of adaptation actions that can be
enacted to solve a violation. In this step, impacts are used to
identify the actions with a positive effect on the violated goal.
For example, if the latency goes above 50 ms, the requirement
specified by Figure 5 for the sub-goal “Fast Response” is violated.
Two adaptation actions are then selected:MEE andMCE.

This phase executes two algorithms: the first one identifies
the violated goals (Algorithm 1), while the second one
identifies the adaptation actions that have a positive impact on
them (Algorithm 2).

Algorithm 1 requires as input the goal model GM =

{G,Decompositions,AA} defined in Equation (9), and a set
of measures Me = {Tme,Mme}, where Tme ∈ Types and
Mme ∈ IR. Measures are generated by a monitoring system that
continuously checks the system targeted by the goal model.

Algorithm 1: Identify unsatisfied goals

1: ∀ (g,Metrics) ∈ G

2: ∀ (tm,Cm,Mm) ∈ Metrics
3: if ∃ me = (tme,mme) ∈ Me s.t. tme = tm ∧

¬apply(mme, cm,mm)
4: then g is violated

where apply(m1, c,m2) : boolean is a function that applies the
operator c ∈ Comparators to the two measuresmme,mm ∈ IR.

Algorithm 1 inspects all goals in the goal model (Line 1).
For each metric in each goal (Line 2), the algorithm checks if it
exists a measure that has the same type and violates one of its
metrics (line 3). If this is the case, the goal is considered to be
violated (Line 4).

Given a goal model GM = {G,Decompositions,AA} and
the set of violated goals VG identified thanks to Algorithm 1,
Algorithm 2 identifies the relevant adaptation actions inAA.

In Algorithm 2:

6https://github.com/DITAS-Project/decision-system-for-data-and-

computation-movement/
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Algorithm 2: Identify adaptation actions

1: ∀(ta,ManT,OptT) ∈ AA

2: if ∃g ∈ VG s.t.g ∈ (pos(ta) ∪ poss(ManT)) \ negs(ManT)
3: then (ta,ManT,∅) → SelectedAA
4: ∀op ∈ OptT
5: if ∃g ∈ VG s.t.g ∈ pos(op)
6: then (ta,ManT, {op}) → SelectedAA
7: ∀selectedAA = (ta,ManT,OptT) ∈ SelectedAA
8: if ∃g ∈ VG s.t. g ∈

9: (neg(ta) \ (poss(ManT) ∪ poss(OptT)))∪
10: (negs(ManT) \ poss(OptT))∪
11: negs(OptT)
12: then remove selectedAA from SelectedAA

• pos(T) :Goals, where T ∈ T is a function that returns the set
of goals positively impacted by the task in input;

• neg(T) :Goals, where T ∈ T is a function that returns the set
of goals negatively impacted by the task in input;

• poss(T ′) :Goals, where T ′ ⊆ T returns the union of all goals
positively impacted by all tasks in the set received as input;

• negs(T ′) :Goals, where T ′ ⊆ T returns the union of all goals
negatively impacted by all tasks in the set received as input.

Algorithm 2 considers each adaptation action (Line 1) and
verifies if there exists a violated goal that belongs to the set
of goals that are impacted positively by the main task or the
mandatory tasks of the adaptation action (Line 2). If this is the
case, the adaptation action is added to the set of selected actions
selectedAA. The selected action set includes only the main task
and the mandatory tasks (Line 3). Please notice that, in Line 2,
we subtract the goal negatively impacted by ManT tasks since
impacts of mandatory and optional tasks override impacts of the
main task (see section 6.1).

Additionally, for each optional task of the action (Line 4) the
algorithm verifies if they have a positive impact on a violated goal
in VG (Line 5). If this is the case, the adaptation action is selected,
including the optional task.

Finally, for each action in selectedAA (Line 7), the algorithm
checks if the action has a negative impact on one of the violated
goals (Line 8–11), removing it from the set (12). Similarly to
Line 2, also in this case the algorithm subtracts from the set of
goals negatively impacted by the main task the positive goals
of mandatory and optional task (Line 9). Line 10 specifies that
an impact relation of an optional goal overrides an impact
relation of a mandatory goal. We chose this criterion since we
assume optional tasks are chosen to improve the behavior of the
adaptation action (and its mandatory tasks).
Phase 2: Prioritization of the adaptation actions The second
phase consists of the prioritization of the adaptation actions
selected in the first phase based on their metadata and on the
strategy selected by the user. Strategies are optimization functions
that consist of the (set of) metadata that the user would like
to minimize or maximize. For example, they can define as a
strategy the minimization of the costs or the minimization of the
execution time. Once the strategy has been defined, the selected

adaptation actions will be ranked and the enactment of the action
with the highest score suggested.

The selection, and consequently the enactment, of an
adaptation action brings to the system a new configuration where
data have been moved, copied, and/or transformed to resolve
a violation. Algorithm 2 selects the actions that have a positive
impact on violated goals. It is worth noting that the correctness of
the output, i.e., whether the selected adaptation action positively
impacts the violated goals as expected, is based on the correctness
of the input, i.e., the goal model analyzed.
Phase 3: Update of impact relations After the enactment of
an adaptation action, the framework will periodically check
the metrics and update the impact relations based on the
performance of the system after the enactment.

Adaptation actions are selected and enacted one at time, with
a time span between two enactments that is sufficient to measure
the impact of the action on the goal model. Every time an action
is selected by Algorithm 2, it is enacted, and metrics of the
goal model are measured in order to detect the impacts of the
adaptation action and, possibly, update its impact relations.

Algorithm 2 selects only adaptation actions with a positive
impact on the goals violated in the model. This ensures that,
granted the correctness of the goal model, the system is led to
a configuration that resolves (or reduces) the violations. This is
guaranteed by lines 1–3 of the Algorithm 2 where only actions
with positive impacts on violated goals are selected. Lines 4–6
enrich this set of actions with actions with optional tasks, having
at least a positive impact on violated goals, while lines 8–11
remove from the set adaptation actions with negative impacts on
the violated goals. This last step aims to avoid side effects in the
enactment of an action.

It is worth noticing that the method described in this section
is successful only if the goal model is generated in a proper
way. First of all, the goal model must contain all the relevant
requirements of the application/user. It is very important to be
able to capture whether the current configuration does or does
not satisfy the users’ needs. Second, the treatment layer of the
goal model must contain all and only the actions applicable
in the context. This is very important for avoiding the system
to be driven in undesired configurations. This depends on a
proper definition of the rules for where and how it is possible
to move data from a location to another set by the data
administrator. Finally, impacts linking the treatments to goals
must properly represent the effects of enacting the selected
action. For this, the expert’s knowledge is very relevant, but
might not be enough. To help in the definition and refinement
of the impacts, real effects are analyzed to improve the model
by updating impacts according to what observed at run-time.
Correct impacts enable us to predict the positive and negative
effects of an action and to avoid disruptive decisions. A sound
model thus provides all the elements to detect and react to
violations taking informed decisions.

The described framework considers only the goal model for
a specific user at a time. In future work, we will consider multi-
users scenarios, where multiple goal models, potentially defining
conflicting requirements, will be evaluated. In this case, two
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solutions can be adopted: (i) a centralized decision system that
will have the control on all the goal models and it will select
the best adaptation action and (ii) a distributed decision system
that will divide the responsibility for the selection of the best
adaptation actions among all its participants.

6.4. Using the Goal-Model in the
Healthcare Scenario
Referring to our motivating example discussed in section 3 and
to the goal model shown in Figure 5, we explain the usage of the
proposed approach through some examples.

Let us suppose that the telecommunication provider of user
A’s smartphone is experiencing traffic congestion. This negatively
impacts both latency and availability, which decrease to the
point that they violate both the Fast response and the High
accessibility goals. Consequently, the goal model can be used to
find compensating actions capable of fulfilling the requirements
once again. Based on the goal model, the adaptation action MCE

(i.e., move data from cloud to edge) is selected, as it has a positive
impact on both violated goals, and the negative impact on other
goals is negligible. To decrease the time required to perform data
movement, the Data reduction transformation is additionally
applied while moving data from the cloud to user B smartphone.
Although Data reduction has a negative impact on the Error Free
goal, the effect of such impact is not sufficient to violate that goal.
Its execution thus has a positive effect.

Let us now consider that the volume of UV light
measurements on user A’s smartphone exceeds 10,000 samples,
violating the Light client goal. Based on the goal model, the
adaptation actions labeled MEC and MEE are selected, as they
both have a positive impact on the Light client goal. In terms of
the smartphone of user B in proximity with the one of user A,
the adaptation action MEE, which moves data between the two
devices, is enacted, as it has no negative effects on the other goals,
and its cost is lower or equal to the one of every action of the
MEC class. .

Let us also consider that it is possible to experience issues
related to the reliability of values received from the UV
sensor. Such problems can be caused by two main reasons:
communication problems between sensors and the smartphone
and degradation of the sensor’s performance due to, for example,
low battery or failures. In both cases, the reliability of the
UV sensor values decreases to the point that it no longer fulfills
the completeness and/or accuracy requirements specified for the
Error free goal. Consequently, the adaptation actions labeledMEC

and DataCleaning are identified as candidates. Since MEC has
a negative impact on the Fast response, High accessibility, and
Privacy goals, it is set aside in favor of DataCleaning, which
will have only impact on Fast Response . In fact, enabling the
data cleaning transformation will, on the one hand, take longer
to process and display data but, on the other hand, it will
try to provide reliable results. Within the “inputting values”
features, null values will be detected and (if possible) substituted
with reliable values. The “outlier detection” will analyze outliers,
that will be removed or substituted with acceptable values if
related to data glitches. In any case, it is necessary to underline

that, if the quantity of values received is too low, no cleaning
operation is possible, and the application should warn users of
the system failure.

7. TOOL EVALUATION

The main feature of the software component we developed
consists of deciding which is the best adaptation action to be
enacted and, consequently, foreseeing the effects of such actions.
We therefore executed tests to measure the ability of the software
component to perform a choice that leads the system to a
configuration that does not violate any goals defined in the
goal model.

We simulated typical configurations for the case study and
triggered several violations multiple times. We measured how
many times the system is brought to a configuration where
violations are removed and how many actions are enacted to
reach such configuration.

We repeated the test with (i) a growing number of violations,
(ii) reduced the number of edge/cloud resources where it is
possible to move data, and (iii) reducing the quality of the
network connection between resources. We have implemented
software optimizations that allow the analysis of available
resources and the selection of the best one; however, these
optimizations cannot be applied on a network where, especially
in a fog environment, the connection may not be stable. We
therefore ran an additional set of tests to verify the behavior of
the software component when optimizations cannot be applied.

Figure 6 shows the number of adaptation actions (Y axis)
enacted based on the number of violations detected (X axis)
simultaneously. The dashed line shows the situations in which
multiple goal models (one for each user/application) are
managed. In the test, increasing the number of violations
corresponds to the introduction of an additional goal model; at
any step, therefore, only one violation per goal model is detected.
For example, five violations mean that five goal models (one for
each user/application) detected one violation each. In this case,
the number of adaptation actions, required to reach a system
without violations, is equal to the number of violations received.
The software examines one violation at a time and enacts
the corresponding adaptation action to solve it. The solid line,
instead, shows the behavior with multiple violations on a single
goal model. As can be seen, in the experiments one adaptive
action is sufficient to resolve all violations. By comparing the two
behaviors, we can observe that, for a single goal model, an action
can resolve multiple violations. Actions, however, have an impact
on the system only at the local level. When multiple goal models
are considered, an action must be taken for each goal model that
has detected a violation.

Figure 7 shows the number of adaptation actions necessary
in the event of deterioration of the quality of the network. We
simulated the network using virtual connections, each of them
with a set of properties, such as latency. The chart in Figure 7

shows in the X axis the number of virtual network connections
that can be used to restore a configuration of the system without
violations, while the Y axis represents the number of adaptation
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FIGURE 6 | Number of adaptation actions per violation.

actions enacted to bring the system to a configuration where no
violations are detected. For a large number of available network
connections (3, 4, 5) the correct decision is made immediately.
For fewer available network connections, the correct decision
is made after the second adaptation action. We repeated the
experiment several times, but the number of adaptation actions
was always the same since the software component uses a
deterministic algorithm for the decision.

Summarizing what is shown in this section, the results of
the experiments show that the number of violations affects the
selection of the best adaptation action. When we deal with a
single goal model (solid line in Figure 6), a single adaptation
action can solve all violations. Instead, with multiple goal models
(dashed line in Figure 6) each violation is triggered by a different
node, therefore, the number of adaptation actions needed is equal
to the number of violations detected. Concerning the relation
between the number of adaptation actions and the quality of the
network, the results in Figure 7 have shown that the lower the
network quality, the higher the number of adaptation actions
that may be needed to restore a configuration of the system
with no violations. Network connections in fog environments
are unstable and their characteristics change frequently. To know
the state of the network, a continuous benchmark would be
necessary; however, the impact of this activity would create an
excessive overload. The software component therefore tries to
implement an adaptation action and waits for the next violation.

8. RELATED WORK

The evolution of data management systems in the last year
has confirmed that the “one size fits all” approach is no
longer valid (Stonebraker and Cetintemel, 2005) and this is also
confirmed in the healthcare domain. In fact, nowadays, data
intensive applications (Kleppmann, 2017) are not based on a

unique database technology (e.g., relational databases) (Prasad
and Sha, 2013). Also, the computation is now polyglot (Kaur
and Rani, 2015), i.e., different modules are developed with
different languages. This trend has been boosted also by the
availability of platforms that usually support the micro service
architectural style.

Although these new approaches provide a support for
an easy development and execution of scalable and reliable
solutions, the negative aspect concerns the need for inter-
process communications in place of the shared memory access
that is heavily affected by the network performances (Dragoni
et al., 2017). For this reason, proper data management is
required, and the information logistics principles are useful
in this context (Sandkuhl, 2008; Haftor et al., 2011). In
particular, (Michelberger et al., 2013) identifies different
perspectives around which Information Logistics can be studied:
e.g., from an organizational standpoint in terms of how to
exploit the data collected and managed inside an organization
for strategy purposes or how to properly distribute the data
in a supply chain management. The so-called user-oriented
Information Logistics (i.e., the delivery of information at the
right time, place, and with the right quality and format to the
user) advocates data movement (D’Andria et al., 2015). The
issue of inter-process communication has been faced also in
Vitali and Pernici (2016) based on healthcare scenario. In this
work, hidden dependencies between the processes of different
organizations where discovered by taking advantage of the data
collected by the IoT devices in the environment. By combining
and analyzing the information generated by different actors,
an improved coordination between stakeholders can thus be
reached. The issue of how to collect and manage these data
remains open.

The approach proposed in this paper to express requirements
about datamovement relies on goal-basedmodels that are usually
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FIGURE 7 | Number of adaptation actions per available network connection.

adopted in requirement engineering to specify the objectives
of users and applications to be designed (Van Lamsweerde,
2001; Amyot and Mussbacher, 2011; Horkoff et al., 2015).
By using the tree-like structures of goal models, decisions on
which subset of the modeled goals must be achieved can be
taken. To this aim, several techniques have been proposed
(Letier and Van Lamsweerde, 2004; Horkoff and Yu, 2016). The

satisfaction analyzes propagate the satisfaction or denial of goals

forward and backward in the goal tree structure. The forward

propagation (Letier and Van Lamsweerde, 2004) can be used

to check alternatives, while the backward propagation (Giorgini
et al., 2003; Sebastiani et al., 2004; Chung et al., 2012) can be
used to understand what are the consequences of a satisfied or
denied goal.

Among the several requirements that can be expressed
through our application of the goal-based model, the quality of
data and quality of service aspects are the most relevant ones;

in this paper, they are considered together under the data utility

umbrella. Data utility has been defined in different ways in the

literature. In statistics (i), it has been defined as “A summary
term describing the value of a given data release as an analytical

resource. This comprises the data’s analytical completeness and

its analytical validity” (Hundepool et al., 2012). In business (ii),

it has been defined as “business value attributed to data within
specific usage contexts” (Syed et al., 2008). In IT environments

(iii), it has been defined as as “The relevance of a piece of

information to the context it refers to and how much it differs
from other similar pieces of information and contributes to
reduce uncertainty” (Kock and Kock, 2007). More related to a
Fog computing environment, (Cappiello et al., 2017) defines data
utility as a numeric measure that reflects the relative importance
and value contribution of a record from a business/usage
perspective and provides a flexible approach that has been
adopted in this paper to cover different types of applications as

well as customizable set of data quality parameters. In fact, in
the literature, some papers consider data utility in specific usage
contexts (Ives et al., 1983; Lin et al., 2015; Wang et al., 2016)
or on a specific set of data quality dimensions, e.g., accuracy,
accessibility, completeness, currency, reliability, timeliness, and
usability (Skyrme, 1994; Moody and Walsh, 1999).

9. CONCLUDING REMARKS

The ever-growing adoption of IoT-based solutions in the
healthcare sector has resulted in a significant increase in data
production, which could have the potential to be used in internal
hospital processes but could also be relevant externally. On this
basis, this document presented an approach based on the Fog
computing paradigm, which demonstrates how this paradigm
fits perfectly as a way to organize a distributed software solution
in which data is produced at the edge of the network and
consumed in other nodes that could be internal or external
while preserving the data utility requirements. This goal was
achieved by considering a formalization of data utility defined as
a combination of data quality and quality of service. In addition,
a goal-based model approach is adopted to select and enact an
adaptation action capable of recovering the situation in the event
that data utility is not satisfied.
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