About this Research Topic
Technical modifications of these chemostats by cell feed-back loops, cell retention, and extension by more than one chemostat stage led to more robust systems that are able to handle fluctuations of substrate availability, which are typically the case in waste water treatment plants. In addition, sophisticated process analytical technology (PAT) allowed the establishment of so called nutristats and turbidostats. In these particular cultivation techniques, the cells trigger the substrate feed by closed feed-back loops based on metabolic signals (e.g. carbon concentration below a certain threshold value) or based on the change of cell density (culture turbidity), respectively. Recently, continuous cultivation experienced a strong boost in the field of antibody production using animal cell cultures. These so-called perfusion systems differ from classical chemostats by the partial or even complete retention of cells that have been immobilized on surfaces (ceramic or polymer beads). By implementing this cultivation method, the problems of growth inhibiting metabolites (e.g. lactate and ammonium) can significantly be reduced and as a consequence results in a higher viability and a much higher yield over a longer period.
The goal of this collection of research articles is to give an overview on the state of the art of continuous cultivation and point out novel trends. In-depth review articles as well as scientific reports on recent developments with microorganisms and animal cell cultures are very welcome.
Keywords: chemostat, auxostat, steady-state, perfusion culture, bioprocess design
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.