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Editorial on the Research Topic

Neuropsychology Through the MRI Looking Glass

Since its inception as a science, psychology has been explicitly preoccupied with the mind-body
relationship, specifically with the role that the nervous system plays in shaping how we perceive
the world around us and how we react in our interaction with it. The evidence in this regard are
the second and third chapters of William James’s 1890 “The Principle of Psychology” (Volume 1)
(1), which explain the functions of the brain and the general conditions underlying its activity,
as well as the entire work of Wilhelm Wundt’s 1904 “Principles of Physiological Psychology” (2),
which explicitly linked the evolution of variousmental functions to the organization and physiology
of the nervous system. Yet, it was not until 1980s when the neuropsychology has established
itself as a branch of psychology in its own right, aiming to explain how the brain and the other
parts of the nervous system influence one’s cognition, emotions and behaviors using a variety
of methods from observation and questionnaires to computerized tasks gathering reaction time
and electrophysiology. The knowledge thus obtained in healthy individuals was then employed by
neuropsychologists in assessing the impact of various diseases on brain structure and function.
The next decade, the 1990s, ushered in the neuroscience era, with the development of various
techniques of magnetic resonance imaging (MRI), of which the functional MRI (fMRI) proved
to be a key tool in uncovering, in vivo, the neurophysiological substrate of specific brain functions.
Neuropsychologists quickly incorporated these new techniques in their research methods arsenal
and nowadays they are part of the regular curricula in most neuropsychology training programs.
In the current Research Topic we sought to gather a group of articles that will showcase the use
of various MRI techniques in neuropsychology in both healthy individuals and those affected by
different diseases, thus highlighting the specific benefits that MRI can bring in this field.

This Research Topic includes 12 articles that showcase both anatomical (Czekóová et al.; Hlavatá
et al.; Liu et al.) and functional (Dash et al.; Fajnerova et al.; Gabitov et al.; Potvin et al.; Qin et al.;
Sojka et al.; SolstrandDahlberg et al.)MRImethods, as well as positron emission tomography (PET)
(Longarzo et al.; Trošt et al.), in investigations that range from a case report (Longarzo et al.), to
experimental paradigms that involved groups of participants (Czekóová et al.; Dash et al.; Fajnerova
et al.; Gabitov et al.; Hlavatá et al.; Qin et al.; Sojka et al.; Trošt et al.), to reviews and meta-analyses
(Liu et al.; Potvin et al.; Solstrand Dahlberg et al.). Likewise, the studies included in this special issue
sought to investigate the neurophysiological substrates of various brain functions in both healthy
individuals and those afflicted by diseases.
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Regarding the use of anatomical MRI in neuropsychology,
we showcase here four articles. One of these articles is a
case report by Longarzo et al. of a 67-year-old male patient
with bilateral thalamic stroke who was investigated using
positron emission tomography, magnetic resonance imaging
(tractography), and cognitive assessments, performed at baseline
and at two follow-up evaluations at 6 and 18 months post-injury.
Interestingly, the authors also included 13 healthy individuals
matched for age and gender, who followed the MRI protocols
of the study. The study presents three major findings: an
association between structural and metabolic changes within the
fronto-thalamic circuitry in the patient, significant differences
between the patient and controls involving the anterior thalamic
radiation, one of the major fiber tracts in the fronto-thalamic
circuitry and—importantly for clinicians—adaptations to
bilateral vascular thalamic injury at multiple levels, revealing the
metabolic, functional, and microstructural alterations attending
to multidomain neuropsychological impairment. Two articles
investigated brain structural differences between patients and
their healthy counterparts in conjunction with the results of
various clinical neuropsychological assessments. Hlavatá et al.
report structural differences in cortical areas related to impulse
control in Parkinson’s disease patients with and without impulse
control disorders (ICD) relative to healthy controls. Moreover,
patients without ICD had lower volumes and cortical thickness
of bilateral inferior frontal gyrus, whereas those with ICD
presented higher volumes of right caudal anterior cingulate and
rostral middle frontal cortex. Interestingly, patients with ICD
performed no worse than healthy controls in various behavioral
tasks previously hypothesized as robust impulsivity measures,
thus cautioning against quick interpretation of behavioral tests
without additional physiological investigations. Czekóová et al.
examined the association between gray matter (GM) atrophy
in multiple sclerosis (MS) patients and their performance on
tasks measuring several fundamental components of social
cognition. They report that patients had slower processing
speed, poorer perspective taking, and less imitation compared
to healthy controls and that these impairments were associated
with GM atrophy in putamen, thalami, and anterior insula,
predominantly in the left hemisphere. The last paper in this
group comes from a new research area in neuroscience dealing
with the microbiota-gut-brain axis. Liu et al. conducted a scoping
review of recent studies of healthy individuals and patients with
diverse neurological disorders that employed a combination
of advanced neuroimaging techniques and gut microbiome
analyses. The authors report that gut microbiota profile is
significantly associated with markers of brain microstructure,
but also with those related to functional intrinsic neural activity
and brain connectivity at-rest. These findings highlight the
need for longitudinal studies that include assessments of the gut
microbial community structure and microbial metabolomics
in conjunction with neuroimaging and behavioral testing in
order to parse out the directionality and causality within the
microbiota-gut-brain axis.

Two articles included PET as imaging technique. One is
the case report of the 67-year-old male patient with bilateral
thalamic stroke that was already mentioned above (Longarzo

et al.). The other is a systematic review of studies that used
PET and [18F]-fluorodeoxyglucose (FDG-PET) to investigate
changes in brain metabolism in Parkinson’s Disease and other
α-synuclein pathologies (Trošt et al.). In this review, Trošt et al.
conclude that the neuropsychological data in PD and related α-
synucleinopathies correlate with metabolic neuroimaging data,
thus suggesting that the latter may be used to derive biomarkers
of disease progression.

While the remaining seven articles share the fMRI as their
main neuroimaging technique, they can be clustered in two main
groups based on whether they investigated the brain activity at
rest or during tasks.

The group that used resting-state fMRI (rs-fMRI) contains
two articles, one assessing the changes in functional connectivity
in patients with obsessive-compulsive disorder (OCD) relative
to healthy controls and in conjunction with other variables
assessed with neuropsychological tests (Fajnerova et al.) and the
other investigating the topological organization of different brain
networks in patients with type 2 diabetes mellitus (T2DM), again
relative to healthy controls and in association with cognitive
dysfunction assessed by neuropsychological tests (Qin et al.).
In the first article, Fajnerova et al. report altered functional
connectivity patterns in OCD patients relative to their healthy
counterparts in association with the severity of cognitive and
clinical symptoms. In the second article, Qin et al. found changes
in topologic properties of several brain networks in T2DM
patients relative to healthy controls that were correlated with
cognitive performance.

Of the remaining five articles, three used task-related fMRI in
original investigations (Dash et al.; Gabitov et al.; Sojka et al.)
and two were meta-analyses of original studies that employed
the same neuroimaging technique (Potvin et al.; Solstrand
Dahlberg et al.). Sojka et al. investigated the brain activity of
patients with functional movement disorder (FMD) andmatched
healthy controls during an emotion regulation task. They report
increased activation in FMD patients in several brain areas when
observing negative pictures, especially in areas associated with
self-referential processing in voluntary emotional regulation and
lower emotional awareness. Dash et al. examined the effect of age
and bilingualism on the brain networks underlying attentional
processes. The authors found an increase in brain activity in
the frontal and parietal areas in elderly when compared to
young bilinguals, as well as a negative correlation between the
proficiency level in the second language and activation level in
frontal areas, which was observed only in the elderly group,
thus providing evidence for age-related neuroplasticity. Gabitov
et al. investigated local and long-distance changes in functional
connectivity between areas involved in the acquisition of a
motor skill during the course of motor learning in a group of
healthy individuals. The authors report task-induced changes
in functional connectivity that reflect reconfiguration of the
intrinsic connectivity patterns within the somatomotor network
during learning, changes that cannot be predicted or detected
using the traditional brain activation contrasts.

The last two articles are meta-analyses. In the first article,
Potvin et al. conducted a systematic review of schizophrenia
literature in order to test the hypothesis that self-disturbances
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in schizophrenia may arise from impaired activity in the cortical
midline structures and the temporoparietal junction. The authors
report that the meta-analysis provided partial support for this
hypothesis, with decreased activations only in the dACC and
dorsomedial prefrontal cortex, which are involved in cognitive
control and/or salience attribution, as well as decision-making,
respectively. Given the unexpected decreases in activity in
thalamus, which is not a core region of the default-mode network,
and is involved in information integration, the authors suggest
that the thalamic alterations may compromise self-coherence
in schizophrenia. In the second article, Solstrand Dahlberg et
al. examined the current fMRI PD literature with the goal of
parsing out the contribution of the cerebellum in motor and
non-motor functions in this disease. The results revealed that
the main cerebellar implications in PD is linked to cognitive
functioning, with no significant differences being observed in this
structure between PD patients and healthy controls in studies
using motor paradigms. Nevertheless, the meta-regression using
only data from PD patients indicated that there was a negative
correlation between disease severity and cerebellar activation
during motor paradigms despite a lack of correlation with disease
duration. The authors suggest that these results suggest the
presence of a compensatory mechanism to the dysfunctional

basal ganglia in PD, where cerebellum may be employed to cope
with motor demands.

We believe that the collection of articles grouped
in this special issue will increase our awareness of the
usefulness of various MRI methods in different areas of
neuropsychology. In our opinion, one of the main uses of
MRI in neuropsychology is to provide a physiological basis
and validation for neuropsychological assessments that are
employed in clinical practice. The heterogeneity of the articles
in this Research Topic should not be viewed as a feeble,
but rather as a strong feature of the research in this field.
It highlights the advantages of using the same hardware
solution (the MRI scanner), combined with the flexibility of
employing various MRI sequences (i.e., structural, functional),
data analysis techniques (i.e., model-based, data-driven) and
experimental paradigms (i.e., task-based, resting-state) to
answer a large diversity of research questions, both fundamental
and clinical.
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Introduction: Recent studies of patients with multiple sclerosis (MS) have revealed

disturbances in distinct components of social cognition, such as impaired mentalizing

and empathy. The present study investigated this socio-cognitive profile in MS patients

in more detail, by examining their performance on tasks measuring more fundamental

components of social cognition and any associated disruptions to gray-matter

volume (GMV).

Methods: We compared 43 patients with relapse-remitting MS with 43 age- and

sex-matched healthy controls (HCs) on clinical characteristics (depression, fatigue),

cognitive processing speed, and three aspects of low-level social cognition; specifically,

imitative tendencies, visual perspective taking, and emotion recognition. Using

voxel-based morphometry, we then explored relationships between GMV and these

clinical and behavioral measures.

Results: Patients exhibited significantly slower processing speed, poorer perspective

taking, and less imitation compared with HCs. These impairments were related to

reduced GMV throughout the putamen, thalami, and anterior insula, predominantly in

the left hemisphere. Surprisingly, differences between the groups in emotion recognition

were not significant.

Conclusion: Less imitation and poorer perspective taking indicate a cognitive self-bias

when faced with conflicting self- and other-representations. This suggests that impaired

self-other distinction, and an associated subcortical pattern of GM atrophy, might underlie

the socio-cognitive disturbances observed in MS.

Keywords: multiple sclerosis, social cognition, self-other distinction, automatic imitation, visual perspective

taking, voxel-based morphometry, gray-matter volume
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INTRODUCTION

Multiple sclerosis (MS) is a chronic demyelinating disease of the

central nervous system. As part of a complex neurological
symptomatology, MS patients present frequently with
disturbances in various aspects of cognitive functioning;

slower processing speed, impaired episodic memory and
executive function are among the most affected (1, 2). Another
domain in which dysfunction manifests is social cognition
(3)—that is, the broad repertoire of cognitive and affective skills
that allow us to infer others’ mental and emotional states in
order to interact with them effectively (4, 5). Patients’ quality
of life is reduced considerably by disruptions to their social
environment, and so the development of effective interventions
requires a better understanding of the socio-cognitive deficits
that impact negatively on their interpersonal relationships. Since
the range of abilities comprising social cognition span various
levels of complexity, however, a precise characterization of
these impairments is difficult with standard neuropsychological
tests (6).

Unlike the long history of research into general cognitive
impairments in MS, only recently have studies begun to
unveil the nuanced nature of disturbances in social cognitive
abilities exhibited by these patients. The findings of these
studies often converge to reveal difficulties in lower-level
capacities, particularly in the recognition of negatively valenced
facial emotions [e.g., sadness, anger, fear; (7)]. In contrast,
investigations of other higher-level components of social
cognition provide less consistent insights; while some report
that patients are impaired in their ability to attribute mental
(“mentalizing”) and affective states to others [“empathy”; (8,
9)], other studies have observed disturbances only in cognitive
mentalizing (10, 11). Moreover, it remains to be seen whether
impairments in these high-level facets of social cognition result
from disruptions to more fundamental components.

Although the precise structure of social cognition is yet to
be defined, current research suggests a hierarchical organization
in which lower-level mechanisms contribute to or provide
a necessary prerequisite for higher-level processes (4). In
this model, mentalizing is believed to build upon a more
fundamental ability to take another’s perspective. Consistent
with this notion, both perspective taking and mentalizing
engage the superior temporal/temporo-parietal cortices [e.g.,
(12)]. Similarly, emotion recognition is considered a necessary
prerequisite of empathy, and both processes are associated
frequently with brain responses within the insulae and anterior
cingulate cortex (13–15). More recently, we have shown
that empathic expression is mediated by imitative tendencies,
suggesting that a process of emotional simulation might be
necessary for empathy (16).

Furthermore, multiple components of social cognition are
thought to recruit a common mechanism of self-other distinction
(SOD), which enables us to treat independently and distinguish
flexibly between cognitive self and other representations (15, 17).
Without efficient SOD, we might egocentrically misattribute our
own cognitive and affective states onto others. This would be
evident particularly when our own self states are incongruent

with those of others (18), resulting in poor emotion recognition
and empathic awareness, and inappropriate responding in
social situations. Since the viewpoints of other individuals
often conflict with our own, this mechanism is also necessary
when inferring our interaction partners’ perspective—adopting
another’s perspective requires us to detach ourselves from our
own representations (19). On the other hand, dysfunction to
this low-level cognitive mechanism might result in uncontrolled
self-other merging. Humans exhibit an involuntary tendency to
mimic one another during social interaction (20), which appears
to reflect a common neural coding of self- and other-action
[e.g., (21)]. Control of imitative tendencies therefore requires
SOD to differentiate between our own and others’ actions (17,
22); without this mechanism, we might exhibit hyperimitation
[see (17)]. Consistent with the notion of SOD providing a
mechanism common to both perspective taking and mimicry,
past research has demonstrated that the expression of involuntary
imitation is related inversely to perspective-taking performance
(23, 24). Moreover, SOD is associated frequently with brain
activity in the temporo-parietal cortices (15). Disturbances to
SOD might therefore underlie the higher-level socio-cognitive
deficits observed in MS.

Traditionally, MS has been characterized in terms of white
matter (WM) pathology, but recent research indicates that gray
matter (GM) abnormalities can predict dysfunctional social
cognition in this patient population (25). GM atrophy within
deep nuclei and the limbic system is present in the very
early stages of MS (26), and progresses rapidly in all MS
phenotypes (27). This is observed in the thalamus, putamen,
caudate nucleus, globus pallidus, and amygdala (26, 28). While
other brain regions are associated more frequently with social
cognition, these subcortical structures do appear to play an
important role in socio-cognitive functioning; the limbic and
paralimbic system (including amygdala, striatum, temporal pole,
and anterior cingulate) have been implicated in representation
of self and other mental states, for instance, and the dorsal
striatum has been associated with cognitive mentalizing (29).
Correspondingly, disturbances in social cognition also comprise
the symptomatology of Parkinson’s and Huntington’s disease—
disorders characterized partly by disruptions to cortico-basal
ganglia-thalamo-cortical circuits [e.g., (30)]. Focal GM atrophy
among these structures might therefore contribute to the deficits
in social cognition exhibited in MS. Unfortunately, however,
the majority of research in MS has been performed exclusively
at the behavioral or self-report level (8, 9, 11, 31), with
relatively few studies combining this with neuroimaging data
(25, 32, 33).

To achieve a better characterization of the disturbances in
social cognition exhibited by MS patients, the present study
utilized three experimental tasks designed to measure discrete,
low-level socio-cognitive capacities; specifically, in line with the
model described above (4) we measured emotion recognition,
visual perspective taking, and imitative tendencies. To assess
perspective taking, we measured patients’ performance on a
task that required them to infer other person’s viewpoint
when it is incongruent with their own. To examine emotion
recognition we assessed their ability to infer the emotional state
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TABLE 1 | Sample demographics and clinical characteristics.

Groups

MS HC P

Age (mean [SD]) 35.8 (8.0) 34.7 (11.0) 0.585

Males 12 (28 %) 18 (42 %) 0.175

EDSS (median [range]) 2.5 (6) – –

DD (mean [SD]) 7.5 (4.4) – –

LQ (median [range]) 100 (120) 100 (200) 0.177

University degree 24 (56%) 43 (100%) <0.001

of another person from just their eyes. Finally, to quantify
imitative tendencies we measured the degree to which they
imitated the actions of another person automatically, even when
this interfered with another task. Using GM volume (GMV)
as a metric of brain structure, we then applied voxel-based
morphometry to examine whether any of these behavioral
indices of social cognition were related to patterns of neural
atrophy. Given that MS is associated frequently with a pattern
of GM atrophy throughout deep subcortical nuclei, and the
apparent role of these nuclei in social cognition, we hypothesized
that the degree of GM reduction throughout subcortical
brain structures would be related positively to disruptions
of SOD.

MATERIALS AND METHODS

Sample
We recruited 43 patients with relapsing-remitting MS
consecutively from the Department of Neurology at St.
Anne’s University Hospital, Czech Republic, and 43 healthy
controls (HCs) matched on age, sex, and handedness (for details
on demographics, see Table 1). Handedness was assessed with
the revised version of the Edinburgh Handedness Inventory (34);
a laterality quotient (LQ) was calculated as (right–left)/(right +
left) × 100. Physical disability was assessed in MS patients with
the Expanded Disability Status Scale [EDSS; (35)]. All patients
had been diagnosed according to the revised McDonald criteria
(36), and had no other neurological or psychiatric diagnoses.
Patients reporting mild to moderate depressive symptoms were
included in the study, but the extent of symptoms reported by
the two groups were not statistically different (see below). The
minimum duration in education was 12 years (i.e., completion
of secondary education). Importantly, the availability of disease-
modifying treatment for MS patients in the Czech Republic
is currently limited to those meeting certain criteria. For this
reason, only 36 of these asymptomatic patients (84%) were
undergoing treatment: interferon beta 1a (n = 9), interferon
beta 1b (n = 3), fingolimod (n = 6), glatiramer acetate (n = 6),
dimethyl fumarate (n = 6), teriflunomide (n = 3), natalizumab
(n = 2), and daklizumab (n = 1). The experiment was approved
by the Institutional Review Board of St. Anne’s University
Hospital, and all individuals provided written informed consent
prior to participating.

Procedure
Participants underwent behavioral assessment prior to brain
scanning, which took place no longer than seven months
afterwards (M= 5.2 months; SD= 1.6). Importantly, no relapses
were presented during these examination periods. The test
battery was performed in a single session lasting ∼1 h, with each
assessment administered in the order in which they are described
below. Implicit task-performance measures were obtained before
explicit and self-report assessments so that the latter could not
influence the former.

Cognitive Processing Speed
To screen for possible cognitive impairment, we employed a
paper version of the Symbol Digit Modalities Test [SDMT; (37)].
This test has been established as a reliable and valid measure of
cognitive processing speed in MS patients, and the best predictor
of cognitive dysfunction in this population given the influence of
processing speed on other cognitive functions (38, 39).

Imitative Tendencies
To measure imitative tendencies we employed a computerized
stimulus–response compatibility procedure (40), whereby
participants are required to execute finger-lifting actions in
response to a colored dot (imperative stimulus) while observing
task-irrelevant finger actions performed by a stimulus hand
(Figure 1A). The degree to which participants are faster and
more accurate at executing finger movements signaled by
the imperative stimulus when they observe simultaneous
matching (compatible) compared with opposing (incompatible)
movements is referred to as automatic imitation, and is
considered an experimental measure of spontaneous mimicry;
higher scores represent greater imitative tendencies. Importantly,
Genschow et al. (41) report high split-half reliability (0.86) for
this compatibility effect.

All trials began with a warning stimulus, comprising a model’s
pronated right hand with all fingers resting on a flat surface but
rotated 90◦ counter-clockwise from the participants’ perspective.
At this point, the participant depressed both the left and right
directional arrows on a standard keyboard with the index and
middle finger of their right hand, respectively. After 800, 1,600, or
2,400ms, selected randomly, the warning stimulus was replaced
with an end-point image of the same stimulus hand performing
either an index or middle finger extension. In this end-point
image, a red or green dot was presented between the index
and middle finger. The color of this dot signaled whether the
participant should move their own index or middle finger (e.g.,
green = index finger, red = middle finger; the color-finger
pairing was counterbalanced across participants). In response to
the imperative stimulus, the participant lifted the corresponding
finger as quickly as possible, thereby releasing a key. The trial then
ended with a blank screen lasting 1,000ms. The task consisted
of three trial types: compatible (the same finger action was
signaled and observed), incompatible (opposite finger actions
were signaled and observed), and baseline (movement was
signaled but not observed). Overall, the paradigm comprised 70
trials−30 compatible, 30 incompatible, and 10 baseline trials—
with accuracy and response time (RT) measured on each trial.
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FIGURE 1 | Examples of experimental stimuli for (A) the Stimulus-response compatibility procedure and (B) the Director Task. (A) A right stimulus hand was

presented at a 90◦ counter-clockwise rotation. In this example, a green dot (imperative stimulus) signals that the participant should lift index finger. Whether the

observed finger movement was the same or different to the one signaled by the imperative stimulus defined the condition (Compatible [Com.] or Incompatible

[Incom.], respectively). (B) An audible instruction given by the Director asked the participant to move one of the items to a new box (“Move the smallest apple one box

down”). On experimental trials (Exp.), the instruction referred to an object that created a discrepancy between the Director’s and participants’ perspectives, while no

such discrepancy existed on control trials; no distractor object was present in Cont. 1, and in Cont. 2 the instruction referred to a different object (“Move the biggest

apple one box down”). Written informed consent was obtained from the individual for the publication of this image. For full instructions, see the

Supplementary Information.

It is important to emphasize that we used a right stimulus hand
rotated 90◦ counter-clockwise. Since participants responded
with their right hands, this stimulus isolated imitative- from
any confounding spatial-compatibility effects to provide a pure
measure of imitative tendencies (24).

Perspective Taking
The Director task was used to assess individuals’ ability to
differentiate between their own visual perspective and that of
another when the two viewpoints conflict [visual perspective
taking; e.g., (42)]. Recently we observed that both RTs and
accuracy demonstrated excellent split-half reliability in each
condition [> 0.96; (16)].

As illustrated in Figure 1B, the stimulus consisted of a grid of
shelves forming 16 boxes, with a different object placed in each
of eight boxes. On each trial, the participant received a recorded
verbal instruction from a female “Director” to move one of the
objects to a different box. The Director sat behind the shelves and

therefore could not see the contents of five boxes with opaque
backs, which were visible only from the participant’s (front)
perspective. On experimental trials, the instruction referred to
an object that created a discrepancy between the Director’s and
participants’ perspectives (e.g., “Move the smallest apple one box
down,” when the director could see only themedium-sized apple).
To perform the instruction correctly on these experimental trials,
the participant had to discount any “distractor” objects not
visible to the Director (e.g., they were required to move the
medium-sized apple rather than the smallest). In both control
conditions, there was no conflicting object to discount: the
distractor was replaced with a non-conflicting object in the
first control condition (Cont.1), and in the second (Cont.2) the
Director’s instruction changed so as to render the distractor
irrelevant (e.g., “Move the biggest apple one box down”). Each
condition comprised 20 trials presented randomly. The audio
recordings of instructions were equivalent across all trials [mean
3.26 (SD .22) sec]. Participants responded by clicking with the
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mouse on the box where the object should be moved. Errors
involved selection of the wrong (e.g., distractor) object or wrong
location, the latter including omission of left–right switching
(moving the target object left one box when they were instructed
to move it rightwards, or vice versa). Any potential difference
in perspectives was emphasized on practice trials that included
a front and rear view of the shelves (see Supplementary Material

for instructions given to participants).

Emotion Recognition
A paper version of the Reading the Mind in the Eyes Test
[RMET; (43)] was employed to measure participants’ ability to

infer the emotional state of others. Although the task is employed
frequently as a measure of affective mentalizing, it is considered
by some scholars to measure only the first stage of this process—
emotion recognition (44). This task contains 36 images depicting
the eye region of actors’ emotional facial expressions. Facial
expressions represent complex emotional states with positive
(e.g., playful, interested), negative (e.g., hostile, suspicious), and
neutral valence (e.g., reflective, pensive). Each image is presented
sequentially, and participants are required to select one of four
labels that best match the expression without a time limit. A sum
of correct responses is used as a measure of success.

Depression
All participants completed the Beck Depression Inventory [BDI-
II; (45)]. Using 21 items, this self-report instrument assesses
cognitive, affective, physiological and motivational symptoms of
depression experienced over the preceding 2 weeks. Scores of 20–
28 indicate moderate depression. The BDI-II has been found to
be a valid and reliable instrument for the evaluation of depressive
symptoms in MS (46).

Fatigue
Patients and controls completed the Modified Fatigue Impact
Scale [MFIS; (47)], a self-report instrument that assesses the
degree to which physical, cognitive, and psychosocial fatigue
experienced over the preceding 4 weeks has affected every-
day functions.

MRI Acquisition
High-resolution T1-weighted anatomical images were acquired
on a 1.5T Siemens Symphony scanner, using a standard 32-
channel array head coil and an MPRAGE sequence: 176 sagittal
slices (slice thickness= 1.17mm); TR= 1,700ms, TE= 3.93ms,
TI = 1,100ms, flip angle = 15◦; in plane matrix size 256 ×

256, resampled to 512 × 512, FOV = 246 × 246mm, in-plane
resolution= 0.48× 0.48 mm.

Statistical Analyses
Behavioral Data

Differences between the groups were assessed using parametric
or non-parametric t-tests, depending on the normality of
variable distributions. Independent-samples t- and Mann-
Whitney U-tests were employed to contrast MS patients
with HCs. Since normality was violated for the majority of
the variables, associations between them were examined by

Spearman correlation coefficients, all of which were entered
into a multivariate bootstrapping procedure (1,000 iterations) to
obtain 95% confidence intervals (CIs). These intervals provide an
estimate of population values for each coefficient, providing an
alternative measure of significance; CIs including zero should be
considered unreliable.

For calculating measures of imitative tendencies and
perspective taking, we employed an approach that we have
used previously to investigate relationships between these
two components of social cognition (16, 24). The strength of
imitative tendencies was expressed as the difference in response
time (RT) between the incompatible relative to the compatible
condition, and perspective-taking performance was expressed
as the difference in RT and accuracy on the experimental
relative to the control conditions. Importantly, there was
no evidence of a speed-accuracy trade-off for perspective
taking in this sample (p = 0.165), so relative measures for
RT and accuracy scores were calculated separately. For both
measures, responses on the control condition were regressed
from those in the corresponding experimental condition(s),
resulting in residualized scores that reflect the difference
between the conditions: specifically, greater residuals reflect
poorer performance (slower RTs and poorer accuracy in the
experimental relative to the control conditions. It is important
to emphasize that measures of both imitation and perspective
taking are relative (RTs on incompatible vs. compatible trials,
and experimental vs. control trials, respectively), and should
therefore be uninfluenced by any differences in processing speed
between MS patients and HCs. The statistical analyses were
performed using SPSS 24 software.

Neuroimaging Data

To compare GMV between the brains of HCs and MS patients
we analyzed MR images with the optimized VBM pipeline
provided in FSL (48). This analysis pipeline produces results
that converge closely with those from the Statistical Parametric
Mapping platform (49).

First, the anatomical images were brain-extracted and
segmented into GM, WM and cerebrospinal fluid using FAST
(50), and the resulting GM partial-volume maps were affine-
registered to the MNI-152 standard space template using FLIRT
(51). The registered GM images from the entire sample (both
HCs and MS patients) were then concatenated and averaged, and
flipped along the x-axis. By re-averaging each mirror image to
the MNI-152 template, a first-pass left-right symmetric, study-
specific “affine” GM template was created. This step avoids
introducing any bias during the registration process. Second,
all native GM images were re-registered non-linearly to the
affine template with FNIRT (52), concatenated, averaged, and
flipped along the x-axis. Symmetric, study-specific “non-linear”
GM templates were then created by averaging both mirror
images, and native GM partial-volume maps were registered
to their corresponding non-linear template. Importantly, this
optimized protocol modulates each registered GM image to
compensate for any contraction/enlargement due to the non-
linear transformation; specifically, each voxel of each image
was multiplied by the Jacobian of the warp field [see (53)].
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Since this modulation does not include the affine part of
the registration, however, no correction for total intracranial
volume is needed (48). The modulated GM images were
then smoothed with an isotropic Gaussian kernel with a
sigma of 3 mm.

General Linear Modeling (GLM) was then applied to the
resampled, smoothed and modulated GM images to assess
localized differences between the HC and MS group. Since
MS is characterized by localized WM lesions, appearing as
hypointensities on T1 images that can result in an overestimation
of GMV, we added to these group comparisons a covariate
of no interest representing subject-specific values of mean
WM calculated from the corresponding partial-volume
map. Subsequently, by adding measures from patients’
clinical assessment or behavior on each experimental task
as covariate regressors in further GLM analyses, we examined
whether localized GMV in the MS group was related to
clinical characteristics or socio-cognitive performance. Using
randomize (37), all resulting statistical maps were thresholded
with permutation-based non-parametric inference; 5,000
permutations were performed with threshold-free cluster
enhancement (54), and family-wise error (FWE)-corrected for
multiple comparisons.

RESULTS

The values below present means (±SD).

Clinical Assessment
The MS patients performed worse than the HCs on the SDMT
(56.42 [±9.26] vs. 69.21 [±10.00]; t(84) = 6.154; p < 0.001, d =

1.33), and reported greater fatigue on the MFIS (29.65 [±12.99]
vs. 18.72 [±13.59]; U = 518.00; p < 0.001; r = 0.38). Although
the MS group also expressed more depression (10.53 [±8.20] vs.
7.35 [±6.06]), this difference was not statistically significant (p=
0.055; r = 0.21; see Figure 2A).

Behavioral Performance
Five MS patients and three HCs were excluded from the analyses
of perspective-taking performance because they achieved a
score of zero in the experimental condition of the Director
Task, suggesting a misunderstanding of task instructions. Both
imitation and perspective taking differed between the groups:
compared with HCs, patients showed significantly less imitation
(23.78 [±30.22] vs. 38.97 [±32.89] ms; t(84) =2.23, p = 0.028; d
= 0.48), and both longer response time (0.21 [±1.14] vs. −0.20
[±0.79]; U = 525.00, p= 0.019; r = 0.27) and poorer accuracy in
perspective taking (−0.20 [±0.97] vs. 0.20 [±0.99]; U = 649.00,
p = 0.017, r = 0.26). Surprisingly, however, emotion recognition
was similar in the MS patients and HCs (24.74 [±3.44] vs. 25.81
[±3.57]); U = 731.50, p= 0.094; r = 0.18; See Figures 2B,C).

Correlations between the clinical assessments and socio-
cognitive measures revealed significant relationships only
between disease duration and accuracy in perspective taking
(ρ(36) =−0.36; p= 0.026; CI= [−0.62,−0.06]). No associations
emerged with respect to other measures of social cognition
(p ≥ 0.086), or self-reported fatigue and depression (p ≥

FIGURE 2 | Comparisons between the HC and MS group in (A) clinical

assessment and cognitive processing speed, (B) emotion recognition and

imitative tendencies, and (C) response time and accuracy in visual perspective

taking. *p < 0.05.

0.257; see Table S1). As expected, there were no significant
relationships between cognitive processing speed (SDMT scores)
and any measure of socio-cognitive performance (p ≥ 0.217, see
Table S2).
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TABLE 2 | Results of voxel-based morphometry analyses, presenting peak voxels

of clusters in which gray matter volume was higher in the HC relative to the MS

group (HC > MS; pFWE < 0.01), or associated with imitation (IMI),

perspective-taking performance (VPT) or clinical characteristics (EDSS;

pFWE < 0.05).

Label # Voxels Peak x y z

HC > MS Thalamus R 10638 5.00 15 −26 3

Insula/opercular cortex R 2532 4.52 47 5 1

Temporal pole R 1740 4.68 40 10 −32

Planum temporale R 1168 4.16 55 −25 13

Caudate nucleus L 160 4.06 −20 3 17

Insula (posterior) R 25 3.28 40 −16 −2

IMI Thalamus L 236 3.73 −10 22 10

Insula (anterior) L 5 3.47 32 24 10

VPT Putamen L 8 3.23 −26 4 −8

EDSS Amygdala L 59 4.02 −22 −4 −14

R 40 4.54 16 −4 −14

Caudate L 40 4.54 16 −4 −14

Neuroanatomy
A whole-brain GLM analysis revealed a diffuse collection of
cortical and subcortical regions in which GMV was reduced
in MS patients relative to HCs, after accounting for variability
in mean WMV (p < 0.01, FWE-corrected): this encompassed
right lateral temporal cortex and the amygdala; and the bilateral
amygdala, caudate nucleus, pallidum, putamen, thalamus, and
hippocampus. We refer to this herein as GMoverall, and these
results are presented in Table 2 and Figure 3A. Interestingly,
only cognitive processing speed (SDMT scores) was related with
GMoverall–higher processing speed was associated with more
GMV throughout this pattern of brain regions (ρ(41) = 0.36, p
= 0.019; CI= [0.01, 0.63]; see Figure 4A).

When adding clinical measures as covariates in GLM analyses
of MS patients, neither disease duration nor SDMT scores
showed significant associations with localized GMV. Scores on
the EDDS, however, were associated negatively with GMV in the
bilateral amygdalae and left caudate nucleus (p < 0.05, FWE-
corrected). In terms of performance on the experimental tasks,
accuracy in perspective taking was associated positively with
GMV in a small ventral aspect of the left putamen (N = 38; p <

0.05, FWE-corrected). To investigate relationships between brain
structure and behavior on the tasks expressed as response time,
we added SDMT scores as an additional covariate of no interest;
although we observed no significant relationships between task
performance and cognitive processing speed, this allowed us to
identify brain-behavior relationships that were independent of
general processing speed. Response times in perspective taking
showed no significant associations with GMV, but the degree
of imitative tendencies demonstrated on the stimulus–response
compatibility procedure was associated positively with GMV in a
large portion of the left thalamus and left anterior insula cortex
(N = 43; p < 0.05, FWE-corrected). These results are presented
in Figure 3B and Table 2, and Figure 4 plots selected significant
brain-behavior relationships across the MS sample.

FIGURE 3 | Results of voxel-based morphometry (VBM) analyses. (A) Brain

regions expressing greater gray-matter volume (GMV) in the HC relative to MS

group (p < 0.01, FWE-corrected). (B) Brain regions in which GMV was

associated positively with imitation measured on the Stimulus-response

compatibility procedure (IMI) and accuracy of visual perspective taking on the

Director Task (VPT), and negatively with clinical scores (EDDS; p < 0.05,

FW-corrected). VBM results are presented on the Colin template in MNI space,

neurological orientation, with values presenting the x, y, or z coordinate of the

corresponding slice.

Finally, since our sample varied in achieved education level
(see Table 1), we investigated whether this might have influenced
the above findings; specifically, we compared both GMV and
behavioral performance between the 19 patients with secondary
school education and 24 with university degrees. Using the exact
same parameters with randomize, no significant differences were
observed between these two patient subgroups. The same (null)
result was obtained when contrasting cognitive, socio-cognitive,
and self-report scores (p ≥ 0.140).

DISCUSSION

This study sought to achieve a better characterization of the
disruptions to social cognition observed in MS by investigating
lower-level facets of socio-cognitive abilities, and examining the
neuroanatomical correlates of any impairments. Our findings
indicate that, behaviorally, patients with relapse-remitting MS
exhibit less involuntarily imitation toward the actions of others
compared with HCs, and find it more difficult to adopt
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FIGURE 4 | Scatter plots illustrating significant brain-behavior relationships for the MS group. (A) Positive association between cognitive processing speed (SDMT)

and the overall pattern of relative GMV decline (GMoverall; left), and negative association between EDSS scores and GMV in the left amygdala (left). (B) Positive

associations between accuracy in perspective taking and GMV in the left putamen (left), and imitative tendencies and GMV in the left thalamus (middle) and left

insula (right).

another individual’s perspective when it differs from their own.
Furthermore, this behavioral pattern is associated with reduced
GMV in the patient group within deep brain nuclei, revealing a
potential neuroanatomical correlate.

To our knowledge, this is the first neurobehavioral
investigation of imitative tendencies and visual perspective
taking in a neurological population. On the basis of our own
and others’ previous research, we interpret the pattern of
behavior exhibited by our sample of MS patients to reflect
impaired self-other distinction [SOD; (4, 16, 24)]. Efficient
perspective-taking performance is shown by individuals who can
switch flexibly between altercentric and egocentric viewpoints,
and report a balanced attentional focus between the self and
others during social interactions (55). In contrast, MS patients
appear to fall back on a default cognitive state of self-bias
when faced with competing self- and other-representations
(56)—they appear to be less able to detach themselves from their
own self-perspective in order to infer conflicting viewpoints.
Likewise, MS patients are less influenced by others’ actions.
Interestingly, we observed the same pattern of behavior in a
large healthy sample; specifically, poorer perspective taking and
reduced imitation was observed in individuals characterized by
an inflexible personality profile compared with those exhibiting
more flexibility (16). In this light, the disturbances presented
by MS patients in high-level socio-cognitive capacities, such as

mentalizing, might reflect dysfunction to a more fundamental,
low-level cognitive mechanism responsible for distinguishing
flexibly between self and other representations.

In contrast to previous research (8, 25, 57), MS patients
performed equally as well as HCs on a task measuring emotion
recognition (RMET). While this might indicate that emotion
recognition is preserved in this sample of MS patients, it
may simply highlight an important difference between the
three experimental tasks we employed; namely, their differential
requirements for fast and flexible switching between self and
other representations: While successful performance on the
Director Task (DT) and Stimulus-response Compatibility (SRC)
procedure necessitates swift SOD, the RMET involves a selection
of one of four choices describing the mental states expressed
by eyes, placing less demands on SOD flexibility. In a similar
vein, differential performance on these tasks could result from
their different demands on executive function; both the DT and
SRC procedure are essentially response inhibition tasks, whereby
successful performance necessitates the speeded selection of
relevant and suppression of irrelevant information [e.g., (58)].
This is less true of the RMET. Indeed, we suggested that
individual differences in cognitive control might underlie the
opposing behaviors we observed previously between flexible and
inflexible personality profiles (16). It is particularly noteworthy
that we also observed equivalent empathic responses between
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these two profiles. Since the present study did not perform a
thorough assessment of executive functioning in MS patients, we
are unable to make further claims about its influence of SOD.
However, recent research points to the functional independence
of executive dysfunction and impairments to social cognition in
the MS population [see (59)].

In line with previous research, our measures of social
cognition were not associated with self-reported depression
(3, 7–9), fatigue (11), or cognitive decline [(8, 11); but see
(3)]. This suggests that these frequent symptoms of MS do
not predict disturbances in social cognition on their own.
Additionally, we observed no relationships between physical
disability and our measures of socio-cognitive performance. In
contrast, poorer accuracy in perspective taking was associated
with disease duration.

Turning now to our neuroanatomical findings, the pattern of
GMV reduction we have observed in MS patients aligns closely
with previous studies; these structural alterations occurred in the
thalamus, putamen, caudate nucleus, globus pallidus, and the
amygdala, structures in which GM atrophy frequently appears
first and progresses rapidly (26–28). Furthermore, relationships
between gray matter and task performance in a selection of
these deep brain structures implicate them in the socio-cognitive
impairments exhibited by MS patients; reduced GMV was
associated with poorer perspective taking in the left putamen, and
reduced automatic imitation in the thalami and the left anterior
insula (AI), independent of cognitive processing speed. Although
the neuroanatomical basis of socio-cognitive disturbances in
MS remains understudied (60), these results do converge with
studies in the healthy population: First, brain function within
the dorsal striatum is reported during the cognitive aspect of
mentalizing (29), when differentiating between social actions
performed by the self and others, and when processing social
behavior in general (61). Second, recent research indicates that
intact functioning of thalamus is critical for dynamic integration
of information across various cortical networks (62), including
those implicated in socio-cognitive and -affective processes [e.g.,
mentalizing; see (29)]. Interestingly, this region seems to be
integral for behavioral flexibility (63)—a role that may extend
to flexible self-other switching. Third, previous research has
associated brain function within the AI with imitative tendencies
(5), as well as processes of interoception, empathy, and social
awareness (64). Although the majority of existing studies have
linked AI with affective components of social cognition, the left
AI has been reported to be activated by both emotional and
cognitive aspects (13).

It is noteworthy that all GM areas associated significantly
with social cognition were localized primarily to the left
hemisphere. Although this observation is in line with other
findings reporting a predominantly left-lateralized network
of brain regions associated with other aspects of social
cognition (65), research into the lateralization of disturbances
exhibited by MS patients remains scarce and inconsistent
(25); socio-cognitive processes have been related to GMV
throughout both left and right hemisphere (33, 65). Interestingly,
previous research has indicated that cognitive flexibility is
associated with brain regions in the left hemisphere (66),

while self-referential processing is linked primarily with the
right (67). As such, it might be that our results reflect a
selective deficit of cognitive flexibility and preserved self-
processing. This finding, then, presents a new avenue of
investigation in MS.

Given the potential for functional neuroimaging as an
evaluative tool for the early detection of brain alterations in MS,
future studies should explore the brain networks engaged by the
two experimental tasks we have used to reveal disruptions in
SOD. It is important to acknowledge that we have investigated
GM volume in what is primarily a WM disorder. While patterns
of GM pathology appear to be associated more heavily with
cognitive dysfunction in MS than concomitant WM lesions
(68), diffuse WM abnormalities are likely to result in the
disconnection of brain networks supporting social cognition
(32). Interestingly, Plata-Bello et al. (69) report decreased
functional connectivity in the brains of MS patients relative
to HCs during action observation/execution. Future research
should investigate whether the subcortical pattern of GMV
reduction that we have observed in MS is related to a loss of
WM integrity.

It is important to acknowledge aspects of our study that might
limit the generalization of the present results. First, we examined
only one index of cognitive functioning—scores on the SDMT.
Although this is considered a gold-standard screening tool in
MS, and a reliable predictor of cognitive decline in MS (38, 39),
we were unable to explore relationships between social cognition
and other, more general cognitive domains. As alluded to earlier,
the DT and SRC procedure are believed to require response
inhibition (58). Amore detailed neuropsychological examination
of cognitive performance might provide better insights into the
relationship between this aspect of executive function and low-
level components of social cognition. Second, the group of MS
patients recruited in this study differed significantly in their level
of educational attainment from those in the HC group. While
this difference did not manifest in either behavioral performance
or our metric of brain structure, the results of the present
study should be treated with caution until they are replicated
in comparisons of more educationally balanced MS patients and
healthy controls. Third, behavioral assessment was performed 5
months prior to brain scanning on average. While substantial
GM atrophy is unlikely to occur during this time interval in
MS patients with cognitive reserve (70), it is possible that new
WM lesions could have developed. On a related note, because
this study recruited a sample of asymptomatic MS patients,
a non-routine MRI protocol was performed that involved the
acquisition of only T1-weighted images. Lesions of WM appear
as hypointensities on T1 images, resulting potentially in an
overestimation of GMV. We have attempted to control for this
by adding estimates of total WMV calculated from the same T1
image as a covariate of no interest. This is a crude approach,
however, and much more accurate methods are available; with
the addition of T2-weighted images, automated WM lesion-
detection tools (71) can provide accurate estimates of focal
lesion load, allowing for lesionmasking that improves volumetric
estimation [e.g., (25)]. As such, although the brain-behavior
relationships we have observed in the present study converge
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closely with previous research, our findings require replication
in future research that addresses these limitations.

In conclusion, our study revealed a potential low-
level cognitive mechanism underlying the socio-cognitive
disturbances exhibited by patients with MS; at the behavioral
level, the performance of MS patients indicated increased
self-bias when faced with conflicting self- and other-
representations—while emotion recognition seems to be
preserved, they showed poorer perspective taking and less
involuntary imitation. These selective behavioral impairments
were associated with a pattern of reduced GMV that encompasses
deep brain nuclei, pointing toward a neuroanatomical correlate
for this socio-cognitive profile. Future research should build on
our findings by clarifying the influence of structural alterations
in these discrete brain structures on SOD, and how this manifests
in other socio-cognitive capacities.
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This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neurology | www.frontiersin.org 12 May 2019 | Volume 10 | Article 52518

https://doi.org/10.1371/journal.pone.0082422
https://doi.org/10.1016/j.neuroimage.2013.05.087
https://doi.org/10.1016/j.tics.2007.01.001
https://doi.org/10.1016/S1474-4422(12)70230-2
https://doi.org/10.1007/s10548-017-0558-y
https://doi.org/10.1177/1352458515579443
https://doi.org/10.1016/j.neuroimage.2011.11.032
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


ORIGINAL RESEARCH
published: 05 June 2019

doi: 10.3389/fneur.2019.00599

Frontiers in Neurology | www.frontiersin.org 1 June 2019 | Volume 10 | Article 599

Edited by:

Martin Bares,

Masaryk University, Czechia

Reviewed by:

Bo Gao,

Affiliated Hospital of Guizhou Medical

University, China

Zhongliang Zu,

Vanderbilt University, United States

*Correspondence:

Shijun Qiu

qiu-sj@163.com

Specialty section:

This article was submitted to

Applied Neuroimaging,

a section of the journal

Frontiers in Neurology

Received: 02 February 2019

Accepted: 21 May 2019

Published: 05 June 2019

Citation:

Qin C, Liang Y, Tan X, Leng X, Lin H,

Zeng H, Zhang C, Yang J, Li Y,

Zheng Y and Qiu S (2019) Altered

Whole-Brain Functional Topological

Organization and Cognitive Function in

Type 2 Diabetes Mellitus Patients.

Front. Neurol. 10:599.

doi: 10.3389/fneur.2019.00599

Altered Whole-Brain Functional
Topological Organization and
Cognitive Function in Type 2
Diabetes Mellitus Patients
Chunhong Qin 1, Yi Liang 1, Xin Tan 1, Xi Leng 1, Huan Lin 2, Hui Zeng 3, Chi Zhang 1,

Jinquan Yang 3, Yifan Li 3, Yanting Zheng 3 and Shijun Qiu 1,3*

1Department of Radiology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,
2Department of Radiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China, 3Guangzhou University of

Chinese Medicine, Guangzhou, China

Type 2 diabetes mellitus (T2DM) is associated with cognitive dysfunction and may

even progress to dementia. However, the underlying mechanism of altered functional

topological organization and cognitive impairments remains unclear. This study explored

the topological properties of functional whole brain networks in T2DM patients

with graph theoretical analysis using a resting-state functional magnetic resonance

imaging (rs-fMRI) technique. Thirty T2DM patients (aged 51.77 ± 1.42 years) and 30

sex-, age-, and education-matched healthy controls (HCs) (aged 48.87 ± 0.98 years)

underwent resting-state functional imaging in a 3.0 T MR scanner in addition to detailed

neuropsychological and laboratory tests. Then, graph theoretical network analysis was

performed to explore the global and nodal topological alterations in the functional

whole brain networks of the T2DM patients. Finally, correlation analyses were performed

to investigate the relationship between the altered topological parameters, cognitive

performances and clinical variables. Compared to HCs, we found that T2DM patients

displayed worse performances in general cognitive function and several cognitive

domains, including episodic memory, attention and executive function. In addition, T2DM

patients showed a higher small-worldness (σ), a higher normalized clustering coefficient

(γ) and a higher local efficiency (Eloc). Moreover, decreased nodal topological properties

were mainly distributed in the occipital lobes, frontal lobes, left median cingulate and

paracingulate gyri, and left amygdala, while increased nodal topological properties were

mainly distributed in the right gyrus rectus, right anterior cingulate and paracingulate

gyri, right posterior cingulate gyrus, bilateral caudate nucleus, bilateral cerebellum 3,

bilateral cerebellum crus 1, vermis (1, 2) and vermis 3. Some disrupted nodal topological

properties were correlated with cognitive performance and HbA1c levels in T2DM

patients. This study shows altered functional topological organization in T2DM patients,

mainly suggesting a compensation mechanism of the functional whole brain network in

the relatively early stage to counteract cognitive impairments.

Keywords: type 2 diabetes mellitus, cognitive function, resting-state functional magnetic resonance imaging,

topological organization, graph theoretical analysis
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INTRODUCTION

With the growth of the aging population and changes in people’s
living habits, the prevalence of diabetes has been increasing year
by year worldwide (1, 2). Type 2 diabetes mellitus (T2DM) is
the most common type, accounting for more than 90% of all
diabetes. Multiple studies have shown that T2DM can increase
the risk of cognitive dysfunction and may even progress to
dementia, including vascular dementia and Alzheimer’s disease
(AD) (3–5). However, the underlying mechanism of T2DM-
induced cognitive dysfunction is still unclear.

Resting-state functional magnetic resonance imaging (rs-
fMRI) has become an important neuroimaging research
method to understand the neurophysiological mechanisms of
T2DM-induced cognitive dysfunction. Recently, many studies
have focused on the functional changes of T2DM patients
in a resting state. Some previous studies reported altered
regional homogeneity (ReHo) values or amplitude low-frequency
fluctuations (ALFF) values in the occipital lobes, temporal
lobes, frontal lobes, cingulate gyrus, and cerebellum (6–8).
And functional connectivity (FC) measures the similarity of
the time series of two relatively remote brain regions (9).
Previous studies have mainly shown impaired FC in the
default mode network (DMN), ventral attention network (VAN),
and dorsal attention network (DAN) (10–13). Besides, these
disrupted regional brain activity and FC were associated with
multiple cognitive impairments in T2DM patients, including
visual processing, memory, attention, and executive function.
Specifically, these methods focused only on local spontaneous
brain activity using ReHo and ALFF values or concentrated
their investigations within specific brain networks using seed-
based approaches or independent component analysis (ICA).
However, T2DM-related abnormal brain areas are extensively
distributed, and cognitive dysfunction involves comprehensive
interactions between different brain areas. In this context,
building the functional whole brain network is necessary to
comprehensively understand the underlying mechanisms of
T2DM-related cognitive impairments.

The human brain is a complex network that works
in a small-world network model efficiently and optimally

(14). Graph theoretical analysis can effectively reflect altered
topological properties of complex human brain networks. In
recent years, this method has been widely used in studies of
various neuropsychiatric diseases, such as AD, epilepsy and
schizophrenia (15–17), while T2DM-related research was rarely
reported. In the studies of functional brain network, Chen
et al. (18) found that the global topological properties of the
T2DM patients without cognitive dysfunction were lower than
those of HCs, however, van Bussel et al. (19) revealed that the
global topological properties of the T2DM patient group and the
prediabetic patient group were significantly higher than those of
the healthy control group and associated with lower processing
speed. It can be summarized that the definite alterations of
topological properties existing in the functional brain networks
of T2DM patients remain unclear and the relationship between
altered topological property and cognitive function is unknown.
In addition, the currently studies focused only on the cerebrum

networks, however, the structure and function of the cerebellum
was changed in T2DM patients (7, 20). Thence, we also need
to include the cerebellum to comprehensively explore the
topological properties of the whole brain network.

Therefore, in the present study, we used rs-fMRI with
graph theoretical analysis to explore the characteristic changes
of functional whole brain network topological properties in
T2DM patients. We also analyzed the correlation among
the altered topological parameters, cognitive performance and
related clinical variables. We hope to provide some potential
imaging biomarkers of T2DM-related cognitive deficits.

MATERIALS AND METHODS

Participants
A total of 34 right-handed T2DM patients and 33 sex-, age-,
and education-matched healthy controls (HCs) were recruited
from the First Affiliated Hospital of Guangzhou University
of Chinese Medicine. All participants received a detailed
medical history interview and neurological examination. Clinical
and demographic information were collected for all subjects,
including biological test, blood pressure, body mass indicator
(BMI), education level, alcohol consumption, smoking status,

and duration of the disease (for T2DM patients only). The
inclusion criteria were as follows: (1) All participants were
between the ages of 40 and 65 years; (2) A standardized diagnosis
of T2DM was confirmed based on medical history, medications
used, fasting plasma glucose (FPG) levels (≥7.0 mmol/L) or 2-h
OGTT glucose levels (≥11.1 mmol/L), which was in accordance
with the diagnostic and classification criteria published by the
American Diabetes Association (ADA) in 2014 (21); (3) HCs
with FPG levels ≤6.1 mmol/L were included to this study. The
exclusion criteria were as follows: (1) with clinically obvious
complications, for example, the third or higher stages of diabetic
retinopathy (based on the International Clinical Disease Severity
Scale for diabetic retinopathy) (22), accompanying abnormal
urinary microalbumin of nephropathy and with symptoms of
peripheral neuropathy; (2)any history of severe hypoglycemia;
(3) impaired glucose tolerance or impaired fasting glucose; (4)
hypertension; (5) history of brain lesions such as tumor or
stroke; (6) unrelated psychiatric or neurological disorder(s); (7)
history of alcohol, smoke or drug abuse; (8) systemic diseases
such as severe anemia, thyroid dysfunction, or acquired immune
deficiency syndrome; and (9) MRI contraindications. This study
was approved by the ethics committee of First Affiliated Hospital
of Guangzhou University of Chinese Medicine. The current
study was carried out in accordance with the principles of
the Declaration of Helsinki and the approved guidelines. All
participants signed informed consent before participating in
the study.

Neuropsychological Test
All participants completed detailed standardized cognitive
assessment, which covered multiple cognitive domains. General
cognitive function was assessed by the Chinese version of the
Montréal Cognitive Assessment Scale-B (MoCA-B). Episodic
verbal memory was measured by the Auditory Verbal Learning
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Test (AVLT). Working memory was evaluated by the Digit Span
Test (DST). Attention was assessed by the Trail Making Test-
A (TMT-A). Executive function was measured by the Grooved
Pegboard Test. Spatial processing ability was evaluated by the
Clock Drawing Test (CDT). It took approximately 40min to
finish all the tests.

Image Acquisition
For each participant, whole-brain MRI data were acquired using
a 3T scanner (Signa HDxt GE Medical Systems, USA) with
an 8-channel head coil. The scan time was within 1 week
after medical history interview, neurological examination and
biological tests, and the same day after neuropsychological tests.
First, all participants underwent routine whole-brain axial T1WI
(TR/TE = 2,500/24ms), T2WI (TR/TE = 5,100/130ms), and T2
FLAIR (TR/TE = 9,000/120ms) to rule out intracranial organic
diseases, e.g., infarction, malformation, and tumor. Resting-state
fMRI data were collected using a gradient-echo EPI sequence
sensitive to blood oxygen level-dependent contrast with the
following parameters: TR = 2,000ms, TE = 30ms, flip angle =
90◦, thickness = 3mm, gap = 1mm, FOV = 220 × 220mm,
matrix = 64 × 64, slices = 36, 185 volumes. Sagittal high-
resolution T1WI whole-brain images were acquired using 3D
FSPGR sequences (TR = 8.15ms, TE = 3.17ms, Prep Time =

450ms, flip angle = 12◦, slice thickness = 1mm, no gap, NEX =

1, FOV= 256× 256mm,matrix= 256× 256, 188 sagittal slices).
Earplugs and foam pads were used to reduce equipment noise
and head motion during scanning. All participants were told to
lay quietly in the scanner with their eyes closed, avoiding strong
ideological activities but keeping awake.

Cerebral small vascular disease, mainly including white matter
hyperintensities (WMHs) and lacunar infarction, may have
an impact on brain function and cognitive function (23). In
this study, these changes were assessed on T2WI and T2
FLAIR images according to the age-related white matter changes
(ARWMC) scale (24). Two experienced radiologists who are
blinded to group status separately performed the ratings and
then reached a consensus through discussion. All participants
with lacunar infarcts or a rating score > 2 were excluded.
Consequently, 2 T2DM patients and 1 healthy control subject
were excluded from this study.

Image Preprocessing
Preprocessing of rs-fMRI data was performed with the Data
Processing Assistant for rs-fMRI (DPARSF) (25) and Statistical
ParametricMapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm) in
the MATLAB version 2012a (MathWorks, Natick, MA, USA)
platform. The first 10 time-points of the rs-fMRI images were
removed to avoid the heterogeneity of the initial MRI signal. The
175 remaining volumes were preprocessed with the following
steps: (1) slice timing, scanned image is a interleaved scan, so
the slice order is [2:2:36 1:2:35] and the reference slice is 36;
(2) realignment; two T2DM patients and 2 HCs were excluded
from the study due to obvious head motion larger than 1.5mm
in any direction of x, y and z or 1.5◦ of any angular motion;
(3) normalization, with the functional images coregistered to
the high-resolution T1WI images; subsequently, the coregistered

images were normalized into a 3 × 3 × 3 mm3 Montreal
Neurological Institute (MNI) 152 template; (4) smoothed with
a 6mm full-width half-maximum isotropic Gaussian kernel; (5)
linear detrending and temporal filtering at the 0.01∼0.08Hz
band; (6) certain variables were regressed out: nuisance covariates
including the white matter (WM) and the cerebrospinal fluid
(CSF) signals as well as the 24 motion parameters (26);
but the mean global signal was not regressed out from the
data (27).

Functional Whole Brain Network
Construction and Graph Analysis
Node and Edge Definitions
Network construction and analysis were performed with
the GRETNA package (http://www.nitrc.org/projects/gretna),
a graph theoretical network analysis toolbox for imaging
connectomics. In the present study, with the automated
anatomical labeling (AAL) atlas, including the cerebellum,
we constructed the whole brain functional networks of all
participants. First, the whole brain was parcellated into 116
different brain regions, containing 90 cerebrum areas and 26
cerebellum areas, representing the nodes of the network. Second,
the functional connectivity between each pair of segmented
brain regions was calculated using the Pearson correlation
coefficients, representing the edges of the network. Third, a
whole brain 116 × 116 correlation matrix was constructed for
each participant and then translated into binarized matrices.
Finally, a Fisher’s r-to-z transformation was conducted to
convert the individual correlation maps into z-scored maps to
promote normality.

Threshold Selection and Network Analysis
In this study, whole brain functional networks were constructed
based on an undirected and unweighted method. For all
participants, the brain functional networks should be thresholded
by a sparsity value to ensure that all resultant networks have the
same number of edges and that the number of spurious edges
is minimized (28, 29). However, no golden criteria are available
for which sparsity value is currently the most biologically
meaningful. According to previous studies (30, 31), a sparsity
range of 0.05–0.5 with an interval of 0.01 was chosen, and the
remaining fraction of edges was calculated in the functional
network for each participant. For each sparsity threshold, eight
global and nodal network parameters were computed. The global
network measures included five parameters (the normalized
clustering coefficient γ, the normalized characteristic path length
λ, the small-worldness σ, local efficiency Eloc and global efficiency
Eglob). The nodal network measures included three parameters
(nodal degree, nodal efficiency and nodal betweenness). In
addition, for each participant, to assess whether the network had
small-world property, the network measures were normalized
to comparable values from random networks (N = 100).
Furthermore, the area under curves (AUCs), which are sensitive
at detecting topological alterations of brain disorders (32), were
calculated for each parameter over the entire sparsity range
(0.05 ≤ Sp ≤ 0.5).
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Statistical Analysis
The demographic and clinical characteristics plus
neuropsychological assessment of the T2DM patients and HCs
were analyzed using the IBM Statistical Package for the Social
Sciences 20.0 software (IBM SPSS Inc., Chicago, IL, USA). For
continuous variables, independent two-sample t-tests or Mann-
Whitney non-parametric tests were used, according to whether
they met the normal distribution and variance homogeneity.
The chi-square test was used to evaluate the differences in
results between the genders within the groups. With gender,
age, education years, and BMI as covariates, the between-group
differences in the global parameters (γ, λ, σ, Eloc, and Eglob),
nodal parameters (nodal degree, nodal efficiency, and nodal
betweenness) and the AUC of each parameter were compared
using two-sample t-tests (P, 0.05) over the entire sparsity range
(0.05 ≤ Sp ≤ 0.5). The Bonferroni method was applied at a
p-value of 0.05 to correct for multiple comparisons. In addition,
with the same indicators as covariates, the correlation between
the altered functional network topological parameters and
neuropsychological tests and clinical variables were analyzed
using partial correlation analysis. P < 0.05 was considered
statistically significant.

RESULTS

Clinical and Neuropsychological Results
Four T2DM patients and 3 HCs with obvious head motion or
ARWMC scale rating scores > 2 were excluded, and 30 T2DM
patients and 30 HCs were eventually included in the present
study. The clinical and neuropsychological results of the T2DM
patients and HCs are summarized in Table 1. The two groups
were matched on age, sex, and education, and the BMI and
blood lipid level were similar (p > 0.05), but both systolic blood
pressure (SBP) (p = 0.013) and diastolic blood pressure (DBP)
(p = 0.035) were higher in the T2DM patients. Compared with
the HCs, the T2DM patients scored poorer on the MoCA-B (p=
0.010) and AVLT immediate recall tests (p = 0.016), spent much
more time on the TMT-A (p = 0.018) and Grooved Pegboard
Tests (pR = 0.009, pL = 0.025) and had no significant decreases
in the other neuropsychological tests (p > 0.05).

Small-World Properties of Resting-State
Functional Networks
Compared to random networks, the functional brain networks
of the two groups had relatively higher normalized clustering
coefficients (γ > 1), similar characteristic path lengths (λ ≈ 1),
and small-worldness σ (σ = γ/λ) > 1, that is, demonstrated
small-world property (Figures 1A–C).

Altered Small-World Property and Network
Efficiency in T2DM Patients
Compared to HCs, T2DM patients showed increased γ values
over the entire sparsity range (0.05 ≤ Sp ≤ 0.5), increased σ

and Eloc values for a range of sparsity values (σ: 0.13 ≤ Sp ≤

0.5 and Eloc : 0.09 ≤ Sp ≤ 0.31) (Figures 1A,C,D). Moreover,
T2DM patients showed the AUC values of γ (p = 0.019), σ (p =
0.032), and Eloc (p = 0.034) were significantly higher than HCs

TABLE 1 | Clinical and neuropsychological results of T2DM patients and HCs.

T2DM patients

(n = 30)

HCs

(n = 30)

P-value

Clinical characteristics

Age (years) 51.77 ± 1.42 48.87 ± 0.98 0.099

Sex (M/F) 18/12 18/12 1.000

Education (years) 10.70 ± 0.69 10.23 ± 0.61 0.614

BMI (kg/m2) 24.82 ± 0.56 24.18 ± 0.52 0.409

SBP (mmHg) 127.20 ± 2.35 120.03 ± 1.51 0.013*

DBP (mmHg) 82.80 ± 1.67 78.70 ± 0.88 0.035*

Total cholesterol mmol/L 4.71 ± 1.78 4.27 ± 0.96 0.240

Triglyceride (mmol/L) 1.54 ± 0.92 1.48 ± 0.50 0.755

LDL cholesterol (mmol/L) 3.34 ± 1.19 2.93 ± 0.4 0.084

HDL cholesterol (mmol/L) 1.07 ± 0.29 1.15 ± 0.46 0.424

Alcohol consumption (%)

None/Low/High 83.3/16.7/0 90.0/10.0/0 –

Smoking status (%)

Never/Former/Current 80.0/13.3/6.7 86.7/10.0/3.3 –

Duration of diabetes (years) 5.04 ± 4.46 – –

Fasting blood glucose (mmol/L) 8.62 ± 3.44 5.03 ± 0.48 <0.001*

2h OGTT glucose (mmol/L) 18.53 ± 5.46 – –

HbA1C (%) 8.54 ± 2.09 – –

Type 2 diabetes medication, yes (%)

Oral medication 50.0 – –

Insulin medication 16.7 – –

Insulin and oral medication 20.0 – –

None(newly diagnosed) 13.3 – –

Cognitive scores

MoCA-B 25.23 ± 0.66 27.23 ± 0.34 0.010*

AVLT immediate recall 18.00 ± 0.80 21.17 ± 0.99 0.016*

AVLT short-term recall (5min) 7.03 ± 0.43 7.97 ± 0.38 0.108

AVLT long-term delayed recall

(20min)

7.60 ± 0.52 7.70 ± 0.40 0.839

AVLT recognition 10.23 ± 0.43 11.00 ± 0.27 0.139

TMT-A 67.17 ± 5.94 50.57 ± 3.19 0.018*

Grooved Pegboard (R) 92.07 ± 5.63 75.30 ± 2.31 0.009*

Grooved Pegboard (L) 96.83 ± 5.30 83.57 ± 2.05 0.025*

DST 11.87 ± 0.39 12.73 ± 0.46 0.154

CDT 2.63 ± 0.11 2.77 ± 0.08 0.335

Data are mean ± SD. BMI, body mass index; SBP, systolic blood pressure; DBP,

diastolic blood pressure; MoCA-B, Montreal cognitive assessment-B; AVLT, Auditory

verbal learning test; TMT-A, Trail making test-A; DST, digit span test; CDT, Clock drawing

test. *P < 0.05, which was considered statistically significant.

(Figure 2). However, λ and Eglob values were similar between
T2DM patients and HCs (p > 0.05) (Figures 1B,E, 2).

Altered Nodal Topological Metrics in T2DM
Patients
We identified 26 brain regions with altered nodal parameters
between the T2DM patients and the HCs in at least one
of the three nodal characteristics, which are reported in
Table 2. Compared to the HCs, the T2DM patients showed
decreased nodal parameters in frontal lobes [right precentral
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FIGURE 1 | Small-world property and network efficiency measures of the whole brain network over the defined wide range of sparsity values of T2DM patients and

healthy controls. Compared to random networks, graphs display that both the two groups had relatively higher normalized clustering coefficients (γ > 1), similar

normalized characteristic path lengths (λ ≈ 1), and small-worldness σ (σ = γ/λ) > 1, that is, demonstrated small-world property (A–C). Moreover, T2DM patients had

higher local efficiency and similar global efficiency than HCs (D,E).

FIGURE 2 | Altered small-world property and network efficiency measures of

the whole brain network over the defined wide range of sparsity values

between T2DM patients and healthy controls. Compared to HCs, T2DM

patients showed the AUC values of γ (p = 0.019), σ (p = 0.032), and Eloc (p =

0.034) were significantly higher than HCs. However, λ and Eglob values were

similar between T2DM patients and HCs.

gyrus (PreCG.R), right supplementary motor area (SMA.R), left
superior frontal gyrus, dorsolateral (SFGdor.L), left superior
frontal gyrus, medial (SFGmed.L)], occipital lobes [right
cuneus (CUN.R), bilateral lingual gyrus (LING.L&R), bilateral
superior occipital gyrus (SOG.L&R) and middle occipital
gyrus (MOG.L&R)], left amygdala (AMYG.L), left median
cingulate and paracingulate gyri (DCG.L), and left supramarginal

gyrus (SMG.L). However, T2DM patients exhibited increased
nodal parameters in the right gyrus rectus (REC.R), right
anterior cingulate and paracingulate gyri (ACG.R), right
posterior cingulate gyrus (PCG.R), left angular gyrus (ANG.L),
bilateral caudate nucleus (CAU.L&R), bilateral cerebellum 3
(CRBL3.L&R), bilateral cerebellum crus 1 (CRBLCrus1.L&R),
vermis (1, 2) and vermis 3 compared to HCs. Most (14/26) brain
regions demonstrated decreased nodal parameters in T2DM
patients, with the remaining 12 brain regions showing increased
nodal parameters.

Correlation Analyses Among Altered
Network Parameters, Cognitive Function
and Clinical Variables
In T2DM patients, MoCA-B scores were positively correlated
with the nodal degree (r = 0.400, p= 0.043) and nodal efficiency
(r = 0.452, p = 0.021) of the REC.R. AVLT immediate recall
scores were positively correlated with the nodal betweenness
of the AMYG.L (r = 0.457, p = 0.019), and AVLT short-term
recall scores were positively correlated with the nodal degree
of the CRBL3.R (r = 0.431, p = 0.028). Both the Grooved
Pegboard-R (r = −0.461, p = 0.018) and Grooved Pegboard-
L (r = −0.436, p = 0.026) were negatively correlated with
the nodal betweenness of the MOG.R. HbA1c was negatively
correlated with the nodal betweenness of the PCG.R (r =

−0.388, p = 0.034) and AVLT immediate recall scores (r
= −0.458, p = 0.019). Correlation analyses were illustrated
in Figure 3. No relationship was found in altered global
network parameters.
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TABLE 2 | Brain regions with altered nodal parameters in T2DM patients.

AAL no. Brain Regions p-values

Regions Abbreviation Nodal degree Nodal efficiency Nodal betweenness

T2DM<HC(14/26)

2 Right precentral gyrus PreCG.R 0.052 0.034 0.036

3 Left superior frontal gyrus (dorsolateral) SFGdor.L 0.519 0.196 0.005

20 Right supplementary motor area SMA.R 0.141 0.156 0.044

23 Left superior frontal gyrus (medial) SFGmed.L 0.335 0.183 0.012

33 Left median cingulate and paracingulate gyri DCG.L 0.059 0.037 0.652

41 Left amygdala AMYG.L 0.499 0.385 0.026

46 Right cuneus CUN.R 0.054 0.039 0.652

47 Left lingual gyrus LING.L 0.008 0.009 0.340

48 Right lingual gyrus LING.R 0.008 0.012 0.531

49 Left superior occipital gyrus SOG.L 0.004 0.010 0.135

50 Right superior occipital gyrus SOG.R 0.016 0.017 0.656

51 Left middle occipital gyrus MOG.L 0.058 0.045 0.010

52 Right middle occipital gyrus MOG.R 0.039 0.015 0.047

63 Left supramarginal gyrus SMG.L 0.058 0.037 0.024

T2DM>HC(12/26)

28 Right gyrus rectus REC.R 0.048 0.034 0.252

32 Right anterior cingulate and paracingulate gyri ACG.R 0.930 0.597 0.040

36 Right posterior cingulate gyrus PCG.R 0.488 0.903 0.033

65 Left angular gyrus ANG.L 0.865 0.552 0.040

71 Left caudate nucleus CAU.L 0.001 0.004 0.005

72 Right caudate nucleus CAU.R 0.030 0.030 0.084

91 Left cerebellum crus1 CRBLCrus1.L 0.150 0.374 0.049

92 Right cerebellum crus1 CRBLCrus1.R 0.182 0.504 0.025

95 Left cerebellum 3 CRBL3.L 0.010 0.011 0.532

96 Right cerebellum 3 CRBL3.R 0.004 0.001 0.208

109 Vermis (1, 2) Vermis(1, 2) 0.015 0.140 0.616

110 Vermis 3 Vermis 3 0.003 0.141 0.023

AAL No., number of automated anatomical labeling. Note: Brain regions were considered abnormal in T2DM patients if they showed p < 0.05 compared to HCs in at least one of the

three nodal parameters and boldface p-values were statistically significant.

DISCUSSION

In this cross-sectional study, we focused on the topological
organization of rs-fMRI whole brain network of middle-aged
T2DM patients without obvious complications using graph-
based theoretical approaches. The results displayed that both
the two groups exhibited small-world organization of their
functional networks, but compared to HCs, T2DM patients
showed (1) a higher normalized clustering coefficient (γ),
a higher small-worldness (σ) and a higher local efficiency
(Eloc); (2) both decreased and increased nodal network
parameters; (3) altered nodal network parameters of some brain
regions were related to cognitive impairments and HbA1c.
These findings provide new insight into the underlying
functional neuropathological effects of T2DM-related
cognitive impairments.

Increased Global Network Measures
The small-world network, with a similar characteristic shortest
path length and a higher clustering coefficient compared to

the random network, is a highly integrated and optimized
network model that can maximize efficiency and minimize
information processing. Small-world networks were found not
only in real-world networks, for example, social, traffic, and
genetic networks, but also in functional, structural, and EEG
human brain networks. In this study, the functional whole brain

networks of both T2DM patients and HCs exhibited small-
world organization, which was consistent with previous studies
(18, 19, 32, 33).

As far as we know, normal human brain networks that
combine a high σ, a high γ, and a high Eloc indicate a highly

integrated and optimized network, a high local effectiveness
in processing information and a high fault tolerance of the

network. Our investigation showed this combination in T2DM
patients, implying that the whole brain networks were better

organized than those in HCs. The result seems unreasonable
and converse because the networks of T2DM patients should
be less, instead of better, organized. However, in the research
of the rs-fMRI network among T2DM patients, prediabetes
patients and healthy controls, van Bussel et al. (19) found
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FIGURE 3 | Correlations among altered network measures, cognitive function, and HbA1c in T2DM patients. Scatter plot displayed the relationship between the

altered network parameters and clinical variables in T2DM patients. The blue ball represented the decreased nodal parameters and the red ball and purple ball

represented the increased nodal parameters. MOG.R, right middle occipital gyrus; AMYG.L, left amygdala; REC.R, right gyrus rectus; PCG.R, right posterior cingulate

gyrus; right cerebellum 3, CRBL3.R.

results similar to our study. They held the view that before the
appearance of clinically manifested cognitive decrements, the
brain functional network may have already reorganized as a
compensatory mechanism to counterwork the slight cognitive
decrements. Once the functional reorganization fails, there will
be a disrupted functional network and clinically manifested
cognitive decrements will be discovered in T2DM patients.
MoCA-B is widely used to assess general cognitive function
and is more sensitive than MMSE. The mean MoCA-B score
was 25.23 ± 0.66 in the T2DM patients in our study, which
was slightly lower than the normal score 26, suggesting a stage
of slight cognitive decrements. Besides, the included T2DM
patients are middle-aged, with a short diabetes duration and well-
controlled glucose levels, and without obviously complications,
thus they may be relatively “healthy” patients. Therefore, the
better organized whole brain networks in the T2DM patients
of our study also supported the compensatory mechanism put

forward by van Bussel et al. However, Chen et al. (18) showed
longer path length and lower global efficiency but similar
clustering coefficient and local efficiency in T2DM patients
without mild cognitive impairment (MCI), indicating a less
rather than better organized functional network, which is not
consistent with our findings. These differences may be attributed
to the severity of the disease condition or the sensitivity of
the different neuropsychological tests and need to be discussed
through longitudinal, large sample, long-term investigations in
the future. Moreover, disrupted structural networks have already
been reported via graph theoretical network analysis in T2DM
patients (32, 33), but the relationship between the brain structural
network and the functional network is still unknown. We
believe that it is meaningful to combine structural networks with
functional networks using theoretical network analysis to explore
the underlying mechanism of T2DM-related cognitive function
in the future.
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Decreased Nodal Network Measures
Nodal network parameters (nodal degree, nodal efficiency and
nodal betweenness) can detect the activity, importance and
influence of a region in network communication. In our study,
reduced nodal parameters were observed in the occipital lobes,
frontal lobes, left median cingulate and paracingulate gyri,
left amygdalaleft and supramarginal gyrus. And the decreased
nodal parameters of occipital lobes existed in CUN.R, bilateral
LING, SOG, and MOG. Recently, a study found that the degree
centrality of the LING was significantly reduced in T2DM
patients and the connectivity within the LING-related visual
network was diffusely decreased (34). Moreover, they found
positive correlations of the occipital connectivity with visual
memory and executive performance. In addition, in the earlier
studies, T2DM patients showed not only decreased volume and
brain metabolites (35, 36) but also decreased ReHo and ALFF
values of the occipital lobes, especially in CUN, LING, SOG,
MOG and calcarine gyrus (CAL) (6, 8, 37). In our study, the
nodal degree of the MOG.R was negatively correlated with the
consumed time of the Grooved Pegboard Test (a scale reflecting
execution function), suggesting that a decreased nodal degree
of the MOG.R may be attributed to reduced performance in
executive function.

The cingulate gyrus is the core node in the DMN and acts as a
transportation hub during information transmission processing
and participates in various cognitive functions. To the best of
our knowledge, only one study showed that the increased degree
centrality of the dorsal anterior cingulate cortex (dACC) and the
increased connectivity of the dACC was related to higher FPG
levels and better TMT-B performance in T2DMpatients (34). But
impaired functional activity of DMN has been widely reported
in previous studies using ReHo, ALFF, seed-based approaches
or independent component analysis (12, 38, 39). Our study
found that the nodal parameters in the DCG.L and SMG.L
were reduced, while the nodal parameters in the ACG.R and
PCG.R were increased. These findings may be interpreted as
the fact that the left hemisphere of the recruited right-handed
participants are more active than the right hemisphere and
more sensitive to pathological changes caused by hyperglycemia,
thus, compensatory increases of the right cingulate gyrus will
be made to maintain the brain function activities of the whole
brain. Furthermore, the nodal betweenness of the PCG.R was
negatively correlated with HbA1c, suggesting that controlling
and monitoring the HbA1c value is of great significance for the
development of diabetic encephalopathy.

The frontal lobe is the latest and most advanced part of
brain development. It is widely accepted that the frontal lobes,
especially prefrontal lobes, are primarily responsible for high-
order cognitive control (40, 41), and appear to be vulnerable
regions in T2DM patients by using functional connectivity and
graph theoretical network analysis (13, 19, 32). In this study,
as shown in Table 2, several frontal lobes (PreCG.R, SMA.R,
SFGdor.L, and SFGmed.L) showed decreased nodal parameters,
while the REC.R showed increased nodal parameters. In addition,
increased nodal degree and nodal efficiency of the REC.R were
related to higher MoCA-B scores. These results suggest that
disrupted frontal topological properties may further explain the

damaged neural mechanism and declined cognitive function in
T2DM patients. The AMYG is located in the medial temporal
lobe and is mainly involved in mood and memory. The AMYG.L
performed decreased nodal betweenness and was related to worse
performance in the AVLT immediate recall test, suggesting that
its ability to participate in network information transmission was
reduced and may partially explain the reason for memory loss
in T2DM patients. Recently, Xia et al. (42) reported that T2DM
patients may be accompanied by depressive mood, and depressed
T2DM patients showed decreased AMYG FC when compared to
non-depressed T2DMpatients. However, our study did not assess
depression-related scales, and this needs to be further discussed
in future studies.

Increased Nodal Network Measures
Finally, to the best of our knowledge, this study is the first
to explore the topological properties of whole-brain (including
cerebellum) functional networks using graph theoretical analysis
in T2DM patients. In the previous studies of resting state
functional MRI, increased ReHo or ALFF values and functional
connectivity of the cerebellum posterior lobe and cerebellum
culmen were reported in T2DM patients (7, 8, 43). They hold
the view that cerebellum, especially the cerebellum posterior lobe,
may play a role of compensation. And this study demonstrated
increased nodal parameters in the bilateral cerebellum 3, bilateral
cerebellum crus 1, vermis (1, 2) and vermis 3, which was
partly consistent with the previous studies. Moreover, in the
previous studies of structural MRI, decreased FA values of vermis
(44) and increased MD values of bilateral cerebellum anterior
and posterior lobes (45) were reported, and some decreased
connections in cerebellar and cerebro-cerebellar circuit were
found (20). These studies displayed that the cerebellum was both
damaged in function and structure, but there was no report
about the definite relationship between cerebellum and cognitive
function in T2DM patients. The cerebellum not only plays an
important role in motor control and coordination but also
relates to some advanced cognitive functions, such as language,
emotional modulation, episodic and working memory (46–48).
In the present study, the nodal degree of the right cerebellum 3
was positively correlated with the AVLT short-term delayed recall
score, suggesting a close relationship between the cerebellum
and memory. Therefore, we speculate that in the relatively early
stage, the elevated brain functional activity of the cerebellum,
especially the cerebellum posterior lobe, can recruit more nerve
resources as a compensation mechanism to slow the process of
cognitive decline. This may also explain why the local efficiency
of T2DM patients is higher than that of HCs from another
expect, which may be due to the compensation mechanism
of the increased nodal properties in the these brain regions
mentioned above.

LIMITATIONS

This study had some limitations. First, it was a cross-sectional
study that did not assess the progression of functional network
changes and had a relatively small sample size. Second, the
medication of T2DM patients was not completely identical,
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so medication confounding effects may exist. Therefore, the
effect of medication needs to be investigated in future studies.
Third, previous studies reported that T2DM patients may have
depression, but our study did not assess the patient’s mood state
with a detailed depression scale. Moreover, according to the
presence depression, we can divide these T2DM patients into
different subgroups and further explore the differences between
them. Finally, we only explored the relationship between the
brain functional network and cognitive performance in T2DM.
The incorporation of a structural network allowed us to examine
whether the functional changes underlying cognitive dysfunction
in T2DM are associated with structural network alterations.
Further studies that combine multimodal imaging techniques
will be helpful to interpret this issue.

CONCLUSION

In summary, this study displayed disrupted functional networks
in middle-aged T2DM patients with mild cognitive impairments,
demonstrating a more efficient global topological organization
and showing both decreased and increased nodal parameters.
This may suggest a compensation mechanism for cognitive
decline in terms of functional reorganization of the whole
brain networks. Furthermore, the study demonstrated that graph
theoretical network analysis provided novel insight and the
results may serve as potential imaging biomarkers for subtle

whole brain alterations of T2DM-related cognitive decline.

ETHICS STATEMENT

This study was approved by the ethics committee of First
Affiliated Hospital of Guangzhou University of Chinese
Medicine. The current study was carried out in accordance with
the principles of the Declaration of Helsinki and the approved
guidelines. All participants signed informed consent before
participating in the study.

AUTHOR CONTRIBUTIONS

CQ carried out the data collection, analysis and interpretation,
and drafted the initial article. YL, XT, HZ, JY, YfL, and YZ
participated in the data collection and interpretation. XL, HL, CZ
and SQ contributed to the conception and design of the study,
interpretation of data, and manuscript revision. All authors read
the final manuscript and approved it for publication.

FUNDING

This study was funded by the National Natural Science
Foundation of China (Grant No.81771344, No.81471251, and
No.91649117), the National Major Cultivation Fund (Natural
Science) for the Innovative School Projects of Guangdong
Provincial Department of Education (Grant No.2014GKXM034),
Guangzhou Science and Technology Panning Project (Grant
No.2018-1002-SF-0442) and NIH grant (AG041721).

REFERENCES

1. IDF Diabetes Atlas Group. Update of mortality attributable to diabetes for the

IDFDiabetes Atlas: Estimates for the year 2013.Diabetes Res Clin Pract. (2015)

109:461–5. doi: 10.1016/j.diabres.2015.05.037

2. Xu Y, Wang L, He J, Bi Y, Li M, Wang T, et al. Prevalence and

control of diabetes in Chinese adults. JAMA. (2013) 310:948–58.

doi: 10.1001/jama.2013.168118

3. Spauwen PJJ, Van Eupen MGA, Köhler S, Stehouwer CDA, Verhey FRJ,

Van Der Kallen CJH, et al. Associations of advanced glycation end-

products with cognitive functions in individuals with and without type 2

diabetes: the maastricht study. J Clin Endocrinol Metab. (2015) 100:951–60.

doi: 10.1210/jc.2014-2754

4. Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, et al.

Glucose levels and risk of dementia. N Engl J Med. (2013) 369:540–8.

doi: 10.1007/978-3-319-28034-9_13

5. Geijselaers SLC, Sep SJS, Stehouwer CDA, Biessels GJ. Glucose regulation,

cognition, and brain MRI in type 2 diabetes: a systematic review.

Lancet Diabetes Endocrinol. (2015) 3:75–89. doi: 10.1016/S2213-8587(14)

70148-2

6. Peng J, Qu H, Peng J, Luo TY, Lv FJ, Chen L, et al. Abnormal spontaneous

brain activity in type 2 diabetes with and without microangiopathy

revealed by regional homogeneity. Eur J Radiol. (2016) 85:607–15.

doi: 10.1016/j.ejrad.2015.12.024

7. Xia W, Wang S, Sun Z, Bai F, Zhou Y, Yang Y, et al. Altered

baseline brain activity in type 2 diabetes: A resting-state

fMRI study. Psychoneuroendocrinology. (2013) 38:2493–501.

doi: 10.1016/j.psyneuen.2013.05.012

8. Cui Y, Jiao Y, Chen YC, Wang K, Gao B, Wen S, et al. Altered spontaneous

brain activity in type 2 diabetes: a resting-state functional MRI study.Diabetes.

(2014) 63:749–60. doi: 10.2337/db13-0519

9. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in

the motor cortex of resting human brain using echo-planar MRI.Magn Reson

Med. (1995) 34:537–41. doi: 10.1002/mrm.1910340409

10. Zhou H, Lu W, Shi Y, Bai F, Chang J, Yuan Y, et al. Impairments in cognition

and resting-state connectivity of the hippocampus in elderly subjects with type

2 diabetes. Neurosci Lett. (2010) 473:5–10. doi: 10.1016/j.neulet.2009.12.057

11. Musen G, Jacobson AM, Bolo NR, Simonson DC, Shenton ME, McCartney

RL, et al. Resting-state brain functional connectivity is altered in type 2

diabetes. Diabetes. (2012) 61:2375–9. doi: 10.2337/db11-1669

12. Cui Y, Jiao Y, Chen HJ, Ding J, Luo B, Peng CY, et al. Aberrant functional

connectivity of default-mode network in type 2 diabetes patients. Eur Radiol.

(2015) 25:3238–46. doi: 10.1007/s00330-015-3746-8

13. Xia W, Wang S, Rao H, Spaeth AM, Wang P, Yang Y, et al. Disrupted

resting-state attentional networks in T2DM patients. Sci Rep. (2015) 5:11148.

doi: 10.1038/srep11148

14. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks.Nature.

(1998) 393:440–2. doi: 10.1038/30918

15. He Y, Chen Z, Evans A. Structural insights into aberrant topological patterns

of large-scale cortical networks in Alzheimer’s disease. J Neurosci. (2008)

28:4756–66. doi: 10.1523/JNEUROSCI.0141-08.2008

16. Ponten SC, Bartolomei F, Stam CJ. Small-world networks and epilepsy: graph

theoretical analysis of intracerebrally recorded mesial temporal lobe seizures.

Clin Neurophysiol. (2007) 118:918–27. doi: 10.1016/j.clinph.2006.12.002

17. Alexander-Bloch AF, Vértes PE, Stidd R, Lalonde F, Clasen L, Rapoport

J, et al. The anatomical distance of functional connections predicts brain

network topology in health and schizophrenia. Cereb Cortex. (2013) 23:127–

38. doi: 10.1093/cercor/bhr388

18. Chen G-Q, Zhang X, Xing Y,Wen D, Cui G-B, Han Y. Resting-state functional

magnetic resonance imaging shows altered brain network topology in Type 2

diabetic patients without cognitive impairment. Oncotarget. (2017) 8:104560–

70. doi: 10.18632/oncotarget.21282

Frontiers in Neurology | www.frontiersin.org 9 June 2019 | Volume 10 | Article 59927

https://doi.org/10.1016/j.diabres.2015.05.037
https://doi.org/10.1001/jama.2013.168118
https://doi.org/10.1210/jc.2014-2754
https://doi.org/10.1007/978-3-319-28034-9_13
https://doi.org/10.1016/S2213-8587(14)70148-2
https://doi.org/10.1016/j.ejrad.2015.12.024
https://doi.org/10.1016/j.psyneuen.2013.05.012
https://doi.org/10.2337/db13-0519
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1016/j.neulet.2009.12.057
https://doi.org/10.2337/db11-1669
https://doi.org/10.1007/s00330-015-3746-8
https://doi.org/10.1038/srep11148
https://doi.org/10.1038/30918
https://doi.org/10.1523/JNEUROSCI.0141-08.2008
https://doi.org/10.1016/j.clinph.2006.12.002
https://doi.org/10.1093/cercor/bhr388
https://doi.org/10.18632/oncotarget.21282
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Qin et al. Altered Topological Organization in T2DM Patients

19. Van Bussel FCG, BackesWH, Van Veenendaal TM, Hofman PAM, Van Boxtel

MPJ, Schram MT, et al. Functional brain networks are altered in type 2

diabetes and prediabetes: signs for compensation of cognitive decrements?

The maastricht study. Diabetes. (2016) 65:2404–13. doi: 10.2337/db16-0128

20. Fang P, An J, Tan X, Zeng LL, Shen H, Qiu SJ, et al. Changes in the cerebellar

and cerebro-cerebellar circuit in type 2 diabetes. Brain Res Bull. (2017)

130:95–100. doi: 10.1016/j.brainresbull.2017.01.009

21. Diagnosis and classification of diabetes mellitus. Diabetes Care. (2014) 37

(Suppl. 1):S81–90. doi: 10.2337/dc14-S081

22. Abbas Q, Fondon I, Sarmiento A, Jimenez S, Alemany P. Automatic

recognition of severity level for diagnosis of diabetic retinopathy

using deep visual features. Med Biol Eng Comput. (2017) 55:1959–74.

doi: 10.1007/s11517-017-1638-6

23. Almkvist O, Basun H, Wahlund LO, Andersson Lundman G, Bäckman

L. White-matter hyperintensity and neuropsychological functions

in dementia and healthy aging. Arch Neurol. (1992) 49:626–32.

doi: 10.1001/archneur.1992.00530300062011

24. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjögren M,

et al. A new rating scale for age-related white matter changes applicable

to MRI and CT. Stroke. (2001) 32:1318–1322. doi: 10.1161/01.STR.32.

6.1318

25. Chaogan Y, Yufeng Z. DPARSF: a MATLAB toolbox for “pipeline”

data analysis of resting-state fMRI. Front Syst Neurosci. (2010) 4:13.

doi: 10.3389/fnsys.2010.00013

26. Friston KJ, Williams SCR, Howard R, Frackowiak RSJ, Turner R. Movement-

related effects in fMRI time-series. Magn Reson Med. (1996) 35:346–55.

doi: 10.1002/mrm.1910350312

27. Hahamy A, Calhoun V, Pearlson G, Harel M, Stern N, Attar F, et al. Save the

global: global signal connectivity as a tool for studying clinical populations

with functional magnetic resonance imaging. Brain Connect. (2014) 4:395–

403. doi: 10.1089/brain.2014.0244

28. Achard S, Bullmore E. Efficiency and cost of economical

brain functional networks. PLoS Comput Biol. (2007) 3:174–83.

doi: 10.1371/journal.pcbi.0030017

29. van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE. Efficiency of

functional brain networks and intellectual performance. J Neurosci. (2009)

29:7619–24. doi: 10.1523/JNEUROSCI.1443-09.2009

30. Chen LT, Fan XL, Li HJ, Ye CL, Yu HH, Gong HH, et al. Topological

reorganization of the default mode network in severe male obstructive sleep

apnea. Front Neurol. (2018) 9:363. doi: 10.3389/fneur.2018.00363

31. Salzwedel AP, Gao W, Andres A, Badger TM, Glasier CM,

Ramakrishnaiah RH, et al. Maternal adiposity influences neonatal

brain functional connectivity. Front Hum Neurosci. (2019) 12:514.

doi: 10.3389/fnhum.2018.00514

32. Reijmer YD, van den Berg E, Ruis C, Kappelle LJ, Biessels GJ. Cognitive

dysfunction in patients with type 2 diabetes. Diabetes Metab Res Rev. (2010)

26:507–19. doi: 10.1002/dmrr.1112

33. Zhang J, Liu Z, Li Z, Wang Y, Chen Y, Li X, et al. Disrupted white matter

network and cognitive decline in type 2 diabetes patients. J Alzheimer’s Dis.

(2016) 53:185–95. doi: 10.3233/JAD-160111

34. Cui Y, Li SF, Gu H, Hu YZ, Liang X, Lu CQ, et al. Disrupted brain connectivity

patterns in patients with type 2 diabetes.Am JNeuroradiol. (2016) 37:2115–22.

doi: 10.3174/ajnr.A4858

35. Brundel M, Van Den Berg E, Reijmer YD, De Bresser J, Kappelle LJ,

Biessels GJ. Cerebral haemodynamics, cognition and brain volumes in

patients with type 2 diabetes. J Diabetes Complications. (2012) 26:205–9.

doi: 10.1016/j.jdiacomp.2012.03.021

36. Sinha S, Ekka M, Sharma U, P R, Pandey RM, Jagannathan NR. Assessment of

changes in brain metabolites in Indian patients with type-2 diabetes mellitus

using proton magnetic resonance spectroscopy. BMC Res Notes. (2014) 7:41.

doi: 10.1186/1756-0500-7-41

37. Zhang GX, Zou L, Lu ZW, Xie XQ, Jia ZZ, Pan CJ, et al. Abnormal

spontaneous brain activity in type 2 diabetic retinopathy revealed by

amplitude of low-frequency fluctuations: a resting-state fMRI study. Clin

Radiol. (2017) 72:340.e1–340.e7. doi: 10.1016/j.crad.2016.11.012

38. Liu D, Duan S, Zhang J, Zhou C, LiangM, Yin X, et al. Aberrant brain regional

homogeneity and functional connectivity in middle-aged T2DM patients:

a resting-state functional MRI study. Front Hum Neurosci. (2016) 10: 490.

doi: 10.3389/fnhum.2016.00490

39. Hoogenboom WS, Marder TJ, Flores VL, Huisman S, Eaton HP,

Schneiderman JS, et al. Cerebral white matter integrity and resting-state

functional connectivity in middle-aged patients with type 2 diabetes.Diabetes.

(2014) 63:728–38. doi: 10.2337/db13-1219

40. Li W, Qin W, Liu H, Fan L, Wang J, Jiang T, et al. Subregions of the human

superior frontal gyrus and their connections. Neuroimage. (2013) 78:46–58.

doi: 10.1016/j.neuroimage.2013.04.011

41. Duncan J, Owen AM. Common regions of the human frontal lobe

recruited by diverse cognitive demands. Trends Neurosci. (2000) 23:475–83.

doi: 10.1016/S0166-2236(00)01633-7

42. Xia W, Luo Y, Chen YC, Zhang D, Bo F, Zhou P, et al. Disrupted

functional connectivity of the amygdala is associated with depressive

mood in type 2 diabetes patients. J Affect Disord. (2018) 228:207–15.

doi: 10.1016/j.jad.2017.12.012

43. Chen YC, Xia W, Qian C, Ding J, Ju S, Teng GJ. Thalamic resting-state

functional connectivity: disruption in patients with type 2 diabetes. Metab

Brain Dis. (2015) 30:1227–36. doi: 10.1007/s11011-015-9700-2

44. Tan X, Fang P, An J, Lin H, Liang Y, Shen W, et al. Micro-structural white

matter abnormalities in type 2 diabetic patients: a DTI study using TBSS

analysis. Neuroradiology. (2016) 58:1209–16. doi: 10.1007/s00234-016-1752-4

45. Hsu JL, Chen YL, Leu JG, Jaw FS, Lee CH, Tsai YF, et al.

Microstructural white matter abnormalities in type 2 diabetes mellitus:

a diffusion tensor imaging study. Neuroimage. (2012) 59:1098–105.

doi: 10.1016/j.neuroimage.2011.09.041

46. De Smet HJ, Paquier P, Verhoeven J, Mariën P. The cerebellum: Its role in

language and related cognitive and affective functions. Brain Lang. (2013)

127:334–42. doi: 10.1016/j.bandl.2012.11.001

47. Mariën P, D’aes T. “Brainstem Cognitive Affective Syndrome” following

disruption of the cerebrocerebellar network. Cerebellum. (2015) 14:221–5.

doi: 10.1007/s12311-014-0624-x

48. Jacobs HIL, Hopkins DA, Mayrhofer HC, Bruner E, Van Leeuwen FW,

Raaijmakers W, et al. The cerebellum in Alzheimer’s disease: evaluating its

role in cognitive decline. Brain. (2018) 141:37–47. doi: 10.1093/brain/awx194

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Qin, Liang, Tan, Leng, Lin, Zeng, Zhang, Yang, Li, Zheng and Qiu.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neurology | www.frontiersin.org 10 June 2019 | Volume 10 | Article 59928

https://doi.org/10.2337/db16-0128
https://doi.org/10.1016/j.brainresbull.2017.01.009
https://doi.org/10.2337/dc14-S081
https://doi.org/10.1007/s11517-017-1638-6
https://doi.org/10.1001/archneur.1992.00530300062011
https://doi.org/10.1161/01.STR.32.6.1318
https://doi.org/10.3389/fnsys.2010.00013
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1089/brain.2014.0244
https://doi.org/10.1371/journal.pcbi.0030017
https://doi.org/10.1523/JNEUROSCI.1443-09.2009
https://doi.org/10.3389/fneur.2018.00363
https://doi.org/10.3389/fnhum.2018.00514
https://doi.org/10.1002/dmrr.1112
https://doi.org/10.3233/JAD-160111
https://doi.org/10.3174/ajnr.A4858
https://doi.org/10.1016/j.jdiacomp.2012.03.021
https://doi.org/10.1186/1756-0500-7-41
https://doi.org/10.1016/j.crad.2016.11.012
https://doi.org/10.3389/fnhum.2016.00490
https://doi.org/10.2337/db13-1219
https://doi.org/10.1016/j.neuroimage.2013.04.011
https://doi.org/10.1016/S0166-2236(00)01633-7
https://doi.org/10.1016/j.jad.2017.12.012
https://doi.org/10.1007/s11011-015-9700-2
https://doi.org/10.1007/s00234-016-1752-4
https://doi.org/10.1016/j.neuroimage.2011.09.041
https://doi.org/10.1016/j.bandl.2012.11.001
https://doi.org/10.1007/s12311-014-0624-x
https://doi.org/10.1093/brain/awx194
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


REVIEW
published: 13 August 2019

doi: 10.3389/fneur.2019.00883

Frontiers in Neurology | www.frontiersin.org 1 August 2019 | Volume 10 | Article 883

Edited by:

Ovidiu Lungu,

Université de Montréal, Canada

Reviewed by:

Konstantinos Kalafatakis,

University of Bristol, United Kingdom

Yann Quidé,

University of New South Wales

(UNSW), Australia

*Correspondence:

Benyan Luo

luobenyan@zju.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Applied Neuroimaging,

a section of the journal

Frontiers in Neurology

Received: 05 April 2019

Accepted: 30 July 2019

Published: 13 August 2019

Citation:

Liu P, Peng G, Zhang N, Wang B and

Luo B (2019) Crosstalk Between the

Gut Microbiota and the Brain: An

Update on Neuroimaging Findings.

Front. Neurol. 10:883.

doi: 10.3389/fneur.2019.00883

Crosstalk Between the Gut
Microbiota and the Brain: An Update
on Neuroimaging Findings

Ping Liu 1†, Guoping Peng 1†, Ning Zhang 2, Baohong Wang 3 and Benyan Luo 1*

1Department of Neurology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China,
2Department of Neurology, Pujiang People’s Hospital, Pujiang, China, 3 State Key Laboratory for Diagnosis and Treatment of

Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated

Hospital, College of Medicine, Zhejiang University, Hangzhou, China

An increasing amount of evidence suggests that bidirectional communication between

the gut microbiome and the central nervous system (CNS), which is also known as the

microbiota-gut-brain axis, plays a key role in the development and function of the brain.

For example, alterations or perturbations of the gut microbiota (GM) are associated with

neurodevelopmental, neurodegenerative, and psychiatric disorders and modulation of

the microbiota-gut-brain axis by probiotics, pre-biotics, and/or diet induces preventative

and therapeutic effects. The current interpretation of the mechanisms underlying this

relationship are mainly based on, but not limited to, parallel CNS, endocrine, and

immune-relatedmolecular pathways that interact with each other. Althoughmany studies

have revealed the peripheral aspects of this axis, there is a paucity of data on how

structural and functional changes in the brain correspond with gut microbiotic states

in vivo. However, modern neuroimaging techniques and other imaging modalities have

been increasingly applied to study the structure, function, and molecular aspects of

brain activity in living healthy human and patient populations, which has resulted in an

increased understanding of the microbiota-gut-brain axis. The present review focuses on

recent studies of healthy individuals and patients with diverse neurological disorders that

employed a combination of advanced neuroimaging techniques and gut microbiome

analyses. First, the technical information of these imaging modalities will be briefly

described and then the included studies will provide primary evidence showing that the

human GM profile is significantly associated with brain microstructure, intrinsic activities,

and functional connectivity (FC) as well as cognitive function and mood.

Keywords: gut microbiota, microbiota-gut-brain axis, neuroimaging, mutimodal, mutual communication

INTRODUCTION: THE MICROBIOME-GUT-BRAIN AXIS

Bidirectional interactions between the brain and gut and their relationships with a third
component, the gut microbiome, have received increasing attention in recent years (1–3).
Emotional and psychosocial factors can trigger gastrointestinal symptoms such as heartburn,
indigestion, acid reflux, bloating, pain, constipation, and diarrhea (4). Conversely, a series of
pre-clinical investigations has shown that dysbiosis and/or alterations of the gut microbiota
(GM) are implicated in the pathogeneses and pathophysiologies of intestinal diseases, such as
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inflammatory bowel disease (IBD), as well as neurological
disorders, and psychiatric conditions, including anxiety,
depression, autism spectrum disorder (ASD), multiple sclerosis,
Alzheimer’s disease (AD), and Parkinson’s disease (PD).
However, clinical evidence supporting such interactions in
humans remains relatively scarce (5–12).

Although a variety of mechanisms have been proposed
to support interactions within the microbiome-gut-brain axis
(MGBA) (13–16), the GM primarily communicates with
the central nervous system (CNS) via neural, immune-
related, endocrine, and metabolic signaling pathways (17).
Chemically, the GM and brain communicate with each other
using hormones, such as corticotrophin-releasing hormone
(CRH) in the hypothalamic-pituitary-adrenal (HPA) axis,
neurotransmitters, such as serotonin (5-HT), dopamine, and γ-
aminobutyric acid (GABA), neuropeptides, and short-chain fatty
acids (SCFAs) (14, 18–20).

Additionally, novel advanced methods have facilitated current
understanding of these complex interactions in vivo and
revealed the peripheral aspects of the MGBA. For example,
16s rRNA gene sequence analyses and/or high-throughput
sequencing can demonstrate GM composition in terms of
diversity and abundance (21, 22) and provide qualitative and
quantitative information about bacterial species and changes
(23). Likewise, biochemistric and molecular biological methods
can identify metabolic, immunological, and endocrine molecules
from different body fluids and tissues. Meanwhile, advanced
neuroimaging methods have emerged as an effective tool for
understanding the structure, function, and molecular aspects
of the brain, which is the central component of the MGBA.
Using such techniques, imaging parameters can also aid in
vivo explorations of the potential associations between the
microstructural patterns or functional conditions in the brain
and particular dysbiotic states in the gut (24).

The present review assessed studies (see Table 1) of healthy
individuals and patients with diverse neurological disorders that
combined advanced neuroimaging techniques with GM analyses.
First, the technical information of various neuroimaging
modalities will be presented and then the published results of
brain imaging and GM analyses as well as their correlations in
healthy subjects and patient populations will be discussed.

MULTIMODAL NEUROIMAGING METHODS

Magnetic resonance imaging (MRI) is a widely used non-
invasive technique capable of reflecting structural, functional,
and metabolic brain properties. Additionally, this technique is
readily translated between preclinical and clinical settings. In this
section, the primary MRI sequences that have been utilized to
study the relationship between the GM and the human brain will
be discussed.

Structural MRI Techniques
Typically, studies will assess gray matter structures in the brain in
terms of global or regional cortical volume and thickness. With
the development of novel analysis methods, several studies have
demonstrated structural differences in the brain among different

patient populations. For example, voxel-based morphometry
(VBM) (31) allows for automated, quantitative, and objective
evaluations of gray matter volume across the brain whereas
diffusion tensor imaging (DTI), which is derived from diffusion-
weighted imaging (DWI), is well-suited for visualizing the
microstructural details of white matter in vivo. DTI has several
metrics that quantify the degree and direction of water diffusion.
Fractional anisotropy (FA), which is the most commonly assessed
metric, measures the directional coherence of water diffusion
within tissues and reflects the degree of structural integrity
and the myelination of white matter. In addition to basic 3D
visualization methods, fiber tracking has been used to delineate
specific white matter tracts for quantitative analyses in various
groups, including pediatric subjects, elderly subjects, and patients
with schizophrenia, brain tumors, AD, or other disorders (32, 33).

Preclinical evidence has also demonstrated that the GM plays
a critical role in the development and function of CNS tissues
via different metabolic or immune-related signaling pathways.
From a structural point of view, region-specific changes in
the brains of GM-free (GF) animals have been associated with
specific GM metabolites. For example, the levels of brain-
derived neurotrophic factor (BDNF), which is a key regulator
of synaptic plasticity and neurogenesis in the brain, are reduced
in the cortex and hippocampus of GF mice (34). Additionally,
synaptophysin, which is a marker of synaptogenesis, and PSD-
95, which is a marker of mature excitatory synapses, are lower in
the striatum of GF animals compared to specific pathogen-free
animals (35). Butyrate, which is an important SCFA, is associated
with the increased expression of occludin, which is a tight
junction protein, in the frontal cortex and hippocampus (36).
The GM is also a critical promoter of microglial maintenance in
the CNS during sensitive developmental periods. Furthermore,
recent increases in the specificity of neuroimaging techniques
have allowed for the visualization of different tissue sub-
compartments (e.g., glia vs. neurons, the soma vs. dendrites, axon
diameter vs. myelin thickness or axonal density) and created
the possibility of unmasking subtle microstructural changes
in vivo (22).

Importantly, an ex-vivo DTI study in rats conducted by
Ong (37) demonstrated that diet-specific GM populations are
associated with differences in brain microstructures, particularly
white matter integrity. Neuroimaging techniques have also been
used to investigate the central mechanisms associated with IBS in
human patients. An analysis of cortical thickness that employed
structural MRI with VBM showed that female patients with
IBS exhibit reduced cortical thickness in the anterior insular
cortex but increased cortical thickness/gray matter volume in
the post-central gyrus. However, the findings of DTI studies are
inconsistent in terms of changes in FA (38).

Functional Neuroimaging Techniques
In terms of functional changes, functional MRI (fMRI) analyses
using blood oxygenation level-dependent (BOLD) signals remain
one of the most widely used methods for mapping and studying
the neural basis of human cognition in both healthy and
dysfunctional brains (39). Conventionally, alterations in neural
activities can be recorded by asking the subject to perform a
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TABLE 1 | Crosstalk between the GM and human brain function.

Subjects Intervention Measures Results References

Neuroimaging results GM results Correlation Other

Healthy women FMPP for 4w (FMPP

group, n = 12;

non-FMPP group,

n = 12; no

intervention, n = 13)

Task-based fMRI and

rs-fMRI;

GM (fecal samples)

Emotional attention task

based-fMRI: sensory brain network

connection strength and decreases

in insular and somatosensory

cortical BOLD activity↓ in the FMPP

group

rs-fMRI: PAG was negatively

correlated with sensory/affective

regions and positively correlated with

cortical regulatory regions (medial

and dorsolateral prefrontal cortices)

in FMPP group

No significant changes

in fecal microbiota

composition

Four-week intake of an FMPP by

healthy women affected activity in

brain

regions that control the central

processing of emotion and sensation

/ (25)

Obese and non-obese

subjects

No intervention (20

obese and 19

non-obese subjects)

MRI; DTI; FLAIR; R2*;

GM (fecal samples);

cognitive tests

See the correlation column 16S bacterial gene

pyrosequencing: fecal

sample bacterial

biodiversity↓ in obese

men

Fecal microbiota diversity was

negatively correlated with R2*

signals in the hypothalamus,

hippocampus, and caudate nucleus.

The abundance of Actinobacteria

was positively associated with FA in

the amygdala and thalamus but

negatively correlated with the R2*

signal in the hypothalamus

The relative

abundance of the

Actinobacteria

Phylum was

positively associated

with cognitive tests

related to speed,

attention, and

cognitive flexibility

(26)

Elderly outpatients with

and without cirrhosis

No intervention

Group type 1: 39

cirrhotic and 37

non-cirrhotic patients;

Group type 2:

unimpaired cognition

(n = 23), amnestic-type

(n = 25), and

amnestic/non-amnestic

type (n = 28).

Multi-modal MRI (fMRI

go/no-go task, volumetry,

and MRS); inflammatory

cytokines; GM (fecal

samples);

neuropsychological tests

No significant fMRI differences in

brain volumes between cirrhotic and

non-cirrhotic subjects.

Amnestic/non-amnestic type:

activation in the central opercular

cortex, post-central gyrus, and

superior parietal lobule during

inhibition↑. Amnestic-type type:

white matter, gray matter, and total

brain volumes↓, hippocampal and

left thalamic volumes↓ Cirrhotic

subjects: mi/Cr and NAA/Cr ratios↓

and Glx/Cr ratio↑.

Amnestic/non-amnestic type: mi/Cr

and Glx/Cr ratios↓

Cirrhotic subjects:

Lactobacillales↑ and

Synergisticeae, and

Peptococcaceae↓.

Cognitively impaired

groups: decreased

Subdoligranulum,

Oscillibacte, and

Porphyromonadaceae

and Prevotellaceae↓

and Bacteroides↑

Unimpaired group:

increased

Fecalibacterium

and Butyricicoccus

Regardless of the presence of

cirrhosis, beneficial taxa

(Lactobacillales, Ruminococcaceae,

and Lachnospiraceae) were

positively linked with cognition while

pathogenic taxa

(Enterobacteriaceae) were negatively

linked with cognition

Serum levels of

IL-6/endotoxin↑

(27)

(Continued)
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TABLE 1 | Continued

Subjects Intervention Measures Results References

Neuroimaging results GM results Correlation Other

Cirrhosis patients

with/without prior HE

No intervention

(Cirrhotic without prior

HE, n = 62; cirrhotic

with prior HE, n = 85;

controls, n = 40)

MRS, DTI, Systemic

inflammatory

assessment, GM (fecal

samples); cognitive

testing

MRS: Cirrhotic patients with HE:

Glx↑↑ mi↓↓; Cho↓↓; Cirrhotics:

Glx↑ mi↓; DTI: Cirrhotics with HE:

spherical isotropy↑, FA↓

Cirrhotic patients with

HE:

Staphylococcaceae↑,

Enterococcaceae↑,

Porphyromonadaceae↑,

and Lactobacillaceae↑;

autochthonous

bacterial families

(Lachospiraceae↓,

Ruminococcaeae↓,

and Clostridiales XIV↓

Autochthonous taxa were negatively

correlated with

hyperammonemia-associated

astrocytic MRS changes while

Enterobacteriaceae were positively

correlated with

hyperammonemia-associated

astrocytic MRS changes (high Glx

levels and low mi and Cho levels).

Porphyromonadaceae were

correlated with neuronal changes on

DTI without being linked to ammonia

Cirrhotic patients

with prior HE had

significantly more

advanced cirrhosis,

more severe and

higher levels of

inflammatory

markers and

cognitive

impairments

compared to

cirrhotic patients

without HE

(28)

IBS patients with anxiety

and depression

Probiotic:

Bifidobacterium

longum NCC3001 for

6w (BL, n = 22;

placebo, n = 22)

Task-based fMRI (fearful

face backward masking

paradigm); fecal

microbiota; urine

metabolome profiles;

serum inflammatory

markers;

neurotransmitter and

neurotrophin levels

BL reduced responses to negative

emotional stimuli in multiple brain

areas including the amygdala and

fronto-limbic regions

No major changes in

fecal microbiota

composition after

intervention

Reduced amygdala activity was

correlated with decreases in

depression scores

Depression scores↓;

IBS symptoms

improved; urine

levels of

methylamines and

aromatic amino acid

metabolites↓

(29)

Healthy women

(Bacteroides-high group

vs. Prevotella-high

group)

No intervention Emotion-induced

task-based fMRI;

structural MRI (DTI, T1)

Prevotella group: right hippocampal

activity↓ when viewing negative

valence images. Bacteroides-high

group: white matter connectivity↓,

cerebellum, frontal region, and

hippocampal volumes↑, and nucleus

accumbal volume↓

Subjects were divided

into Bacteroides-high

group and

Prevotella-high group

based on fecal

microbiota analysis

/ (30)

Obese and non-obese

subjects

Diet counseling (18

obese and 17

non-obese subjects)

MR relaxometry R2*; GM

(fecal samples);

Neuropsychological

tests; plasma β-amyloid

(1–24, 31–48) levels

MR R2* relaxometry increased

mainly in the pallidum, putamen,

thalamus, and hippocampus in both

groups over a 2-year period

A variety of gut

microbiome changes in

RA over a 2-year period

Shifts in Gemmatimonadetes,

Bacteroidetes, Proteobacteria,

Caldiserica, Candidatus,

Saccharibacteria, Tenericutes,

Thermodesulfobacteria, and

Chlorobi RA were associated with

increased percentages of R2* in the

striatum, superficial amygdala, and

hippocampus. Shifts in the phyla

Fibrobacteres, Synergistetes, and

Tenericutes RA were reciprocally

associated with right

hippocampal R2*.

Circulating

β-amyloid Ab42

levels were positively

associated with

changes in

visuospatial

constructional ability

and immediate

memory but

negatively

associated with

increases in R2*

(49)

(Continued)
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TABLE 1 | Continued

Subjects Intervention Measures Results References

Neuroimaging results GM results Correlation Other

Healthy volunteers Probiotic (Ecologic825,

nine bacterial strains)

for 4w (probiotic, n =

15; placebo, n = 15;

no intervention, n = 15)

Task-based fMRI

(emotional

decision-making and

emotional recognition

memory); DTI;

neuropsychological tests

Altered brain activation in the

cingulum, precuneus, inferior parietal

lobule, thalamus, and

parahippocampal gyrus in the ED

task and cerebellar activity in the ER

task

No major changes in

general fecal microbial

diversity or evenness;

Bacteroides sp.↑,

Alistipe sp.↑, and the

nicotinate and

nicotinamide metabolic

pathway of fecal

microbiota↓

Probiotic ingestion improved

emotional attention and memory

performance, which was

accompanied by changes in activity

in corresponding brain regions

Self-reported

behavioral

measures of positive

affect, cognitive

reactivity, and

memory

performance

improved

(50)

Healthy volunteers Probiotic (Ecologic825,

nine bacterial

strains) for 4w

(probiotic, n = 15;

placebo, n = 15; no

intervention, n = 15)

Rs-fMRI; diffusion MRI FC in MFGN (in frontal pole and

frontal medial cortex) and in DMN (in

frontal lobe)↓, FC in SN (in cingulate

gyrus and precuneus cortex)↑.

No significant changes in structural

connectivity (FA/MD)

Same as above [Bagga

et al. (50)]

Probiotic intervention was

-associated with -changes in FC but

not structural connectivity

(51)

High-risk (HR) and

ultra-high risk (UHR)

subjects for

schizophrenia

No intervention

(high-risk group, n =

81; ultra-high risk

group, n = 19; healthy

controls, n = 69)

MRS;

GM (fecal samples).

Ultra-high risk group: Cho levels in

anterior cingulate cortex↑

Ultra-high risk group: at

order level;

Clostridiales,

Lactobacillales, and

Bacteroidales↑; at

general level, Prevotella

and Lactobacillus↑;

synthesis of acetyl-CoA

(belonging to SCFAs)↑

Alterations in MRS and GM function

(synthesis of SCFAs) support the

hypothesis that membrane

dysfunction exists in schizophrenia

/ (52)

Summary of multimodal MR imaging studies investigating the relationship between the adult GM and brain function.
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task designed to target a specific cognitive process. The so-
called task-based fMRI paradigm tracks task-specific patterns
of activition and yields important insights into how the brain
responds to external stimulation. These stimuli can be visual,
auditory, or other sensory modalities depending on the desired
behavioral manipulation.

It is also well-known that the human brain is operational
under resting conditions or in a relaxed state. Resting-state fMRI
uses the BOLD signal to measure spontaneous fluctuations in the
brain in the absence of conscious mentation (i.e., the “resting
state”) to reflect baseline neural activity in selected regions.
This technique can also be used to construct global or local
brain networks based on the identified interactions. Furthermore,
analyses of functional connectivity (FC) between multiple
spatially distributed brain regions have revealed different resting-
state networks (functionally linked brain regions) that have
specific functions and varied spatial topology. Despite the fact
that different resting-state network studies have used various
statistical methods (e.g., seeds, independent component analysis
[ICA], or clustering), different groups of subjects, and/or diverse
MR acquisition protocols (e.g., multiple vendors, multiple field
strengths of 1.5T, 3.0T, or 4.0T), they have produced consistent
results; this is indicative of the robust formation of functionally
linked resting-state networks in the brain (40). One particular
network that has received increasing attention is the so-called
default mode network (DMN), which consists of functional links
among the posterior cingulate cortex/precuneus, medial frontal
regions, and inferior parietal regions. In contrast to the other
resting-state networks, the DMN exhibits a high level of activity
during rest and deactivates during the performance of cognitive
tasks (41).

Functional neuroimaging has also been used to assess
individuals with functional gastrointestinal disorders during
gut stimulation. For example, peripheral factors such as
gastrointestinal tract sensation, motility, and GM composition-
associatedmechanical and chemical signals (e.g., immune-related
or endocrine signals) induce different functional changes in the
brain that are related to the sensory processing of gut homeostatic
conditions (e.g., in the brainstem sensory nuclei, thalamus,
and posterior insula), emotional responses (e.g., in the locus
coeruleus, amygdala, hippocampus, subgenual, and pregenual
anterior cingulate cortices), and top-down modulation systems
(e.g., in the periaqueductal gray [PAG], rostroventral medulla,
prefrontal executive control area, and anterior midcingulate
cortex) (42).

Magnetic Resonance Spectroscopy
In human patients with brain disorders, metabolic changes
often precede anatomical changes. However, magnetic resonance
spectroscopy (MRS) can provide unique information about the
metabolic and neurobiological substrates of the brain, including
the levels of N-acetylaspartate (NAA), choline (Cho), creatine
(Cr), myoinositol (mi), glutamate (Glu) + glutamine (Gln),
glucose, and GABA (43). In the adult brain, NAA is found
almost exclusively in neurons and serves as a marker of
neuronal density and viability, and changes in Cho resonance
are commonly associated with diseases that alter membrane

turnover and processes that are accompanied by hypercellularity.
MRS has been applied to investigate a variety of neurological
and neurosurgical disorders, including neoplasms, metabolic
encephalopathy (hepatic encephalopathy [HE]), mitochondrial
encephalopathy, and central neurodegenerative diseases (e.g., AD
and PD) as well as psychiatric disorders, such as depression
(44). Interestingly, using MRS on a 7T animal MRI system,
Janik et al. (45) demonstrated that oral Lactobacillus rhamnosus
increases the levels of central Glx, total NAA (tNAA; NAA + N-
acetyl-aspartyl-glutamic acid [NAAG]), and GABA over different
administration time courses. Additionally, proton MRS results in
patients with Crohn’s disease (CD) revealed higher Glu/total Cr
(tCr; Cr + phosphocreatine) levels but lower GABA+/tCr levels
in CD patients with abdominal pain compared to non-pain CD
patients and healthy controls (46); these findings indicate that
an imbalance between Glu and GABA may play a key role in
abdominal pain processing. Taken together, these studies suggest
that MRS is an appropriate and non-invasive technique that can
be used to track neurochemical changes consequent to alterations
of the gut microbiome.

Brain Iron Deposition Imaging
Iron is the most abundant metal in the brain and is
actively involved in many fundamental biological processes,
including oxygen transportation, DNA synthesis, mitochondrial
respiration, myelin synthesis, and neurotransmitter synthesis
and metabolism (47). Additionally, iron-mediated oxidative
stress has been linked to motor system degeneration and
cognitive impairments and is considered to be an important
pathogenetic component of neurodegenerative diseases such as
PD, AD, amyotrophic lateral sclerosis (ALS), and Huntington’s
disease (48, 53).

Due to the paramagnetic nature of iron, advancements in
MRI techniques have opened a new window into in vivo
iron deposition imaging of the human brain. Different MRI
techniques and methods have been proposed for the visual and
quantitative mapping of brain iron; these options include the
visual rating of T2-weighted images, R2/R2∗ relaxometry (R2
= 1/T2 and R∗ = 1/R2), MR phase imaging, susceptibility-
weighted imaging (SWI), and quantitative susceptibility mapping
(QSM). Of these methods, R2∗ relaxometry and QSM have
a high sensitivity for iron and a linear relationship with
iron deposition (54, 55); however, only R2∗ relaxometry can
distinguish calcifications from iron deposits.

It has been shown that commensal bacteria such as
Bifidobacterium longum and Bacteroides fragilis, which are
representative members of the GM, affect hepcidin expression,
which is a central regulator of systemic iron metabolism. For
example, using the SWI technique, Dong Lin demonstrated that
patients with hepatitis B virus (HBV)-related cirrhosis, usually
in a state of gut dysbiosis (17), exhibit decreased serum levels
of hepcidin and an overload of systemic iron that are linked
to the excessive accumulation of iron in the basal ganglia (56).
However, there is a need for more detailed studies to fully explore
the interactions between the GM, systemic iron metabolism, and
brain iron deposition as well as the resulting effects in healthy
human subjects.
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Recently, De Santis et al. (22) proposed the novel term
“radiomicrobiomics” for the combined analysis of large amounts
of data (i.e., “omics”) that represent an entire set of image-
based brain signatures and features of microbiota. The data in
this framework could be used to generate or test hypotheses
and/or develop decision support tools associated with disease
biomarkers and treatment. In addition to pre-clinical studies,
emerging translational studies have also investigated crosstalk
between the GM and CNS in humans. Future studies should
incorporate measurements or interventions of gastrointestinal
microbiota with neuroimaging modalities to elucidate this
relationship further.

In the abovementioned studies, the enrolled subjects were
from mainly healthy populations and the patient groups
did not have significant gut disorders or had gut states
that were similar to the control group (e.g., IBS patients).
Additionally, of these studies, five were intervention studies;
four required subjects to use probiotics for 4–6 weeks
(25, 29, 50, 51), and one employed diet counseling (49).
The assessments of brain function were mainly in the
domains of cognition and mood, and included memory,
executive function, attention, speed, depression, and anxiety
tests. Although various neuroimaging strategies were used,
most of these studies employed multimodal MRI approaches
that involved both functional and structural MRI techniques.
More specifically, the fMRI methods included resting-state fMRI
or emotion- or cognition-induced task-based fMRI analyses
of intrinsic brain activities and FC among brain networks
whereas the structural MRI methods included DTI for white
matter, R2∗ for iron deposition, and volumetric analyses.
MRS was used to assess regional brain metabolism in two
studies (27, 52).

Accumulating experimental evidence has shown that
manipulation of the gut microbiome could modulate emotion,
cognition, and/or behavior by modifying neurotransmitter
levels, neuroinflammation, and brain functions (57, 58).
Additionally, the administration of probiotics has been explored
as a potential treatment strategy for neurological and psychiatric
disorders in both experimental and clinical studies (59–62).
For example, Messaoudi et al. (63) found that the consumption
of a probiotic supplement (Lactobacillus helveticus R0052
and Bifidobacterium longum R0175) results in anxiolytic-like
activity in rats and beneficial psychological effects in healthy
human volunteers. However, corresponding human data from
direct brain imaging sources remain scarce. Three studies
have investigated the effects of probiotic administration on
behavior, brain function, and gut microbial composition,
two were in healthy volunteers (50, 51) and one was in
IBS patients (29). Although there were no major changes
in the general microbial diversity or evenness in the fecal
samples in these studies, the administration of probiotics had
definite effects on brain activity and FC that were associated
with emotion and memory processing. Notably, probiotic
administration is associated with the reduced engagement
of an extensive brain network in response to an emotion
recognition task (25) and emotional stimuli (29). Taken
together, these results may provide novel approaches for the

prevention and treatment of psychiatric disorders, including
anxiety and depression.

In terms of brain microstructure, DTI is widely used to
evaluate the integrity of white matter. Using rat models, Ong
et al. (37) identified global changes in white matter structural
integrity due to different diet patterns, i.e., standard/control diet,
high fat diet, high fiber diet, and high protein/low carbohydrate
diet. On the other hand, a study of healthy volunteers did
not reveal any significant regional differences in FA or mean
diffusivity (MD) after a 4-week probiotic intervention (51).
Interestingly, two studies from Spain investigated the interactions
between the GM, brain iron deposition (R2∗), and cognitive
performance in obese and non-obese subjects and found that
GM diversity is negatively linked to R2∗ in the hypothalamus,
caudate nucleus, and hippocampus (26, 49). Moreover, these
authors reported that the changes in GM composition are
associated with brain iron deposition and cognitive function.
For example, increases in bacteria belonging to the Tenericutes
phylum parallel decreases in R2∗ gain in the striatum and
better visuospatial constructional ability (49). These authors
speculated that the bacterial metabolization of arsenic and the
generation of siderophores were the mechanisms underlying
these protective associations.

Regarding neurological disorders, hepatic encephalopathy
(HE) presents as a spectrum of neuropsychiatric symptoms
that range from subtle fluctuations in cognition to coma (64).
Alterations in the GM as well as related metabolomes, such
as amino acid metabolites and endotoxins, could lead to the
occurrence of HE when occurring against a background of
intestinal hyperpermeability (i.e., leaky gut) and systemic
inflammation. Using a combination of cognitive testing,
assessments of stool microbiota, brain MRI analyses, and
evaluations of systemic inflammation, Ahluwalia et al. (28)
identified a robust correlation network in which autochthonous
bacterial families (Lachospiraceae, Ruminococcaeae, and
Clostridiales XIV) are negatively correlated with liver function
and glial MRS manifestations of ammonia (high Glx levels with
low mi and Cho levels) in the brain, especially in subjects with
HE. The same research group assessed elderly outpatients with or
without cirrhosis and found that elderly patients had an altered
gut-brain axis regardless of the presence of cirrhosis, which
suggests that cognitive function is influenced by alterations in
the GM per se. In another study, MRS was used to evaluate
the metabolic and neurobiological substrates of the brain, and
the amnestic/non-amnestic group had a decreased mi/Cr ratio
and a reduced NAA-NAAG/Cr ratio in the anterior cingulate
cortex. The cognitively impaired groups had a significantly
lower relative abundance of genera belonging to autochthonous
and beneficial taxa (27). Additionally, several studies have
performed measurements of microbial or human metabolites,
serum inflammatory markers, and plasma β-amyloid [1–42;
(Aβ42)] to clarify the molecular mechanisms underlying these
relationships. A 2-year longitudinal study by Blasco et al. (49)
revealed that increases in circulating Aβ42 levels are positively
associated with Tenericutes and Thermodesulfobacteria RA as
well as improvements in visuospatial constructional ability and
immediate memory but negatively correlated with increases in

Frontiers in Neurology | www.frontiersin.org 7 August 2019 | Volume 10 | Article 88335

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Liu et al. Crosstalk Between Gut Microbiota and Brain

R2∗, whichmay have great significance for further understanding
the pathogenesis of AD.

The studies included in the present review have several
limitations. First, the numbers of subjects were relatively small
in most of the studies included in this review. Further studies
are needed in larger number of patients to define the real
effect of these changes on outcomes. Second, the samples
were non-invasively obtained via direct collections of stool,
which allows for the detection of a wide range of intestinal
microflora but cannot differentiate between the luminal and
mucosal environments, less local microenvironments, or regional
differences throughout the gut. Due to the difficulty and
expense associated with obtaining local tissue specimen, studies
characterizing the human mucosal-associated microbiota was
limited. Samples from endoscopic mucosal biopsy can directly

reflect mucosal environments, and it has been reported that
the composition of luminal and mucosal-associated microbiota
was different both in health and certain disease states (65,
66). In particular, Keshavarzian et al. showed the mucosal
and fecal microbial community of Parkinson’s disease patients
was significantly different from control subjects, with the fecal
samples showing more marked differences than the sigmoid
mucosa (67). Thus, it is important to investigate and compare
the microbiota of luminal and mucosal niche. Third, the
possible influences of usual diet, drugs, and exercise were not
assessed. However, most studies excluded those subjects who
had the history of using probiotics, prebiotics, synbiotics, or
antibiotics for at least 1 month before fecal sample collection.
On the other hand, body mass index between study groups was
compared in some studies (30, 49). Fourth, the phylogenetic

FIGURE 1 | Possible frameworks for exploring crosstalk between the GM and human brain. (A) Examples of distinct MRI maps: DTI, SWI, ASL, BOLD, FC, and MRS

(from left to right). (B) Analysis of the GM, including composition and function. (C) Explorations of the direct association between the GM and human brain imaging.

(D) Combining other “omics” techniques, such as metabolomics and proteomics, to generate a complete picture of host and microbial pathways. DTI, Diffusion

Tensor Imaging; SWI, Susceptibility Weighted Imaging; ASL, Arterial Spin Labeling; BOLD, blood oxygenation level dependent; FC, functional connection; MRS,

Magnetic Resonance Spectroscopy; BBB, blood-brain barrier; GI, gastro-intestinal; GM, gut microbiota; PICRUSt, Phylogenetic Investigation of Communities by

Reconstruction of Unobserved States.
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power of the 16S rRNA gene sequencing analysis was low at
the species level, which requires careful treatment, and should
be replicated by future metagenomics sequencing. Metagenomics
is the most recent development in the study of the gut
microbiota. It can provide higher taxonomical resolution than
16S rRNA sequencing, reaching the species and strain levels.
Further more, it can also characterize the function of a given
community (23, 68).

CONCLUSIONS AND FUTURE

PERSPECTIVES

Taken together, the studies included in this review indicate
that the human GM profile is significantly associated with
brain microstructure, intrinsic neural activities, and brain
FC as well as cognitive function and mood. Well-designed
longitudinal studies that include assessments of the gut
microbial community structure and microbial metabolomics in
conjunction with neuroimaging and behavioral testing will be

required to establish directionality and causality. Furthermore,

additional measures of inflammation, immune activation,
neurotransmitters, neuromodulators, microbial metabolomics,
and intestinal permeability, motility and visceral sensitivity
will be useful for elucidating the interactions between the
gut and brain. Future studies should also aim to integrate
multiple “omics” techniques (69), such as metabolomics and
proteomics, to generate a complete picture of host and microbial
pathways (Figure 1).
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Background: Affective dysregulation and impaired cognitive control are implicated in the

pathology of functional neurological disorders (FNDs). However, voluntary regulation of

emotions has seldom been researched in this group of patients. We hypothesized that

patients with FNDs use inefficient voluntary emotion regulation strategies and regulate

emotional reactions via increased motor activation.

Methods: Fifteen patients with functional movement disorder (FMD) and fifteen healthy

subjects matched by age, sex, and education underwent an emotion regulation task in

fMRI. For stimuli, we used neutral and negative pictures from the International Affective

Picture System. There was no restriction on their emotion regulation strategy. Both

patients and healthy subjects were asked about the strategies they had used in a

post-scanning interview. Participant levels of depression, trait anxiety, and alexithymia

were assessed.

Results: There were no significant differences in the emotion regulation strategies used

by patients and healthy subjects, nor in levels of reported alexithymia and depression.

However, patients showed increased activation in several brain areas when observing

negative pictures, notably in the post-central gyrus, precuneus, posterior cingulate cortex

(PCC) and cerebellar vermis, and also in their emotion regulation condition, particularly

in the precuneus and post-central gyrus. Alexithymia was negatively associated with left

insular activation during the observation of unpleasant stimuli only in the patient group.

Conclusions: Our findings may implicate areas associated with self-referential

processing in voluntary emotional regulation and lower emotional awareness as having

a role in patients with functional movement disorders. However, our findings must be

replicated with larger sample.
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INTRODUCTION

A functional neurological disorder (FND) is a condition in
which a patient has neurological symptoms in the absence of
neurological disease. FND spans a variety of symptoms such
as non-epileptic seizures, abnormal movements (gait disorders,
tremor, dystonia, etc.), weakness, and sensory symptoms. Even
after more than 100 years of research interest, a pathological
mechanism underlying FND is still a subject of debate.

A growing body of neuroimaging evidence supports
the notion that abnormal emotional processing is a key
factor in the etiology of functional neurological symptoms
(1, 2). Task-based neuroimaging studies show limbic and
paralimbic hyperactivation (3–5), abnormal limbic-motor circuit
connectivity (4–6), and altered activation of several prefrontal
regions in emotion processing tasks in various groups of patients
with FND (3, 6–9). These findings suggest that unregulated
emotional reactions may exert an abnormal influence on the
motor system.

Following Janet (10) and Ludwig (11), contemporary cognitive
models afford a central role in attentional processes in the
etiology of FND (12, 13). There is evidence that both higher-
level endogenous attention control and lower-level automatic
attentional orienting are impaired in FND. Deficits in voluntary
attentional disengagement from emotionally neutral stimuli
(14) and the abnormal automatic (pre-conscious) allocation of
attention to facial affect (15), specifically to threat-related facial
affect (16), were found in FND patients. Moreover, avoidance
learning of negative stimulus was shown to be impaired in
FND (17). These findings demonstrate that FND patients show
diminished cognitive processing in emotional contexts.

Taken together, the emerging model that could help in
understanding FND combines higher-order (attention, cognitive
control) and bottom-up limbic processes (limbic hyperactivity,
limbic-motor connectivity) interacting to influence motor
control (18). Despite research evidence of impaired cognitive
processing in emotional contexts, only minor research focus has
been given to voluntary emotional regulation in FND. Voluntary
emotional regulation refers to intentional up or down-regulation
of an emotional reaction and it is contrasted to automatic

(non-conscious) voluntary regulation such as an avoidance
of stimulus (19). To our knowledge, only one neuroimaging
study utilizing magnetoencephalography examined voluntary
emotional regulation in FND, with a finding of reduced fronto-
cortical, but enhanced sensorimotor involvement in emotion
regulation efforts (20). This finding suggests that the patients had
lower cognitive control over emotional stimuli and may activate
different (“less cognitive”) emotion regulation strategies, reflected
in sensorimotor network activation even though the authors of
the study restricted the task to cognitive reappraisal of emotional
stimuli. Opitz et al. (21) point to the fact that people in laboratory
settings are likely to use whichever emotion-regulation strategies
work best for them even when they have been trained and
instructed to use one specific strategy.

Given the abnormal attention to emotional stimuli reported in
FND, patients may use attentional deployment (e.g., avoidance)
or emotional reaction suppression as ways to regulate emotional

reactions. For example, Ferri et al. (22) found that diverting
attention from unpleasant emotional stimuli also predominantly
activates the parietal regions in healthy subjects, similarly to
findings in FND reported by Fiess et al. (20). Suppression of
emotion-expressive behaviors was shown to reduce negative
emotional experiences but sustain elevated responses in the
amygdala (23); this finding is also relevant to FND, as failure
to habituate the amygdala in response to emotional stimuli was
observed in this group of patients (5). We hypothesize that
the hyperarousal and diminished habituation of the amygdala
documented in FNDmay be associated with inefficient voluntary
emotional regulation. We therefore conducted an exploratory
study aimed at identifying the natural emotion regulation
strategies [“spontaneous regulation”; (24)] employed by FND
patients and to explore brain activation related to the voluntary
emotion regulation in this group of patients.

MATERIALS AND METHODS

Participants
For the purpose of the study, we selected a sub-population
of FND with predominant motor signs to ensure relative
sample homogeneity. Fifteen adult patients with clinically
definite functional movement disorder (FMD), diagnosed based
on established clinical criteria (25), were recruited from the
neurology clinic at Masaryk University together with fifteen
healthy controls recruited from the general population and
matched with the patients by sex, age, and education. The sample
size was determined on the basis of previous neuroimaging
research utilizing emotional stimulation in FMD patients (e.g.,
(5), N = 16; (6), N = 12; (7), N = 10; (8), N = 12)
and also on the basis of the emotion-regulation study that
reported sample sizes of 18 per group as sufficient to gain
statistical power of 80% (26). Only patients with symptoms
persisting for more than 2 years and healthy volunteers with
no previous neurological or psychiatric symptoms were included
in the present study. Demographic and neurological data
were recorded, and depression, trait anxiety, and alexithymia,
defined as restricted access to emotional information (27), were
evaluated. Patient clinical characteristics are summarized in
Table 1. All participants gave their written informed consent and
receivedmonetary compensation. The study was approved by the
ethics committee of Masaryk University and St. Anne’s Hospital.

Self-Report Measures
Beck Depression Inventory

Since depression is a common comorbidity in FND (28), we
included the Beck Depression Inventory, second version [BDI-2;
(29)] to control for the influence of reported depression on
emotional regulation. BDI-2 is a widely used 21-question
multiple-choice self-report inventory with high internal
consistency (30) that measures characteristic attitudes and
symptoms of depression.

State-Trait Anxiety Inventory

The trait scale from the State-Trait Anxiety Inventory [STAI-T;
(31)] was used to measure the trait of anxiety. The scale consists
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TABLE 1 | Clinical and demographic characteristics of functional movement disorder patients.

Patient Clinical signs Gender Age Illness

duration

Comorbid affective disorder Medication

1 Dystonia F 52 4 Depressive syndrome, panic attacks Venlafaxine

2 Body stiffness and spasms F 46 4 Depressive syndrome Oxazepam and SSRI

3 Tremor of right hand F 56 11 None None

4 Right leg weakness M 20 3 None None

5 Quadriparesis F 59 2 None None

6 Gait disorder F 63 5 None None

7 Myoclonus F 61 15 None None

8 Tremor of right hand F 51 2 None None

9 Tremor of both hands, gait disorder F 31 2 Depressive syndrome None

10 Tremor, abnormal movements of chin F 22 3 None None

11 Myoclonus M 20 2 None None

12 Gait disorder F 29 6 None Agomelatine

13 Weakness of both legs, non-epileptic seizures M 41 8 Depressive syndrome, anxiety Mirtazapine

14 Tremor and dystonia M 24 2 None None

15 Weakness of both arms, non-epileptic seizures F 21 4 None None

Comorbid affective disorder refers to presence of clinically significant symptoms of anxiety or depression assessed by a clinical psychologist. F, female; M, male. Age and illness duration

is displayed in years.

of 20 statements that are rated on a four-point Likert scale.
STAI-T scores were used as a covariate to control for the effects
of anxiety, which is commonly associated with the tendency to
experience somatic symptoms (32).

Toronto Alexithymia Scale

Alexithymia has been shown to limit emotional regulation
in healthy subjects as well as in patient samples (33, 34).
FMD patients have been found to be significantly more
alexithymic than patients with organic motor disorders and
healthy controls (35), so we included a measure of alexithymia
in the study as a factor potentially contributing to emotional
dysregulation in FMD. The Toronto Alexithymia Scale [TAS-
20; (36)] is a well-validated and commonly used measure
of alexithymia. TAS-20 is a multidimensional self-report

instrument with a three-factor structure: difficulty identifying
feelings, difficulty describing feelings, and externally oriented
thinking. Items are rated using a 5-point Likert scale and
the total score of alexithymia is calculated as a sum of the
three subscales.

Emotion-Regulation Task
Stimuli

Emotional and neutral pictures from the International Affective
Picture System [IAPS; (37)] and emotionally negative pictures
were selected with an emphasis on scenes with threat-related
content (e.g., frightened people, weapons, attacks, surgical
procedures), as threat sensitivity was repeatedly observed in
patients with functional neurological symptoms (7, 16, 38). The
selected negative pictures had mean normative valence ratings of
2.54, and mean arousal ratings of 5.66. Selected neutral images
hadmean valence ratings of 5.10 andmean arousal ratings of 3.26
(see Supplementary Material).

Task Design

At the start of each trial, a picture was presented with an
instruction word displayed below the picture (“look”; 3 s); the
instruction remained for the next 5 s for neutral pictures and
negative pictures without regulation, or the instruction changed
to the regulation instruction (“decrease,” 5 s) for negative pictures
with regulation. The presentation of each picture was followed
by 1 s of blank screen, followed by a self-reported rating of the
strength of the negative effect (on a scale from 1 to 4, where
1 was labeled “not at all” and 4 was labeled “very much”; 3 s),
finally the word “relax” appeared on a blank screen for the rest
of the trial (9 s). The task design follows a methodology used by
Jackson et al. (39) and is depicted in Figure 1. Responses were
made on a 4-button box using the participant’s dominant (right)
hand. The combinations of instructions and pictures produced
three trial types: decrease negative (regulation), look negative
(non-regulation), and look neutral (non-emotional). A total of
66 trials (22 of each trial type) were administered in pseudo-
randomized order with the constraint that no more than two of
any trial type or picture type followed each other sequentially.
The task was presented with E-Prime (Psychology Software Tools
Inc, Pittsburgh).

Procedure
Pre-MRI, participants completed questionnaires and were
familiarized with the task by practicing several rounds of the task
with a different set of IAPS pictures than those used with the
MRI. The participants were not given any specific instructions for
emotion regulation strategies to use but were only asked to try to
down-regulate an emotion that might occur in the reaction to the
presented pictures. The participants were also informed about a
post-scanning interview about the emotion regulation strategies
they applied during the task. In the post-scanning interview,
the responses of participants were coded into three categories
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FIGURE 1 | Scheme of the task design. Neutral and negative pictures were first presented with a “look” instruction for 3 s. In neutral pictures and half of the negative

pictures the “look” instruction remained on the screen for another 5 s. In the other half of negative pictures, the instruction “look” changed into “regulate” instruction

after initial 3 s of picture viewing.

based on a process model of emotional regulation (40). The
categories were: attentional deployment, cognitive reappraisal,
and emotional response modulation. Attentional deployment
refers to focusing on non-emotional details of a picture or
focusing on one’s own thoughts unrelated to a picture. Cognitive
reappraisal involves reinterpreting the meaning of the emotional
stimulus (e.g., a gun on a picture is reinterpreted as a mock-
up weapon). Emotional response modulation refers to efforts to
modify an emotion after it has been fully generated; volitional
inhibition of verbal and behavioral expressions of emotions is the
most frequent form of this strategy.

MRI Data Acquisition
MRI scanning was performed using a 3-Tesla whole-body
MRI scanner SIEMENSMAGNETOM Prisma (Siemens Medical
Systems, Erlangen, Germany) at the Central European Institute
of Technology, Brno, Czech Republic. At the beginning, a high-
resolution anatomical T1-weighted scan was acquired with the
following parameters: magnetization-prepared rapid gradient-
echo (MPRAGE) sequence [repetition time (TR) = 2,300ms,
echo time (TE) = 2.33ms, flip angle (FA) = 8◦, voxel size 1.00
× 1.00 × 1.00mm, slice thickness 1.00mm, matrix 240 × 224
× 224]. Subsequently, whole brain functional measurement was
performed by multiband acquisition with the parameters: TR =

642ms, TE = 35.0ms, FA = 47◦, voxel size 3.3 × 3.3 × 3.5mm,
40 sagittal slices, field of view 210 × 210mm. The total number
of volumes was 2,175.

Analysis of Self-Report and Behavioral

Data
A statistical analysis was performed using Python numerical and
statistical libraries. The variables were first tested for normality
using the Shapiro-Wilk test. The variables that were not normally
distributed were log-transformed. For continuous data, a two-
way analysis of variance (ANOVA)was used to test for differences
across the two groups and three task conditions with post-
hoc Bonferroni pairwise comparisons when significant. The χ

2-
test was used for categorical data and the Pearson correlation
coefficient (r) was used to examine potential associations between
behavioral and neuroimaging findings. Bonferroni correction
was applied to correct for multiple comparisons.

Analysis of fMRI Data
MRI data were processed and analyzed using SPM12 (Welcome
Department of Cognitive Neurology, London, UK). The
preprocessing of fMRI images included realignment to correct for
headmovements. Subsequently, co-registration of functional and
anatomical images and interpolation in time were performed,
followed by the spatial normalization into the stereotactic
Montreal Neurological Institute (MNI) space and spatial
smoothing (isotropic Gaussian kernel of 8mm full-width at half-
maximum). The motion related artifacts were regressed from the
data by setting up a general linear model design using 24 motion
parameters (41).

In the first level of analysis, six separate regressors in the
generalized linear model were specified for fMRI responses to
the initial negative or neutral stimulus viewing; further attending
to neutral or negative stimulus; regulation of negative stimulus;
and blank screen. Individual statistical parametric maps were
calculated for the following contrasts of interest in order to
investigate BOLD signal changes: negative-look vs. neutral-look
contrast for the effect of emotional stimuli (initial negative or
neutral stimulus) and negative-regulate vs. negative-look contrast
for the effect of emotion regulation (regulation of negative
stimulus or further attending to negative stimulus). Values for
both contrasts were subjected to second-level analysis.

To obtain the second level between-group z-statistics,
statistical maps were thresholded at a z value > 3.2 (cluster
forming threshold, p < 0.001) and a cluster-corrected FWE
correction threshold (p < 0.05) was calculated using Gaussian
random field theory. We performed an ANCOVA to test for
differences in the two contrasts. Age, sex, BDI, and STAI were
used as nuisance variables. Due to the exploratory nature of the
study, we report both significant clusters (p < 0.05) after FWE
correction and uncorrected results with p < 0.001 threshold the
cluster level.

RESULTS

Participant Characteristics and Behavioral

Findings
In total, the study had fifteen patients (eleven females) with a
mean age of 39.7 (SD = 16.5) years. Demographic and clinical
characteristics are provided in Table 1. Fifteen HCs (eleven
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TABLE 2 | Descriptive statistics for the self-report and behavioral variables.

Variable FMD HC Statistics

Mean age (SD) 39.73 y (16.54) 40.27 y (15.88) t(28) = 0.09, p = 0.93

Mean symptom duration 4.87 y (3.80)

BDI-2 22.93 (12.92) 16.29 (8.40) t(28) = 1.61, p = 0.12

STAI-T 40.80 (12.24) 32.86 (7.48) t(28) = 2.12, p = 0.04

TAS-20 46.33 (12.55) 41.71 (12.42) t(28) = 0.10, p = 0.33

Neutral-look 36.40 (13.10) 33.13 (11.63)

Negative-look 38.67 (13.60) 43.60 (11.61)

Negative-regulation 39.13 (13.94) 43.47 (13.72)

Attentional deployment 11 (36.7%) 9 (30%)

Cognitive reappraisal 4 (13.3%) 5 (16.7%)

Reaction modulation 0 (0%) 1 (3.3%)

BDI-2, Beck depression inventory; STAI-T, trait scale from the State-Trait Anxiety Inventory;

TAS-20, Toronto alexithymia scale.

females) had a mean age of 40.3 (SD = 15.9) years. Patients
and HCs did not differ significantly with respect to age, gender,
or education. As expected, more patients used psychotropic
medication. Patients had higher scores than HCs on both the
STAI-T and BDI-2 scales. There was no significant difference in
TAS-20 between patients and HCs, suggesting low alexithymia in
our sample (see Table 2 for further details).

To test possible group and task condition differences in
negative emotion rating induced by stimuli (IAPS pictures), we
conducted a two-way ANOVA with group (patients, HCs) and
task condition (neutral-look, negative-look, negative-regulate) as
between-subject factors. There was no interaction effect [F(2,84)
= 0.93, p = 0.398], nor mean effect of group [F(1,84) = 0.670,
p = 0.414], but ANOVA revealed a significant main effect
of the task condition on negative emotion rating [F(2,84) =

3.62, p =0.031]. Post-hoc comparisons using Tukey’s HSD test
indicated that the mean score for the rating in the negative-look
condition (M = 41.13, SD = 12.68) was significantly different
than the rating in the neutral-look condition (M = 34.8, SD
= 12.29). However, there was no significant difference between
neutral-look and negative-regulate, nor between negative-look
and negative-regulate conditions. These results indicate that
the induction of negative emotional experience was successful
in both groups, but the down-regulation of emotion was
unsuccessful. Moreover, the compared groups (FMD vs. HC) do
not differ in the task conditions.

We also compared the frequency of emotion regulation
strategies reported by patients and HCs in the post-scanning
interview. The strategies were clustered into three categories:
attentional deployment, cognitive reappraisal, and emotion-
response modulation. The strategies used were not significantly
different between HCs and patients [χ2

(2)
= 1.311, p = 0.519];

both groups used attentional deployment as most preferred
emotional regulation strategy (see Table 2).

Imaging Findings
No data were discarded due to motion-related or other artifacts.
With the negative-look vs. neutral-look contrast (effect of

emotion induction), regional differences were found between
the FMD vs. HC group when controlling for depression and
anxiety but only at a lower statistical threshold (uncorrected
p < 0.001). Notably, the FMDs showed increased activation
in left postcentral gyrus, right superior parietal lobe/precuneus,
left PCC, and right cerebellar cortex. We also observed
decreased activation in the bilateral insula in FMD patients as
compared to HCs. There were no significant activations in the
reversed comparison.

In the negative-regulate vs. negative-look contrast, no
differences between the FMD and HC group survived FWE
correction; however, FMD patients showed increased activation
in two regions at a lower statistical threshold (p < 0.001
uncorrected). The effect of emotional regulation specific to
FMD patients was underpinned by increased activity in the
right superior parietal lobe/precuneus and left postcentral gyrus
(see Table 3).

Despite the moderate levels of alexithymia in both FMD and
HC groups, we tested for potential differences in association
between scores in TAS-20 and activations in FMD and HCs
in both reported contrasts, as alexithymia has been shown to
influence emotional regulation. Although the TAS-20 scores did
not vary between groups (Table 2), alexithymia was found to
differentially influence activation in the left insula in the FMD
and HC groups. FMD patients exhibited decreased activation
in the left insula in negative-look vs. neutral-look contrast with
increasing levels of alexithymia (Figure 2); r = −0.74, p =

0.0018 (with p < 0.003 threshold after Bonferroni correction
for multiple tests). The correlation between alexithymia and left
insula activation was not significant in HCs; r = 0.016, p = 0.96.
No other significant associations were found between TAS-20
scores and task-related brain activations.

DISCUSSION

The current study examined neural activation associated with
uninstructed voluntary emotional regulation in FMD patients.
We also examined the association between alexithymia and
the ability to regulate emotions in FMDs. We successfully
induced emotional response in the participants, but emotion
regulation did not decrease negative feelings across the groups.
There were no differences in negative emotional experience
induced by stimuli between FMDs and HCs.We observed several
differences in brain activations between FMDs and HCs but
only on a more liberal statistical threshold. In comparison to
HCs, FMD patients showed increased activation in the right
superior parietal lobe/precuneus and in the left post-central
gyrus during emotion regulation attempts (relative to observing
negative stimuli). Increased activation in the right superior
parietal lobe/precuneus and in the left post-central gyrus was
observed in FMD also during observation of negative stimuli
compared to neutral pictures.

Bilateral superior parietal lobe/precuneus activation has been
documented during focusing on both arousing and non-arousing
regions of unpleasant images in healthy subjects and is therefore
implicated in the emotion regulation strategy of attentional
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TABLE 3 | fMRI results for the negative-look (NegL) > neutral-look (NeuL) and negative-regulate (NegR) > negative-look (NegL) contrasts for the functional movement

disorder (FMD) > healthy control (HC) comparison.

Comparison Contrast Cluster

mm3

t+ MNI Side Region Talairach

x y z

FMD>HC* NegL>NeuL 72 4.72 −22 −32 76 L Post-central gyrus

192 4.15 28 −42 64 R Precuneus BA 7

152 4.12 −12 −34 44 L Post-cingulate gyrus BA 31

176 4.06 −40 −8 20 L Insula

144 4.04 42 −14 −8 R Insula

48 3.76 20 −58 −50 R Cerebellar lobule VI

FMD>HC* NegR>NegL 304 4.35 16 −70 64 R Precuneus BA 7

16 3.85 −22 −32 76 L Post-central gyrus

There was no significant activation in the opposite direction.

*p < 0.001 uncorrected.
+The t value indicates the peak statistical value for the cluster.

MNI, Montreal Neurological Institute.

deployment (22). Both FMD patients and HCs in our study
used attentional deployment as the most preferred emotion
regulation strategy with no significant differences between
groups. However, only the FMD group showed increases in
precuneus activation that was also present during exposure to
negative stimuli without regulation instruction. The precuneus
is considered to be a part of the default mode network and
has been associated with self-monitoring and consciousness (42).
Activity inmedial parts of the precuneus has been elicited in tasks
involving motor imagery (43, 44) and episodic memory retrieval
(45, 46). In FND, activation in the precuneus was reported
during attempts to move in functional paralysis with selective
changes in functional connectivity of the motor cortex with the
precuneus during functional paralysis (47). We therefore suggest
that the observed activations in the right precuneus together
with the left postcentral gyrus may reflect implicit emotional
processing rather than voluntary attention control (e.g., focusing
on non-arousing aspects of pictures). Neither option can
be ruled out; this should be a subject of future research.
Moreover, the precuneus has been implicated in dissociative
phenomena associated with abnormal self-awareness. Nicholson
et al. (48) found increased resting-state precuneus-amygdala
activation in the dissociative subtype of posttraumatic stress
disorder and increased precuneus activation was also reported
in hypnotically induced limb paralysis (47). Our findings may
further corroborate dissociation theories highlighting a role of
self-monitoring and self-related mental representations during
voluntary efforts in FND.

Several brain areas were differentially activated in FMDs
and HCs while observing unpleasant pictures as compared
to neutral pictures. In addition to increased activation in the
right precuneus and left post-central gyrus, we also observed
increased activation in the left PCC and right cerebellar lobule
VI in FMD patients as compared to HCs. Increased PCC
activation was observed in FND in the emotional induction
paradigm (7), during motor preparation in functional paralysis
(47) and also in functional tremor (49). Moreover, the PCC

was implicated in self-reflection (50) and in the integration
of emotion and memory (51). Specifically in FND, Blakemore
et al. (7) interpreted increased PCC activation as an abnormal
access to self-relevant information in memory which can further
modulate action readiness. Furthermore, we observed increased
cerebellar activation in right lobule VI in the FMD patients.
Lobule VI has been associated with processing aversive stimuli
in the form of activating motor plans associated with action
preparedness (52). Taken together, observed increased PCC
and cerebellar activation may thus be indicative of instinctive
behavioral responses to threat-related information in FND, as
was formulated by Kretschmer (53).

Interestingly, we found decreased insular activity during
exposure to negative stimuli in FMD patients as compared to
HCs. Although there were no differences in levels of alexithymia
between FMDs and HCs, we found that the activation in the left
insula was negatively correlated with levels of alexithymia only
in the FMD group. Functional neuroimaging studies employing
emotionally arousing stimuli such as disgusting, frightening, or
sexual pictures have consistently reported activation in the insula
in healthy subjects (54). Furthermore, alexithymia is commonly
seen in patients with functional deficits of the insular cortex
such as frontotemporal dementia (55) and autism (56), and
under activation of the insula has been associated with deficits in
emotional awareness (57). Taken together, our findingsmay point
to low emotional awareness in FMD patients and their tendency
to react to unpleasant stimuli more physically, as reflected in the
increased cerebellar and PCC activation in FMD patients during
exposure to negative stimuli.

Contrary to previous research (3–5), we did not observe
amygdala hyperactivation in FMDs in emotion induction
contrast. However, recent research studies utilizing IAPS
stimuli also failed to find differential response in amygdala
between healthy subjects and FMD (7), functional dystonia
(8) and functional tremor patients (9). Similar to our findings,
Espay et al. (8) reported decreased right insular activation
in response to emotional stimuli together with decrease
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FIGURE 2 | (A) Activation map and adjacent barplot demonstrate group differences in activation of the left superior parietal lobus in the negative-regulate>negative

look contrast. (B) Activation map and adjacent bar-plot shows group differences in the left insula activation in the contrast negative-look>neutral-look. (C) Scatterplot

shows the relationship between t-values for the negative-look>neutral-look contrast in left insula and TAS-20 scores for FMD patients and HCs.

in activation in bilateral precuneus in functional dystonia
compared to healthy subjects. Research studies reporting
amygdala hyperactivation in FND used facial expressions
as stimuli to induce the activation (3–5). The amygdala
routinely responds to novel stimuli (58, 59) and Somerville
and Whalen (60) noted that amygdalar response to facial
stimuli such as Ekman faces (61) may represent reaction
to novelty as these facial expressions are not genuine and
therefore not typically seen in daily life. Hyperactivity of
amygdala observed in FND patients may thus represent
abnormal reaction to novel stimuli but may not be related
to environmentally meaningful emotional responses such as
defense reactions.

Several limitations of the present study have to be addressed.
First, the presented results need to be interpreted cautiously
due to relatively small sample size. However, small sample
sizes are common in neuroimaging research of FND due to
difficulties in patient recruitment and aberrant movements often
precluding MRI measurement. Due to the limited sample size
we could not cluster patients and healthy controls according
to the emotion regulation strategy they used, and we were
unable to determine the effects of emotion regulation strategy
on the patterns of brain activation. Future studies could focus
on comparing different emotion regulation strategies within
a group of FND patients (such as emotional suppression or
avoidance of emotional stimuli). The depression scores in our
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control group were relatively high, with average scores in
the range of mild depression. This result might indicate a
presence of emotional dysregulation in HCs; however, over-
reporting of depression in BDI-2 is also possible. The influence
of depression on the results is not probable as there is a
non-significant difference in BDI-2 between HCs and FMDs,
and we also controlled for the effect of depression in the
neuroimaging analysis. We did not assess a level of trauma in the
participants of our study. The nature of chosen emotion stimuli
(e.g., violent scenes) may evoked past traumatic experiences
especially in the FMD group, where trauma rates are found to
be higher than in the general population (62). Evoked traumatic
experiences may consequently influence emotion-regulation (63)
and reporting in the post-scanning interview. Even though we
were careful to make sure the participants understood the task,
a realization of how one regulates emotion is inherently a
difficult task without a previous intensive training. Moreover,
given a low emotional awareness observed in FND (35, 64),
a reliability of self-reported emotional experience (depression,
alexithymia, negative feeling reports) is problematic in this group
of patients (24). Taken together, failure to detect differences
in self-reports between FMDs and HCs may be caused by
small sample size but also by patients’ difficulties providing
reliable reports of their emotional experience and regulation
process. Finally, we included patients with a broad range of
functional movement symptoms which may preclude isolating
a pathophysiological mechanism underlying specific symptom
presentation (8, 9). However, Edwards (65) pointed out that
functional neurological symptoms commonly co-occur and a
unifying pathophysiology is therefore likely across different
functional symptom phenotypes. For this reason, the division
of FND based on prevalent motor symptoms may be seen
as rather artificial. Our results, if replicated, point to a more
general mechanism underlying abnormal emotional processing
in FND patients.

CONCLUSION

Our study suggests an abnormal involvement of areas implicated
in self-referential processing during voluntary emotional
regulation efforts and limited access to emotional experience
in FMD patients. Our results may indicate that emotional
reactions to negative stimuli are inaccessible for conscious
processing due to low emotional awareness and the implicit
emotional reactions may therefore pose a difficulty for voluntary
emotional regulation efforts. As a result, more bodily emotional
regulation processes such as aberrant movements ma develop

instead in FMD patients in order to decrease accumulated

arousal. A similar view was postulated by Janet (10): “Action,
by becoming unconscious in hysterics, by separating from
consciousness...assumes an appearance that recalls the action
of visceral muscles...” (s. 137). However, the findings presented
in this study have to be considered preliminary due to the
small sample size and the liberal statistical threshold used
in neuroimaging analyses. Future studies should employ
experimental tasks probing emotional awareness to further
elucidate the role of (un)conscious emotional processing in
affective dysregulation in FNDs.
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Background: Schizophrenia is characterized by self-disturbances, including impaired

self-evaluation abilities and source monitoring. The cortical midline structures (e.g.,

medial prefrontal cortex, anterior and posterior cingulate cortex, and precuneus) and the

temporoparietal junction are known to play a key role in self-related processing. In theory,

self-disturbances in schizophrenia may arise from impaired activity in these regions. We

performed a functional neuroimaging meta-analysis to verify this hypothesis.

Methods: A literature search was performed with PubMed and Google Scholar

to identify functional neuroimaging studies examining the neural correlates of

self-processing in schizophrenia, using self-other or source monitoring paradigms.

Fourteen studies were retrieved, involving 245 patients and 201 controls. Using peak

coordinates to recreate an effect-size map of contrast results, a standard random-effects

variance weighted meta-analysis for each voxel was performed with the Seed-based d

Mapping software.

Results: During self-processing, decreased activations were observed in schizophrenia

patients relative to controls in the bilateral thalamus and the left dorsal anterior

cingulate cortex (dACC) and dorso-medial prefrontal cortex. Importantly, results were

homogeneous across studies, and no publication bias was observed. Sensitivity analyses

revealed that results were replicable in 93–100% of studies.

Conclusion: The current results partially support the hypothesized impaired activity

of cortical midline brain regions in schizophrenia during self-processing. Decreased

activations were observed in the dACC and dorsomedial prefrontal cortex, which are

involved in cognitive control and/or salience attribution, as well as decision-making,

respectively. These alterations may compromise patients’ ability to direct their attention

toward themselves and/or others and to make the decision whether a certain trait applies

to one’s self or to someone else. In addition, decreased activations were observed in

the thalamus, which is not a core region of the default-mode network, and is involved

in information integration. These thalamic alterations may compromise self-coherence

in schizophrenia.

Keywords: schizophrenia, self-processing, fMRI, meta-analysis, anterior cingulate cortex, prefrontal cortex

and thalamus
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INTRODUCTION

Self-disturbances have been described as core phenotypic
features of schizophrenia in the early conceptualizations
of the disorder (1, 2). More recently, the importance of
self-disturbances has been highlighted by phenomenological
investigations (3, 4). Self-disturbances in schizophrenia include
a lack of insight into the disorder, an impaired ability to
evaluate one’s own personal qualities, to identify the source
of one’s own thoughts and actions, as well as the presence
of anomalous subjective experiences (e.g., depersonalization
and derealization) (4–9). Since self-disturbances are both
prominent and diverse in schizophrenia, some investigators now
conceptualize schizophrenia as a meta-cognitive disorder (10).
Despite this increasing clinical evidence, the neural bases of
self-disturbances in schizophrenia are not yet well-understood.
This is due to the fact that, on the one hand, the neural
correlates of self-processing in healthy individuals have been
well-characterized only in the last decade and, on the other hand,
until recently there was not yet a critical mass of similar studies
conducted in patients with schizophrenia.

The concept of self has been addressed by many disciplines,
such as philosophy, psychology, anthropology, psychiatry,
cognitive sciences, etc., including by the newcomer to the
table: the neurosciences. While there is a debate about its
characterization across these disciplines, there is a consensus
that the self is a multifaceted construct, with components that
seem to correspond to distinct processes (11, 12). Within this
framework, a general distinction is made between two aspects of
self: the self-experience (i.e., self as an experiencing subject, sense
of personal agency, etc.) and self-related processing (i.e., self as
object of knowledge, evaluation of one’s personal characteristics,
self-representation, etc.). The investigation of self and its neural
substrates in cognitive neuroscience has mainly focused on the
latter aspect, the self-processing or self-referencing, primarily
because it is difficult to devise experimental paradigms that would
properly isolate the experiencing self in action (usually implicit)
from the task demands at hand (usually explicit). As such, in
the current review we focused primarily on studies that focused
on the self-processing or self-referencing and operationalized it

as being the evaluation of information, such as personal traits,
adjectives, statements, etc. in terms of being characteristic to
“self ” (vs. “non-self ” or “others”).

In healthy participants, the neural correlates of self-
processing were mostly investigated using self-referencing
or source monitoring tasks. In the self-referencing tasks,
participants are typically asked to judge whether certain
personality traits describe themselves (Self condition) or a
significant person (family member, friend, famous person,
etc.) (Other condition). Several meta-analyses that included
functional magnetic resonance imaging (fMRI) and positron
emission tomography (PET) studies conducted in healthy
participants using self-referencing tasks showed that cortical
midline structures, such as the medial prefrontal cortex (PFC),
the anterior cingulate cortex (ACC), the posterior cingulate
cortex (PCC) and the precuneus, were significantly activated
during the Self condition, relative to the baseline condition (i.e.,

making lexical or semantic judgments) (13–15). In addition to
these structures, consistent activations in the anterior insula and
temporo-parietal junction (TPJ) were also observed (13, 16, 17).
In several literature reviews parsing out the functional roles of
some of these brain regions (18–21), the authors proposed that
during processing of self-related information, the ACC would be
involved in the allocation of attention toward one’s self, while
the PCC would be involved in the retrieval of autobiographic
memory, the (anterior) insula—in the embodiment of self-
experiences, the ventro-medial PFC—in the emotional tagging
of self-relevant information, and finally, the dorso-medial PFC
(dmPFC)—involved in making the decision whether a certain
trait applies to one’s self or to someone else. In the case of the
TPJ (e.g., posterior superior temporal gyrus and ventral areas
of the inferior parietal lobule, including the angular gyrus),
it is not only involved in self-processing but is also well-
known to play a key role in theory of mind (social cognition)
(16, 17, 22, 23). As such, the TPJ has been proposed to be
a key mediator between self and other perspectives (24, 25).
In addition to self-referencing, source monitoring tasks have
also been employed to investigate the neural correlates of self-
processing in humans, although less frequently. In these tasks,
participants are typically asked to determine the particular origin
(self vs. other) of a series of stimuli (verbal or visual) that were
generated prior to performing the task. In healthy participants,
the patterns of activations observed during self-other source
monitoring are similar to those observed in studies using self-
referencing paradigms. Indeed, activations in cortical midline
structures (e.g., mPFC, ACC, and PCC/precuneus) have been
consistently observed during (verbal) source monitoring tasks
(26, 27). One potential difference between both paradigms is
that source monitoring tasks seem to elicit more temporal cortex
activations than self-referencing tasks (28).

Converging evidence indicate that the same cortical midline
structures (e.g., mPFC, ACC and PCC) reported to be activated
during self-referencing and source monitoring tasks also overlap
with brain regions that are typically part of the default mode
network as identified in resting-state fMRI studies (9, 29, 30).
When participants are scanned in task-free conditions (i.e.,
resting state), it has been consistently shown that the low-
frequency fluctuations in spontaneous brain activity of the
mPFC, ACC, PCC, and precuneus are positively correlated with
each other over time (29, 30). Since participants are presumably
involved, at rest, in mind wandering and introspection, the
default mode network is conceptualized as the main neural
network involved in self-referential processes (30). While there
is an overlap in brain activity between regions involved in
explicit self-reference (task-elicited) and implicit self-reference
(at rest), there are also differences. Indeed, in two experiments
comparing both conditions (31), the authors found that implicit
and explicit self-reference commonly engaged the ventral
mPFC and PCC, while the dorsal mPFC was preferentially
recruited during explicit self-reference, and the precuneus,
during implicit self-reference.

Recent meta-analyses of the resting-state fMRI literature
in schizophrenia have shown that the connectivity within
default mode network is reduced in schizophrenia patients as
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compared to their healthy counterparts, and, more importantly,
that the hypo-connectivity within this network is possibly
more prominent in schizophrenia, relative to other psychiatric
conditions such as major depressive, bipolar, substance use, and
anxiety disorders (32–34).

In contrast to this vast literature on functional connectivity
at rest in schizophrenia, it is striking to observe that no meta-
analysis has been performed to date on studies investigating
the self-related brain activations in this population. Whereas,
resting-state fMRI studies are advantageous in that they are
more simple to implement by circumventing the problem of
task design optimization, classic task-based activation studies are
advantageous in that they allow to relate more directly fMRI
findings to psychological constructs. However, only in recent
years the number of fMRI studies conducted in schizophrenia
patients using self-processing tasks have reached the critical mass
needed for a meta-analysis on this topic [e.g., (5, 35–40)]. At
first glance, these studies have reported abnormal activations
during self-processing in schizophrenia in the same cortical
midline structures that are typically found in healthy participants;
however, the pattern of results is not always consistent since most
studies showed reduced activations (patients vs. controls), but a
few reported the opposite result. Moreover, altered activations
have been reported in some cases in regions unrelated to
the default mode network (e.g., insula, temporal cortex, and
thalamus), but their significance remains unclear at the moment.
Given this heterogeneity and these particularities, a meta-analysis
on the neural bases of self-processing in schizophrenia relative to
healthy controls is critically needed.

Here, we sought to address this knowledge gap and perform
a functional neuroimaging meta-analysis on self-processing in
schizophrenia. Given that schizophrenia is associated with self-
disturbances, that self-processing tasks recruit activations in
cortical midline structures and that the connectivity within
the default mode network is reduced in schizophrenia, we
hypothesized that decreased activations in cortical midline
structures and the TPJ will be observed in schizophrenia patients,
relative to healthy participants.

METHODS

Selection Procedures: Search Strategies
The article search was conducted by two researchers (SP and
OL), independently, using PubMed, Google Scholar and Web
of Science databases. The search used the following syntax
[schizophrenia AND (self OR self-reference OR insight) AND
(fMRI OR neuroimaging OR functional magnetic resonance
imaging)] and was limited to all original articles (i.e., excluding
abstracts from conference proceedings) published before
September 20, 2018. It is worth noting that the search syntax
is very general and it does not exclude, a priori, studies that
may investigate self-agency. However, as stated previously, our
goal is to identify studies that assessed the functional brain
activity underlying the self-processing or self-referencing (and
not necessarily the self-agency or the experiencing self) in
schizophrenia. A cross-referencing method was also used by

manually examining reference lists of the articles included in
the meta-analysis.

Selection Criteria
Studies were included in the meta-analysis provided that they
met the following criteria: (i) included a self-reference, self-other
distinction, memory source (i.e., self-generated) or insight task
(and not self-agency), (ii) contained primary data, (iii) included
both psychosis participants (e.g., patients with a diagnosis of
schizophrenia-spectrum or psychotic disorder, or participants at
risk of psychosis) and a healthy control group and (iv) compared
directly the brain activation of these two groups in experimental
conditions that included reference to self. Studies were reviewed
by two researchers (OL, SP) and inclusion criteria were evaluated
by consensus. To achieve a high reporting standard, we followed
the “Preferred Reporting Items for Systematic Reviews and Meta-
Analyses” (PRISMA) guidelines (41) (for more information,
see Table 1).

Recorded Variables
The variables included in the present meta-analysis, for each
article, were: sample size, mean age of patients, antipsychotic
dosage (e.g., chlorpromazine equivalents), level of psychiatric
symptoms, magnet intensity, voxel size, and repetition time

(TR) of functional volumes. Smoothing kernel size was also
recorded in the meta-analysis, as recent research has shown this
preprocessing parameter is a source of heterogeneity of results in
neuroimaging studies (49).

Meta-Analysis
The meta-analysis was performed using the Effect-size Seed-based
d Mapping (formerly Signed Differential Mapping) (ES-SDM)
software (50). The voxel-based approach of ES-SDM is based
on the use of t-values of peak coordinates to recreate, for each
study, an effect-size map of contrast results. To do so, we first
extracted peak coordinates and t-statistics of clusters showing
significant differences in brain activity at the whole-brain level
between schizophrenia patients and healthy volunteers. Both
the “schizophrenia > controls” and “controls > schizophrenia”
contrasts were used. When the authors reported z-scores instead
of t-statistics, these were converted to t-values using the t-
calculator provided by ES-SDM (http://www.sdmproject.com/
utilities/?show=Statistics). Coordinates presented in Talairach
space were converted to Montreal Neurological Institute (MNI)
space during analysis in ES-SDM. Importantly, studies reporting
no statistically significant between-group differences were also
included in themeta-analysis. Finally, effect-size brainmaps were
created by means of an anisotropic Gaussian kernel. Studies were
then combined using a random effects model, which takes into
account sample size and heterogeneity across studies. Default ES-
SDM kernel size and thresholds were used (FWHM = 20mm,
voxel P = 0.005, peak height Z = 1, cluster extent = 10
voxels) (50).

Robustness of the significant results was assessed by means
of exploration of the residual heterogeneity, jack-knife, and
subgroup analyses. Publication bias were assessed by examining
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TABLE 1 | Description of studies included in the meta-analysis (N = 14).

References N patient

group

N healthy

controls

Mean age

patients

Mean age

controls

Type of

analysis

Type of task Task

modality

Software Magnetic

field

strength

Smoothing

(FWHM)

TR

Bedford et al. (42) 11 8 39.0 31.0 WB Trait judgement Visual - W XBAM 1.5 8 2,000

Blackwood et al. (35) 8 8 38.0 36.0 WB Statement

judgement

Visual - W SPM99 1.5 10 3,000

Holt et al. (36) 18 17 35.9 40.0 WB Trait judgement Visual - W SPM2 3 6 3,000

Jimenez et al. (43) 20 16 48.3 44.7 WB Trait judgement Visual - W FSL 3 5 2,500

Liu et al. (5) 15 15 50.0 40.5 WB Self-referential

task

Visual - W SPM 3 6 1,500

Makowski et al. (44) 15 15 33.1 35.2 WB Social approval

task

Visual - W SPM8 3 8 2,000

Menon et al. (37) 14 15 40.5 35.9 WB and

ROI

Statement

judgement

Visual - W SPM5 1.5 8 2,300

Murphy et al. (45) 11 10 26.7 29.6 WB Trait judgement Visual - W SPM2 4 6 2,000

Park et al. (46) 14 15 29.5 28.2 WB Self-referential

task

Visual - V AFNI 1.5 8 3,000

Pauly et al. (39) 13 13 36.2 34.5 WB Trait judgement Visual - W SPM5 3 8 2,400

Sapara et al. (38) 26 16 34.5 31.8 WB Self-monitoring Auditory SPM 1.5 10 3,250

Shad et al. (47) 17 15 40.0 44.3 WB Self-awareness Visual - W SPM5 3 8 2,000

Tan et al. (48) 18 17 40.5 41.2 WB Trait judgement Visual - W SPM8 2 8 3,000

van der Meer et al. (40) 47 21 34.3 30.0 WB Statement

judgement

Visual - W SPM2 3 10 2,000

WB, whole brain; ROI, region-of-interest. Task modality: visual (visual stimuli, usually words—W or videos—V, presented on the screen), auditory (auditory stimuli, usually speech,

presented binaurally).

Egger’s test (51) for asymmetry of the funnel plots (52). Jack-
knife sensitivity analyses consisted of repeating the meta-
analysis iteratively by removing one study at a time to assess
the replicability of the results (50). Subgroup analyses were
conducted on task contrast (self vs. control; self vs. other) as
well as on the smoothing kernel used (5–10 mm3). Finally, a
meta-regression was performed on mean age of patients, voxel
size and TR across studies. The influence of antipsychotic dosage
and psychiatric symptoms could not be assessed, as data was
available in fewer than 10 studies. Following previous meta-
analyses, we increased the probability threshold to minimize the
detection of spurious results [see (50) and (53) for further details
on robustness analyses].

RESULTS

Number of Studies Retrieved
After removing duplicates, the initial search yielded 884 articles
(as of 20 September, 2018). Of these, 20 studies met the inclusion
criteria (i), (ii), and (iv). Of this group, 4 studies were further
excluded because it involved individuals at risk for psychosis
and not actual patients, and one other study was excluded (54)
because it seemed to report data on the same healthy control
group and a sub-sample of schizophrenia patients that was
included in a previous study, already included in the selection
(55). In the course of data analysis, the study from Vinogradov
et al. (56) was also excluded, due to its outlier results (defined
as 2 standard deviations above or below the composite effect

size). A total of 14 studies were included in the final meta-
analysis (5, 35–40, 42–48) (see Figure 1 for the flow chart),
which comprised a total of 245 schizophrenia-spectrum patients
(mean age: 37.5 year) and 201 healthy volunteers. Noteworthy,
all included studies used a whole-brain analysis. Eight studies
reported results for the Self vs. Other contrast, 4 studies reported
results for the Self vs. Control contrast and two studies reported
results for both contrasts. Thus, the Self vs. Other contrast results
are based on data from 10 studies and those for Self vs. Control—
on data from 6 studies. The weighted mean of symptoms level,
as measured with the Positive and Negative Syndrome Scale total
score, was 61.9 ± 10 (n = 8 studies). Please refer to Table 1 for
details on the included studies.

Between-Group Differences in Brain
Activations
For the composite analysis (14 studies), we found that
schizophrenia patients had decreased activations, relative to
controls, in a cluster encompassing the left medial superior
frontal gyrus, the left ACC, the bilateral median cingulate
cortex, the right superior frontal gyrus, and another cluster
encompassing the bilateral thalamus. For these reduced
activations in schizophrenia, we observed no significant
residual heterogeneity between studies (T = 0.0; Q = 9.1; p
= 0.521). There were no significant increased activations in
schizophrenia patients as compared to controls for this analysis
(Table 2, Figure 2).

The analyses of robustness (Jacknife analyses) revealed that
results were highly replicable since the reduced activations in
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FIGURE 1 | Flow chart of the articles included in the meta-analysis.

schizophrenia in the left thalamic cluster were found in 100%
of studies, while the reduced activations in schizophrenia in
the left anterior cingulate cluster were found in 92.9% of
studies (Table 3).

Finally, in the case of both clusters, no publication bias was
detected (left ACC: bias = −1.54; t = −1.27; df = 13; p = 0.227;
left thalamus: bias=−1.62; t =−0.97; df = 13; p= 0.351).

Meta-Regression Sub-analyses

Using the data from the composite analysis, we found no
association between results in the ACC across studies and age
(slope = 0.002; z = 0.101; p = 0.920), temporal resolution (TR;
slope = 0.00004; z = 0.226; p = 0.821), spatial resolution (voxel
size; slope = −0.004; z = −0.726; p = 0.468), and smoothing
level (slope = −0.02; z = −0.184; p = 0.854). Likewise, thalamic
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TABLE 2 | Meta-analysis of brain activations during self-processing in schizophrenia patients relative to controls.

Region (peak) MNI

coordinates

Z-value P-value No of

Voxels

Breakdown (number of voxels)**

COMPOSITE ANALYSIS*

Left anterior cingulate cortex

(BA32)

−2; 32; 30 −1.2 0.0009 562 - Left medial superior frontal gyrus (BA32/8, 149), left anterior

cingulate cortex (BA24/32, 160), left median cingulate cortex

(BA24, 62), right median cingulate cortex (BA32/24, 77), and right

superior frontal gyrus (BA32, 24)

Left thalamus −8; −26; 10 −1.6 ∼0 265 - Left thalamus (140), and right thalamus (49)

SELF vs. OTHER CONTRAST

Left anterior cingulate cortex

(BA32)

−2; 40; 26 −1.4 0.0004 1,073 - Left medial superior frontal gyrus (BA32/9/8, 526), right superior

frontal gyrus (BA9, 81), left anterior cingulate gyrus (BA32/24,

153), right median cingulate gyrus (BA32, 54), left median

cingulate gyrus (BA24, 44), right anterior cingulate (BA32, 39), and

right median cingulate gyrus (BA24, 33)

Left inferior temporal gyrus

(BA37)

−48; −46; −28 −1.3 0.001 355 - Left cerebellum, crus I (BA37, 132), left inferior temporal gyrus

(BA20/37, 118), left cerebellum, hemispheric lobule VI (BA37, 51),

and left fusiform gyrus (BA37, 31)

Right angular gyrus (BA39) 46; −64; 40 −1.2 0.002 205 - Right angular gyrus (BA39/7, 184)

SELF vs. CONTROL (OR BASELINE) CONTRAST

Left thalamus −8; −28; 10 −1.9 0.00005 573 - Left thalamus (292), and right thalamus (133)

Left anterior cingulate cortex

(BA24)

−8; 26; 22 −1.5 0.0005 257 - Left anterior cingulate gyrus (BA24/32, 168)

BA, Brodmann area; MNI, Montreal Neurologic Institute. *Two studies reported results for both the Self vs. Other and the Self vs. Control contrasts; in these two cases, for the composite

analysis, we used the self vs. other contrast, as it was the most frequently employed in the set of studies included in the meta-analysis; ** >20 voxels.

results across studies were not influenced by age (slope:0.018; z=
1.138; p= 0.255), temporal resolution (TR; slope=−0.0004; z=
−2.341; p= 0.019), spatial resolution (voxel size; slope=−0.003;
z = −0.471; p = 0.638) and smoothing level (slope = −0.099; z
=−1.693; p= 0.091).

Task Contrasts

For the analysis restricted to the Self vs. Other contrast (10
studies), we found that schizophrenia patients had decreased
activations, relative to controls, in the left medial superior frontal
gyrus, the right superior frontal gyrus, the bilateral ACC, the
bilateral median cingulate cortex, the left cerebellum (crus I
& hemispheric lobule VI), the left inferior temporal gyrus, the
left fusiform gyrus, and the right angular gyrus (Table 2). For
this pattern of hypo-activations in schizophrenia, we observed
no significant residual heterogeneity between studies (T =

0.0; Q = 2.6; p = 0.765). As before, we did not find any
significant increased activation in schizophrenia relative to
controls (Table 2).

For the analysis restricted to the Self vs. Control (or baseline)
contrast (6 studies), we found significant decreased activations
in schizophrenia patients relative to controls in the bilateral
thalamus, and left ACC (Table 2). There was no significant
residual heterogeneity between studies (T = 0.0; Q = 2.0; p =

0.918) in regards to this result. Again, schizophrenia patients had
no increased activations relative to controls (Table 2).

DISCUSSION

To our knowledge, this is the first functional neuroimaging
meta-analysis to examine the neural correlates of self-processing

in schizophrenia. Fourteen studies were retrieved, and the
aggregation of their results showed that activations in the dorsal
anterior cingulate cortex (dACC), the dorsomedial prefrontal
cortex (dmPFC) and the thalamus display reduced activations

in schizophrenia patients, relative to healthy participants, during

self-processing. Importantly, the results of themeta-analysis were

homogeneous and robust, andwere not influenced by publication
biases. In secondary analyses, we found that patients’ age, as well
as neuroimaging parameters (e.g., temporal resolution, spatial
resolution, and smoothing level) had no influence on results.

Comparing our findings with those reported in the previous
meta-analyses on the neural bases of self-processing in healthy
individuals (13–15) we observe that, on the one hand, we have
found hypo-activations only in a core node region involved in
self-referential processing in healthy controls (dmPFC) and in a
region involved in cognitive control and/or salience attribution
(e.g., dACC) and, on the other hand, we have localized a
group difference in a subcortical region outside the typical self-
processing network (thalamus). Considering that all 14 studies
included in the current meta-analysis reported results of brain-
wise contrasts (i.e., not restricted to previously reported regions
of interest), the localization of the hypo-activations in two of
the self-referential midline cortical structures indicate a high
construct validity. Moreover, given the critical role of thalamus
as a gateway relaying of sensory and motor information, and
regulating consciousness, mood, sleep and alertness (57–60), the
reduced activation found in this region is consistent with the
recently proposed view that self-related impairments seen in
schizophrenia patients may be a reflection of a fragmented self,
due to the isolation and reduced modularity of brain networks
involved in intrinsic and extrinsic self-processing (9).
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FIGURE 2 | Between-group differences in self-related brain activations. (A) Results for the between-group differences in brain activations using the Self vs. Other

contrast. (B) Results using the Self vs. Control (baseline) contrast. (C) Results for the composite analysis, combining every studies including in the meta-analysis.

ACC, anterior cingulate cortex; ANG, angular gyrus; ITG, inferior temporal gyrus; THA, thalamus.
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TABLE 3 | Jacknife analyses.

Jacknife analysis Reduced activations in schizophrenia

Anterior cingulate cortex Thalamus

Without Bedford et al. (42) Yes Yes

Without Blackwood et al. (35) Yes Yes

Without Holt et al. (36) Yes Yes

Without Jimenez et al. (43) Yes Yes

Without Liu et al. (5) Yes Yes

Without Makowski et al. (42) Yes Yes

Without Menon et al. (37) No Yes

Without Murphy et al. (45) Yes Yes

Without Park et al. (46) Yes Yes

Without Pauly et al. (39) Yes Yes

Without Sapara et al. (38) Yes Yes

Without Shad et al. (47) Yes Yes

Without Tan et al. (48) Yes Yes

Without Van der Meer et al. (40) Yes Yes

Total 13/14 14/14

Given that the dACC and dmPFC are core cortical midline
structures, the reduced activations found in these regions in
schizophrenia provide support for the main hypothesis that
we sought to test in the current meta-analysis. The dACC is
inter-connected with frontal, striatal, and limbic regions, and its
roles are complex and matter to debate. Nevertheless, there is

ample evidence from task-based fMRI studies showing that the
dACC and the adjacent median cingulate cortex play a key role
in cognitive control and attention (21, 61). In complementary
fashion, a vast resting-state functional connectivity literature
has shown that the dACC is one of two core nodes of the
salience network (the other being the anterior insula) (62, 63). In
schizophrenia, several studies have shown that the connectivity
between the dACC and the anterior insula is reduced (33).
In theory, it has been proposed that the salience network is
involved in the orientation of attention to the most salient
internal and external stimuli. Accordingly, it may be argued that
the reduced dACC activations observed in schizophrenia patients
may compromise their ability to allocate or shift their attention
toward themselves and/or others. As for the dmPFC, Van der
Meer et al. (13) proposed in their model that this region would
be involved in the decision making processes involved in self-
referencing tasks. If so, the reduced dmPFC activations observed
in schizophrenia may indicate that these patients experience
difficulties in deciding whether a certain personality trait applies
to one’s self or to someone else. However, the results of a recent
neuroimaging meta-analysis from Eickhoff et al. of fMRI studies
performed in healthy participants on the roles of the dmPFC
suggest that a slightly different interpretation of our results is
possible (64). Indeed, this meta-analysis has highlighted that the
dmPFC and the PCC are significantly co-activated, and that the
dmPFC plays a key role in social cognition, noticeably theory of
mind (64). The results of the meta-analysis from Eickhoff et al.

(64) suggest that the reduced dmPFC activations observed in
schizophrenia may not reflect impaired decision making abilities
per se, but rather a difficulty in attributing mental states to others.
Interestingly, in the current meta-analysis, we found that the
dmPFC activity was reduced in schizophrenia only in the fMRI
studies using a “self vs. other” contrast, whereas the studies using
a “self vs. control/baseline” contrast showed no between-group
differences in dmPFC activity. In that regard, it is interesting
to note that a neuroimaging meta-analysis from Kronbichler
et al. on social cognition showed that schizophrenia patients have
reduced dmPFC activations while performing theory of mind
tasks (65).

While the reduced dACC and dmPFC activations found in
schizophrenia during self-processing are generally consistent
with main hypothesis of the current meta-analysis, we also
found that schizophrenia patients had reduced activations in the
thalamus, which is not considered a cortical midline structure,
but rather being part of a network involved in information
gating (33) or as part of the salience network (cortico-striato-
thalamo-cortical)—the mediodorsal thalamus (66). This finding
is particularly novel in that the vast majority of investigators who
performed the fMRI studies on self-processing in schizophrenia
in the current meta-analysis highlighted the importance of
alterations in cortical midline structures (5, 36, 37, 39, 40, 42–
45, 47, 48). Conversely, we are not aware of any investigator who
discussed the importance of the thalamus, meaning that the role
of this region has clearly been neglected thus far. Noteworthy,
thalamic activity was found to be decreased only in studies
using a “self vs. baseline/control” task contrast. The thalamus
is massively interconnected with the whole cerebral cortex, the
cerebellum, and is involved in information integration from
every sensory system (67), information gating (33), as well as
in awakening and consciousness (68). As such, the thalamic
alterations found in schizophrenia during self-processing are
possibly indicative of a lack of self-coherence. The observed
thalamic alterations observed here are coherent with the fact that
the thalamus is growingly considered as being critically involved
in the pathophysiology of schizophrenia. Indeed, data from the
ENIGMA consortium has shown in 2,028 schizophrenia patients
and 2,540 healthy controls that schizophrenia is associated with
a small to moderate (d = 0.31) decrease in thalamic volumes
(69). Likewise, several resting-state functional connectivity
studies have shown that the connectivity between the thalamus
and frontal, cingulate, sensorimotor, and cerebellar regions is
significantly reduced in schizophrenia (70, 71). Perhaps more
importantly, a recent multi-modal neuroimaging meta-analysis
of resting-state functional connectivity studies and voxel-based
morphometry studies showed that among all the regions found
to be impaired in schizophrenia patients relative to healthy
controls, the thalamus was one of the few regions found to be
not only reduced in volumes, but more prominently impaired in
its functional connectivity in schizophrenia patients, relative to
patients with bipolar, major depressive, substance use and anxiety
disorders (32).

Apart from the dmPFC, dACC, and thalamus, other regions
were found to be significantly impaired in schizophrenia during
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self-processing. Noticeably, reduced activations in the right
angular gyrus were observed in schizophrenia patients relative
to controls. In addition to the cortical midline structures (e.g.,
mPFC, ACC, PCC, and precuneus), the angular gyrus is one
of the core regions of the default mode network (29, 30). The
right angular gyrus is part of the TPJ and is involved in several
functions, including self-processing, spatial cognition, attention,
and theory of mind (17, 22). The involvement of the right
angular gyrus in theory of mind is of particular interest in
the current context. Indeed, the reduced activations observed
in this brain region in schizophrenia were only observed in
the case of the studies using a “self vs. other” contrast, but
not in the studies using a “self vs. baseline/control” contrast.
This result is consistent with the notion that the TPJ is
involved the mediation between self and other perspectives.
As such, the result suggests that self/other differentiation is
impaired in schizophrenia, and the TPJ is involved in this
impairment. Finally, in the studies using a “self vs. other”
contrast, reduced activations were also observed in schizophrenia
in a cluster encompassing the left inferior temporal cortex,
fusiform gyrus, and cerebellum. While the inferior temporal
cortex is involved in color, face and object recognition, and
semantic memory, the fusiform gyrus is involved in face and
object recognition and reading, and the cerebellum crus I is
primarily involved in higher cognitive functions (72–74). In view
of these heterogeneous functions, it is difficult to interpret the
reduced activations observed in this cluster in schizophrenia
during self-processing. However, two of these regions (inferior
temporal cortex and fusiform gyrus) are located along the
inferior longitudinal fasciculus and are part of the ventral visual
stream. Previous studies have shown that the integrity of the
inferior longitudinal fasciculus was associated with semantic
(as opposed to episodic) autobiographical memory (75), that
ventral stream increased activation was associated with successful
encoding of emotional information (76). In light of these
previous findings, our results could be interpreted as a functional
deficit in the processing of emotional autobiographical memories
in schizophrenia patients. The fact that the cluster included
also the left Crus I/lobule VI of the cerebellum strengthens
this interpretation. Indeed, a quantitative review of cerebellar
findings in fMRI literature reported not only that cerebellar
hypoactivations predominate across studies and various tasks in
schizophrenia, but that emotional tasks yielded results in the left
lobule VI (77).

In recent years, there is increasing evidence that the
cerebellum plays a broader role in cognition than previously
thought (78), thus challenging the traditional view that it is
primarily involved in motor control (79). Indeed, a recent review
of neuroimaging and clinical studies highlights the cerebellar
involvement in performance monitoring across a variety of
domains and tasks (80) and suggesting that monitoring may be
cerebellum’s “overarching function” (81). This view is consistent
with the findings from recent meta-analyses on the role of
cerebellum in social cognition, which identified “mentalizing
networks” within the cerebellum that are active when people
engage in self-judgement or self-processing tasks (82–84). Given
the findings from the meta-analysis by Van Overwalle et al.

(82) that have identified activation clusters in left lobule VI
when mentalizing about distant others and activation in Crus
I when performing abstract mentalizing tasks, the cerebellar
hypoactivation in these regions in our meta-analysis seems
to indicate that the deficit in these kind of self-processing
tasks in schizophrenia may be due to the malfunctioning of
these mentalizing networks. As such, the cognitive dysmetria
hypothesis in schizophrenia and its cerebellar substrate may be
expanded to include self-processing.

The current meta-analysis suffers from a few limitations
that need to be acknowledged. First, schizophrenia patients
were treated with antipsychotics at the moment of being
scanned, meaning that we cannot determine if our results are
related to schizophrenia, to antipsychotic medication and/or
to a combination of both factors. Antipsychotics are known
for blocking dopamine release in the associative striatum
(85). Other than that, the impacts of antipsychotics on brain
structure and function remain unclear. Thus far, the majority
of studies have paid attention to the anatomical effects of
antipsychotics (86). As for the fMRI studies, the available
evidence tends to show that antipsychotics normalize, rather
than impair, task-based activations and resting-state functional
connectivity in schizophrenia (87). Moreover, little evidence
shows that antipsychotics have beneficial effects particularly on
the functioning of the brain regions of the default mode network
(87). Still, in the pool of studies included in our meta-analysis,
not enough of them reported themean antipsychotic dosage (e.g.,
chlorpromazine equivalents) of patients, so we were not able to
perform a meta-regression analysis, which would have allowed
to investigate the potential influence of antipsychotic medication
on the abnormal activations observed in schizophrenia during
self-processing. Likewise, not enough studies reported the level
of symptoms of patients to perform meta-regression analyses.
In the past, some authors proposed that self-disturbances in
schizophrenia may be related to the positive symptoms of the
disorder (6), while others proposed that the lack of insight of
some patients is due to self-disturbances (38). Unfortunately,
in the current meta-analysis, we were not able to examine
both possibilities. Moreover, there were not enough studies to
perform sub-analyses on the type of task used in the scanner
(e.g., trait judgment vs. source monitoring). Also, we did not
contact authors, so statistical maps were not used for analysis,
and this may have limited statistical power. Finally, we were
not able to include the studies involving individuals at risk for
psychosis in the meta-analytic analyses, since only 4 studies
were identified, despite the fact that heterogeneous definitions
of psychosis risk were considered (e.g., schizotypy, first-degree
relatives, siblings) (88–91). Thus far, 3 of these studies have
shown altered activations in cortical midline structures (e.g.,
dmPFC and PCC) during self-processing in individuals at risk
for psychosis relative to typically developing individuals.

The current results partially support the hypothesized
impaired activity of cortical midline structures in schizophrenia
during self-processing. Indeed, decreased activations were
observed not only in cortical midline structures (e.g., dACC
and dmPFC), but also in the thalamus, which is not a core
region of the default-mode network. Taken together, the results
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of the current meta-analysis suggest that self-disturbances in
schizophrenia are related to decreased activity in brain regions
involved in attention and/or salience attribution (e.g., dACC),
decision-making and/or theory of mind (e.g., dmPFC), as well as
experiential coherence (e.g., thalamus). Future enquiries in the
field will need to combine analyses of resting-state functional
connectivity and analyses of task-based activations, as they
provide complementary information. An important issue will be
to investigate the functional connectivity between the default-
mode and salience networks during explicit self-processing in
schizophrenia, similar to the emerging investigations on the
interactions between these networks at rest in this population
(92). In the future studies on the topic, careful attention will need
to be paid to the potential impact of antipsychotic medication.
Finally, more studies are warranted on the neural alterations
associated with self-disturbances in individuals at clinical or
biological risk for psychosis.
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Severe thalamic injury can determine a particular type of vascular dementia affecting

multiple network dysfunctions, considered the central role of thalamus as a hub for

afferent and efferent stimuli. A 67-year-old male patient with bilateral thalamic stroke was

studied with positron emission tomography, magnetic resonance imaging, and cognitive

assessment, performed at baseline and at two follow-up evaluations. A pattern primarily

involving thalamo-frontal connections was observed by both PET and tractography

analyses. All significant differences between the patient and controls involved the anterior

thalamic radiation, one of the major fiber tracts in the fronto-thalamic circuitry. In

particular, altered tractography indices of higher radial diffusivity and apparent diffusion

coefficient and reduced fractional anisotropy values for the anterior thalamic radiation

were reported. In accordance with imaging findings, neuropsychological evaluation

demonstrated a multidomain impairment including memory, executive functions, and

attention. Additionally, the patients displayed behavioral symptoms, in absence of mood

alterations. Multimodal imaging assessment, revealing the metabolic and microstructural

alterations that attend to multidomain neuropsychological impairment, demonstrated

multiple levels of adaptations to bilateral vascular thalamic injury.

Keywords: thalamus, stroke, PET, MRI, dementia, connectivity

INTRODUCTION

The thalamus is the core diencephalic brain structure subdivided into several nuclei having wide
bidirectional connections with cortical and subcortical regions, e.g., cingulate cortex, hippocampus,
and amygdala (1). Each portion of the thalamus has specialized connections and functions. Its
anterior part receives projections from the mammillo-thalamic tract and is mainly linked with
orbitofrontal cortex and cingulate cortex; it is principally involved in memory and emotional
disorders. The paramedian nuclei connect with amygdala, prefrontal cortex, globus pallidus, and
motor and premotor cortex; its stroke causes reduced consciousness, disinhibition, apathy, and
amnesia. The inferolateral territory is responsible for executive functions whereas the posterior
portion has projections to occipito-parietal, prefrontal, cingulate, and parahippocampal cortices; no
particular behavioral alterations are reported if specifically injured, whereas some cognitive deficits
have been described (2).

Literature describes several cases of patients presenting thalamus lesion often affected by
cognitive, emotional, and motor deficits; aphasia, agnosia, amnesia, and neglect also occur after
thalamic stroke (3–5).
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Stenset et al. (6) described a 67-year-old patient with
left thalamic lesion who suffered of memory dysfunction;
the 18fluorodeoxiglucose positron emission tomography (PET)
evidenced reduced metabolism in the left anterior thalamus and
in frontal, parietal, and temporal lobes in the left hemisphere.
Magnetic resonance imaging (MRI) also showed a lesion in the
left anteromedian portion of the thalamus.

Differently, Shim et al. (4) used single photon emission
computerized tomography (SPECT) and MRI for studying four
patients with focal left thalamus stroke, who reported executive
dysfunctions in addition to memory impairment. They also
found decreased regional cerebral blood flow in frontal, parietal,
and temporal gyri and MRI revealed disruption of fibers in the
infarcted thalamic area.

Later, SPECT used on 18 patients with left thalamic lesion
showed that reduced perfusion observed in both the hemispheres
correlated with deficit in executive functions and depression
state (5).

More recently, Song et al. (7) described a case report of a
thalamic infarction due to artery of Percheron occlusion who
presented speech and behavioral alterations.

As shown, available studies in literature used various approach
for studying thalamic lesions. It seems that there does not exist
a general consensus about methods to perform; therefore, the
results are also heterogeneous. Overall, in all cases, thalamic
infarct was accompanied by diffuse brain metabolism alterations,
and cognitive complaints differed according to lesion site
and extension.

In the present study, we examined one patient presenting
with bilateral thalamic lesions that we evaluated three times:
at baseline (T0) and after 6 months (T1) and 18 months (T2).
During the same session, brain PET-CT andMRIwere performed
with an advanced imaging protocol that includes diffusion
tractography (DT).

In addition, neuropsychological assessment to investigate
cognitive dysfunctions complained by the patient was performed.

MATERIALS AND METHODS

Case Description
A 67-year-old male patient was admitted to undergo a brain PET-
CT and MR for investigating amnestic symptoms he manifested.
He referred focal brain hemorrhage in the left superior temporal
gyrus in 2016; he complained about memory dysfunctions and
visual hallucinations; he also had a persistent left leg pain that
makes walking difficult. He was fully cooperative and denied his
cognitive problems.

The first PET-CT and MR results (T0) revealed thalamus
lesions; therefore, we decided to evaluate the patient, with the
same imaging protocol, in two follow-up times, after 6 months
(T1) and after 18 months (T2) from injury. Additional MRI
exam with contrast agent injection was performed to exclude
tumor pathology at baseline. Furthermore, 13 healthy volunteers
matched for gender, age, Fazekas score [in regions different
from the thalami; (8)], and white matter lesion load (9) (13
males; mean age: 69.31 ± 3.12; total volume lesion: 2.17 ±

1.64), performing the same MR protocol, were selected as the
control group.

Clinical and Neuropsychological

Assessment
The patient performed cognitive tests and clinical scales at
the baseline evaluation and at the second follow-up time. The
global cognitive status was assessed with the Mini Mental State
Examination [MMSE; (10)], the Montreal Cognitive Assessment
[MoCA; (11)], and the Frontal Assessment Battery [FAB; (12)].
The Clinical Dementia Rating Scale [CDR; (13)] was used to
evaluate the degree of dementia severity; it ranges from no
dementia (0) to severe dementia (3). Memory is considered the
major domain from which they depend subsequent cognitive
domain scores depend on orientation, judgment and problem
solving, community affairs, home and hobbies, and personal care.
The patient also performed Raven’s colored progressive matrices
(14), phonological and semantic verbal fluency (15, 16), Stroop
test (17), Milan constructional apraxia (18), and trail making test
(19) in order to collect a comprehensive cognitive profile.

We investigated neuropsychiatric symptoms as depression
with the Beck Depression Inventory-II (20), behavioral disorders
with the Frontal Behavior Inventory (21), apathy with the Apathy
Evaluation Scale (22), and interoceptive consciousness with the
Self-Awareness Questionnaire [SAQ; (23)].

Positron Emission

Tomography–Computerized Tomography
Data were acquired using a Discovery 710 PET-CT scanner
(GE Healthcare), according to European guidelines (24). The
subject was intravenously (i.v.) injected with 250 MBq of [18F]-
FDG dose, after a resting period (15min) in a quiet and dark
room. Following the radiotracer injection uptake period of 20–
25min, during which the patient rested with eyes closed, PET
data were acquired in sinogram mode for 10min; matrix size
was 256 × 256. PET emission data were reconstructed with
ordered subset-expectation maximization (OSEM) algorithm (21
subsets, 4 iterations) and post-filtered with a three-dimensional
isotropic gaussian of 4mm at FWHM. Attenuation correction
was performed using CT-based attenuation maps derived from
a CT scan (140 kV, 300mA, 3.75 mm thickness).

Magnetic Resonance Imaging
In the same day, a 3-T Biograph mMR tomograph (Siemens
Healthcare, Erlangen, Germany) was used, equipped with a 12-
channel head coil, after 1 h from radiotracer administration. The
MRI protocol included morphological volumetric T1 (TR: 2,400,
TE: 2.25, voxel: 0.8 mm3 isotropic, matrix: 256 × 256), T2 (TR:
3,370, TE: 563, voxel: 0.8 mm3 isotropic, matrix: 256 × 256),
Fluid Attenuated Inversion Recovery (TR: 5,000, TE: 354, voxel:
1 mm3 isotropic, matrix: 192 × 192) as well as techniques like
DTI (TR: 3,851, TE: 84.2 voxel: 2 mm3 isotropic; 71 directions;
b value max: 1,500, matrix: 128 × 128). Foam wedges were used
to minimize movement artifacts, and the patient held eyes closed
during the resting-state scan.
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Image Analysis
PET-CT

PET images were processed with Scenium tool, of Syngo.Via
software (Siemens Healthcare, Erlangen, Germany). It
normalized and parceled with a standardized PET database
of healthy subject matched for age [Database: FDG-PET
Biograph HD, age 46–79, Cerebellum-Vermis; Atlas: Automated
Anatomical Labeling; (25)].

DT

White matter lesions were segmented by the lesion prediction
algorithm (9) as implemented in the LST toolbox version 2.0.15
for Statistical Parametric Mapping 12 (SPM12).

The diffusion tensor images were elaborated with software
FSL and MrTrix by the following processing steps: denoizing
(26), motion and eddy current correction (27), DWI reslicing to
the T1 space by trilinear interpolation (28), ACT (anatomical–
constrained tractography) (29), and deterministic tractography
reconstruction (30).

Anterior thalamic radiation segmentation, between thalamus
and homolateral frontal cortex, was performed by TrackVis
(Version 0.6.1) on control group and on each patient’s time
points. A volume of interest (VOI) on thalami and a region
of interest (ROI) on frontal region were applied to reconstruct
anterior thalamic radiation. Thalamus VOIs were defined by
considering the segmentation of subcortical areas resulting
from standard FreeSurfer (v.5.1) pipeline (31) on volumetric
T1. Frontal region ROIs were defined as the plane passing
perpendicularly the frontal lobe and tangent, on sagittal plane, to
genus corpus callosum. Consequently, the fractional anisotropy
(FA), apparent diffusion coefficient (ADC), axial diffusivity (AD),
and radial diffusivity (RD) values were calculated. A Bayesian
comparison was performed for all values between each patient’s
time points and the control group with singlebayes tool (32, 33).

Finally, a voxel-wise two-sample t-test was performed on FA,
AD, ADC, and RD maps with SPM12 software (https://www.fil.
ion.ucl.ac.uk/spm/) between each patient’s time points and the
control group. Briefly, maps were normalized using the high-
resolution FMRIB58_template in the Montreal Neurological
Institute (MNI) space applied to consider only the white matter,
including only the FA values > 0.21 (34).

A threshold of p < 0.05 with false discovery rate (FDR) as
multiple comparison correction was considered as significant.

RESULTS

Clinical and Neuropsychological

Assessment
Neuropsychological evaluation evidenced a multidomain
impairment. Global cognitive status was compromised, as
evidenced by performance on MMSE, FAB, and MoCA. Results
of CDR suggest the presence of a mild degree of dementia.
The patient failed in tests for executive functions, and attention
performance was borderline with respect to cutoff. Visuo-spatial
abilities and fluid intelligence were preserved from deterioration.
No depressive and apathetic symptoms resulted from the
questionnaires. Interoceptive consciousness was inferior to

TABLE 1 | Summary of neuropsychological and clinical results at the baseline and

follow-up assessments.

T0 raw

score

T2 raw

score

Cut-off Cognitive

domain

MMSE 20.2 21.2 23 Global cognitive

status

FAB 10 12 13.5 Executive

functions

screening

MoCA 19 18 26 Mild cognitive

impairment

CDR 1 1 – Dementia

Ravens’

progressive

colored matrices

‘47

26 26 18.9 Fluid

intelligence

Phonological

fluency

10 22 17.3 Executive

functions

Semantic fluency 14.5 16.5 33.2

Stroop test 1: 17” (t) 1: 20”

2: 19” (t) 2: 22”

3: 48” (t) 3: 50” T:36.92

7 errors 7 errors E:4.24

Milan

constructional

apraxia

12 11 8 Visuo-spatial

abilities

TMT A:77 A:87 A<94 Attention

B:249 B:132 B <283

B-A:172 B-A:45 B-A<186

BDI-II 7 7 14 Depression

symptoms

FBI 26 9 20 Behavioral

symptoms

SAQ 22 16 27 Interoceptive

consciousness

APATHY

EVALUATION

SCALE

33 34 38 Apathy

MMSE, Mini Mental State Examination; FAB, Frontal Assessment Battery; MoCA,

Montreal Cognitive Assessment; CDR, Cognitive Dementia Rating; TMT, Trail Making

Test; BDI-II, Beck Depression Inventory-II; FBI, Frontal Behavior Inventory; SAQ, Self-

Awareness Questionnaire.

normative data; finally, the patient presented several behavioral
dysregulation symptoms.

Follow-up neuropsychological assessment confirmed
cognitive dysfunction, but no deterioration was observed.
Executive functions are the cognitive domain mainly impaired
in our patient. No depressive or apathetic symptoms occurred.
Interoceptive consciousness was significantly inferior with
respect to normative data; behavioral alterations diminished
over time with respect to first clinical evaluation. Cognitive and
clinical tests are summarized in Table 1.

PET-CT

PET-CT analyses confirmed bilateral thalamic hypometabolism,
more pronounced on the left side. In the left thalamus,
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hypometabolism was increased between baseline and first follow-
up and stationary between the two follow up (T0, Z = −4.4; T1,
Z = −5.6; T2, Z = −5.5). In the right thalamus, there was a
significant hypometabolism only in the second time point (T2,
Z = −4.3). Moreover, in the left inferior temporal gyrus, there

TABLE 2 | Significant metabolic brain areas resulting from PET-CT between

time-points patient and database control.

Z score

Brain area T0 T1 T2

Heschl gyrus (L) −3.5 −3.6 −4.1

Inferior temporal gyrus (L) −4.1 −3.3 −4.1

Middle temporal gyrus (L) −3.8 −3.3 −4.1

Mesial temporal lobe (R) −1.7 −2.6 −4.2

Superior frontal gyrus medial orbital (L) −3.0 −3.0 −4.2

Superior frontal gyrus orbital part (R) −3.7 −3.2 −4.2

Basal ganglia (L) −3.5 −3.5 −4.3

Corpus striatum (L) −3.5 −3.4 −4.3

Parahippocampal gyrus (L) −1.9 −2.6 −4.3

Thalamus (R) −3.0 −4.3 −4.3

Mesial temporal lobe (L) −1.8 −2.5 −4.4

Gyrus rectus (L) −3.9 −4.0 −4.5

Olfactory cortex (R) −2.9 −3.2 −4.5

Gyrus rectus (R) −3.7 −3.8 −4.7

Superior frontal gyrus medial orbital (R) −3.4 −3.3 −4.7

Caudate nucleus (L) −3.7 −3.7 −5.1

Thalamus (L) −4.1 −5.6 −5.5

was hypometabolism at the baseline and second follow-up (T0,
Z = −4.1, T2, Z = −4.1) but not in the first (T1, Z = −3.3).
In the gyrus rectus, the decreased metabolism was present in the
second and third acquisitions (T1, Z =−4.3, T2, Z =−4.3). Pet-
ct results are presented in Figure 1. The other brain regions with
a significant Z score are summarized in Table 2.

DT

Significant differences were found between patient and controls
for the diffusion tractography indices. A difference on RD for
the right anterior thalamic radiation in T0 (p = 0.03) was found
when compared to the control group. The ADC (T0: p = 0.007;
T1: p = 0.006) and RD (T0: p = 0.01; T1: p = 0.02) values were
significantly increased in the left anterior thalamic radiation.
Furthermore, at T1, an increase on ADC (p = 0.006) and RD
(p = 0.001) and a decrease on FA (p = 0.02) were observed
compared to control subjects, whereas no significant results were
obtained on AD index. All tractography maps are presented
in Figure 2.

Finally, voxel-wise analyses between normalized DT maps of
control subjects and the T2 did not show significant differences.

DISCUSSION

In this longitudinal study, we evaluated three times, in about 2
years, a patient who presented with vascular dementia marked by
severe bilateral thalamic lesion and that performed PET/CT and
MRI. While focal unilateral thalamic infarction more frequently
occurs, diffuse bilateral lesion, as the case presented in this work,
is more uncommon and can determine a particular type of

FIGURE 1 | Axial patient normalization map PET with co-registered CT in the three time points. SD, standard deviation colored scale. Slices were taken with 8mm

distance.
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FIGURE 2 | Anterior thalamic radiation streamline representation with values of radial diffusivity (RD), apparent diffusion coefficient (ADC), fractional anisotropy (FA),

and axial diffusivity (AD) in false color maps for the case (three different time points) and a representative control subject.

vascular dementia that, involving a strategic area for many neural
networks (35), determines dysfunction of entire networks, not
simply areas.

PET analysis highlighted a hypometabolic pattern that
involved the thalami and several cortical areas; thalamic
hypometabolism was quite diffuse, not permitting to identify
a specific component more impaired with respect to others.
Associated areas afferent primarily to temporal and frontal
lobes, and representing projection areas of the thalami, showed
significant reduced metabolism, as in the case of the left
parahippocampal gyrus.

Since the medial dorsal and anterior nuclei of the thalamus
are related to the hippocampus, they are considered to play
a role in formation of new memories and project to afferent
pathways from the temporal to the frontal lobe (36). This
reduction might explain memory disturbances presented by the

patient and resulting from the neuropsychological assessment.
In this regard, the CDR revealed difficulties in detaining and
recalling information regarding the recent past instead of well
consolidated remote information. Such deficits we observed,
attributable to an onset of dementia, are in line with von
Cramon et al. (37) and Schmahmann (36) who reported
that thalamus lesions can impair recent memory. Also, Serra
et al. (38) observed memory impairment in two patients with
bilateral thalamic lesions they studied by structural MRI; the
first subject showed a mainly right damage and complained
about memory deficits; the other one had a more symmetrical
lesion and showed executive dysfunctions in addition to
memory impairment.

Hypometabolism in the right thalamus seems to be a marker
of subcortical vascular mild cognitive impairment, whereas
the patients with amnestic mild cognitive impairment show
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hypometabolism mainly in left parahippocampal gyrus and
orbitofrontal regions (39). Moreover, the ischemic interruption
of frontal subcortical circuits also affects mood and behavior
and contributes to the cognitive impairment of subcortical
vascular dementia (40, 41). Our patient presents a mixed
condition, where the frontal lobe is involved due to the
bilateral superior frontal gyrus reduced uptake compared to
control subjects. The superior frontal gyrus has anatomical
connections with the thalamus (42), its posterior part is generally
mainly activated by motor tasks, whereas the lateral part is
involved in working memory and attention and the medial
part, afferent to the default-mode network, is deactivated by
cognitive-related processing (43). Frontal involvement could
explain behavioral symptoms presented by the patient in terms
of lack of flexibility, disorganization about complex activities,
perseveration, and irritability. Reduced metabolism also involved
the temporal lobe, in particular temporal and Heschl gyri.
Middle and inferior temporal gyri subserve language and
semantic memory processing, visual perception, and multimodal
sensory integration. Temporal hypometabolism is in accordance
with impaired cognitive performances, especially on executive
functions, in particular semantic fluency, since phonemic and
semantic fluency are usually used to test neurologic damage
but semantic component is more impaired following temporal
lesions. Therefore, medial temporal hypometabolism found here
points for a dementia diagnosis, since the patient showed
a widespread impairment, revealing multidomain cognitive
problems. He had altered global cognitive status and executive
functions, in both the baseline and follow-up evaluation, even
if the patient performed both performances slightly better
on the follow-up time. The MoCA test results were in
accordance with MMSE and FAB performances, confirming
cognitive impairment. Among the batteries, the CDR, which
is specific for characterizing level of memory decline, showed
the presence of a mild level of dementia. More specifically,
single tests that explore single cognitive domains showed
that executive functions appeared partially altered, whereas
attention, apraxia, and fluid intelligence were preserved from
deterioration. On clinical tests, the patients displayed no
depressive or apathetic symptoms and a normal level of
interoceptive consciousness.

Levasseur et al. (44), among the first, studied seven cases
of patients with bilateral thalamic infarcts by PET, showing
diffuse cortical hypometabolism and associated amnesia. De
Falco et al. (45) reported a patient with severe memory loss
and apathy. MRI showed bilateral thalamic damage of posterior
and medial areas, involving part of the pulvinar, more evident
for the right thalamus. Six months later, a severe memory
impairment was still evident and both MRI and SPECT findings
were unchanged.

Sandson et al. (3) described the case of a patient who
presented with left medial thalamic infarction evident from
computerized tomography, electroencephalography, MRI, and
SPECT that evidenced frontal lesions and presented with
several personality changes and cognitive impairments mainly
in memory, language, and executive functions domains. The
authors hypothesized that the deficit of complex behavioral

functions resulted from injury of the dorsomedial nucleus
of the thalamus involved in the frontal network subserving
these abilities.

Additionally, reduced glucose metabolism in basal ganglia,
striatum, and caudate nucleus was detected. Basal ganglia
are the core structures of extrapyramidal motor system,
but also are involved in pathways subtending to emotional,
motivational, and cognitive functions. The striatum receives
inputs from cortical areas and, via the thalamus, projects
to prefrontal, premotor, and supplementary motor areas.
The circuit involving basal ganglia, thalamus, and cortical
areas maintains movement organization, mainly involuntary
and stereotyped (1). The patient complained about some
difficulties in walking and pain to the right leg; therefore, we
hypothesize that abnormal uptake in these areas, related to
vascular outcomes he had, could explain the motor symptoms
he suffers.

In line with metabolic results, analyses of tractography
evidenced altered connections between the thalamus and frontal
regions. All significant differences between the patient and
controls involved the anterior thalamic radiation, one of the
major fiber tracts in the fronto-thalamic circuitry that connects
the prefrontal lobe to the anterior and dorsomedial thalamic
nuclei. Reduced anisotropy and augmented diffusivity in the
anterior thalamic radiation were detected in the patient, signaling
a structural change of white matter (46), both in baseline and in
the first follow-up evaluation. Furthermore, higher RD and ADC
and reduced FA values for the anterior thalamic radiation were in
line with the evidence of thalamic lesion.

Almost all imaging results presented on patients with thalamic
lesions focus on brain metabolism, largely ignoring structural
impairments evident with the diffusion tractography. In the
present work, structural changes have been observed in the
diffusion tractography index, in absence of results from voxel-
wise analysis. The lack of significant differences in the latter
analysis could be explained by the fact that voxel-based analysis
and fiber tractography are methods using different approaches.
It is plausible that results from the voxel-wise analysis were
affected by an ineffective registration between subjects, since it
is a fundamental prerequisite for voxel-wise group comparison.
Conversely, in diffusion tractography, the tracts can be delineated
without relying on subject registration. However, specific a priori
regions of interest or specific tracts need to be selected for
comparison, as we have done.

The most striking finding of the present work is the
association between structural and metabolic changes within the
fronto-thalamic circuitry in our patient. Multimodal imaging
assessment longitudinally demonstrated adaptations to bilateral
vascular thalamic injury at multiple levels, revealing the
metabolic, functional, and microstructural alterations attending
to multidomain neuropsychological impairment.
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Life-long experience of using two or more languages has been shown to enhance

cognitive control abilities in young and elderly bilinguals in comparison to their

monolingual peers. This advantage has been found to be larger in older adults in

comparison to younger adults, suggesting that bilingualism provides advantages in

cognitive control abilities. However, studies showing this effect have used a variety of

tasks (Simon Task, Stroop task, Flanker Task), each measuring different subcomponents

of attention and raising mixed results. At the same time, attention is not a unitary

function but comprises of subcomponents which can be distinctively addressed within

the Attention Network Test (ANT) (1, 2). The purpose of this work was to examine

the neurofunctional correlates of the subcomponents of attention in healthy young

and elderly bilinguals taking into account the L2 age of acquisition, language usage,

and proficiency. Participants performed an fMRI version of the ANT task, and speed,

accuracy, and BOLD data were collected. As expected, results show slower overall

response times with increasing age. The ability to take advantage of the warning cues

also decreased with age, resulting in reduced alerting and orienting abilities in older

adults. fMRI results showed an increase in neurofunctional activity in the frontal and

parietal areas in elderly bilinguals when compared to young bilinguals. Furthermore,

higher L2 proficiency correlated negatively with activation in frontal area, and that faster

RTs correlated negatively with activation in frontal and parietal areas. Such a correlation,

especially with L2 proficiency was not present in young bilinguals and provides evidence

for a bilingual advantage in the alerting subcomponent of attention that characterizes

elderly bilinguals’ performance. This study thus provides extra details about the bilingual

advantage in the subcomponent of attention, in older bilinguals. Consequently, speaking

more than one language impacts cognition and the brain later in life.

Keywords: bilingualism, subcomponents of attention, neuroimaging, attention network task, aging

INTRODUCTION

Enjoying a satisfying aging, particularly with regard to cognitive health, is desirable by people
globally. Not all individuals enjoy healthy cognitive functioning, and even those who do usually
show structural changes in their brain with aging. The mismatch between the relative preservation
of cognitive abilities in the presence of structural changes in the brain is conceived as if the brain
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had some sort of “cognitive reserve,” a heavily used term defined
as the individual differences in cognitive task performances
which provides resilience to age-related brain damage or
pathology (3, 4), giving rise to disparity between the degree of
brain damage or pathology and the clinical manifestation of
cognitive performance. Cognitive reserve is usually estimated
using different intercorrelated factors—education (5), occupation
(6), and second language learning (7–9). These factors have been
studied in literature over the years as proxies of cognitive reserve.

In the context of lifelong bilingualism, cognitive reserve
can be conceptualized as a cognitive resilience resulting from
the use of, and exposure to, two or more languages. In such
a context, it is believed that practiced bilingualism provides
cognitive resilience to the cognitive control mechanisms allowing
to counter, partially or totally the impact of age-related changes
in the brain. Various studies suggest that lifelong bilingualism,
or speaking two languages on a daily basis, can result in
advantage in cognitive control processes i.e., how individual with
high or low level of bilingualism or when compared to their
monolingual peers differ in their behavioral (7, 10–12) and brain
functions (11, 13–17). For example, it has been reported that
elderly bilinguals show faster response time and make fewer
errors than their monolingual peers on attentional control tasks
(7, 18). Over the years, neuroimaging studies have also shown
neural efficiency for bilingual elderly groups when compared
to monolingual counterparts suggesting less activity in the
prefrontal cortex (PFC) and anterior cingulate cortex (ACC) (11,
13, 16). Interestingly, 13 showed a comparable neurofunctional
activation pattern for elderly bilinguals when compared to
young adults. However, they outperformed monolinguals peers
while showing less activation in frontal regions in a task-
switching paradigm. Thus, suggesting neuroprotective effects
of bilingualism in older adults on cognitive control processes.
Furthermore, such a bilingual advantage in older adults is
seen as a different strategy in cognitive control mechanism
i.e., in the proactive mode of cognitive control (16). In
proactive mode of cognitive control, attention is recruited as
an “early selection” mechanism that relies on anticipation and
prevention of interference before it occurs (19). In addition,
functional connectivity studies have also supported better neural
efficiency in bilinguals by demonstrating stronger resting state
functional connectivity between anterior to posterior brain
areas (14) and default mode network (DMN), and fronto-
parietal cortex (17) for bilinguals compared to monolingual
older adults. Berroir et al. (15) also suggest efficient performance
for the bilingual older adults in the task-based functional
connectivity measures.

At the same time, cognitive control is not a single
mechanism (selection, inhibition, interference, switching, etc.)
and it is thought to operate via the attentional functions
(19) in a goal-directed manner. In fact, attention consists of
subcomponent processes that are separable, yet interconnected
which determines the order of the information processing (2,
20). These subcomponents of attention—alerting, orienting and
executive control—can be measured by using the Attention
Network Test (ANT, 1) whose validity has been proven across
a variety of populations (21, 22). The neurofunctional bases of

the three subcomponents of attention are themselves different
from each other (1). Alerting function has been associated
with various frontal and parietal regions with strong thalamic
involvement. Orienting network has been associated with parietal
sites and frontal eye field. Anterior cingulate cortex (ACC) as
well as dorsolateral prefrontal cortex (DLPFC) are associated
with execution network (1, 22). Very few studies have looked
at the role of bilingualism on the subcomponents of attention
(12, 23, 24). Moreover, these studies essentially focused on a
behavioral comparison with monolingual individuals, suggesting
enhanced alerting (12) and executive control (12, 23, 24) with
no difference in orienting ability in bilinguals. And none of
these studies compared the performance within bilingual groups
varying in L2 age of acquisition (early vs. late), usage (balanced
vs. unbalanced) or proficiency (high vs. low). There are studies
that support the role of bilingualism on cognitive performance by
performing correlation analysis of the measures of bilingualism
(L2 usage and proficiency, age of acquisition) (25) with cognitive
task (26, 27) instead of comparing dichotomous groups (like
monolingual vs. bilingual; High proficient vs. low proficient
bilinguals). In a study by Tse and Altarriba (26), more proficient
individuals were better at maintaining attention during the task
and these results were supporting the bilingual advantage. In
addition, Luk et al. (27) also reported a positive correlation
between age of onset of active bilingualism and flanker effect,
suggesting that early bilingual experience resulted in greater
advantage in cognitive control performance. Given that bilingual
experience is dynamic in nature, the idea of treating bilingualism
as a continuous variable is important (25, 28, 29).

In addition, age-related changes in elderly population—
without measures of bilingualism—show significant reduction
in the alerting (30, 31) and executive control abilities (31)
when compared to young adults. However, the behavioral and
neurofunctional bases of bilingual advantages in subcomponents
of attention in aging remain unknown. In the present study, it
is proposed to use the functional magnetic resonance imaging
(fMRI) and the attention network task to understand the role
of bilingualism while controlling for education—other proxies
of cognitive reserve—to better understand the dynamic nature
of interaction in aging population. The bilingual advantage
conferred by lifelong use of two languages in aging may
be associated with improved behavioral and neural efficiency.
The goal of this study is thus to determine whether elderly
bilinguals’ show a behavioral and neurofunctional advantage
over young adults—matched on measures of bilingualism as
well as education—in different subcomponents of attention as
measured by the ANT task. It is expected that older bilinguals
will show longer response time and lesser accuracy, in the
ANT performance. This will be reflected by an increase in the
executive control effect and decrease in alerting and orienting
effects in older bilinguals. In terms of fMRI data, we expect
more neurofunctional activation in the older bilinguals when
compared to young bilinguals in the executive control and
alerting abilities (30, 31). More specifically, we expect that older
bilinguals will recruit more fronto-parietal areas and anterior
cingulate cortex when compared to young bilinguals for the ANT
task performance. For the bilingual advantage hypothesis, we
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TABLE 1 | Demographic, neuropsychological, and language measures of both the

groups.

Young adult

(N = 20)

Older adult

(N = 18)

t Sig.

(2-tailed)

Mean (SE) Mean (SE)

Demographic information

Age 32.6 (0.7) 73.9 (0.6) −41.6 0.00*

Education 18.7 (0.7) 16.8 (0.6) 1.8 0.087

Gender Female = 9 Female = 11

Neuropsychological assessments

MoCA 29.2 (0.1) 28.61 (0.2) 1.9 0.095

TMT A 16.8 (0.7) 30.09 (1.9) −6.4 0.00*

TMT B 39.7 (2.3) 60.02 (5.3) −3.5 0.00*

OBT_RT 751.3 (34.1) 931.5 (40.7) −3.4 0.00*

OBT_Acc 0.9 (0.007) 0.8 (0.01) 1.7 0.098

Subjective measures of LP

L2: Percent exposure 26.5 (3.4) 18.3 (2.8) 1.7 0.08

L2: AoA-Speaking 7.4 (0.7) 8.3 (0.7) −0.9 0.36

L2: AoA-Reading 10.7 (0.9) 12.9 (1.1) −1.4 0.15

L2: LP-Speaking (Max:10) 7.3 (0.3) 6.2 (0.4) 1.8 0.07

L2: LP-Reading (Max:10) 7.9 (0.3) 7.2 (0.3) 1.6 0.12

Objective scores on the measures of LP

L2 LexTale (%) 80.5 (2.3) 81.9 (2.1) −0.4 0.66

L2 BNT (Max:60) 48.8 (1.4) 46.2 (1.3) 1.3 0.19

L2 RC (Max:11) 5.9 (0.4) 6.2 (0.43) −0.5 0.60

L2 Discourse (Max:18) 17.02 (0.1) 16.7 (0.3) 0.7 0.43

L2 Composite LP scores (%) 77.5 (0.01) 77.2 (0.01) 0.1 0.89

SE, Standard error; MoCA, Montreal Cognitive Assessment; TMT, Trial Making Test;

OBT, One back Test; RT, Response time; Acc, Accuracy; LP, Language Proficiency;

L2, Second Language; AoA, Age of Acquisition; BNT, Boston Naming Test; RC,

Reading Comprehension; *, significant.

expect the negative correlations between L2measures (age, usage,
and proficiency), and ANT behavioral performance and BOLD
activation for the subcomponents of attention.

METHODS

Participants
Thirty-eight French-English bilingual young adults (YA; mean
age 32.6± 3.1 years;N = 20; 9 females) and old adults (OA;mean
age 73.94 ± 2.8 years; N = 18; 11 females) with no history of
neurological or psychiatric disease were included in the study. A
signed informed consent approved by the CRIUGMwas obtained
from each participant before the experiment.

Tasks
Neuropsychological Assessment

All participants completed a detailed standardized
neuropsychological assessment, which covered multiple
cognitive domains. General cognitive function was assessed by
the Montreal Cognitive Assessment test (MoCA) (32). Attention
was assessed by the Trail Making Test (TMT A and B) (33). One
Back Test (OBT) (34) and digit span task (from MoCA) were
used to identify the working memory performance. Geriatric

Depression Scale (GDS scale) (35) was used to rule out older
participants who are suffering from depression. Further, both the
groups were from similar socioeconomic background and were
matched on education level. In addition, performance on general
cognitive assessment (MoCA) was equivalent across groups,
indicating similar cognitive ability (Refer to Table 1).

Measures of Bilingualism

Second language (L2) age of acquisition (AoA), language usage
and proficiency were established by the Language Experience
and Proficiency Questionnaire (LEAP-Q) (36), a widely used
subjective measures of bilingualism (Refer to Table 1). LEAP-
Q was used to collect information on the L2 speaking and
reading AoA, percentage of L2 usage in daily life in speaking and
reading domains, as well as self-reported L2 speaking and reading
proficiency (Refer to Table 1). Four objective measures of L2
proficiency were also included (a) L2 proficiency in confrontation
naming (Boston Naming Test) (37), (b) L2 proficiency in
discourse production1 using pictures from Western Aphasia
Battery (41) and Boston Diagnostic Aphasia Examination (42)
that provides a composite rubric score (38, 39), (c) L2 proficiency
in reading comprehension using a part of York adult assessment
battery- revised [YAA-R; (43)], and (d) L2 proficiency in
vocabulary skills using LexTale test (44).

Attention Network Test (ANT)

We used event-related fMRI to study the activations of the
different subcomponents of attention. This task is a combination
of the cueing paradigm (45) and the flanker task (46). Participants
were presented with five white arrows on a black background
and were asked to determine the direction of the target arrow
in the middle—left or right. The arrows were presented either
above or below a centrally located fixation cross. The target arrow
was flanked by pairs of congruent arrows or incongruent arrows,
resulting in two flanker conditions—congruent and incongruent,
respectively. Furthermore, three types of warning cues were used:
no-cue (baseline), alert cue (temporally informative), and spatial-
cue (temporally and spatially informative). The efficiency of the
three attentional effects was assessed by measuring how response
times are influenced by different warning cues and flanker
conditions resulting in alerting (No cue vs. alert cue), orienting
(Spatial cue vs. alert cue) and executive control (Incongruent
vs. congruent flanker condition) effects. Each trial begins with a
fixation window, followed by the cue window lasting for 300ms.
After a variable duration (one of a set of 12 discrete times from
300 to 6,300ms, approximating an exponential distribution with
a mean interval of 2,100ms), the stimuli appear either above
or below the fixation point (based on the warning cue) within
two degrees of visual angle until the participant responded or
2,000ms elapsed. The duration between the onset of the target

1L2 discourse scores consist of a composite rubric score (Maximum = 18) that

is performed with the help of scoring sheet (38–40), in which total score is

calculated by summing the scores on the following aspects: Overall impact and

achievement of purpose, Organization and technique, and Mechanics (38–40).

Two independent high proficient rates listen to the audio recording and rate the

performance on this rubric. Average of the two raters’ response is taken as the final

score for the L2 proficiency in discourse production.
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FIGURE 1 | Schematic of attention network test (1). This figure illustrates the time course of the warning cues and the flanker condition.

and the start of the next trial was also jittered (a set of 12 discrete
times from 3,000 to 15,000ms, approximating an exponential
distribution with a mean of 6,000ms; refer to Figure 1). A total of
144 trials (72 for each flanker conditions, namely congruent and
incongruent) with different warning cues were recorded in three
runs. Each run consists of a 2-buffer trial at the beginning of the
run, which was not included in the analysis.

Image Acquisition and Processing

MR imaging was carried out using 3T MRI Siemens Prisma
Fit scanner with a standard 64-channel head coil. The image
sequence was a T2 weighted pulse sequence (TR = 785ms;
TE = 30ms; matrix = 64 × 64 voxels; FOV= 192mm; flip
angle = 54◦; slice thickness = 3mm; and acquisition = 39
slices). A high-resolution structural image was obtained before
the three functional runs using a 3D T1-weighted imaging using
an MPRAGE sequence (TR= 2,400ms; TE= 2.33ms; 240 slices;
matrix = 256 × 256mm; voxel size = 0.8 × 0.8 × 0.8mm; and
FOV= 230mm). Imaging data were pre-processed and analyzed
using SPM12 (Wellcome Department of Imaging Neuroscience,
UK) running with MATLAB (Mathworks, USA). To correct for
between-scan movements, the functional images were realigned
to the first image of each session. Each participants’ structural
T1 image was then co-registered to the mean functional image.
The functional images were then spatially normalized into the
standard space defined by the Montreal Neurological Institute
(MNI) template. After normalization, all scans were resampled
at a resolution of 2 × 2 × 2mm. The functional images were
spatially smoothed with an isotropic Gaussian kernel (full width
at half maximum of 8mm) to increase the signal-to-noise ratio.

Statistical Analysis
Behavioral Data Analysis

Raw response time, accuracy rate and inverse transformed
response time (RTinv = −1,000/RT) were used for the data
analysis. Inverse transformation was performed to normalize
the positively skewed response time distribution. Mixed
ANOVA and ANCOVA were performed with groups (OA
vs. YA) as between-subject variable and flanker conditions
(congruent vs. incongruent) and warning cues (no, alert, or
spatial) as the within-subject variables for the accuracy and
RTinv data (with average response time of each participant
as covariate), respectively. The overall slowing of stimulus
perception and motor response for the older adults have
confounding effect of age (47) in the behavioral measures of
ANT performance. To address this concern in the response
time analyses, ANCOVAs using average response time as a
covariate was conducted. Also, incorrect responses and the
trials with response time exceeding three standard deviations
were excluded from the analysis. Ratio scores were subsequently
computed for the alerting effect [(No cue–Alert cue)/Alert
cue], orienting [(Alert cue–Spatial cue)/Spatial cue] and the
executive control effect [(Incongruent–Congruent)/Congruent]
using the raw response time. Furthermore, these scores
were introduced for a planned comparison between the
groups using independent sample t-test. Instead of the
conventional subtraction measure (1, 12), ratio scores
were used to define the efficiency of the subcomponents of
attention, thus, reducing the influence of the overall response
time (RT) on the alerting, orienting and executive control
effects (48, 49).
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TABLE 2 | Mean RT (and SD) and accuracy (and SD) for each condition during

ANT behavioral performance.

Flanker

condition

Age

group

Warning type

No cue Alert cue Spatial cue

Accuracy

Congruent YA 97.5 (0.7) 98.5 (0.7) 98.2 (0.7)

OA 97.6 (1.1) 97.6 (0.8) 98.5 (0.8)

Incongruent YA 91.4 (1.8) 91.6 (1.6) 95.2 (1.2)

OA 93.2 (2.5) 94.2 (1.9) 96 (1.2)

Response time

Congruent YA 631.11 (74.9) 604.23 (71.3) 536.45 (60.9)

OA 846.37 (161.2) 821.75 (157.5) 787.12 (139.0)

Incongruent YA 698.38 (82.2) 678.56 (85.83) 601.77 (91.6)

OA 887.35 (145.01) 887.42 (152.6) 828.79 (159.74)

YA, Young Adults; OA, Older Adults.

fMRI Data Analysis

The general linear model (GLM) in SPM was used to conduct
a whole-brain analysis of the fMRI data. We created a design
matrix using the onset time of the events (separate events for

no, alert, spatial cues, and congruent and incongruent flanker
conditions with correct responses only). Incorrect responses
and the buffer trials of each run were combined as an extra
column in the design matrix. These events were convolved
with the canonical hemodynamic response function (HRF), and
the six motion correction parameters for each functional run
were included in the design matrix as covariates of no interest.
The regressors were fitted to the fMRI data to produce beta
estimates for each regressor. Individual subject and second level
(random effects) group analyses were conducted. Contrasts were
same as the behavioral analysis, except inverted for the alerting
and orienting effects (i.e., alerting fMRI effect = alert cue beta
estimate – no cue; orient fMRI effect = Spatial cue beta estimate
– alert cue). Only effects surviving an uncorrected voxel-level
threshold of P < 0.001 and/or a cluster level familywise error
(FWE) corrected threshold of P < 0.05 were interpreted with
cluster size of at least 20 voxels. For group-level analyses, the
independent sample t-test was performed to assess the difference
between the young and older adults for each contrast—alerting,
orienting and executive control contrast (i.e., executive control
fMRI effect= incongruent beta estimate – congruent condition).
In absence of any group difference, the one-sample t-test was
performed to determine group-level activation for that particular
contrast. Region-of-interest (ROI) analyses were performed for
each of the three contrasts based on the previous study (1),
with a priori defined ROIs of 5mm radius. The percent signal
changes within the pre-determined ROIs (1) were calculated
using MarsBar toolbox (50) for each of the contrast and were
analyzed using the independent sample t-test between the groups
using SPSS.

Correlation Analysis

The relationship between measures of bilingualism (subjective
and objective measures of L2 performances) and attention

FIGURE 2 | Mean response time and accuracy for each condition on the

attention network task. OA, Older adults; YA, Young adults.

performance (behavioral and neurofunctional) was further
examined by doing a Pearson correlation analysis with adjusted
p-values controlling for multiple comparisons. Also, behavioral
and neurofunctional performance were correlated to assess
the relationship between activation pattern and the behavioral
measures of ANT performance. To do so, composite factor scores
for the measures of bilingualism and behavioral performance
(Accuracy and response time) was calculated by performing a
principal component analysis with varimax rotation method.
This allows to reduce the number of correlations and avoids the
effect of cross-correlations between different factor scores. In the
factor analysis, factor scores were calculated using the Bartlett
method in SPSS, which were then used in the correlation analysis.

RESULTS

Behavioral Results
Accuracy for the correct trials was submitted to a mixed ANOVA
with group as a between subject variable (YA and OA) and
warning cue (no, alert, spatial) and flanker condition (congruent,
incongruent) as within subject variables. The main effects of
warning cue [F(2, 72) = 41.06, η

2
p = 0.533, p < 0.000], and

flanker condition [F(1, 36) = 54.54, η
2
p = 0.602, p < 0.000]

were significant. The only significant interaction was between
warning cue and flanker condition [F(2, 72) = 36.57, η2p = 0.504,
p < 0.000] indicating that the flanker effect (Incongruent >

congruent) was present only for the no cue and spatial warning
cues (Table 2 for details). RTinv for correct trials were submitted
to a 2∗3∗2 ANCOVA with group as a between subject variable
(OA and YA) and warning cue (no, alert, spatial) and flanker
condition (congruent, incongruent) as within-subject factors,
with average response time of each participant as covariate
(Figure 2). Response times varied as a function of warning cue
[F(2, 70) = 9.82, η

2
p = 0.219, p < 0.000; no cue > alert cue >

spatial cue] and flanker condition [F(1, 35) = 5.204, η
2
p = 0.129,

p = 0.029; Incongruent > congruent], with significant two way
interaction between warning cue and flanker condition [F(2, 70)
= 3.58, η2p = 0.093, p = 0.033] indicating that the flanker effect
(Incongruent > congruent) was present for all warning cues,
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TABLE 3 | Results from the random-effects analyses for the alerting, orienting, and executive control condition, for young and older adults.

Contrast Anatomical region WB/ROI Area Side MNI coordinates Volume

x y z

Alerting

OA∩YA” Fusiform gyrus WB BA 37 Rt 42 −56 −14 899

WB BA 37 Lt −40 −62 −6 703

Precentral gyrus WB BA 6 Lt −46 2 34 82

WB BA 6 Rt 46 4 40 138

OA > YA* VLPFC WB BA 10 Lt −26 50 −10 24

IFG ROI BA 47 Lt −33 31 −3

Orienting

OA∩YA” Visual association area WB BA 18 Lt −10 −98 4 413

WB BA 18 Rt 10 −96 8 153

WB BA 18 Lt −20 −78 −10 115

WB BA 18 Rt 18 −76 −14 139

OA>YA* Superior parietal gyrus WB BA 39 Rt 42 −50 28 29

Executive control∧

Young adults WB BA 19 Lt −4 −86 36 28

Older adults Isthmus of CG WB BA 30 Lt −22 −50 6 20

*Reverse contrast showed no effect.
∧Conjunction and disjunction analysis did not result in any effect.

“Survived cluster level FEW. k > 20. IFG, Inferior frontal gyrus; VLPFC, ventrolateral prefrontal cortex; CG, Cingulate gyrus; WB, Whole Brain; ROI, Region of Interest.

however, alerting effect (No cue > Alert cue) for the incongruent

condition was not significant, indicating difficulty in processing
the alerting cue for the participants in conflict trials. A significant
main effect of group [F(1, 35) = 5.887, η2p = 0.144, p = 0.021] as
well as interaction between group and flanker condition [F(1, 35)
= 6.27, η2p = 0.152, p = 0.017] and a group and warning [F(2, 70)

= 7.13, η
2
p = 0.169, p = 0.002] were observed. The nature of

the interaction between age and warning cue is readily apparent
in Figure 2. For Older adults, the magnitude of warning cue
effects—alerting (No cue – Alert cue) and orienting effect (Alert
cue – Spatial cue)—were smaller when compared to young adults,
indicating that with increasing age the ability to take advantage
of the warning cues reduces. As for the interaction effect between
group and flanker condition, young adults showed the desired
flanker effect (Incongruent > Congruent) for all the warning
cues, whereas older adults showed flanker effect only for the
alerting cue. Thus, resulting in smaller interferences effect for the
older adults when compared to young adults.

A significant three-way interaction for group, flanker
condition and warning cue [F(2, 70) = 5.29, η2p = 0.131, p= 0.007]
showed a larger alerting, orienting and executive control effect
for the young adults. The effect of the covariate—verage response
time—was significant indicating that some of the age-related
difference in response time observed for the warning cue and
flanker conditions can be attributed to general slowing [F(2, 70)
= 3.63, η

2
p = 0.094, p = 0.032]. However, the effect of group

remained significant after controlling for age-related slowing,
suggesting that age-related changes in attentional ability other
than general slowing also contributed to differences in response
time between younger and older adults. Post hoc analysis of
the three-way interaction showed significant group differences
for the congruent condition for all warning cues (p < 0.05)
indicating older adults are slower than younger adults on taking

advantage from the warning cues on trials without any conflict

(i.e., congruent). For the incongruent condition, group difference
was evident only for the spatial cue (OA > YA; p < 0.05)
indicating that in the conflict condition (i.e., incongruent), older
adults were slower to take advantage from the temporally and
spatially informative cue (i.e., spatial cue). And the planned
comparison of the ratio scores for the three subcomponent of
attention revealed that older adults (relative to young adults)
showed a numerically smaller alerting [t(36) = 2.13, p = 0.03],
orienting effect [t(36) = 3.58, p = 0.001] as well as significantly
smaller interference effect [i.e., executive control effect; t(36) =
2.68, p= 0.01].

fMRI Results
Firstly, we identified common brain regions that were
consistently engaged in young and older adults for each
subcomponent of attention in a random effect analyses (see
Table 3). Secondly, two-sample t-test was performed on contrast
images to assess the significance of any group differences
observed in the activation patterns between young and older
adults for different subcomponents of attention (see Table 3;
Figures 3–5).

Comparison Between Young and Older
Adults for the Alerting Effect
The conjunction analysis2 on the brain activity associated with
the alerting (Older adults n Young adults), defined as increased
activity in alert cue trials vs. no cue trials, showed activation in the
bilateral fusiform gyrus (BA 37) and pre-Supplementary Motor

2Conjunction analyses involves identifying brain areas that show significant

activation across the experimental condition, in the present study across the group

(YAnOA). In contrast, disjunction analyses identify significant activation that is

present in one experimental condition and not the other (OA > YA or reverse).
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FIGURE 3 | (A) Significant blood-oxygen-level dependent (BOLD) signal

increase related to the alerting contrast (Alert cue – No cue) in both the groups

together (OA n YA) revealed bilateral activation in the fusiform gyrus (BA 37)

and pre-SMA (BA 6). (B) Significant blood-oxygen-level dependent (BOLD)

signal increase related to the alerting contrast in the Older bilinguals in

comparison to young bilinguals (OA > YA) revealed activation in the

ventrolateral PFC (BA 10). Statistical parametric maps overlaid on the average

T1-weighted anatomy of all subjects (p < 0.001 and K > 20).

FIGURE 4 | (A) Significant blood-oxygen-level dependent (BOLD) signal

increase related to the orienting contrast (Spatial cue – alert cue) in both the

groups together (OA n YA) revealed bilateral activation in the visual association

areas (BA 18). (B) Significant blood-oxygen-level dependent (BOLD) signal

increase related to the orienting contrast in the Older bilinguals in comparison

to young bilinguals (OA > YA) revealed activation in the superior parietal gyrus

(BA 39). Statistical parametric maps overlaid on the average T1-weighted

anatomy of all subjects (p < 0.001 and K > 20).

Area (pre-SMA; BA 6) (see Table 3; Figure 3A). The no and
Alert cues trials were collapsed over congruent and incongruent
flanker conditions. Disjunction analysis (Older adults > young
adults) revealed differential increases in neural activity in the
left ventrolateral prefrontal cortex for the older adults (Lt BA
10, p = 0.001 uncorrected, k > 20) (Figure 3B; Table 3). No
significant activation was observed for the reversed contrast.
Neural correlates of alerting were also observed in the pre-
defined regions-of-interest within the left inferior frontal gyrus
[Lt BA 47, defined in Fan et al. (1)]. We did not find any group
difference for the rest of the pre-defined ROIs.

Comparison Between Young and Older
Adults for the Orienting Effect
The conjunction analysis on the brain activity associated with
the orienting ability (Older adults n Young adults), defined as

FIGURE 5 | Significant blood-oxygen-level dependent (BOLD) signal for (A)

young bilinguals and (B) older bilinguals for the executive control contrast

(Incongruent – Congruent). Statistical parametric maps overlaid on the average

T1-weighted anatomy of all subjects (p < 0.001 and K > 20).

increased activity in spatial cue trials vs. alert cue trials, showed
activation in the bilateral visual association areas (BA 18; see
Table 3; Figure 4A). The two-sample t-test (Older adults >

young adults) revealed differential increases in neural activity
in the right superior parietal gyrus close to temporal parietal
junction (Rt BA 39, p = 0.001 uncorrected, k > 20) (Figure 4B;
Table 3). The reverse contrast revealed no significant increases in
neural activations for young adults relative to older adults. Same
as alerting ability, the Spatial and Alert cues were collapsed over
congruent and incongruent flanker conditions. No significant
activation was found within the a priori defined regions-of-
interest for the orienting contrast.

Comparison Between Young and Older
Adults for the Executive Control Effect
Whole brain analysis as well as Region-of-interest analysis did
not show any significant neural activation common to both
the groups (Older adults n young adults) or distinct between
groups (Older adults > < young adults) for the executive control
effect, defined as an increase in brain activity in incongruent vs.
congruent conditions, by collapsing all the warning cues together.
However, we identified brain regions that were consistently
engaged in young bilinguals and in older bilinguals, in separate
random effects analyses for executive control effect (Incongruent
> congruent). Older adults showed activity in the isthmus of left
cingulate gyrus [Left BA 30; p = 0.001 (uncorrected), k > 20]
whereas young adults recruitedmore posterior brain for the same
task [Left middle occipital gyrus BA 19 p = 0.001 (uncorrected),
k > 20; Figure 5].

Relationship Between Neurofunctional
Activation and Behavioral Measures
Results from the individual factor analysis of the subjective and
objective measures of bilingualism (Refer to Table 1) produced a
single and two-factor solution, respectively (refer to Tables 4A,B
for details). All the subjective measures of bilingualism—
LEAP Q—yielded a single factor structure. The factor analysis
(Tables 4A,B) of the objective measures resulted in two-factors:
L2 proficiency in discourse production and rest of the objective
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TABLE 4A | Combined factor analysis of both the groups for the ANT behavioral performance.

ANT behavioral performance

Factor Variance No

congruent

Alert

congruent

Spatial

congruent

No

incongruent

Alert

incongruent

Spatial

incongruent

Factor 1 Response time 49.06% 0.971 0.973 0.969 0.971 0.968 0.964

Factor 2 Accuracy for

incongruent conditions

20.15% 0.822 0.846 0.761

Factor 3 Accuracy for

congruent conditions

10.90% 0.825 0.595 0.463

TABLE 4B | Combined factor analysis of both the groups for the measure of bilingualism.

Objective measures of bilingualism Subjective measures of bilingualism

Factor Variance L2

naming

L2

vocabulary

L2 reading

Comprehension

L2

discourse

production

Factor Variance L2

language

exposure

L2 AoA

speaking

L2 AoA

reading

L2

speaking

proficiency

L2 reading

proficiency

Factor 1 L2 naming,

vocabulary

and reading

comprehension

45.85% 0.919 0.767 0.656 0.95 Single

factor

52.87% 0.710 −0.481 −0.660 0.835 0.881

Factor 2 L2 discourse

production

27.25% 0.917

measures (L2 naming, L2 reading comprehension, and L2
vocabulary). Similarly, ANT behavioral performance resulted
in three-factor solution—response time measures, accuracy
measure for incongruent flanker condition and accuracy for
congruent flanker condition.

Pearson’s correlation analyses were conducted to examine
the links between behavioral effects—using the factor scores—
and brain activation in the corresponding subcomponent of
attention. To test for the relationship between the attentional
abilities to more general neuropsychological performance as well
as with proxies of cognitive reserve—education and measures
of bilingualism—we correlated activation thresholds with the
neuropsychological measures, education, and measures of
bilingualism. Also performed partial correlations with education
as covariate to find the relationship with the measures of
bilingualism. We then apply Bonferroni correction for multiple
testing to the results. We find a positive correlation between
the neural activity of the VLPFC (BA 10) and the composite
factor score for the response time (all the flanker conditions and
the warning cues (r = 0.455; p = 0.001), indicating that with
an increase in neural activity there is an increase in behavioral
response time. There was no significant correlation between the
neural activity of the superior parietal region (BA 39) related
to orienting ability and the factor scores for accuracy and
response time measures However, we find a positive correlation
between the response time on the working memory task and
the BA 39 activity (r = 0.454, p = 0.004), indicating increased
neural activity of BA 39 with an increase in response time.
Factor scores of behavioral ANT performance—i.e., Factor 1
= representing a composite measure of accuracy on congruent
condition—showed a positive correlation with the factor scores
of L2 proficiency in discourse production across the group
(r = 0.624, p = 0.01) while controlling for education as a

covariate. Interestingly, this correlation was significant with the
older bilinguals only (OA, r = 0.607, p = 0.01; YA, r = 0.34; p
= 0.23). Factor scores of behavioral ANT performance (Factor
3 representing composite measure of accuracy on congruent
condition) showed positive correlation with the factor scores with
Factor 2 of the objective measure of bilingualism (L2 proficiency
in discourse production; r = 0.624, p = 0.01) and more so for
older bilinguals (r = 0.607, p = 0.01), while controlling for
education as covariate. BOLD activity for the VLPFC (BA 10)—
indicating an increase in neural activity for the alerting ability
in elderly—showed negative correlation with Factor 2 of the
objective measure of bilingualism (L2 proficiency in discourse
production; r = −0.517, p = 0.001) across group; with the older
bilinguals there was an increase in this correlation value (r =

−0.655) indicating that with an increase in L2 proficiency in
discourse production there is a decrease in BOLD activity for the
region related to alerting ability. For the alerting contrast (OA
> YA) no significant correlation was seen with education level.
Also, partial correlation continues to give similar results while
controlling for education (covariate), BOLD activity of VLPFC
continue to show a negative correlation with L2 proficiency in
discourse production (r = −0.523, p = 0.001). For the orienting
contrast (OA > YA), no correlation was seen between the BOLD
activity and the proxies of cognitive reserve—education and
bilingualism (with and without partial correlation).

DISCUSSION

The study intended to describe the fMRI brain activation
patterns associated with the subcomponents of attention in
young and elderly bilinguals, and to look for the association with
the measures of bilingualism—L2 age, usage, and proficiency.
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Two groups of participants i.e., young and elderly bilinguals
performed the Attention Network task during fMRI scanning.
L2 usage and proficiency were looked at as influencing the
pattern of activation for the subcomponents of attention in
young and old bilinguals. Both the groups—young and elderly
bilinguals—were matched on the factors of education level, and
L2 usage and proficiency, as well as for neuropsychological
variables and L2 usage and proficiency were normally distributed
within each group, thus making them continuous variables.
Response times (RTinv), accuracy rates, and BOLD activation on
flanker conditions—congruent and incongruent—and warning
cues—no, alert and spatial cues—were computed, to examine
alerting, orienting, and executive control effects in young and
older bilinguals. As a whole, neurofunctional and behavioral
results show that alerting and orienting abilities are significantly
lower in elderly bilinguals as compared to young bilinguals, a
finding that is associated with an increase in neural activity in
elderly bilinguals, particularly in the fronto-parietal complex,
sub-serving top-down attention control processes.

More specifically, both age groups were equivalent in terms
of accuracy of responses. Conversely, significant differences in
response times across groups show that the elderly bilinguals do
not benefit from warning cues as much as the young do, and get
more distracted by flankers, particularly when there is a spatial
cue. These findings replicate previous findings with the ANT,
showing larger executive control effects and smaller alerting
effects, in older adults as compared to younger adults (30, 51–
53). Also, in line with the results of previous behavioral studies
showing age-related decline specific to the executive control
ability only (31). Previous studies with bilingual population
converge with the notion that a bilingual advantage is seen in
executive control when compared to monolingual groups (12,
23, 24, 54). In the present study, the age-related differences were
not evident in the incongruent condition as the experimental
groups were balanced for L2 age of acquisition, language usage,
and proficiency, and that could express a lack of differences in
conflict resolution in the incongruent condition that requires
the use of executive control mechanism. However, it is possible
that these behavioral studies (12, 23, 24) are based on the
performance of young monolingual and bilinguals, therefore,
we must be careful in drawing parallels with the present study
where young and older bilinguals varying in L2 usage and
proficiency are compared. In sum, behavioral results of the
present study confirm previous findings with the ANT, that
the early subcomponents of attention—alerting and orienting
ability—are a sensitive indicator of age-related differences in L2
matched older and younger adults.

The fMRI results add an important perspective on group
differences between young and older bilinguals in the
subcomponents of attention. The current study showed an
increase in the neurofunctional activation for the alerting and
orienting subcomponents of attention for older bilinguals
when compared to young bilinguals using disjunction analysis.
Specifically, there was a significant activation in the left
ventrolateral prefrontal cortex (BA 10) for the elderly bilinguals
with alerting trials and a significant activation in the right
superior parietal gyrus (BA 39) with the orienting trials.

Furthermore, in a region-of-interest analyses for the different
subcomponents of attention [predefined areas based on Fan
et al. (1)], older adults showed reduced neural activity in the
left inferior frontal gyrus (BA 47) with alerting trials, but no
significant group difference with orienting and executive control
trails in the anterior cingulate, other parietal sites and frontal
eye fields.

Neurofunctional patterns in older adults fit well with the
previous literature on aging (55, 56), showing that fronto-
parietal activity increases with age. This age-related increase in
activation was observed concurrently with higher response times
on the ANT and working memory tasks (OBT). Specifically, in
the elderly, response times to alerting trials on the ANT task
were positively correlated with activations of the VLPFC (BA
10). According Cabeza et al. (57), older adults’ performance
is influenced by an increase in age-related PFC activation,
thus confirming the present results. However, we find positive
correlation between the response time on the working memory
task and the BA 39 activity (r = 0.454, p = 0.004) indicating
increase in working memory performance correlated with
reciprocal increase in BA 39 activity. In addition, superior
parietal area (BA 39) is reported in literature to play a critical
role in covert and overt shift of attention (58) and thereby
having a crucial role in attentional shift in space (59). This
age-related increase in neural activation in the frontal and
parietal areas responsible for the alerting ability also showed
corresponding increase in response time for the ANT task
performance. Hence, by relating behavioral and BOLD signal
changes in the alerting ability, the present work shows that—
in comparison to young bilinguals—older bilinguals rely upon
the prefrontal cortex (BA 10) to sustain the level of alertness
required for the ANT task performance. Also, the positive
correlation between response time on the working memory task
(One back task) and the activation of the superior parietal gyrus
(BA 39) indicates that working memory processing contributes
to orienting attention in space. This is in line with previous
work showing the role of working memory processes in spatial
attention (60). The novelty of the present results relies on
the fact that the result shows a correlation between reduced
BOLD response in older bilinguals and response times with the
alerting and orienting ability, instead of executive control (49,
61). This suggests that age-related differences in the cue-driven
performance in the alerting and orienting ability could result
from reduced neural efficiency. However, age groups did not
differ in regard to the neurofunctional and behavioral patterns
of executive control ability, showing significant activations in
the left cingulate gyrus (BA 30) and the left middle occipital
gyrus (BA 19) for older and young bilinguals, respectively. The
lack of result in the disjunction analysis (OA > YA) for the
executive control ability can be explained by the fact that both
the groups were strictly matched on L2 age of acquisition,
usage, and proficiency. This is in line with the previous study
(13) that shows comparable neurofunctional activation for the
older bilinguals in comparison to the young adults (monolinguals
and bilinguals) in executive control ability. Also, the results for
young bilinguals on the executive control performance are in
line with bilingual anterior to posterior and subcortical shift
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hypothesis (BAPSS) (62), that suggest less activation of the
frontal brain areas responsible for executive function and greater
recruitment of posterior/subcortical regions by bilinguals when
compared to monolinguals.

We also explored the possibility that decreased neural
efficiency in older bilinguals may vary with L2 variables resulting
in cognitive reserve. The results show that neural efficiency—
decrease in neural activity—is correlated with increasing L2
proficiency as measured by discourse tasks, thus suggesting that
higher L2 proficiency through life-long use of the two languages,
contributes to neural efficiency for the alerting ability. Research
on bilingualism has mostly focused on comparisons between
monolingual and bilingual populations, showing both cognitive
and neural advantages in bilinguals (8, 18, 63), accounted by
neuroanatomical (17, 64–66) and neurofunctional changes (11,
13–15). The present study is the first one to report on age-
related differences on behavioral and neurofunctional patterns
of attention in comparable bilingual populations differing in age
and varying in L2 usage, and proficiency.

In sum, the evidence showed an increase in the brain activity
for the older bilinguals in comparison to young bilinguals in
the frontal and parietal areas during alerting and orienting
subcomponents of attention and this is correlated with lower
L2 proficiency and higher working memory response time
across group. According to Wang and Fan (67), alerting ability
results in broad sensitivity toward incoming stimuli and this
ability reduces with increasing age. In the present study, a
bilingual advantage in maintaining this alert state is observed
in the elderly bilinguals, and this ability is associated with
increasing L2 proficiency on discourse tasks. This is in line
with the previous studies supporting bilingual advantage in
the cognitive control performance on the continuum of L2
proficiency (68, 69). Together, our results suggest that benefits
of lifelong bilingualism might rely specifically upon the alerting
subcomponent of attention.

CONCLUSION

Defining and interpreting age-related differences in bilingual
population, based on behavioral and neuroimaging data is an
ongoing challenge. In this study, we compared older and younger

adults, matched on measures of bilingualism and education,
to understand the role of bilingualism in aging. A bilingual
advantage was observed, specifically in the alerting ability, a
subcomponent of attention responsible for establishing a state of
alertness for the incoming stimuli. This finding points to alerting
abilities as the potential core component of the so-called bilingual
attentional advantage.
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Cognitive impairment is a common feature in Parkinson’s disease (PD) and other

α-synucleinopathies as 80% of PD patients develop dementia within 20 years. Early

cognitive changes in PD patients present as a dysexecutive syndrome, broadly

characterized as a disruption of the fronto-striatal dopamine network. Cognitive deficits

in other domains (recognition memory, attention processes and visuospatial abilities)

become apparent with the progression of PD and development of dementia. In

dementia with Lewy bodies (DLB) the cognitive impairment develops early or even

precedes parkinsonism and it is more pronounced in visuospatial skills and memory.

Cognitive impairment in the rarer α-synucleinopathies (multiple system atrophy and

pure autonomic failure) is less well studied. Metabolic brain imaging with positron

emission tomography and [18F]-fluorodeoxyglucose (FDG-PET) is a well-established

diagnostic method in neurodegenerative diseases, including dementias. Changes in

glucose metabolism precede those seen on structural magnetic resonance imaging

(MRI). Reduction in glucose metabolism and atrophy have been suggested to represent

consecutive changes of neurodegeneration and are linked to specific cognitive disorders

(e.g., dysexecutive syndrome, memory impairment, visuospatial deficits etc.). Advances

in the statistical analysis of FDG-PET images enabling a network analysis broadened

our understanding of neurodegenerative brain processes. A specific cognitive pattern

related to PD was identified by applying voxel-based network modeling approach. The

magnitude of this pattern correlated significantly with patients’ cognitive skills. Specific

metabolic brain changes were observed also in patients with DLB as well as in a

prodromal phase of α-synucleinopathy: REM sleep behavior disorder. Metabolic brain

imaging with FDG-PET is a reliable biomarker of neurodegenerative brain diseases

throughout their course, precisely reflecting their topographic distribution, stage and

functional impact.

Keywords: Parkinson’s disease, cognitive impairment, α-synucleinopathies, dementia with Lewy bodies, multiple

system atrophy, [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET)
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INTRODUCTION

Parkinson’s disease (PD) is a chronic neurodegenerative
disease affecting 2–3% of the population older than 65
years. It is primarily a movement disorder characterized by
bradykinesia, rigidity, postural impairment, and resting tremor.
Its neuropathologic hallmarks are degeneration of substantia
nigra and intracellular aggregation of α-synuclein (1). Since
James Parkinson’s An Essay on the Shaking Palsy (2), which
still remains largely valid, new knowledge has been gained,
particularly on non-motor symptoms, some of which may
precede motor signs by decades (3). Cognitive decline, which was
not described by James Parkinson, is one of the most debilitating
non-motor symptoms and it may drastically decrease patient’s
and caregiver’s quality of life. It is now recognized that the full
spectrum of cognitive decline, ranging from subjective cognitive
decline (SCD) through mild cognitive impairment (MCI) to
dementia can be observed in PD patients (4).

Furthermore, cognitive impairment is important for
diagnosis and differential diagnosis among α-synucleinopathies,
since some are strongly associated with dementia [PD and
dementia with Lewy bodies (DLB)] and others not [multiple
system atrophy (MSA) and pure autonomic failure (PAF)].
Although underlying pathology (α-synuclein) is the same in
all-aforementioned conditions, its topography, pathophysiology
and clinical presentation of cognitive impairment may differ.

Cognitive impairment is a common feature of PD and based
on different criteria and thresholds, 10–40% of PD patients have
MCI (PD-MCI) at the time of the diagnosis (5–11). Among
the PD patients with normal cognition at baseline almost 50%
developMCI within 6 years (12), however around 20% of patients
with PD-MCI revert to normal cognition after a year (13).
Additionally, subtle cognitive decline, presenting as a decline in
the processing speed and executive functions as well as a mild
decrease in Mini-Mental State Examination (MMSE) score may
even precede PD diagnosis for up to 7 years (14). SCD, which is
a risk factor for Alzheimer’s dementia (AD), is believed to also
precede MCI in PD, and SCD in PD remains an active research
topic (4).

Current diagnostic criteria proposed by Movement Disorder

Society define PD-MCI as a gradual decline of cognition, not
causing a significant impact on a patient’s everyday functioning.
It is defined by clinical, cognitive, and functional criteria (15).
PD-MCI is a heterogeneous disorder and it can be either amnestic
or non-amnestic (16). PD-MCI correlates with an increased risk

of developing dementia (12, 13, 17). PD dementia (PDD) causes
cognitive changes in more than one domain and affects the
subject’s day-to-day functioning (18). It is a common feature of
the disease and, if patients live long enough, it occurs in almost
80% of them within 20 years from the initial diagnosis (19). On
the other hand, patients who develop dementia prior or within

1 year of first motor signs of parkinsonism are diagnosed with
DLB (20). While DLB and PDD are both characterized by similar
pathology and cognitive impairments, e.g., executive function,
attention (21, 22), DLB patients perform worse on visuospatial
andmemory tests (23). Their cognitive decline is faster withmore
severe fluctuations and their survival-time is shorter (24, 25).

MSA is a less common α-synucleinopathy characterized by
autonomic failure, cerebellar and parkinsonian signs and one
third of patients develop frontal-lobe dysfunction (26, 27). A
minority of MSA patients also develop dementia syndrome,
which has a rather heterogeneous clinical presentation (28–
30). α-synucleinopathies are commonly preceded by prodromal
conditions, such as idiopathic rapid eye movement (REM)
sleep behavior disorder (RBD) or, rarer, PAF. RBD, not an
α-synucleinopathy by itself (31), is characterized by lack of
muscle atonia during REM sleep and it has been shown
that RBD patients perform worse on neuropsychological tests
compared to healthy controls (32, 33). A big majority of
RBD patients also develop α-synucleinopathies; PD, DLB, or
MSA (34–37). In PD patients, RBD correlates with a higher
prevalence of PD-MCI and its presence predicts cognitive
decline at follow-up (38–41). RBD may therefore offer an
insight into the development of dementia at its preclinical phase
and be an excellent target for disease-modifying interventions.
However, reliable and objective biomarkers of progression of
cognitive impairment and conversion to dementia are still under
development (42). PAF is characterized by α-synuclein inclusions
in peripheral autonomic nervous system and consequential
autonomic symptoms (43). PAF, similarly to RBD, often
progresses to various α-synucleinopathies, although its relation
to later cognitive decline is still unclear (44).

The etiology of cognitive impairment in PD can be divided
into two partially overlapping orthogonal patterns, according
to the dual syndrome hypothesis (45). Cognitive changes
in planning ability, working memory and executive function
(dysexecutive syndrome) in PD-MCI patients arise due to
disruption of the fronto-striatal dopamine network, which is
mainly caused and driven by the depletion of striatal dopamine
transmission, rather than by primary frontal dysfunction
(46). Executive functions are also closely correlated with the
mesocortical dopamine system, which arises in the ventral
tegmental area and projects to the neocortical areas and whose
hyperactivity may act compensatorily in the early PD when only
the fronto-striatal system is impaired. There is some evidence
that disruption of both dopaminergic systems is necessary for the
development of dysexecutive syndrome (45, 46). Disruption of
the noradrenergic and cholinergic system further contributes to
the executive dysfunction (46). On the other hand, patients who
mostly suffer from deficits in visuo-spatial function and semantic
fluency, already early in PD course, have marked posterior
cortical and temporal lobe dysfunction (45). It has been shown
that the latter subgroup of patients develops dementia more
rapidly (47). Attention, visuoperceptual, and memory deficits
also correlate with the neurodegeneration of the cholinergic
nucleus basalis of Meynert and a consequential disruption of the
posterior cholinergic network (46).

[18F]-fluorodeoxyglucose positron emission tomography
(FDG-PET) is a well-established diagnostic method in early
and differential diagnosis of neurodegenerative brain diseases,
including dementia (48). FDG enters the cells via glucose
transporter, where it is metabolized and stays trapped in the
cell, and where 18F decays (49). Although it is still under
debate whether FDG signal mainly reflects neuronal or
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astrocytic glucose metabolism (50, 51), it is still thought to
be a direct measurement of synaptic activity (52) and is in
close correlation with cerebral blood flow (53, 54). It was
shown that impaired glucose metabolism antecedes atrophy
in Parkinson’s and Alzheimer’s disease and that these two
processes represent consecutive changes of neurodegeneration
(55, 56), making FDG-PET an excellent candidate for an
early disease stage biomarker. As demonstrated by a recent
meta-analysis, functional brain abnormalities detected with
FDG-PET scan, are more consistently and reliably observed
in PD patients than are the structural changes detected with
voxel-based morphometry magnetic resonance imaging (MRI)
(57). Although the topography of hypo/hypermetabolic changes
is thought to be specific for different neurodegenerative disorders
(58, 59), FDG-PET information in the clinical setting is only
regarded as supportive or not supportive of the diagnostic
hypothesis and it is recommended to be always used in addition
to clinical and neuropsychological assessment (48).

The last few decades brought us enormous progress in both
image acquisition techniques and subsequent FDG-PET image
analysis methods. These have broadened our understanding of
disease processes in neurodegenerative brain diseases through
defining regional disease-related metabolic changes as well as
by investigating their long-range consequences on the spatial
connectivity and whole brain metabolic changes (60).

Although international guidelines suggest the use of
quantitative techniques for aiding the interpretation of brain
FDG studies (61, 62), in clinical setting visual assessment of
FDG-PET images may still be deemed appropriate, depending
on the individual, local procedures. Visual assessment, however,
harbor limitation measured by inter-rater variability, mainly
depending on the expertise and experience of the reader (63).
Assessment by visual reading can be improved by the use
of various statistical mapping approaches (64, 65). The use
of automated semi-quantification methods is advised by the
European Association of Nuclear Medicine and the European
Academy of Neurology for increased accuracy of image reading
(66). The most widely accepted methods are based on mass
univariate testing, such as statistical parametric mapping (SPM)
(67, 68). For clinical evaluation, it has been established to apply
SPM for voxelwise comparison of e.g., regional FDG uptake of a
single patient’s image with the age matched control group images,
preferentially acquired at the same site. In this approach, each
voxel is evaluated independently, without an a-priori hypothesis
and voxel clusters that are statistically significantly different,
after correction for multiple comparisons, between the patient’s
and control group’s images can be identified and mapped
onto an anatomical atlas or an individual, structural MRI for
further interpretation (68). Other statistical approaches include
multivariate analyses, such as scaled subprofile model/principal
component analysis (SSM/PCA). When properly applied, this
method can be used to generate specific disease-related patterns
(58, 69, 70). Pattern’s expression can be prospectively measured
and quantified from the individual scans with the Topographic
Profile Rating (TPR) analysis (70). For all the methods, however,
a basic knowledge of both, disease characteristics and statistical
procedures is needed for proper interpretation of the results.

As most neurodegenerative brain syndromes manifest with a
range of cognitive impairments, neuropsychological assessments
represent the gold standard of its assessment. Metabolic
imaging may significantly contribute to our understanding of
functional anatomy and pathophysiological underpinnings of
cognitive impairments.

The aim of this review was driven by two basic questions:
(i) do neuropsychological data in PD and related α-
synucleinopathies correlate with metabolic neuroimaging
data and (ii) do these neuroimaging data reveal correlates of
impaired cognition already in syndromes that are known to
predict evolution into PD, DLB, and MSA.

METHODS

A literature search on PubMed was performed using
terms: “cognitive,” “cognition” or “neuropsychological” and
“Parkinson,” “Parkinson’s,” “dementia with Lewy bodies,”
“DLB,” “LBD,” “PDD,” “Multiple system Atrophy” or “MSA”
and “Fluorodeoxyglucose,” “Fluoro-deoxyglucose,” “FDG,”
“hypometabolic” and variations, or “hypermetabolic” and
variations. Additionally, for our second aim, we included search
terms “REM Sleep Behavior Disorder,” “RBD,” “Pure autonomic
failure” or “PAF.” Two hundred sixty-four articles were found
and analyzed. Only original research articles relevant to the
aforementioned rationales and pertaining to human studies,
written in the English language, published up to June 2019 were
included in this review. Case reports, interventional studies,
comparisons with non-α-synucleinopathies, studies investigating
non-cognitive signs, etc. were not taken into account.

PARKINSON’S DISEASE

We reviewed studies investigating MCI in PD, its progression to
PDD and studies specifically addressing the correlation between
metabolic changes and neuropsychological deficits.

Already in 1992, Peppard et al. described that cognitive decline
in PD is accompanied by changes in brain glucose metabolism
(71). More recent studies focused on cognitive decline in
specific stages of PD. In comparison with healthy control (HC)
participants, it was shown that PD-MCI patient exhibit regional
glucose hypometabolism in temporo-parieto-occipital regions
(72–74). The same pattern of hypometabolism, although to
a lesser extent, is seen when comparing PD-MCI with PD
patients having normal cognition (72, 73, 75, 76), marking
posterior, presumably cholinergic disruption. Although, when
Lyoo et al. divided PD patients into MCI subgroups, the
single domain amnestic subgroup exhibited no differences in
comparison to HC (73). Lack of differences may be accounted
to small sample size (n = 12) and topographic heterogeneity
of hypometabolic brain changes in amnestic MCI subgroup.
Rather inconsistent are also findings of the frontal metabolic
changes in PD-MCI in comparison to HC. Some studies report
frontal hypometabolism (72, 73, 76) and the others frontal
hypermetabolism in paracentral lobule (75) in PD-MCI patients.
This inconsistency can be explained to some degree by selective
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focusing on hypometabolic changes in some studies and thus
not paying attention to hypermetabolic ones. The hypermetabolic
changes however previously rose some controversy regarding
their meaning (77–80). Recent results (81–83) show that relative
hypermetabolism is a true (compensatory) feature of cognitive
changes in neurodegenerative diseases and not just a side-
effect of normalization. Furthermore, heterogeneity of PD-MCI
sample (84), different image reconstruction algorithms (85) or
the selection of a comparison group could also be a source of
confounding results. It is also a possibility that mild frontal
hypometabolic changes were not seen in a small sample studies
due to stringent statistical thresholds. Studies investigating
the progression of cognitive decline showed that extensive
parietal and occipital hypometabolic changes can predict the
development of PDD in PD-MCI patients (65, 86–88) and also
in PD patients with normal cognition (88, 89). Changes in
glucose metabolism were also shown to be correlated with global
cognition changes and other neuropsychological tests (90, 91).

Only few studies investigated the correlation of regional
metabolic brain changes with cognitive dysfunction detected by
neuropsychological tests.

Deficits of executive functions correlated with frontal
hypometabolism in some studies (92, 93), but not in the
others (94–96). Furthermore, disruption of the striatal
dopaminergic system, shown with [18F]-6-fluorodopa PET
imaging, correlated with executive dysfunction in patients with
preserved metabolism in the frontal cortex (97), with uncertain
explanation. The effect of anti-parkinsonian medication
on metabolic changes, which may influence fronto-striatal
dopaminergic network (98), has not been thoroughly addressed
as of yet. Hypometabolism in parietal and temporal cortices
more consistently correlated with executive dysfunction (92–96).
Attention deficits, regarded by some as an executive dysfunction
(99), correlate with hypometabolism in the frontal cortex (95),
precuneus and parietal cortex (94) and with the hypermetabolism

in the putamen, parahippocampal gyrus, inferior frontal lobule,
paracentral lobule, and hippocampus (94). Posterior cholinergic
neurodegeneration, marked by the initial decline in visuospatial
functioning and followed by memory impairment, can be
detected by glucose metabolism changes, too. The former deficits
correlate with the occipito-parietal, temporal and precuneal
hypometabolic changes (94, 96), but also with the putaminal
and parahippocampal hypermetabolism (94). Memory deficits
correlated with the temporal and parietal hypometabolism
(92, 94, 95). However, both, hypo- and hypermetabolism in the
posterior cingulate cortex were found to correlate with memory
deficits (94, 96).

The next paragraph focuses on metabolic network analyzes
in cognitive changes in PD. A specific regional metabolic
covariation pattern, associated with poor performance on tests
of executive control and attentional control of working memory,
was identified in non-demented PD patients using the region
of interest-based SSM/PCA analysis. It was characterized by
increased metabolic activity in the left pallidum and mediodorsal
thalamus associated with decreased metabolic activity bilaterally
in the ventromedial frontal regions, striatum and in the left
hippocampal gyrus (100). Later, a voxel-based adaptation of
SSM/PCA was used to identify a specific spatial covariance
pattern associated with cognitive functions in PD patients,
termed PD-related cognitive pattern (PDCP) (Figure 1). PDCP
was identified and validated in two groups of non-demented
PD patients. Both patient groups were relatively young, 58.6
and 58.8 years, respectively and had a high MMSE score of
28.3 and 28.1, respectively. The magnitude of PDCP expression
correlated with a test of executive function (Trail Making Test B),
Symbol Modality Test, memory functioning (California Verbal
Learning Test) and test of visuospatial function (Hooper Visual
Organization Test). This cognitive pattern did not correlate with
patients’ motor impairment. PDCP is characterized by bilateral
hypometabolism in the supplementary motor area, precuneus,

FIGURE 1 | Parkinson’s disease-related cognitive pattern (PDCP) identified by scaled subprofile model/principal component analysis (SSM/PCA) from a group of 15

non-demented PD patients. PDCP is characterized by bilateral hypometabolism in the supplementary motor area (preSMA), precuneus, the dorsal premotor cortex

(PMC), inferior parietal lobule and left prefrontal region and relative increases in the cerebellar vermis and dentate nuclei (DN). Voxels showing metabolic increases are

color-coded red and those showing metabolic decreases are color-coded blue. Reprinted with permission from Huang et al. (101).

Frontiers in Neurology | www.frontiersin.org 4 November 2019 | Volume 10 | Article 120485

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Trošt et al. Neuropsychology and Brain Metabolism in PD

the dorsal premotor cortex, inferior parietal lobule and left
prefrontal region and relative increases in the cerebellar vermis
and dentate nuclei. Furthermore, PDCP has shown to be a
robust metabolic indicator of cognitive decline in PD, as its
scores were stable in a group of patients which was scanned
twice over two months (101). PDCP encompass both posterior
and frontal changes as well as compensatory hypermetabolic
changes and therefore present a reliable, objective biomarker
of cognitive decline. Similarly, another specific brain metabolic
network, termed PD-related pattern (PDRP), which correlates
with the severity of motor symptoms, was identified prior to
PDCP (102). PDCP was later also identified in two different
cohorts and the results significantly correlated with the original
one (103, 104). Both newly-derived PDCPs also correlated
with neuropsychological tests of executive functions (103,
104). Two longitudinal studies showed that the expression
of PDCP increases over time, but its expression lags behind
the expression of the motor function related PDRP (105,
106). This is in consistence with clinical findings in PD,
where motor symptoms precede significant cognitive changes
(1). Furthermore, it was shown that PDCP expression is in
correlation with the worsening of cognitive impairment (107)
and with the loss of dopaminergic input in the anterior
striatum, particularly in the caudate nucleus, as shown with
dopamine transporter imaging ([18F]-fluoropropyl-β-CIT PET
and [18F]-fluorodihydroxyphenylalanine (FDOPA) PET) (108,
109). Hypermetabolic cerebellar changes, once argued to be an

FIGURE 2 | Parkinson’s disease dementia (PDD)-cognition related pattern

identified by scaled subprofile model/principal component analysis (SSM/PCA)

from a group of 18 demented PD patients. Pattern significantly correlated with

Mini-Mental State Exam Score (r = −0.483, p = 0.042). PDD-related cognition

pattern is characterized by hypometabolism in the left caudate nucleus, middle

and posterior cingulate gyri, temporal regions, amygdala, hippocampus and

midbrain and no metabolic increases were found. Voxels showing metabolic

decreases are color-coded blue. Reprinted with permission from Ko et al.

(111).

artifact (77), have recently been proven a true feature of cognitive
decline representing a compensatory activation of cognitive
networks including the cerebropontocerebellar tract (81). Since
original PDCP was identified in non-demented patients, further
studies explored its relationship to other dementia syndromes.
Mattis et al. applied TPR algorithm to calculate individual’s
expression of PDCP and showed that it is not expressed in
patients with AD (110). Ko et al. identified a different and specific
brain metabolic pattern of cognitive decline in PDD (Figure 2).
PDD cognition-related pattern was characterized by decreased

metabolism in the left caudate nucleus, middle and posterior
cingulate gyri, temporal regions, amygdala, hippocampus and
midbrain and no metabolic increases were found. This pattern
was identified in a group of patients with PDD with an average
age of 70.7 years and MMSE score 16.2. PDD cognition-
related pattern negatively correlated with MMSE score (111). Its
topography is similar but not identical to the PDCP identified in
non-demented PD patients. Similar but not the same statistical
methods were recently used on resting-state functional MRI data
(rs-fMRI). Independent component analysis identified rs-fMRI
PDCP (fPDCP), which was topographically similar to its FDG-
PET derived counterpart. fPDCP was characterized by reduced
regional activity in the precuneus, medial parietal cortex, medial
prefrontal and supplementary regions, thalamus and inferior
parietal cortex (112). For a more detailed explanation of PDCP,
we refer the reader to a recently published review article (113).
The detailed table with studies investigating neuropsychological
changes in correlation with glucose metabolism in Parkinson’s
disease is available as a supplementary material (Table S1).
Future studies may be warranted to investigate the PDCP or
fPDCP’s ability to detect individuals with worse prognosis of
cognitive decline.

MULTIPLE SYSTEM ATROPHY

In general studies investigating metabolic changes in correlation
to neuropsychological findings are lacking in MSA. A few
studies conducted so far showed consistent hypometabolic
changes in frontal cortex, striatum and cerebellum, the latter
only in MSA-cerebellar or mixed-type (114–116). As cognitive
impairment progresses in multiple domains, hypometabolic
changes were not unexpectedly observed in temporo-parietal
regions (115). Another group found no correlation between
glucose metabolism and MMSE scores (114), but MMSE is
probably not sensitive enough to detect cognitive changes in
MSA and more detailed neuropsychological testing may be more
appropriate in MSA patients.

DEMENTIA WITH LEWY BODIES

In DLB metabolic brain changes are found in temporo-parietal,
posterior cingulate, frontal association and primary visual cortex
(117–119). A small study (11 patients) from Fujishiro et al.
showed that hypometabolism in primary visual cortex can predict
DLB in non-demented individuals (120). Furthermore, Sala et al.
showed disruption of posterior cortical networks inDLB patients,
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especially in the primary visual network (121). Specific disease-
related changes in glucose metabolism can be seen in DLB
patients even before the development of distinct clinical picture.
Early detection of such changes may thus significantly shorten
the time to correct diagnosis (122).

Only a few studies directly compared PDD to DLB which
are clinically and pathologically similar syndromes and even
these with conflicting results. Hypometabolic changes were
found in the anterior cingulate cortex in DLB patients in
one study (123), while another one found no differences
in metabolic topography between DLB and PDD (124).
Abovementioned PDD cognition-related pattern was expressed
also in DLB patients, though the difference in expression
was of borderline statistical significance and there is a need
for further exploration of network differences between these
two disorders (111).

Awareness of memory impairment was studied on a
group of DLB patients and it was found to correlate with
hypometabolism in the posterior cingulate cortices bilaterally
and the right orbitofrontal cortex (125). Recently, a large
multicenter study of 171 DLB patients used whole-brain
parcellation approach guided by PCA and followed by
linear regression analysis to identify metabolic patterns
correlated to the core features of DLB and cognitive decline.
Cognitive fluctuations were found to be associated with
hypometabolism in bilateral occipital cortices and with
hypermetabolism in the parietal lobe. Furthermore, a sensitivity
map of the disease severity (measured by MMSE score)
was constructed and the posterior cingulate cortex was
identified as a region most closely correlated with the decline in
MMSE (126).

RAPID EYE MOVEMENT SLEEP BEHAVIOR
DISORDER AND PURE AUTONOMIC
FAILURE

RBD is a prodromal phase of Lewy body disorders and even
at this prodromal stage metabolic changes pointing toward
PD, DLB, or MSA can be seen (40, 127, 128). SSM/PCA
network analysis was used to identify RBD-related pattern
(RBDRP). It was characterized by increased metabolic activity
in the pons, thalamus, precentral gyrus, supplementary motor
area, medial frontal gyrus, hippocampus, parahippocampal
gyrus, supramarginal and inferior temporal gyrus, and posterior
cerebellar tonsils and associated with decreased metabolic
activity in the occipital regions, midbrain (red nucleus)
and superior/middle temporal gyrus. Interestingly, expression
of RBDRP was high in early-stage, but not in late stage
PD (129), which hints toward the change in predominant
networks involved in diseases as it progresses from RBD
to PD. RBDRP was later identified also in a different
cohort of patients (130, 131). Surprisingly, the univariate
analysis does not reveal increased metabolism in thalamus,
supplementary motor area and extensive cerebellar changes
(132), meaning that multivariate analyses may detect subtler
brain activity changes compared to the univariate ones. The

RBDRP’s expression was found to be significantly higher
in PD-MCI patients than in PD patients without cognitive
decline (130) and it correlated with tests of executive function
(131). RBDRP’s expression may therefore be related to worse
cognitive status in individual PD patients. To the best of
our knowledge RBDRP’s expression has not been investigated
in DLB as of yet. But interestingly, there are metabolic
differences between DLB patients with and without RBD,
with the former having more extensive metabolic decreases
throughout the whole brain (119). There are no published studies
investigating neuropsychological and metabolic changes in pure
autonomic failure.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Neuropsychological changes are among the most common
and debilitating non-motor symptoms in PD, they are
essential for DLB diagnosis and seem to be present in RBD
already. FDG-PET brain imaging is a valuable tool to study
the underlying mechanism of cognitive dysfunction in
PD and other α-synucleinopathies. We may conclude that
neuropsychological data in PD and related α-synucleinopathies
correlate with metabolic neuroimaging data, although there
are some controversial findings in these metabolic-cognitive
correlations, which should be further addressed. Similarly so, the
differentiation between the causal and compensatory metabolic
changes in these disorders.

Although the studies investigating neuropsychological
changes and glucose metabolism in PD related α-
synucleinopathies are not many and a majority of them are
retrospective, results do reveal correlates of impaired cognition
already in RBD and those in most cases predicts the evolution
into α-synucleinopathies.

Further research effort should be directed toward prospective
follow-up studies of these syndromes from their prodromal
stages, to be able to capture subtle metabolic brain changes,
already before dementia arises. These may become valuable
biomarkers of disease progression and/or conversion to
dementia. Recent methodological advances brought forth
various objective and quantifiable covariance patterns, which
consistently and reliably correlate with cognitive changes
and may already predict the disease progression. However,
future research is needed to validate these disease-related
patterns in larger, multicentric cohorts taking into account an
important need for standardization of imaging reconstruction
and analysis protocols (133).

Furthermore, topics beyond the scope of this review—
neuropsychiatric changes, such as apathy, anxiety
and depression, which are common in patients with
neurodegenerative brain disorders, need to be addressed as
well as their impact on patients’ cognitive functions and
brain metabolism.

Last but not least, new analytical tools, such as deep
learning, that are currently under development may be able
to pick up complex neurological circuits involved in cognitive
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changes in combination with imaging of the neurotransmitter
changes that underlie the brain activity changes in PD and
other α-synucleinopathies.
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Recently, an increasing interest in investigating interactions between brain regions

using functional connectivity (FC) methods has shifted the initial focus of cognitive

neuroimaging research from localizing functional circuits based on task activation to

mapping brain networks based on intrinsic FC dynamics. Leveraging the advantages

of the latter approach, it has been shown that despite primarily invariant intrinsic

organization of the large-scale functional networks, interactions between and within

these networks significantly differ between various behavioral and cognitive states. These

differences presumably indicate transient reconfiguration of functional connections—an

instantaneous process that flexibly mediates and calibrates human behavior according

to momentary demands of the environment. Nevertheless, the specificity of these

reconfigured FC patterns to the task at hand and their relevance to adaptive processes

during learning remain elusive. To address this knowledge gap, we investigated (1)

to what extent FC within the somatomotor network is reconfigured during motor

skill practice, and (2) how these changes are related to learning. We applied a

seed-driven FC approach to data collected during a continuous task-free condition,

so-called resting state, and during a motor sequence learning task using functional

magnetic resonance imaging. During the task, participants repeatedly performed a short

five-element sequence with their non-dominant (left) hand. As predicted, such unimanual

sequence production was associated with lateralized activation of the right somatomotor

cortex (SMC). Using this “active” region as a seed, here we show that unimanual

performance of the motor sequence relies on functional segregation between the two

SMC and selective integration between the “active” SMC and supplementary motor

area. Whereas, greater segregation between the two SMC was associated with gains

in performance rate, greater segregation within the “active” SMC itself was associated

with more consistent performance by the end of training. Nether the resting-state FC

patterns within the somatomotor network nor their relative modulation by the task state
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predicted these behavioral benefits of learning. Our results suggest that task-induced

FC changes reflect reconfiguration of the connectivity patterns within the somatomotor

network rather than a simple amplification or silencing of its intrinsic dynamics. Such

reconfiguration not only supports motor behavior but may also predict learning.

Keywords: motor cortex, motor learning, motor sequence, memory representation, functional connectivity,

fMRI—functional magnetic resonance imaging, resting state, task activation

INTRODUCTION

The neural basis of high dimensionality (e.g., a large repertoire
of actions that can be performed in various ways) and
adaptability of human behavior has been extensively studied with
functional magnetic resonance imaging (fMRI) (1, 2). Using this
technological approach, the brain-behavior relationships have
been primarily investigated by localizing task-activated brain
regions, i.e., areas that exhibit significant increases in mean
blood-oxygenated-level-dependent (BOLD) fMRI signal during
tasks compared to rest or control conditions [for reviews, please
see (3, 4)]. Over the past decade, however, there has been

an exponential increase in the number of studies investigating

spontaneous hemodynamic activity measured at rest with fMRI;

that is, while participants lie quietly in the scanner without any
explicit task or stimulus. In fact, assessing correlations of BOLD
signal between brain regions during this resting state—a method
referred as functional connectivity (FC) (5)—has proven to be a
valuable technique for mapping functional networks, including
the somatomotor system (6–11). A highly synchronized neural
activity between distributed brain regions forming functional
networks has been repeatedly demonstrated not only at rest
but also during various tasks indicating their resilience to the
behavioral or cognitive context (12–15). Together with the
observation that spontaneous fluctuations in neural activity
account for variability in task-evoked activations and associated
behaviors (16–18), such findings lend support to the notion
that functional networks in the brain are primarily invariant
across behavioral states, whereas momentary demands of the
environment play only a modulatory role in their intrinsic
functions (19). As such, this view suggests that the functional
ability and processing capacity of the brain can be inferred
based on FC dynamics during the resting state, meaning that
these intrinsic dynamics not only reflect unceasing intrinsically
synchronized activity patterns, which are constrained by neuro-
anatomical connections (20), but they also determine task-
evoked activation and behavior (15, 21–25).

Recently, however, it has become clear that, despite the state-
invariant, intrinsic organization of the large-scale functional
networks, interactions between and within these networks during
the task state significantly differ from their interactions during
the resting state (26, 27). Such dissociation between the two
states is expressed by rather complex pattern of FC changes, even
during simple activities such as passive movie watching (26, 28),
with some connections being significantly weakened, whereas
others strengthened or unchanged. Although these changes
are relatively small, in terms of their magnitude, it has been

argued that at least some of them reflect reconfiguration of the
functional neural connections rather than a simple amplification
or silencing of the intrinsic brain dynamics. This idea of rapid
reconfiguration is supported by previous work showing that
some of the task-induced changes in the individual whole-brain
FC patterns are specific to the ongoing task, hence allowing
to accurately decode the type of cognitive processing imposed
by such task (29, 30). Moreover, some of those transient FC
patterns are related to individual differences in performance
levels, suggesting that they are relevant to behavior (27, 31–
38). Thus, despite a mainly preserved intrinsic large-scale FC
topography across behavioral states, some transient changes in
FC on a smaller scale, as captured with the BOLD-fMRI signal,
may be the ones that grant humans the ability to flexibly adapt
their behavior according to the task at hand (13, 14).

Yet, the relevance of task-induced changes in FC to specific
behavior and adaptive processes during learning remains elusive.
For instance, it has been shown that the FC strength between
and within functional networks increases with task complexity,
greater attentional demands, and better performance levels (31,
38–40), but may decrease with learning, which would indicate
diminished cognitive control and sensory input dependency to
enable automaticity (36, 41). It is worth noting that changes in
FC are not limited to task-activated regions and may be dictated
by the region’s functional connectivity profile (i.e., a relative
number of within- and between-network connections) (13), and
the level of information processing (e.g., primary vs. multimodal
associative areas) (42). Specifically, primary sensory and motor
circuits have been found to be particularly prone to change their
FC patterns when the brain is engaged in the task, as compared
to the resting state. However, our current understanding of these
dynamics under specific conditions and their potential role in
learning is rather limited.

In the current study we sought to assess the extent to which FC
of the somatomotor network is reconfigured by the task state and
how these changes support motor task execution and learning.
The hypothesis that some aspects of learning are associated with
the FC of the somatomotor network during the resting state
was also tested. To this end, we applied FC analyses to data
from the fMRI experiment conducted by Albouy et al. (43), who
scanned participants during both the continuous resting state
period and a motor sequence task. During the task, participants
repeatedly performed a short five-element sequence using their
non-dominant (left) hand. Prior to the task, they were asked
to memorize the sequence, i.e., five digits in the predetermined
order—this amount of information is within the normal working
memory capacity (44) and is easily remembered. In that way,
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during the task, participants were able to reproduce the sequence
continuously in a self-paced manner without relying on any
external cue or input. Also, no feedback was provided at any time
during the actual performance.

This approach suits well our goal to investigate FC dynamics
within the somatomotor network during motor execution and
learning for several reasons. First, this version of the motor
sequence learning task has been widely used to probe motor
executive function, and is thought to engage the somatomotor
network in relative isolation from the rest of the brain (31,
38). The segregation of the somatomotor network from other
functional networks not only underlies actual motor sequence
production, but is also associated with higher performance
levels and better learning (23, 31, 41, 45). This suggests
that specialized regions within this low-level network may
contain dedicated neural populations that encode and represent
motor sequences (46–48). Second, the stimulus-free mode of
performance and the continuous nature of the task minimize
attentional and cognitive load, thereby allowing greater isolation
of the endogenous processes within the somatomotor network.
This design is also advantageous for separation between the
task-evoked activation and task-based FC patterns—an issue
that is inherently present during stimulus-driven and event-
related paradigms (49). Finally, the unimanual motor sequence
production allowed us to compare FC dynamics between the
two somatomotor cortices (SMC) that have highly coherent
intrinsic activity but are differentially recruited during the task
and, therefore, may differentially contribute to learning (50,
51). Such focus on the FC dynamics within the somatomotor
network will provide novel insights into the type and level
of knowledge represented within this primary circuit—a topic
that has been debated for several decades but still remains
controversial (46, 48, 52, 53).

Operationally, we refer to increases in FC strength as evidence
for greater functional integration and information sharing,
whereas decreases most likely reflect more segregated processing.
Both processes may act in parallel and operate on multiple spatial
scales affecting FC strength between networks, between regions
within the same network, or between neural populations within
the same region. Some of these changes, however, may also
reflect reduction of correlated noise. Animal studies suggest that
stimulus-driven noise reduction is a general property of the brain
(54). It contributes to overall stabilization of functional circuits
when the brain is engaged in information processing but lacks
specificity and, by itself, does not improve fidelity of neural
encoding (55, 56).

Using a seed-driven approach with the seed ROI within the
SMC contralateral to the performing hand (i.e., the “active”
SMC), our analyses were primarily focused on changes in
FC within this task-activated region itself as well as between
the two SMC. In addition, significant changes in FC with
the supplementary motor area (SMA)—a region presumably
involved in sequence representation across multiple domains
(57)—are also reported. Similar to the SMC, the SMA contains
somatotopic information (58, 59) and is part of the somatomotor
network (11, 15, 60, 61). Specifically, we sought to distinguish
between FC dynamics associated with (1) selective engagement of

task-relevant neural representations during motor performance
(62, 63) and (2) selective stabilization of these representations
during practice (64)—two experience-driven processes proposed
by animal studies. Clear behavioral consequences of the
execution of the motor sequence task provide a reliable basis to
assume that changes in FC between the resting and task states will
capture reorganization within the somatomotor network relevant
to motor performance. It is also well-established that repeated
experience with the motor sequence results in faster and more
stable performance (46, 47, 52, 65–68), thereby providing reliable
and testable behavioral correlates of learning at the level of action
execution and action selection (69).

MATERIALS AND METHODS

Ethics Statement
All participants gave their written informed consent to take
part in the study, which was approved by the Research
ethics board of the RNQ (Regroupement Neuroimagerie
Québec). All procedures were in accordance with the approved
guidelines and regulations. Participants were compensated for
their participation.

Participants
The current report is based on the analyses of data collected
during the initial resting state scan and the training session
from a previous fMRI experiment published elsewhere (43). The
sample included 55 healthy young right-handed (70) volunteers
(mean age: 24.1 ± 3.5 years, 34 females) who were recruited
by local advertisements to participate in the study. Participants
were included in the study if they reported no history of medical,
neurological or psychiatric disease. None of them were taking
medications at the time of testing. All participants had a normal
quality of sleep, as assessed by the Pittsburgh Sleep Quality
Index questionnaire (71) and the St. Mary Hospital questionnaire
(72). Also, none of the participants received formal training as a
musician or as a typist.

In addition to the above-mentioned exclusion/inclusion
criteria, we have also removed some participants’ data from the
analysis based on their performance. As such, one participant
was excluded because his initial performance rate was slower
than the group average by more than three standard deviations
indicating a significantly lower general ability to use the keypad
(participant’s and group average time to complete the first three
training blocks: 56.34 and 28.94 ± 8.01 s, respectively). Two
additional participants showed very low accuracy levels by the
end of training with only six correctly performed and completed
sequences or less (out of the 12 repetitions of the sequence)
during each of the last three blocks. Five others showed degraded
performance levels by the end of training with slower tapping rate
during the last than during the first three blocks. Poor accuracy
and decreased performance rate below its initial levels by the end
of training may indicate loss of interest or attentional biases that
are out of the scope of the current study. Finally, one participant
had excessive head movements and one participant did not have
resting state data. Consequently, a total of 45 subjects, out of 55,
were included in the analyses.
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Overall Experimental Design
All scanning runs were performed using functional magnetic
resonance imaging (fMRI) while participants were lying supine
in the scanner. First, participants underwent a resting state scan
(6min 40 sec) keeping their eyes open and looking at the fixation
cross. They were asked to remain still and “not to think about
anything in particular.” In that way, intrinsic activity during the
resting state was not affected by the experience with the motor
sequence task per se (73, 74). Next, while still in the scanner,
participants received instructions about the motor sequence task
(see below) and were scanned again while being trained on this
procedural paradigm.

Motor Sequence Task
The motor sequence task was designed according to a paradigm
that has been widely employed to study procedural memories
in humans since its development (46) and was programmed in
Matlab R2014a (The Mathworks, Inc., Natick, MA) using Cogent
2000 developed by the Cogent 2000 team at the FIL and the
ICN and Cogent Graphics developed by John Romaya at the
LON at the Wellcome Department of Imaging Neuroscience
(http://www.vislab.ucl.ac.uk/cogent_2000.php). Training on this
task required participants to tap a five-element sequence of
finger movements on a keypad using their non-dominant (left)
hand (Figure 1). The sequence (4-1-3-2-4) was introduced to
participants using the numbers from 1 to 4 that corresponded
to the four fingers of their left hand (excluding the thumb) from
the index to the little finger, respectively. Participants received
a full explicit introduction of the sequence and were asked to
memorize it. The training session was initiated only after the
sequence was reproduced three times in a row, without any
error. During the actual training, participants were asked to
look at the fixation cross and to tap the memorized sequence
repeatedly “as fast and with as few errors as possible.” In case
of occasional errors, they were instructed “to continue with the
task from the beginning of the sequence.” No feedback was
provided to the participants about their performance at any time
of the experiment. The training session consisted of 14 successive
blocks of practice with 60 keypresses within each block, i.e.,
equivalent to 12 repetitions of the sequence, and 15-s periods of
rest between the blocks. Thus, the duration of the training blocks
varied between participants as a function of their performance
rate. Furthermore, participants developed faster performance
rate spending less time to complete each block as training
progressed. During the rest periods, participants were instructed
to remain still and look at the fixation cross. A change in color
of the fixation cross, from red to green and from green to red,
indicated the beginning (“GO” cue) and the end (“STOP” cue) of
each training block, respectively. Participants’ performance was
recorded by saving the code-number (i.e., 1, 2, 3, or 4) and time
of each keypress.

Behavioral Data Analyses
It has been consistently shown that experience with explicitly
known motor sequences is associated with substantial changes
in performance rate while the number of errors is extremely
low (43, 52, 65, 66, 75). In line with these observations, the

FIGURE 1 | Motor sequence task. Participants were instructed to tap a

five-element sequence (4-1-3-2-4) on a keypad using their left hand. The

session consisted of 14 successive performance blocks with 60 keypresses

each, equivalent to 12 repetitions of the sequence, separated by 15-s periods

of rest. During performance blocks, participants were asked to look at the

fixation cross and to tap the sequence repeatedly “as fast and with as few

errors as possible.” A change in color of the fixation cross, from red to green

and from green to red, indicated the beginning and the end of each

performance block, respectively.

number of errors in the current sample of participants was indeed
very low with 0.75 ± 0.08 errors per block (mean ± s.e.m.; an
error corresponding to all, i.e., one or more, keys comprising
one unsuccessful attempt/trial to perform the sequence—the
initiation of each trial was determined by the first two elements
within the sequence, i.e., 4-1. . . , and included these and following
keypresses till the next trial; all incorrect keys following correctly
performed and completed sequences till the next trial were also
considered as an error). Therefore, performance levels were
assessed using a measure reflecting performance rate, i.e., the
time (duration in sec) per block spent executing the motor
sequence task (43, 75).

In addition to the development of faster performance, motor
sequence learning also involves the formation of a novel tapping
rhythm or pattern to generate the same sequence of movements
(76). The tapping pattern, which is defined here as the relative
temporal spacing between consecutive keypresses, may vary in
the beginning but stabilizes by the end of the initial training (75).
To assess experience-driven changes in that pattern, we used the
same approach as the one published in our previous reports (75,
77). This approach estimates individual changes in the tapping
pattern using correlation coefficients, thereby allowing to account
for the inter-subject differences in the overall performance rate
and the tapping pattern variability (68, 76, 78). To do so, we
first extracted inter-keypress intervals, i.e., durations between
successive keypresses, within and between all correctly performed
and completed sequences separately for each performance block
(Figure 2A). Next, these intervals were averaged according to
their position within and between sequence repetitions in each
block; values that were two standard deviations away from their
corresponding mean were excluded. This procedure resulted
in 14 five-element vectors (one for each block) representing
individual tapping patterns of the sequence throughout the
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training. Finally, changes in these patterns were assessed using
Fisher’s z-transformed Pearson’s correlation coefficients. These
coefficients were calculated for blocks 1–13 using the tapping
pattern generated during the last block as a reference. Thus,
these correlation coefficients indicated the degree of similarity
to the tapping pattern formed by the end of training. This
measure is sensitive to the relative differences between successive
keypresses so that higher values correspond to greater pattern
similarity, i.e., greater consistency, and vice versa. However, it
does not directly reflect changes in the overall performance
rate. Furthermore, the correlation coefficients are sensitive to
dynamic changes in the tapping pattern independently of its
specific characteristics, such as shape and chunks, allowing valid
comparisons at the group level without making any assumption
in that regard.

Individual measures, reflecting performance rate and the
degree of tapping pattern similarity, were analyzed using
Statistical Package for the Social Sciences (SPSS Statistics for
Windows, Version 24.0; IBM Corp., Armonk, NY). The analyses
were run separately for each measure using repeated measures
Analysis of Variance (ANOVA) with block as a within-subject
factor. The results were corrected for non-sphericity violation
using the Greenhouse-Geisser adjustment, when appropriate.We
also calculated individual training-related gains in performance
rate and the degree of tapping pattern similarity by averaging
performance duration and correlation coefficients across the
last six blocks. The former values were converted into percents
relative to the mean performance duration during the first six
blocks to account for inter-subject differences in the initial
performance rate. These values were then used as covariates in
analyses of functional connectivity patterns (see below).

fMRI Data Acquisition
The fMRI time-series were acquired using a 3.0 T TIM TRIO
scanner system (Siemens, Erlangen, Germany), equipped with a
32-channel head coil. T2∗-weighted axial fMRI images sensitive
to change in the BOLD signal were obtained with a gradient echo-
planar sequence using interleaved acquisition mode in ascending
direction (TR= 2.65 s, TE= 30ms, FA= 90◦, FoV= 220× 220
mm2, matrix size = 64 × 64 × 43, voxel size = 3.4 × 3.4 × 3
mm3, 10% inter-slice gap). T1-weighted sagittal 3D MP-RAGE
structural images were also obtained (TR= 2.30 s, TE= 2.98ms,
TI= 900ms, FA= 9◦, FoV= 256× 256 mm2, matrix size= 256
× 256× 176, voxel size= 1× 1× 1 mm3).

fMRI Data Preprocessing
Both structural and functional images were converted to the
Neuroimaging Informatics Technology Initiative (NIfTI) format
using MRIcron (University of South Carolina). Preprocessing
of the data was carried out with SPM12 (http://www.fil.
ion.ucl.ac.uk/spm/software/spm12/; Wellcome Trust Center for
Neuroimaging, London, UK) operating under Matlab R2014a
(The Mathworks, Inc., Natick, MA). Functional volumes were
realigned using a least squares approach and a six-parameter
(rigid body) spatial transformation to correct for a movement-
related variance. Following segmentation and skull-stripping
of the structural data, functional images were coregistered

FIGURE 2 | Behavioral results. (A) Tapping patterns, i.e., patterns of

inter-keypress intervals, for each performance block (Block 1–14) are shown

for two representative subjects. Each line connects data points representing

mean duration (i.e., inter-keypress interval) for each of four possible transitions

between successive elements within a sequence (from 1st to 4th) plus an

additional transition between sequences (btwn) for each block. Thus, the

shape of each line depicts an individual tapping pattern for a single block.

Note, that the initial tapping pattern and its changes throughout the training

differed between participants. With practice, the tapping pattern became

progressively more similar to the one generated during the last training block

(Block 14, red line). Yet, such increased similarity does not necessarily imply

faster performance rate. (B) Performance duration and degree of tapping

pattern similarity averaged across participants are shown for each

performance block. The duration of each performance period was assessed in

seconds starting from the first keypress following the “GO” cue. The degree of

tapping pattern similarity to the tapping pattern formed by the end of training

(i.e., during block 14) was assessed based on normalized Pearson’s

correlation coefficients using the Fisher’s z-transformation. These coefficients

were calculated for each block (blocks 1–13). Error bars represent standard

error of the mean (s.e.m.). Fast improvement in performance speed, as

indicated by significant decreases in performance duration across training

blocks (orange markers), was also paralleled by significant changes in the

tapping pattern so that its similarity to the tapping pattern formed by the end

of training significantly increased (blue columns).

to the individual skull-stripped 3-D anatomical image and
normalized to the Montreal Neurological Institute (MNI) space
using parameters obtained from the segmentation procedure.
The normalized functional images were resampled to voxel
dimensions of 3 mm3 and spatially smoothed with an isotropic
Gaussian kernel with a full-width at half-maximum (FWHM) of
6mm to improve the signal-to-noise ratio. Head motion artifact
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detection was also applied using the Artifact Detection Tools (79)
(normalized z-threshold= 5, movement threshold= 0.9 mm).

Task-Induced Changes in Activity
Task-induced changes in brain activity were assessed on the
preprocessed task-related fMRI images using a general linear
model (GLM) approach implemented in SPM12. This approach
was applied on the preprocessed fMRI images acquired during
scanning of the motor task. Statistical analyses of fMRI time-
series consisted of a two-stage summary statistics model (80).
In the first stage, BOLD signal changes were estimated for each
subject using a fixed-effect GLM. A covariate of interest for
performance periods was modeled as a boxcar function, time-
locked to the onset and duration of each block, convolved with
the canonical hemodynamic response function (HRF). Volumes
with motion artifacts were ignored using nuisance regression.
A high-pass filter of 128 s was used to remove low-frequency
noise. Serial correlations in fMRI signal were estimated through
a restricted maximum likelihood (ReML) algorithm using a
first-order autoregressive plus white noise model. Following
parameter estimation, a linear contrast was defined to test the
mean effect of performance blocks relative to the rest period.

In the second stage, the resulting individual contrast images
(t-maps) were carried forward to the random effects GLM
analysis to assess the consistency of the effect between subjects.
The statistical inferences were done at the group level using
a one-sample t-test. The resulting group activation map
was thresholded at p ≤ 0.05 (two-tailed) using peak-level
family-wise error (FWE) correction over the entire brain and
overlaid on the mean structural image of all participants using
Functional Imaging Visualization Environment toolbox for SPM
(FIVE, http://mrtools.mgh.harvard.edu).

Regions of Interest
Amain region of interest (ROI), which was also used as a seed for
the FC analyses, was defined within the primary somatomotor
cortex (SMC) significantly activated during the task as compared
to rest. All participants used their left hand to perform the
sequence and, therefore, activation within the SMC was strongly
lateralized to the right hemisphere. The ROI within this “active”
SMC was defined as a sphere (r = 6mm) centered at the
nearest local activation maximum to the knob of the precentral
gyrus, that is, the motor hand area (81). Due to the close
proximity between the motor and somatosensory cortices and
their simultaneous activation during the motor sequence task we
refer to this region as a somatomotor hand area throughout the
manuscript. An ROI within the left (“passive”) SMC was also
defined in a similar way, in terms of its size and proximity to
the hand knob, but using the task-related functional connectivity
map of the “active” SMC (i.e., the seed; see below).

Functional Connectivity Analyses
Analyses of functional connectivity (FC) patterns were
performed on the preprocessed functional images acquired
during the resting and task state using the Functional
Connectivity Toolbox (Conn) for SPM (82). FC patterns
were assessed using a seed-driven approach.

Prior to the FC analysis, the data underwent additional
temporal preprocessing. We applied a component-based noise
correction method (CompCor) (83) implemented in Conn to
extract five principal components derived from the white matter
and cerebrospinal fluid. These components were entered as
temporal confounding factors along with the detected volumes
with motion artifacts. For the time-series acquired during
the training on the motor sequence task, the main effect of
performance blocks convolved with the canonical HRF and the
corresponding first-derivative terms were included as additional
confounds. All confounding factors were removed from the
time-series using linear regression. Finally, the resulting residual
BOLD time series were also high-pass filtered (0.008Hz < f).

Individual maps of FC patterns were generated by analyzing
the resting state time-series (6min 40 s, 150 volumes) and the
time-series acquired while participants were performing the
motor sequence task, separately. The overall time spent on actual
performance varied between participants as a function of their
performance rate. On average, they spent 5min and 25 s (123
volumes) practicing the sequence; the total performance time of
the fastest and slowest participant being 3min 42 s (84 volumes)
and 10min 15 s (232 volumes), respectively. The performance
periods were separated from the interleaved periods of rest by
including a regressor related to performance blocks. To take into
account the hemodynamic delay, this regressor was convolved
with a canonical HRF and rectified. Thus, the task-based FC
analyses were performed on the data acquired during continuous
periods of actual performance leaving out the rest. In that way,
FC measures reflected interaction between brain regions during
the task state that was separated from the task-evoked activation
(i.e., global changes in signal from rest to task and vice-versa) or
signal fluctuations during interleaved periods of rest.

FC analyses were performed using the ROI within the “active”
SMC as a seed. Individual FC maps were generated by estimating
Fisher’s z-transformed Pearson’s correlation coefficients between
the BOLD signal averaged across voxels within the seed region
and that at every voxel in the brain.

The individual maps were introduced into a second level
GLM analyses to obtain group-level estimates. The statistical
inferences of the resting state and task-based FC patterns were
done at the group level using a one-sample t-test. Task-induced
changes were assessed by contrasting statistical maps between
the two states ([Task state]—[Resting state]). The resulting maps
were thresholded at p ≤ 0.001 (two-tailed) and overlaid on the
mean structural image of all participants using FIVE. For the 3D
visualization, maps were projected on the inflated mean cortical
surface of all participants using a surface display implemented
in Conn.

Regression Analyses
In addition to the second-level analyses to obtain the group-level
estimates described above, regression analyses with individuals’
behavioralmeasures as covariates of interest were also performed.
This approach allowed us to test for regions where FC
strength with the “active” SMC was associated with individual
training-induced changes in performance. These analyses were
run separately for each performance measure (i.e., gains in
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performance rate and the degree of tapping pattern similarity)
using the task-based FC maps. Possible relationships between
the behavioral measures and the FC during the resting state,
as well as its relative changes induced by the task state were
also tested. Statistical inferences were made at the peak-level
using family-wise error correction (FWE) over a small volume
of interest. The volumes of interest were defined as spheres (r
= 10mm) around a center of each ROI. Statistics for clusters
that survived a cluster-level extent threshold of p < 0.05
following a peak-level threshold of p < 0.005 (two-tailed) is also
reported. The specificity of associations between FC values and
learning measures to the behavioral state was tested as post-hoc
comparisons between correlations from dependent samples using
an online calculator (https://www.psychometrica.de).

RESULTS

Behavioral Results
The time to complete each training block (i.e., performance
duration) and the degree of tapping pattern similarity to the
one attained by the end of training are shown in Figure 2B.
Training-related changes in performance were assessed using
repeated measures ANOVA with block as a within-subject factor.
As expected, training on the motor sequence task led to a
faster performance as indicated by a significant effect of block
[F(6.70, 294.43) = 53.49, p < 0.001]. On average, performance
duration decreased from 30.03 ± 0.97 to 20.73 ± 0.814 s (mean
± s.e.m. of the first and the last training block, respectively).
These robust gains in performance rate were paralleled by

significant changes in the subjects’ tapping pattern as indicated
by a significant effect of block [F(5.92, 260.31) = 4.76, p < 0.001]
on the correlation coefficients between the tapping patterns of
the last training block and each of the other training blocks. The
degree of similarity to the tapping pattern generated during the
last training block increased from 0.78 ± 0.10 to 1.21 ± 0.14
(mean ± s.e.m., Fisher’s z-transformed correlation coefficients
for the first and penultimate training block, respectively). Thus,
practice on the motor sequence resulted not only in faster task
execution, but also in the formation of a new, presumably more
efficient, pattern for generating the motor sequence.

Task-Induced Changes in Activity
Task-induced changes in activity are shown in Figure 3. As
expected, task-evoked activation was strongly lateralized to the
right SMC contralateral to the performing (left) hand with no
significant activation of its homolog within the left hemisphere.
Cortical activations were also observed within the supplementary
motor area (SMA) as well as in the dorsal premotor and parietal
regions, bilaterally.

Task-Induced Changes in Functional
Connectivity
Task-induced changes in FC were assessed using a whole-
brain functional connectivity analysis approach with the ROI
within the “active” SMC as a seed. Comparison of the FC
patterns between the resting and task states revealed that
during the task the FC strength within the somatomotor

FIGURE 3 | Regions of interest and task-induced changes in activity. A

statistical map of the whole-brain analysis of task-induced changes in activity

was thresholded at p < 0.05 (two-tailed) using peak-level family-wise error

(FWE) correction over the entire brain. The map is displayed over the mean

structural image of all participants. Color bar represents t values with

yellow-red and green-blue shades indicating regions with task-induced activity

increases and decreases, respectively. Regions of interest (ROIs, white circles)

were defined as spheres (r = 6mm) within the hand area of the left (“passive”)

and right (“active”) somatomotor cortex (SMC; xyz = −36, −24, 57, and xyz =

42, −21, 57, respectively). Columns represent group mean of task-induced

increases in activity for each ROI. Error bars represent standard errors of the

mean (s.e.m.).

network encompassing bilateral somatosensory and motor
cortices significantly decreased (Figure 4). These decreases
were evident not only in the FC estimates between the two
hemispheres but also within the “active” hemisphere contralateral
to the performing hand. Specifically, FC values between the
two ROIs within the somatomotor hand areas during the
task state were significantly lower than during the resting
state (Figure 4, left plots), indicating task-induced functional
segregation between the two SMC. These decreases reflected
only a relative decline in FC between the “active” and “passive”
SMC, as indicated by FC values significantly greater than zero
during either state (t > 17.43, p < 0.001). The preserved
functional connections between the two SMC during unimanual
task are in line with the resilience of intrinsic brain networks to
momentary demands of the environment (19). The significant
task-induced decreases in the FC strength were also observed
within the “active” somatomotor hand area itself, despite the
increased task-induced activation of this primary region. Such
suppressive effect of the task state on the FC strength within
the “active” SMC may derive from selective synchronization
and amplification of activity within neural populations that
are better suited to elicit the desired action, thereby locally
segregating them from other task-irrelevant units within the
same ROI. These changes in the FC strength within the “active”
SMC were statistically robust, yet, relatively small, in terms
of their magnitude, as compared to the particularly high FC
values across the two states (mean ± s.e.m: 1.54 ± 0.04
and 1.26 ± 0.03, for the resting and task state, respectively)
(Figure 4, right plots), indicating strongly synchronized intrinsic
activity between neural populations representing the performing
hand. This relative decline in FC strength with the “active”

Frontiers in Neurology | www.frontiersin.org 7 November 2019 | Volume 10 | Article 124298

https://www.psychometrica.de
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gabitov et al. Functional Connectivity During Motor Learning

FIGURE 4 | Task-induced change in the whole-brain functional connectivity of the “active” somatomotor cortex. The results of the whole-brain analysis are showing

regions where FC with the hand area of the “active” SMC significantly changed during the motor sequence task comparted to the resting state ([Task state]—[Resting

state]). The analysis was performed using the ROI within the “active” SMC as a seed (the white circle). The statistical map is displayed over the inflated mean cortical

surface of all participants at p < 0.001 (two-tailed). A horizontal color bar represents t values with red-yellow and blue-magenta shades indicating task-induced

stronger and weaker FC with the “active” SMC, respectively. L and R—left and right hemisphere, respectively. The values of the FC between the two SMC (the white

arrow) and within the “active” SMC (the white circle) were extracted separately from the resting and task state time-series (lower left and right plot, respectively); the

task-induced decreases in the FC strength between the two SMC and within the “active” SMC are also plotted (upper plots). Columns represent group means. Error

bars represent standard errors of the mean (s.e.m.). SMC, somatomotor cortex.

SMC extended beyond the somatomotor hand areas and was
widespread along both central sulci. Additional decreases were
observed within the occipital lobe, bilaterally. In parallel, the
task state resulted in stronger FC between the “active” SMC
and higher-level parietal, temporal and prefrontal cortical areas,
including the SMA, indicating the need to integrate information
from these regions to meet the task goals. Increased FC
was also observed within the basal ganglia, including bilateral
putamen and thalamus.

Segregation Within the Somatomotor
Network and Learning
We next explored the relationship between FC patterns of the
“active” SMC and the effect of learning. To this end, the reduction
in block duration when performing the task, as ameasure of gains
in performance rate, and the degree of tapping pattern similarity
by the end of training, as a measure for performance consistency,
were calculated for each individual. These measures were entered
as covariates of interest in the whole-brain FC analyses using the
“active” SMC as a seed (Tables 1, 2).

Significant effects within the somatomotor network were
observed only when the correlation analyses were performed
on the task-based FC maps; no significant correlation was
evident with FC estimates within the somatomotor network
during the resting state either with their relative changes when
comparing between the two states (brain regions that exhibited
significant effect are listed in Table 1). Specifically, during the
task, individual differences of gains in performance rate were
associated with weaker FC of the seed ROI (the “active” SMC)
with its homolog in the left hemisphere (Figure 5, right panel;

Table 1.3). Importantly, despite the fact that the analysis was
conducted across the entire brain, the significant effect was
notable only around the hand knob. This result may indicate that
reduced influences of somatomotor representations of the passive
hand on ongoing activity of somatomotor representations of the
active hand facilitated the development of faster performance
rate. Individual differences in the degree of tapping pattern
consistency, on the other hand, were associated with weaker
FC within the “active” somatomotor hand area itself (Figure 6,
right panel; Table 2.3). A similar association was found with FC
values between the seed ROI and SMA. These results link more
consistent performance by the end of training with segregation
processes within the “active” SMC and, presumably, its selective
information integration with the SMA. Note that all associations
were negative (i.e., individuals with greater gains in performance
rate and greater consistency by the end of training had reduced
seed-based FC within the somatomotor network) and specifically
present during the task state (see Table 3 for detailed statistics
of correlation analyses) but not during the resting state (see
also left graphs in Figures 5, 6). The direct comparison between
correlations resulted in significant effect of state (z > 2.53, p <

0.01), confirming that the relationship between FC values and
learning measures differed between the resting and task state.
The significant difference between the two states suggests that
FC patterns within the somatomotor network were reconfigured
during the task. Only these reconfigured patterns predicted
individual differences in learning.

As the results reported above suggest, the two SMC were
functionally segregated during the task as compared to the resting
state (Figure 4). The task-induced segregation, as reflected in
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TABLE 1 | Areas where functional connectivity correlated with gains in performance rate.

MNI coordinates Peak-level statistics Cluster-level statistics

Label x y z z-score p # of voxels p

1. TASK STATE—RESTING STATE

A. Positive correlation

No areas with significant effect

B. Negative correlation

82 0.002

Frontal_Sup_Medial L −6 66 3 4.132 <0.001

Frontal_Med_Orb R 6 54 −9 3.632 <0.001

33 0.029

Temporal_Pole_Mid L −36 9 −45 3.875 <0.001

Temporal_Pole_Sup L −30 15 −33 2.963 0.002

57 0.006

Temporal_Mid L −60 −15 −18 3.718 <0.001

Temporal_Inf L −57 −21 −24 3.226 <0.001

2. RESTING STATE

A. Positive correlation

40 0.028

Frontal_Med_Orb L −9 57 −3 3.831 <0.001

Frontal_Sup_Medial L −6 66 0 3.115 <0.001

B. Negative correlation

84 0.003

SupraMarginal R 69 −42 27 3.552 <0.001

Temporal_Sup R 69 −45 18 2.976 0.002

3. TASK STATE

A. Positive correlation

No areas with significant effect

B. Negative correlation

Postcentral

13 0.137

*left SMC (xyz = −36, −24, 57) L −36 −27 54 3.263 0.046 FWE*

Functional connectivity analyses were performed for the whole-brain using the right sensorimotor cortex as a seed. Gains in speed were included as a covariate of interest. The resulted

maps were thresholded at p < 0.005 (two-tailed). The inferences were made at the peak-level using family-wise error correction (FWE) over a small volume of interest. Volumes of

interest were defined as spheres (r = 10mm) around center coordinates of the regions of interest within the hand area of the somatomotor cortices (SMC) and supplementary motor

area (SMA) (*). Clusters that survived a cluster-level extent threshold of p < 0.05 are also reported. Cluster labeling was performed using AAL (84).

the reduced FC strength, was also evident within the “active”
SMC itself. Did the suppressive effect of the task state on
the FC strength extend to the somatomotor representations
linked to learning? If so, does such effect indicate functional
segregation ormerely an overall reduction of noise correlations—
a phenomenon suggested by animal studies that may lead to
a widespread reduction in connectivity strength at the level
of neural populations (54)? To answer these questions, we
performed correlation analyses on the individual FC values
extracted from clusters (peak voxels) where decreased FC with
the seed (i.e., the ROI within the “active” SMC) was associated
with learning; these clusters are shown in Figures 5, 6. During
the resting state, participants who showed stronger FC within
the “active” SMC itself, also showed stronger FC between the
two SMC (r = 0.38, p = 0.01) (Figure 7, left plot). However,
no significant correlation between these estimates of intra- and
inter-hemispheric interactions was observed during the task
state (r = 0.10, p = 0.51) (Figure 7, right plot). This finding,

which indicates that relationship between the intra- and inter-
hemispheric interactions differed between the two states, rules
out the possibility that suppressive effect of the task state on
the FC strength within the somatomotor network can be fully
explained by the overall noise reduction. Instead, it suggests that
ongoing activity within the “active” and “passive” SMC became
less synchronized during the task compared to the resting state
and thereby indicates task-induced segregation. This segregation
was specifically present between somatomotor representations in
each hemisphere linked with different aspects of learning.

The same analysis performed on the individual FC values of
the seed ROI with the peak of the significant clusters within
the “active” SMC and SMA showed an inverse relationship.
No significant correlation between these values was observed
during the resting state (r = 0.18, p = 0.25). However, during
the task state, participants with stronger FC within the “active”
SMC itself also showed stronger FC between the seed ROI and
SMA (r = 0.45, p < 0.01). This finding indicates that ongoing
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FIGURE 5 | Inverse relationship between individual differences in performance gains and task-based FC strength between the two somatomotor cortices. Gains in

performance rate during the training were negatively correlated with the degree of the task-based functional connectivity (FC) between the two somatomotor cortices

(SMC). The whole-brain FC analysis was performed on the task state time-series using the ROI within the “active” SMC as a seed (the white circle); individual gains in

performance rate were entered as a covariate of interest (middle panel). These gains were calculated as a percentage change in mean performance duration during

the last six vs. the first six blocks of training—higher values indicating greater improvement. Gains in performance rate are plotted against FC values extracted from the

resting and task state time-series (left and right plot, respectively). The FC values were calculated between the ROI within the “active” SMC and the peak voxel of the

significant cluster within the left somatomotor hand area (xyz = −36, −27, 54) (the white arrow). The cyan blob resulted from the statistical maps thresholded at

p < 0.005 (two-tailed). L and R—left and right hemisphere, respectively.

activity of the specific neural populations within the “active” SMC
and SMA, whose FC patterns during the task were inversely
related to more consistent performance by the end of training,
was also stronger synchronized during the task but not during
the resting state.

Differences in Performance Rate as a
Possible Confound
The overall time spent on the actual task performance varied
between participants as a function of their performance rate so
that faster performers spent less time on the task than slower
performers. Therefore, it is possible that the current pattern of
results might be confounded by the inter-individual variation
in the length of the time series used to estimate the task-based
FC. However, neither the gains in performance rate nor the
degree of the tapping pattern consistency by the end of training
were significantly correlated with the individuals’ time spent on
the actual task performance (|r| < 0.20, p > 0.18). Therefore,
the possibility that the current pattern of results can be fully
explained by the differences in the overall performance rate or
the length of the time series is unlikely.

DISCUSSION

In the current study, we investigated how functional connectivity
within the somatomotor network is reconfigured during a
unimanual motor sequence task, and how these changes are
related to individual learning capacities. To do so, we applied
seed-driven functional connectivity analysis to fMRI data
collected in a previous study (43). Participants were scanned
during resting state, as well as during a motor sequence task,

which required them to repeatedly generate a five-element
sequence using their non-dominant hand. Our results suggest
that unimanual performance of the motor sequence relies on
functional segregation between the two SMC and selective
integration between the SMC engaged in the task and the
SMA. We thus provide supportive evidence to the notion
that task-induced changes in FC reflect reconfiguration of
the connectivity patterns within the somatomotor network
rather than a simple amplification or silencing of its intrinsic
dynamics. Such reconfiguration, as captured with the BOLD-
fMRI signal, not only support motor behavior but may also
predict learning capacity.

The Widespread Task-Induced Reduction
in Functional Connectivity
Here we show that the unimanual motor sequence task induced
significant reduction in the FC of the “active” SMC with
extensive regions along the central sulcus, bilaterally. Such
suppressive effect of the task state on the FC strength is
consistent with previous studies that also compared FC patterns
between the resting and task states and reported task-induced
FC decreases within the somatomotor network (13, 28, 85).
However, these within-network decreases were observed across
various paradigms, including passive movie watching (28),
thereby raising the possibility that FC suppression within the
somatomotor network characterizes transitions between brain
states (i.e., from the resting to task state) but may not reflect
specific processes related to motor action. Moreover, previous
findings suggest that the suppressive effect of the various tasks on
the FC strength extends beyond the somatomotor network and
may be a core feature of local brain circuits regardless of their
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TABLE 2 | Areas where functional connectivity correlated with the tapping pattern consistency.

MNI coordinates Peak-level statistics Cluster-level statistics

Label x y z z-score p # of voxels p

1. TASK STATE—RESTING STATE

A. Positive correlation

56 0.006

Cerebelum_6 R 30 −54 −36 4.005 <0.001

Cerebelum_Crus1 R 30 −63 −36 3.825 <0.001

43 0.015

Frontal_Sup_Medial R 6 33 57 3.873 <0.001

B. Negative correlation 32 0.031

Precentral L −30 −3 48 4.076 <0.001

2. RESTING STATE

A. Positive correlation

112 <0.001

Frontal_Sup_Orb R 12 72 −3 4.550 <0.001

Frontal_Med_Orb L −3 69 −3 3.859 <0.001

65 0.007

Precuneus L −12 −60 42 4.110 <0.001

Parietal_Inf L −33 −57 45 3.593 <0.001

B. Negative correlation

121 <0.001

Cerebelum_6 R 30 −54 −36 4.798 <0.001

Cerebelum_Crus1 R 24 −66 −36 4.327 <0.001

Cerebelum_8 R 15 −69 −36 3.324 <0.001

51 0.015

Cerebelum_Crus1 L −33 −57 −39 3.394 <0.001

3. TASK STATE

A. Positive correlation

204 <0.001

SupraMarginal R 57 −45 33 4.274 <0.001

Angular R 57 −57 36 3.185 <0.001

Parietal_Inf R 57 −42 48 3.894 <0.001

Temporal_Sup R 45 −42 3 4.168 <0.001

38 0.017

Angular R 39 −72 42 4.141 <0.001

57 0.005

Temporal_Inf L −42 9 −39 3.348 <0.001

40 0.015

Occipital_Mid R 30 −90 15 3.459 <0.001

B. Negative correlation

Postcentral 18 0.083

*right SMC (xyz = 42, −21, 57) R 33 −21 57 3.796 0.009FWE*

44 0.011

Supp_Motor_Area L −15 0 54 3.540 <0.001

Functional connectivity analyses were performed for the whole-brain using the right sensorimotor cortex as a seed. The degree of the tapping pattern consistency was included as a

covariate of interest. The resulted maps were thresholded at p < 0.005 (two-tailed). The inferences were made at the peak-level using family-wise error correction (FWE) over a small

volume of interest. Volumes of interest were defined as spheres (r = 10mm) around center coordinates of the regions of interest within the hand area of the somatomotor cortices

(SMC)(*). Clusters that survived a cluster-level extent threshold of p < 0.05 are also reported. Cluster labeling was performed using AAL (84).

network affiliation, functional properties or cognitive demands
of the task (31, 86, 87).

Indeed, the widespread task-induced reduction in FC strength
reported by fMRI studies may reflect a global suppression of
noise correlations. Such interpretation is in line with the results
from animal research that has shown attenuation in correlated
variability of neurons’ firing rate, which is commonly considered

as noise, upon various stimuli and task events (54, 55, 88).
This effect was observed across different neural populations
regardless of their tuning properties lending support to the
notion that the suppression of neural variability may be an overall
feature of the cortical response to the task state (54). At the
network level, such reduction of noise implies that functional
circuits become more stable when driven by stimulus or task.
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FIGURE 6 | Inverse relationship between individual differences in degree of the tapping pattern consistency attained by the end of training and task-based FC

strength within the “active” somatomotor cortex. The degree of consistency in the tapping pattern by the end of training was negatively correlated with the degree of

the task-based FC within the hand area of the “active” somatomotor cortex (SMC) as well as between this region and the supplementary motor area (SMA). The

whole-brain FC analysis was performed on the task state time-series using the ROI within the “active” SMC as a seed (the white circle); individual measures of the

tapping pattern consistency were entered as a covariate of interest (middle panel). The degree of the tapping pattern consistency was assessed by averaging

normalized Pearson’s correlation coefficients between the tapping patterns generated during the last six blocks excluding block 14 (i.e., blocks 8–13) and the tapping

pattern formed by the end of training (i.e., during block 14)—higher values indicating greater tapping pattern similarity and, therefore, greater consistency by the end of

training. These coefficients are plotted against FC values extracted from the resting and task state time-series (left and right plot, respectively). The FC values were

calculated between the ROI within the “active” SMC and the peak voxel of the significant cluster within the somatomotor hand area (xyz = 33, −21, 57) (the white

arrow). The cyan blobs resulted from the statistical maps thresholded at p < 0.005 (two-tailed). L and R—left and right hemisphere, respectively.

TABLE 3 | Correlations between the FC strength and behavioral correlates of

learning.

Resting state Task state Correlations’

comparison

between the states

r p r p z p

Gains in performance rate in association with:

FC with the

“passive” SMC

0.58 0.71 −0.47** 0.001 2.53* 0.006

Tapping pattern consistency in association with:

FC within the

“active” SMC

−0.11 0.47 −0.54** <0.001 2.56* 0.005

FC with the SMA −0.003 0.99 −0.51** <0.001 2.69* 0.004

*Significant results at 0.01 level; **Significant results at 0.001 level.

Nevertheless, the reduction of correlated noise lacks specificity
and, by itself, does not improve fidelity of neural encoding (55,
56). If, however, the noise reduction is correlated with the task-
relevant signal, it could improve encoding accuracy and facilitate
learning (89, 90).

Reduction in Functional Connectivity and
Selective Engagement of Task-Relevant
Neural Representations
As predicted in the current study, the task-evoked activation
within the somatomotor hand area was lateralized to the
hemisphere contralateral to the performing hand [e.g., (2, 91–
93)], in line with the known phenomenon of lateralization of

somatomotor representations specifically tuned to movements
generated by contralateral body parts (94). Given the well-
defined somatotopic organization of these representations along
the central sulcus, here we argue that the widespread and
local task-induced reduction in FC with the “active” SMC may
reflect different neurophysiological processes. Specifically, the
suppressive effect of the task state on FC strength between the
two SMC may derive from the overall non-selective suppression
of spontaneous activity to reduce noise correlations. Such
noise reduction may also explain task-induced decreases in FC
between the seed ROI within the “active” SMC and somatomotor
representations of other body parts. The FC suppression within
the “active” somatomotor hand area itself, however, may further
reflect selective co-activation of neural populations that are
particularly tuned to perform the finger tapping task, thereby
segregating them from other intrinsically connected, but task-

irrelevant units. Supporting fMRI evidence of non-selective
decreases in local FC driven by a finger tapping task has been
provided by Lv et al. (95), who showed that both fast and
slow finger tapping rates have a similar suppressive effect on
local FC in the SMC ipsilateral (“passive”) to the performing
hand. The effect observed within the contralateral (“active”)
SMC, however, was different, such that the faster tapping rate,
which usually results in stronger activation of this region (96–
98), was associated with greater reduction in its local FC,
hence indicating a greater segregation. Thus, the combination of
increased task demands, the stronger activation and the more
segregated activity within the contralateral SMC support the
idea that FC dynamics within the “active” somatomotor hand
area observed in our study constitute a signature for selective
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FIGURE 7 | Task-induced segregation between the two somatomotor cortices. Individual functional connectivity (FC) values between the two somatomotor cortices

(SMC) (vertical axis) are plotted against FC values within the “active” SMC (horizontal axis) during the resting and task state (left and right plots, respectively). The FC

values were calculated between the ROI within the “active” SMC (white circle) and peak voxels of clusters resulted from the whole-brain FC analyses, which were

conducted using behavioral measures as covariates of interest (for details see Figures 5, 6). L and R—left and right hemisphere, respectively. *significant correlation

at 0.01 level. During the resting state, FC between the two SMC was positively correlated with FC within the “active” SMC. No such relationship was observed during

the task state.

engagement of task-relevant neural representations duringmotor
task execution.

The idea of selective engagement of task-relevant neural
representations resonates with the emerging recognition that
task-induced changes in FC reflect rapid reconfiguration of
functional connections (26, 27, 42). Evidently, these changes are
relatively small, in terms of their magnitude, as they are probably
constrained by mainly invariant large-scale functional brain
network topography (13, 14). Nevertheless, some characteristics
of such changes are specific to the task at hand, allowing to
accurately decode the task state of a participant (29, 30), and
are linked to better performance (27, 31–38). Notably, weaker
correspondence between FC patterns during the resting and
task states particularly characterizes primary sensory and motor
circuits (42). Such deviation from the intrinsic brain dynamics
may depend on attentional state, stimulus properties, and task
complexity (27, 35, 42, 99), hence supporting the idea that
transient sub-networks within the sensory and motor circuits are
formed to process incoming information or carry out the desired
action. Here we show that reconfigured FC patterns within
the somatomotor network are not only behaviorally relevant,
but may also support learning. In fact, better learning, which
was expressed as a faster and more consistent performance by
the end of training, was related to individual differences in
the FC strength during the task, but not during the resting
state. Such dissociation is consistent with the “idling” view on
the intrinsic brain function during the resting state (26) and
suggests that reconfigured FC patterns within the somatomotor
network during the task can capture the neural dynamics that
sub-serve learning.

Task-Based Functional Connectivity
Strength Is Inversely Related to Learning
Behaviorally, the beneficial effects of motor sequence practice

were assessed based on improved performance rate, which can be

achieved by simple acceleration of single movements reflecting

learning at the executive level, and greater tapping pattern

consistency, which presumably reflects formation of internal

sequence representation (100, 101). Here we show that these

two complementarymetrics to estimate learning are differentially

associated with individual differences in FC strength between the

two SMC and within the “active” SMC itself.

Particularly, participants who exhibited weaker FC between

the two SMC showed greater improvement in performance
rate. The effect within the “passive” SMC was localized

to the hand knob, indicating that greater inter-hemispheric

segregation between somatomotor units representing hand

movements facilitated learning at the executive level. Such

increased autonomy between the two somatomotor hand areas

may reflect the release from inter-hemispheric inhibition—an

effect postulated by transcranial magnetic stimulation (TMS)

studies (102, 103). In fact, it has been shown that virtual

“lesion” to the “passive” SMC induced by repetitive TMS leads

to improved performance in the ipsilateral hand, presumably

due to the suppressed inter-hemispheric inhibition (104–108).

The inter-hemispheric inhibition is also reduced following

unimanual training (109–111) and is associated with faster
performance not only in the trained, but in the untrained hand as
well (111). Alternatively, the improved performance associated
with greater segregation between the two SMC reported here
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may also indicate beneficial effects of release from irrelevant
somatosensory input from the “passive” hemisphere. Indeed, the
cluster showing significant effect within the “passive” SMC is
located slightly posteriorly to the central sulcus encompassing
the somatosensory hand area. To reliably dissociate between
somatosensory andmotor representations nested closely together
around the hand knob, however, higher spatial resolution of
the fMRI data is required. In any case, we suggest that the
facilitatory effect of greater segregation between somatomotor
representations is selective to the effector engaged in the
task (i.e., the hand as compared to other body parts). Thus,
effector-selective “pruning” of inter-hemispheric connections
may facilitate learning primarily at the level of motor execution
rather than movement synergy and sequence representation.
It is worth noting, however, that under certain conditions,
influences from the “passive” SMC are excitatory and may
facilitate performance in a sequence-specific manner (48, 112).

In addition to a faster performance rate, which may develop
due to more efficient execution of single movements regardless of
their serial order, repeated experience with the motor sequence
also shapes the tapping pattern of that sequence (76). Being
determined by the relative spacing between the keypresses, this
pattern may vary at the beginning, but stabilizes by the end of
training (75). In the current study, participants who expressed a
more stable performance by the end of training, hence generating
a highly reproducible pattern when tapping the sequence, also
exhibited weaker FC within the “active” SMC itself during
the task. Animal studies suggest that same movements can be
generated by various activity patterns within the motor cortex
(64, 113). With repeated experience, however, the variability in
these patterns decreases (64, 114). The greater reproducibility of
the spatiotemporal patterns of neural activity concurs with the
emergence of movement stereotypy and, therefore, may indicate
the formation of dedicated internal representations of a new
motor synergy. During initial phases of skill acquisition, these
neural representations are shaped through selective activation
of specialized neural populations and tuning of their firing rate
(115). Evidence from fMRI studies onmotor sequence learning in
humans points out to similar processes (46, 47, 52). Our current
results are thus consistent with the existence of an experience-
driven mechanism of selective tuning and stabilization among
neural populations representing the performing hand. We
suggest that greater selectivity and stabilization of task-relevant
representations are reflected in the reduced FC strength within
the “active” SMC during the task.

Concurrently, the degree of task-based FC strength between
the “active” SMC and SMA was also inversely related to the
degree of performance consistency. Together with task-induced
integration between these two regions, which was indicated
by increases in FC strength during the task compared to the
resting state, such relationship suggests that selective tuning
at the lower level of primary somatomotor cortex may be
governed by higher level processes within the SMA. The latter
interpretation relies on three widely accepted views that are
strongly supported by animal and human studies. First, the SMA
has direct projections to the primary motor cortex (116). These
projections are primarily excitatory (117) and are organized

bilaterally with no clear lateralization (118). Second, the SMA
is situated high within the hierarchy of the motor control
system and is involved in initiation, monitoring and regulation
of voluntary movements (119–122). Finally, this supra-motor
region is crucially involved in sequencing of actions (123–125)
and representations of practiced motor sequences (126–129).
Accordingly, our results add up to accumulative fMRI evidence
suggesting that SMA plays a role in encoding a sequence-specific
pattern of finger movements (130) and orchestrates processes of
rapid reorganization within the “active” SMC.

Methodological Considerations
Currently, there is a growing interest to study cognitive
brain function using large-scale network modeling [for the
recent reviews, please see (131, 132)]. This approach has been
developed upon the foundations of graph theory by leveraging
the mathematical description of a graph, which is composed
of nodes and weighted edges, to represent brain networks.
Nodes are commonly chosen as contiguous volumes/regions
with boundaries defined either anatomically, using parcellation
atlases, or functionally, using community detection algorithms.
Edge weights are commonly defined by a degree of correlation
or coherence between pairs of nodes. The sensitivity of this
approach to dynamic changes within and between functional
brain circuits depends on the size of each node, which
consequently determines their overall number, and the way these
nodes are grouped into networks. Whereas, both factors alleviate
the multiple comparison problem, since they reduce high
dimensionality of the whole-brain fMRI data, as a drawback, they
also inherently reduce local specificity, thereby limiting special
resolution of investigations to large-scale changes. For example,
testing the integration of large-scale functional neural circuitry
during the unimanual motor task, when participants practiced to
generate different sequences upon visual guidance, Bassett et al.
(41) provided evidence for growing autonomy between the visual
and somatomotor systems over the course of a 6-week training
(41). This segregation was also paralleled by disengagement
of cognitive control networks including connections originated
from frontal and anterior cingulate cortices. Whereas, such
autonomy is consistent with the obvious decreased dependency
on the visual cue and higher cognitive processes with practice
[see also (36)], the researchers reported no significant changes
in the overall degree of integration/segregation within the
somatomotor network, which included primary somatosensory
and motor regions representing both the active and passive
hands, as well as SMA. However, when the analysis was
conducted using the intra-network integration values calculated
for each area separately, it revealed significant within-network
changes that were associated with the amount of training
[Supplementary Figure 8 in Bassett et al. (41)]. The results of the
current study are consistent with this supplementary finding and
further suggest that experience-driven reorganization within the
somatomotor network occurs early in learning and involves both
segregation and integration.

There are several key advantages of our study as compared
to others in the literature. First, it is worth noting that our
experimental design employed a motor sequence paradigm
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without any external input or feedback during continuous
periods of actual performance, thereby, minimizing influences
of complex interactions among heterogeneous networks during
the task state. The only external cue provided during the training
was a change in color of the fixation cross, from red to green
and from green to red, that indicated the beginning and the
end of each training block, respectively. Second, this design
also allowed us to separate the functional data collected during
continuous performance periods (i.e., performance blocks) from
the interleaved periods of rest. Finally, continuous nature of
actual performance upon self-guided regime was advantageous
for separation of FC measures from activation biases evoked
at task transitions. In that way, FC values were calculated
based on ongoing fluctuations of the fMRI signal during
continuous periods of either resting or task state, thereby
providing comparable estimates of connectivity patterns between
those states.

CONCLUSION

Our results suggest that a hypothesis-driven seed-based
FC approach reliably captures the task-induced changes in
functional connectivity within the somatomotor network
during the unimanual motor sequence task. These changes are
not limited to the task-activated regions, hence revealing the
existence of distributed processes of segregation and integration

that act in parallel to allow for the generation of fine motor
movements. These reconfigured connectivity patterns not
only support task execution but also facilitate learning. The
limited correspondence between the patterns of task-induced
activity and connectivity is a known phenomenon within the
scientific community. While there is an increasing recognition of
potential benefits of combining the assessment of both metrics
obtained from the task-based fMRI data series in order to
understand cognitive brain functions (133), here we show that
a careful consideration of the activation profile and functional
specialization of each region of interest is not only desirable,
but also critical to draw meaningful conclusions based on FC
measures. In the current study, this approach, in combination
with reliable behavioral correlates of motor sequence learning,
allowed us to tease apart neural dynamics that may drive the
adaptive processes during the initial phases of skill acquisition,
the ones that need to be “silenced” and the ones that should be
selectively pruned to rule out their task-irrelevant influences.

Our results suggest that during the task, more segregated
activity patterns between neural populations representing hand
movements within the somatomotor cortex were beneficial for
the development of both faster and more consistent performance
by the end of training. Whereas, greater segregation between
the two SMC may indicate effector-specific pruning of inter-
hemispheric connections, which may facilitate gains at the level
of motor execution, the same effect observed within the “active”
SMC may possibly indicate the existence of selective tuning and
stabilization processes, thereby resulting in more reproducible
patterns of activity that allow to generate the motor sequence
with greater consistency.
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Impulse control disorder (ICD) is a major non-motor complication of Parkinson’s

disease (PD) with often devastating consequences for patients’ quality of life. In

this study, we aimed to characterize the phenotype of impulsivity in PD and its

neuroanatomical correlates.

Methods: Thirty-seven PD patients (15 patients with ICD, 22 patients without ICD) and

36 healthy controls underwent a neuropsychological battery. The test battery consisted

of anxiety and depression scales, self-report measures of impulsivity (Barratt scale and

UPPS-P), behavioral measures of impulsive action (Go/No-Go task, Stop signal task)

and impulsive choice (Delay discounting, Iowa gambling task), and measures of cognitive

abilities (working memory, attention, executive function). Patients and controls underwent

structural MRI scanning.

Results: Patients with ICD had significantly higher levels of self-reported impulsivity

(Barratt scale and Lack of perseverance from UPPS-P) in comparison with healthy

controls and non-impulsive PD patients, but they performed similarly in behavioral tasks,

except for the Iowa gambling task. In this task, patients with ICD made significantly less

risky decisions than patients without ICD and healthy controls. Patients without ICD did

not differ from healthy controls in self-reported impulsivity or behavioral measurements.

Both patient groups were more anxious and depressive than healthy controls. MRI

scanning revealed structural differences in cortical areas related to impulse control in

both patient groups. Patients without ICD had lower volumes and cortical thickness of

bilateral inferior frontal gyrus. Patients with ICD had higher volumes of right caudal anterior

cingulate and rostral middle frontal cortex.

Conclusions: Despite the presence of ICD as confirmed by both clinical follow-up and

self-reported impulsivity scales and supported by structural differences in various neural

nodes related to inhibitory control and reward processing, patients with ICD performed no

worse than healthy controls in various behavioral tasks previously hypothesized as robust

impulsivity measures. These results call for caution against impetuous interpretation of
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behavioral tests, since various factors may and will influence the ultimate outcomes, be it

the lack of sensitivity in specific, limited ICD subtypes, excessive caution of ICD patients

during testing due to previous negative experience rendering simplistic tasks insufficient,

or other, as of now unknown aspects, calling for further research.

Keywords: impulse control disorder, Parkinson’s disease, impulsive action, impulsive choice, structural MRI, Iowa

gambling task, delay discounting task, stop signal task

INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease
characterized not only by motor symptoms as rigidity,
hypokinesis, and tremor, but also by a variety of non-motor
deficits. Among these non-motor symptoms, impulse control
disorder (ICD) is the one that has a devastating effect on the
quality of patients’ life. In the population of PD patients, ICD
manifests itself in a wide spectrum of impulsive behaviors
such as pathological gambling, binge eating, hypersexuality,
excessive shopping, and also repetitive excessive behaviors like
punding (stereotyped purposeless repetitive behavior), hobbyism
(internet use, reading, art work), walk-abouts (purposeless
wandering), and hoarding (1, 2).

ICD in PD is usually believed to be a consequence of

dopaminergic treatment (2, 3), but recent studies claim that

there is an interaction of medication influence with underlying
vulnerability to impulsive behavior (4, 5). Therefore, it is

important to describe the behavioral pattern and neurobiological
correlates of impulsivity in PD to track possible correlates of ICD
in PD patients. Impulsivity is a heterogeneous concept, which
can be understood as a personality trait or as a consequence
of a neurobiological function deficit. Behavioral models of
impulsivity distinguish impulsive action, which means inability
to inhibit prepotent or unwanted actions (waiting impulsivity)
or inability to stop ongoing action (stopping impulsivity), and
impulsive choice, which includes aspects like high sensitivity to
reward, risk taking, and preference of small immediate rewards to
long-term gains (6). Impulsivity as a personality trait is measured
by self-reported questionnaires, such as the Barratt scale or the
UPPS-P scale; impulsivity as neurobiological deficit is measured
by behavioral tasks.

Research using self-reported methods concluded that
people with certain personality traits are in higher risk of
developing ICD. Specifically, associations between ICD and
higher novelty/sensation seeking, compulsivity, depression,
and anxiety were found (3, 7–9). Impulsive personal traits have
been previously associated with ICD in PD. Patients with ICD
manifest elevated self-impulsivity in the Barratt scale (9, 10).
Other risk factors for developing ICD in PD patients are younger
age/younger age of disease onset, family history of behavior
such as gambling or alcoholism, being man, and being single
(2, 8, 11–14).

Previous research revealed increased impulsive choice, i.e.,
increased tendency to risky or disadvantageous decisions in
general PD population (i.e., ICD status was not reported) (15–
23) or in PD-ICD patients specifically (9, 24, 25). A tendency

to irrational choices and early decisions in the Bead task, a
test of reflection impulsivity, was observed in PD-ICD patients
(26). These patients collected less information than PD patients
without ICD or healthy controls before making a decision.
However, results are not consistent. Study of Voon et al. (27)
reported that PD-ICD patients have greater tendency to risk in
comparison with patients without ICD, but only when there is
only gain possibility, not in a situation with possibility of loss.
Several studies did not find any differences in choice impulsivity
between PD-ICD patients and healthy controls or PD patients
without ICD (28–30) or in general PD population (31, 32).
One study reported only statistical trend toward more risky
decisions in the PD-ICD group in the Iowa gambling task (10).
No significant differences in the performance between patients
with and without ICD were reported in the Balloon Analog
Risk Task (33–35). Ambivalent results were obtained regarding
learning from the negative feedback. Several studies found lower
sensitivity to negative feedback in PD-ICD (33, 36, 37), but others
found no differences between ICD and patients without ICD or
healthy controls (11, 35). Moreover, PD-ICD patients without
medication showed decreased learning from negative feedback
and increased learning from positive feedback compared to the
PD-ICD patients on medication (11). Patients with ICD on
dopamine agonists make faster decisions and more impulsive
choices than patients off medication (28) and show enhanced
sensitivity to risk (27).

Several studies reported increased stopping impulsivity (38–
41) and waiting impulsivity (42) in the general PD population.
However, there are also reports of intact impulsive action in
PD patients without ICD (43) and in PD patients in general
(ICD not specified) (44). Studies conducted on PD-ICD patients
brought evidence of intact impulsive action (10, 45, 46); one study
reported even faster Stop signal reaction time (SSRT), which
means better ability to stop ongoing actions, i.e., lower stopping
impulsivity in PD-ICD patients (43).

Structural imaging methods found evidence of cortical
thickness abnormalities in PD-ICD in the structures related to
impulse control and decision making, namely, the orbitofrontal
cortex (OFC), anterior cingulate cortex (ACC), dorsolateral
prefrontal cortex (DLPFC), and corpus callosum (47–51). A gray-
matter volume loss in amygdala and orbitofrontal cortex and
volume changes in nucleus accumbens (NAcc) and in amygdala
were observed in PD-ICD (21, 47, 48, 52).

There are only few studies directly comparing PD patients
with and without ICD in impulsivity domains. Moreover,
individual studies usually do not target multiple impulsive
domains simultaneously, despite the heterogeneous nature of
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impulsivity. The aim of our study was to describe the phenotype
of impulsivity in PD patients with and without ICD by testing
multiple impulsivity domains. We included three groups into
our research: PD patients with ICD (PD-ICD), PD patients
without ICD (PD-nonICD) and healthy controls (HC). We
used self-reported impulsivity questionnaires (the UPPS-P and
the Barratt scale), behavioral tasks for assessment of impulsive
action (Go/No-Go task, Stop signal task), and impulsive choice
(Iowa gambling task, Delay discounting task). We also measured
depression, anxiety, and cognitive components influencing
performance in impulsivity tasks (attention, working memory,
and executive functioning). Moreover, structural magnetic
resonance images (MRI) were obtained. We analyzed several
brain regions, which were previously in the literature linked to
impulsivity, inhibitory control, and decision making (Table 3).

Based on previous research, we hypothesized that PD patients
with ICD, but not those without ICD, show greater impulsivity
in self-reported scales. Further, we hypothesized that only PD-
ICD patients show increased impulsivity in the Sensation seeking
subscale of UPPS-P in comparison with healthy controls. We
did not make any specific hypotheses for the other UPPS-P
dimensions due to the lack of literature. We expect greater
impulsive choice in the PD-ICD population, but intact impulsive
action. No specific hypotheses were made about impulsive action
and impulsive choice in patients without ICD due to conflicting
literature and lack of literature targeting specifically PD patients
without ICD. We expected PD-ICD patients to show brain
structure abnormalities in comparison with healthy controls in
the prefrontal cortex (orbitofrontal cortex, ACC, and DLPFC)
and NAcc.

METHODS

Subjects
Thirty-seven patients with Parkinson‘s disease and 36 healthy
controls took part in this study; the groups were matched by
age, gender, education, and laterality. All patients were recruited
from the University Hospital of St. Anne, Brno, Czech Republic.
Healthy volunteers were recruited by advertising in local
newspapers. Patients aged 25–75 with a diagnosis of Parkinson‘s
disease based on the UK Brain Bank Criteria (53) were recruited
in the study. All patients were under dopaminergic medication
for at least 12 months preceding the examination and had stable
doses at least for 4 weeks before testing. Exclusion criteria for
all subjects were neurological or systemic disorder with effect on
brain function (except PD in the patient groups), lesions in MRI
scans, comorbid psychotic disease, affective disease or autism
spectrum disorder, mental retardation, cognitive deficit (MMSE
under 27), severe depression, and substance abuse.

Prior to the testing, data about age of the PD onset, Hoehn
and Yahr stage, and medication calculated as levodopa equivalent
dose were obtained, and cognition was examined using MMSE.
Healthy volunteers were assessed by the Mini international
neuropsychiatric interview [MINI; (54)] to exclude any subjects
with psychiatric symptoms. The patients had no self-reported
cognitive problems; none of them scored below 28 in Mini-
Mental State Examination [MMSE; (55)]. Most of the patients

were in stage 2 or 3 according to the Hoehn and Yahr Scale
(56). Fifteen patients had ICD, and 22 patients were without
ICD. Patients with ICD were selected by a neurologist based on
interview with the patient and presence of ICD signs in their
medical records. Only patients with severe behavioral problems
connected to ICD were recruited. The patients showed the
following ICD symptoms: gambling (5 patients), binge eating
(3 patients), hypersexuality (2 patients), hobbyism (1 patient),
compulsive buying (1 patient), hoarding (1 patient), punding
(1 patient), pedantry (1 patient), and excessive cleaning (1
patient). Some of the patients showed more than one symptom
of ICD. The study was approved by the Institutional Ethical
Committee. All participants signed the informed consent prior
to the beginning of the procedure. Characteristics of the sample
are summarized in Table 1.

Experimental Procedure
Subjects underwent a neuropsychological battery of tests and
questionnaires and performed four computerized behavioral
tasks. The test battery included the Barratt scale (57) and the
UPPS-P scale (58–60) for measuring self-reported impulsivity,
the Montgomery-Asberg Depression Rating Scale (61), the Zung
Self-Rating Anxiety Scale (62), and standardized measures of
cognitive functions. Waiting impulsivity was measured by the
Go/No-Go task (GNG), stopping impulsivity was measured by
the Stop signal task (SST), and impulsive choice was assessed by
the Delay discounting task (DDT) and the Iowa gambling task
(IGT). Results are summarized in Table 2. Behavioral tests were
created in E-Prime 2.0 software. The whole testing procedure
took∼2.5 h.

Impulsivity Questionnaires
We used the validated Czech translation of the Barratt scale for
assessing impulsivity (57). This method includes aspects of non-
planning impulsiveness, attentional impulsiveness, and motor
impulsiveness. However, the three-factor structure has been
questioned [e.g., (63, 64)]; therefore, only total score for this scale
was calculated. Self-reported impulsivity was also measured by
the Czech validated translation of the UPPS-P scale (58–60). The
questionnaire consists of five subscales: Lack of premeditation
(11 items), Lack of perseverance (10 items), Sensation seeking
(12 items), Negative urgency (12 items), and Positive urgency (14
items), where urgency indicates the tendency to act impulsively
under influence of emotions.

Behavioral Tasks
GNG Task

The GNG task contained two types of stimuli, the letter A was
a Go stimulus and the letter B was a No-Go stimulus. Stimuli
were in white color presented on the black screen. Subjects had to
quickly react by pressing a key when letter A appeared and avoid
the reaction when letter B appeared. A fixation cross preceded
each stimulus. The whole task consisted of four blocks with
48 trials in each block. All subjects performed a short practice
before the testing. The stimulus duration was 0.4 s; fixation cross
duration varied from 1.1 to 2.6 s. Three parameters were analyzed
from this task: No-Go commission errors percentage (percentage
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TABLE 1 | Demographic, neurologic data and neuropsychological data of PD, PD-ICD and HC groups.

PD-ICD (n = 15) PD-nonICD (n = 22) Healthy controls (n = 36) Statistics value, p Effect size

Gender M/F 11/4 10/12 19/17

Age 59.27 (8.88) 69.18 (5.47) 66.14 (7.70) F (2, 70) = 8.214, p = 0.001

Education 6.7, 13.3, 46.7, 33.4 4.5, 13.6, 68.2, 13.6 0, 16.7, 55.6, 27.7 χ
2
(2) = 0.658, p = 0.658

Socioeconomic status 6.7, 33.3, 46.7, 6.7 13.6, 22.7, 54.5, 9.0 2.8, 19.4, 52.8, 22.2 χ
2
(2) = 3.902, p = 0.142

Neurologic data d

H a Y stage 2.53 (0.64) 2.48 (0.66) p = 0.799, t = 0.256 d = 0.085927

Age of onset 50.80 (9.64) 62.55 (6.25) p < 0.001, t = −4.160 d = 1.445757

Diseases duration 8.87 (4.17) 6.95 (4.63) p = 0.208, t = 1.282 d = 0.433676

L-dopa equivalent dose 1289.75 (543.97) 1025.46 (567.18) p = 0.166, t = 1.414 d = 0.475602

Neuropsychological data η
2

MADRS 3.73 (5.68) 3.05 (3.84) 0.69 (1.83) F (2, 70) = 5.202, p = 0.008 η
2 = 0.129

SAS score 36.73 (5.40) 35.73 (5.25) 28.50 (6.59) F (2, 70) = 14.980, p < 0.001 η
2 = 0.300

Education (%), Primary, lower secondary, higher secondary, college.

Socioeconomic status (%), insufficient, unsatisfactory, satisfactory, very satisfactory.

MADRS, Montgomery Asberg Depression Rating Scale; SAS, Zung Self-reported Anxiety Scale; M, male; F, female.

of erroneous key press after No-Go trial), Go omission errors
percentage (percentage of Go trials erroneously followed by
no key press), and Go reaction time (average reaction time
on correct Go trials). Go stimuli occurred in 83% and No-
Go stimuli occurred in 17%; this ratio makes the task more
cognitively demanding and the subjects prone to make more
commission errors.

SST

Stimuli in the SST were white arrows pointing to the left or to
the right; subjects had to press an arrow key pointing to the same
direction as the arrow presented on the black screen. However,
the subjects had to stop their reaction and press no key when
the stimulus was followed by a visual stop signal (the arrow
turned red). Stop signals appeared in 25% of trials. Delays in
the presentation of stop signal (stop signal delay, SSD) varied
during the task in order to prevent the subject from developing
response pattern, the starting latency was 200ms. When the
subject succeeded in the trial, the latency increased by 45ms;
when the subject failed, the latency decreased by 45ms. Each
stimulus lasted until the subject reacted by pressing a key or for
1 s if there was no reaction from the subject. A fixation cross
appeared before every stimulus; the duration of the cross was
again variable between 1.1 and 2.6 s. The task consisted of four
blocks with 48 trials in each block; a short practice preceded the
testing procedure. The SSRT was calculated by subtracting the
average SSD from the average Go reaction time. SSRT refers to
the time that the subject needs to stop his/her reaction; the longer
time needed, the more difficult it is to interrupt one’s own actions;
i.e., higher SSRT is linked with higher impulsivity.

DD

In the DD task, subjects were asked to choose between two
possible rewards in every trial—a smaller but immediate reward
or higher but delayed reward. For example, Would you prefer
to receive 510 CZK today or 990 CZK in a week? There were
five possible delays—1 day, 1 week, 1 month, 3 months, and

6 months—and two delayed reward levels 990 CZK (around
40 EUR) and 24900 CZK (around 980 EUR). These delays
and rewards were set according to the pilot study. Questions
with different combinations of delays and delayed rewards were
presented in random order and the subject was asked if he or
she prefers the immediate or the delayed reward. The amount
of immediate reward varied in intervals of 20 CZK (in case of
smaller delayed reward) or 500 CZK (in case of bigger delayed
reward) until an indifference point, where the subjective value
of the immediate reward is equal to the subjective value of the
delayed reward, was found.

Two parameters were calculated for each delayed reward (k
parameter and area under the curve). The hyperbolic discount
parameter (k) was calculated by the equation DR = I/(k∗D),
where DR is delayed reward, I is immediate reward, and D is
delay. Naturally, as the reward delay increases, the subjective
value of this reward decreases (65). Larger values of k indicate
steeper decline of the subjective value and therefore greater
impulsivity. The second parameter was the area under the curve;
the curve is estimated by the connection of indifference points
for each delay reward. The lower the AUC means the steeper
discounting and the higher impulsive choice (66).

IGT

The computerized version of IGT consisted of 200 trials (67, 68).
In every trial, subjects had to make a series of choices between
four card decks by pressing the key with number of the chosen
deck. Two of the decks are disadvantageous (A and B) and two
decks are advantageous (C and D). Subjects were informed that
some of the decks were better than the other and they were
instructed to play until the game ends and try to win as much
money as possible. However, participants didn’t know which
decks are bad or good, how many trials had the game, or risk of
losses in each deck. Impulsive behavior is associated with decks
A and B. Deck A contains high immediate rewards with high risk
of loss, and deck B contains high immediate rewards with low
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TABLE 2 | Descriptive statistics of dependent variables and results of ANOVAs comparing PD-nonICD, PD-ICD, and HC groups.

PD-ICD (n = 15) PD-nonICD (n = 22) Healthy controls (n = 36) Statistic value, p Effect size

Barrat scale 60.47 (7.54) 54.14 (5.60) 54.31 (6.48) F (2, 70) = 5.537, p = 0.006 η
2 = 0.137

UPPS-P PRE 20.60 (5.05) 19.77 (4.36) 18.67 (4.03) F (2, 70) = 1.162, p = 0.319 η
2 =0.032

UPPS-P PER 20.33 (5.08) 19.14 (3.58) 16.83 (3.48) F (2, 70) = 5.140, p = 0.008 η
2 = 0.128

UPPS-P SS 22.07 (6.78) 23.64 (6.76) 26.25 (6.85) F (2, 70) = 2.317, p = 0.106 η
2 = 0.062

UPPS-P NU 27.27 (6.44) 25.18 (6.54) 25.51 (6.22) F (2, 69) = 0.537, p = 0.587 η
2 = 0.015

UPPS-P PU 28.33 (7.51) 28.27 (6.99) 26.69 (8.25) F (2, 70) = 0.391, p = 0.678 η
2 = 0.011

Go omissions % 18.95 (5.57) 18.76 (7,80) 16.94 (5.96) F (2, 70) = 0.782, p = 0.461 η
2 = 0.022

Go RT 419.36 (50.98) 418.03 (48.11) 402.83 (56.48) F (2, 70) = 0.808, p = 0.450 η
2 = 0.023

No-Go commissions % 18.65 (12.36) 25.97 (19.51) 22.45 (17.21) F (2, 70) = 0.827, p = 0.442 η
2 = 0.023

SSRT 298.46 (125.45) 242.36 (115.86) 281.97 (80.90) F (2, 69) = 1.580, p = 0.213 η
2 = 0.044

DD k 990 0.022 (0.046) 0.061 (0.125) 0.019 (0.050) F (2, 65) = 1.886, p = 0.160 η
2 = 0.026

DD k 24900 0.005 (0.0103) 0.077 (0.385) 0.004 (0.005) F (2, 69) = 0.626, p = 0.538 η
2 = 0.018

DD AUC 990 0.61 (0.31) 0.43 (0.29) 0.58 (0.34) F (2, 68) = 1.854, p = 0.164 η
2 = 0.052

DD AUC 24900 0.76 (0.25) 0.71 (0.23) 0.76 (0.30) F (2, 68) = 0.251, p = 0.779 η
2 = 0.007

IGT NET score 1st part 13.80 (29.33) 3.18 (25.80) 7.17 (25.28) F (2, 70) = 0.729, p = 0.486 η
2 = 0.020

IGT NET score 2nd part 39.07 (44.89) −0.91 (33.84) 15.00 (37.43) F (2, 70) = 4.925, p = 0.010 η
2 = 0.123

IGT B % 1st part 24.55 (9.03) 32.55 (10.72) 31.00 (11.27) F (2, 70) = 2.723, p = 0.073 η
2 = 0.072

IGT B % 2nd part 16.86 (13.74) 36.64 (17.04) 30.58 (15.98) F (2, 69) = 6.696, p = 0.002 η
2 = 0.163

Digit span 14.47 (2.72) 14.18 (3.00) 14.67 (3.87) F (2, 68) = 0.138, p = 0.872 η
2 = 0.004

d2 speed 119.07 (24.99) 106.80 (24.50) 126.06 (19.99) F (2, 66) = 4.624, p = 0.013 η
2 = 0.123

d2 accuracy (error %) 9.25 (8.78) 8.67 (6.06) 9.39 (6.21) F (2, 66) = 0.074, p = 0.929 η
2 = 0.002

ToL moves 34.79 (17.08) 40.90 (24.29) 31.08 (19.67) F (2, 68) = 1.493, p = 0.232 η
2 = 0.042

ToL init. time 137.21 (71.74) 91.25 (42.32) 109.81 (55.98) F (2, 68) = 2.841, p = 0.065 η
2 = 0.077

ToL exec. time 337.71 (164.86) 360.10 (175.52) 278.33 (141.59) F (2, 68) = 2.000, p = 0.143 η
2 = 0.056

PRE, Lack of premeditation; PER, Lack of perseverance; SS, Sensation seeking; NU, Negative urgency; PU, positive urgency; Go RT, Go reaction time; SSRT, Stop signal reaction time;

DD, delay discounting; AUC, Area under the curve; IGT, Iowa gambling task; IGT B %, percentage of B deck cards selections; ToL, Tower of London; moves, total number of moves

made during the task; ToL inic. time; ToL exec. time.

risk of very high loss. IGT net score was calculated by subtraction
of disadvantageous deck choices from advantageous deck choices
[(C + D) − (A + B)]. We also compared the relative frequency
of A and B deck choices.

Cognitive Abilities and Executive Functions
For working memory, the total score of Digit span subtest
from WAIS-III (69) was analyzed. Three parameters from
Tower of London (70) were calculated for assessment of
executive functions—total move score, total initiation time, and
total execution time. Attention was measured by test d2-R
(71) with two analyzed parameters—speed (total number of
processed items) and accuracy (percentage of omission and
commission errors).

MRI Data Acquisition and Analysis
After the behavioral testing, the patients and controls underwent
MRI scanning. Ten patients and eight controls did not undergo
the acquisition due to MRI contraindications or inability to
tolerate the procedure. The scanning was performed using
a 3-T MRI scanner, SIEMENS MAGNETOM Prisma syngo
(Siemens Medical Systems, Erlangen, Germany) at the Central
European Institute of Technology of Masaryk University, Brno,
Czech Republic. A high-resolution T1-weighted scan was

acquired using the following parameters: MPRAGE sequence
with repetition time = 2,300ms, echo time = 2.34ms, flip
angle = 8◦, voxel size 1.00 × 1.00 × 1.00mm, matrix 240 × 224
× 224. Further three patients were excluded from the scanning
because of excessive head movement resulting to significant
motion artifacts not compatible with the automatic processing
pipeline. The final size of the sample that competed MRI
session was 16 PD-nonICD patients, 8 PD-ICD patients, and 28
healthy controls.

Volumetric segmentation was performed in this T1-weighted
scan using the standard automated pipeline (72) implemented in
the FreeSurfer image analysis suite, version 5.3.0 (http://surfer.
nmr.mgh.harvard.edu/). The accuracy of the segmentation in
each subject was visually inspected by a trained operator (P.F.).
The volumes (adjusted for the estimated intracranial volume)
and surface areas (in case of cortical regions) of several regions
of interest (Table 3) and the volume of the whole brain, as
provided by the automatic segmentation algorithm of FreeSurfer,
were compared between the PD-nonICD, PD-ICD patients and
healthy controls using one-way analysis of variance (ANOVA)
with Bonferroni post-hocmultiple-comparison correction.

We performed statistical comparisons (two-sample t-tests) of
subgroup of patients who underwent MRI scanning with the
subgroup of patients who did not undergo MRI scanning to be
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TABLE 3 | Anatomical regions of interest.

Anatomical region Side

Caudate R,L

Putamen R,L

Nucleus accumbens R,L

Accumbens area R,L

Caudal anterior cingulate R,L

Rostral anterior cingulate R,L

Caudal middle frontal R,L

Rostral middle frontal R,L

Lateral orbitofrontal R,L

Medial orbitofrontal R,L

Pars orbitalis R,L

Pars triangularis R,L

Precentral gyrus R,L

Insula R,L

L, left; R, right.

sure that the MRI subgroup was not significantly different from
the original patient group in the behavioral, demographic, and
other measured parameters.

Statistical Analysis
Data were analyzed in IBM SPSS Statistics 24 software.
We compared demographic characteristics, performance in
computerized tasks, cognitive tasks, scores from questionnaires,
and MRI parameters between groups of healthy controls,
Parkinson patients with ICD, and Parkinson patients
without ICD. The data from computerized behavioral tasks,
questionnaires, and cognitive tasks were compared by one-
way ANOVA without covariates. In cases of significant
group differences, Tukey’s post-hoc tests were applied.
Sociodemographic characteristics (education, socioeconomic
status) were analyzed by Kruskal–Wallis H-test; neurological
data of the two patient groups were analyzed by independent
t-tests. IGT net scores of the first and the second part of the task
were analyzed in jamovi software by repeated measures ANOVA
with Tukey’s post-hoc tests with time (first vs. second part of
the task) as within-subject factor and group as between-subject
factor. Results are reported at p < 0.05 level of significance.

RESULTS

Demographic Data
The three groups did not differ in education or socioeconomic
status (Table 1). The groups were also matched by age; the
healthy controls were selected to have similar age to patients
with 2 years tolerance. However, there was a difference in age
between groups; patients with ICD were significantly younger
than those without ICD and healthy controls (PD-nonICD vs.
PD-ICD: p < 0.001, PD-ICD vs. HC: p = 0.009). The PD-ICD
patients were younger than PD-nonICD patients at the time of
the disease onset (PD-ICD vs. PD-nonICD: p < 0.001). There

were no differences in disease duration, levodopa equivalent
dose, or Hoehn and Yahr stage between clinical groups.

The group of patients who underwent MRI scanning did not
differ from the group of patients without MRI in the cognitive
abilities, behavioral parameters, or self-reported impulsivity.
However, the groups significantly differed in age (p = 0.028,
group with MRI mean = 67.56, SD = 6.4; group without MRI
mean= 58.7, SD= 10.5).

Depression and Anxiety
There was a significant effect of group on scores of anxiety and
depression. Both clinical groups (PD-ICD and PD-nonICD) had
higher scores of depression than healthy controls (MADRS score
PD-ICD vs. HC: p = 0.018, PD-nonICD vs. HC: p = 0.043).
Both clinical groups also had significantly higher levels of anxiety
than healthy controls (SAS score PD-ICD vs. HC: p < 0.001,
PD-nonICD vs. HC: p < 0.001). No significant differences were
detected between PD-nonICD and PD-ICD patients in anxiety
or depression.

Impulsivity Questionnaires
There were significant group differences in the Barratt scale
score. The PD-ICD group scored the highest on the Barratt
scale, which means that PD-ICD patients were more impulsive
than PD-nonICD patients (p = 0.013) and controls (p = 0.008).
The PD-nonICD group and control group did not differ in the
Barratt scale score (p = 0.995). In the UPPS-P scale, patients
with ICD showed elevated score, as compared to healthy controls,
in Lack of perseverance (p = 0.017). No differences between
the groups were found in the other UPPS-P subscales. The PD-
nonICD group did not differ from healthy controls in any of the
self-reported impulsivity measurements and did not differ from
PD-ICD except for the Barratt scale score.

Behavioral Tasks
There was no significant effect of group on performance in GNG,
DDT, or SST (Table 2). Both groups of patients had similar RTs,
accuracy, SSRT, and discounting parameters as healthy controls.
Group differences were found in performance in IGT. Analysis
revealed significant effects of time, group, and time vs. group
interaction on the IGT net score [(C + D) − (A + B)]. There
were no significant differences in the NET score in the first part
of the task, but the PD-ICD group had significantly higher NET
score than the PD-nonICD group (p = 0.007) in the second part
of the task. No significant differences were found between healthy
controls and PD-nonICD or between healthy controls and PD-
ICD. There was significant effect of time vs. group interaction
[F(2, 70) = 3.36, p = 0.041]. Post-hoc tests revealed that only the
PD-ICD group improved their NET score in the second half of
the task; the difference was marginally significant in PD-ICD
(p = 0.055) and not significant in other groups (HC: p = 0.733,
PD-nonICD: p = 0.993). We further made analysis of particular
deck selections in the first and second half of the task. There
was a group difference in B deck preference in the second half
of the task; specifically, the PD-ICD group selected cards from
the B deck less likely than the PD-nonICD group (PD-ICD vs.
PD-nonICD: p = 0.002) and healthy controls (PD-ICD vs. HC:
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p = 0.021). No significant differences were found in A deck
selection relative frequency.

Cognitive Abilities and Executive Functions
The three groups did not differ in working memory (Digit span).
ANOVA revealed significant group differences in processing
speed in d2 test. Patients without ICD were significantly slower
than healthy controls (PD-nonICD vs. HC: p = 0.009). No
significant differences were found between the PD-ICD patients
and healthy controls or between the two patients’ groups in
the accuracy in d2 test. No significant differences were detected
in total move score and total execution time in the Tower of
London. However, we observed a trend in total initiation time
between the PD-nonICD and PD-ICD group. The PD-ICD group
showed longer incitation time than PD-nonICD group, but the
comparison was only marginally significant (PD-nonICD vs. PD-
ICD p = 0.052). All groups worked with similar accuracy in
the test.

MRI
PD-nonICD patients differed from HC in the estimated
intracranial volume (eICV) of the right nucleus accumbens area
(p = 0.002), bilateral pars orbitalis (p < 0.001), the left pars
triangularis (p= 0.002), and the left precentral gyrus (p= 0.032)
(Table 4); PD-nonICD patients showed decrease of volumes
in all of these regions (All presented p-values are Bonferroni-
corrected for multiple comparisons.) PD-nonICD patients also
showed cortical thinning of the left pars orbitalis (p = 0.020)
in comparison with HC. PD-ICD patients in comparison with
HC showed increase of the right caudal anterior cingulate area
(p = 0.003) and right rostral middle frontal area (p = 0.018)
and also increase of total volumes of these regions (right caudal
ACC, p= 0.010, right rostral middle frontal p= 0.007). However,
differences in eICV volumes in these areas did not reach
significance in the case of PD-ICD group. Both groups—PD-
nonICD and PD-ICD—showed a decrease in the eICV volume
of the right precentral gyrus in comparison with HC, but none of
the results reached significance in post-hoc testing (p > 0.05). In
the comparison of PD-nonICD and PD-ICD, only total volumes
of bilateral pars orbitalis (right p = 0.029, left p = 0.039) and
right caudal anterior cingulate (p= 0.041) differed, with PD-ICD
patients having greater volumes. Comparison of cortical areas,
eICV volumes, or cortical thickness between the two patient
groups did not bring any significant results.

DISCUSSION

In the study, several possible factors associated with ICD were
compared across the groups (anxiety, depression, age, age of
onset, disease stage, and duration). Among these factors, only age
of onset and age differed between the ICD and non-ICD group.
Patients with ICD were younger and had lower age of disease
onset than patients without ICD. Our results support previous
research reporting association between PD-ICD and younger
disease onset or younger age (2, 11–14).

Elevated self-reported impulsivity in the Barratt scale in PD-
ICD in comparison with HC and PD-nonICD is consistent

TABLE 4 | Results of anatomical structures comparisons—significant contrasts.

Volumes p F Significant contrasts

Right accumbens area 0.022 4.130 PD-nonICDxHC

lh pars orbitalis 0.013 4.737 PD-nonICDxHC,

PD-nonICDXPD-ICD

rh caudal anterior cingulate 0.012 4.850 PD-nonICDXPD-ICD,

PD-ICDxHC

rh pars orbitalis 0.005 5.841 PD-nonICDXPD-ICD,

PD-nonICDxHC

rh rostral middle frontal 0.009 5.202 PD-ICDxHC

Volumes eICV

Right accumbens area 0.003 6.688 PD-nonICDxHC

lh pars orbitalis 0.000 10.515 PD-nonICDxHC

lh pars triangularis 0.002 7.074 PD-nonICDxHC

lh precentral gyrus 0.013 4.718 PD-nonICDxHC

rh pars orbitalis 0.000 13.144 PD-nonICDxHC

rh precentral gyrus 0.021 4.160 No significant contrast

Thickness

lh pars orbitalis 0.021 4.171 PD-nonICDxHC

Area

rh caudal anterior cingulate 0.005 6.006 PD-ICDxHC

rh rostral middle frontal 0.022 4.146 PD-ICDxHC

Volumes eICV, estimated intracranial volume; lh, left hemisphere; rh, right hemisphere.

with previous research in this population (9, 10, 13, 73). In
the UPPS-P scale, our results did not confirm our hypothesis
regarding elevated Sensation seeking in PD-ICD. The absence
of differences in Sensation seeking in PD-ICD might be
surprising, when some other studies found associations of higher
Sensation/Novelty seeking with ICD in this population (7–9,
13) [but see Evans et al. (12)]. The differences might be due
to using various measurement tools with different concepts
of Sensation seeking. Regarding the UPPS-P dimensions, we
found only one study that targeted these dimensions in PD-
ICD (7). This work reported increased impulsivity in Lack of
premeditation, Urgency, and Sensation seeking in PD-ICD in
contrast with HC and elevated Sensation seeking in contrast
with PD-nonICD patients. However, only the shortened 16-
item UPPS scale was used and the scale was answered by close
relatives of the patients not the patients themselves, which may
cause inconsistency of their results with our findings. PD-ICD
patients in contrast with HC showed elevated score only in the
Lack of perseverance. Perseverance is defined as “the ability to
remain focused on a task that may be boring and/or difficult.”
Lack of perseverance has been associated with poor resistance
to distraction, harm avoidance, poor concentration on boring or
difficult tasks, lower responsibility perception, and difficulties in
dealing with frustration (74). Lower perseverance was reported in
people with obsessive–compulsive symptoms, compulsive buying
(74–77), bulimia (78), and self-injury behavior (79). One study
found lower perseverance in PD patients with and without ICD
(7). PD-ICD patients in our sample did not manifest higher levels
of Urgency, which represents the aspect of emotional impulsivity.
Taken together with no impairments in impulsive choice, it seems
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that impulsivity in PD-ICD is not elevated by strong emotions
unlike, for example, borderline disorder, where impulsivity is
more prominent in intense emotional state (6, 80, 81). PD-ICD
patients are more likely to avoid harm and lower their effort
in boring or difficult situations. They have impaired ability to
maintain long-term goal and facing the obstacles; when facing
difficulties, they rather abandon the goal. Even though UPPS-
P questionnaire is the most up-to-date personality model of
impulsivity, it is not used in studies conducted on PD-ICD
populations. Future research with larger sample sizes studying
PD-ICD in the context of UPPS-P impulsivity model would
be beneficial.

In accordance with our hypothesis, PD-ICD patients in our
study did not show impairments in impulsive action (waiting
and stopping impulsivity). Results were also negative for the non-
impulsive group. Previous studies of impulsive action in general
PD population brought mixed results (38–44). There might be
several factors responsive for the inconsistency in impulsive
action among studies. Differences in results can be caused
by cognitive impairments in patients’ groups, heterogeneity
in the patients’ samples, and by differences in task designs.
Patients in studies have different clinical characteristics such
as different disease stage and duration, cognitive impairments,
and different severity of anxiety and depression. Some of
the studies included patients with cognitive impairments and
elevated depression in their samples (38, 45). Presence of
cognitive deficits and depression were linked to lower efficacy
of inhibitory performance in impulsive action tasks (38, 82).
Further, patients with older age and later disease stages have
greater difficulties when inhibiting their responses (38). Thus,
it is possible that increased impulsive action observed in some
studies in the previous literature might have been influenced
more by impaired cognitive functioning or psychomotor slowing
associated with markedly increased depression, rather than with
increased impulsivity itself.

We expected elevated choice impulsivity in PD-ICD in
comparison with healthy controls, but our results did not support
this expectation. None of the clinical groups differed from
healthy controls on Delay discounting. Unimpaired performance
of PD-ICD patients on Delay discounting is in contrast with
two studies (9, 24), which found elevated discounting in PD
patients with ICD in comparison with HC and non-impulsive
PD patients. However, PD-ICD patients in these studies had
either lower IQ or working memory deficits or were more
depressed than non-impulsive patients. All of these factors
were previously associated with greater discounting (83–86).
Consistently with our findings, another study (28) reported
similar delay discounting comparing PD-ICD and HC. The
results of DD studies in PD-ICD population remain inconsistent.
It is again possible that presence of cognitive impairments or
elevated depression could influence performance in this task in
previous studies. Future research should focus on relationship
of depression, cognitive deficits, and behavioral measures of
impulsivity in this population.

In the IGT in our study, patients with ICD performed
surprisingly the best from all groups. PD-ICD as the only
group improved their performance in the second part of the

task and made significantly less risky choices. PD-ICD patients
differed from PD-nonICD and HC in B deck card preference.
B deck is a deck with low frequent but very high losses and
high frequent gains. This deck is disadvantageous in long-term
outcome. Therefore, according to the basic IGT assumption, the
frequency of B deck choice declines during the task in a healthy
population (67). This basic IGT assumption is being questioned,
since the high preference of B deck choices observed in a healthy
population in many studies suggests that it is rather the gain–loss
frequency than the long-term outcome that influences decision-
making in IGT in a healthy population (87). Our results suggest
that PD-ICD patients, unlike HC and patients without ICD, are
less sensitive to gain-loss frequency and more sensitive to high
punishments. Previous studies brought evidence of impaired IGT
performance in PD patients (ICD not specified) (16–23, 88) and
in pathological gamblers with Parkinson (25). The difference
between our study and that of Rossi et al. (25) is that we also
included other forms of ICD beside pathological gambling. We
recruited some patients with gambling history into our sample.
It is possible that these patients with gambling history were
more aware of potential risk because of their previous problems
and they already developed some strategies, which helped them
during the task. In contrast with previous studies, we used
a prolonged protocol consisting of 200 trials. The differences
between groups were more prominent in the second part of
the tasks where PD-ICD patients chose the cards from the
disadvantageous deck less frequently than in the first part. It
seems that this prolonged version is more sensitive to describe
learning from the consequences of the traditional 100 card
version. We further analyzed not only the NET score but also the
preference of particular packages. This four-deck approach seems
to be useful, because it provides more information about decision
strategies of participants.

Having in mind the age differences between groups of patients
in our study, the role of age in the context of IGT results
should be considered. PD-ICD in our study performed better
than PD-nonICD, and they were also younger than PD-nonICD
patients. Biars et al. (29) reported that increasing age negatively
influenced IGT performance. Some studies found older adults
to have greater tendency to less advantageous decisions in IGT
than younger adults (89, 90). It is possible that older adults
use different cognitive strategies and are not able to learn from
the feedback as effectively as younger adults (89). On the other
hand, studies reporting impaired performance in the PD or PD-
ICD group in IGT found no significant age differences between
compared groups (16, 18, 20–22, 25). Further investigation in this
field would be beneficial.

As for cognitive functions, patients did not show any
significant impairments except slower processing speed in the d2
test in PD non-ICD in contrast with HC. It may be surprising,
because a decline of cognitive functions is linked to PD and
cognitive impairment was previously find in patients with ICD
(5). However, only patients with high MMSE scores were
recruited, and therefore, those with potential cognitive problems
were excluded from the testing. The slower processing speed of
PD-nonICD patients in contrast to HC in d2 can be attributed to
age, because the PD-nonICD group was the oldest one. Slower

Frontiers in Neurology | www.frontiersin.org 8 January 2020 | Volume 10 | Article 1338118

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Hlavatá et al. Impulsivity in Parkinson’s Disease

processing speed can also indicate attentional problems. It is
possible that PD-nonICD patients are able to complete the task
with similar accuracy as other experimental groups, but it costs
them more effort; as a result, they need more time to process the
same amount of items.

Although there were no impairments in PD-ICD on
behavioral tasks, MRI scanning revealed structural differences
between the three groups in the structures involved in inhibitory
control and decision making. PD-ICD patients showed volume
increase of ACC in comparison to PD patients and healthy
controls. Our results correspond with previous research, which
found increased thickness of ACC cortex in PD-ICD (48, 49,
51). Decreased functional connectivity of ACC with nucleus
accumbens was previously associated with impulsive–compulsive
behavior in PD (51). ACC is an important component of
the reward system. It is involved in subjective evaluation of
immediate and delayed rewards in delay discounting (91). Some
researchers suggest that this structure is also important for
conflict monitoring in situations with low predictability and
high error rate; when the subject is required to adjust behavior
after error response, it is needed for learning from the negative
feedback (49, 92). Considering an increase in ACC volume
together with the improvements in PD-ICD group during the
second part of the IGT task, it suggests that PD-ICD patients were
the most sensitive to the negative feedback. PD-ICD patients
in our study showed an increase of volume and area in the
right rostral middle frontal region in comparison with HC.
Middle frontal region abnormalities in PD-ICD population were
previously reported Biundo et al. (47) and Yoo et al. (50),
who observed cortical thinning in PD-ICD. Increased activity of
the right middle frontal gyrus was previously observed during
impulsive action tasks (93). This region is associated with
working memory, norm- or rule-related behavior, and making
strategic decisions in social context (94, 95).

However, our results are not entirely consistent with previous
research. One study of PD-ICD patients reported no structural
differences between PD-ICD and PD-nonICD or HC (96).
Recent research brought also evidence of structural differences
in orbitofrontal cortex and nucleus accumbens in PD-ICD
(47–49), but our group comparisons were negative regarding
these regions. Differences in anatomical findings across the
studies might be caused by different analysis approaches and
further by the presence of cognitive impaired individuals in
some of the studies, as well as by variability of ICD patients
in behavioral manifestations of ICD, in disease duration and
disease progression. Disease progression and symptom severity
are very important factors. For example, PD-ICD patients in the
study of Pellicano et al. (48), which observed more extensive
structural changes than our study, were in more advanced stage
and showed more severe disease symptoms than non-impulsive
patients. On the other hand, the study of Ricciardi et al. (96),
which did not find any structural differences, included patients
in earlier stage of the disease and with shorter disease duration
than our study. Some studies tested patients with mild cognitive
impairment (47, 49). Most of the studies included patients with
variable ICD symptoms often with more than one manifestation
of ICD. We also included variable ICD sample into our study.

It is possible that particular subtypes of impulsive behavior like
gambling, hypersexuality, or binge eating differ from each other
in behavioral impulsivity or in their neurobiological correlates.

Patients without ICD differed from healthy controls in the
regions of inferior frontal gyrus, right nucleus accumbens, and
left precentral gyrus. These findings also indicate that patients
without ICD have some brain pathology in regions relevant
for impulsivity. This corresponds with previous MRI research
conducted on the general PD population (42, 97–100).

This study has several limitations. First of all, the research
sample consisted of a small number of patients due to the
inclusion of only patients with severe impulsive problems
and avoiding patients with cognitive deficit. Even though the
prevalence of ICD in the population is higher, we decided
to include only patients with severe ICD, which has a truly
observable effect on their day-to-day life (e.g., substantial
financial losses due to gambling). We deliberately decided
to exclude patients with subclinical or borderline behavioral
problems, because PD patients often manifest with a variety
of behavioral problems, but only problems that differ from
premorbid level of everyday functioning should be considered
as a disorder. Hence, the inclusion of borderline patients would
affect the validity of the study.

Secondly there is heterogeneity in our patient sample—we
included patients with various manifestations of ICD. Future
research studies could separately analyze individual subtypes of
PD-ICD. Another limitation is the age difference between the
PD-ICD and PD non-ICD patients. This factor needs to be
considered, and caution should be exercised in interpretation of
group differences. Moreover, not all of our patients were able
to successfully undergo MRI testing; therefore, the sample for
MRI testing was smaller than the sample for behavioral testing.
However, the statistical comparison did not find any differences
in self-reported impulsivity and behavioral performance between
the subgroup of patients who underwent the MRI assessment
and the group of patients without MRI testing. The last factor
that may have influenced the results was the presence of some
patients with a history of ICD. It is possible that previous personal
experience could influence the behavior of these patients during
the testing.

CONCLUSION

The discrepancy between the presence of florid ICD signs, both
in clinical follow-up and in self-reported impulsivity scales, and
the comparable or even better performance of PD-ICD patients
in rather well-established behavioral tasks is rather intriguing.
This stalemate is further accentuated by significant structural
differences in various neural nodes related to inhibitory control
and reward processing in PD-ICD patients. Be it the lack of
sensitivity in specific, limited ICD subtypes, excessive caution
of ICD patients due to previous negative experience rendering
simplistic tasks insufficient, or other, as of now unknown aspects,
the issue of impulsivity in PD definitely warrants further research,
ultimately to allow proactive prevention of this debilitating
complication of PD.
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Background: Parkinson’s disease (PD) results in both motor and non-motor symptoms.

Traditionally, the underlying mechanism of PD has been linked to neurodegeneration

of the basal ganglia. Yet it does not adequately account for the non-motor symptoms

of the disease, suggesting that other brain regions may be involved. One such region

is the cerebellum, which is known to be involved, together with the basal ganglia, in

both motor and non-motor functions. Many studies have found the cerebellum to be

hyperactive in PD patients, a finding that is seldom discussed in detail, and warrants

further examination. The current study thus aims to examine quantitively the current

literature on the cerebellar involvement in both motor and non-motor functioning in PD.

Methods: A meta-analysis of functional neuroimaging literature was conducted with

Seed-based D mapping. Only the studies testing functional activation in response

to motor and non-motor paradigms in PD and healthy controls (HC) were included

in the meta-analysis. Separate analyses were conducted by including only studies

with non-motor paradigms, as well as meta-regressions with UPDRS III scores and

disease duration.

Results: A total of 57 studies with both motor and non-motor paradigms

fulfilled our inclusion criteria and were included in the meta-analysis, which revealed

hyperactivity in Crus I–II and vermal III in PD patients compared to HC. An analysis

including only studies with cognitive paradigms revealed a cluster of increased

activity in PD patients encompassing lobule VIIB and VIII. Another meta-analysis

including the only 20 studies that employed motor paradigms did not reveal any

significant group differences. However, a descriptive analysis of these studies revealed

that 60% of them reported cerebellar hyperactivations in PD and included motor

paradigm with significant cognitive task demands, as opposed to 40% presenting

the opposite pattern and using mainly force grip tasks. The meta-regression with

UPDRS III scores found a negative association between motor scores and activation

in lobule VI and vermal VII–VIII. No correlation was found with disease duration.
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Discussion: The present findings suggest that one of the main cerebellar implications

in PD is linked to cognitive functioning. The negative association between UPDRS scores

and activation in regions implicated in motor functioning indicate that there is less

involvement of these areas as the disease severity increases. In contrast, the lack of

correlation with disease duration seems to indicate that the cerebellar activity may be a

compensatory mechanism to the dysfunctional basal ganglia, where certain sub-regions

of the cerebellum are employed to cope with motor demands. Yet future longitudinal

studies are needed to fully address this possibility.

Keywords: Parkinson’s disease, fMRI, motor, cognition, symptoms, meta-analysis

INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative movement
disorder characterized by classic symptoms including tremor,
bradykinesia, rigidity, akinesia, postural instability, and balance
problems. Its diagnosis is mainly made through the careful

assessment of these symptoms, which become the target
of subsequent treatment interventions. However, non-motor
functions comprising cognitive, sensory, sleep, emotional, and

social abilities are also affected by the disease [for a review, see (1–
3)] andmay even precede the appearance of the motor symptoms
(4). Furthermore, even though the non-motor symptoms can be

more detrimental to patients’ quality of life than the motor signs
(5), they have not yet received the same amount of attention in
clinical and research settings alike.

A plethora of studies have established that the neurological
underpinnings of PD are tied to the neurodegeneration of
the basal ganglia, more specifically the dopaminergic cells of
the substantia nigra pars compacta. The traditional model

of PD states that such a dopaminergic denervation leads to
hyperactivity in basal ganglia output nuclei (globus pallidus
internus and substantia nigra, pars reticulata), hence resulting in
increased inhibition from thalamocortical and brain stem motor
regions, which subsequently leads to impaired movements (6, 7).
Indeed, several models have been proposed that discuss how
basal ganglia dysfunction has cascading effects on interconnected
circuits, including the thalamus and cortical (motor) regions that
result in some of the characteristic motor symptoms seen in PD
[for an overview, see (8)]. Yet, whether these effects indicate
the spreading of the underlying pathology into the non-affected
areas, or an adaptive/compensatory response to the basal ganglia
neurodegeneration is largely unknown.

Furthermore, although basal ganglia dysfunction can explain
many of the motor symptoms seen in PD, it does not adequately
explain the non-motor symptoms of the disease, hence suggesting
that other brain structures, and the cerebellum in particular,
may also be involved in the pathophysiological process. In fact,
several lines of evidence support this notion. First, certain PD
motor symptoms, like tremor, have been linked to abnormal
functional connectivity between the basal ganglia and the
cerebellum, via the thalamus (9, 10). Second, despite the fact
that the cerebellum has traditionally been considered to play
a merely supporting role in motor functioning, adjusting and
fine-tuning movements based upon an internal model (11)

as well as through a feedforward system (12), it has recently
been suggested that the cerebellum is involved in monitoring
performance for several types of behaviors (13). To this effect,
early cerebellar lesion and neuroimaging studies have linked the
cerebellum to a wide range of higher cognitive functions, such
as working memory, executive functioning, planning, set shifting
and more (14, 15). These findings have been further confirmed
and expanded through reports that the cerebellum also plays
a role in pain, mood disorders and emotional processing,
sensorimotor integration, as well as language and learning (16–
20). Finally, investigations in healthy individuals have revealed
that the basal ganglia and cerebellum are working synergistically
to produce efficient motor and non-motor functioning (19).
For instance, both sub-cortical structures are implicated in
reinforcement learning and reward (18, 21), motor planning
and action understanding (22, 23), as well as sensorimotor
prediction and control (24, 25) amongst others. Thus, together
these findings likely suggest that the cerebellum is instrumental
in non-motor symptoms in PD. Indeed, a recent meta-analysis
on volumetric cerebellar changes in neurodegenerative disorders
proposed that the cerebellum plays a bigger role in cognitive,
than in motor symptoms experienced by PD patients (26).
Neuroimaging studies have also been consistent with this
notion, as positron emission tomography studies using 18F-
fluorodesoxyglucose have reported increased metabolism in the
cerebellum to be linked to cognitive impairment in PD patients,
hence characterizing the observed cerebellar hypermetabolism
as a part of a “PD related cognitive pattern” (27–30) that
is not modulated by treatment interventions (27). There are
also increasing amounts of evidence from functional magnetic
resonance imaging (fMRI) studies, which support the notion of
aberrant activity in the cerebellum of PD patients during both
task and rest conditions (31–35).

Despite the recent advances described above, however, there
are several important factors that limit our understanding of
the role of cerebellum in PD. First, in most imaging studies
with PD patients, the cerebellum is commonly reported to be
active in response to non-motor paradigms; yet its activation
is rarely discussed in detail or seldom constitutes the focus
of the study. Moreover, even though anatomical boundaries of
cerebellar regions have been clearly defined with specialized
functional topography (36, 37) and atlases are readily available
(38, 39), the findings are commonly described in the context of
the cerebellum as a whole, without reference to its sub-regions. It
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is therefore not clear whether certain parts of the cerebellum are
more implicated than others in relation to motor and non-motor
functioning in PD. Finally, the potential role of the cerebellum
in PD has been discussed elsewhere in narrative reviews (40, 41),
but the cerebellar involvement remains largely unclear, especially
in regards to the pathological and/or compensatory mechanisms
at play. With exception of one meta-analysis of cerebellar gray
matter atrophy across several neurodegenerative conditions (that
did not report any findings in PD patients) (26), the existing
literature lacks a quantitative and systematic review of cerebellar
findings in PD based upon functional neuroimaging methods. In
response to this knowledge gap, the current systematic review
and meta-analysis appraises the fMRI literature on cerebellar
involvement in both motor and non-motor processes in patients
with PD. First, a general analysis including all fMRI studies
comparing task-related activity in PD vs. matched control
participants is carried out, before stratification of motor and
non-motor studies, which are then examined separately in order
to determine whether certain regions of the cerebellum are
specifically implicated in these functions. Relationships with
disease severity and duration are also assessed. With this, we
aim to develop a greater insight into the role of the cerebellum
in PD, with a particular focus on its involvement in motor and
non-motor functioning.

METHODS

Study Eligibility and Research Methods
An extensive search was carried out on Pubmed, and included the
following search terms:

• “Parkinson’s Disease” [AND] “functional magnetic resonance
imaging” [AND] cerebellum

• “Parkinson’s Disease” [AND] “fmri” [AND] cerebellum
• “Parkinson’s Disease” [AND] “fmri”
• “Parkinson’s Disease” [AND] “functional magnetic

resonance imaging”.

We then used the following inclusion criteria for the selection
of eligible studies. They had to: (1) be published in peer-reviewed
journals, written in English and not behind paywalls that were not
covered by McGill University Library subscriptions; (2) include
a healthy control group that was compared with PD patients;
(3) assess functional brain activity with fMRI in response to a
task paradigm; and (4) include results from original research,
not from secondary sources (i.e., reviews). The meta-analysis
was conducted in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis (PRISMA) statement
(see Figure 1 for overview, and Supplementary Materials for the
PRISMA checklist). The last search was conducted on December
9th, 2019.

Meta-Analysis
Cerebellar activation coordinates and the effect size from
comparisons between PD and a control group in response to
motor or cognitive paradigms were first extracted from each
paper, together with scanning and preprocessing parameters. The
meta-analysis was carried out using seed-based mapping (SDM)

[(42), https://www.sdmproject.com], a software that conducts
meta-analyses similarly to the activation likelihood estimation,
and multilevel kernel density analysis approaches, but with
integrated sensitivity analyses, effect size estimation, as well as
the option to include negative and nil-findings. Data were then
preprocessed to achieve a voxelwise recreation of the studies
using an isotropic Full Width Half Maximum (FWHM) of
20mm, and a voxel size of 2 mm3. Third, the global means of all
studies were analyzed (the meta-analysis) using 50 imputations,
creating beta-coefficients and a mean activation map including
the associated variance. Finally, the maps were corrected for
multiple comparisons with Family Wise Error (FWE) using 500
permutations. However, as corrected maps were not sensitive
enough to detect clusters associated with group differences, an
uncorrected p > 0.005 with an extent threshold of >10 voxels
was later used for the meta-analyses.

Data preprocessing included information on coordinates
space (MNI or Talairach) and on the analysis package used (SPM,
FSL or “other”). Each study’s t-threshold was included in the
analyses as a measure of the statistical threshold used for the
findings reported in each study. In cases where this was not stated
in the paper, SDM’s built-in effect-size estimation tool was used to
provide effect-size threshold estimates. Information on subjects’
age, gender ratio, as well as information on the patients’ UPDRS
III, Hoehn&Yahr scores and disease duration was extracted from
the papers whenever available (see Table 1). The disease duration
and UPDRS scores were later used for correlation analyses in
the meta-analysis.

One of the benefits of our method (SDM, described above)
is the option to include studies with nil-findings. These studies
were included in the main analysis as studies with no peaks,
allowing us to increase accuracy of our analysis. In studies where
neither Z-scores, nor F-values were reported in the between
groups comparisons, the SDM’s conversion tool was utilized to
obtain the corresponding t-statistic. As the effect size was not
given in a few of the articles, the peaks were then marked as
“positive” or “negative,” hence denoting direction of the contrast
used. Because of the variability in study methodologies, and to
include as much data points as possible, studies utilizing an ROI
approach were also included in the analysis, even though in
literature, the cerebellum may be an uncommon ROI.

The findings were then inspected for heterogeneity and bias
by examining the peak values and the corresponding I2 statistic
and its funnel plot. I2 is a test of heterogeneity for meta-
analytical studies, where a low value generally represents a low
level of heterogeneity. Egger statistics were also examined by
plotting the effect size against precision of the studies as a
measure of publication bias. Finally, the SDM toolbox provided
results in MNI coordinate space which were confirmed both
with the Diedrichsen probabilistic cerebellar atlas (39) in FSL
Eyes (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes), as well as
with Schmahmann et al.’s MRI cerebellum atlas (38).

Medication Status
To be as inclusive as possible, studies that included patients who
were not asked to refrain from taking medication (i.e., in an
ON-state) were also included. Since previous studies have found
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TABLE 1 | Study demographics of all included studies.

References PD (n) HC (n) f/m PD f/m HC PD age (±SD) HC age (±SD) UPDRS III Hoehn & Yahr Disease duration

(years)

Nil-

finding

Task

Vriend et al. (43) 21 37 4/10 8/6 59.0 (±10.4) 56.2 (±9.9) 21.6 (±8.3) 1.9 (±0.4) 0.19 (±0.31) No Cognitive control task

Filip et al. (44) 21 28 10/11 14/14 68 (±4.85) 66.4 (±6.9) Not stated 2.24 (±0.57) 7.69 (±3.8) No Cognitive: impulse control

Heller et al. (45) 26 25 1/11 5/7 63.9 (±8.4) 62.6 (±9.0) 26.8 (±11.6) 2 8.18 (±6.83) No Emotional processing

Yu et al. (31) 8 8 6/14 10/10 59.4 (±8.4) 59.5 (±9.5) 31.1 (±10.8) Not stated 5.9 (±2.6) No Motor and auditory task

Martin et al. (46) 22 22 4/10 5/9 52.5 (±10.7) 48.5 (±12.4) 15.6 (±6.4) 1.4 (±0.6) Not stated No Motor and planning task

Burciu et al. (47) 20 20 1/8 5/10 65.8 (±8.0) 64.8 (±8.8) 31.9 (±9.6) 2.0 (±0.3) 4.14 (±1.65) No Motor and visual

Rottschy et al. (48) 23 23 8/14 8/14 67.2 (±6.2) 65 (±4.4) 23.9 (±16.1) 1.5 (±0.9) (ON) 4.7 (±4.2) No Motor and working memory task

Pinto et al. (49) 9 15 7/13 5/5 59 (±9) 55 (±11) 33 (±13) Not stated 14 (±7) No Motor hand movement and speech

Caproni et al. (50) 11 11 3/8 3/8 65 (±4.98) 65.1 (±5.86) 20 (±4.5) 2 3.8 (±1.5) No Motor task

Husárová et al. (51) 20 21 9/11 10/11 55.4 (±9) 57 (±7.3) 18.08 (±3.8) Not stated 2.5 No Motor task

Poisson et al. (52) 6 10 2/4 6/4 65 (±10) 53.6 (±8.5) 16 (±5.1) Not stated 5.4 (±4.6) No Motor task

Wu and Hallet (33) 12 14 4/8 4/8 61.2 (±7.64) 61.8 (±no SD) 25.5 (±7.4) 2.04 (±0.62) 6.33 (±2.84) No Motor task

Jia et al. (53) 22 22 8/14 8/14 61.04 (±4.38) 60.59 (±4.64) 16.45 (±4.63) 1.64 (±0.44) 4.04 (±1.81) No Motor task

Toxopeus et al. (54) 12 18 5/7 9/9 59 (±9) 58.7 (±5.4) 22 (±7) 2.0 (±0.5) 6 (±4) No Motor task

Planetta et al. (55) 14 14 7/12 17/5 64 (±8.7) 61.9 (±8.4) 29.6 (±5.3) Not stated 5.9 (±5.5) No Motor task

Neely et al. (56) 14 14 5/5 6/5 64.0 (±8.7) 60.2 (±9.2) 29.6 (±5.3) Not stated Not stated No Motor task

Cerasa et al. (57) 10 11 8/12 10/10 64.2 (±13.6) 63.4 (±9.3) 27.5 (±8.8) 2.5 (±0.6) 7.2 (±3.5) No Motor task

Schwingenschuh et al. (58) 20 10 5/7 9/9 66.8 (±7.2) 33.9 (±8.9) 37.9 (±11.1) 2.2 (±0.4) 6.3 (±3.1) No Motor task

Kraft et al. (59) 12 12 5/10 5/10 60.8 (±7.3) 53.0 (±12.0) 21.0 (±3.3) 1.8 (±0.5) 3.1 (±1.1) No Motor task

van der Stouwe et al. (60) 12 18 7/9 8/7 59 (±9) 59 (±5) 21.5 (±6.9) 1.9 (±0.5) Not stated No Motor task

Wu et al. (61) 15 15 Not stated Not stated 59.73 (±8.27) 60.3 20.67 (±3.48) 1.7 (±0.37) 3.47 (±1.6) No Motor task

Wurster et al. (62) 10 10 7/14 7/12 66.4 (±7.2) 64.9 (±8.14) 20.7 (±9.1) 2 (±0.83) 6 (±5.6) No Motor task

Hughes et al. (63) 16 15 11/10 11/11 63.9 (±7.5) 66.5 (±5.9) 31.3 (±11.) 2.0 (±0.5) (ON) 7.6 (±3.7) No Motor task

Lemos et al. (64) 19 22 6/15 16/21 64.9 (±6.3) 66.4 (±9.5) Median: 19 (±19) Median: 1.5 (±1) 4 (±8) No Saccade task

Takeda et al. (65) 9 7 5/4 5/2 54 51 Not stated 2.2 Not stated No Sensory: olfactory

Tessitore et al. (66) 20 18 9/11 8/10 60 (±8.9) 55.9 (±5.2) 10.1 (±7) 1.4 (±0.5) 1.2 (±0.5) No Sensory: pain

Harrington et al. (67) 21 19 7/5 5/7 67 (±9.4) 64.6 (±8.5) 29.6 (±10.4) 2 Not stated No Working memory task

Snijders et al. (68) 24 21 3/9 6/10 60.2 (±8.9) 57.0 (±9.1) 31.6 Not stated 8.45 Yes (Imagined) motor task

Maidan et al. (69) 20 20 8/16 4/6 72.9 (±1.6) 69.7 (±1.3) 29.8 (±2.4) Not stated 6.8 (±1.3) Yes (Imagined) motor task

Baglio et al. (70) 15 11 4/11 7/4 66.5 (±6.4) 66.9 (±5.7) 21.5 (±7.24) 1.56 (±0.46) Not stated Yes Cognitive: attention and inhibition

Labudda et al. (71) 10 12 2/10 6/6 57.6 (±7.83) 62.33 (±4.81) Not stated 3 7.1 (±3.7) Yes Cognitive: decision

Gescheidt et al. (72) 18 18 4/14 7/11 52.67 50.61 18.89 1.97 6.33 Yes Cognitive: decision

Schonberg et al. (73) 7 17 5/2 13/4 58.7 (±3.7) 60 (±4.1) 12.4 (±7.2) 1.9 (±0.7) 4 (±2.9) Yes Cognitive: error detection

Grossman et al. (74) 7 9 Not stated Not stated 71 (±10.2) 65.7 (±10.2) Not stated 1 Not stated Yes Cognitive: sentence comprehension

Ibarretxe-Bilbao et al. (75) 24 24 8/16 8/16 56.13 (±8.5) 57.58 (±8.9) 14.67 (±3.5) 1.73 (±0.4) 3.06 (±1.6) Yes Cognitive: speech

Isaacs et al. (76) 13 18 7/6 12/6 62.23 (±6.83) 68.06 (±9.52) Not stated 1.46 (±0.52) 5.39 (±3.8) Yes Cognitive: speech

Sachin et al. (77) 8 6 3/8 4/8 Not stated Not stated Not stated Not stated Not stated Yes Cognitive: speech

(Continued)
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TABLE 1 | Continued

References PD (n) HC (n) f/m PD f/m HC PD age (±SD) HC age (±SD) UPDRS III Hoehn & Yahr Disease duration

(years)

Nil-

finding

Task

Nemcova et al. (78) 16 55 4/75 38/17 62.7 (±6.8) 66.7 (±7.3) 16.8 (±9.1) Not stated 4.4 (±2.5) Yes Cognitive: visual object-matching task

Dan et al. (79) 25 32 10/15 17/15 64.7 (±8.3) 63.3 (±7.7) 30.4 (±11.1) 2 (±0.5) 11.9 (±4.7) Yes Emotional recognition task

Pohl et al. (80) 13 13 5/8 6/7 Median: 68 Median: 65 24.21 (±9.60) Not stated 5.94 (±4.39) Yes Emotional recognition task

Nombela et al. (81) 10 10 9/14 10/13 60.5 (±3.45) 59.6 (±4.47) 22.2 (±7.9) 2.5 (±0.5) 8.1 (±2.0) Yes Executive functioning task

Rowe et al. (82) 12 12 9/15 9/12 62 (±6) 62 (±6) 33.7 (±8.54) 2.46 (±0.45) 5.4 (±3.6) Yes Motor and attention task

Arnold et al. (83) 20 20 8/12 8/12 63.9 64.2 26.1 1.65 5.8 Yes Motor and cognition task

Nieuwhof et al. (84) 19 26 4/15 10/16 70.7 (±6.1) 71.2 (±5.3) 36.0 (±8.2) 2 6.2 (±4.8) Yes Motor and cognition task

Zhao et al. (85) 21 22 Not stated Not stated 60.43 (±9.65) 59.23 (±11.12) 20.57 (±3.83) 1.2 (±0.3) 1.95 (±1.8) Yes Motor and sensory task

Sabatini et al. (86) 6 6 2/4 2/4 61 (±8) 59 (±19) 16 (±4) 2.7 (±0.5) 5 (±2) Yes Motor task

Matt et al. (87) 13 14 6/7 5/9 58.7 (±13) 57.4 (±9.8) 30.2 (±12.2) 2.35 (±0.32) 6.3 (±4.7) Yes Motor task

Tessa et al. (88) 11 10 2/9 3/7 68 (±8) 64 (±3.8) 13.5 (±4.8) 1.2 (±0.3) 1.5 (±0.5) Yes Motor task

Hughes et al. (89) 20 20 10/10 13/7 65.5 65.2 22.2 2.2 Not stated Yes Motor task

Yan et al. (90) 11 12 0/26 0/25 61.5 (±7.1) 65.5 (±10.1) 20.1 (±6.3) Not stated 4.9 (±3.9) Yes Motor task

van Eimeren et al. (91) 20 10 9/11 ’5/5 50.3 (±7.8) 50 (±8.7) 21.95 (±13.6) Not stated 10.86 (±7.69) Yes Motor task

Spraker et al. (92) 14 14 ’6/8 (mached) 57.2 (±9.6) 57.6 18 (±8.1) 1.7 (±0.45) 16.5 (±10.8) Yes Motor task

Bedard et al. (34) 10 10 ’5/5 8/2 57.4 (±8) 62.4 (±10) 14 (±7.8) Not stated Not stated Yes Motor, sensory- and learning

Westermann et al. (93) 12 16 5/5 ’6/4 57.1 (±2.2) 64.7 (±1.4) Median: 28 Median: 2 Median: 3.3 Yes Sensory (olfactory) task

Lefebvre et al. (94) 34 17 12/23 7/10 63.1 62.76 23.4 2 (±0.83) 8.53 Yes Sensory (visual) task

Caminiti et al. (95) 13 12 63.3 (±6.3) 59 (±2.3) NA 1-2 5 (±3.4) Yes Working memory task

Simioni et al. (96) 19 20 0/10 0/10 66 (±8.6) 65 (±6.7) 15.3 (±5.4) 2.4 (±0.7) 6.9 (±3.3) Yes Working memory task

F, female; HC, healthy controls; M, male; PD, Parkinson’s Disease; UPDRS, Unified Parkinson’s Disease Rating Scale.
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FIGURE 1 | Overview of the study identification and selection process.

medication to have a “normalizing” effect on the neural activity
of PD patients (97, 98), a separate sensitivity analysis using only
patients in their OFF-state (i.e., patients who were asked to stop
taking medication for∼12 h), was also carried out.

Motor Studies
In order to investigate group differences in cerebellar
activation(s) specific to motor paradigms, a meta-analysis
including only studies using a motor-task was also conducted.
As we aimed to localize regions specifically linked to motor
functioning in PD patients, only studies with reported differences
(i.e., no nil-findings) were thus included in this analysis. The
uncorrected threshold was kept at p < 0.005 with a cluster size
threshold of 10 voxels.

Cognitive Studies
Likewise, a separate meta-analysis was conducted including only
studies employing cognitive paradigms. Here, as before, an
uncorrected threshold of p < 0.005 was used, with an extent
threshold of 10 contiguous voxels.

Meta-Regression Analyses
Two separate regression analyses were also performed to examine
the relationship between the pattern of cerebellar activations and
the patient’s UPDRS III motor scores, as well as the disease
duration. As five studies had not defined whether the UPDRS
scores referred to the motor subscale (UPDRS-III) or to the
total, we thus conducted a sensitivity analysis including only

those that explicitly stated that they used the motor subscale. For
exploratory purposes, the threshold used for the meta-regression
analyses were kept at a liberal uncorrected p < 0.05 and extent
threshold of >10 voxels.

Finally, we used PD patients’ cognitive status [assessed
through scores on cognitive tests, such as the Mini Mental
State Examination (MMSE) (99)] in a regression to explore the
relationship between this variable and their related cerebellar
activity in a meta-regression analysis.

RESULTS

Selected Studies
An overview of the study identification, screening and selection
process is presented in Figure 1. Our search yielded a total of
755 articles after duplicate findings were removed. After further
screening, 112 articles were further assessed yielding 57 articles
that fulfilled the inclusion criteria. The total number of subjects
across all studies included in this meta-analysis was 1856 (890
PD patients and 966 HC), with an average age of 62.07 (±4.69)
and 60.69 (±6.15), respectively. The PD patient sample had an
average disease duration of 5.90 (±3.05) years, an average Hoehn
& Yahr score of 1.92 (±0.41), and an average UPDRS III score
of 23.24 (±6.63). A summary of the study demographics can
be found in Table 1. Of the 57 studies, 30 did not report any
significant differences between PD and controls in response to
either motor or cognitive paradigms. A chi-square test assessing
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TABLE 2 | Results from the meta-analyses and meta-regression with their corresponding coordinates and regions.

Region Hemisphere x y z SDM-Z p-value Voxels Peak I2 Eggers bias Eggers p-value

All studies (n = 57) Crus II L −38 −70 −42 3.123 0.000894606 66 43.397 0.74 0.530

Ver III/IV L −2 −42 −16 2.891 0.001919806 18 38.690 0.21 0.856

Negative clusters:

Fusiform gyrus R 30 −44 −18 −2.844 0.002227843 13 27.541 −0.66 0.530

Local peaks:

Fusiform gyrus R 30 −44 −18 −2.844 0.002227843

Lobule IV/V R 26 −46 −22 −2.686 0.003616929

Lobule IV/V R 20 −50 −28 −3.038 0.001190126 10 67.158 −3.51 0.001

OFF-state (n = 36) Ver III/IV L/bilateral −2 −44 −14 3.332 0.000430882 59 6.574 0.68 0.635

Local peaks:

Ver III L/bilateral −2 −42 −14 3.332 0.000430882

Lobule IV/V L −6 −54 −8 2.878 0.002003968

Crus II L −40 −66 −48 3.127 0.000883460 20 15.949 0.69 0.643

Negative clusters:

Lobule IV/V R 16 −50 −22 −3.040 0.001183808 30 42.218 −1.43 0.323

Cog studies (n = 5) Lobule IV/Lobule III/Ver III R 10 −44 −18 3.647 0.000132442 158 8.546 2.28 0.843

Local peaks:

Lobule IV/Lobule III/Ver III R 10 −44 −18 3.647 0.000132442

Lobule I-IV R 8 −38 −26 3.575 0.000175357

Lobule I-IV R 6 −38 −14 3.440 0.000290871

Lobule VIII L −32 −60 −48 3.027 0.001234889 88 9.701 7.87 0.353

Local peaks:

Lobule VIII L −32 −60 −48 3.027 0.001234889 32

Lobule VIII L −18 −64 −46 2.995 0.001370609

Lobule VIII L −24 −64 −48 2.942 0.001628339

Lobule VIII L −18 −68 −48 2.942 0.001628876

Lobule VI/V L −20 −74 −18 2.891 0.001922667 11 10.196 9.66 0.229

Local peaks:

Lobule VI L −20 −74 −18 2.891 0.001922667

Crus I L −18 −84 −26 2.592 0.004770517

UPDRS III regression (n = 25) Negative clusters:

Lobule VI R 10 −62 −28 −2.312 0.010397077 84 3.767 −0.03 0.979

Vermal lobule III Bilateral 2 −74 −34 −2.189 0.014311850 49 28.736 −0.04 0.978

Local clusters refer to clusters where more than one local peak was identified. Coordinates are in MNI space.

whether the prevalence of cerebellar findings across studies was
different from chance (i.e., the null hypothesis being that half
the studies will show cerebellar difference and half will not)
did not reach significance [χ2(df=1) = 0.157, p = 0.691]. This
indicates that—without accounting for any other variable (i.e.,
type of tasks, medication status, etc.)—the probability of finding
differences in cerebellar BOLD activity across fMRI studies
comparing PD patients and healthy controls was not different
from 50%.

Meta-Analysis
Despite the fact that 30 of the studies did not report any
significant differences between patients and controls in response
to tasks, the general meta-analysis of all selected fMRI studies
yielded significant results implicating the cerebellum, even after

accounting for the nil findings. It revealed two positive activation
clusters (i.e., hyperactivation in PD patients as compared to
healthy controls), one predominantly covering the left Crus I and
Crus II (Table 2, Figure 2) while the other cluster covered largely
the vermal area of lobule III. In addition, the results revealed two
negative clusters that were located over the fusiform gyrus, and
lobule IV/V (Table 2).

Of note, almost half of the studies that reported a nil-effect
(when comparing patients and controls) included participants
that were scanned in the ON medication state (14/30) (status
unknown in 2/30), while only three of the studies that reported
a between-group effect included patients in the ON state (3/27)
(status unknown in 2/27). A chi-square test assessing whether the
PD patients medication status (ON vs. OFF) was associated with
the prevalence of cerebellar findings across studies was significant
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FIGURE 2 | Results from the meta-analysis including both medicated and unmedicated patients (yellow area), as well as the results including only studies with

unmedicated patients (purple area) are overlaid on the MNI152 template brain with a probabilistic cerebellar atlas (39). (A) The clusters are mainly located in Crus II (in

brown), with the larger cluster also expanding into Crus II (in olive) and lobule VI (in light green). (B) Both clusters are located in the vermal lobule III. In this case, the

cluster from the main meta-analysis (in pink) is overlaid the larger cluster from the second meta-analysis including only patients in the OFF-state (blue cluster).

[χ2
(df=1)

= 6.202, p< 0.05]. This indicates that one is significantly

more likely to find cerebellar differences between PD patients and
healthy controls across fMRI studies that included patients in the
OFF state, compared to those that involved patients in the ON
state. To investigate the effect of medication, a separate analysis
was then performed, including only studies where patients were
in the OFF-state (36 studies). This analysis yielded two positive
and one negative activation clusters similar to those identified in
the previous analysis when all studies were included. The largest
positive cluster was located in vermal lobule III/IV, although with
a smaller spatial extent as compared to the same cluster obtained
in the main meta-analysis (i.e., including all studies). The other
cluster was located over Crus II with some voxels extending into
Crus I. Both of these activation clusters overlapped with those
obtained from the main meta-analysis. As with the main analysis,
the OFF-state studies also resulted in a negative cluster in lobule
IV/V. Figure 2 shows the results of both analyses overlaid on a
cerebellar atlas using the MNI template brain.

Motor Studies
Thirty-one out of 57 studies used motor paradigms to assess
differences in patients vs. controls; of these, 20 showed significant
differences in cerebellar activation between patients and controls,
and were thus included in the analysis. The meta-analysis did

not reveal any significant clusters of activation related directly
to differences between PD patients and healthy controls during
tasks tapping into motor functioning.

Cognitive Studies
Twenty-one studies employed a cognitive task. These included
paradigms that tested a variety of cognitive functions including:
planning (46), cognitive control (43, 44, 70, 72, 73), attention
(82), memory and working memory (48, 95, 96), executive
functioning (67, 81, 84), object recognition (78), learning (34),
imagery (68), decision making (71), linguistic processing (74–
76, 83). However, only five studies reported significant differences
between patients and controls. The meta-analysis based upon
these studies revealed clusters of increased activity in PD patients
in the left lobule VIII and VI and in the right lobule IV and V (see
Figure 3), indicating that these areas are particularly implicated
in cognitive functioning in PD patients.

Meta-Regressions
UPDRS
A meta-regression was conducted to examine the possible
relationship between the pattern of cerebellar activity and the
UPDRS scores in PD patients. Overall, the UPDRS scores (100)
were listed in 25/27 studies (with nil-finding studies excluded).
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FIGURE 3 | Including only cognitive studies showed an activation cluster (red) over the left lobule VIIB (yellow), here overlaid on coronal slices of the cerebellum.

The meta-regression conducted on these studies revealed a
negative correlation between the average UPDRS scores and
cerebellar activation in a cluster covering the right lobule VI,
suggesting that reduced level of functional activity in this area
was particularly linked to the patients’ motor symptomology. An
additional negative correlation was found in a cluster located
within the vermal lobule VIII region. Upon visual inspection,
the latter cluster was shown to cover mainly the right vermal
VII-VIII, with some bordering voxels in right and left Crus
II. Average estimates from each study were extracted from the
local peak (x = 10, z = −62, y = −2) and plotted against
UPDRS scores, resulting in a significant correlation between the
two (r = −0.711, p < 0.001) (see Figure 4). It is important
to note that 20 out of the 25 studies reported explicitly the
UPDRS III (i.e., part 3 of the UPDRS test—the motor subscale)
scores. For the remaining five studies it was unclear whether
the listed UPDRS scores were referring to the total score or
to the motor subscale (UPDRS III). As such, we conducted a
sensitivity analysis, assessing the impact of the five studies on the
UPDRS correlation. When these five studies were excluded from
the correlation, the Pearson correlation coefficient remained
significant (r =−0.728, p < 0.001).

Disease Duration
Disease duration (in years) was reported in 22/27 studies (with
nil-finding studies excluded). The meta-regression examining
the relationship between cerebellar functional differences in PD
compared to HC during both motor and cognitive paradigms
revealed no significant correlation with disease duration.

Cognitive Functioning
We examined the reported cognitive scores (either MMSE or
MOCA) from each study with the intent of conducting a meta-
regression analysis involving the PD patients’ level of cognitive
functioning and their general pattern of cerebellar activation.
The average MMSE scores reported in the 22 studies, in which
cognitive measures were stated, was 28.6 (STD:1) (of a total
of 30). Most studies used MMSE cut-off scores (most often a
cut-off of 26/30) as an inclusion/exclusion criterion in order to

avoid including PD patients with cognitive decline, while in some
studies the MMSE or Montreal Cognitive Assessment [MoCA
(101)] scores were not indicated, hence resulting in a limited
spread of the scores in the studies where these were reported.
Including cognitive scores in the meta-analysis could therefore
have been a source of bias. Consequently, we opted against
conducting a meta-regression with these scores.

DISCUSSION

This is the first meta-analysis of functional neuroimaging studies
that aimed to quantify task-related differences in cerebellar
neural activity in PD patients relative to healthy controls. Our
findings reveal that PD patients showed hyperactivity in Crus I
and II, as well as in lobule I—IV, across studies that used both
motor and non-motor (i.e., cognitive) paradigms. Furthermore,
results from the meta-regressions showed that the functional
changes found in cerebellar regions VI, and vermal lobule VII
and VIII correlate negatively with UPDRS scores. Together,
such findings provide support for the functional specificity
of the cerebellum in relation to the disease, as discussed in
detailed below.

Overall Hyperactivation in PD Patients
The meta-analysis including all studies (both motor and non-
motor paradigms) revealed a cluster of increased activation over
the right Crus I and II in PD patients compared to controls. This
pattern was evident even when the analysis was performed using
only studies with patients in their OFF-state, hence indicating
that this result does not depend on the medication status.

Lobules Crus I and II have been referred to as a part of
the “cognitive cerebellum” (37, 102). This notion is based upon
the following three lines of evidence; first, from non-human
primate studies that found direct anatomical connections to
exist between these cerebellar sub-regions and the pre-frontal
cortex (103); second, from previous reports in humans using
resting state functional connectivity analyses where connectivity
between Crus I and II with the dorsolateral pre-frontal cortex
(DLPFC) and anterior pre-frontal cortex (APFC) has been
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FIGURE 4 | A meta-regression assessed the relationship between PD cerebellar activity in response to all paradigms with patients’ UPDRS III scores. The figure

illustrates the correlation between UPDRS III scores and each study’s estimates of the activity in lobule VI from the local peak in the cluster 10, −62, −28.

observed (26, 37, 104–106); and finally, from a meta-analysis
of neuroimaging activation studies on cerebellar functional
topography in healthy individuals that provided evidence that
Crus I and II are frequently activated during cognitive tasks (107).

Both structural and functional studies in groups of PD
patients also support the role of Crus I and II in cognitive
functioning. For instance, a meta-analysis on graymatter changes
in neurodegenerative disorders reported that PD patients
showing evidence of a cognitive impairment most frequently also
presented a reduction in cerebellar gray matter, while no atrophy
in motor regions of the cerebellum was found (26). Furthermore,
another structural study showed that gray matter alterations in
Crus I can be used to classify between PD patients and matched
control subjects with a 95% accuracy (108). Finally, using fMRI, a
study in which healthy controls and PD patients executed amotor
timing task requiring cognitive demands, the authors reported
increased activation in both Crus I and II in PD compared to
controls (31). Together, these findings are thus in accord with our
results that Crus I and II are overactive in PD patients compared
to controls, and that the cerebellar hyperactivation may be linked
to cognitive functioning in PD.

Our meta-analysis included almost twice as many studies that
focused on “motor” compared to “cognitive” functions. However,
the observed hyperactivation in the “cognitive cerebellum”
described above is unlikely to represent pure motor or pure
cognitive functioning, but rather a more non-specific overactivity
in PD patients compared to controls, irrespective of the task. If

we consider that some of the motor studies in the current meta-
analysis included also sensory components, i.e., auditory (31),
tactile (85), and pain processing (66), the idea that hyperactivity
in Crus I and II in PD patients is not strictly linked to motor
functioning seems to receive more support. Indeed, the lack of
relationship between the UPDRS motor scores and Crus I and II
functional activity also supports this notion. Thus, although the
underlying basis for this hyperactivity is not easy to pinpoint, one
could speculate that it reflects a compensatory response to basal
ganglia dysfunction.

Finally, our findings revealed a cluster of hyperactivity on
the border of the hemispheric and vermal lobule III area,
a region linked to sensorimotor/vestibular function (26, 31).
Interestingly, a link between symptoms of ataxia and damage to
areas II-V of the cerebellum has previously been reported (109).
Thus, given that both disorders are associated with problems
of balance and postural instability, this could explain why
we observed such overactivity within this sub-region in PD
patients. Consistent with this interpretation is also the fact that
the same activation clusters were obtained when we included
the studies investigating only patients in the OFF state in
the analysis.

Cognitive Paradigms Are Linked to PD
Hyperactivity in Lobules VI and VIII
When including only studies that employed cognitive paradigms
in the meta-analysis, our results revealed stronger activations
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in lobule VI and VIII in PD patients as compared to controls.
Even though both lobules VI and VIII are thought to be part of
the cerebellar homunculus (110) and are considered as “motor
lobules” due to their anatomical projections to the motor cortex
(111, 112), there is also evidence that they contribute to cognitive
functions as well. For instance, these lobules have been found
to be involved in executive functioning (107) as well as spatial,
language and verbal processing (VI) (107) in healthy individuals
through their functional connectivity with the APFC and DLPFC
(104, 105). Moreover, reciprocal connections between these
regions have been described in non-human primates (103).
Taken together, these findings thus provide support to the
idea that our results reflect a hyperactivation of lobules VI
and VIII in PD in response to the cognitive demands of the
task, such as working memory and other executive functions.
The meta-analysis also resulted in a cluster of activation over
lobules IV/V. Both lobules have functional connections to the
sensorimotor cortex (36), while studies in non-human primates
have also provided evidence for anatomical projections between
these two regions (103). Lobule IV and V moreover show
a topographical sensorimotor representation that is frequently
activated during sensory or motor engagement (113). A cluster
of activity over this area in response to cognitive paradigms
is thus not unexpected, as most cognitive paradigms carried
out in the scanner also requires sensory and motor processing.
Stimuli are normally presented with a visual or auditory
modality, prompting a motoric feedback, usually with a hand
response. While it is true that, in most of these studies
that used cognitive paradigms, the behavioral performance
of PD patients was impaired relative to healthy controls,
hence suggesting that the cerebellar hyperactivation may reflect
functional impairment, there were no reported correlations
(either positive or negative) between cerebellar activation and
behavioral performance. Therefore, besides concluding that this
hyperactivation seems to be in response to the cognitive demands
of the tasks, our review of the current neuroimaging evidence
cannot provide a proper interpretation of its functional role, nor
determine whether the pattern of activity reflects a pathological
or compensatory mechanism.

Motor Paradigms Did Not Reveal Any
Significant Group Differences in Cerebellar
Activation
Twenty studies were identified using motor paradigms and were
included in a separate meta-analysis. However, the latter did
not result in any significant clusters of cerebellar activation
that would indicate a differential functional involvement of this
structure when comparing the PD patients with their healthy
counterparts across a variety of motor paradigms. A closer
examination of these studies indicates, however, that the lack
of a significant group difference may be due to the fact that
12 studies reported cerebellar hyperactivations in PD relative to
healthy controls, with 8 studies presenting the opposite pattern. It
is also important to note that most of these studies did not report
significant differences in motor performance between the two
groups (this was, in some cases, by design, because all subjects

were trained to reach a certain performance level prior to the
fMRI session). Thus, it is possible that differences in motor
functioning between PD and controls cannot be linked reliably
to specific cerebellar sub-regions at the current time, perhaps
due to the variation of tasks utilized by the studies included
in the meta-analysis. Yet despite the lack of a significant result
in this meta-analysis, several useful observations can be drawn
from a descriptive analysis of these 20 studies that employed
motor paradigms and nevertheless reported significant group
differences at the study level. The first observation is that 9
of the 12 studies that reported cerebellar hyperactivations in
PD also used paradigms with rhythmic tapping or sequential
movements tasks, with the remaining 3 using motor tasks that
had a strong cognitive component to it, such as predictive motor
timing (51), controlled thumb pressing movements (31), and
center-out step-tracking (60). The second is that of the eight
studies that reported hypoactivations, half used grip force tasks
and the other half required participants to produce various types
of sequential or ballistic movements. As such, we can observe
that hyperactivations tend to be associated with tasks that had
significant cognitive demands, thus supporting the idea that the
hyperactivations seen in our general meta-analysis combining
motor and cognitive paradigms are likely to reflect the general
cognitive task demands.

UPDRS III Scores Are Negatively Linked to
Activity in Lobule VI and Vermal VII and VIII
The meta-regression revealed a negative relationship in PD
patients between the UPDRS scores and the cerebellar activity in
lobule VI, Crus II and vermal lobules VII/VIII, hence suggesting
that patients with the worsemotor clinical states also had reduced
activity in these areas. The link between the patients’ symptoms
measured with the UPDRS III and functional activation in
these regions can be explained by the known neuroanatomical
connections between the cerebellum and the cerebral cortex.
For instance, lobule VI is a part of the cerebellar homunculus
and is known to have functional and anatomical connections
to the sensorimotor system (26, 37, 114–116). Interestingly, the
volume of lobule VI has also been shown to correlate positively
with motor functioning (dexterity, grip force, coordination and
finger tapping speed) in older adults (117). Similarly, anatomical
connections between vermal lobules V—VIIIB and the primary
motor cortex have been reported and are hypothesized to
play a significant role in both active movements and posture
(118). Thus, together, these findings may explain the negative
association between the activity in vermal lobules VII and VIII
and the UPDRS scores through the connections between these
cerebellar regions and the sensorimotor system. If this is the case,
then the reduction of functional activity in vermis and lobule
VI might be the main cerebellar perpetrators involved with the
worsening of motor symptoms.

Although PD motor symptoms tend to worsen as the
disease progresses, the meta-regression with disease duration
did not reveal any significant association with cerebellar activity
using the studies considered in the current meta-analysis. One
interpretation of this result could be that the mean disease
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duration reported in these studies is not a very good proxy
of disease severity. Indeed, several factors could explain both
intra- and inter-study variability in this regard. For instance,
it is expected that patients deteriorate at different rates, are
diagnosed at various ages and stages of the disease, and
have different lifestyles. Moreover, while the average disease
duration in the studies included in the meta-analysis ranged
between 0.19 and 6.5 years, most studies included only patients
in stages I and II (119). By contrast, if one considers that
the average disease duration constitutes an adequate proxy
of disease severity, the lack of correlation between it and
cerebellar activation could again be interpreted as reflecting
a compensatory mechanism of the cerebellum. As such, it
is conceivable that this mechanism could be set in effect as
early as the basal ganglia ceases to function optimally, and
that its effectiveness reaches an asymptote when it is unable
to engage more resources. Alternatively and as suggested by
Wu and Hallett (41), it is also possible that the cerebellum
reaches a compensatory peak activity early in the disease, but
wears off as the disease progresses and its efforts become
futile. Finally, another reason for the lack of correlation with
disease duration is the notion that certain changes in cerebellar
activity in PD are more directly related to specific symptoms
of the disease (120–123), and even influenced by dopaminergic
medication as suggested by Mirdamadi (40). Previous research
has shown that tremor dominant PD patients may recruit
the cerebellum more so than those who are akinetic/rigid
predominant (120), the latter being linked more specifically
to vermal dysfunction. Although we do not have information
regarding the symptom profile of the patient’s included in
these studies, a akinetic/rigid predominant representation could
explain the negative association between the symptom severity
and vermal function. Thus, the finding that the UPDRS
III, and not disease duration, was found to be linked with
cerebellar hypoactivity could be explained by heterogeneity
of patient subtypes recruited in the studies. This could also
explain why our meta-analysis yielded, not only a non-specific
hyperactivity, but a hypoactivity linked to motor symptom
severity as well.

Regrettably, there were insufficient data and little variability
regarding themeasure of cognitive functioning (MMSE orMoCA
scores) to conduct an informative meta-regression to assess the
relationship between the level of cerebellar activity and cognitive
dysfunction in PD patients. Understandably, many studies used
cognition scores as a screening measure in order to exclude
patients with signs of significant cognitive dysfunction. Thus, a
proper assessment of the relationship between cognitive decline
and the cerebellum should be the focus of future research.
Interestingly, a previous study examined the neural activity
of PD patients with and without mild cognitive impairment
(MCI) over time, and found that PD patients with MCI showed
increased cerebellar activity (mainly Crus I) in the follow-
up test, which was not seen in PD patients without MCI
(124). This finding further adds to the involvement of Crus
I in cognitive functioning in PD patients, and argues for a
progressive involvement of cerebellar activity with cognitive
function/dysfunction.

Limitations
By design, our review focused only on task-related activation
studies. As such, we did not cover other functional neuroimaging
approaches, such as resting-state, which might have provided
additional information. A systematic analysis of the results based
on this modality is yet to be done, and could bring valuable
insight into the role of cerebellum in PD.

This review, as with most studies on PD, is faced with
the problem of heterogeneity across studies, both in terms
of experimental paradigms and patient samples. The clinical
presentation varies from patient to patient, each presenting with
different types of symptoms as well as the level of severity
of both motor and non-motor symptoms. Although we made
efforts to keep the studies as similar as possible, we could not
control for the within-study heterogeneity. Moreover, because
we aimed to be as inclusive as possible in our meta-analysis,
including studies with and without nil-findings from whole-
brain and ROI analyses, we can be more certain that the
results obtained from this study reflect true differences. Another
challenge when reviewing articles in a research domain like the
one discussed here, is the difference inmethodology and outcome
measures used in the respective studies. This is problematic as
it makes study comparisons and interpretations more difficult.
Prospective studies should therefore aim to use standardized
and/or well-established methods and outcome measurements.

CONCLUSIONS

The current review provides valuable insight into the functional
role of the cerebellum in PD, in regards to both motor and
non-motor functioning. We were able to quantify the current
cerebellar findings from the PD task induced fMRI literature,
which revealed that an overall hyperactivity is seen in Crus I
and II in response to both motor and non-motor paradigms,
whereas hypoactivity in lobule VI and Crus II is linked to
motor symptoms. These results suggest that certain cerebellar
regions show a special implication in motor and non-motor
functioning in PD, and that they are linked to the motoric
clinical state, but not disease duration. Moreover, the negative
correlation between the UPDRS scores and cerebellar activation
in lobule VI, Crus II and vermal lobules VII/VIII, together
with the lack of a significant correlation with disease duration,
provide support for the view that the pattern of cerebellar
activity may represent a compensatory mechanism for the basal
ganglia dysfunction, where movement impairments place more
demands on certain cerebellar sub-regions than others. However,
this hypothesis can only be tested in a longitudinal setting
and by including more severe PD populations, with specific
symptomatic subgroups.

Furthermore, the present systematic review has identified
several knowledge gaps and important issues that need to be
addressed by future neuroimaging research using task-based
paradigms in PD patients. There is a need for future studies that
should include patients at a later stage in the disease, as well
as longitudinal investigations of brain activity in general, and
cerebellar activity in particular. This will shed more light on how
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the pathology progresses and compensatory mechanisms unfold,
as well as how these will impact the functional organization
of the cerebellum in response to specific cognitive and motor
demands. There is also a paucity of studies investigating the
functional changes and reorganization of brain activity in PD
in relation to pharmacological management of the disease over
time. Finally, patient heterogeneity remains another important
challenge that could be addressed by undertaking a better
stratification of patients based on their disease pathology and
symptomology, though understandably this may pose a challenge
due to practical difficulties of including patients with a more
advanced clinical state.

In conclusion, our study provides a review of task-based
neuroimaging studies in PD with a focus on the functional
specificity of the cerebellum. We show that the cerebellum
in PD patients are hyperactive compared to healthy controls,
irrespective of the task. We also show that cognitive functioning
in PD is linked to the more recently developed cerebellar
regions (i.e., Crus I and II, as well as lobule VI and VIII). In
contrast, we also show that a lack of activity in motor related
regions (lobule VI and vermal VII) is associated with motor
symptoms severity. Together, these findings provide the first ever
quantitative assessment of functional cerebellar involvement in
PD patients, and importantly link various clinical aspects of the
disease with specific sub-regions of the cerebellum.
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Introduction: Deficits in neurocognitive mechanisms such as inhibition control

and cognitive flexibility have been suggested to mediate the symptoms in

obsessive–compulsive disorder (OCD). These mechanisms are proposedly controlled by

the “affective” and “executive” orbitofronto-striato-thalamo-cortical (CSTC) circuits with

well-documented morphological and functional alterations in OCD that are associated

with OCD symptoms. The precuneus region has been suggested in OCD as another key

structure associated with the mechanism of “thought–action fusion.” Our study aimed

to elucidate the association of the altered functional coupling of the CSTC nodes (and

precuneus), the OCD symptoms, and interference control/cognitive flexibility.

Methods: In a group of 36 (17 medicated and 19 drug-free) OCD patients and matched

healthy volunteers, we tested functional connectivity (FC) within the constituents of

the dorsolateral prefrontal cortex “executive” CSTC, the orbitofrontal cortex/anterior

cingulate “affective” CSTC, and precuneus. The functional connections showing the

strongest effects were subsequently entered as explanatory variables to multiple

regression analyses to identify possible associations between observed alterations

of functional coupling and cognitive (Stroop test) and clinical measures (obsessions,

compulsions, and anxiety level).

Results: We observed increased FC (FWE p < 0.05 corr.) between CSTC seeds and

regions of the parieto-occipital cortex, and between the precuneus and the angular gyrus

and dorsolateral prefrontal cortex. Decreased FC was observed within the CSTC loop

(caudate nucleus and thalamus) and between the anterior cingulate cortex and the limbic

lobe. Linear regression identified a relationship between the altered functional coupling

of thalamus with the right somatomotor parietal cortex and the Stroop color–word score.

Similar association of thalamus FC has been identified also for obsessions severity. No

association was observed for compulsions and anxiety.

Conclusions: Our findings demonstrate altered FC in OCD patients with a prevailing

increase in FC originating in CSTC regions toward other cortical areas, and a decrease

in FC within the constituents of CSTC loops. Moreover, our results support the role of
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precuneus in OCD. The association of the cognitive and clinical symptoms with the

FC between the thalamus and somatomotor cortex indicates that cognitive flexibility

and inhibitory control are strongly linked and both mechanisms might contribute to the

symptomatology of OCD.

Keywords: obsessive–compulsive disorder, functional connectivity, resting state, inhibitory/interference control,

Stroop test, obsessions and compulsions, anxiety

INTRODUCTION

Obsessive–compulsive disorder (OCD) is a chronic
neuropsychiatric disorder characterized by recurrent thoughts
(obsessions) and by repetitive behavior (compulsions) that is

often reported to “neutralize” obsessions and temporarily reduce

anxiety (1). Generally, OCD symptoms have been proposed
to be mediated by the impaired response inhibition [(2) e.g.,

(3) meta-analyses by Norman et al. (4)], defined as an ability

to suppress pre-potent behavior that is inappropriate or no
longer required (5). Affected inhibitory control in OCD, typically
demonstrated as difficulty to inhibit irrelevant or distracting
information (obsessive thought) and/or behavioral response
(e.g., motor rituals) (3). However, alterations proposed in OCD
include both inhibitory control (inhibition of motor responses
in means of increased impulsivity and/or compulsivity) and

the cognitive flexibility processes defined as an ability to shift
the focus of attention (6, 7) and/or recognize and handle
conflicting information (competition of relevant and irrelevant
stimuli) (8). In fact, the inhibitory control could be affected
at three consecutive stages of inhibitory control, the early
interference control (closely associated with the cognitive
flexibility in means of maintenance of conflicting information),
the intermediate action restraint/suppression, and the late
process of action cancelation (3, 9). Impaired inhibitory control
has been reported in OCD patients on all three stages (10),
assessed mostly by variants of the Stroop color–word test
(SCWT) (7, 11–13), or alternatively by the Go/No-go tasks
[e.g., (14)] and the Stop signal tasks [e.g., (15)], measuring
interference control, action restraint, and action cancellation,
respectively. Even though the impairment in later inhibitory
processes of action restraint and action cancelation has not been
previously associated with symptom severity (14, 15), it was
suggested that the slower reaction times in similar tasks are
related to the “not just right experience” reported by the patients
(14). Moreover, the fact that motor response is not required
to perform compulsion (existence of “pure obsessional” OCD
type with primary obsessions and mental form of compulsions,
e.g., silently counting or reassurance seeking; (16) points
out toward the possibility of primary impairment already at
the early stage of inhibitory control (interference control)
preceding the perceivable behavioral response. However, the
alternative attractor model of OCD by Rolls (17) suggests
that impaired interference control reported in OCD results
from affected cognitive flexibility associated with the necessary
attentional shift (e.g., toward different aspects of the stimuli),
suggesting impairment of executive and not inhibitory cognitive
processes. However, we argue that these inhibitory and executive

cognitive processes cannot be fully separated when using
cognitive/behavioral tasks.

Neuroimaging studies have indicated that cognitive flexibility
is mainly controlled by the prefrontal cortex (PFC) and
frontoparietal attentional network [e.g., (18)]; current reviews
suggest the role of fronto-hippocampal communication (19).
The interference control and motor response inhibition are both
dependent on cortico–striato–thalamo–cortical (CSTC) circuits
[for review, see (3, 20)] intensively studied in OCD (21–24).
The CSTC loops originate in the PFC and then project to the
striatum, from the striatum [via the caudate nucleus (CN)] to the
thalamus (THA), and finally from the THA back to the frontal
cortex. With special regard to different PFC constituents of
these loops, two critical CSTC circuits have been conceptualized
as dysregulated in OCD: the “executive” dorsolateral prefrontal
cortex (DLPFC)–striatal loop and the “affective” orbitofronto-
striatal circuit [orbitofrontal cortex (OFC), anterior cingulate
cortex (ACC)], with THA and striatum (CN) belonging to both of
them (20). The critical role of CSTC circuits in pathophysiology
of OCD has been documented using the fMRI functional
connectivity (FC) approach that enables one to investigate how
constituents of CSTC networks are integrated and coordinated,
and to determine disorder- or symptom-specific disruptions
within these networks. Most FC studies have documented that
OCD patients exert increased functional coupling within CSTC
loops (25–29) and that successful treatment is associated with
reduced resting activity within the CSTC loop (30). Particular
interest has been recently dedicated to the anterior cingulate
cortex region. Structural and functional ACC alterations in OCD
patients, including symptom-provocation-induced hyperactivity,
has been repeatedly documented in our EEG studies (31,
32). The ACC hyperactivity has been previously linked to
performance monitoring (33, 34) and dorsal part of ACC to error
monitoring and conflict detection (both possibly contributing
to the deficit in cognitive flexibility). Reported functional
alterations in this region may thus play a substantial role
in the generation of a feeling that “something is not right”
preceding compulsions commonly reported by OCD patients
(35). Indeed, the hyperconnectivity for tracts originating from
ACC and lateral OFC has also been positively associated with
the intensity of OCD symptoms (27, 28, 36), and this aberrant
connectivity may even represent a specific endophenotype for
OCD shared with their first-degree relatives (28). Despite the
extensively documented functional alterations of the CSTC loops
in OCD, it is not clear how these FC abnormalities (in terms
of increased/decreased FC within this network and in outward
connections originating from these loops) are associated with
specific OCD symptoms. Moreover, studies that would draw
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TABLE 1 | Summary table of demographic characteristics for individual age groups.

OCD

(N = 36)

Controls

(N = 36)

Group difference

Demographic Mean score (SD)/

Sample distribution

t-test /Cramer’s

V/Mann–Whitney U

p-value

Age 33.26 (8.23) 33.26 (6.74) t = 0.35 0.72

Sex Males 18 19 V = 0.05 0.82

Females 18 17

Education (Years) 16.34 (2.84) 17.67 (3.63) t = 1.67 0.10

a direct link between FC abnormalities in CSTC loop and
alterations of cognitive flexibility and inhibitory control processes
(suggested as key neurocognitive mechanisms mediating the
OCD symptoms (3, 37) are inconclusive, showing both hyper-
and hypo-connectivity patterns.

Even though precuneus (PCU) is not a traditional part of the
CSTC loops, it has also been suggested as another key structure
in OCD. It is densely projecting to PFC and plays a role in so-
called thought–action fusion (38, 39) understood as cognitive
bias in which an individual believes that specific thoughts and
actions are inextricably linked. The fact that OCD patients are
particularly prone to this bias (40–42) corresponds to recent
structural and functional neuroimaging findings that support
the association between OCD symptoms and the alterations
reported in PCU such as gray matter reductions (43, 44) and
increased precuneal activity (45) corresponding to intensity of
symptomatology (46).

However, the relationship between the fundamental processes
of inhibitory control and cognitive flexibility suggested to be
altered in OCD and the mechanism of thought–action fusion
linked to PCU alterations was not directly examined.

Functional alterations within the CSTC loop were repeatedly
demonstrated in OCD patients and are still regarded as a central
psychopathological mechanism of OCD (29). However, results
of resting-state FC studies are often contradictory and they
often show no association between FC alterations and symptom
severity and/or measured cognitive performance. Our study
therefore aimed to answer how altered FC is linked to OCD
symptoms and cognitive mechanisms measured by the Stroop
test. To this end, firstly, we systematically evaluated FC within
regions with structural abnormalities in OCD documented in
previous meta-analyses (47, 48) and mega-analyses (21). This set
contained the major nodes of two CSTC loops recently identified
as crucial for OCD (20). Concretely, we compared patients and
control subjects in FC of the “executive” dorsolateral PFC-striatal
loop (DLPFC) and the “affective” orbitofronto-striatal circuit
(OFC, ACC), THA and striatum (CN) belonging to both of
them, and PCU linked to thought–action fusion. Secondly, we
tested whether the strength of these OCD-related FC alterations
explains the inter-subject variability of cognitive (Stroop score)
and clinical symptoms (obsessions and compulsions, and less
specific anxiety) in OCD patients. In addition, we also compared
medicated and unmedicated OCD patients to evaluate the
influence of antidepressants on FC.

Given the previous findings, we hypothesized that FC would
be increased in all preselected regions of interest (ROIs). We also
expected that FC changes in frontal areas including ACC and
DLPFC (responsible for attentional set shift and/or inhibitory
control/error monitoring respectively) would correlate with the
Stroop test score, while the striatum, thalamus, and precuneus
would correlate with clinical symptoms, and none of the FC
changes would correlate with the anxiety score.

METHODS

Participants
In total, 36 in-patients diagnosed with OCD according to ICD-10
(49) and DSM-IV (50) criteria and 36 healthy controls matched
for age and sex (see Table 1) were included in the study (all
right-handed). Exclusion criteria for all of the subjects involved
concurrent severe or chronic medical disease, substance abuse,
mental retardation, organic mental disorder, lifetime history of
psychosis, mood disorders, severe head injury, and neurosurgery.
Healthy controls were also required to have no history of any
mental disorder or psychotropic medication use.

The severity of obsessions and compulsions in patients was
assessed on the day of fMRI session using the Yale–Brown
Obsessive–Compulsive Scale [Y-BOCS; (51)] and current anxiety
was evaluated by the Hamilton Anxiety Rating Scale [HAM-A,
(52)]. The study was approved by the local Ethical Committee
and an informed consent was obtained from all of the subjects.

The patients were recruited during the initial phases of
the cognitive–behavioral therapy program combining both
inpatients and day-care patients. All patients were symptomatic
at the time of MRI scanning as evaluated by the Y-BOCS
scale, with 1—mild (n = 3), 2—moderate (n = 21), or 3—
severe (n = 10) clinical symptoms present. In respect to major
symptom dimensions of OCD, recruited patients showed most
prevalent dimensions of “contamination/washing” (n = 18),
“harm/checking” (n= 15), and “symmetry/ordering” (n= 3).

Nineteen OCD patients were either drug-free or the
medication was discontinued at least 5 days prior to
measurement. Seventeen patients were medicated with
antidepressants (venlafaxin 250mg, sertraline 50–300mg,
escitalopram 15–40mg, paroxetine 40mg, and citalopram
20mg) and their medication status was stable for at least 4
weeks prior to the study. The patients did not use antipsychotics
(occasionally used to augment antidepressant treatment in OCD)
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at least 5 days prior to scanning. Only short-acting zolpidem
was allowed for insomnia. On the day of fMRI, no psychotropic
medication was administered before scanning. While all three
patients with mild symptoms were in the subgroup of drug-free
patients, 8 of 10 patients with severe symptomatology were
recruited as medicated; patients with moderate symptomatology
were equally distributed to both patients’ subgroups (10/11).

The Stroop Color–Word Test
SCWT is a well-established task (53, 54) for assessing executive
functions such as selective attention and interference control.
The task was validated in the Czech version (55). It consists of
three subtasks/conditions. Firstly, the participant is required to
read as many words in the black ink denoting colors as possible.
Secondly, the participant is required to name the colors of the
displayed stimuli (non-words). The last (interference) task of the
test consists of the color–words that are incongruently colored
(e.g., the word red printed in blue ink). The participant is asked to
name the color of the word while trying to inhibit the interference
of the automatic tendency of reading the word. Response time in
the last condition is slowed because of the competing processing
of semantic and visual content of the stimuli. Each card has 100
stimuli to read/name. In the case of finishing before the time limit
of 45 s, a participant starts naming from the beginning again.
During the task, the participant is corrected if making a mistake.
The final scores were calculated as the correct answers achieved
in 45 s for each of the subtests: word reading score (W), color
naming score (C), and color–word naming score (CW).

rs-fMRI Data Acquisition
Imaging data were acquired on a 3T Siemens PrismaMRI scanner
(Siemens, Erlangen, Germany) equipped with a standard 64-
channel head coil. Resting state fMRI (rs-fMRI) was measured
with a gradient echo echo-planar sequence (GRE-EPI, TR =

2000ms, TE = 30ms, flip angle 70◦, bandwidth 2 170 Hz/pixel,
without parallel acceleration, FOV= 192mm× 192mm, matrix
size 64 × 64, voxel size 3 × 3 × 3mm, each volume with 37
axial slices without an inter-slice gap, a total of 300 volumes).
Whole-brain anatomical scans were also acquired using a 3D T1-
weighted magnetization-prepared gradient echo sequence (MP-
RAGE), consisting of 240 sagittal slices with a resolution of
0.7 × 0.7 × 0.7 mm3 (TR/TE/TI = 2400/2.34/1000ms, FOV
= 224mm), which was used for spatial normalization and
anatomical reference.

Pre-processing of the rs-fMRI Data and FC
Analysis and Statistics
FC was analyzed using a seed-driven approach with the
latest version (v.17.f) of CONN connectivity software (www.
nitrc.org/projects/conn/). The fMRI data were corrected
for head movement, together with anatomical scans, and
were normalized into standard MNI space and segmented
into gray matter, white matter, and CSF tissue classes using
SPM12 unified segmentation and normalization procedure
(56) and spatially smoothed with a Gaussian kernel (8mm
at full width half-maximum). Physiologic and other spurious
sources of noise (the five strongest components of the signal
from a region in the cerebrospinal fluid and the region

of white matter) were estimated using the implemented
component-based method and removed together with
movement-related covariates (57). The residual BOLD time
course of each voxel was thus obtained from the preprocessed
BOLD time series by orthogonalizing it with respect to
the tentative confounds [CSF, white matter, realignment
parameters, identifiers of outlier scans detected during the
outlier identification preprocessing step (corresponding to
so-called motion scrubbing), constant and linear BOLD
signal trends within each session] and further applying a
band-pass filter over a low-frequency window of interest
(0.008–0.09 Hz).

The FC analysis proceeded in two steps: first, the relevant
functional connections were identified by starting from six key
seeds; secondly, the inter-individual differences in strengths of
these key connections were analyzed. To establish the overall FC
of the network, we used the following bilateral seeds: OFC—
Orbitofrontal cortex, DLPFC—Dorsolateral prefrontal cortex
(Superior and Middle frontal gyrus), ACC—Anterior cingulate
cortex, CN—Caudate nucleus, THA—Thalamus, and PCU—
Precuneus. The combined Automated Anatomical Labeling (26
ROIs) and Harvard Oxford Atlas (106 ROIs) provided with
the CONN toolbox was used for the FC analysis. For each
region of interest (ROI), a representative signal of the ROI was
obtained by averaging the residual BOLD time courses across
voxels contained in the ROI. The seed-to-voxel connectivity
was estimated for the selected seeds by computing Pearson
correlation coefficients between the residual BOLD time courses,
and further converted to approximately normally distributed
Z scores using the Fisher transformation. The group effect
was evaluated by between-subject contrast (equivalent to a two-
sample t-test). The same analysis was performed for all six
preselected ROIs.

To avoid a large number of false positives, for the seed-
to-voxel FC mapping, we considered only findings at the
conservative cluster family-wise error (FWE) corrected p level
0.05 to be significant (with cluster-forming threshold p < 0.001).
Subsequently, we identified the coordinates of the local maxima
of the most significant cluster for each of the six predefined
seeds. We identified the anatomical regions (CONN anatomical
parcellation) corresponding to these local maxima coordinates.
The “slice display” function in the CONN toolbox was used to
obtain the presented images of individual brain slices in Figure 1,
applying the cluster-FWE corr. p level 0.05 with cluster-forming
threshold p < 0.001 uncorr.).

The aforementioned significant clusters obtained in the seed-
to-voxel analyses were exported from the CONN toolbox in a
form of cluster masks representing the spatial maps of individual
clusters. Similarly, in case of bilateral seeds, the masks covering
both areas from the atlas were created. These masks (bilateral
seeds and significant clusters) were imported to the CONN
toolbox and used in the ROI-to-ROI FC analysis. Finally, Fisher-
transformed Z-values quantifying the raw connectivity strength
during rs-fMRI condition for region pairs (seed-cluster) were
used as explanatory variables in the regression analysis in order
to evaluate their possible effects on inter-subjects variability
observed in cognitive interference measured by the Stroop test
(see the statistical analyses below).
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FIGURE 1 | Between-group comparisons of FC effects for individual seeds (brain slice display, FWE corr. p level 0.05, with cluster-forming threshold p < 0.001).

Increased (OCD > HC) and decreased (HC > OCD) functional connectivity in OCD patients for six seeds (OFC—no effect found, DLPFC, ACC, THA, CN, PCU). The

clusters obtained using the CONN toolbox are displayed in sagittal, coronal, and axial view in the x, y, z coordinates of the local maxima of the strongest cluster. OFC,

orbitofrontal cortex; DLPFC, dorsolateral prefrontal cortex; ACC, anterior cingulate cortex; THA, thalamus; CN, caudate nucleus, PCU, precuneus.

Statistica software v13 was applied in additional data analyses
and the significance level was set to p ≤ 0.05. The Student t-test
was used to test between-group differences in age and education
level; the Cramer’s V test was applied to test between-group
differences in sex distribution. The Student t-test was also used
to calculate differences in FC of the identified seed-to-target
(ROI-to-ROI) pairs in antidepressant-medicated and drug-free
patients. The multiple stepwise regression analysis (forward) was
used to evaluate whether the functional connections showing the

most prominent effects of disease (one for each ROI) explain the
variability observed in the cognitive (Stroop CW) and clinical
(YBOC-obsession, Y-BOCS-compulsions, HAM-A) scores. We
used enter/remove thresholds F = 3.84/2.71, approximately
corresponding to p = 0.05/0.1 as parameters of the stepwise
forward variable selection. Pearson correlation analysis was used
to calculate potential associations between the cognitive measure
(Stroop performance) and individual scores of applied clinical
scales measuring severity of obsessions, compulsions and anxiety.
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TABLE 2 | Cognitive and clinical measures.

Measured variable OCD (N = 36) Controls (N = 33) Group difference

Mean score (SD) t-test p

Cognitive/stroop color–word test

Word list (W) 88.19 (13.75) 93.15 (13.36) 1.516 0.134

Color list (C) 71.97 (12.77) 76.52 (11.12) 1.569 0.121

Color-word list (CW) 43.39 (11.56) 49.24 (9.64) 2.273 0.026*

Mean score (SD) Score range (min–max)

Clinical/psychiatric scales

Y-BOCS obsessions 10.40 (2.85) 5–17

Y-BOCS compulsions 10.38 (2.80) 3–15

HAM-A 15.63 (7.81) 3–37

W, word list score; C, color list score; CW, color–word (interference) list score; Y-BOCS, Yale–Brown Obsessive–Compulsive Scale; HAM-A, Hamilton Anxiety Rating Scale. The asterisk

symbol marks the significance level p < 0.05.

TABLE 3 | Increased connectivity in the OCD patients compared to HC in the selected ROIs.

OCD > HC

bilat. seed

x y z Cluster size Cluster p-FWE Hemi

sphere

Local maxima

OFC No effects found

DLPFC No effects found

ACC No effects found

THA 54 −20 60 1421 < 0.0001 R Postcentral gyrus+

42 −60 −18 778 <0.0001 R Fusiform gyrus

−42 −32 46 774 <0.0001 L Postcentral gyrus

−36 −90 −14 767 <0.0001 L Fusiform gyrus

52 −4 −16 278 0.0016 R Middle temporal gyrus

−52 0 −18 245 0.0034 L Middle temporal gyrus

−40 −68 −18 121 0.0870ns L Fusiform gyrus

CN −44 −30 52 147 0.0259 L Postcentral gyrus

−30 −72 12 142 0.0302 L Lateral occipital cortex

44 −26 68 126 0.0499 R Pre- and postcentral gyrus

PCU −46 −56 34 404 <0.0001 L Angular gyrus+

50 −64 24 179 0.0111 R Angular gyrus

−44 18 54 162 0.0182 L Middle frontal gyrus

The table shows the selected bilateral seeds and FC differences observed for comparison OCD patients > healthy controls.

x, y, z, coordinates of the local maxima; cluster size, number of voxels; cluster p-FWE, p-value FWE corrected; R or L, right or left hemisphere; local maxima, anatomical regions over the

local maxima of effect; OFC, orbitofrontal cortex; DLPFC, dorsolateral prefrontal cortex; ACC, anterior cingulate cortex; THA, thalamus; CN, caudate nucleus; PCU, precuneus. The two

results marked in bold represent the seed-target pairs selected for the multiple regression analysis (the target clusters are marked by a plus sign). The cluster p-FWE that is statistically

not significant is marked by ns.

RESULTS

The group of OCD patients differed significantly (p < 0.05)

from the matched group of healthy controls in the “color–

word naming” subtest score (incongruent word and color). The

groups did not differ in the other two subtests that did not

involve conflicting information (for details, see Table 2) or in
demographic parameters (Table 1).

Group Differences in rs-fMRI FC
In general, we identified a prevailing increase and less
pronounced decrease in FC (5544 vs. 955 voxels over FWE-p
≤ 0.05 threshold) in the OCD sample compared to the healthy
subjects. The preselected seeds showed differences in between-
subject contrast (patients vs. controls, p ≤ 0.05 FWE for all
reported results, see Figure 1 and Table 3 for positive effects, and
Table 4 for negative effects).
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TABLE 4 | Decreased connectivity in the OCD patients compared to HC in the selected ROIs.

HC > OCD

bilat. seed

x y z No. of voxels Cluster p-FWE Hemi

sphere

Local maxima

OFC No effects found

DLPFC −58 −50 −14 173 0.0165 L Inferior temporal gyrus+ (temporo-occipital portion)

ACC −16 −26 −6 145 0.0333 L Hippocampus+

THA 22 −18 16 270 0.0019 R Caudate and thalamus

CN 18 −28 20 279 0.0007 R Thalamus and putamen+

−36 50 18 127 0.0483 L Middle frontal gyrus

PCU 42 4 −20 134 0.0420 R Superior temporal gyrus and insula

The table shows the selected bilateral seeds and FC differences observed for comparison OCD patients < healthy controls.

x, y, z, coordinates of the local maxima; cluster size, number of voxels; cluster p-FWE, p-value FWE corrected; R or L, right or left hemisphere; local maxima, anatomical regions over

the local maxima of effect; OFC, orbitofrontal cortex; DLPFC, dorsolateral prefrontal cortex; ACC, anterior cingulate cortex; THA, thalamus; CN, caudate nucleus; PCU, precuneus. The

three results marked in bold represent the seed-target pairs selected for the multiple regression analysis (the target clusters are marked by a plus sign).

However, not all of the preselected seeds (OFC, DLPFC,
ACC, CN, THA, PCU) showed a between-group difference
in FC. The following efects were observed in the FC of the
selected seeds using the between-subject contrast (patients vs.
controls, p ≤ 0.05 FWE for all reported results) in the seed-
to-voxel (whole brain) approach (see Table 3 for positive effects
and Table 4 for negative effects). Surprisingly, for the OFC,
neither positive nor negative FC differences were observed at
the level of FWE correction. In the OCD patients (compared
to healthy controls), the DLPFC seed showed only a decrease
in functional coupling with the cluster of the left temporo-
occipital and posterior divisions of the inferior and middle
temporal gyrus. ACC showed only a decrease in FC in the OCD
subjects in the hippocampus and the adjacent parahippocampal
cortex. In the case of the thalamus, highly significant effects
(in the means of increased FC in the OCD patients) were
found in the four main bilateral clusters consisting of the
postcentral gyrus and superior parietal lobule, the fusiform
and adjacent occipital cortex, and the lateral temporal cortex
covering the superior and middle temporal gyri. Only a
decrease in thalamic FC in the OCD patients was observed
for inward thalamic voxels and the striatum. In the OCD
subjects, the caudate nucleus showed an increase in FC in
bilateral clusters of post- and precentral gyri, and one cluster
located in the left inferior occipital cortex. A decrease in FC
was observed in a cluster located in the subcortical gray nuclei
(thalamus and putamen) and the left middle frontal gyrus.
The precuneus showed a strong increase in FC in the OCD
patients in three clusters of the bilateral angular gyrus, and
the left middle frontal gyrus and less pronounced decrease in
one cluster covering the right limbic lobe (superior temporal
gyrus, planum temporal, and insular cortex). Given the absence
of any effect of medication on FC (see below), we analyzed
both medicated and unmedicated patients as one group in
further analytical steps. See Figure 1 for the most prominent
positive and negative clusters for each of the seeds (apart
from OFC).

For each selected seed, the functional connection showing the
most prominent effect (largest cluster size) (see effects marked by
bold in Tables 3, 4) was used in the subsequent steps of statistical
analyses with the following pairs of seed-target regions: bilateral
OFC (none); bilateral DLPFC—cluster with local maxima in the
Inferior temporal gyrus left; ACC—cluster with local maxima in
Hippocampus left; bilateral THA—cluster with local maxima in
Postcentral gyrus right; bilateral CN—cluster with local maxima
in the right Thalamus; PCU—cluster with local maxima in
Angular gyrus left.

Effect of Medication on FC
Antidepressant-medicated (n = 17) and drug-free patients
(n = 19) showed no differences in functional seed-to-voxel
connectivity (for either FWE corrected p < 0.05 or uncorrected
p < 0.001 levels) or in the statistical comparison of FC values
extracted for each patient for all of the five seed-target (mask)
pairs. The Student t-tests calculated for the individual FCs
(discriminating the OCD and healthy subjects) did not reveal
significant differences between the medicated and unmedicated
patients and the results were as follows (seed labels—local
maxima of the target cluster): DLPFC—Inferior temporal gyrus
left [t(34) = −0.598, p = 0.554]; ACC—Hippocampus left [t(34)
= −0.754, p = 0.456]; THA—Postcentral gyrus right [t(34) =

0.981, p= 0.334]; CN—Thalamus right [t(34) = 0.056, p= 0.956];
PCU—Angular gyrus left [t(34) =−0.394, p= 0.696].

Association Between the FC and Cognitive
and Clinical Measures
In order to address the a priori tested associations between the
observed effects in the OCD patients, the strongest FC differences
were identified for each of the original ROIs (seeds). As no
between-group effect was found for the OFC area, only the
functional connections for the five remaining seeds were used
as explanatory variables for the multiple regression analyses
(DLPFC—Inferior temporal gyrus left, ACC—Hippocampus left,
bilateral THA—Postcentral gyrus right, bilateral CN—Thalamus
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right, PCU—Angular gyrus left). In order to select specific target
regions, Z Fisher values were extracted from the ROI-to-ROI
analysis, representing the seed (masks covering bilateral seeds)
and the target mask covering the cluster area [labeled using
the local maxima for each of the selected effects (the largest
cluster size) obtained in the previous step of the between-group
analysis]. The forward stepwise multiple regression analysis (with
FC of the seed-target pairs used as explanatory variables) revealed
a significant effect for the Stroop CW score, showing that score
variability is partially explained by the FC between the thalamus
and the cluster with local maxima in the right postcentral gyrus
(for details, see Table 5). The FC between thalamus and target
cluster (r. postcentral gyrus) was also associated with the severity
of obsessions evaluated by Y-BOCS. No association with FC of
any of the seed-target pairs was observed for the variables of other
clinical symptoms (Y-BOCS compulsions, and HAM-A scores).

No significant correlations (p > 0.05) were identified using
Pearson correlation in the OCD group between the cognitive
measure (Stroop performance in the CW subtest) and the scores
of applied clinical scales: Y-BOCS obsessions (r = −0.011, p =

0.953), Y-BOCS compulsions (r = 0.186, p = 0.308), and HAM-
A (r = 0.141, p = 0.699). However, the clinical scales were
substantially correlated, particularly the severity of compulsions
correlated with the severity of obsession (r= 0.63, p< 0.001) and
with evaluated anxiety symptoms (r = 0.369, p= 0.032).

DISCUSSION

Themain finding of this study is the alterations of FC in the OCD
patients with prevailing decrease in cortical constituents of both
affective (ACC) and executive (DLPFC) CSTC loops, and both

increased and decreased connections from subcortical striatal
and thalamic regions and PCU. We also confirmed the altered
interference control in the OCD sample. Interestingly, while the
alterations observed in the FC of the thalamus are associated with
altered interference control measured by the Stroop color–word
subtest and severity of obsessions evaluated using the Y-BOCS
scale, the FC alterations in other regions of interest did not reveal
significant associations neither for interference control nor for
clinical symptoms.

Interference Control (Stroop Test
Performance) in the OCD Sample
Our findings of impaired performance in the subtest of
the color–word list (but not in the two subtests with no
conflicting information involved) in the OCD patients are in
line with previous studies reporting altered interference control
demonstrated by this SCWT subtest (11, 58). Even though
some former studies mentioned neuropsychological slowness in
OCD as a dysfunction of fronto-subcortical systems (59), we
argue that this would be reflected also in the number of items
correctly named during the “word reading” and “color naming”
conditions of the SCWT. However, both our results and the
results of other studies show equal reading speed and color
naming speed for OCD patients and healthy participants (11).
Affected performance particularly in the CW subtest suggests

that OCD participants may have specific difficulty in maintaining
the competing stimuli (color vs. word) and redirecting attention
primarily allocated to the semantic meaning of the word.
However, we argue that these inhibitory and executive cognitive
processes cannot be fully separated, when assessed using the
standard cognitive methods. Indeed, the Stroop task examines
both processes, by addressing the capacity to process competing
information (color vs. text) and control their maintenance
(set shifting) and to inhibit irrelevant (yet primary verbal)
information provided by the task. Therefore, as both may play
crucial roles in the altered task performance, only association
of these behavioral measures to FC alterations in OCD patients
might potentially clarify their involvement.

FC Alterations in the OCD Sample
Congruently with the majority of the previous studies on FC
in OCD (25–28, 36), our findings documented a prevailing
increase (rather than decrease) of functional coupling in theOCD
compared with healthy subjects. However, our data document
increased FC specifically from bilateral striatal and thalamic
regions toward cortical areas of the parietal and occipito-
temporal lobe. This finding is fully in line with previous studies
aimed at resting FC in OCD (60, 61). Surprisingly, we found only
reduced FC originating from the cortical nodes of both executive
(DLPFC) and affective (ACC) loops with negative finding in case
of OFC, contrary to some of the previous reports showing only an
increase in FC within CSTC regions in OCD (29). Nevertheless,
this observation is in line with the results of some recent studies
both in medicated (60) and in drug-free OCD patients (62),
showing decreased FC within the CSTC loop and increased FC
originating from central CSTC structures to the regions outside
the CSTC, namely, temporal and occipital cortex and postcentral
gyrus (60). While the CSTC loop alterations are suggested to
be associated with behavioral regulation [e.g., inhibitory control,
(60)], the increased connectivity reported outside the CSTC
could be related to visuo-spatial and sensory-motor processing.
The above reported decrease in DLPFC connectivity with inferior
and middle temporal areas corresponds to the decreased PFC
connectivity reported by Anticevic et al. (63).

Surprisingly, in contrast to previous studies [for review, see
(64)], no evidence of altered connectivity in frontal regions
of the OFC (another constituent of CSTC) was found. In a
separate analysis, we excluded the idea that this negative finding
is mediated by an artifact of medication as medicated and
unmedicated patients did not differ in means of FC even at the
uncorrected p≤ 0.001 level. We identified several interpretations
for this negative finding. First, the precise location and/or
type of alterations reported in this region were heterogeneous
across studies, and this could affect the FC results. In concrete,
the functional organization of the OFC to medial and lateral
divisions of diverse cytoarchitectonic arrays (65, 66) has not been
accounted for in our analysis based on recent categorization
(20), in which OFC is counted as a single region. To ensure
that our negative finding was not affected by the parcellation,
we performed a separate post hoc analysis addressing separately
medial (frontal pole) and lateral (anterior portion of inferior
frontal gyrus) division of OFC. As we did not identify any
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TABLE 5 | Results of the stepwise multiple regression analysis.

Response variable F p Adjusted R2 Explanatory variable (seed-target pair FC) b p

Stroop CW score 6.991 0.012* 0.146 Right THA–cluster (Postcentral gyrus right) 0.413 0.012

Y-BOCS obsessions 4.142 0.050* 0.087 Right THA–cluster (Postcentral gyrus right) −0.339 0.050

Y-BOCS compulsions Multiple R = 0, no variables entered the equation

HAM-A Multiple R = 0, no variables entered the equation

Forward stepwise multiple regression analyses with the FC of the five strongest seed-target pairs as explanatory variables and cognitive and clinical measures as response variables

calculated for the group of OCD patients (N = 36).

CW, color–word (interference) list score; Y-BOCS, Yale-Brown Obsessive–Compulsive Scale; HAM-A, Hamilton Anxiety Rating Scale; b, linear regression estimate Beta.

The asterisk symbol marks the significance level p ≤ 0.05.

between-group differences for these regions, it is unlikely that
our negative finding results from parcellation. However, we
cannot exclude the role of technical factors in obtaining high-
quality images in this specific region near air/tissue interfaces.
Hence, due to the occurrence of susceptibility gradients, the fMRI
protocol (GRE-EPI sequence) could compromise the detection
of neuronal signals in OFC (67). However, we applied 3T fMRI
protocol with 64-channel coil allowing the maximal resolution
while covering the whole brain with improved signal/noise ratio.
Some specific techniques [such as z-shim compensation; (68)]
could achieve better signal detection but only in a selective
volume of a single targeted region. Moreover, the strictly
conservative correction (FWE) approach applied in the seed-
to-voxel based analysis could weaken the chance to detect
the between-group differences. We speculate that the OFC FC
alterations are not sensitive to the resting state imaging protocol
used in our study but that they could be unmasked by functional
activation in symptom provocation protocols as in previous
studies (69, 70).

Importantly, both increased and reduced FC has been
reported by several previous studies for ACC, the constituent
of affective CSTC loop (20, 71, 72). The reduced ACC FC with
the areas of the limbic/temporal cortex in our sample is in line
with recent meta-analysis revealing consistent decreased ACC
connectivity with limbic areas (62), temporal cortex, and OFC
(61), as well as with the hypoconnectivity within the major brain
networks identified by recent meta-analysis (24).

Our findings support the suggested role of the precuneus
in OCD. The increased FC of precuneus toward DLPFC
and temporo-parieto-occipital junction, specifically the angular
gyrus, is congruent with the role of the precuneus in symptom
provocation, responsible for awareness of obsessive thoughts
and visualization of compulsive actions. It has been suggested
(62) that the posterior midline cortex (a part of the default-
mode network) is not completely deactivated by the error-signal
from the salience network (including ACC). Alternatively, it
was also suggested that posterior brain regions such as the
posterior cingulate cortex and precuneus may compensate for
the dysregulatedDLPFC–caudate–thalamus loop and its effect on
cognitive flexibility (12, 73).

Together, our findings document the increased resting-state
FC from bilateral striatal and thalamic regions (the subcortical
nodes shared by both CSTC circuits), decreased FC of ACC and
DLPFC to temporo-limbic areas, and more opposed regulatory

role of PCU to anterior lateral temporal cortex (negative
coupling) and more posterior temporo-parietal region such as
angular gyrus (positive coupling).

Association Between Observed FC
Alterations and Cognitive and Clinical
Symptoms
Unexpectedly, we did not identify an association between clinical
symptoms and cognitive inference and FC originating from
striatal and cortical seeds. However, the hyperconnectivity of

the thalamus with the somatomotor parietal cortex with local
maxima in postcentral gyrus showed association both with
obsession severity and with impaired cognitive interference

control. This finding is not surprising as these brain areas
densely connected by thalamocortical radiations are functionally
responsible for speech motor control involving “feedback
error detection” in sensory cortices (74, 75). Moreover, this

finding corresponds to the impairment of the suggested neural
mechanism of conflict monitoring at preexecution stages that
activates the subthalamic nucleus, which in turn indirectly

inhibits the thalamus (76–78). This would suggest the general
role of thalamocortical tracts in cognitive control that plays a
role in interference control during performance of the Stroop

test. We propose that verbal cognitive processing (reading) of
the interfering/distracting information creates a strong semantic
attractor for OCD patients that repeatedly fail to shift to

an alternative process (17), which is more appropriate (and
adaptive) within the context of Stroop test instruction.

In line with a recent study (79), our data suggest the important
role of increased coupling between thalamus and the postcentral
gyrus in mediating severity of clinical symptoms, documented

by convergent findings in obsessions and Stroop interference.

Our results suggest that a common neuronal mechanism
may underlie both cognitive and clinical scores, in means of

interference control (filtering or suppression of irrelevant or
intrusive information). As obsessions (intrusive thought) might
be explained as representing internal speech processing, the
association with the thalamo-parietal FC alterations does not
seem random.

We hypothesize that FC of thalamocortical radiations shows
association with OCD symptomatology even during the resting
state because it is involved in the preexecution stages of feedback

error detection (proactive control). On the other side, the FC
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of cortical regions (constituents of the CSTCs) might be related
more specifically to the clinical symptoms whenmeasured during
active state such as symptoms provocation. This assumption
should be addressed in future studies comparing the strength of
association between expression of clinical symptoms and FC in
resting and active (provocation) states.

Alternatively, the missing association between FC alterations
observed in the other CSTC regions (particularly the frontal
lobe ROIs) and clinical symptoms of compulsions (and general
anxiety) might be related by the complexity and variability
of the compulsions. This variability could be highlighted by
the fact that our OCD sample comprised an equal proportion
of two OCD phenotypes (18/15)—“contamination/washing”
and “harm/checking (aggressive obsessions)”—that might not
be directly related to the resting-state individual FC values.
Moreover, the strong correlation between the compulsion and
obsession severities and moderate correlation with the rated
anxiety support the concept of compulsions induced by the
intrusive thought and performed to reduce the perceived anxiety.

Limitations
Some limitations to our study should be noted. Firstly, our
clinical sample consisted of drug-free and antidepressant-
medicated patients. However, our particular analysis did not
detect any difference in FC between these groups (even at the
uncorrected p ≤ 0.001). Moreover, the effect of medication on
fMRI and FC data is limited, if any (80). Secondly, to focus
on the functional connections that are altered in the disease,
we have used a data-driven definition of the target areas for
FC from each of the preselected anatomical regions. This has
the advantage of being more specific than purely anatomical
definition of target regions, providing a target region that has
consistently affected FC to each seed region. However, alternative
thresholding of the FC maps could also be considered, leading
to a more inclusive or restrictive definition of the target areas.
Thirdly, the selection of the most prominent target cluster (i.e.,
the one with the largest cluster size) for each seed region was
used for the multiple regression analyses in order to focus the
analysis on the most affected functional connections. Of course,
the threshold of five connections is somehow arbitrary and
the inclusion of other numbers of connections obtained from
the group comparison could, in principle, increase the chance
of finding associations between the FC alterations and clinical
symptoms; however, particularly including higher numbers of
connections could increase the chance of false-positive results.
Moreover, our OCD sample consisted of two prevailing OCD
phenotypes that could weaken obtained findings. Due to small
sample sizes, it was not possible to test potential OCD dimension-
specific differences in observed FC alterations, and this should
be addressed by future studies. Lastly, to address the distinction
between individual stages of the inhibitory control and related
cognitive abilities, the future studies should combine several
cognitive tasks.

CONCLUSION

Our findings demonstrate altered resting-state FC in OCD
patients. Specifically, we identified the increased FC from

bilateral striatal and thalamic regions (the subcortical nodes
shared by both CSTC circuits), decreased FC of ACC and DLPFC
to temporo-limbic areas, and more opposed regulatory role of
PCU to anterior lateral temporal cortex (negative coupling) and
more posterior temporo-parietal region such as angular gyrus
(positive coupling). This could be interpreted as a disconnectivity
of the traditional CSTC loops in OCD counterbalanced by
hyperconnectivity of CSTC regions manifested outwards. In
addition, our results support the role of thalamus and its coupling
with the somatomotor area of the parietal cortex in OCD,
specifically in interference control and/or cognitive flexibility.
Moreover, a similar association was identified also for the
severity of obsessions, suggesting that suppression (filtering) of
irrelevant information might be linked to the altered FC of the
thalamus. We suggest that while the affected cognitive control
of the conflicting information in Stroop task and severity of
obsessions is linked to altered functional state and individual
connections of specific brain networks, the complex behavioral
clusters of compulsive symptomatology may be caused by more
complex or highly individual alterations of brain dynamics
that are not captured by individual connections of the studied
key hubs of the CSTC network, or that even do not manifest
strongly during resting brain state. Future studies should
elucidate if the FC in resting and active (symptoms provocation)
states differ in the strength of association with behavioral and
neurocognitive expression of OCD. Moreover, these studies
should separate variable OCD phenotypes (dimensions) and
include a combination of methods aimed at inhibitory control
and cognitive flexibility.
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AUTHOR’S NOTE

The well-documented alterations of the orbitofronto-
striato-thalamo-cortical (CSTC) circuits are considered a
central psychopathological mechanism associated with the
symptomatology of the obsessive-compulsive disorder (OCD).
The impaired mechanisms of inhibitory control and/or cognitive
flexibility have been previously suggested to be mediating
the compulsive behavior in OCD, with the involvement of
affective and/or executive CSTC loops. Our study aimed
to investigate the resting state functional coupling of the
CSTCs nodes and to elucidate how the altered functional
connectivity pattern is linked to OCD symptoms and cognitive
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interference control mechanism addressed by the Stroop test.
Our findings confirmed altered functional connectivity (FC)
pattern in OCD patients (both medicated and unmedicated)
with a prevailing increase in FC originating in CSTC regions
toward other cortical areas, and a decrease in FC mainly
within the constituents of CSTC loops. In addition, our
findings support the potential role of precuneus in OCD, a
structure previously suggested in so-called thought-action
fusion mechanism. Importantly, the associations identified
in OCD patients between the functional connectivity of
the thalamus and both obsessions severity and cognitive
performance indicate that the mechanism of interference
control might be linked to specific OCD symptoms, potentially
mediated by the mutual constituents of affective and executive
CSTC circuits.
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