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Editorial on the Research Topic

Artificial Intelligence Bioinformatics: Development and Application of Tools for Omics and

Inter-Omics Studies

For half a century, bioinformatics and computational biology have provided tools and data analysis
approaches, so the beginning of the omics era represented a novel challenge for researchers, that
converged to the area of bioinformatics from the fields of informatics, mathematics, and statistics.
In most cases, the solutions offered appeared difficult to use for researchers working in biomedical
areas. This occurred in particular when sophisticated approaches from the field of data science and
artificial intelligence (AI), were applied to biomedical data (Lisboa et al., 2000).

Machine learning, statistical learning, and soft-computing approaches, such as deep neural
networks or genetic algorithms, have also become terms used in the bio world, with an incomplete
comprehension however, of their potential (Pavel et al., 2016; Lin and Lane, 2017; Zeng and
Lumley, 2018). In recent years, omics, multi-omics, and inter-omics experiments have presented
a further step toward the investigation in biology, opening the window on personalized medicine,
for example for diagnostics (Riemenschneider et al., 2016). The era of big data in medicine is
imminent and represents yet a further step forward. Considering this, our Research Topic presents
articles on novel developments in the field of artificial intelligence in biology and medicine,
and their applications in the analysis of high-throughput data from omics and inter-omics
approaches (Facchiano et al.).

1. THE ARTICLE COLLECTION

The Research Topic includes 13 articles:

• 7 Original Research articles (Di Filippo et al.; Kong et al.; Leclercq et al.; Liu et al.; Maj et al.;
Simidjievski et al.; Xu et al.)

• 1 Brief Research Report article (Quinn et al.)
• 1 Methods article (Niu et al.)
• 2 Technology and Code articles (Martin and Heider; Wang et al.)
• 1 Review article (M’sch et al.)
• 1 Systematic Review article (Zeng and Bromberg).

The published articles have been evaluated according to each journal editorial policy, by experts of
the field. The Research Topic received seven other manuscripts, judged unsuitable for publication
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and rejected during the review process. The submission deadline
was 29th June 2019, therefore any data, experiment, and result
presented in the Research Topic articles must be in reference to
data, experiments, and results obtained earlier than that date.

1.1. Original Scientific Research and

Methods
Simidjievski et al. showed how variational autoencoders (VAEs)
can be employed to integrate heterogeneous cancer data.
They used these artificial neural networks to integrate multi-
omics data such as somatic copy number aberrations (CNA),
messenger RNA (mRNA) expressions, and clinical data of
patients diagnosed with breast cancer from the METABRIC
initiative (Curtis et al., 2012).

Di Filippo et al. developed an R shiny app named HiCeekR
that can be used for the analyses of Hi-C data. In contrast to
existing tools, HiCeekR represents an easy-to-use graphical user
interface to a complete Hi-C data analysis pipeline, including all
relevant analysis and visualization steps.

In their article, Niu et al. developed and analyzed a novel
pre-training-retraining strategy for deep neural networks and
evaluated this strategy based on the prediction of tissue-specific
activation of cis-regulatory elements (CREs). This is a very
important step as the number of tissue-specific samples is limited.
They used all CREs for the pre-training of the net and then used
transfer learning to improve tissue-specific predictions.

Maj et al. combined supervised and unsupervised
machine learning models on tissue-specific cis-eQTL gene
expression data to distinguish mild cognitive impairment
and patients with Alzheimer’s Disease and to detect potential
biological associations.

Kong et al. developed a novel computational model for
the prediction of protein-protein interactions (PPIs). The
new method, FCTP-WSRC, used a combination of F-vector,
composition (C), and transition (T) to numerically encode the
protein sequences and subsequently uses principal component
analysis (PCA) to extract features. The PCA representation is
then used as an input for weighted sparse representation-based
classification. FCTP-WSRC has been evaluated on several data
sets and shows a superior prediction performance in terms of
accuracy and computing time.

Liu et al. used multi-omics data, namely DNA methylation,
copy number variation, and gene expression to identify
dysfunctional subpathways in cancer and validated their
findings with several cancer datasets, for example, liver
hepatocellular carcinoma (LIHC), head-neck squamous cell
carcinoma (HNSC), cervical squamous cell carcinoma, and
endocervical adenocarcinoma.

Xu et al. identified dysregulated competitive endogenous RNA
(ceRNA) interactions driven by copy number variation (CNV) in
gliomas, and then found their associations with prognosis and
histological subtypes by gene set enrichment analysis. Biological
functions related to the oncogenesis of malignant gliomas have
been detected by the functional analysis of the CNV-driven
ceRNA network.

Leclercq et al. proposed BioDiscML, a software program
that implements a machine learning method for discovery
of biomarkers from multi-omics data. The automatic

pipeline built up for mining signatures of diseases by
classification, together with the feature selection processes
for biomarker discovery, represent the main strengths of
this work.

Quinn et al. described an anomaly detector for tissue
transcriptomes, aimed to identify cancer without ever seeing a
single cancer example. The outlier detection algorithm has been
trained on normal samples from a large public data set (Lonsdale
et al., 2013) and applied to classify cancer samples from another
large public data set (Weinstein et al., 2013).

1.2. Technology Applications
Martin and Heider developed the ContraDRG software, available
on a web server, that computationally emulates complex
predictions in a reverse-engineering like manner, with intensive
calculations using machine learning techniques. ContraDRG can
be used to predict partial charges for small molecules based on
molecular topology predictions from two commonly used tools,
such as PRODRG and ATB. ContraDRG can accurately predict
partial charges quickly, and thus can also be applied for screening
projects with large amounts of molecules.

Wang et al. used convolutional neural networks to measure
conditional relatedness, that is, the degree of the relation of a
pair of genes in certain conditions and showed that this approach
has a lower false-positive rate compared to traditional co-
expression analyses, due to the combination of prior knowledge
and co-expression.

1.3. Reviews
In their overview, M’sch et al. reported and described several
applications of machine learning methods in immunotherapy,
with special attention given to T cell receptor-mediated therapies.
They list more than 150 references, which show several data
sources and multiple computational intelligence algorithms
employed for several goals such as proteasomal cleavage
prediction, epitope prediction, and T-cell receptor prediction.

Zeng and Bromberg summarized the recent findings of the
functional effects of synonymous mutations in genomes.
In particular, they recapped the details and evaluated
the performance of nine existing computational methods
capable of predicting functional effects for synonymous
mutations, also demonstrating the limitations of currently
available tools.

2. DISCUSSION

The Research Topic stands out because of its heterogeneity
and the diversity of its contents: article authors applied
different computational intelligence methods, on different
datasets (almost all differing from source and type), to investigate
different scientific bioinformatics questions. This diversity
confirms the versatility of data mining usage and the huge
number of biological subjects that need to be investigated
and analyzed.

The Research Topic, in fact, includes original research articles
applying statistical learningmethods to several dataset types, with
gene expression being the most frequent one (Liu et al.; Maj et al.;
Quinn et al.; Simidjievski et al.; Wang et al.).
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Some authors employed traditional biostatistics techniques,
while others took advantage of machine learning methods. In
particular, we report the frequent usage of deep learning and
artificial neural networks among the applications described in the
Research Topic (Leclercq et al.; Maj et al.; Niu et al.; Simidjievski
et al.).

The Research Topic articles differ in data and software
availability, too. The authors of three articles made their data and
software openly public (Maj et al.; Niu et al.; Wang et al.). Two
articles have only made their software publicly accessible, but not
the data (Leclercq et al.; Simidjievski et al.). The authors of five
articles made their datasets available to the scientific community,

but not their software (Di Filippo et al.; Kong et al.; Martin and
Heider; Quinn et al.; Xu et al.).
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A subpathway is defined as the local region of a biological pathway with specific
biological functions. With the generation of large-scale sequencing data, there are
more opportunities to study the molecular mechanisms of cancer development. It
is necessary to investigate the potential impact of DNA methylation, copy number
variation (CNV), and gene-expression changes in the molecular states of oncogenic
dysfunctional subpathways. We propose a novel method, Identification of Cancer
Dysfunctional Subpathways (ICDS), by integrating multi-omics data and pathway
topological information to identify dysfunctional subpathways. We first calculated gene-
risk scores by integrating the three following types of data: DNA methylation, CNV,
and gene expression. Second, we performed a greedy search algorithm to identify
the key dysfunctional subpathways within pathways for which the discriminative
scores were locally maximal. Finally, a permutation test was used to calculate the
statistical significance level for these key dysfunctional subpathways. We validated the
effectiveness of ICDS in identifying dysregulated subpathways using datasets from liver
hepatocellular carcinoma (LIHC), head-neck squamous cell carcinoma (HNSC), cervical
squamous cell carcinoma, and endocervical adenocarcinoma. We further compared
ICDS with methods that performed the same subpathway identification algorithm but
only considered DNA methylation, CNV, or gene expression (defined as ICDS_M,
ICDS_CNV, or ICDS_G, respectively). With these analyses, we confirmed that ICDS
better identified cancer-associated subpathways than the three other methods, which
only considered one type of data. Our ICDS method has been implemented as a freely
available R-based tool (https://cran.r-project.org/web/packages/ICDS).

Keywords: multi-omics data, copy number variation, DNA methylation, subpathway activity, pathway topological
information
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INTRODUCTION

Cancer is a complex disease involving multiple biological
processes and multiple factors, including genomic, epigenomic,
and transcriptomic aberrations associated with cancer formation
and development (Forozan et al., 2000; Zhang et al., 2012).
Identifying molecular markers of cancer is a major challenge
and can effectively clarify diagnosis and treatment. With the
development of high-throughput sequencing technology, it is
possible to understand the pathogenic mechanisms of cancer at
the molecular level (Wang et al., 2014; Liu and Xu, 2015; Zhang
et al., 2017). Large-scale cancer genomics projects, such as the
Cancer Genome Atlas (TCGA) (Giordano, 2014), provide multi-
omics profiles from a large number of patient samples from
many cancer types. This may provide a basis for the systematic
understanding of the development of cancer. However, both
copy number variation (CNV) and DNA methylation changes
may affect gene expression, and integration of these data may
enhance essential gene characterization in cancer progression
(Kim et al., 2010; Xu et al., 2010). Many studies have shown that
the use of multi-omics data for integrated analysis helps us to
understand the pathogenic mechanisms of cancer. For example,
Xu et al. (2010) have shown that the correlation between gene
expression and CNV has biological effects on carcinogenesis
and cancer progression. Additionally, Zhang et al. (2013) has
classified the prognosis of patients with different subtypes of
ovarian cancer by integrating four types of molecular data
related to gene expression. In view of these works, our goal is
to explore the multi-layered genetic and epigenetic regulatory
mechanisms of cancer.

Biological pathways are models containing structural
information between genes, such as interactions, regulation,
modifications, and binding properties. In addition, genes in the
same pathway usually coordinately achieve a particular function.
With the appearance of some traditional pathway-analysis tools,
such as GSEA (Subramanian et al., 2005) and SPIA (Tarca
et al., 2009), the pathway-based approach has become the
first choice for complex disease analysis to facilitate biological
insights. Existing biological-pathway databases provide pathway
topological information, such as with the Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Wixon and Kell, 2000), which
is being updated to suit the needs for practical applications and
act a systematic reference knowledge database to understand the
metabolism and other cellular processes. Recently, the KEGG
pathway database has become one of most widely used resource
for biological function annotation (Kanehisa et al., 2017).

Based on pathway topological information, the subpathway
concept was proposed in our previous study in which we
confirmed that key subpathways – rather than entire pathways –
were more suitable for explaining the etiology of diseases (Li
et al., 2009, 2013). Subpathways contain fewer components,
which enables a more accurate interpretation of the biological
function of the disturbance, for the future study of precision
medicine. Subpathway-GM (Li et al., 2013) was proposed to
identify disease-relevant subpathways by integrating information
across genes, metabolites, and pathway structural information
within a given pathway; using this, 16 statistically significant

subpathways were identified as associated with metastatic
prostate cancer. SubpathwayMiner (Li et al., 2009) uses a
subgraph-mining method to find subpathways where all of the
genes have highly similar functions; this method identified36
dysfunctional subpathways – enriched by differentially expressed
genes – as associated with the initiation or progression of lung
cancer. Recently, some other methods have been developed to
identify subpathways from pathway topology. One example is
MIDAS (Lee et al., 2017), which determines condition-specific
subpathways and fully utilizes quantitative gene-expression data
and network-centrality information across multiple phenotypes.
Moreover, the following subpathway-activity measurement tools
have been designed to identify activated subpathways between
two phenotypes: PATHOME (pathway and transcriptome
information) (Nam et al., 2014), TEAK (Topology Enrichment
Analysis frameworK) (Judeh et al., 2013), and MinePath (Mining
for Phenotype Differential Sub-paths in Molecular Pathways)
(Koumakis et al., 2016). Moreover, there is also some other
methods proposed network-based analysis to discover de novo
pathway. For instance, de novo pathway enrichment extracted
sub-networks enriched in biological entities active by combining
experimental data with a large-scale interaction network (Batra
et al., 2017). These subpathway-analysis methods mainly identify
dysfunctional subpathways only by comparing the expression
levels of their involved genes between tumor and normal tissues.
In this way, other genetic characterizations of genes, such
as CNVs and DNA methylation, are ignored. However, both
DNA methylation and CNVs in cancer genomes frequently
perturb the expression levels of affected genes and, thus, disrupt
pathways controlling normal growth. It is therefore necessary
to integrate gene expression information and other genetic
information, such as DNA methylation and CNVs, to identify
dysfunctional subpathways.

In this study, we propose a novel method, termed
Identification of Cancer Dysfunctional Subpathways (ICDS),
to identify dysfunctional subpathways by integrating multi-
omics data and pathway topological information. In ICDS,
the first step is to calculate gene-risk scores to evaluate the
contribution of genes to cancer states by considering the
following three molecular characterizations: DNA methylation,
CNV, and gene expression. In the second step, we convert
the KEGG pathway into an undirected-pathway network
with genes as nodes and biological relationships as edges,
and use a greedy search algorithm to search for candidate
dysfunctional subpathways within the pathways for which
the discriminative scores are locally maximal. Finally, a
perturbation test is used to calculate statistical significance
for these dysfunctional subpathways. We applied the ICDS
method to liver hepatocellular carcinoma (LIHC), head-neck
squamous cell carcinoma (HNSC), and cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC) datasets,
and compared our results with three analytical methods that only
used DNA methylation, CNV, or gene expression to calculate
subpathway-activity scores (defined as ICDS_G, ICDS_CNV,
ICDS_M, respectively). Through these analyses, we confirmed
that ICDS could better identify cancer-associated subpathways
compared to the other three methods.
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MATERIALS AND METHODS

Datasets
The datasets containing gene expression, CNV, and DNA
methylation information were collected from the TCGA website1.
We downloaded TCGA RNA-seq level-3 data, which were
processed and normalized and used the Reads Per Kilobase per
Million mapped reads (RPKM) values for the gene-expression
levels. Finally, there were 19,754 genes used in 424 LIHC, 546
HNSC, and 309 CESC samples. CNV profiling was estimated
using the GISTIC2 method (Mermel et al., 2011), and was
annotated to genes using the UCSC cgData HUGO probeMap.
For example, the LIHC dataset contains CNVs in 24,776 genes
from 373 cancer samples. In this study, we further filtered 364
LIHC samples with matched gene-expression profiles.

We downloaded TCGA level-3 Illumina Human-
Methylation450 Bead Array data for DNA methylation.
The LIHC DNA methylation level-3 dataset contain β-values
for 20,105 genes from 429 samples, which included 50 normal
samples and 379 lung-cancer samples. The β-values are
calculated by M/(M+U+100) with a range from 0 to 1, in
which M is methylated allele frequencies and U is unmethylated
allele frequencies. Overall, higher β-values indicate higher
methylation. For three datasets, we removed genes with values of
zero in more than 80% of the samples. In this paper, we also use
the data from HNSC and CESC samples, which were processed
using the above procedure. Detailed data information is shown
in Supplementary Table S1.

The KEGG pathway database contains experimentally
verified pathway structural information (e.g., interactions,
regulation, modifications, and binding between genes). We
collected 294 KEGG biological pathways, and each pathway
was converted to an undirected network with genes as nodes
and biological relationships as edges on the basis of pathway
structural information using the “iSubpathwayMiner” system
(Li et al., 2009, 2013).

Calculated Gene Risk Score in Cancer
There are many factors influencing tumorigenesis, such as gene
expression, CNV and DNA methylation. For each gene, we
calculated its risk score in cancer by considering the following
three types of genetic molecular features: gene expression, CNV,
and DNA methylation. With the above data, we used the Student’s
t-test (Hogben, 1964) to calculate the adjusted p-value for
differential expression level and differential methylation level of
each gene in the tumor and normal samples (denoted by pgene
and pmethy). According to results of GISTIC2 analysis, the sample
was then divided into a copy-number-variated group and an un-
variated group for each gene, and then the differential expression
level of the gene in the two groups was calculated by Student’s
t-test (denoted by pcnv). It is difficult to define the quantitative
relationship and relative degree of each factor’s influence on
tumorigenesis, so we assume that gene expression, CNV, and
DNA Methylation equally contribute to the cancer development.
The gene risk score (RS) was calculated by integrating the

1https://tcga-data.nci.nih.gov/tcga/

above three p-values with Fisher’s combined probability test.
This method computed a combined statistic S from the adjusted
p-values obtained from the three individual datasets as shown in
Equation (1). Usually, the statistic S followed a χ2 distribution
with 2k degrees of freedom, and we then calculated the null
hypothesis p-value of the statistic S. Finally, we converted the
p-value to a z-score according to the inverse-normal cumulative-
distribution function (CDF), and the z-score was taken as the RS
of each gene in cancer.

S = −2 log
∏
m

pm, m = gene, cnv,methy (1)

Calculated Subpathway-Activity Score
Previous studies have confirmed that subpathways can provide
more detailed biological information than whole pathways. In
this study, we proposed a novel method to combine gene-risk
score with pathway topological structure to infer subpathway
activities. The RS of genes were obtained by the above method,
considering gene expression, CNV and methylation. For a
KEGG pathway, we performed a greedy algorithm to search
for dysfunctional subpathways within the pathways for which
the discriminative scores were locally maximal. Specifically,
the search algorithm started from a seed gene i which had a
significantly high risk score (p < 0.001) and expanded iteratively,
after which it selected one of the neighbors of the seed gene to
form the current subpathway. For a subpathway k, the activity
score (ASk) was the average of the RS of the member genes in the
subpathway, calculated by Equation (2):

ASk =
∑
i

RSi
√
n

(2)

In Equation (2), i is the index of the gene in the subpathway
k, while n is the number of genes involved in the subpathway. At
each iteration, the algorithm adopted a gene from the neighbors
of genes in the current subpathway, which produced maximal
increases between ASk+1 and ASk. The search algorithm will
stops when no additional gene increases in the score ASk+1 over
(1+r) ASk or the distance in the current subpathway between any
two nodes is greater than 3 in order to keep the search locally.
The improvement rate r is chosen to avoid too large subpathway
region, resulting in the addition of redundant weak information.
The parameter r = 0.05 has been demonstrated to be appropriate
in the greedy heuristic algorithm applied in the biological
network (Chuang et al., 2007). When the Jaccard index between
each pair of subpathways in the same pathway was more than
0.6, they were combined, which ensured that the subpathways
we found in our method contained more information and reduce
redundancy. Furthermore, we only considered subpathways with
more than five genes and less than 100 genes, to avoid overly
narrow or broad functional subpathways.

Significance Test of the Subpathway
We provided two statistical test methods for each candidate
subpathway, of which one was a whole gene-based perturbation,
and the other was a local-gene perturbation in a particular
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pathway. Users can choose the test method that they prefer.
The first test perturbs the gene labels on the entire gene list in
the pathway networks, and recalculates the activity score of the
subpathway, denoted as ASk_perm1. This test was used to test the
correlation between real subpathways and disease phenotype. In
this study, we performed 10,000 perturbations for this test and
calculated statistically significant p-value = M/N, in which M is
the number of ASk_perm1 greater than the real subpathway score
ASk, and N is the number of perturbations. In addition, the
second test perturbed the gene names in the pathway to which the
subpathway belonged, and recalculated the activity score of the
subpathway, denoted as ASk_perm2. This test was used to test the
correlation between real subpathways and pathway structure. We
also performed 10,000 perturbations and the score of each real
ASk was indexed on the null distribution of all ASk_perm2 whose
p-values could be evaluated. The p-values were adjusted using
the false discovery rate (FDR) method proposed by Benjamini
and Hochberg to correct for multiple comparisons (Benjamini
et al., 2001). In this study, both FDR at 0.001 was used as the
subpathway-significance threshold. We have implemented ICDS
as an R-based package that is publicly available on CRAN2.

RESULTS

Analyses of Hepatocellular Carcinoma
Data
A workflow diagram of the ICDS is shown in Figure 1.
We first applied ICDS to identify dysfunctional subpathways
in LIHC. The LIHC dataset was obtained from TCGA,
and its detailed information is shown in Supplementary
Table S1. In the LIHC dataset, we calculated the risk score
of 16,207 genes by considering the following three types of
genetic molecular features: gene expression, CNV, and DNA
methylation. We set the genes with p < 0.001 (derived from
the combined statistic S) as the seed genes in the pathway
network for the subpathway search algorithm (see Materials
and Methods). Subpathways were selected which satisfied two
permutation tests with FDR1 < 0.001 and FDR2 < 0.001 out
of the 10,000 permutations. ICDS identified 19 dysfunctional
subpathways associated with LIHC, belonging to 12 entire
pathways (Table 1 and Supplementary Table S2), of which up
to nine were reported to be associated with tumor occurrence,
development, and metastasis.

The most significant subpathway was path 00230_1 in
purine metabolism, which contained 61 genes. Some studies
have confirmed that the purine-metabolism pathway is highly
correlated with the occurrence and metastasis of liver cancer.
In multiple cancer cells, a marked imbalance in the enzymic
pattern of purine metabolism is linked with transformation
or progression, such as in kidney, liver, and colon carcinomas
(Weber, 1983). The subregion corresponding to the subpathway
included 61 genes (Supplementary Figure S1A), such as
adenosine monophosphate deaminase 1 (AMPD1) and
adenosine kinase (ADK), which are important enzymes

2https://cran.r-project.org/web/packages/ICDS

involved in purine metabolism. ADK plays a significant role in
affecting apoptosis and may become a target for the treatment
of cancer (Dzeja et al., 1998). More evidence is mounting
regarding the direct relationship between defects in ADK and
AMP metabolic signaling (e.g., AMPD) and human diseases
(Pavlova and Thompson, 2016), which is a set of collaborative
interactions that converts adenosine monophosphate (AMP)
to inosine monophosphate (IMP) as part of the process of the
purine nucleotide cycle. Compared with normal hepatocytes,
the levels of ADK and AMPD1 in LIHC cells were significantly
different in expression and methylation (pgene = 6.58e-05 of ADK
and pgene = 0.0042 of AMPD1; pmethy = 1.05e-05 of ADK and
pmethy = 9.48e-12 of AMPD1) (Supplementary Figure S1B).
The abnormality of ADK and AMPD1 changes the metabolic
homeostasis of cells and promotes the progression of cancer
cells (Pedley and Benkovic, 2017).

To assess the effectiveness of ICDS, we compared our results in
LIHC with three other analytical methods in which we calculated
the RS of genes by considering only one of the following
types of data: gene expression, CNV, or DNA methylation
(defined as ICDS-G, ICDS-CNV, or ICDS-M, respectively).
Next, we used the same procedure as above to find significant
subpathways and used the same parameter settings. Using
the methods of ICDS-G and ICDS-M, we obtained three
and one significant subpathways, respectively, and the entire
pathways they belonged to were all found by the ICDS method
(Table 1). Using the method ICDS-CNV method, we could
not find any significant subpathway. If we consider the genetic
differences or expression differences based on a single type
of data, we may lose important information. However, ICDS
exclusively identified 15 significant subpathways marked with red
asterisks in Figure 2A, and the KEGG pathways they belong to
could not be found based on the three other methods. Some
pathways identified by ICDS were the chemokine signaling
pathway and focal adhesion, which have been reported to be
related to the occurrence and development of hepatocellular
carcinoma (Zhao et al., 2011). It has been reported in the
literature that the chemokine signaling pathway is involved in
the establishment of a tumor-promoting microenvironment and
in the development and progression of hepatobiliary cancer
(Zlotnik and Yoshie, 2000). Drug targeting of the chemokine
pathway is a promising approach for the treatment or even
prevention of hepatobiliary cancer. Chemokines play a vital
role in tumor progression and metastasis, where the binding of
chemokines to their receptors leads to a conformational change,
which activates signaling pathways and promotes migration
(Zhao et al., 2011). Meanwhile, the subpathway path:04062_1
in the chemokine signaling pathway (Figure 2B), exclusively
identified by ICDS, included the chemokine family (CC or CXC)
and its receptors family (CCR or CXCR). All of these chemokine
families exert their biological effects by binding to chemokine
receptors that interact with G protein-linked transmembrane
receptors (Decaillot et al., 2011). In the subpathway path:04062_1
(Figure 3A), the CXC motif chemokine 12 (CXCL12) is a
chemokine protein that is differentially expressed between LIHC
and normal samples (pgene = 1.53e-35), and both the expression
of CCL20 and CCR2 are regulated by differential methylation
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FIGURE 1 | Flow diagram of ICDS methodology. (A) Calculated risk score of genes (RS) in cancer by considering three types of genetic molecular features: gene
expression, CNV and DNA methylation. (B) Combine gen-risk score with pathway topological structure to infer the subpathway activity score (AS); subpathways with
discriminative activity score in cancer were identified via a greedy search algorithm. (C) A permutation test is performed on the risk score of genes, and pathways are
prioritized by FDR after permutation tests.

(pmethy = 3.07e-18, 2.3e-16). Importantly, the ICDS method not
only recognized subregions of differential gene expressions but
also detected some genetically or epigenetically diverse regions
(e.g., CNVs and methylations). Another subpathway of the
chemokine signaling pathway was path:04062_4, which contains

9 genes (Figure 3B). We found that four of these genes were
mainly influenced by differential expressions and five were
mainly influenced by differential methylation. Thus, our method
can efficiently find dysfunctional local regions in biological
pathways and indicate their perturbation by deriving specific
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TABLE 1 | Subpathways identified by ICDS with FDR < 0.001 in the LIHC dataset.

SubpathID Pathway Size∗ FDR1 FDR2 ICDS-G ICDS-CNV ICDS-M

path:00230_1 Purine metabolism 61 <E-11 9.13E-11
√

path:00240_1 Pyrimidine metabolism 51 <E-11 1.76E-07
√

path:04380_1 Osteoclast differentiation 13 <E-11 3.29E-06
√

path:00830_1 Retinol metabolism 23 <E-11 3.29E-06

path:04062_1 Chemokine signaling pathway 24 <E-11 3.46E-06

path:04510_10 Focal adhesion 8 <E-11 3.46E-06

path:04152_1 AMPK signaling pathway 24 <E-11 6.34E-06
√

path:05166_1 HTLV-I infection 16 <E-11 6.34E-06

path:04062_4 Chemokine signaling pathway 9 <E-11 9.45E-06

path:00240_3 Pyrimidine metabolism 7 <E-11 1.23E-05

path:04062_7 Chemokine signaling pathway 10 <E-11 1.31E-05

path:04110_10 Cell cycle 8 <E-11 2.10E-05

path:04110_11 Cell cycle 9 <E-11 3.13E-05

path:04630_4 Jak-STAT signaling pathway 5 <E-11 3.43E-05

path:00240_2 Pyrimidine metabolism 7 <E-11 3.75E-05

path:00240_4 Pyrimidine metabolism 8 <E-11 6.61E-05

path:00230_4 Purine metabolism 10 <E-11 1.10E-04

path:04110_1 Cell cycle 25 <E-11 1.85E-04

path:04114_1 Oocyte meiosis 28 <E-11 9.42E-04

∗The number of genes in the subpathway.

types of molecular aberrations (CNV, differential methylations or
differential gene expressions).

Analyses of Head-Neck Squamous Cell
Carcinoma Data
The HNSC datasets were obtained from TCGA, and their
detailed information is shown in Supplementary Table S1. ICDS
identified 17 significant dysfunctional subpathways associated
with HNSC belonging to 9 entire pathways and the subpathways
exclusively identified by the ICDS method are marked with red
asterisks in Figure 4A (Table 2), of which up to eight have
been reported to be central to the growth and survival of cancer
cells. Subpathways were selected that satisfied two tests with
FDR1 < 0.001 and FDR2 < 0.001 (see Materials and Methods).

Path:04919_4 is a significant subpathways (Figure 4B and
Supplementary Table S3) belonging to the thyroid hormone
signaling pathway (Figure 4C). Many studies have confirmed
that the thyroid hormone signaling pathway is a critical
component in tumor progression (Kim and Cheng, 2013). Loss
of normal function of thyroid-hormone receptors by deletion or
mutation can contribute to cancer development, progression and
metastasis. Thyroid Hormone Receptor Alpha (THRA) belongs
to the nuclear receptor superfamily, is located on different
chromosomes, and encodes thyroid hormone (T3) binding
thyroid hormone receptor (TR) isoforms, which have been shown
to mediate the biological activities of cells (Laudet et al., 1993;
Wagner et al., 1995). TRs can function as tumor suppressors,
because reduced expression of TRs due to hypermethylation or
deletion of TR genes is found in human cancers. The samples
had significantly different methylation of THRA (pmethy = 4.79e-
12) in HNSC, and low expression of THRA is known to

activate PIK3R1, which provides instructions for synthesizing a
subunit of phosphatidylinositol 3-kinase (PI3K). PI3K signaling
is important for many cell activities, including cell growth,
division, and migration (Jaiswal et al., 2009). However, we
calculated the RS of PIK3R1in HNSC, and its contributions with
differential methylation were greater than that of differential
expression (pmethy = 4.78e-12; pgene = 1.46e-06) (Figure 4B).

Similarly, we compared the results of HNSC with the three
methods above (ICDS-G, ICDS-CNV, and ICDS-M). Using the
methods of ICDS-G and ICDS-M, we obtained two significant
subpathways and the pathways they belonged to were also
found by the ICDS method. However, 13 subpathways identified
by ICDS were missing from all of the other methods (ICDS-
G, ICDS-CNV, and ICDS-M) (Table 2). For example, the
subpathway path:00830_3 in retinol metabolism pathway was
identified by ICDS but not by ICDS-G, ICDS-CNV, or ICDS-
M, and Supplementary Figures S3, S4 show the distribution
of the activity score of path:00830_3, combined and individual
data source, for the real subpathways and for the randomization
cases. The local region of the subpathways was reported to be
central to the growth and survival of cancer cells (Supplementary
Figure S2A). Specifically, vitamin A (retinol) can control
mucosal lesions before the occurrence of HNSC and prevent
the occurrence of second primary tumors. Therefore, retinol
metabolism is essential for the early diagnosis and treatment of
HNSC. Retinoic acid (RA) is a critical signaling molecule that
regulates gene transcription and the cell cycle (Tzimas and Nau,
2001), and retinal is then metabolized by NAD/NADP-dependent
retinal dehydrogenases (RALDH) and by retinal oxidase enzymes
to RA (Chen et al., 1995). Additionally, CYP26C1 in the
path:00830_3 is involved in the metabolic breakdown of retinoic
acid, which could be more effective in the growth inhibition
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FIGURE 2 | (A) Subpathways identified by ICDS with FDR < 0.001 in the LIHC dataset. The y-axis represents significant subpathways sorted by FDR2, while the
x-axis represents the –log transformed FDR2. Compared to the three methods (ICDS-G, ICDS-CNV and ICDS-M), the subpathways exclusively identified by the
ICDS method are marked with red asterisks. (B) Annotation of genes in subpathway path:04062_1 and path:04062_4 to the original chemokine signaling pathway in
KEGG. Genes are marked with red, and the light-yellow circle corresponds to subpathway path:04062_1 and the blue circle to subpathway path:04062_4.
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FIGURE 3 | (A) Dysfunctional subpathway (path:04062_1) of chemokine signaling pathway in LIHC. (B) Dysfunctional subpathway (path:04062_4) of chemokine
signaling pathway in LIHC. The vertex in the subnetwork represents a gene, and green and purple colors in the vertex represent the proportion of the gene’s
differential expression scores and differential methylation scores between cancer samples and normal samples; orange colors represent the proportion of influence of
CNV on gene expression.

of cancer cells (Thatcher and Isoherranen, 2009). Moreover, in
the HNSC dataset, some genes mainly showed differences in
the degree of methylation compared to normal samples, such
as CYP26C1 (pmethy = 9.25e-34) and ALDH1A2 (pmethy = 1.65e-
13). Other components in the same subpathway, path: 00830_3,
mainly showed differences in the degree of expression compared
to normal samples, such as AOX1 (pgene = 3.11e-18) and ADH4
(pgene = 2.75e-38) (Supplementary Figure S2B). Therefore,
the ICDS method that we proposed can effectively identify
disordered genetic and epigenetic subpathways.

Analyses of Cervical Squamous Cell
Carcinoma and Endocervical
Adenocarcinoma Data
We applied ICDS to identify dysfunctional subpathways in
CESC (see Materials and Methods). With the threshold of
FDR1 < 0.001, we obtained four significant subpathways
that had just exceeded the threshold FDR2 (Supplementary
Table S4), and all of these subpathways were associated with
the development and progression of CESC tumors. Meanwhile,
using the method of ICDS-G, we obtained three significant
subpathways, and the pathways they belonged to were also
found by the ICDS method (Supplementary Tables S4,
S5). Subpathway 04020_1 in the calcium-signaling pathway,
identified by ICDS, was simultaneously neglected by the
other three methods.

Interestingly, subpathway 04020_1 (Figure 5A) in the
calcium-signaling pathway is involved many G-protein coupled
receptors (GPCRs), such as TACR1, TACR2, and HTR2B, and
downstream heterotrimeric guanine nucleotide-binding proteins
(G-proteins; GNA14) (Figure 5B). In this subpathway, many
GPCRs had significant patterns of expression changes in CESC

patients, such as TACR1 (pgene = 9.92e-32), TACR2 (pgene = 3.82e-
08), and HTR2B (pgene = 2.76e-26). Moreover, with CESC
samples, AVPR1A, which is a GPCR in cells, mainly showed
differences in methylation and expression compared to normal
samples. Many studies have shown that the abnormal expression
and activity of GPCRs is associated with the development and
progression of cancers (Audigier et al., 2013; Moody et al.,
2016). GPCRs play a role as key transducers of signals from
the extracellular milieu to the intracellular milieu of cells. It
has been confirmed that many GPCRs are highly expressed in
specific cancer cells, such as in cervical, breast, and prostate
cancer cells (Dey et al., 2010). Similarly, abnormal expression of
GPCRs contributes to the development of cancer (Radhika and
Dhanasekaran, 2001; O’Hayre et al., 2013). Furthermore, initial
signal transduction, such as that of calcium signaling, is achieved
primarily by GPCRs activated downstream of heterotrimeric G
proteins (Hanlon and Andrew, 2015; Schafer and Blaxall, 2017).
Calcium-signaling channels are important for the proliferation,
migration, and differentiation of cells, including tumors. CESC is
associated with the significant upregulation of calcium-signaling
pathways (Perez-Plasencia et al., 2007; Monteith et al., 2012).

Comparison of ICDS With Other Pathway
Analysis Methods
In recent years, the pathway-based and subpathway-base
approaches have become the first choice for complex disease
analysis in order to yield biological insight. To explore whether
ICDS could provide new biological insights in identifying
important subpathways, we compared ICDS with three widely
used pathway-based and subpathway-base approaches including
SPIA (Tarca et al., 2009), GSEA (Subramanian et al., 2005),
and SubpathwayMiner (Li et al., 2009). These three methods
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FIGURE 4 | (A) SubPathways identified by ICDS with FDR < 0.001 in the HNSC dataset. The y-axis represents significant subpathways sorted by FDR2, while the
x-axis represents the log-transformed FDR2. Compared to the three methods (ICDS-G, ICDS-CNV, and ICDS-M), the subpathways exclusively identified by ICDS
method are marked with red asterisks. (B) Dysfunctional subpathway (path:04919_4) of thyroid hormone signaling pathway in HNSC. The vertex in the subnetwork
represents a gene, and green and purple colors in the vertex represent the proportion of the gene’s differential expression scores and differential methylation scores
between cancer samples and normal samples; orange colors represent the proportion of influence of CNV on gene expression. (C) Annotation of genes in
path:04919_4 to the original thyroid hormone signaling pathway in KEGG. Genes are marked with red, and the light-yellow circle corresponds to path:04919_4.
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TABLE 2 | Subpathways identified by ICDS with FDR <0.001 in the HNSC dataset.

SubpathID Pathway Size∗ FDR1 FDR2 ICDS-G ICDS-CNV ICDS-M

path:04062_1 Chemokine signaling pathway 41 <E-30 2.73E-09
√

path:04919_4 Thyroid hormone signaling pathway 7 <E-30 1.67E-06
√

path:00830_3 Retinol metabolism 11 <E-30 1.79E-06

path:04062_6 Chemokine signaling pathway 10 <E-30 3.82E-06
√

path:04919_6 Thyroid hormone signaling pathway 5 <E-30 5.59E-06

path:04062_5 Chemokine signaling pathway 8 <E-30 1.40E-05

path:00830_1 Retinol metabolism 17 <E-30 1.60E-05

path:04151_6 PI3K-Akt signaling pathway 10 <E-30 1.60E-05

path:04919_5 Thyroid hormone signaling pathway 9 <E-30 1.86E-05

path:00830_4 Retinol metabolism 7 <E-30 2.06E-05

path:04380_1 Osteoclast differentiation 15 <E-30 2.21E-05
√

path:04024_6 cAMP signaling pathway 9 <E-30 2.48E-05

path:04024_2 cAMP signaling pathway 11 <E-30 2.17E-04

path:04261_5 Adrenergic signaling in cardiomyocytes 6 <E-30 2.20E-04

path:04072_6 Phospholipase D signaling pathway 5 <E-30 4.90E-04

path:05206_3 MicroRNAs in cancer 5 <E-30 6.0E-04

path:05206_6 MicroRNAs in cancer 5 <E-30 8.50E-04

∗The number of genes in the subpathway.

FIGURE 5 | (A) Dysfunctional subpathway (path:04020_1) of calcium signaling pathway in CESC. The vertex in the subnetwork represents a gene, and green and
purple colors in the vertex represent the proportion of the gene’s differential expression scores and differential methylation scores between cancer samples and
normal samples; orange colors represent the proportion of the influence of CNV on gene expression. (B) Annotation of genes in path:04020_1 to the original calcium
signaling pathway in KEGG. Genes are marked with red, and the light-yellow circle corresponds to path:04020_1.

mainly identify dysregulated pathways or subpathways by using
gene expression data, however, the ICDS method identifies
the dysregulated subpathways by integrating the three types of
data: DNA methylation, CNV, and gene expression. In order to
compare the results of the above methods uniformly, we chose
to compare the entire pathways identified by them. In HNSC
datasets, ICDS identified 17 statistically significant subpathways,
which belong to nine entire pathways. SPIA and GSEA found five
and eight significant pathways, and SubpathwayMiner did not

yield any significant pathways. Through comparing the results
of these methods, we found that ICDS identified six statistically
significant pathways, which were simultaneously missed by other
methods (Supplementary Table S6). The significant pathways
exclusively identified by ICDS, such as the cAMP signaling
pathway, chemokine signaling pathway, Retinol metabolism etc.,
have been well reported to be associated with the development
of HNSC (Tzimas and Nau, 2001; Tanaka et al., 2005). For
example, the thyroid hormone signaling pathway and retinol
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metabolism were reported to be central to the growth and
survival of cancer cells. A subpathway of Retinol metabolism
identified by ICDS methods (Supplementary Figure S2A) is
essential for the early diagnosis and treatment of HNSC. These
results indicate that the ICDS method may uncover something
new dysregulated subpathways.

DISCUSSION

The occurrence and development of diseases, especially cancer,
involves a complex biological network (Zou et al., 2016). Genetic
variation, epigenetic changes, abnormal gene-expression levels,
and many other factors will change in the characteristics of
living organisms. With the generation of large-scale sequencing
data, more opportunities exist to study the multi-omics
molecular mechanisms of cancer development. In systems
biology, dysfunctional genes may jointly activate biological
pathways. Therefore, the most critical step in exploring complex
disease mechanisms is to identify the functional pathways in
which these dysregulated genes are located. We proposed the
concept of subpathways in our previous work (Li et al., 2009,
2013). The subpathway, defined as a local region of an entire
pathway, contains fewer components, which enables a more
subtle and accurate interpretation of the biological function of
disturbances involved in cancer progression.

In this study, the employed method was based on a priori
biological pathways (e.g., KEGG), each of which represents a
network of interactions between genes, proteins, and chemical
molecules. The main purpose of this study was to discover
important dysfunctional subregions based on the pathway
topological structure. ICDS used Fisher’s combined probability
test to integrate gene expression, CNVs, and methylation to
calculate the RS of genes. As the gene expression, CNV and
DNA methylation are not completely independent, and thus
the independence assumption of Fisher’s combined probability
test may be violated here. This may be a limitation of
our ICDS method. Alternatively, the Brown’s method (Poole
et al., 2016) can also be used to integrate multiple data
source, and it does not suffer from this limitation. A larger
RS in cancer indicated a greater correlation between the
gene and the cancer phenotype. Next, we used a greedy
algorithm to search for subpathways in each KEGG pathway
network, so that subpathway activities were local maxima.
This algorithm have also been used to identified subnetwork
markers of breast cancer metastasis in the human protein–
protein interaction network previously, and achieved higher
accuracy in the classification of metastatic versus non-metastatic
tumors (Chuang et al., 2007). To avoid excessive redundancy in
the candidate subpathways, we set several parameters, such as
seed gene (p-value of combined statistic S < 0.001), subpathway
size (5 < size < 100), and overlap between subpathways
(i.e., Jaccard index between each pair of subpathways in
the same pathway < 0.6), which can be set by a user of
the ICDS package.

We applied the ICDS method to LIHC, HNSC, and CESC
datasets. Based on these analyses, we demonstrated that ICDS can

effectively identify dysfunctional subpathways correlated with
a cancer phenotype. For the HNSC dataset, the subpathway
path:04062_1 was the most significant subpathway and included
41 genes belonging to chemokine signaling pathway. Studies
have confirmed that the chemokine signaling pathway is a
critical component of tumor progression. These genes did not
simultaneously have changes in copy number, methylation,
and gene expression. However, these subregions could still be
found through our integration algorithm, which is the most
prominent advantage of our method. To further validate the
ICDS method, we compared it with three other methods that
only considered one type of data – gene expression, CNV, or
DNA methylation – named as ICDS-G, ICDS-CNV, and ICDS-
M, respectively. The results showed that the ICDS method was
able to identify new risk subpathways associated with cancer
that were simultaneously neglected by the other three methods.
Thus, it is essential to integrate multi-omics data to identify
additional dysfunctional subpathways in cancer. In the future,
we will involve other omics data, such as proteomics, to improve
our ICDS method.

To provide users with convenient and simple analytical tools,
we have integrated the ICDS, ICDS-G, ICDS-CNV, and ICDS-
M methods into an available R-based package on CRAN3. If
users are considering using the ICDS method, they need to
input three datasets of gene expression, copy number, and
methylation. The ICDS-package will produce a prioritized list
of subpathways. With this method, ICDS is used to find key
subpathways related to cancer phenotypes, and it is expected
that it can be used to mine for key subnetworks within some
prior networks (e.g., the PPI network) based on integrating
DNA methylation, CNV, and gene expression data. In addition,
ICDS may identify key subpathways as biomarkers to distinguish
high and low risk cancer patients. For this purpose, researchers
should input the molecular profile of genes with different
stage samples, such as patients in different stages of glioma.
Therefore, we have developed a free and robust tool to
identify dysfunctional subpathways in cancer by integrated multi-
omics data.
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The identification of biomarker signatures in omics molecular profiling is usually

performed to predict outcomes in a precision medicine context, such as patient

disease susceptibility, diagnosis, prognosis, and treatment response. To identify these

signatures, we have developed a biomarker discovery tool, called BioDiscML. From a

collection of samples and their associated characteristics, i.e., the biomarkers (e.g., gene

expression, protein levels, clinico-pathological data), BioDiscML exploits various feature

selection procedures to produce signatures associated to machine learning models that

will predict efficiently a specified outcome. To this purpose, BioDiscML uses a large

variety of machine learning algorithms to select the best combination of biomarkers

for predicting categorical or continuous outcomes from highly unbalanced datasets.

The software has been implemented to automate all machine learning steps, including

data pre-processing, feature selection, model selection, and performance evaluation.

BioDiscML is delivered as a stand-alone program and is available for download at https://

github.com/mickaelleclercq/BioDiscML.

Keywords: machine learning, omics, biomarkers signature, feature selection, precision medicine

INTRODUCTION

The identification of biomarkers that are indicative of a specific biological state is a major
research topic in biomedical applications of computational biology (Liu et al., 2014; Beerenwinkel
et al., 2016; Zhang et al., 2017). With the emergence of high-throughput molecular profiling
technologies and their decreasing costs, traditional medicine is moving to precision medicine
to improve disease diagnosis, and to propose tailored interventions to individuals. Research
studies involving cohorts of patients aim to discover patterns that establish risk stratification and
discriminate patient states, such as diseased vs. controls, disease type, etc. These last years, clinical
and biology research turned toward extensive usage of OMICs (i.e., proteomics, transcriptomics,
metabolomics, genomics, etc.) technologies, which include microarrays, mass spectrometry, and
whole exome/genome and RNA sequencing. Specific patterns associated with a clinical outcome of
interest (e.g., disease diagnostic, prognostic), called biomarker signatures, can be derived from these
high-dimensional technologies outputs (e.g., gene expression, polymorphisms) (Lin et al., 2017).
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These signatures, which are measurable indicators for predicting
a biological phenomenon, are usually identified using machine
learning (Pasolli et al., 2016) or statistical multivariate analysis
approaches (Rohart et al., 2017c).

Biomarker signature identification from disease-derived
omics datasets is a challenging task involving many pitfalls. First,
the datasets are generally highly unbalanced, where the features
(e.g., genes, peptides, metabolites. . . ), also called attributes or
variables, largely outnumber the samples. In addition, patients
are unequally distributed among measured outcomes. Second,
the molecular profiles are often heterogeneous (e.g., sub-
phenotypes in cancer data), of diverse types (e.g., categorical,
continuous), and scattered over multiple inputs (Libbrecht and
Noble, 2015). To identify sets of predictive biomarker signatures
from omics data, a few non-commercial methods have been
implemented in R packages (Lê Cao et al., 2009; Taverner
et al., 2012; Cun and Fröhlich, 2014; Rohart et al., 2017b).
These toolkits have adopted diverse multivariate projection-
based methods including principal component analysis (Wold,
1975), independent component analysis (Yao et al., 2012),
multi-group partial least squares regression (Eslami et al.,
2013), canonical correlation analysis (Hotelling, 1936), K-
means clustering (Hartigan and Wong, 1979), and associated
visualizations. Recently, other research teams have proposed
approaches in machine learning (ML) (Janevski et al., 2009;
Cun and Fröhlich, 2013; Lagani et al., 2013; Swan et al., 2013,
2015; Butti et al., 2014; Kong et al., 2014; Kourou et al., 2015),
a branch of artificial intelligence that holds a great potential
for pattern recognition in complex diseases datasets. ML has
already shown its ability to identify key features (markers)
and modeling predictive biomarker signature in a variety of
fields, including cancer research (Matsumura et al., 2010; Cima
et al., 2011; Cui et al., 2011; Roth et al., 2011; Fröhlich and
Cun, 2012; Kourou et al., 2015), neurology (Daoqiang and
Dinggang, 2012; Deshpande et al., 2013; Fekete et al., 2013),
immunology (Sutherland et al., 2011), skin diseases (Johansson
et al., 2011), etc. However, all these techniques are complex to
use and are out-of-reach for non-programmers and non-ML
experts. Furthermore, the software implemented specifically for
omics data are still rare and are strictly limited to specific ML
algorithms for feature selection (also called “attribute selection”)
or classification (Butti et al., 2014). Hence, there is an unmet need
to develop user-friendly computational approaches for using
machine learning in a biomedical context that are dedicated to
biologists and clinical researchers. These approaches must be able
to identify complex patterns and predict outcomes in various
biological or clinical fields (e.g., disease diagnosis, prognosis,
therapeutics), thus helping to understand the biology behind a
measured outcome.

Considering the complexity of the ML approach, we present
in this paper a software called BioDiscML (Biomarker Discovery
by Machine Learning), which aims to greatly facilitate the
work required for biomarker signature identification from high-
dimensional data, such as gene expression, by automating the
ML approach. Some non-commercial automatic software already
exists to facilitate the choice of learning algorithms and perform
hyper-parameter optimization, such as Auto-weka (Thornton

et al., 2013), auto-Sklearn (Feurer et al., 2015), autoML (Feurer
et al., 2015), and preconfigured pipelines in Orange canvas
(Demšar et al., 2013). But they are not explicitly designed to
answer biological problems, lack of user-friendly experience
for non-ML experts, some focusing only on hyperparameter
optimization, and may be complex to parallelize to decrease
calculation time. We aim here to fill the gap, providing
BioDiscML the capacity to test large number of feature subsets
and models in order to obtain the most performant signature
to predict a measured outcome. BioDiscML uses an exhaustive
search approach, which systematically enumerates a pre-defined
set of possible candidates for a solution and test whether each
candidate satisfies the problem statement. BioDiscML can also
merge files from different sources, search for the most predictive
combination of feature subsets and machine learning classifiers,
train a model, evaluate predictive performances, parallelize the
computation, and search for correlated features.

MATERIALS AND METHODS

BioDiscML is a tool that automates main ML steps by
implementing methods for feature and model selection. In
this section, we describe the program procedures separated in
three main components: preprocessing, feature selection and
model selection. We also present all supported models (see
Supplementary Materials), evaluation metrics, feature search
methods, best model selection and correlated features search
approaches. Finally, we have summarized the real-life datasets we
used to compare BioDiscML against various existing tools.

BioDiscML Software
BioDiscML is a biomarker discovery software that supports
classification (categorical class) and regression (numerical class)
problems. It is written in JAVA 8 language (Fischer, 2015) and
use Weka 3.8 machine learning library (Holmes et al., 1994; Hall
et al., 2009; Witten et al., 2016). It automates several machine
learning steps aiming to identify predictive models. To this
purpose, BioDiscML can routinely perform data preprocessing,
features dimension reduction, a combined feature and model
selection strategy, identify best models, and search correlated
features. All machine learning generated models are evaluated
by various cross validation procedures. All steps are configured
with editable default parameters. Advanced parameters can also
bemodified by the user. Some basic information is needed to start
the program such as: input dataset(s), class label name, problem
type (regression or classification).

BioDiscML pipeline presented in Figure 1 works as follows:
It starts with the preprocessing section. After merging the input
datasets whenmany are submitted, a first sampling step separates
the data in a train and a test set (2/3 and 1/3, respectively, by
default), this latter will be used after model creation to assess non-
overfitting. Then, a feature ranking algorithm sorts the features
based on their predictive power with respect to the class. Only the
first best 1,000 s features are kept by default. Then, in the feature
selection section, for each machine learning algorithm defined
in BioDiscML (i.e., the classifiers), and for each optimization
evaluation criterion (i.e., a chosen evaluation metric), two types
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Repeated Holdout and
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FIGURE 1 | BioDiscML pipeline. Preprocessing and feature selection procedures are fully parallelizable, When all features-optimized models are computed, the model

selection starts. The program can be also started from the checkpoint at any moment during the execution. *The Set of ML classifiers is the set of pre-configured

commands in classifiers.conf file. All classifiers are listed in the Supplementary Table S1. **Criterions are optimized metrics, evaluated by 10-folds cross validation

(10 CV), used to assess if a model is improved, such as accuracy, balanced error rate, Matthew’s correlation coefficient, area under the curve, sensitivity, specificity,

Root Mean Squared Error, etc. (see Evaluation Criterion). ***Feature selection methods include forward stepwise selection (FSS), backward stepwise selection (BSS),

forward stepwise selection and backward stepwise elimination (FSSBSE), backward stepwise selection, and Forward stepwise elimination (BSSFSE), and “top k”

features (see Optimal Feature Subset Search Methods).

of feature search selection are performed: top k features and
stepwise (see Optimal Feature Subset Search Methods). Top k
simply select the best k elements from the ordered feature set
to create a model. In the stepwise approaches, for each element
in the ordered set, features are added and/or removed one by
one depending on the feature search method. At each iteration,
the created model is evaluated by 10-fold cross validation (10
CV) and the combination of selected features is retained if the
predictive performance is improved. When all features are tested
and the signature is identified, the model is evaluated on other
cross-validation/sampling procedures (see Model Evaluation).
Once all classifiers are tested, we end with a set of feature-
optimized models with their associated performances metrics
(see Model Evaluation) and associated features, for each model.
In total, about 8,500 models for classification and about 1,800
for regression are tested, but a large part will not be computed
because of non-supported data (see Supplementary Table S1).
Once all models are generated, the program executes the best
model(s) selection section. The average performance among
some computed metrics (see Model Evaluation) are used to
estimate the most efficient model (see Best Model Selection), and
correlated features are retrieved from the original dataset (see

Correlated Features Search) and compiled in a tabular-separated
text file report. Depending computing performances and dataset
size, a few hours may be needed for BioDiscML pipeline to finish.
Before the end of BioDiscML execution, a user can execute at any
time BioDiscML from the checkpoint in parallel to perform the
best model selection process, which will retrieve models from the
feature-optimized model list generated and updated in real-time.

Data Preprocessing
BioDiscML supports multiple input files (e.g., clinico-
pathological information with omics data), as the condition
that sample identifiers exist in all files to perform joining. The
input datasets are assumed to be clean and consistent, in a
flat file format, table-like structure with samples in rows and
features in columns (Figure 2). Field separator symbols (e.g.,
tabulation, comma, semicolon) are automatically detected based
on the first lines of the file. Feature and instance duplicate names
are not allowed. Where multiple datasets are submitted, only
one must contain the class label. File contents are composed
of instance identifiers (e.g., samples, patients) associated to
numerical and/or nominal features (e.g., high/medium/low,
effect_A/effect_B, Drug_1/Drug_2). Let be a set of q datasets
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FIGURE 2 | BioDiscML accepts as input one ({d1} only) or many ({d1, ..,dq}) symbol-separated table-like structured datasets containing samples in row and features

in columns.

{d1, d2, ..., dq}with q ≥ 1containing mqfeatures. In each dataset
the first column is used to create the joining of all datasets and
consists of instances unique identifiers. If an identifier does not
exist in all datasets, it will be ignored. The class label column
Y is required and must be specified by the user. In addition
to the class label, the dataset d1contains a set of m1 features
noted A1 = {A1,1,A1,2,...,A1,m1 }where A1,m1 ,the m1-th feature
of d1, is a vector denoted {a1,m1 ,1,a1,m1 ,2,..., a1,m1 ,n}. Hence the
feature vector of the n-th instance of the dataset d1 is noted
x1,n = {yn, a1,1,n,a1,2,n,..., a1,m1 ,n}.In case of multiple datasets
(q ≥ 2), the feature vector of the n-th instance of the dataset dr is
noted then xr,n = {ar,1,n,ar,2,n,..., ar,mr ,n}, wheremr is its number
of features. The resulting set of merged datasets is called D.

Due to experimental errors or partially answered forms by
patients, missing data may be present in the dataset. If one wants
to conserve the features with missing data, the ML library used
by BioDiscML will replace all missing values for nominal and
numeric features with the modes (i.e., value that occurs most
often) and means from the training data, respectively.

Also, manipulating large files is painful and one would
exclude specific features without editing the input files. Thus, we
implemented in BioDiscML features exclusion capabilities, where
it simply ignores columns entered by the user.

Finally, a stratified sampling, which preserve the initial classes
balancing, is applied to generate a test set for further evaluation
to assess non-overfitting. It is set by default to create a train set
of 2/3 of the input data, from which models will be computed,
and 1/3 as a test set. These proportions can be modified by the
user, and in case of very low number of instances, sampling can
be disabled. A separate test set of the same structure than the train
set can also be provided to BioDiscML.

Feature Ranking and Dimension Reduction
Feature ranking (as for feature selection) is essential to identify
irrelevant or redundant features, which, once discarded, help
to reduce computation time, improve prediction performance,
and extract the most informative features (Sasikala et al.,

2016). BioDiscML uses Information Gain (Krishnaiah and
Kanal, 1982), which evaluates the worth of a feature by
measuring the information gain with respect to a class. However,
Information Gain is not compatible for regression problems
using continuous class. In this case, BioDiscML instead uses
ReliefF (Robnik-Sikonja and Kononenko, 1997), an adaptation
to the original Relief algorithm (Kira and Rendell, 1992), which
is as fast as Information Gain computation. ReliefF evaluates
the worth of a feature by repeatedly sampling an instance
and considering the value of the given feature for the nearest
instance of the same and different class. Both Information
Gain and ReliefF are used in conjunction with a ranker search
algorithm, which ranks features by their individual evaluations.
By default, and to reduce the dimension of the dataset,
BioDiscML will only keep informative features (Information
Gain >0.01 or |ReliefF| >0.01) or the first 1,000 best features,
ordered by their absolute value of their score (ReliefF provides
positive and negative correlation scoring with continuous class)
(see Algorithm 1).

Feature Subset Selection and Model Search
Selecting a subset of features from a large number of potential
variables is a common problem in pattern classification. Some
feature subset selection methods involve a criterion to evaluate
the capacity of feature subsets to distinguish one class from
another, and a search algorithm to explore the potential solution
space. At the end of the process, the feature subset generally
contains the most important and non-redundant variables. In
this context, BioDiscML automates an exhaustive procedure
that generates thousands of combinations of ML algorithms
and feature subsets defined by various search methods. This
technique, which mixes both feature and model search, produces
thousands of models associated to an optimal subset of non-
redundant features. Many evaluation procedures (e.g., cross
validations, resampling, bootstrapping) using train and test sets
assess if models do not overfit the train set. All steps are described
in Algorithm 2.
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Algorithm 1: Dimension reduction by Information Gain and
ReliefF
Input: train instances of D (merged datasets), classifierType
(classification or regression)
Output: Dataset with ranked best features S

for each feature array A do

if classifierType= classification
thenmeritScorea = Compute information gain
value of A with respect to classes Y
elsemeritScorea = Compute ReliefF value of a
with respect to classes Y

end if

ifmeritScorea 6= 0
then add |meritScorea |tomeritScores

end if

end for

SortedFeatures= SortmeritScores from largest to smallest values
if

∣

∣SortedFeatures
∣

∣ ≤ 1000
then S = SortedFeatures
else S = SortedFeatures{A1,A2, ...,A1000}

end if

return S

Available machine learning algorithms
ML classifier algorithms and their hyperparameters (i.e., the
options of the learning algorithm) are predefined in BioDiscML
with random sets of options, including those provided by
default in Weka library. In the current version, about 80
classifiers are available in BioDiscML (Supplementary Table S1).
Some classifiers exist in various adaptations to support more
features or class types. Depending available computing resources,
the list of classifiers and hyperparameters can be modified
by the user, as well as the spectrum of tested algorithms.
In case of non-compatibility between a classifier and the
input data or erroneous options, the classifier will be ignored
by BioDiscML.

Evaluation criterion
For each classifier, several feature search methods are conducted.
Each search method iterates over the features (except “top k”
features approach) and trains a model at each iteration. To
evaluate if a model is improved by adding or removing a
feature, an evaluation criterion is measured by 10-fold cross-
validation to assess if the prediction performance increases.
All metrics are averaged over the folds and by class size,
since a classifier usually performs differently over each class.
This optimization procedure performed on feature selection
either maximize or minimize the criterion, depending if it
measures a performance or an error, respectively. Criterions
supported by BioDiscML includes accuracy (ACC), balanced
error rate (BER), Matthew’s correlation coefficient (MCC), area
under the curve (AUC), sensitivity, specificity, Root Mean
Squared Error (RMSE), Correlation Coefficient (CC), etc. The
full criterions list, including their equations, is provided in
Supplementary Table S2.

Optimal feature subset search methods
For each ML algorithm listed in Supplementary Table S1, and
for each selected criteria selected in Supplementary Table S2,
from the ranked features S obtained in Algorithm 1, models
are trained using several feature search approaches, including:
Forward stepwise selection (FSS), Backward stepwise selection
(BSS), Forward stepwise selection and Backward stepwise
elimination (FSSBSE), Backward stepwise selection and Forward
stepwise elimination (BSSFSE), and “top k” features. In the
stepwise procedures, features having an equal predictive power
to the outcome (i.e., distributions similar among classes) and
retained in the model may be selected randomly or by order of
appearance in the dataset.

Forward stepwise selection (FSS). Also called sequential forward
selection (Reunanen, 2003), where features are added one by one
to the model. At each added feature, the model is evaluated by
10 CV. If the model is improved, based on a given evaluation
criterion, the feature is definitely kept in the model, otherwise it
is rejected (Maugis et al., 2011).

Backward stepwise selection (BSS). This approach is similar to the
FSS, but instead of starting from the best feature, this algorithm
starts the selection from the worst feature. Features are added one
by one, if the model is improved (evaluated by 10 CV) the feature
is definitely kept in the model, else, it is rejected.

Forward stepwise selection and backward stepwise
elimination (FSSBSE). The drawback of FSS and BSS is that
once a feature is selected, it cannot be deleted at a later stage.
Consequently, redundant features might be selected. To alleviate
this problem, we have implemented a FFSBSE algorithm, inspired
by previous work (Caruana and Freitag, 1994; Mao, 2004; Zhang,
2011). After each addition of an increasing criterion score
feature using FSS, a BSE step removes all previously selected
features one by one in reverse order with replacement and test
the performance by 10 CV every time. If removing a feature
improves the model (evaluated by 10 CV), then the feature is
discarded, otherwise it is kept.

Backward stepwise selection and forward stepwise
elimination (BSSFSE). Similar to FSSBSE, but instead the
algorithm starts from the selection of the worst feature.

“Top k” features This fast method simply trains a
model with a subset of k best features, with k =

{1, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100}.

Model evaluation
Prediction performance of a model is measured using
various evaluation procedures including 10 CV, leave-one-
out cross validation (LOOCV), holdout, repeated Holdout,
bootstrapping, and 0.632+ bootstrap estimator. For each
generated model described in previous sections, and for each
evaluation procedure, the following metrics are measured (see
Supplementary Table S2): ACC, AUC, AUPRC, Sensitivity,
Specificity, MCC, BER. In 10 CV evaluation, the original training
set is randomly partitioned into 10 equal sized subsamples. The
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model is trained on nine subsamples and tested on the remaining
one. The CV is repeated 10 times, where each subsample is
used exactly once for evaluation. The reported metric scores are
their average over all folds. In LOOCV each model is trained
on all the data except for one instance and a prediction is made
for that instance. Average of metric scores are computed over
all tested instances. The holdout method is the simplest kind
of cross validation where the dataset is randomly separated
into two sets generated at sampling procedure (see Figure 1),
called the training set and the testing set. The model is trained
using the training set only, then is used to predict the class for
the data in the testing set as evaluation. However, this type of
evaluation can have a high variance since it depends heavily
on which instances end up in the training and test sets. Thus,
a repeated holdout is also performed 100 times (by default)
with random sampling without replacement. Repeated Holdout
consists of randomly select and hold out a 1/3 of the training
sample for testing, build model with only the remaining samples,
retrieve its performances, and repeat the process many times.
At the end, we report the average all performance metrics. The
bootstrapping is equivalent, except the random sampling is
performed with replacement. Finally, we also provide a 0.632+
bootstrap estimator (Efron, 1983), representing an estimation of
the bias of the predictive model, which should tend to 0, hence
assessing that the model does not overfit.

In addition to all these metrics, for each feature-optimized
generated models, we calculate the average MCC and BER with
their associated standard deviation across all evaluations (10 CV,
LOOCV, Repeated Holdout, Bootstrap, holdout). For regression,
we calculate the average and standard deviation of CC and RMSE.

Best Model Selection
Selecting the best model is not trivial since several good solutions
are produced. Moreover, the definition of a “good” model also
depends of user needs; for example, one would favor a model
with a very low number of features over a model having dozens
of feature, even if the latter provides a better overall performance.
While BioDiscML proposes an automatic selection of the best
model, a manual approach would be appropriate at that step.
For this reason, all models are stored in real time in a Microsoft
Excel-compatible Comma Separated Value (CSV) file and can
be easily ordered by a criterion metric according to the user
needs. Identifiers of user-selected models can be then submitted
to BioDiscML to generate data files for easy re-use in other
programs and full reports (containing the biomarker signature,
the model and its hyperparameters, overall performances, and
correlated features). Otherwise, by default, BioDiscML best
model selection procedure aims to identify the model having a
high agreement between the various evaluation methods, hence
assessing stability and low overfitting of the model. To this
purpose, select the model having the best average MCC with a
standard deviation lower than 0.1 (or another adjusted threshold
set by the user). The user can change the best model selection
strategy at ease in the program configuration file. For example,
one would select a trained model on train set having the best

Algorithm 2: Identification of features subsets and feature-
optimized models

Input: Dataset with ranked best features S, set of ML classifiers
with various hyperparameters, set of criteria, datasets D
Output: Feature-optimized models list L with their identified
features subset

function EVALUATE(model, selectedFeatures, dataset D, list of
models L)

trainSetEvaluation= Evaluatemodel using 10CV, LOOCV,
Bootstrap, Repeated Holdout, 0.632+ estimator on train set
testSetEvaluation= Extract selectedFeatures from test
instances of dataset D and perform holdout evaluation
withmodel
performances= trainSetEvaluation, testSetEvaluation
addmodel with performances and selectedFeatures to L
return L

end function

for each classifier in classifiers do
for each criterion in criteria do
for each featureSearchMethod in featureSearchMethods{FSS,
BSS, FSSBSE, BSSFSE)
do

if criterionmust be maximized
(see Supplementary Table S2) then

criterionScore= 0
rule= “lesser than”

else

criterionScore= 1000
rule= “greater than”

end if

if featureSearchMethod= FSS or BSS then
if featureSearchMethod= BSS then
S= invert feature rank order of S

end if

for each feature A in S do
Add A to selectedFeatures
model = Train using classifier with selectedFeatures
newCriterionScore= perform 10CV evaluation
if newCriterionScore rule CriterionScore

then discard a from selectedFeatures
else keep a in selectedFeatures
criterionScore= newCriterionScore

end if

end for

else

if featureSearchMethod= BSSFSE
then S= invert feature rank order of S

end if

for each feature A in S do
Add A to selectedFeatures
model = Train using classifier with selectedFeatures
newCriterionScore= perform 10CV evaluation
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if newCriterionScore rule CriterionScore
then discard A from selectedFeatures
else

keep A in selectedFeatures
criterionScore= newCriterionScore
for each selectedFeature from before last kept
feature to the first selected feature in
selectedFeatures do

remove selectedFeature from selectedFeatures
subModel = Train using classifier with
selectedFeatures
subNewCriterionScore= perform 10CV
evaluation
if subNewCriterionScore rule
NewCriterionScore then
discard selectedFeature from selectedFeatures
NewCriterionScore= subNewCriterionScore

else

keep selectedFeature in selectedFeatures
end if

end for

end if

end for

end if

L= EVALUATE(model, selectedFeatures, A, L)
end for

end for

# create models without stepwise feature subset selection
approaches
selectedFeatures= k first features
model = Train using classifier with selectedFeatures
from dataset S
L= EVALUATE(model, selectedFeatures, A, L)

end for

return L

MCC on the test set (TEST_MCC, see readme program file),
or on the best bootstrapping using merged training and testing
sets (TRAIN_TEST_BS_MCC).Since all generated models have a
unique identifier, one would use these identifiers to select the best
model based its own criteria.

Ensemble Learning
Since several good models with different features can exist in the
results generated by BioDiscML, we also propose a vote classifier
able to combine many models together. Different combinations
of probability estimates for classification are available, including
Average of probabilities, Product of probabilities, Majority voting
and Median. As for best model selection, many metrics and
correlated features are provided for this ensemble model. We
also count the number of occurrences of each features in the
combined models. The models to add in the ensemble classifier
are dependent of the user choice. They can be selected manually
using their unique identifiers, or by setting a metric dependent

rule (by default average MCC lower than 0.6) and a maximum
number of models to include.

Correlated Features Search
The identified signatures by stepwise search methods will tend
to ignore all redundant/correlated features. To use the models
as “black box” for pure prediction, this may be optimal, but not
for biological interpretation because one would understand why
the selected features have a link with the predicted class. To this
purpose, from the features in the signature, BioDiscML retrieves
all other correlated features from the original dataset using
Pearson and Spearman correlations. BioDiscML also identifies all
neighbor features discovered during feature ranking procedure
by Information Gain and ReliefF methods. Both provide feature
ranking scores that are used to detect the features having the
same predictive power, i.e., similar behavior among instances.
With these techniques, redundant information lost during the
feature selection process are recovered, hence helping for further
interpretation of the signature.

Gene Set Enrichment Analysis
We performed several Gene Set Enrichment Analysis (GSEA) to
characterize the signatures identified by BioDiscML on the test
datasets. To this purpose, we used ToppFun tool, fromToppGene
suite (Chen et al., 2009), with Bonferroni correction at 0.05 to the
probability density function (p-value Method).

Datasets for Benchmarking
Datasets described in Table 1 have been evaluated to compare
the performance of BioDiscML and recent tools. All models and
signature information for all tested datasets are presented in
Supplementary Datasets_results.xlsx.

RESULTS

We compared BioDiscML to various recent approaches
dedicated to biomarker discovery and modeling, including
MINT (Rohart et al., 2017a), AucPR (Yu and Park, 2014), and
RGIFE (Swan et al., 2015) to demonstrate the better predictive
performances that BioDiscML offers on various omics datasets.
In all cases, BioDiscML outperform these state-of-the-art tools.

BioDiscML vs. Mint
MINT implements a multivariate integrative method able to
integrate independent datasets, reduce batch effect, classify
instances and identify key discriminant variables. In their study,
they performed a feature selection and classification evaluation
of a stem cell dataset. According to their published results, they
identified a signature of 17 genes which predicted the test and
train sets with a BER of 9.4 and 7.1% resp. Using the exact
same train set, BioDiscML identified a signature of 19 genes
by optimizing the AUC of a Random Forest model with 100
iterations and using the FSSBSE feature search method. The
measured BER on the test set was 7%, and on the train set
3.5, 3.6, 6.8, and 7.2% using 10 CV, LOOCV, and repeated
holdout and bootstraping resp. To select this model among the
4,710 successfully generated models, we simply retrieved the one
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TABLE 1 | Description of the real-world datasets used to evaluate the performance of BioDiscML vs. recent tools.

Name Description Features Instances References

Stem cells Fifteen merged transcriptomics microarray sets from

multiple platforms. They contain three types of

human cells as classes: human Fibroblasts (Fib),

embryonic stem cells (ESC), and induced

pluripotent stem cells (IPSC)

13,315 Train set: 62 ESC, 105 IPSC, 43 Fib

Test set: 33 ESC, 77 IPSC, 22 Fib

Total: 210 (train) + 132 (test) = 342 patients

Rohart et al., 2017a

Colon cancer Transcriptomics microarray available from ColonCA

R package in Bioconductor (Gentleman et al.,

2006), separated between cancerous from

non-cancerous colon tissue

2,000 Sixty-two patients, including 40 tumors and 22

normal cases

Alon et al., 1999

Central nervous system Microarray gene expression data derived from

central nervous system of patients brain tumors to

predict embryonal tumor outcome

7,129 Sixty patients, including 39 medulloblastoma

survivors, and 21 treatment failures cases

Pomeroy et al., 2002

Diffuse large B-cell

lymphoma (DLBCL)

Transcriptomic microarray of pre-treatment biopsies

tumor specimens separated in DLBCL and

follicular lymphoma

2,647 Seventy-seven patients, including 58 DLBCL

and 19 follicular lymphoma

Shipp et al., 2002

Prostate cancer Microarray expression analysis was used to

determine gene expression levels differences

between tumor and non-tumor prostate samples

2,135 One hundred two patients, including 52 tumor

and 50 normal cases

Singh et al., 2002
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FIGURE 3 | BER comparison of MINT vs. BioDiscML. Train BER value was

obtained by LOGOCV performance evaluation and test BER value using

holdout validation. Values are in percentage.

having the lowest BER on the holdout method. Thus, on the
same test set, the Random Forest model identified by BioDiscML
improved the BER from 9.4 to 7%, corresponding to about 25%
relative error decrease (see Figure 3).

In their paper, MINT authors have provided the signature
identified by their method. Although both signatures found by
MINT and BioDiscML have no genes in common, most of
level 2 biological processes ontologies (see Supplementary Data)
obtained by these signatures were identical (cellular process,
multicellular organismal process, metabolic process, biological
regulation, cellular component organization or biogenesis,
localization). Specific biological processes were reproduction and
immune system inMINT signature, and response to stimulus and
developmental process in BioDiscML signature. A long signature
of 71 genes can also be obtained using correlated feature search
in BioDiscML. Using this long signature, only immune system
process was added compared to the short signature, which also

exists in the MINT signature. Moreover, this long signature
provided perfect predictions on all instances of the test set.
We also compared both signatures GSEA (see Methods). MINT
signature did not show any significantly enriched ontologies,
literature co-citation, co-expression etc. At the opposite, the
short signature of BioDiscML found about 20 hits related to
stem cells in co-expression databases (GeneSigDB and MSigDB)
and co-expression Atlas. Also, about 20 other hits were found
in literature co-citation about cognitive diseases (Alzheimer,
Parkinson, Schizophrenia). The long signature provided even
more hits, in many other categories.

BioDiscML vs. AucPR
In their study, authors of AucPR, an AUC-based approach using
penalized regression, have evaluated the performance of their
tool against four datasets. While AucPR showed a very good
prediction performance on three of four tested datasets, the
average AUC on ColonCA dataset was about 90% using both best
penalization regression approach modes of the tool (Lasso and
ElasticNet). Considering AucPR had the lowest performance on
this dataset, we tried the performance of BioDiscML on it. In
their paper, authors report the boxplots of 100 AUCs obtained
by repeated holdout (random separation of 2/3 of the data
for training and the remaining for testing) without sampling
step. Using the same data and same evaluation method without
sampling before training, two models identified by BioDiscML,
on the 3,967 successfully generated models, shared the same
best average AUC score. We chose the one having the best
MCC on repeated holdout, a model based on a Hoeffding Tree
(parameters: infogain split, Naive Bayes adaptive leaf prediction
strategy, grace period of 200, tie threshold of 0.05) optimized by
AUC. This model provided an average AUC of 99.3% (0.632+
rule at 0.047) using 10 genes discovered by FSSBSE. This is an
improvement of AUC of about 11%. Both AucPR modes AucL
and AucEN selected in comparison 30 and 22 genes resp. The
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FIGURE 4 | Boxplot of AUCs bootstrapping over 100 iterations of most

performant AucPR methods called AucL (AucPR with Lasso) and AucEN

(AucPR with ElasticNet), vs. BioDiscML most performant model

(Hoeffding Tree).

benchmark comparison of AUCs is reported in Figure 4. The
model identified by BioDiscML has a much better performance
in terms of average AUC and variance over bootstrapping.
GSEA was not performed since this dataset didn’t provided
gene identifiers.

BioDiscML vs. RGIFE
RGIFE is an heuristic method intending to identify reduced
panels of biomarkers with highly predictive performance. It first
ranks features by their contribution to the generated models,
and dynamically removes blocks of features. It also introduces
a concept called soft-fail, which considers an iteration successful
despite a performance drop within a tolerance level and specific
circumstances. We evaluated the performance of BioDiscML
on three datasets tested in RGIFE, including Central Nervous
System (CNS), DLBCL, and Prostate Cancer datasets. On the
10 tested datasets by RGIFE, the three selected datasets showed
accuracies around 60–70% for 10 CV, while BioDiscML identified
models and signatures providing prediction performance close
to perfection (100% accuracy) with lower number of features.
Performances are reported in Table 2, where, for each dataset,
we identified two models found by BioDiscML. To provide a
fair comparison with the RGIFE manuscript we selected models
having the best 10 CV accuracy (with best bootstrapping accuracy
and lowest number of features in case of models’ performance
equality), which ended with 100% accurate models. But since
this typical measure approach tends to be over-optimistic on
the real performance of the models and because overfitting was
suspected, we also reported models having the best bootstrapping
accuracy. Obtained models show accuracies between 10CV and
Bootstrapping more consistent, hence showing models are stable.
In any case, 10CV accuracy was always better with BioDiscML
results. The two signatures found for CNS dataset presented
an overlap of five genes, and a merged list of the signatures
show several GSEA significant hits related medulloblastoma

and other cancers. For BLBCL dataset, no genes overlapped
the two signatures, and we found significant hits related to
dehydrogenase activity in the GSEA analysis on the merged list
of the signatures, which has a link with follicular lymphoma to
diffuse large B-cell lymphoma (Montoto et al., 2007). Finally, the
prostate cancer signatures showed no overlap either, but GSEA
analysis on the merge lists show several hits related to this cancer.

In terms of computing performances, on a same server
containing four Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz
(48 threads), BioDiscML runtime was 28, 387, and 393min on
CNS, DLBCL, and Prostate Cancer datasets resp., and generated
5,751, 6,479, and 6,408 models resp., without exceeding 16 GB
memory usage. In comparison, computation time reported by
RGIFE in their Supplementary Data show ranges about 180–
400 min.

DISCUSSION

A Simplified but Customizable Automated

ML Tool
BioDiscML tool has been developed to enhance biomarker
discovery using an exhaustive ML approach and propose
automation of ML steps to perform such task. A large variety
of algorithms is available and combinations of strategies
are countless if we consider the hyperparameters of all
classifiers and feature selection algorithms. This complexity
is a barrier to non-expert users attempting to use ML
to analyze their data. Thus, we designed BioDiscML to
simplify ML steps without penalizing the performance,
such as using fast and optimal feature ranking algorithms
and feature search methods, limit the number of features
after feature ranking, and establish predefined classifiers
hyperparameters to reduce computing time. Although
editable in BioDiscML configuration file, these intentional
limitations provide researchers a program that generate results
without intervention within a few hours of calculation on a
recent computer.

A Sampling Procedure to Avoid Overtfitted

Models
BioDiscML implements a sampling step to assess the non-
overfitting and the good performance of identified models
and signatures, where it splits the dataset into two stratified
(class balancing is preserved) random parts. The program
also accepts a second input file as a test dataset, as long as
it is in the same format as the train set. In case of very
limited instances, it is possible to skip the sampling operation,
although not recommended because of the risk to not detect
overfitted models. A reasonable number of instances (i.e.,
samples) should be provided to BioDiscML, else it is expected
to obtain models with low performances. For example, we
estimate that a highly heterogeneous dataset, such as prostate
or breast cancer data, should contain at least half-hundred
patients per class, while a dataset based on a study involving
cloned living species could be limited to half a dozen individuals
per class.
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TABLE 2 | Performances of RGIFE vs. BioDiscML measured by accuracy obtained through 10-fold cross validation (10CV_ACC) and bootstrapping (BS_ACC).

RGIFE BioDiscML

Dataset 10CV_ACC #Features Model 10CV_ACC BS_ACC #Features Model Search Criterion

CNS 77.1 Not reported KNN 100 80.7 12 A2DE BSSFSE AUC

93.3 98.6 11 HT FSSBSE AUC

DLBCL 68 9 RF 100 93 6 A1DE FSSBSE MCC

98.7 98.3 6 NB FSSBSE AUC

Prostate cancer 95.2 158 SVM 100 91 12 VFI BSSFSE ACC

99 95.7 10 NB FSSBSE AUC

Classifiers evaluated by RGIFE were K-Nearest Neighbors (KNN), Random Forest (RF), and Support Vector Machines (SVM). Most performant classifiers identified by BioDiscML were

Average two Dependance Estimators (A2DE), Hoeffding Tree (HT), Average 1 Dependance Estimators (A2DE), Voting Features Intervals (VFI), and Naive Bayes (NB). Hyperparameters

are described in Supplementary Data. Various criteria were used, including AUC, MCC, and FDR, and two feature search BSSFSE and FSSBSE. The signatures are shown in

Supplementary Data.

Feature Selection Procedures in

BioDiscML Are Fast and Scalable
Omics datasets are generally composed of a thousands of
features. To simplify input datasets and save computation
time BioDiscML implements a feature ranking and dimension
reduction procedure. Many approaches exist (Chandrashekar
and Sahin, 2014) and most are applicable to biological problems
(Saeys et al., 2007), but we choose to only implement Information
Gain (Krishnaiah and Kanal, 1982) for classification, and ReliefF
(Robnik-Sikonja and Kononenko, 1997), for regression, since
they are fast and highly scalable univariate tests (Saeys et al.,
2007). Information Gain shown very good performance on
biological data (Li et al., 2004, 2011; Abusamra, 2013), as for
ReliefF (Marchiori et al., 2005; He and Yu, 2010; Wang et al.,
2016). Besides, their ranking capability provides an easy way
to eliminate redundant, non-informative and noisy information,
hence our choice to provide only those in BioDiscML.

BioDiscML Uses All Available Classifiers

From a Widely Accepted and Efficient ML

Library
There is a plethora of ML algorithms specialized in classification
(i.e., categorical class) and regression (i.e., continuous class).
BioDiscML coversmany of them but can also bemanually limited
to the most known and widely applied in biomedical research for
the development of predictive models such as Random Forest,
Decision Trees, Rules, Naive Bayes, Artificial Neural Networks,
Bayesian Networks and Support Vector Machines. They all
resulted in effective and accurate decision-making (Jagga and
Gupta, 2015). But the final models created with these classifiers
in various studies were all delivered after an exhaustive search
work. BioDiscML aims to reduce this search time by providing
the models adapted to user datasets. All ML algorithms are
provided by an advanced freely available ML library toolkit,
called Weka. Besides this library, various ML libraries exist, such
as SciKit-Learn (Nelli, 2015) (written in Python) and packages
in R (Lesmeister, 2017). BioDiscML implements Weka library
for various reasons, including its wide usage in computational
biology (Gewehr et al., 2007; Bendl et al., 2014; Bernardi et al.,

2015; Arganda-Carreras et al., 2017; Chicco, 2017; Alves et al.,
2018), its high citation rate (at August 2018) and its highly
versatile object-oriented language JAVA (e.g., easy to parallelize,
multi-platform compatibility, GUI integration, generally already
installed on clients, etc.), which is much faster (Fourment and
Gillings, 2008) and scalable than Python or R. Finally, the user
can use Weka GUI (graphical interface) to explore BioDiscML
results, generate ROC curves or try other combinations of
classifiers by hand. For example, the output files generated by
BioDiscML are compatible with Weka and can be loaded in
its GUI.

A Combination of Model Search and

Feature Search Procedures to Identify

Highly Predictive Models
BioDiscML combines the model search and the feature search
together to identify biomarker signatures. Using the various
search methods (i.e., stepwise and top k) and optimized criteria,
each model is associated to a signature of features. Forward
and backward stepwise search methods return signatures that
are optimized on the classifier and the criterion. Note that
the backward stepwise search approaches (BSS, BSSFSE) are
not the usual “backward elimination” used in the literature
(Sutter and Kalivas, 1993) for variables selection since it would
be computationally expensive here. Instead, backward selection
starts from worst features and will generally return performant
models only when most of features have a relatively good
univariate information gain or ReliefF score. The signature then
reveals a combination of biomarkers which, associated together
in a model, provide a highly predictive value of the class.

To assess the overall performance of the models, their
robustness and the absence of overfitting, various well-known
evaluation methods (Arlot and Celisse, 2010) have been
implemented in BioDiscML, because some may not be adapted
to all situations. For example, for biomedical studies which
generally produce a low number of patients (i.e., instances),
bootstrapping is a good alternative to sampling (Chen et al.,
2002) (i.e., split in train and test set, involving waste of data).
Besides, it is known that k-fold cross validation tends to deliver
over-optimist performances (Smith et al., 2014). To facilitate the
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choice of the best models, we provide many performance metrics
that can be averaged over all evaluation methods. BioDiscML
also provide an ensemble classifier based on a voting system to
include many models with different signatures. This method is
known to provide better predictive performance than could be
obtained from any of the constituent learning algorithms alone
(Polikar, 2006).

Signature Interpretation Is Still a Challenge
A biologist will want to interpret and validate in silico the
signature, since there is an obvious relation between the identified
biomarkers in a signature and the predicted class (e.g., outcome).
To perform such task, there exist many Gene Set Enrichment
Analysis (GSEA) tools, such as ToppGene suite (Chen et al.,
2009) or Enrichr (Kuleshov et al., 2016). These GSEA tools
will provide a characterization of signature and confirm to the
biologist if the signature has a biological meaning with the
original study from which the dataset have been generated. Some
more extensive literature searches may providemore insights and
help linking the signatures’ features with the predicted class.

Moreover, in some cases, the biologist, based on its experience
and knowledge, may not find the biomarkers he expects in the
signatures. This is a consequence of the feature search procedure
which produces highly optimized signatures. This optimization
tends to ignore all redundant features that could potentially help
the biological interpretation of the biomarkers related to the
class. To overcome this issue, BioDiscML retrieves all correlated
features that could have been excluded during the feature subset
selection andmodel search procedure. It is important to note that
adding signature’s perfectly correlated features (100% correlated)
to the model will maintain its performance. At the opposite,
it is expected to have a slight performance drop when adding
“almost-correlated” features (95–99% correlation), which can be
tested by training and evaluation of the model with the added
correlated features.

Some scientific visualization tools would have probably been
welcome in BioDiscML, but JAVA visualization libraries are
rare. However, to overcome this lack, BioDiscML generates a
subset of the input dataset containing only the sample values of
the signature’ features. This subset in comma-separated values
format can be loaded easily in other visualization software such
as Microsoft Excel, Orange (Demšar et al., 2013), RapidMiner
(Hofmann, 2016), or R (Gardener, 2012) to generate heatmaps
or boxplots.

BioDiscML Exhaustive Approach

Outperforms Recently Published Tools
We benchmarked BioDiscML against recent tools proposing
different approaches to discover biomarker signatures.
Benchmarks showed that BioDiscML outperforms these state-
of-art methods using same datasets. Because of its exhaustive
approach, it was able to identify one or more models with smaller
signatures providing much better prediction performances.
We also demonstrated in the case of the stem cell dataset that
BioDiscML signature contained different genes but similar
ontologies than the MINT signature, with a better prediction
performance. A GSEA also showed that the BioDiscML
signature had much more biological evidence, denoted by the

occurrence of stem cells topics in the co-expression databases.
The genes in the BioDiscML signatures were also present in
neurodegenerative diseases, highlighting the link of these genes
with the neuronal system, supported by evidence of efficient
stem cell-based therapies for neural repair (Volkman and Offen,
2017). For the other benchmarked datasets which contained gene
references, the GSEA analyses also showed supporting evidences
assessing the biological relation between the genes found in
the signatures and the biological experiment from where they
were produced.

It is important to note that short but still very predictive
model’ signatures can be extended as an “enriched” signature
which include the correlated genes. These enriched signatures
may increase the accuracy of the signature, but more importantly
they can help to better understand the biological meaning of
the model. On the MINT dataset, BioDiscML showed a perfect
prediction on the test set with the enriched signature and
retrieved more ontologies.

Finally, in this paper we benchmarked BioDiscML only on
transcriptomics datasets from microarray data provided by the
tools we tested. But BioDiscML showed also good performances
in other omics datasets tested in other contexts (data not shown).

Performant Models Identified in Minutes
BioDiscML computing performances are highly dependent on
the size of the input dataset and the available processors. To
generate all models implemented in the software, it requires a
few hours of computation. However, it is possible to restrict
BioDiscML to a specific list of algorithms, hence reducing the
computation time to seconds or minutes. It is also possible
to extract the best signatures and models produced since the
beginning of BioDiscML execution at any time. We have
prioritized the training of themost common and fastest classifiers
to propose a large number of computed models shortly after
starting BioDiscML. More complex models, such as Multilayer
perceptrons, are set in low priority. More running time will
simply increase the probability to obtain a better model. The
user is informed in the command line output the progression of
the program (i.e., the number of models trained and remaining
to train). Finally, BioDiscML can be stopped at any moment,
especially if the user is not interested to let BioDiscML train
complex classifiers.

CONCLUSIONS

This paper introduces BioDiscML, dedicated to identify optimal
combination of biomarkers (i.e., features) and machine learning
models to predict measured outcomes. It provides a user-
friendly and powerful solution to researchers in the medical
field looking to identify predictive features, essential to the
development of personalized medicine approaches and research
of new therapeutic targets. This software has the benefit to exploit
a large number of machine learning classifiers within a fully
automated process combined with data pre-processing, hence
facilitating the work of a non-machine learning experts audience.
Expert users have also the possibility to configure advanced
options. BioDiscML is a great opportunity to reduce biomarkers
search time, by revealing the most adapted classifiers to a given
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dataset and even proposes new algorithms poorly explored in the
literature that could have a great potential to classify biological
data. Otherwise, although this program has been tested with
omics data and proven its better performances compared to
recent computational biology tools created for the same purpose,
it is compatible with any other non-biological data. Finally,
the ML library used in BioDiscML is highly maintained, hence
enabling convenient additions of newly implemented algorithms
in future versions.
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Since the turn of the century, researchers have sought to diagnose cancer based on

gene expression signatures measured from the blood or biopsy as biomarkers. This

task, known as classification, is typically solved using a suite of algorithms that learn a

mathematical rule capable of discriminating one group (“cases”) from another (“controls”).

However, discriminatory methods can only identify cancerous samples that resemble

those that the algorithm already saw during training. As such, discriminatory methods

may be ill-suited for the classification of cancer: because the possibility space of cancer

is definitively large, the existence of a one-of-a-kind gene expression signature is likely.

Instead, we propose using an established surveillance method that detects anomalous

samples based on their deviation from a learned normal steady-state structure. By

transferring this method to transcriptomic data, we can create an anomaly detector for

tissue transcriptomes, a “tissue detector,” that is capable of identifying cancer without

ever seeing a single cancer example. As a proof-of-concept, we train a “tissue detector”

on normal GTEx samples that can classify TCGA samples with >90% AUC for 3 out

of 6 tissues. Importantly, we find that the classification accuracy is improved simply by

adding more healthy samples. We conclude this report by emphasizing the conceptual

advantages of anomaly detection and by highlighting future directions for this field

of study.

Keywords: machine learning, TCGA, anomaly detection, classification, surveillance

1. INTRODUCTION

Cancer is a collection of complex heterogeneous diseases with known genetic and environmental
risk factors. Physicians diagnose cancer by carefully weighing evidence collected from patient
history, physical examination, laboratory testing, clinical imaging, and biopsy. Computers can
aid diagnosis and improve outcomes by mitigating diagnostic errors. Indeed, this objective is
actively researched, where studies have shown that computers can reduce the reading errors of
mammography (Rangayyan et al., 2007) and commuted tomographic (CT) (Chan et al., 2008)
images. Meanwhile, researchers have also sought to use computers to diagnose cancer based on
gene expression signatures measured by high-throughput assays likemicroarray or next-generation
sequencing (Alon et al., 1999; Golub et al., 1999). Gene expression signatures are ideal
biomarkers because mRNA expression is dynamically altered in response to changes in the cellular
environment. However, developing molecular diagnostics requires large data sets which have only
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recently become available due to reduced assay costs. These data
could usher in a new era in clinical diagnostics.

Within the last decade, scientists have produced large
transcriptomic data sets containing thousands of clinical samples.
Of these, the TCGA stands out as the most comprehensive,
having sequenced more than 10,000 unique tissue samples from
33 cancers and healthy tissue controls (Weinstein et al., 2013).
Meanwhile, an equally large study, GTEx, has sequenced non-
cancerous samples comprising 54 unique human tissue types
(Lonsdale et al., 2013). Already, a number of studies have
used the TCGA data to build diagnostic classifiers that can
determine whether a tissue sample is cancerous or not based
only on its gene expression signature (Kourou et al., 2015).
This task, known as classification, is typically solved using a
suite of algorithms that learn a mathematical rule capable of
discriminating one group (“cases”) from another (“controls”).
This rule is learned from a large portion of the data called the
“training set,” and then evaluated on withheld data called the
“test set.” Discriminatory classifiers like artificial neural networks
(ANNs), support vector machines (SVMs), and random forests
(RFs) have become popular in the biological sciences (Jensen and
Bateman, 2011). All of these work well for high-dimensional data,
so long as the training set contains enough correctly labeled cases
and controls.

Clinicians need to answer questions like, “Is this tissue
cancerous or not?” and “Is this cancer malignant or not?”
ANNs, SVMs, and RFs can all answer these questions by
learning a discriminatory rule from labeled data. However,
discriminative methods have two major limitations, both of
which apply to cancer classification. The first limitation is
theoretical: discriminative methods suffer from the problem of
having to see all possible abnormalities in order to make an
accurate and generalizable prediction (Sodemann et al., 2012).
This is relevant to cancer because there exists countless ways in
which a normal cell could become cancerous. As such, the label
“cancer” does not encompass a known homogeneous group, but
rather a heterogeneous collection of unknown types. It is simply
not possible to anticipate the nature or extent of these “unknown
unknowns” (Rumsfeld, 2002). The second limitation is practical:
even for an ideal homogeneous cancer class, the tumor may
occur too rarely for there to exist enough data to learn a
meaningful discrimination rule. Discriminatory methods require
sufficient sample sizes to learn a rule that tolerates the large
variance observed in replicates of transcriptomic data (McIntyre
et al., 2011). For these reasons, discriminatory methods are
doomed to fail.

On the other hand, we expect that the possibility space
for steady-state normal tissue is appreciably smaller than
that of the aberrant tumor. By modeling this normal latent
structure directly, we could learn a new rule that detects
cancerous samples as a departure from normal. This follows
the biological intuition that tumors themselves are anomalies
of normal cellular physiology. The field of machine learning
already has well-established methods that can detect anomalies
in high-dimensional data, especially images, for the purpose
of surveillance (Budhaditya et al., 2009). By transferring these
methods to transcriptomic data, we can create an anomaly

detector for tissue transcriptomes, a “tissue detector,” that is
capable of identifying cancer without ever seeing a single cancer
example. In this report, we show that “tissue detectors” are
sensible and accurate for the classification of cancer based
on gene expression signatures. We do this by training an
anomaly detection model on normal GTEx samples, then
using it to accurately differentiate normal from cancerous
TCGA samples. In presenting these results, we highlight
future research directions for the detection of anomalous gene
expression signatures.

2. METHODS

2.1. Data Acquisition
We acquired the combined GTEx and TCGA data from Wang
et al. (2018), who harmonized them using quantile normalization
and svaseq-based batch effect removal (Wang et al., 2018). After
downloading the data in fragments per kilobase of transcript per
million (FPKM), we chose six tissues that had large sample sizes
in both GTEx and TCGA: breast, liver, lung, prostate, stomach,
and thyroid. Table 1 shows the number of healthy and cancer
samples for each tissue.

2.2. Model Training
We refer to a predictive model and its threshold as a “tissue
detector,” of which we trained six (one for each tissue). To
train the “tissue detector,” we z-score standardized each gene
within the GTEx training set, then performed a residual analysis
of the GTEx training set. Residual analysis is based on the
principle that most data have an underlying structure that can be
largely reconstructed using a subset of the principal components,
whereby the difference between the reduced representation and
the original observations are termed the residues. Residual
analysis uses the squared value of the residue as a proven way
to measure the degree to which an observation is an outlier.
For normally distributed data, the squared value of the residues
follows a non-central χ

2 distribution. By comparing the norm
of the residue for an unlabeled sample to a procedurally-
selected threshold (corresponding to a stipulated false alarm
rate), we have a predictive rule that decides whether to reject the
null hypothesis and call that sample an anomaly (Jackson and
Mudholkar, 1979). Our “tissue detector”method is available from
https://github.com/thinng/tissue_detector.

2.3. Model Testing
After training each model on the GTEx data, we evaluated its
performance on the respective TCGA data. For each sample in
the test set, we calculated an anomaly score based on the distance
between that sample and the model reference. We did this by
projecting the sample to the principal component space and
measuring its residue, where higher residue scores indicate that
the sample is more anomalous. If the anomaly score is larger than
the anomaly detection threshold, the sample is called abnormal
(i.e., an outlier). Otherwise, the sample is called normal (i.e.,
an inlier). This allows us to differentiate between normal and
cancerous TCGA samples without ever seeing a single cancer
example. We repeated this procedure for increasingly smaller
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TABLE 1 | This table shows the number of samples in each GTEx training set and TCGA test set, alongside the test set performance of that anomaly detector.

GTEx (N) TCGA (N) TCGA (C) Precision Recall Specificity Accuracy AUC

Breast 89 110 982 0.975 0.965 0.782 0.947 0.903

Liver 115 48 295 0.986 0.939 0.917 0.936 0.973

Lung 313 59 503 0.987 0.907 0.898 0.906 0.960

Prostate 106 48 426 0.949 0.742 0.646 0.732 0.734

Stomach 192 33 380 0.943 0.966 0.333 0.915 0.547

Thyroid 318 53 441 0.974 0.925 0.792 0.911 0.893

Precision and recall remain high for all classifiers, but specificity suffers for select tissues. This suggests that our “tissue detector,” when it fails, has a bias toward viewing all TCGA

samples as abnormal. The acronyms N and C refer to number of normal and cancerous samples, respectively.

subsets of the training data, with specificity averaged across ten
bootstraps each.

By using the Wang et al. data, we can evaluate the utility
of the anomaly detection method with all batch effects already
removed. Nevertheless, we chose to use the GTEx data as the
“normal” training set so that any residual batch effects between
the GTEx and TCGA data would cause the “tissue detector” to
call false positives (i.e., to call the healthy TCGA abnormal). For
a robust and conservative estimate of performance, we focus
our discussion on specificity (which is especially penalized by
false positives).

3. RESULTS AND DISCUSSION

3.1. Cancer Is a Tissue Anomaly
For this study, we trained a “tissue detector” on each of the
six tissues described in Table 1, using only the GTEx samples
for training. We then evaluated its performance on withheld
TCGA data by calculating an anomaly score for each TCGA
sample and comparing it against the anomaly threshold: if the
score is greater than the threshold, the sample is considered an
anomaly (i.e., cancerous). Figure 1 shows the (log-)ratio of per-
sample anomaly scores relative to the tissue-specific anomaly
threshold (y-axis) for each tissue (x-axis), faceted based on
whether the sample is cancerous. Especially for breast, liver, lung,
and thyroid data, our “tissue detector” not only recognizes most
TCGA cancer samples as anomalies, but also recognizes most
TCGA healthy samples as normal. On the other hand, anomaly
detection is poor for prostate and stomach tissue. Table 1 shows
the precision, recall, and specificity for each “tissue detector.” For
almost all tissues, recall is better than specificity, meaning false
positives are more common than false negatives. Figure 2 shows
the first two principal components of the best performing tissue
(breast) with the worst performing tissue (stomach).

3.2. Detection Improves With More Normal

Samples
We hypothesized that increasing the number of normal samples
shown to the “tissue detector” during model training would
improve its specificity, especially for the poorly performing
prostate and stomach detectors. To test this hypothesis, we
measured the specificity of each “tissue detector” as trained
on increasingly smaller subsets of the GTEx data. Figure 3

FIGURE 1 | This figure shows the (log-)ratio of per-sample anomaly scores

relative to the tissue-specific anomaly threshold (y-axis) for each tissue (x-axis),

faceted based on whether the sample is cancerous. The “tissue detector” calls

any sample above the x-intercept threshold as an anomaly (i.e., cancerous).

The threshold is selected procedurally during model training. This figure shows

performance for TCGA test set only; no TCGA samples were included in the

training set.

shows the specificity for each “tissue detector’ (y-axis) according
to the number of samples in the training set (x-axis). A
pattern emerges: the inclusion of additional GTEx samples can
improve the classification of TCGA samples, up until a point of
diminishing returns.

4. CURRENT CHALLENGES

4.1. Translating Concept to Clinic
In this study, we used normal GTEx samples to train a model that
could classify TCGA samples. We acknowledge that there is no
direct clinical application for this experiment, since it is trivial to
differentiate between cancer and non-cancer tissue using simple
microscopy. As a proof-of-concept, we chose to use these data
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FIGURE 2 | This figure shows the first two principal components of the best performing tissue (breast; A) and the worst performing tissue (stomach; B), calculated

using the log of all tissue data. While the healthy TCGA breast tissue is indistinguishable from normal GTEx tissue, the healthy TCGA stomach falls slightly outside the

range of normal GTEx tissue. Although the healthy TCGA stomach tissue is markedly different than the cancer tissue, many of these samples look like anomalies from

the perspective of the GTEx “tissue detector”.

FIGURE 3 | This figure shows the specificity for each “tissue detector” (y-axis)

according to the number of samples in the training set (x-axis). Performance is

averaged across 10 bootstraps of the GTEx training set. This figure shows

performance for TCGA test set only; no TCGA samples were included in the

training set.

to demonstrate tissue anomaly detection because the data set
is sufficiently large and publicly available. However, anomaly
detection could suit many health surveillance applications. By
changing the class of samples used in the training set, the
meaning of “anomaly” changes. For example, if we include only
benign tumors in the training set, then an anomaly detector
might identify whether a biopsied tumor is potentially malignant

(i.e., not benign). Likewise, using a training set of blood
biomarkers for patients with surgically resected tumors might
yield an anomaly detector that can identify whether a primary
tumor has recurred. Other novel applications might include
training a “tissue detector” on healthy lymphatic tissue to screen
for lymphatic metastasis or on chemotherapy-sensitive tumor
biopsies to screen for emerging drug resistance. Whatever the
application, anomaly detection is unique in that it only requires
that there exist data for the null state that is under surveillance:
it is not necessary that researchers have characterized the full
spectrum of the undesired outcome.

4.2. Data Integration
One challenge faced in the detection of anomalous gene
expression signatures is the limited amount of data available
for training and testing. Even as data sets get larger, anomaly
detection will still benefit from the combination of multiple data
sets, known as horizontal data integration (Tseng et al., 2012).
However, horizontal data integration is complicated because
every data set has intra-batch and inter-batch effects caused by
systematic or random differences in sample collection. These
differences could arise from a variety of biological factors (e.g.,
biopsy site, age, sex) or technical factors (e.g., RNA extraction
protocol, sequencing assay), including latent factors unknown
to the investigator (Leek et al., 2012). Although software like
ComBat and sva can remove intra-batch biases, inter-batch
biases may still remain. Indeed, inter-batch biases could explain
why our “tissue detectors,” when they fail, tend to view all
TCGA samples as abnormal (though the “normal” TCGA
samples do all come from sites adjacent to cancerous tissue).
Although Wang et al. tried to harmonize the TCGA and GTEx
data (Wang et al., 2018), the removal of inter-batch biases is
non-trivial and further challenged by the prevailing need to
preserve test set independence. Moreover, owing to how next-
generation sequencing data measure the relative abundance of
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gene expression, these data also contain inter-sample biases that
sit on top of the intra-batch and inter-batch biases (Soneson
and Delorenzi, 2013; Quinn et al., 2018a). It remains an open
question of how best to integrate multiple data sets. Non-
parametric or compositional PCA-like methods could provide a
suitable alternative to anomaly detection that is more robust to
inter-batch and inter-sample biases.

4.3. Interpretability
Another challenge faced in the detection of anomalous gene
expression signatures is the lack of transparency in the decision-
making process. Although the concept of anomaly detection
is intuitive, its implementation decomposes high-dimensional
data into orthogonal eigenvectors that do not necessarily have
any meaning to biologists. When examining these eigenvectors
directly, it may be unclear how an anomaly detection model
reached its decision. This makes it difficult to formulate new
hypotheses to improve the model performance or elucidate
the biological system. Future work should aim to improve the
interpretability of anomaly detection methods. One approach
might involve building a tool that visualizes which eigenvector
components contributed maximally to each decision. If some
constituent genes are consistently involved in misclassification,
this could generate testable hypotheses. Similarly, one could try to
characterize the biological importance of the maximally relevant
eigenvectors through gene set enrichment analysis (GSEA),
as done by Weighted Gene Correlation Network Analysis
(Langfelder and Horvath, 2008). This would allow investigators
to frame inlier and outlier distributions not only in terms of
the constituent genes involved, but also in terms the biological
pathways affected. This too could generate testable hypotheses.
With these improvements, anomaly detection would become
an interpretable and actionable classification strategy for many
health surveillance applications.

5. SUMMARY

Technological advances have made it possible to measure the
global gene expression signature of any biological sample at little

cost. Already, there is a growing body of evidence that gene
expression signatures can be used as biomarkers to diagnose
cancer (Kourou et al., 2015). In this report, we present a novel
application of anomaly detection to classify cancer based on
gene expression signatures. By learning the latent structure of
normal gene expression from a training set of normal samples,
we created a “tissue detector” that can identify cancer without
having seen a single cancer example. Our method contrasts with
discriminatory methods, widely used in the biological sciences,
which can only identify cancerous samples that resemble those
that the algorithm already saw during training. In principle,
discriminatory methods do not make sense for a disease like
cancer where a one-of-a-kind gene expression signature is
theoretically possible. Practically speaking, anomaly detection
further benefits from normal samples being more readily
available and easier to collect than abnormal samples: for any
cancer, many more people do not have the cancer than do. Since
the inclusion of additional normal samples can improve the
specificity of anomaly detection, the curation of large normal data
sets could open up the possibility of building diagnostic tests for
extremely rare cancers.
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Integration of Machine Learning 
Methods to Dissect Genetically 
Imputed Transcriptomic Profiles in 
Alzheimer’s Disease
Carlo Maj 1*†, Tiago Azevedo 2†, Valentina Giansanti 3†, Oleg Borisov 1, 
Giovanna Maria Dimitri 2, Simeon Spasov 2, Alzheimer’s Disease Neuroimaging Initiative, 
Pietro Lió 2* and Ivan Merelli 3*

1 Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany, 2 Department of Computer 
Science and Technology, University of Cambridge, Cambridge, United Kingdom, 3 National Research Council, Institute for 
Biomedical Technologies, Milan, Italy

The genetic component of many common traits is associated with the gene expression 
and several variants act as expression quantitative loci, regulating the gene expression 
in a tissue specific manner. In this work, we applied tissue-specific cis-eQTL gene 
expression prediction models on the genotype of 808 samples including controls, 
subjects with mild cognitive impairment, and patients with Alzheimer's Disease. We then 
dissected the imputed transcriptomic profiles by means of different unsupervised and 
supervised machine learning approaches to identify potential biological associations. 
Our analysis suggests that unsupervised and supervised methods can provide 
complementary information, which can be integrated for a better characterization of 
the underlying biological system. In particular, a variational autoencoder representation 
of the transcriptomic profiles, followed by a support vector machine classification, 
has been used for tissue-specific gene prioritizations. Interestingly, the achieved gene 
prioritizations can be efficiently integrated as a feature selection step for improving the 
accuracy of deep learning classifier networks. The identified gene-tissue information 
suggests a potential role for inflammatory and regulatory processes in gut-brain axis 
related tissues. In line with the expected low heritability that can be apportioned to 
eQTL variants, we were able to achieve only relatively low prediction capability with deep 
learning classification models. However, our analysis revealed that the classification 
power strongly depends on the network structure, with recurrent neural networks 
being the best performing network class. Interestingly, cross-tissue analysis suggests a 
potentially greater role of models trained in brain tissues also by considering dementia-
related endophenotypes. Overall, the present analysis suggests that the combination 
of supervised and unsupervised machine learning techniques can be used for the 
evaluation of high dimensional omics data.

Keywords: eQTL, gene expression imputation, GTEx, variational autoencoder, support vector machine, deep 
learning, recurrent neural networks, Alzheimer’s
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INTRODUCTION

Nowadays researchers can access omics data at different levels, such 
as genomics (e.g., dbGaP1), transcriptomics (e.g., GEO expression2) 
and also at multi-omics levels (e.g., GTEx3, Encode4). Given the 
advancement of high-throughput technologies, the increasing 
availability of omics data can be expected over time. This will allow 
researchers to better analyze complex systems characterized by 
many interacting features as the biological systems.

Traditional analytical methods on omics data, such as 
Genome-wide association study (GWAS) and differential 
expression analysis, usually rely on univariate approaches with 
specific statistical modelling (Visscher et al., 2017; McDermaid 
et al., 2018). These approaches, despite being robust, are limited 
in detecting potential combinatorial effects in the underlying 
biological system. Indeed, biological networks can be highly 
complex with many feedback regulatory loops (Franco and 
Galloway, 2015). A comprehensive analysis of interaction effects is 
not feasible with traditional approaches due to the combinatorial 
explosion of the input factor space (Berger et al., 2013).

On the other hand, machine learning methods have proved to 
be efficient for the analysis of high dimensional complex systems, 
although the application of machine learning methods in omics 
data is still relatively uncommon due to the limited interpretability 
of the outcome of machine learning frameworks (Li et al., 
2016). In this work, we investigate the applicability of different 
machine learning methods on omics data using, as a case study, 
matrices of tissue-specific predicted transcriptomic profiles in 
Alzheimer’s disease (AD). AD is a progressive neurodegenerative 
disorder, representing the predominant form of dementia (Wang 
et al., 2017), and is characterized by progressive deterioration of 
memory and cognitive functions that can be tested with different 
clinical tests (Kirsebom et al., 2017). The pathophysiology of AD 
involves the formation of the characteristic extracellular amyloid 
plaques and intracellular neurofibrillary tangles (Kuznetsov and 
Kuznetsov, 2018).

A lot of research has been done in order to identify the 
genetics factor contributing to AD. In cases of specific familiar 
forms of AD, which are recurrent among family members and 
are characterized by early onset (i.e., age < 65), disease causing 
mutations in specific genes have been identified, namely amyloid 
precursor protein (APP), Presenilin 1 PSEN1 and Presenilin 
2 PSEN2 (Piaceri et al., 2013). This is not the case of the most 
common sporadic AD forms, characterized by late onset (age > 
65), representing about 95% of AD cases (Bali et al., 2012), for 
which the “4 allele of Apolipoprotein E (APOE) is the only strong 
identified genetic risk factor (Dorszewska et al., 2016).

However, the relatively high heritability also of sporadic 
AD, estimated to be around 60% to 80% (Van Cauwenberghe 
et al., 2016), combined with the identification of a number of 
genetic risk loci from GWAS, suggests the presence of a polygenic 
component in late onset AD (Escott-Price et al., 2015). Indeed, 

1 https://www.ncbi.nlm.nih.gov/gap
2 https://www.ncbi.nlm.nih.gov/geo/
3 https://gtexportal.org/home/index.html
4 https://www.encodeproject.org/

GWAS hits can be associated with different biological pathways, 
such as cholesterol and lipid metabolism, immune system, 
inflammatory response, and endosomal vesicle cycling (Lambert 
et al., 2013). Moreover, several susceptibility loci are localized in 
gene-dense regions, but it remains unknown which genes of these 
regions are responsible for the association (Van Cauwenberghe 
et al., 2016). In fact, identifying the functional role of variants in 
intergenic regions is not a trivial process, since the related genes 
might not be the closest to the loci (e.g., chromatin 3D structure 
can place in proximity relatively distant region in the primary 
DNA sequence) (Dekker et al., 2013). Moreover, many complex 
phenotypes have a polygenic architecture, in which many variants 
have minor effects over a phenotype, and polygenic risk score 
modeling is capable of finding significant genetic associations 
for traits with no monogenic causes, but with relatively high 
heritability (Chatterjee et al., 2016).

Different works show a co-localization between Expression 
Quantitative Loci (eQTL) and GWAS hits indicating that the 
biological effect of non-coding variants can be exerted through 
the regulation of gene expression (Hormozdiari et al., 2016; Wen 
et al., 2017), that is a polygenic trait in which many variants may 
be involved. Indeed, different tools model the combined effect 
of eQTL signals, considering both strong functional SNP effects 
and additive effects for modest-strength signals (Gamazon et al., 
2015; Gusev et al., 2016). Conducting gene association on the 
basis of the genetic component of gene expression regulation, 
also called Transcription Wide Association Study (TWAS), 
proved to be particularly efficient in finding associations with 
many traits (Gusev et al., 2016).

There are many advantages in testing the genetic component 
of gene expression rather than evaluating the nominal variant 
GWAS association: I) the aggregation of multiple eQTL into 
one gene can boost the association by including additive effect 
among variants; II) genes are more interpretable biological unit 
in comparison with variants; III) the statistical power is increased 
due to the reduction of multiple-comparison tests from hundreds 
of thousands/million variants (before/after imputation) to the 
order of thousands of genes (after filtering for gene expression 
heritability); IV) eQTL are tissue specific and therefore it is 
possible to perform gene association analysis in the target tissue 
for the phenotypes and also in secondary tissues for potential 
peripheral biomarkers (e.g., blood).

Noteworthy, the evaluation of the solely genetic component 
of gene expression is less comprehensive than the actual gene 
expression analysis, but has the advantage to focus only on 
the genetic/heritable component, avoiding environmental 
confounding effects (Gamazon et al., 2015). Since polygenic 
effects can be expected also at gene expression level, given the 
complexity of biochemical systems, performing multi-gene 
evaluation can provide greater insights concerning potential 
biological associations (Marigorta et al., 2017). Therefore, 
machine learning and deep learning methodologies have proved 
to be efficient at identifying transcriptomic profiles associated 
with specific phenotypes, considering different input data, 
such as measured RNA-seq data (Wang et al., 2018), single cell 
expression (Hu et al., 2016), and also imputed transcriptomic 
data (Gottlieb et al., 2017).
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In this work, we tested multiple machine learning and deep 
learning approaches to study multi-tissue imputed transcriptomic 
profiles in the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) cohort (Weiner et al., 2013). Noteworthy, the analysis of 
imputed transcriptomic profiles on ADNI data has been already 
performed at single gene level identifying, suggesting potential 
specific gene-tissue associations with amyloid deposition 
(Hohman et al., 2017). In the following sections we introduce 
the supervised and unsupervised methods we exploited in this 
work, the results achieved combining these approaches, and a 
discussion of the achieved outcomes.

METHODS

Machine Learning Methods in 
Bioinformatics
Machine Learning (ML) algorithms have proved to be 
particularly useful for the analysis of complex big biological data 
(Olson et al., 2017). For instance ML has been applied to detect 
epistasis within the human genome (McKinney et al., 2006) 
suggesting that ML can reveal non-linear behavior in biological 
systems. In the same direction, more recent deep learning 
approaches have been profitably exploited to analyze genotype/
phenotype associations (Min et al., 2017) as well as to extract 
relevant information from many data modalities, including text, 
images, and sounds (Li et al., 2019).

Deep learning methods follow a data-driven approach and 
are therefore well-designed to detect nonlinear-behaviors, 
which are relatively common in natural systems (Tang et al., 
2019). Networks can vary depending on the number of layers 
and type of nodes and not all of them perform equally well on 
different data typology. Convolutional Neural Networks (CNN) 
are generally applied to recognize objects in a pattern, Recurrent 
Neural Networks (RNN) to analyze temporal data, but it is 
not mandatory to use any kind of network only for a specific 
task. For instance, CNNs were successfully used to predict the 
enhancer-promoter interactions with DNA sequences (Zhuang 
et al., 2019) and for accurate clustering of sequences (Aoki 
and Sakakibara, 2018). RNNs were used instead for predicting 
transcription factor binding sites (Shen et al., 2018) and to 
dissect the regulation of mRNA to protein-coding translation 
(Hill et al., 2018).

Noteworthy, also variational autoencoders (VAEs) showed 
good performance in capturing biologically relevant feature in 
gene expression data analysis (Way and Greene, 2017a). VAEs 
are part of a large branch of deep learning architectures, the so 
called generative models (Goodfellow, 2016). These architectures 
are based on an encoding-decoding approach and, differently 
from the standard autoencoders, they assume a stochasticity in 
the modelling of the data. The original input matrices of features 
are compressed in a lower dimensional space, the so called 
encoding phase, and are reconstructed back in a second step, 
called decoding phase. Both phases are composed by neural 
networks. VAEs have seen increasing success in many different 
applications in the last few years, among the unsupervised 
methodologies recently developed, and they are widely used 

in different types of data such as time series, images or gene 
expressions (Goodfellow, 2016; Goodfellow et al., 2016; Way and 
Greene, 2017b).

Tissue Specific Gene Expression 
Imputation
Data used for the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu). ADNI was launched in 2003 as a 
public-private partnership led by Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial Magnetic 
Resonance Imaging (MRI), Positron Emission Tomography 
(PET), other biological markers, clinical and neuropsychological 
assessment can be combined to measure the progression of mild 
cognitive impairment (MCI) and early Alzheimer’s disease (AD). 
In the present work, we analyzed the ADNI1-GWAS dataset 
including gene array genotyping data for 808 samples available 
on ADNI portal.

Rigorous quality control has been performed. Namely, 
samples have been checked for sex, missing genotype rates 
lower than 0.05 and heterozygosity levels F < 0.2, while variants 
with Hardy–Weinberg p-value < 1e – 10 have been removed. 
Then, using the tool by W. Rayner5 we checked SNPs for strand 
consistency, allele names, position, Ref/Alt assignments and 
minor allele frequency (MAF) in comparison to the reference 
panel. In order to increase the available genetic information, we 
imputed our data using Sanger Imputation Server6 exploiting 
Eagle2 for phasing (Loh et al., 2016) and Positional Burrows–
Wheeler Transform (Durbin, 2014), considering Haplotype 
Reference Consortium version 1.1 (McCarthy et al., 2016) 
as reference panel. As a postimputation quality control, we 
removed variants with info quality level < 0.6. Genotype calls 
with posterior probability < 0.9 were set to missing. Post-QC 
imputed data was used to estimate gene expression regulation 
across the different samples.

In order to predict the genetic component of gene expression, 
we used PrediXcan that evaluates the aggregate effects of cis-
regulatory variants (within 1MB upstream or downstream of 
genes of interest) on gene expression via an elastic net regression 
method (Gamazon et al., 2015). PediXcan needs a reference dataset 
in which both genome variation and gene expression levels have 
been measured to build prediction models for gene expression. 
We exploited already available models trained on GTEX data7 
to impute tissues specific transcriptomic profiles in a total of 42 
tissues (we excluded sex specific tissues, e.g., prostate, ovary, etc.). 
The imputed transcriptomic profiles were subsequently analyzed 
using different machine learning approaches (Figure 1). On the 
one hand, unsupervised machine learning methods were used to 
analyze data structure, on the other hand, supervised methods 
were used to test for the presence of “signal” compared to AD 
related phenotypes.

5 http://www.well.ox.ac.uk/wrayner/tools
6 https://imputation.sanger.ac.uk/
7 https://gtexportal.org/home

43

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
http://www.weel.ox.ac.uk/wrayner/tools
https://imputation.sanger.ac.uk/
https://gtexportal.org/home


Genetically Imputed Transcriptomic Profiles AnalysisMaj et al.

4 September 2019 | Volume 10 | Article 726Frontiers in Genetics | www.frontiersin.org

Gene Prioritization
Gene prioritization was performed considering as input the 
predicted transcriptomic matrices from ADNI1-GWAS (excluding 
sex-specific tissues) resulting in a total of 42 tissues with 808 
samples each (42 × 808 = 33, 936 samples overall). We performed 
an independent analysis involving 528 “cases”, that included people 
affected by dementia and/or with cognitive dysfunction (AD and 
MCI) for a total of 528 × 42 = 22, 176 input data, and 280 controls 
including healthy subjects for a total of 280 × 42 = 11, 760 input 
data. Each sample was comprised of 24, 203 genes in total.

To identify relevant genes we used variational autoencoders 
(VAEs) with a single hidden layer with a dimension of 42 units, 
hence matching the number of tissues. We adapted the code 
publicly provided by Way and Greene (2017b) to implement 
our VAE’s architecture. In the encoding phase, the network 
inputs are the original dataset features representation x



. These 
are transformed by means of non-linear activation functions in 
a hidden representation that we denominated z



 and that we 
assume being characterized by a Gaussian probability density 
function. In this phase the 2 latent representations of μ and λ of 
the distribution are learned.

The second part of the architecture that we denoted as the 
decoder is again built as a neural network. The input this time is 

the vector z


 i.e. the latent stochastic representation of the input 
dataset and the output will be the reconstructed representation 

′


x  of the original input vector x


. A representation of the VAE 
architecture can be seen in Figure 1. The loss function of the VAE 
consists of two parts: the first part being the reconstruction loss 
(negative log-likelihood) and the second part being the function 
expressing the Kullback–Leibler (KL) divergence considering the 
learned hidden distribution and a priori Gaussian distribution 
(Wetzel, 2017).

The first term of the loss function is considered over the 
encoder distribution of the hidden representation and it 
“encourages” the decoding phase to correctly reconstruct the 
input data (Altosaar, 2019). KL divergence is used to enforce the 
similarity between the distribution of the latent representation 
and the normal distribution.

We used separate VAEs to encode the gene expression of 
the cases and healthy classes. Original data include positive 
(upregulated genes) and negative values (downregulated genes). 
In order to compute VAE analysis, input data have been scaled 
between 0 and 1. Noteworthy, different genes can be present in 
different tissues while VAE pipeline requires an equal number 
of gene as input, thus NaN (non-existent/Not a Number) values 
during VAE input preprocessing were set to 0. The input samples 

FIGURE 1 | Framework of integrative analysis of multi-tissues expression profiles. Starting from genotyping data (m individuals per n variants) we imputed tissues 
specific transcriptomic profiles (for any tissue Ti, where i = 1‚…‚ k) by means of cis-eQTL PrediXcan models trained on GTEx data. Variational autoencoder followed 
by support vector machine (SVM) latent dimension-tissue match on the imputed gene expression matrices (m individuals per z genes) is used as a feature selection 
to identify the most relevant genes per tissue (Ti = gene1‚…‚ genes where i is the ith tissue and s in the number of prioritized genes) to provide as input of the 
recurrent neural network classifier.
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were randomly split in training (80%) and test sets (20%) 
using a stratified approach to maintain the same proportion of 
samples per tissue. We used the Adam optimizer (Kingma and 
Ba, 2014) with a learning rate of 0:001 over 75 epochs over the 
data, rectified linear units during the encoding stage, sigmoid 
activation during the decoding stage, batch size of 500, and 
warmup (ĸ) of 1. Hyperparameters were manually selected 
using a VAE that was not used further in the analysis, to achieve 
optimal reconstruction performance without overfitting. The 
entire autoencoding procedure was repeated 75 times separately 
for the healthy and AD classes in order to study the repeatability 
of results.

The main goal of the unsupervised analysis was to identify the 
up or down-regulation of certain genes in specific tissue types 
in cases and healthy samples. We used a two-step procedure 
to achieve this association: we identified the tissue(s) encoded 
in each latent dimension unit of the VAE models, and then we 
identified the genes most strongly connected to the given latent 
dimension unit.

In order to identify the tissue(s) encoded in each latent 
dimension, we used the activations of the hidden layer in the 
VAEs as an input feature to 42 binary Support Vector Machine 
(SVM) classifiers, one for each tissue. We trained each SVM 
classifier to predict whether the input sample to the VAE 
belonged to a specific tissue relying on the activation value of 
a single unit from the embedded latent dimension of the VAE. 
We repeated this tissue-latent unit association procedure for each 
tissue and each unit in the hidden VAE layer. We performed a 
5-fold stratified cross-validation using a linear SVM (C = 1 with 
class weight balance), thus running a total of 5 × 42 × 42 SVM 
classifiers for each VAE (a 5-fold cross validation procedure, for 
42 binary classifiers, for each one of the 42 hidden layer’s unit). 
We considered a given latent VAE unit to be predictive of a 
specific tissue type, hence associated with it, if the F1 score was 
greater than 0.8. We found that some hidden units encode more 
than 1 tissue type.

It is noteworthy to mention that we tried other unsuccessful 
approaches. Firstly, we tried to use a single VAE with both cases 
and controls, trying to find subclusters besides the tissues which 
cluster very well (see Figure 2) in the VAE’s latent dimension as 
well as in the original data. We also tried to use a single VAE 
for each tissue in separate. No obvious structures were found 
when trying to match the results of t-SNE algorithm with all the 
available phenotypes, including case/control status. Filtering the 
input for genes within each tissue that show nominal significance 
for case/control status using standard simple univariate tests 
did not improve the results. Filtering genes with R2 > 0.15 of 
expression prediction using the same threshold as in Hohman 
et al.ʹs work (Hohman et al., 2017) did not improve the results 
as well. In order to understand the features important for 
classification, we also implemented a saliency map approach. 
This method is able to detect where the attention of the network 
(VAEs in our study) is focused (Itti et al., 1998), which can be seen 
as a sensitivity analysis approach. Saliency maps are generally 
applied in computer vision but, they can be used in other areas. 
In our case, the maps were computed on the encoder part of the 
VAEs and the information extracted is the importance of each 

gene in the analysis, which is coded as an rgb color code. From 
this analysis we were not able to identify significative patterns in 
the input data.

Considering the VAE used in this work, the association of 
the genes with the latent dimension units can be performed 
solely relying on the magnitude of the corresponding network 
weights. Given that each VAE has a single hidden layer, each 
latent dimension unit is connected directly to every output unit, 
i.e. reconstructed gene, via a linear transformation. Since each 
reconstructed gene is a summation of the weighted contribution 
of each latent unit, we could rank the relative importance of the 
units in the hidden layer relying on the magnitude of the weights. 
Thus, we selected the 100 most positive and 100 most negative 
weights for each latent unit encoding a given tissue. This resulted 
in a set of 100 upregulated and 100 downregulated genes, 
respectively for each of the trained VAEs. The entire association 
procedure was performed for the 75 VAEs from healthy and AD 
samples. We counted the total number of times a given gene was 
considered up or downregulated by our association procedure 
and kept it if it appeared more than three times overall. As a result, 
we produced a list of up or down regulated genes associated with 
each of the 42 types of tissues. We used this list as an input for 
pathway enrichment analysis.

In order to perform enrichment analysis, we used Fast Gene Set 
Enrichment Analysis (FGSEA), a tool developed by Sergushichev 
et al. (Sergushichev, 2016). The approach implemented by FGSEA 
deals with quantitative data having inherently directionality like 
gene expression. The model is based on gene statistic array S = 
Si‚…Sn where N is the number of samples and Si > 0 represent 
over-expression of gene i while Si < 0 represent down-expression. 
The absolute value of Si represents a magnitude of the change. 
The list of gene sets P of length m usually contains groups of 
genes that are commonly regulated in certain biological process. 
To quantify a co-regulation of genes in a gene set p Subramanian 
et al. (2005) introduced a gene set enrichment score function sr(p) 
that uses gene rankings (values of S). Given a gene set p the more 
positive is the value of sr(p) the more enriched the gene set is 
in positively-regulated genes g with Sg > 0, accordingly, negative 
sr(p) corresponds to enrichment of negatively regulated genes. 
To deal with multiple-comparison issues an empirical p-value is 
computed by randomly sampling gene sets of the same size of p.

The lists of downregulated and upregulated genes per tissue 
(referred as List-unsupervised) have been considered also as 
a feature selection step to build prediction models. We also 
tested other approaches to identify the most relevant genes as 
considering: I) nominal significantly associated genes from 
logistic association test between predicted gene expression levels 
and phenotype status (referred as List-PrediXcan), II) nominal 
associated genes derived by the combination of single tissue-trait 
association using generalized Berk–Jones test (referred as List-
UTMOST) obtained with UTMOST tool (Hu et al., 2019).

Phenotype Prediction Models From 
Imputed Transcriptomic Matrices
Several supervised analysis techniques were tested in order to 
understand which one could achieve better results in identifying 
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cases and controls from the transcriptomic profiles: Logistic 
Regression (LR), Support Vector Machine (SVM), Random 
Forest (RF) and Deep Learning networks. The latter are known 
to achieve better results compared to other machine learning 
methods, especially when the relationships between the observed 
features is not supposed to be linear (LeCun et al., 2015).

Since we imputed data according to specific tissues, we 
searched the model that would perform better among them. 
For this reason, we randomly selected 6 of the 42 tissues 
(Adipose Subcutaneous, Artery Aorta, Brain Spinal, Colon 
Transverse, Thyroid, Whole Blood) and trained the models 
on 600 of the 808 samples from ADNI1-GWAS, considering 
that the dataset is slightly unbalanced, as it contains more AD 
samples (528) than controls (280). SVM, RF and LR were not 
capable of learning how to classify cases and controls, since they 
assigned the samples only to the majority class. Concerning 
Deep Learning, the first accomplishment was understanding 

the appropriate architecture to elaborate transcriptomic data: 
we tested two Dense Neural Networks (DNN), two CNNs and 
an RNN.

The first DNN (DNN-1) consisted of 6 layers with respectively 
800, 500, 400, 200, 40 and 2 nodes (called neurons). The second 
DNN (DNN-2) tested consisted of only three layers with 800, 
200 and 2 neurons. The first CNN (CNN-1) had 6 layers: a 
convolutional layer of 10 filters, a convolutional layer of 5 
filters after which a dropout regularization was applied, another 
convolutional layer of 5 filters, a dense layer of 200 neurons with 
a dropout, and two dense layers of 100 and 2 neurons in the end. 
The second CNN (CNN-2) was a pure convolutional network 
of two convolutional layers of 10 and 5 filters, with a dropout 
regularization applied between them, and a dense layer with 2 
neurons as the output layer. The RNN had 3 layers: two Long 
Short-Term Memory cells (LSTM) with output dimension of 30 
and 20 and a final dense layer of 2 neurons.

FIGURE 2 | t-SNE embedding of tissue genes, run using the 42 activations on the latent dimension of a VAE to check the embedded structure of all samples. It is 
obvious that the latent activations are encoding information about each tissue.
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Looking at the preliminary training results (Table 3) we 
decided to select and optimize the RNN, manually searching the 
optimal network’s size and then identifying the hyperparameters 
with the Grid Search algorithm (batch size = 100, epochs = 100). 
The final architecture consisted of the input and output layers and 
two hidden LSTM layers of 150 and 10 output dimensions. After 
every hidden layer a batch normalization was applied to maintain 
the mean activation close to 0 and the activation standard 
deviation close to 1. The input layer dimension was equal to the 
number of genes characterizing the tissue transcriptomic profile, 
while the output layer was a dense layer of dimension two to make 
possible the classification of the samples in AD and not-AD.

Considering all the 42 tissues, we had the chance to perform 
two types of analysis: a tissue-specific analysis and a cross-
tissue analysis. In the tissue-specific analysis, we trained models 
on transcriptomic data specific for each tissue. Therefore, we 
implemented predictive models that could impute the case/
control condition on new transcriptomic data related to the same 
tissue. The input dimensions of the networks were in the order 
of thousands, but different for every tissue: the minimum was 
2,041 characterizing the Brain Substantia Nigra tissue, and the 
maximum was reached by the Thyroid tissue with 9,655.

The aim of the cross-tissue analysis was, on the other hand, to 
observe the similarities between tissues in relationship with the 
Alzheimer’s disease. Models were trained on each single tissue, 
taking as input the genes shared by all the 42 tissue transcriptomic 
profiles (24, 203). The column reporting the information for a 
gene was filled with zeros if it was not possible to impute the 
transcriptomic profile of that gene in a specific tissue. Comparing 
the maximum number of genes imputed for the tissues and the 
total number of genes identified in all the analysis, it was clear 
that the new arranged matrices of 24, 203 genes for 808 samples 
were particularly sparse. The models were then used to impute 
the case/control condition on tissues different to the one used for 
the training.

Both in single tissue and cross-tissue analyses all the models 
were trained on 600 samples from ADNI1-GWAS and the tests 
were performed on the remaining 208 samples. The network 
architecture was in all cases the one in Figure 1, adjusting the 
input dimension according to the different analysis. A 10-fold 
cross validation was applied and models compiled with the Adam 
optimizer and the binary cross-entropy as the optimization score 
function. The monitored scores were the accuracy, area under 
the curve (AUC), precision, recall, and F1. The saliency map was 
applied in the first LSTM layer, therefore we could observe if some 
samples were more informative than other for the classification 
purpose. Keras8 and Scikit-learn9 Python libraries were used, 
built on top of TensorFlow10 to implement the networks.

We then worked on features selection to find groups of genes 
that were likely to improve the model performance regarding 
the samples partition in case/control, both in the single-tissue 
and cross-tissues approaches. The identification of such groups 
in single-tissue analysis can bring to the determination of 

8 https://keras.io/
9 https://scikit-learn.org/stable/
10 https://www.tensorflow.org/

tissue specific markers, on the other hand in the cross-tissues 
section we could focus on the set of genes that explained the 
relationship between tissues. We used three different filter 
lists: List-unsupervised, List-PrediXcan and List-UTMOST (see 
Supplementary Materials Section 3). Using these lists the 
input dimensions for all the tissues decreased: the number of 
unique genes identified by the List-unsupervised was 2,016, 
4,984 with List-PrediXcan. List-UTMOST (649 genes) was used 
only in the cross-tissue analysis as it doesn’t provide tissue-
specific information.

All the steps described above (except the architecture selection 
and saliency map) were also performed considering Cognitive 
Decline over time rather than diagnosis at screening. This 
dataset consisted of 528 samples (some samples did not have this 
information), 281 controls and 247 cases. Cognitive Decline has 
been calculated by considering the difference between the Mini-
Mental State Examination (MMSE) score 4 years after recruitment 
and the MMSE score at recruitment. Then, regardless of the original 
recruitment diagnosis, we classified the samples into two groups: 
one group showing no cognitive decline (difference equal or greater 
than 0) and the other showing a cognitive decline (difference minor 
than 0). The genes imputed for each tissue were therefore the 
same in ADNI1-GWAS dataset and Cognitive Decline dataset. To 
consider the effect of AD related variables, we also performed the 
same analyses by stratifying by sex and early/late onset for dementia 
and AD [using 65 years of age as a cutoff (Roberts and Petersen, 
2014)] as well as for carrier and noncarrier of APOE ∊4 isoform.

RESULTS

We predicted the genetic component of gene expression across 42 
non-sex-specific tissues for all the samples included in ADNI1-
GWAS dataset. We exploited tissues specific eQTL models 
available on precictDB11 and used PrediXcan tool12 to derive 
tissue specific matrices representing individual levels of the 
genetic component of gene expression. The gene levels obtained 
by these sample matrices represent transcriptomic profiles based 
on eQTL across tissues in the analyzed dataset.

In the present work the matrices of imputed expression were 
analyzed using several machine learning strategies to identify 
potential tissue specific transcriptomic profiles associated with 
cognitive decline in Alzheimer’s.

Gene-Based Results Per Tissue
We runned t-SNE (Maaten and Hinton, 2008) using the 42 
activations on each latent dimension of a VAE to check the 
embedded structure of all samples, whose result can be seen 
in Figure 2. Although interpretations of Euclidean distances 
between points in a t-SNE plot is not straightforward (Wattenberg 
et al., 2016), it is clear from the clusters that information about 
tissues are being encoded. Indeed, we were able to identify 
associations between latent dimensions of VAE and tissue.

11 http://predictdb.org/
12 https://github.com/hakyimlab/PrediXcan
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The evaluation of the weights associated with the latent 
dimension (see Methods) allow us to rank gene importance per 
tissue considering case/control status. Table 1 shows the most 
upregulated and downregulated genes from Brain Nucleus. 
Check Supplementary Table S1 for complete information over 
all 42 tissues.

The saliency map implementation returned not useful 
information. If taken individually, genes don’t have much impact: 
it is evident also with this result that the AD phenotype is due to a 
combination of many genes and environmental factors.

In order to investigate the presence of specific gene expression 
regulation associated with case/control status we considered 
the lists of tissue-specific up and down regulated genes derived 
by VAE analysis. Additionally, for each tissue we considered 
the genes that were differentially regulated in cases but not in 
controls, that is representing a disease-specific signature. The 
enrichment analysis have been performed considering Gene 
ontology13, KEGG14 and reactome15 and pathway databases (Croft 
et al., 2013; Kanehisa et al., 2016). Complete enrichment analysis 
results are available as supplementary files (see Supplementary 
Materials Section 1) while significant enrichment tissues specific 
pathways after FDR correction are shown in Table 2.

Interestingly enrichment analysis shows the presence of 
tissue specific signal in a specific brain tissue (i.e., brain nucleus) 
concerning pathways involved in gene expression regulation and 
in immune-related pathways in colon (Figure S2). The most 
significant alterations in brain pathways concern the brain nucleus 
accumbens (basal ganglia) region. Interestingly, this region has 
been found to be associated with AD (Nie et al., 2017; Nobili 
et al., 2017; Li et al., 2018). Instead, the detected downregulation 
of immune system pathways in cases in comparison to controls 
could indicate a higher level of inflammation in dementia. This 
is in line with the association observed between inflammatory 
bowel diseases and AD (McCaulley and Grush, 2015; Sochocka 
et al., 2019). Given the pivotal role of APOE (Liu et al., 2013) in 
AD a specific evaluation was performed to evaluate the effect of 
APOE related genes.

APOE gene expression is not predicted by gene expression 
imputation GTEx based models, due to the absence of eQTL 
explaining a relevant fraction of APOE expression level. However, 
AD susceptibility due to APOE isoforms (∫2, ∫3 and ∫4), which 
are well known to confer a different risk for AD depending on the 

13 http://geneontology.org/
14 https://www.genome.jp/kegg/pathway.html
15 https://reactome.org/

presence of missense coding variants, are associated with APOE 
gene functionality and can be independent from the genetic 
component of gene expression regulation. We investigated if 
other genes directly interacting with APOE, according to string 
functional database16, have a significant association in our 
analysis (see Supplementary Materials Section S3).

One of the 11 genes identified, namely APOC2 (Shao et al., 
2018), is among the top differentially regulated genes from 
variational autoencoder gene prioritization list in brain putamen, 
an area of the brain associated with AD (Coupé et al., 2019). 
Interestingly, the same gene is also the only one (among the 
11 APOE interacting genes) significantly associated with AD 
according to a transcription wide association analysis performed 
according to a GWAS on AD in UK Biobank dataset (Marioni 
et al., 2018) and public available on TWAS hub17. This suggests 
a potential role for APOC2 associated with the gene expression 
regulation and, interestingly, a recent work showed that the 
methylation profile in such a gene (which in turn affect gene 
expression) is associated with AD (Shao et al., 2018).

Tissue-Specific and Cross-Tissues 
Classification
To understand which network performs better on different 
tissues, we tested five models on six sample tissues. In Table 3, 
accuracy and AUC obtained during their preliminary 10 
cross-validation training on 600 of 808 samples are reported: 
although all methods could perform well at least on one tissue 
during the training, in that phase only the RNN was capable 
of reaching an accuracy higher than 90% for all of them. 
Therefore we decided to optimize the RNN and obtained the 
network structure described in Phenotype Prediction Models 
From Imputed Transcriptomic Matrices, which was then applied 
for the single-tissue and cross-tissue analysis on ADNI1-GWAS 
and Cognitive Decline dataset.

Without the feature selection, we observed a great performance 
during the training in terms of AUC, accuracy, precision, recall 
and F1 scores (see Supplementary Materials Section 2) on 
both datasets. On test set (composed of 208 samples for tissue 
for ADNI1-GWAS and 128 for Cognitive Decline) the metrics 
reached values below expectations, with AUCs near 0:5 especially 
for ADNI1-GWAS.

16 https://string-db.org/cgi/network.pl
17 http://twas-hub.org/

TABLE 1 | Most upregulated and downregulated genes from the brain nucleus.

Downregulated Upregulated

AD-MCI CTR AD-MCI CTR

Brain nucleus ENSG00000230850.3 ABHD14A ENSAP2 AL356475.1
GMPR2 ATP2B4 KLF1 F2
C1QC BDKRB2 EEF1A1P19 NRIP2
SUN3 C1QC RP5-1068B5.3 RP11-704J17.5

RP11-662J14.1 PXN RP11-321A17.3 RP11-321A17.3
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On ADNI1-GWAS (Figure 3), models trained for single-
tissue analysis improved their AUCs thanks to the List-
unsupervised and List-PrediXcan feature selection: when the 
AUCs were below 0:5, the filters application returned a score 
above the threshold for at least one list. We did not observe a 
major impact of a list in this phase but the t-test confirmed a 
significant improvement compared to the no filter approach 
(p-value = 0.001474 for List-unsupervised and p-value = 2.693e – 
06 for List-PrediXcan). Models trained for the cross-tissue 
analysis instead had a less evident improvement with the lists 
filter: only the List unsupervised returned a slightly significant 
improvement (p-value = 0.04084). List-UTMOST did not give 
any improvement and, as we could not use it on single-tissue 
models, we decided not to further analyze it.

Cognitive Decline models performed better than ADNI1-
GWAS, both in single-tissue and cross-tissue analysis (Figure 
4). The lists application on Cognitive Decline models also led 
to an improvement for tissues with borderline or below the 

threshold performance (Figure S5), reaching AUCs between 
0:51 and 0:6. On cross-tissue models we obtained a significant 
p-value = 0.008766 for List-unsupervised and p-value = 0.04346 
for List-PrediXcan.

Comparing the two lists on ADNI1-GWAS, List-unsupervised 
showed the bigger improvement on cross-tissue models: the 
t-test returned a p-value of 0:009123, but on single-tissue the 
difference was not significant. Also on Cognitive Decline we 
observed a slightly major impact of List-unsupervised both for 
the single-tissue and cross-tissue models. In Figure 5, a focus on 
the improvement achieved with the filter on the Brain tissue is 
shown in both datasets, in Figure S4 the evaluation for all tissues 
is shown.

Figure 6 reports, by columns, the AUC achieved by 
ADNI1-GWAS cross-tissue models when they were applied 
on other tissues from the same dataset. The top heatmap 
describes the relationships between tissue when no filter 
is applied: we could observe that models trained on Brain 

TABLE 2 | Significant tissue-pathways enrichment analysis using Reactome database.

Tissue Pathway pval padj ES NES Genes

Colon sigmoid Immune system 3.8E–04 1.2E–02 –5.4E–01 –2.3E+00 CAP1 FBXO21
RASGRP4 CLEC7A
RASGRP4 CLEC7A
YES1 SEC61A1
SIGLEC8 IL13
CD47 HLA-DPB1
SELL KIF11
CALM1

Brain nucleus Generic transcription 
pathway

3.0E–03 1.8E–02 7.2E–01 2.1E+00 ZNF688 RRAGC
ZKSCAN8 ZNF697
ZNF445 CASP6

Brain nucleus RNA polymerase II 
transcription

3.0E–03 1.8E–02 7.2E–01 2.1E+00 ZNF688 RRAGC
ZKSCAN8 ZNF697
ZNF445 CASP6

Brain nucleus Gene expression 
(transcription)

3.0E–03 1.8E–02 7.2E–01 2.1E+00 ZNF688 RRAGC
ZKSCAN8 ZNF697
ZNF445 CASP6

Colon sigmoid Adaptive immune 
system

3.0Ev03 3.3E–02 –6.1E–01 –2.1E+00 FBXO21 YES1
SEC61A1 SIGLEC8
HLA-DPB1 SELL
KIF11 CALM1

Colon sigmoid Innate immune system 2.5E–03 3.3E–02 –6.5E–01 –2.0E+00 CAP1 RASGRP4
CLEC7A YES1
CD47 SELL
CALM1

TABLE 3 | Preliminary networks training performance on six sample tissues: accuracy (Acc) and area under the curve (AUC).

Network
Adipose 

subcutaneous 
Artery aorta Brain spinal Colon transverse Thyroid Whole blood

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

DNN-1 37.50 0.513 37.33 0.503 64.00 0.538 87.67 0.862 64.50 0.503 39.83 0.516
DNN-2 64.50 0.5 64.50 0.5 90.17 0.892 64.50 0.5 64.50 0.5 64.50 0.5
CNN-1 63.00 0.5 76.92 0.721 77.50 0.901 78.50 0.770 64.08 0.5 0.491
CNN-2 95.83 0.948 64.50 0.5 94.83 0.943 64.50 0.5 96.00 0.95 95.67 0.947
RNN 96.17 0.953 95.67 0.951 94.67 0.942 95.33 0.946 95.33 0.946 94.67 0.939
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tissues, if they were able to correctly identify the AD subjects 
on a non-Brain tissue, they could do the same on all the other 
non-Brain tissues. Instead, models trained on non-Brain 
tissue could identify AD-MCI/CTRL subjects only on a subset 
of tissues. We performed the same analysis on ADNI1-GWAS 
models filtered by List-PrediXcan and List-unsupervised, 
respectively the middle and bottom heatmaps of Figure 6: 
List-unsupervised removed all the information of cross-tissue 
relationships, when instead List-PrediXcan mitigate them, 
pointing out the non-Brain models relationships.

We also tested the stratification for sex, age, APOE effect, 
and AD condition on ADNI1-GWAS dataset for single-tissue 
and cross-tissue analysis. It returned no considerable variation 
in the performance. The saliency map application was also not 
informative: each sample has the same importance. Lastly, we 
performed the filter analyses on Cognitive Decline, pointing out 
the same results (Figure S6).

DISCUSSION

In the present work we dissected the tissue specific genetic component 
of gene expression in association to AD related cognitive decline. 
Our analysis consisted on the imputation of tissue specific gene 
expression profiles by using a TWAS-like approach (Mancuso et al., 
2017). However, contrary to the standard TWAS analysis, we did not 
specifically focus on univariate analysis (e.g., gene association based 
on logistic or linear regression). Instead, we dissected individual 
transcriptomic levels using different machine learning approaches. 
We believe that our approach can be of particular interest since is 
capable of capturing data structure and non-linear behaviour in the 
system. In fact, it is well known that gene expression levels are not 
independent, since many genes are actually correlated in terms of 
regulation (Michalopoulos et al., 2012) and functionality, which 
means that also epistatic interactions can play a major role in the 
regulation of biochemical pathways (Sameith et al., 2015).

FIGURE 3 | ADNI1-GWAS feature selection evaluation. The single-tissue models (top panel) significantly improved their ability to classify case/control condition 
thanks to both List-unsupervised (blue) and List-PrediXcan (red) compared to the no filtering approach (black). On cross-tissue models (bottom panel), where there 
is also the performance with the List-UTMOST (green), the improvement was less evident.
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FIGURE 4 | ADNI1-GWAS and Cognitive Decline comparison: Cognitive Decline (red boxes) returns higher AUCs on test sets than ADNI1-GWAS (blue boxes) both 
in cross-tissue models (left) and in single-tissue models (right).

FIGURE 5 | Brain tissues analysis. In green the AUCs on test sets for the no filter application are reported, in red for List-unsupervised and in yellow for List-
PrediXcan. The top two panels report respectively the cross-tissue and single-tissue models performance on ADNI1-GWAS dataset, the third and fourth panels on 
Cognitive Decline. In both datasets, feature filtering improved the classification in almost all the Brain tissues.
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Interestingly, we observed that a combination of 
unsupervised and supervised machine learning methods on 
matrices of predicted expression provided complementary 
information that can be integrated in order to get new insights 
in gene expression regulation. On one hand, the VAE combined 
with enrichment analysis suggests the presence of a specific 
biochemical pathways alteration in dementia occurring in 
a specific brain area and in the gut. The identified alteration 
occur in brain nucleus, a brain region found to be associated 
with AD by several studies (Cho et al., 2014; Wang et al., 2014; 
Kuhn et al., 2015; Liu et al., 2015).

This alteration seems to be related to the regulation of gene 
expression and 436 therefore possibly associated to tissue-specific 
pathways regulation. Instead, the enriched pathways in gut are related 
to immune systems and noteworthy, it is well established that immune 
system dysfunctions can lead to a greater increase of inflammation in 
AD (Serpente et al., 2014; Heppner et al., 2015; Le Page et al., 2018). 
These results suggest that our analytical approach can identify relevant 
biological alterations occurring in AD. Noteworthy, enrichment 
analysis identified alteration in biological pathway specifically in a 
brain area and gut, which is in line with the presence of a gut-brain 
axis dysfunction in AD. Indeed, several researchers pointed out that 

FIGURE 6 | Continued
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brain-gut axis can be associated with many neurological disorders 
(Giau et al., 2018; La Rosa et al., 2018).

In the present work, APOE genotype has not been directly 
included as covariate in prediction models since our aim was 
to identify other genetic factors that can explain part of the 
missing heritability on the established polygenic component 
in AD (Escott-Price et al., 2017; Tosto et al., 2017). However, 
APOE is expected to be by far the most influencing risk factor 
for late onset AD. Though estimation of APOE contribution 
on the heritability component of AD is still not well defined, 
ranging from 10% to 28% of the overall genetic heritability (Van 
Cauwenberghe et al., 2016; Stocker et al., 2018). Moreover, in the 
present work, gene-expression derived genetic signals neglect 
not-eQTL effects and therefore we have limited analytical power. 
This justifies the relatively low AUC values in comparison to 
other prediction models in AD, including the complete genome-
wide polygenic signal and using APOE as a covariate (Escott-
Price et al., 2017; Tosto et  al., 2017). Our aim was indeed to 
test whether or not there is a genetic signal associated with AD 
that could be apportioned to tissue specific gene-expression 
regulation rather than identify a prediction model. It is also 
known that genetics is just one of the component involved in 
AD susceptibility and therefore the use of multimodal data (e.g., 
imaging data, clinical features, metabolomic, and environmental 
factors) should be taken into account in order to build a reliable 
classifier in term of translational application (Sapkota et al., 

2018). Despite that, our classification models were still capable 
of finding a signal between cases and controls (overall AUC 
> 0:5) suggesting that part of the genetic signal in AD related 
dementia can be associated with tissue-specific gene expression 
regulation. Moreover, we observed that feature selection 
can play a major role in the performance of deep learning  
networks classification.

We are aware that our work presents some limitations. We 
performed a genetic association with dementia by considering 
ADNI data evaluating the solely genetic component of gene 
expression, which neglects other potential genetics effect not 
related to gene-expression regulation. Our models are also 
limited by the current version of GTEx data, which has a 
relatively small size, therefore it is expected that over time new 
models will optimize eQTL estimation leading to more precise 
analyses of the genetic component of gene expression. We also 
focused on non-sex specific tissues, since we wanted to study 
general potential alterations not involving sex-specific organs, 
but this could also be a limitation given the different prevalence 
of AD in females and males (Mazure and Swendsen, 2016).

CONCLUSION

In the present work, we performed an analysis of the predicted 
genetic component of gene expression in ADNI1-GWAS dataset 

FIGURE 6 | ADNI1-GWAS cross-tissues performance. By column we can observe how much a model trained on a tissue is able to recognize without mistakes 
(AUC) AD/non-AD subjects from data related to different tissues. On the diagonal for each tissue the AUC obtained for that model during the training is reported. 
The top panel reports the cross-tissue results without any filter application, the middle panel when using List-PrediXcan and the bottom using List-unsupervised.

53

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Genetically Imputed Transcriptomic Profiles AnalysisMaj et al.

14 September 2019 | Volume 10 | Article 726Frontiers in Genetics | www.frontiersin.org

in association with AD cognitive decline. We dissected the 
predicted tissue specific gene expression by means of different 
supervised and unsupervised machine learning approaches. Our 
results suggest that a framework including unsupervised and 
supervised methods in data-analysis can provide complementary 
information and thus leading to better insights into the 
underlying system.

In particular, variational autoencoder pre-processing of input 
data proved to be efficient for features selection prior to the 
implementation of deep learning classification models. However, 
the limited AUC prediction performance of the developed models 
suggests that the evaluation of the solely genetic component of 
gene expression by exploiting up to date available GTEx models 
is currently under-powered in comparison to genome-wide 
polygenic risk score modeling.

This is not surprising since we are neglecting the effect of non-
eQTL variants. On the other hand, we can disclose tissue specific 
effects and reveal potential biological mechanisms associated 
with a given phenotype. In this regard, our analysis showed that 
brain tissues are more associated with dementia status and that 
inflammatory processes in brain-gut axis can play a role in AD.
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Recent advances in high-throughput experimentation have put the exploration of genome 
sequences at the forefront of precision medicine. In an effort to interpret the sequencing 
data, numerous computational methods have been developed for evaluating the effects 
of genome variants. Interestingly, despite the fact that every person has as many 
synonymous (sSNV) as non-synonymous single nucleotide variants, our ability to predict 
their effects is limited. The paucity of experimentally tested sSNV effects appears to be 
the limiting factor in development of such methods. Here, we summarize the details and 
evaluate the performance of nine existing computational methods capable of predicting 
sSNV effects. We used a set of observed and artificially generated variants to approximate 
large scale performance expectations of these tools. We note that the distribution of these 
variants across amino acid and codon types suggests purifying evolutionary selection 
retaining generated variants out of the observed set; i.e., we expect the generated set 
to be enriched for deleterious variants. Closer inspection of the relationship between the 
observed variant frequencies and the associated prediction scores identifies predictor-
specific scoring thresholds of reliable effect predictions. Notably, across all predictors, 
the variants scoring above these thresholds were significantly more often generated 
than observed. which confirms our assumption that the generated set is enriched for 
deleterious variants. Finally, we find that while the methods differ in their ability to identify 
severe sSNV effects, no predictor appears capable of definitively recognizing subtle 
effects of such variants on a large scale.

Keywords: synonymous variants, effect predictors, variant frequency, variant functional effect, machine learning

INTRODUCTION

The vast majority of human genomic variation is accounted for by Single Nucleotide Variants 
(SNVs) (Bromberg et al., 2013). The roughly 10,000 variants in the coding region of every human 
genome that have no effect on the resulting product protein sequence are termed synonymous 
SNVs (sSNVs) (Shen et al., 2013). sSNVs are a product of the degeneracy of genetic code, where 
amino acids may be encoded by more than one codon. The effects of sSNVs on molecular 
functionality of the corresponding genes/proteins are often assumed to be minimal. However, 
earlier studies have argued that sSNVs are as likely to be pathogenic as non-synonymous 
variants (Chen et al., 2010). sSNVs have been implicated in many diseases, including pulmonary 
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sarcoidosis, attention deficit/hyperactivity disorder, and 
cancer (Sauna and Kimchi-Sarfaty, 2011; Supek et al., 2014). 
Synonymous variants can disrupt transcription (Stergachis 
et al., 2013), splicing (Pagani et al., 2005), co-translational 
folding (Pechmann and Frydman, 2013), mRNA stability 
(Presnyak et al., 2015) (Figure 1), and cause a plethora of 
other functionally-relevant changes. In addition, sSNVs can 
affect transcription and splicing regulatory factors within 
protein coding regions (Plotkin and Kudla, 2011), thus 
modulating gene expression (Shabalina et al., 2013; Boël 
et al., 2016). There is also evidence of evolutionary constraint 
on both synonymous and non-synonymous variants, which 
plays a role in shaping codon bias (organism or tissues-
specific codon set preference) (Stergachis et al., 2013). An 
informative experimental approach to evaluating functional 
effects of sSNVs is saturation genome editing followed by 
protein function assays (Findlay et al., 2014; Findlay et al., 
2018). Unfortunately, there are exceedingly few reports of 
these experiments in the literature. While there has been a 

concerted effort in the field to evaluate the effects of non-
synonymous single nucleotide variants (nsSNVs) (Mahlich 
et al., 2017) for the purposes of precision medicine, as well 
as improving basic understanding of concepts in molecular 
biology, interpretation of sSNVs is severely lacking. However, 
considering the significant number of observed synonymous 
variants, their possible effects, and the dire lack of their 
systematic experimental interpretations, there is a compelling 
need for a reliable sSNV effect computational predictor.

In this paper, we review the existing sSNV-effect predictors 
and apply them to a dataset containing observed and artificially 
generated sSNVs. Since there are few experimentally-determined 
SNVs with deleterious effects, and those that exist have been 
used as training or testing sets of the predictors, the cornerstone 
of this study is validating our data set assumption that deleterious 
sSNVs are enriched in the artificially generated set of variants. 
To support this assumption, in addition to previously published 
work, e.g., Stergachis et al., 2013, we show that the distributions 
of observed sSNVs by amino acids and codons are highly 

FIGURE 1 | Possible mechanisms of sSNVs impact on biological function. Yellow triangles represent sSNV sites and the dashed lines indicate aberrant processes. 
sSNVs may affect (A) transcription factor binding, (B) splicing of pre-mRNA, (C) mRNA secondary structure and stability, (D) wobble-based tRNA binding, and  
(E) cotranslational folding (and thus the protein structure). Figure was created with BioRender.com.

58

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
http://BioRender.com


Evaluating Synonymous Variant-Effect PredictorsZeng and Bromberg

3 October 2019 | Volume 10 | Article 914Frontiers in Genetics | www.frontiersin.org

non-random. We also demonstrate that existing predictor high-
scoring variants are enriched among the artificially generated 
sSNVs, additionally validating of our assumption. We finally 
note that these predictors appear unable to definitely identify 
subtle effect sSNVs.

METHODOLOGY OF THE PREDICTORS

SNV Predictors Vary by Targeted Variant 
Type, Training Data, and  
Descriptive Features
We identified from the literature four sSNV-specific effect 
predictors: SilVA (Silent Variant Analyzer) (Buske et al., 2013), 
regSNPs-splicing (Zhang et al., 2017), DDIG-SN (Detecting 
Disease-causing Genetic SynoNymous variants) (Livingstone 
et al., 2017), and IDSV (Identification of Deleterious Synonymous 
Variants) (Shi et al., 2019). Additionally, we considered TraP 
(Transcript-inferred Pathogenicity) (Gelfman et al., 2017), which 
addresses both synonymous and intronic variants. Specifically, 
1) SilVA was trained on 33 pathogenic and 785 neutral variants 
from 1000 Genomes Project (1000G) (Birney and Soranzo, 2015), 
using conservation scores, splicing, DNA, and RNA properties, 
2) DDIG-SN and IDSV used positive data from the Human Gene 
Mutation Database (HGMD) (Cooper et al., 1998; Stenson et 
al., 2003; Stenson et al., 2009; Stenson et al., 2017) and negative 
data from 1000G (DDIG-SN) and VariSNP (IDSV) (Schaafsma 
and Vihinen, 2015) as negative data for training, described 
using features of translational efficiency and protein properties 
in addition to those used by SilVA, 3) regSNPs-splicing also 
used HGMD and 1000G data, but it considers sSNVs only in 
the context of mRNA splicing and protein function, while 4) 
TraP was trained on positive data combining SilVA’s data with 
Online Mendelian Inheritance in Man (OMIM) (Hamosh, 2004) 
variants and negative data from control trios de novo variants. 
TraP uses transcript-affecting features, specific to intronic and 
synonymous variants.

As opposed to the sSNV-specific tools, more generic 
predictors, including CADD (Kircher et al., 2014), DANN 
(Quang et al., 2014), FATHMM-MKL (Shihab et al., 2015), and 
MutationTaster2 (Schwarz et al., 2014), evaluate synonymous, 
non-synonymous, regulatory and other kinds of variants. CADD 
was developed by training a support vector machine (SVM) 
to differentiate observed vs. simulated variants of all variant 
categories (Kircher et al., 2014). DANN attempts to capture 
nonlinear signals in (CADD-generated) variant data using a 
deep neural network (Quang et al., 2014). FATHMM-MKL is 
a Hidden Markov Model-based method integrating ENCODE 
(Consortium, 2012) functional annotations of SNVs to evaluate 
non-coding and synonymous variants (Shihab et al., 2015). 
MutationTaster2 (Schwarz et al., 2014) uses a naïve Bayes model 
trained on disease variants vs. variants from 1000G variants to 
evaluate all SNVs. Notably, these general-purpose predictors are 
heavily conservation-driven and may lack features to describe 
the subtle changes induced by sSNVs.

All predictors described here are machine learning-based 
[using random forests (RFs), SVMs, or deep neural network] 

and trained to predict pathogenicity, using different data and 
feature sets (Table 1). Supervised machine learning, often used 
for predicting variant effects, requires selecting a proper training/
evaluation set, a number of relevant variant-, gene-, or disease-
features, and an appropriate model for identifying feature 
patterns representative of variant effect/disease-association (Rost 
et al., 2016).

Available Variant Sets Are Limited in Size 
and Reliability
Association between genomic variants and diseases can be 
identified by carefully designed statistical tests, e.g., via 
Genome Wide Association Studies (GWAS) (Visscher et al., 
2012). However, unequivocally identifying variants that cause 
disease are significantly more difficult; this is a particularly 
hard problem for sSNVs, which carry no corresponding 
protein sequence changes. Clinical or experimental validation 
of the causative relationships between genomic variation 
and disease is either infeasible altogether (as for polygenic 
disorders) or exceedingly difficult on a large scale due 
to the necessary resource and time investments. Instead, 
computational annotation of genomic variant pathogenicity 
(or simply functional effects) is a cost- and time-efficient 
substitute, providing a starting point for further experimental 
validation and discovery.

Most predictors described here (regSNPs-splicing, DDIG-SN, 
FATHMM-MKL, and MutationTaster2) collect variants 
identified as causative (positive) from HGMD. The latest version 
of HGMD (March 2017) comprises over 203,000 variants in over 
8,000 genes, manually curated from scientific literature (Stenson 
et al., 2017). Despite its apparent utility, studies have questioned 
the reliability of HGMD data. George et al. (2007), for example, 
point out flaws like inconsistent mutation nomenclature and 
incomplete incorporation of all applicable data. Yue and Moult 
(2006) note that some mutations in HGMD are named causes 
of monogenic disease but are not fully penetrant, while Bell 
et  al. (2011) question disease annotation of recessive variants. 
In a study of 1,000 exomes, Dorschner et al. (2013) note that 
only 16 of 585 of HGMD disease-causing variants were actually 
pathogenic, while in a subsequent study with 6,503 individuals, 
none of the identified 615 HGMD disease-causing variants were 
pathogenic (Amendola et al., 2015). Other studies (Xue et al., 
2012; Cassa et al., 2013) have shown that many disease-causing 
variants in HGMD are present in the relatively healthy 1000G 
individuals (Birney and Soranzo, 2015).

Other sources of positive training/testing data, including 
OMIM (used by TraP) and ClinVar (used by TraP, regSNPs-
splicing, IDSV, CADD, MutationTaster2, and FATHMM-MKL) 
(Landrum et al., 2014), appear no more reliable. Notably, there 
is considerable inconsistency between the HGMD and OMIM 
(George et al., 2007). ClinVar’s entries from different sources 
often conflict between themselves (Landrum and Kattman, 
2018), as the reliability of ClinVar’s data curation and workflow 
of medical interpretation has not been proven (Bauer et al., 
2018). Substantial discordance between ClinVar and laboratory 
test results has also been reported (Gradishar et al., 2017).

59

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Evaluating Synonymous Variant-Effect PredictorsZeng and Bromberg

4 October 2019 | Volume 10 | Article 914Frontiers in Genetics | www.frontiersin.org

Mutation databases vary drastically (George et al., 2007), not 
in the least because of experimental interpretation differences; 
e.g., roughly 17% of the variant effects reported by different 
laboratories carry contradictory clinical significance (Rehm 
et al., 2015). Labels of pathogenicity are not fixed, switching from 
disease to benign and back as evidence accumulates (Shah et al., 
2018). As these binary labels also do not provide a quantitative 
measure of risk (Shah et al., 2018) or penetrance, the term 
“disease-causing” should be used with caution. One key problem 
in the field, and a reason for many of the above data limitations, 
is the absence of a gold standard for identifying disease-causing 
variants (Dorschner et al., 2013). Moreover, even the “silver-
standard” available annotations are far and few between. In 
fact, while there are many known pathogenic nsSNVs, there 
are currently much fewer known pathogenic sSNVs available: 
dbDSM (Wen et al., 2016) (including those from ClinVar, 
PubMed, NHGRI GWAS catalog (Welter et al., 2013), etc.) 
contains 1,289 pathogenic sSNVs, and HGMD contains roughly 
900 pathogenic sSNVs (Livingstone et al., 2017). Arguably, this 
number is too small to build a generalizable model for evaluating 
tens of millions of the possible synonymous variants in human 
genome. Note that an additional problem is the absence of a true 
negative set of variants, i.e., those that have been verified to have 
no effect on protein function or no relationship to some disease 
(Bromberg et al., 2013).

Use of Allele Frequency to Approximate 
Variant Effect
SilVA was trained on 33 experimentally defined deleterious 
and 785 assumed neutral (observed in 1000G) variants. While 
the former set was very stringently selected, this small number 
of samples could hardly produce a generalizable model. Other 
predictors use less well curated data from available databases, 
but as such run into a problem of reliability. To supplement the 
lack of experimentally annotated variation, variant population 
frequency had been suggested as a sign of effect/pathogenicity; 
i.e., it is generally assumed that disease/effect variants are of low 
allele frequency (Gibson, 2012), although the precise threshold 
for “low” is unclear. Predictors (CADD, DANN, FATHMM-
MKL, SilVA, regSNP-splicing) often filter out effect variants of 
higher frequency and/or neutral variants of lower frequency. 
CADD and DANN training data, for example, contains simulated 
human variants, appearing after human-chimpanzee divergence, 
labelled as the effect group (depleted by natural selection) and 
observed fixed or nearly fixed derived alleles as neutral (Kircher 
et al., 2014; Quang et al., 2014). Note although simulated variants 
are likely enriched in deleterious variants, and CADD scores have 
been shown useful in prioritizing variants in clinical settings 
(Amendola et al., 2015; Nakagomi et al., 2018; Van Der Velde 
et al., 2015), it is difficult to directly link the CADD predictions 
to pathogenicity (Kircher et al., 2014).

TABLE 1 | Summary of sSNV-specific predictors.

Ref/Tool name Training data Model Features Performance

(Buske et al., 2013)
SilVA (2013)

33 deleterious from literature, 
785 neutral from one 1000 
Genomes Project individual

Random forest with 1,001 
trees and default number 
of features

26 in total
• conservation
• RNA properties
• DNA properties
• Splicing

Dataset: 8 DM from literature and 752 
NM from literature and 1000G.
Result: DM’s scores ranked higher 
than NM’s

(Gelfman et al., 2017) 
TraP (2017)

75 DM from literature and 
OMIM and 402 de novo NM 
from control trios

Random forest with 1,000 
trees, each with 

20 in total
• Conservation
• DNA properties
• Splicing

Dataset: 66 DM and 4,418 NM from 
ClinVar.
Result: AUC = 0.88

(Zhang et al., 2017)
regSNPs-splicing (2017)

~655 DM from HGMD and 
~655 NM from 1000G

Random forest with 51 
trees and 35 features at 
each node

455 in total
• Conservation
• RNA properties
• protein properties
• splicing 

Dataset: ~325 DM from HGMD and 
230 DM from ClinVar, ~325 NM from 
1000G and 4,535 NM from ClinVar
Result: For HGMD vs. 1000G data, 
AUC = 0.91 for variants in Splice Sites 
and AUC = 0.82 for all others
For ClinVar data, AUC = 0.85 for 
variants in splice sites and AUC = 0.70 
for the all others

(Livingstone et al., 2017)
DDIG-SN (2017)

592 DM from HGMD and 
10,925 putatively benign from 
1000G

Support Vector Machine 
with radial function kernel

54 in total (including all of the 
26 features used in SilVA)

• conservation
• DNA properties
• RNA properties
• Protein properties
• Splicing

Dataset: 279 DM from HGMD and 
4,945 NM from 1000G
Result: AUC = 0.85

(Shi et al., 2019)
IDSV (2019)

300 DM from dbDSM and 300 
NM from VariSNP

Random forest with 500 
trees and 3 features at 
each split

10 in total
• Conservation
• DNA properties
• Splicing
• Translational efficiency

Dataset: 153 DM and 5,178 NM from 
ClinVar
Result: AUC = 0.87

DM, disease/deleterious mutations; NM, neutral mutations; HGMD, human gene mutation database; 1000G, 1000 genome project; OMIM, online mendelian inheritance in man; 
AUC, area under the ROC curve (axes in Eqn. 1).
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Allele frequency, however, is not necessarily correlated 
with variant effect, particularly when effect being considered 
is “function change” not “disease.” In an earlier study, we 
found that common [minor allele frequency (MAF) > 5%] 
non-synonymous variants were more often predicted to have 
a functional effect than rare (MAF < 1%) ones (Mahlich 
et al., 2017). Here a high-frequency allele may be beneficial/
advantageous and on the way to becoming common, or 
slightly deleterious and on its way out (Bromberg et al., 
2013). Moreover, trivially, allele frequency estimated from the 
sequenced genomes may be subject to change as the number 
of samples increases. Thus, 1) low allele frequency is not 
equivalent to having an effect and 2) although high frequency 
alleles are unlikely to be disease causing, they may have some 
impact. Additionally, and perhaps most fundamentally, note 
that the currently observed SNVs are unlikely a complete 
set of naturally occurring variants, i.e., many SNVs may be 
yet unseen.

Features Used Vary From Predictor 
to Predictor
A variety of features have been considered by predictors as 
described below. Note that the number of features used in existing 
predictors ranges from 26 (SilVA) to 1,281 (FATHMM-MKL).

Conservation
Evolutionary conservation, derived from multiple sequence 
alignments (MSAs) of homologous sequences (Niroula and 
Vihinen, 2016), is perhaps the most extensively used feature of 
variant-effect predictors. Commonly used DNA conservation 
scoring algorithms include GERP (Cooper et al., 2005), phastCons 

(Siepel et al., 2005), and PhyloP (Pollard et al., 2009) scores. 
GERP (Genomic Evolutionary Rate Profiling) is a statistical 
method identifying genomic constrained elements from MSAs. 
GERP uses a statistical model estimating species divergence 
times (Hasegawa et al., 1985) and a structural expectation 
maximization algorithm for phylogenetic inference (Friedman 
et al., 2002); the later GERP++ is a faster version of the original 
(Davydov et al., 2010). phastCons fits MSAs to phylogenetic 
hidden Markov models to identify conserved elements (Siepel et 
al., 2005). The major difference between phastCons and GERP 
is that the former models the size and distribution of conserved 
elements within an MSA, while the latter first individually 
assesses the conservation at a locus and then searches for 
clusters of highly conserved loci (Chen et al., 2010). PhyloP 
combines statistical tests and GERP to detect conservation and 
acceleration in nucleotide substitution rates (Pollard et al., 2009). 
All variant effect predictors use at least one of these conservation 
scoring techniques (Tables 1,  2). DDIG-SN also additionally 
uses protein conservation as conserved protein positions are 
often structurally important (Ng, 2003), suggesting possible 
misfolding due to decreased rate of translation at the relevant 
codon. Similarly, sSNVs may lead to mistranslation (Kramer and 
Farabaugh, 2006; Kramer et al., 2010; Komar, 2016) resulting in 
amino acid substitutions—a particularly problematic occurrence 
at conserved protein positions.

Conservation is a very important signature of variant effect. For 
example, for ClinVar’s missense dataset the solely-conservation-
based component of CADD, GerpS (a derivative of GERP++), as 
well as PhastCons and PhyloP, attained ROC AUCs (area under 
the receiver operating characteristic curve) of over 0.82, while 
CADD’s ROC AUC was only slightly higher (0.93) (Kircher et al., 

TABLE 2 | Summary of generalized SNV predictors.

Ref/Tool name Training data Model Features Performance

(Kircher et al., 2014)
CADD (2014)

13,141,299 SNVs, 627,071 
insertions, and 926,968 deletions 
from simulated and observed 
variant sets

SVM with linear kernel 63 in total
• Conservation
• Variant consequence
• DNA features
• Other 

No testing of synonymous 
variants

(Quang et al., 2014)
DANN (2014)

13,302,220 observed variants; 
13,302,220 simulated variants 
selected from CADD data

Neural network with 3 1,000-
node hidden layers

63 features from CADD All types of variants, amount 
of sSNVs not stated
Dataset: 162,777 observed 
and 162,777 simulated variants 
(including synonymous variants).
Result: Overall accuracy = 0.66

(Shihab et al., 2015)
FATHMM-MKL (2015)

1,073 coding DM from HGMD 
and 1,073 coding NM from 
1000G for 10-feature-group 
model; 3,000 coding DM from 
HGMD and 3,000 coding NM 
from 1000G for 4-feature-group 
model

Multiple kernel learning 1,281 in total
• Conservation
• DNA properties
• Other

Coding variants, amount of 
sSNVs not stated
Dataset: 5-fold cross-validation 
from training data
Result: AUC = 0.93 and 
0.91for 10-feature-group model 
and 4-feature-group model, 
respectively

(Schwarz et al., 2014)
MutationTaster2 (2014)

122,238 DM from ClinVar and 
HGMD; 6,807,269 NM from 
1000G

Bayesian classifier ~ 7 (not explicitly stated) in total
• Conservation
• DNA properties
• Splicing 

No testing of synonymous 
variants

DM, disease/deleterious mutations; NM, neutral mutations; HGMD, human gene mutation database; 1000G, 1000 genome project; AUC, area under the receiver operating 
characteristic curve.
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2014). In FATHMM-MKL’s cross-validation on coding variants, 
its ROC AUCs was = 0.93 while the ROC AUCs for conservation 
scores alone was = 0.91 (Shihab et al., 2015). Similar results are 
observed for DDIG-SN (DDIG-SN’s ROC AUCs = 0.85, PhyloP’s 
ROC AUCs = 0.76) (Livingstone et al., 2017) and TraP (TraP’s 
ROC AUCs = 0.88, GERP++’s ROC AUCs  = 0.87) (Gelfman 
et al., 2017) datasets. These results suggest that over billions of 
years of evolution, nature’s laboratory has tested and discarded 
most of the detrimental variants. However, it is important to 
note that functional tuneability, i.e., development of new or 
environment-specific versions of functions is an ongoing process, 
which requires the presence of variants in positions of all levels of 
conservation, in any given snapshot of a population (Miller et al., 
2017; Miller et al., 2019).

DNA Properties
The DNA properties describing the biological effects of sSNVs 
include but are not limited to localization to transcription factor 
(TF) binding sites, overall GC content of genes and genomes, and 
CpG island locations (cytosine followed by guanine in 5’ to 3’ 
direction). In more detail: many studies have shown that coding 
exons can serve as regulatory elements for transcription (Lang 
et al., 2005; Khan et al., 2012); i.e., roughly 15% of the human 
genome codons both code for amino acids and specify TF 
recognition (Stergachis et al., 2013). Thus, synonymous variants 
in TF-relevant codons can affect TF binding and alter gene 
transcription rates. Exonic and the flanking intronic region GC 
architectures can affect DNA methylation and exon recognition 
(Gelfman et al., 2013). Additionally, CpG sites often host DNA 
methylation (Bernstein et al., 2007), playing an important role 
in gene transcription (Gelfman et al., 2013). As mutation rates 
at CpG dinucleotides are an order higher than at other sites 
(Nachman and Crowell, 2000), sSNVs can thus alter methylation 
patterns by disrupting site-specific GC architectures.

All predictors covered in this manuscript, except regSNPs-
splicing, incorporate one or more of these DNA properties 
(Tables 1, 2).

RNA Properties
Codon bias. The preference (frequency of use) of particular 
codons by specific organisms or tissues is termed codon bias. 
Codon bias correlates with and informs gene expression levels 
(Coghlan and Wolfe, 2000; Carbone et al., 2003; Dos Reis et al., 
2003; Boël et al., 2016; Komar, 2016), translation rate (Sørensen 
et al., 1989), as well as protein structure (Zhou et al., 2009) and 
cotranslational folding (Pechmann and Frydman, 2013; Buhr 
et al., 2016). There are many different metrics describing codon 
bias including codon adaptation index (Sharp and Li, 1987), 
synonymous codon usage order (Angellotti et al., 2007), relative 
synonymous codon usage (Sharp and Li, 1987), etc. Surprisingly, 
only SilVA and DDIG-SN have considered codon bias as a factor 
in their models (Table 1).

A related factor governing translation rate is the supply of 
tRNA during translation. Note that tRNA concentrations are 
different across organisms and that some organisms lack certain 

tRNA altogether, supplementing the necessary functionality via 
third position wobble (Novoa et al., 2012). It is hypothesized 
that codon composition in coding regions coevolved with tRNA 
abundances to reach the desired translation rates (Plotkin and 
Kudla, 2011). tRNA adaptation index (tAI) (Reis et al., 2004), 
used only by IDSV (Table 1), is a measure aimed to describe 
codon bias from the perspective of tRNA supply and demand.

A potentially important feature also missing from all 
predictors is codon autocorrelation. In codon autocorrelated 
sequences, same codons follow each other in sequence, i.e., 
sequence AAABB is more autocorrelated (less anticorrelated) 
than sequence ABABA, where A and B are two codons of the 
same amino acid (Cannarozzi et al., 2010). Autocorrelated 
yeast transcripts are translated faster than anticorrelated ones 
(Cannarozzi et al., 2010) and many prokaryotes modulate 
translation through codon correlation (Guo et al., 2012). Thus, 
using codon correlation may help characterizing sSNV effect.

mRNA structure, stability, and abundance. sSNVs can alter 
mRNA secondary structure, thus impacting translational 
efficiency and mRNA decay rate (Hunt et al., 2014), which, in 
turn, impacts protein production (Komar, 2016) and abundance 
(Maier et al., 2009). mRNA sequences are more stable than 
random collections of nucleotides (Seffens, 1999), suggesting 
that mRNA stability is evolutionarily selected to accommodate 
sufficient levels of translation before decay. The secondary 
structure of mRNAs harbors conserved elements (Meyer, 2005) 
and is tightly interwoven with GC content and codon usage. 
In fact, an earlier study found that 26% of the expressed genes 
display differential mRNA stability across individuals (Duan 
et al., 2013). In these genes, higher GC3 (G or C at the third 
position of the codon) percentage correlated with higher mRNA 
stability. This finding is in line with the fact that among the 
different SNVs, G and C alleles generally result in higher mRNA 
stability than A and T alleles (Duan et al., 2013). Furthermore, 
stability is enhanced in mRNA sequences enriched in optimal 
codons corresponding to tRNAs of higher concentrations 
(Presnyak et al., 2015).

A number of in silico tools have been developed to predict 
the mRNA structure and stability, including mFold (UNAFold) 
(Zuker, 2003; Markham and Zuker, 2008), remuRNA (Salari et al., 
2012), KineFold (Xayaphoummine et al., 2005), and RNAfold 
(ViennaRNA package) (Hofacker, 2003). Note, however, that 
RNA molecules are very thermodynamically flexible and can take 
on many possible structures. Thus, the predicted RNA structure 
and its stability depend on the pre-set prediction strategy, which 
can be aimed to find the minimum free energy structure, the 
structure closest to other possible structures, or to maximize 
expected prediction accuracy, which is difficult for RNAs longer 
than 500 nucleotides (Lorenz et al., 2016). Consequentially, the 
prediction of RNA structure and stability is inherently uncertain. 
Among all the sSNV predictors, only SilVA and DDIG-SN 
use predictive tools to compute the variant-induced changes 
of energy and structures in pre-mRNA and mature mRNA 
sequences (Table 1).

Note that sSNVs, as well as other variant types (Shah and 
Gilchrist, 2010), are particularly relevant to functionality of 
highly expressed genes. Thus, the Genotype-Tissue Expression 
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(GTEx) project’s database containing large-scale human tissue-
specific gene expression data (Lonsdale et al., 2013) can be 
used to establish genes that are likely to manifest sSNV effect. 
However, none of the predictors described here use expression 
information to inform their effect predictions.

Splicing Properties
mRNA splicing is a major predictive feature in some predictors, 
especially regSNPs-splicing and IDSV. It is estimated that up to 
15% of disease SNVs cause aberrant splicing (Krawczak et al., 
1992). sSNVs can impact exonic splicing enhancers (ESEs) and 
silencers (ESSs), i.e., short DNA sequence motifs that promote 
or suppress splicing of pre-mRNA by binding to SR proteins 
(proteins with long repeats of serine and arginine) (Wang and 
Burge, 2008). Moreover, sSNVs can change the affinity of pre-
mRNA to spliceosomes, leading to false recognition of exon-
intron boundaries and producing abnormal mRNAs and 
dysfunctional proteins (Bali and Bebok, 2015). Taken together, 
the sSNVs’ potential of disrupting splicing is the likely reason for 
slower evolution at within-ESE sites (Parmley, 2005).

Predictors describe the potential impact of sSNVs on 
splicing by relying on the identified putative ESE and ESS 
motifs. Identification of these motifs and the corresponding 
splicing regulatory proteins has been an ongoing experimental 
and computational effort (Wang and Burge, 2008; Shepard and 
Hertel, 2009); identified motifs and regulatory proteins are 
available via public repositories (Desmet et al., 2009; Giulietti 
et al., 2013; Xing et al., 2016). Tools such as SPANR (Splicing-
based Analysis of Variants) (Xiong et al., 2015), have also been 
developed to predict the splicing effects of SNVs. Splicing is 
considered by all sSNV-specific predictors, although represented 
via different values.

Protein Properties
One often overlooked aspect in evaluating sSNV effect 
is the protein structure. Rare codon variants of frequent 
synonymous codons may slow down the translation rate due 
to low concentration of tRNAs, slow or stop the elongation 
of the peptide chain (Zhang et al., 2009), and influence 
co-translational folding (Kimchi-Sarfaty et al., 2007; Pechmann 
and Frydman, 2013). Cotranslational folding is closely related 
to the formation of protein secondary and tertiary structures 
(Holtkamp et al., 2015); alpha-helix formation can occur in 
the ribosomal tunnel (Komar, 2009), while tertiary structure 
formation may take place before the protein completely exits 
the ribosome (Zhang and Ignatova, 2011). Translationally 
fast codons are enriched for alpha helices, while beta strands 
and coil regions prefer translationally slow codons (Thanaraj 
and Argos, 1996). Optimal codons are enriched in buried and 
structurally important sites but are negatively correlated with 
solvent accessible sites (Zhou et al., 2009). Pathogenic sSNVs 
are generally enriched within the buried sites, intrinsic disorder 
regions, and alpha-helices, as well as in exons overlapping with 
known or predicted protein family domains (Zhang et al., 
2017). These findings suggest that protein structure should 
be considered when modelling the effects of sSNVs. However, 

only regSNPs-splicing and DDIG-SN predictors incorporate 
protein structural information (Table 1).

EVALUATION OF THE PREDICTORS

Collecting the Evaluation Data Set
sSNV effect predictor evaluation is hampered by three major 
problems: 1) there is no clear definition of neutral and 
effect variants and 2) available neutral/effect experimental 
evaluations are limited, and 3) most have been used in 
predictor development. Here, we created our own data set 
of variants for evaluation purposes as follows: we collected 
the observed sSNVs [all non-singleton sSNVs that have 
been observed in either 1000G, ExAC (Lek et al., 2016), or 
gnomAD (Karczewski et al., 2019)] and the generated sSNVs 
(all possible sSNVs in human genes, excluding observed and 
singleton sSNVs); we thus extracted 1,362,607 observed and 
24,008,961 generated sSNVs. For evaluation purposes, we 
randomly selected 1,362,607 generated variants from our set 
to create a balanced observed/generated variant Test set (details 
in Supplementary Material).

There are multiple equally valid reasons for why nearly 95% 
of all possible sSNVs are not observed; the most obvious ones are 
technical, i.e., insufficient data or sequencing technology bias, 
and evolutionary, i.e., purifying selection, genetic drift, and 
genetic hitch-hiking (Smith and Haigh, 1974). As per the latter, 
we assume that drastically deleterious variants, which would 
be eliminated on a population scale due to purifying selection, 
are significantly more frequent in the set of generated sSNVs 
than in observed ones. However, the former suggests that we 
may have simply not (yet) sequenced many of the un-observed 
(generated) variants, which are actually equivalent in potential 
effect to observed ones. Notably, since a large proportion of 
discovered sSNVs are singletons (Lek et al., 2016), an equivalent 
proportion of similarly neutral or mild-effect variants can likely 
be found on the other side of the “sequencing barrier,” i.e., they 
have yet to be sequenced. Moreover, different categories of 
variants vary in the likelihood of being observed. For example, 
according to the ExAC project, the discovery of CpG transitions 
(C- > T, where C is followed by G) is likely close to saturation, 
while additional transversion and non-CpG transitions are yet 
to be identified (Lek et al., 2016).

We observe that 1) most of the large effect variants are likely 
in the generated set and either 2a) they make up much of that set, 
i.e., the generated set contains mostly effect variants, or 2b) there 
are relatively few of them, i.e., the distribution of effect and neutral 
variants is roughly equivalent across the generated and observed 
variants. Note that if (2a) is true, we expect that a precise and 
sensitive sSNV effect predictor should be able to differentiate the 
observed sSNVs from the generated ones, while (2b) would mean 
that the same predictor would produce similar effect distributions.

Note that our Test set data are collected in a somewhat similar, 
but ultimately very different, way as CADD’s (and DANN’s) 
training data. CADD’s observed variants are the fixed or nearly 
fixed alleles at sites where human genes are different from the 
inferred human-chimpanzee ancestor and thus may encompass 
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our excluded observed singletons. CADD’s simulated variants 
follow an estimated de novo mutation rate since human-
chimpanzee divergence, and thus are a subset of all our variants, 
including generated, observed, and singletons. Importantly, even 
with down-sampling of generated variants to create a balanced 
set, our Test set is much larger (~2.8 million) and more broadly 
defined than CADD’s strictly curated training set (~100,000).

We calculated the enrichment of observed sSNVs relative to 
generated sSNVs separately by amino acid (Figure 2A) and codon 
(Figure 2B) type. We observe that the distribution of naturally 
occurring sSNVs is non-random across amino acids and codons. 
Thus, over a fifth of all tyrosine (Y) and histidine (H) codons in 
our genome is affected by sSNVs, as compared to roughly 8% 
of lysine (K) codons. Curiously, the most mutated codons are 
threonine ACG, serine TCG, and proline CCG (> 43% of each is 
affected by an sSNV) and alanine GCG (37%). Thus, the CG end-
of-codon nucleotide pair seems to indicate least stable codons. 
On the other hand, the isoleucine ATA codon is almost never 
mutated (~1%), suggesting that it is preferentially maintained 
as error free. Moreover, the enrichments of observed sSNVs by 
amino acids (or codon) are not proportional to the abundance 
amino acids (or codon) in human transcriptome. The amino 
acids (e.g., Y, H, N, D) and codons (e.g., ACG, TCG, CCG, GCG, 
TAC, CAC) with high enrichment of observed sSNVs are those 
of low abundances. This decidedly non-random distribution of 
variants across codons and amino acids strongly suggests that 
our generated and observed variants are likely indeed different 
from the evolutionary, and thus likely effect, perspective.

Predictors Do Not Distinguish Observed 
and Generated sSNVs
To the best of our knowledge, our collection of tools (CADD, 
DANN, MutationTaster2, FATHMM-MKL, SilVA, TraP, 
DDIG-SN, regSNP-splicing, and IDSV) make up a complete set of 
publicly available methods for sSNV analysis. We first evaluated 
(Figure S2) the ability of all predictors (except regSNP-splicing, 
which was not functional at the time of writing) to differentiate 
50,000 observed and 50,000 generated sSNVs (Supplementary 
Materials). We did not include IDSV for more further analysis 
because its performance was similar to that of other predictors 
and it was not available for running it locally or online for the 
entire set of our variants. Unfortunately, we also had to exclude 
MutationTaster2, which experienced server problems when 
running large batches of data.

We used CADD, DANN, FATHMM-MKL, SilVA, TraP, and 
DDIG-SN to make predictions for our complete variant Test 
set. We calculated the fraction of consensus binary predictions 
(Figure 3A) (FCBP; i.e., the number of predictions agreed upon) 
for all pairs of predictors and the correlation between scores 
(Figure 3B). As per CADD creators (https://cadd.gs.washington.
edu/info), it is hard to threshold its raw scores, while the 
recommended neutral/deleterious cutoff for phred-scaled scores 
is 15. For the rest of the predictors, we used 0.5 as the binary 
threshold (> 0.5 is deleterious). We observed (Figure 3A) that the 
CADD and other sSNV-specific predictors agree with each other 
because their scores are mostly low (Figures 3F–H). Scores from 
general-purpose predictors do not have high correlation with 

FIGURE 2 | Ratios of observed and generated sSNVs vary across codons and amino acids. Ratios of observed to generated sSNVs (barplot, left axis) affecting 
specific (A) amino acids and (B) codons in the human transcriptome differ. Lines (right axis) in plots indicate the fractions of (A) amino acids and (B) codons (“*” 
is a stop codons). Trivially, 2-codon amino acids are generally enriched for observed sSNVs, while higher degeneracy codons are depleted. However, there is a 
significant difference between the most and least frequent 2-codon amino acid sSNVs. Codons with an NCG pattern (N = any nucleotide) are most often affected by 
sSNVs. On the other hand, codons with a CGN pattern (also CpG) are relatively rarely affected. Note that amino acid degeneracy is correlated with % composition, 
although a single codon is often responsible for coding most of each of these amino acids (e.g. Leucine CTG and Valine CTG).
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sSNV-specific predictors. Meanwhile, DANN and FATHMM-
MKL did not agree with others or between themselves. This lack 
of agreement across the Test set indicates that, in the best case, 
predictors are orthogonal, correctly identifying a different subset 
of variants each or, in the worst case, they are mostly unable to 
recognize effect. Curiously, for each predictor, the distributions of 
sSNV scores of observed and generated variants were very similar 
(Figure 3), i.e., predictors disagreed between themselves and 
with our dataset labels. Note that since the data is large, statistical 
tests to establish their difference could easily achieve significance 
and may not be meaningful (Kim and Bang, 2016). Instead, we 
directly evaluated predictor ability (Table 3) to differentiate the 
two types of variants using ROC AUCs. ROC curve is a plot of 
true positive rate (TPR) against false positive rate (FPR), which 
are computed with true positive (TP), false negative (FN), and 
false positive (FP) (Eqn. 1). No predictor was able to accurately 
differentiate generated and observed variants well. To evaluate the 
variation of different predictors introduced by the sampling of 
the generated set, we also subsampled the observed and generated 

sets for 20 times (each with 100,000 samples) and calculated the 
resulting standard errors of ROC AUCs (Table 3).

 TPR TP
TP FN

FPR FP
FP TN

    ,     =
+

=
+

 (1)

FIGURE 3 | Predictor scores correlate somewhat, but do not differentiate observed vs. generated sSNVs. Panel (A) shows the amount of agreement (i.e., FCBP) 
for any pair of predictors. High FCBP values indicate that two predictors agree in assigning binary (neutral/deleterious) predictions to variants. Panel (B) shows the 
Pearson correlations among the prediction scores. (C–I) Violin/box plots of prediction score distributions across predictors: CADD raw, CADD phred-scaled, DANN, 
FATHMM-MKL, SilVA, TraP, and DDIG-SN, respectively.

TABLE 3 | AUCs of the predictors on sSNVs and nsSNVs.

Observed vs. generated sSNVs Observed 
vs. 

generated 
nsSNVs

AUC on  
Test set

Average of AUCs 
±SD *

CADD raw score 0.518 0.517±0.0012 0.564
CADD phred-scaled score 0.518 0.518±0.0013 0.564
DANN 0.506 0.506±0.0023 0.491
FATHMM-MKL 0.540 0.540±0.0013 0.555
SilVA 0.527 0.527±0.0009
TraP 0.495 0.496±0.0038
DDIG-SN 0.535 0.535±0.0012

*Test set was sampled 20 times (each with 100,000 observed and 100,000 generated 
variants) to produce averages and standard deviations (SD) of AUCs for sSNVs.
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Predictor Performance Is Only Slightly 
Better for nsSNVs Than for sSNVs
As mentioned previously, the unexpected inability of predictors 
(Figure 3) to differentiate observed and generated variants may 
indicate either the inappropriateness of the data set for the 
evaluation task or limited predictor abilities. The latter may 
be related to the specific variant type; i.e., general-purpose 
predictors, such as CADD and FATHMM-MKL, are good 
at analyzing non-synonymous variants (Kircher et al., 2014; 
Shihab et al., 2015), but they may be less sensitive to effects of 
synonymous variants. To evaluate this possibility, we randomly 
selected 500,000 each observed and generated non-synonymous 
variants from dbNSFP (Liu et al., 2011; Liu et al., 2016) and 
extracted their associated predictor scores (see Supplementary 
Material). Briefly, an nsSNV was considered observed if it was 
reported by either 1000G, ExAC, or gnomAD; otherwise it was 
deemed a generated nsSNV. While some of the predictors were 
slightly better at differentiating generated from observed nsSNVs 
(Figure 4, Table 3) than sSNVs, their performance was still not 
up to the expectations. We also calculated FCBP (Figure 4A; 
cutoffs as above) and score correlation (Figure 4B) to find that 
CADD, DANN, and FATHMM-MKL have a considerably higher 
agreement on nsSNVs than on sSNVs (Figure 3A).

Inferring a Predictor Scoring 
Threshold From Prediction of Common 
Variant Effects
The predictor inability to differentiate observed and generated 
variants may also be due to the difficulty of defining effect 
threshold; i.e., variants of low effect are harder to precisely 
annotate, both computationally and experimentally, and can 

be equally well classified as effect or neutral. In an effort to 
increase resolution between the two, predictors often link high 
allele frequency to absence of effect. In fact, CADD, DANN, 
FATHMM-MKL, SilVA, and regSNP-splicing effectively label 
high allele frequency variants as neutral. Taken further, TraP 
scores were reported (Gelfman et al., 2017) to have negative 
correlation (−0.51) with bin-average ExAC allele frequencies 
(Lek et al., 2016). Note that, as mentioned above, this reasoning 
side-steps evolutionary flow where common (not yet fixed or 
removed) variants may be advantageous or damaging. To further 
elaborate on allele frequency relationship with effect predictions, 
we obtained frequency data from multiple sources (1000G, ExAC, 
and gnomAD, see Supplementary Material) for our observed 
variants. Notably, we saw no correlation, positive or negative, 
between allele frequency and any predictor score (Figure 5). This 
observation highlights predictor binary classification abilities 
rather than a continuous spectrum of effect.

For some of the predictors (CADD, SilVA, TraP, DDIG-SN) 
high scoring variants were overwhelmingly of low frequency. 
At the same time, many of the low frequency variants were 
low scoring. Assuming that the predictor scores can be used as 
reliable indicators of common variant neutrality (low scoring), 
this result reinforces the idea that low frequency variants are as 
likely to be pathogenic/effect as neutral/benign. Furthermore, 
common variant score distributions could help approximate the 
predictor thresholds of effect. Thus, while variants scoring above 
a certain threshold can be considered to have an effect, below this 
threshold binary predictor resolution is questionable.

Predictor thresholds were chosen as the score below which 
most (99%) of the common variants (allele frequency >0.01) 
reside (Figure 5). Thus, scores above this threshold indicate 
effect, while scores below the threshold could be effect or neutral. 

FIGURE 4 | Predictor scores correlate, but do not clearly differentiate observed vs. generated nsSNVs. Panel (A) shows the amount of agreement (i.e., FCBP) 
for any pair of predictors. High FCBP values indicate that two predictors agree in assigning binary (neutral/deleterious) predictions to variants. Panel (B) shows 
the Pearson correlations among the prediction scores. (C–F) Violin/box plots of prediction score distributions across predictors: CADD raw, CADD phred-scaled, 
DANN, and FATHMM-MKL, respectively.
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We further applied the selected thresholds to both observed and 
generated sSNVs (Table 4). We define resolution (Eqn 2, where 
“N” stands for number) as a predictor’s ability to capture the 
enrichment of deleterious variants above threshold.

 resolution N
N

sSNVs above the threshold

observe
         =

dd sSNVs

generated sSNVs

generated sSNVs abov

N
N 

   

   
×

ee the threshold   

 (2)

The resolutions were greater than one for all the predictors, with 
CADD attaining the highest resolution (> 2). Note that only a small 
fraction of variants in both sets scored above the threshold, but since 
the total number of generated variants is nearly 18 times higher than 
the number of observed variants, the estimated number of potential 
identifiably-deleterious sSNVs is only an order of magnitude less 
than ALL observed sSNVs (~475K vs. ~1.3M). These results suggest 
that the generated set indeed contains many more deleterious 
variants than the observed set and that a new predictor train to 
recognize these differences may identify deleterious variants more 
reliably than existing methods.

CONCLUSION

Training data is perhaps the most critical component for a 
machine learning-based variant-effect-predictor. Most sSNV 
effect predictors we reviewed, retrieved training data from disease 
mutation databases, such as HGMD and ClinVar. Disease-causing 
variants can be thought of as severely functionally deleterious, 
although non-disease variants could also be deleterious or 
beneficial. Moreover, identifying an sSNV as disease causing, as 
opposed to associated with disease, is extremely difficult, if not 
impossible. In fact, studies have revealed flaws of existing disease 
mutation databases, which may further undermine the reliability 
of the contained data. Progress in saturation genome mutagenesis 
may improve data availability in the near future. Currently, 
however, there is no publicly available, sufficiently large collection 
of variants with experimentally validated effect annotations that 
can be used for building a generalizable sSNV effect-predictor.

The lack of gold standard data also prevents proper evaluation 
of the predictors. Here, we proposed a Test set of observed and 
generated sSNVs. We assumed that the generated set is enriched 
for deleterious sSNVs due to purifying selection and expected 
the predictors to differentiate these from the observed variants. 
However, the predictor performance on this data was below our 
expectations. Note that predictor scores for the variants in our 
set were poorly correlated and the amount of binary prediction 
agreement was limited. This observation suggests that predictions 
may be biased by shared input features, but do not sufficiently 
well indicate variant effect. We proposed a scoring threshold to 
separate reliable predictions from the highly uncertain ones for 
each of the predictor. With the thresholds identified, we further 
observed that all predictors had significantly more reliably 
identified sSNVs in the generated set than in observed set, in line 
with our earlier expectations of the quality and contents of the 

FIGURE 5 | Some predictors assign higher scores to rare variants. In all panels, the scatterplots display the density of observed variant prediction scores vs. 
log10(allele frequency). A scoring threshold (red dashed line) for each predictor identifies scores above the threshold as reliable. The threshold is placed at the score 
that is higher than 99% of common (allele frequency > 0.01) variant scores. (A-G) represents the scatterplot for CADD raw, CADD phred-scaled, DANN, FATHMM-
MKL, SilVA, TraP, and DDIG-SN, respectively.

TABLE 4 | Percentage of sSNVs scoring above threshold and the corresponding 
predictor resolutions.

% Above-the-
threshold sSNVs 

in observed

% above-the-
threshold sSNVs 

in generated

Resolution

CADD raw score 0.871 1.981 2.274
CADD phred-
scaled score

0.868 1.979 2.280

DANN 1.594 2.156 1.352
FATHMM-MKL 1.639 2.522 1.538
SilVA 4.902 6.015 1.227
TraP 2.376 2.912 1.226
DDIG-SN 1.764 2.414 1.368
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Test set. However, the inability of the predictors to clearly identify 
effect variants below the severity threshold, suggests that more 
work is necessary to understand sSNV effects.

We note that our Test set is not a gold-standard testing set and 
is only appropriate for predictor testing only if our underlying 
biological/data distribution assumptions hold. Thus, we cannot 
make concrete recommendations of best-practice prediction 
tools. However, our results clearly indicate that the predictions are 
highly correlated across sSNV-specific methods, i.e., there is little 
difference between using SilVA, DDIG-SN, or TraP. On the other 
hand, outputs of general purpose-predictors (CADD, DANN, 
and FATHMM-MKL) do not correlate as well. Of these, CADD 
phred-scaled scores are least likely to classify common variants 
as having a large effect; i.e., CADD high scores may be deemed 
reliably non-neutral. Note, however, that this does not mean 
that CADD low scores indicate variant neutrality – a necessary 
distinction that evades much of the variant effect literature.

Looking forward to a future sSNV effect-predictor, we note that 
comparing observed vs. generated, rather than effect vs. no-effect, 
variants drastically increases the amount of data useful for 
training. We also note that this variant collection will need further 
filtering to address the problem of false positives, i.e., the yet-to-
be-observed generated variants. Moreover, the transition from 
observed to no-effect and from generated to effect annotations will 
not be trivial. As mentioned earlier, while severe effect variants are 
likely predominantly confined to the generated set, the mild effect 
variation is probably distributed throughout both observed and 
generated collections. Despite these difficulties, the observation 
that existing predictors identify more higher-scoring effect 
variants in the generated data, suggests that the effect signal can 
indeed be learnable by models trained to differentiate observed vs 
generated variants. Thus, a model using the previously mentioned 
set of features, possibly in combination with an ensemble of 
(orthogonal, as evaluated above) existing classifiers, may provide 
a more reliable description of variant effects.
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Measurement of Conditional 
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Measuring conditional relatedness, the degree of relation between a pair of genes in a 
certain condition, is a basic but difficult task in bioinformatics, as traditional co-expression 
analysis methods rely on co-expression similarities, well known with high false positive 
rate. Complement with prior-knowledge similarities is a feasible way to tackle the 
problem. However, classical combination machine learning algorithms fail in detection 
and application of the complex mapping relations between similarities and conditional 
relatedness, so a powerful predictive model will have enormous benefit for measuring 
this kind of complex mapping relations. To this need, we propose a novel deep learning 
model of convolutional neural network with a fully connected first layer, named fully 
convolutional neural network (FCNN), to measure conditional relatedness between genes 
using both co-expression and prior-knowledge similarities. The results on validation and 
test datasets show FCNN model yields an average 3.0% and 2.7% higher accuracy 
values for identifying gene–gene interactions collected from the COXPRESdb, KEGG, 
and TRRUST databases, and a benchmark dataset of Xiao-Yong et al. research, by grid-
search 10-fold cross validation, respectively. In order to estimate the FCNN model, we 
conduct a further verification on the GeneFriends and DIP datasets, and the FCNN model 
obtains an average of 1.8% and 7.6% higher accuracy, respectively. Then the FCNN 
model is applied to construct cancer gene networks, and also calls more practical results 
than other compared models and methods. A website of the FCNN model and relevant 
datasets can be accessed from https://bmbl.bmi.osumc.edu/FCNN.

Keywords: conditional relatedness between genes, fully convolutional neural network, co-expression similarity, 
prior-knowledge similarity, gene network

INTRODUCTION

Conditional relatedness between a pair of genes is a degree of the relation between two genes in a 
certain condition, e.g. in cancer tissues or inflammation, implying the probability of these genes 
jointly involved in a biological process under such cell environment (Wang et al., 2019). It is different 
from gene–gene interaction meaning a 0/1 (non-interacting/interacting) binary relation between 
a pair of genes. Measuring such relatedness is a basic tool for understanding the biological and 
functional relations between genes in a real cell environment (Jelier et al., 2005; Mistry and Pavlidis, 
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2008). And the measured relatedness is classically used as weights 
on connections of genes for construction of gene networks in 
different environments for further biological analysis (Amrine 
et al., 2015; Li et al., 2018).

Traditionally, expression similarity as well as co-expression 
is used to measuring conditional relatedness, including Pearson 
correlation coefficient (PCC) (Eisen et al., 1998), Spearman rank 
correlation (SRC) (Kumari et al., 2012), mutual information (MI) 
(Song et al., 2012), partial Pearson correlation (PPC) (Baruch and 
Albert-László, 2013), and conditional mutual information (CMI) 
(Kim et al., 2010). PCC can express the linear relationship between 
a pair of genes, SRC and MI represent the nonlinear relationship, 
and PPC and CMI indicate the direct linear relationship and the 
direct nonlinear relationship under the condition of excluding 
other genes’ interferences, respectively. Expression similarities 
have been successfully applied in measuring conditional 
relatedness for constructing gene networks, on which Poliakov 
et al. identify disease-related metabolic pathways (Poliakov 
et al., 2014). However, when acquiring gene expression data, it 
often contains some inevitable noise, which causes errors in the 
calculation of conditional relatedness, well known as high false 
positive rate.

Another type of similarity, prior-knowledge similarity, is also 
used to measure gene–gene relatedness, based on the documented 
biological data and functional annotations in public domain, 
such as the Gene Ontology (GO) (Consortium, 2004), the KEGG 
(Kanehisa and Goto, 2000), the Reactome (de Bono et al., 2005), 
the OrthoDB (Zdobnov et al., 2016), the TRRUST (Han and Puri, 
2018), etc. It brings high accuracy (ACC) (Diebold and Mariano, 
1995), as the prior-knowledge similarity is confirmed by the 
biological experiment. But the biological experiment is usually 
conducted in a normal condition, meaning prior-knowledge 
similarity is hardly used for measuring conditional relatedness.

By the above understanding, integration of expression and 
prior-knowledge similarities is an effective way to avoid the 
shortage of using only one category of similarity to measuring 
conditional relatedness between genes, as a pair of genes with 
high expression similarity but low prior-knowledge similarity 
implies their relatedness is most likely a false prediction by 
co-expression analysis, and the two genes with low expression 
similarity but high prior-knowledge similarity implies their 
relatedness is not specific in the condition. The gene pair with 
both high expression and prior-knowledge similarities should 
be scored a high rank and recommended by a model. Wang 
et  al. proposed a support vector machine (SVM) model using 
both expression and prior-knowledge similarities to measure 
conditional relatedness between a pair of genes, and their 
computational results showed the proposed model outperforms 
the existing co-expression analysis methods and other integration 
models (Wang et al., 2019). The combination of both kinds of 
similarities has been also succeeded in other related biological 
issues, e.g., detection of protein–protein interaction (PPI) (Jing 
and Ng, 2010), measuring functional similarity of gene products 
(Mistry and Pavlidis, 2008), and identification of disease-causing 
gene (Mohammadi et al., 2011).

Because of the fast growth of the deep learning technology, 
deep learning algorithms have outperformed the state-of-the-art 

traditional machine learning algorithms in many research 
field of bioinformatics. Babak et al. adapted the deep learning 
convolutional neural network to the task of predicting sequence 
specificities and showed that they compete favorably with the 
state of the art (Babak et al., 2015), and their results show that 
their approach outperforms other state-of-the-art methods. Pan 
and Shen proposed a deep learning-based framework by using 
a novel hybrid convolutional neural network and deep belief 
network to predict the RNA-binding proteins (RBP) interaction 
sites and motifs on RNAs.They validate their method on 31 large-
scale datasets, and their experiments show that the average area 
under the curve (AUC) (Lobo et al., 2010) can be improved by 
8% compared to the best single-source-based predictor (Pan and 
Shen, 2017). Trebeschi et al. applied the deep learning methods 
to automatic localization and segmentation of rectal cancers on 
multiparametric MRI, and their results demonstrate that deep 
learning can perform accurate localization and segmentation of 
rectal cancer in multiparametric MRI in the majority of patients 
(Trebeschi et  al., 2017). Gao et al. proposed a new computational 
approach based on deep neural networks to predict tRNA gene 
sequences, and their proposed methods outperformed the 
existing methods under different metrics (Gao et al., 2019).

Motivated by the above mentioned, we develop a novel deep 
learning model of convolutional neural network (CNN) with 
a fully connected first layer, named fully convolutional neural 
network (FCNN), to measure conditional relatedness between 
genes using both expression and prior-knowledge similarities. 
The goal of our model is to keep and recommend gene pairs with 
both high expression and prior-knowledge similarities. The fully 
connected first layer makes our model extracting more useful 
information than traditional CNN and the rest CNN structure 
makes our model easier to train than all fully connected deep 
learning models. In line of the above two advantages and 
integrating of co-expression and prior-knowledge similarities, 
FCNN model calls better results than other models and methods 
for identifying gene–gene interactions and constructing cancer 
gene networks. First, the FCNN model acquires an average 3.0% 
and 2.7% higher ACC values on validation and test samples 
collected from the COXPRESdb, KEGG, and TRRUST databases 
and a benchmark dataset of Xiao-Yong et al. research (Xiao-
Yong et al., 2010). Then we perform a further verification on the 
samples from the GeneFriends and DIP databases, and the FCNN 
model obtains an average of 1.8% and 7.6% higher accuracy, 
respectively. Finally, the FCNN model is utilized to construct 
cancer gene networks, which also obtains more practical results, 
comparing with other models and methods. The source code of 
FCNN, as well as the datasets and results of this research, are 
freely available in https://bmbl.bmi.osumc.edu/FCNN.

MATERIALS AND METHODS

Dataset Collection
We take gene pairs with/without expression similarity 
(co-expression) and prior-knowledge similarity (protein–protein 
interaction, involvement in a same pathway, and transcriptional 
regulation) as samples to compose a whole dataset to make our 
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model be trained to predict gene pairs with high expression 
similarity as well as those with high prior-knowledge similarity 
at the same time, i.e., to identify gene pairs with both high 
expression and prior-knowledge similarities. Therefore, the 
dataset used for training, validation, and test consists of two 
sub-datasets, so called co-expression sub-dataset and prior-
knowledge sub-dataset.

The co-expression sub-dataset is collected from the 
COXPRESdb database (Release v7.1) (Yasunobu et al., 2015), 
where co-expressed gene pairs are sorted ascendingly by the 
mutual rank (MR) (Obayashi and Kinoshita, 2009). The smaller 
the MR value is, the higher co-expression it has. For each gene, we 
select the top 30 co-expressed genes to compose 30 co-expressed 
gene pairs from the Hsa-u.v18-10 and Mmu-u.v18-10 datasets 
in the COXPRESdb database, respectively. Then we select gene 
pairs as positive samples that they are commonly co-expressed 
in Hsa-u.v18-10 and Mmu-u.v18-10 datasets. To relieve the 
imbalanced problem between positive and negative samples, 
for each gene, we select middle 60 non-co-expressed genes to 
compose negative samples, similarly as composing the positives, 
where negative samples are the non-co-expressed gene pairs 
with PPC values around 0. There are 32,735 positive samples and 
26,782 negative samples in the sub-dataset.

The prior-knowledge sub-dataset is composed of three parts. 
A) We collect gene-pair samples from the KEGG database (Release 
Nov 1, 2018) (Kanehisa, 2002) as the first part, where positive 
samples are gene pairs composited by the genes involved in at 
least two same pathways, and the negative samples are randomly 
selected gene pairs composited by the genes never engaged in the 
same pathway, with the same number of the positives. There are 
11,526 positive samples and 11,526 negative samples in the first 
part. B) Next, for the second part, we use 15,222 gene pairs with 
PPI from a benchmark dataset of Pan et al. research (Pan et al., 
2010) as the positive samples and 21,579 gene pairs without PPI 
as the negatives. C) In terms of the third part of the sub-dataset, 
we collect 7,361 gene pairs with the transcriptional regulation 
records in the TRRUST database (Release v2) (Han et  al., 
2017) as the positive samples and 7,361 gene pairs by random 
permutation of the transcription factor and the regulated gene 
in the positive ones (Nakamura et al., 2004; De et al., 2005; Wang 
et al., 2019).

Finally, there are a total of 66,844 positive and 67,248 negative 
samples. Specially, some negative samples were obtained by 
permutation of the positives and were then selected randomly 
to ensure the same number of positives for construction of a 
model with high generalization. And to avoid the bias of random 
permutation and selection of negative samples, we conduct the 
above process 100 times, rising to 100 datasets, in each of which 
a fixed percentage of the samples are used to training, validation, 
and test, according to the detailed proportion of the sub and 
sub-sub datasets. Also, the labels for the positive gene pairs are 
marked as 1s and those for the negatives as 0s. The details of each 
sub-dataset are showcased in Table 1.

For model verification, the gene pairs downloaded from 
the GeneFriends (Release v3.1) (Sipko et al., 2015) and DIP 
(Release Feb 13, 2017) (Xenarios et al.) databases are utilized as 
samples. In the GeneFriends database, we select overall 8,675 

co-expressed gene pairs with top 20 PCC values for each gene as 
the positive samples. Because there is only a small part of genes 
that are co-expressed in the human genome, we used 8,675 gene 
pairs obtained by random permutation of the first and second 
genes in the positive gene pairs as the negative samples. Similarly, 
1,396 gene pairs with direct PPI collected from the DIP database 
are used as the positive samples. Considering gene pairs with 
real PPIs are rare in the whole human genome, the 1,396 gene 
pairs by permutation of the two genes in the positive samples 
are used as the negatives. To avoid the bias of permutation, we 
conduct the above process 100 times, rising to 100 datasets from 
the GeneFriends and DIP databases, respectively.

Gene-Pair Features Calculation
To measure conditional relatedness between a pair of genes and 
avoid the deficiencies of using a single type of feature, we use 
two kinds of features of gene pairs, including the expression 
similarities and prior-knowledge similarities.

In the former one, there are seven features, which are the average 
expression level of each gene of a gene pair, including Mean1 and 
Mean2, and five co-expression levels, including PCC, SRC, PPC, 
MI, and CMI. The expression data for calculation of expression 
similarities are collected from the GEO datasets (Barrett et al., 
2012) based on the Affymetrix Human Genome U133 Plus 2.0 
Array platform (released on Nov 2003). Then a pre-processing is 
executed, including log2 scale and quantile normalization.

The latter one contains five features such as GO similarity 
(GOsim) (Wang et al., 2007), subcellular location similarity (LCsim) 
(Yu et al., 2010), hormonology similarity (HGsim) (Chen and 
Vitkup, 2006), Reactome similarity (RCsim) (David et al., 2014), 
and transcriptional regulation similarity (FRsim) (Nagafuchi et al., 
1991). The details of these features are defined as follows. 

 
GOsim Pms g q

Pi j g G q Gi j, max log( ( , ) )
log( (g) lo, ,

=
+∈ ∈

2

gg ( ))P q  (1)

where Gi and Gj represent the GO term sets used for annotating 
gene i and j, respectively; p(g) represents the probability of a gene 
annotated by an instance of GO term g, and Pms(g,q) represents 
the minimum probability of a gene annotated by an instance of 

TABLE 1 | The structure of FCNN dataset.

Sub dataset Sub-sub dataset Type of gene pair Sample size

Co-expression Co-expression Positive 32,735
Negative 26,782

Prior-knowledge KEGG Positive 11,526
Negative 11,526

PPI Positive 15,222
Negative 21,579

TRRUST Positive 7,136
Negative 7,136

DIP DIP Positive 1,396
Negative 1,396

GeneFriends GeneFriends Positive 8,675
Negative 8,675
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a common ancestor GO term of g and q. The GO terms of genes 
used here are the biological process GO terms with experimental 
evidence downloaded from the GO database (Kumari et al., 
2012), where a GO tree is built by the relations among GO terms, 
including “is a”, “part of ”, “has part”, and “regulates”.

 
LCsimi j

i j

i j
,

|S S |
|S S |

=
∩
∪  (2)

where Si and Sj represent the subcellular sets of two proteins 
encoded by gene i and gene j, respectively. The subcellular 
information of genes is collected from the GO database.

 

HGsim
L K v v

L v v L v v
i j

i j

i i j j

,
( )( )

=
× − ×

× − × −2 2  (3)

where vi and vj represent the number of species whose genome 
contains homologous genes of gene i and j, respectively; L 
represents the total number of species; and K represents the 
number of species whose genome contains the homologous gene 
of both gene i and j.

 
RCsim

d
di j

i j
,

,= −1
max

 (4)

where di,j represents the shortest distance between gene i and 
gene j in the graph constructed by gene–gene interactions 
collected from the Reactome database (Croft et al., 2011), and 
dmax represents the shortest distance of the farthest gene pair.

FRsimi j,
,

=
1 if there is a transcriptional regulattion record

otherwise0,






 (5)

where FRsimi,j is equal to 1, if there is a transcriptional regulation 
between gene i and j recorded in the HTRIdb database (Bovolenta 
et al., 2012), and is equal to 0, otherwise. Meanwhile, all the 
databases and relevant data source used to compute these two 
kinds of gene-pair features are listed in Supplementary Table S5.

Model Construction
In the study, we design a model using CNN with a fully connected 
first layer, named FCNN to measure conditional relatedness of 
gene pairs shown as Figure 1. On one hand, the fully connected 
first layer of FCNN keeps our model from ignoring important 
feature combination. On the other hand, the CNN structure 
makes our model easy to train because of its parameter sharing 
and sparse connections. In detail, the model contains six layers. 
The first layer is a fully connected layer with 81 neurons and used 
for getting as much information as possible. The 12 features X = 
[x1,…,x12] as the inputs are fed into this layer to get the activation 
score aj 

of neural j:

 
a x bj i j i j

i

= ∗ +
=

∑ω ,
1

12

 (6)

where ωij represents the weight between the xi and neural j; and bj represents the bias. Then we reshape the output A1 = [a1,a2,…,a81] 
into a 9*9 matrix ′A1 :

 

′ =



















A
a a

a a
1

1 9

73 81



 



O  (7)

which is convenient to operate the convolution. The second layer 
is a convolutional layer using 20 convolutional kernels of size 2*2 
and stride of 1. The output of each neuron of this layer is the 

FIGURE 1 | The structure of the FCNN model.
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convolution between a kernel matrix and a part of the input. The 
result A2 of the second layer is defined as:

 A Conv A2 1= ′tanh( ( ))  (8)

where Conv(⋅) represents the convolution operation and ReLU(⋅) 
represents the rectified linear unit function. The third layer is a 
maximum pooling layer with the kernel of size 2*2 and stride of 
2, which is used to down sample and reduce the dim of input by 
selecting the maximum value in each input. The output from the 
maximum pooling is recorded as A3:

 A pool A3 2= Max_ ( )  (9)

A dropout operation is used on the third layer to randomly 
reduce a part of its output to avoid overfitting. The fourth layer is 
a convolutional layer with five kernels, and its kernel size is 2*2 
with stride 1. The fifth layer is a maximum pooling layer with 
the kernel of size 2*2 and stride of 2. The purpose of using these 
layers is to further extract the information of the input features 
and improve the accuracy of the prediction. The results A4 and A5 of the fourth and the fifth layers are defined as

 A Conv A4 3= tanh( ( ))  (10)

 A A5 4= Max_pool( )  (11)

where tanh(.) represents the hyperbolic tangent activation 
function. The last layer is a fully connected output layer with the 
predicted conditional relatedness ŷk  of sample k defined as

 ˆ ( ' )y Sigmoid W A bk f
T

f= ⋅ +5  (12)

 
Sigmoid

e x(x) = 1
1+ −  (13)

where ′A5  represents the reshaped vector of A5; Wf and bf 
represent the weight vector and the bias of the final layer, 
respectively. We apply the Binary Cross Entropy loss (BCEloss) 
as the loss function of FCNN model defined as

 BCEloss y y y yk k k k= − + − −[ log( ˆ ) ( )log( ˆ )]1 1  (14)

where yk represents ground true label 1/0 of the positive/negative 
sample k, and K represents the total number of all samples. The 
optimal algorithm is RMSPROP (Zhang et al., 2019).

Based on the CNN structure with a fully connected first layer, 
our model is trained by grid-search 10-fold cross-validation, and 
the hyper-parameters with the highest AUC value of the whole 
cross-validation are employed, including kernel size, stride, 
etc. For the detailed description of the architecture and hyper-
parameters, see Optimizing the FCNN Model section.

Experimental Design
Herein, our experiment breaks down four parts, depicted as 
Figure 2, in detail. First, gene-pair samples are collected from 

three databases and a benchmark dataset to compose the dataset 
for FCNN construction, which contains co-expression and 
prior-knowledge sub-datasets. Second, 12 gene-pair features are 
calculated, including seven expression similarities and five prior-
knowledge similarities. Third, FCNN is constructed by grid search 
in a 10-fold cross-validation process. Finally, FCNN is evaluated 
by comparing with 12 models and methods in 10-fold cross-
validation, test, verification, and construction of gene network.

The 12 compared models and methods consist by seven 
models, including logistic regression (LR), linear discriminant 
analysis (LDA), SVM, deep belief network (DBN), fully 
connected neural network (FNN), CNN, and MFR (Wang et al., 
2019), as well as five co-expression analysis methods, including 
PCC, SRC, MI, PPC, and CMI. In these models and methods, LR, 
LDA, and SVM are traditional machine learning technologies 
applied in many fields (Zhang et al., 2006; AndrewCucchiara, 
2012; Asafu-Adjei et al., 2013). 

Specifically, the SVM model is constructed with the radial basis 
kernel function. DBN is a classical deep learning generation model, 
which combines restricted Boltzmann machine (Pang et al., 2018) 
and neural network structure. Multi-Features Relatedness (MFR) is 
a SVM-based model with linear kernel function proposed recently, 
integrating both expression and prior-knowledge similarities to 
measuring conditional relatedness. And PCC, SRC, MI, PPC, and 
CMI are traditional methods for measuring conditional relatedness 
between a pair of genes.

For each model and method, we conduct 10-fold cross-
validation using 81% samples in dataset collected from the 
COXPRESdb, KEGG, and TRRUST databases and a benchmark 
dataset of Pan et al. research (Pan et al., 2010) for training, 9% 
samples for validation, and the rest 10% for test. And the results 
of validation and test are used to compare models and methods 
in terms of precision. Moreover, samples obtained from the 
GeneFriends and DIP databases are used for further verification 
to compare different models or methods in robustness. We also 
compare the practicability of models and methods in terms of 
cancer gene network construction. To compare the performance 
of each model or method, we select the receiver operating 
characteristic curve (ROC) with its AUC (Lobo et al., 2010) and 
the ACC value as the criteria.

RESULTS

Optimizing the FCNN Model
We built our parameterized FCNN model using Pytorch (Aorte 
et al., 2019). The optimal hyper-parameters are obtained from 
various combinations based on baseline parameters by grid 
search within 10-fold cross-validation. We test hyper-parameter 
combinations containing the kernel size, stride, learning rate, 
activation functions, dropout probability, etc., and get the 
experimental results of the different hyper-parameters shown 
as Table 2. Specially, the FCNN model is trained by minimizing 
the BCEloss with RMSprop optimizer (Zhao et al., 2019) in the 
light of the AUC of validation and test datasets. As shown in 
Table 2, the best hyper-parameters for combination of activation 
function, the kernel size, stride, the number of neurons in the 
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first layer, learning rate, the dropout probability, and the batch 
size is Tanh_Tanh, 2, 1, 81, 0.001, 0.1, and 250, respectively.

Table 2 reflects the experimental results of the combining 
hyper-parameters. The nine kinds of combination of three 
activation functions (ReLU, Sigmoid, and Tanh) are evaluated. 
As a result, combination of Tanh and Tanh is optimal. The 
kernel size and the stride of the FCNN model are changed 
to 2 and 3, and 1 and 2, respectively. The kernel of 2 and the 
stride of 1 are the best suitable for our approach, respectively. 
The neuron number of the first layer is changed to 5*5, 9*9, 
and 13*13, and we find 9*9 is optimal. The learning rate is 
changed to 0.0001, 0.001, and 0.01, and the learning rate of 
0.001 shows our approach obtains the best performance in 

both validation and test AUC. To avoid the overfitting, the 
dropout probability is applied in our approach, changed to 
0.1, 0.2, and 0.3. The dropout probability of 0.1 presents the 
highest AUC in training and test; meanwhile, the larger the 
dropout probability, the lower the AUCs on validate and test 
datasets. And then the batch size for the model is also changed 
to 200, 250, and 300, which shows that the batch size of 250 
gets the best performance. To sum up, the combination of the 
kernel size of 2, the stride of 1, the neuron number of 81 in the 
first layer, the learning rate of 0.01, the dropout probability of 
0.1, and the batch size of 250 is optimal. And we also list the 
optimal condition under a single hyper-parameter, based on 
our experiments.

FIGURE 2 | The flowchart of experimental design in biological pathways identification.
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Comparison With Existing Methods
The best parameters of all models are obtained by grid search within 
10-fold cross-validation, and the results of the final models with 
the best parameters are applied to compare models and methods 
in terms of precision. As shown in Figures 3A, B, most machine 
learning models perform better than the co-expression analysis 
methods, and our FCNN model has the highest AUC value of 
0.831 and ACC of 0.761 than the others. CNN model is better than 
others except for the FCNN model, with an AUC value of 0.796 
and ACC of 0.731, but the DBN model performs the worst among 
all models and methods. In the light of Figures 3C–D, the FCNN 
model obtains the highest AUC and ACC against all models and 
methods on the test dataset. And the CNN model yields higher 
AUC value of 0.799 and ACC value of 0.734, which is better than 
other models and methods besides the FCNN model.

To test the generalization and robustness of all models and 
methods on the samples obtained from the GeneFriends and 
DIP databases, all models applied on this further verification 
are trained without samples from the GeneFriends and DIP 
databases. As shown in Figures 3E–H, the result on the 
GeneFriends database reflects the robustness of models and 
methods in detecting gene–gene interactions from co-expression 
dataset, and the performance on the DIP database indicates 
generalization in identifying gene–gene interactions from the 
prior-knowledge datasets. Figures 3E–H shows that FCNN 
model obtains the third largest AUC value of 0.725 and the 
highest ACC value of 0.693 among all models and methods on 
the GeneFriends samples, and AUC and ACC values of FCNN 

model are better than others on the DIP samples, which are 0.786 
and 0.674, respectively.

To clarify the performance of the trained FCNN model on 
the co-expression, PPI, KEGG, and TRRUST sub-sub datasets, 
respectively, we applied all models and methods to these four 
sub-sub datasets and the results shown as Figure S1. According 
to Figure S1, our approach achieves the highest AUC of 0.938, 
0.578, and 0.532 on the co-expression, PPI, and TRRUST datasets, 
respectively. For the KEGG dataset, AUC of 0.628 of the FCNN 
model is a little lower than AUC of 0.63 the CNN model obtained. 
In light of the above results, it is reasonable that the AUC of 
FCNN model on the co-expression dataset is higher than on the 
prior-knowledge dataset, which reflects that our models identify 
the relationship of genes mainly depending on the co-expression 
information. And the prior-knowledge information only acts as 
an auxiliary role in the process of identifying gene relationships. 
To the best of our knowledge, the co-expression information 
can powerfully reflect the relatedness of genes in a real cell 
environment, but possibly contains some error messages. And 
the prior-knowledge information is invested to relieve these 
error messages, as the relatedness of gene pairs support by the 
prior-knowledge messages is global, meaning only a small part of 
those relatedness is activated on a certain condition. Meanwhile, 
it also implies our model is not suitable for catching the global 
relatedness of gene pairs support by the prior knowledge.

Constructing Cancer Gene Networks
Genes act as a vital role in many human diseases, most of which 
often work with each other and affect human health (Li et al., 
2018), and the weighed gene network provides an effective method 
to study the relationship between genes (Yang et al., 2014). There is 
a property of gene networks in which the genes involved in related 
biological processes are connected to each other to compose gene 
subnetworks with density inside connections and sparse outside 
connections, i.e., genes in a module should be involved in related 
biological processes (Matteo et al., 2012). Here, the purpose of 
measuring conditional relatedness between genes is to detect the 
probability of these genes jointly involving in a biological process. 
Therefore, the better conditional relatedness is measured by a 
model for constructing gene network, the more distinctive such 
property is. Inspired by the above, we use this property to compare 
each model or method in the construction of gene networks. The 
conditional relatedness in this research is utilized to construct 
cancer gene networks, where nodes indicate genes and weights 
on edges indicate relatedness. The criterion is the number of 
metabolic pathways predicted significantly influenced by increased 
serine metabolism in cancers. We choose reprogramming serine 
metabolism as it is one of the hallmarks of cancer (Yang and 
Vousden, 2016). It is reported that serine metabolism is increased 
in various cancers, especially in bladder cancer (Massari et al., 
2016), breast cancer (Locasale et al., 2011; Richard et al., 2011; Kim 
et al., 2014), colon cancer (Duthie, 2011; Jie et al., 2015; Yoon et al., 
2015), and lung cancer (Piskac-Collier et al., 2011; Denicola et al., 
2015), and supports several metabolic processes that are crucial 
for the growth and survival of cancer cells, such as DNA/RNA 
methylation (Maddocks  et  al.,  2016), glutathione biosynthesis 

TABLE 2 | Effects of the varied hyper-parameters through a 10-fold cross-
validation in terms of AUC based on the validation and test datasets.

Hyper-parameter Parameter Validation Test

Kernel size 2 0.8310 0.8321
3 0.8121 0.8172

Stride 1 0.8310 0.8321
2 0.8089 0.8156

Number of neurons 25 0.8191 0.8232
81 0.8310 0.8321
169 0.8189 0.8236

Learning rate 0.01 0.8250  0.8296
0.001 0.8310 0.8321
0.0001 0.7763 0.7802

Dropout probability 0.1 0.8310 0.8321
0.2 0.8196 0.8228
0.3 0.8180 0.8227

Batch size 200 0.8166  0.8231
250 0.8310 0.8321
300 0.8135 0.8209

Activation function ReLU_ReLU 0.8132 0.8224
ReLU_Sigmoid 0.8127 0.8210
ReLU_Tanh 0.8127 0.8242
Sigmoid_ReLU 0.8224 0.8296
Sigmoid_
Sigmoid

0.8245 0.8301

Sigmoid_Tanh 0.8271 0.8308
Tanh_ReLU 0.8253 0.8297
Tanh_Sigmoid 0.8245 0.8309
Tanh_Tanh 0.8310 0.8321

FCNN model obtains the optimal AUC value, based on the different hyper-
parameters combinations.
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FIGURE 3 | ROCs of all models and methods for identifying gene–gene interactions in the (A) validation, (C) test, (E) DIP, and (G) GeneFriends datasets. ACCs of all 
models and methods for identifying gene–gene interactions in the (B) validation, (D) test, (F) DIP, and (H) GeneFriends datasets.
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(Amelio et al., 2014), one-carbon metabolism (Yang and Vousden, 
2016), etc. We conduct enrichment analysis on gene modules 
identified to be influenced by increased serine metabolism against 
all the pathways in the KEGG database and obtain significant 
enriched metabolic pathways (q-value < 0.01) (Storey, 2003). Then 
we count the number of how many of the significant enriched 
metabolic pathways are the ones reported to be related to enhanced 
serine metabolism in cancer tissues. The number shows how well 
the genes in a module are involved in related biological processes 
and reflects how well the conditional relatedness is measured by 
different models for gene network construction.

First, we collect RNA-Seq gene expression data of four cancer 
types, including bladder urothelial carcinoma (BLCA), breast 
invasive carcinoma (BRCA), colon adenocarcinoma (COAD), 
and lung adenocarcinoma (LUAD) from the TCGA database 
(Hampton, 2006), the details of which are shown in Table 3. 
Second, up-regulated genes are identified using Limma t-test 
(Ritchie et al., 2015), with the fold-change of expression level 
in cancer versus normal tissue > 1.5 and P value < 0.05. Then 
the relatedness of each pair of up-regulated genes is calculated 
by FCNN model and 12 other models and methods. Especially, 
co-expression similarities used as features for each model 
are calculated using gene expression data in cancers. Third, 
we construct cancer gene networks, where nodes indicate 
up-regulated genes, and for each node, we link other nodes with 
the top 5 relatedness. There are a total of 13*4 gene networks for 
13 models and methods in four cancer types. Fourth, we collect 
11 enzyme-encoding genes that catalyze biological reactions 
of serine as the markers for serine metabolism, including CBS, 
CBSL, PTDSS1, PTDSS2, SDS, SDSL, SHMT1, SHMT2, SPTLC1, 
SPTLC2, SPTLC3, and SRR. The modules in each network are 
identified by fast modularity optimization algorithm (Zhang 
et al., 2009). And the modules with gene markers are defined 
as modules influenced by increased serine metabolism. We 
implement gene set enrichment analysis against KEGG pathways 
on such modules (Christina et al., 2007), by using the hyper-
geometric test, with q-value < 0.01. Finally, the metabolic 
pathways confirmed to be significantly influenced by enhanced 
serine metabolism in cancer tissues are obtained by intersecting-
enriched pathways with the ground truth (see Supplement 
Tables 1–4). As shown in Figure 4, we detect 13 significantly 
influenced pathways in FCNN-based gene network in four 
cancer types, which is the most among all models and methods.

DISCUSSION

Recent advances in deep learning and bioinformatics stimulate 
considerable interest in measuring the relatedness of genes, and 

such pursuit is necessary, which not only speeds up transition 
from machine learning methods based on measuring correlation 
to deep learning methods but also can reveal some potential 
relationship between genes.

Our approach integrates a fully connected layer and the CNN 
structure for measuring conditional relatedness between genes 
by integrating co-expression and prior-knowledge similarities. 
Meanwhile, we demonstrate that this approach is available and 
effective by experiments on different datasets. To verify our 
model, we compare the FCNN model with other seven models 
and five co-expression analysis methods in validation, test, and 
further verification. The results show that most of machine 
learning models have higher AUC and ACC values than 
co-expression analysis methods, implying a combination of both 
co-expression and prior-knowledge similarities has more obvious 
advantages in terms of measuring conditional relatedness than 
using only co-expression similarities. The FCNN model obtains 
the best performance among machine learning models, which 
proves deep-learning-based models can more effectively detect 
the complex map relations between similarities and conditional 
relatedness than traditional algorithms, such as FNN, MFR, LR, 
LDA, SVM, and so on. Especially, FCNN model successfully 
calls a better result than CNN model, which indicates the fully 
connected first layer persists in our model from ignoring useful 
combinations of features and the remaining CNN structure 
with parameter sharing and connection sparsity help our model 
to be easily trained on the medium-sized dataset. All the above 
advantages make FCNN model more practical, and as a result, it 
achieves the best performance in the construction of cancer gene 
networks. However, PPC and MI obtain higher AUC values on the 
GeneFriends samples than the FCNN model, mainly because the 
gene–gene interactions collected from the GeneFriends database 
are predicted by PCC, making PCC have a natural advantage 
comparing with other models or methods. And MI has some 
resemblance with PCC (Yan et al., 2019), which makes it gain the 
second best result on the GeneFriends dataset.

In line with the performance of the FCNN model, for the 
next step, we will collect more data, extract more features of 
gene pairs, and plan to optimize the structure of the model 

TABLE 3 | The number of samples in cancer and normal tissue.

Caner type Samples in normal tissue Samples in cancer

LUAD 515 19
COAD 285 113
BRCA 1095 41
BLCA 408 59

FIGURE 4 | Number of metabolic pathways predicted to be directly 
influenced by increased serine metabolism in four cancer types.
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to improve the performance. Meanwhile, we generate some 
of the negative datasets by random permutation following 
the way of the references, which may suffer from issue of 
neglecting tissue specificity; therefore, we will improve this 
process in our coming researches. Moreover, deep learning 
is an extremely active research community that is garnering 
more and more focus from academia, and we expect that 
deep learning models like this hybrid architecture will 
be continually explored for the purpose of measuring the 
relatedness between genes.

CONCLUSION

In conclusion, the FCNN model is a novel deep learning model of 
CNN with a fully connected first layer, combining co-expression 
and prior-knowledge similarities to measure conditional 
relatedness between genes. For benchmarking purposes, we 
compare the FCNN model to existing models and co-expression 
analysis methods; our proposed model obtains the best 
performance of identifying gene–gene interaction invalidation, 
test, and further verification. Meanwhile, we estimate the 
performance of all models and methods on the co-expression and 
prior-knowledge sub-datasets, respectively, which show that the 
FCNN model is optimal. In terms of constructing gene networks, 
the FCNN model also outperforms other compared models and 
methods and achieves more practical results.
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Variations in Malignant Gliomas
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Linfu Xu, Wenkang Yin, Chaohan Xu * and Yun Xiao *

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China

Gliomas represent 80% of malignant brain tumors. Because of the high heterogeneity, 
the oncogenic mechanisms in gliomas are still unclear. In this study, we developed 
a new approach to identify dysregulated competitive endogenous RNA (ceRNA) 
interactions driven by copy number variation (CNV) in both lower-grade glioma (LGG) 
and glioblastoma multiforme (GBM). By analyzing genome and transcriptome data from 
The Cancer Genome Atlas (TCGA), we first found out the protein coding genes and long 
non-coding RNAs (lncRNAs) significantly affected by CNVs and further determined CNV-
driven dysregulated ceRNA interactions by a customized pipeline. We obtained 13,776 
CNV-driven dysregulated ceRNA pairs (including 3,954 mRNAs and 306 lncRNAs) 
in LGG and 262 pairs (including 221 mRNAs and 11 lncRNAs) in GBM, respectively. 
Our results showed that most of the ceRNA interactions were weakened by CNVs in 
both LGG and GBM, and many CNV-driven genes shared the same ceRNAs in the 
dysregulated ceRNA networks. Functional analysis indicated that the CNV-driven ceRNA 
network involved in some important mechanisms of tumorigenesis, such as cell cycle, 
p53 signaling pathway and TGF-beta signaling pathway. Further investigation of the 
ceRNA pairs in the communities from the dysregulated ceRNA network revealed more 
detailed biological functions related to the oncogenesis of malignant gliomas. Moreover, 
by exploring the association of CNV-driven ceRNAs with prognosis and histological 
subtype, we found that the copy number status of MTAP, KLHL9, and ELAVL2 related 
to the overall survival in LGG and showed high correlation with histological subtype. In 
conclusion, this study provided new insight into the molecular mechanisms and clinical 
biomarkers in gliomas.

Keywords: gliomas, CNV, ceRNA, lncRNA, prognosis

INTRODUCTION

Malignant gliomas are the most common aggressive primary brain tumor (Schwartzbaum et al., 
2006; Ostrom et al., 2014). As the most aggressive malignant glioma, glioblastoma multiforme 
(GBM, WHO grade IV) shows a 5-year survival rate of 5% with the median survival time of 14 
months from diagnosis (Parsons et al., 2008). Comparing to GBM, gliomas of WHO (World Health 
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Organization) grade II and III are less aggressive and have been 
grouped together by The Cancer Genome Atlas (TCGA) as lower 
grade gliomas (LGGs). Recently, high-throughput studies have 
proven that copy number variations (CNVs), which are gains or 
deletions of genomic segments, are considered important risk 
factors for human cancers (Xi et al., 2011; Park et al., 2017). CNVs 
are prominent influential factors for gene expression, which may 
impact the activities of a variety of oncogenic or tumor suppressive 
pathways (Liang et al., 2016). Many studies have analyzed the 
impact of CNVs on gene expression phenotypes. For example, 
Jornsten et al. combined mRNA regulatory relationships with 
CNV profiles to construct a CNA-driven network using lasso 
regression and identified driver copy number alterations (CNAs) 
and explored their effects on transcription in GBM (Jornsten 
et al., 2011). Park et al. applied a correlation measure to identify 
significant relationships between copy number variation regions 
and mRNAs, and characterized the impact of genotypic variations 
on phenotype in a genome-wide scale (Park et al., 2012). In fact, 
DNA CNVs not only influenced the expression of protein-coding 
genes but also affected the expression levels of long non-coding 
RNAs and miRNAs (Liang et al., 2016).

Recent studies suggested a new layer of miRNA-mediated 
regulation that RNAs targeted by the common miRNA could 
“compete” for the miRNAs and thus indirectly regulate each 
other (Salmena et al., 2011). Such RNAs are called competing 
endogenous RNAs (ceRNAs), and their miRNA-mediated 
interactions are referred to as ceRNA interactions. In addition, 
examples have been already emerging of non-coding RNAs as 
ceRNAs, such as lincRNA-p21 (Yoon et al., 2012), lincMD1 
(Cesana et al., 2011) and linc-RoR (Wang et al., 2013). 
Experimental evidence has suggested that the aberration of ceRNA 
interaction can play important roles in tumorigenesis (Tay et al., 
2011). Thus, exploring this novel RNA crosstalk will enhance our 
insight into gene regulatory networks and contribute to a better 
understanding of human disease (Tay et al., 2014). The existence 
and strength of ceRNA interactions may vary significantly 
in different physiological and cellular conditions (e.g., copy 
number variation). Most ceRNA studies only considered 
interactions among ceRNAs and miRNAs while overlooking 
other important gene regulators, such as transcription factors, 
DNA methylation, and copy number alteration, which would 
impede our understanding of ceRNA interactions in cancer (Do 
and Bozdag, 2018). Therefore, incorporating other types of gene 
expression regulatory factors, namely copy number alteration, 
to infer condition-specific dysregulated ceRNA interactions in 
cancer will be meaningful.

Here, we aimed to discover dysregulated ceRNA interactions 
driven by CNVs in LGG and GBM. We first got the copy 
number status of each gene and identified over one hundred 
protein-coding genes and lncRNAs whose expression levels 
were significantly affected by CNVs in LGG and GBM. Using 
a customized program, we identified dysregulated ceRNA 
interactions driven by CNVs and found some interesting 
features of the dysregulated ceRNA network. Moreover, by 
systematically characterizing the functions of the CNV-driven 
ceRNAs, we found their associations with prognosis and 
histological subtypes.

MATERIAls AND METhODs

Data source
The DNA copy number (SNP 6.0), mRNA, and miRNA 
expression data for the LGG and GBM cohorts were collected 
from the TCGA data portal (https://tcga-data.nci.nih.gov/tcga), 
and the lncRNA expression data were derived from TANRIC 
(Li et al., 2015). We extracted 435 LGG and 152 GBM samples 
with sample-matching copy number data and gene expression 
data. For DNA copy number data, we determined five types of 
discretized copy number calls (−2, −1, 0, 1, 2) for genes in LGG 
and GBM by GISTIC2.0 (Mermel et al., 2011), and genes with 
no CNV in more than 10% samples were excluded. The gene 
expression profiles were normalized by log2(tpm+1) and genes 
with mean expression lower than 30% of samples or with missing 
values in more than 10% of samples were filtered.

Identification of CNV-Driven Protein-
Coding Genes and lncRNAs
To reduce the influence of noise, we retained high-level amplifications 
and homozygous deletions discretized by GISTIC2.0 and used the 
binomial test on the genes that co-existed 2 and −2 status, in which 
the copy number status with smaller sample size was considered as 
noise and the copy number status were set to 0 (P < 0.05) or deleted (P 
≥ 0.05). Then, for each protein-coding gene or lncRNA, we divided 
the gene expression data by copy number status and performed the 
rank-sum test on the two groups. Genes with concordant changes 
in copy number status and gene expression were considered to be 
CNV-driven genes (P < 0.05, Supplementary Table 1).

Identification of Dysregulated ceRNA–
ceRNA Interactions Driven by CNV
We developed a computational approach to identify dysregulated 
ceRNA–ceRNA interactions driven by CNVs (Supplementary 
Figure 1). It consisted of the following steps: (1) Obtaining ceRNA–
ceRNA interactions in each copy number state. The interactions of 
mRNA–miRNA and lncRNA–miRNA were obtained from one 
confidential online miRNA-target databases: StarBase v2.0 (Li 
et al., 2014). Using the expression profiles of mRNA, lncRNA, and 
miRNA in each copy number status (i.e. amplification, deletion, 
and normal), we calculated Pearson correlation coefficient (PCC) 
between ceRNA pairs as well as mRNA/lncRNA (ceRNA) and 
miRNA to measure their expression correlations. The ceRNA pairs 
with significantly positive correlations (adjusted p-value < 0.05) 
in which each miRNA-ceRNA interaction showed a significantly 
negative correlation (adjusted p-value < 0.05) were considered as 
candidate ceRNA triplets in the status. (2) Calculating difference 
of ceRNA regulation between copy number status. We assumed 
that the dysregulation caused by CNV will be reflected in the 
correlations between ceRNA interactions in each candidate ceRNA 
triplet. So we compared the correlations of ceRNAs in amplification/
deletion samples with normal samples to determine the extent of 
dysregulation. The extent of dysregulation was defined as:

 ∆R ceRNA ceRNA ceRNA ceRNA= −cor corv n( , ) ( , )1 2 1 2  
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where corv(ceRNA1, ceRNA2) was the PCC estimated from 
the amplification/deletion samples and corn(ceRNA1, ceRNA2) 
was from normal samples. If a candidate ceRNA triplet existed 
only in one copy number status, ΔR was also calculated by 
using the correlation filtered before. (3) Identifying CNV-
driven dysregulated ceRNA–ceRNA interactions. To determine 
whether ΔR was statistically significant, a permutation test was 
performed. We randomized the labels of copy number status 1000 
times and recalculated the changes of correlation coefficients of 
each ceRNA pair. A P value of 0.05 was used as the cut-off to 
obtain significantly dysregulated pairs, which were regarded as 
CNV-driven dysregulated ceRNA–ceRNA interactions. R scripts 
were available on GitHub (https://github.com/EmeraldG1996/
orange-juice/tree/master/ceRNA-interaction).

FUNCTIONAl ENRIChMENT ANAlYsIs

For functional enrichment analysis, we first obtained gene 
expression profiles of LGG/GBM and matched normal samples 
from TCGA, and calculated the differential expression of genes. 
Based on the fold change values, we performed gene set enrichment 
analysis (GSEA) to discover functions kyoto encyclopedia of 
genes and genomes (KEGG pathways and GO terms) altered in 
LGG and GBM, respectively. Then, the hypergeometric test was 
used to further identify what cancer-related functions the ceRNA 
network (or community) participated in:
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where N was the number of genes in the gene expression profiles, 
n was the number of given genes involved in dysregulated ceRNA 
network or specific community, M was the number of genes that 
participated in cancer-related KEGG pathway/GO term.

statistical Analysis of Clinical Data
We downloaded the clinical data of 432 LGG and 124 GBM 
patients from cBioPortal (http://www.cbioportal.org/). Overall 
survival curves were constructed by Kaplan–Meier estimation 

and log-rank tests (P < 0.05) were used to identify the significantly 
survival-related copy number changes. The Cox proportional-
hazards regression model was used to investigate the association 
between the expression of genes and OS. Fisher exact test was 
performed to detect the clinicopathologic correlates with copy 
number variations.

REsUlTs

Identifying DNA Copy Number Variations 
in lGG and GBM
To systematically evaluate the copy number variations (CNVs) in 
LGG and GBM, we performed GISTIC2 on TCGA SNP 6.0 array 
data to get the copy number status of each gene. After filtering 
segments with copy ratios less than 0.1, 85 putative CNVs in LGG 
and 65 in GBM were detected, including a total of 152 and 435 
patients, respectively. We divided the identified CNVs into two 
types, i.e., amplification or deletion, for further analysis (Table 1, 
see Materials and Methods). Focal amplifications of pathogenic 
oncogenes were seen in most of the GBM patients. For example, 
the amplification of PDGFRA was found in 23 patients, and 
71 and 28 patients showed EGFR and CDK4 amplification, 
respectively. We also found some patients harbored focal 
deletions of tumor suppressor genes, such as CDKN2A (89) and 
CDKN2B (84). The amplification of oncogenes across LGG was 
not as extensive as GBM, but focal deletions of CDKN2A/B were 
also found in LGG, which were considered as negative cell cycle 
regulators in gliomas (Simon et al., 1999).

Different Copy Number status Affected 
the Expression of Protein-Coding Genes 
and lncRNAs
To identify protein-coding genes and lncRNAs affected by CNVs, 
we combined copy number data and expression profiles in LGG 
and GBM. Based on the rank-sum test, we identified genes whose 
copy number changes (between different copy number statuses) 
were concordant with changes in their expression (P value < 0.05, 
see Materials and Methods, Supplementary Table 1). In LGG, 
the expression of 52 protein-coding genes and 2 lncRNAs were 
significantly affected by CNVs, including 46 protein-coding 

TABlE 1 | Characterization of genomic CNVs detected in LGG and GBM.

Rank Genomic location size No. of Genes Candidate Gene(s)

Amplifications (lGG)
1 7q32.1 chr7:128,577,665–148,118,090 17
2 8q24.3 chr8:143,692,404–143,696,833 51 MAF1
Deletions (lGG)
1 9p21.3 chr9:21,329,669–23,898,052 14 CDKN2A,CDKN2B, MTAP,ELAVL2
Amplifications (GBM)
1 4q12 chr4:54,009,788–54,740,715 7 PDGFRA,KIT
2 7p11.2 chr7:53,926,675–57,139,864 17 EGFR,VOPP1
3 12q13.3-14.1 chr12:57,520,417–57,957,269 21 CDK4
Deletions (GBM)
1 9p21.2-21.3 chr9:20,341,664–25,784,562 19 CDKN2A,CDKN2B, MTAP,ELAVL2
2 10q23.31 chr10:87,866,672–87,971,930 1 PTEN
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genes and 1 lncRNA showing amplification, and 6 mRNAs 
and 1 lncRNA associated with deletions. While in GBM, 47 
protein-coding genes and lncRNAs were significantly associated 
with copy number status, including 36 protein-coding genes 
associated with amplifications, and 9 protein-coding genes and 2 
lncRNAs associated with deletions. While our CNV-driven genes 
were identified between amplification/deletion copy number 
states and normal state, only several genes were confirmed in 
previous studies, for example, ELAVL2 in GBM (Bhargava et 
al., 2017). The genomic localization of these genes showed that 
the CNVs which significantly affected expression in LGG and 
GBM could be divided into three and five patterns, respectively 
(Figures 1A, B). In GBM, the CNVs concentrated in 10q23.31 
(1), 9p21.2-21.3 (10), 4q12 (5), 12q13.3-14.1 (19), and 7p11.2 
(12), consistent with previous reports (Crespo et al., 2012). In 

these regions, the CNVs of some genes were observed in most 
patients, including many genes that have been confirmed to be 
important in the occurrence and development of GBM, such 
as EGFR, CDKN2A/CDKN2B, and MTAP (Lopez-Gines et al., 
2010; Feng et al., 2012; Xu et al., 2017). It has been reported 
that the deletion of 9p21.3 is related to the occurrence of GBM 
(Inoue et al., 2004; Alentorn et al., 2015). For LGG, the CNVs 
concentrated in 9p21.2-21.3 (7), 4q12 (39), 12q13.3-14.1 (8) 
(Figure 1A). Several genes in these regions have been suggested 
to be important for the prognosis. For example, CDKN2A is an 
independent predictor of poor survival in diffuse lower-grade 
gliomas (Aoki et al., 2018).

The expression levels of genes identified as copy number 
deletion (amplification) were generally decreased (increased) 
in both LGG and GBM (Figure 1), which was consistent with 

FIGURE 1 | CNVs and the expression of affected protein-coding genes and lncRNAs in GBM and LGG. (A-B) Expression of CNV affected genes in GBM (A) and in 
LGG (B).
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previous reports (Momtaz et al., 2018). At the same time, we found 
that the degree of expression changes of different genes within 
one genomic region was not the same. For example, in GBM, the 
expression of DMRTA1 and LINC01239, which located in the 
9p21.3 region, differed by 10 times when copy number changes.

Identification of the Dysregulated ceRNA 
Network Driven by CNV
Given the lack of exploration of regulatory factors in existing 
ceRNA studies, we designed a program to identify dysregulated 
ceRNA interactions driven by CNV (Supplementary Figure 1). 
The program could be roughly divided into three steps. First, the 
candidate ceRNA triplets were obtained based on the interactions 
of mRNA/lncRNA-miRNA in LGG and GBM, respectively. Then, 

to get ceRNA pairs driven by CNV, we calculated the changes 
of the correlations of ceRNA pairs in each copy number state 
(amplification/normal or deletion/normal). If CNV increased the 
correlation, the ceRNA pair was enhanced by CNV. Conversely, 
the ceRNA pair was weakened by CNV. Last, we used perturbation 
test to get significant ceRNA pairs driven by CNV (see Materials 
and Methods, Supplementary Table 2). Through the above three 
steps, we finally obtained 13776 CNV-driven dysregulated ceRNA 
pairs in LGG, including 3954 mRNAs and 306 lncRNAs. In GBM, 
we gained 262 copy number-driven dysregulated ceRNA pairs, 
including 221 mRNAs and 11 lncRNAs (Figures 2A, B, Table 2).

Next, to gain insights into the dysregulated ceRNA interactions 
caused by CNV, we visualized the ceRNA network with Cytoscape 
3.7.0 (Shannon et al., 2003) (Figure 2C). By observing the ceRNA 
network of GBM, we found most of the ceRNA interactions were 

FIGURE 2 | Dysregulated ceRNA pairs driven by CNV. (A–B) Distribution of enhanced and weakened ceRNA pairs in GBM (A) and LGG (B). Red for enhanced pairs 
and blue for weakened pairs. (C) Global view of ceRNA network in GBM. The ceRNAs driven by CNV and their ceRNA pairs were colored by orange and light gold, 
respectively. The CNV-driven ceRNA which was also another CNV-driven ceRNA pair was colored by purple. Square indicated mRNAs and diamond indicated lncRNAs.
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weakened because of the CNV-driven ceRNAs, and only a few 
CNV-driven ceRNAs (ELAVL2 and PDGFRA) showed opposite 
influence (Figure 2C). Similar results were also observed in LGG. 
Interestingly, many CNV-driven genes shared the same ceRNAs 
in the ceRNA network, and the number of sharing ceRNAs in 
LGG was larger than GBM. For example, VOPP1 and CDKN2A, 
which have been proved important in glioma (Xia et al., 2013; 
Roy et al., 2016), were linked by KCTD5 in GBM (Figure 2C). It 
should be noted that MARCH9, a CNV-driven ceRNA, was also 
regulated by ELAVL2, and they shared the most ceRNAs (such 
as MTMR1, STMN1, and CECR2). The interactions between 
STMN1 and ELAVL2/MARCH9 were weakened by CNV, while 
in MTMR1 and CECR2 the interactions were weakened by 
MARCH9 amplification and enhanced by ELAVL2 deletion. In 
LGG, the ceRNAs shared by MTAP and CDKN2A contained 
many genes highly associated with gliomas and other cancers, 

such as IDH1 and CDK4/6 (Cheng et al., 2017). Some studies 
have shown that co-deletion of CDKN2A and MTAP could 
be used as markers for glioma stratification, and the deletion 
of CDKN2A was associated with the expression of CDK4/6 in 
various tumors (Kaul et al., 2015; Frazao et al., 2018).

Functional Characterization of 
Dysregulated ceRNAs Driven by CNV
To evaluate the effects of CNV-driven dysregulated ceRNAs, we 
used a functional analysis pipeline to characterize their aberrant 
functions in LGG and GBM, respectively (see Materials and 
Methods). In LGG, the top significant KEGG pathways, such as 
cell cycle and p53 signaling pathway, have been shown to play a 
crucial role in tumor occurrence (Figure 3A). For example, the 
activation of tumor suppressor protein p53 was confirmed to 

TABlE 2 | The information of dysregulated ceRNA pairs driven by CNV in GBM and LGG.

CNV-driven ceRNAs ceRNA pairs mRNAs lncRNAs Enhanced pairs Weakened pairs

lGG Amplification 34 1488 8031 99 545 943
Deletion 6 12288 3600 233 549 11739

GBM Amplification 7 102 147 6 29 73
Deletion 3 160 83 5 3 157

FIGURE 3 | Functional analysis of CNV-driven dysregulated ceRNAs. (A–B) KEGG pathways and GO terms annotated by all dysregulated ceRNAs in LGG (A) and 
GBM (B). The red dotted line indicates that p-value is 0.05. (C-D) KEGG pathways and GO terms annotated by partial CNV-driven ceRNA and its ceRNA pairs in 
LGG (C) and GBM (D). The size of the scatter represents the relative proportion of genes which enriched in the corresponding function.
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be regulated by CHK-2 kinase in p53 signaling pathway, which 
indicated that ceRNA network could reflect the mechanism of 
tumorigenesis (Harris and Levine, 2005). In GBM, dysregulated 
ceRNAs were primarily enriched in categories related to cell 
cycle, e.g. cell cycle G1/S phase transition, and cell division, 
such as mitotic sister chromatid segregation, negative regulation 
of mitotic cell cycle phase transition and mitotic spindle 
organization (Figure 3B).

We further investigated the functions of ceRNA pairs driven 
by each CNV with the same approach. By comparing with 
functions of all dysregulated ceRNAs, we obtained more detailed 
tumor-related functions in both LGG and GBM. In LGG, an 
average of three KEGG pathways and four biological processes 
were identified (P < 0.05, Figure 3C). The top enriched results not 
only contained the pathways enriched by dysregulated ceRNAs 
but also included pathways that regulated cancer development, 
such as MAPK signaling, which has been shown to significantly 
promote the proliferation and migration of glioma cells (Wan 
and Too, 2010; Zhang et al., 2017). Furthermore, we observed 
ceRNA pairs enriched in the cell cycle, including CDKN2A (a 
CNV-driven ceRNA), CDK4 and CDK6. It has been proven 
that cell cycle was mediated by CDKN2A (Aoki et al., 2018), 
its dysregulation driven by copy number deletion could inhibit 
CDK4 and CDK6 and thus blocked traversal from G1 to S-phase 
(Serrano et al., 1993; Kamb et al., 1994). We also found many 
cancer-related biological functions in GBM, such as p53 signaling 
pathway, DNA replication as well as GO terms associated with 
cell cycle (Figure 3D). These results demonstrated that more 
precise regulatory mechanisms related to glioma could be found 
by annotating dysregulated ceRNAs.

Exploring Community structures 
in the CNV-Driven ceRNA Network
Based on the hypothesis that special topological components in 
biological networks may provide a new clue to the functional 
characterization of ceRNAs, we investigated the function of 
important community structures in the CNV-driven ceRNA network 
to determine these effects on tumorigenesis (Figures 2A, B). Here, 
modules identified from multi-level optimization of modularity 
were defined as communities (Song et al., 2017).

The largest community in LGG contained 798 nodes, including 
some glioma-associated genes like IDH1 and CDK4/6 (Cheng 
et al., 2017), in which most ceRNA pairs were driven by copy 
number deletion. The functional analysis showed that six GO 
terms and five KEGG pathways were significantly enriched in this 
community (p-value < 0.05), such as mesenchyme development, 
p53 signaling pathway and TGF-beta signaling (Figure 4). In 
this community, BMP-7, as a ceRNA driven by MTAP, has been 
proved to act as a tumor suppressor that repressed proliferation, 
self-renewal, and tumor initiation of stem-like glioblastoma cells 
through suppressing epithelial–mesenchymal transition (EMT) 
(Zeisberg et al., 2003; Tate et al., 2012). Among all the enriched 
functions, cell cycle was the most significant (Figure 4B), and 
CDKN2B (Ink4b) drew our attention. As a CNV-driven ceRNA, 
CDKN2B has been reported to serve as a functional unit in the 
oncogenesis of malignant gliomas (Shete et al., 2009; Weller et al., 

2009), its ceRNA pairs, CDK2 and RBL1, were also annotated 
in cell cycle and located in the downstream of the pathway 
(Figure  4C). Analogous results were also obtained from the 
communities of GBM. The largest community of GBM with 34 
genes was identified to be relevant to cell cycle-related biological 
processes (G1/S transition of mitotic cell cycle) and cancer-
related pathways (DNA replication) (Figure 4D).

CNV-Driven ceRNAs Associated With 
Prognosis and histological subtypes
To further detect the roles of CNV-driven ceRNAs in prognosis, 
we assessed whether the effects on the clinical outcome of a CNV-
driven ceRNA differed by copy number status. We identified 
some ceRNAs were significantly related to overall survival in 
LGG (log-rank test p-value < 0.05, Figure 5), but regretfully we 
did not find any significant results in GBM. For LGG, our results 
showed that the deletion of MTAP, CDKN2A, and CDKN2B 
had the worse prognosis (with hazard ratios of 1.946, 1.992 and 
1.984, respectively). The dysregulated ceRNA network driven by 
the deletion of CDKN2B was enriched in Epac1/Rap1 pathway, 
which was proved to be important in glioma cell death (Moon 
et al., 2012). By using the Cox proportional hazards regression 
model, we found that the CNV-driven ceRNAs, such as MTAP, 
KLHL9, and ELAVL2, whose deletion led to worse overall 
survival also exhibited significant associations between their 
expression and survival time (Table 3, univariate Cox hazard 
analysis, P < 0.05). Seven of them, for example, KLHL9, showed 
to be independent prognosis factors (Table 3, multivariate Cox 
hazard analysis, P < 0.05).

Furthermore, we found that the CNV-driven prognosis factors 
also showed high correlation with histological subtype (Table 4, 
Fisher exact test, P < 0.05). Interestingly, all of the subtype 
related CNV-driven ceRNAs were located in the deletion region 
at 9p21. It has been shown that the deletion of 9p21, especially 
co-deletions of CDKN2A/B and MTAP, could be a marker for 
different grades of glioma (Frazao et al., 2018). Interestingly, 
CDKN2B, CDKN2A, MTAP, and KLHL9 also belonged to 
the largest community in the dysregulated ceRNA network, 
suggesting their possible role to inhibit the development of 
glioma together. Besides, we also found a lncRNA, RP11–321l2.2, 
whose ceRNA pairs were involved in MAPK and PI3K pathways.

DIsCUssION

In this study, we provided a comprehensive catalog of dysregulated 
ceRNA interactions driven by CNV in both LGG and GBM. We 
identified the expression of protein-coding genes and lncRNAs 
affected by CNVs and figured out consistent changes of genes 
in both cancer subtypes. Based on the CNV-driven genes and 
ceRNA triplets, dysregulated ceRNA networks driven by copy 
number amplification/deletion were identified in LGG and 
GBM. We found that CNV could attenuate the interactions 
between most ceRNA pairs, and the dysregulated ceRNAs driven 
by CNV were involved in some critical biological functions in 
glioma. Furthermore, some CNV-driven ceRNAs showed a 
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significant correlation to overall survival, indicating that they 
may be potential clinical biomarkers of prognosis.

We not only demonstrated that the dysregulated ceRNA 
network could be influenced by CNV in both LGG and GBM 
but also obtained some critical biological functions related to 
the CNV-driven dysregulated ceRNAs. These ceRNAs were 
significantly enriched in the programs of tumorigenesis, such as 
cell cycle, p53 signaling pathway. By further functional analysis 
of each CNV-driven ceRNA sub-network, we identified more 
detailed tumor-related functions, for example, cell cycle G1/S 
phase transition. Our study demonstrated a novel finding that 
the CDKN2B (p15, driven by copy number amplification) could 
regulate TGF-β signaling pathway in LGG. TGFβR1, which 
was a ceRNA pair of CDKN2B, is activated by binding with 
TGF-β (Massague, 1992). Another ceRNA GDNF, a member 
of TGF-β super-family, has been revealed to strongly induce 
glioma cell proliferation and migration (Song and Moon, 2006; 
Ng et al., 2009). These findings could potentially account for the 
mechanism that TGF-β receptors may be mediated by CDKN2B 
to influence the glioma occurrence and development. Meanwhile, 

higher levels of RhoA, another ceRNA member of CDKN2B and 
a downstream factor in TGF-β/MAPK signaling pathway, can 
significantly promote glioma cell proliferation and migration 
(Wan and Too, 2010; Shabtay-Orbach et al., 2015). These results 
suggest that although the regulation of CDKN2B through TGF 
superfamily members is not clear, it is worth to determine in the 
future.

By performing a functional analysis of the largest community 
in CNV-driven ceRNA network, we could identify key biological 
functions relevant to LGG pathogenesis. Epithelial–mesenchymal 
transition (EMT) is known as a facilitator of cellular dissociation 
and migration, which plays a critical role in cancer metastasis 
(Cheng et al., 2012; Iwadate, 2016). Our results elucidated a key 
EMT-related molecule: BMP-7 and discovered a critical ceRNA 
interaction between MTAP and BMP-7. The ceRNA interactions 
explain the role of EMT in malignant glioma, which may provide 
new insight into the mechanism of tumorigenesis. Additionally, 
the loss of CDKN2B could cause the dysregulation of its relevant 
community structures, by affecting the expression of its ceRNA 
partners, including CDK2 and RBL1, and ultimately resulted in 

FIGURE 4 | Community analysis in LGG and GBM. (A) The architecture of the largest community in LGG. (B) Significantly enriched GO terms and KEGG pathways 
of the largest community in LGG. (C) The regulation of ceRNAs involved in cell cycle pathway. (D) The architecture of the largest community in GBM.
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cell-cycle dysregulation. These ceRNAs founded by exploring 
specific community structures could provide new potential 
therapeutic targets for malignant gliomas.

Our study further revealed the putative influence of 
CNV-driven ceRNAs in clinicopathologic characteristics. By 
performing a systematic analysis of the CNV-driven ceRNAs with 

clinical features, we found that the CNVs of some genes (such as 
MTAP/CDKN2A/CDKN2B/KLHL9) had significant impacts on 
histological diagnosis and survival in glioma. Functional analysis 
of CDKN2B through its influenced ceRNA network further 
revealed that the dysregulation of specific ceRNA networks 
driven by CNVs could act as prognostic markers of glioma 

FIGURE 5 | Overall survival among LGG patients (n = 432) stratified by the copy number status of CNV-driven ceRNAs.

TABlE 3 | Univariate and multivariate Cox hazard analyses in LGG.

CNV-driven ceRNA Univariate analysis Multivariate analysis

hR (95% CI for hR) P value hR (95% CI for hR) P value

MTAP 0.34 (0.2334–0.4953) <0.0001 1.0602 (0.4489–2.5036) 0.8939
KLHL9 0.4094 (0.3043–0.5509) <0.0001 0.3836 (0.207–0.7107) 0.0023
ELAVL2 0.6828 (0.5714–0.8159) <0.0001 1.3713 (0.9268–2.0289) 0.1142
ZNF517 0.6397 (0.4225–0.9687) 0.0348 0.0913 (0.0286–0.2915) 0.0001
SCRIB 1.5802 (1.1698–2.1345) 0.0029 7.2575 (2.4772–21.2626) 0.0003
PUF60 0.542 (0.3389–0.8668) 0.0106 0.0707 (0.0132–0.3791) 0.002
TNPO3 1.476 (1.0102–2.1566) 0.0442 0.2493 (0.0815–0.7628) 0.0149
VPS28 0.4436 (0.2507–0.785) 0.0052 0.1131 (0.0195–0.6546) 0.015
RP11-2E11.5 0.4738 (0.3411–0.6582) <0.0001 0.5463 (0.3263–0.9146) 0.0215
GRINA 0.4164 (0.2753–0.6299) <0.0001 0.4701 (0.1931–1.1442) 0.0963
ARHGAP39 1.4211 (1.0099–1.9998) 0.0438 2.0575 (0.8929–4.7411) 0.0903
CEP41 1.5897 (1.1494–2.1987) 0.0051 1.1195 (0.5523–2.2692) 0.7542
CYHR1 1.5474 (1.1329–2.1134) 0.0061 1.5989 (0.6935–3.6862) 0.2708
KLHDC10 1.592 (1.0146–2.4981) 0.0431 0.9731 (0.2574–3.6795) 0.968
LY6K 0.3638 (0.1954–0.6773) 0.0014 0.7473 (0.292–1.9124) 0.5434
PPP1R16A 1.5943 (1.1601–2.191) 0.004 0.6491 (0.2303–1.8295) 0.4136
ZC3HC1 1.6585 (1.0856–2.5338) 0.0193 1.1166 (0.4487–2.779) 0.8126
ZNF707 1.7057 (1.1677–2.4915) 0.0057 1.6517 (0.6609–4.1278) 0.2829
RECQL4 1.6168 (1.2803–2.0417) 0.0001 0.9333 (0.5146–1.6927) 0.8202
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FIGURE 6 | The TGF-beta signaling pathway annotated by ceRNA pairs of CDKN2B (p15). Orange node represents CNV-driven ceRNA. Blue nodes represent the 
ceRNA members of the CNV-driven ceRNA.

TABlE 4 | Fisher exact test of histological subtypes and copy number status of CNV-driven ceRNAs.

ceRNA CNV histological subtypes p-value

Astrocytoma Oligoastrocytoma Oligodendroglioma

MTAP 0 117 101 150 5.61E-05
−2 39 12 13

ELAVL2 0 128 105 155 0.000373
−2 28 8 8

KLHL9 0 125 104 154 0.00018
−2 31 9 9

CDKN2A 0 111 101 148 3.50E-06
−2 45 12 15

CDKN2B 0 110 101 149 8.65E-07
−2 46 12 14

RP11-321L2.2 0 129 105 155 0.000736
−2 27 8 8
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(Figure 6). We proposed that the CNV-driven ceRNAs detected 
to be associated with clinical features may possess clinical 
functions through regulating other genes by ceRNA networks. 
The CNV-driven ceRNA network could be used to presume 
potential prognostic markers of glioma.
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In recent years, machine learning techniques have been widely used in biomedical research 
to predict unseen data based on models trained on experimentally derived data. In the 
current study, we used machine learning algorithms to emulate computationally complex 
predictions in a reverse engineering–like manner and developed ContraDRG, a software 
that can be used to predict partial charges for small molecules based on PRODRG and 
Automated Topology Builder (ATB) predictions. Both tools generate molecular topology 
files, including the partial atomic charge, by using different procedures. We show that 
ContraDRG can accurately predict partial charges in a fraction of the time, because it 
exploits existing complex models with intensive calculations by using machine learning 
techniques and thus can also be applied for screening projects with large amounts of 
molecules. We provide ContraDRG as a web server, which can be used to automatically 
assign partial charges to incoming user-specified molecules by using our machine 
learning models. In this study, we compared ContraDRG with PRODRG and ATB in 
regard of predictivity by statistical methods. ContraDRG allows predicting ATB-derived 
partial charges with an R2 value up to 0.980 and for PRODRG up to 1.00. While ATB 
requires hours or days for the quantum mechanical accurate calculation and refinements, 
ContraDRG does its approximation within seconds.

Keywords: PRODRG, ATB, machine learning, molecular dynamics simulations, partial charge prediction

INTRODUCTION

In the last decades, several studies demonstrated how machine learning algorithms were able to 
create accurate predictions or classifications from experimentally derived data. The applications of 
machine learning algorithms in biomedical research are diverse (Larrañaga et al., 2006) and range 
from single-molecule interaction prediction for drug design (Lavecchia, 2015) or omics pattern 
recognition (Stanke and Morgenstern, 2005), toward the prediction of entire biological systems 
(D’Alche-Buc and Wehenkel, 2008).

However, in the current study, we used machine learning algorithms to emulate computationally 
intensive calculations. Precise determination of topology parameters for small molecules, particularly 
partial charges, is a crucial step for molecular dynamics (MD) simulations and other biochemical 
and biophysical computations. In particular, MD simulations depend heavily on the accurate 
parameterization of the molecules; otherwise, the simulations tend to be unreliable and misleading 
(Lemkul et al., 2010). One main challenge for generating reliable predictions is the ability to create 
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a force field consistent topology for new small molecules since 
the force fields theory is mostly derived from empirical analysis.

For this purpose, there are different force fields available, based 
on diverse parameters and underlying theories, such as GROMOS 
(van Gunsteren et al., 1996; Daura et al., 1998; Scott et al., 1999; 
Schuler et al., 2001; Oostenbrink et al., 2004), OPLS (Jorgensen 
and Tirado-Rives, 1988; Jorgensen et al., 1996), CHARMM 
(Patel and Brooks, 2004; Patel et al., 2004), and AMBER (Cornell 
et al., 1995; Wang et al., 2004). Parameterization for synthetic 
small molecules is supported by the general AMBER force field 
(Wang et al., 2004) and the general CHARMM force field (Patel 
and Brooks, 2004; Patel et al., 2004), in contrast to GROMOS 
and OPLS. While detailed information about the GROMOS96 
parameter sets is not publicly available, OPLS-AA reveals their 
entire parameter sets, which includes geometry optimization 
and quantum chemical calculations (Jorgensen et al., 1996; 
Kaminski et al., 2001). Thus, users of the GROMOS96 force 
field rely on empirical parameters and subsequent validations by 
thermodynamic integration (Oostenbrink et al., 2004).

Over the last years, some freely available tools were developed, 
refined, and established for automated topology generation. 
Two commonly used tools are PRODRG (Van Aalten, 1996; 
Schüttelkopf and Van Aalten, 2004) and the Automated 
Topology Builder (ATB) (Malde et al., 2011; Koziara et al., 2014; 
Stroet et al., 2018). Both are frequently used tools that receive 
user-defined small-molecule files and return parameterized 
GROMOS-compatible topology files including their partial 
atomic charges. While PRODRG partial charge determination 
is based on mapping of building blocks and charge groups onto 
a database, ATB uses quantum chemical calculations involving 
electron densities and geometry optimizations (Chandra 
Singh and Kollman, 1984). However, PRODRG is much faster 
compared to ATB and produces topologies within seconds, while 
ATB requires up to multiple days, but generates more precise, 
more reliable, and more consistent results (Lemkul et al., 2010; 
Malde et al., 2011). Both tools have been already used for protein–
peptide, protein–ligand, protein–lipid, and pharmaceutical drug 
optimizations (Santos et al., 2017). Although both tools provide 
free access for automated file parameterization, only ATB supplies 
a modern application programming interface. Additionally, there 
are several stand-alone tools, such as Open Babel (O’Boyle et al., 
2011) and AutoDock Tools (Morris et al., 2009), which can 
predict partial charges based on different methods like MMFF94 
(Halgren, 1999), based on quantum chemical calculations, or 
QTPIE (Chen and Martı, 2007), which describes the flow in 
molecules based on charge transfer variables.

While PRODRG and ATB are proprietary software, they do 
provide free access for academic purpose. Contrary to that, fully 
proprietary software like VeraChem’s VCharge or Schroedinger’s 
Maestro, which predict, among others, partial charges are 
also available. VCharge uses a method based on QM-derived 
electronegativity equalization (Gilson et al., 2003), and Maestro 
computes the charges according CM1A-BCC (OPLS3e) 
(Marenich et al., 2012; Roos et al., 2019). Additionally, there is 
proprietary software such as Amber that requires external tools for 
partial charges predictions, like the provided and recommended 
free antechamber (Wang et al., 2006). Antechamber applies 

usually the AM1-BCC method (Jakalian et al., 2002) for small 
molecules and can be optimized with provided QM calculations 
by the RESP method (Bayly et al., 1993).

Engler et al. (2019) showed recently in an innovative 
approach how to solve two common problems of partial charge 
determination: (i) the single partial-charge assignment per atom 
and (ii) the total charge determination. By transferring these 
problems into a multiple-choice knapsack problem (Dudziński 
and Walukiewicz, 1987; Kellerer et al., 2004), they were able to 
predict the partial charges automatically. Moreover, a recent 
study showed that machine learning prediction based on 
quantum-chemical calculation can be used to predict partial 
charges (Bleiziffer et al., 2018).

In the current study, we used small-molecule three-
dimensional structures files for prediction of partial charges, 
based on machine-derived data from the web tools PRODRG and 
ATB. To this end, we analyzed and compared a set of different 
machine learning methods and emulated the aforementioned 
tools. Finally, we compared our predictions with the existing 
tools. This study demonstrates the usefulness of machine learning 
models for reverse engineering of costly calculations, which are 
provided in an easy-to-use online tool.

MATeRIALS AND MeThODS

Dataset
This study is based on two different datasets, namely, the 
PRODRG dataset and the ATB dataset. The PRODRG dataset 
is based on randomly selected molecule structures from the 
PubChem database (Kim et al., 2018). These molecules were 
converted into Protein Database Bank format via Open Babel 
(O’Boyle et al., 2011) and subsequently predicted via the 
PRODRG server (v. AA100323.0717). Energy minimization 
was deactivated, and full charge prediction and chirality 
enabled. The ATB dataset was collected from the curated 
molecule and topology files from the ATB (v. 3.0) database 
(Stroet et al., 2018). We mapped the partial charge predictions 
from the topology files with the provided all-atom Protein 
Database Bank files.

We calculated the pairwise Tanimoto similarity coefficient 
via Open Babel (linear seven atoms fragments) for all files to 
ensure that a diverse set of molecules was used (Kim et al., 
2018). The Tanimoto coefficient represents a known indicator 
for molecular structure similarities (Bajusz et al., 2015). 
Therefore, we determined the coefficient by comparing every 
molecule to each other. The resulting coefficients were drawn 
into a violin plot.

Feature encoding
In the current study, we focused only on organic elements, 
namely, carbon, hydrogen, nitrogen, oxygen, phosphorus, 
sulfur, fluorine, bromine, and iodine (C, H, N, O, P, S, F, Cl, Br, 
and I). We used 61 different features for the encoding of the 
molecules, where all atoms are individually analyzed (Figure 1). 
Molecules are internally represented as a cyclic undirected graph, 
where atoms correspond to vertices, and bonds to edges. These 
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encodings include the hybridization state of carbon atoms, sizes 
and amounts of nested circles, distances to adjacent atoms, and 
presence of neighbors through a second-level path tracing. Nested 
circular structures were identified by a depth-first search derived 
from the graph theory.

To encode an entire molecule, a list of the positions of the 
atoms and an adjacency matrix for the bonds are necessary. 
Protein Database Bank files and SMILE (Weininger, 1988) files 
can be encoded in such a way easily. However, in contrast to 
existing approaches, we take explicitly the three-dimensional 
information into account, thus allowing making prediction also 
for theoretical molecules.

Machine Learning
We used the R package caret (v. 6.0-81) (Max and Kuhn, 2008) 
for building the machine learning models. We build models 
for each element independently. The datasets (one dataset for 
each element) were split into train and test data with a ratio of 
1:4. We trained different models including linear regression, 
stochastic gradient boosting (Friedman, 2002), random forests 
(RF) (Breiman, 2001), quantile regression forests (Meinshausen, 
2006), weighted k-nearest neighbors (Altman, 1992), and 
support vector machines (SVMs) (Cortes and Vapnik, 1995) with 
different kernels. RFs were trained with 500 trees and k-nearest 
neighbors were built based on k = 7 and a Minkowski distance 
of 2. All other models were trained with default parameters. All 
models were trained with the partial charge values as labels from 
PRODRG or ATB, respectively. The models are evaluated based 
on root median square error (RMSE):
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A direct comparison between the different software tools, 
respectively, the algorithms, is not possible since the applications 
are using different force fields. However, the aforementioned 
metrics enable a direct comparison of the machine learning 
predictions to the original software.

Molecular Dynamics
We tested the ATB-derived random forest models, with 50 randomly 
chosen molecules from the ATB database with experimental 
hydration free energy (ΔGhyd). Topologies and coordinate files 
were obtained by the ATB database. Parameters for the molecule 
dynamics were taken from the FreeSolv database (Mobley et al., 
2009; Mobley, 2013; Mobley and Guthrie, 2014; Duarte Ramos Matos 
et al., 2017). We used the gromos54a7_atb.ff force field according 
to ATB. Simulations were run under GROMACS (v. 2016.3) with 
NPT conditions at 298 K and 1 atm. The cutoff for the van der 
Waals (rvdw) and electrostatic interactions (rcoulomb) was set to 

FIGURe 1 | Schematic overview of the feature encoding. (A) Each atom will be selected (red dot), and encodings will be generated (B–D). (B) Overall circular 
structures (green line) and nested (colored areas) are detected by a depth-first search. (C) Distance searches with three different radii are applied. (D) Second-level 
neighbors path tracing is implemented (orange arrows, first level; green arrows, second level). Chemical structures were drawn with MolView (https://molview.org).
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1.2 nm. The simulations were performed with 20 λ-steps and 2 fs per 
time step, resulting in 12.5-ns simulations per λ-point. GROMACS 
simulations require removing all nonpolar hydrogens for a united-
atoms model. For ContraDRG, original partial charges from ATB 
were overwritten with ContraDRG predictions. Therefore, we 
summarized all removed charges into the adjacent remaining atom. 
Atom-centered partial charge predictions occasionally generate 
molecules with an excess of net total charges. The excess was 
eliminated by distributing the excess equally through a molecule. A 
comparison of the absolute errors between the experimental ΔGhyd 
free energy and ATB and that between the experimental ΔGhyd free 
energy with ContraDRG were performed by a Welch t test (Welch, 
1947). We omitted MD simulations with PRODRG topologies since 
it has been reported as inaccurate (Lemkul et al., 2010), which could 
be confirmed in our analyses.

Web Application
The web application ContraDRG is based on an Apache web server 
(v. 2.4.29) with PHP (v. 7.2.17) and R (v. 3.4.4) as background 
services. Incoming data will be filtered and converted by Open 
Babel (v. 2.4.1) into temporary internal PDB files. ContraDRG 
reads the PDB structures, performs the feature encoding, and 
applies the trained machine learning models. The final output 
will be generated by the Open Babel and remapped with partial 
charge values predicted by ContraDRG determining partial charge 
values. A two-dimensional graph of the molecule will be displayed 
after the machine learning prediction. Missing three-dimensional 
molecules structures, as provided by SMILES formatted molecules, 
will be computed by Open Babel as well. The partial charge 
prediction will be performed by the random forest models for each 
element, which have been shown to outperform the other models.

ReSULTS

Overall Approach
The current study aimed to build a reliable and fast prediction 
model for partial charges. To this end, we used machine learning 
algorithms to emulate computationally complex predictions in a 
reverse engineering–like manner and developed ContraDRG, a 
software that can be used to predict partial charge assignments 
based on PRODRG and ATB predictions. We collected thousands of 
randomly selected molecules from PubChem and the ATB database. 
Finally, we provide the freely accessible web tool ContraDRG, which 
can be used for partial charge predictions. The resulting predictions 
provide a reliable approximation of the original tools. However, 
predictions are carried out in seconds without any user restrictions.

Datasets
We collected 7,000 molecule structures from PubChem with an 
average size of 19 heavy atoms per molecule (resulting in 132,859 
atoms), which were predicted using PRODRG. Seventy percent 
of the atoms in the PRODRG dataset are carbon, and 13% are 
oxygen atoms. Moreover, we randomly collected 10,000 molecules 
from the ATB database with an average size of 25 heavy atoms per 
molecule. In this ATB dataset, 47% of the atoms are hydrogens, 
while 35% are carbons. Figure 2 represents the distribution of all 
elements in our datasets. Variances in the number of hydrogen 
atoms between both datasets are due to differences in the 
underlying model, namely, united-atoms model for PRODRG 
and all-atoms model for ATB.

To achieve a high variety of different molecules, we analyzed 
the similarities between every molecule structure to each other 
by calculating the Tanimoto coefficient in a pairwise manner. The 

FIGURe 2 | (A) The violin plots show the Tanimoto coefficient for both datasets. The plot width correlates with the relative frequencies of the coefficient. The white dot 
represents the median, while the black box represents the interquartile range, and the black lines, the 95% confidence intervals. One-sample t tests for both sets of 
Tanimoto coefficients show a p < 0.001 for a mean below 0.15. (B) The distribution of atom types for each dataset is represented by relative bar plots.
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Tanimoto coefficients and their distribution for the PRODRG 
and the ATB datasets are shown as violin plots in Figure 2. The 
coefficients of all possible pairs of molecules are relatively low, 
with a median of around 0.11 for the PRODRG and 0.08 for the 
ATB dataset, indicating a high variance between the incorporated 
molecules. We used a one-sample t test on the Tanimoto coefficients 
for testing significance against a mean value of 0.15 (p < 0.001).

Analysis of the charge distribution through all elements shows 
a variance in the charge predictions between the different datasets 
in Figure 3. Since the occurrence of molecular constitutions 
and conformations is limited, the partial charges are not equally 
distributed over the whole range. Moreover, some atoms tend to 
act as an electron-pair donor, such as oxygen. Therefore, most 
oxygen is charged negatively or neutral. Generally, the charge 
predictions differentiate heavily between the PRODRG and ATB 
datasets. PRODRGs predictions are more clustered than ATB. This 
clustering can be observed in the shape of the charge distribution 
curves by the present peaks of the PRODRG dataset in Figure 
3. One explanation for the highly clustered charges of PRODRG 
is the fact that PRODRG maps the molecule to a limited set of 
building blocks and charge groups, while ATB refines partial 
charges after an initial determination according to the Merz–
Singh–Kollman method (Chandra Singh and Kollman, 1984).

Partial Charge Prediction
We employed several machine learning algorithms for every 
element on each dataset. Depending on the number of data 
points, the machine learning algorithm training took several 
hours up to 10 days on a high-performance cluster, especially for 
the SVMs and random forest models. Linear regression models 
turned out to be most inaccurate compared to the random forest 
models, which mostly outperform all other models in both 
datasets. For this reason, the ContraDRG web application uses 
random forest models for the prediction. An exemplary direct 
side-by-side comparison of ATB-derived ContraDRG prediction 
with ATB 3.0 is provided in the Supplementary Material. For a 
set of 50 randomly chosen molecules, ATB required an average 
execution time of 8 h for generating the topology including the 
partial charges, while ContraDRG required only 9.2 seconds on 
average for the partial charge prediction per molecule.

Table 1 represents a shortened overview of the best 
prediction performance. The full-length table is provided in the 
Supplementary Material. The normalized RMSE values allow an 
easy comparison for each element since they are normalized to 
the whole range of present partial charge values. Moreover, the 
predictions for PRODRG-derived data are more accurate than for 
ATB, which can be observed particularly for underrepresented 
elements such as iodine in the ATB dataset. The mean R2 for 
PRODRG predictions is 0.962 (min. 0.791, max. 1.000) for 
random forest and 0.685 (0.010–0.985) for SVMs with linear 
kernel in comparison to the ATB predictions with a mean of R2 
0.908 (0.778–0.982) for random forest and 0.744 (0.520-0.971) for 
linear SVMs. Overall, the predictions based on the random forest 
models are more accurate than those based on the other models.

The MD analyses show that the predictions of ContraDRG’s 
ATB-derived random forest models perform as well as ATB in 

terms of the ΔGhyd free energy calculation. Furthermore, we 
compared the errors between experimental ΔGhyd values and 
those derived from ATB with the errors between the experimental 
data and ATB-derived ContraDRG prediction. No significant 
differences have been observed by using the Welch t test (p = 
0.53) (Max and Kuhn, 2008). Additional information is provided 
as Supplementary Materials.

DISCUSSION

In summary, we were able to produce partial charge predictions 
by our fast and unrestricted approach. Depending on the dataset 
and the frequency of an element in the dataset, reliable predictions 
are possible. The models for underrepresented elements such 
as chlorine, bromine, and iodine performed worse compared to 
those trained on the most abundant elements such as carbon or 
hydrogen. Surprisingly, linear regression performed better for 
iodine in the ATB dataset than the corresponding random forest 
model (see Supplementary Material). A possible explanation for 
that is the fact that iodine atoms are the most underrepresented 
elements in the ATB dataset, and the random forest models tend 
to overfit.

Generally, as Table 1 shows, our predictions for the 
PRODRG dataset are more accurate than for ATB. There are 
several possible reasons for that. First, PRODRG is based on a 
simpler method for assigning partial charges (Altman, 1992). 
Second, we used molecules from the PubChem database for the 
PRODRG dataset. The three-dimensional structures of these 
molecules are all idealized and normalized by PubChem (Bolton 
et al., 2008). Compared to that, we used curated molecules for 
the ATB dataset, which mostly originate from the manually 
curated ChEMBL database (Gaulton et al., 2012; Stroet et al., 
2018). Third, ATB performs geometric optimization and remaps 
the partial charges back to the original structures. Geometry-
optimized charges cannot be learned by our model since we 
do not take geometrical temporary changes into account. 
Additionally, as shown in Figure 3, the partial charges for 
the ATB data have a higher variance, which makes prediction 
generally more difficult.

Although our approach is biased to inherit errors from the 
original tools, the predictions achieve a reliable approximation 
with low RMSE values. Inconsistent partial charges, which can 
appear in PRODRG (Lemkul et al., 2010), are unlikely because 
our models predict the charges along with defined models without 
determinations of building blocks. Error propagation cannot be 
avoided; however, by using larger datasets and extended feature 
sets, the prediction models tend to be more accurate. Our web 
tool is freely accessible at http://contradrg.heiderlab.de.

CONCLUSION

All existing approaches of partial charges predictions for 
molecules aim at reconstructing the exact empirical-validated 
value. Thus, the computations are based on empirical determined 
data (Mortier et al., 1986; Besler et al., 1990) or on quantum 
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FIGURe 3 | Smoothed kernel density estimates represent the distribution of partial charges (units of e) for each molecule in the datasets. Distribution from 
PRODRGs dataset reveals more clustered peaks (green) than from ATB (red).
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mechanical theories (Manz and Sholl, 2010; Manz and Sholl, 
2012; Manz and Limas, 2016). However, our approach tries to 
emulate the algorithm of the predictor without implementing 
any background knowledge about the underlying theories. 
Analysis of the input and output data from the web servers 
with subsequent machine learning approaches are sufficient 
to easily compute reliable approximations. Our web tool can 
be used to assign partial charge predictions automatically 
within seconds. This allows, for example, the correction of 
precalculated topology files. In the future, we intend to improve 
our models by using more training data, in particular for those 
atoms that are underrepresented, and to extend the feature 
set. Additionally, we intend to generate GROMOS-compatible 
topology files without geometrical optimization for molecular 
dynamics simulations.
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TABLe 1 | Performance comparison for partial charge prediction (units of e) by random forest and support vector machines with linear kernel of the PRODRG and 
ATB dataset. 

PRODRG ATB

Random forest SVM linear Random forest SVM linear

RMSe NRMSe R2 RMSe NRMSe R2 RMSe NRMSe R2 RMSe NRMSe R2

C 0.011 1.443 0.989 0.054 7.073 0.738 0.069 2.398 0.961 0.152 5.268 0.810
H 0.005 2.878 0.955 0.026 13.924 0.010 0.018 2.313 0.980 0.046 5.794 0.879
N 0.048 1.986 0.990 0.249 10.374 0.730 0.113 5.391 0.919 0.163 7.772 0.834
O 0.051 3.184 0.971 0.153 9.494 0.739 0.047 4.200 0.887 0.071 6.302 0.746
P 0.002 0.152 1.000 0.073 7.157 0.965 0.075 3.712 0.892 0.097 4.803 0.823
S 0.015 0.678 1.000 0.120 5.454 0.985 0.068 3.095 0.982 0.087 3.962 0.971
F 0.003 2.436 0.993 0.007 5.184 0.968 0.017 4.179 0.897 0.037 9.205 0.520
Cl 0.004 2.724 0.980 0.020 15.293 0.415 0.030 5.490 0.895 0.054 9.796 0.705
Br 0.011 8.625 0.791 0.016 12.222 0.589 0.033 8.796 0.778 0.049 13.033 0.531
I 0.004 2.575 0.955 0.010 6.592 0.706 0.036 12.840 0.888 0.062 22.082 0.624
x̄ ) 0.015 2.668 0.962 0.073 9.277 0.685 0.051 5.241 0.908 0.082 8.802 0.744

The root median square error (RMSE) represents the quality of errors while NRMSE shows a normalized RMSE.
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The High-throughput Chromosome Conformation Capture (Hi-C) technique combines the 
power of the Next Generation Sequencing technologies with chromosome conformation 
capture approach to study the 3D chromatin organization at the genome-wide scale. 
Although such a technique is quite recent, many tools are already available for pre-
processing and analyzing Hi-C data, allowing to identify chromatin loops, topological 
associating domains and A/B compartments. However, only a few of them provide an 
exhaustive analysis pipeline or allow to easily integrate and visualize other omic layers. 
Moreover, most of the available tools are designed for expert users, who have great 
confidence with command-line applications. In this paper, we present HiCeekR (https://
github.com/lucidif/HiCeekR), a novel R Graphical User Interface (GUI) that allows 
researchers to easily perform a complete Hi-C data analysis. With the aid of the Shiny 
libraries, it integrates several R/Bioconductor packages for Hi-C data analysis and 
visualization, guiding the user during the entire process. Here, we describe its architecture 
and functionalities, then illustrate its capabilities using a publicly available dataset.

Keywords: Hi-C, user-friendly interface, long-range interactions, genome organization, topologically associating 
domains

INTRODUCTION
The DNA is organized in a three-dimensional (3D) structure inside the cell nucleus, where 
chromosomes occupy distinct regions called chromosome territories. Within chromosome 
territories, the chromatin forms Topological Associated Domains (TADs) characterized by a high 
frequency of intra-domain loci interactions. Inside the TADs, chromatin loops contain active 
genes and are physically separated from repressed domains. Investigating the 3D organization of 
chromatin is important to better understand the higher-order regulation of gene expression and, 
more in general, the genome functionality.

In the last twenty years, the advent of modern high-throughput technologies has allowed 
investigating chromatin structure and its hierarchical organization from an individual gene location 
to the global genome-wide perspective, using either method based on microscopy, such as fluorescent 
in situ hybridization (Solovei et al., 2002), and/or those based on chromosome conformation capture 
and their evolution. In particular, the original Chromosome Conformation Capture (3C) technique 
(Dekker, 2002), defined as One-By-One approach, enabled to study the 3D chromatin interaction 
between one region of interest and another single locus that is distant in the linear genome. Over 
the years, it was improved to expand the number of genomic regions studied in each experiment. 
Therefore, the Circular Chromosome Conformation Capture (4C) (Zhao et al., 2006) technique 
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was proposed to investigate one locus of interest against all 
others (i.e. One-By-All approach), and later, the Chromosome 
Conformation Capture Carcon Copy (5C) (Dostie et al., 2006) 
allowed studying the interactions between multiple sequences 
(i.e. Many-By-Many approach). More recently, by combining 
proximity-based ligation with massively parallel sequencing, the 
High-throughput Chromosome Conformation Capture (Hi-C) 
(Belton et al., 2012; Dekker et al., 2013) allows to simultaneously 
investigate all genome interactions, therefore providing the All-
By-All approach. Thanks to Hi-C experiments, it is now possible to 
study long-range interactions, i.e. physical interactions between 
chromosomal regions linearly distant that occupy the same spatial 
location in 3D chromatin conformation, identify chromatin 
hierarchical structures, and provide high-resolution 3D images 
of the chromatin architecture and its changes associated to 
diseases or treatments. However, to comprehensively explore the 
chromatin structure and its state, the integration of Hi-C results 
with the global epigenetic landscape is required. Due to the huge 
amount of data produced during Hi-C experiments, complex 
work-flows, and sophisticated computational algorithms are 
necessary to extract information and support the researchers in 
the interpretation of their computational results. Furthermore, 
these workflows need to be adapted, in terms of resolution and 
algorithms, to the specific structures of interest, see Nicoletti 
et al. (2018); Pal et al. (2019) for general views.

The first step of the data analysis consists of the alignment 
of the raw reads on a reference genome. However, due to the 
presence of DNA fragments originated from two distinct 
genomic loci, that are combined during ligation, the two mates 
are usually aligned independently and the mapper often requires 
to incorporate an iterative procedure to better identify the 
ligation junction. Tools such as HiCUP (Wingett et al., 2015) 
or the iterative approach described in Imakaev et al. (2012) can 
be used, instead of classical short-read mappers. The alignment 
step produces Binary Alignment Map (BAM) files containing the 
genomic coordinates of each aligned read on the chosen genome. 
Such files need to be filtered to remove spurious sequences, PCR 
duplicates, digestion or ligation artifacts, low-quality sequences, 
and any other sources of technical noise from the sequences of 
interest.

The analysis is then carried on the retained high-quality 
sequences. The reference genome is divided into small regions 
(called bins), that are used to evaluate a square symmetric matrix 
(known as raw contact matrix) by counting the number of paired-
end reads inside each pair of bins. Such a step is often referred 
to as binning and the contact matrix measures the strength of 
the interaction between two bins (i.e. the rows and the columns 
of the contact matrix). The bin width defines the resolution of 
analysis and, as a consequence, the computational time and the 
resources required to perform the analysis. The choice of the 
resolution depends on the organism under investigation, the 
sequencing depth, the size of the restriction fragment, as well as 
the available computational resources.

Subsequently, the contact matrix has to be normalized to 
mitigate bias effects typically present in this type of analysis. 
Normalization is a crucial step that can have a strong effect on 
the results (Ay and Noble, 2015). Some normalization algorithms 

were proposed in Yaffe and Tanay (2011); Hu et al. (2012); 
Imakaev et al. (2012); Knight and Ruiz (2013). The normalized 
contact matrices are useful for visualization and are used for 
further downstream analysis.

The post-processing or downstream analysis defines a wide 
series of computational procedures aimed at identifying and 
extracting hierarchical chromatin structures of interest. For 
example, it is possible to partition the genome in compartments, 
usually denoted as A and B compartments. Such domains 
are usually located along the same chromosome and display 
strong interactions within the same domain and negligible 
interactions with the other domains. It has been shown that such 
compartments are connected to active and inactive chromatin 
states, respectively, and can be related to regions of (gene-dense) 
euchromatin and regions of (gene-poor) heterochromatin. 
Compartments are usually identified at a resolution of 100 Kbp 
or higher. Moreover, by looking at the block-wise structure of 
the contact matrix, contiguous regions of high self-interactions 
clearly separated from adjacent regions can be identified. 
Such regions are usually referred to as tad and the separation 
boundaries determine their coordinates. tad are usually 
identified with a resolution of 50 Kbp or higher. Several methods 
have been proposed for identifying tad boundaries, see Zufferey 
et al. (2018). With higher-resolution analysis, it is possible to 
identify specific point-to-point interactions usually referred 
to as loops. Such interactions can be either cis-interactions or 
trans-interactions and appear as spike signals in the contact map. 
Loops are usually identified with a resolution of 10 Kbp.

Finally, it is also helpful to integrate hic data with 
other experimental genome-wide datasets [i.e. Chromatin 
Immunoprecipitation Sequencing (ChIP-Seq) or RNA 
sequencing (RNA-Seq)] or with other information from an 
external database to support the researcher in interpreting 
experimental data, provide evidence of specific regulatory 
mechanisms and/or insight for novel research hypotheses.

In the last few years, several computational approaches have 
been proposed to either to perform one or few of the above-
mentioned steps or to combine them in more general pipelines. 
From one hand, the interesting comparative study made in 
Forcato et al. (2017) provided a clear and detailed description of 
the advantages and drawbacks of individual methods/algorithms. 
Indeed, after bench-marking several procedures using different 
quality indexes, Forcato et al. (2017) showed that several methods 
reported good performance on some specific steps, although no 
methods outperformed the others. On the other hand, despite 
the great effort in the development of tools specifically designed 
for the analysis of Hi-C, they rarely include all the required 
functionalities for complete analysis in a single platform. 
Han and Wei (2017) and Calandrelli et al. (2018) provided a 
recent list of existing general-purpose tools. In general, most 
of the available tools are designed for expert users with great 
confidence about command-line applications. As a consequence, 
they are not supporting user-friendly data explorations that 
can lead experimental biologists to easily interpret their results, 
confirm, or make novel scientific hypotheses. These motivations 
led us to the development of HiCeekR, a novel computational 
tool that allows performing most of the above-mentioned steps, 
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through an easy user-friendly graphical interface, combining 
different algorithms for the analysis of Hi-C data. Moreover, 
HiCeekR has been designed for guiding the users during the 
entire analysis process and to provide interactive plots that 
might help researchers with limited experience in command-
line applications, to explore and visualize data and results using a 
simple point-and-click approach.

MATeRIAlS AND MeTHODS
In this section, we first describe HiCeekR workflow, then we 
provide technical details about its implementation and the 
structure of the Graphical User Interface (GUI). Finally, we 
illustrate how HiCeekR stores input/output data and results, and 
describe the internal modular architecture.

HiCeekR Workflow
HiCeekR is a novel Shiny based R package (https://github.com/
lucidif/HiCeekR) for Hi-C data analysis. Thanks to its GUI, 
HiCeekR friendly guides the user during the entire analysis 
process, allowing him/her to perform a complete data analysis 
pipeline and to integrate Hi-C data with other omic datasets. 
Moreover, HiCeekR produces several interactive graphics that 
allow exploring the results by the usage of the mouse pointer.

As shown in Figure 1, HiCeekR analysis starts from 
already aligned sequence files (in BAM format) obtained from 
Hi-C experiments, it proceeds through a series of steps from 

pre-processing and filtering, to the evaluation and normalization 
of the contact matrices. Once the contact matrices are available, 
the user can perform the downstream analysis. In particular, 
HiCeekR allows the identification of genome compartments 
and tad, the integration of Hi-C data with other omic datasets, 
such as ChIP-Seq and/or RNA-Seq, the functional analysis, and 
the visualization of the interaction network. Overall, HiCeekR 
supports the user in elucidating the functional interplay between 
chromatin structure and gene regulation by combining and 
making friendly available a wide bunch of computational and 
statistical methods.

Through HiCeekR, each step/function can be executed 
sequentially in a step-by-step analysis (Figure 1). After each step, 
the user can visualize intermediate results, such as summary 
statistics or graphical representations. However, each step or 
function can be re-executed by modifying the parameter settings, 
obtaining consequently updated results. Intermediate and final 
results (as text files or figures) are stored in pre-organized data 
structures (see Data Format and Data Organization) that can be 
easily retrieved for future investigations through the HiCeekR 
GUI.

Pre-Processing
The pre-processing consists of a series of fundamental 
operations required for the proper execution of HiCeekR. Such 
operations allow HiCeekR to easily access the information in the 
subsequent steps and are aimed to reduce the overall execution 
time. In HiCeekR, the pre-processing is jointly performed 

FIgURe 1 | A schematic representation of HiCeekR pipeline. Starting from aligned data, HiCeekR enables to pre-process and filter them to compute  
(and normalize) the contact matrix. Afterward, it performs several downstream analysis steps in order to detect genome compartments, TADs. Moreover, it also 
allows the integration of additional epigenetic and transcriptional whole genome datasets, as well as other genome-wide tracks. Finally, it presents the results in 
interactive graphical forms.
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with the creation of a new project (see Getting Started for the 
Analysis), when the user selects the experimental Hi-C files 
(in BAM format) to work on and the reference genome (in 
FASTA format). At this stage, it is also required to provide the 
restriction enzyme cutting site and an overhang parameter (in 
base pairs) that are necessary to split the genome in restriction 
fragments. The overhang parameter defines the number of base 
pairs overlapping the restriction enzyme cutting site. Given 
such information, the restriction fragments are indexed. The 
coordinates of each detected restriction enzyme cutting site are 
stored in an index-file (HDF5 file) and associated with one or 
more mapped read allowing to speed up further computations. 

The HDF5 file format (https://www.hdfgroup.org/solutions/
hdf5/) is chosen for speeding-up heterogeneous data storage 
and processing, and it is not usually meant to be inspected by 
a standard user. Note that at this stage, low-quality reads are 
automatically removed.

At the end of the pre-processing, HiCeekR produces a 
summary of the statistics for the indexed reads and two 
diagnostic plots (see Figures 2A, B—before filtering) useful to 
detect artifacts that will be removed during the filtering step. The 
first plot represents a distribution of the insert lengths over the 
entire genome, the second shows the distribution of the inward-
outward insertion lengths (see Filtering for further details).

FIgURe 2 | Diagnostic plots and effect of the filtering on sample GSM1608509 (see A Case Study). Panel (A) shows read length distribution before and after 
filtering. The plot before filtering indicates that long fragments are present, the corresponding plot after filtering shows that fragments larger than 600 bp were 
removed. Panel (B) shows the read-orientation plot before and after filtering. The plot before filtering suggests possible dangling-end events (green line spike) 
located at about 28  =  256 bp, the corresponding plot after filtering shows that such inward-oriented pair of reads were removed.
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Additionally, during the pre-processing, HiCeekR defines 
the resolution of the entire analysis by the selection of the bin 
size (default is 6) base pairs), that is used afterward during the 
binning step.

Filtering
The filtering step is aimed to remove well-recognized artifacts 
that are produced during library preparation, such as PCR-
artifacts, self-circle, and dangling-end fragments (Belton et al., 
2012; Ay and Noble, 2015; Lajoie et al., 2015).

In particular, HiCeekR automatically removes PCR duplicates, 
when previously marked in the BAM files. Marking duplicates 
can be easily carried out using standard tools.

The identification of self-circle and dangling-end fragments 
is obtained from the association between read-pairs and 
restriction fragments that can lead to a two case scenario: the 
read-pair is associated to different restriction fragments or the 
same restriction fragment. The former case constitutes the set 
of valid reads, while the latter occurs when un-ligated dangling-
end or circularized self-circle fragments are present into the 
library preparation. Self-circle (outward strand orientation) 
and dangling-end (inward strand orientation) fragments can be 
discriminated each other by looking at the strand orientation of 
the paired-reads that fall in the same restriction fragment. Since 
such read-pairs are considered uninformative, they are removed 
during the filtering step.

HiCeekR removes self-circle and dangling-end fragments by 
setting a minimum distance for inward pair reads and outward 
pair reads (min-inward and min-outward values). It calculates 
the distance of each associated read from the nearest restriction 
enzyme site and then estimates the length of the sequencing 
fragment. Very long fragments, that could be associated with 
unwanted ligation products, can also be removed by setting a 
suitable threshold through the max-frag-length parameter. By 
inspecting the diagnostic plot in Figures 2B—before filtering), the 
user can select the min-inward and min-outward values to remove 
self-circle and dangling-end products (Lun and Smyth, 2015).

After the filtering process, HiCeekR updates the diagnostic 
plots (Figure 2—after filtering). Results are stored in an HDF5 
format.

Binning
The binning step is aimed to perform all those operations 
required to evaluate the raw contact matrix (Ay and Noble, 
2015). To this purpose, the reference genome is divided into 
nb bins of approximately non-overlapping and fixed-width wb 
(fixed-size bin). Indeed, the exact bin subdivision depends on the 
locations of the restriction enzyme cutting sites, and few bases 
of overlap might be allowed between consecutive bins. We recall 
that the bin size wb determines the resolution of the analysis (also 
the resources and the required running time). It is important 
to select wb to guarantee good statistical power at an affordable 
computational cost. Unfortunately, there are no precise guidelines 
for the selection of wb, since its choice depends on the sequencing 
depth and the type of chromatin structure of interest. For these 
reasons, HiCeekR allows the user to perform the computational 
analysis at different resolutions, suggesting to first use a low 

resolution to obtain a general view of the chromatin organization 
and then repeating and refining the analysis by increasing the 
resolution while focusing on specific genomic locations of 
interest (for example, a specific chromosome, or a specific sub-
region or two sub-regions located on different chromosomes).

After the bins indexing, HiCeekR assigns the previously 
filtered-in reads to the genome bins where they better map. 
Then, it produces the raw contact matrix, a symmetric square 
matrix M Rn nb b∈ × , by counting the number of reads Mi,j 
that fall within the bins i and j, respectively. To facilitate data 
exploration, the indexed bins are automatically converted into 
genomic coordinates. By exploring the raw contact matrix, it is 
common to observe bins with very large/small values that appear 
as “outliers” and might due to noise such as low mappability 
or the presence of many repeated sequences. To reduce this 
problem, it could be useful to remove “outliers” bins by using a 
bin-level filtering strategy, as suggested by Lajoie et al. (2015). 
However, such “outliers” bins can be detected in different ways 
(Lajoie et al., 2015). The current version of HiCeekR does not 
implement any bin-level filtering, although we plan to integrate 
such functionality in future releases.

At the end of binning, HiCeekR stores the bins genomic 
coordinates as a BED file format and the entire count matrix as a 
Tab Separated Valuer (TSV) file.

Normalization
The normalization step is aimed to remove technical bias from 
the raw contact matrix that could lead to false positive/negative 
findings. The output of such step is a normalized contact 
matrix, a symmetric square matrix M̂ Rn nb b∈ ×  of real values, 
that constitutes one of the main results of the computational 
data analysis. The current release of HiCeekR implements 
two different strategies for normalizing the contact matrix: 
the iterative correction and eigenvector decomposition (ICE) 
(Imakaev et al., 2012), and the WavSiS (Shavit and Lio’, 2014).

ICE is a well-known correction method based on the 
assumption that the bias in the interaction between two loci can 
be factorized as the product of the individual biases, affecting 
each of the two interacting loci (Imakaev et al., 2012). By using 
such matrix factorization approach, ICE method applies an 
iterative decomposition algorithm based on the maximum 
likelihood to convert the raw contact matrix into a normalized 
one of relative contact probabilities, guaranteeing equal visibility 
for each region. In particular, the ICE method gives the possibility 
to Winsorize the matrix to mitigate the effect of the impact of 
high-abundance bin pairs by using the Winsor.high parameter, in 
combination with the ignore.low parameter to not ignore the low 
abundance bins.

WavSis removes noise by inspecting the variance distribution 
of the coverage across different physical scales, stabilizing the 
variance, and applying a wavelet denoising strategy. In particular, 
the raw contact matrix M (whose entries Mi,j are assumed to follow 
a Poisson distribution) is regarded as a series of decomposed 
vector coefficients (whose number depends on the number of 
chromosomes), using the Haar-Fisz transform, which helps in 
stabilizing the variance. After that, a Gaussian wavelet shrinkage 
method is used to remove the noise from each set of coefficients 
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and the normalized matrix is reconstructed by inverting the 
transform. This method is performed independently on each 
chromosome (selected through the chromosome of interest select-
box). Additionally, it is possible to remove uncovered regions 
(detected during this normalization phase) with NA values, by 
using the remove uncovered checkbox.

At the end of this process, HiCeekR generates a new tsv file 
with the normalized count matrix.

Post-Processing
HiCeekR post-processing or downstream analysis supports 
the user in extracting chromatin structures from the raw or 
normalized contact matrix and interpreting the results in 
multiple ways: the detection of A/B-compartments and TADs, 
the integration with other omic-layers, and the functional 
interpretation, respectively. These functionalities are available 
to the user through the modules PCA, directionality index, 
TopDomTADs, HiCsegTADs, EpigeneticFeatures, and bed2track 
(in the Post-processing panel), Heatmap, and Network (in the 
Visualization panel).

HiCeekR detects A/B compartments thanks to the PCA 
module that performs the principal component analysis 
(PCA). Large-scale interaction patterns can be identified from 
the normalized contact matrix by computing the preferential 
interacting regions (the so-called, compartment A and 
compartment B). The compartments can be identified by looking 
at the PCA eigenvector with opposite signs (Lieberman-Aiden 
et al., 2009; Lajoie et al., 2015). This step requires to select the 
normalized contact matrix and outputs the PCA eigenvectors 
(stored as PCA eigenvector matrix) that can be used either to 
define compartments and for visualization purposes (Figure 6). 
Usually, the first one or two PCA eigenvectors are sufficient to 
identify the compartments.

Current version of HiCeekR highlights the TADs using three 
approaches: i) directionality index, ii) TopDom, and iii) HiCseg.

The directionality index module computes the directionality 
index di, as introduced by Dixon et al. (2012). di is defined as
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where ai and bi denote the number of mapped reads in the 
upstream and in the downstream of bin wi, respectively, and 
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. The directionality index di generates a segmentation 
of the genome, and the TADs are defined as the regions between 
two sharp changes of directions in such indexes.

The TopDomTADs module implements TopDom algorithm, 
as proposed in Shin et al. (2015). In particular, it defines a 
segmentation of the genome based on a three steps procedure: 
it evaluates the contact frequency signal as the average contact 
frequency of each bin with its upstream or downstream regions, 
then selects potential TADs boundaries as the local minima of 
the contact frequency signal, finally it filters out potential false 
positive by using Wilcox Rank Sum test under the assumption 
that the expected contact frequencies of regions within a TADs 

should be higher than those of a bin in the TADs and a bin outside 
the TADs, and of those bins outside the TADs. The number of 
bins to be included in upstream or downstream regions can be 
controlled by the user with the parameter Window Size, which 
constitute the only tuning parameter of TopDom algorithm.

The HiCsegTADs module implements HiCseg algorithm, as 
proposed in Lévy-Leduc et al. (2014). In particular, it defines 
a partition on the contact matrix (either the raw matrix M or 
the normalized contact matrix M̂ ) with a block structure 
depending on the unknown TADs boundaries. The parameters 
of the distributions are estimated by a maximum likelihood 
approach assuming that the observed contact values, Mi,j or ˆ

,Mi j , 
within the same TADs share the same distribution parameters. 
Maximum likelihood estimates are obtained using a dynamic 
programming algorithm. In this context, Gaussian distributions 
have to use for modeling normalized contact matrix M̂ , whereas 
Poisson or Negative binomial distributions for raw contact matrix 
M. The user can also choose the maximum number of TADs with 
the parameter Kmax and the structure (i.e. block-diagonal or 
extended-black diagonal) of the matrix segmentation.

At the end of the TADs processing, HiCeekR automatically 
generates output files as directionality index track (as a coverage 
file), and the detected TADs boundaries (in standard BED format). 
Note that for all modules, the identification of compartments and 
TADs is performed independently for each chromosome.

As already mentioned, one of the advantages of HiCeekR 
is given by the possibility to integrate and visualize Hi-C 
data together with other omic data. To this purpose, in the 
EpigeneticFeatures module, it is possible to upload one or more 
aligned BAM files from ChIP-Seq experiments. Then, HiCeekR 
computes the normalized coverage at the same bin-width 
resolution chosen for the current Hi-C analysis. Mimicking 
classical ChIP-Seq coverage, the normalized coverage can be 
computed either as the number of reads within the bin per million 
of mapped reads (RPM) or the ratio of the number of reads 
within the bin in the ChIP-Seq sample over those in the input 
DNA sample. Additionally, with the bed2track module, it is also 
possible to process any other genome-wide track in BED format. 
Such track will be converted by HiCeekR in bin coordinates (i.e. 
the bin coordinates will be included in the converted track when 
they intersected the user supplied BED track) to be visualized.

Note that, thanks to the Heatmap module, the user can 
visualize the normalized contact matrix, the PCA loadings, 
and/or the directionality index di, and/or any bed track (such 
as those provided as output by TopDomTADs or HiCsegTADs, 
or converted from user supplied tracks using bed2track), then 
can add one or more ChIP-Seq coverage tracks to have a more 
detailed overview of the chromatin state (Figure 6).

Finally, in the Network analysis, HiCeekR automatically 
retrieves the list of genes located within a specific compartment, 
TADs, or regions of interest. The annotation is obtained 
overlapping the bins coordinates of the region of interest with the 
genomic coordinates of the genes (as provided in an annotation 
file). To this purpose, note that a given bin might be associated 
with several genes (if the bin overlaps the gene body of more 
genes), or a given gene might be associated with multiple bins if 
its gene body is larger than the bin resolution or it overlaps any 
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bin boundary. There are bins not containing genes. The gene-bin 
association map depends on the annotation and the resolution 
of the analysis. HiCeekR provides three interactive tables 
Interaction, Genes, and Enrich. Interaction is a table that contains, 
for each pair of interacting bins, the corresponding genomic 
coordinates, the interaction strength, the names of the genes 
therein contained (if any), and few other information. The gene 
symbols are hyperlinked to GeneCards (https://www.genecards.
org) to facilitate the data interpretation. In the Enrich table, the 
results of the functional analysis on the identified genes carried 
out using gProfiler are shown (Raudvere et al., 2019). Identified 
enriched GO terms, or KEGG and Reactome Pathways are 
reported together with enriched regulatory motifs/transcription 
factors (from TRANSFAC), tissue specificity (from human 
protein Atlas database), Human-specific phenotypes (from 
Human Phenotype Ontology Database), protein complexes 267 
(from CORUM) and results from other interrogated databases. 
Genes is a table that, among several other information, allows 
to visualize the gene expression values of the identified genes 
(only if the user uploaded a gene expression dataset either from 
RNA-Seq or microarray experiments) that can help in better 
discriminating chromatin states.

Visualization
It is well known that the visualization of information in a graphical 
form constitutes one of the most important data exploration 
tools. However, visualizing Hi-C data can be challenging due 
to the high-dimensionality of the files and the dimension of the 
genome. Nowadays, several visualization tools are available, see 
Yardimci and Noble (2017) for a general review. Nevertheless, 
HiCeekR provides functions to visualize the obtained results 
without requiring additional software. Moreover, most of the 
HiCeekR plots are interactive. In particular, the user can select 
two main representations: Heatmap and Network (Figure 3).

Using the Heatmap visualization the user can explore the raw 
and the normalized contact matrix using the classic heatmap 

graphical representation where low and high contact values are 
depicted using different color intensities. He/she can select a 
specific chromosome or a pair of chromosomes or, otherwise, a 
region of interest within each of them. Moreover, it is possible 
to zoom in/out or to move to another region of interest. 
Additionally, in the Heatmap visualization, the user can add 
several other genome-wide tracks that allow to simultaneously 
visualize multiple information, such as the loadings of the PCA, 
the directionality index di, any BED format track (i.e. generated 
by the TADs modules or converted by bed2track module) as well 
as other omic profiles, such as ChIP-Seq profiles, on the same 
genome-wide scale, as shown in Figure 6.

Using the Networks visualization the users can visualize the 
interactions of a set of bins of interest against all other bins in 
network form, where the vertices represent the bins and the edges 
represent the detected interactions. Moreover, the link width is 
proportional to the strength of the interaction. Additionally, by 
using user-defined cut-offs, it is to possible to filter-out negligible 
interactions.

Implementation
HiCeekR is an R-Shiny web GUI which combines several R/
Bioconductor packages widely used for Hi-C data analysis and 
visualization functionalities. In particular, the filtering and the 
binning steps are implemented using diffHic package (Lun and 
Smyth, 2015), one of the most used tools for this type of data. 
Matrix normalization is carried out using ChromeR package 
(Shavit and Lio’, 2014) for the WavSis method and diffHic for the 
ICE algorithm. The downstream analysis is based on HiTC for 
the PCA and for the directionality index modules (Servant et al., 
2012), TopDom for the TopDomTADs module, HiCseg for the 
HiCsegTADs module, gProfileR for functional enrichment, and 
other customized R functions. The graphical output is produced 
using the ggplot2, plotly, heatmaply, networkD3, and corrplot 
packages.

FIgURe 3 | HiCeekR graphical output. (A) Heatmap representation on the contact matrix. (B) Network representation of selected contacts.
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Finally, from the architectural point of view, HiCeekR is 
open-source, easily expandable with additional functionalities 
(thanks to the modular structure) and it also allows to integrate 
third-party functions, as discussed in Shiny, Modules, and Other 
Technical Considerations.

Graphical User Interface
The graphical interface has been designed for guiding the user 
during the entire analysis process. To this purpose, as shown in 
Figure 4, the upper part of the interface displays the navigation 
bar illustrating all the main analysis steps in sequential order 
(i.e. Pre-Processing, Binning, Normalization, Post-Processing, 
Visualization). Each analysis step panel contains one or more 
specific functions. By selecting one of them, HiCeekR renders 
the “Function panel” where input data files, function parameters 
and/or options (default values are suggested whenever possible) 
can be set before executing the function (the left side of the 
interface allows the user to choose all the parameters/options). 
The results are shown in the “Result panel,” that is displayed on 
the right side of the interface, as plots or tables are automatically 
saved in a pre-structured way. The graphical representations are 
interactive and allow exploring the results through point&click 
and dragging&dropping approach.

Getting Started for the Analysis
At the first HiCeekR execution, the user has to create a 
configuration file. A dedicated interface will guide him/her by 
browsing the working folder. This step is mandatory for further 

analyses. Then, each time HiCeekR is executed, the user can either 
create a new data project or continue/update an already existing 
project (by selecting the load option in the Welcome interface). 
When an experimental dataset is analyzed for the first time, 
the user will create a new project. HiCeekR will create the data 
structure, as described in Data Format and Data Organization 
and later results will be stored in a corresponding project name 
folder. After that, the data analysis can be initiated.

Data Format and Data Organization
HiCeekR allows handling both user experimental data and other 
information such as the reference genome and annotations. 
Reference genomes are stored in the Genomes folder (in FASTA 
format), gene annotation in the Annotation folder [in Gene 
Transfer Format (GTF) format]. User experimental data mostly 
consist in Hi-C sequencing data (i.e. aligned BAM files) obtained 
from short-read alignment software. However, during the 
downstream analysis, HiCeekR can use other experimental data 
such as aligned sequences (i.e. BAM files) obtained from a ChIP-
Seq analysis workflow or gene expression values (i.e. TSV file) 
obtained from RNA-Seq analysis pipeline. We stress that for these 
additional data the reference genome used during the alignment 
has to be consistent with the one used for aligning Hi-C data and 
the gene identifiers have to be consistent with those available in 
the annotation file. All user experimental data, that refers to the 
same project, are stored in the Project data folder contained in 
the specific Project folder, which has been created by HiCeekR 
during the pre-processing phase. All user project folders are 

FIgURe 4 | HiCeekR graphical interface. The upper part of the interface is the navigation bar; on the left side the user can select the parameters of the function, on 
the right side results will be displayed in form of tables or plots.
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saved in the HiCeekR_projects main directory. Within each 
Project folder, the results of a specific analysis are organized in 
the Analysis folder, different for each sequence file and resolution 
(i.e. the width wb chosen during the binning phase). During each 
analysis step, HiCeekR stores the results in files in corresponding 
sub-folders for the specific step. Figure 5 shows the input/output 
data organization folder tree.

Shiny, Modules, and Other Technical Considerations
HiCeekR is implemented using R/Shiny library and modular 
structure. R/Shiny package easily allows developing advanced and 
practical interfaces in a web-based approach combined with the 
power of the R statistical instrument. Shiny apps were originally 

designed for small applications consisting of two main entities: 
the Shiny User Interface (SUI) that provides all the aesthetic 
components the user interacts with and the Shiny Server Side 
(SSS) that performs the required computations. Nevertheless, 
nowadays it is possible to implement complex applications by 
combining multiple modules.

A module is conceived as a shiny independent app, with 
its SSS and SUI. Each HiCeekR interface corresponds to a 
different module. Overall, the modular structure implemented 
in HiCeekR allows handling the complexity of the interface and 
better face the maintainability of the software, not only from a 
bug-fixing point of view but also when novel functionalities need 
to be added. Indeed, in this latter case, to add a novel module 

FIgURe 5 | HiCeekR hierarchical data structure. All data are contained in the HiCeekR working directory folder and organized in projects. HiCeekR working 
directory folder is created the first time HiCeekR is executed, using the configuration file (see Getting Started for the Analysis). Genomes and Annotations can 
be shared across different projects and are stored in the Genomes and Annotation folders, respectively. All user projects are saved in the specific Project_folder 
contained in HiCeekR_projects main directory. Within the specific Project_folder it is possible to create sub-folders related to a specific sample, and/or analysis 
resolution. Each sub-folder contains Results and SysOut folders. Folder Results contains a sub-folder for each analysis step where intermediate and final results are 
saved. Folder SysOut contains internal logs file and it is not meant for standard users.
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it will be necessary only incorporate the novel interface, which 
implements the required functionalities. Thanks to this choice, 
HiCeekR results in an easily expansible software.

HiCeekR and Other Available Tools
As mentioned in the Introduction, there are relatively few tools 
that allow performing a comprehensive Hi-C data analysis [see, 
Calandrelli et al. (2018) and Han and Wei (2017)] for a short 
list of the most popular tools). Most of them are implemented 
either in Python, R, Perl, C++, or as a combination of different 
programming languages. Moreover, they often require several 
external dependencies to be installed. Out of them, GITAR 
Calandrelli et al. (2018) and HiCPro Servant et al. (2015) 
were implemented mostly in Python as command-line. They 
constitute two useful pipelines designed for expert users (i.e. 
they allow to perform a specific analysis step or a series of steps). 
However, they do not have a graphical interface supporting non-
expert users. Similarly, HiC-bench Lazaris et al. (2017) provided 
a well-organized R/Python platform (with a large number of 
functionalities including those for parameter exploration), 
but has the same above-mentioned limits for the support of 
non-expert users. By contrast, HiCdat Schmid et al. (2015) 
and HiCexplorer Wolff et al. (2018) equipped their tool with a 
graphical interface. However, the interface of HiCdat is quite 
naive and limited to the pre-processing step (the higher-order 
analysis steps have to be performed as command-line). Vice versa, 
the interface of HiCexplorer is Galaxy based. Hence, it meets the 
needs of non-expert users as HiCeekR. However, HiCexplorer 
lacks interactivity in the graphical visualization. Moreover, its 
local installation is computational demanding. Compared to 
the above-mentioned alternatives, HiCeekR is completely R 
based, easy to install and presents a modular graphical interface 
designed for supporting non-expert users with several functions 
for interactive visualization of the results.

ReSUlTS

A Case Study
We illustrate the capability of HiCeekR in analyzing Hi-C data 
using a dataset from the lymphoblastoid cell line (GM12878) 
produced from the blood of a female donor, freely available 
(in FASTQ format) from Gene Expression Omnibus (GEO) 
(accession number GSE62742). The dataset contains seven 
biological replicates (including GSM160850 replicates used in 
the illustrative Figures 2, 6, and 7), each of them obtained from 
approximately 25 millions of cells prepared with standard Hi-C 
library protocol digested with HindIII. The runs were sequenced 
using Illumina HiSeq 2000 to produce 2 × 75 paired-end 
sequences for each library, see Grubert et al. (2015) for details.

Before starting the analysis with HiCeekR, the sequence files 
were independently aligned to the human reference genome 
using HiCUP and the hicupmapper script.

In particular, low quality reads (i.e. reads with more than one 
mismatch in the first 28 bases or the ones with a summed Phred 
quality score lesser than 70 for all mismatched positions) were 

removed and only uniquely mapped reads were reported in the 
BAM files. Duplicated reads were marked using the Picard tools 
with MarkDuplicates (version 2.18.4). Such BAM files constitute 
the starting point of the HiCeekR analysis.

We also downloaded a series of ChIP-Seq and RNA-Seq 
datasets on the same cell line from the ENCODE portal, to 
illustrate the capability of HiCeekR in integrating other omic 
data. In particular, we selected already aligned BAM files for 
the following histone modifications: H3K9Ac, H3K9me3, 
H4K20me1, H3K27me3, H3K36me3, H3K4me2, H3K4me3, 
H3K79me2 (ENCSR447YYN series from Bradley Bernstein 
laboratory at Broad Institute). For simplicity, using the samtools 
(version 1.9), we merged the three replicates of each modification 
into a single BAM file, that was sorted and indexed. From RNA-
Seq experiment (ENCFF383EXA series from California Institute 
of Technology or GEO accession number GSE33480) we 
downloaded the normalized gene expression values and obtained 
a single two-column tab-delimited file with the gene identifier 
in the first column and fragments per kilobase of transcript per 
Million mapped reads (FPKM) in the second one.

All the analyses were performed using as reference genome 
GRCh37.p13 (https://www.ncbi.nlm.nih.gov/assembly/GCF_0 
00001405.25/) and the gene annotation file obtained from 
GENCODE gencode.v19.annotation (ENCSR884DHJ).

HiCeekrR Computational Analysis
After creating the new project, we independently analyzed the 
seven replicates by selecting the corresponding BAM file from 
the Pre-processing module. For each sample, we selected the 
reference genome, the cutting enzyme in the cut site text-box 
(HindIII site “AAGCTT”), and an overhang parameter of 4 bp. 
Then, we executed the pre-processing and we set 50,000 bp as bin 
resolution for the rest of the analysis. Therefore, for each BAM 
file, HiCeekR created a specific folder inside the project folder 
where the results were saved.

The fragment length and the reads-orientation plots (see 
Figure 2—before filtering) were used to explore the presence 
of artifacts. We noticed that all the seven replicates show a self-
circle spike close to 28  =  256 bp. By using the Filtering module, 
for each BAM file, and setting min.inward parameter equal to 
1,000 bp, we filtered-out the spike because we are not interested 
in reads falling in the same restriction fragment. At the same 
time, since we did not notice dangling-end artifacts, we did not 
set any min.outward threshold to remove it. Figure 2—after 
filtering—illustrates the effect of the applied filtering. Note that, 
within HiCeekR the figure is interactive, a slide bar allows the 
user to choose the cut-off directly on the plot.

Afterward, we executed the Binning module using default 
settings. HiCeekR automatically loaded all required files from the 
sample under analysis and processed for all the chromosomes. At 
the end of this step, the detected interactions are shown in the 
results panel (and saved in the corresponding folder), as bin-to-
bin interaction tables.

For this illustrative example, we decided to investigate only 
chromosomes: 1, 2, 3, 13, 14, 16, since they were previously 
studied in Martin et al. (2015). Therefore, we selected the 
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corresponding target chromosomes inside “chromosome of 
interest” selection box and ticked the selective bin table check-box 
inside the Export panel to continue the analysis.

From the Normalization module, we selected the ICE 
normalization method and set the Window.high parameter equal 
to 0.02 in combination with the ignore.low = 0 parameter to 
ignore the low abundance bins. Moreover, to avoid the NA values 
produced by the DiffHiC implementation, we also selected the 
“Set NA to min” check-box. In such a way HiCeekR sets all 
the NAs to the min of the matrix. Afterward, we exported the 
normalized contact matrix for the chromosomes of our interest. 
Note that these normalized matrices constitute the starting point 
of the post-processing analysis.

For brevity, here we illustrate only two cases of usage for the 
Post-processing: i) We first identified compartments and TADs, 
then we integrated them with ChIP-Seq data, and visualized a 
region of interest (as in Figure 6), ii) We converted the normalized 
contact matrix in a network of interactions for some regions of 
interests (as in Figure 7), then we identified the genes located in 
each interacting bin and performed gene functional analysis. In 
this latter case, we also added the gene expression values from 
RNA-Seq data.

For the first case, we used the PCA module on the normalized 
contact matrix. Afterward, we used the directionality index 
module to determine the directional index di and TopDomTADs 
with Window Size = 20 that provides us a list of TADs boundaries 
in BED format. Then, we used the EpigeneticFeature module to 
process ChIP-Seq dataset and compute the normalized coverage 
at the same genomic resolution of the HiC-Seq analysis (i.e. over 
bins). Using the select bin Table file selector, we chose the BED file 
corresponding to the chosen bin resolution and the chromosome 
of interest (here we chose chromosome 2). Then, in the first sub-
panel, we selected the first BAM file for the ChIP-Seq data, e.g. 
the H3K9Ac BAM file, through the BAM file path selector, and we 
associated “H3K9Ac” as track label. By checking the add checkbox, 
we added a second track without replacing the previous one. We 
repeated this operation for H3K9me3, H4K20me1, H3K27me3, 
H3K36me3, H3K4me2, H3K4me3, H3K79me2. At the end of the 
process for each sample, HiCeekR generated a vector containing 
the raw coverage (number of mapped reads) in the bins. Using 
the second sub-panel, we exported the coverage for all samples 
as a combined table. To do this, we chose the file name through 
the file name text input and the normalization strategy to use (in 
the normalization checkbox). For this case study, we performed 
the RPM normalization and saved the results using the export 
table button.

Using heatmap module (layout), we selected the normalized 
contact matrix by the contact matrix input file widget and we 
focused the attention on the region 51902204–71950291 of 
chromosome 2, as illustrative example. From the same panel, we 
added four additional tracks. In particular, we selected in the first 
slot the PCA file obtained from the pca module. Since this file 
contains multiple columns (corresponding to the eigenvectors 
of the principal components), we selected the eigenvector 
corresponding to the second principal component (PC2). Note, 
PC1 or PC2 are usually used to describe compartments, the 
specific choice depending on the size of the region of interested 

and the resolution of the analysis. In the second slot, we loaded the 
directionality index di file. After that, we added the bed track of 
the TADs boundaries as produced by the TopDomTADs. Then, we 
added the two epigenetic tracks (produced in EpigeneticFeatures 
module) selecting “H3K9Ac” and “H3K27me3” features columns 
as an illustrative example. At the end of these uploads, we are able 
to visualize all the tracks by flagging the active checkbox in each 
slot panel (see Figure 6).

In the second case, we used the network module in the 
Visualization panel and focused the attention on the regions 
investigated in Martin et al. (2015), listed in Table 1. Note that 
since the regions in Table 1 are often larger than the bin size 
chosen for this analysis, each region can correspond to a few bins.

To this purpose, we first selected the normalized contact 
table (using the contact table input file widget), then the gene 
annotation file (using Annotation file input), finally we added the 
RNA-Seq gene expression data, by selecting the specific file in 
the Expression data file input. By pressing the set input button 
HiCeekR loaded the data and moved into the second tab panel 
(show). Inside this tab panel, we selected the chromosomal 
coordinates given in Table 1 (analyzing them individually). 
For all the interested regions, we set the normValue to 0.01 and 
checked the global checkbox (in the left panel). Since the focus of 
the study was to enlighten long-range interactions, we excluded 
from the visualization all those regions with a bin distance lower 
than eight bins, by checking the intra Chr checkbox and setting 
the min bin distance text box to 8. Then, HiCeekR visualized the 
network (see Figure 7) and produced three interactive panel-
tables (i.e. Interactions, Genes, and Functional), as mentioned in 
Pre-Processing. Within panel-tables Interactions, we ranked all 
the interactions by the interaction strength from the strongest 
(higher contact matrix value) to the weakest (lower contact 
matrix value). Therefore, we identified the strongest bin to bin 
interactions together with the genes therein contained. For the 
functional analysis, we selected the hsapiens database in the 
organism select box.

Analysis Results
Results of the first analysis are summarized in Figure 6, where 
the short p-arm of chromosome 2 (chr2:51,000,000–71,000,000) 
is displayed in a multi-layer view. The figure includes the 
normalized contact matrix (on the top) and, in order, the PC2 
eigenvector (as a green track), the di indices (as a red track), the 
TADs boundaries as detected by TopDom (as a purple track), 
and the RPM normalized tracks of the histone marks H3K9Ac, 
H3K27me3 (as brown and pink tracks), which are associated to 
transcribed an repressed chromatin, respectively. We highlighted 
a correlation between the typical rectangular block-shapes in 
the heatmap and the PC2 loadings allowing detecting the A/B 
compartments (territories) and categorizing also the TADs 
thanks to the directionality indexes di. Additionally, the histone 
mark tracks allow us to better characterize the chromatin 
structure within each pattern. A clear correlation between 
distinct A/B compartments and the H3K9Ac and H3K27me3 
enriched regions is shown at the selected chromosomal region 
(Figure 6).
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FIgURe 6 | Continued
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For the second analysis, we report the independent analysis of the 
regions in Table 1. First of all, we noticed that the regions identified 
in Martin et al. (2015) are often among the strongest interactions 
(top positions after ranking by strength) identified in our analysis.

In particular, from the panel-table Interactions, we easily 
identified the following gene-bins interactions, where gene-bins 
means the bins overlapping or containing a given gene. Recall 
that, based on the chosen resolution and the length of the gene 
body, each bin might contain few genes, or a given gene might 
be associated with few bins. We identified that the EOMES-
bins has multiple strong interactions within chromosome 3, 
as previously reported Martin et al. (2015). Out of them, the 
EOMES-bins was found to interact with the AZI2-bins (such 
interaction was confirmed for all replicates with strength 
spanning from 0.020 to 0.025 in the normalized matrices). 
Additionally, we confirmed the interaction between the COG6-
bins and the FOXO1-bins within chromosome 13, although it 
is weak (about 0.01 in the normalized matrices). By contrast, 

FIgURe 6 | Multilayer visualization of the region 51902204–71950291 of chromosome 2 (replicate GSM1608509). From the top, the first track shows the 
normalized contact matrix as a heatmap, where the color intensity is proportional to the strength or the interaction. The green track shows the eigenvector of the 
second principal components (PC2) that define the putative A/B compartments. The red track displays the directional indexes di (that helps in defining TADs). The 
purple track shows the TADs boundaries as detected by TopDomTADs. The two remaining tracks show the RPM normalized coverage for H3K9Ac (in brown) and 
H3K4me2 (in pink) histone marks. The H3K9Ac and H3K4me2 enriched regions exhibit a profile similar to PC2 track, indicating that it overall correlates with the 3D 
organization of the chromosomes in these regions.

FIgURe 7 | Bin to bin interaction network (evaluated with low stringency). The interaction network was built starting from the region in Tab. 1 containing COG6 
gene (bins in orange) and retrieving all interactions within chromosome 13. Additionally, we highlighted the bins containing FOXO1 and NXT1P1, in green and red 
respectively. This analysis has been performed on GSM160850 replicate.

TABle 1 | The list of regions identified in Martin et al. (2015) (as chromosome, 
start, end of the region, and the most relevant genes therein located).

Chr Start end genes

Chr1 197,473,879 197,744,623 DENND1B
Chr3 27,757,440 27,764,206 EOMES
Chr13 40,229,764 40,326,765 COG6
Chr14 69,262,513 69,454,180 ZFP36L1, ACTN1
Chr16 11,022,748 11,036,257 DEXI
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we found that the COG6-bins presents a strong interaction 
with the NXT1P1-bins (chr13:39697243-39750825) (about 
0.017 in the normalized matrices). Such case is illustrated in 
Figure 7, where the COG6-bins are depicted in yellow, and the 
NXT1P1-bins and FOXO1-bins are depicted in red and green, 
respectively. Moreover, the DEXI-bins on chromosome 16 shows 
a strong interaction with the RMI2-bins, as reported in Martin 
et al. (2015). Indeed, this interaction was found with strength 
from 0.0344 to 0.033 in the normalized matrices, being among 
the strongest interactions that this region shows with distant 
regions. This region seems also to interact with the ZC3H7A-
bins, although this interaction is weaker (value close to 0.01) 
than others. On the other hand, when moving to chromosome 1, 
the DENND1B-bins shows a strong interaction with the LHX9-
bins (with normalization matrix values spanning from 0.020 
to 0.030). Finally, on chromosome 14, we partially confirmed 
the interaction between the bins containing the ZFP36L1 
and ACTN1 genes and the ZFYE26-bins. This interaction was 
observed only in a subset of replicates, and, when detected, it 
shows low strength (normalized value of about 0.01).

From the panel-table Genes, we found that, according to 
the RNA-Seq data, all above mentioned interacting genes are 
expressed except LHX9 and show variable expression levels in 
RNA-Seq: ZC3H74 gene has the highest RPKM value (186.55), 
ZFP36L1, ZFYVE26, and AZI2 genes show high expression 
(59.03, 48.67, 37.93 respectively), while DENDD1B, EOMES, 
FOXO1, ACTN, DEXI, and RMI2 genes show a lower level of 
expression (ranging from 4.21 to 6.87).

Finally, the most interesting results of the functional enrichment 
analysis performed on the genes interacting with regions in 
Table 1 are given in Table 2. We can see that DENND1B gene, 
which codifies for a guanine nucleotide exchange factor (GEF) 
acting as a regulator of T-cell receptor (TCR) internalization in 
T-cells interacts with LHX9, ATP6V1G3, C1ORF53 genes. They 
show significant enrichment of binding sites for the transcription 
factor T-bet, that is a master regulator of the T-helper 1 (Th1) cell 
development (Kallies and Good-Jacobson, 2017). The zinc-finger 
ZFP36L1 gene interacts with RAD51B and ACTN1 genes, which 
codify for proteins involved in homologous recombination and 
cell migration, respectively (Lio et al., 2003; Yamaji et al., 2004). 
Remarkably, the AZI2 gene, which interacts with the EOMES 
gene, is an important activator of NF-kB signaling as also 
reported in Martin et al. (2015). It shows binding sites for the 
FOXJ2 transcription factor, which strictly correlated with NF-kB 
signaling (Lin et al., 2004).

Computational Costs
The analysis of this case-study was executed on an Intel i7-7700HQ 
processor, with 32Gb RAM system (64bit architecture) on 
Ubuntu 18.04 LTS, with R version 3.6.1 and Shiny 1.3.2. Other 
relevant packages are listed in the github page.

The most computationally expensive step is the pre-processing 
of Hi-C data which requires approximately 20 to 25 min for 
processing a single BAM file of approximately 150 million of 
reads. For the binning step, performed on large chromosomes 
such as human chromosome 1 or 2, with bin size 50,000 bp, 
the elapsing time is about 3 to 5 min including the output file 
storage. While for the normalization step the required time is 
about 30 s. The identification of TADs requires 2 to 5 min per 
chromosome, depending on the methods and the size of the 
chosen chromosome. Another time demanding step is the import 
of indexed ChIP-Seq BAM files that can even take a couple of 
hours for samples with very high depth such as those obtained 
after merging different replicates. The computational time is 
clearly reduced when working with a specific chromosome or at 
lower bin resolutions or with organisms with smaller genomes.

Software Availability and System 
Requirements
HiCeekR is freely available as source code package on GitHub 
(https://github.com/lucidif/HiCeekR), where future releases will 
be also posted. Moreover, issues and problems can be submitted 
to the HiCeekR developers through the github issues page to 
contribute to the development of future releases. The github page 
also includes a detailed user manual where all HiCeekR modules 
are described and the data used in the current study that can be 
used as training example. The current version of HiCeekR was 
developed and tested on Ubuntu 16/18 and macOS 10.13, using R 
environment version 3.6.1, and the latest releases of R packages is 
reported on the github page as Session Info. System requirements 
strongly depend on the size of the reference genome, sequencing 
depth and, in particular, on the bin resolution. However, minimal 
system requirements are Intel i5 4th generation processor and 
16Gb RAM.

CONClUSIONS
Despite the relevance of Hi-C data and the availability of several 
packages for performing specific steps in their analysis, only a few 

TABle 2 | Results obtained from the functional analysis; the table contains significant terms identified starting from the list of genes contained in the bins strongly 
interacting with the regions examined by network construction.

Region term.id dm term.name intersection p-value

DENND1B TF:M08355 tf Factor: HOXB2:T-bet LHX9, ATP6V1G3, 
C1ORF53

0.0195

EOMES TF:M08290_1 tf Factor: FOXJ2:Elf-1 AZI2, ZCWPW2 0.0053
EOMES TF:M03979_1 tf Factor: ETV1 AZI2, ZCWPW2 0.0306
EOMES TF:M07287_1 tf Factor: FOXO3A AZI2, ZCWPW2 0.0362
ZFP36L1,ACTN1 CORUM:260 cor RAD51B-RAD51C complex RAD51B 0.0497
ZFP36L1,ACTN1 CORUM:4025 cor Affixin-actinin (alpha) complex ACTN1 0.0497
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comprehensive and user-friendly tools have been developed during 
the last years (Schmid et al., 2015; Caudai et al., 2018; Wolff et al., 
2018). Thanks to its GUI, HiCeekR provides an easy-to-use way to 
analyze this data type, specifically designed to guide researchers 
lacking specific training in scientific programming through the 
different computational steps. Moreover, it also provides multiple 
approaches for integrating Hi-C data with other omic datasets and 
a wide series of interactive graphical outputs that can significantly 
support researches in the interpretation of the huge amount of 
data produced during Hi-C experiments. The major capabilities of 
HiCeekR are illustrated by analyzing a publicly available dataset, 
and integrating ChIP-Seq and RNA-Seq dataset.

Moreover, HiCeekR is implemented in a modular structure. 
Therefore, other approaches available in literature could be easily 
encapsulated in further releases. In this regard, an interesting 
extension is the one proposed by Merelli et al. (2015). In this latter 
case, by using NuChart tool they build multiple gene-centric 
graphs starting from Hi-C and transcription data, allowing 
additional statistical investigations, thanks to the graph-based 
approach. Such an approach can complement HiCeekR network 
approach to provide a wider range of methods. It is also clear 
that post-processing analysis constitutes one of the aspects where 
artificial intelligence approaches can still greatly contribute to the 
elucidation of chromatin structure and gene regulation interplay, 
therefore several other algorithms are expected to be available 
soon. Hence, we expect that HiCeekR will growth by expanding 
the number of methods available.

On the other hand, although HiCeekR already implements 
several methods to facilitate Hi-C data analysis, much work 
still needs to be done to speed-up the time-demanding 
computations required for carrying out some specific steps, such 
as the pre-processing and binning. A possible improvement is 
the implementation of a parallel version of the algorithms used 
in HiCeekR or the split-up of the computations on multiple 
cores/CPUs. In this regards, a good example is given by the 
NuChart-II R packages, where particular attention is reserved 
for the implementation of parallel routines for Hi-C data analysis 
(Merelli et al., 2013; Tordini et al., 2017).

Last but not least, HiCeekR can be improved to better 
supporting computational reproducible research. Indeed, thanks 
to its GUI approach, HiCeekR guides the user to perform a 

complete analysis of Hi-C data, automatically storing input/
output data. Despite this is very helpful from the user point of 
view, it does not provide reproducible research functionalities 
yet. As mentioned in (Russo et al., 2016b), it is known that the 
problem of computational reproducibility is very challenging for 
tools based on GUI, since it becomes hard to precisely trace all 
the steps/parameters of the analysis workflow when the user can 
apply a point-and-click approach. However, in the same spirit 
such that (Russo et al., 2016a) was extending RNASeqGUI (Russo 
and Angelini, 2014) in the direction of reproducible research, 
we plan to implement multiple functionalities to automatically 
produce a comprehensive analysis report incorporating all the 
executed code and the results (as tables and figures).
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In the last years, immunotherapies have shown tremendous success as treatments for 
multiple types of cancer. However, there are still many obstacles to overcome in order to 
increase response rates and identify effective therapies for every individual patient. Since 
there are many possibilities to boost a patient’s immune response against a tumor and 
not all can be covered, this review is focused on T cell receptor-mediated therapies. CD8+ 
T cells can detect and destroy malignant cells by binding to peptides presented on cell 
surfaces by MHC (major histocompatibility complex) class I molecules. CD4+ T cells can 
also mediate powerful immune responses but their peptide recognition by MHC class 
II molecules is more complex, which is why the attention has been focused on CD8+ 
T cells. Therapies based on the power of T cells can, on the one hand, enhance T cell 
recognition by introducing TCRs that preferentially direct T cells to tumor sites (so called 
TCR-T therapy) or through vaccination to induce T cells in vivo. On the other hand, T cell 
activity can be improved by immune checkpoint inhibition or other means that help create 
a microenvironment favorable for cytotoxic T cell activity. The manifold ways in which 
the immune system and cancer interact with each other require not only the use of large 
omics datasets from gene, to transcript, to protein, and to peptide but also make the 
application of machine learning methods inevitable. Currently, discovering and selecting 
suitable TCRs is a very costly and work intensive in vitro process. To facilitate this process 
and to additionally allow for highly personalized therapies that can simultaneously target 
multiple patient-specific antigens, especially neoepitopes, breakthrough computational 
methods for predicting antigen presentation and TCR binding are urgently required. 
Particularly, potential cross-reactivity is a major consideration since off-target toxicity can 
pose a major threat to patient safety. The current speed at which not only datasets grow 
and are made available to the public, but also at which new machine learning methods 
evolve, is assuring that computational approaches will be able to help to solve problems 
that immunotherapies are still facing.

Keywords: cancer immunotherapy, T cell receptor, neoepitope, neoantigen, cross-reactivity, MHC binding affinity 
prediction
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INTRODUCTION
Immunotherapies have gained more and more importance over 
the last decades. Checkpoint inhibitors mainly targeting PD1/
PDL1 and CTLA4 and personalized cancer vaccines (Gubin et al., 
2014; Ott et al., 2017; Sahin et al., 2017) have been and still are 
heavily investigated in clinical trials. Both depend on patient 
individual tumor-specific mutations enabling the boost of a 
cancer-specific T cell-mediated immune response (Snyder et al., 
2014; Rizvi et al., 2015; Łuksza et al., 2017). A more direct approach 
utilizes the adoptive transfer of a patient’s autologous T cells, 
either genetically modified with a transgenic chimeric antigen 
receptor (CAR) or T cell receptor (TCR). For CAR-T cell as well 
as TCR-T cell therapy a defined target, the epitope, needs to be 
identified. CARs, carrying the functional antigen-binding domain 
of an antibody, recognize three-dimensional peptide structures 
on the surface of a cell (Sadelain et al., 2013). By contrast, TCRs 
recognize predominantly linear peptides presented by the major 
histocompatibility complex (MHC) called human leucocyte 
antigen (HLA) in humans. For MHC class I presentation and thus 
CD8+ T cell detection, these peptides come from proteins that are 
intracellularly processed by either the constitutive proteasome 
or the IFNγ induced immunoproteasome (Griffin et al., 1998; 
Neefjes et al., 2011). After cleavage, the peptides are transported 
to the endoplasmic reticulum (ER) by the transporter associated 
with antigen processing (TAP) complex, where they are loaded 
onto MHC class I molecules. The peptide-MHCs (pMHCs) 
are shuttled to the cell surface where they can potentially be 
recognized by CD8+ cytotoxic T cells, either naturally carrying 
or engineered to bear a pMHC-specific TCR (see Figure 1). 
However, there are more than 16,000 different alleles for HLA-
A, -B, and -C genes, which bind and present different epitopes 
(Robinson et al., 2015). Besides MHC class I mediated CD8+ 
cytotoxic T cell responses, MHC class II bound peptides can 
induce CD4+ T cell responses that are also reported to play an 
important role in tumor detection and elimination (Nielsen et al., 
2010; Linnemann et al., 2014; Kreiter et al., 2015; Andreatta et al., 
2017; Veatch et al., 2018).

A wide spectrum of bioinformatics tools exists for modeling 
all steps of the MHC class I antigen presentation pathway, 
including proteasomal cleavage, translocation of the peptides 

to the ER by TAP, peptide binding to the MHC molecules, and 
TCR recognition. The overarching goal of these efforts is to 
enhance our understanding of how T cell epitopes are selected 
from a virtually unlimited number of short peptides that can be 
proteolytically generated from the human proteome. The origin 
of these T cell epitopes can be naturally occurring proteins or 
peptides derived from somatic mutations. For personalized cancer 
immunotherapy, these patient- and tumor-specific mutations are 
usually separately assessed for each patient by exome sequencing, 
mutation detection and peptide binding prediction (Robbins 
et al., 2013; Blankenstein et al., 2015; Schumacher and Schreiber, 
2015). Predicting these so called neoepitopes or neoantigens 
is a prevailing challenge for computational methods for 
immunotherapy and essential for a high-throughput approach 
to narrow down mutations to be included in vaccines or to be 
evaluated in vitro for T cell recognition, since only very few 
mutations are truly immunogenic (Yadav et al., 2014; Strønen 
et al., 2016; Bjerregaard et al., 2017a).

It is also of utmost importance to evaluate potential cross-
reactivity of target-candidate epitopes based on various omics 
data such as proteomics and peptidomics (Haase et al., 2015; 
Jaravine et al., 2017a; 2017b). However, all existing approaches 
based on epitope presentation are only a surrogate for T cell 
recognition, for which no universal and computationally viable 
approach exists so far, although the first promising results have 
been published (Jurtz et al., 2018; Ogishi and Yotsuyanagi, 2019). 
By now, datasets have been generated that allow sequence-based 
prediction approaches using deep learning (Shugay et al., 2018; 
Vita et al., 2018).

In this review, we summarize the current state at the 
development of prediction algorithms and methods for all 
steps of antigen presentation, evaluate neoepitope prediction 
approaches, and discuss progress toward sequence-based TCR 
binding prediction.

PREDICTION OF T CELL EPITOPES

Proteasomal Cleavage Prediction
In order to develop an accurate prediction algorithm for 
proteosomal cleavages, a thorough mechanistic understanding of 

FIGURE 1 | Major histocompatibility complex (MHC) class I antigen presentation pathway for peptides recognized by CD8+ cytotoxic T cells.
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the cutting process is required. The PAProC algorithm by Kuttler 
et al. (Kuttler et al., 2000) relies on a biologically motivated model, 
which postulates that proteolytic sites are mostly determined 
by the local sequence context, generally not further away in 
the sequence than six amino acid residues. The two residues 
immediately adjacent to the cut make the greatest contribution 
to the affinity to the active subunits of the proteasome, while 
the influence of the other surrounding residues is lower. The 
recognition model is additive in that the total affinity, which 
ultimately determines the probability of the cut, is considered to 
be the sum of all individual contributions. Bioinformatics analyses 
revealed that the amino acids in the six positions preceding 
the cut and four positions downstream contain sufficient 
information to reproduce a training dataset of experimentally 
determined cleavage motifs of 20S proteasomes by a network-
based technique. Keşmir et al. (Keşmir et al., 2002) demonstrated 
that good results in detecting proteasomal cleavage motifs can 
be achieved by combining experimental data on degradation 
by the constitutive proteasome with the sequences of peptides 
bound by the MHC class I molecules, which may be generated 
either by the constitutive or by the immunoproteasomes. A neural 
network trained on such a composite dataset, called NetChop, 
and an updated version NetChop 3.0 (Nielsen et al., 2005), 
achieved a reasonable accuracy and also yielded useful insights 
into cleavage-promoting and inhibiting residues as well as into 
N-terminal extension of peptides after proteasomal cleavage. 
A recurrent difficulty in predicting proteasomal cleavage is the 
lack of experimentally verified noncleavage sites. However, such 
negative data can be artificially generated by considering internal 
positions of confirmed MHC ligands or randomly generated sites.

TAP Binding Prediction
An early study of Daniel et al. (1998), in which the TAP binding 
affinity for a large number of peptides of length nine was 
measured by a peptide binding assay, revealed that positions one 
to three and nine of the 9-mers make the largest contribution to 
the selectivity of TAP to peptides. An artificial neural network 
trained on these data was able to predict the IC50 values with 
high accuracy. The study also found that HLA class I molecules 
differed significantly with respect to TAP affinities of their 
ligands. The predictive scope was later extended to peptides of 
arbitrary length using a stabilized matrix approach and a scoring 
scheme that only considers the first three N-terminal residues 
and the last C-terminal residue (Peters et al., 2003). Since it has 
been established that the selectivity of peptide transport by TAP 
is entirely determined by the peptide-binding step (Gubler et al., 
1998), affinity predictions can be equated with translocation 
likelihood predictions. A number of further machine learning 
methods for predicting peptide binding to TAP were trained on 
9-mer data, which is the typical length of the peptides that will 
subsequently bind to the MHC complex (Bhasin, 2004; Zhang 
et al., 2006; Diez-Rivero et al., 2010; Lam et al., 2010).

Peptide-MHC Binding Prediction
Sequencing of peptides eluted from MHC class I molecules 
(Falk et al., 1991) as well as mass-spectrometric (MS) (Hunt 

et al., 1992) and crystallographic (Madden, 1995) evidence 
revealed common properties of the epitopes, in particular the 
typical length range of 8–12 residues. Additionally, it showed 
the existence of MHC allele-specific anchor residues, usually in 
positions two and nine of the core nonameric segments, as well 
as auxiliary anchors, where amino acid preferences are less strict 
(Rammensee et al., 1993).

Starting from the early nineties, efforts were made to collect 
available information on MHC class I ligands (Brusic et al., 
1994; Rammensee et al., 1995,Rammensee et al.,1999) and to 
predict them using simple motif- and profile-based techniques 
(Rothbard and Taylor, 1988; Parker et al., 1994; Reche et al., 
2002), based on the notion that peptides highly similar in 
sequence to experimentally characterized ligands will have a 
higher binding potential than more distantly related peptides 
and that individual amino acid side chains make independent 
contributions to the overall binding energy. Machine learning 
techniques, such as neural networks and hidden Markov models 
(Bisset and Fierz, 1993; Mamitsuka, 1998; Nielsen et al., 2003) 
outperform matrix-based methods in predicting peptide binding 
affinity (Peters et al., 2006; Lin et al., 2008). They are able to deal 
with peptides of variable length (Lundegaard et al., 2008) and 
to take into account nonadditive effects, which may arise, e.g., 
when two amino acids compete for the same site in the peptide-
binding groove of the MHC heterodimer. The latest version of 
the widely used NetMHC algorithm 4.0 (Andreatta and Nielsen, 
2016) was trained on many thousands of quantitative affinity 
measurements for peptides of length 8–11 and the total of 118 
MHC class I alleles from human, other primates, and mouse. 
Neural networks trained on all peptides (allmer networks) 
significantly outperformed the networks trained on peptides 
of each individual length separately. The study also suggested 
specific binding modes for 10- and 11-mers, which are predicted 
to bulge out of the MHC grove in contrast to 8- and 9-mers, which 
are strictly linear epitopes. MHCflurry, which relies on affinity 
measurement and peptide elution MS data, also uses neural 
networks trained individually for each HLA allele (O’Donnell 
et al., 2018b). Additionally, it allows users to train networks 
locally on data of their choice. This can be important especially 
for cancer immunotherapy applications, since peptide-binding 
affinity predictions are traditionally focused on viral epitopes.

There is also a growing group of pan-specific methods, 
including PickPocket (Zhang et al., 2009), NetMHCpan 4.0 (Jurtz 
et al., 2017), PSSMHCpan (Liu et al., 2017), and ACME (Hu 
et al., 2019), which take as input both the peptide and the HLA 
sequence and are able to predict the binding of any peptide to any 
allele. Most predictions are focused on MHC class I, but there are 
also methods available for MHC class II, such as NetMHCII 2.3 
and NetMHCIIpan 3.2 (Jensen et al., 2018), ProPred (Singh and 
Raghava, 2001), SMM-align (Nielsen et al., 2007), and NNAlign 
(Nielsen and Andreatta, 2017), of which the latter also allows to 
train and use own models, as Garde et al. did for MHC class II 
prediction using both affinity measurement and MS data (Garde 
et al., 2019). Many of the aforementioned prediction methods 
for both MHC class I and II and consensus methods, such as 
NetMHCcons (Karosiene et al., 2012) and the consensus method 
by Moutaftsi et al. (Moutaftsi et al., 2006), are integrated into 
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the IEDB epitope analysis resource and can be accessed online 
(Wang et al., 2010; Fleri et al., 2017; Vita et al., 2018; Dhanda 
et al., 2019). In addition, combinatory pipelines and frameworks 
have been published, namely, EpiJen (Doytchinova et al., 2006), 
NetCTL (Larsen et al., 2007), NetCTLpan (Stranzl et al., 2010), 
and FRED2 (Schubert et al., 2016), modeling the complete 
antigen presentation pathway by including proteasomal cleavage 
and TAP transport predictions.

Epitope presentation, however, is only one step toward T 
cell recognition. NetMHCstab (Jørgensen et al., 2014) and 
NetMHCstabpan (Rasmussen et al., 2016) are methods to 
predict the stability of pMHC complexes, presuming that epitope 
presentation lasting longer increases the likelihood of T cell 
recognition and thus immunogenicity. Calis et al. proposed 
a scoring model to predict true immunogenicity of T cell 
epitopes (Calis et al., 2013). Despite these efforts, however, true 
immunogenicity remains far more difficult to predict than mere 
MHC-binding affinity.

Beyond sequence-based approaches, significant methodological 
progress has been made in modeling peptide binding to MHC 
class I molecules on structure level. The diversity of the cognate 
peptide repertoire and the experimental binding profiles for a 
particular MHC protein can be accurately captured using both 
general purpose modeling packages, such as Rosetta (Yanover and 
Bradley, 2011), and faster specialized methods, such as GradDock 
(Kyeong et al., 2018), DockTope (Menegatti Rigo et al., 2015), 
and LYRA (Klausen et al., 2015), of which the latter two are also 
integrated in the IEDB. Docking experiments are becoming 
increasingly successful in reproducing crystallographically known 
peptide-MHC binding geometry (Bordner and Abagyan, 2006; 
Antunes et al., 2018).

Immunopeptidomics Data
The recent availability of large-scale immunopeptidomics data 
allowed to explicitly model peptide length distributions and the 
interdependence between individual sequence positions, leading 
to more accurate predictions of naturally presented MHC class I 
ligands (Gfeller et al., 2018). MS profiling provides novel insights 
into the antigen processing rules, including the discovery of 
binding motifs, improved description of proteasomal cleavage 
signatures, cellular localization and sequence features of peptide 
source proteins, and better understanding of the role of gene 

expression, protein abundance and degradation (Bassani-
Sternberg et al., 2015; Bassani-Sternberg et al., 2017; Abelin et 
al., 2017). In particular, Abelin et al. (2017) reported that neural 
networks trained on MS-derived peptides bound to 16 different 
HLA alleles outperformed affinity-trained predictors.

For immunogenicity, T cell epitope verification by TCRs or 
TCR-like antibodies would constitute an ideal dataset to train 
prediction algorithms (Dolan, 2019), but both approaches 
are highly dependent on specificity and affinity of TCRs and 
antibodies used and do not reach the high-throughput efficiency 
of immunopeptidomics. HLA-peptidomics, which is the MS 
analysis of MHC-eluted peptides, is the most sophisticated 
method for high-throughput qualitative and quantitative 
detection of MHC ligands and thereby of potential T cell epitopes 
(Hunt et al., 1992; Caron et al., 2011; ; Hassan et al., 2014; Álvaro-
Benito et al.,2018; Freudenmann et al., 2018).

The isolation of pMHC complexes from cell surfaces (Sugawara 
et al., 1987;Storkus et al., 1993; Bassani-Sternberg et al., 2015; 
Marino et al., 2019) or out of serum (Ritz et al., 2016, 2017) is the 
first critical step for a high-quality MS HLA-peptidome analysis. 
After elution from pMHC complexes, peptides are purified, 
separated by high pressure liquid chromatography (HPLC), and 
directly injected and analyzed in a mass spectrometer followed 
by computational processing of MS spectra data (see Figure 2). 
Successful peptide detection is determined by various factors, 
such as HLA enrichment, which is dependent on HLA-antibody 
quality, efficient elution, and physicochemical characteristics of a 
peptide defined by its amino acid composition. Relevant peptide 
properties can be mass, hydrophilicity, and hydrophobicity, its 
ability to be ionized, as well as cysteine content (Gfeller and 
Bassani-Sternberg, 2018). Therefore, not all peptides are equally 
likely to be detected by MS but it is difficult to assess how many 
peptides are missed. Peptide sequences are often determined by 
tandem MS: a precursor mass spectrum called MS1 spectrum 
of the eluted peptides is generated and only peptides with high 
intensities are isolated for fragmentation and analyzed, resulting 
in a MS2 or MS/MS spectrum. Observed mass spectra are then 
compared with theoretical mass spectra in general reference 
databases. Proteogenomic computational pipelines using 
customized reference datasets also allow the identification of 
peptides originating from noncanonical and allegedly noncoding 
reading frames (Laumont and Perreault, 2017; Laumont et al., 
2018), unconventional, genomic coding-sequences (Erhard et al., 

FIGURE 2 | Workflow to analyze of major histocompatibility complex (MHC)-eluted peptides by mass-spectrometric (MS). A sample is lysed, pMHC complexes are 
captured and peptides are purified by immunoaffinity purification using MHC-specific immobilized antibodies. Eluted peptides are separated by high pressure liquid 
chromatography (HPLC), analyzed by MS, and the resulting data are computationally processed.
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2018) as well as neoepitopes from somatic alterations (Yadav 
et  al., 2014; Carreno et al., 2015) or intron retentions (Smart 
et al., 2018). In addition, the generation of customized spectral 
library databases of high confidence peptides can be used for 
data-independent acquisition approaches (Ritz et al., 2017), 
resulting in increased reproducibility and sensitivity.

Peptides are often assigned to the HLA molecule from which 
they were originally eluted by predicting the binding affinity 
(Freudenmann et al., 2018; Bilich et al., 2019). For common HLA 
alleles, usually a sufficient number of peptides are identified as 
binders, resulting in datasets large enough to train prediction 
algorithms. However, for less frequent HLA alleles, the pool of 
identified and correctly assigned peptides is more limited, which 
leads to variability in performance of prediction techniques 
depending on the rarity of each HLA allele (O’Donnell et al., 
2018b). If MS datasets annotated by binding affinity predictions 
are used to train machine learning algorithms, a self-amplifying 
bias is introduced. MS profiling of mono-allelic cells (Giam et al., 
2015; Abelin et al., 2017) as well as deconvolution approaches 
(Bassani-Sternberg and Gfeller, 2016) can circumvent this 
problem and improve the quality of available training data and 
prediction performance.

IMMUNOTHERAPY-SPECIFIC 
APPLICATIONS OF EPITOPE PREDICTION

Neoepitope Identification
Cancer-specific mutations have been demonstrated to be viable 
targets for tumor-infiltrating lymphocytes (TILs) enabled by 
checkpoint inhibitors that block CTLA4 or PD1/PDL1 or by 
vaccine-induced immune responses (van Rooij et  al., 2013; 
Carreno et al., 2015; Cohen et al., 2015; Gros et  al., 2016; 
McGranahan et al., 2016; Ott et al., 2017; Zacharakis et al., 2018; 
Hilf et al., 2019). These mutations alter amino acid sequences 
of proteins and are recognized as so called neoepitopes or 
neoantigens, with both terms used ambiguously and oftentimes 
synonymously in the literature. Here, we use the term neoepitopes 
for epitopes predicted to be presented by a certain MHC and the 
term neoantigens for confirmed immunogenic mutations. By 
definition, neoantigens are tumor-specific, which makes them 
ideal immunotherapy targets, but they are also to a large degree 
patient-specific. Despite many efforts, only very few shared 
neoantigens such as KRASG12D/V or BRAFV600E, could be identified, 
making an off-the-shelf therapy approach hardly feasible (Warren 
and Holt, 2010; Angelova et al., 2015; Tran et al., 2015; Thorsson 
et al., 2018). Furthermore, a high individual tumor mutation 
burden and the ambition to provide personalized medicine 
for more patients do not allow for testing the immunogenicity 
of every mutation in vitro. Therefore, the current standard 
procedure for individual patients relies on exome sequencing 
followed by mutation calling and machine learning-based 
neoepitope prediction, which represents the main application 
of pMHC-binding prediction algorithms in the field of cancer 
immunotherapy. Here, we reviewed more than 70 publications 
using binding prediction algorithms to identify neoepitopes of 
which 49, that provided quantifiable data, are shown in Table 1. 

Not all studies stated all steps of their neoepitope selection process, 
including which algorithm parameters were used, how many 
neoepitopes were found when applying a threshold or how many 
and what types of mutation were used for predicting neoepitopes, 
which makes quantitative evaluation and reproducibility difficult. 
This is aggravated by the large variance in ratio of predicted 
neoepitopes per mutation, which is caused by thresholds of 
varying strictness, the number of features used for filtering, 
and the approach to counting neoepitopes or neoantigens, i.e., 
if a mutation was counted only once even if presented by more 
than one HLA allele or contained in multiple epitopes predicted 
to be immunogenic. Furthermore, some studies could only 
experimentally validate a subset of predicted neoepitopes and 
experimental validation was determined by biological assays of 
varying sensitivity from MHC-ligand confirmation to ELISPOT 
assays using patient-specific TILs.

Not surprisingly, most publications investigated cancer 
types known for high mutation loads, such as non-small cell 
lung carcinoma and melanoma, but glioblastoma and chronic 
lymphocytic leukemia were also shown to harbor neoantigens 
identified by neoepitope prediction (Rajasagi et al., 2014; Hilf 
et  al., 2019; Keskin et al., 2019). Regarding mutation types, 
the focus clearly lies on single nucleotide variants (SNVs) 
considering their abundance in tumors above all other types of 
mutation, their comparatively easy detection by mutation calling 
software and easier computational generation of mutated and 
wild-type peptide sequences (Bailey et al., 2018; Ellrott et  al., 
2018). However, larger indels, frameshifts, and other more 
complex mutation types can be the source of more neoepitopes 
that are also less similar to self and thus highly interesting 
immunotherapeutic targets. More recent studies from Kahles 
et al., Koster et al., and Schischlik et al. investigated these types 
of mutation, benefitting from improvements on sequencing 
and mutation calling techniques (Kahles et al., 2018; Koster 
and Plasterk, 2019; Schischlik et al., 2019). Nevertheless, 
identification of cancer-specific mutation remains a critical step 
in every neoepitope identification pipeline and the number of 
mutations obtained varies greatly dependent on the software and 
thresholds employed (Tran et al., 2015; Karasaki et al., 2017).

The focus of most publications lies on MHC class I presented 
neoepitopes that can be detected by CD8+ T cells. MHC class I 
prediction algorithms are more commonly used but there is clear 
evidence that MHC class II mediated CD4+ T cell responses play 
a major role in neoantigen immune responses and thus should 
also be considered for neoepitope detection. (Linnemann et al., 
2014; Kreiter et al., 2015; Tran et al., 2015; Hugo et al., 2016; Ott 
et al., 2017; Reuben et al., 2017; Sahin et al., 2017; Sonntag et al., 
2018; Vrecko et al., 2018).

All studies, except Koster et al., who investigated 10-mers only, 
looked at peptides with a length of 8–10 or 8–11 amino acids or 
just at 9-mers alone, which are the majority of peptides presented 
by MHC class I (Trolle et al., 2016). Most studies also relied on 
matching HLA types for the samples used, often determined 
by one of the following HLA typing algorithms: ATHLATES, 
HLAminer, OptiType, PHLAT, POLYSOLVER, and seq2HLA 
(Boegel et al., 2012; Warren et al., 2012; Liu et al., 2013; Szolek 
et  al., 2014; Shukla et al., 2015; Bai et al., 2018). In contrast, 
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TABLE 1 | Publications describing the application of machine learning approaches to neoepitope prediction.

Publication Indication Sample type 
and number

number of 
HLAs used

Estimated 
ratio of 

predicted 
neoepitopes 

from 
mutations

Estimated 
ratio of 

experimentally 
confirmed 

neoantigens

Number 
of 

features

Algorithms

(Segal et al., 2008) BRCA/CRC 11 patients 1 0.17 N/A 1 NetMHC, SYFPEITHI, BIMAS, 
RANKPEP

(Castle et al., 2012) MEL 1 murine cell line N/S 0.05 0.32T 2 NetMHC
(Khalili et al., 2012) various 312 genes 

(COSMIC)
57 1.40 N/A 2 NetMHC 3.2

(Robbins et al., 2013) MEL 3 patients 2 0.18 0.03 T 3 NetMHCpan 2.4
(van Rooij et al., 2013) MEL 1 patient 4 0.42 <0.01 T 3 NetChop, NetMHC 3.2
(Boegel et al., 2014) various 167 cancer cell 

lines
6 0.44 N/A 1 IEDB 2.9

(Duan et al., 2014) SARC 2 murine tumors 3 0.75 0.56 T 2 NetMHC 3.0
(Snyder et al., 2014) MEL 64 patients 6 0.42 <0.01 T 3 NetMHC 3.4, RANKPEP, IEDB 

immunogenicity, CTLPred
(Yadav et al., 2014) CRC/PRAD 2 murine cell 

lines
2 0.03 0.02 T 3 NetMHC 3.4

(Angelova et al., 2015) CRC 552 TCGA 
patients

6 0.41 N/A 2 NetMHCpan

(Carreno et al., 2015) MEL 7 samples/3 
patients

1 0.04 0.43 B 3 NetMHC 3.4

(Cohen et al., 2015) MEL 8 patients 2 0.02 0.02 T 2 IEDB
(Rizvi et al., 2015) NSCLC 34 patients 6 0.62 <0.01 T 2 NetMHC 3.4
(Rooney et al., 2015) various 4250 TCGA 

patients
6 0.14 N/A 2 NetMHCpan 2.4

(Tran et al., 2015) GIC 10 patients 12 0.03 0.21 T 2 NetMHCpan 2.8, NetMHCIIpan 
3.0

(Van Allen et al., 2015) MEL 110 patients 6 1.56 N/A 2 NetMHCpan 2.4
(van Gool et al., 2015) UCEC 245 TCGA 

patients
1 0.06 N/A 3 NetMHCpan 2.8

(Bassani-Sternberg 
and Gfeller, 2016)

MEL 1 patient 6 1.43 <0.01 B 1 NetMHCpan 2.8

(Goh et al., 2016) MCC 49 patients 4 0.09 N/A 1 NetMHC 3.4
(Gros et al., 2016) MEL 3 patients 6 0.03 0.55 T 2 IEDB
(Hugo et al., 2016) MEL 38 patients 12 0.06 N/A 3 NetMHCpan 2.8, NetMHCIIpan 

3.0
(Kalaora et al., 2016) MEL 1 patient 6 5.30 <0.01 B 1 NetMHCpan 2.8
(Karasaki et al., 2016) NSCLC 15 patients 6 0.62 N/A 1 NetMHCpan 2.8
(Löffler et al., 2016) CHOL 1 patient 6 3.68 0 B 2 NetMHC 3.4, NetMHCpan 2.8, 

SYFPEITHI
(Strønen et al., 2016) MEL 3 patients 1 0.05 0.19 T 4 NetChop, NetMHC 3.2, 

NetMHCpan 2.0
(Anagnostou et al., 
2017)

NSCLC 10 patients 6 0.76 <0.01 T 4 SYFPEITHI, NetMHCpan, 
NetCTLpan

(Chang et al., 2017) PED 540 patients 6 0.42 N/A 2 NetMHCcons 1.1
(Karasaki et al., 2017) NSCLC 4 patients 6 0.20 N/A 2 NetMHCpan 2.8
(Kato et al., 2017) BRCA 5 patients 6 0.47 N/A 2 NetMHC 3.4, NetMHCpan 2.8
(Miller et al., 2017) MM 664 patients 6 0.16 N/A 3 NetMHC 4.0
(Ott et al., 2017) MEL 6 patients 6 0.01 0.60 T 3 NetMHCpan 2.4
(Sahin et al., 2017) MEL 13 patients 10 0.02 0.60 T 2 IEDB 2.5 (MHC class I & II)
(Zhang et al., 2017) BRCA 3 patients 6 0.01 0.16 T 3 NetMHC 3.2
(Kalaora et al., 2018) MEL 15 patients/cell 

lines
6 9.57 0.15 T 2 NetMHCpan 3.0

(Kinkead et al., 2018) PAAD 1 murine cell line 2 0.27 0.16 T 2 NetMHC 3.2/3.4, NetMHCpan 
2.8

(Martin et al., 2018) OV 1 patient 6 1.57 0,09 T 2 NetMHCpan 2.4
(O’Donnell et al., 
2018a)

OV 92 patients 6 0.02 N/A 2 NetMHCpan 2.8

(Sonntag et al., 2018) PDAC 1 patient 10 2.00 0.75 T 3 NetMHC, NetMHCIIpan 3.1, 
SYFPEITHI

(Continued)
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Wu et al. made predictions based on the 100 most frequent HLA 
alleles in their dataset and Wood et al. based on the general 
145 most frequent alleles (Wood et al., 2018; Wu et al., 2018). 
Whether or not such approaches yield substantial information 
gain is a debatable issue since most immunogenic mutations are 
highly individual and restricted by a patient’s individual HLA 
type (Marty et al., 2017; McGranahan et al., 2017; Rosenthal et al., 
2019). HLA-A*02:01 has been extensively studied since it is the 
most common allele in Caucasian populations and therefore was 
exclusively used by Segal et al. for their analysis (Segal et al., 2008). 
Since predictions for A*02:01 still belong to the best performing 
group and can be more easily validated compared to other alleles 
due to established in vitro protocols and reagents, Carreno et al., 
Spranger et al., Strønen et al., van Gool et al., and Hilf et al. also 
only used A*02:01 for their predictions and the studies that carried 
out experimental validation accomplished high confirmation 
of predicted neoepitopes (Carreno et al., 2015; van Gool et al., 
2015; Spranger et al., 2016; Strønen et al., 2016; Hilf et al., 2019). 
Similarly, Koster et al. only used A*02:01 for an unfiltered TCGA 
dataset although they did not perform experimental validation. 
Similar to Wood et al., they did not use HLA typing information 
for TCGA samples, which has been generated but can only be 
obtained by applying for access to restricted data (Shukla et al., 
2015; Charoentong et al., 2017; Marty et al., 2017).

For most studies, algorithms from the NetMHC family 
were chosen as they are widely known and represent the 

state-of-the-art prediction methods for binding of a peptide 
to a given MHC molecule. Van Allen et al. showed that out 
of 17 validated neoantigens, 14 passed the 500 nM standard 
threshold, indicating high sensitivity (van Buuren et al., 2014). 
However, only a handful of the predicted binders will also be 
recognized by T cells, which requires additional filtering or 
prediction improvement (Anonymous, 2017). Indeed, using 
more filtering criteria leads to fewer predicted neoepitopes per 
mutation, as seen in Figure 3A, although the false negative rate 
remains unknown. Only a few publications rely on predicting 
the binding affinity of mutated peptides alone and most use at 
least one additional threshold criterion, of which gene expression 
as a premise for antigen recognition is the most common. As 
RNA-Seq data was not available for Anagnostou et al., Le et al. 
and Reuben et al., they used TCGA expression data as a proxy 
to further filter the mutations to test for immunogenicity. 
Binding of the wild-type peptide was also considered by some 
studies, but not always used for filtering. Duan et al. proposed 
a “differential agretopicity index” (DAI), which is the difference 
between the predicted mutated and wild-type binding affinity, to 
use as a filtering criterion for neoepitope prediction. Although 
it yielded promising results based on their mouse data, it 
seemed less reliable in further investigations by Bjerregaard et 
al. and Koşaloğlu-Yalçın et al. using human data (Duan et al., 
2014; Bjerregaard et al., 2017b; Koşaloğlu-Yalçın et al., 2018). 
In another study by Ghorani et al., DAI was more predictive for 

TABLE 1 | Continued

Publication Indication Sample type 
and number

number of 
HLAs used

Estimated 
ratio of 

predicted 
neoepitopes 

from 
mutations

Estimated 
ratio of 

experimentally 
confirmed 

neoantigens

Number 
of 

features

Algorithms

(Thorsson et al., 2018) various 8546 TCGA 
patients

6 0.74 N/A 2 NetMHCpan 3.0, pVAC-Seq 
4.0.8

(Vrecko et al., 2018) HCC 1 patient 3 0.05 0.15 T 2 SYFPEITHI, IEDB (MHC class II)
(Wu et al., 2018) various 7748 TCGA 

samples
100 1.18 N/A 1 NetMHCpan 4.0

(Bulik-Sullivan et al., 
2019)

NSCLC 7 patients 6 0.10 0.08 T >4 EDGE

(Hilf et al., 2019) GBM 10 patients 1 0.03 0.85 T 3 IEDB 2.5
(Keskin et al., 2019) GBM 8 patients 6 0.20 0.07 T 3 NetMHCpan 2.4
(Koster and Plasterk, 
2019)

various 10186 TCGA 
patients

1 0.02 N/A 2 NetMHC 4.0

(Liu et al., 2019) OV 20 patients 12 0.15 0.24 T 3 NetMHCpan 3.0, NetMHCIIpan 
3.1

(Löffler et al., 2019) HCC 16 patients 6 1.79 0 B 2 NetMHC 4.0, NetMHCpan 3.0, 
SYFPEITHI

(Rosenthal et al., 
2019)

NSCLC 164 samples/64 
patients

6 0.86 N/A 2 NetMHC 4.0, NetMHCpan 2.8

(Schischlik et al., 
2019)

PNMN 113 patients 6 2.53 0.66 B 2 NetMHCpan

N/S means not specified. Cancer type abbreviations: adenocarcinoma (AC), breast cancer (BRCA), cholangiocarcinoma (CHOL), colorectal cancer (CRC), glioblastoma (GBM), 
gastrointestinal cancer (GIC), hepatocellular carcinoma (HCC), merkel cell carcinoma (MCC), melanoma (MEL), multiple myeloma (MM), non-small cell lung cancer (NSCLC), ovarian 
cancer (OV), pancreatic ductal adenocarcinoma (PDAC), pediatric cancers (PED), Ph-negative myeloproliferative neoplasms (PNMN), prostate adenocarcinoma (PRAD), sarcoma 
(SARC) and uterine corpus endometrial cancer (UCEC). T indicates experimentally confirmed T cell responses (e.g., IFNγ ELISPOT), B indicates experimentally confirmed major 
histocompatibility complex (MHC) binding (e.g., mass spectrometric [MS] of eluted peptides), and N/A indicates that no experimental validation was done. Features are mutated 
peptide binding prediction, wild-type peptide binding prediction, gene expression, sequence-based features like sequence similarity scores, and immunogenicity predictions. If 
available, version information of algorithms is included.
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immune infiltration in melanoma and lung cancer compared 
to neoantigen or mutation load, suggesting that while some 
neoepitope responses might be enhanced by a reduced cross-
reactivity potential, there are also many validated neoantigens 
whose wild-type counterparts are predicted to bind comparably 
strong (Ghorani et al., 2018; Koşaloğlu-Yalçın et al., 2018).

There is evidence that taking more than one feature into 
account promises greater success for experimentally validating 
predicted neoepitopes (see Figure 3B). However, the results of 
experimental validation are dependent on the sensitivity of the 
technique used and the reactivity of neoantigen-specific TILs 
can additionally be hampered by other factors, such as tumor 
immune suppression or T cell exhaustion (Anonymous, 2017; 
Bulik-Sullivan et al., 2019).

Some studies chose a quantitative approach, mostly linking 
neoepitope load and survival (Brown et al., 2014; Rizvi et al., 2015; 
Miller et al., 2017; Ghorani et al., 2018). It has to be mentioned 
that neoepitope load and mutational burden are usually highly 

correlated (Pearson r = 0.89 based on 38 publications with less 
than 1 neoepitope per mutation from Table 1) and although 
it can be assumed that an increased survival is linked to the 
immunogenicity of mutations, quantifying predicted neoepitopes 
does not necessarily transport more information than mutation 
burden alone (Nathanson et al., 2017). There are, however, 
also studies that correlated survival with neoepitopes but not 
mutational burden or found contradictory results depending on 
patient cohorts (Snyder et al., 2014; Ghorani et al., 2018).

Among well-described approaches for neoepitope 
identification based on affinity binding prediction algorithms, 
there are also pipelines available that automate all analytic 
steps and rank potential neoepitopes based on peptide affinity 
prediction and other features (see Table 2). They differ greatly as 
to their properties and outputs, thus offering choices depending 
on research questions and dataset sizes. Their availability 
demonstrates how important neoepitope prediction has become 
as an application for binding affinity prediction algorithms.

FIGURE 3 | (A) Neoepitopes per mutation grouped by the number of features used for neoepitope selection. Data based on publications that offered comparable 
data, e.g., not obviously counting a neoepitope predicted to be presented by multiple major histocompatibility complexes (MHCs) multiple times (n = 38). (B) Ratio 
of confirmed to predicted neoepitopes grouped by the number of features used for neoepitope selection. Data based on publications that experimentally validated 
all predicted neoepitopes (n = 30)

TABLE 2 | Neoepitope prediction pipelines based on mutation data input. Additional features are cancer driver status of the mutated gene used by MuPeXI; differential 
agretopicity index (DAI), sequence-based immunogenicity score, and more used by Neopepsee; DAI, cleavage, and stability prediction used by pVACtools.

MuPeXI CloudNeo Neopepsee pvACTools

Algorithms NetMHCpan NetMHCpan NetCTLpan, IEDB Bayes 
classifier

8 MHC class I predictors 4 MHC 
class II predictors

Input VCF gene expression TSV VCF BAM VCF RNA-Seq FASTQ VCF BAM (RNA and DNA)
HLA typing user input integrated user input or integrated user input or integrated
Mutation types SNVs indels frameshifts SNVs SNVs SNVs indels fusions (additional 

input)
wild type peptide yes yes yes yes
Gene expression yes (optional) no yes yes
Additional features yes no yes yes
Availability local, webserver cloud local local
Reference (Bjerregaard et al., 2017a) (Bais et al., 2017) (Kim et al., 2018) (Hundal et al., 2019)
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Since a variety of different neoepitope identification 
approaches exist and it is not clear which features are predictive 
for immunogenicity, Koşaloğlu-Yalçın et al. and Kim et al. 
integrated and compared features additional to the standard 
MHC binding affinity by either comparing areas under the 
curve of receiver operating characteristics or evaluating feature 
importance derived from trained classifiers (Kim et al., 2018; 
Koşaloğlu-Yalçın et al., 2018). Both studies found that binding 
affinity prediction performs best or is the most informative 
feature. This is not surprising for viral epitopes constituting 
a major part of data on which most prediction algorithms are 
trained nor for neoantigens from literature mainly selected by 
predicted binding affinity, which introduces a bias toward this 
feature. It still remains unclear how many potential neoantigens 
are not detected because their binding affinity is predicted to 
lie beyond thresholds. An approach avoiding this bias has been 
proposed by Bulik-Sullivan et al. (Bulik-Sullivan et al., 2019). 
Like the most recent generation of neural network binding 
prediction algorithms, they developed a deep learning neural 
network trained on MS data, but apart from improved peptide 
sequence modeling, they also included features unrelated to the 
pMHC interaction, namely, quantified gene expression, flanking 
sequence, and protein family. Although their model is currently 
limited to HLA alleles of the training data, the approach 
demonstrated an increased performance of neoepitope discovery 
over peptide binding prediction and can also be expanded to 
MHC class II presented antigens.

Cross-Reactivity Assessment
A major challenge for immunotherapies introducing TCRs into 
patient recipient T cells is the choice of safe target antigens. If an 
engineered TCR-T cell cross-reacts with self-antigens in healthy 
tissue, the side-effects can be devastating. Possible TCR toxicity 
scenarios can be generally divided into on-target and off-target 
toxicities. On-target toxicities include all aspects of a specific 
target antigen or epitope expression that lead to an unintentional 
TCR-mediated destruction of healthy tissues. An example of 
on-target toxicity is melanocyte destruction, hearing loss, and 
retina infiltration mediated by MART1-targeting TCR-T cells 
relating to the same epitope in all cases (Johnson et al., 2009).

Off-target toxicities, in contrast, can appear by unexpected 
recognition of alternative epitopes that contain amino acid 
exchanges (mismatches) compared to the known epitope 
sequence. In rare cases, these mismatched peptides are presented 
identically on corresponding MHC molecules and are recognized 
equally well by deployed TCRs.

Targeting epitope sequences of proteins originating from 
highly homologous family members can cause unforeseen tissue 
damage as exemplified by the study performed by Morgan et al. 
(Morgan et al., 2013). Using autologous anti-MAGEA3 TCR-T 
cells, adoptive transfer led to severe neurotoxicity in several 
patients. The MAGEA3-specific TCR used in this clinical trial 
also recognized a MAGEA12, which was retrospectively found 
to be expressed in the brain. In the Linette et al. study, clinicians 
adoptively transferred MAGEA3-TCR-modified lymphocytes 
that also recognized an alternative epitope derived from the 

protein titin, causing fatal heart failure in two patients (Linette 
et al., 2013). Each of these examples underline the importance 
and need of comprehensive preclinical target and TCR analysis 
to prevent potential adverse events at later stages of clinical 
development.

With Expitope, we presented the first web server for assessing 
epitope sharing when evaluating new potential target candidates 
(Haase et al., 2015). Based on predictions for proteasomal cleavage, 
TAP transport, and MHC class I binding affinity, Expitope lists 
peptides with a given number of mismatches including the 
original target peptide. For these peptides, which are linked to 
genes by transcripts, the expression values in various healthy 
tissues, representing all vital human organs, are extracted from 
RNA-Seq data. However, transcript abundance only indirectly 
indicates protein expression. Meanwhile, proteome-wide human 
protein abundance data has become available and now facilitates 
a more direct approach for the prediction of potential cross-
reactivity. The development of a new version 2.0 of Expitope, 
which computes all possible, naturally occurring epitopes of a 
peptide sequence and the corresponding cross-reactivity indices 
using both protein and transcript abundance levels weighted by 
a proposed hierarchy of importance of various human tissues, 
should help addressing this issue (Jaravine et al., 2017a). Cross-
reactivity potential can also be assessed by calculating structural 
similarities between pMHC complexes obtained by molecular 
docking (Antunes et al., 2010) and by clustering pMHC complexes 
based on their electrostatic properties and the accessible surface 
area (Mendes et al., 2015). A comprehensive review by Baker 
et al. (2012) is covering these aspects in great detail.

TCR BINDING PREDICTION
The final piece of the epitope recognition puzzle is the interaction 
of the pMHC complex with the TCR, which represents a very 
difficult problem for modeling studies and sequence-based 
predictions. One reason for that is the complex and noncontiguous 
nature of the interaction interface, with the CDR1 and CDR2 
regions of the TCR α and β chains making contacts with the 
MHC class I molecule and the CDR3 regions directly interacting 
with the bound peptide (see Figure 4). Another major hurdle 
in predicting TCR recognition is the scarcity of experimentally 
confirmed TCR complementarity determining regions and the 
sequences of their respective binding partners on the pMHC 
complex. For example, one of the first feasibility studies of CDR3 
sequence patterns was only based on two immunogenic HIV 
peptides (De Neuter et al., 2018). An additional complication 
is posed by the fact that repertoire sequencing combined with 
immune assays determines antigen-specific clonotypes, but does 
not yield negative controls, i.e., validated pairs of CDRs and 
pMHC complexes that do not bind each other.

CDR3β chains appear to always be in contact with the 
antigen bound to the MHC class I molecule, whereas the direct 
contact of CDR3α chains to the peptide is not always required 
(Glanville et al., 2017). The involvement of short linear stretches 
of CDR3β sequence in peptide-TCR interactions creates the 
opportunity to cluster TCRs in groups of common specificity 
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(Dash et al., 2017; Glanville et al., 2017) and also serves as the 
basis for developing specialized algorithms for sequence-based 
prediction of pMHC/TCR binding. Two recent publications 
addressed this problem from two completely different 
perspectives. Jurtz et al. presented a proof of concept study, 
in which they predicted TCR interactions with their cognate 
HLA-A*02:01-presented peptide targets (Jurtz et al., 2018). A 
machine learning approach, called NetTCR, was trained on 
8,920 TCRβ CDR3 sequences and 91 cognate peptide targets 
obtained from IEDB and from the immune assay data published 
by Klinger et al. (2015). A dataset of negative interactions was 

assembled by randomly matching TCR and peptide pairs. The 
NetTCR project in its current form is limited to a small number 
of peptides and it does not consider CDR1/CDR2 interactions 
with the MHC molecules or CDR3α sequences, but it is an 
important step forward because it demonstrates that TCR 
recognition of pMHCs is specific enough to be captured by 
sequence-level prediction tools.

Ogishi and Yotsuyanagi exploited the existence of 
immunodominant epitopes, which are targeted by the adaptive 
immune system in different individuals and would therefore 
be expected to exhibit some prominent features that make 
them especially prone to be recognized by T cells (Ogishi and 
Yotsuyanagi, 2019). The idea behind their repertoire-wide 
TCR-epitope contact potential profiling is that intermolecular 
contacts between relevant portions of the epitope and the TCR 
CDR3β region that closely resemble the contact structure of the 
interactions involving immunodominant peptides would be more 
likely to be immunogenic. To quantitatively assess the interaction 
affinity, they used physicochemical properties of amino acids and 
an energetic potential, calculated as the sum of all pairwise contact 
potentials for individual amino acids. The latter were obtained 
from several previously published amino acid contact potential 
scales, available from the AAINDEX database (Kawashima et al., 
2007). These features were converted to immunogenicity scores 
using machine learning. It should be noted that the knowledge-
based potentials, derived from crystal structures of proteins and 
protein complexes, reflect either intramolecular interactions 
driving protein folding and stability or contacts at protein 
interfaces and may only be a coarse approximation of peptide-
TCR interactions. Yet, Ogishi and Yotsuyanagi demonstrated 
that the most informative contact-based and property-based 
features strongly correlate  with  experimentally measured 
TCR-peptide affinities.

Both approaches by Jurtz et al. and Ogishi and Yotsuyanagi 
are solely based on CDR3β chains and do not incorporate 
CDR3α sequence information. This is due to the fact that 
most datasets and databases such as IEDB and VDJdb did, 
until recently, consist mainly of CDR3β sequences (Figure 5) 

FIGURE 4 | T cell receptor (TCR) binding to a peptide presented by major 
histocompatibility complex (MHC) class I.

FIGURE 5 | IEDB and VDJdb contents of CDR3α and CDR3β sequences of human origin. IEDB contains 386 unique epitopes linked to CDR3α sequences and 
426 unique epitopes linked to CDR3β sequences. For VDJdb there are 93 and 177 unique epitopes, respectively. IEDB data was downloaded from https://www.
iedb.org on September 30th, 2019 with the following query parameters: Current Filters: No B cell assays, No major histocompatibility complex (MHC) ligand assays, 
Restriction Type: Class I, Host: Homo sapiens (human). VDJdb data was taken from https://vdjdb.cdr3.net/overview (last updated on August 7th, 2019).
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derived from bulk sequencing (Shugay et al., 2018; Vita et al., 
2018), since identifying functional TCR pairing in repertoire 
data is technically challenging (Holec et al., 2018). Single cell 
sequencing eliminates this problem and a large dataset has 
just been added to VDJdb, which is, however, dominated by 
only few epitopes and HLA alleles. Another problem regarding 
TCR-epitope data is the lack of true negative datasets and the 
inclusion of cross-reactivity information, since many TCRs 
are able to recognize more than one epitope, which has been 
elaborated in section “Cross-reactivity assessment.” For this 
reason, pMHC/TCR binding prediction would also add valuable 
information to the detection of potential cross-reactivity for 
clinical candidate TCRs.

Further light on the details of pMHC/TCR interactions 
can be shed by molecular dynamics simulations. This entails 
understanding the role of hydrogen bonds, hydrophobic 
contacts, and interactions with the solvent in determining 
the specificity and cross-reactivity of each individual complex 
and proposing specific models of TCR engagement with 
the CDR1, CDR2, and CDR3 regions (Cuendet et al., 2011). 
Moreover, molecular modeling can help to compare the surface 
morphology between the complexed wild-type and mutated 
peptides and their relationship with immunogenicity (Park 
et al., 2013) and can also help to predict affinity-enhancing 
TCR mutations (Malecek et al., 2014). In cases where three-
dimensional structures are not yet available, accurate models of 
pMHC/TCR complexes can be obtained by homology modeling 
(Zoete et al., 2013; Lanzarotti et al., 2019). Finally, a number 
of both rigid and flexible pMHC/TCR docking protocols have 
been proposed, which, in many cases, are able to produce 
accurate complex models starting from unbound structures 
(Pierce and Weng, 2013).

CONCLUSION AND OUTLOOK
Machine learning has become an indispensable tool for 
immunotherapeutic applications over the last decades. The 
established core method is peptide binding affinity prediction 
and thus target identification for TCR-T therapy or personalized 
neoantigen vaccination. The constant evolution of available 
training data as well as machine learning techniques, building 
on growing computational power, has improved the quality of 
binding affinity predictions. Focus has been on CD8+ cytotoxic 
T cells, but the substantial role of CD4+ T cells is increasingly 
gaining attention and efforts are made to also improve 
predictions for MHC class II presented epitopes, which poses a 
more challenging task compared to MHC class I binding due to 
the larger variety in peptide length and the open binding groove 
(Brown et al., 1993).

Additional challenges which can be tackled by machine 
learning remain. Immunogenicity is still an elusive aim for 
prediction tools, especially when it comes to personalized 
therapies relying on neoepitope identification. This is owed 
to the fact that patient immune systems and tumors undergo 
a process of mutual influence and therefore are highly 

individual and heterogeneous. The identification of features 
derived from the immune system that affect T cell recognition 
of individual epitopes within a tumor could be the key toward 
more reliable personalized immunotherapy predictions, 
thereby opening the process to a broader number of patients. 
Although neoantigens are currently in the focus of cancer 
immunotherapy, the detection of shared tumor antigens 
beyond coding DNA regions remains necessary since not 
all tumors harbor enough immunogenic mutations and the 
creation of potent TCRs for individual patients is currently 
impossible. Another challenge, which can be tackled with the 
help of ongoing data acquisition, is TCR binding prediction. 
Being able to reliably predict which TCR will recognize which 
epitope is extremely valuable not only for target epitope 
identification for TCR-T therapies, but also especially for 
TCR safety assessment, since it can speed up the process of 
selecting TCRs for the clinic by reducing in vitro screening of 
TCR candidates.

As the TCR-T adoptive immunotherapy community grows 
and data on the impact of sequence variations in both TCR 
alpha and beta chains on peptide fine specificity, sensitivity of 
peptide-MHC recognition and TCR cross-reactivity for partially 
mismatched epitopes emerge, artificial intelligence in the form 
of machine learning will be critical to advance understanding 
of pMHC/TCR interactions for many types of antigen and 
many different HLA allotypes. In particular, these issues will 
become additionally relevant as this form of immunotherapy 
is developed for patient populations worldwide. High-
throughput TCR discovery platforms, yielding TCR sequence 
information from natural repertoires of T cells or through 
TCR mutational analyses, coupled with functional assessment 
of peptide variants as a means to assess cross-reactivity, offer 
many opportunities to continually improve understanding of 
pMHC/TCR interactions that will not only advance the cause 
of basic science but also help to meet medical needs for patients 
with cancer, infectious diseases or autoimmunity, where it is 
envisioned that TCR-Ts have the potential to provide improved 
therapies worldwide.

In particular, the push to couple TCR sequence data with 
neoantigen recognition for single patients through analysis 
of individual tumor samples in order to develop more potent 
cancer vaccines or TCR-T immunotherapies has already 
fostered strong collaborations and commercial endeavors to 
advance the interplay of machine learning and TCR recognition. 
While it currently seems daunting to imagine how the enormous 
and fast flow of information now emerging from many sources 
can be accessed and assembled to rapidly support the broader 
needs for personalized patient-individualized TCR-based 
immunotherapies, this review summarizes the challenges as 
well as the substantial progress that has already been achieved 
in defining some of the most relevant parameters in the 
complex cell biology of antigen processing and presentation and 
pMHC interactions with TCRs that lead to successful immune 
recognition. Important gaps have also been defined, alerting the 
community to the types of control data that may already exist 
in many laboratories, or could be collected, that would help in 
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the refinement of prediction tools to achieve better results in the 
future. Increased interest and collaborative efforts of machine 
learning and HLA and TCR specialists will certainly foster 
further developments to support the rapidly expanding field of 
T cell-based immunotherapy of high medical relevance.

With the support of bioinformatic tools and improved 
prediction algorithms, immunotherapy holds the potential to 
become more precise, more personalized, and more effective 

than current cancer treatments—and potentially with fewer 
side effects.
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Helena Andres Terre 1, Zohreh Shams 1, Mateja Jamnik 1 and Pietro Liò 1
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International initiatives such as the Molecular Taxonomy of Breast Cancer International 
Consortium are collecting multiple data sets at different genome-scales with the aim 
to identify novel cancer bio-markers and predict patient survival. To analyze such data, 
several machine learning, bioinformatics, and statistical methods have been applied, 
among them neural networks such as autoencoders. Although these models provide 
a good statistical learning framework to analyze multi-omic and/or clinical data, there is 
a distinct lack of work on how to integrate diverse patient data and identify the optimal 
design best suited to the available data.In this paper, we investigate several autoencoder 
architectures that integrate a variety of cancer patient data types (e.g., multi-omics 
and clinical data). We perform extensive analyses of these approaches and provide a 
clear methodological and computational framework for designing systems that enable 
clinicians to investigate cancer traits and translate the results into clinical applications. 
We demonstrate how these networks can be designed, built, and, in particular, applied 
to tasks of integrative analyses of heterogeneous breast cancer data. The results show 
that these approaches yield relevant data representations that, in turn, lead to accurate 
and stable diagnosis.

Keywords: machine learning, cancer–breast cancer, variational autoencoder, deep learning, integrative data 
analyses, artificial intelligence, bioinformactics, multi-omic analysis

INTRODUCTION
The rapid technological developments in cancer research yield large amounts of complex 
heterogeneous data on different scales—from molecular to clinical and radiological data. The 
limited number of samples that can be collected are usually noisy, incompletely annotated, sparse, 
and high-dimensional (many variables). As much as these high-throughput data acquisition 
approaches challenge the data-to-discovery process, they drive the development of new sophisticated 
computational methods for data analysis and interpretation. In particular, the synergy of cancer 
research and machine learning has led to groundbreaking discoveries in diagnosis, prognosis, 
and treatment planning for cancer patients (Vial et al., 2018; Levine et al., 2019). Typically, such 
machine learning methods are developed to address particular complexities inherent in individual 
data types, separately. While relevant, this approach is sub-optimal since it fails to exploit the inter-
dependencies between the different data silos, and is thus often not extendable to analyzing and 
modeliing more complex biological phenomena (Gomez-Cabrero et al., 2014; Hériché et al., 2019).
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To capitalize on the inter-dependencies and relations across 
heterogeneous types of data about each patient (Yuan et al., 
2011; Miotto et al., 2016), integrating multiple types and sources 
of data is essential. The data-integration paradigm focuses on 
a fundamental concept—that a complex biological process is a 
combination of many simpler processes and its function is greater 
than the sum of its parts. Hence, integrating and simultaneously 
analyzing different data types offers better understanding of the 
mechanisms of a biological process and its intrinsic structure. 
Many studies have addressed and highlighted the importance 
of data integration at different scales (Gomez-Cabrero et al., 
2014; Huang et al., 2017; Karczewski and Snyder, 2018; López 
de Maturana et al., 2019; Žitnik et al., 2019). In the context of 
analyzing cancer data, it has been shown that such integrative 
approaches yield improved performance for accurate diagnosis, 
survival analysis, and treatment planning (Shen et al., 2009; 
Kristensen et al., 2014; Thomas et al., 2014; Gevaert et al., 2016; 
Vial et al., 2018). In particular, Wang et al. (2014) show that, 
for the case of five different cancer profiles, integrating mRNA 
expression, DNA methylation, and miRNA data leads to more 
accurate survival profiles than each of the individual types of 
data alone. These findings are in line with the ones of (Amin 
et al., 2014), where the authors point out that gene expression 
profiles alone are sub-optimal for predicting complete response 
in patients with multiple myeloma.

In this paper we design and systematically analyze several deep-
learning approaches for data integration based on Variational 
Autoencoders (VAEs) (Kingma and Welling, 2014). VAEs 
provide an unsupervised methodology for generating meaningful 
(disentangled) latent representations of integrated data. Such 
approaches can be utilized in two ways. First, the generated latent 
representations of integrated data can be exploited for analysis by 
any machine learning technique. Second, our architectures can 
be deployed on other heterogeneous data sets. We illustrate the 
functionality and benefit of the designed approaches by applying 
them to cancer data—this paves the way to improve survival 
analysis and bio-marker discovery.

There are several existing machine learning approaches that 
integrate diverse data. These can be classified into three different 
categories based on how the data is being utilized (Pavlidis et al., 
2002; Gevaert et al., 2006): (i) output (or late) integration, (ii) partial 
(or intermediate) integration, and (iii) full (or early) integration. 
Output integration relates to methods that model different data 
separately, the output of which is subsequently combined (Gevaert 
et al., 2006; Yang et al., 2010; Qi, 2012). Partial integration refers 
to specifically designed and developed methods that produce a 
joint model learned from multiple data simultaneously (Gevaert et 
al., 2006; Wang et al., 2014; Žitnik and Zupan, 2015). Finally, full-
integration approaches focus on combining different data before 
applying a learning algorithm, either by simply aggregating them 
or learning a common latent representation (Shen et al., 2009; 
Bengio et al., 2013). Our work presented here falls into this third 
category, namely full (or early) integration.

Recently, many deep learning approaches have been proposed 
for analyzing cancer data (Levine et al., 2019). Typically, they rely 
on extracting valuable features using deep convolutional neural 
networks for analyzing and classifying tasks of radiological data 

(Ardila et al., 2019; Esteva et al., 2019). However, these methods 
often relate to supervised learning, and require many labeled 
observations in order to perform well. In contrast, unsupervised 
approaches learn representations by identifying patterns in the 
data and extracting meaningful knowledge while overcoming 
data complexities. Particular variants of deep learning networks, 
referred to as autoencoders, have demonstrated good performance 
for unsupervised representation learning (Bengio et al., 2013).

Autoencoders learn a compressed representation (embedding/
code) of the input data by reconstructing it on the output of the 
network. The hope is that such a compressed representation captures 
the structure of the data (i.e., intrinsic relationships between the 
data variables) and therefore allows for more accurate downstream 
analyses (Belkin and Niyogi, 2003). Autoencoders have been 
deployed on a variety of tasks across different data types such as 
dimensionality reduction, data denoising, compression, and data 
generation. In the context of cancer data integration, several studies 
highlighted their utility in combining data on different scales for 
identifying prognostic cancer traits such as liver (Chaudhary 
et al., 2018), breast (Tan et al., 2015) and neuroblastoma cancer 
(Zhang et al., 2018) sub-types. The focus of these studies is to apply 
autoencoders to specific problems of cancer-data integration.

In contrast, in this paper we investigate approaches that build 
upon probabilistic autoencoders which implement Variational 
Bayesian inference for unsupervised learning of latent data 
representations. Instead of only learning a compressed 
representation of the input data, VAEs learn the parameters 
of the underlying distribution of the input data. VAEs can be 
utilized as methods for full/early integration of data: this allows 
for learning representations from heterogeneous data on different 
scales from different sources. In this paper we mainly focus on 
the data integration aspect, so we utilize VAEs together with 
other sophisticated machine learning methods for modeling and 
analyzing breast cancer data. We perform a systematic evaluation 
(we evaluate 1296 different network configurations) of different 
aspects of data integration based on VAEs. We investigate and 
evaluate four different integrative VAE architectures and their 
components. We analyze and demonstrate their functionality 
by integrating multi-omics and clinical data for different breast-
cancer analysis tasks on data from the Molecular Taxonomy of 
Breast Cancer International Consortium (METABRIC) cohort. 
In summary, the contribution of this paper is two-fold: (i) novel 
architectures for integrating data; and (ii) methodologies for 
choosing architectures that best suit the data in hand.

MATeRIAls AND MeThODs
Many machine learning methodologies have been applied to 
cancer medicine to improve and personalize diagnosis, survival 
analysis, and treatment of cancer patients. These include 
linear and non-linear, as well as supervised and unsupervised 
techniques like regression, principal component analysis (PCA), 
support vector machines (SVMs), deep neural networks, and 
autoencoders (Kourou et al., 2015).

Some are more suitable for integrating diverse types of data 
than others. In our work we use VAEs and combine them into 
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a number of different architectures for a deep analysis and 
comparison with respect to specific data features and tasks at 
hand. VAEs are particularly suitable in this setting since they 
are generative, non-linear, unsupervised, and amenable to 
integrating diverse data.

We deploy our architectures on the case of integrating multi-
omic and clinical cancer data. There are a number of candidate 
initiatives for big data collection of cancer data such as The 
Cancer Genome Atlas (TCGA) and METABRIC. In our work 
we use the METABRIC data set because it is one of the largest 
among genetic data sets, it is reasonably well annotated, and it is 
well analyzed. We particularly focus on the integration of gene 
expressions, copy number alterations, and clinical data.

In this section we describe theoretical aspects of VAEs and the 
specialized architectures that we use to integrate data. Next, we 
describe the data and the suite of experiments used to evaluate the 
methodological and computational frameworks for investigating 
cancer traits in clinical applications.

Variational Autoencoders
Generally, an autoencoder consists of two networks, an encoder 
and a decoder, which broadly perform the following tasks:

• Encoder: Maps the high dimensional input data into a latent 
variable embedding which has lower dimensions than the input.

• Decoder: Attempts to reconstruct the input data from  
the embedding.

The model contains a decoder function f (·) parameterized by 
θ and an encoder function g(·) parameterized by ϕ. The lower 
dimensional embedding learned for an input x in the bottleneck 
layer is h = gϕ(x) and the reconstructed input is x’ = fθ(gϕ(x)).

The parameters 〈θ,ϕ〉 are learned together to output a 
reconstructed data sample that is ideally the same as the original 
input x ≈ fθ(gϕ(x)). There are various metrics used to quantify the 
error between the input and output such as cross entropy (CE) or 
simpler metrics such as mean squared error:
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The main challenge when designing an autoencoder is its 
sensitivity to the input data. While an autoencoder should learn 
a representation that embeds the key data traits as accurately 
as possible, it should also be able to encode traits which 
generalize beyond the original training set and capture similar 
characteristics in other data sets.

Thus, several variants have been proposed since autoencoders 
were first introduced. These variants mainly aim to address 
shortcomings such as improved generalization, disentanglement, 
and modification to sequence input models. Some significant 
examples include the Denoising Autoencoder (DAE) (Vincent et al., 
2008), Sparse Autoencoder (Coates et al., 2011; Makhzani and Frey, 
2014), and more recently the VAE (Kingma and Welling, 2014).

The VAE (Figure 1) uses stochastic inference to approximate the 
latent variables z as probability distributions. These distributions 

represent and capture relevant features from the input. VAEs are 
scalable to large data sets, and can deal with intractable posterior 
distributions by fitting an approximate inference or recognition 
model, using a reparameterized variational lower bound estimator. 
They have been broadly tested and used for data compression 
or dimensionality reduction. Their adaptability and potential 
to handle non-linear behavior has made them particularly well 
suited to work with complex data.

A VAE builds upon a probabilistic framework where the 
high dimensional data x is drawn from a random variable with 
distribution pdata(x). It assumes that the natural data x also lies 
in a lower dimensional space, that can be characterized by an 
unobserved continuous random variable z. In the Bayesian 
approach, the prior pθ(z) and conditional (or likelihood) pθ(x|z) 

FIgURe 1 | The unimodal Variational Autoencoder (VAE) architecture and 
latent embedding: the red layers correspond to the input and reconstructed 
data, given and generated by the model. The hidden layers are in blue, with 
the embedding framed in black. Each latent component is made of two 
nodes (mean and standard deviation), which define a Gaussian distribution. 
The combination of all Gaussian constitutes the VAE generative embedding.
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typically come from a family of parametric distributions, with 
Probability Density Functions differentiable almost everywhere 
with respect to both θ and z. While the true parameters θ 
and the values of the latent variables z are unknown, the VAE 
approximates the often intractable true posterior pθ(x|z) by 
using a recognition model qθ(z|x) and the learned parameters ϕ 
represented by the weights of a neural network.

More specifically, a VAE builds an inference or a recognition 
model qθ(z|x), where given a data-point x it produces a distribution 
over the latent values z from where it could have been drawn. 
This is also called a probabilistic encoder. A probabilistic decoder 
will then, given a certain value of z, produce a distribution over 
the possible corresponding values of x, therefore constructing 
the likelihood pθ(x|z). Note that the decoder is also a generative 
model, since the likelihood pθ(x|z) can be used to map from the 
latent to the original space and learn to reconstruct the inputs as 
well as generate new ones.

Typically, VAE model assumes latent variables to be the 
centred isotropic multivariate Gaussian pϕ(z) = N(z;0, I), 
and pθ(x|z) a multivariate Gaussian (for numerical values) or 
Bernoulli (for categorical values) with parameters approximated 
by using a fully connected neural network. Since the true 
posterior pθ(z|x) is intractable, we assume it takes the form of 
a Gaussian with an approximately diagonal covariance. This 
allows the variational inference alternative to approximate 
the true posterior, as it converts the inference problem into an 
optimization one. In particular, instead of solving intractable 
integrals, this relates to maximizing a likelihood. In such cases, 
the variational approximate posterior will also need to be a 
multivariate Gaussian with diagonal covariate structure:

 
q z x N z Ii i i

φ µ σ| ; ,( ) ( ) ( )( ) ( )=
 

where the mean μ(i) and standard deviation σ(i) are outputs of 
the encoder.

Since pθ(z) and qϕ(z|x(i)) are Gaussian, the discrepancy 
between them can be directly computed and differentiated. The 
resulting likelihood for this model on data-point x(i) is:
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where the first term corresponds to the reconstruction 
loss, which encourages the decoder to learn to reconstruct 
the data from the embedding space. The second term is 
regularization, and measures the divergence between the 
encoding distributions q(z|x) and p(z), and penalizes the 
entanglement between components in the latent space. It is 
typically estimated by the Kullback–Leibler (KL) divergence, a 
measure of discrepancy between two probability distributions, 
which in this case is applied between the prior and the 
representation.

While in this paper we focus on a standard Gaussian prior 
due to its simplicity, there are several, more sophisticated, 
alternatives for the choice of a prior. In particular, Dilokthanakul 
et al. (2016) propose a mixture of Gaussians in order to achieve 

more flexible priors, and Tomczak and Welling (2018) realize 
this by estimating the prior as a mixture of approximate 
posteriors. Nalisnick and Smyth (2017) employ a Dirichlet 
process as a non-parametric prior through stick-breaking 
process, which generalizes over the generative process and 
allows for better representations. Johnson et al. (2016) utilize 
graphical models as a prior to train a VAE model. These 
alternative approaches to the choice of a prior require more 
sophisticated model training techniques in the learning phase. 
On the other hand, there are also approaches that instead of 
the prior, they focus on more flexible posteriors, therefore 
leading to better (and disentangled) representations. These 
include normalizing flows (Rezende and Mohamed, 2015), 
auto-regressive flows (Chen et al., 2017), and inverse auto-
regressive flows (Kingma et al., 2016).

In a similar context, research has shown that the entanglement 
factor can play a crucial role in the quality of the representations. 
In response, Higgins et al. (2017) control the influence of the 
disentanglement factor using a parameter β. Moreover, some 
approaches have experimented with different regularization 
terms, such as the InfoVAE (Zhao et al., 2017), where Maximum 
Mean Discrepancy (MMD) is employed as an alternative to KL 
divergence. MMD (Gretton et al., 2007) is based on the concept 
that two distributions are identical if, and only if. all their moments 
are identical. Therefore, by employing MMD via the kernel 
embedding trick, the divergence can be defined as the discrepancy 
between the moments of two distributions p(z) and q(z) as:
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where k(z,z’) denotes any universal kernel (Zhao et al., 2019). In 

this paper, we employ a Gaussian kernel k z
z z
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− − ′ 2

22σ  when 
considering MMD regularization in the objective function.

Variational Autoencoders for Data 
Integration
We designed and evaluated four different architectures for data 
integration: we present them here each with two diverse data 
sources (depicted in Figures 2, 3, 4, and 5 as red and green boxes 
on the left).

The first architecture, Variational Autoencoder with 
Concatenated Inputs (CNC-VAE) in Figure 2, is a simple 
approach to integration, where the encoder is directly trained 
from different data sets, aligned, and concatenated at input. 
While such architecture is a straightforward and not a novel 
way to data integration, we employ it both, as a benchmark and 
a proof-of-principle for learning a homogeneous representation 
from heterogeneous data sources.

Besides the concatenated input, the rest of the CNC-VAE 
network utilizes a standard VAE architecture. As depicted in 
Figure 2, the input data is first scaled, aligned, and concatenated 
before being fed to the network. CNC-VAE has one objective 
function that reconstructs the combined data rather than a 
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separate objective function for each input data source. Therefore, 
CNC-VAE aims at reducing redundancies and extracting 
meaningful structure across all input sources, regardless of the 
scales or modalities of the data. While the CNC-VAE architecture 
may be simplistic, the complexity lies in highly domain-specific 
preprocessing of the data. Indeed, in some real-world settings, 
utilizing a single objective function of combined heterogenious 
inputs may not be optimal or even feasible.

Unlike CNC-VAE, the next three architectures aim at 
more sophisticated means to data integration. In particular, 
all of them consider data integration in the hidden layers. The 

X-shaped Variational Autoencoder (X-VAE) merges high-
level representations of several heterogeneous data sources into 
a single latent representation by learning to reconstruct the 
input data from the common homogeneous representation. The 
architecture is depicted in Figure 3 and consists of individual 
branches (one for each data source: red and green) that are 
combined into one before the bottleneck layer. In the decoding 
phase, the merged branch splits again into several branches 
that produce individual reconstructions of the inputs. X-VAE 
takes into account different data modalities by combining 
different loss functions for each data source in the objective 
function. This allows for learning better and more meaningful 
representations.

While, in principle, X-VAE is able to take into account 
many possible interactions between multiple data sources, 
its performance is sensitive to the properties of the data being 
integrated. In particular, X-VAE is prone to poor performance 

FIgURe 2 | The Variational Autoencoder with Concatenated Inputs (CNC-
VAE) Architecture: the red and green layers on the left correspond to two 
inputs from different data sources. The blue layers are shared, with the 
embedding being framed in black.

FIgURe 3 | The X-shaped Variational Autoencoder (X-VAE) Architecture: the 
red and green layers on the left correspond to two inputs from different data 
sources. The blue layers are shared, with the embedding being framed in black.

FIgURe 4 | The Mixed-Modal Variational Autoencoder (MM-VAE) 
Architecture: the red and green layers on the left correspond to two inputs 
from different data sources. The blue layers are shared, with the embedding 
being framed in black.

FIgURe 5 | The Hierarchical Variational Autoencoder (H-VAE) Architecture: 
the red and green layers on the left correspond to two inputs from different 
data sources. The blue layers are shared, with the embedding being framed 
in black.
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when employed to integrate unbalanced data sets with low 
number of observations. As a consequence, the objective function 
might also be unbalanced, focusing on some sources more if the 
distribution of the input data varies substantially across the data 
sources. A similar limitation can also result from a poor choice of 
loss function for each of the data sources.

The Mixed-Modal Variational Autoencoder (MM-VAE) 
attempts to address some of the limitations of X-VAE, by 
employing a more gradual integration in the hidden layers of 
the encoder. More specifically, it builds upon the concept of 
transfer learning, where learned concepts from one domain are 
re-purposed and shared for learning tasks in others domains. 
Figure 4 presents the architecture of MM-VAE. Similarly to 
X-VAE, it also consists of branches that individually reconstruct 
the input data sources. Here, however, the important difference 
is that the branches share information with each other in the 
encoding phase. In particular, higher-level learned concepts of 
each branch are shared between all the branches, and used deeper 
in the network. This allows for information from the different 
sources to be combined more gradually before being compressed 
into a single homogeneous embedding.

The objective function combines different reconstruction loss 
functions that correspond to the data types at input. Similarly 
to X-VAE, MM-VAE’s performance is limited when small and 
unbalanced data sets are being considered. While the additional 
integration layers may help to stabilize the objective function, 
poor choice of reconstruction loss terms may still impede the 
performance in general.

The Hierarchical Variational Autoencoder (H-VAE) builds 
upon traditional meta-learning approaches for combining 
multiple individual models. H-VAE, depicted in Figure 5, is 
comprised of several low-level VAEs that relate to each data 
source separately, and the result is assembled together in a 
high-level VAE. More specifically, each of the low-level VAEs is 
employed to learn a representation of an individual data source. 
These individual representations are then merged together 
and fed to a high-level VAE that produces the integrated data 
representation. We use the same architecture for each low-level 
VAE, but in principle, these could be independently designed 
and further refined for a specific data-source and task at hand.

H-VAE is designed to improve on some of the shortcomings 
of X-VAE and MM-VAE, since it simplifies the individual 
network branches. In particular, the input to the high-level 
autoencoder is composed of representations learned from several 
individual low-level autoencoders. These low-level autoencoders 
already implement distribution regularization terms in each of 
them separately, thus the input to the high-level autoencoder 
already consists of approximated multivariate standard normal 
distributions characterizing the general traits of the individual 
input modalities. Moreover, since each data source is handled in a 
modular fashion, H-VAEs are capable of handling data sets which 
make best use of specialized low-level autoencoders. However, 
constructing an H-VAE adds a substantial computational 
overhead compared to the other three architectures as it involves 
a two-stage learning process where low-level VAEs must be 
trained first, and then the final high-level representation can be 
learned on the outputs of the low-level encoders.

Data
To demonstrate how the proposed VAE architectures can be 
utilized in the integration of heterogeneous cancer data types, we 
conducted our study utilizing multi-omics data found on somatic 
copy number aberrations (CNA), mRNA expression data, as well 
as on the clinical data of breast cancer patient samples from the 
METABRIC cohort (Curtis et al., 2012).

Providing effective treatment takes such heterogeneity of data 
into account, and our VAE architectures enable us to do just 
that. Finding driver events which help stratify breast cancers into 
different subgroups has been of great focus within the research 
community lately, particularly the identification of genomic 
profiles that stratify patients.

In the context of genomic and transcriptomic studies, 
the acquired somatic mutations and the inherited genomic 
variation contribute jointly to tumorigenesis, disease onset, and 
progression (Curtis et al., 2012; Tan et al., 2015; Pereira et al., 
2016). For example, despite somatic CNAs being the dominant 
feature found in sporadic breast cancer cases, the elucidation of 
driver events in tumorigenesis is hampered by the large variety of 
random non-pathogenic passenger alterations and copy number 
variants (Leary et al., 2008; Bignell et al., 2010).

This has led to the argument that integrative approaches 
for the available information are necessary to make richer 
assessments of disease sub-categorization (Curtis et al., 2012). A 
pioneering work that advocates this perspective in breast cancer 
research is the METABRIC initiative. The METABRIC project is a 
Canada–UK initiative that aims to group breast cancers based on 
multiple genomic, transcriptomic, and image data types recorded 
over 2000+ patient samples. This data set represents one of the 
largest global studies of breast cancer tissues performed to date. 
Similarly to (Curtis et al., 2012) we focus on integrating CNA and 
mRNA expression data, but in addition integrate clinical data 
too. We use integrative VAEs to showcase how such architectures 
can be designed, built, and used for cancer studies of this kind.

experimental setup
What follows is an outline of our experimental evaluation used to 
verify that the studied approaches produce valid representations 
and can be employed for data integration. The aim of this evaluation 
is threefold. First, for each of the architectures, we seek the optimal 
configuration in terms of choosing an appropriate objective function 
and parameters of the network. Second, we aim to evaluate and 
choose the most appropriate architectures for our data-integration 
tasks. In particular, we perform a comparative quantitative analysis 
of the representations obtained from each of the architectures based 
on different data sets at input. Finally, we discuss the findings in 
terms of their application to cancer data integration and provide a 
qualitative (visual) analysis of the obtained representations.

In particular, we tackle several classification tasks by 
integrating three data types from the METABRIC data—CNA, 
mRNA expression, and clinical data. We evaluate the predictive 
performance of the integrative approaches by combining clinical 
and mRNA data, CNA and mRNA data as well as clinical and 
CNA data, separately. The METABRIC data consists of 1,980 
breast-cancer patients assigned to different groups according to:
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• two immunohistochemistry (IHC) sub-types (ER+ and ER−),
• six intrinsic gene-expression sub-types (PAM50) (Prat et al., 

2010), and
• 10 IntegrativeCluster (IntClust) sub-types (Curtis et al., 2012).

These patients are also assigned to two groups based on 
whether or not the cancer metastasised to another organ after 
the initial treatment (i.e., Distance Relapse). The three cancer 
sub-types and the distance relapse variable (described with gene 
expression profiles, CNA profiles, and clinical variables for each 
patient), are used as target variables in the classification tasks 
performed in the study.

To control our study, we followed Curtis et al. (2012) and 
used a pre-selected set of the input CNA and mRNA features. 
In particular, we used the most significant cis-acting genes 
that are significantly associated with CNAs determined by a 
gene-centric ANOVA test. We selected the genes with the most 
significant Bonferroni adjusted p-value from the Illumina 
database containing 30,566 probes. After missing-data removal, 
the input data sets consisted of 1000 features of normalized gene 
expression numerical data, scaled to [0,1], and 1000 features of 
copy number categorical data. The clinical data included various 
categorical and numerical features such as: age of the patient at 
diagnosis, breast tumor laterality, the Nottingham Prognostic 
Index, inferred menopausal state, number of positive lymph 
nodes, size and grade of the tumor, as well as chemo-, hormone-, 
and radio-therapy regimes. Numerical features were discretized 
and subsequently one-hot encoded. This was combined with the 
categorical features, yielding 350 clinical features. Finally, all three 
data sets were sampled into five-fold cross-validation splits for 
each classification tasks separately, stratified according to the class 
distribution of the four target variables, respectively. Note that 
these splits remained the same for all experiments in the study.

While our four architectures differ in some key aspects related 
to how and where (on which level) they integrate data, for 
experimental purposes of this study, the depth of the architectures 
remained moderate, and constant across all experiments. In 
particular, in all designs except for MM-VAE, the encoder 
and decoder were symmetric and consisted of compression/
decompression dense layers placed before and after data merging. 
MM-VAE implemented an additional data-merging layer in 
the encoder network. Therefore, all of the architectures had a 
moderate depth between two and four hidden layers. The optimal 
output size of these layers was evaluated for different values of 
128,256 and 512. Moreover, all layers used batch normalization 
(Ioffe and Szegedy, 2015) with Exponential Linear Unit (Clevert 
et al., 2016) activations (except for the bottleneck and the output 
layers). All of the architectures also employed a hidden dropout 
component with a rate of 0.2. Note that the final layers of the CNA 
and clinical branches employed sigmoid activation function. The 
models were trained for 150 epochs using an Adam optimizer 
(Kingma and Ba, 2015) with a learning rate of 0.001 (with 
exponential decay rates of first- and second-moment estimates β1 
= 0.9 and β2 = 0.999) and a batch size of 64. Furthermore, we also 
investigated the performance of representations with different 
sizes. For each of the architectures and their configurations, we 
learned and evaluated representations with sizes 16, 32, and 64.

In the experiments we also considered choosing an optimal 
objective function that would improve the disentanglement 
between the embedded components. The objective functions 
consider both the reconstruction loss and a regularization 
term. For the former, given that we integrated heterogeneous 
data, we incorporated Binary Cross Entropy loss for the 
categorical and Mean Squared Error loss for the continuous 
data. Note that, while the CNA data is categorical and so 
multivariate categorical distribution would be suitable, an 
approach such as one-hot encoding would substantially 
increase the data dimensionality. Therefore, we employed 
label smoothing (Salimans et al., 2016), where the form 
of pθ(xcna|z) is a multivariate Bernoulli distribution, with 
values of xcna scaled to [0,1]. For the regularization terms, 
we evaluated different options which include weighted KL 
divergence and weighted MMD. We tested different values 
of weight β, β∈{1,10,15,25,50,100}, for each of the two 
regularization terms.

To make optimal design decisions, we evaluated the quality 
of the representations obtained from our four integrative 
architectures on three integrative tasks, each of these with 108 
different network configurations with respect to the hyper-
parameters outlined above. In particular, we evaluated the 
performance of a given configuration by training a predictive 
model on the produced representations and measuring its 
predictive performance on a binary classification task of IHC 
cancer sub-types (ER+ and ER−). For all network configurations, 
we trained and evaluated a Gaussian naive Bayes classifier, since 
it does not require tuning of additional hyper-parameters for the 
downstream task. We performed a five-fold cross-validation and 
report the average accuracy.

Once we identified the appropriate configuration for each 
of the architectures, we evaluated the quality of the learned 
representation in terms of predictive performance on the 
remaining three classification tasks. In particular, we evaluated 
the performance of three different methods trained on different 
representation. These included Gaussian naive Bayes classifier, 
SVMs (with RBF kernel C = 1.5 and gamma set to 1/Nf, where 
Nf denotes the number of features) and Random Forest (with 50 
trees and 1/2 of the features considered at every split). For all three 
classification tasks we also performed a five-fold cross-validation 
and report the average accuracy. We also compared these results 
with the performance of predictive models trained on: (i) the raw 
(un-compressed) data, as well as (ii) data transformed using PCA 
(a linear method for data transformation).

The integrative VAE architectures are implemented using the 
Keras deep learning library (Chollet et al., 2015) with Tensorflow 
backend. The code for training and evaluating the performance 
of the VAE networks is available on this repository.1

Finally, we visually inspected the learned representations of 
the whole data set obtained from each of the architectures, and 
compared them to the uncompressed data. For this task we 
employed the t-distributed stochastic neighboring embedding 
(tSNE) (van der Maaten and Hinton, 2008) algorithm.

1 https://github.com/CancerAI-CL/IntegrativeVAEs 
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ResUlTs
We present and discuss the results of the empirical evaluation. 
First, we report on the analyses for identifying the suitable design 
choices within the integrative approaches. Next, we present the 
results of the analyses of predictive performance of three different 
predictive methods applied to representations obtained from our 
VAE architectures with the optimal configuration. Finally, we 
present a visual analysis of the learned representations obtained 
from the evaluated architectures.

Design of Integrative VAes
For each integrative task, we investigated 108 different 
configurations for each architecture. These highlighted the 
effect of the size of the learned embedding, the optimal size of 
each of the dense layers, the most appropriate regularization 
in the objective function, and how much this regularization 
should influence the overall loss. We evaluated these 
configurations for all four architectures on three integrative 
tasks, by comparing the average train and test performance 
of classifying IHC sub-typed patients. The results, in general, 
indicate that properties of these configurations for each 
architecture are consistent across the three integrative tasks. 
Therefore, for brevity, here we only present the results when 
combining clinical and mRNA data. The rest of the results, 
namely for combining CNA and mRNA, and CNA and clinical 
data are given in the Supplementary Material.

Figure 6 presents the downstream performance of predictive 
models, trained on the representations produced by the 
integrative VAEs on clinical and mRNA data. In particular, 
Figures 6A–D compare the performance from representations 
obtained from CNC-VAE, X-VAE, MM-VAEm and H-VAE, 
respectively. In general, the configurations regularized with 
MMD yield better representations that lead to substantially 
more accurate predictions than the configurations regularized 
with KL. In terms of the weight of the regularization term, the 
configurations are robust in general, with moderately large 
weights (β = [25,50]) leading to slightly better results.

In term of the size of the dense layers, all architectures except 
H-VAE exhibit stable behavior, with moderate sizes of (size = 
[128,256]) leading to slightly better representations than the ones 
with dense layer size of 512 in the case of X-VAE and MM-VAE. 
In the case of H-VAE, the quality of the representations is more 
affected by the size of the layer where smaller sizes lead to better 
performance than larger ones.

Considering the size of the latent space, the networks that 
produce higher-dimensional encodings lead to better predictive 
performance. This is particularly the case for X-VAE and 
MM-VAE architectures, while the other two are mostly unaffected. 
Note however, that the influence of the size of the representations 
on the overall performance is also related to the integrative task. 
More specifically, for this particular classification task, higher-
dimensional representations when integrating clinical and 
mRNA data yield better and more stable performance overall. 
In contrast, when integrating clinical/CNA or CNA/mRNA data 
lower-dimensional representations are better.

In summary, based on these results, we made the following 
design decisions for configuring the integrative VAE 
architectures for the rest of the experimental analyses. First, the 
networks were trained using the MMD regularization with β = 
50, since in all cases using MMD exhibited better performance 
than the networks trained using KL divergence with various 
levels of β. Next, we set the size of the dense layers to 256. Finally, 
since large sizes of the latent space yielded better performance, 
we set it to be 64.

Quality of the learned Representations
In this set of experiments, we focused on testing our central 
hypothesis that the integrative VAE architectures are able 
to produce representations that yield stable and improved 
predictive performance. We evaluated their performance in 
three classification tasks: predicting IC10, PAM50 sub-types, and 
Distance Relapse.

We used three standard predictive methods: Naive Bayes, SVM, 
and Random Forest. These were deployed: (i) on representations 
learned (compressed) from data integrated through our four 
VAE architectures; (ii) on embedded combined data using PCA 
with 64 components; (iii) on combined raw (un-compressed) 
data; and (iv) on each of the data sources separately in order to 
evaluate the integrative effect. Apart from this last case, the data 
sources for integration were CNA/mRNA, clinical/mRNA, and 
clinical/CNA data, as before.

Table 1 summarises the results of this analysis. In general, all 
of the VAE integrative architectures outperform the baselines on 
all three predictive tasks when integrating CNA/mRNA, clinical/
mRNA data, and clinical/CNA. Overall, all architectures produce 
better representations when integrating clinical and mRNA data. 
This result is consistent across all three tasks, where the learned 
representations coupled with SVMs yield the best predictive 
performance. This finding is also supported by the benchmark 
approaches, where combining clinical and mRNA data yields 
better results than CNA/mRNA and clinical/CNA. Note that, for 
the task of predicting Distance Relapse, integrating clinical/CNA 
exhibits, in general, slightly worse but comparable performance 
to the one produced for clinical/mRNA. These results suggest 
that for our particular classification tasks, some data types are 
more beneficial to integrate than others.

We note that while VAEs lead to more accurate predictions, 
this performance improvement is not significant when 
compared to PCA. We conjecture that this might be an artifact 
of many linear relations present in the data, which are captured 
by the PCA. In contrast, the integrative VAEs are also able 
to model the non-linearities in the data, which gives them a 
performance advantage.

Comparing the performance of the four VAE architectures, 
H-VAE and X-VAE mostly yield more accurate predictions, 
however, the difference is not significant. Overall, for these 
three tasks, H-VAE produces more stable and better quality 
predictions when applied for integrating clinical and mRNA 
data, given the design decisions outlined previously. While for 
simplicity we made the same design choices for all architectures, 
the performance of these models can be further improved, with 

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1205145

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Variational Autoencoders for Cancer Data IntegrationSimidjievski et al.

9

FIgURe 6 | Comparison of the downstream performance on the IHC classification tasks of a predictive model trained on the representations produced by integrating 
clinical and mRNA data using (A) CNC-VAE, (B) X-VAE, (C) MM-VAE, and (D) H-VAE. Full circles denote the training accuracy, while empty circles and bars denote 
the test accuracy averaged over five-fold cross-validation. Red and blue colors denote the configurations when Maximum Mean Discrepancy (MMD) and Kullback–
Leibler (KL) are employed, respectively. Bottom x-axis depicts the size of the latent dimension, while the top x-axis the size of the dense layers of each configuration.
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careful calibration of both the architecture components as well 
as the hyper-parameters of the classifier considered.

Qualitative Analyses
In the last set of experiments, we visually inspected the learned 
representations of the whole data set, obtained from the H-VAE 
by integrating clinical/mRNA data. Using tSNE diagrams, shown 
in Figure 7, we compared the level of disentanglement of the 
embedded data with both, raw (uncompressed) data as well 
as PCA-transformed data. The tSNE projections clearly show 
that H-VAE is able to produce more sparse and disentangled 
representations in comparison to raw or PCA transformed data. 
Note that the t-SNE projections of the raw and PCA-transformed 
data also indicate data separability. This may explain the 
competitive performance produced by the benchmark classifiers 
in the previous section, as well as the advantage of integrating 
clinical and mRNA data.

DIsCUssION
In this study we investigated and evaluated aspects of VAE 
architectures important for integrative data analyses. We 
designed and implemented four integrative VAE architectures, 
and demonstrated their utility in integrating multi-omics and 
clinical breast-cancer data. We systematically experimented 
(we evaluated 1296 different network configurations) with 
how the data should be integrated as well as what appropriate 

architecture parameters produce high-quality, low-dimensional 
representations. In the case of integrating breast-cancer data 
we found that the choice of an appropriate regularization when 
training the autoencoders is imperative. Our results show that 
the integrative VAEs yield better (and more disentangled) 
representations when MMD is employed, which also corresponds 
to findings from other studies (Zhao et al., 2017; Chen et al., 
2018). Moreover, we found that giving a moderately large weight 
to this regularization term further improves the quality of the 
learned representations. The results show that the quality of the 
representations is mostly invariant to the size of the hidden layers 
and the embedding dimension, suggesting that the investigated 
integrative architectures are robust. Note however, that such 
parameters are task-specific, and therefore it is recommended 
that they are tuned according to the dimensionality of the input 
data as well as the depth of the network.

In the context of performance, all four integrative VAE 
architectures are generally able to produce better representations 
of the data when compared to a linear transformation approach. 
This suggests that the integrative VAEs are able to accurately 
model the non-linearities present in the integrated data, while 
still being able to reduce the data-dimensionality, leading to good 
representations. When comparing the different architectures, 
the results showed that overall the H-VAE and X-VAE exhibit 
the best performance, followed by the simple CNC-VAE and 
MM-VAE. This indicates that, while all of the architectures are 
able to accurately model the data, H-VAE exhibits more stable 
behavior. Moreover, given that H-VAE is a hierarchical model, 

TABle 1 | Comparison of the downstream predictive performance (on three classification tasks) of the three predictive models trained on raw and PCA-transformed 
data as well as representations produced by the four integrative Variational Autoencoders (VAEs) by integrating copy number aberration (CNA)/mRNA, clinical/mRNA, 
and clinical/CNA data.

DR PAM50 IC10

NB sVM RF NB sVM RF NB sVM RF

CNC-VAE CNA + mRNA 0.648 0.687 0.684 0.731 0.789 0.749 0.742 0.823 0.784
Clin. + mRNA 0.732 0.750 0.711 0.784 0.827 0.750 0.829 0.834 0.781
Clin. + CNA 0.682 0.751 0.711 0.563 0.624 0.503 0.612 0.657 0.485

X-VAE CNA + mRNA 0.639 0.687 0.685 0.715 0.788 0.751 0.747 0.835 0.785
Clin. + mRNA 0.751 0.774 0.735 0.787 0.816 0.758 0.821 0.858 0.781
Clin. + CNA 0.695 0.772 0.724 0.576 0.628 0.517 0.627 0.679 0.487

MM-VAE CNA + mRNA 0.659 0.693 0.688 0.739 0.774 0.759 0.774 0.841 0.799
Clin. + mRNA 0.744 0.756 0.731 0.803 0.800 0.760 0.824 0.838 0.781
Clin. + CNA 0.746 0.770 0.732 0.587 0.605 0.508 0.604 0.621 0.477

H-VAE CNA + mRNA 0.656 0.687 0.683 0.724 0.792 0.744 0.746 0.816 0.792
Clin. + mRNA 0.748 0.774 0.746 0.790 0.827 0.768 0.794 0.839 0.776
Clin. + CNA 0.728 0.761 0.732 0.525 0.579 0.469 0.477 0.594 0.393

PCA CNA + mRNA 0.628 0.694 0.682 0.595 0.696 0.632 0.639 0.766 0.675
Clin. + mRNA 0.729 0.754 0.724 0.708 0.771 0.693 0.761 0.828 0.702
Clin. + CNA 0.673 0.745 0.733 0.562 0.621 0.560 0.601 0.669 0.606

Raw data CNA + mRNA 0.618 0.696 0.677 0.528 0.581 0.730 0.723 0.664 0.763
Clin. + mRNA 0.754 0.696 0.748 0.492 0.596 0.739 0.344 0.530 0.780
Clin. + CNA 0.757 0.696 0.763 0.407 0.539 0.617 0.517 0.615 0.646

Raw data Only CNA 0.609 0.696 0.647 0.430 0.523 0.568 0.621 0.604 0.624
Only mRNA 0.612 0.696 0.687 0.646 0.604 0.730 0.769 0.633 0.774
Only clinical 0.757 0.708 0.747 0.265 0.363 0.437 0.110 0.181 0.259

Italic typeface denotes the best performance obtained by a particular method for a particular classification task. Bold typeface denotes the best-performing method for the particular 
classification task.
CNC-VAE, Variational Autoencoder with Concatenated Inputs; X-VAE, X-shaped Variational Autoencoder; MM-VAE, Mixed-Modal Variational Autoencoder; H-VAE, Hierarchical 
Variational Autoencoder.
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all of the learned representations (including the intermediate 
ones from the low-level autoencoders) can be further utilized 
for more delicate, interpretable analyses. Note however, when 
employing H-VAE, there is a trade-off between the quality of the 
learned representations and the time required for learning them. 
Therefore, when time or resources are limited, employing X-VAE 
or even the simple CNC-VAE will yield favourable results.

In terms of integrative analyses of breast-cancer data, the 
results indicate that, for the particular classification tasks 
considered in our study, some data types are more amenable 
to integrating than others. More specifically, utilizing the VAEs 
for integrating clinical and mRNA data coupled with the right 
classification method led to better downstream predictive 
performance than the alternative integration of CNA and mRNA 
data. This highlights an important aspect of this study: for 
premium results in such integrative data analyses, one should 
not only focus on the choice and tuning of appropriate predictive 
methods, but also on the type of data at input. In other words, 
rather than considering separate components of the analysis, one 
should focus on the whole end-to-end integrative process.

Autoencoders have been used for learning representations and 
analyzing transcriptomic cancer data before. In particular, our 
work relates to Way and Greene (2018), since it employs VAEs for 
constructing latent representations and analyzing transcriptomic 
cancer data. The authors show that VAEs can be utilized for 
knowledge extraction from gene expression pan-cancer TCGA 
data (TCGA et al., 2013), thus reducing the dimensionality of 
the single, homogeneous data source while still being able to 
identify patterns related to different cancer types. Our work is 
also related to Tan et al. (2015), where the authors deploy DAE 
for integrating and analyzing gene-expression data from TCGA 
(TCGA et al., 2013) and METABRIC (Curtis et al., 2012). Tan 
et al. (2015) also employ DAE for learning latent features from 
multiple data sets. The latent features are used to identify genes 
relevant to two different breast cancer sub-types.

In contrast to Curtis et al. (2012) and Tan et al. (2015), we 
designed novel VAE architectures for integrating heterogeneous 
data, hence enabling learning patterns that relate to the intrinsic 
relationships between different data types. While DAEs aim at 
learning an embedded representation of the input, the VAEs 

focus on learning the underlying distribution of the input data. 
Therefore, besides data integration, the methods proposed in this 
paper can be also employed for data generation.

More generally, our work relates to other approaches based 
on autoencoders for data integration on various tasks of cancer 
diagnosis and survival analysis. These include using DAEs for 
integrating various types of electronic health records (Miotto 
et al., 2016) as well as custom designed autoencoders for analyses 
of liver (Chaudhary et al., 2018), bladder (Poirion et al., 2018), 
and neuroblastoma (Zhang et al., 2018) cancer types.

In a broader context, our work is related to the long tradition 
of data integration approaches for addressing various challenges 
in cancer analyses. In particular, Curtis et al. (2012) present an 
approach for clustering breast-cancer patients based on integrated 
data from the METABRIC cohort. The approach uses the 
Integrative Clustering method (Shen et al., 2009) which produces 
clusters from a multi-omic joint latent embedding. These clusters 
are then utilized for identifying mutation-driver genes (Pereira 
et al., 2016) and survival analyses (Rueda et al., 2019). In this 
context, the work presented in this paper can be readily applied 
to similar tasks. In particular, the integrative VAEs can be used 
to learn common representations of the heterogeneous data 
at input, which can then be used for constructing clusters that 
address the aforementioned analysis tasks. In contrast to the 
Integrative Clustering method, the integrative VAEs can handle 
high-dimensional data sources, which provide better integration 
and therefore may further improve the overall performance.

In a similar context, the Similarity Network Fusionmethod 
by Wang et al. (2014) successfully addresses intermediate 
heterogeneous data integration for identifying cancer sub-types for 
various kinds of cancers including glioblastoma, breast, kidney, and 
lung carcinoma. Similarity Network Fusion first constructs graphs 
from the individual data sources, which are in turn combined into a 
single, integrative, graph using nonlinear similarity approach. Such 
graphs can be also used in conjunction with the integrative VAEs. 
More specifically, by using such graphs will impose a structure 
of the integrative data, which in turn may lead to far better (and 
disentangled) representations. Next, Gevaert et al. (2006) present 
a data integration approach with Bayesian networks for predicting 
breast cancer prognosis. The authors report that employing Bayesian 

FIgURe 7 | Qualitative comparison of the learned representations with H-VAE, raw data, and PCA-transformed data when integrating clinical and mRNA data.
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networks for intermediate integration yields better performance for 
the particular predictive task. Since our proposed VAE approaches 
address full data integration, they can also be readily used together 
with the aforementioned integrative approaches.

We identified several additional directions for future work. 
First, the experiments reported in this study are limited to 
integrating heterogeneous multi-omics data from two sources. 
While in principle the autoencoder designs allow for integrating 
heterogeneous data from many more sources simultaneously, we 
intend to empirically evaluate the generality of our approaches 
and extend them to other types of data such as imaging data. Next, 
considering the specific architecture decisions made in this paper, 
we plan to further refine the designed architecture and fine-tune 
the learning hyper-parameters in ordered to improve the quality 
of the learned representations. This includes experimenting with 
deeper architectures as well as implementing methods that allow 
for more sophisticated priors as well as methods that focus on 
more flexible posteriors (Rezende and Mohamed, 2015; Kingma 
et al., 2016). Finally, we intend to ensemble the various proposed 
architectures which should yield more stable and robust findings, 
and take a step further towards producing more meaningful and 
interpretable findings.

While VAEs are capable of generating useful representations 
for vast amounts of complex heterogeneous data, in terms 
of interpretability, the biological relevance of the learned 
representations has to be verified if they are to be used in clinical 
decision support systems. Previous work (Tan et al., 2015) has 
attempted to interpret latent features, wherein features which 
were most influential in deciding clinical phenomena such ER/
IHC status were extracted and identified. However, the actual 
interpretations of these features have received comparatively 
little attention. In order to interpret extracted VAE features 
and bring explanation to the learned representations, biological 
and biomedical ontologies such as gene ontology (GO2) have 
proven very useful (Titus et al., 2018; Way and Greene, 2018). 
An immediate continuation of the work presented in this paper 
is performing enrichment analysis on genes most related to 
each VAEs’ learned embedding to investigate the joint effects 
of various gene sets within specific biological pathways. Tools 
such as ShinyGo3 allow KEGG Pathway Mapping4, where the 
relationships between genes and human disease including 
various types of cancer can be identified. Using this approach 
to interpretability can potentially offer a qualitative metric to 
evaluate and compare different VAE architectures based on 
the biological relevance of the features extracted from learned 
representations to breast cancer and other cancer types in general.

CONClUsION
In conclusion, in this study we demonstrate the utility of VAEs 
for full data integration. The design and the analyses of different 
integrative VAE architectures and configurations, and in 

2 http://geneontology.org
3 http://bioinformatics.sdstate.edu/go/
4 https://www.genome.jp/kegg/pathway.html#mapping

particular their application to the tasks of integrative modeliing 
and analyzing heterogeneous breast cancer data, are the main 
contributions of this paper.

The studied approaches have several distinguishing 
properties. First, they are able to produce representations 
that capture the structure (i.e., intrinsic relationships between 
the data variables) of the data and therefore allow for more 
accurate downstream analyses. Second, they are able to reduce 
the dimensionality of the input data without loss of quality 
or performance. Therefore, in the process of compressing 
the input data, they can reduce noise implicitly present in 
the data. Third, they are modular and easily extendable to 
handle integration of a multitude of heterogeneous data sets. 
Next, while the integrative VAEs can be used as a data pre-
proccessing approach for learning representations, they can 
also be utilized in a more generative setting for producing 
surrogate data, which can be used for more in-depth analysis. 
Finally, we show that VAEs can be successfully applied to 
learn representations in complex integrative tasks, such as 
integrative analyses of breast cancer data, that ultimately lead 
to more accurate and stable diagnoses.
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Deciphering the code of cis-regulatory element (CRE) is one of the core issues of today’s
biology. Enhancers are distal CREs and play significant roles in gene transcriptional
regulation. Although identifications of enhancer locations across the whole genome
[discriminative enhancer predictions (DEP)] is necessary, it is more important to predict
in which specific cell or tissue types, they will be activated and functional [tissue-specific
enhancer predictions (TSEP)]. Although existing deep learning models achieved great
successes in DEP, they cannot be directly employed in TSEP because a specific cell or
tissue type only has a limited number of available enhancer samples for training. Here, we
first adopted a reported deep learning architecture and then developed a novel training
strategy named “pretraining-retraining strategy” (PRS) for TSEP by decomposing the
whole training process into two successive stages: a pretraining stage is designed to train
with the whole enhancer data for performing DEP, and a retraining strategy is then
designed to train with tissue-specific enhancer samples based on the trained pretraining
model for making TSEP. As a result, PRS is found to be valid for DEP with an AUC of 0.922
and a GM (geometric mean) of 0.696, when testing on a larger-scale FANTOM5 enhancer
dataset via a five-fold cross-validation. Interestingly, based on the trained pretraining
model, a new finding is that only additional twenty epochs are needed to complete the
retraining process on testing 23 specific tissues or cell lines. For TSEP tasks, PRS
achieved a mean GM of 0.806 which is significantly higher than 0.528 of gkm-SVM, an
existing mainstream method for CRE predictions. Notably, PRS is further proven superior
to other two state-of-the-art methods: DEEP and BiRen. In summary, PRS has employed
useful ideas from the domain of transfer learning and is a reliable method for TSEPs.

Keywords: deep learning, pretraining, retraining, tissue-specific enhancers, prediction
INTRODUCTION

One of the core issues of today’s biology is to decipher the code of cis-regulatory element (CRE)
(Yáñez-Cuna et al., 2013). Enhancers are important distal CREs and play significant roles in gene
transcriptional regulation (Bulger and Groudine, 2011). The regulation of gene expression by
enhancers acts as a binding platform for recruiting transcriptional factors and cofactors to activate
transcriptions of target genes (Shlyueva et al., 2014; Li et al., 2016).
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Accurate identification of enhancer locations across the whole
human genome is extremely important and is currently of great
interest based on two facts: (1) ENCODE project indirectly
identified >500,000 putative enhancers (Hoffman et al., 2012;
Ernst and Kellis, 2012) and their total length might reach 12% of
the human genome (Fishilevich et al., 2017), suggesting the
enhancer element is a nonnegligible component of the human
genome, and (2) genome-wide association studies (GWAS) in
the past decade locked over 55% of the disease-associated SNPs
in the non-coding DNA (Maurano et al., 2012). Some of them
were reported to be exactly located within the enhancer regions,
implying strong relationships between human diseases and the
enhancer element. For example, a cancer-associated SNP of
rs6983267 identified by human GWAS of intestinal tumors
was reported to be contained within a Myc enhancer
regulatory element (Sur et al., 2012). However, because of two
hallmarks of enhancers, it is a challenging problem to distinguish
them from other CREs: regulating manners of long-distance and
bidirectionality. Typically, distal enhancers are located more
than 10kb away from the target genes they regulate (Bulger
and Groudine, 2011), and on the other hand, an enhancer can
bidirectionally function both at the upstream and downstream of
the target gene, which doubles the searching difficulty (Li
et al., 2016).

In the past two decades, researchers have developed several
distinct experimental strategies from different viewpoints for
inferring the locations of active enhancers, such as transgenic
mouse assay (Visel et al., 2007), using chromatin features from
ENCODE data (Heintzman et al., 2009; Ernst and Kellis, 2012;
Hoffman et al., 2012), massively parallel report assay (MPRA)
employing barcode-containing transcripts (Melnikov et al., 2012;
Kwasnieski et al., 2014; Shen et al., 2015), STARR-seq using self-
transcribing transcripts (Arnold et al., 2013), and cap analysis of
gene expression (CAGE), utilizing enhancer RNA (eRNA)
(Andersson et al., 2014).

An alternative way for identifying enhancers is by
computational methods, which try to learn intrinsic features
from credible enhancer sequence samples and then build reliable
prediction models for making evaluation and discovery. This
mechanistic approach is feasible because DNA sequence is both
sufficient and necessary for enhancer activity: (1) an enhancer
sequence can still drive gene expressions when being removed
from its endogenous context to upstream of a reporter gene
(Kvon et al., 2012), suggesting its sufficiency; (2) a disruption of
core motif within an enhancer sequence would substantially
reduce enhancer activity (Kwasnieski et al., 2014), implying its
necessity. As a matter of fact, a series of studies have already
addressed this issue in the past decade (Lee et al., 2011;
Kleftogiannis et al., 2014; Liu et al., 2016; Beer, 2017; Yang
et al., 2017). A pioneer finding is that k-mer features of length 6
are predictive sequence features for discriminative enhancer
prediction (DEP) when using ChIP-seq data of P300 (Lee
et al., 2011). An advanced version of k-mer tool named gkm-
SVM, which is one of the most popular method for regulatory
sequence predictions (Ghandi et al., 2014), was recently
employed for DEP (Beer, 2017). iEnhancer-2L proposed to use
pseudo k-tuple nucleotide composition features for identifying
Frontiers in Genetics | www.frontiersin.org 2153
enhancers and their strengths (Liu et al., 2016). Notably, BiRen
(Yang et al., 2017) recently introduced more advanced tools
including convolutional neural network (CNN) and bidirectional
recurrent neural network (BRNN) for DEP. The above methods
were all developed for DEP and they would give no answers
about tissue-specific enhancer prediction (TSEP). At this point,
DEEP (Kleftogiannis et al., 2014) integrated three resources of
enhancer data, ENCODE, FANTOM5, and VISTA, and
developed an ensemble model for DEP as well as for TSEP.

Although deep learning methods including BiRen were
adopted for DEP, they have some problems that should be
addressed for the task of TSEP. In the past 5 years, deep
learning tools were successfully applied in some areas of
biology from genomics and imaging to electronic medical
records (Webb, 2018). Particularly, CNN has become a
dominating method in various prediction problems, including
predicting transcriptional factor binding sites (TFBS) (Alipanahi
et al., 2015; Quang and Xie, 2016; Zeng et al., 2016) and
predicting chromatin effects of DNA variants (Zhou and
Troyanskaya, 2015; Kelley et al., 2016; Liu et al., 2018; Min
et al., 2017). However, these successful experiences might not be
directly transferred to TSEP by the following dilemma: on the
one hand, a given enhancer for one specific tissue might not be
activated in another tissue, so it is impossible to make multiple
TSEPs only with one deep learning model; on the other hand, if
we divide the whole enhancer dataset into multiple tissue-specific
enhancer datasets and then build multiple prediction models, the
sample size of each tissue is only several hundred or a few
thousands, which is far less than the number of parameters (often
hundreds of thousands) needed to be trained, suggesting that the
built models might take high risks of falling into overfitting.

Here, we proposed a novel deep learning training strategy
named pretraining-retraining strategy (PRS), which is especially
appropriate for the task of TSEP. To address the problem of
multiple TSEPs, we decomposed the training process into two
successive stages: a pretraining stage and a retraining stage. The
pretraining stage is designed for learning an appropriate network
structure with optimal model hyperparameters of one model by
using the whole enhancer data. Subsequently, a retraining stage is
adopted only with a given tissue-specific enhancer dataset based
on the trained pretraining model, suggesting a novel training
pattern of one pretraining model together with multiple retraining
models. To address the problem of overfitting, PRS allows all the
hyperparameters to learn reasonable values when the pretraining
stage is completed. And those reasonable values are good initial
values of the retraining process, which enable the retraining model
to converge very fast even with limited number of tissue-specific
enhancer samples. PRS was tested on FANTOM5 enhancer data
and was proven to be a powerful model for TESP.
MATERIALS AND METHODS

Datasets Preparation
In this work, the FANTOM5 enhancer data was used for
performing prediction tasks. FANTOM consortium released a
January 2020 | Volume 10 | Article 1305
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large-scale enhancer dataset that contains 65,423 enhancer
activities (measured by TPM (tag per million mapped reads) of
their expressions of eRNA) in 1,829 distinct tissues or cell lines in
human (Andersson et al., 2014), which was recorded as a matrix
E65423×1829 with 65,423 rows and 1,829 columns (http://fantom.
gsc.riken.jp/5/datafiles/latest/extra/Enhancers/).

In the pretraining stage, we used the following strategy for
constructing a large-scale enhancer dataset: at first, we took a
cut-off criterion of TPMmin ≥ 0.08 (presents the minimal nonzero
value of TPM across all tissues and cell lines of a given enhancer)
to select most active enhancers, leaving only 5386 enhancers
passing this criterion. Secondly, we excluded enhancers shorter
than 100bp and fixed the enhancer sequence length at 1000bp
with 4667 enhancers. Finally, we employed a redundancy
reduction procedure CD-HIT (Huang et al., 2010) with a
cutoff threshold of 0.8 and 4653 enhancers were remaining as
the final positive samples. The length distribution of all 4,653
enhancer positive samples can be found in Supplementary
Figure 1. We randomly selected 46,530 DNA sequences with
length of 1,000 bp as negative samples from non-enhancer
intergenic regions (obtained from the GRCh37 reference
genome by excluding exon, intron and known enhancers) to
meet a consensus of recent studies (Kleftogiannis et al., 2014; Liu
et al., 2016; Yang et al., 2017).

In the retraining stage, 23 representative tissues or cell lines
were chosen for showing cell-specific enhancer prediction
performances. We also took a cut-off criterion of TPM 0.8.0.8
is the 75% quantile of the whole TPM distribution, implying that
the condition of larger than 0.8 guarantees activity of enhancer)
to select most active enhancers for each tissue or cell line. Ten
times of the amount of each positive sample were selected as the
corresponding negative samples.

Learning Subsequence Features With CNN
CNN is a modern combination of convolutional operator and
classic neural network by introduction of some advanced
techniques including rectified linear unit (ReLU), pooling and
dropout. Convolutional operator is very powerful for detecting
significant local features that are further denoised by ReLU and
pooling. When performing prediction with neural network,
CNN was proven efficient and successful in various image
recognition tasks including handwriting recognition, face
recognition (LeCun et al., 2015). Here, we adopted a similar
framework with DeepBind (Alipanahi et al., 2015) to perform
CNN model, which in turn includes three layers: a convolution
layer (Conv), a activation layer (ReLU), a pooling layer (Pool),
where the outputs of the final layer are regarded as selected
features of the inputs (Figure 1).

Learning Dependencies With
Bidirectional GRU
Recurrent neural network (RNN) is one kind of the advanced
ANN model that has a “memory” which could capture the
previous information, which is appropriate to analyze the
sequential data (Schuster and Paliwal, 1997). Over the years,
more advanced architectures of RNNs were developed to
overcome shortcomings of the classic RNN model. Among
Frontiers in Genetics | www.frontiersin.org 3154
them, bidirectional RNN (BRNN) is designed for those
situations where output at time step is not only associated with
the previous states, but also with future information. Because of
the forward and inverse strand in enhancer sequences with
bidirectional regulation function, BRNN model was proven to
be very efficient to deal with regulatory sequence prediction
problems (Quang and Xie, 2016).

However, BRNN still suffers a vanishing gradient problem
that makes it hard to capture the long-term dependencies in the
sequential data. For solving this problem, a gated recurrent units
(GRU) was proposed by Bahdanau et al. (2014) by introducing
some new concepts including update gate, reset gate and
candidate “memory” layer. In this study, the bi-directional
gated recurrent unit (Bi-GRU) was designed to connect with
the last layer of CNN (the dropout layer) and six matrices WU
will be learned by data (Figure 1).

Model Design and PRS
Previous studies on TFBS predictions reported that the
convergent filter matrices of the CNN layer are exactly
consistent with TF binding motif (Alipanahi et al., 2015; Zhou
and Troyanskaya, 2015; Kelley et al., 2016; Quang and Xie, 2016),
suggesting CNN is efficient for learning local subsequence
features. More importantly, a recent study (Quang and Xie,
2016; Yang et al., 2017) had used RNN layer to effectively
address the dependence of the adjacent features in a sequence.
Here, we adopted a similar deep learning model of BiRen (Yang
et al., 2017) that added an RNN layer following the CNN layer
(Figure 1). We expect to firstly learn local subsequence features
(TF motifs) of an enhancer sequence with CNN, and then to
learn how to combine these motifs (dependence of motifs) to
form an enhancer sequence with RNN.

To solve the problem of TSEP, we proposed a novel PRS.
Our idea is that we firstly use the whole FANTOM5 enhancer
data (containing all tissues and cell lines) to determine an
optimal network structure and all the model parameters,
based on which we construct and record the pretraining
model. Theoretically, such a pretraining model is only valid
for discriminating enhancer from non-enhancers. For a given
tissue, we will then take a retraining strategy by redoing training
process with its tissue-specific enhancer data based on the
pretraining model.

Pretraining With the Whole FANTOM5
Enhancer Data
We performed a pretraining process with the whole FANTOM5
enhancer data of Enhancer4653, which contains 4653 enhancer
sequences and 46530 non-enhancer sequences. Firstly, we
divided the whole dataset into three portions: 10/12 as training
set E_train for training model), 1/12 as validation set E_va (for
determining an optimal epoch) and 1/12 as testing set E_test (for
evaluating model). To begin with a CNN structure, the initial
values of model hyperparameters including filter number M,
filter length m and pooling size p were set to be 64, 5 and 3
respectively. Subsequently, the output of CNN is turned as the
input of RNN. Finally, a neural network with 32 neurons
(a weight matrix of WM) was designed to be followed with the
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RNN layer and the output of the neural network NN will further
be processed by a sigmoid function for mapping the predicted
values into interval [0,1] (Figure 1):

ŷ = sigmoid NNð Þ = 1
1 + e−NN

which is considered as the final predicted value of each
sample. This is the end of forward computation.

Here we took a rational strategy for preventing overfitting,
which aims to find an optimal epoch minimizing objective va as:
Frontiers in Genetics | www.frontiersin.org 4155
objectiveva = crossentropyva

+ l1 ‖M‖1 + l2 ‖WU‖1  + l3 ‖WM‖1,

crossentropyva = −
1
n o

yi∈E_va
yi log ŷ i + (1 − yi) log (1 − ŷ t)½ �,

where those yi ∈ E_va belong to the validation set E_va and they
never appeared in the training process. The strategy of minimizing
objective va not objective train, will effectively prevent overfitting and
FIGURE 1 | Flow chart of hybrid deep learning architecture.
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finally obtain the pretraining model (we call it the FANTOM
model) with all the model parameters and hyperparameters
determined. We finally evaluated effectiveness of the FANTOM
model with predicting accuracy on all elements belonging to the
testing set E_test.

Retraining With Specific Tissue (Cell Lines)
Enhancer Data
Once we have the FANTOM model, we next implement a
retraining strategy to predict tissue-specific enhancer based on
it. A hypothesis of the retraining strategy is that a specific tissue
enhancer dataset has similar pattern with the whole FANTOM5
enhancer dataset, which implies that the predicting model of
tissue-specific enhancer might share the same network structure
and all the model hyperparameters of FANTOM model. The
only differences between them are the updated values of those
parameters including filter matrices M and weight matrix WM.

Being different from regular training process that starts with
random initial parameters, our novel retraining strategy will start
with the convergent values of parameters obtained in the FANTOM
model.The retraining strategyhas someadvantageswhencomparing
with regular training: (1) it will rapidly reach optimal prediction
accuracy with only dozens of epochs, implying it is time-saving; (2)
theoptimalpredictionaccuracywillbesignificantlybetterthanthatofa
direct training (not beginwith the pretrainingmodel).

Evaluation of the Prediction Performance
Here, we used five indices for evaluating the prediction
performance of models: sensitivity (Sens or recall), specificity
(Spec), precision, accuracy (ACC), geometric mean (GM) value
and Matthew’s correlation coefficient (MCC):

Sens = recall =
TP

TP + FN
,

Spec =
TN

TN + FP
,

precision =
TP

TP + FP
,

ACC =
TP + TN

TP + FP + TN + FN
,

GM =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
precision � recallp

MCC =
TP � TN − FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
p

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

To test the balance between true positive and false positive
rates, another evaluating index is the Area Under the ROC Curve
(AUC). Because of the imbalance between the positive and
negative dataset, we applied GM as an important index to
assess the performance.
RESULTS

Predicting Housekeeping Enhancers
With the FANTOM Model
Wefirst determinedoptimalvaluesof threemodelhyperparameters
includingfilter numberM,filter lengthm, andpooling size pwithin
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theCNN layerwith the training data E_train the validation set E_va
and the testing set E_test When considering the optimal filter
number, some previous works reported their choices. DeepBind
(Alipanahi et al., 2015) used 16 filters for learning TF motifs;
DeepSEA (Zhou and Troyanskaya, 2015) adopted three layers of
CNN and took 320, 480, and 960 filters for learning chromatin
features respectively; Basset (Kelley et al., 2016) employed three
layers of CNN of 300, 200, 200 filters for chromatin accessibility
prediction. Based on these existing experiences, we executed a
parameter optimization strategy using grid search on the
combinations of filter number (32, 64, 128, 256) and filter length
[all odd numbers in (5, 25)] (Figure 2). Although researchers often
usedACC orAUC value for evaluating predictionmodel (Liu et al.,
2016; Beer, 2017; Yang et al., 2017), we here employed GM for
evaluation because assessment with GM is more appropriate for
extremely imbalance dataset (Kleftogiannis et al., 2014) (1:10 in this
study). As a result, amaximalGMvalue of 0.821was achieved at the
combination offilter number of 64 andfilter length of 23.Although,
another high GM value of 0.815 was also achieved at the
combination of filter number of 64 and filter length of 21, we
finally determined the optimal filter number as 64.

After fixing filter number of 64, we then took a further grid
search on the combinations of filter length with all odd numbers
in [5,25] and pooling size of 3, 5, 8, 11, 14 and 17. We here
employed GM value (Figure 2) together with AUC value (Figure
2) for a comprehensive evaluation. As a result, a maximal GM
value of 0.815 was achieved at the combination of filter length of
15 and pooling size of 3 and the combination offilter length of 23
and pooling size of 8 achieved the second rank with GM value of
0.796. We noted that GM values exhibit a decreasing trend when
pooling size is increasing (the column means of 3, 5, 8 and 11 are
0.750, 0.738, 0.732 and 0.731 respectively). In addition of the fact
that larger pooling size would lose more information, we
discarded the situations when pooling size is larger than 8 and
only considered the situations with pooling size of 3, 5 and 8. We
next focus on another evaluation indicator, AUC, for further
searching. Interestingly, AUC values perpetuate an opposite
trend when pooling size is increasing: the column means of 3,
5 and 8 are 0.912, 0.931 and 0.942 respectively, indicating that we
should choose pooling size with 8. Although the maximal AUC
value of 0.954 was achieved at filter length of 11 when fixing
pooling size with 8. A comprehensive evaluation both using GM
value and AUC value finally confirmed that the optimal filter
length is 23 and the optimal pooling size is 8 because GM value of
filter length of 11 was only 0.707 (significantly lower than 0.796
of filter length of 23).

In summary, we successively determined three important
model hyperparameters as follows: filter number of 64, filter
length of 23 and pooling size of 8. After confirming them, the
FANTOM model was reevaluated via a 5-fold-cross-validation
for a more objective assessment (Table 1). In the large-scale
imbalanced enhancer dataset, the FANTOM model achieved a
great AUC value of 0.922 (Supplementary Figure 3), an
acceptable MCC value of 0.527, and an acceptable AUPRC
value of 0.619 (Supplementary Figure 2) for this imbalanced
dataset. In a word, the FANTOM model is a reliable prediction
model on dataset of Enhancer4653, which consists of 4653
January 2020 | Volume 10 | Article 1305
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housekeeping enhancers (Zabidi et al., 2015) and 46530 non-
enhancers, implying it has potential to be a reliable model for
housekeeping enhancer prediction.

Predicting Tissue-Specific Enhancers With
a Retraining Strategy
Next we proposed to predict tissue-specific enhancers with a
retraining strategy, which aims to build an updated model based
on the pretraining model when adding a given tissue-specific
enhancer dataset. Similar as before, a training epoch containing a
cycle of forward computation and backpropagation was adopted
to perform updating.

Next two specific problems which arise are: how many
epochs is at least required and how many epochs is optimal?
To answer these, based on the FANTOM model, we designed
four groups of retraining with four distinct numbers of epochs:
10 epochs named FANTOM-ep10, 20 epochs named
FANTOM-ep20, 50 epochs named FANTOM-ep50 and 100
epochs named FANTOM-ep100. Meanwhile, we performed
another four groups of ab initio training (not based on the
FANTOM model): 10 epochs named None-ep10, 20 epochs
named None-ep20, 50 epochs named None-ep50, and 100
epochs named None-ep100. Training on 23 selected groups of
Frontiers in Genetics | www.frontiersin.org 6157
tissue-specific enhancer datasets (Materials and methods), a
total of eight boxplots representing their GM values is given in
Figure 3, from which we found two interesting facts: (1) GM
values of four pretraining-retraining models (starting with
FANTOM-) are far greater than those of ab initio training
models (starting with None-), suggesting the importance and
necessity of PRS; (2) among four pretraining-retraining
models, GM values of FANTOM-ep20 are relatively higher,
though no significant difference was found between
FANTOM-ep20 and FANTOM-ep10 (one-sided t-test, p-
value = 0.31). However, significant difference was found
between FANTOM-ep20 and FANTOM-ep50 (one-sided t-
test, p-value = 0.036), suggesting FANTOM-ep50 (and
FANTOM-ep100) model might fall into a problem of
overfitting. In a word, retraining with 10 epochs is at least
required and retraining with 20 epochs might be a good
choice. It is not necessary to retrain with epochs larger than
50, which is not only time-consuming but also is easy to fall
into overfitting.

After determining the optimal retraining epochs as 20, let
us show the superiority of FANTOM-ep20 model by precisely
comparing it to None-ep100 model (the best model within
None models). From Figure 3, it is obvious that all the points
FIGURE 2 | Determining optimal model hyperparameters of filter number, filter length, and pooling size. (A) GM values of grid search on the combinations of filter
number and filter length. (B) GM values of grid search on the combinations of filter length and pooling size. (C) AUC values of grid search on the combinations of
filter length and pooling size.
TABLE 1 | Prediction performances of pretraining stage with large-scale FANTOM5 enhancer data via a five-fold-cross-validation.

Enhancer dataset Sample size ACC AUC SEN SPE MCC GM

FANTOM5 enhancer data 4653 + 46530 0.929 0.922 0.499 0.972 0.527 0.696
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located below the line y = x, suggesting that FANTOM-ep20
model is superior to None-ep100 model at each tissue.
Furthermore, 23 FANTOM-ep20 models take their GM
values between 0.606 and 0.822 (with a mean of 0.746),
whereas 23 GM values of None-ep100 models distribute
from 0.122 to 0.634 with a mean of 0.345. A statistical t-test
showed that the former is extremely greater than the latter (p-
value = 1.44e-12), suggesting the difference between these two
is huge. Without a pretraining stage, TSEPs using deep
learning model are bad due to very low Sens values. It is
widely accepted that positive sample predictions are hard
when training on an extremely imbalanced dataset. The
mean of 23 Sens values of None-ep100 models has a very
low mean of 0.141, suggesting only 14% of positive samples
were accurately predicted. By contrast, when taking PRS, 23
Sens values of FANTOM-ep20 models has a mean of 0.580,
implying FANTOM-ep20 model accurately identified about
60% of positive samples. In summary, the prediction on tissue-
specific enhancer will be unreliable if a pretraining stage was
absent, whereas it will be much better and more acceptable by
adding a pretraining stage.

We investigated the resource consumption of prediction of
enhancer samples by running our script on a test computer with
Ubuntu 18.04 on processors of Intel(R) Core(TM) i7-7700 CPU
@ 3.60GHz, GPU of GeForce GTX 1080 Ti and 24 GB RAM.
When running on 4616 testing sequences with a length of
1000 bp, a total of 1.28s was needed for such predictions,
implying that the average computation time of each DNA
sequence was about 2.77 × 10-4 second.

Comparisons With Other Existing Methods
To further show the superiority of our method, comprehensive
comparisons with three state-of-the-art methods, gkm-SVM
(Ghandi et al., 2014; Ghandi et al., 2016; Beer, 2017), DEEP
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(Kleftogiannis et al., 2014), and BiRen (Yang et al., 2017), were
performed. There are two distinct strategies for such a
comparison: one is to run other tools on our dataset; the
other is to run our method on existing dataset that other
method used.

We first adopted the former comparison strategy for gkm-
SVM. Gkm-SVM is one of the most popular methods for
regulatory sequence prediction (Ghandi et al., 2014) and has
gradually become a dominating method in this area (Ghandi
et al., 2016). We downloaded its R package from the website
https://cran.r-project.org/web/packages/gkmSVM/index.html
and then run it on our 23 tissue-specific enhancer datasets with
its default parameters of L=10, K=6. A direct comparison with
our best model of FANTOM-ep20 can be found in Figure 4,
which shows the point-to-point comparisons of GM values on 23
tissues or cell lines. It is obvious that all the blue points
representing those GM values (a mean of 0.806) achieved by
FANTOM-ep20 models are above the orange points (a mean of
0.528) by gkm-SVM, suggesting our FANTOM-ep20 model is
superior to gkm-SVM on GM values. This is further confirmed
by the box-plots of these two and a t-test between them with a p-
value of 1.725e-15 in Figure 4, though AUC values of gkm-SVM
(a mean of 0.969) are slightly greater than those of our
FANTOM-ep20 model (a mean of 0.957).

We next applied the later comparison strategy for DEEP
and BiRen. DEEP (Kleftogiannis et al., 2014) trained many
individual models for 36 different tissues from FANTOM
enhancer data but it only provided the detailed prediction
results on three specific tissues: heart, liver, and brain, which
were chosen for comparisons. Using the latest version of
FANTOM5 enhancer data, we set the cutoff thresholds with
TPM > 1;TPM >4;TMP >1 to select three groups of tissue-
specific enhancers whose numbers are closest to those
numbers provided by DEEP (Table 2). To be consistent with
FIGURE 3 | Determining optimal pretraining-retraining model and comparison with classic model with no pretraining stage. (A) Comparison analysis determines
FANTOM-ep20 model to be the optimal pretraining-retraining model. (B) Comparison of GM values between FANTOM-ep20 models and None-ep100 models on 23
different tissues or cell lines.
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DEEP, the negative samples were chosen from random
intergenic regions with 10 times number of positive samples
of each tissue. After performing the optimal testing strategy
(40% for training and 60% for testing) of DEEP, ACC values of
FANTOM-ep20 models of heart, liver, and brain were 0.946,
0.982, and 0.906, respectively, which are greater than 0.822,
0.745, and 0.853 of DEEP (Table 2), suggesting our model has
higher prediction accuracy compared with DEEP. In their
article, DEEP claimed that great superiority of their model is
prediction balance on imbalance dataset, which is measured by
GM value. While comparing GM values, our FANTOM-ep20
models of heart, liver and brain achieved 0.805, 0.946 and
0.766, which are comparable with 0.812, 0.741and 0.843 of
DEEP respectively (Table 2).

For comparison with BiRen, we applied our FANTOM-ep20
model on VISTA enhancer data that BiRen used. We visited the
updated version of VISTA enhancer browser https://enhancer.
lbl.gov/ and downloaded 959 positive human enhancer
sequences and 889 negative ones, summing 1,848 human
enhancer sequences. To be consistent with BiRen, a non-
enhancer dataset containing 10 times the number of random
Frontiers in Genetics | www.frontiersin.org 8159
genomic fragments (18,480 non-enhancer sequences) were
selected from the whole genome (the GRCh37 reference
genome) by excluding exon, intron and known enhancers. As a
result, our FANTOM-ep20 model achieved an average AUC
value of 0.958, which is slightly larger than 0.957 of BiRen by
evaluating via a five-fold cross validation test. Moreover,
additional evaluation indices including ACC, GM, Sens, and
Spec of our FANTOM-ep20 model are also provided in Table 2,
from which we found that a GM value of 0.796 was achieved,
suggesting our FANTOM-ep20 model remains robust prediction
performance on VISTA enhancer data.
DISCUSSION

Enhancers are important CREs and play significant roles in
gene transcriptional regulation. Majority of enhancers have
strong cell or tissue specificity, which highlights the
importance of TSEP. In this paper, we developed a novel
training strategy of deep learning named with PRS, which was
proven to be a reliable prediction model for TSEP. Finally, we
FIGURE 4 | Comparisons between our FANTOM-ep20 model and gkm-SVM tool on 23 different tissues or cell lines. (A) One-to-one direct comparison of GM value
on each tissue or cell line. (B) Distribution comparisons of GM values and AUC values with box plots.
TABLE 2 | Comprehensive comparisons of FANTOM-ep20 model with DEEP and BiRen.

Comparison targets Data source Sample size Method ACC AUC Sens Spec MCC GM

DEEP Heart 295 + 2950 DEEP 0.822 NA 0.802 0.824 NA 0.812
239 + 2390 FANTOM-ep20a 0.946 0.963 0.664 0.976 0.669 0.805

Liver 84 + 840 DEEP 0.745 NA 0.740 0.755 NA 0.741
75 + 750 FANTOM-ep20 0.982 0.990 0.905 0.989 0.891 0.946

Brain 639 + 6390 DEEP 0.853 NA 0.832 0.855 NA 0.843
619 + 6190 FANTOM-ep20 0.906 0.915 0.630 0.933 0.501 0.766

BiRen VISTA 1747 + 17470 BiRen NA 0.957 NA NA NA NA
VISTA 1848 + 18480 FANTOM-ep20 0.946 0.958 0.650 0.975 0.655 0.796
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conclude that PRS brings some new contributions or findings
into the area of TSEP:

New contribution to training strategy: a specific cell or tissue
type has only hundreds or a few thousands of specific enhancer
samples, which might make existing deep learning methods to fall
into overfitting problem. PRS employs a large scale FANTOM
enhancers data to construct a pretraining model with optimal
model hyperparameters, and then uses each small sample dataset
of tissue-specific enhancers to retrain, based on the trained
pretraining model. Testing results on 23 different cell or tissue
types demonstrate that PRS is superior to classic training strategy
without pretraining, which enable us to conclude that PRS is a
reliable method for TSEP.

New findings on optimal retraining epochs: we found that 20
additional epochs are optimal when retraining a new source of
tissue-specific enhancer samples based on the trained pretraining
model. Either too few or too many additional epochs are not the
good choices, because too few epochs like FANTOM-ep10 has
not fully learned features of the new source data, whereas too
many epochs like FANTOM-ep50 might has a big problem
of overfitting.

New contribution to transfer learning: when comparing the
best model of PRS named with FANTOM-ep20 with existing tool
names with BiRen, we noted an interesting fact: FANTOM-ep20
achieved a greater AUC value with a different enhancer data
source of VISTA enhancer data in the retraining stage. VISTA
enhancer data was generated with a totally different biological
assay and has distinct distribution or source domain with
FANTOM enhancer data. Our FANTOM-ep20 model took
pretraining with FANTOM enhancer data and then performed
retaining with VISTA enhancer data. This shows that our PRS
model has good performance of transfer learning, which implies
that PRS might provide helpful ideas for transfer learning studies.

Although notable successes were achieved in the current
study, some drawbacks or limitations still need further
investigations in the future works. For example, this method is
not appropriate for enhancers with sequences shorter than 100bp
Frontiers in Genetics | www.frontiersin.org 9160
and greater than 1000bp. In addition, there are totally three main
sources of enhancer data: FANTOM, Vista, and ENCODE. In the
current study, we only trained on FANTOM enhancer data and
tested on Vista enhancer data. The comprehensive combinations
of training and testing between three sources are the future
directions of DEP and TSEP.
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The task of predicting protein–protein interactions (PPIs) has been essential in the context
of understanding biological processes. This paper proposes a novel computational model
namely FCTP-WSRC to predict PPIs effectively. Initially, combinations of the F-vector,
composition (C) and transition (T) are used to map each protein sequence onto numeric
feature vectors. Afterwards, an effective feature extraction method PCA (principal
component analysis) is employed to reconstruct the most discriminative feature
subspaces, which is subsequently used as input in weighted sparse representation
based classification (WSRC) for prediction. The FCTP-WSRC model achieves accuracies
of 96.67%, 99.82%, and 98.09% for H. pylori, Human and Yeast datasets respectively.
Furthermore, the FCTP-WSRCmodel performs well when predicting three significant PPIs
networks: the single-core network (CD9), the multiple-core network (Ras-Raf-Mek-Erk-
Elk-Srf pathway), and the cross-connection network (Wnt-related Network).
Consequently, the promising results show that the proposed method can be a
powerful tool for PPIs prediction with excellent performance and less time.

Keywords: protein–protein interactions, principal component analysis, sparse representation, prediction,
crossover network
INTRODUCTION

Investigating protein–protein interactions (PPIs) relate to examine the correlation between proteins
involved in various aspects of life processes such as signal transduction, gene expression regulation,
energy metabolism, and cell cycle regulation. The traditional way of studying individual proteins has
failed to meet the requirements of the post-genome era because the performance of proteins is
diverse and dynamic when performing physiological functions. Therefore, proteins should be
studied at the global, network, and dynamic levels. Only by studying the sum of all proteins can we
support the understanding of life's behavioral processes, disease prevention, and development of
new drugs (Long et al., 2019). In recent years, some researchers predict PPIs by biological methods
such as yeast two-hybrid screening (Ito et al., 2001; Pazos and Valencia, 2002) and affinity
purification (Gavin et al., 2002). However, the results obtained by wet-lab experiments usually
contain a large amount of false positive and false negative data, and these methods are time
February 2020 | Volume 11 | Article 181162
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consuming and costly. These limitations motivate the
development of effective machine learning methods to predict
large-scale PPIs.

Up to now, D.S. Huang et al. predicts PPIs utilizing different
information sources such as tertiary structure of proteins,
phylogenetic profiles, and protein domains (De-Shuang and
Chun-Hou, 2006; De-Shuang and Ji-Xiang, 2008). However,
these computational methods require prior knowledge of the
target protein (An et al., 2016). In recent years, protein sequence-
based methods (Yu et al., 2017) are becoming the most widely
applied technique for predicting PPIs due to the availability of
protein sequence data. Liu et al. (2012) designs a sequence
analysis method to represent protein sequences based on
hypergeometric series using the q-Wiener index (Xu et al.,
2017). X. Li et al. employs a global encoding approach (GE) to
describe global information of amino sequence (Li et al., 2009).

Since the effectiveness of machine learning algorithms has
been continuously verified in recent years, the use of machine
learning methods for predicting PPIs has become a new research
area. Yanzhi et al. proposes a support vector machine (SVM)
prediction method based on auto covariance (AC) (Wold et al.,
1993; Yanzhi et al., 2008) Davies et al. designs a model based on
k-nearest neighbor (KNN) with local descriptor (LD) (Juan et al.,
2007; Davies et al., 2008; Tong and Tammi, 2008; Lei et al., 2010).
Juwen et al. using SVM with conjoint triad method predicting
PPIs (Juwen et al., 2007). In addition, algorithms that use
machine learning include: random forest (RF) with multi scale
continuous and discontinuous local descriptor (MCD) (You
et al., 2014), deep neural networks (DNNs) with pseudo amino
acid physicochemical property descriptors(APAAC) (Kuo-Chen,
2005; Du et al., 2017) and so forth. These methods to perform
PPIs prediction use solely amino acid sequence data. In addition,
different representation methods can extract distinct
characteristic information of protein sequences, and it is
known that the feature information extracted by these
representation methods can be complementary. Thus, for PPIs
prediction, we advocate combining multiple descriptors, which
can capture more information than a single descriptor (Deng
et al., 2015). EnsDNN is a multi-descriptor combining method
based on deep neural network (Xenarios et al., 2002). These
descriptors such as auto-covariance descriptor (AC), local
descriptor (LD) and multi-scale continuous and discontinuous
local descriptor (MCD). It achieved a high accuracy of 95.25% on
the Saccharomyces cerevisiae dataset. Despite this, there is still
room to improve the accuracy and efficiency.

Previous works have pointed out that using feature selection
or feature extraction before conduction the classification tasks
can improve the classification accuracy (Zhang et al., 2012). The
software EFS (Ensemble Feature Selection) makes use of multiple
feature selection methods and combines their normalized
outputs to a quantitative ensemble importance. Currently,
eight different feature selection methods have been integrated
in EFS, which can be used separately or combined in an ensemble
(Neumann et al., 2017). What's more, several evolutionary based
methods are proposed for dimensionality reduction (Chuang
et al., 2016). A multi-objective differential evolution method
Frontiers in Genetics | www.frontiersin.org 2163
(called MODEMDR) was proposed to merge the various
contingency table measures based on MDR to detect significant
gene-gene interactions (Yang et al., 2017). In this paper, principal
component analysis (PCA) is utilized to do the feature extraction
which projects the original feature space into a new space. The
effectiveness of the proposed FCTP-WSRC is examined in terms
of classification accuracy on the PPI dataset.

The main contribution of this paper is to develop a new
computational tool called FCTP-WSRC to predict PPIs
efficiently. More precisely: (1) Combinations of the F-vector,
composition (C) and transition (T) are used to map each protein
sequence on numeric feature vectors. (2) An effective feature
extraction method PCA (principal component analysis) is
employed to reconstruct the most discriminative feature
subspaces, which is subsequently used as input in weighted
sparse representation based classification (WSRC) for
prediction. We obtain a unique 60-dimensional feature vector
of each protein pair. (3) The FCTP-WSRC model can predict
newly discovered protein-protein interactions with unknown
biological functions using only protein sequence information.

METHODOLOGY

Reduced Sequence and F-Vector
In this paper, a computational model based on multivariate
mutual information is designed to represent the protein
sequence and obtain the feature vector. The model describes
the protein sequence as a fixed length feature vector containing
key information, which can be used as an effective input for
machine learning algorithm. Therefore, the design of the F vector,
the composition and transition (CT) descriptors is combined to
map each protein sequence to a digital feature vector. F-vector of
protein sequence is constructed in the following manner.

First, we generate reduced amino acid sequences according to
their physicochemical properties such as hydrophobicity and
polarity. When studying Shannon entropy of residue properties,
instead of treating the amino acids as distinct symbols in the
entropy calculation, six groups have proposed partitioning the
amino acids into stereo chemically defined sets, and then
computing the entropy of the column with respect to these
sets. According to Capra JA et al. (Capra and Singh, 2007), we
classify residues into six different classes. The six classes of amino
acids are: aliphatic (AVLIMC), aromatic (FWYH), polar
(STNQ), positive (KR), negative (DE), and special (reflecting
their special conformational properties) (GP) (Mirny and
Shakhnovich, 1999), as depicted in Table 1.
TABLE 1 | Amino acid classification.

Descriptor Property Classification

A1 Aliphatic amino acid A,V,L,I,M,C
A2 Aromatic amino acid F,W,Y,H
A3 Polar amino acid S,T,N,Q
A4 Positive amino acid K,R
A5 Negative amino acid D,E
A6 Special conformations G,P
February 2020 | Volume
 11 | Article 18
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The plane rectangular coordinate system has four quadrants.
Dividing 20 amino acids into four groups can use the formula (1) to
map the protein sequence to the unit circle. However, 20 amino
acids are divided into six classes. Thus, we recombine six types of
amino acids. Three classes of amino acids are selected from the six
classes of amino acids as one group and the remaining three classes
are unchanged. In this way, we can get four groups of amino acids,
and there are a total of 20 combination patterns. It is found through
experiments that the 20 patterns will cause too many features and
affect the operation efficiency. Selecting the top 10 combination
patterns got good results.

Then, we use a binary space (V, F) to describe amino acid
sequences. Here, V is the feature space of the sequence
information, and each amino acid combined pattern vi
represents a sort of quad type; F is the feature vector
corresponding to V. The size of V should be 10; thus, I = 1,2,
…, 10. We describe ten amino acid combined patterns by the
letters B, J, O and U in Table 2. The detailed definition and
description for (V, F) are illustrated by the Equations (1)-(4).
Clearly, each protein has a corresponding F vector.

Sq(vi) !

cos ( p2
Bj

Bn+1
), sin ( p2

Bj
Bn+1

)
� �

if Sq = B

cos ( p2 +
p
2

Jj
Jn+1

), sin ( p2 +
p
2

Jj
Jn+1

)
� �

if Sq = J

cos (p + p
2

Oj

On+1
), sin (p + p

2
Oj

On+1
)

� �
if Sq = O

cos ( 3p2 + p
2

Uj

Un+1
), sin ( 3p2 + p

2
Uj

Un+1
)

� �
if Sq = U

8>>>>>>>>><
>>>>>>>>>:

(1)

We suppose each reduced sequence S=S1S2S3⋯Sn, Sq∈{B, J,O,U},
and q = 1, 2,…, n. Bn is the number of B in the sequence S by using
the pattern vi. Bj is the number of B in the first j characters when Sj =
B. According to Equation (1), we introduce Equation (2):

S(vi) !

Mx =
1
non

q=1xq

My =
1
non

q=1yq

Vx =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1on
q=1(xq −Mx)

2
q

Vy =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1on
q=1(yq −My)

2
q

8>>>>>>>><
>>>>>>>>:

(2)

Here xq and yq (q = 1,2,⋯, n) are derived from Equation (1).
For example, sequence METKDGIRWA can be expressed as

BOBJOUBJBB based on v1, so it is mapped to the unit circle as
shown in Figure 1. The reduced sequence corresponds to a one-
to-one curve in the unit circle. So, the invariant of the curve can
be used as the characteristic value of the sequence. Finally, the F-
vector can be expressed by:

F = (F(vi), F(v2),⋯, F(v10)) (3)

The vector F(vi) is as follows:

F(vi) = (Mx ,My ,Vx ,Vy), i = 1, 2,⋯, 10 (4)
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Thus, a 40-dimensional vector is obtained to characterize
each amino acid sequence.

The Composition and Transition of Protein
Sequence (CT)
In this section, we put forward a new description approach using
binary coding sequences. First of all, the amino acid sequence is
mapped to a sparse matrix. Then the composition (C) and
transition (T) of characteristic sequence are extracted from the
obtained sparse matrix. The protein sequence is scanned from
left to right by the step of one amino acid at a time. Suppose a
protein sequence with n amino acid residues is given:
S=S1S2S3⋯Sn;D = {A,R,N,D,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V}.
Now we derive the matrix A of this sequence:
TABLE 2 | Ten amino acid combined patterns described by the letters B, J, O,
and U.

B J O U

v1 {A1, A2, A3} A4 A5 A6

v 2 {A1, A2, A4} A3 A5 A6

v 3 {A1, A2, A5} A3 A4 A6

v 4 {A1, A2, A6} A3 A4 A5

v 5 {A1, A3, A4} A2 A5 A6

v 6 {A1, A3, A5} A2 A4 A6

v 7 {A1, A3, A6} A2 A4 A5

v 8 {A1, A4, A5} A2 A3 A6

v 9 {A1, A4, A6} A2 A3 A5

v 10 {A1, A5, A6} A2 A3 A4
Feb
ruary 2020 | Vo
lume 11 | Article
FIGURE 1 | 2-D Unit circle mapping representation of “METKDGIRWA”
under pattern.
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A =

A

R

N

S1

a11

a21

a31

S2

a12

a22

a32

S3

a13

a23

a33

⋯

⋯

⋯

⋯

Sn−1

a1,n−1

a2,n−1

a3,n−1

Sn

a1,n

a2,n

a3,n

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
Y

V

a19,1

a20,1

a19,2

a20,2

a19,3

a20,3

⋯

⋯

a19,n−1

a20,n−1

a19,n

a20,n

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

20*n

ai,j =  
1, if D(i) = S(j)

0, others

(
(5)

where D(i) is the i-th kind of amino acid in the arranged letter
sequence D.

For each row vector of matrix A with length n, we divide the
sequence into L sub-vectors. For each characteristic sub-vector,
the composition (C) consists of four parts: frequency of “0”,
frequency of “1”, frequency of “11” and frequency of “111”,
respectively. The descriptor (T) is the frequency of “0” followed
by “1” or “1” followed by “0”. An example regarding the
composition (C) of the sub-vector with respect to amino acid
A i s s hown in th e F igur e 2 . Th e sub s equ enc e
“AATWTFAAACATAPDAADAG” with respect to amino acid
A is replaced by “11000011101010011010”. We see that there
exists ten “1”, ten “0”, four “11”, and one “111”. The composition
for these four parts is 10×100%/(10 + 10) = 50%, 10×100%/(10 +
10) = 50%, 4×100%/19 = 21.05%, and 1 × 100%/18 = 5.56%. The
transition for “1-0” and “0-1” is (6 + 5)×100%/19 = 57.89%.
Thus, a protein sequence is transformed into a 4×20×5 = 400
dimensional vector with L = 4 and 20 amino acids.

Reconstructing Feature Vectors
So far, we combine the descriptor F-vector (40 dimension) and
descriptor CT (400 dimension) for a protein sequence into a
440-dimensional vector. However, if this vector is used as
Frontiers in Genetics | www.frontiersin.org 4165
input of the classifier directly, the efficiency is likely to be low.
Therefore, in this section we discuss how to reconstruct new
feature vectors using principal component analysis (PCA).
Principal component analysis (PCA) is a widely used
dimensional compression technique. The main idea of PCA
is to sequentially find a set of mutually orthogonal coordinate
axes from the original space, which is closely related to the
data itself. When 30 dimensional features are selected, the
contribution rate of features can reach more than 90%. It can
not only ensure the accuracy, but also improve the calculation
efficiency. Therefore, we use PCA to reduce 440 dimension
vector to 30 dimension. We connect the feature vectors of
two proteins (VA and VB) to describe their interaction
information (VAB):

VABf g = VAf g⊕ VBf g (6)

Thus, a pair of proteins can be expressed by a 60
dimensional vector.
Weighted Sparse Representation Based
Classification (WSRC)
In recent years, inspired by the theory of compressed sensing,
Wright et al. (2009) proposed a sparse representation based
classification (SRC). The algorithm has been proven useful and
reliable for many applications. Later, Fan et al. (2015) proposed a
weighted sparse representation based classification (WSRC),
which introduced sample weights into training samples and
enhanced the robustness of classification. Usually the
representation result of WSRC is sparser than that of SRC, so
better recognition results can be obtained. Here we give a brief
introduction towards WSRC.

Suppose that training samples are classified into C classes. Let
X = [X1, X2,…, Xc] ∈ Rd x n, where Xi ∈ Rd x n i is the ni training
sample of class i. Given a test sample y ∈ Rd: y = Xa, where a =
[a1, a2,…, ac], ai is the representation coefficient vector
associated with the i-th class. WSRC keeps data relativity while
FIGURE 2 | The composition and transition of subsequence “AATWTFAAACATAPDAADAG” with respect to amino acid A.
February 2020 | Volume 11 | Article 18
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sparse representation makes coding localized and allows more
neighboring samples to express the samples to be tested. The
training samples nearer to the test samples should be given
smaller weights to make their corresponding coefficients larger.
The objective function is:

(Weighted   l1) : min  jjWajj1 (7)

subject to

y = Xa (8)

Dealing with occlusion, the Equations (7) and (8) should be
extended to the stable l\s\do5(1)−minimization problem:

â = arg min  jjajj1 (9)

subject to

∥ y − Xa ∥ ≤  ϵ : (10)

e > 0 is the tolerance of reconstruction error. After obtaining
the sparsest solution â , we assign a test sample y to the class i by
the following rule:

miniri(y) =   ∥ y − Xâ i ‖, i = 1, 2,…, c : (11)

and specifically,

diag(W) = ½d(y, x11),…, d(y, xcnc )� : (12)

W is a diagonal matrix used to adjust the weight of training
samples to express the test samples and nc is the sample number
of training set in class c. WSRC calculates the Gaussian
similarities between the test sample and the entire training
samples, which are used as the weight of each training sample.
The Gaussian similarity between two samples, a1 and a2, could
be defined as follows:

d a1, a2ð Þ = exp   −
∥ a1 − a2 ∥2

2s 2

� �
(13)

where s means the Gaussian kernel width. In this paper, we
take the parameters ϵ = 0.005, s = 1.5. The WSRC algorithm can
be described as follows:
ALGORITHM 1 | Weighted sparse representation based classification (WSRC).

INPUT:
The matrix of training samples X∈Rd×n and a test sample y∈Rd.

OUTPUT:
The prediction label of y as identify(y) = argmin

i
ri (y).

1: Normalize each column of X to have the unit l2 norm.
2: Calculate the Gaussian similarity between y and each sample in X and obtain
the weight matrix W.
3: Solve the stable l1—minimization problem described in Equation (7).

4: Calculate residual error: min
i

ri (y) = ∥ y − Xâ i ∥, i = 1, 2; :::, c :

5: return y;
Frontiers in Genetics | www.frontiersin.org 5166
DATASET

In this paper, H. pylori, Yeast, and Human PPIs datasets are
downloaded from the DIP database (Xenarios et al., 2002). Cd-
hit (Li et al., 2001) is a tool for protein sequence clustering that
clusters sequences based on their similarity. This article uses the
cd-hit tool to remove redundant sequences such that the protein
interaction dataset has less than 40% homology and builds a
non-redundant dataset (Shawn et al., 2005). Thus, the H. pylori
dataset contains 1,428 pairs of interacting proteins, the Yeast
dataset contains 5,594 pairs of interacting proteins, and the
Human dataset contains 3,899 pairs of interacting proteins.
The choice of negative samples is crucial. This paper
constructs a non-interacting dataset (negative sample) based
on the protein interaction dataset (positive sample) that has
been obtained (Yanzhi et al., 2008; You et al., 2015). Sequences in
non-interacting protein pairs are randomly selected from a
positive samples, but several conditions need to be met: (1)
Non-interacting sequence pairs cannot appear in the interaction
dataset. (2) The number of protein pairs in a non-interacting
dataset should be balanced with the interacting dataset. (3) The
contribution of each protein sequence in the non-interacting
dataset should be as consistent as possible. Through this strategy,
1458 negative samples of H. pylori, 5,594 negative samples of
Yeast, and 4,262 negative samples of Human are obtained. Thus,
the H. pylori dataset has a total of 2,916 pairs of protein
sequences, the Yeast dataset has a total of 11,188 pairs of
protein sequences, and the Human dataset has a total of 8,161
pairs of protein sequences. Furthermore, in order to construct a
PPIs network model, three significant PPIs network datasets are
performed: the single-core network (CD9), the multiple-core
network (Ras-Raf-Mek-Erk-Elk-Srf pathway), and the cross-
connection network (Wnt-related Network).
EVALUATION OF THE PREDICTION
PERFORMANCE

Here, we employ five fold cross validation to evaluate the
performance of the FCTP-WSRC model. The entire dataset is
divided into five groups randomly, four of which are used as the
training samples and the remaining one as the test samples. The
average performance on five sets is used as the performance of
our method. Several evaluation indicators are used to evaluate
the performance of the development methods of this article. Brief
descriptions of these metrics are as follows: (1) sensitivity (Sn) is
the percentage of correctly identified interacting protein pairs;
(2) specificity (Sp) is the percentage of correctly identified non-
interacting protein pairs; (3) accuracy (Acc) is the percentage of
correctly identified protein pairs; (4) matthew's correlation
coefficient (Mcc) is a stricter evaluation standard considering
both under and over predictions. Some concepts and terms to
explain this parameters are defined as follows (You et al., 2013):
February 2020 | Volume 11 | Article 18
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Sn = TP
TP+FN

Sp = TN
TN+FP

Acc = TP+TN
TP+FP+TN+FN

Mcc = (TP)(TN)−(FP)(FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½TP+FP�½TP+FN�½TN+FP�½TN+FN�

p

8>>>>>><
>>>>>>:

(14)

where TP is the number of true positive; FN is the number of
false negative; TN is the number of true negative; and FP is the
number of false positive. In addition, the ROC curve and the area
under an ROC curve (AUC) (Huang et al., 2016a) are employed
to evaluate the performance of the FCTP-WSRC approach.
DISCUSSION

Prediction Ability
For the sake of testing the stability and reliability of the results,
we employ a fivefold cross validation for three typical dataset. For
the practicality and effectiveness of our proposed method, we
conduct ten times five fold cross validations and use the average
results as the final experimental results. We obtain the final
results of Acc, Sn, Sp, and Mcc of 96.67%, 95.42%, 97.85%, and
93.56% on the H. pylori dataset. Moreover, we obtain excellent
performance of average accuracy, sensitivity, specificity, and Mcc
of 99.82%, 99.88%, 99.77%, 99.63% on the Human dataset and
98.09%, 99.45%, 96.82%, 96.25% on the Yeast dataset,
respectively. What's more, I have compared the feature
selection PCA with the current state-of-the-art feature
selection methods EFS on the Human dataset. The Acc, Sn, Sp
Frontiers in Genetics | www.frontiersin.org 6167
and Mcc of EFS are 0.9499, 0.9601, 0.9448, and 0.9045,
respectively, which are lower than our method PCA+WSRC.
The comparison of the effects of different feature numbers based
on PCA is shown in Figure 3.

The Prediction Performance Comparison
of FCTP-WSRC With FCTP-SVM
To further verify the effectiveness of the FCTP-WSRC approach,
we compare the predictions with the frequently used classifier
support vector machine (SVM). The kernel functions commonly
used in support vector machines are: linear kernel, polynomial
kernel and radial basis kernel function. Linear kernel is mainly
used in the case of linear separability. The dataset in this paper
has a low feature dimension and is linear inseparability.
Compared with the polynomial kernel function, the radial
basis kernel function needs to determine fewer parameters, and
the more parameters the more complicated the model. Through
experiments, we use the LIBSVM (Chang and Lin, 2011)
implementation of SVM with the radial basis kernel function:

k (x, y) = exp(
∥ x� y ∥2 ‖

2s 2 ) (15)

The prediction results of the SVM andWSRCmethods on the H.
pylori, Human and Yeast datasets are shown in Table 3, and the bar
chart is displayed in Figure 5A. From these results, we can see that
the WSRC classifier is significantly better than the SVM classifier. In
addition, the ROC (receive operator characteristic) curve illustrating
the performance of different classification methods. The curve
presents the sensitivity (the true positive rate) against the specificity
(the false positive rate). The ROC curves of FCTP-WSRC on the H.
FIGURE 3 | The comparison of the effects of different feature numbers based on principal component analysis (PCA).
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pylori, Human and Yeast datasets are shown in Figure 4A and those
of FCTP-SVM are shown in Figure 4B. Good performance is
reflected in curves with stronger bending towards the upper-left
corner of the ROC graph, that is, high sensitivity is achieved with a
low false positive rate. For all models, the areas under an ROC curves
(AUC) are > 97.18%. It can be seen from Figure 4 that the ROC
curves of theWSRC classifier are significantly better than those of the
SVM classifier. This clearly prove that the WSRC classifier of the
proposed method is an accurate and robust classifier for predicting
PPIs. The increased classification performance of theWSRC classifier
compared with the SVM classifier can be explained by two reasons:
(1) the obvious advantage of WSRC is that it does not need to select
and compute kernel functions. (2) Protein sequence data expressed
by FCTPmethod is very sparse, so it is suitable for PPIs prediction by
sparse representation classifier.

Comparison With Other Methods
Tables 4–6 compare the prediction performance by the
proposed method (FCTP-WSRC) and some outstanding works
Frontiers in Genetics | www.frontiersin.org 7168
on theH. pylori, Yeast and Human dataset. Table 4 describes the
average accuracies of other seven methods including HKNN
(Nanni, 2005), Signature products (Shawn et al., 2005),
Ensemble of HKNN (Nanni and Lumini, 2006), PCA+ELM
(You et al., 2013), WSRC+GE (Nanni and Lumini, 2006), HOG
+SVD+RF (Ding et al., 2016), and RVM+BiGP (An et al., 2016).
Table 5 describes the average accuracies of other seven methods
including LDA+RF (Xiao-Yong et al., 2010), LDA+RoF (Xiao-
Yong et al., 2010), AC+RF (Xiao-Yong et al., 2010), AC+RoF
[41), WSRC+GE (Huang et al., 2016a), and HOG+SVD+RF
(Ding et al., 2016). Table 6 describes the average accuracies of
other seven methods including AutoCC (Yanzhi et al., 2008),
SVM+LD (Guo et al., 2015), RF+PR+LPQ (Wong et al., 2015),
PCA+ELM (You et al., 2013), WSRC+PSM (Huang et al.,
2016b), HOG+SVD+RF (Ding et al., 2016), and RVM+BiGP
(An et al., 2016). These results using distinct methods on three
datasets are intuitively shown by Figure 5B. All the results prove
that our method improves predictions by using fixed-length
feature vectors.
Network Prediction
An effective application of a good PPIs prediction method should
have a good ability to predict PPI networks. Up to now, many
machine learning approaches have been applied to predict PPIs
networks. Despite this, there is still room to improve
the accuracy and stability. Therefore, we have extended the
prediction method of PPI networks consisting of PPI pairs: the
single-core network (CD9), the multiple-core network (Ras-Raf-
Mek-Erk-Elk-Srf pathway), and the cross-connection network
(Wnt-related Network). The prediction results and the networks
are shown in Figures 6–8. The black line is predicted correctly,
TABLE 3 | The prediction performance comparison of FCTP-WSRC with FCTP-
SVM.

Dataset Classification
model

Acc Sn Sp Mcc AUC

H. pylori
dataset

SVM 0.9215 0.9191 0.9235 0.8552 0.9718

WSRC 0.9667 0.9542 0.9785 0.9356 0.9927
Human
dataset

SVM 0.9914 0.9911 0.9925 0.9830 0.9992

WSRC 0.9982 0.9988 0.9977 0.9963 1
Yeast dataset SVM 0.9482 0.9560 0.9411 0.9019 0.9846

WSRC 0.9809 0.9945 0.9682 0.9625 0.9986
Bolded texts are used to emphasize the results of the method designed in this article.
FIGURE 4 | (A) ROC curve of FCTP-WSRC on the H. pylori, Human and Yeast datasets. (B) ROC curve of FCTP-SVM on the H. pylori, Human and Yeast datasets.
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the red line is predicted error, and the yellow node is the
core protein.

CD9 is a four-pass transmembrane protein superfamily
composed of multiple homologous membrane proteins, which
is widely distributed in different tissues of human body and
participates in the regulation of sperm-egg binding. It plays an
important role in cell membrane biology in connection with cell
support, adhesion, movement, proliferation, fusion and
metastasis of tumor cells. This paper uses the CD9 single-core
network dataset, where a protein interacts radially with other
proteins (Yang et al., 2006). The result indicates that all 16 PPIs
could be identified by our method. The accuracy of this method
is 18.75% higher than that of Shen's work (Juwen et al., 2007).

The Ras-Raf-Mek-Erk-Elk-Srf pathway is a widely activated
mitogen-activated protein kinase signaling pathway that is
complex, highly conserved and widely found in eukaryotic
cells. It can transmit extracellular signals into the nucleus,
causing changes in the expression profile of specific proteins in
the cells, which in turn affects cell fate, and is closely related to
the development of tumors (Davis, 2010). Ras, Raf, Mek, Erk,
Elk, and Srf act as core proteins that determine signal
Frontiers in Genetics | www.frontiersin.org 8169
transduction. Our method has a prediction accuracy of 95.96%,
which is better than 85.19% of Shen's work (Juwen et al., 2007).

The Wnt signaling pathway is a group of multiple
downstream channel signaling pathways that are excited by the
binding of the ligand protein Wnt and membrane protein
receptors. In biology, most PPIs network is the cross-
connection network. While Wnt-related pathways are essential
for signal transduction, the use of scientific computing methods
to predict Wnt-related network has important practical
significance (Stelzl et al., 2005). The accuracy of Shen's work is
96.04% in the network, our method is 100% which is best.
TABLE 4 | Comparing the prediction performance by the proposed method
(FCTP-WSRC) and some state-of-art works on the H. pylori dataset.

Model ACC Sn Sp Mcc

Our method 0.9667 0.9542 0.9785 0.9356
HKNN 0.8400 0.8600 0.8400 N/A
Signature products 0.8340 0.7990 0.8570 N/A
Ensemble of HKNN 0.8660 0.8670 0.8500 N/A
PCA+ELM 0.8750 0.8895 0.8615 0.7813
WSRC+GE 0.9283 0.8932 0.9613 0.8643
HOG+SVD+RF 0.8906 0.8815 0.8979 0.7815
RVM+BiGP 0.9057 0.9188 0.8955 0.8291
Here, N/A means not available. Bolded texts are used to emphasize the results of the
method designed in this article.
FIGURE 5 | (A) Results using FCTP encoding on the H. pylori, Human and Yeast datasets with different classifiers. (B) Results using different methods on three
datasets.
TABLE 5 | Comparing the prediction performance by the proposed method
(FCTP-WSRC) and some state-of-art works on the Human dataset.

Model ACC Sn Sp Mcc

Our method 0.9982 0.9988 0.9977 0.9963
LDA+RF 0.9640 0.9420 N/A 0.9280
LDA+RoF 0.9570 0.9760 N/A 0.9180
AC+RF 0.9550 0.9400 N/A 0.9140
AC+RoF 0.9510 0.9330 N/A 0.9100
WSRC+GE 0.9766 0.9528 0.9981 0.9541
HOG+SVD+RF 0.9760 0.9637 0.9859 0.9521
February 2020
 | Volume 11 | A
N / A means that the result of this indicator is not queried.
TABLE 6 | Comparing the prediction performance by the proposed method
(FCTP-WSRC) and some state-of-art works on the Yeast dataset.

Model ACC Sn Sp Mcc

Our method 0.9809 0.9945 0.9682 0.9625
AutoCC 0.8933 0.8993 0.8887 N/A
SVM+LD 0.8856 0.8737 0.8950 0.7715
RF+PR+LPQ 0.9392 0.9110 0.9645 0.8856
PCA+ELM 0.8700 0.8615 0.8759 0.7736
WSRC+PSM 0.9709 0.9433 1 0.9433
HOG+SVD+RF 0.9483 0.9240 0.9710 0.8977
RVM+BiGP 0.9457 0.9427 0.9486 0.8974
N / A means that the result of this indicator is not queried.
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FIGURE 6 | The prediction results of single-core network of CD9.
FIGURE 7 | The prediction results of multi-core network of Ras-Raf-Mek-Erk-Elk-Srf pathway.
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Evaluating the Performance of FCTP-
WSRC by PIE Software
PIE (Protein Interaction information Extraction) the search is a
web service to extract PPI-relevant articles from MEDLINE (Sun
et al., 2012), which can be used via a web application at http://
www.ncbi.nlm.nih.gov/IRET/PIE/. It implement a competition-
winning approach utilizing word and syntactic analyses by
machine learning techniques. For easy user access, PIE the
search provides a PubMed-like search environment, but the
output is the list of articles prioritized by PPI confidence
scores. PPI score is a relative value between 1.0 (highly likely)
Frontiers in Genetics | www.frontiersin.org
 10171
and -1.0 (highly unlikely) among retrieved articles. From
Table 7, we can see that only CD9-CD59 is negative 0.0798,
which is very close to zero obtained by the web tool PIE. That is
to see, PPI-relevant articles extracted by the PIE cannot predict
the relationship between CD9 and CD59. This also shows that
our method can be used to predict potential PPI.
Conclusion
The problem of predicting PPIs has been tackled extensively. Given
the fact that computational tools for predicting PPIs have been used
over years, only a few of them are able to predict easily, quickly, and
accurately. Above all, we have explored a novel computational tool
called FCTP-WSRC to predict PPIs efficiently. We characterize a
fixed-length feature vector of protein sequence using descriptors F-
vector, composition (C), and transition (T).

Our numerical results demonstrate that the WSRC classifier
model is feasible to perform PPIs detection. We see that FCTP-
WSRC perform significantly well when it comes to distinguish
positive samples and negative samples of protein pairs. That is to
say, these results support the notion that our FCTP-WSRC
model is a highly effective proteomics research support tool. In
the future, we will extend our approach to more significant PPI
networks with unknown biological functions.

Code is programmed by MATLAB, which can be downloaded
from https://github.com/wowkiekong/PPI-prediction. User-friendly
and publicly accessible web-servers represent the future direction for
developing practically more useful computational tools and enhancing
their impact (Chou, 2017). Our future efforts will be to establish a web-
server for the prediction method reported in this paper.
FIGURE 8 | The prediction results of cross-connection network of Wnt-related pathway.
TABLE 7 | Protein-protein interaction information obtained by a web tool PIE.

Protein-protein interaction PMID PPI score

CD9-CD19 9804823 0.7703
CD9-CD9 partner 16690612 0.9999
CD9-Integrin alpha 3 7790364 0.9999
CD9-Protein Kinase C alpha 11325968 0.7479
CD9-CD81 Partner 3 16690612 0.9999
CD9-CD53 23500527 0.818
CD9-CD81 antigen 16690612 0.9999
CD9-KIT 12036870 0.7073
CD9-Tetraspanin 4 27993971 0.9502
CD9-ADAM2 10518536 0.557
CD9-CD59 15625824 -0.0798
CD9-CD36 17684062 0.6525
CD9-Integrin alpha 5 10811835 0.8497
CD9-CD63 antigen 19640571 0.7556
CD9-DTS 8367482 0.1173
CD9-Collagen binding protein 2 9931299 0.5501
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