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Editorial on the Research Topic

Deep Carbon Science

Our understanding of the slow, deep carbon cycle, key to Earth’s habitability is examined here.
Because the carbon cycle links Earth’s reservoirs on nano- to mega-scales, we must integrate
geological, physical, chemical, biological, and mathematical methods to understand objects and processes
so small and yet so vast. Here, we profile current research in the physical chemistry of carbon in natural
and model systems, processes ongoing in the deepest portions of planets, and observations of carbon
utilization by the deep biosphere. The relationships between the carbon cycle and planetary habitability
are undeniable, forming a conceptual anchor to all work in deep carbon science.

Carbon minerals respond to changing pressures, temperatures, and geochemical conditions. The
geologic record preserves evidence of transitional periods at the submicroscopic to regional
landscape scales, and demonstrates interplay between carbon-bearing phases and the biosphere.
In a new review, Morrison et al. (2020) cast a retrospective look through deep time and call for
emerging approaches to clarify the coevolution of the biosphere and geosphere.

Critical to transformations of Earth’s carbon inventory over time are indomitable tectonics — which
influence Earth’s surface environment, weathering, metamorphism, magmatism, and volcanism. The
slow, deep (endogenous) carbon cycle refines and re-distributes carbon within Earth. In fact, over the 200-
million-year-long time scale, important tectonic controls on carbon cycling emerge (Wong et al., 2019).
Wong et al. (2019) document the spatiotemporal evolution of fluxes inferred from plate tectonic
reconstructions, and highlight CO, fluxes from continental rift settings post-Pangea. The volcanic flux of
CO, has been successfully reconstructed by direct study of CO, flux through lakes and adjacent soils
(Hughes et al.,, 2019), an important and often overlooked CO, valve linking lithosphere, atmosphere, and
hydrosphere. From perspectives rooted deeper in the tectonic system, the important roles that
serpentinites play in the carbon cycle are evaluated in two senses: 1) serpentinite as a carbon vector
to the deep mantle (Merdith et al., 2019), and 2) serpentine mud volcanoes as sites of carbon mobilization
through organic acid release (Eickenbusch et al., 2019), in a Mariana Trench case study.

The physical properties of carbonaceous melt extraction and chemical exchange are
experimentally examined as reduced metallic Fe-C melts (Dong et al., 2019) and oxidized
carbonate melts (Sanloup et al, 2019b—note corrigendum). Regarding carbon-bearing metallic
melts in the mid-mantle, Dong et al. (2019) apply experimental data to predict immobility of metallic
carbon, meaning deep Fe-C melts will remain isolated in a silicate rock. Sanloup et al. (2019a)
experimentally determine the density, structure and glass-forming ability of Fe-carbonate melt
(FeCO3) in the mid- to lower-mantle, and find that carbon becomes fully four-fold coordinated and
the melt highly viscous, hence largely unreactive in the deep lower mantle. Both studies show deep
carbon to be immobile and unreactive, under the conditions of their experimental designs.
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Linking geological and biological aspects of carbon cycling
reveal emerging challenges. The drawdown of atmospheric
carbon into rock reservoirs is examined through the lens of
Urey reactions and the efficiency of carbon deposition in the
continental crust reservoir (Kellogg et al, 2019); the authors
argue that carbon stored in Earth’s continental crust could have
been extracted either from the early atmosphere or from the
mantle (over a longer period of time) or both. Kellogg et al. (2019)
challenge the community to prioritize better constraints on the
concentration of carbon in the atmosphere and continental crust
over geologic time. Their work also addresses the recovery
(relaxation time) of Earth’s climate to volcanically-forced
climate change, using the Paleocene-Eocene thermal maximum
as a case study; the calculated relaxation time is ~50,000 years.
This timeframe is certainly of modern concern, given
anthropogenic injections of carbon into the atmosphere.

Shales are known to be large carbon sinks in low pressure
settings. Basu et al. (2019) ask whether shales can retain
significant carbon during low pressure-temperature and high
pressure-temperature processes during the subduction of
Earth’s crust. In a custom-built high vacuum line, they
incrementally heat shale samples from 200 to 1,400°C in the
presence of O, gas and record the carbon and nitrogen
abundances, 5'°C values, and the atomic C/N ratios for the gas
at each stage of heating. Basu et al. (2019) propose that carbon
silicate minerals, biomineralized and/or occluded, can be
efficiently retained as a refractory phase and transferred into
Earth’s mantle through subduction.

The important role of serpentinization is emphasized in this
context also: Barbier et al. (2020) offer a detailed review of
hydrogen, methane, and hydrocarbon formation through
experimental serpentinization, informed by network analysis.
The relevance of the frequently invoked Fischer-Tropsch-type
(FTT) reactions to produce methane from the abiotic reduction of
oxidized carbon by H, is questioned. Barbier et al. (2020) follow
the forms and movement of carbon through the near ubiquitous,
extensive serpentinization process, operating beneath most past
and present seabeds.

Carbon cycling mediated by the deep biosphere is tracked also,
in terms of function, detection, and novel findings. The deep mine
microbial observatory in south Dakota, United States, described
by Osburn et al. (2019), is a stable portal to the continental deep
subsurface, with a rich, initial database on which future studies
can pivot. In the marine realm, Cario et al. (2019) offer a
perspective on the state of the science exploring the deep
biosphere beneath the seabed. Aspects of the growth and
resilience of subseafloor crustal biofilms are documented
(Ramirez et al., 2019), and methods enabling new discernment
of virus abundance in the subseafloor sedimentary blanket are
shared (Pan et al, 2019). A new serpentinite-influenced
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organism, Petrocella atlantisensis, cultured from Atlantis
Massif oceanic core complex rocks sampled during IODP
Expedition 357 is described, observed at controlled hydrostatic
pressure (Quemeneur et al., 2019).

The findings reported in deep carbon science underscore the
need for multidisciplinary commitment to open questions
related to Earth’s carbon cycle. It is clear that the processes
driven by, and driving, plate tectonics buffer the carbon fluxes
on which life has been dependent for billions of years (e.g.,
fluctuations in atmosphere-ocean geochemistry). Important
work includes methodical application of current techniques,
but much work requires new ways of thinking: multifaceted
investigations that connect the deep and shallow biospheres,
and/or describe links between the whole biosphere and points of
contact with geosphere have the potential to transform our
thinking. The breadth of disciplines and scientific approaches
collated in deep carbon science provides exciting insight into a
future where the traditional boundaries of classic disciplines
become blurred. This, we argue, is the only way to reveal the true
nature and extent of carbon cycle phenomena that are both vast
and diminutive, slow yet fast, known but inaccessible, and
everywhere all at once.
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Our understanding of the deep carbon cycle has witnessed amazing advances in the last
decade, including the discovery of tetrahedrally coordinated high pressure (P) carbonate
phases. However, little is known about the physical properties of their molten counterpart
at moderate depths, while their properties at lower mantle conditions remain unexplored.
Here, we report the structure and density of FeCO3z melts and glasses from 44 to
110 GPa by means of in situ x-ray synchrotron diffraction, and ex situ Raman and
x-ray Raman spectroscopies. Carbon is fully transformed to 4-fold coordination, a bond
change recoverable at ambient P. While low P melts react with silica, resulting in the
formation of silico-carbonate glasses, high P melts are not contaminated but still quench
as glasses. Carbonate melts are therefore polymerized, highly viscous and poorly reacting
with silicates in the lower mantle, in stark opposition with their low P properties.

Keywords: carbonate melts, high pressure, x-ray diffraction, Raman, x-ray Raman, polymerization, deep mantle

1. INTRODUCTION

Although the lower mantle is mostly a reducing environment with the presence of reduced Fe
(Frost et al., 2004; Smith et al., 2016), significant amount of subducted carbonates are estimated
to be preserved (Litasov and Shatskiy, 2018). Transition to 4-fold carbon was first predicted for
crystalline CaCO3 (Oganov et al., 2006; Arapan et al., 2007). This transition strongly depends on
the carbonate composition, occurring for CaCO3 above 105 GPa (Lobanov et al., 2017), 80 GPa
for MgCO3 (Oganov et al., 2008; Boulard et al,, 2011), and 50 GPa for FeCO3 (Liu et al,, 2015),
while intermediate CaCO3-MgCO3-FeCO3 compositions form a single tetrahedral carbonate phase
(Merlini et al., 2017) unlike silicates. This transition induces polymerization such as sheets or
3-membered rings for MgCO3 (Oganov et al., 2008), and chains for CaCO3 (Oganov et al., 2006). In
contrast, our knowledge of carbonate melts structure at depth is scarce and limited to upper mantle
pressures. The melting curves of CaCO3, Na,CO3, and FeCO3 have been measured over most of
the upper mantle regime (Kang et al,, 2015; Li et al., 2017), and viscosity measurements up to 6
GPa span several compositions [K,Ca(CO3); and K;Mg(CO3), by (Dobson et al., 1996), CaCO3
and natural dolomite by (Kono et al., 2014), Na,COj3 by (Stagno, 2018)]. Structural data instead
have only been collected on molten CaCO3 below 10 GPa (Hudspeth et al., 2018) while theoretical
investigations of the properties of carbonate melts cover a larger P-range but are also limited to
the carbon 3-fold stability field (Vuilleumier et al., 2014; Zhang and Liu , 2015; Du et al., 2018;
Desmaele et al., 2019). One main question is therefore how this 3 to 4-fold transition translates
in the molten state, and what are the consequences on the physical and chemical properties of
carbonate melts? Of particular interest is the mobility and reactivity of carbonate melts in the lower
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mantle, knowing that these properties underpin the key role
played by carbonate melts in mantle geodynamics through
lubrication of plate tectonics, cratonic roots (Foley, 2008) and
ascending plumes (Litasov et al., 2013).

The role of Fe in the deep carbon cycle is emphasized
by the predominance of Fe-rich ferropericlase in diamond
inclusions from the lower mantle (Kaminsky, 2012). The lowest
transition P from 3 to 4-fold C in FeCO3 amongst carbonates
justifies its choice as the first composition to investigate. Not
only this transition occurs at less challenging experimental
conditions, but it might be driven by Fe high spin to low
spin transition at 40.4 GPa (Weis et al., 2017), a consequence
of which being the large enrichment in Fe of (Mg,Fe)-
carbonates coexisting with bridgmanite to almost pure FeCO3
(Lobanov et al., 2015). Besides, high Fe concentration stabilizes
(Ca,Mg,Fe)IVCO3 with respect to single cation 3-fold carbonates
at mid mantle conditions (30-50 GPa) (Solomatova and Asimow,
2018). Formation of Fe-carbonates in the lower mantle might also
result from carbonation of Fe-oxides [(Mg,Fe)O, FeOOH] with
CO; (Boulard et al., 2018, 2012). Last but not least, FeCOj3 is a
technical choice as it can be laser heated, which is required to
reach lower mantle conditions without the need for additional
laser coupler.

2. MATERIALS AND METHODS

2.1. Materials and Chemical Analyses

The starting natural crystalline siderite sample (mineralogical
collection at Sorbonne Université) was loaded in the sample
chamber laser-drilled in a rhenium gasket as 20 um-thick platelet
between two equally thick platelets of compressed SiO, powder.
The SiO; platelets act as thermal insulators and P-transmitting
medium. Only one sample was used per P point (Figure 1)
to avoid repeated laser-heatings, and preserve the chemical
integrity of the sample. Six samples could be recovered after
the experiments, embedded in epoxy and polished for analysis.
Samples 8, 9, and 15 were carbon-coated for SEM imaging
(Figure 2), samples 8 and 15 were then repolished and gold-
coated along with samples 13, 14, and 20 for electron microprobe
analysis using a CAMECA SX-FIVE analyzer (EMPA) at the
Camparis center of Sorbonne Université (Table 1), using the
following operating conditions: 15 keV, 10 nA. We used a
defocused beam size of 10 pm to get an average composition at
the laser-heated spot.

2.2. P-T Conditions

We used diamond-anvil cells and a double-sided infra-red laser
focussed down to 20 pum to generate high T and P. For each P
point, targeted power was increased in 2 W increments from 20
to 50 W of power on each laser depending on P until complete
melting of the sample. Melting was identified by disappearance of
diffraction peaks apart from SiO; peaks, and by the appearance of
diffuse scattering. As we used the off-axis heating system to avoid
using carbon mirrors that would add to the x-ray background
signal and compromise processing of the scattered signal, T could
not be measured by pyrometric techniques. FeCO3 melting curve
has only been measured up to 20 GPa (Kang et al., 2015), where it

FIGURE 1 | Microphotograph of the sample after laser heating at 110 GPa.
Single shot laser heating resulted in the formation of a quasi-spherical pure
carbonate glass that was removed from the gasket for EPMA and/or SEM
analyses.

reaches 1,865 K. The stishovite to CaCl, SiO; transition has been
investigated up to 90 GPa (Fischer et al., 2018), this constrains
T to a maximum of 2,300 K at 79 GPa and 2,500 K at 83 GPa
as CaCl, is the observed SiO; structure for the three highest P
runs, while stishovite is observed below. We therefore consider
that x-ray diffraction patterns were collected on molten FeCO3
within the 2,000 K-2,500 K interval except for the highest P point
that is only constrained to below 3,500 K from extrapolation of
the stishovite-CaCl, Clapeyron slope (Fischer et al., 2018). P is
measured at room T using fluorescence of a ruby sphere added
in the sample chamber (Mao et al., 1986) and SiO, equations of
state (Andrault et al., 1998; Nishihara et al., 2005) for quenched
samples, and using only SiO, equations of state for molten
samples with error bars on P including the effect of a 2,000
K-2,500 K T-range, and up to 3,500 K for the 110 GPa data point.

2.3. X-ray Diffraction Methods

We collected in situ high P-T x-ray diffraction data in laser-
heated diamond anvil cells at the extreme conditions beamline
P02.2 at the PETRAIII synchrotron. We used symmetric
diamond-anvil cells equipped with 70° opening Boehler-Almax
seats in order to access a wider g-range up to 10 A~!, and
reduce the diamond Compton contribution as Boehler-Almax
anvils are only 1.5 mm thick. The x-ray monochromatic beam
(42.7 keV) was focussed down to a size of 4 x 6 um?, allowing
high spatial resolution in direct space. To limit iron migration
away from the laser heating spot due to Soret effect, the laser
shutters were opened only once the targeted power was reached,
and held open for 10 s during which 10 x-ray diffraction patterns
of 1 s acquisition time were recorded on a Perkin-Elmer 2-D
detector. 2-D patterns were integrated using the Fit2D software
(Hammersley et al, 1996). In order to isolate the scattered
intensity from the molten FeCO3 only, each sample was removed
from the gasket, and the gasket put back in place to collect x-
ray data on the empty cell. Obtained patterns were then scaled
vertically to match the baseline of x-ray patterns collected on the
starting crystalline sample under P (Sanloup and de Grouchy,
2018). This last step ensures that any P effect on the background
is corrected for. Amongst eight successful runs (Table 1) for
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FIGURE 2 | SEM images of recovered samples. Low P sample 8 (a) shows pervasive contamination of carbonate sample with SiO, P-transmitting medium. High P
samples 9 (b) and 15 (c) show that chemical integrity of carbonate melt (homogeneous light gray zone) was preserved.

TABLE 1 | Run conditions, quenched products and their chemical composition in
wt% obtained from EMPA. One standard deviations are given in parentheses.
Starting natural siderite sample also contained <0.1 wt% CaO and MnO.

# P melt/ CO, FeO MgO  SiO, Total
glass
(GPa)
6 11.6/ - Not recovered, reaction confirmed by XRD (Figure 4)
8 15/14  25.7(9.2) 42.2(5.8) 0.1(0.1) 24.2(6.7) 92.2
15 51/44  40.6(0.5) 58.9(9.3) 0.3(0.1) 0.3(0.2) 100.0
13 55/-  41.2(2.6) 54.4(1.3) 0.3(0.2) 2.0(1.9) 98.0
20 63/57  36.6(6.8) 57.7(1.3) 0.4(0.4) 0.7(0.8) 95.4
9 79/72 Not analyzed, C-coated for SEM (Figure 2)
12 83/77 Not recovered
14 110/108 37.8(8.7) 58.5(1.1) 0.2(0.1) 0.7(0.8) 97.3
Sample 59 Not analyzed, only glass sphere preserved
for
x-ray
Raman

which full melting was observed, intensity from molten FeCO3
could only be processed for the highest P run for which the
sample vs. SiO; platelets thickness ratio was slightly higher, the
scattered intensity being too weak for the lower P points. All
glass patterns could be processed. The x-ray diffracted intensity
data are converted into the structure factor, S(q) (Figures 3A, 4),
using the Ashcroft-Langreth formalism. The radial distribution
function g(r) (Figure 3B), that describes ion-ion contributions in
real space, is obtained by Fourier transforming of S(q),

1 (o.¢]
gr) = mfo qS(q) sin(qr) dq (1)

pNa

where n = LA, Ny is the Avogadro number, M the mean
atomic molar mass, and p the density.

2.4. Density Measurements

The method to derive density from x-ray diffraction data on
melts compressed in diamond-anvil cell experiments (Eggert
et al,, 2002; Sanloup et al., 2013) consists in minimizing the
oscillations in g(r) where there should not be any signal, i.e.,
below the minimum interatomic distance (r < 0.95 A here). This

method requires that the background, essentially the Compton
signal from the diamond anvils that dominates the total diffracted
intensity, is perfectly subtracted.

As the C-O contribution is distinct on g(r) of quenched glasses
up to 83 GPa, we also ran consistency checks by fixing the C-O
coordination number to 4 as indicated by x-ray Raman spectra
(¢f Results section), and simulating the C-O contribution using
the obtained density values against a gaussian with the following

equation:
C(r—dp
202

where c¢c and cp are the atomic proportions of carbon and
oxygen, K¢ and Ko are defined as the average effective atomic
number over the experimental g-range (Eggert et al., 2002) and
calculated using form factors from Hajdu (1972).

cccoKcKo A

r = ex;
&) 72 nSo0 0N/27 P

2

K2
Soo = —70 (3)

* Zfot

and

CN
= 4
/’ 472 —(r—d)? J )

o2 P 202 '

with K, the effective atomic number (Eggert et al., 2002), Z,¢ the
total atomic number of the compositional unit (e.g., FeCO3), CN
the C-O coordination number fixed to 4, d the C-O inter-atomic
distance, and o a parameter depending on structural disorder,
o = kv/d where k is an adjustable parameter (Hosemann and
Bagchi, 1962) with a value of 0.11 here. The C-O contribution
to g(r) thus calculated adequately fits the experimental ion-ion
contribution (dashed lines on Figure 2b), hence comforting the
obtained density values.

2.5. X-ray Raman and Raman Methods
Raman and x-ray Raman spectra were collected at ambient
conditions on glassy FeCOj3 recovered from x-ray diffraction
experiments and from additional laser-heated diamond anvil cell
synthesis, respectively.

X-ray Raman data were collected at an incident energy of
9.7 keV at the C K-edge on beamline ID20 of the European
Synchrotron Radiation Facility (ESRF), beamsize was 15 x
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FIGURE 3 | Structure of non-crystalline FeCOg at high pressures. (A) Structure factor, S(q), for all quenched glasses (black) and the highest P melt (red). (B)
Corresponding radial distribution functions, g(r). Dashed lines are fits to the C-O contribution at 1.2-1.3 A where there is no overlap with farther contributions.

FeCO, glass 44 GPal
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FIGURE 4 | Structure factor, S(q), for low P reacted FeCO3+SiO» glass
(black), compared to SiO» glass at 20 GPa (Sato and Funamori, 2008) (brown)
and FeCOg glass at 44 GPa (red). Low P sample 8 (15 GPa) shows
intermediate structure between SiO» glass and high P FeCOg glasses.

15 um?. The large-solid-angle x-ray scattering spectrometer
(Huotari et al., 2017) was set up with 24 Si(660) analyzer crystals
for an average momentum transfer of 7.3 & 0.2 A~! and an

overall energy resolution of 0.7 eV. All experimental data were
analyzed using the XRStools software package (Sahle et al.,
2015). The integrated intensity of each spectrum was normalized
over a 35 eV energy range. Glassy FeCO3 spheres had been
previously synthesized at 59 GPa using the same P02.2 laser
heating system in Petralll as for x-ray diffraction experiments.
LiF was used instead of SiO; as a P-transmitting medium to avoid
any contamination of the x-ray Raman signal by oxygen from
SiO, as measurements at the O K-edge were initially planned
but signal was to weak for data to be processed. Despite its
higher melting curve than siderite (Boehler et al., 1997), LiF salt
could not be used for the x-ray diffraction experiments due to its
continuous powder diffracted signal that prevents a qualitative
analysis of the diffuse scattering signal from molten FeCOs3.

Raman spectra were collected on glassy FeCO3 recovered
from x-ray diffraction experiments using 633 nm wavelength
in order to preserve the samples, using more energetic lower
wavelengths resulted in dissociation of the sample and detection
of hematite signal.

3. RESULTS

All samples are systematically quenched as a glass. Chemical
integrity of FeCO3 molten spheres is observed for runs conducted
above 40 GPa, apart from a marginal fraction at the glass-
SiO; interface in one sample showing enrichment of the P-
transmitting medium in Fe and C. Instead, the lowest P samples,
ie, 11 and 15 GPa, have reacted with the SiO, P-transmitting
medium. This is shown by SEM imaging (Figure 2) and EMPA
analysis on sample 8 (Table 1). High P carbonate melts are thus
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conditions. The disappearance of the =* feature, which is solely related to the
three-fold coordinated carbon, is a spectroscopic evidence of a full four-fold
coordination state in the glassy structure of FeCOg3.

much less reactive than low P melts. This might not contradict
the observed reactivity of high P crystalline MgCO3 with SiO,
(Seto et al., 2008; Maeda et al., 2017) due to the much longer
heating durations (20-240 min against 10 s heating duration in
this work); alternatively, Fe stabilizing effect on high P carbonates
could be at stake. We observe no disproportionation of Fe as
was reported in the crystalline state in some studies (Boulard
et al,, 2011; Cerantola et al., 2017) but not in others (Liu et al.,
2015). This might be due to different P-T paths followed, i.e., flash
heating here instead of continuous T increase (Boulard et al.,
2011; Cerantola et al., 2017).

A striking characteristic of glassy FeCOs3 is its strong first
sharp diffraction peak (FSDP) that persists in the structure
factor up to the highest P investigated (Figure 3A), indicative
of a strong medium-range order. This is in stark contrast
to silicate glasses that lose their medium-range order with
increased P (Sato and Funamori, 2008), but consistent with ab
initio calculations on carbon-bearing silicate melts reporting P-
induced polymerization of carbonate species into dimers and
with the silicate network (Ghosh et al.,, 2017; Solomatova and
Asimow, 2019). A second noticeable feature is the decrease of
the contribution at 4 A~! attributed in molten carbonates to
the O-O bond (Wilding et al, 2016). On radial distribution
functions, g(r) (Figure 3B), the C-O contribution is clearly
visible at 1.2-1.3 A with none or little overlap with the second
contribution (Fe-O and O-O) at ~2 A in the glass, and with
some overlap in the melt. No significant structural changes are

500 1000

Raman shift (cm'1)

FIGURE 6 | Raman spectra collected on high P-quenched FeCOg glasses
(runs 9 and 14) at ambient conditions.

observed between molten and quenched glassy state at 110 GPa,
apart from a generally lower intensity in the melt due to the
high T and consequent higher degree of disorder. For g(r),
this weaker intensity translates into broader C-O and Fe-O/O-
O contributions in the molten state. For glasses quenched at 11
GPa and 15 GPa, the x-ray structure factor, S(g), is intermediate
between that of pure SiO, glass (Sato and Funamori, 2008)
and high-P FeCOj; glasses (Figure 4). SEM image of sample 8
(15 GPa, Figure 2) shows heterogeneities in the quenched glass,
which indicates that the x-ray structure factor likely averages at
least two types of glass structure and therefore data cannot be
interpreted quantitatively.

The x-ray Raman C K-edge spectrum of quenched FeCO;
glass shows no presence of sp2 3-fold carbon characterized by
an intense 7* peak at 290 eV (Figure 5, 7* peak). Only the
o* peak of tetrahedrally coordinated carbon (Shieh et al., 2013)
is visible (Figure5, o™ peak). The totally missing 7* peak is
indicative of a fully sp3 state of carbon atoms in the siderite glass.
P-induced coordination changes of major cations in silicate melts
(e.g., Si, Al) were first reported from the study of glasses quenched
from high P (Yarger et al, 1995; Meade, Hemley and Mao,
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1992), and later confirmed by in situ studies in the molten phase
(Sanloup et al., 2013; Drewitt, 2015). However, the opposite, i.e.,
coordination change occurring only in the quenched glass, not in
the high P melt, have not been reported nor been theoretically
predicted. The 3 to 4-fold transition therefore occurs in molten
Fe-carbonates at P less or equal to 51 GPa. This transition is
preserved upon quenching to the glassy state, and is recoverable
at ambient conditions, opening the way to the synthesis of a
new class of glassy materials. Two broad bands are observed
in the Raman spectra (Figure 6), very different from those of
the only two carbonate systems that quench as glasses at room
P, MgCO3-K,CO3 and La(OH)3-Ca(OH),-CaCO3-CaF,BaSO4
(Sharma and Simons, 1979), that are essential dominated by the
strong CO§_ stretching mode at ~1,080 cm™!. Instead, present
Raman spectra are reminiscent of those reported for calcium
silicate glasses (Figure 6) (Mysen et al., 1982) albeit at higher
Raman shift values for the broadest band (1,200-1,600 cm™! for
glassy FeCO3 vs. 850-1,100 cm™! for calcium silicate glasses).
Density values are reported in Figure 7 along with predictions
for lower P melt properties (Kang et al., 2015), P-evolution of
crystalline siderite, and with the Earth’s seismological PREM
model (Dziewonski and Anderson, 1981). Density profile below
40 GPa is calculated using K7 value of 80.23 GPa (Kang et al.,
2015), consistent with that reported for molten calcite (Hudspeth
etal., 2018), and density at room P of 2,500 kg-m ™~ by assuming
a similar density jump upon melting as for other carbonates for
which room P density is known. Comparison with PREM model
shows that Fe-carbonate melts are buoyant at all depths. Density
contrast between the high P polymerized melt or glass and

extrapolated equation of state for low P melt is 15%, i.e., similar
to volume collapse reported upon transition from crystalline high
spin siderite I to low spin siderite IT (Liu et al., 2015). The volume
collapse is smoothed out over a ~ 30 GPa range in the molten
state with, as a direct consequence, a steepening of the melting
curve from 55 GPa on (Cerantola et al., 2017).

4. DISCUSSION

The 3 to 4-fold transition occurs in molten Fe-carbonates at P
less or equal to 51 GPa, compared to 50 GPa for crystalline FeCO3
(Liuetal., 2015), 80 GPa for MgCO3 (Oganov et al., 2008; Boulard
etal., 2011), and 130 GPa for CaCO3 (Oganov et al., 2006; Arapan
et al., 2007). A consequence of the effect of Fe on the 3-fold C to
4-fold C transition P is that crystalline Fe-poor (Ca,Mg,Fe)'CO;
and Fe-enriched (Ca,Mg,Fe)IVCO3 melts could co-exist at depth.
In the case of Si isotopes, fractionation between V!Si bridgmanite
and 'VSi olivine structures is theoretically estimated to ~ —1
%028Si at 2000 K (Huang et al., 2014). If this effect can be scaled to
C simply using mass difference considerations, then a few %o0'*C
fractionation is expected, and could potentially explain isotopic
differences between calcite inclusions from super-deep diamonds
(Kaminsky et al., 2016). This effect might be sufficient to confer
a mantle-like signature to deep diamonds grown from slab-
derived carbonate melts while co-existing tetrahedral crystalline
carbonate are expected to get lighter.

Density of non-crystalline FeCO3 remains considerably lower
than that of its crystalline counter parts, even at the highest
investigated P, by 15%. The situation is thus very different from
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that of molten and crystalline silicates which density converge
at deep mantle conditions (Petitgirard et al., 2015; Sanloup,
2016), and such difference could be attributed to the very strong
medium-range order preserved in tetrahedral high P carbonate
melts while it is mostly collapsed by 5 GPa in silicate melts. That
high P FeCOj3 melts quench as glasses contrasts with the behavior
observed at lower P, and suggests an important increase of
carbonate melt viscosity consistent with the observation of a very
strong medium-range order. It is also opposite to the behavior of
molten basalt that systematically quenches as crystalline phases
above 11 GPa (Sanloup et al,, 2013) and as a glass below. The
strongly reduced chemical reactivity of high P FeCO3 melts with
silica along with their glass-forming ability suggest that unlike
at lower P, tetrahedral carbonate melts are not pervasive, which
could contribute to the longevity of carbonates in the deep mantle
where allowed by oxidizing conditions or slow reduction kinetics
(Litasov and Shatskiy, 2018).
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A Corrigendum on

Polymerized 4-Fold Coordinated Carbonate Melts in the Deep Mantle
by Sanloup, C., Hudspeth, ]J. M., Afonina, V., Cochain, B., Kondpkovd, Z., Lelong, G., et al. (2019).
Front. Earth Sci. 7:72. doi: 10.3389/feart.2019.00072

In the original article, there was a mistype in Equation (2) used to simulate the experimental C-O
contribution on g(r) (Figure 3B).
A correction has been made to Section 2, Density Measurements, equation 2:

RV

202

g(i’) _ CcCchKo A
72 nSoc 04/27

where cc and ¢¢ are the atomic proportions of carbon and oxygen, K¢ and Ko are defined as the
average effective atomic number over the experimental g-range (Eggert et al., 2002) and calculated
using form factors from Hajdu (1972). Other parameters are as defined in the article.

The authors apologize for this error and state that this does not change the scientific conclusions
of the article in any way. The original article has been updated.
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Viruses are the most abundant biological entities on Earth and perform essential
ecological functions in aquatic environments by mediating biogeochemical cycling
and lateral gene transfer. Cellular life as well as viruses have been found in deep
subseafloor sediment. However, the study of deep sediment viruses has been hampered
by the complexities involved in efficiently extracting viruses from a sediment matrix.
Here, we developed a new method for the extraction of viruses from sediment
based on density separation using a Nycodenz density