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Regenerated silk (RS) is a natural polymer that results from the aggregation of liquid

silk fibroin proteins. In this work, we observed that RS dispersed in aqueous solution

undergoes a reversible solid/liquid transition by programmed heating/cooling cycles.

Fourier transform infrared, atomic force microscopy imaging and Raman measurements

of the RS reveal that the transition from random coil to β-sheet structures is involved in this

liquid–solid transition. The reversible solid-liquid transition of silk fibroin was then found to

be helpful to prepare polymer-like carbon nanotube (CNT) dispersions. We demonstrate

that the gelation of RS makes the CNTs with the consistency of a dough with polymeric

behavior. Such RS can disperse carbon nanotubes at high concentrations of tens of

weight percent. Finally, such carbon nanotube dough has been used for the realization

of rubber composites. With this method, we pave the way for handling nanopowders

(e.g. CNTs or graphene related materials) with safety and reducing the filler volatility that

is critical in polymer-processing.

Keywords: carbon nanotubes, regenerated silk, phase transitions, electrical conductivity, polymer composites

INTRODUCTION

Regenerated silk (RS) is a natural polymer made by the coagulation of silk fibroin that is a an
aggregation of proteins with short and long chains; the combination of intermolecular interactions
via hydrogen bonds between the chains leads to the formation of β-sheet structures that have a high
crystalline local order. Increasing the fibroin concentration in a solution enhances the probability
to generate chain interactions where the β-sheets form a stable gel transition. The dehydration of
such crystalline structures results in an irreversible liquid-solid transition due to thermodynamic
cross-linking of the β-structures that undergo gelation with time (Ayub et al., 1993; Hanawa
et al., 1995; Kang et al., 2000; Wang et al., 2008). Some physical and/or chemical methods have
been proposed to enhance the gelation kinetics of silk fibroin, including pH change, mechanical
sonication and addition of salts (Matsumoto et al., 2006; Gong et al., 2012; Wu et al., 2012; Kapoor
and Kundu, 2016). A reversible sol-gel transition of silk fibroin exposed to acidic or basic vapors
and, more recently, in hydrogel-based silk fibroin have also been reported (Terry et al., 2004; Yin
et al., 2017).

Liu et al. (2014) demonstrated the thixotropy (i.e., a time dependent shear thinning property) of
silk fibroin via dissolution nanofibrils gel in alcohol and sodium chloride while Bai et al. (2014)
also showed a reversible sol—gel transition by self-assembly of nanofibers into supramolecular

5
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aggregations without altering the β-sheet contents. Numata et al.
(2011) reported the gelation of the regenerated silk induced with
ethanol and with a heterogeneous network structure made of a
β-sheet and fibrillar structures.

The shape, dimension and the aspect ratios over 1,000 of
carbon nanotubes (CNTs) with their ability to undergo large
deformations without damage suggests that interesting parallels
may be drawn with silk fibroin. However, attention turns to
their behavior and potential processability in liquid suspension.
There are a lot of experiments done with most common solvents
to get stable dispersions of CNTs (Fukushima et al., 2003;
Bergin et al., 2009; Davis et al., 2009); however, generally the
most common solvents used, such as N-methyl-2-pyrrolidone,
dimethylformamide, and 1,2-dichrolobenzene, can disperse only
CNTs with specific size and dimension at low concentrations.
Recently, Chiou et al. (2018) dispersed carbon nanotube powders
in m-cresol at very high concentrations giving them a dough-
like consistency. However, m-cresol is highly volatile, and the
processing requires a controlled environment.

In this study we exploit the utilization of salts to dramatically
reduce the gelation time of silk fibroin. The results demonstrate
that regenerated silk drop solution can undergo liquid-solid
transitions within a few min by thermal annealing. The proposed
method induced a rapid gelation of CNTs that, when added to RS
solution at high concentrations up to tens of weight percent, show
a transition dough state that exhibit polymer-like and viscoelastic
properties. Finally, as proofs of the concept, such polymer-like
CNTs were used as masterbatch to realize a rubber composite.

MATERIALS AND METHODS

For the preparation of RS film, commercial B. mori silk
cocoons were boiled for 1 h in distillated water solution of
0.025 wt % NaHCO3, rinsing with distillated water every 30min
to remove the sericin. The degummed silk (i.e., 0.23 g) was
then added to a CaCl2 (i.e., 24 g)—water (i.e., 68ml)—ethanol
(i.e., 55ml) solution and stirred 12 h at 40◦C yielding an 1
wt % solution. NANOCYL R© NC7000TM multi-walled carbon
nanotube powder (average diameter 9.5 nm, average length
1.5µm, volume resistivity 10−4 Ohm∗cm) was used. In 1ml
of solution, 10mg of CNTs up to 50 and 2mg of regenerated
silk were dispersed to yield, at maximum, a RS concentration
of about 4 wt%. The liquid-solid transition was monitored by
the optical density (OD) method, measuring the absorbance
at wavelength 550 nm and temperature of 80◦C at different
times. Fourier transform infrared (FTIR) analysis was performed
in a Jasco FTIR FT/IR-615 spectrometer, equipped with an
ATR mode in the wave number range from 400 to 4,000
cm−1. The spectra were deconvoluted by firstly smoothing the
signal with a polynomial function with a 15-point Savitski—
Golay smoothing function, subtracting a linear baseline and
applying Gaussian deconvoluting curves by Origin 9 software.
Rheological data for the RS/CNT dough were recorded on
circular specimens (ca. 12mm wide, and 0.13mm thick) on an
ARES rheometer (Rheometric Scientific). Frequency and strain
sweeps, as well as constant strain amplitude, were performed at

constant temperature to find the storage modulus (G′) and the
loss modulus (G′′) of RS and RS/CNT samples at different CNT
concentrations. The electrical resistance of the RS/CNT solid
dough was obtained with a Keithley 6517B electrometer/high
resistance meter equipped with an 8009 test fixture, according
to the ASTMD257 that is the worldwide laboratory standard
for sensitive measurements. Briefly, the basic method used to
determine the resistance is a two-step method: first a test voltage
is applied to the sample and the subsequent current is measured;
then, the test voltage value and measured current value are
applied and the electrical resistance is calculated.

For the atomic force microscopy (AFM) and Raman
characterization, dispersion of RS and RS/CNT was drop casted
on silicon wafers and glass slides. The sample was heated
at 80◦C for 1 hour in air conditions. The solid samples
were placed in AFM chamber which is an insulated box to
minimize environmental noise and building vibration at room
temperature. AFM instrument (Model: Bruker Dimension Icon)
operated at intermittent contact mode using silicon cantilever
(Model: ScanAsist). All the AFM images are produced as a
function of time by keeping the other parameters (i.e., scan speed,
scan size) constant.

Raman spectroscopy was carried out at room temperature by
using 50X objective lens using LASER source of 532nm at 5mW
and grating 2400 l/mm. The spectral range was analyzed between
200cm−1 to 3000cm−1. The Raman spectra were recorded as
a function of displacement (i.e. line map) and function of
time (i.e. collection of spectra at single region at different
time intervals).

For the realization of the polymer composite, an acrylonitrile
butadiene rubber (NBR; KNB35), LEVAPREN 700 and
vulcanizing agent LUPEROX R© F40MF were used. Rubber
compounds were prepared by dissolving separately 1.6 g
of NBR, 3.1 g of LEVAPREN and 0.25 g of LUPEROX in
chloroform and then mixing together with RS/CNTs dough with
a DISPERMAT(R) and left to evaporate onto a Teflon mold until
the complete evaporation of the solvent was achieved. Carbon
nanotubes powder, for a comparison purpose, was sequentially
added to the rubber by melt mixing (Banbury mixer) at about
100◦C for 10min. The vulcanizing agent was added just before
the extraction of the composite to avoid any cross-linking
effect. The composites prepared with both procedures were then
vulcanized at 180◦C for 5min in a thermofluid-heated press.

Tensile properties were measured according to ASTM D 412
specifications, on an Instron dynamometer (Model 4301), at
25◦C at a crosshead speed of 500 mm min−1. At least five
specimens of each sample type were tested. The samples were
then cut into dumbbell specimens Die A with dimension of∼140
× 25× 2 mm.

RESULTS AND DISCUSSION

The liquid RS extracted from solution and a drop cast on silicon
substrate at 80◦C shows a liquid–solid transition (Figure 1a)
that recovers the liquid state under cooling at 25◦C within few
minutes, which is lower than that of conventional silk-fibroin
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FIGURE 1 | (a) Photos showing the reversible liquid-solid transition observed along the heating/cooling time of RS. (b) ATR-FTIR spectra in the amide I region for RS

liquid solution annealed at 80◦C at different times. (c) ATR-FTIR spectra in the amide I region for RS solid phase cooled at room temperature at different times.

(d) AFM topography of solid silk fibroin imaged at different time intervals at room temperature are showing dendritic structure of silk fibroin with several branches. The

inset represents a peculiar region analyzed at different time intervals. AFM topography of a zoomed region analyzed up to 25min; a transformation in the silk-fibroin

structure is marked by dashed circle. The scale bar represents the degradation of the structure as a function of time. (e) AFM image of the dendritic fibroin network;

the dashed line represent the topographic profile of different altitude of the fibroin structure.
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FIGURE 2 | (a) Photos showing the reversible liquid-solid transition observed along the heating/cooling time of RS/CNTs. (b) ATR-FTIR spectra in the amide I region

for RS/CNTs liquid solution annealed at 80◦C at different times. (c) Annealing time effect on β-sheet content at 80◦C assessed by FTIR amide I band analysis for RS

(Continued)
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FIGURE 2 | and RS/CNTs solutions. (d) Shear storage (G′) and loss (G′′) moduli for RS 2 mg/ml and RS/CNTs dough with a CNT concentration of 50 mg/ml (i.e., 4

wt% RS) measured as a function of time during annealing at 80◦C and cooling to 25◦C. (e) Shear storage (G′) and loss (G′′) moduli for RS 2 mg/ml and RS/CNTs

dough with a CNT concentration of 50 mg/ml (i.e., 4 wt% RS), measured as a function of shear strain amplitude at 25◦C. The plot on the right shows the fit of the

storage modulus with Equation 2.

(usually a few weeks) (Matsumoto et al., 2006; Gong et al., 2012).
The liquid-solid transition of fibroin results from the formation
of physical cross-links made of a β-sheet that makes the optical
aspect of the film more opaque. In its liquid state, fibroin is a
hydrophobicmolecule surrounded by ordered water. In this state,
the ordered structure of the water hinders the fibroin aggregation
but when the temperature increases, the positive entropic term
overwhelms that of heat or enthalpy and local dehydration
takes place, enhancing the hydrogen bonding between the chains
(Connelly et al., 1964). Increasing the annealing time provides the
increased chain interactions through dehydration of the system
(Urry et al., 1997), and thus accelerates the solidification.

The RS also exhibits a transition from the solid to the liquid
state by setting the substrate at room temperature (Figure 1a).
Although silk fibroin contains a high content of β-sheet in the
solid state, the return to the liquid phase may also imply the

existence of metastable fibroin structures within the β-sheet
fraction, likely those composed of silk fibroin and Ca2+ ions

(Ling et al., 2016). Calcium ions can capture water molecules
from the atmospheric and hence, the more calcium ion is in silk
fibroin solution, the more water molecules, as a solvent, can be
captured, resulting in liquid transition.

Changes in the structure of the RS were detected by FTIR

analysis. ATR-FTIR spectra of the RS in the amide I region

were measured at different times of annealing, as reported in

Figure 1b. The β-sheet (crystalline) content was determined by

the deconvolution of the amide I region and by estimating
the ratio between the peak area in the wavenumber region of
1622–1637 cm−1, which is the main absorbance region of β-
sheet crystal in amide I (Hu et al., 2006), and the whole area
of the amide I region comprising the peaks of the structural
components, including turns and random coils. The dashed
lines mark the adsorption bands at 1650 and 1625 cm−1, which
are characteristic of the random-coil and β-sheet structures of
silk proteins, respectively, according to previous studies (Dong
et al., 1990; Goormaghtigh et al., 1990; Mouro et al., 1997;
Jung, 2000; Teramoto and Miyazawa, 2005; Tretinnikov and
Tamada, 2001). The structure of RS shifted predominantly to a
β-sheet structure by increasing the annealing time (Figure 1b),
whereas random-coil structures are prevalent in the liquid state
and vice-versa by cooling at 25◦C (Figure 1c). The β-sheet
content (calculated from the amide I bands over the other main
components) in the liquid state was unexpectedly high (≈15%).
Moreover, the β-sheet fraction increases with increasing the
annealing time and was as high as 45% when the film was
completely dry.

Figure 1d shows the images of single fibroin molecules
obtained by AFM. The concentration of the RS sample was 1
wt %. According to Inoue et al. (2000), the silk fibroin molecule
consists of a rodlike part with stringlike parts on each end of the

rod. The observed size is 100 nm in width and 14 nm in height
(Figure 1e). According to the ATR-FTIR analysis, the silk fibroin
shows the disappearance of the dendritic structure at different
time intervals at room temperature (Figure 1d).

The RS/CNT solution, which demonstrated a similar
behavior (Figure 2a), showed a higher β-sheet content of
about 60% once dried (Figures 2b,c). More indicative of such
transition is the rheological behavior. In Figure 2d, the plots
of storage (G′) and loss (G′′) modulus vs. annealing/cooling
cycles (increasing/decreasing values) are shown. According
to the interpretation of the FTIR spectra both G′ and G′′

increase with annealing time; interestingly both G′ and
G′′ are independent from the strain for the RS sample,
instead they decrease with increasing the strain amplitude
for the RS/CNTs sample (Figure 2e). For viscoelastic systems
filled with rigid solids, this is known as the Payne effect
(Payne, 1962). According to this theory, solid fillers may
exist in chainlike formation or aggregates within the solid
polymer. If there are attractive forces, the particles are held
together in single agglomerates that behave like a rigid group
under deformation. However, as the magnitude of the stress
increases with increasing deformation, these groups will be
broken down into smaller units and the elasticity of the
material will change. Then, the number of connections N
rescales as:

N=N0[1+ (γ /γc)
2m]−1 (1)

where, N0 is the initial connection density, m is the
network structure factor, γ and γc are the strain
and the yield strain, respectively. This leads to
the equation:

G′=G′
∞ +(G′

0 − G
′
∞)/[1+ (γ /γc)

2m] (2)

where G′
0 or G′

∞ are the storage moduli at low or
high strain, respectively. The best fit of the data (e.g.
0.53) reported in Figure 2e with Equation 2 results in
a structure factor close to m = 0.5, which is typical
for filled elastomers. From the rheological study, we
can assume that the RS/CNTs sample behaves as a
viscoelastic material.

RS can process CNTs up to tens of weight percent; the photos
in Figures 2a, 3a show the liquid CNT solution and its dough
state as the annealing time in RS was increased. After drying at
80◦C, a disk-shaped sample shrinks isotropically maintaining its
shape, resulting in a stiff solid object that could be further handled
(Figure 3a). Upon cooling, the dough-like state remains stable
for at least 20min (Figures 2a, 3a). As reported in the FESEM
images of Figure 3b, the CNTs are well-dispersed by the RS. From
this analysis, we suggest that the interaction between silk fibroin
and CNTs allows their dispersion.
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FIGURE 3 | (a) The CNTs in RS solution can be processed to obtain a dough. Once annealed, the RS/CNT dough shows a contraction and can be taken by hands as

a freestanding solid sample. (b) Morphology of RS/CNTs dried sample in FESEM showing well separated CNTs after being processed in RS. (c) Optical image of

(Continued)
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FIGURE 3 | RS/CNT showing accumulation of CNT (black regions). Regions marked with R1-R9 are localized spots of Raman spectra. (d) Raman spectrum range

from 200–3,000 cm−1, showing prominent peaks from CNT (RBM, D, G, and 2D), along with peaks from fibroin. Raman spectra of (e) RS and (f) RS/CNT as a

function of time (min) over a glass substrate. Marked dashed rectangle in plots (e,f) are analyzed as a function of time. Variation of Raman shift (cm−1) for peak

positions 1,086, 1,092, and 1,101 cm−1 for RS (g) and at 1,087, 1099.85, and 1113.65 cm−1 for RS/CNT (h) monitored up to 24 and 28min, respectively.

FIGURE 4 | The transition to dough-like state is characterized by an increase in a solid-like behavior, based on the results of (A) storage moduli (G′) and loss moduli

(G”) measurements. Shear storage (G′) and loss (G′′) moduli RS/CNTs dough with different CNT concentrations, measured as a function of shear strain amplitude at

80◦C. Yield strain plotted vs. CNT wt%. The line shows the best fit to Equation 3. Schematic structure of a fractal floc. The flocs are linked to each other.

(B) Threshold decrease in the electrical resistance of the RS/CNT dough at different CNT concentrations.

In order to confirm this hypothesis, we reported the Raman
characterization of RS and RS/CNT samples in Figures 3c–h.
Raman spectra of the regions reported in Figure 3c show the
typical Raman features of CNTs i.e., the so-called G-line that
is a characteristic feature of the graphitic layers, the defective
graphitic structure (D-line), the radial breathing mode (RBM)
and the resonant 2D mode (Dresselhaus et al., 2005) (Figure 3d).

Figures 3e,g show the Raman spectra of solid RS, analyzed as a
function of time at room temperature. The spectra of Figure 3e
are similar to those already published (Rousseau et al., 2004) and
the assignment of the major bands observed around 600, 800,
and 1100 cm−1 are based on published Raman results on silk,
proteins, and polypeptides (Rousseau et al., 2004). The sub-peaks
(Figures S1–S3 in the Supplementary Material), due to the C-C
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stretching vibration at around 1,103 cm−1 in the spectrum of the
RS, show a blue-shift as a function of time that is associated with
the β-sheet reduction, as suggested by Zheng et al. (1989). On
the contrary, after addition of CNT in the RS (Figures 3f,h), the
peak positions at 1,087, 1099.85, and 1113.65 cm−1, show a red-
shift as a function of time, illustrating a significant contribution
from CNT.

The transition to solid state has also been confirmed
by rheological, and viscoelastic properties. The transition to
polymer-like state suggests that the nanotubes form a cohesive
network in RS (Payne, 1962). After annealing, above 10 mg/mL,
the CNT network is not free to flow, leading to a freestanding
dough (Figure 3a). It becomes solid-like with increased storage
modulus (Figure 4A). The loss modulus decreased more slowly
than the storage modulus, giving the dough a sufficient level
of viscous character for extrusion. In view of the similarity of
our RS/CNTs dough with a viscoelastic medium, as reported in
Figure 2e, the elastic properties of the samples were modeled by
applying the scaling law:

γc≈f−(1+dB)
∗(3−dN) (3)

which have been successfully demonstrated for polymer
gels (Shih et al., 1990; Shaffer and Windle, 1992; Boland et al.,
2016). These studies showed that both the storage modulus
G′ and the limit of linearity of the strain γ (i.e., yield strain
γc) exhibit a power-law with respect to particle concentration
(f) that is G′≈f4.1 and γc≈f−2.1 (Sonntag and Russel, 1987;
Buscall et al., 1988). Taking the γc values from Figures 2e, 4A
and plotting versus the CNT wt% in Figure 4A, we obtain the
best fit with a power law with exponent −2.22. Such a value is
consistent with the rheological model developed by Shaffer and
Windle (1992), who considered the structure of a gel network as
a collection of fractal flocs, which are closely packed throughout
the sample whit dN and dB, indicating the fractal dimensions of
the network and its backbone, respectively. They observed that
in the strong-link regime, where there is an interfloc interaction,
the elastic constant (i.e., G′) increases but the limit of linearity
(i.e., γc) decreases with increasing particle concentration.

The higher CNT concentrations of this dough-like state are
also accompanied by a threshold in the electrical properties. For
example, the increase of the CNT concentration from ≈1wt% to
≈10wt% was accompanied by the onset of electrical conductivity
(Figure 4B), which can be attributed to the start of a percolation
threshold, through an interconnected pathway of nanotubes.

The dough state is of potential interest for polymer processing
(De Gennes, 1979; Huang et al., 2012; De Volder et al., 2013).
The dough can be added to the polymer matrices as masterbatch
without handling powders, moreover, the dough state eliminates
the use of solvents. Figure 5 shows the mechanical results of
the experiment, where rubber composite has been prepared
by blending NBR with RS/CNTs dough. The nanocomposite
was then vulcanized under a hot plate press at 180◦C. At 10
wt% loading of CNTs in NBR, the toughness modulus of the
RS/CNT composite increased by ≈16%, in comparison with a
similar composite prepared with CNT powder (Table 1). Such

preliminary findings suggest that RS/CNTs dough could be used
for the processing of polymer nanocomposites.

CONCLUSIONS

In this study, the transition from solid to liquid state of RS
was obtained by the addition of calcium chloride salts to water
based silk fibroin solution. It was observed that the presence
of salts stimulated the water absorption and this reaction led
to a reversible transition. Moreover, the processing parameters
including annealing time, allows the control of the molecular
organization of silk fibroin in β-sheets structures. Such an
inexpensive method to assemble silk in solid state was used
for optimizing the dispersion of carbon nanotubes at high
concentrations of tens of weight percent. The results show the
advantage to use silk fibroin as a natural dispersant to obtain
CNTs with the consistency of polymers. As a proof of concept,
RS/CNT dough was used to prepare a polymer composite with
improved deformability and toughness modulus, with respect
to the composite prepared by the addition of CNT powder.
Such findings pave the way the utilization of nanopowders
dough as master batch in the processing of polymer composites
and to overcome the problems of handling nanopowders in
industrial implants including graphene and related materials.

FIGURE 5 | (a) Polymer nanocomposite dumbbell specimens obtained by

mixing RS/CNTs and NBR. (b) Mechanical characterization showing that the

polymer composite prepared by mixing NBR with RS/CNT dough at its

percolation threshold and CNT powder.

TABLE 1 | Polymer nanocomposites (e.g. 10wt%) mechanical properties (i.e.,

elongation at break, tensile strength, stress at 50 and 100% of strain and

toughness modulus).

Sample Elongation

at break

(%)

Tensile

strength

(MPa)

Stress at

50%

(MPa)

Stress at

100%

(MPa)

Toughness

modulus

(MPa)

NBR 246 ± 10 8.35 ± 0.39 1.5 ± 0.1 3.8 ± 0.2 10.27 ± 0.24

NBR/CNTs 283 ± 18 13.30 ± 0.44 2.0 ± 0.1 7.8 ± 0.4 18.81 ± 0.31

NBR/RS/CNTs 344 ± 9 12.38 ± 0.49 1.5 ± 0.1 3.8 ± 0.2 21.29 ± 0.30
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Electroactive biomaterials are a new generation of “smart” biomaterials based on

intrinsically conducting polymers (ICP). Among them, poly(3,4-ethylenedioxythiophene)

(PEDOT), polypyrrole (PPy) and polyaniline (PANI) are well known conducting polymers

that present excellent electrical and optical properties emerging as main candidates

for potential biomedical applications. Additionally, the biodegradability of biomaterials is

very useful and desirable. In this context, biodegradable polymers based on polyesters,

such as poly(D,L-lactic acid) (PDLLA), polycaprolactone (PCL), and poly(glycolic acid)

(PGA) appear to be promising candidates because of their good biocompatibility and,

as a consequence, they have been attracting attention as sustainable alternatives

for applications in medicine. Weak molecular interaction with cells, biocompatibility,

biodegradability, mechanics and topography are some of the main challenges for

the use of conducting polymers as biomaterials. In order to improve their own

biocompatibility, the main strategies are whether by doping with specific counter ions

(biodopants) or chemically modifying the monomers with different molecules. Although

conventional ICPs still present low or none biodegradability, there are relatively few

examples of biodegradable electroactive polymers in the literature. Recently, novel

approaches have been applied to solve the problem of lack of biodegradability of

conducting polymers, mainly through (1) synthesis of a modified electroactive oligomers

connected via degradable ester linkages creating block copolymers and (2) synthesis

of modified electroactive and biodegradable macromonomers based on polyesters

used in a second step copolymerization with conductive monomers. This mini-review

focuses on developing trends, challenges and summarizes the recent advances on

synthesis of conducting, biodegradable and biocompatible copolymers in terms of

optimizing the chemical properties to improved response toward different cells, aiming

biomedical applications.

Keywords: biodegradation, conducting copolymers, biomaterials, biocompatible, electroactive macromonomers
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INTRODUCTION

Electrically active and/or responsive tissues includes
skeletal muscle, brain, and heart and had been widely explored
by interfacing metallic or semi-conductor electrodes to provide
electrical stimulation (Tehovnik, 1996; Merrill et al., 2005). This
effect plays important role in the cellular division, development,
migration, signaling, muscle contraction and would healing,
for electroresponsive cell types such as myoblasts, fibroblasts,
osteoblasts, chick embryo dorsal root ganglia, and neural crest
cells, therefore attracts attention on tissue engineering and
regenerative medicine (Tandon et al., 2009; Ghasemi-Mobarakeh
et al., 2011).

Intrinsically conducting polymers (ICPs) are already
demonstrated suitable for substitution of traditional electrodes
based on conductors or semi-conductors (e.g., gold, platinum
or glassy carbon) in biological applications due to their soft
interface and electrical properties (Owens and Malliaras, 2010).
Among them poly-3,4-ethylenedioxythiophene (PEDOT),
polypyrrole (PPy), and polyaniline (PANI) are well known
conducting polymers that present excellent electrical and optical
properties (Skotheim and Reynolds, 2007).

Biodegradable materials are present in a lot of different areas,
such as agriculture, medicine, packaging (storage), food, among
others (Lendlein and Sisson, 2011). The biodegradable properties
are usually present in polymeric materials by the loss of bulk
weight through the polymer chain breaking into small pieces by
enzymes, living organisms, environmental conditions or simply
by water molecules (Siracusa et al., 2008; Vroman and Tighzert,
2009; Lendlein and Sisson, 2011). For biomedical applications,
biodegradability is highly desirable for devices which perform
their function and automatically “disappear” from the body,
either reabsorbed or eliminated (Ulery et al., 2011). For this
purpose, the degradation products must be biocompatible with
biological systems; so, they are obtained bymonomers commonly
present in the body. Among them, polyesters appear as good
candidates and have been extensively applied as biomaterials
(Nair and Laurencin, 2007). Nonetheless, polyglycolide (PGA)
(Mooney et al., 1996; Moutos et al., 2007), polylactides (PLA,
PLLA or PDLLA) (Yang et al., 2005a,b; Lasprilla et al., 2012; Shi
et al., 2016) and polycaprolactones (PCL) (Kweon et al., 2003;
Ghasemi-Mobarakeh et al., 2008) have been themost investigated
due to the ease obtaining and good mechanical properties.

Recently, a new class has emerged as potential candidates
on biomedical field, the biodegradable electrically conducting
polymers (BECP), which allies enough conductivity (i.e., allow
electrical stimulation) with biodegradable properties (Rivers
et al., 2002). Nowadays, a huge number of applications
require biomaterials which can interface with cells, tissues or
biomolecules. The molecular events at the biointerface usually
involves a complex matrix with water molecules, proteins, and

ions (Kasemo and Lausmaa, 1994; Ploux et al., 2010; Timko et al.,
2010). In this context, proteins can regulate the cell fate, even
inside cells (regulated by genes expressions) or those secreted

from cells in the extracellular matrix (ECM). This plays an

important role in the interaction with biomaterials once their
orientation and conformation supposed to be fundamental for

biocompatibility (Stevens and George, 2005). To understand how
the ICP/cell biointerface works, several studies have investigated
the role of adsorbed ECM proteins, among them fibronectin
(FN), laminin and fibrinogen, for supporting cell adhesion,
migration, proliferation, differentiation, and other processes
(Rief et al., 2000; Kotwal and Schmidt, 2001; Oberhauser et al.,
2002; Kandel et al., 2014). Some important properties have been
found to play an important role, such as protein conformation,
surface charges, different dopants or oxidized/reduced state of
ICP (Svennersten et al., 2009; Gelmi et al., 2010, 2013a,b; Nelea
and Kaartinen, 2010; Persson et al., 2011).

In this context, the present mini-review focus on developing
trends and challenges discussing the recent advances on: (1)
synthesis of a modified electroactive oligomers connected via
degradable ester linkages creating block copolymers (Figure 1A)
and (2) synthesis of modified electroactive and biodegradable
macromonomers based on polyesters used in a second step
of copolymerization with conductive monomers (Figure 1B)
for conducting and biodegradable biomaterials with suitable
interfacial properties for biomedical applications.

ELECTROACTIVE AND BIODEGRADABLE
OLIGOMERS FOR BLOCK COPOLYMERS

In the mid-1970s, Heeger et al. demonstrated that polyacetylene
(CH)x could turns into highly conductive when doped with
iodine (Shirakawa et al., 1977), which led the authors to win the
Nobel Prize in chemistry in 2000. For the next decades several
studies of polymeric films with metallic and semiconducting
properties had been reported (Street and Clarke, 1981). They
established the important role of linear π-conjugated systems
on electronic properties and conjugated polymers have emerged
as the best prototypes for the linear π-conjugated systems,
such as polypyrrole and polythiophenes (Roncali, 1997). In this
context, some well-defined oligomer synthesis based on pyrrole
were developed in order to control the synthesis and the π-
conjugated system. Groenendaal and colleagues were able to
obtain controlled conditions for oligo(pyrrole-2,5-diyl) from
2 to 18 units (Groenendaal et al., 1995). In 1995 and 1997,
Miller et al. (Hong and Miller, 1995) and Leclerc et al. (Donat-
Bouillud et al., 1997), respectively, proposed the synthesis of
π-conjugated oligomers based on thiophene groups linked to
polyesters. Then, in 2002, Langer et al. (Zelikin et al., 2002)
proposed, for biomedical purposes, the synthesis of carboxylic
acid functionalized pyrrole monomers obtaining a functionalized
polypyrrole named as “erodible conducting polymer,” based on
ionizable and/or hydrolysable groups that could promote its
partial water solubilization. The carboxylic acid functionalized
polypyrroles were not able to break the conjugated chain but
partially solubilize it; therefore, the correct term should be a
partially biodegradable conducting polymer.

With this purpose in mind, Schmidt et al. (Rivers et al.,
2002) based on the idea of electrical properties of thiophenes
and knowing that three pyrrole rings were enough to achieve
π-conjugation, they were the first to demonstrate, by using
modification of previous synthesis of π-conjugated oligomers
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FIGURE 1 | (A) Schematic synthesis of electroactive oligomers and block copolymers. (B) Schematic synthesis of electroactive macromonomers and graft

copolymers. (C) Chemical structure of electroactive and biodegradable oligomers. (D) Chemical structure of electroactive and biodegradable macromonomers. The σ

is conductivity, BD is biodegradability and BC is biocompatibility. Blue color represents the conductive/electroactive molecules and green color represents the

biodegradable molecules. The conductivity, biodegradability, and biocompatibility parameters are only reported for studies which aimed use the synthesized materials

for biomedical applications. 1 (Rivers et al., 2002), 2 (Guimard et al., 2009), 3 (Ding et al., 2007; Huang et al., 2007, 2008; Guo et al., 2011d, 2012; Zhao et al.,

2017), 4 (Zhao et al., 2017), 5 (Wang et al., 2015), 6 (Ding et al., 2007), 7 (Xie et al., 2015a), 8 (Huang et al., 2008), 9 (Huang et al., 2007), 10 (Huang et al., 2008), 11

(Xie et al., 2015a; Zhao et al., 2017), 12 (Mecerreyes et al., 2000, 2002), 13 (Türkan et al., 2011), 14 (da Silva et al., 2018a,b, 2019), 15 (Chao et al., 2007).

(Hong and Miller, 1995; Donat-Bouillud et al., 1997), the
feasibility of creating the first BECP (Figure 1Ci) by using
ester linkages (PLA) to achieve biodegradability and electrical
conductivity based on threeπ-conjugated rings, a thiophene with
two other pyrroles (Rivers et al., 2002). It was necessary to add
a thiophene group in order to improve stability to the oligomer
during synthesis (Rivers et al., 2002). Additionally, previous
studies on macrophages activity using polyethylene revealed
an important role of size and dose dependency, evidencing
that small particles (0.24µm) stimulated macrophages activity
(Green et al., 2000; Ingram et al., 2004). Thus, Schmidt
et al. (Rivers et al., 2002) assumed that the conducting
oligomers could be easily removed via macrophages. However,

the material was only possible to be doped with iodine
vapor which could increase cytotoxicity. Trying to solve
this problem, several years later the same group proposed
the synthesis of 5,5′′′-bis(hydroxymethyl)-3,3′′′-dimethyl-
2,2′:5′,2′:5′′,2′′′- quaterthiophene-co-adipic acid polyester
(QAPE) (Figure 1Cii) as an electroactive oligothiophene unit
(block of four thiophenes) with in vitro cytocompatibility studies
for Schwann cells attested a non-cytotoxicity property (Guimard
et al., 2009). Recently, Schmidt et al. (Hardy et al., 2014, 2015)
reported electrochemically triggered biodegradable electroactive
polymer oligoaniline-based materials for drug delivery.

Another remarkable synthesis of BECP was proposed by Wei
et al. (Huang et al., 2007) in 2007, changing the electroactive
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oligomer for an aniline pentamer (AP) (Figure 1Ciii) through
ester linkages (based on PLA again) in a triblock copolymer
called “PLA-b-AP-b-PLA.” However, due to a molecular weight
of ∼10 kDa, it did not present enough mechanical and plasticity
properties for their practical applications. Thus, in the next
year the same group proposed an improvement to the final
properties of the biomaterial by adding multiblocks of PLA (Mw

= 2.16 kDa) to get a higher molecular weight (Mw = 89.8
kDa) to the copolymer. Furthermore, it attended good solubility,
mechanical properties and ease the processability, also keeping
its own electroactivity, biodegradability and biocompatibility
with in vitro experiments tested for PC-12 cells (Huang et al.,
2008). Nonetheless, the cytotoxicity for the degradation products
demonstrated in this study, where the aniline oligomers (AP)
exhibited low cell viability for rat C6 cell line when compared
to PLA and PLAAP, being ideal to use a low content of
aniline oligomers(Huang et al., 2008). In parallel, Zhang et al.
(Ding et al., 2007) proposed the polycondensation between
carboxyl-capped aniline pentamer (CCAP) and hydroxyl-capped
polyglycolide (PGA) by using N,N′-dicyclohexylcarbodiimide
(DCC) as coupling reagent and tested its degradability (∼50%
after 120 days) and electroactivity, but no cell experiments
were performed.

In 2010, Albertsson et al. (Guo et al., 2010a) proposed
the incorporation of amino-capped aniline trimer (ACAT),
previously proposed by different research groups (Wei et al.,
1996; Wang et al., 1998; Lu et al., 1999) and also the use of
CCAP, both bonding to PLLA biodegradable chains but focused
in different architectures of the biomaterials by using branched
PLLAs. Then, the same group proposed the copolymerization
of CCAP with linear and branched PCLs, obtained as a final
product a linear and two different hyperbranched copolymers,
also called “star-shape architecture” by themselves (Guo et al.,
2010b). Later, poly(ethylene glycol) (PEG) was incorporated to
the synthetic route in order to create hydrogels with conductive
and biodegradable properties, based on acrylated PDLLA-PEG-
PDLLA and aniline tetramer (AT), (Guo et al., 2011a) PCL-
PEG-PCL with CCAP, (Guo et al., 2011b) and to improve the
nondegradability of CS-graft-PANI hydrogels (Marcasuzaa et al.,
2010) a CS-graft-AT was proposed by the same group (Guo
et al., 2011c). After all the experience on synthesis with aniline
oligomers and polyesters, the same group proposed a “universal
two-step approach” for the synthesis of block copolymers
oligoaniline-based, by using aniline dimer (AD) to obtain AT
(Guo et al., 2011d). Then, by using the same approach, the
size-tunable nanoparticles from the self-assembly coil-rod-coil
triblock copolymers (Guo et al., 2011e) and the functionalization
of PLA surface with AT to improve hydrophilicity were proposed
(Guo et al., 2012).

In 2015, Ma et al. (Xie et al., 2015a) designed an electroactive
degradable shape memory polymer network based on star-
shaped, produced with PLA and ACAT as previously mentioned
(Guo et al., 2010b), but now demonstrated their potential
application for bone tissue engineering. Once conductive
elastomers have been rarely reported in literature, the same
group designed an AT-based electroconductive elastomer, which
is a class of materials that mimic the mechanical properties

of some specific tissues (Chen et al., 2015a) Their proposal
led to high stretchability and low modulus material trying to
simulate soft human tissues by using AT as rigid block, PEG
and PLLA as soft ones. They investigated the molecular weight
of PEG (1 to 6 kDa), amount of AT in the synthesis (3, 6,
or 12% wt) and added end groups either cross-linked with
trimethylolpropane (branched) or terminated with n-propanol
(linear) (Chen et al., 2015a). Later, they designed a series of novel
biocompatible biodegradable and electroactive polyurethane-
urea (PUU) copolymers by combining the elastomeric property
of polyurethane, conductive property of oligoaniline and the
general good biodegradability and biocompatibility of PLLA
(Chen et al., 2015b). Furthermore, it was investigated the effect
of different molecular weight of PLLA (1500, 3500, or 8000 Da)
on the final properties of the biomaterial (Chen et al., 2015b).
Similar aniline oligomer-based biomaterials had been applied
by the same research group for a wide range of applications,
such as enhancement of myogenic differentiation of C2C12
myoblast cells, (Chen et al., 2015b; Wang et al., 2015; Xie et al.,
2015a,b; Deng et al., 2016; Zhao et al., 2017) improve osteogenic
differentiation from bone marrow derived mesenchymal stem
cells (Li et al., 2016) and enhance myelin gene expression and
neurotrophin secretion of Schwann cells (Wu et al., 2016).

Recently in the field of biomedical applications, Ma and
colleagues had been substituting the conductive part of
biomaterials for carbon nanotubes, avoiding aniline-based ones
(Wu et al., 2017). It was already demonstrated that the
conductivity of PANI and PANI-based material is strongly
dependent on protonation (Cao et al., 1995; Stejskal et al., 2004).
For biomedical applications, it supposed to have a deleterious
effect when exposed to cells for a long period, either for
biocompatibility or electrical stability (Meng et al., 2008; Green
et al., 2012; Mawad et al., 2016). At this point, in 2017 Stevens
et al. (Spicer et al., 2017) proposed a series of conjugated
oligomers of EDOT as an interesting alternative to oligoanilines
for tissue engineering.

ELECTROACTIVE AND BIODEGRADABLE
MACROMONOMERS FOR
GRAFT COPOLYMERS

Electroactive macromonomers can be defined as a reactive
macromolecule which can be further electrochemically or
chemically polymerized, due to electroactive functionalities on
the chain, in order to obtain a copolymer. It is possible to
copolymerize it with the samemacromonomers, achieving “block
copolymers structure,” or by adding other individual monomers,
grafting the macromonomer to other homopolymer chain, called
“graft copolymers” (Figure 1B) (Yagci and Toppare, 2003).

Electroactive macromonomers are a very useful way to add
new properties or functionalities to prepare block or graft
copolymers. Usually the homopolymer presents completely
different characteristics when compared to the copolymer.
In this way, part of the interesting properties desired when
adding electroactive macromonomers could be improved
solubility, processability, biocompatibility, biodegradability,
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FIGURE 2 | Reactions of obtaining electroactive macromonomer of EDOT-PDLLA (A) via organometallic catalyst, (B) via enzymatic pathway and (C) “grafting through”

copolymerization of PEDOT-co-PDLLA. (D) Summary of characterized properties for 1:05, 1:25, and 1:50 ratios (PEDOT:PDLLA) (da Silva et al., 2018a,b, 2019).

etc. However, it supposed to be aware that some functionalities
on macromonomers can affect the π-electron density on
conjugated backbone. It could either create a very stable
conjugation which cannot be electropolymerized anymore or
destabilize the macromonomer to degrade or promote side
reactions instead the desired copolymer. An example of this
is the addition of a oxadiazole group to oligothiophene chain,
which are electron-withdrawing group, leading the thiophene
trimers to do not electropolymerize and to promote an oxidative
side reaction at high potentials that destroys the copolymer,
whereas the thiophene pentamers can be electropolymerized
(Fisyuk et al., 2005).

Toppare and Yagci have extensively worked with the “grafting
through” method applied for electroactive macromonomers,
mainly based on pyrrole and thiophene (Yagci and Toppare,
2003). Their approach was used to obtain ICPs with improved
processability and mechanical properties, but focused on
biosensing applications (Alkan et al., 1999; Kizilyar et al., 1999;
Cirpan et al., 2001; Yagci and Toppare, 2003; Arica et al.,
2005; Sahin et al., 2005; Uygun et al., 2010). There are a vast
literature and excellent reviews on the grafting polymer chains for
biointerfaces (Hackett et al., 2017), macromonomer techniques
(Ito, 1998; Adachi and Tsukahara, 2015), functional materials
(Strover et al., 2016), electroactive materials (Pron et al., 2010),
biodegradable and electrically conducting polymers (Guo et al.,
2013) and biomimetic conducting polymers (Hardy et al., 2013).

In 2000, Grande et al. (Mecerreyes et al., 2000) proposed
the synthesis of novel pyrrole end-functional macromonomers
prepared by ring-opening polymerization with ε-caprolactone
(Py-g-PCL) (Figure 1Di). The aim of the work was not

targeting the use for biomedical applications, but showed
its versatility on copolymerizing with different polymers
to change its final properties (Mecerreyes et al., 2002). In
2004, Catellani et al. (Dall’Acqua et al., 2004) proposed
a intrinsically conductive cellulose-polypyrrole textile
which they speculated could be useful from clothing to
biomedical applications.

Recently, some of these graft copolymers based on
electroactive macromonomer approach have been effectively
proposed for biomedical field, mainly based on pyrrole
(Domagala et al., 2014; Guo et al., 2017) aniline (Figure 1Div)
(Chao et al., 2007; Peng et al., 2011) or thiophene groups,(Türkan
et al., 2011) but most works are using the electroactive
aniline-based oligomers previously discussed in this mini-
review. Although some research groups propose new
synthetic routes for novel copolymers and characterize
the physical chemistry properties which could be useful
in biomedical applications, studies of biocompatibility are
not commonplace.

Regarding some of this issues, in 2018 our group proposed
the synthesis for a novel electroactive macromonomer
based on PDLLA with 3,4-ethylenedioxythiophene (EDOT)
functionalized end group (Figure 1Diii) (da Silva et al., 2018a).
Aiming biomedical applications, the proposed synthesis
was performed either by using an organometallic catalyst
(traditional method, with stannous octanoate) (Figure 2A)
or by enzymatic pathway (two different lipases, CAL-B or
PS-IM) (Figure 2B) to promote ring-opening polymerization
of PLA. The organometallic catalyst builds up an electroactive
macromonomer three times longer than the enzymatic ones.

Frontiers in Materials | www.frontiersin.org 5 May 2019 | Volume 6 | Article 9819

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


da Silva and Córdoba de Torresi Biodegradable Conducting Polymers for Biomaterials

Ozdemir et al. (Türkan et al., 2011) proposed a similar
electroactive macromonomer with PCL and thiophene-
capped (ThPCLTh) (Figure 1Dii) and reported the thiophene
end groups could not react and polymerize. Thus, they
copolymerized it with other conducting polymers (pyrrole and
thiophene monomers) and no further cell experiments were
performed to investigate the biocompatibility. Our study showed
that the electroactive macromonomer of EDOT-PDLLA was
able to electropolymerize at the same electrical potential of
EDOT monomers, but no film formation was observed due to
the soluble nature of EDOT-PDLLA in organic solvents, being
able to produce only some non-conductive soluble oligomers
(da Silva et al., 2018a).

Based on previous observations, we proposed by
“grafting through” the electroactive macromonomer
approach to synthesize copolymers of PEDOT-co-
PDLLA in three different proportions (1:05, 1:25, and
1:50) (Figures 2C,D), leading to completely different
final properties. The conductivity and biodegradability
were characterized and noncytotoxic properties toward
embryonic stem cells (Figure 2D) were found. Additionally,
the copolymers presented an unexpected differentiation
of the embryonic stem cells to mature neurons with
migration halos and neurofilament lengths increased up
to 65 and 370%, respectively, when compared to control
(da Silva et al., 2018b).

In order to understand the different copolymer compositions,
the nanoscale electrical properties of the films and the
interaction with FN were characterized. It was observed
that 1:50 copolymer films produced more uniform current
dispersion (by Conductive-AFM) and the interface with
different surface potential (negative interface, by Kelvin Probe
Force Measurement) when compared to other copolymers.
We speculate that it was related to a more homogeneously
dispersed anionic doping on 1:50 during synthesis and film
production. That nature of biointerface characteristics supposed
to contribute for a higher FN affinity and stronger adsorption,
5 and 3 times stronger than for 1:05 and 1:25, respectively
(da Silva et al., 2019).

CONCLUDING REMARKS AND OUTLOOK

Electroactive aniline-based oligomers have been extensively
studied, and their toxicity is a limiting factor for biomedical
applications. Proposals of new electroactive oligomers based
on more stable and biocompatible electroactive monomers
and/or oligomers may be interesting in this field. Additionally,
another alternative may be the use of very low aniline-based
oligomers content or to create new strategies to increase
the biocompatibility.

The electroactive macromonomers emerge as a useful tool to
obtain graft copolymers with conductivity and biodegradability
properties. However, more studies are still necessary to apply
that kind of biomaterials on cellular experiments, such as tissue
engineering, biomedical devices, scaffold/templates, etc. It would
provide great insights for the development of this area.

Another important remark is related to the fact that not only
the synthesis of new materials is worth but also to go deeper
in their characterization. Recently, important studies have been
specifically looking to the biointerface of the materials with cells,
whether by studying nanoscale properties or interactions with
biomolecules, trying to understand what should be better for
cell interfacing. Finally, the knowledge would lead us for smarter
biomaterial designing in the future.
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Polycarbazole and its derivatives have advantages of good environmental stability,

electrochromic properties and photoconductivity which have attracted considerable

attention because of their potential industrial applications in electroluminescent

applications, rechargeable batteries, and light emitting diodes. They have the

possibility of different position substitution (carbon C3-C3’ or N) that lead to different

electropolymerization behaviors. However, the N position facilitates the grafting of

various derivatives of interest and permits not to modify so much the radical cation

formation during electropolymerization. In this paper, carbazole and its derivatives were

electrochemically oxidized in acetonitrile solutions leading to the formation of thin polymer

films. The morphological features and electrochemical properties of the as-formed

polymer films were investigated in detail. Thanks to these experiments, the influence of

the substitution on the properties of the polymer films was evidenced and discussed. In

addition, fast electrochemistry experiments were carried out on platinummicroelectrodes

within 50–1,000 V/s scan speed range. Reactivity of carbazole derivatives radical

cations and dimers was investigated through these experiments. Thermodynamic and

kinetic information (e.g., redox standard potential, heterogeneous, and dimerization rate

constants) was extracted after coupling with electrochemical simulations.

Keywords: electrochemistry, conducting polymers, carbazoles, reactivity, functionalization

INTRODUCTION

The discovery of organic conducting polymers in Shirakawa’s laboratory in the early 1970s and the
demonstration by MacDiarmid et al. of the semiconducting properties of polyacetylene (Shirakawa
et al., 1977) paved the way for an intense research activity on these materials to exploit these
conducting properties. Thus, over the last decades, other organic semiconducting polymers like
polypyrrole, polyaniline, polythiophene, or polycarbazole have been gaining increasing interest,
owing to their interesting physicochemical properties, for many different applications including
flexible electronics (Savagatrup et al., 2014; Lee et al., 2018), optoelectronics (Ouyang et al., 2005;
Akiyama et al., 2009; Cai et al., 2017), and energy storage devices (Mali et al., 2015; Bryan et al.,
2016; Kausar, 2017).
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Various methods have been used in the past for growing such
conducting polymers including chemical oxidation (Huang et al.,
2012), plasma polymerization (Yaguee et al., 2008), Langmuir-
Blodgett technique (Park et al., 2003), or electrochemistry
(Fonseca et al., 2017). Among these methods, electrochemical
deposition is the most convenient and reliable method for
growing conducting polymer thin films with controlled
properties. Indeed, many physico-chemical properties [including
conductivity (Patois et al., 2010), morphology and roughness
(Patois et al., 2011) or wettability (Darmanin and Guittard,
2014)] of electrodeposited polymer films can be easily tuned by
varying electrochemical conditions [such as solvent (Viau et al.,
2014; Wojcik and Grzeszczuk, 2015), electrodeposition potential
(Chmielewski et al., 2010), nature of the counter-anions (Atobe
et al., 2006), temperature (Wojcik and Grzeszczuk, 2015), or pH
(Peng et al., 2009)].

Carbazole is one of the aromatic heterocyclic organic
compounds that could lead to the formation of a conducting
polymer film by oxidation. Resulting carbazole-based conjugated
polymer films can be used as components of sensors (Joshi et al.,
2014; Vedarajan et al., 2014), batteries (Saraswathi et al., 1999),
OLED (Grigalevicius et al., 2011; Srivastava and Chakrabarti,
2015), or electrochromic devices (Hu et al., 2013; Hsiao and Lin,
2016), mainly because of their electron-donating nature, high
photoconductivity and strong fluorescence.

To tune properties of conducting polymers, it is possible to
modify heterocyclic monomers by incorporation of functional
groups with specific properties. Indeed, carbazole monomers
have the possibility of substitution at N-position. Such chemical
modification provides the opportunity to improve both the
solubility and functionality of the resulting polymer. In addition,
flexible side chains can cause steric hindrance and thereby
provide a means to control the effective conjugation length.

Thus, chemical modifications to the carbazole monomers
leading to N-substituted derivatives have already been done
(Ambrose and Nelson, 1968; Ambrose et al., 1975; Chevrot et al.,
1996; Wei et al., 2006). In particular, anodic electrochemical
oxidation of carbazole and its N-substituted derivatives (N-
methylcarbazole, N-ethylcarbazole, and N-isopropylcarbazole)
were first studied by Ambrose and Nelson (1968); Ambrose et al.
(1975). They investigated the reactivity of cation radicals formed
from these substituted carbazoles using electrochemical and
spectroscopic techniques and reported that their electrochemical
oxidation leads to only 3,3′-bicarbazyls and not to 9,9′-
bicarbazyls due to the fact that the 9-position is already occupied.
The optical and electronic properties of undoped and doped
electrodeposited poly(N-ethylcarbazole) thin layers were also
characterized by Chevrot et al. (1996). In another study, Wei
et al. have prepared high quality polymer films by anodic electro-
oxidation of carbazole and its alkyl derivatives N-octylcarbazole,
N-(6-bromohexyl)carbazole, and 1,6-bis(carbazolyl)hexane in
boron trifluoride diethyl etherate (BFEE) or mixed electrolytes
BFEE + CHCl3 (Wei et al., 2006). However, among the various
carbazole incorporated polymers, a central place is reserved to
N-vinylcarbazole because it is easily synthesized and soluble
in common organic solvents. Thus, the polymerization of
N-vinylcarbazole in ethylenedichloride, acetone, benzene, and

dioxane with cupric nitrate, ferric nitrate, and ceric ammonium
nitrate catalysts was studied by Sarac and Bardavit (2004).
Similarly, poly(N-vinylcarbazole) films were synthesized by
electrochemical oxidation of N-vinylcarbazole in acetonitrile
(Reyna-Gonzalez et al., 2006; Reyna-González et al., 2009). In
this work, Reyna-Gonzalez et al. evidenced that modifying the
acidity of the electrolyte leads to the deposition of polymer
films with various properties in terms of chemical structure,
morphology, conductivity, and optical properties. Such poly-(N-
vinylcarbazole) films have been used as solar cells materials (Su
et al., 2017), as sensing materials (Papez and Josowicz, 1994), or
as light-emitting diode materials (Li et al., 2010; Cai et al., 2011).

Taking into account this literature, the present study aimed
at preparing various N-substituted polycarbazole films by
electrochemical oxidation using optimum electrodeposition
conditions (in terms of solvent, supporting salt and monomer
concentration) deduced from the study of carbazole
electropolymerization. Then, the reactivity of carbazole
derivatives radical cations and dimers was investigated through
fast electrochemistry experiments to determine the influence of
the substitution. Electrochemical properties and morphology
of the various substituted polycarbazole films were also studied
and compared.

MATERIALS AND METHODS

Reagents
Carbazole (Cz, 95%) and vinylcarbazole (CzV, 98%) were
purchased from Sigma Aldrich. 9-ethyl-9H-carbazole
(Cz1Me, 97%) was from TCI. Acetone (99.98%) and
dimethylformamide (99.8%) were from Fisher Chemical.
Lithium perchlorate, tetraethylammonium p-toluenesulfonate
(TS), tetrabutylammonium hexafluorophosphate (TH),
and tetrabutylammonium tetrafluoroborate (TBAB) were
from Sigma-Aldrich.

All other chemical reagents used to prepare monomers were
purchased from TCI or Sigma Aldrich and used as received
unless otherwise stated. 1H and 13C NMR spectra were recorded
on a Bruker AC 400 spectrometer. RMN spectra are given
in Supplementary Files.

Synthesis
General Procedure to Alkylcarbazoles
KOH (2.50 g, 1.5 eq) and bromoalkane (45 mmol, 1.5 eq) were
added at room temperature to a stirred solution of carbazole
(5.00 g, 30 mmol) in acetone (30mL). Then the reaction mixture
was refluxed for 24 h. After cooling, water was added (30mL) and
the reaction mixture was neutralized with 0.1M HCl solution.
The solution was extracted with diethylether (3∗50mL). The
combined organic layers were dried over sodium sulfate, filtered,
and concentrated by rotary evaporation. The crude product was
purified by chromatography (Dichloromethane/Cyclohexane 1/1
as eluent) to give the final compound.

9-butyl-9H-carbazole (Cz3Me)
According to the general procedure, 9-butylcarbazole was
obtained as a white solid (5.45 g, 81%). 1H NMR (400 MHz,
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CDCl3): δ (ppm) 8.12 (d, 2H, J = 7.6Hz), 7.46 (d, 2H, J =

8.0Hz), 7.24 (d, 2H, J = 6.4Hz), 4.30 (t, 2H, J = 7.2Hz),
1.85 (quint, 2H, J = 7.2Hz), 1.40 (td, 2H, J = 7.6Hz, J =

7.6Hz), 0.95 (t, 2H, J = 7.2Hz). 13C NMR (100 MHz, CDCl3):
δ (ppm) 140.4, 125.5, 122.7, 120.3, 118.6, 108.6, 42.8, 31.1,
20.5, 13.9. Analyses were consistent to already published data
(Petrov et al., 2013).

9-hexyl-9H-carbazole (Cz5Me)
According to the general procedure, 9-hexylcarbazole was
obtained as a white solid (6.30 g, 84%). 1H NMR (400 MHz,
CDCl3): δ (ppm) 8.07 (d, 2H, J = 7.6Hz), 7.43 (m, 2H), 7.35
(d, 2H, J = 8Hz), 7.20 (t, 2H, J = 7.2Hz), 4.21 (t, 2H, J =

7.2Hz), 1.80 (quint, 2H, J = 7.2Hz), 1.35–1.21 (m, 6H), 0.85
(t, 2H, J = 7.2Hz). 13C NMR (100 MHz, CDCl3): δ (ppm)
140.4, 125,5; 122,8; 120,3; 118,6; 108,6; 43,0; 31,6; 28,9; 26,9;
22,5; 14,0. Analyses were consistent to already published data
(Petrov et al., 2013).

9-octyl-9H-carbazole (Cz7Me)
According to the general procedure, 9-octylcarbazole was
obtained as a colorless oil (7.95 g, 94%). 1H NMR (400 MHz,
CDCl3): δ (ppm) 8.10 (d, 2H, J = 7.6Hz), 7.47 (m, 2H), 7.42 (d,
2H, J = 8.0Hz), 7.23 (td, 2H, J = 7.2Hz, J = 1.2Hz), 4.30 (t, 2H, J
= 7.2Hz), 1.88 (quint, 2H, J = 7.2Hz), 1.42–1.20 (m, 10H), 0.87
(t, 2H, J = 7.2Hz). 13C NMR (100 MHz, CDCl3): δ (ppm) 140.4,
125.6, 122.8, 120.3, 118.7, 108.6, 43.1, 31.8, 29.4, 29.2, 29.0, 27.3,
22.6, 14.0. Analyses were consistent to already published data
(Sathiyan and Sakthivel, 1993).

N-((Methoxycarbonyl)methyl)carbazole (CzE)
Carbazole (4.2 g, 30 mmol) was added at 0◦C to a suspension
of NaH (60% in oil, 2.0 g, 2 eq) in a dry THF/DMSO
solution (80/40mL). The mixture was stirred for 1 h and methyl
bromoacetate was added (5.8 g, 1.5 eq). The reaction mixture was
stirred overnight then quenched with water. The solution was
extracted with diethylether (3∗100mL). The combined organic
layers were dried over sodium sulfate, filtered and concentrated
by rotary evaporation. The crude product was purified by
chromatography (Dichloromethane/Cyclohexane 1/1 as eluent)
to yield a white solid (4.37 g, 73%). 1H NMR (400 MHz, CDCl3):
δ (ppm) 8.02 (d, 2H, J = 7.6Hz), 7.40 (t, 2H, J = 8.0Hz),
7.20 (m, 4H), 4.92 (s, 2H), 3.63 (s, 3H). 13C NMR (100 MHz,
CDCl3): δ (ppm) 169.0, 140.5, 126.0, 123.2, 120.5, 119.7, 108.3,
52.5, 44.6. Analyses were consistent to already published data
(Conn et al., 1993).

2-(9H-Carbazol-9-yl)acetic acid (CzA)
N-((Methoxycarbonyl)methyl)carbazole (1.08 g, 4.3 mmol) was
dissolved in a THF/H2O solution (5/5mL). KOH (0.8 g, 3 eq)
was added and the solution was stirred at room temperature
overnight. Then THF was removed by evapory rotation and
aqueous solution was acidified to pH =1 with 1M HCl solution.
The precipitated compound was filtered, washed with cold water
and dried under vacuum to yield a white solid (0.6 g, 56 %). 1H
NMR (400 MHz, CDCl3): δ (ppm) 8.02 (d, 2H, J = 7.6Hz), 7.40
(t, 2H, J = 8.0Hz), 7.20 (m, 4H), 4.97 (s, 2H). 13C NMR (100
MHz, CDCl3): δ (ppm) 173.1, 140.4, 126.1, 123.3, 120.6, 119.9,

108.2, 44.1. Analyses were consistent to already published data
(Zhang et al., 2014).

Electrochemistry
Electrodeposition of Cz and Its Derivatives
First, electrochemistry was used to study the electrochemical
oxidation of the monomers on a platinum wire (area: 0.785
mm2) using cyclic voltammetry technique (5 potential scans
were done at 50 mV/s). Then, after optimization of the
electrolyte composition, polycarbazole films were prepared
using chronoamperometry technique (3min of oxidation at
the oxidation peak potential deduced from the corresponding
cyclic voltammetry) on a Fluorine doped Tin Oxide (FTO)
substrate (R = 80 V/square, area: 1.5 cm2), before being
extensively characterized.

The electrochemical activity of polyCz was also estimated by
doing a cyclic voltammetry at a Pt electrode coated with a PCz
film in the same electrolyte but in the absence of monomer. This
electrode was rinsed in acetonitrile between the cycling in the
solutions with monomers and those without.

All these electrochemical experiments were carried
out at room temperature, with a VersaSTAT MC
potentiostat/galvanostat from Princeton Applied Research,
in a single-compartment cell with a three electrode set-up.
This set-up employed a Saturated Calomel Electrode (SCE) as
reference electrode, a platinum sheet as counter-electrode, and
either a platinum wire or a FTO substrate as working electrode.

Fast Electrochemistry
Fast electrochemistry experiments were carried out using
an AUTOLAB PGSTAT30 potentiostat equipped with
SCAN250 and ADC10M modules. A classical three-electrode
cell was used with platinum microelectrode (diameter
246µm calibrated with ferrocene system) as working
electrode, platinum wire as counter-electrode and Ag/AgCl
reference electrode. The solution contained 1.5mM of
functionalized carbazole and 0.1M of TBAB in acetonitrile.
Electrochemical simulations were realized with DigiElch
Pro software.

Characterization
SEM Microscopy
The surface morphology of the polycarbazole films was observed
with a high-resolution Scanning Electron Microscope Quanta
450W (from FEI) with an electron beam energy of 12.5 keV and
a working distance of 9mm. No metallization pre-treatment was
needed since the samples were conductive.

Profilometry
Thickness and roughness of electrodeposited films were
measured using a stylus-based mechanical probe profiler (Alpha-
Step IQ, from KLA Tencor). Both thickness and roughness
were obtained by moving this stylus perpendicularly to the film
on a scan length of 3,000µm at a scan speed of 50µm.s−1.
Five measurements were achieved at different positions for
each film.
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FIGURE 1 | Cyclic voltammetry at a Pt electrode of: (A) 10−2 M Cz + 0.1M LiClO4 in ACN, (B) 10−2 M Cz + 0.1M LiClO4 in DMF, (C) 10−1 M Cz + 0.1M LiClO4 in

ACN, (D) 10−3 M Cz + 0.1M LiClO4 in ACN. Scan rate: 50 mV/s.

RESULTS

Electropolymerization of Carbazole at Pt
Electrodes by Cyclic Voltammetry
Influence of the Solvent and Carbazole Concentration
The oxidation of 10−2 M carbazole was performed by cyclic
voltammetry (CV) at Pt electrodes in 0.1M LiClO4 in acetonitrile

(ACN) or dimethylformamide (DMF) solutions (Figure 1). The
onset oxidation potentials of carbazole, leading to Cz radical

cations, in LiClO4/ACN and LiClO4/DMF, appears at 1.05 and
0.95 V/SCE, respectively. The redox process of polycarbazole is
observed in ACN since a polyCz oxidation peak and a polyCz
reduction peak are clearly distinguishable at +0.8 and +0.7
V/SCE, respectively. After the first cycle, both Cz, and polyCz
oxidation potential peak intensity increases and potentials shift
toward higher values. The gradual increase of the reduction peak
intensity with repeated scans indicates the progressive deposition
of the polymer on the Pt surface. Moreover, the ia/ic ratio of the
redox polyCz peaks is close to 1, indicating a good reversibility of
the redox process.

This electrochemical behavior is consistent with the
electropolymerizationmechanism previously reported (Ambrose
and Nelson, 1968). This mechanism begins with the oxidation of
carbazole monomers leading to the formation of cation radicals
in a one electron process. These cation radicals couple with
each other or with a parent molecule leading to 3,3′-bicarbazyls.
After that, the oxidation of the oligomers takes place leading
progressively to the formation of a polycarbazole film at the
electrode surface.

On the contrary, the redox process was not distinguishable
when the cyclic voltammetry was performed in DMF, and the
intensity of the Cz oxidation peak decreased upon repeated
scans, both indicating that this solvent is less appropriate for this
reaction than ACN. In addition, the film obtained by oxidation of
Cz in DMF is very thin and copper-colored to the eye, contrary
to the one obtained in ACN which is thicker and green-colored
(Figure 2). This is in line with other studies which evidenced
that acetonitrile was a better solvent than propylene carbonate
and dichloromethane for the electropolymerization of Cz
(Sarac et al., 2006).

The influence of themonomer concentration was then studied
by comparing the cyclic voltammetry obtained from 10−2 M Cz
in an acetonitrile solution (using 0.1M LiClO4 as supporting
electrolyte) with the ones obtained from similar solutions
containing Cz concentrated at 10−3 and 10−1 M (Figures 1C,D).
Thus, the cyclic voltammetry obtained with 10−1 M Cz shows
great similarities with the one obtained at 10−2 M, in particular
a Cz oxidation peak beginning at +1.0 V/SCE whose intensity
increases with repeated scans and potential shifts toward higher
values, and two reversible redox peaks corresponding to the
oxidation and reduction of the polyCz. On another side, the Cz
oxidation peak was narrower at 10−2 M and its intensity was
10 times lower, both due to the lower monomer concentration.
After this electrochemical oxidation, a thick green-colored film
was obtained (Figure 2). On the contrary, the cyclic voltammetry
obtained with 10−3 M Cz was very different from the ones
obtained at 10−1 and 10−2 M since there was no increase with
repeated scans of the Cz oxidation peak appearing at+ 1.0 V/SCE
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FIGURE 2 | Photographs of samples obtained by oxidation of carbazole at different concentrations and in electrolytes containing different solvents and

supporting salts.

and no distinguishable redox peaks. Moreover, only a very thin
pale yellow film is formed (Figure 2).

It can be deduced from these experiments that the best solvent
for studying Cz electropolymerization is acetonitrile and the
optimized monomer concentration is 10−2 M rather than 10−1

M since the PCz film obtained with 10−2 M Cz is more adherent
and more uniform (Figure 2). In addition, the solubility of Cz
into acetonitrile is more difficult in 0.1 M Cz.

Influence of the Supporting Salt
To determine the influence of the nature of the supporting
salt, in particular the influence of its anions acting as
dopants, on the electrochemical oxidation of carbazole, cyclic
voltammograms were performed from an acetonitrile solution
containing carbazole and one of the following salts: lithium
perchlorate (LiClO4), tetrabutylammonium tetrafluoroborate
(TBAB), tetraethylammonium p-toluenesulfonate (TS), or
tetrabutylammonium hexafluorophosphate (TH). These salts
were chosen because they have different sizes, contain different
anions, provide a good conductivity to the electrolyte and
facilitate the dissolution of monomers in the electrolyte.

The cyclic voltammogramm obtained with TBAB salt
(Figure 3B) presented similarities with the one previously
obtained with LiClO4 (Figure 3A). Indeed, the onset potentials
of Cz in TBAB/ACN is located at + 1.1 V/SCE, the cyclic
voltammetry shows an oxidation peak, the current intensity of
this anodic peak increases with repeated scans and a reduction
peak corresponding to redox processes is also visible. However,
a lower maximum oxidation current density was obtained in
TBAB/ACN (5 mA/cm2, 5th cycle) than in LiClO4/ACN (12
mA/cm2, 5th cycle), as well as a lower maximum reduction
current density (only −0.4 mA/cm2 in TBAB/ACN compared
to −1.2 mA/cm2 in LiClO4/ACN). The same general trends
are observed in TS/ACN (Figure 3C) since an oxidation peak
and a redox peak are also visible but with lower intensities
than in LiClO4/ACN films. This tends to indicate that the
polymer film is thicker and the redox processes more reversible
in LiClO4/ACN. The behavior observed in the presence of TH
salt was very different (Figure 3D). Indeed, the oxidation peak is
less pronounced, the reduction peak is not distinguishable, and
the intensity of the oxidation peak is very low. Thus, it can be
assumed that the electropolymerization of Cz is far more difficult

in TH/ACN than in LiClO4/ACN and TS/ACN. This is confirmed
by the pictures from the samples obtained by electro-oxidation
of Cz on FTO electrodes (Figure 2) which show that a thick and
homogeneous polyCz film is obtained in LiClO4/ACN when less
homogeneous films are obtained in TS/ACN and TBAB/ACN
and no clearly visible film is obtained in TH/ACN.

The electrochemical activity of the polyCz films
electrodeposited in the different electrolytes was also studied.
To this aim, polyCz films were electrodeposited onto a Pt
working electrode by cyclic voltammetry, then the Pt electrode
with the polymer film attached was removed from the growth
solution, and placed in a monomer-free solution of the solvent
for post-polymerization voltammetric analysis. Since it is
necessary to have enough salt to study the insertion/desinsertion
of the anions in the PCz films, a concentration of 0.1M in salt
was chosen.

Whatever the nature of the supporting salt, post-
polymerization CVs showed a peak separation that is expected
for a reversible electron transfer process (Chen and Inganas,
1996) (Figure 4). However, the oxidation and reduction peaks
are more pronounced when LiClO4 was used. With this latter
salt, the potential corresponding to the polyCz oxidation and
reduction peaks is +1.3 and +1.05 V/SCE, respectively, during
the 1st cycle (the potential shifted toward less anodic potentials
with repeated scans). Moreover, the ratio of oxidation to
reduction intensities remains constant around 2.25 with repeated
scans which indicates that the doping/dedoping process happens
even after a few scans. When TBAB is used as supporting
electrolyte, the redox processes also take place as evidenced by
the presence of the oxidation and reduction peaks at +1.35 and
+0.95 V/SCE, respectively. Moreover, these peaks are present
during the repeated scans (even if the reduction peak slowly
decreases) indicating doping/dedoping process. When TS is used
as supporting electrolyte, the redox processes again take place as
proved by the presence of the oxidation and reduction peaks at
+1.3 and +0.85 V/SCE, respectively, even if the oxidation peak
is broader. The intensity of these peaks remains roughly constant
with repeated scans indicating the doping/dedoping of the film
by the p-toluenesulfonate anions. In the presence of TH salt, the
oxidation and reduction peaks are also present but the current
density is strongly lower than for the other salts indicating that
the doping/dedoping process still goes on.
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FIGURE 3 | Cyclic voltammetry of 10−2 M Cz in 0.1M (A) LiClO4/ACN, (B) TBAB/ACN, (C) TS/ACN, (D) TH/ACN. Scan rate: 50 mV/s.

FIGURE 4 | Post-polymerization cyclic voltammetry of 10−2 M Cz in 0.1M (A) LiClO4/ACN, (B) TBAB/ACN, (C) TS/ACN, (D) TH/ACN. Scan rate: 50 mV/s.

To conclude, the study of the electropolymerization
conditions (monomer concentration, nature of the solvent
and nature of the supporting salt) recommends to work
in acetonitrile solutions with lithium perchlorate and

a carbazole concentration of 10−2 M. These optimized
conditions will be used in the next part of this work
dedicated to the electrochemical oxidation of N-substituted
carbazole derivatives.
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FIGURE 5 | SEM images of the films obtained by electrodeposition of 10−2 M: Cz (A), CzA (B), CzV (C) and CzE (D) in 0.1M LiClO4 + acetonitrile.

Characterization of the Polycz Obtained in the

Optimized Conditions
The morphology of a polyCz film obtained from oxidation
of 10−2 M Cz in an acetonitrile solution containing 0.1M
LiClO4 was studied by SEM microscopy. The SEM image
indicates that the overall surface of the polyCz film is
homogeneous, the electrode being nearly completely covered by
polymer (Figure 5A). Moreover, the film consists in small heaps
electrodeposited onto the electrodes with bare domains between
them. The shape of these small heaps is circular and the size of
the structures varies from one to the other. Using profilometry
measurements, the thickness of the polyCz films was estimated
to 6–7µm and its roughness to 0.05–0.09 µm.

N-substituted Carbazoles
9-alkylcarbazoles
In an attempt to obtain original thin solid polymer films by
electrochemical oxidation of substituted carbazoles, different
alkylcarbazoles were prepared by incorporation of alkyl chains
at N-position. The alkyl chain length was varied to determine if
this parameter has an influence on the oxidation of the modified
carbazoles. The electrochemical parameters used to perform the
electro-oxidation of the various N-alkylcarbazoles were those
optimized in the first part of this work: a concentration of 10−2 M
in monomer, 0.1M LiClO4 as supporting salt and acetonitrile as
solvent. Thus, the anodic oxidation of 9-ethylcarbazole (Cz1Me),

9-butylcarbazole (Cz3Me), 9-hexylcarbazole (Cz5Me), and 9-
octylcarbazole (Cz7Me) was performed by cyclic voltammetry
at Pt electrodes, as shown in Figure 6. The onset oxidation
potentials of these four alkylcarbazoles, leading to radical cations,
appears at +1.0 V/SCE. A pronounced reduction peak is also
observed for all carbazole derivatives at +0.7–0.8 V/SCE. Both
the Cz oxidation peak and the corresponding reduction peak
are observed during the successive scans. Another peak, whose
intensity is very low, can be observed around +0.8 V/SCE.
Concerning the intensity of the peaks, they are similar for all
alkylcarbazoles but lower than for non-substituted carbazole (the
intensity of the oxidation peak is around 6 mA/cm2 for 9-
alkylcarbazoles instead of 12 mA/cm2 for Cz, and the reduction
peak intensity was around −0.5 mA/cm2 for 9-alkylcarbazoles
instead of −1 mA/cm2 for Cz). Moreover, there is no clear
increase in redox currents during successive cycling whichmeans
that no adherent deposit is obtained on the electrode surface.
This is confirmed visually as no polymer deposit is observed (with
the naked eye or with a SEM microscope) on the substrates after
electrochemical oxidation.

So, it is interesting to observe that carbazole and 9-
alkylcarbazoles present a comparable electrochemical behavior
but only carbazole leads to a polymer thin film on the working
electrode. In addition, when the oxidation is performed by
chronoamperometry, similar charge quantity is measured during
the oxidation of Cz (368 mC/cm2) and during the oxidation
of Cz1Me (410 mC/cm2), Cz3Me (367 mC/cm2), Cz5Me
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FIGURE 6 | Cyclic voltammetry at a Pt electrode of 10−2 M: (A) Cz1Me, (B) Cz3Me, (C) Cz5Me, (D) Cz7Me + 0.1M LiClO4 in ACN. Scan rate: 50 mV/s.

(369 mC/cm2), and Cz7Me (376 mC/cm2) indicating that the
oxidation of these species takes place without particular difficulty
for all of these monomers. In the review from Kapron and
Lapkowski (2015) and in the pioneer works from Ambrose and
Nelson (1968) dedicated to the electrochemistry of carbazoles,
it is explained that the oxidation of Cz leads to the formation
of the cation radical in a one electron process. As the cation
radical is not stable, it tends to couple with another cation radical
or a parent molecule (a loss of two protons accompanies this
coupling) to form a more stable bicarbazyl (which can be either
3,3′-bicarbazyl, the main product, or 9,9′-bicarbazyl, the minor
product). Then, the oxidation of the oligomers takes place (at
a lower potential than the oxidation of the monomers) and
the electropolymerization of Cz occurs. On the contrary, when
the nitrogen atom is blocked by a substituent, the oxidation
mainly leads to dimers but not to polymers. From our point
of view, this difference of behavior between Cz and these
substituted carbazoles may be due to the difference of stability
of the cation radicals obtained by electro-oxidation of Cz and
9-alkylcarbazoles and their dimers. To validate our assumption,
we performed fast electrochemistry experiments (Figure 7) since
fast electrochemistry on such diffusive systemsmay be interesting
in terms of kinetic and thermodynamic parameters extraction
(e.g., redox standard potential, heterogeneous, and dimerization
rate constants) as well as for mechanisms investigation (since
it could give information about the reactivity of radical cations
and dimers).

For 9-ethylcarbazole, signal reversibility was reached for
scan rates above 50 V/s. The oxidation peak present at +1.25
V/Ag/AgCl is due to well-knownmonomer oxidation into radical

cation which couples with another radical cation (dimerization)
as it is unstable. This dimerization is accompanied by the loss of
two protons. The scan rate being very fast, a non-negligible part
of radical cations is reduced before total dimerization which leads
to the small reduction peak. Electrochemical simulation enabled
to estimate a dimerization rate constant of about (4.25± 0.75)×
105 M−1.s−1.

For 9-substituted carbazole with longer alkyl chains (i.e., 4,
6, and 8 carbons), electrochemical behavior is more complex.
Indeed, oxidation peak is wider than expected and most
importantly, two reduction peaks are observed at high scan rates
(100 V/s). As previously described, electrochemical oxidation
of 9-substituted carbazoles has been studied by Ambrose et al.
at classical scan rates (i.e., a few hundreds of mV/s) leading
to the mechanism previously described. Thus, the oxidation
peak is due to classical oxidation/dimerization of substituted
monomers. The reason that the peak is more important than
the one expected for one-electron process is due to the fact
that the obtained dimer is then oxidized into a radical cation
dimer which is relatively stable. When shifting to reduction,
the first peak shows the reduction of remaining radical cations
(i.e., the ones which don’t dimerize) into starting monomers.
Dimerization rate constants are evaluated through this peak.
The second peak is for reduction of radical cation dimer into
neutral dimer. Thermodynamic and kinetic parameters extracted
from electrochemical simulations are presented in Table 1. It
is interesting to note that dimerization rate constant is very
similar for 9- ethyl, butyl and hexyl carbazole as it keeps between
4.105 and 5.105 M−1.s−1 regardless of chain length. However,
for 9-octyl carbazole the dimerization rate constant is more
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FIGURE 7 | Cyclic voltammetry at a Pt electrode of 10−2 M: (A) Cz1Me, (B) Cz3Me, (C) Cz5Me, (D) Cz7Me + 0.1M LiClO4 in ACN. Scan rate: 100 V/s.

TABLE 1 | Formal potential (E◦), heterogeneous rate constant (ks) and dimerization rate (kdim) of Cz1Me, Cz3Me, Cz5Me, and Cz7Me deduced from fast

electrochemistry experiments and corresponding simulations.

E◦ (V/AgCl/Ag) ks (cm/s) kdim (mol−1.L.s−1)

Cz1Me Cz1Me+◦ + e− ⇋ Cz1Me 1.21 0.055 ± 0.005 /

2 Cz1Me+◦ → Dimer / / (4.25 ± 0.75).105

Cz3Me Cz3Me+◦ + e− ⇋ Cz3Me 1.19 0.07 ± 0.01 /

2 Cz3Me+◦ → Dimer / / (4.25 ± 0.55).105

Dimer+◦ + e− ⇋ Dimer 0.96 0.01 /

Cz5Me Cz5Me+◦ + e− ⇋ Cz5Me 1.16 0.09 ± 0.01 /

2 Cz5Me+◦ → Dimer / / (4.7 ± 1.1).105

Dimer+◦ + e− ⇋ Dimer 0.83 ± 0.01 0.07 ± 0.02 /

Cz7Me Cz7Me+◦ + e− ⇋ Cz7Me 1.11 ± 0.02 0.085 ± 0.005 /

2 Cz7Me+◦ → Dimer / / (2.0 ± 0.5).105

Dimer+◦ + e− ⇋ Dimer 0.815 ± 0.005 0.03 /

than twice smaller probably due to steric effects beginning to
take place. Moreover, there is a tight relation between carbon
chain length and redox standard potential of monomer/radical
cation couples. Indeed, redox potential decreases with chain
length meaning that the more the carbon chain is long, the more
the substituted monomer is easily oxidized. Heterogeneous rate
constant (ks) also follows this trend as it increases with chain
length (except for 9-hexyl and octyl carbazole for which it stays
the same). This increase in ks means a faster electron transfer and
therefore an easier oxidation process.

The good stability of radical cation dimers from 9-
alkyl substituted carbazoles can be an explanation for their
non-deposition as the oxidized dimer does not polymerize very

fast leading to short oligomer chains easily solubilized into
the solution.

Other N-substituted Carbazoles
The oxidation of 10−2 M CzA and CzE was performed in 0.1M
LiClO4 in acetonitrile at Pt electrodes. The onset oxidation
potential of both carbazole derivatives is located at +1.1
V/SCE (Figures 8A–C). After the first cycle, both CzA and
CzE oxidation potential peak intensity increases very slightly
and the oxidation potential shifts toward slightly higher values.
A reduction peak can also be observed at +0.8–0.9 V/SCE
during the cathodic scan. A difference between the CVs of
the 2 carbazole derivatives was the broadness of the oxidation
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FIGURE 8 | CV (A,C,E) and post-polymerization CV (B,D,F) at a Pt electrode of 10−2 M: (A,B) CzE, (C,D) CzA, (E-F) CzV + 0.1M LiClO4 in ACN. Scan rate: 50

mV/s.

FIGURE 9 | Photographs of samples obtained by oxidation of 10−2 M Cz, CzV, CzA, and CzE in an acetonitrile solution (containing 0.1M LiClO4).

peak. Indeed, CzA leads to a broader oxidation peak than
CzE indicating that more CzA monomers are oxidized (since
the oxidation of CzA takes place over a wider potential range
and with a comparable oxidation peak intensity). Moreover,
looking at these 2 samples at the end of the potentiodynamic
electrodeposition, it is clear than the oxidation of CzA results in
a uniform green-colored film, when the oxidation of CzE results

in a thin poor-quality film since only some parts of the substrate
are coated (Figure 9).

Concerning CzV, the potentiodynamic electrodeposition on
platinum displays an oxidation onset at+1.0 V/SCE (Figure 8E).
Successive scans exhibit increasing anodic current peaks with
corresponding cathodic peaks. More precisely, during the 1st
scan, only an anodic peak can be observed, at +1.3 V/SCE,
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which corresponds to the oxidation of the monomer into cation
radicals leading to dimers. During the next scans, another peak
is visible at +0.8 V/SCE which is due to the oxidation of
oligomers. Hence, the anodic scans correspond to oxidation of
the carbazole unit to give the carbazyl radical cation, which,
upon cathodic scan, pairs up with another carbazyl moiety
adjacent to it to form a dimer. Subsequent current increase
(both anodic and cathodic) explains that the process is iterated
to give dimers, trimers, oligomers on the working electrode.
In addition, it can be noticed that when dimerization occurs,
H+ ions split-off and provoke the polymerization of CzV
through its vinyl group. However, if the oxidation of the
vinyl groups happens, there is no distinguishable additional
oxidation peak. Indeed, the oxidation peak centered at +1.2
V/SCE is too broad to discriminate the oxidation of the
nitrogen atom of CzV monomers and the oxidation of its
vinyl group. Moreover, the attack of the protons on the vinyl
group of the growing polymer causes cross-linking of the film
through the vinyl groups as previously evidenced by Reyna-
Gonzalez using SEMmicroscopy and FTIR spectroscopy (Reyna-
Gonzalez et al., 2006), thus leading to a compact polymer film.
Indeed, at the end of the potentiodynamic electrodeposition, a
thick green polymer film is observed at the electrode surface
(Figure 9) which appeared comparable to the polyCz film
previously electrodeposited.

The determination of thermodynamic and kinetic parameters
was possible by fast electrochemistry only for 9-alkylcarbazoles
since oxidation of carbazole and its other derivatives (Cz, CzA,
CzE, and CzV) leads to cation radicals whose stability was not
high enough to allow thermodynamic and kinetic parameters
extraction. Indeed, under our experimental conditions, it is not
possible to estimate dimerization rate constants higher than 107

M−1.s−1 as cation radicals dimerize too fast, followed by rapid
polymerization process leading to a thin conducting polymer
film on the microelectrode surface which prevents from any
further investigation.

The electrochemical activity of the films electrodeposited
by oxidation of CzE, CzA, and CzV in LiClO4 in acetonitrile
was then studied at a Pt electrode by cyclic voltammetry
in a monomer-free solution of the solvent. Thus, the post-
polymerization CV of CzV shows a peak separation (Figure 8F)
that is expected for a reversible electron transfer process and
which was previously observed for polyCz (Figure 4A). More
precisely, the potential of the oxidation peak, corresponding to
the perchlorate anions insertion into the poly(9-vinylcarbazole)
film, is located at +1.2 V/SCE, when the reduction peak,
corresponding to the ejection of perchlorate anions from the
film, is located at +1.05 V/SCE. Moreover, the ratio of oxidation
to reduction intensities remains constant around 1.3–1.5 with
repeated scans indicating that the doping/dedoping process
occurs even after a few scans. On the contrary, the post-
polymerization CVs of CzA and CzE don’t show a well-defined
peak separation (Figures 8B,D) even if it is noticeable than
CzA leads to more distinguishable oxidation and reduction
peaks than CzE (Figure 8F). In addition the current densities
measured are far lower than those obtained during the post-
polymerization of CzV. Thus, it seems that the films obtained
by oxidation of CzE and CzA are weakly electroactive which

means that the doping and dedoping of these films happens
with difficulty.

The morphology of the films obtained by oxidation of these
carbazole derivatives was then studied by SEM. The structure
of the polyCzA is comparable to the one of PCz since it also
consists in small circular heaps covering the whole surface of
the substrate (Figure 5B). It can just be remarked that the size
of the bare domains separating the globules is higher for polyCzA
than for polyCz. The polyCzV films also contains globules but
these globules agglomerate to form big aggregates composed
of tens of globules [the same structure was already observed
for polyCzV by Reyna-Gonzalez et al. (2006)]. It seems that
the amount of polymer substance on the substrate is higher
for polyCzV than for the other polymer materials (Figure 5C).
Finally, the polyCzE film presents a very different and less
uniform structure which doesn’t consist in globules but in more
extended shapes (Figure 5D). Using profilometry measurements,
the thickness of the polyCzV films was estimated to 10–11µm
and its roughness to 0.4–0.6µm indicating that these polymer
films are thicker and have a higher roughness than polyCz films.
On the contrary, polyCzA and polyCzE films are very thin
(<1µm) and have a roughness which is difficult to estimate since
these electrodeposited films are not uniform.

CONCLUSION

The electropolymerization of carbazole was performed and
the electrodeposition conditions were optimized. Thus, it was
evidenced that it is better to perform the electro-oxidation of
carbazole in acetonitrile solutions with perchlorate lithium and at
a carbazole concentration of 10−2 M. Resulting polyCz film was
thick, green-colored, and consists in globules covering the whole
substrate and exhibiting a high electrochemical activity.

After organic synthesis of 9-alkylcarbazoles with various
alkyl chain lengths, the same electrodeposition conditions
were used in order to perform their electropolymerization.
However, no deposit was observed at the electrode surface. Fast
electrochemistry experiments allowed us to demonstrate that the
high stability of resulting radical cation dimers is the explanation
for their non-deposition as the oxidized dimers don’t polymerize
very fast leading to short oligomer chains.

On the contrary, for other carbazole derivatives, obtained
by chemical grafting of acid, ester or vinyl groups on the N-
position of carbazole, cation radicals are much less stable and
polymerization process is more efficient leading to solid polymer
films. The quality of these electrodeposited films varies from one
compound to the other. Thus, the oxidation of Cz, CzA, and
CzV leads to the formation of thick, uniform, green-colored films
which are electroactive and present globules on the surface when
the oxidation of CzE leads to a non-uniform film.

The carbazole N-substitution by various groups affects the
radical cation stability, even if the functional group is not
conjugated to the aromatic moiety. As a consequence, the quality
of electrodeposited thin films is dependent of the N-substitution
functional group.

The possible applications of the substituted polycarbazole
films prepared in this work mainly concern the elaboration of
chemical (bio)sensors and electrochromic devices. Indeed, the
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fabrication of chemiresistors based on these polymer films can be
envisaged since it is possible to tune their conductivity. Similarly,
the presence of grafted ester and carboxyl groups open the way
to the use of polymer films for anchoring biological molecules for
biomedical applications. Also, the preparation of electrochromic
devices can be envisaged since the color of the polymer films
reversibly switches from white to green when changing the
potential applied to the polymer-modified electrode.
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Conducting composite materials based on epoxy matrix loaded with graphene

nanoplatelets (GNP) were prepared by different procedures using ultrasonication. The

dispersions of GNP in a mixture of epoxy/methyl-tetrahydrophthalic anhydride without

solvent, resulted in composites with better conductivity, higher storage modulus and

higher glass transition temperature than those prepared with solvent assisted procedure,

indicating better filler dispersion. The non-covalent functionalization of GNP with the ionic

liquid, 1-butyl-3-methyl-imidazolium bis(trifluorosulfonyl) imide (bmim.TFSI) contributed

for an increase of the modulus for the systems containing low amount of filler. The

electrical conductivity was not influenced by the presence of ionic liquid. Nevertheless,

the micro-wave absorption effectiveness in the frequency range of 8-12 GHz (X-band

frequency) was improved by the presence of IL mainly for the composites containing 0.9

and 1.5 vol.% of filler. All systems were characterized by low viscosity, comparable to that

of neat epoxy resin, thus making easier their application on the development of coatings,

conducting adhesives, etc.

Keywords: epoxy resin, graphene nanoplatelets, ionic liquid, electrical conductivity, micro-wave absorption

property

INTRODUCTION

Epoxy resins have been widely used as thermosetting matrices for composites and nanocomposites
due to their excellent mechanical, thermal and adhesion properties. However, their insulating
nature contributes for accumulating static charges during service, which may be dangerous
in some situations. Blending epoxy resins with nanoscale carbon-based fillers is considered a
promising approach for developing multi-functional thermosetting materials with outstanding
mechanical performance and electrical properties, thus enlarging their field of applications as
antistatic coatings, conducting adhesives, sensors, electromagnetic interference shielding materials
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for electronic devices, etc. Among these fillers, carbon nanotubes
(CNT) are nowadays the most studied conductive filler for this
purpose, due to their high thermal and electrical conductivity, as
well as high aspect ratio, thus contributing for the development
of new conducting composites with low percolation threshold,
i.e., low amount of filler to attain good level of conductivity for
specific purposes (Ma et al., 2010; Sahoo et al., 2010). As the main
drawbacks, CNT is still expensive and also induces significant
increase in viscosity of the epoxy dispersion, which limits the
amount of filler that can be compounded.

Recently, graphene nanoplatelets (GNP) appeared as an
alternative for producing conducting polymeric materials due
to their excellent thermal, mechanical and electrical properties.
GNP consists of few stacked graphene layers, easily obtained
by exfoliation of low cost and available natural graphite,
being less expensive than CNT. Moreover, the viscosity of
epoxy/GNP dispersions is usually lower than that observed
for epoxy/CNT dispersions (Martin-Gallego et al., 2013). The
superior physico-mechanical performance, better processability
and increasing availability of expanded graphite (EG) and
graphene nanoplatelets (GNP) led to a large research effort in the
last decade related to GNP-based composites (Liu et al., 2018).
Several reports describe the superior toughness (Tang et al.,
2013; Kang et al., 2017; Chakraborty et al., 2018; Hashim and
Jumahat, 2019), reinforcement (Yasmin et al., 2006; Chatterjee
et al., 2012) and thermal properties (Prolongo et al., 2014) of
epoxy nanocomposites loaded with different amounts of GNP.
This filler also promotes an increase of electrical conductivity.
However, the values are usually lower than those observed for
CNT-based nanocomposites (Martin-Gallego et al., 2013; Yue
et al., 2014). This behavior may be attributed to the great
tendency of GNP to agglomerate due to the strong Van derWaals
forces and π-π interactions between the graphene sheets, which
are favored by its planar structure. Therefore, the preparation
and exfoliation of GNP commonly involves the treatment with
strong acids, which introduces some defects on the electron π

conjugation along the graphene surface and negatively affects
its intrinsic conductivity. Thus, a great strategy in this field is
to find appropriate conditions to promote better dispersion of
GNP within a polymer matrix without disturbing the conjugated
structure. This can be achieved by employing appropriate mixing
conditions and/or the non-covalent functionalization of GNP.
Some works in the literature reported the use of sonication
(Corcione and Maffezzoli, 2013; Monti et al., 2013) ball milling
procedure (Guo and Chen, 2014) and high shear laminar flow
using three roll-mill (Ma et al., 2010; Prolongo et al., 2013),
among others.

The use of room temperature ionic liquids has been recently
considered as another approach to disperse carbon-based
nanomaterials due to the favorable cation-π interactions between
the carbon surface and ILs. This strategy has been successfully
used in epoxy/CNT systems (Throckmorton et al., 2013; Lopes
Pereira and Soares, 2016; Sanes et al., 2016; Soares et al.,
2016), and also with some epoxy/GNP networks. For example,
Zhang and Park (2019) modified GNP previously treated with
atmosphere-pressure plasma with 1-ethyl-3-methylimidazolium
chloride (emim.Cl) and obtained epoxy/GNP nanocomposites

with improved thermal conductivity and storage modulus, when
compared to those produced with non-functionalized GNP.
Hameed et al. (2018) used 40% of 1-butyl-3-methylimidazolium
chloride (bmim.Cl) in epoxy resin loaded with different
amounts of GNP in order to produce flexible epoxy networks.
They observed lower conductivity values when compared with
epoxy/IL system. Dermani et al. (2018) also employed bmim.Cl
in epoxy formulations modified with graphene oxide nanosheets
and observed a significant increase on storage modulus and
glass transition temperature. Kowsary and Mohammed (2016)
prepared reduced graphene oxide covalently modified with
magnetic imidazolium-based ionic liquid and used it as filler in
epoxy resin. They obtained composites with good microwave
absorbing properties. Throckmorton et al. dispersed GNP in a
mixture of epoxy and 1-ethyl-3-methylimidazolium dicyanamide
(emim.DCN) using three roll-mill (Throckmorton et al., 2013;
Throckmorton and Palmese, 2015) and obtained compositions
with outstanding electrical conductivity. In this case, IL exerted
the role of curing agent. Guo et al. (2009) studied the effect of
bmim.PF6 on the curing behavior of epoxy/graphite composites
cured with Jeffamine D230, an aliphatic amine. However, no
mention regarding the electrical properties was made. Liu et al.
(2013) dispersed GNP with 1-aminopropyl-3-butylimidazolium
hexafluorophosphate and used in epoxy system cured with
methyl-tetrahydrophthalic anhydride (MTHPA). They observed
a better dispersion of GNP with IL and an improvement of
modulus. However, the electrical properties were not discussed.

The development of sophisticated electronic equipments
and communication devices also originates a type of invisible
pollution, known as electromagnetic interference, which can
affect the efficient operation of other electronic devices.
Therefore, studies involving the development of materials with
enhanced electromagnetic interference shielding effectiveness
(EMI SE) have increased in interest in several fields of
telecommunications and other civil applications. Moreover, such
materials find enormous interest in themilitary research involved
on the stealth technology. Conducting composites based on
carbon materials have been widely employed as microwave
absorbing materials, because of their light-weight and cost-
effective characteristics, as well as the ability of being used in
different forms as film, plaques or even coatings (Thomassin
et al., 2013; Sankaran et al., 2018; Wang et al., 2018). The success
of these materials is derived of the ability of the conducting
particles dispersed inside a certain polymer matrix in interacting
with the electromagnetic wave in the microwave frequency range
thus absorbing or reflecting the radiation. There are a lot of
publications in the literature related to this theme. Most of them
discuss the effectiveness of carbon black- and carbon nanotube
as the filler for the development of carbon-based composites
with these characteristics. The interest related to epoxy/GNP
networks also increased in the last decade due to the several
advantages of using GNP as conducting filler, such as, low cost,
high surface area and high intrinsic conductivity. Liang et al.
(2009) used graphene-based sheets in epoxy matrix and obtained
composites with around 21 dB shielding efficiency in the X-band
frequency range, when 15 wt.% of filler was employed. Kowsary
and Mohammed (2016) obtained a maximum of reflection loss
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(attenuation of the EM radiation) of 25 dB at 8.62 GHz by using
epoxy composite containing 40 wt.% of reduced graphene oxide
covalently modified with ionic liquid bearing magnetic anion.
Chhetri et al. (2016) prepared graphene oxide non-covalently
functionalized with sulfanilic acid azocromotrop followed by
reduction with hydrazine. The epoxy composite containing 0.5
wt.% of the modified RGO presented a EMI SE of 226 dB at a
frequency of around 2 GHz.

The aim of the work was to investigate the processing
conditions for dispersing commercial GNP within the
epoxy matrix cured with anhydride and how these
conditions affected the electrical conductivity. This work
also highlights the influence of the imidazolium-based ionic
liquid on the electrical conductivity, thermal properties and
microwave absorbing properties of the corresponding epoxy
composites. For this purpose, 1-butyl-3-methyl imidazolium
bis(trifluormethylsulfonyl) imide (bmim.TFSI) was chosen as
the ionic liquid because of its high thermal stability, good ionic
conductivity and hydrophobicity when compared with other
ionic liquids, thus improving the miscibility with epoxy systems
(Herath et al., 2011).

EXPERIMENTAL SECTION

Materials
Epoxy resin, diglycidyl ether of bisphenol A (DGEBA) (MC
130) (epoxide equivalent weight = 185–192; density = 1.25;
viscosity = 12.5 Pa.s) was purchased from Turlock, China and
commercialized by Epoxyfiber, Brazil. Methyl-tetrahydrophthalic
anhydride (MTHPA) used as hardener (density = 1.20; viscosity
= 40-70 mPa.s) and benzyldimethylamine used as accelerator
was fabricated by DDChem, Italy, and commercialized by
EpoxyFiber, Brazil. Graphene nanoplatelet (GNP) (trade name
= xGnP-M-5) (average particle diameter = 5mm; average
thickness= 7 nm; density= 2.17 g/cm3; surface area=130 m2/g)
was purchased from XG Sciences, Lansing. 1-butyl-3-methyl-
imidazolium bis(trifluormethylsulfonyl)imide as the ionic liquid
(bmim.TFSI) was purchased from Sigma-Aldrich.

Preparation of Nanocomposites
The studies involving the methodology for the dispersion of GNP
into epoxy matrix were performed without ionic liquid. The filler
was dispersed in the ER using two different procedures: (Method
A) the filler was dispersed in amixture containing ER and acetone
(2:1 by weight) under sonication at 135W for 15min, with ice
bath to avoid heating of themedium. This operation was repeated
four times with intervals of 5min, to ensure good dispersion.
After this step, the solvent was removed under vacuum, the
MTHPA as the hardener (80 phr related to the resin) and the
catalyst (1 phr) were added and the mixture was poured into
silicon molds and cured using the following curing protocol:
2 h at 80◦C, 2 h at 120◦C, and 1 h at 130◦C; (Method B) the
filler was dispersed in a mixture containing ER and MTHPA
(100:80). The medium was sonicated using similar conditions as
in the Method A. Then, the mixture was submitted to vacuum to
remove some bubbles. After that, 1 phr of the catalyst was added
and the mixture was poured into silicon molds and cured with

similar protocol as that mentioned before. The amount of the
filler was designed as vol. %. The conversion from wt.% to vol.%
was performed by using the density values of each component in
the blend.

For the studies related to the effect of ionic liquid on the
main properties of the ER/GNP nanocomposites, the GNP
was previously modified with different ILs by grinding both
components in a mortar for about 20min. Afterwards, the
resulting black paste was dispersed in a mixture of ER/MTHPA
using Method B (without acetone).

Characterization
Scanning electron microscopy was performed on a TESCAN
(Vega 3 model) at 20 kV. The samples were fractured and coated
with thin layer of gold before analysis.

The AC electrical conductivity (σAC) was measured in a
frequency range from 0.1Hz to 10 MHz using a Solartron SI
1260 gain phase analyzer interfaced to a Solartron 1296 dielectric
interface. Themeasurements weremade at 25◦C, using electrodes
with 25mm diameter and oscillating voltage of 100mV. Samples
of 1mm thickness were prepared.

Microwave absorbing properties of the composites were
measured at a X-band frequency range (8.2–12.4 GHz) using
a network analyzer N530L PNA-L from Agilent, equipped with
rectangular waveguide. In order to evaluate the reflection loss,
a configuration consisting of metal plate fixed to the sample
holder was used. This configuration enables measuring only the
reflection parameter. A decreasing of this reflection corresponds
to the absorbed radiation (Chen et al., 2004). Samples with 2mm
thickness were employed.

Rheological measurements were carried out with a strain
controlled rotational rheometer (DHR, TA Instruments) at 25◦C.
Nanocomposites samples were loaded between 25mm parallel
plates. They were squeezed into disks ∼1mm thick by slowly
lowering the upper plate. The measurements were performed in
oscillatory mode in the frequency range from 0.1 to100 rad/s and
strain of 0.1%.

Dynamic-mechanical analysis (DMA) was performed in a
DMA Q800 from TA Instruments Inc, operating at frequency of
1Hz, strain of 0.1 % and a heating rate of 3◦C/min from 25 to
200◦C. Single-cantilever clamp was used in samples with 17 ×

12 × 2.5mm dimensions. The glass transition temperature was
taken from the maximum of tan delta peak.

RESULTS AND DISCUSSION

Effect of the Processing Conditions
Two different methodologies were employed to disperse GNP
within the epoxy matrix: method A (solvent-assisted procedure)
and method B (non-solvent procedure). For method B, it was
taken the advantage of the low viscosity of the anhydride-based
curing agent, which allows efficient dispersion of the filler in the
ER/MTHPA system using ultrasonication, without the solvent
assistance. Moreover, the low reactivity of the hardener enables
safe dispersion of GNP without premature cure, as the curing
only occurs with the addition of the catalyst. Figure 1 shows
the dependence of AC electrical conductivity (σAC) vs. frequency
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FIGURE 1 | AC electrical conductivity vs. frequency for ER/GNP composites

as a function of the dispersion procedure and GNP content (A, method A; B,

method B).

for the ER/GNP composites prepared by the two different
procedures. The composites loaded with 0.55 wt% (0.3 vol.%) of
GNP presented a linear dependence of the σAC with frequency,
which is typical of an insulating material. The amount of GNP
was too low to allow the formation of a conducting pathway.

Increasing the amount of filler increased the conductivity
at low frequency region. The composites with higher amount
of filler (0.9 and 1.5 vol %) also presented a DC conductivity
plateau at low frequency, which was shifted toward higher
frequencies as the amount of filler increased, suggesting the
formation of a conductive network. The increase of σAC beyond
a certain frequency indicated that the conducting process turned
back to the non-ohmic way (frequency dependent) which
is characterized by a hopping-tunneling effect between GNP
particles separated by the polymer layer. The composite prepared
by method B, loaded with 0.9 vol.% of GNP, displayed σAC values
around three orders of magnitude higher than that prepared by
the solvent-assisted procedure (method A). This result suggests
that the anhydride used as hardener interacts with GNP and
favors the de-agglomeration of the GNP stacks. The better
dispersion of GNP endows the GNP particles to touch each other,
increasing the conductivity.

The conductivity values found in the present work, prepared
bymethod B, were comparable or even superior to those reported
in the literature, as indicated in Table 1. Although a comparative
study for this system is not reliable due to different nature of the
GNP, as well as different hardeners and processing conditions,
the present study highlights the effectiveness of the non-solvent
processing methodology to achieve good GNP dispersion. These
results are interesting for the technological, economical and
environmental point of view because it does not use solvent
during processing, which also eliminate the solvent withdrawal
step under vacuum for several hours or days performing the
curing process.

The effect of the processing methodology on the
dynamic-mechanical properties of ER/GNP composites was
evaluated in terms of storage modulus (E’) and tan delta, whose
data are summarized in Table 2.

The GNP-based composites prepared by both techniques
displayed higher E’ values than that obtained for the neat epoxy
network, except the composite loaded with 0.3 vol.% of GNP and
prepared by solvent-assisted method, which presented similar E’
value. These results confirm the reinforcing effect of GNP as filler
for epoxy network. Similar behavior has been reported in the
literature (Saurin et al., 2014). The E’ of composites prepared by
method A increased as the amount of GNP in the composites
increased. Regarding those composites prepared by Method B,
the addition of as low as 0.3 vol.% of GNP was enough to
increase the modulus in both glassy and rubbery region. Also the
addition of 1.5 vol.% of GNP resulted in significant improvement
of E’ in the glassy region, confirming the better GNP dispersion
and higher reinforcing action of the filler by using the non-
solvent technique. The glass transition temperature was superior
to the neat epoxy network, the difference being more significant
for the composites prepared by Method B. For this series, the
higher value was obtained by using 0.9 vol.% of GNP. These
results can be attributed to the improved interfacial interaction
between filler-matrix, probably due to a good interaction between
anhydride and GNP during the processing step. Increasing the
GNP amount decreased the Tg probably because the formation
of GNP aggregates in this higher concentration, which favor the
presence of free volume at the filler-matrix interface and a better
polymer chain mobility.

The effect of the dispersion methodology on the morphology
of ER/GNP composites was evaluated by SEM micrograph,
as illustrated in Figure 2. The micrographs of the composites
prepared by Method A or B are similar, with rough surface.
However, it is possible to observe in the samples prepared
by method A the presence of agglomerated structures in
higher extent, mainly for the samples with higher GNP
content (Figure 2c).

Effect of Ionic Liquid as Dispersing Agent
for GNP
To improve the dispersion of GNP within the epoxy matrix, the
filler was previously treated with bmim.TFSI as the ionic liquid
to promote a physical interaction between them and facilitate the
debundling of the graphene sheets fromGNP stacks. The effect of
the ionic liquid on the processability of the ER/GNP dispersions
was evaluated in terms of complex viscosity (η∗). For this
study, the Method B was adopted. Therefore, the measurements
were performed in GNP dispersion in the ER/MTHPA mixture.
Figure 3 illustrates the dependence of η∗ with frequency for
the ER and the corresponding dispersions loaded with 1.5 and
3.0 vol.% of GNP (2.7 and 5.3 wt.%). All systems presented a
Newtonian behavior, i.e., the viscosity practically did not change
with the frequency. The η∗ values of the dispersions were quite
similar as that found for neat ER, except that corresponding to
the ER/MTHMA dispersion with 3.0 vol.% of GNP/IL, which
displayed an increase in viscosity. This behavior suggests some
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TABLE 1 | Comparative results of electrical conductivity of epoxy/GNP composites.

GNP amount Curing agent Observations Conductivity (S/m) References

2 wt.% triethylenetetramine Sonication with acetone 10−7 Jovic et al., 2008

2 vol.% Isophorone diamine 10−8 Corcione and Maffezzoli, 2013

0.63 vol.% polyamide Sonication with ethanol 10−6 Zheng et al., 2019

2 wt.% Methyl-hexahydrophthalic anhydride Fast dispersion method/sonication without solvent 10−4 Li et al., 2017a

4 wt.% amine sonication 10−5 Yue et al., 2014

1.5 vol.% MTHPA sonication without solvent 10−4 This work

TABLE 2 | Dynamic-mechanical properties of ER/GNP composites as a function of the processing methodology.

GNP (vol.%) E’ at 25◦C (GPa) E’ at 200◦C (GPa) Glass transition temperature (◦C)

A B A B A B

0 1.7 0.013 118

0.3 1.6 2.0 0.009 0.019 131 142

0.9 1.8 1.8 0.011 0.013 134 141

1.5 2.2 2.7 0.018 0.018 132 133

A, Method A (solvent-assisted method); B, Method B (non-solvent method).

FIGURE 2 | SEM micrographs of ER/GNP loaded with 0.9 vol.% dispersed by

(a) Method A and (b) Method B with 1.5 vol.% of GNP dispersed by (c)

Method A and (d) Method B.

improvement of filler-matrix interaction imparted by the IL at
the interface. Nevertheless, all dispersions presented low viscosity
values due to the presence of the anhydride, which is interesting
for processing purpose.

The σAC values of the composites loaded with GNP and
GNP/IL are summarized in Table 3, as a function of the
GNP content. The values were an average of at least three

FIGURE 3 | Dependence of complex viscosity with frequency for the neat ER

and the corresponding ER/MTHPA dispersions loaded with 1.5 and 3.0 vol.%

of GNP or GNP/IL.

TABLE 3 | AC electrical conductivity of epoxy-based composites loaded with

different amounts of GNP.

GNP content (vol.%) AC electrical conductivity at 1Hz (S/m)

Without IL With 2.2 vol.% of IL

0.3 2.7 (±0.1) × 10−10 6.0 (±0.6) × 10−10

0.9 2.0 (±1.2) × 10−5 9.0 (±2.9) × 10−6

1.5 1.6 (±1.0) × 10−4 3.2 (±3.0) × 10−5

3.0 1.0 (±0.1) × 10−4 1.0 (±0.9) × 10−4

measurements. Both systems presented a significant transition
from an insulator into a semiconductor when the amount of
filler increased from 0.3 to 0.9 vol.%. Beyond this concentration,

Frontiers in Materials | www.frontiersin.org 5 July 2019 | Volume 6 | Article 15641

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Silva et al. Epoxy/Graphene Nanoplatelet Composites

TABLE 4 | Dynamic-mechanical parameters of ER/GNP composites as a function of the GNP content and the presence of ionic liquid.

GNP content (vol.%) Storage modulus at

25◦C (GPa)

Storage modulus

at 190 ◦C (GPa)

Glass transition

temperature (◦C)

A B A B A B

0 1.7 0.011 118

0.3 2.0 2.0 0.019 0.010 142 126

0.9 1.8 2.3 0.013 0.014 141 129

1.5 2.7 2.6 0.018 0.050 133 146

3.0 2.7 2.3 0.020 0.014 128 132

A, without ionic liquid; B, with 2.2 vol.% of ionic liquid.

FIGURE 4 | Effect of ionic liquid and GNP content on the Tan delta of ER/GNP composites.

the conductivity slightly increased, probably because of the
aggregation of the filler. Similar behavior was reported by Min
et al. (2013) for epoxy/GNP composites using similar hardener.
The authors observed an increase of the conductivity value at
low frequency from the composite loaded with 0.9 vol.% of
GNP to that containing 2.7 vol.% of GNP of about one order
of magnitude (from 10−8 to 10−7 S/cm) (Min et al., 2013).
Other studies reported that after around 1 vol.% of GNP the
conductivity did not change (Yue et al., 2014; Zheng et al., 2019)
or even decreased with higher amount of GNP (Yousefi et al.,
2013; Li et al., 2017b). According to Zheng et al. (2019) the
decrease in the conductivity of the composites with larger GNP
loading may be explained by the agglomeration of GNP.

Contrarily to the behavior usually reported for epoxy/CNT
functionalized with ionic liquids, the functionalization of GNP
with ionic liquid did not exert great influence on the conductivity
value of the epoxy-based composites. In fact, a slight decrease
of the conductivity was observed with the addition of IL. Zhang
and Park (2019) observed an increase of the conductivity of
epoxy matrix cured with aromatic amine by using plasma-
induced expanded graphite functionalized with 1-ethyl-3-methyl
imidazolium chloride.

The different behavior observed in the present work may be
due to the different nature of the GNP as well as the different

hardener used to cure the epoxy matrix. One can suggest that
the exfoliation of GNP by the IL is a difficult process due to
the Van der Waals forces between the graphene sheets, which
should be stronger than in the case of CNT due to the planar
structure of the sheets, providing more contact points between
the sheets. Moreover, the IL at the GNP surface may form a
thin insulating layer that prevents direct contact between the
conducting filler particles. Xu et al. (2014) observed similar
behavior in polypropylene-based composites loaded with carbon
nanotube functionalized with imidazolium-type ionic liquid.

The effect of the ionic liquid on the dynamic-mechanical
properties of ER/GNP composites was summarized in Table 4,
as a function of the GNP content. The dependence of the Tan
delta with the temperature was also illustrated in Figure 4. The
E’ values of the composites prepared with GNP/IL increased as
the amount of filler increased until 1.5 vol.% of filler. Increasing
the amount of filler decreased the modulus, probably due some
agglomeration of the filler at this concentration (Chhetri et al.,
2017). It is interesting to observe that the system loaded with 0.9
vol.% of GNP/IL presented significantly higher E’ value than that
containing GNP, suggesting a better dispersion of the filler within
the epoxy matrix thus forming higher surface area. Moreover, the
ionic liquid at the GNP surface should act as an interfacial agent,
improving the interfacial adhesion between filler and matrix. The
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glass transition temperature was taken as the temperature at the
maximum of the tan delta peak. All systems presented higher
Tg than the neat epoxy network. Regarding the systems loaded
with non-functionalized GNP, the Tg values are higher with low
amount of filler (until 0.9 vol.%) and decrease as the amount of
filler increase, because of the filler agglomeration phenomenon
that occurs with higher filler loading. The formation of aggregates
contributes for the presence of free volume at the interface, thus
increasing the chain mobility. The decrease of Tg with higher
amount of GNP was also reported by Zaman et al. (2011).
Regarding the composites loaded with GNP/IL, the Tg increased
with the increasing the amount of filler, reaching the maximum
value of 146◦C at a concentration of GNP corresponding to 1.5
vol.%. After this point, the Tg decreased due to the presence of
aggregates. The higher Tg value for the composite loaded with
1.5 vol.% of GNP/IL suggests a good interfacial adhesion between
filler and epoxy, thus reducing the mobility of the epoxy chains
around the GNP sheet.

Micro-Wave Absorption Property
The effect of ionic liquid on the reflection loss in the X-band
frequency range for the ER/GNP composites with a thickness
of 2mm is illustrated in Figure 5. The curves present three
minimum reflection loss, that, is, maximum of electromagnetic
radiation attenuation. For the composites prepared with non-
functionalized GNP, the RL is low for the composite containing
0.3 vol.% of GNP and increased when the amount of GNP
increased to 0.9 vol.%. After this point, the RL decreased,
which can be attributed to an increase of the conductivity.
The mobile charge carriers in higher extent interact with EM
radiation, thus increasing the reflection phenomenon, higher
than absorption. The higher RL value was observed for the
composite containing 0.9 vol.%, at 8.75 GHz with RL value of
11.7 dB. The functionalization of the GNP with ionic liquid
resulted in composites with higher RL. For the system loaded
with 0.3 vol.% of GNP/IL, the minimum RL value was observed
at 11.7 GHz with a RL value of 6.9 dB, whereas for the composite
containing 0.9 vol.% of GNP/IL, minimum RL values of dB = 9
and 10 dB were observed at−12 and−13 dB, respectively. The
composite containing 1.5 vol% presented the better radiation
attenuation and this phenomenon corresponded to a frequency
of 8.7 GHz. At this point, a RL value of 13.5 dB was obtained,
which corresponds to an absorption efficiency of around 96%.
These results indicated that the presence of 2.2 vol.% of IL
in these composites contributed for a better electromagnetic
radiation attenuation, although the conductivity was not varied.
This phenomenon may be related to the dispersion of the GNP
sheets in the composite. The presence of the IL at the GNP
surface provided a better dispersion of the filler. Therefore, the
possibility of the interaction of the radiation with the GNP
platelets is increased, thus contributing for a better microwave
absorption property.

CONCLUSION

Conducting composites based on epoxy matrix containing
different proportions of GNP or GNP non-covalently

FIGURE 5 | Reflection loss in the X-band frequency range for the ER/GNP

composites with thickness of 2mm (a; red line) = GNP; (b; black line) =

GNP/IL.

functionalized with bmim.TFSI as the ionic liquid were
prepared in this study. The ER/GNP composites were prepared
by two different methodologies: solvent assisted and non-solvent
procedure, and cured with MTHPA. The later methodology
resulted in higher conductivity values and outstanding storage
modulus and glass transition temperature. The functionalization
of GNP with 2.2 vol.% of ionic liquid resulted in composites
with increased storage modulus when lower amount of GNP/IL
was used. Finally, the presence of ionic liquid resulted in better
micro-wave absorption properties, which may explained by the
better dispersion of the filler. The present work highlights the
influence of the ionic liquid as dispersing agent for GNP and
opens new possibilities of developing profitable micro-wave
absorbing epoxy networks with low viscosity, thus enlarging the
field of application, mainly as coating and adhesives.
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Polystyrene/poly(butylene adipate-co-terephthalate) (PS/PBAT) composites loaded with

different amounts of carbon nanotube (CNT) were prepared by melt mixing followed

by compression molding at different temperatures. The effect of the non-covalent

functionalization of CNT with the ionic liquid (IL), trihexyl(tetra decyl)-phosphonium

bis-triflimide on the electrical and rheological properties of the composites with

co-continuous morphology was investigated. The AC electrical conductivity of the

composites loaded with 0.16 wt.% of pristine CNT jumped from 10−7 to 10−3 S/m

by increasing the molding temperature from 180 to 200◦C. Moreover, conductivity

as high as 0.8 S/m was achieved in composite containing 0.66 wt.% of CNT. The

outstanding electrical performance was attributed to the double percolation and the

selective localization of CNT within PBAT phase. The functionalization with IL resulted

in an increase of the conductivity for composites containing low amount of filler.

IL-functionalized CNT resulted in a decrease of the melt viscosity and storage modulus

due to the plasticizing effect of IL. However, for the system containing IL/CNT= 5:1 wt.%,

the modulus increased significantly due to the formation of the percolated networked

structure of the filler within the polymer matrix.

Keywords: ionic liquid, electric conductivity, polymer blend, carbon nanotube, rheology, biodegradable polymer

INTRODUCTION

Blending a thermoplastic polymer with conductive filler using melt processing approach is by far
one of the cheapest and most technically viable alternatives to producing conductive composites.
These materials have been attracted enormous interest for several decades due to the possibility
of developing processable materials with controlled electrical conductivity for applications in
important industrial sectors, as antistatic, electrostatic charge dissipating materials, as well
as, electromagnetic interference shielding and micro-wave absorbing materials. The electrical
properties of these materials can be improved by appropriate choice of the polymer matrix,
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processing conditions, as well as the nature of the conductive
filler. In this context, carbon nanotubes (CNT) have been focus
of increasing interest due to their unique mechanical, electrical
and thermal properties (Spitalsky et al., 2010). Furthermore, their
large aspect ratio contributes to the corresponding composites
achieving high conductivity level with lower proportion of the
filler. CNT-loaded thermoplastics can be obtained by different
techniques, including solution process, dispersion in polymers
in the latex form, in situ polymerization and melt mixing
procedure. The last one has been considered the most versatile
for technological and industrial purposes because of its low cost,
being easily scalable using conventional processing equipments
(Lim et al., 2010; Rios-Fachal et al., 2013; Soares da Silva et al.,
2017).

In order to achieve lower percolation threshold in the polymer
matrix, the CNT must be uniformly and properly dispersed
to form the conducting pathway. However, the dispersion of
CNT in thermoplastic matrices through melt mixing approach
is somewhat difficult due to the strong tendency of CNT to
agglomerate in bundles and ropes. To overcome these drawbacks,
several approaches have been considered in the literature. Some
of them involve some modification in the melt-mixing protocol,
including processing time and temperature (Tambe et al., 2013).
Non-covalent modification of CNTwith organic compounds and
polymers also contributes for an improved dispersion of CNT
within a polymer matrix, without deteriorating the electrical
properties of CNT (Sahoo et al., 2010; Roy et al., 2012). For
example, Bhattacharyya et al. encapsulated single walled carbon
nanotube (SWCNT) with styrene-maleic anhydride copolymer
and used in blends with polyamide 12 (Bhattacharyya et al.,
2007). The authors achieved good filler dispersion but a decrease
of electrical conductivity due to the formation of a polymer
layer surrounding the CNT, thus avoiding contact each other.
Other organic molecules as sodium salt of 6-aminohexanoic
acid (Bose et al., 2008, 2009) and 1-pyrene-carboxaldehyde
(Poyekar et al., 2015a) were employed to modify CNT in order
to improve the dispersion in thermoplastic matrices. In these
cases, a significant enhancement in electrical conductivity was
observed by using both modifier agents. Considering similar
strategy for dispersing CNT within polymeric matrices, the use
of ionic liquids as surface modifiers for CNTs appeared as an
innovative approach for dispersing CNT in polymeric matrices
without destroying the conjugation at the surface, responsible
for the conductivity. Some reports deals with the treatment
of CNT with imidazolium-based ionic liquids to improve the
dispersion of CNT in some thermoplastic matrices as well
as, the filler-matrix interaction (Bellayer et al., 2005; Zhao
et al., 2012; Sharma et al., 2014; Chen et al., 2015; Soares,
2018). Recently, alkyl phosphonium-based ionic liquids was also
considered for assisting the CNT dispersion in polystyrene (PS)
matrix (Soares da Silva et al., 2017), as well as polypropylene
(PP)/polyamide12 (PA12) (Lopes Pereira et al., 2019) and PS/
ethylene-vinyl acetate copolymer (EVA) (Soares et al., 2018)
blends. A significant increase in conductivity by several orders
of magnitude was observed for PS/CNT composites using the
trihexyl (tetradecyl) phosphoniumbistriflimide (Soares da Silva
et al., 2017).

The lowering of the percolation threshold was also achieved
using heterogeneous polymer blends as matrices due to the
uneven distribution of the filler in these phases (Sumita
et al., 1991). By choosing a blend composition whose phase
containing the percolated conductive filler is continuous or a
blend with co-continuous structure, the amount of required
conductive filler for attaining the insulator-conducting transition
(percolation threshold) is usually lower that that employed in
single polymer matrix. This phenomenon is known as double
percolation and has been reported for several CNT-loaded
thermoplastic binary blends, including acrylonitrile-butadiene-
styrene (ABS) copolymers with PA6 (Poyekar et al., 2014,
2015a,b), ABS/ polycarbonate (PC) (Xiong et al., 2013), poly(L-
lactide) (PLA)/(EVA) (Shi et al., 2013), PS/PP (Hwang et al.,
2012), PS/PE (Patra et al., 2015), PS/polyvinylidene fluoride
(PVDF) (Ren et al., 2017), PS/EVA (Soares et al., 2018), and
PS/PLA (Nasti et al., 2016).

PS is a versatile and inexpensive commodity polymer
with good mechanical properties, optical transparency, and
processability, being chosen by several researchers as a matrix
for the development of melt-mixing conductive composites
(Zeimaran et al., 2015; Kausar et al., 2017) loaded with carbon—
based fillers as carbon black (Soares et al., 1995, 1998, 2016),
expanded graphite (Goyal et al., 2009), graphene (Bai et al.,
2018), and carbon nanotube (Lim et al., 2010; Rios-Fachal
et al., 2013; Soares da Silva et al., 2017). This thermoplastic is
well known by its non-biodegradability. Therefore, blending PS
with biodegradable polymers constitutes a promising strategy
for rendering better biodegradability to the corresponding
blend. These semi-biodegradable blends are known to degrade
by a process known as biodisintegration, where the non-
biodegradable phase is transformed in very small pieces due to
the biodegradation of the other phase (Sarasa et al., 2009). Semi-
biodegradable PS blends involving PLA were reported in the
literature (Nasti et al., 2016; Kaseem and Ko, 2017; Gu et al.,
2018). However, to the best of the authors’ knowledge, no studies
regarding PS/poly (butylene adipate-co-terephthalate) (PBAT)
blends and the corresponding conductive composites have been
found in the accessible literature.

PBAT, a fully biodegradable aliphatic-aromatic copolyester
originated from petrochemical resources, is a flexible and low
modulus copolymer. Therefore, the PS/PBAT blends should
combine the toughness and biodegradability imparted by
PBAT and the stiffness originated from PS. Furthermore,
the corresponding blend and composites are cost-effective as
compared with pure biodegradable polymer. Adding CNT in
biodegradable or semi-biodegradable polymer blends enlarges
the field of application of these materials in electro-electronic
industries and packages with dissipating electrostatic charge
characteristics and microwave absorbing or electromagnetic
shielding properties.

Based on the profitable results reported with heterogeneous
blends loaded with CNT, the motivation of the present work
is to extent this approach to a semi-biodegradable PS/PBAT
blends. The present work highlights the superior conductivity
levels achieved by using low amount of CNT, <1 wt.%, in
these PS/PBAT blends with co-continuous morphology. The
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effect of the compression molding temperature and the non-
covalent functionalization of CNT with Trihexyl(tetradecyl)-
phosphoniumbistriflimide (Ph-TFSI) as the ionic liquid on the
electrical properties of these composites was also discussed. The
morphology and rheological properties of these systems were also
discussed in details.

EXPERIMENTAL SECTION

Materials
Poly (butylene adipate-co-terephthalate) (PBAT) (density =

1.26 g.cm−3; molar mass = 79,550 g.mol−1; glass transition
temperature = −33◦C) produced by BASF (Germany) under
the trade name of Ecoflex was purchased by OEKO Bioplasticos,
Brazil. Polystyrene (PS) was fabricated by companhia de Estireno
do Brasil (melt flow index was determined according ASTM
D1238 as 6.13 g/10min at 200◦C/2.16Kg) Trihexyl(tetradecyl)-
phosphoniumbistriflimide (Ph-TFSI) as the ionic liquid
(density = 1.07 g cm−1)was kindly supplied by Cytec Inc.
MWCNT(NC7000) was kindly supplied by Nanocyl (average
diameter = 9.5 nm; average length = 1.5µm; carbon purity =

90%; surface area= 250–300 m2/g; density= 1.67 g cm−1).

Composite Preparation
PS and PBAT were previously dried overnight at 70◦C. CNT was
first dispersed in ionic liquid (Ph-TFSI) in a mortar for about
20min, obtaining a black paste. The mixtures were performed
by introducing all blend components into the W50 EHT internal
mixer of a Brabender Plastograph equipped with roller rotors.
The blends were compounded at 170◦C for 10min at 60 rpm. The
CNT-based composites were prepared under the same processing
conditions, by adding the CNT or the IL-CNT paste together
with the polymer components. After this step, the materials were
milled and compression-molded at 180 or 200◦C and 6 MPa for
5min and immediately cooled at the same pressure.

Characterization
A Physica MRC 302 rheometer from Anton Paar was employed
to measure the rheological properties. The measurements in
oscillatory mode were made using parallel plates with 25mm
diameter and a gap of 1.0mm; 200◦C; frequency range from 0.1
to 100Hz and amplitude of 0.1 %, which is within the linear
viscoelastic region.

Scanning electron microscopy was performed on a TESCAN
(Vega 3 model) at 15 kV. The samples were cryogenically
fractured and treated with aqueous solution of NaOH (5 wt.%)
in order to selectively extract the PBAT phase. Then, the surface
was coated with thin layer of gold before analysis.

The AC electrical conductivity (σAC) was measured in a
frequency range from 0.1Hz to 10 MHz using a Solartron SI
1260 gain phase analyzer interfaced to a Solartron 1296 dielectric
interface. Themeasurements weremade at 25◦C, using electrodes
with 25mm diameter and oscillating voltage of 5V. Samples of
1mm thickness were prepared by compression molding at 180◦C
or 200◦C.

Transmission electron microscopy was obtained using a
Tecnai Spirit from Fei Company, operating at 120 kV, localized at

the Centro Nacional de Bioimagens—CENABIO/UFRJ (Brazil).
The samples were cut using a Leyca ultracryomicrotome
equipped with diamond knife. Samples with thickness about
60–90 nm were obtained.

RESULTS AND DISCUSSION

Rheology
Rheology is an important way for characterizing the
microstructure of a nanocomposite due to the great dependence
of the main viscoelastic properties of the nanocomposites in
the melt state on the filler dispersion state and filler-matrix
interaction. The dependence of the complex viscosity, η∗, with
frequency for PS, PBAT, and the neat blend is illustrated in
Figure 1. PBAT presented lower η∗ than PS at low frequency and
a greater Newtonian behavior. The blend presented intermediary
viscosity at low frequency, and a higher shear thinning effect,
resulting in lower viscosity than the pure components at
higher frequency.

The effect of pristine CNT (pCNT) and the IL-modified CNT
(IL-CNT) on the η∗ of the composites is illustrated in Figure 2.
The main rheological parameters are also summarized in Table 1.
In both loaded systems, the viscosity at lower frequencies
increased as the amount of the filler increased. However, for
composites containing lower amount of pCNT (up to 0.33%),
the viscosity values were lower than that observed for the neat
PS/PBAT blend. This behavior was evenmore pronounced for the
composites containing IL-CNT. Similar feature was also reported
by Lin et al in their studies involving PP/CNT nanocomposites
and was attributed to the increase of the free volume around
the CNT due to a better dispersion state of the filler (Lin et al.,
2015). The free volume acts as a lubricant during the molecular
chain flowing. The effect is more pronounced for the composites

FIGURE 1 | Complex viscosity vs. frequency for (a) PS, (b) PBAT, and the

(c) PS/PBAT = 50:50 wt.% blend.
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FIGURE 2 | Complex viscosity vs. frequency for the PS/PBAT composites as a function of the filler content.

TABLE 1 | Main rheological parameters of PS/PBAT composites as a function of the filler content.

Filler content η*at 1Hz (Pa.s) G’ at 0.1Hz (Pa) Frequency at G’ = G” (Hz) G’ slope at low frequency

(wt.%) pCNT IL-CNT pCNT IL-CNT pCNT IL-CNT pCNT IL-CNT

0 3,340 785 1.45 0.55

0.05 2,300 600 570 180 0.55 0.51

0.16 2,500 1,560 750 500 1.10 1.08 0.52 0.48

0.24 2,600 1,560 840 560 0.90 0.89 0.49 0.50

0.33 2,700 2,880 970 1,100 0.58 0.58 0.46 0.46

0.66 5,150 3,900 2,450 1,690 – – 0.36 0.39

1.00 6,300 11,900 3,050 5,850 – – 0.31 0.30

loaded with IL-CNT due to the plasticizing/lubricating role of the
IL at the filler-matrix interface, as also observed in other studies
(Zhao et al., 2012). Composites containing higher amount of filler
(0.66 or 1.0 wt.%) displayed η∗ values higher than that observed
for the neat blend at low frequency and a greater shear thinning
effect, which can be related to the formation of a percolated
three-dimensional structure of the filer in the polymer matrix.
The nanocomposite loaded with 1 wt.% of IL-CNT presented
the highest η∗ value in all frequency range studied, in spite of
the higher proportion of IL. This behavior may be attributed to
the formation of the filler network in higher extent due to the
filler-filler interaction imparted by the IL at the CNT surface.

The dependence of the storage modulus with frequency
also provides important information regarding the formation
of the percolated structure. Figure 3 illustrates the G’ plots
vs. frequency for the composites containing different amounts
of filler (pCNT or IL-CNT). The storage modulus increased
as the amount of pCNT increased and the slope of the G’
vs. frequency curve in the low frequency region significantly
deviated from a typical terminal behavior (see Table 1) for the
composites containing higher amount of filler, suggesting the
development of a three dimensional networked structure formed
by the interconnected CNT. This structure is also responsible for
the higher conductivity. The composite containing 1 wt.% of IL-
CNT displayed significantly higher G’ value in all frequency range
studied suggesting the formation of a percolated filler network

in higher extent (Pötschke et al., 2004). This result suggests that
the IL helps on debundling of the CNT thus facilitating the
network formation.

The dependence of G’ and G” with the frequency is illustrated
in Figure 4 for the PS/PBAT composites with 0.33 and 1% of
pCNT or IL-CNT. Both storage modulus (G’) and loss modulus
(G”) increases with increasing in frequency. At low frequency,
the composite loaded with 0.33 wt.% of filler exhibited G” >

G’, which is characteristic of liquid-like behavior. At a specific
frequency (cross-over frequency) G’ andG” values are similar and
after this frequency, G’ > G”, indicating the transition to solid-
like behavior. The effect of the CNT content on the frequency
corresponding to the G’/G” cross-over point is also summarized
in Table 1. This point (G’=G”) shifted toward lower frequencies
as the amount of filler increased, confirming the formation of the
three dimensional network structure. The composites containing
0.66 or 1 wt.% of filler presented G’ > G” in all frequency
range studied, suggesting pseudo solid-like behavior, due to the
development of the network formed by the CNT.

The plot related to the phase angle δ against the absolute
value of the complex modulus |G∗|, known as van Gurp-
Palmen plot, is usually employed in the literature to estimate
the rheological percolation (Pötschke et al., 2004). The deviation
of the δ value from 90◦ in the low |G∗| region suggests the
elastic response of polymer chains. Figure 5 illustrates the van
Gurp-Palmen plots for the composites loaded with pCNT and
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FIGURE 3 | Storage modulus vs. frequency for the PS/PBAT composites as a function of the filler content.

FIGURE 4 | G’ and G” vs. frequency of PS/PBAT loaded with 0.33 and 1.0 % of CNT.

FIGURE 5 | Van Gurp-Palmen plot for the PS/PBAT composites as a function of the filler content Morphology.

IL-CNT. For a similar |G∗|, the neat PS/PBAT blend displayed
the highest phase angle indicating a flow behavior. As the
amount of pCNT increased, the deviation of the low range
|G∗| values to lower phase angle was observed indicating an
increase of the contribution of the CNT entanglement. In this
context, the composite containing 0.16 wt.% of pCNT presented
a great deviation when compared to the neat blend, indicating
the rheological percolation. This value is comparable with that
observed for the electrical percolation threshold. The same

amount of IL-CNT (0.16 wt.%) presented a higher deviation from
the phase angle of 90◦, indicating the formation of the network
structure. These behaviors are in agreement with those observed
from electrical conductivity.

The SEM micrographs of PS/PBAT blends and the
composites containing 0.66 wt.% of CNT of IL-CNT are
shown in Figure 6, as a function of the molding temperature.
The micrographs were taken from the surfaces that were
previously treated with NaOH solution in order to degrade
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FIGURE 6 | SEM micrographs of PS/PBAT blends with (a,b) 0% of filler, (c,d) 0.66% of pCNT, and (e,f) 0.66% of IL-CNT, compression molded at 180◦C (left column)

and 200◦C (right column).

the PBAT phase. Although the PAT phase could not be
completely extracted by this method, the gross phase separated
morphology with co-continuous structure can be observed
for the neat blend compression molded at 180◦C (Figure 6a).
The neat blend compression molded at higher temperature
displayed a sea-island type morphology characterized by
large PBAT domains (Figure 6b). The presence of CNT
resulted in finer co-continuous morphology, which can be

attributed to the change in the viscosity ratio between the
blend components, as also reported in other CNT—loaded
heterogeneous blends (Gao et al., 2017; Soares et al., 2018).
The co-continuous structure is more difficult to observe for
the blend compression-molded at 200◦C. The presence of
IL-CNT also changes the morphology of the systems suggesting
a compatibilizing action of this (Ph-TFSI) -based ionic liquid.
The sample compression molded at 180◦C displayed a finer
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morphology when compared to that of the composite loaded
with pCNT.

The filler dispersion in the composites was investigated by
TEM microscopy. Figure 7 compares the TEM images of the
composites loaded with 0.66% wt.% of pCNT and IL-CNT, and
compression molded at 200◦C. In both systems, the CNT seems
to be well dispersed within the polymeric matrix. It is possible
to observe even several tubes completely debundled in both
systems, indicating that the dispersion of CNT in the PS/PBAT
was effective, without needing the assistance of the IL.

Electrical Conductivity
The AC electrical conductivity (σAC) at 1Hz for the PS/PBAT
composites with different compositions and loaded with 0.66
wt.% of CNT are summarized in Table 2. The σAC values
of the blends were superior to that observed for the single
PS/CNT composite due to the contribution of double percolation
and the preferential localization of CNT within the percolated
PBAT phase.

The composite with a composition of PS/PBAT = 50:50 wt.%
presented the highest σAC value probably due to the higher degree
of co-continuity at this composition.

Evidence for the preferential localization of CNT within the
PBAT phase was testified from selective extraction of the PS phase
using acetone. After extracting the PS phase, the solvent remained
colorless indicating that the CNT was mainly localized in the
non-extracted PBAT phase.

Selective localization of CNT in a given phase or at
the interface of PS/PBAT blend was predicted from wetting
coefficient (ωa) (Equation 1), determined by measuring the
interfacial energy (γA/B) between two components, as shown in
Equation (2).

ωa =
γPS/CNT − γPBAT/CNT

γPS/PBAT
(1)

γA/B = γA + γB − 4

[

γ d
Aγ d

B

γ d
A + γ d

B

+
γ
p
Aγ

p
B

γ
p
A + γ

p
B

]

(2)

The surface energy of the blend components is listed in Table 3.
Ifωa > 1, the filler is expected to be located in the PBAT phase;

if ωa < −1, the preferential localization of the filler should be in
the PS phase. From thermodynamic calculations, the value of ωa

was found to be−1.5, indicating a preferential localization in the
PS phase. The thermodynamic prediction does not agree with the
experimental results. The selective localization of the filler is also
governed by other kinetic parameters as well as the viscosity of
the blend component. PBAT presented lower viscosity than PS
and melts first, favoring the encapsulation of CNT in this phase.

The PS/PBAT (50:50 wt.%) blend was chosen for studies
involving the effect of filler content, compression-molded
temperature and the non-covalent functionalization of CNT by
ionic liquid. Figure 8 illustrates the dependence of the (σAC)
with the frequency for the composites loaded with different
amounts of pristine CNT (pCNT) and compression molded at
two different temperatures: 180◦C and 200◦C. The composite
containing 0.05 % of CNT and compression molded at 180◦C
displayed σAC value around 10−10 S/m at low frequency.
Increasing the molding temperature increased the (σAC) in two
orders of magnitude, reaching values around 10−8 S/m. In
both cases, the conductivity became frequency dependent at a
certain frequency, indicating the electrical conduction through
hopping process. Increasing the amount of filler, the conductivity

TABLE 2 | σAC of PS/PBAT blends with different compositions and loaded with

0.66 wt.% of CNT.

Blend components (wt.%) (σAC) (S/m)

PS PBAT

100 0 8 × 10−6

70 30 4 × 10−4

50 50 5 × 10−3

30 70 2 × 10−4

FIGURE 7 | TEM micrographs of PS/PBAT composites containing 0.66% of (a) pCNT and (b) IL-CNT, and molded at 200◦C.
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increased and became frequency independent, characterizing a
conductive material. The percolation threshold may be estimated
in between 0.05 and 0.16 % of CNT, which is considerably
lower than some other studies reported in the literature for
several heterogeneous polymer blends loaded with CNT and
prepared by melt mixing. Table 4 compares the conductivity of
different CNT-loaded thermoplastic systems, where it is possible
to observe the superior conductivity values for the system
studied in the present work, with lower amount of CNT. This
behavior highlights the influence of the nature of the polymer
matrix to attain high conductivity levels with low amount
of CNT.

The filler localized in the PBAT phase tends to flocculate
during compression molding at higher temperatures and forms
the conductive network. This phenomenon was also reported
in others studies and suggests that the polymer composite
containing conductive particles is not a thermodynamic
equilibrium system, whose the formation of the conductive
network is temperature and time dependent (Zhang et al., 2006).

The effect of the non-covalent functionalization of CNT
by ionic liquid on the electrical conductivity of PS/PBAT
blend molded at different temperatures is illustrated in
Figure 9. At low filler content, the conductivity of the
composites loaded with IL-CNT were higher, indicating
that the presence of IL contributes for the debundling of
the CNT, thus improving the formation of the conducting
network with lower amount of filler, i.e., lower percolation
threshold. As the amount of IL-CNT increased, the conductivity
values of the composites were lower than those loaded
with pristine CNT. As the IL/CNT ratio was kept as 5:1,

TABLE 3 | Surface energies of the blend component.

Materials γ
d (mN/m) γ

p (mN/m) γ (mN/m) References

PS 21.64 6.1 27.74 Rohini and Bose, 2014

PBAT 45 3 48 Livi et al., 2016

CNT 17.6 10.2 27.8 Barber et al., 2004

γd , dispersive part; γd , polar part; γ, total surface energy.

increasing the amount of filler also increased the proportion
of IL. The IL in higher proportion should wrap the CNT
thus forming a layer between the tubes that affects the
contact each other and formation of the conducting network.
Although, this is not a usual behavior for polymer composites
loaded with IL-CNT, some examples in the literature also
reported a decrease of conductivity by using the IL modified
CNT (Sharma et al., 2014; Xu et al., 2014).

CONCLUSION

PS/PBAT (50:50 wt.%) blend with co-continuous structure was
loaded with different amounts of CNT to prepare conductive
composites with AC electrical conductivity as high as 0.8 S/m
with 1 wt.% of CNT. The CNT was preferentially localized
within the PBAT phase. Although it is not the thermodynamically
favored phase, the lower viscosity of this component favors the
localization of the filler. The co-continuous morphology and
the selective localization of the filler account for the superior
electrical properties. The increasing of molding temperature
also contributed for a significant improvement of the electrical
conductivity. The functionalization of the CNT with ionic liquid
resulted in an increase of the conductivity for composites loaded
with low amount of CNT, also resulting in lower percolation
threshold. Higher proportion of the functionalized CNT did not
result in outstanding electrical conductivity probably due to the

TABLE 4 | Conductivity values of CNT-thermoplastic systems prepared by

melt mixing.

Polymer matrix CNT (%) Conductivity (S/m) References

PA6/ABS (50:50) 5 10−7 Poyekar et al., 2014

PLA/PCL (50:50) 1 2 × 10−4 Huang et al., 2014

PC/PVDF (60:40) 1 10−5 Biswas et al., 2015

PP/PA6 (80:20) 4 4 × 10−5 Zhang et al., 2009

PLA/PBAT (60:40) 2 10−5 Urquijo et al., 2017

PS/EVA (70:30) 1 0.5 Soares et al., 2018

PS/PBAT (50:50) 1 1.0 This work

FIGURE 8 | AC conductivity of PS/PBAT composites as a function of the pCNT content. Systems compression molded at 180◦C (A) and at 200◦C (B).
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FIGURE 9 | AC conductivity at 1Hz of PS/PBAT composites as a function of

pCNT or IL-CNT content and molding temperature.

formation of an insulating layer of IL (in higher proportion) that
wraps the CNT, thus avoiding the conductive contact.

The co-continuous morphology of the blends became thinner
with the presence of the filler, due to changes in the viscosity ratio
between the blend components.

The composites filled with IL-functionalized CNT displayed
significantly lower viscosity in the melt state due to the
plasticizing/lubricating effect of the IL at the filler-matrix
interface. However, for higher amount of filler, the presence
of IL resulted in significant increase of viscosity and G’,

mainly in the low frequency region due to the formation of
a percolated networked structure formed by the well dispersed
IL-CNT. The present works confirms the possibility of attaining
good conductivity levels with the addition of low amount
of filler, by appropriate choice of the polymer system and
processing conditions.
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In this work, non-woven mats of poly(vinylidene fluoride; PVDF) containing different

weight fractions (2.5, 5, 10, and 12.5 wt%) of a nanostructured conductive

additive based on montmorillonite—dodecylbenzenesulfonic acid—doped polypyrrole

(Mt-PPy.DBSA) have been prepared by electrospinning. The effect of Mt-PPy.DBSA

content on the properties of PVDF solution, mats morphology, thermo-mechanical,

and electrical properties was investigated. Polymorphism of PVDF/Mt-PPy.DBSA mats

was investigated by Fourier Transform Infrared (FTIR) spectroscopy. Moreover, the

electromagnetic interference shielding effectiveness (EMI SE) and EMI attenuation

mechanism was investigated. In order to perform a comparative study, nanocomposites

with the same weight fraction of Mt-PPy.DBSA was also prepared by solution casting.

The PVDF/Mt-PPy.DBSA mats display fibers with smaller diameters than neat PVDF,

due to the increment in the ionic conductivity of the solution. The incorporation of the

Mt-PPy.DBSA additive slightly improved electrical conductivity of the mats and they

behave like as an electrically insulating material (10−14 S cm−1), due to their porosity, that

prevents the formation of a conducting network. Furthermore, the EMI SE of electrospun

mats is practically null, indicating that they are almost transparent to magnetic waves. On

the other hand, nanocomposites fabricated by solution casting display superior electrical

conductivity (10−2 S cm−1) and EMI SE reached values of −5 dB.

Keywords: conductive nanocomposites, intrinsically conductive polymers, polypyrrole, montmorillonite,

electrospun mats, shielding effectiveness

INTRODUCTION

There is a strong scientific and technological interest for producing conductive polymer composites
(CPC’s) due to the wide design flexibility and properties that can be obtained by combining
different materials. Moreover, CPC’s can display both the advantages of organic polymers, such
as lightweight, flexible and easily moldable, and functionality of conductive additives, especially the
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electrical conductivity (Kim et al., 2003; Das et al., 2009; Lakshmi
et al., 2009; Pirvu et al., 2011; Qin and Brosseau, 2012; Yan et al.,
2012; Luzio et al., 2014; Merlini et al., 2017; Ramoa et al., 2018;
Ram et al., 2019).

Intrinsically conducting polymers (ICP’s), such as polypyrrole
(PPy) and polyaniline (PANI), have been used as conductive
filler to produce CPC’s (Moučka et al., 2011; Jin et al., 2016;
Merlini et al., 2017; Ramoa et al., 2018). Considerable efforts
have been made in order to improve the dispersion of ICP’s
into the matrix and to reduce the amount of the filler necessary
to achieve high values of electrical conductivity. Works in
literature have reported that the synthesis of PPy into layered
inorganic host material, such as, montmorillonite (Mt), results in
nanostructured conductive filler of Mt/PPy, with an intercalative
or exfoliated structure, large surface area, and high electrical
conductivity (Moučka et al., 2011; Jin et al., 2016; Merlini et al.,
2017; Ramoa et al., 2018). The chemical in situ polymerization
has been the most studied method for the production of
Mt/PPy nanostructured conductive filler. This technique consists
of inserting PPy into Mt layers through the chemical in situ
polymerization of pyrrole (Py) in the presence of Mt suspension,
using an oxidant. da Silva Ramôa et al. (2015) investigated the
effect of the anionic and cationic surfactants used in the pyrrole
polymerization, in the morphology and properties of Mt-PPy.
The authors concluded that the Mt acts as a template for the
Py polymerization, inducing a greater orientation of the PPy
chains between the clay layers. Moreover, the anionic surfactants
(as DBSA) promoted the intercalation and partial exfoliation of
the clay. In this context, the use of nanostructured conductive
filler based on Mt-PPy.DBSA can be a strategy to improve the
filler dispersion and the electrical conductivity of CPCs, when
compared to neat PPy (Ramoa et al., 2018).

Among possible applications of electrically conductive
polymer composites containing nanostructured conductive filler,
studies in the literature (da Silva Ramôa, 2015; Vargas et al.,
2018) have demonstrated the potential for electromagnetic
shielding applications (Ramoa et al., 2018). Nowadays, due to
the increasing usability of electronic devices in commercial
and military setting, electromagnetic interference has become
a serious environmental problem (Idris et al., 2015; Liu et al.,
2015; Ni et al., 2015; Ramoa et al., 2018). Most of CPC’s used
as attenuating materials have been processed from conventional
manufacturing methods, such as, solution casting or polymer
melting procedure, in order to form a conducting network of
particles into the matrix (Al-Saleh et al., 2011; Ramoa et al., 2013;
Merlini, 2014). However, recent works have been demonstrated
the potential of using composite nanofibers for EMI (Im et al.,
2009). Among the approaches reported to fabricate non-woven
fibrous mat for EMI SE applications, electrospinning can be
considered a simple, cheap, and versatile technique (Li and Xia,
2004; Greiner and Wendorff, 2007; Agarwal et al., 2009; Long
et al., 2011; Luzio et al., 2014; Ni et al., 2015; Obaid et al., 2016;
Liao et al., 2018; Qiao et al., 2018). Basically it is used a syringe
filled with the desired polymeric solution where a high electric
potential is applied to overcome the surface tension of the fluid,
in order to expel it already as fiber (Agarwal et al., 2013; Luzio
et al., 2014; Nthumbi et al., 2017; Ji et al., 2018). The nanofiber

formation undergoes three stages: (i) stretching and development
of a rectilinear jet; (ii) deformation jet with looping and spiraling
trajectories, and (iii) fiber solidification with evaporation of
solvents resulting fiber solidification deposited in a collector
(Reneker and Fong, 2006; Liao et al., 2018).

The electrospinning of polymer composites using ICPs, such
as, polypyrrole and polyaniline, is a approach extensively used,
in order to provide new functionalities to the mats. The main
challenge in the development of electrospun mats is to achieve a
good dispersion of conductive additive in order to obtain defect-
free fibers (Merlini et al., 2014, 2016). The use of conductive
additive also increases the solution charge density and viscosity
and usually makes difficult to prepare the electrospun mats.
Moreover, great effort has been made to develop mats based
on ICP with the good electrical conductivity, since the amount
of filer, type of conductive filler, type of dopant and surfactant,
chemical compatibility between the components, and porous
structure affect the electrical behavior (Yanilmaz and Sarac,
2014). In this context, in our previous work (Merlini et al., 2018),
it was investigated the effect Mt-PPy.DBSA, and neat PPy.DBSA
on the properties of TPU mats. The TPU/MMT-PPy.DBSA mats
exhibitedmore uniform fibers, and highermechanical properties,
and electrical conductivity than found for TPU/PPy.DBSA.

Relatively few publications on electrospun mats based on
conductive nanocomposites for EMI SE applications have
been reported in the literature. Jin et al. (2012) have
studied the EMI SE of nanocomposites fibers made from
polyacrylonitrile (PAN) containing carbon nanotubes (CNTs)
and a magnetic nanoparticle of cobalt ferrite (CoFe2O4),
fabricated by electrospinning. The mat with 5 wt% of CNTs and
10 wt% of CoFe2O4 (PAN/5CNT-10CoFe2O4) displayed an EMI
SE varying from −0.4 to −0.5 dB over the frequency range of 8–
12 GHz. In other work, reported by Im et al. (2009), electrospun
fibers embedded fluorinated carbon black (CB) were heat-treated
and the electrical conductivity of carbon composite reached
∼38 S cm−1, and a high EMI shielding efficiency was obtained
(−50 dB), over a frequency range from 800 MHz to 8.5 GHz.
It is important to highlight that works reporting comparative
analysis of the values of conductivity, morphology and EMI
SE still limited, making it necessary to develop studies with
this approach.

Considering this framework, in this study electrospun mats
of PVDF/Mt-PPy.DBSA were fabricated and its structure,
properties, and EMI SE were evaluated as a function of the
conductive filler amount. The use of Mt.PPy.DBSA instead of
neat PPy can be a strategy to ensure homogenous distribution
of the conductive filler and to produce homogeneous fibers. The
development of electrospun fibers can improve the surface area
that could allow a better interaction with the electromagnetic
wave, however, morphology, electrical conductivity, and
thickness must to be evaluated. To the best of our knowledge, in
the open scientific literature were not found studies that report
the fabrication of electrospun mats containing nanostructured
conductive additive of montmorillonite/polypyrrole (Mt-
PPy), and evaluation of potential for EMI SE applications.
For comparison purposes, membranes containing different
concentration of Mt-PPy.DBSA were also produced by solution
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casting process. In this study, Poly(vinylidene fluoride) (PVDF)
were used as a matrix because of its piezoelectric/pyroelectric (β
crystal phase), coupled with superior mechanical properties and
easy processability (Sarvi et al., 2013; Merlini et al., 2014).

EXPERIMENTAL

Materials
In this study, the poly (vinylidene fluoride) (PVDF), Solef R©

6,010 was provided by Solvay. According to the manufacturer,
the PVDF displays density of 1.74 g.cm−3, glass transition
temperature of −40◦C and melting temperature ranging from
170 to 175◦C. It was used pyrrole (Py) monomer (Aldrich 98%)
with molar mass of 67.09 g.mol−1. The montmorillonite (Mt),
Sodium bentonite (Na+Mt), (VULGEL CN 45) of high purity
was produced by Aliança Latina Indústrias and Comércio Ltda,
with pH of 5.5 and electrical conductivity of 10−6 S cm−1.
The chemical composition of dry Mt is: SiO2 (64.75%), Al2O3

(17.90%), Fe2O3 (3.55%), MgO (3.00%), Na2O (2.35%), CaO
(0.60%), TiO2 (0.40%), and K2O (0.15). Iron (III) chloride
hexahydrate (FeCl3·6H2O) analytical grade (270.3 g.mol−1)
(Vetec) Dodecilbenzenesulfonic acid (DBSA) (Aldrich) with
molar mass of 326.54 g.mol−1, acetone and dimethylformamide
(DMF), with analytical purity degree (P.A.), from VETEC, were
used as provided.

Mt-PPy.DBSA Synthesis
The synthesis of nanostructured conductive additive (Mt-
PPy.DBSA) was performed through in situ oxidative
polymerization, following the procedure described by da
Silva Ramôa (2015). Firstly 2.5 g of clay were mixed in 250mL
of distilled water containing 7.15 g of DBSA (0.0219mol), which
represents a molar ratio surfactant/pirrol (DBSA/Py) of 1:5. This
suspension was stirred for 2 h under magnetic stirring at room
temperature, further, it was scattered in an ultrasonic processor
(Sonics VCX 750) with 35% power (263W). Then, 125mL of
aqueous solution containing 0.2541mol of FeCl3.6H2O were
added in a oxidant/Py molar ratio of 2.3:1 to the dispersion of
Mt, under stirring. After 15min, 50mL of aqueous solution
containing Py (0.1103mol) were dropwise into the dispersion.
The reaction was carried out for 1 h under magnetic stirring at
room temperature. At the end of 24 h resting, the nanostructured
conductive additive was filtered and washed several times with
distilled water and dried in a vacuum oven at 60◦C, up to
constant mass.

Preparation of Electrospun Mats
The preparation procedure for electrospun mats of PVDF/Mt-
PPy.DBSA were based on the method described by Merlini
et al. (2014, 2015). Firstly, a determined amount of PVDF
was dissolved in DMF by magnetic stirring in a thermostatic
bath for 2 h at 70◦C. Once the temperature downs back to
25◦C (room temperature), acetone was added under stirring
in order to decrease the viscosity of the solution (proportion
of DMF/acetone−3:1 by weight). The solution (with a PVDF
concentration of 20 wt%) was magnetic stirred for 1 h.
The nanostructured conductive additive at various weight

concentrations (2.5, 5, 10, and 12.5 wt%) was added into the
solution and maintained under magnetic stirring for 15min,
and after, sonicated with an ultrasonic probe for 5min. The
suspensions were electrospun through a 10mL syringe, with a
needle with an internal diameter of 0.66mm, coupled with a
syringe pump (Instor Apparatus). The metallic collector was
covered with an aluminum sheet and grounded, while the
positive pole was connected to the syringe. The power supply
used to generate the electric field has direct current up to 30
kV (Instor Apparatus). The PVDF/Mt-PPy.DBSA solution was
electrospun by using a flow rate of 2.5mL h−1, a voltage of
17.5 kV and needle-to-collector distance of 30 cm, according to
the process parameters used by Merlini (2014) to electrospun
mats of PVDF/PPy.DBSA. The electrospinning was carried out
in an environment with around 20◦C and 50% of humidity. The
samples have been named as PVDF/Mt-PPy.DBSA [x], where x
represents weight amount of conductive additive in the mat.

Preparation of Membranes by Solution
Casting
In order to perform a comparative study, dense membranes
with the same concentrations of additive were developed by
casting process. The suspensions were prepared following the
same procedure as the one for electrospinning process. The
suspensions were deposited on a Petri dish and then they were
placed in an oven under vacuum, at 70◦C for 15 h. In the end of
the process, the Petri dishes were withdrawals of the oven, and
the membrane carefully removed.

Characterizations
To analyse the viscosity of the solutions used in both
processes, a vertical laboratory rotating viscosimeter HAAKETM

VISCOTESTERTM 550—DC 10 was used. In each measure, the
shear rate was of 0.46 s−1. Once the viscosity depends on the
temperature, all measures were performed at 25◦C.

The ionic conductivity of the solutions were performed with
controlled temperature from 24 to 27◦C in a conductivity meter
model mCA150 by MS TECNOPON.

Micrographs of nanostructured conductive additive were
obtained using a field emission scanning electron microscope
(FESEM), Jeol JSM−6701F. The morphology of the electrospun
mats and membranes produced by solution casting were
analyzed using a Scanning Electron Microscope (SEM) (Jeol,
model JSM-6390LV), with source of electrons of tungsten and
secondary electron detector. Membranes produced by solution
were previously fractured in nitrogen. The samples were fixed
with double carbon tape in a sample holder, covered with gold
and analyzed under an accelerating voltage of 10 or 15 kV. From
the SEM images, the fiber average diameter was measured by
using ImageJ free software.

Dynamic mechanical thermal analysis (DMTA) were carried
out on a DMA Q-800 (TA Scientific) under the tensile mode on
rectangular specimens with a 6.4mm width and 30mm length.
The analysis were performed from −100 to 130◦C at a heating
rate of 3◦C min−1, by using a frequency of 1Hz, and a peak-to-
peak displacement of 64 mm.
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The Fourier Transform Infrared (FT-IR) spectra were
obtained on a Bruker spectrometer (model TENSOR 27)
equipped with an attenuated total reflectance probe (ATR). The
spectra were obtained in wavenumbers from 1,600 to 600 cm−1,
by accumulation of 32 scans, with a resolution of 4 cm−1.

The electrical conductivity of Mt-PPy.DBSA and high-
conductivity membranes was measured using the four-probe
standardmethod with a Keithley 6220 current source to apply the
current and a Keithley Model 6517A electrometer to measure the
potential difference. The electrical conductivity (σ) (S cm−1) was
determined by Equation (1), where, I is the electric current (A),
V is the electrical potential difference (V), and w is the sample
thickness (cm).

σ =
I

V

ln 2

π

1

w
(1)

The PVDF and low-conductivity mats measurements (with
values from 10−7 to 10−17 S cm−1) were performed using a
Keithley 6517A electrometer connected to a Keithley 8009 test
fixture, on circular specimens of 90mm of diameter, and the
electrical resistivity was calculated by Equation (2):

ρ =

(d+g)2π
4

w

V

I
=

1

σ
(2)

where, d is the sample support’s diameter (cm) and g is the
distance between sample support and the security ring of the
equipment (cm). The electrical conductivity (S cm−1) can be
defined as the inverse of the resistivity.

Electromagnetic interference shielding effectiveness (EMI SE)
characterization in the X-band frequency range (from 8.2 to
12.4 GHz) were carried out in an Agilent Technology PNA
series network analyzer (N5230C Agi-lent PNA-L, Santa Clara,
CA) and a standard rectangular waveguide. From complex
scattering parameters that correspond to reflection (S∗11) and
transmission (S∗21), were calculated the EMI SE, reflected energy
(SER), transmitted energy (SET), and absorbed energy (SEA)
(Ramoa et al., 2018). EMI SE measurements were performed
on rectangular samples with 10mm width, 23mm length, and
thickness of 0.15mm for electrospun mats and 0.15 and 0.25mm
for membranes by solution casting.

RESULTS AND DISCUSSIONS

During electrospinning process, solution properties can affect
the final morphology of fibers and the performance of the
process. Viscosity parameter, affects the stretching of charged jet,
wherein too high viscosity prevents polymer motion under the
electric field (Yanilmaz and Sarac, 2014). The ionic conductivity
has a significant influence on Taylor cone formation and on
fiber diameter (Merlini, 2014). From Figure 1 it is possible to
note that both properties—viscosity and ionic conductivity—
increased with the nanostructured conductor additive loading.
The Mt/PPy.DBSA is a nanoadditive, which presents a layered
structure with nanometric thickness. When the Py is synthetized
among Mt layers, a partial exfoliation occurs, and the PPy

FIGURE 1 | Viscosity (left axis) and ionic conductivity (right axis) of the solution

containing different amount of Mt-PPy.DBSA.

FIGURE 2 | FESEM micrograph of nanostructured conductive additive

of Mt-PPy.DBSA.

particles stand among the layers (micrograph shown in Figure 2),
resulting in an additive with higher surface area (3.52 m2 g−1)
(Vargas et al., 2018), if compared to the neat PPy, without the
presence of the clay (2.06 m2 g−1) (Vargas et al., 2018). The
large surface area of Mt-PPy.DBSA provides a better dispersion
and interaction with the PVDF matrix, however resulting in
greater restriction of the polymer chains mobility. As a result,
lower amount of Mt-PPy.DBSA (12.5 wt%) can be incorporated
into the solution when compared to neat PPy.DBSA (23 wt%)
(Merlini et al., 2014). The increment in ionic conductivity can
be related to the high electrical conductivity of the additive (8.16
± 0.32) × 102 S cm−1, to the presence of organic modifier and
ions Na+ located between Mt layers (Merlini et al., 2018) and the
presence of DBSA surfactant used during in situ polymerization.

SEM micrographs of neat PVDF and PVDF/Mt-PPy.DBSA
mats containing different amounts of Mt-PPy.DBSA fabricated
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FIGURE 3 | SEM micrographs of the electrospun mats (middle) and membranes fabricated by solution casting (right): (A,F) PVDF, (B,G) PVDF/Mt-PPy.DBSA [2.5],

(C,H) PVDF/Mt-PPy.DBSA [5], (D,I) PVDF/Mt-PPy.DBSA [10], (E,J) PVDF/Mt-PPy.DBSA [12.5]. The histograms are also reported.

Frontiers in Materials | www.frontiersin.org 5 August 2019 | Volume 6 | Article 19361

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Schiefferdecker et al. Poly(Vinylidene Fluoride)/Montmorillonite-Polypyrrole Mats

by electrospinning and solution casting process are shown at
Figure 3. Histograms with the diameter distribution of randomly
oriented fibers measured by ImageJ free software are also
presented. The electrospun PVDF mat (Figure 3A), as already
reported by Merlini et al. (2015), has a three-dimensional
network structure with randomly oriented fibers, with a mean
diameter of 642 ± 153 nm. From the micrographs of mats
containing different filler contents (Figures 3B–E), it is possible
to notice that the morphology is quite similar, however, for all
mats, fibers diameter were modified with addition of the additive.
The fibers became thinner (seen by the graphics of diameter size
distribution at the column on the left) and, as the concentration
of filler increased (to 12.5 wt%). Usually, it has been reported
in the literature that the increase of solution viscosity, result
in fibers with larger diameters, due to the greater difficulty to
eject the polymer solution from the needle (Merlini et al., 2015).
However, in this work, the increase of the ionic conductivity
also occurred, which may have strongly influenced the results,
since the ionic transport is accelerated/reinforced by the electric
current, inducing a greater stretching of the fibers during the
process. As reported by Merlini et al. (2018) under the electrical
field, by increasing the charge density, high elongation forces
are imposed on the solution jet, resulting in thinner fibers and
also, the production of beads-free fibers. Moreover, agglomerates
outside of the fibers (highlighted at the image) can be seen in
the mats with 12.5 wt% of filler, due to the higher amount of
Mt-PPy.DBSA in the solution, which hampers the dispersion and
distribution of the additive particles.

Figures 3F–J, show the micrographs of all nanocomposites
containing 0.0, 2.5, 5.0, 10.0, and 12.5 wt% of Mt-PPy.DBSA
developed by solution casting process. A completely different
morphology is observed, if compared to electrospinning mats,
with a dense structure and low pores density. It is evident
that with the increase of additive concentration, the sample
microstructure became rougher, generating more and more
porosity due to the formation of agglomerates.

The storage modulus curves (E′) loss factor (Tan δ) as

a function of the temperature for the electrospun mats and
membranes fabricated by solution casting of neat PVDF

and PVDF/Mt-PPy.DBSA are shown in Figures 4A–D. It is
important to highlight the decrease of E′ (Figures 4A,B) with
the increase of temperature, due to the softening of the
polymeric chains. Virtually throughout the temperature range
for electrospun mats (Figure 4A), E′ values of PVDF are
slightly higher than those found to PVDF/Mt-PPy.DBSA mats.
This effect can be attributed to the presence of Mt-PPy.DBSA
agglomerates, in the electrospun fibers that induce defects in the
structure, reducing the storage modulus. However, this variation,
caused by the increase of the additive concentration, is very
low comparing with the difference between the storage modulus
values for the electrospun mats and dense membranes. The last
one (Figure 4B) displays storage modulus from 2,000 MPa up
to almost 3,000 MPa, which is around 100 times higher than
the electrospun mats values. This behavior can be related to
a denser microstructure of membranes prepared by solution
casting (Figures 3F–J), when compared to those electrospun
mats, which have high porosity, and flexibility. Furthermore,

membranes fabricated by solution casting display an opposite
behavior when compared to the electrospun mats, for which the
modulus increases with the increase of the filler amount, over
the entire temperature range. This performance can be explained
due to the mechanical reinforcement caused by the conductive
additive that display partially exfoliated layers. The behavior
obtained in this work for PVDF/Mt-PPy.DBSA is consistent
with those reported in the literature for TPU/Mt-PPy.DBSA.
Merlini et al. (2018) reported very low mechanical properties
for TPU/Mt-PPy.DBSA electrospun mats when compared to
nanocomposites prepared by melting process, in the study
reported by da Silva Ramôa (2015).

From the loss tangent curves (Tan δ) it is possible to
see the peak related to the glass transition temperature
(Tg) at around −55◦C for electrospun mats (Figure 4C)
and −46◦C for membranes fabricated by solution casting
(Figure 4D). The lower Tg values for electrospun mats
indicates that the electrospinning can induce to a higher
molecular organization, reducing the secondary bonds
strength between polymer molecules. Therefore, lower
energy is required to achieve molecular movement of
amorphous phase. Moreover, Tg values are not influenced
by the amount of the filler in both nanocomposites, but
the intensity of the peak related to the glass transition
temperature reduces significantly as the concentration of
Mt-PPy.DBSA in the membrane increases. A second peak at
superior temperatures to 70◦C corresponds to the relaxation
process associated with molecular motions of crystalline
fraction (Merlini, 2014), and are affected by the presence
of Mt-PPy.DBSA.

FTIR spectra of Mt-PPy.DBSA, PVDF, and PVDF/Mt-
PPy.DBSA are shown at Figures 5A,B. According to previous
studies of da Silva Ramôa (2015), Mt presents a broad band
at 995 cm−1, which is assigned to the stretching of Si-O-
Si groups (da Silva Ramôa, 2015). However, in the spectra
of Mt-PPy.DBSA the intensity of the bands associated to the
mode of vibration of Si-O-Si groups decreased, indicating the
presence of PPy on Mt. The spectrum of Mt-PPy.DBSA exhibits
absorption bands at 1,511 and 1,414 cm−1, that correspond
to the stretching vibrations of C-C and C-N groups of the
pyrrole ring. Absorption band at 1,264 cm−1 is assigned to
the deformation in the plane of C-H or C-N bonds, while
at 1,110 cm−1 represents deformation in the plane of C-H
bonds. Furthermore, deformations at the vibrational plane of
N+H2 (formed in doped PPy) entail absorption band at 1,080
cm−1 whereas, bands at 988 and 953 cm−1 are related to the
vibrational deformation in and out of the C-H bonds plane of
pyrrole ring.

PVDF has a polymorphic structure, and can present different
crystalline structures depending on its processing conditions: as
alpha (α), beta (β), gamma (γ), and delta (δ) (Zheng et al., 2007).
From the PVDF spectra of electrospun mats and membranes
fabricated by solution casting it is possible to note that they
display bands assigned to various crystalline phases. Electrospun
mats display bands at 1,401 and 876 cm−1 (amorphous phase
bands) corresponding to the C-F vibrational stretching and the
1,177 cm−1 band is attributed to the C-C bonds (Kim et al., 2011;
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FIGURE 4 | DMTA traces (A,B) storage modulus and loss factor (C,D) of electrospun mats and membranes fabricated by solution casting.

Merlini, 2014). In addition to, bands at 1,275, 1,071, and 839
cm−1 are associated to the β phase (Gregorio and Borges, 2008;
Merlini, 2014). In membranes produced by solution casting,
characteristic bands of amorphous phase were observed at 1,402,
876, and 1,168 cm−1 (and bands associated to the β phase at
1,071 and 834 cm−1, similar to those of the electrospun mats
(Gregorio and Borges, 2008; Kim et al., 2011; Merlini et al., 2014).
Moreover, bands at 660 and 1,231 cm−1 are related, respectively,
to α and γ phase (Yu and Cebe, 2009; Wu et al., 2011). The
electrospun fibers mats spectrum showed predominance of β

phases (which offers the piezoelectric properties), if compared
to the solution casting dense membranes spectrum. This result
suggests that electrospinning could induced the formation of the
β piezoelectric phase in the PVDF mats. The FTIR spectra of
PVDF/Mt-PPy.DBSA shows absorption bands similar to those of
neat PVDF, however, membranes produced by casting with 12.5
wt% of filler presents a stronger band at 1,546 cm−1, related to
the pyrrole ring vibration.

Figure 6 shows the variation of electrical conductivity (σ)
(Scm−1) as a function of Mt-PPy.DBSA concentration for
membranes fabricated by solution casting and electrospun mats.
It can be observed that the electrical conductivity of dense
membranes increases sharply from 3.93 × 10−15 to 0.36 S cm−1

with Mt-PPy.DBSA contents from 0 to 12.5 wt%, respectively.
However, the electrical conductivity obtained for electrospun
mats did not show a significant growth with the increment of
Mt-PPy.DBSA concentration, ranging from 7.06× 10−18 S cm−1

(raw PVDF) up to 6.13 × 10−14 S cm−1 for the PVDF with
12.5 wt% of additive. This behavior can be explained by the
morphology, that displays a fibrous and highly porous structure
(shown at Figure 3) as well as the fact that the nanostructured
conductive additive is encapsulated within the fibers, preventing
conductive paths formation.

Table 1 shows electrical conductivity of electrospun mats
with different composition. The electrical conductivity values
obtained in this work are significantly lower than those reported
in the literature, however, usually significantly high amount of
conducting polymer are used to achieve these elevated values. As
can be seen in Table 1, electrospun mats can display different
ranges of conductivities depending on several factors, as for
example, types of polymers, additives, and other chemicals
(solvents, dopants, oxidizing agents, etc.), ratios between the
components, compactness, and homogeneity of the mats.
According to the review work reported by Yanilmaz and Sarac
(2014), after investigating several studies, it was reported that
the high porosity of fibrous mat structure limits the contact of
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FIGURE 5 | FTIR spectra of PVDF and PVDF/Mt-PPy.DBSA (2.5, 5.0, 10.0,

and 12.5 wt%) for (A) electrospun mats and (B) membranes by

solution casting.

conductive segments, and high level of conductivity required for
many applications may not be achieved.

The EMI SE can be defined as the attenuation of
electromagnetic waves performed by the shielding material
(Merlini et al., 2017). The total EMI SE is described as a
sum of three EMI attenuation mechanisms: reflection loss
(SER); absorption (SEA) and multiple internal reflection
loss at the material interface (SEM). According to Ramoa
et al. (2018) SEM cannot be measured as separated
factor; therefore, they were disregard in this study
(Im et al., 2010; Al-Saleh et al., 2011).

In order to investigate the contribution of
reflection and absorption to the total EMI SE of
the composites, Transmittance (T) and Reflectance
(R) powers were calculated through the scattering
parameters. That represent the reflection S11 (S22)
and transmission S12(S21) coefficients, from the vector

FIGURE 6 | Electrical conductivity of (A) electrospun mats and (B)

membranes fabricated by solution casting.

TABLE 1 | Electrical conductivity for different conductive electrospun mats.

Electrospun

mats

Filler content

(%wt)

Conductivity

(S cm−1)

References

PVDF/PANI.DBSA 3 1.4 × 10−14 Merlini et al.,

2016

13 1.1 × 10−14

23 6.7 × 10−12

PVDF/PANI/MWCNT 5 1.7 × 10−12 Sarvi et al.,

2013

10 4.1 × 10−12

PEO(1.5

wt%)/PPy(SO3H)-

DEHS

50 3.5 × 10−4 Chronakis

et al., 2006

PEO(2.5

wt%)/PPy(SO3H)-

DEHS

37.5 1.1 × 10−4

PA6/PANI.DBSA 25 6.2 × 10−7 Hong and

Kang, 2006

PVP/PEDOT:PSS 5 2.3 × 10−12 Choi et al.,

2010

network analyzer, as described by Equations (3) and
(4) (Al-Saleh et al., 2011; Ramoa et al., 2013, 2018;
Vargas et al., 2018).

T = |ET/EI |² = |S12|²( = |S21|²) (3)

R = |ER/EI |² = |S11|²( = |S22|²) (4)

The absorbed coefficient (A), as product of incident
(I), transmitted (T) and reflected (R) waves, was
calculated according to Equation (5), considering 1
(Merlini et al., 2017).

A = I − T − R (5)

Herewith, the total EMI average, absorption loss
(SEA) and reflection loss (SER) were calculated on
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the basis of transmittance (T) and reflectance (R)
coefficients, according to Equations (6–8) (Al-Saleh
et al., 2011; Ramoa et al., 2013, 2018; Vargas et al.,
2018).

EMI SE = SER + SEA = 10log I/(I − R)

+ 10log (I − R)/T = 10log I/T (6)

SER = 10log I/(I − R) (7)

SEA = 10log (I − R)/T (8)

Figure 7 shows the EMI SE of investigated electrospun mats
and dense membranes as a function of weight fraction of
Mt-PPy.DBSA filler, over the frequency range of 8.2–12.4
GHz. It is possible to note that EMI SE of electrospun mats
is practically null (lower than −2dB), indicating that they
are almost transparent to magnetic waves, even with higher
concentration of additive (12.5 wt%). This behavior was not
expected since works in the literature have demonstrated
the potential use of electrospun mats for electromagnetic
shielding applications, especially due to the high surface area
to interact with the radiation (Im et al., 2010). However,
Im et al. (2010) reported a great EMI SE of −42 dB to
MWCNT embedded PANI/PEO-based fibers, when a very high
amount of fluorinated MWCNTs (120 wt%) were embedded
in the PANI/PEO fibers. The low EMI SE of PVDF/Mt-
PPy.DBSA electrospun mats can be explained by the low
values of electrical conductivity of the mats, as reported
previously, as well as the low amount of Mt-PPy.DBSA
incorporated into the fibers. The electrical conductivity has
been shown to be a critical factor in the development of
electromagnetic radiation attenuating materials and required
conductivity levels are >102 S m−1 for electromagnetic
shielding applications (Sudha et al., 2009). Moreover, these
mats display lower thickness (0.15mm) when compared
to conventional nanocomposites used for EMI SE (2mm).
According to the literature (Vargas et al., 2018), EMI SE
is significantly influenced by the nanocomposites thickness.
Vargas et al. (2018) reported that, by increasing thickness
of PU/Mt-PPy.DBSA nanocomposites from 2 to 8mm, the
EMI SE increases from −20.8 to −60.3 dB, when 25
wt% of Mt-PPy.DBSA.

It is possible to note that the EMI SE of membranes
produced by solution casting (Figure 7B) is quite similar to
those values reported for electrospun mats, even that the
electrical conductivity of these membranes are superior to those
of electrospun mats. This behavior can be associated to the
low thickness (0.15mm), which allows the transmission of the
wave through the material. In order to analyze the effect of
the thickness, thicker membranes (0.25mm) were produced by
solution casting. For these membranes (Figure 7C) the EMI
SE increased with the Mt-PPy.DBSA loading, indicating that
a better interaction of the conductive filler with the radiation.
For membranes with lower filler content, the EMI SE values
varied over the frequency range, but became almost independent
of frequency with the increase of Mt-PPy.DBSA amount. This
behavior can be explained due to the reduction of the material

FIGURE 7 | EMI SE in the X-band frequency range for (A) electrospun mats of

PVDF/Mt-PPy.DBSA and (B,C) membranes of PVDF/Mt-PPy.DBSA fabricated

by solution casting process with thickness of 0.15mm and

0.25mm, respectively.

skin depth with increasing filler content into the nanocomposites
(Al-Hartomy et al., 2011; Choudhary and Gupt, 2011; Ramoa
et al., 2018). It is important to highlight that was not possible to
fabricate electrospun mats with thickness higher than 0.15mm.
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FIGURE 8 | Effect of conductive filler content on the total EMI SE average,

absorption loss (SEA) and reflection loss (SER) of PVDF/Mt-PPy.DBSA

membranes by solution casting with a thickness average of 0.25 mm.

The contribution of reflection and absorption in the total
EMI SE for thicker membranes produced by solution casting
is reported at Figure 8. The results are expressed as average
values in the frequency range of 8.2–12.4 GHz. It is possible to
note that the shielding by reflection and absorption contribute
to the total electromagnetic shielding and the contribution of
both mechanism increases with the filler loading, resulting in
higher EMI SE. The SEA becomes the main EMI shielding
mechanism, similar to the results reported by Vargas et al. (2018)
for nanocomposites containing Mt-PPy.DBSA.

CONCLUSIONS

Non-woven mats of PVDF containing different weight fractions
of Mt-PPy.DBSA were successfully obtained by electrospinning.
The fibers diameter of electrospun mats decreased with the
increase of additive loading, due to a higher elongation imposed

to the solution caused by the higher ionic conductivity. Mats

produced by electrospinning display the piezoelectric phase,
indicating effectiveness of this process to produce β phase.
Electrospun mats behave as insulating material with electrical
conductivity ranging from 10−18 to 10−14 S cm−1 due to the
highly porous structure and encapsulation of the filler. Moreover,
they did not achieve a satisfactory EMI SE due to the low electrical
conductivity and thickness. However, membranes produced
by solution casting, showed superior mechanical properties,
electrical conductivity (10−2 S cm−1) and those with higher
thickness achieve to EMI SE of −5 dB with 12.5 wt% Mt-
PPy.DBSA. The values obtained for both systems remains below
to that required for commercial application (−20 dB), indicating
that is necessary to expand the studies related to shielding
efficiency, in order to conclude if these materials are feasible for
this application.
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Conductive rubbers combine features such as elasticity and electrical conductivities.

Here, we developed an elastic conductive material based on nitrile rubber (NBR) and

polypyrrole (PPy) by melt processing. PPy was also synthesized in three different media

as silver (PPy-Ag), organomontmorillonite (PPy-OMt), and silver-organomontmorillonite

(PPy-Ag-OMt) before mixture with NBR. Chemical structure, morphology, and

stress–strain properties were evaluated. Pressure sensibility was evaluated in the range

of 0–67 MPa during 10 cycles. During the compression and expansion processes,

the electrical conductivity changes from high to low values and the difference of

loading and unloading cycles demonstrates the repeatability and low hysteresis. The

organomontmorillonite clay improves the homogeneity of particles into the matrix, and

based on SEM images, the dispersity follows the sequence PPy-OMt, PPy-Ag-OMt,

and PPy-Ag-OMt. This behavior affects the electrical conductivity and mechanical and

electromechanical properties. The higher elastic modulus for composites compared to

neat NBR is assigned to the reinforcing effect of the fillers. NBR/PPy-Ag-OMt (5 wt.%) is

the best material in the absolute value of Scomp (46.3%/MPa) and the Scomp/hysteresis

ratio (8.5%). In spite of different formulations displaying the best performance on the

evaluated criteria (highest absolute conductivity, the highest percentage change in

conductivity, lowest hysteresis, and lack of sample disruption), we can suggest that

a lower amount of conducting particles benefits the reticulation process (as observed

by the gel fraction values). Additionally, the possibility of using mechanical processing

to obtain large-scale pressure sensor materials is without a doubt the most important

outcome of this research area.

Keywords: conducting polymer, conductive rubber, melt processing, montmorillonite, silver

INTRODUCTION

Pressure sensors are quite interesting materials to be used in areas such as medical and computer
science (Job et al., 2003; Rosa et al., 2019). Conductive rubber is a composite material of an
elastomeric matrix and conductive particles as a dispersed phase. Typically, the conductive particles
are carbon composites and/or intrinsically conducting polymers (ICP) (Ali and Abo-Hashem,
1997; Cho et al., 1998; Sombatsompop et al., 2000; Das et al., 2002; Knite et al., 2004; Bing
et al., 2010). This last class has attracted the attention of a wide academic and technological
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field since they combine electrical properties, similar to
metals, and mechanical properties and processability inherent
to conventional polymers (Mattoso, 1996; Job et al., 2003;
Swart et al., 2017; Sethi et al., 2018; Rosa et al., 2019).
The addition of ICP in elastomers can combine the electrical
and mechanical properties of these two classes of polymer
in one (Hussain et al., 2001; Soto-Oviedo et al., 2006; Tran
et al., 2018), allowing its application on technological fields
such as pressure sensors, electric wires and cables coating,
electrical contacts, carpet with antistatic properties, and others
(Mravčáková et al., 2006; Bing et al., 2010). The electrical
conductivity of conductive rubber depends on factors such as
the nature of the elastomeric matrix and the type, size, structure,
surface, and dispersion of the conductive particles as well as
the test conditions, such as temperature and pressure (Ali and
Abo-Hashem, 1997; Sombatsompop et al., 2000; Job et al.,
2003; Bing et al., 2010). The conductor path is created by the
different sizes and shapes of conducting particles homogeneously
distributed and closer to each other (Hussain et al., 2001;
Rosa et al., 2019). At the percolation threshold, the contact
between the particles produces a conductive network that can
be improved during the compression. From this phenomenon,
the resistivity of the material reduces and its conductivity
increases (Sombatsompop et al., 2000; Hussain et al., 2001;
Job et al., 2003; Bing et al., 2010). However, elastomers–ICP
composites still have challenges with the elastomeric cross-
linking process (Prudêncio et al., 2014). Then, the use of an
inorganic matrix [e.g., organomontmorillonite clay (OMt)] as
a template for ICP synthesis is interesting to improve the
compatibility of the conductive polymer and the elastomeric
matrix, affording a material with superior mechanical properties
(Baldissera and Ferreira, 2017). In addition, ICP produced in a
confined environment, such as clays, produces a material with
superior polymer chain organization and, consequently, higher
electrical conductivity and thermal stability, which enables melt
processing without degradation and/or electrical properties loss
(Mravčáková et al., 2006; Soto-Oviedo et al., 2006; Rosa et al.,
2019). Furthermore, the combination of silver nanoparticles with
ICP improves the conductivity of the polymer (Wei et al., 2010)
and opens the opportunity to use humidity and chemoreceptive
sensors (Jlassi et al., 2013). The aim of this work was to prove the
hypothesis that the insertion of fillers such as polypyrrole (PPy)-
Ag, PPy-OMt, and PPy-Ag-OMt improves the processability and
the conductive, thermal, and mechanical properties required for
a pressure sensor.

EXPERIMENTAL

Chemicals
Pyrrole (Aldrich, P.A.), ammonium persulfate (APS; Aldrich,
P.A.), cetyltrimethylammonium bromide (CTAB; Aldrich, P.A.),
silver nitrate (AgNO3; Aldrich, P.A.), sodium dodecyl sulfate
(SDS; Aldrich, P.A.), sulfur (Aldrich, P.A.), stearic acid (Synth,
P.A.), 2-mercaptobenzothiazole (MBTS-Fluka, PA), and zinc
oxide (Synth, PA) were used as received. Bentonit Union
(Brazilian trademark) provided montmorillonite clay. Organic-
modified montmorillonite clay with ammonium quaternary salt

(CTAB) in a weight ratio of salt:clay 1:1 (nominated OMt) was
prepared as described in the literature (Fontana et al., 2013).
Nitriflex SA, Brazil, provided nitrile rubber (NBR) with 30–
34% acrylonitrile.

Preparation of PPy Composites (PPy-OMt;
PPy-Ag; and PPy-Ag-OMt)
Polypyrrole (PPy) composites were prepared according to the
previous work of França et al. (2017). Briefly, cationic (CTAB)
and anionic (SDS) surfactants were dissolved in 100ml of
ultrapure water at a molar ratio of 1:5. Afterward, CTAB/SDS
was added to the OMt dispersion (mass proportion of 1:1, PPy
: OMt) and stirred for 2 h. Pyrrole (0.35ml; 5.0 mmol) and APS
(1.14 g; 5.0 mmol) were then added to the previous solution. The
polymerization proceeded under magnetic stirring for 24 h. It
was named PPy-OMt. For PPy-Ag-OMt composites, we used the
same procedure, except for the silver nitrate (AgNO3) (0.85 g; 5.0
mmol) used as an oxidant instead of the APS (França et al., 2017).
For PPy-Ag, the same procedure for PPy-Ag-OMt was used
except for the OMt absence. All samples were isolated by vacuum
filtration using 0.22µm hydrophilic PVDF membranes, washed
several times with ultrapure water, and dried in a desiccator
containing P2O5.

Preparation of NBR/PPy Composites
Conductive rubber containing PPy composites in a proportion of
5, 10, and 15 wt.% were mechanically mixed in a Haake Torque
Rheometer mixer chamber with roller rotors. First, NBR was kept
in the chamber for 2min for mastication process, followed by
the addition of the PPy composites at 150◦C and 70 rpm for an
additional 4min, totaling 6min of mixing. Secondly, at 100◦C
and 50 rpm, the vulcanizing agents were added in sequence: 5
wt.% of ZnO, 3 wt.% of stearic acid, 2 wt.% of sulfur, and 1 wt.% of
MBT. Then, the material was passed under a roll mill and pressed
under 6 tons in a hot press at 160◦C for 10min to complete the
curing reaction.

Characterization
The fracture morphology images of the NBR/PPy composites
containing 10 wt.% were taken in a field emission scanning
electron microscope SEM-FEG JEOL (model JSM6701F) at 500×
and 5,000× magnification using BS and SE detectors. Stress–
strain behavior was performed according to DIN53504 Standard
(DIN 53504, Germany, 1975) in a universal testing machine
EMIC DL 2000 with a speed of 200mmmin−1. The compression
sensitivity test was conducted according to themethod developed
by Souza et al. (2005). The test was performed using a Keithley
electrometer 6517A connected to the sample compartment and
coupled to an Instron machine (Model 5569) using 10 cycles. The
parameters of the experiment were as follows: a maximum force
of 10,000N, a test speed of 2mm s−1, and a maximum pressure
of 62.70 MPa.

In order to better understand the cross-linking behavior of the
elastomers, the soluble fraction (SF) and gel fraction (GF) were
determined. Samples were soaked in methylethylketone (MEK)
for 8 days. The difference between the swelled and dried samples
was used to determine the SF and GF.
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FIGURE 1 | Torque curves of NBR/PPy composites. (A.1–A.3) Components mixing curves; (B.1–B.3) NBR/PPy composites combined with the vulcanizing system;

and (C.1,C.2) torque values at the plateau vs. PPy composite loadings.

RESULTS AND DISCUSSION

Figure 1 shows the torque curves of the NBR/PPy composite

mixing (Figure 1A), NBR/PPy composites combined with the

vulcanizing system (Figure 1B), and torque values at the plateau
vs. PPy composite loadings (Figure 1C). From torque curves, we
can follow the mixing behavior of the components of the mixture
independent of the PPy composite types. At the beginning of
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FIGURE 2 | SEM fracture morphology of NBR with 10 wt.% of (A,B) PPy-OMt, (C,D) PPy-Ag, and (E,F) PPy-Ag-OMt. (A,C,E) are images of secondary electrons and

(B,D,F) are images of backscattered electrons.
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the mixture, the increase of the torque (∼30 s) is assigned to
the NBR addition in the chamber followed by a torque decrease
due to the mastication process. After 2min, a torque decrease
shown as a peak is attributed to the chamber opening to add PPy
composites, and the mixing process continued until reaching a
plateau (6min). The torque curves of the NBR/PPy composites
during the insertion of the vulcanizing system (Figure 1B) shows
four peaks at ∼30, 60, 150, 300, and 390 s assigned, respectively,
to the addition of the ZnO, stearic acid, sulfur, and MBT. After
the whole vulcanizing system was inserted, the process continued
for 90 s to guarantee that no reticulation reaction started to
occur inside the mixing chamber. The reticulation only occurred
during the molding at 160◦C in the hot press (6 tons for 10min).
Figures 1C.1, C.2 compare the torque values at the plateau for
the different PPy composites before and after vulcanization,
respectively. The sequence of torque values, independently of the
filler amount, is NBR/PPy-OMt > NBR/PPy-Ag > NBR/PPy-
Ag-OMt. Higher torque values at the plateau represent a harder

mixture and imply better interaction among the components,
mainly the aggregation of the filler into the matrix. Also, we
observe the influence of the amount of filler for PPy-OMt, which
corroborated the hypothesis of better interaction of the filler with
NBR (Thomas and Maria, 2017). PPy-Ag shows intermediate
performance with a slight increase for superior filler loading;
PPy-Ag-OMt displays no influence of the filler amount. Besides,
no significant differences of the torque values at the plateau
for composites after the addition of vulcanizing system were
observed (Figure 1C.2).

Figure 2 shows the fracture morphology of the NBR/PPy-
OMt, NBR/PPy-Ag, and NBR/PPy-Ag-OMt, all of them with 10
wt.% of PPy composite. A backscattered electron (BSE) detector
(Figures 2B,D,F) was used in order to show the difference in
contrast over the SEM images. Brighter BSE images are shown
for material prepared with an element with a high atomic
number. In this way, the dispersity of nanosilver particles
can be identified as well as the inorganic material dispersed

FIGURE 3 | Compression–expansion curves of NBR-PPy-Ag, NBR-PPy-OMt, and NBR-PPy-Ag-OMt.
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TABLE 1 | Electrical conductivity, elastic modulus, maximum stress, maximum strain, and gel fraction of NBR/PPy-OMt, NBR/PPy-Ag, and NBR/PPy-Ag-OMt

conductive rubbers.

Sample

(wt.%)

Conductivity

×10−6 (S cm−1)

Elastic module [E(MPa)] Tension at break [σ(MPa)] Deformation at rupture [ε (%)] GF (%)

NBR pure — 1.8 ± 0.20 4.60 ± 0.40 443 ± 42 92

NBR/PPy-OMt 5 0.040 ± 0.022 2.50 ± 0.08 5.54 ± 0.73 412 ± 13 98

10 0.50 ± 0.32 2.82 ± 0.35 7.22 ± 1.06 430 ± 50 97

15 6.60 ± 0.88 3.65 ± 0.53 9.39 ± 0.75 453 ± 50 96

NBR/PPy-Ag 5 10.00 ± 1.50 2.32 ± 0.19 5.35 ± 1.19 425 ± 63 92

10 14.30 ± 1.60 1.81 ± 0.80 4.85 ± 0.67 457 ± 67 86

15 33.00 ± 2.30 2.38 ± 0.62 3.52 ± 1.42 607 ± 126 86

NBR/PPy-Ag-OMt 5 1.30 ± 0.65 1.83 ± 0.16 5.04 ± 0.52 431 ± 56 97

10 7.70 ± 2.80 2.47 ± 0.25 4.86 ± 0.77 450 ± 55 95

15 12.50 ± 2.60 1.51 ± 0.43 6.03 ± 0.44 791 ± 175 89

TABLE 2 | Electromechanical properties.

Sample-wt.% 1σ (%)

@ Pmax/2 (%)

SComp (%/Mpa)

@ Pmax/2

Hysteresis (%)

@ Pmax/2

NBR/PPyAg-5 20.0 ± 2.9 0.6 ± 0.1 13.0 ± 2.7

NBR/PPyAg-10 71.9 ± 5.8 2.1 ± 0.2 8.9 ± 6.6

NBR/PPyAg-15 484.8 ± 20.5 13.9 ± 0.6 45.9 ± 9.8

NBR/PPyOMt-5 1,252.6 ± 81.9 35.8 ± 2.3 342.1 ± 68.3

NBR/PPyOMt-10 173.7 ± 14.5 5.0 ± 0.4 60.9 ± 6.4

NBR/PPyOMt-15 983.5 ± 96.9 28.1 ± 2.8 254.3 ± 53.2

NBR/PPyAgOMt-5 1,621.8 ± 91.7 46.3 ± 2.6 559.6 ± 56.1

NBR/PPyAgOMt-10 419.9 ± 55.8 12.0 ± 1.6 155.4 ± 33.0

NBR/PPyAgOMt-15 321.0 ± 72.5 9.2 ± 2.1 170.6 ± 33.2

on the elastomeric matrix. Inserted images at Figures 2B,D,F
are at high magnifications to show the morphology of the
particles into de NBR. Conductive rubbers with 5 and 15
wt.% of PPy composite displayed similar morphology and
are not shown here. We observe a high dispersity and
homogeneity of PPy-OMt particles into an NBR with a smooth
surface. The morphology reflected the torque results since
the homogeneous morphology aspect is related to a good
interparticle interaction among components (Figures 2A,B).
The morphologies of NBR/PPy-Ag and NBR/PPy-Ag-OMt
(Figures 2C–F, respectively) were analyzed as a function of
the presence of Ag nanoparticles and OMt. We also observe
higher homogeneity but small clusters dispersed in the matrix.
According to the BSE images (Figures 2D,F) we assigned the
white images to the Ag in which the particles are clumped in the
pointed stars shape. This morphology is quite interesting since
the agglomerations improve the performance of the material
during the compression-expanded cycles due to the particle–
particle contact (Figure 3; Souza et al., 2005; Thomas and Maria,
2017). It is interesting to note the decrease of the particle size
and also the improvement of the dispersion and homogeneity of
the particle into the NBR rubber matrix comparing PPy-Ag and
PPy-Ag-OMt composites.

Table 1 shows the electrical conductivity and mechanical
properties of the NBR composites. The electrical conductivity

values are in the order of 10−6 to 10−8 S cm−1, which
characterizes semiconducting material. The sequence of the
conductivity of the material is due to the presence of
the nanosilver, i.e., NBR/PPy-OMt < NBR/PPy-Ag-OMt <

NBR/PPy-Ag. This behavior is in accordance with the value
of neat particle conductivity (França et al., 2017) and the
contact between the dispersed particles in the NBR matrix.
Mechanical properties depicted as elastic modulus, tension, and
deformation at break show discrepant values according to the
amount and type of the conducting particles. Elastic modulus
represents the rigidity or stiffness of a material. Compared to the
neat NBR, we observed higher elastic modulus for composites,
corroborating the reinforcing effect of the filler on the elastomeric
matrix. NBR/PPy-OMt show higher values and increase with the
filler content. However, in NBR/PPy-Ag and NBR/PPy-Ag-OMt,
besides the lower values, no linearity is observed according to
the filler amount. This behavior is assigned to the GF values. GF
measures the degree of the reticulation of the material, and lower
values are due to the solubilization of the elastomer not cross-
linked. Since the reticulation is lower, the module also decreases.
The tensile strength at break is higher for PPy-OMt, but Ag
particles decrease the strength. This behavior can be assigned
to the agglomeration of the particles that generate points of
fragility in the material. Both properties, module and strength,
corroborate with the largest deformation of PPy-Ag and PPy-Ag-
OMt composites.

Figure 3 shows the expansion–compression cycles and
Table 2 shows the electromechanical properties of NBR/PPy-Ag,
NBR/PPy-OMt, and NBR/PPy-Ag-OMt. In order to correlate the
data sets supplied by the Instron machine and the electrometer,
a method was followed as summarized: The percentage variation
of the sample conductivity (1σ ) is calculated in accordance with
Equation (1).

∆σ =
100x(R−1 − R−1

0 )

R−1
0

(1)

Experimental data obtained during compression (loading) and
expansion (unloading) are treated separately. The average

hysteresis (h) is calculated in accordance with Equation (2).
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h =

n
∑

j=1

(1σc(j) − 1σd(j))

n
(2)

where n is the number of compression and expansion cycles and
1σc(j) and∆σd(j) represent the percentage variation of the sample
conductivity obtained during the jth compression and expansion
cycles, respectively. 1σc(j) and ∆σd(j) are taken at the half of the
maximum applied pressure. The compression sensitivity (Scomp)
can be defined as shown in Equation (3).

Scomp =

(

∆σ

∆P

)

(3)

and can be computed for each data pair (1σ vs. P) during
compression and expansion cycles. Finally, the average Scomp
can be calculated as shown in Equation (4).

Scomp =

n
∑

j=1

(

∆σ(j)P(j)
)

n
(4)

For NBR/PPy-Ag materials, as PPy-Ag content is increased, the
higher is the compression sensitivity. By increasing content,
the contact between the particles is improved, and as these
particles are large in size and the dispersity is lower (as
observed in SEM images), a higher concentration is necessary
to have contact and, consequently, conductivity. The linearity
was not observed for NBR/PPy-OMt and NBR/PPy-Ag-OMt.
Both material composites with 5 wt.% PPy-OMt or PPy-Ag-
OMt showed higher Scomp (35.8 and 46.3%/MPa, respectively),
besides higher hysteresis. However, comparing the relative
percentage of Scomp/hysteresis values of 10.5% and 8.5%, it
is found that NBR/PPy-Ag-OMt (5 wt.%) is the best material
in terms of absolute value of Scomp and Scomp/hysteresis
ratio. In spite of the different formulations displayed and the
best performance on the evaluated criteria (highest absolute
conductivity, the highest percentage change in conductivity,
lowest hysteresis, and lack of sample disruption), we can
suggest that a lower amount of conducting particles benefits
the reticulation process (as observed by the GF values). Also,
considering the 16 vol.% general concentration of particles to
achieve the percolation threshold, the materials we prepared are
below this value and can contribute to particle contact during
expansion–compression cycles (Schueler et al., 1997). Besides,
the clay improved the dispersion of the particles in the NBR,
which helps to decrease the necessary amount of filler to the

performance of the material. The properties of the conductive
rubbers can be influenced by the amount of filler used, in the way
it interacts with thematrix and with the other filler particles. Song
(2017) compared micro- and nanofillers used as reinforcement
and emphasized how organic modifications, coupling agents, and
better dispersion control techniques influence the interaction
between the rubber matrix and the fillers as we observed in
our work.

CONCLUSION

Conductive rubber based onNBR addedwith PPy composites has
shown interesting properties to be applied in the pressure sensor.
Among the samples, NBR/PPy-Ag 15 wt.% was highlighted
because of the highest volume conductivity and lower hysteresis
attained. On the other hand, the NBR/PPy-Ag-OMt 5% proved
to be the best material in terms of absolute value of Scomp
and the Scomp/hysteresis ratio. These results were related
to morphological aspects, where the particles are shown to
be dispersed, and the amount and the type of filler played
an important role to the connected–disconnected system
between particles that could happen during the compression–
expansion cycles.
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In this work, immiscible poly(lactic acid) (PLA)/poly(ethylene vinyl acetate) (EVA)

composites with 1 phr of multi-walled carbon nanotube (CNT) and different concentration

of protonic—based imidazolium ionic liquid (mimbSO3H·Cl) were prepared. The protonic

ionic liquid (IL) was able to act as dispersing agent for CNT and as compatibilizing

agent for the PLA/EVA blend. The multicomponent nanocomposites from the mixture

of PLA and EVA containing CNT functionalized with ionic liquid, IL (CNT/ILSO3H)

were characterized by mechanical and dynamic–mechanical (DMA) tests, electrical

conductivity analyses, differential scanning calorimetry (DSC), X-ray diffraction analysis

and rheological measurements, as well as chromatographic gel permeation (GPC), and

scanning electron microscopy (SEM). The non-covalent functionalization CNT resulted

in composites with outstanding electrical and dielectric properties. The high dispersion

of CNT promoted by the IL resulted in the formation of a physical networked structure,

which was responsible for the higher electrical conductivity and higher melt viscosity. The

crystallization process of PLA phase was improved with the presence of CNT/ILSO3H.

The degradation process during the transesterification reaction did not significantly

affect the mechanical properties. The present work highlights the dual role of the IL as

compatibilizing and dispersing agent and opens new perspectives for developing new

conducting systems with low percolation threshold based on the good dispersion of CNT

and the confinement of the filler within a phase of a multiphasic polymeric system.

Keywords: poly (lactic acid), ethylene-vinyl acetate copolymer, ionic liquid, carbon nanotube, conducting

composite, electric conductivity

INTRODUCTION

Due to the widespread use of plastics in the packaging industry, there is a growing
interest in the use of biodegradable polymers as a substitute for conventional polymers to
reduce the environmental impact of plastic waste. Poly lactic acid (PLA) is a good example
of these materials obtained from renewable resources (Lim et al., 2008; Nampoothiri et al.,
2010). Besides being biodegradable and biocompatible, PLA also presents good processability
when compared with other biodegradable polymers. However, it is quite rigid and brittle,
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presents low moisture resistance and slow crystallization rate,
which in turn limit its applications. Therefore, blending
PLA with soft materials is a good strategy for overcoming
these drawbacks. The appropriate choice of non-biodegradable
polymers as component for PLA-based blends should reduce
the biodegradation rate, cost and improve some mechanical
properties. In these cases, the PLA phase undergoes a gradual
degradation process, known as biodisintegration, resulting in
very small pieces of the non-biodegradable polymer (Sarasa
et al., 2009). A promising partner for blending with PLA is
ethylene-vinyl acetate copolymer (EVA) due to its availability,
low cost and versatility of applications, as it can present rubber or
thermoplastic characteristics by changing the vinyl acetate (VA)
content in the copolymer. Several papers have used EVA with
different vinyl acetate content for the preparation of PLA/EVA
blends for different purposes (Yoon et al., 1999; Li et al., 2011;
Moura et al., 2011, 2012; Ma et al., 2012, 2015; Aghjeh et al., 2015,
2016; Sangeetha et al., 2016, 2018; Wang et al., 2016; Zhang and
Lu, 2016; Lopes Pereira et al., 2017).

Blending conducting fillers as carbon nanotube (CNT)
expands the field of applications of these semi-biodegradable
composite as antistatic, dielectric and microwave absorbing
materials for utilization in electronic packaging. Most of the
studies involving CNT-based PLA/EVA composites focused on
the improvement of mechanical properties and toughness of the
blends (Shi et al., 2011, 2012; Wang et al., 2015, 2016; Liu et al.,
2016). Studies related with the electrical properties of PLA/EVA
blends loaded with CNT was reported by Shi et al. (2013). They
used a master batch of PLA to prepare PLA/EVA (60:40 wt%)
composites with different amounts of CNT. Resistivity values
around 107 �·cmwere obtained by adding 1 wt% of CNT. Higher
amount of CNT did not affect the resistivity values.

A good distribution/dispersion of CNTwithin a thermoplastic
matrix by melt mixing process is not an easy task due to the
strong tendency to filler agglomeration caused by the highly
conjugated structure and the Van derWaals interactions of CNT.
To improve the dispersion of CNT in a polymer matrix, two
strategies have been recently adopted: covalent and non-covalent
surface functionalization. Covalent functionalization is based
on chemical reactions on the surface of the CNT to introduce
functional groups capable of reacting or interacting with the
polymer matrix (Spitalsky et al., 2010). This methodology greatly
facilitates the dispersion of CNT in polymer matrices, but
destroys the π conjugation at the CNT surface, which is essential
for good electrical conductivity. Therefore, the non-covalent
functionalization is preferred because it does not destroy the
conjugation at the CNT surface, besides being environmentally
friendly because no chemical reactions with strong acids followed
by purification are involved during the procedure. In this context,
ionic liquid (IL) proved to be an excellent surface modifier for
CNT since it efficiently interacts with the π cloud of the CNT,
thus promoting a disaggregation of the CNT bundles and ropes
(Fukushima et al., 2003).

Recently, several works in the literature reported the efficiency
of the non-covalent functionalization of CNTwith ILs to improve
the dispersion of the filler within polymeric matrices consisted
of epoxy resin (Lopes Pereira and Soares, 2016; Alves et al.,

2018; Soares, 2018), thermoplastics (Zhao et al., 2012; Soares da
Silva et al., 2017; Fang et al., 2018), elastomers (Subramaniam
et al., 2013; Abraham et al., 2017; Hassouneh et al., 2017), as
well as heterogeneous polymer blends (Bose et al., 2008; Soares
et al., 2018; Lopes Pereira et al., 2019). Usually the presence of IL
significantly increases the conductivity of the system.

Based on the importance of the theme for the electro-
electronic, automobile and packaging industries, the aim of the
present study is to investigate the efficiency of the protonic IL
based on imidazolium cation as a dispersing agent for CNT
in PLA/EVA blends and how the IL-CNT combination should
affect the compatibility, morphology, electrical conductivity,
mechanical and rheological properties. This protonic IL was
recently reported as compatibilizing agent for PLA/EVA blends
through a transesterification process (Lopes Pereira et al.,
2017). To the best of our knowledge, no studies involving
the functionalization of CNT with protonic IL and its use in
polymer blends have been reported in the accessible literature.
For this study, EVA containing 19 wt% of vinyl acetate
(VA) was employed due to its great availability. PLA/EVA18
blend composition corresponding to 60:40 wt% was chosen for
this study in order to increase the toughness of PLA while
maintaining the biodegradability of the PLA matrix.

EXPERIMENTAL SECTION

Materials
Multiwalled CNT (pristine CNT–pCNT) (NC7000) was supplied
by Nanocyl (Sambreville, Belgium) (average diameter= 59.5 nm;
average length = 51.5mm; surface area = 5,250–300 m2/g).
Ethylene vinyl acetate (EVA) copolymer with melt flow index
= 2.5 g/10min at 190◦C/2.16 kg; vinyl acetate content = 19
wt%; density = 0.95 g/cm3; melting temperature, Tm = 90◦C
and glass transition temperature, Tg = −14◦C (Yamaki et al.,
2002) was purchased from Braskem (São Paulo, Brazil). Poly
(lactic acid) (PLA) designed for injection molding applications
(trade name IngeoTM Biopolymer 3251D; Mn = 80,000–90,000
g·mol−1; D isomer content = 4%; melt flow index = 35
g/10min at 190◦C/2.16 kg; density = 1.24 g/cm3; glass transition
temperature, Tg = 55–60◦C; Tm = 155–170◦C) was purchased
by Nature Works LLC. N-methyl-imidazole and 1,4-butane
sultone used for the synthesis of the protonic IL were supplied
by Sigma-Aldrich.

Preparation of Sulfonic Acid–Based Ionic
Liquid
The 1-methyl-imidazolium-3-butylsulfonic acid chloride
[mimbSO3H·Cl] ionic liquid was synthesized by reacting N-
methyl-imidazole and butane-sultone, followed by a treatment
with hydrochloric acid, according to the literature (Lopes Pereira
et al., 2017). The structure of the ionic liquid, mimbSO3H·Cl, is
illustrated in Figure 1 (yield= 75–85%; melting point=−59◦C)
and was confirmed by 1H NMR spectrum (300 MHz, CDCl3) δ

1.85 (t, 2H), 2.17 (t, 2H), 3.05 (t, 2H), 4.05 (s, 3H), 4.4 (t,2H), 7.6
(d, 2H), 8.82 (s, 1H).
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FIGURE 1 | Structure of the ionic liquid 1-methyl-imidazolium-3-butylsulfonic

acid chloride [mimbSO3H·Cl].

SAMPLE PREPARATION

The blend composition was fixed as PLA/EVA = 60:40 wt%
to improve toughness while maintaining the biodegradability
of the PLA. The polymers were first vacuum-dried overnight
at 60◦C before blending to eliminate water that should affect
the processing and properties. Then, PLA and EVA were dry
blended and introduced into the chamber of a Brabender
plastograph equipped with a W50 EHT internal mixer (volume
of 55 cm3) and roller rotors at a temperature of 180◦C
and a rotating speed of 60 rpm. The total mixing time was
5min. This time was enough to achieve the stable torque
while decreasing the chance for the polymer degradation. For
CNT modified with the IL mimbSO3H·Cl (CNT/ILSO3H), the
pristine CNT (pCNT) was previously dispersed with IL in a
proportion CNT/ILSO3H = 1:2.5 and 1:5 wt/wt by grinding
both components in a mortar for about 15min. After that, the
resulting CNT/ILSO3H was blended with PLA and EVA using
similar mixing protocol.

Before molding steps (injection or compression molding), the
samples were milled and put in a vacuum oven at 60◦C to dry the
samples. The samples for mechanical and dynamic-mechanical
analysis were injection molded in a Haake miniJet model, using
the following parameters: barrel temperature = 180◦C; injection
pressure= 450 bar; mold temperature= 20◦C; holding pressure:
250 bar, injection time: 10 s, holding time: 5 s. The total cycle
time corresponded to 15 s. The samples for conductivity and
rheological properties were compression-molded into disks of
20mm diameter and 1mm thickness in a hydraulic press at
180◦C and pressure around 7 MPa for 3min, followed by a
cooling process at the same pressure using another hydraulic
press at 20◦C for 5 min.

CHARACTERIZATION

The molar mass of the PLA phase in the blends was determined
by size exclusion chromatography (SEC) using a Shimadzu GPC,
803 equipped with 20A column (Column Phenomenex linear
300 × 7.8mm, pore 5µ) and a refractometer detector RID.
Chloroform was used as eluent with a flow rate of 1 mL/min
and at 22◦C. The calibration curve was previously obtained with
polystyrene standards in the range of 510–1,390,000 g/mol. For
the SEC analysis, the PLA phase was extracted with chloroform,
as follows: 2 g of the blend was stirred with 20mL of chloroform

during 48 h to extracted the PLA phase. Then, the solution was
filtered and casting into Petri dish to evaporate the solvent at
room temperature.

The rheological measurements were performed in a Discovery
HR1 Hybrid rheometer from TA Instrument Inc., at 170◦C,
using parallel plate geometry (25mm) with a distance of 1.0mm
between the plates. The measurements were performed in an
oscillatory mode at a strain range from 0.1 to 100% under
constant frequency of 1Hz, which is within the linear viscoelastic
regime. The testing temperature was fixed at 170◦C to avoid
excessive flow of the material out of the geometry and keep
the fixed gap, since PLA used in this work has a high MFI
and the testing cannot be performed at higher temperatures.
This temperature was also employed in other studies involving
PLA/EVA blends (Shi et al., 2013; Wang et al., 2016).

X-ray diffraction (XRD) measurements were performed on a
RigakuUltima IV X-ray diffractometer (Cu Kα irradiation, 40 kV,
20mA), in the range of 2θ from 1 to 40◦.

Differential scanning calorimetry (DSC) of the blend and
composites were performed on DSC Q20 from TA Instruments
Inc. in dynamic mode under nitrogen flow of 50 mL·min−1. The
samples were submitted to the following protocol: first heating
from 20 to 200◦C at a rate of 10◦C·min−1; cooling up to 20◦C at
a rate of 10◦C·min−1 and a second heating scan until 200◦C at a
rate of 10◦C·min−1.

Dynamic mechanical analysis (DMA) measurements were
performed using a DMA Q800 TA Instruments at a fixed
frequency of 1Hz, strain of 0.1% and a heating rate of 3◦Cmin−1.
The measurements were performed from −65 to 150◦C, using
single-cantilever clamp and rectangular samples with 17 × 12.7
× 3.2mm dimensions, obtained by injection molding.

The morphology of the samples was observed through
scanning electron microscopy (SEM) on a VEGA III from
TESCAN operating at 15 kV. The injected samples were
cryogenically fractured in liquid nitrogen and immersed into
toluene at 50◦C for 4 h to remove the EVA component. Then,
the surface was washed with fresh toluene and alcohol with the
aid of ultrasonic bath, according to the procedure reported by
Bhattacharyya et al. (2005). The samples were dried and coated
with gold for SEM examination.

The tensile properties were measured in a MTS Tytron 250
tensile tester at a crosshead speed of 5 mm·min−1. The samples
were injection molded into dimensions of the dumbbell-shaped
tensile bars, according to the ASTM D-638-5 method.

The dielectric properties, including AC conductivity, were
measured with an impedance analyzer Solartron SI 1260 gain
phase analyzer equipped with a Solartron 1296 dielectric
interface. The measurements were carried out at 25◦C from 0.1
to 106 Hz with 0.1V oscillating voltage with electrodes of 25mm
in diameter. The samples with 25mm in diameter and 1mm
thickness were previously coated with a thin layer of gold in order
to improve the contact.

RESULTS AND DISCUSSION

Rheological Behavior
The melt viscosity of the polymer components in a blend and
the presence of filler exert strong influence on the rheological
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FIGURE 2 | Rheological parameters of PLA, EVA, and PLA/EVA blends loaded with CNT/ILSO3H in a proportion corresponding to (a) 0:0; (b) 0:2.5; and (c) 0:5.0 phr.

parameters and morphology of the final product. Therefore, it
is important to investigate the effect of CNT and CNT/ILSO3H
on the rheological parameters of the PLA/EVA blends. Figures 2,
3 illustrate the complex viscosity, η∗, and storage modulus, G′,
vs. frequency for the composites containing different proportions
of IL or CNT/ILSO3H, respectively. The rheological parameters
of the pure components were also included for comparison.
The η∗ and G′ values of PLA were significantly lower than
those corresponding to the EVA component, mainly in the low
frequency range. PLA also presented a Newtonian behavior at
frequencies up to around 20Hz, whereas EVA displayed a typical
pseudo-plastic characteristic, with a significant decrease of η∗ as
increasing the frequency. PLA grade with lower viscosity than
EVA was chosen for this study to make easier the processability
of the composites as the addition of CNT usually increases the
melt viscosity of the system.Moreover, the lower viscosity of PLA
associated with the higher proportion of this component ensures
that this biodegradable polymer constitutes the matrix, which is
interesting for biodegradability purpose.

The neat blend presented intermediary η∗ and G′ values and a

less pseudo-plastic characteristic. The η∗ of the blend was lower

than that reported by Li, et al. for PLA/EVA blends with PLA

grade of higher molar mass, due to the lower molar mass of the
PLA used in the present system (Li et al., 2011).

The presence of 2.5 phr of IL resulted in a decrease of η∗

and a slight decrease of G′, due to a plasticizing effect of the

IL, a low molar compound. This plasticizing effect was also
observed in the literature for other thermoplastic containing

IL (Scott et al., 2002, 2003). However, an opposite effect was
observed when the IL content was increased to 5 phr, that is,
both η∗ and G′ increased when compared to the neat PLA/EVA
blend. Moreover, a more pronounced pseudo-plastic behavior
was observed for this mixture. This phenomenon may be related
to the formation of graft copolymers between PLA and EVA
through the transesterification reaction between the ester groups
of both components promoted by IL that acts as a catalyst, as
discussed in previous paper (Lopes Pereira et al., 2017). These
reactions contribute for the compatibilization between the blend
components. As the η∗ of EVA component is significantly higher
than that of PLA, the EVA chemically attached to the PLA chains

contributed for an increase of η∗ and G′, in spite of the presence
of higher amount of IL, which usually acts as plasticizing. Also
the interaction between IL and the blend component should
contribute for an increase in viscosity, as stated by other authors
(Yousfi et al., 2014).

The rheological parameters of the composites containing
CNT modified with different amounts of IL are illustrated
in Figure 3. The addition of 1 phr of CNT resulted in a
significant increase of η∗ and G′ in the low frequency range.
Moreover, the G′ vs. frequency slope at low frequencies decreased
significantly. These features indicate that the CNT dispersed
within the PLA/EVA matrix started to present a certain degree of
interconnectivity, thus forming a physical networked structure.
This characteristic was more pronounced for the composite
loaded with CNT/ILSO3H in a proportion corresponding to 1:5.
In this case, a more accentuated shear-thinning effect in the
profile of the η∗ vs. frequency curve, as well as a higher G′ value at
lower frequency range and a low G′ vs. frequency slope in the low
frequency range were observed. All these features indicate that
non-covalently functionalized CNT with the IL is more dispersed
within the polymeric matrix, thus forming a more effective
networked structure, which also was responsible for the higher
electrical conductivity, as it will be discussed in the next sections.
The IL at the surface of the CNT can favor the debundling of
the aggregated hopes and bundles of CNT. This phenomenon
was not so evident when lower amount of IL was employed. In
fact, the composite containing CNT/ILSO3H (1:2.5) presented
lower viscosity and G′ values than the composite containing only
CNT, confirming the plasticizing/lubricating effect of this IL. The
increase of melt viscosity with the addition of 1 wt% of CNT
non-covalently functionalized with IL was also reported in our
previous studies involving PP/PA12 blends (Lopes Pereira et al.,
2019) or PP/PLA blends (Soares et al., 2019).

Morphology
Figure 4 illustrates the SEM micrographs of PLA/EVA (60:40
wt%) blend and the corresponding composites containing 1
phr of pristine CNT (pCNT) or CNT modified with IL
(CNT/ILSO3H). The images in the left side correspond to the
micrographs obtained from non-etched surface samples and
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FIGURE 3 | Rheological parameters of PLA/EVA containing CNT/ILSO3H in a proportion of (a) 0:0; (b) 1:0; (c) 1:2.5; and (d) 1:5 phr.

those presented in the right side are related to the micrographs
obtained from the etched surface samples in hot toluene.
Then, the holes observed in these micrographs refer to the

EVA phase that was removed after the treatment with toluene.
The neat blend displayed a typical gross-separated and sea-
island morphology with large EVA domains (Figure 4a). The
extracted surface also presented large and non-homogeneous
holes, confirming that the blend is incompatible/immiscible
(Figure 4a′). The large domains were attributed to the great
difference in viscosity between the blend components, being
EVA much more viscous than PLA. When the viscosity of the
dispersed phase is higher than the matrix, the morphology tends
to present large domain size (Huang, 2011). The presence of
pCNT exerted some influence on the blend morphology. Both
non-extracted (Figure 4b) and extracted surface (Figure 4b′)
displayed EVA domains with smaller size, as it was also observed
in other heterogeneous blend loaded with CNT (Liebscher et al.,
2013; Soares et al., 2018). The micrograph of the composite
loaded with CNT/ILSO3H (1:5) also presented a more refined
morphology. It is difficult to distinguish the EVA domains in
the non-extracted surface (Figure 4c). However, it is possible
to observe the presence of smaller holes formed from the
extracted EVA phase (Figure 4c′). This behavior indicates that
the IL at the CNT surface was able to improve the PLA/EVA
compatibilization. The effect of IL on the morphology of the
PLA/EVA blend is also presented in Figures 4d,d′. This blend
also presents sea-island type morphology with relatively large
EVA domains. However, the micrograph taken from non-etched
surface suggests some kind of interfacial adhesion between
matrix and dispersed phase, since the presence of cavities in the
interface is not so evident. As discussed in our previous work
(Lopes Pereira et al., 2017), the Bronsted acidic ionic liquid acts
as catalyst for the transesterification between the ester groups of
the EVA and PLA phase, enhancing the anchorage between them.

The changes in morphology of heterogeneous blends with
the addition of CNT may be attributed to the increase of the
shear forces due to the higher viscosity of the system imparted
by the CNT and also some change in the viscosity ratio of
the blend components, due to the preferential localization of

CNT in one phase. According to thermodynamic calculation of
the interfacial tension and wetting coefficient predicted in the
literature, CNT presents a tendency to be located in the PLA
phase (Shi et al., 2013). In our system, this should be also favored
by the lower viscosity of the PLA phase. In order to estimate the
localization of CNT, the CNT-loaded composites were submitted
to a treatment with dichloromethane, which selectively extracted
the PLA phase, and hot toluene, which extracts the EVA phase.
After extraction, both chloroform and toluene appeared dark,
indicating the presence of CNT in both phases. Although CNT
has more affinity for the PLA phase as suggested by Shi et al.
(2011) and also due to its lower viscosity, some amount of the
filler was also located in EVA phase.

SEC Analysis
It was stated by several researchers in the literature that
the transesterification reaction used for the reactive
compatibilization of PLA-based blends may also provoke a
decrease of the molar mass of the PLA phase due to the random
cleavage of the ester groups along the PLA chain (Moura et al.,
2012; Lins et al., 2015; Lopes Pereira et al., 2017). The magnitude
of this phenomenon depends on the nature of the catalyst used
during the reaction process. In our previous study, the use of 1
phr of the protonic ionic liquid, mimbSO3H·Cl, as the catalyst
for the compatibilization of PLA/EVA blend promoted a slight
increase of the molar mass of the PLA phase, indicating that the
degradation process was minimized by using this catalyst (Lopes
Pereira et al., 2017). Therefore, the effect of the IL and CNT in
different proportions on the molar mass of the PLA phase was
investigated by SEC. Table 1 summarizes the molar mass of PLA
phase after submitting the blends to different treatment: mixing,
mixing/injection molding and mixing/compression molding.
The PLA extracted from the neat blend displayed significant
decrease of the molar mass, when compared to the virgin PLA,
indicating degradation process during the melt blending, as also
observed in our previous study (Lopes Pereira et al., 2017) and
by other authors (Park and Xanthos, 2009). The presence of
EVA in the blend minimized the degradation process, since the
molar mass of the PLA phase was higher than that of the neat
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FIGURE 4 | SEM micrographs of non-etched surface of (a) PLA/EVA (60:40 wt%) blend and the composites containing (b) 1 phr of pCNT, (c) 6 phr of CNT/ILSO3H

(1:5), and (d) 5 phr of ILSO3H (6 phr of CNT/ILSO3H corresponds to 1 phr of CNT in the system); and etched surface of the corresponding blend and composites

(a’-d’).
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PLA after processing. The addition of the IL (2.5 phr) resulted
in a decrease of Mw probably due to a cleavage of PLA chains
promoted by the transesterification reaction. Increasing the
amount of the IL (5 phr) resulted in a slight increase of Mw
and a decrease of Mn. This behavior may be attributed to the
transesterification reaction, which may occur between PLA and
EVA chains or also between PLA chains. The last event should
result in cleavage and combination of PLA chains. The presence
of CNT promoted a degradation process of the PLA chains
as indicated by a significant decrease of the molar mass. It is
interesting to observe that the functionalization of CNT with
the IL in a proportion CNT/ILSO3H = 1:2.5 by mass promoted
an increase of the PLA molar mass, when compared to the
neat blend and that loaded with 1 phr of pCNT. This behavior
suggests that the IL localized at the CNT surface minimized
the deleterious degradation action of the CNT and helps on
the compatibilization of the blend. Increasing the amount of
IL to 5 phr resulted in a decreasing of the molar mass of PLA
phase because the chain cleavage by transesterification reaction
became more effective. The molding process also contributes
for the degradation of PLA. In this context, PLA and the blends
after submitting to the injection molding process resulted in
additional decrease of MW, which may be explained by the high
shear forces during the injection process. The molar mass of
the blends without CNT did not present significant variation
when submitted to injection or compression molding process.
However, those loaded with CNT samples presented lower
Mw and Mn values when submitted to compression molding
when compared to those of the samples submitted to injection
molding. This behavior may be attributed to the exposition of
the samples to longer period at high temperature during the
compression molding.

Crystallinity Behavior
The effect of CNT and CNT/ILSO3H on the crystallinity
behavior was investigated by X-ray diffraction (XRD) and DSC
analysis. Figure 5 presents the XRD patterns of PLA, EVA
and the PLA/EVA blend and composites as a function of the
processing parameters. Pure PLA submitted to compression
molding process presented a broad amorphous halo over the
entire 2θ range, indicating the amorphous nature of this sample.
The injection molding induced some crystallinity to PLA, as
the amorphous halo appeared together with a diffraction peak
at 2θ = 16.4◦. This peak is related to the (200)/(110) plane
of α-phase crystal of PLA (Zhang and Zhang, 2016). Pure
EVA, both injection or compression molded, also presented an
amorphous halo together with two diffraction peaks at 2θ = 21
and 23◦, corresponding to the diffractions of (110) and (200)
planes of EVA phase (Li et al., 2011). All PLA/EVA blend and
composites displayed the characteristic diffraction peaks of the
EVA component. However, no peak related to the PLA phase
was observed, indicating that the PLA phase in the blend was
completely amorphous regardless the processing conditions.

Differential scanning calorimetry (DSC) thermograms of
PLA, EVA and their composites with EVA obtained during first
heating scan and during the cooling process are illustrated in
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FIGURE 5 | XRD patterns of (a) EVA, (b) PLA, and the PLA/EVA (60:40 wt%) blends loaded with CNT/IL·SO3H in the proportion of (c) 0:0; (d) 1:0; and (e) 1:5 phr.

FIGURE 6 | First heating scan and cooling scan curves obtained from DSC thermograms of (a) EVA; (b) PLA; and the PLA/EVA (60:40 wt%) blends loaded with

CNT/IL.SO3H in the proportion of (c) 0:0; (d) 1:0; and (e) 1:5 phr.

Figure 6. The samples were obtained directly from the injection-
molded specimens. Table S1 presented in supplementary section
summarizes the main data of the first and second heating scan, as
well as, the cooling scan. Also Figure S1 in the supplementary
section illustrates the second heating scan curves. Pure PLA
presented an endothermic transition at around 56◦C, related
to the glass transition temperature (Tg), an exothermic peak at
around 94◦Cdue to the cold crystallization temperature (Tcc) and
an endothermic peak at around 167◦C ascribed to the melting
temperature (Tm). The prominent Tcc peak in the PLA sample is
due to the slow crystallization process of PLA during processing.
Pure EVA presented two broad endothermic peaks in the range of
76–90◦C, which correspond to the Tm. This transition appeared
close to the Tcc peak related to PLA. Blending with EVA did not
exert great influence on the Tm of PLA, but resulted in a slight
increase of Tcc from 94 to 97◦C, suggesting that the EVA affected
the crystallization process of PLA, as also found by other authors
(Aghjeh et al., 2016; Agrawal et al., 2019). Nevertheless, by adding
CNT of CNT/IL to the blend, the Tcc peak related to the PLA
phase was suppressed, indicating that CNT and the CNT/IL
exhibited great nucleating effect for the PLA crystallization, as
also stated by other authors (Villmow et al., 2008).

The cooling scan curves presented clear exothermic peak at
around 67–69◦C, ascribed to the crystallization process of EVA
component. The PLA phase displayed broad exothermic peak
with very low intensity even for pure PLA sample, indicating slow
crystallization process of PLA at this conditions. This feature is
responsible for the appearance of the Tcc peaks in all blend and
composites, during the second scan process (see Figure S1 in the
supplementary section). During the second scan, the presence of
EVA did not affect the Tcc of PLA phase. However, the addition of
CNT in the blend caused a slight increase of Tcc. Blend containing
CNT/ILSO3H = 1:5 presented a slight decreased of Tcc but a
significant decrease of Tm, indicating that the CNT/IL system acts
as nucleating agent favoring the crystallization of the PLA phase.
This may be attributed to the interaction between IL and the PLA
phase, which is increased due to the increase of the interfacial area
due to the better CNT dispersion.

Mechanical and Dynamic-Mechanical
Properties
Table 2 summarizes the tensile properties of PLA/EVA
composites loaded with 1 phr of CNT modified with different
IL proportions. The stress-strain curves are also illustrated in
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TABLE 2 | Tensile properties of PLA/EVA (60:40 wt%) composites.

Filler content (phr) Young modulus (MPa) σB (MPa) ǫB (%)

CNT IL

0a 0a 1,390 ± 55 41 ± 2.8 3.4 ± 0.7

0 0 690 ± 40 21 ± 3.0 9.0 ± 2.0

1.0 0 650 ± 30 21 ± 2.1 6.0 ± 0.5

1.0 2.5 660 ± 20 24 ± 3.0 8.0 ± 1.5

1.0 5.0 610 ± 25 21 ± 1.0 5.0 ± 0.3

aTensile properties of neat PLA; σB, tensile strength; εB, elongation at break.

Figure S2 in supplementary section. PLA/EVA blend displayed
a decrease of tensile strength and modulus when compared
to neat PLA, but an increase of elongation at break (ǫB), due
to flexible nature of EVA. The addition of pure CNT or that
functionalized with IL did not exert significant influence on
the tensile strength but decreased elongation at break. Similar
behavior was also reported byWang et al., for systems employing
EVA50 and PLA/EVA with a composition of 80:20 (Wang et al.,
2016). A slight improvement of ultimate tensile strength was
observed when CNT/ILSO3H (1:2.5) was used, probably due to
some interfacial adhesion promoted by the compatibilization. In
spite of some interfacial adhesion suggested by SEM micrograph
and rheological measurements, the systems loaded with IL in
higher proportion presented poorer mechanical properties. This
behavior may be attributed to an increasing of a degradation
process of PLA component through transesterification reaction
involving ester groups in the middle of the PLA chain, as
indicated by SEC analysis.

The dynamic mechanical properties of the composites are
illustrated in Figure 7 in terms of storage modulus (E′), loss
factor (tan delta) and loss modulus (E′′) as a function of the
temperature. Also the main dynamic-mechanical parameters of
the neat polymers are also summarized in Table 3. The storage
modulus in the glassy region for the PLA/EVA blend increased
with the addition of CNT, indicating a stiffness of the material
due to the addition of the rigid filler. The composite loaded with
CNT/ILSO3H (1:2.5) resulted in an additional improvement of
the modulus, probably due to a better dispersion of the CNT
imparted by the presence of the IL at the surface. Increasing the
amount of IL decreased the modulus when compared with those
containing CNT probably due to a plasticizing effect of IL. These
results suggest that the plasticizing effect of the low molar mass
IL is effective in the solid state. In the melt state, as suggested
by rheological measurements, the higher amount of IL resulted
in an increase of the viscosity due to the better dispersion of
the CNT and the formation of the physical networked structure.
After around 50◦C, E′ decreased due to the increase in chain
mobility. The increase of the modulus at higher temperature is
due to the cold crystallization phenomenon (Song et al., 2012;
Agrawal et al., 2019). This characteristic is very common in PLA-
based systems, due to its slow crystallization rate. The modulus
in the rubbery region (at around 85◦C) significantly increased
for PLA/EVA blend when compared with the neat PLA. This
phenomenon suggests that EVA exerts some reinforcing effect on

FIGURE 7 | Dynamic mechanical parameters as a function of the temperature

for PLA/EVA blend containing CNT/ILSO3H in a proportion of (a) 0:0; (b) 1:0;

(c) 1:1.25; and (d) 1:5 phr.

the system probably due to an improvement of the crystallization
process of PLA. The addition of CNT resulted in additional
increase of E′ in the glassy region due to a reinforcing action of
the filler. The use of CNT/ILSO3H (1:2.5) also contributed for an
additional increase of modulus, confirming the better dispersion
state of the functionalized CNT with the IL and the formation of
the networked structure in higher extent.

Another interesting feature observed in this region is the
difference between the E′ values in the rubbery region and after
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TABLE 3 | Dynamic mechanical properties of PLA, EVA, and PLA/EVA (60:40 wt%) composites.

Matrix (wt%) Filler (phr) E′ at −40◦C (GPa) E′ at 25◦C (GPa) E′ at 85◦C (GPa) TgEVA (◦C) TgPLA (◦C) IR−EVA IR−PLA

PLA EVA CNT IL

100 0 0 0 2.1 2.0 0.005 69 – –

0 100 0 0 1.7 0.1 – −4 – –

60 40 0 0 1.5 1.0 0.01 −14 73 0.29 5.73

60 40 1.0 0 1.8 1.0 0.04 −9 74 0.49 3.23

60 40 1.0 2.5 1.9 1.0 0.03 −9 73 0.40 2.98

60 40 1.0 5.0 1.7 0.9 0.06 −9 74 0.40 2.42

Tg from the maximum of Tan delta curves; IR, integral area under the loss factor (tan delta).

FIGURE 8 | AC electrical conductivity against frequency for PLA/EVA blends

and composites containing CNT/ILSO3H in a proportion of (a) 0:0; (b) 1:0; (c)

1:1.25; (d) 1:5; (e) 0:2.5; and (f) 0:5.0 phr.

the cold crystallization phenomenon. This difference is smaller in
the composite loaded with CNT than in neat polymer blend. This
behavior may be related to the reinforcing action of CNT and also
to the efficiency of CNT as nucleating agent, thus accelerating
the crystallization process of PLA, as also reported in other
studies Villmow et al. (2008). The presence of CNT/ILSO3H
(1:5) decreased substantially this difference, that is, the cold
crystallization phenomenon was almost absent, as observed
from the DSC measurements during the first heating scan (see
Figure 6). This behavior is also attributed to the better dispersion
of CNT, thus increasing the interaction between the matrix and
filler. Thus, the accelerating effect of the crystallization process
was enhanced.

The effect of the CNT on the glass transition temperature of
both PLA and EVA phases is also illustrated in Figure 7 in terms
of loss modulus and tan delta against temperature. The Tg values
presented in Table 3 were taken from the maximum of the tan
delta curves. The Tg value of the EVA component in the blend
is lower than that observed for the pure EVA, which may be
attributed to an increase of the free volume at the interface due to

the incompatibility between the blend component, as indicated
by the SEM micrograph. The presence of CNT or CNT/IL did
not exert significant influence on the Tg of the PLA phase, whose
values stayed around 73–74◦C. The Tg of the EVA phase slightly
shifted toward higher temperature with the presence of CNT,
which means a decreasing of the free volume in this phase.
Moreover, some interaction between EVA phase and CNT may
be responsible for this slight displacement of Tg. Similar features
were also observed by Wang et al. (2016). According to the
literature, the integral area (IR) under the loss factor (tan delta)
may be related to the total energy dissipated due to viscoelastic
relaxation of the polymer chains (Jafari and Gupta, 2000; Wang
et al., 2016). Thus, the IR values can give an idea about the fracture
toughness of polymers. Table 3 presents the IR values related to
EVA and PLA relaxations in the composites. The presence of
CNT in the blends resulted in higher IR−EVA compared with neat
blend. This behavior suggests an improvement of the toughness
of thematerial (Wang et al., 2016). In the case of PLA component,
the presence of CNT resulted in a decrease of the IR−PLA values.
This phenomenon may be related to an increase of stiffness of
the PLA phase, caused by the presence of the rigid particle. It is
interesting to point out that the non-covalent functionalization of
CNT with ionic liquid promotes additional stiffness, indicated by
lower IR values for these samples. This result highlights the better
dispersion of CNT promoted by the IL, thus forming a more
effective physical network constituted by the dispersed CNT.

Electrical and Dielectric Properties
The dependence of the AC electrical conductivity with frequency
for the PLA/EVA composites loaded with 1 phr CNT is illustrated
in Figure 8 as a function of the IL content. The blends containing
only IL were also shown for comparison. The neat PLA/EVA
blend and those containing only IL (2.5 or 5.0 phr—curves e and
f ) presented a linear dependence of the conductivity with the
frequency, which is typical of insulating materials. The addition
of 1 phr of pCNT (curve b) (without modification) resulted
in composite with conductivity around 4 × 10−7 S/m in low
frequency range and also a DC electrical conductivity plateau
until a frequency of around 400Hz. Beyond this frequency,
known as critical frequency (fc), the conductivity increased
linearly with the frequency, obeying the Jonscher’s universal
power law for the frequency dependent conductivity of solids
(Jonscher, 1977). This phenomenon arises from the presence of
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trapped dipoles and charge carriers that cannot move at low
frequencies but at higher frequencies, they have more chance to
move due to the higher energy, thus displaying a typical non-
ohmic conduction mechanism (frequency dependent) through
tunneling/hopping effect (Min et al., 2013; Ram et al., 2017).
Shi, et al. reached values around 10−5 S/m for PLA/EVA blend
loaded with 1 wt% of CNT (Shi et al., 2013). However, it is
difficult to compare the results as they used a master batch
approach where CNT was previously dispersed in the PLA an
also EVA component with 40% of vinyl acetate, whereas the
processing conditions used in the present work involve only one
processing step.

The functionalization of the CNT with the IL resulted
in a significant increase of the conductivity. Moreover, the
DC conductivity plateau is shifted toward higher frequency,
indicating the formation of physical network of CNT in
larger extent. The composite loaded with CNT/ILSO3H (1:5)
displayed conductivity value around 3.7 × 10−3 S/m (four
order of magnitude higher than the blend containing pCNT)
and frequency independent for all frequency range studied,
characterizing a conductive material. Considering that no ionic
conductivity was observed for the blends containing only IL,
the outstanding electrical conductivity found for the composites
containing CNT/ILSO3Hmay be due to a better dispersion of the
filler within the matrix imparted by the IL at the CNT surface.
The IL contributes for a disaggregation of the CNT bundles and
favors the formation of the conducting pathway in larger extent.

To investigate the effect of CNT and IL on the conduction
mechanism that occurs in the PLA/EVA -based composites, the
charge transport properties were estimated from the following
power law equation (Jonscher, 1977):

σAC = σDC + k.f n (1)

where σAC is the AC electrical conductivity, σDC is the DC
electrical conductivity, k is a constant dependent on temperature,
f is the frequency and n is an exponent which provides an
indication of the charge transport mechanism (Bose et al., 2008).
The PLA/EVA composite loaded with 1 phr of CNT presented
n value close to 0.96, indicating a charge transfer mechanism

through hopping/tunneling, according to the literature (Bose
et al., 2008). The composite loaded with CNT/ILSO3H (1:2.5)
displayed n value of 0.76, which characterizes a charge transfer
mechanism through polarization effects, as stated by Bose et al.
(2008). As also observed by Bose et al. (2008), the presence of IL
facilitates the debundling of CNT and the contact between the
conductive particles.

Table 4 compares the electrical conductivity of some
thermoplastic matrices loaded with CNT/ionic liquid. As
expected, the conductivity strongly depends on the nature of
polymer matrix, nature and amount of IL used and processing
conditions. However, it is possible to emphasize the significant
increase in conductivity with the use of IL as dispersing agent for
CNT. Some composites, including that reported in the present
work, displayed an increase of conductivity by around four
orders of magnitude.

Figure 9 shows the dependence of real permittivity (ǫ′)
and imaginary permittivity (ǫ′′) of the composites with
different CNT/ILSO3H proportions with the frequency at room
temperature. Both ǫ′ and ǫ′′ were independent of frequency in all
measured frequency range, for the neat blend. The presence of
pure IL (2.5 and 5.0 phr) did not significantly influence on the
values of these properties and their dependence with frequency.
Composite containing 1 phr of pCNT displayed very low ǫ′

values but relatively high ǫ′′ value, mainly in the low frequency
range. This behavior suggests that the current leakage due to the
movement of the mobile charge carrier throughout the materials
is more important than the energy phenomenon storage.

The combination of CNT with the IL resulted in a significant

increase of the ǫ′ values for the corresponding composites,

mainly in the low frequency region. The increase of ǫ′ in the

low frequency is related to the interfacial polarization, which
usually occurs in heterogeneous systems with different dielectric
constant, due to the accumulation of charge carriers at the
interface between two materials (Jiang et al., 2009; Abraham
et al., 2017). In this case, the ionic liquid at the CNT surface
significantly contributes for the increasing of dielectric constant.
This phenomenon cannot be only related to the contribution of
the CNT and IL to the dielectric constant since these compounds,
separately added to the blend, did not exert great influence on this

TABLE 4 | Electrical conductivity of heterogeneous polymer blends loaded with 1% of CNT-IL filler.

Matrix Ionic liquid type Conductivity (S/m) References

Without IL With IL

PMMA Hmim·PF6 10−9 10−1 Fang et al., 2018

PS Alkyl-phosphonium-TFSI 10−4 10−1 Soares da Silva et al., 2017

PMMA bmim·PF6 10−11 10−4 Zhao et al., 2012

PC/PVDF Aminopropyl-imidazol 10−5 10−4 Biswas et al., 2015

PVDF/ABS Amino-terminated imidazol 10−3 10−2 Kar et al., 2015

PS/EVA Alkyl-phosphonium-TFSI 5 × 10−1 25 × 10−1 Soares et al., 2018

PP/PA12 Alkyl-phosphonium-TFSI 3 × 10−7 2 × 10−4 Lopes Pereira et al., 2019

PP/PLA Alkyl-phosphonium-TFSI 2 × 10−3 10 Soares et al., 2019

PLA/EVA mimbSO3H·Cl 4 × 10−7 3.7 × 10−3 This work
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FIGURE 9 | Dielectric properties of PLA/EVA blends containing CNT/ILSO3H in a proportion of (a) 0:0; (b) 1:0; (c) 1:2.5; (d) 1:5; (e) 0:2.5; and (f) 0:5 phr.

property. In fact, the IL at the surface of CNT forms a thin layer
between the polymer matrix and the filler that acts as numerous
micro-capacitors. Increasing the amount of IL in these hybrid
CNT/ILSO3H systems, increases the ǫ′ values due to an increase
of the interphase.

The imaginary permittivity (ǫ′′) is mainly related to
the energy dissipation within a dielectric. The increase
of IL in the CNT/ILSO3H complex also resulted in a
significant increase of ǫ′′ of the corresponding PLA/EVA
composites. This property is related to the conductivity
and agrees with increased AC conductivity values found for
these samples.

CONCLUSION

Conductive composites based on PLA/EVA loaded with CNT or
CNT non-covalently functionalized with two different amounts
of mimbSO3H·Cl as the protonic ionic liquid were prepared
by melt mixing. The presence of CNT/ILSO3H provided higher
conductivity values to the composites when compared to
that loaded with pristine CNT. The CNT/ILSO3H proportion
corresponding to 1:5 by weight resulted in higher electrical
conductivity, which was attributed to a better dispersion
of CNT within the polymer matrix and the formation of
a conducting pathway in larger extent. This feature was
confirmed by rheological parameters in the melt state. Thus,
higher viscosity and higher storage modulus were achieved
using this CNT/ILSO3H proportion in the composite. Besides
assisting the dispersion and debundling of the CNT during
the melt processing, the IL also acted as interfacial agent
between PLA and EVA phase, thus promoting a good
interfacial adhesion. The compatibilization was suggested from
SEM micrograph and also rheological properties. In fact,
the presence of 5 phr of the mimbSO3H·Cl resulted in
an increase of the melt viscosity of the PLA/EVA blend.
The results presented in this work highlight the dual effect

of protonic ionic liquid as dispersing agent for CNT and
also compatibilizing agent for PLA/EVA blends, and may
considered a promising alternative for the development of semi-
biodegradable conducting composites for antistatic packaging
and other important applications in several fields of the electro-
electronic industry.
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Carbon black (CB) filled butadiene (BR) (Cis-1,4-polybutadiene) and natural (NR)

(Cis-1,4-polyisoprene) rubber compounds containing CB in 60–100 per hundred (phr)

proportions were investigated for their pressure/time-dependent electrical conductivity.

Due to their high deformability, the percolation thresholds for CB–BR and CB-NR

compounds were functions of pressures (compression loads) applied. Resistivity of

such compounds decreased with time and compressive load levels. Storage moduli,

G’, as well as the loss moduli, G” and the dynamic viscosities, η∗ of the compounds

were evaluated to assess viscoelastic response of the compounds’ conductivities under

pressure. The storage and loss moduli values for both the CB-BR and the CB-NR

compounds decreased with increasing strain levels, indicating that the rate of increase

in conductivity is expected to increase at higher compressive loads. The storage

moduli increased with increasing frequency (rate), indicating that the rate of increase in

conductivity should be lower at higher rates of compressive load application. Comparison

of variations in conductivity between the CB–BR and CB-NR compounds as functions of

time and pressure, however, revealed that, overall, the conductivity levels are also strongly

dependent on the nature of the molecular structure of these rubber materials and their

initial interactions with CB during compounding, and the resulting dispersion levels of

CB. Once such dispersion structure is established, the overall difference in conductivity

levels for the CB–BR and CB-NR compounds remain approximately unchanged for given

time and pressure conditions for the cases where high CB fill levels (∼90 phr) are used

and asymptotic conductivity values are reached. The experimental results revealed that

because of the presence of higher number (∼2-fold) of hydrogen side atoms on the

linear BR chains, CB–BR compound forms more physical crosslinks (mostly due to

hydrogen bonding) in comparison to the CB-NR compound resulting in more effective

CB dispersion and higher conductivity. Such higher efficiency in CB dispersion and

percolation in BR is further implied by higher conductivities despite higher G’ and η∗

values for the CB–BR compound in comparison to the CB-NR compound.

Keywords: electrical conductivity, Cis-1,4-polybutadiene/carbon black rubber compound, Cis-1,4-

polyisoprene/carbon black rubber compound, natural rubber, pressure dependent electrical conduction,

percolation, carbon black dispersion, storage modulus—viscosity—electrical conduction relationships
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Sancaktar and Basan Carbon Black, Butadiene, Natural-Rubber Conductivity

INTRODUCTION

Electrically conducting fillers are commonly used to induce
conductivity in polymer-based composites, if added above their
percolation threshold to form interconnected particle network.
The percolation phenomenon is well-known and typically
illustrated by either local inflection or terminal asymptotes in
decreasing variation of resistivity. Sancaktar and Wei (1996),
Wei and Sancaktar (1996), Sancaktar and Dilsiz (1999a,b), and
Sancaktar and Bai (2011) reported on electrically conductive
adhesives as a subset of polymer-based conductive composites.
Sancaktar andWei (Sancaktar andWei, 1996;Wei and Sancaktar,
1996) developed a model for evaluating the relation between
contact pressure and conductivity. This model used Holm’s
contact resistance theory (Holm, 1967) with conductive spherical
powder fillers. The interparticle contact resistance among these
fillers was modeled by adding the constriction resistance based
on Hertz’s contact stress equation (Timoshenko and Goodier,
1970) to the tunneling resistance. Experimental data by Sancaktar
and Wei (1996) proved that powders’ electrical resistance was
dependent on the pressure applied on them. Applicability
of Hertz’s theory in their work proved that fillers’ material
properties, as well as their shape and size should also affect
the constriction resistance. The tunneling resistance, however,
is affected by presence of non-contact space as well as oxide
layer on particle surfaces. The non-contact space is expected
to decrease due to the deformations at particle contact points
when compressive forces are applied on them. Thus, we expect
the tunneling resistance to decrease and approach an asymptotic
level (due to the presence of oxide layer and other non-
conductive impurities) when compressive forces are applied.

Electrically conductive nanoparticles such as carbon
black (CB) have large specific surface area which enhances
interconnecting network formation as well as improving the
mechanical properties of composites in which they are used as
fillers and/or reinforcement agents (Sancaktar et al., 1996).

Unvulcanized butadiene (BR) (Cis-1,4-polybutadiene) and
natural (NR) (Cis-1,4-polyisoprene) rubbers are tough linear
polymers exhibiting large area under their stress-strain curves at
room temperature. They flow plastically at higher temperatures
(182–204◦C). These rubbers are mixed with vulcanizing agents
such as sulfur or peroxides at temperatures ≥100◦C to crosslink
them into molecular network which typically has one crosslink
for every few hundred atoms of a polymer molecule. In the
undeformed state, randomly coiled polymer molecules exist
between the crosslinks. The Young’s modulus for natural and
synthetic rubbers range from 102 to 104 kPa. Vulcanized rubbers
can be reversibly stretched more than 200% (Morton, 1987;
White, 1995).

Basan and Sancaktar (2016) studied pressure-time dependent
electrical resistivity/conductivity behavior of silicon rubber (SR)
containing 40–100 phr (parts per hundred units of rubber) CB.
Due to the high deformability of silicon rubber, the percolation
thresholds for CB–SR compounds were functions of the applied
pressure (compression load). Resistivity of such compounds
decreased with time and compressive load levels. Storage moduli,
G’, as well as the loss moduli, G” and the dynamic viscosities, η∗

of the compounds were evaluated to assess viscoelastic response
of the compounds’ conductivities under pressure. The storage
and loss moduli values for the CB-SR compounds decreased with
increasing strain levels, indicating that the rate of increase in
conductivity is expected to increase at higher compressive loads.
The storage moduli increased with increasing frequency (rate)
(Basan and Sancaktar, 2016), indicating that the rate of increase
in conductivity should be lower at higher rates of compressive
load application. Work by Basan and Sancaktar was performed
using a single rubber compound, namely CB-SR, and as such, did
not provide insight on the effects of themolecular structure of the
rubber matrix on the conductivity behavior of the compound.

In this work, pressure-time dependent electrical
resistivity/conductivity behavior of Carbon black (CB) filled
butadiene (BR) (Cis-1,4-polybutadiene) and natural (NR) (Cis-
1,4-polyisoprene) rubber compounds containing 60–100 phr CB
are investigated. Storage moduli, G’, as well as the loss moduli, G”
and the dynamic viscosities, η∗ of the compounds are evaluated
to assess viscoelastic response of the compounds’ conductivities
under pressure and at different rates. Variations in conductivity
of the CB–BR and CB-NR compounds as functions of time and
pressure are compared to assess whether the conductivity levels
are also dependent on the nature of the molecular structure of
these rubber materials, their initial interactions with CB during
compounding, and the resulting dispersion levels of CB.

MATERIALS AND METHODS

Preparation of Composite Materials
The CB filled BR (Cis-1,4-polybutadiene, 96% Cis1) and NR (Cis-
1,4-polyisoprene) rubber composites we tested were prepared
using Diene 645 high cis BR (now Diene 645S, Firestone
Polymers, Akron, OH), and SMR-CV60 NR (Akrochem, Akron,
OH2). N330 CB was utilized in 40, 60, 70, 80, 90 ve 100
phr (per hundred rubber) proportions as the conductive
component (Basan and Sancaktar, 2016). CB-BR and CB-NR
composites were compounded using the recipe shown in Table 1

for 50 phr CB. A Brabender compounder (C.W. Brabender
Instruments Inc., South Hackensack, NJ) was employed using
the compounding procedures shown in Table 2. The six different
compounds obtained in this manner were press-cured into 2mm
thick sheets using 28 MPa pressure at 100◦C over a 35min
period (Basan and Sancaktar, 2016). A hydraulic press (Carver
Model 3912; Wabash, IN) was used for this purpose (Basan and
Sancaktar, 2016).

Measurement of Electrical Conductivity
Twenty millimeter diameter, 2mm thick circular samples were
punch-cut (Basan and Sancaktar, 2016) using the composite

1https://na01.safelinks.protection.outlook.com/?url=http%3A%2F

%2Fwww.firestonepolymers.com%2Fdiene_rubber.aspandamp;data=02

%7C01%7Cerol%40uakron.edu%7C92e1aafc4d5e4e1dd29708d663b4aca8

%7Ce8575dedd7f94ecea4aa0b32991aeedd%7C1%7C0

%7C636806025988764877andamp;sdata$=$rqPc0DEVAATs

%2BkNEa8H1bUNKYAvs9hgGJ702htfLQfc%3Dandamp;reserved=0
2http://www.akrochem.com/pdf/technical_data_sheet/elastomers/smr_cv60-

smr-l_smr-gp.pdf
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TABLE 1 | Compound recipes.

Function Item-Grade phr Density (g/cm3) Weight (g) Volume (cm3)

Unvulcanized Rubber Diene 645 high cis BR, or 100 0.90 174.42 193.80

SMR-CV60 NR 100 0.92 174.42 189.59

Reinforcing filler Carbon Black-N330 50 1.7∼1.9 87.21 48.45

Activator Zinc Oxide-FP-H 5 5.6 8.72 1.56

Accelerator Sulfenamides-CBTS 0.5 1.3 0.87 0.67

Vulcanizer Sulfur:Rubbermakers-Regular 2.5 2.07 4.36 2.11

Activator Stearic Acid-Rubber Grade 2 0.85 3.49 4.10

Antioxidants Non-staining phenolic-Antioxidant 33 2 1.09 3.49 3.20

Plasticizer Naphthenic process oil-Plasticizer-LN 5 0.9045 8.72 9.64

172 1.116 or 1.136 291.28 263.53 or 259.32

TABLE 2 | Compounding procedures.

Number of pass Item Temp (◦C) Temp (◦F) Speed (rpm) Time (min)

1st (Non-Productive) Rubber+CB+Oil+Antioxidant 90 194 30 10

2nd (Productive) + Zinc Oxide +Stearic Acid + Sulfur +CBTS 70 158 20 10

sheets prepared as described in section Preparation of Composite
Materials. These samples were placed in an insulating hollow
cylinder fitted with conducting solid aluminum rods to apply
compressive force to the samples (Sancaktar and Wei, 1996)
and to measure the change in their resistivity with increasing
pressure. A digital multimeter (Goldstar; DM-7241) was used to
measure sample resistances (R) in k�.

The resistivity, ρ (�·cm) values for the composites were
calculated using the equation:

ρ = R
A

L
(1)

where, A (cm2) represents the cross sectional area, and L (cm) the
linear dimension (specimen thickness) in the direction of current
flow (Basan and Sancaktar, 2016).

The specimen thickness is reduced due to the pressure
applied on the specimen. The relationship between the specimen
thickness and the applied pressure was assumed to be linear, with
the proportionality constant, α:

α =
L− Lo

t
(2)

where, Lo and L represent initial and final thicknesses during the
loading cycle, t. Therefore, the final length can be calculated using
the relation (Basan and Sancaktar, 2016):

L = Lo − αt. (3)

The conductivity, σ (S·cm−1), is defined as the inverse
of resistivity:

σ =
1

ρ
(4)

The resistance values were measured over a period of 60min
using eight different pressures (0, 50, 100, 150, 250, 375, 500, and
750 kPa) (Basan and Sancaktar, 2016).

Rheological Measurements
5 × 5 cm CB-rubber composite samples weighing ∼5 g were
prepared using the procedure described in section Preparation of
CompositeMaterials and placed in between two PET (Mylar) film
sheets for measurements of storage (G’) and loss (G”) moduli, as
well as the dynamic viscosity (η∗) (Basan and Sancaktar, 2016).
A Torque Rheometer (RPA 2000; Alpha Technologies, Hudson,
OH) was used for this purpose. 0.5–100% strain sweep (0.03–7◦

rotation) was done at 60◦C using 10.5 rad/s (1.67Hz) frequency.
0.3–157 rad/s frequency sweep (0.5–25Hz) at 60◦C using 4.2%
strain level (0.29◦ rotation) (Basan and Sancaktar, 2016).

RESULTS AND DISCUSSION

Variation of Composite Resistivity With CB
Fraction, Pressure, and Time
Figures 1A,B show the reductions in resistivity for CB–BR
composites when the CB fill levels are increased from 70 to 100
phr. Such reductions in resistivity at 1min pressure application
is shown in Figure 1A and the same for 60min pressure
application is shown in Figure 1B. Locally asymptotic resistivity
level appears to commence at ∼90 phr CB fill level for the �-
cm resistivity range depicted. Reductions in resistivity levels are
clearly observed when the pressure levels are increased up to 750
kPa at constant CB phr levels less than∼90 phr.

Figures 2A,B show the reductions in resistivity for CB–NR
composites when the CB fill levels are increased from 60 to
70 phr, indicating the formation of percolated network. Such
reductions in resistivity at 1min pressure application are shown
in Figure 2A and the same for 60min pressure application are
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FIGURE 1 | The variation of resistivity, at 1min (A), and 60min (B), with composition, for CB-BR composites using different pressures (kPa, inset right).

FIGURE 2 | The variation of resistivity, at 1min (A), and 60min (B), with composition, for CB-NR composites using different pressures (kPa, inset right).

shown in Figure 2B. Examination of Figure 2 reveals that locally
asymptotic resistivity level appears to commence at ∼70 phr for
the k�-cm range depicted even though some local fluctuations
are observed. Reductions in resistivity levels are clearly observed
when the pressure levels are increased up to 750 kPa at constant
CB phr levels. Furthermore, the percolation transition is more
clearly observed at lower pressures with the variation of resistivity
with composition approaching linearity as the pressure level
is increased.

Figures 3(A- 1min) and (B- 60min) show the time dependent
decrease in CB–BR composite resistivity levels beyond 70 phr CB
level (at the initiation of percolated structure) when 0–750 kPa
pressure levels are used. Asymptotic resistivity levels are reached
at ∼90 phr CB when using either pressure, with this level at 750
kPa being∼25% of that at 0 kPa (Figure 3).

Figures 4A,B illustrate a stronger time dependence for the
CB–NR composite resistivity levels, within the k�-cm range
depicted, when compared with Figure 3 (CB-BR). We note that
Figure 4 presents resistivity data for CB levels≥70 phr, the range
which appears to have reached approximately asymptotic levels
for resistivity in Figure 2. It is interesting to note that within

the�-cm range corresponding to the higher pressure application
(750 kPa) part (b) of Figure 4, another asymptotic level appears
to have been reached at 90 phr CB.

Comparison of Conductivity Levels for the
CB–BR and CB-NR Compounds
Changes in conductivity with pressure and time, for BR (a), and
NR (b) composites containing 70 phr CB are shown in Figures 5,
6, respectively. Increases in conductivity with pressure (Figure 5)
and time (Figure 6) are clearly observed. Figure 5 reveals that the
effect of pressure on conductivity increases at higher pressures
where the time dependent conductivity curves diverge for both
CB-BR and CB-NR composites. This increase becomes more
or less constant beginning at 5min pressure application time
(t) (Figure 6). In other words, the slopes of conductivity vs.
pressure curves are approximately constant for t ≥ 5min. In
comparison, the slopes of conductivity vs. pressure curves at
1min pressure application time become relatively smaller. This
may be attributed to viscoelastic behavior by the composites not
being accurately represented in Equations (2) and (3) which are
used to calculate the effective specimen length under pressure.
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FIGURE 3 | The variation of resistivity, at 0 kPa (A), and 750 kPa (B) pressure, with composition, for CB-BR composites measured at different times (min, inset right).

FIGURE 4 | The variation of resistivity, at 0 kPa (A), and 750 kPa (B) pressure, with composition, for CB-NR composites measured at different times (min, inset right).

FIGURE 5 | The change in conductivity with pressure and time (min, inset right), for BR (A), and NR (B) composites containing 70 phr CB.

Following initial high rate compressive load application, the
specimen length after 1min may be relatively higher than what
is predicted by Equation (3).

Figure 6 reveals that the conductivity levels for both the
CB-BR and CB-NR composites containing 70 phr CB remain
relatively constant after about 20min even if a high level of
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FIGURE 6 | The change in conductivity with time and pressure (kPa, inset right), for BR (A), and NR (B) composites containing 70 phr CB.

FIGURE 7 | Possible chemical functionalities of carbon black surface.

FIGURE 8 | Cis-1,4-polybutadiene.

pressure (750 kPa) is applied. The incremental increase in
conductivity with pressure seems to be relatively constant with
CB-NR for different time values (Figure 6B), while it seems to

FIGURE 9 | Cis-1,4-polyisoprene.

remain relatively constant for pressure values between 150 to 500
kPa for the CB-BR composite (Figure 6A).

Comparison of Figures 1–6 reveal that, for the CB fill levels,
pressures applied and their durations used, CB-BR compounds
provide much higher electrical conductivity (σ) in comparison
to the CB-NR compounds. The ratio of σCB−BR/σCB−NR seemed
to vary in the range of ∼18–28 when comparing different time
and pressure conditions for 70 phr CB loading. This ratio was as
high as∼50 for specimens filled at 90 phr level and pressurized to
750 kPa. The overall difference in conductivity levels for the CB–
BR and CB-NR compounds remain approximately unchanged
for given time and pressure conditions for the cases where such
high CB fill levels (∼90 phr) under high pressures (750 kPa)
are used and asymptotic conductivity values are reached. These
observations on conductivity variations between the CB–BR and
CB-NR compounds as functions of time and pressure indicate
that, overall, the conductivity levels are strongly dependent on
the nature of the molecular structure of these rubber materials
and their initial interactions with CB during compounding and
the resulting dispersion levels of CB. Once such dispersion
structure is established, a relatively constant conductivity ratio
is obtained at high levels of CB fill and pressure as indicated
by the σCB−BR/σCB−NR ratio of ∼50 with 90 phr CB at 750
kPa. This ratio changes at lower CB fill levels and pressures
(σCB−BR/σCB−NR

∼=18 to∼=28) but the fact that σCB−BR > σCB−NR

remains valid.
There are a large number of reactive double bonds as well as O

and OH on surfaces of carbon black fillers as shown in Figure 7.
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FIGURE 10 | Strain level (A) and frequency (B) dependent variation of storage (G’) and loss (G”) moduli, and dynamic viscosity (η*) in 40 phr CB-BR composite.

FIGURE 11 | Strain level (A) and frequency (B) dependent variation of storage (G’) and loss (G”) moduli, and dynamic viscosity (η*) in 40 phr CB-NR composite.

The presence of sulfur, olefins, and radicals typically lead to the
formation of covalent bonds between the CB surface and the
rubber via these double bonds. O and OH sites provide hydrogen
bonding. The hydrogen content built up in thismanner correlates
to reinforcement by carbon black (Papireb et al., 1969).

Based on our experimental results and due to the presence
of higher number (∼2-fold) of hydrogen side atoms on the
linear BR chains (Cis-1,4-polybutadiene, Figure 8), we believe
that CB–BR compound forms more physical crosslinks (mostly
due to hydrogen bonding) in comparison to the CB-NR (Cis-1,4-
polyisoprene, Figure 9) compound resulting in more effective
CB dispersion and higher conductivity. We note that for both
Cis configurations, possible rotations about the C C bonds
in CH2 groups allow the molecules to coil upon themselves,
thus resulting in disordered molecular conformations for both
types of rubber materials; however, the CB particles are able
to establish more effective conductive network when used with
Cis-1,4-polybutadiene due to the formation of more physical
crosslinks between these particles and the Cis-1,4-polybutadiene
molecules as inferred based on the comparison of our rheological
experiments for the CB–BR and CB–NR compounds reported in

the section Correlation of Conductivity Levels with Rheological
Properties for the CB–BR and CB-NR Compounds.

Correlation of Conductivity Levels With
Rheological Properties for the CB–BR and
CB-NR Compounds
Comparison of Figures 10, 11 reveals higher G’ and η∗ values for
the CB–BR compound in comparison to the CB-NR compound.
40 phr CB was used in making this comparison. Figures 10A,
11A reveal that the stiffnesses (storage moduli) for the CB-BR
and CB-NR composites decrease at higher strain levels. Based
on this result, we expect increases in the rate of increase in
conductivity at higher pressure levels as observed in Figure 5

for 70 phr CB and inferred from Figures 1, 2. The storage
modulus increases with increasing frequency (rate) for both
CB-BR and CB-NR composites, as observed in Figures 10B,
11B, respectively. Thus, lower rates of conductivity increase
should be observed when compressive forces are applied
at higher rates. These observations lead to the conclusion
that the magnitude and the rate of applied pressure control
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the conductive filler-induced resistivity/conductivity levels in
rubber-based conductive devices.

Comparison of Figures 10A, 11A reveal that the ratio of
stiffnesses (storage modulus, G’) for the CB-BR and CB-NR
composites is G’CB-BR/G’CB−NR

∼= 4 at 100% strain, indicating
that the CB-BR composites should have lower conductivity in
comparison to the CB-NR composites at higher pressure levels
if all other effects are ignored; but, our experimental results have
shown that not to be the case with σCB−BR/σCB−NR ratio of
∼50 with 90 phr CB at 750 kPa. Thus, higher efficiency in CB
dispersion and percolation in BR is further implied by higher
conductivities despite higher G’ and η∗ values for the CB–BR
compound in comparison to the CB-NR compound. Higher
dynamic viscosities (η∗) obtained for the CB-BR composites
(Figure 10) in comparison to the CB-NR composites (Figure 11)
should also be considered evidence of better CB dispersion in
CB-BR composites in comparison to the CB-NR composites.

CONCLUSIONS

Pressure-time dependent electrical resistivity/conductivity
behavior of Carbon black (CB) filled butadiene (BR) (Cis-
1,4-polybutadiene) and natural (NR) (Cis-1,4-polyisoprene)
rubber compounds containing 60–100 phr CB were investigated
in this work. Storage moduli, G’, as well as the loss moduli,
G” and the dynamic viscosities, η∗ of the compounds were
evaluated to assess viscoelastic response of the compounds’
conductivities under pressure and at different rates. The storage
and loss moduli values for both the CB-BR and the CB-NR
compounds decreased with increasing strain levels, indicating
that the rate of increase in conductivity is expected to increase
at higher compressive loads. The storage moduli increased with
increasing frequency (rate) indicating that the rate of increase
in conductivity should be lower at higher rates of compressive
load application. Variations in conductivities of the CB–BR
and CB-NR compounds were compared as functions of time

and pressure to assess whether the conductivity levels are
dependent on the nature of the molecular structure of these
rubber materials affecting initial rubber interactions with CB
during compounding and the resulting dispersion levels of CB.
Based on our experimental results, we inferred that the presence
of higher number (∼2-fold) of hydrogen side atoms on the linear
BR chains (Cis-1,4-polybutadiene) in comparison to NR chains
(Cis-1,4-polyisoprene) helps CB–BR compound to form more
physical crosslinks, mostly due to hydrogen bonding, resulting
in more effective CB dispersion and higher conductivity.

Higher efficiency in CB dispersion and percolation in BR is
further implied by higher conductivities of its CB compounds
despite higher G’ and η∗ values for the CB–BR compound in
comparison to the CB-NR compound. We also consider higher
dynamic viscosities (η∗) obtained for the CB-BR composites in
comparison to the CB-NR composites as additional evidence of
better CB dispersion in CB-BR composites in comparison to the
CB-NR composites.

Based on our experimental findings, we conclude that
the molecular structure of the rubber, and thus the rubber
type (i.e., BR vs. NR), as well as the magnitude and the
rate of applied pressure control the conductive filler-induced
resistivity/conductivity levels in rubber-based, pressure/time
sensitive conductive devices.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

AUTHOR CONTRIBUTIONS

ES conceived the theme and the investigative plan, wrote the
entire manuscript, and constructed the final versions of figures
and tables. SB performed the experiments, processed, and plotted
the data.

REFERENCES

Basan, S., and Sancaktar, E. (2016). Electrical conductivity of carbon black

- silicon rubber nanocomposites: effects of strain, load and loading

rate. Curr. Nanomater. 1, 195–200. doi: 10.2174/24681873066661604181

64202

Holm, R. (1967). Electric Contact. New York, NY: Springer-Verlag.

doi: 10.1007/978-3-662-06688-1

Morton, M. (1987). Rubber Technology. New York, NY: Von Nostrand Reinhold.

doi: 10.1007/978-1-4615-7823-9

Papireb, E., Voet, A., and Given, P. H. (1969). Transfer of labeled hydrogen

between elastomers and carbon black. Rubber Chem Technol 41, 1200–1208.

doi: 10.5254/1.3539290

Sancaktar, E., and Bai, L. (2011). Electrically conductive epoxy adhesives. Polymers

3, 427–466. doi: 10.3390/polym3010427

Sancaktar, E., and Dilsiz, N. (1999a). Pressure dependent conduction behavior of

various particles for conductive adhesive applications. J. Adhes. Sci. Technol. 13,

679–693. doi: 10.1163/156856199X00938

Sancaktar, E., and Dilsiz, N. (1999b). Thickness dependent conduction behavior of

various particles for conductive adhesive applications. J. Adhes. Sci. Technol. 13,

763–771. doi: 10.1163/156856199X00992

Sancaktar, E., and Wei, Y. (1996). The effect of pressure on the initial

establishment of conductive paths in electronically conductive adhesives.

J. Adhes. Sci. Technol. 10, 1221–1235. doi: 10.1163/156856196X

00201

Sancaktar, E., Wei, Y., and Gaynes, M. A. (1996). Conduction efficiency and

strength of electronically conductive adhesive joints. J. Adhes. 56, 229–246.

doi: 10.1080/00218469608010510

Timoshenko, S. P., and Goodier, J. N. (1970). Theory of Elasticity. New York,

NY: McGraw-Hill.

Wei, Y., and Sancaktar, E. (1996). Dependence of electric conduction

on film thickness of conductive adhesives: modeling, computer

simulation, and experiment. J. Adhes. Sci. Technol. 10, 1199–1219.

doi: 10.1163/156856196X00193

White, J. L. (1995). Rubber Processing. New York, NY: Hanser.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Sancaktar and Basan. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Materials | www.frontiersin.org 8 October 2019 | Volume 6 | Article 26598

https://doi.org/10.2174/2468187306666160418164202
https://doi.org/10.1007/978-3-662-06688-1
https://doi.org/10.1007/978-1-4615-7823-9
https://doi.org/10.5254/1.3539290
https://doi.org/10.3390/polym3010427
https://doi.org/10.1163/156856199X00938
https://doi.org/10.1163/156856199X00992
https://doi.org/10.1163/156856196X00201
https://doi.org/10.1080/00218469608010510
https://doi.org/10.1163/156856196X00193
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


ORIGINAL RESEARCH
published: 04 February 2020

doi: 10.3389/fmats.2020.00012

Frontiers in Materials | www.frontiersin.org 1 February 2020 | Volume 7 | Article 12

Edited by:

Sébastien Livi,

Institut National des Sciences

Appliquées de Lyon (INSA

Lyon), France

Reviewed by:

Jean-Marie Raquez,

University of Mons, Belgium

Mariana Amorim Fraga,

Federal University of São Paulo, Brazil

*Correspondence:

Luca Fambri

luca.fambri@unitn.it

Specialty section:

This article was submitted to

Polymeric and Composite Materials,

a section of the journal

Frontiers in Materials

Received: 19 April 2019

Accepted: 14 January 2020

Published: 04 February 2020

Citation:

Dul S, Pegoretti A and Fambri L

(2020) Fused Filament Fabrication of

Piezoresistive Carbon Nanotubes

Nanocomposites for Strain

Monitoring. Front. Mater. 7:12.

doi: 10.3389/fmats.2020.00012

Fused Filament Fabrication of
Piezoresistive Carbon Nanotubes
Nanocomposites for Strain
Monitoring
Sithiprumnea Dul, Alessandro Pegoretti and Luca Fambri*

Department of Industrial Engineering and INSTM Research Unit, University of Trento, Trento, Italy

Conductive carbon nanotubes (CNT)/acrylonitrile butadiene styrene (ABS)

nanocomposites parts were easily and successfully manufactured by fused filament

fabrication (FFF) starting from composite filaments properly extruded at a laboratory

scale. Specific specimens for strain monitoring application were properly evaluated in

both short term and long term mechanical testing. In particular, samples of ABS filled

with 6 wt.% of CNT were additively manufactured in two different infill patterns: HC

(0◦/0◦) and H45 (−45◦/+45◦). The piezoresistivity behavior was investigated under

various loading conditions such as ramp tensile tests at different rate and extension, and

also creep and cyclic loading at room temperature. Experimental work revealed that the

resistance changes in the conductive samples were properly detectable during stress or

strain modification, as consequence of damage and/or reassembling of the percolation

network. The measurement of the gauge factor in various testing conditions evidenced

an initial higher sensitivity of the 3D-built parts within H45 pattern in comparison to the

correspondent HC counterparts. The CNT conductive network path in the investigated

samples seems to be reformed during creep and cycling experiments, showing a

progressive reduction of gauge factor that seems to stabilize at about 2.5 for both

HC and H45 samples after long term testing. These findings suggest that conductive

CNT/ABS nanocomposites at 6 wt.% of loading can be successfully processed by FFF

to produce stable strain sensors in the range −25◦ and +60◦C, as confirmed by the

constancy of resistivity in these temperatures.

Keywords: strain sensor, conductive composites, carbon nanotubes, fused filament fabrication, gauge factor,

3D printing

INTRODUCTION

Polymer composites with carbonaceous micro and nano-scale reinforcement have been extensively
investigated due to their outstanding mechanical, electrical, and thermal properties. In particular,
nanocomposites not only have remarkable properties that can be tailored for broad application in
many fields, but their processability is also simple. Nanocomposites could help the development
of light-weight structural materials and functional materials (Park and Seo, 2012; Mittal et al.,
2015; Chen et al., 2018; Mohan et al., 2018). One interesting possibility offered by functional
nanocomposites is to exploit their piezoelectric response for structural health monitoring (SHM)
(Pegoretti, 2019). Sensing internal strain/stress can allow the detection of damage within a
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structural member during their lifetime (Georgousis et al., 2015;
Moriche et al., 2016b; Saleh et al., 2019). This self-sensing
with functional materials in fact, is a cost-effective method in
comparison to other SHM methods such as acoustic emission or
sonic infrared imaging.

Strain sensing with electrical conductive nanocomposites
is based on the electrical resistance changes induced by
deformation (piezoresistivity) and damages (loss of continuity)
under loading conditions. The piezoresistivity behavior in
nanocomposites is induced by the destruction of the conductive
networks of nanofiller, the modification of tunneling resistance
change in neighboring nanoparticles because of change of
distance between them, and changes in piezoresistive of
nanofillers themselves during applied deformation. Among these
three factors, the first two are most likely the most influential
on the electrical resistance upon mechanical deformation
(Georgousis et al., 2015). The common matrices used for strain
sensor materials can be thermosetting (Ku-Herrera and Avilés,
2012; Moriche et al., 2016b; Sanli et al., 2016), thermoplastics
(Georgousis et al., 2015; Bautista-Quijano et al., 2016; Dawoud
et al., 2018), and elastomers (Bautista-Quijano et al., 2010, 2013;
Oliva-Avilés et al., 2011; Alsharari et al., 2018; Christ et al., 2019;
Kim et al., 2019).

In recent years, increasing interest has focused on the
producing of sensors through 3D printing technology or
embedding 3D-printed components to traditional sensors. The
main applicative areas are represented by electronics, force,
motion, hearing, optics, etc. . . (Xu et al., 2017). 3D printing
sensors have been achieved by several methods such as fused
filament fabrication (FFF) (Alsharari et al., 2018; Dawoud
et al., 2018), direct ink writing (DIW) (Muth et al., 2014),
stereolithography (SLA) (Lee et al., 2015), laminated object
manufacturing (LOM) (Park et al., 2012), selective laser sintering
(SLS) (Ambrosi et al., 2016), photopolymer jetting (Polyjet)
(Laszczak et al., 2015), and binder jetting (3DP) (Rivadeneyra
et al., 2015). The frequently used conductive fillers for strain
sensing applications are metal nanoparticles [e.g., silver (Lee
et al., 2015), copper (Credi et al., 2016; Saleh et al., 2019), and
Ti/Au (Cho et al., 2015)] and carbon-based fillers [e.g., carbon
nanotubes (CNT) (Czyżewski et al., 2009; Bautista-Quijano
et al., 2010; Oliva-Avilés et al., 2011; Pedrazzoli et al., 2012a;
Zhao et al., 2013; Georgousis et al., 2015), carbon nanofibre
(Pedrazzoli et al., 2012a), graphene (Moriche et al., 2016a,b;
Alsharari et al., 2018), and carbon black (Dawoud et al., 2018;
Zhao et al., 2018)]. In particular, however, only few reports
are available on piezoresistive materials obtained through FFF
technique, which is the dominated technique in 3D printing of
polymers. Highly stretchable materials consisting of the blend
of graphene-based polylactic acid (PLA) with thermoplastic
polyurethane (TPU) were produced through the FFF process
(Alsharari et al., 2018). The behavior of the obtained 3D-printed
conductive composites was reversible until strain levels as high
as 50%. Strain sensing of carbon black (CB) filled acrylonitrile
butadiene styrene (ABS) nanocomposites was also investigated
(Dawoud et al., 2018). The 3D-printed parts were produced
with different raster angles and air gap parameters. PLA-carbon
based nanocomposites derived from 3D printing have been also

investigated on electrical and/or thermal conductivity (Guo et al.,
2019; Ivanov et al., 2019). In order to produce strain sensor
by using PLA conductive composites (Maurizi et al., 2019), the
dependence of piezoresistive behavior on temperature should
be properly considered. In particular taking into consideration
the Tg of PLA matrix, a specific approach to compensate the
temperature effect on resistivity of PLA conductive sample in the
range 20–50◦C has been discussed (Daniel et al., 2018; Coleman
et al., 2019). The crucial effect of heating and distorsion in PLA
conductive composites after voltage application has been recently
detailed in dependence on the various process factors (extrusion
and additive manufacturing); the authors compared the role of
conductive filler (carbon black, carbon nanotubes, and nano
copper wires) on resistivity in view of application for thermal
sensors and piezo-resistive sensors (Watschke et al., 2019).
Commercial graphene-PLA filaments with resistivity of 0.6�.cm,
are designed to be used for room-temperature operation, due to
the low softening temperature (50◦C), and for low-voltage and
low-current only (lower than 12 volts and 100mA, respectively)1.
The use of low-cost conductive composite (Carbomorph) based
on polycaprolactone with resistivity of 9–12�.cm is also limited
for piezoresistive sensors at room temperature, or at lower
temperature, due to melting temperature of polymer matrix
(65◦C) (Leigh et al., 2012). In order to enlarge the application
fields with high performance properties, especially for high
temperature, a different approach was recently proposed with
the processing and 3D printing up to 380◦C of thermoplastic
polyimide (TPI) filled with CNT; the change of resistance
under cyclic bending deformation were properly studied and
considered for aerospace application (Ye et al., 2019). A
commercial filament Proto-Pasta PLA filled with carbon black
was 3D printed as a strain sensor (Munasinghe et al., 2019).
The authors determined a nearly linear relationship between the
electrical resistance (up to 6.05%) and the strain; in the same time,
they concluded that a long term suitability of sensor materials
for creep loading and a better understanding of their viscoelastic
behavior would be object of future research.

In our previous works, highly conductive ABS/CNT
nanocomposites with 6 wt.% of nanofillers were successfully 3D-
printed through FFF process and their extensive characterization
including tensile, thermal and electrical properties was reported
(Dul et al., 2018a). The composition percentage of 6 wt.% of
CNT was properly selected in the tested range 2–8% wt.%, as
an adequate compromise between the improvement of some
properties after addition of the filler, and the correspondent
reduction of composite processability, as evidenced by the critical
decrease of melt flow (Dul et al., 2018b) and melt viscosity (Ecco
et al., 2018). Electrical and magnetic properties of both graphene
and CNT nanocomposites were studied and compared in view of
EMI-SE applications (Ecco et al., 2018). Moreover their hybrid 6
wt.% nanocomposites with composition of graphene and CNT
were also considered, in order to define suitable composites with
relatively easy flowability for low CNT content, and adequate

1BlackMagic3D R© PLA-Graphene conductive filaments from https://www.

blackmagic3d.com/Conductive-p/grphn-pla.htm. (accessed on 14th September

2019).
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FIGURE 1 | Schematic of 3D-printed parallelepiped: (A) horizontal concentric (HC) and (B) horizontal 45◦angle (H45).

electrical and magnetic properties for high CNT content (Dul
et al., 2020). Another recent work reported about piezoresistivity
of ABS filled with 5% CNT nanocomposites through 3D printing
with resistivity of about 100�.cm. The authors studied and
compared a balanced effect of filler content and process on the
fracture properties and on the samples conductivity (Thaler et al.,
2019). On the other hand, a much lower resistivity in the range
of about 29 and 0.9�.cm was obtained for CNT/ABS plates with
composition between 2 and 8 wt.% of nanofiller, respectively
(Dul et al., 2018b).

Therefore, in the actual scenario of the additivemanufacturing
for the fabrication of conductive and functional parts, the
present work has been also devoted for a specific evaluation
of various effects, such as temperature, applied strain rate and
loading/unloading cycles. In particular, the strain monitoring
of ABS nanocomposites at 6 wt.% of CNT prepared by FFF
technique has been investigated. Two different raster angles
and different testing conditions cyclic test were evaluated and
compared to test the piezoresistive behavior of 3D-printed parts,
not only in short term testing (i.e., temperature effect, fracture
test, and applied strain rate), but also in long term testing such
as creep experiments and cycling test, for the evaluation and
evolution of gauge factor.

EXPERIMENTAL

Materials
Carbon nanotube (CNT) (tradename NC7000TM multi-walled
carbon nanotubes) were provided by Nanocyl S.A. Sambreville,
Belgium). The technical data sheet2 reports an average length of
1.5µm, a diameter of 9.5 nm and a surface area of 250–300 m2/g.
TEM analysis is reported in literature (Dul et al., 2018b).

Acrylonitrile-butadiene-styrene (ABS) with tradename
Sinkral R©F322, used in this study as polymer matrix, was kindly
provided by Versalis S.p.A. (Mantova, Italy). According to the
producer’s technical data sheet3, the polymer is characterized by
a melt volume rate of 14 cm3/10min (220◦C/10 kg) and a density

2Nanocyl R©NC7000TM (2016) Multiwall Carbon Nanotubes Product Data

from http://www.nanocyl.com/wp-content/uploads/2016/07/DM-TI-02-TDS-

NC7000-V08.pdfXG (accessed on 15th April 2019).
3Versalis S.p.A SINKRAL R© F 322- ABS Product Data from https://www.

materialdatacenter.com/ms/en/Sinkral/Versalis+S%252Ep%252EA/SINKRAL

%C2%AE+F+332/c6da6726/1895 (accessed on 15th April 2019).

of 1.04 g/cm3. Before processing, ABS chips were dried under
vacuum at 80◦C for at least 2 h.

Materials Processing and Sample
Preparations
Production of Filament Nanocomposites
An selected composition (Dul et al., 2018b; Ecco et al., 2018) of 6
wt.% of CNT were first melt blended with ABS matrix through a
Thermo-Haake Polylab Rheomix counter-rotating internal mixer
at a temperature of 190◦C and rotor speed of 90 rpm for 15min.
The resulting material was granulated in a Piovan grinder Model
RN 166 and grinded pieces with average size of 2.1 ± 0.6mm)
were used to feed a Thermo Haake PTW16 intermeshing co-
rotating twin screw extruder (screw diameter= 16mm; L/D ratio
= 25; nozzle die diameter 1.80mm). The temperature profile
was set in the range 180–215◦C along the extruder and 220◦C
at the nozzle. The working parameters of extrusion were set for
the production of filaments with a standard diameter of about
1.70± 0.05 mm.

3D-Printed Samples Preparation
3D-printed specimens were manufactured by feeding a Sharebot
HT Next Generation desktop (Sharebot NG, Italy) prototype
machine for high-temperatures with the filaments obtained as
described in the previous paragraph. As schematically depicted
in Figure 1, dumbbell and parallelepiped specimens were built-
up along different orientations: (a) horizontal concentric (HC),
and (b) horizontal 45◦angle (H45). All samples were produced
according to the following printing parameters: object infill
100%; nozzle diameter 0.40mm; nozzle temperature 280◦C; bed
temperature 110◦C, layer height 0.20mm; infill speed 40 mm/s;
raster angle of [0◦/0◦] and [−45◦/+45◦], respectively.

Testing Techniques
Transmission Electron Microscopy
Morphology of nanocomposite filament was observed through
transmission electron microscopy (TEM), using a Philips R©

EM 400T (Philips, Amsterdam, The Netherlands) transmission
electron microscope. Ultrathin specimen was cut into thin
slices with dimensions of about 200 × 150µm perpendicular
and parallel to the flow direction by using a Leica EM UC7
ultramicrotome equipped with a diamond knife. Specimens were
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deposited on a copper grid mesh covered by amorphous holey
carbon film.

Electrical Resistance (Effect of Temperature)
The electrical resistance at various temperatures of 3D-printed
sheets (100 × 10 × 1.4mm) was measured by a two probes
method by using ISO-TECH IDM 67 Pocket Multimeter
electrometer in fridge (at −25 and +4◦C) and in oven (at
+60◦C). HC andH45 specimens were conditioned at the selected
temperature for at least 30min before testing.

Dynamic Mechanical Thermal Analysis (DMTA)
Dynamic mechanical thermal analysis (DMTA) tests were carried
out under tensile mode by a TA Instruments DMA Q800 device,
in the range from −100 to 150◦C at a heating rate of 3◦C/min
applying a dynamic maximum strain of 0.05% at a frequency of
1Hz. Storagemodulus (E’) and loss tangent (tanδ) as a function of
the temperature were reported. 3D-printed specimen sizes were
detailed in the reference (Dul et al., 2018a). One HC specimen
and one H45 specimen were tested.

Strain Monitoring
The monitoring of the change of electrical resistance upon
the application of mechanical strain was performed on the
conductive composites specimens in short term and long term
experiments. The results represent the average of at least three
specimens. 3D-printed sheets of 100 × 10 × 1.4mm were tested
by using an Instron R©5969 electromechanical testing machine
with the distance between the grips kept at 50mm under quasi-
static ramp tensile tests up to fracture, sinusoidal cyclic loading
and creep tests. The ramp tests up to fracture were performed at
a strain rate of 1%/min. Stress and strain at break are reported
as average of three specimens (Supplementary Table S-2). For
ramp strain, creep and cyclic test, the strain was measured by
using the extensometer Instron R© model 2620-601 with a gauge
length of 12.5mm with various strain rate (i.e., 0.3, 1, 3, and

10%/min). The results represent the average of five specimens
(Supplementary Table S-3). The creep tests were performed by
using the same equipment on specimens at a constant stress of
20 MPa at room temperature up to 3,600 s. A two probes setup
was employed for the electrical resistance measurement at a very
low voltage of 0.1 V. To ensure good electrical contact, a silver
paste was applied on the surface of the conductive samples at a
distance of 30mm (see Figure 2A), and the electrical resistance
was measured using a Keithley 6517A high-resistance meter as
shown in Figure 2.

A gauge factor (K) was calculated by using the
following equation:

K =
1R/R0

ε

where R0 is the initial electrical resistance, 1R is the variation
of electrical resistance, and ε is the applied or measured strain.
Gauge factor has been evaluated in both short term (quasi
static) test, as average values of at least three specimens, and
in long term test, such as creep and cycling measurements. See
representative details of the slope of best fit line of experimental
1R/R0 in figures; tables with data of each specimen are reported
in Supplementary Materials.

RESULTS AND DISCUSSIONS

Before studying the piezoelectrical behavior, morphological
analysis of filaments, conductivity/resistivity measurements at
various temperature and dynamical mechanical thermal analysis
of 3D printed specimens were preliminarly considered.

An initial morphological analysis was performed on
composite filament as extruded by twin screw extruder. Figure 3
shows TEM microanalysis of parallel surface of CNT/ABS 6
wt.%, and various carbon nanotubes appear almost randomly
dispersed with some point of contact, with evidence of a

FIGURE 2 | Experimental setup for the strain monitoring: (A) Specimens after conductive paint; (B) Schematic of experimental setup; and (C) Actual setup in

tensile test.
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FIGURE 3 | TEM micrograph of ABS/CNT nanocomposite filament in

parallel section.

connective path. Supplementary Figures are also showing the
distribution and connection of CNT in both perpendicular and
parallel cross-section. It should be noted that the percolation
threshold of CNT in ABS has been determined at 0.42 vol.% and
no electrical conductivity has been observed for CNT content
lower than 2 %wt. (Dul et al., 2018b).

Then, in order to confirm the conductivity of 3D-printed
samples, their electrical resistivity was assessed at values of
17.2 ± 1.5 and 31.2 ± 4.9�.cm for HC and H45 items,
respectively. As expected these values are higher than the values
previously determined on compression molded plates (1.5�.cm)
(Dul et al., 2018b), and on the extruded filaments (4.1�.cm)
(Dul et al., 2018a). The increase of resistivity of extruded
specimens could be attributed to the higher level of anisotropy
and alignment in nanocomposite filaments, with respect to
the molded plates where conversely CNT are isotropically
distributed, as documented in literature (Georgousis et al., 2015;
Sanli et al., 2016; Dul et al., 2018b). Moreover, the processing
effect is further evidenced in 3D printed specimens and it is
directly attributed to the internal structure of FFF samples.
In fact, the resistance R0 of 3D-printed samples has been
found to be dependent on the manufacturing infill pattern, as
summarized inTable 1. In particular, significant different average
resistances were observed, being 387 ± 34� for HC and 671 ±

106� for H45 samples, respectively. The relatively low standard
deviation confirms the quality and the good homogeneity and
reproducibility of the manufacturing process.

Moreover, in order to better understand the performances
at various temperatures, the results of dynamic mechanical
analysis on 3D-printed specimens is briefly presented and
discussed. The storage modulus and loss factor values of
ABS/CNT nanocomposites as a function of temperature are
reported in Figure 4. Two transitions can be observed as loss
tangent peaks which can be attributed to the glass transition
of butadiene phase (B-phase; Tg1 = −84◦C) and the glass
transition of styrene–acrylonitrile phase (SAN phase; Tg2 =

125◦C), respectively. This means that at room temperature,
the behavior of ABS is depending on the concurrent effects of

TABLE 1 | Summary of initial resistance values (R0) at room temperature of the

3D-printed samples produced in HC and H45 configuration.

Type test R0 (�)

HC H45

Temperature effect 321 685

Tensile fracture 403, 336, 402 498, 601, 786

Ramp strain

(0.3–10%/min)

352, 406, 389, 423, 413 791, 626, 857 681, 582

Cyclic strain 407 603

Creep mode 402 669

Average 387 ± 34 671 ± 106

The type of testing is indicated for each specimen.

FIGURE 4 | DMA analysis of samples for evidencing the main viscoelastic

properties of samples at a different temperature, and resistance of HC and

H45 3D-printed parts in the range −20 and +60◦C.

two different phases, rubbery and glassy, respectively. DMTA
thermogram reveals that in the range −45/+75◦C between two
main transitions both storage modulus and loss factor evidence
only a slight linear dependence without any other secondary
transition. Consequently, taking also into account that the
maximum using temperature is 83◦C (determined by HDT at
1.8 MPa according to technical data sheet), precautionally the
interval −25–60◦C evidenced in Figure 4 has been selected for
investigating electrical resistance and mechanical response.

Two parallelepiped specimens built-up along different
orientations, HC and H45 with resistance of 321 and 685�,
respectively, were selected for monitoring their electrical
behavior in various isothermal conditions. The results are
showed in the inset of Figure 4. No significant change in
resistance was observed at 60◦C; and only a very low variation
of resistance of about +0.7 and +1.6% for HC and H45 samples,
respectively, were evidenced at the lowest temperature. This
behavior suggested that the performance of samples is stable
in the selected range of temperature in direct dependence
on the absence of transitions, as indicated by DMTA analysis.
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On the other hand conductive PLA devices evidenced significant
variations of resistivity with temperature and some specific
corrections have been properly suggested for analysis up to
50◦C (Daniel et al., 2018). For these findings, ABS conductive
nanocomposites appears more suitable for application at least
up to 60◦C, being the polymer matrix in the glassy state until
about 90◦C.

Short Term Testing Ramp Tensile Tests Up
to Fracture and at Various Strain Rates
In order to investigate the effect of applied strain on the
conductivity behavior, the 3D-printed nanocomposite samples
(HC and H45) were tested in various mechanical loading
modes; their resistivity and the initial absolute resistance
were simultaneously monitored by two probe contact method.
Stress-strain behavior and relative electrical resistance variation
(1R/R0) during quasi-static tensile tests on HC and H45 samples
are reported in Figure 5. Gauge factor of each test was calculated
as the slope of best fit line of 1R/R0 (coefficient of correlation R2

is reported). Due to internal alignments of deposited filaments
in 3D samples, the strength of HC is slightly higher than
that of H45 sample. Furthermore, tensile stress applied to 3D-
printed nanocomposites causes a linear increment of the relative
change of electrical resistance (1R/R0) until the fracture point
for both samples. This behavior could be explained by the
destruction of percolating paths forming the conducting network
(Georgousis et al., 2015). It is important to note that H45 is
more sensitive to strain change than HC due to the different infill
pattern. For example, for strain of 2%, 1R/R0 for the sample
with HC is about 5.3% and for the sample with H45 is about
8.8%. The results are reported in Table 2, as average of three
specimens at applied strain levels of 1, 2, and 3%. The gauge
factor was found to slightly decrease with the applied strain for
all the specimens (the values of each single test are reported
in Supplementary Materials). Reduction of gauge factor from
2.8 to 2.4 for HC, and reduction from 4.5 to 3.2 for H45

samples were measured. Failure of the nanocomposites was
detected as a pronounced increased of the electrical resistance in
correspondence to the breakage of the specimen. These findings
suggest potential application of this strain monitoring approach
where detection of the level of damage is requested.

The relative change of electrical resistance (1R/R0) of 3D-
printed samples under ramp strain measured by an electrical
extensometer up to 1% at different applied strain rate (e.g., 0.3,
1, 3, and 10%/min) has been investigated and the results reported
in Figure 6. No evident variations of 1R/R0 with the strain rate
have been observed. Figures 7A,B depicts representative curves
of the relative resistance change of1R/R0 during stress/strain test
performed at 0.3%/min. Gauge factor of each test was calculated
as the slope of best fit line of 1R/R0 (coefficient of correlation

TABLE 2 | Gauge factor (K) of ABS/CNT 3D-printed samples produced in HC and

H45 configuration.

HC H45

MAX STRAIN (%)

1 2.7 ± 0.4 4.5 ± 0.2

2 2.5 ± 0.1 3.5 ± 0.5

3 2.4 ± 0.2 3.5 ± 0.8

STRAIN RATE (%/MIN)

0.3 5.4 ± 1.0 7.8 ± 1.4

1 6.0 ± 1.2 9.7 ± 2.6

3 4.0 ± 1.3 7.8 ± 3.2

10 4.4 ± 1.4 6.4 ± 0.8

The results represent the average values of at least three specimens from short term

measurements at different strain (ε) up to fracture without estensometer, and at different

strain rate (0.3–10%/min) up to 1% with estensometer. The results of each specimen are

reported in Supplementary Materials with the value of R2, calculated from the average

of three specimens for Max Strain (either HC or H45) and average of five specimens for

Strain rate (either HC or H45) measurements.

FIGURE 5 | Representative stress/strain curve and correspondent electrical resistivity change (1R/R0) of 3D-printed ABS/CNT nanocomposites under applied strain

up to fracture: HC (A) and H45 (B). Symbol indicates the average stress-strain at break of the three tested specimens. Gauge Factor is determined by the slope of the

best fitting line.
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FIGURE 6 | Resistance of 3D-printed parts before (open symbol) and after (closed symbol) applied mechanical strain at different strain rate tests: HC (A) and H45 (B).

The error is lower than about 1%.

FIGURE 7 | Representative curves of mechanical and electrical (1R/R0) response of 3D-printed ABS/CNT nanocomposites HC (A) and H45 (B) during tensile test at

0.3%/min. Gauge Factor is determined by the slope of the best fitting line.

R2 is reported). All single data with R2 in the range 0.95–0.99
and their average are reported in Supplementary Materials. The
higher the applied stress, the higher the resistance change, with
an almost linear dependence for both the pattern specimens.
However, it is well evident the different effect of the resistance
variation of HC with respect to H45 sample, due to higher
reduction of the conductivity in this latter case. It is worthwhile
to note for a comparative evaluation, that the gauge factor, K,
has been determined for each pattern configuration according
to the formula (K = (1R/R0)/ε) as an average value of five
specimens. The results reported in Table 2 indicate a higher
piezo-resistivity for H45 3D-printed parts. In particular, the
high sensitivity of the 1R/R0 curve even at low deformation
levels should be underlined. The effect of strain rate of 0.3–
10%/min has no significant influence on gauge factor which
remains almost constant about 5.0 and 7.0 for HC and H45,
respectively. These results are consistent with those reported
in different studies by Georgousis et al. (2015), Oliva-Avilés

et al. (2011), Bautista-Quijano et al. (2010), and Moriche et al.
(2016b).

Long Term Testing. Creep and Cyclic
Loading
Specific comparative tests have been modulated by measuring
piezoresistivity of different specimens in a relatively long period
with a continuous stress or cyclic loading at low level of
deformation, in order to collect more information on the
potentiality of strain monitoring applications of CNT/ABS
nanocomposites. The performance of the samples under constant
stress has been characterized during a creep test at room
temperature for 3,600 s. The same stress of 20MPa corresponding
to about 50% of the stress at break has been selected for
both samples. It should be noted that 20 MPa are reached at
about 1.3% (Figure 5) and at about 0.7% of strain (Figure 7)
at deformation rate of 1 and 0.3%/min, respectively. A creep
strain of about 0.7 and 0.9% has been obtained after about
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10min of stress application for HC andH45 samples, respectively
(see Supplementary Figure S-2). Moreover, it is worth noting
an apparent stationary deformation for HC sample, and a slight
progressive increase of creep deformation in the case H45
sample, as direct dependence on the different built-in angle
(45◦ vs. 0◦) and on the possibility of reorientation/extension of
extruded filaments. And correspondingly the creep compliance,
D(t), of HC sample is lower than that of H45, as shown in
Figures 8A,B. In the same time the relative electrical resistance
variation during creep experiments, after an initial sudden
increase induced by the load application, the resistance 1R/R0

appears to progressively decrease for both HC and H45 samples.
This trend has been also previously observed in creep experiment
of epoxy nanocomposites filled with carbon black (CB) and
carbon nanofibers (Pedrazzoli et al., 2012b) and for epoxy/glass
composites modified with a CB/CNF combination (Pedrazzoli
et al., 2012a), and it could be attributed to the orientation
and partial reformation of the conductive network path of the
filler (Pedrazzoli et al., 2012a). Correspondingly the calculated
Gauge Factor shows the tendency to decrease during creep time
Figure 8C. In the initial step after 10min, average values of 4.6±
0.1 and 6.5 ± 0.2 were calculated for HC and H45, respectively,
quite similar to those measured in short term test at the higher
strain rate (Table 2). Then an apparent stabilization was observed
after 30min (3.9 ± 0.2 for HC and 6.0 ± 0.2 for H45), and a
slight further reduction in the last 15min of creep experiments
was determined with average values of 3.6 ± 0.3 for HC and 5.5
± 0.3 for H45.

The resistivity decrease could be interpreted as a process
of filler reorganization, similar to the case of NR and SBR,
where the application of load determined the formation of
new electrical path derived from alignment of CB domain
(Yamaguchi et al., 2003). The same was observed for CNT in
TPU (Zhang et al., 2013).

For sensor application various authors performed cycling
test on conductive nanocomposites. Table 3 summarized some
selected data of resistivity, gauge factor and long term testing on
different polymeric matrix, such as crosslinked materials (epoxy
and vinyl ester resins, silicon rubber SR) and thermoplastics
polymers (PSO, TPU, PVDF, PP, PC, PLA, PI, and ABS) that
have considered for applications related to the piezoelectrical
behaviors. The results depend on the type of carbonaceous filler
(mainlyMWCNT), its content and the type of process. Long time
testing with cycling has been performed following 3–10 cycles,
and different effects have been observed comparing carbon black
and carbon nanotube (Zhang et al., 2013; Zhao et al., 2013). A
higher number of cycles was performed for glassy crosslinked
system (50 cycles for graphene/epoxy) and semicrystalline matrix
with rubbery phase (80 cycles for MWCNT/TPU), showing
interesting information related to the variation of resistivity and
gauge factor.

For these reason and following the observed tendency of
gauge factor of CNT/ABS to reduce during creep experiment,
the authors decided to monitor the variation of electrical
resistance during 50 cycles in the strain range of 0.1% <

ε < 0.5% for both HC and H45 samples. The results are
summarized in Figures 9, 10, respectively. The resistance

FIGURE 8 | Creep compliance at a constant stress of 20 MPa and 1R/R0 for

different infill samples: (A) HC and (B) H45. Gauge factor evolution during

creep test (C).

difference decreases with number of cycle, as derived from
a dynamic mechanical effect on the nanocomposite 3D
structure. It is in fact evident that piezoresistivity progressively
decreases in cyclic strain for both samples. Results could be
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TABLE 3 | Comparison of resistivity and piezoelectric behavior of polymer composites filled with carbon nanostructures and produced with different matrix and process.

Filler (max content)

/matrix

Processing method ρ (�.cm) Gauge factor Long term

testing

Applications References

GNP (5 wt.%)

/Epoxy

Solution casting ∼4 ×104 ∼4

(at 2% strain)

50 cycles Reversible sensor Moriche et al., 2016a,b

MWCNT (1 wt.%)

/Epoxy

Solution casting // 2.86 5 cycles Strain sensors Sanli et al., 2016

MWCNT (0.15 vol.%)

/Epoxy

Solution casting ∼105 0.5–0.8 10 cycles Strain sensing

applications

Cao et al., 2017

MWCNT (0.3 wt.%)

/VER

Solution casting 5 × 103 2.6 ± 0.1 10 cycles Smart sensing and

structural health

monitoring

Ku-Herrera and Avilés,

2012

MWCNT (0.5%)

/PSO

Solution casting ∼104 0.74 3 cycles Strain-sensing

nanostructured

materials

Bautista-Quijano et al.,

2010

MWCNT (0.5%)

/PSO

Solution casting ∼103 2.8 ± 0.4 10 cycles Strain-sensing

nanostructured

materials

Oliva-Avilés et al., 2011

CB (5 wt.%)

/SR

Solution casting ∼104-105 // 10 cycles Pressure

sensors—piezo

resistive sensor

Zhou et al., 2017

MWCNT (6 wt.%)

/TPU

Solution casting ∼103 0.09–2.64 No Highly stretchable

sensor

Bautista-Quijano et al.,

2013

MWCNT (6 wt.%)

/TPU

Solution casting ∼103 from 4 to 0.8

(at 5% strain)

80 cycles Flexible sensor film Zhang et al., 2013

MWCNT (5 wt.%)

/TPU

Extrusion/3D printing ∼104 // 200 cycles Highly stretchable

sensor

Kim et al., 2019

MWCNT (3 wt.%)

/TPU

Extrusion/3D printing // // 20 cycles Strain sensor

(wearable glove)

Christ et al., 2019

MWCNT (8 wt.%)

/PVDF

Compounding/

compression molding

∼10 ∼1

(at 2% strain)

No Structural health

monitoring

Georgousis et al., 2015

CB-PPy (6 wt.%)

/PVDF

Compounding/

compression molding

5.5 // // In progress Bertolini et al.

unpublished data

MWCNT (3.4 wt.%)

/PP

Compounding/

compression molding

∼103 ∼0.02

(at 2–3% strain)

10 cycles Strain sensing device Zhao et al., 2013

MWCNT (3.5 wt.%)

/PC

Melt spinning ∼104 16 No Health monitoring in

robotics

Bautista-Quijano et al.,

2016

CNT (1.0–1.6 wt.%)

/PLA

Solution blending/

compression molding

4.2 × 105-1.6 × 103 from 0.02 to 0.013

(at 3% strain)

10 cycles Strain sensing device Hu et al., 2017

Graphene (%)

/PLA/TPU

Extrusion/

3D printing

// // 10 cycles Highly stretchable

sensor

Alsharari et al., 2018

MWCNT (9%)

/PI

Extrusion/

3D printing

3.1 ×102 // 7–9 cycles Aerospace and

industrial fields

Ye et al., 2019

CB (26.4%)

/ABS

Extrusion/

3D printing

// ∼10

(at 2% strain)

No Health monitoring

purposes

Dawoud et al., 2018

CB/ABS Extrusion/

3D printing

30–115 ∼1.4 1 cycle Structural health

monitoring

Munasinghe et al.,

2019

MWCNT (6 wt.%)

/ABS

Extrusion/

3D printing

17 and 31 from 9.7 to 2.4

(at 0.5–3% strain)

50 cycles/creep

test

Structural health

monitoring

Dul et al., 2020

VER, vinyl ester resin; PSO, polysulphone; SR, silicon rubber; TPU, thermoplastic polyurethane; PVDF, polyvinylidene fluoride; PP, polypropylene; PC, polycarbonate; PLA, polylactide;

PI, thermoplastic polyimide; CB-PPy, carbon black doped with polypyrrole.

attributed to the reorganization in conductive paths, due to
possible rearrangement, rotations, and reorientation, of 1D
nanoparticles forming the electrical network, as reported by
Bautista-Quijano et al. (2010). Different is the case observed
for 2D reinforcement, such as graphene 2D nanoparticles,
for which the initial electrical resistance was maintained after

each cycle (Moriche et al., 2016b). An apparent stabilization
of the resistance decay (electrical resistance change) has been
observed in the last 10 cycles, as shown in Figures 9B, 10B
for HC and H45, respectively. With the aim to evaluate the
stability of strain monitoring, the effect of cyclic strain in a
relatively low extent of deformation has been followed at each
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FIGURE 9 | Piezoresistivity of the HC samples in reversible mode (A) 50 strain cycles under tensile loading and (B) detail of the last 10 cycles.

FIGURE 10 | Piezoresistivity of the H45 samples in reversible mode (A) 50 strain cycles under tensile loading and (B) detail of the last 10 cycles.

step of the cycle by the evaluation of a gauge factor (Ki)
calculated as:

Ki =
((Ri+1 − Ri)/Ri)

ε

The evolution of the calculated value of gauge factor in each
cycle is reported in Figure 11. It is well evident a progressive
reduction of gauge factor especially for H45 samples in the
first 10–15 cycles, followed by almost stationary values after
20 cycles. The average gauge factor in the first 10 cycles is
about 2.8 ± 0.5 and 3.8 ± 0.6 for HC and H45, respectively;
while K reaches a stable value of about 2.5 ± 0.2 for both
samples after 30 cycles. These results suggest a pre-mechanical
conditioning of 3D products by specific cyclic loading at
controlled strain in dependence on the required applications
(controlled max strain and/or max stress). The same comments
were presented by various authors (Zhang et al., 2013; Zhao
et al., 2013; Cao et al., 2017) with the indication of stabilization
of piezoelectrical behavior during cycling loading, due to a
competitive disruption and reformation of new electrical paths.

In this case it is crucial the role of CNT because they can be
partially realigned and they cab form some more contacts that
reduce the resistivity.

Finally, it is interesting to note the effect of stress reduction
during the 50 cycles of controlled strain deformation. In
particular, the ratio between the maximum and the minimum
stress reduced from 12.3/2.2 MPa/MPa of the first loading cycle
to 11.9/1.8 MPa/MPa in the last cycle for HC sample (stress
reduction of about 0.4 MPa. In the case of H45 sample, a higher
stress reduction of about 0.7 MPa was observed, resulting in a
max/min stress ratio of 11.8/2.1 and 11.1/1.4 MPa/MPa in the 1st
and in the 50th cycle, respectively. This effect could be attributed
to the viscoelastic effect of stress relaxation accompanied by
thermal heating due to a mild Joule effect. During cycling
deformation the progressive reduction of resistance is attributed
to extension–retraction cycles, that gradually form a better
conductive network, due to the partial mobility of the polymeric
matrix, as previously observed for PP, PLA, TPU, and epoxy
(Zhang et al., 2013; Zhao et al., 2013; Moriche et al., 2016b; Cao
et al., 2017).
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Representative optical pictures of HC and H45 samples before
and after cyclic testing are depicted in Figure 12. After 50
cycles under tensile loading, no evidence of damage can be
observed in any sample. Finally, it is worth noting a relatively
low reduction of gauge factor from 3.8–4.9 to 2.5 (about 40%) for
CNT/ABS, much lower than decrease gauge factor observed for
MWCNT/TPU from 4 to about 0.8 after 60 cycles (Zhang et al.,
2013). Hence these studied conductive nanocomposite based
on MWCNT/ABS appear more suitable for strain monitoring,

FIGURE 11 | Gauge factor of the 6 wt.% CNT 3D-printed nanocomposite

samples along a number of cycle strain of HC and H45.

not only for the resistivity values, but also for relatively easy
FFF processing. It should be noted however, that the maximum
strain could cautiously fixed at 2% for strain monitoring device
produced by FFF of CNT/ABS, whereas it is much higher in
the case CNT/TPU with thermoplastic elastomer process by
solution casting.

CONCLUSIONS

This work shed more light on the application of conductive
nanocomposites for strain monitoring, evidencing the potential
of piezoresistive behavior of 3D-printed CNT/ABS composites in
short term and long term testing. In particular the strain sensing
capabilities of electrically conducting samples of ABS containing
6 wt.% of CNT produced by FFF with two different infill patterns
(HC and H45) were evaluated. The electrical resistance of the
3D-printed specimens was observed to be dependent on the
manufacturing design and to maintain almost constant values
in the temperature range between −25 and 60◦C. Electrical
resistance changes were also monitored during short mechanical
testing under different loading conditions. An initial gauge factor
has been determined for each 3D printed item, and it was found
directly dependent on the infill pattern. In particular, the higher
sensitivity of the 3D-part within H45 pattern in comparison to
HC, according to the measurement of the gauge factor. A change
of the strain rate in the range of 0.3–10%/min has no significant
effect on gauge factor, which is about 5.0 for HC and 7.0 for
H45 part. An abrupt variation of resistance of the specimens
was detected at higher deformation when damage starts to
develop approaching the failure of specimen. Long time testing
of conductive behavior of thermoplastic glassy polymers has
been also presented for the first time, according to the authors’

FIGURE 12 | Optical micrographs of HC (right) and H45 (left) samples: (A) before, and (B) after 50 cycles under tensile loading.
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knowledge. Both creep experiments and cycling tests evidence the
reduction of resistivity and gauge factor. The CNT conductive
network path seems to be reformed during creep and fatigue
test with a progressive reduction of gauge factor till an almost
constant of about 2.5 for all samples. This behavior indicates a
sort of rearrangement of the composite material, independently
on the infill pattern, and directly related to the CNT content.
In conclusion, the selection of material composition and the
manufacturing of products confirmed the positive results in
terms of potential applications in the field of strain monitoring.

In particular ABS conductive systems evidence a much
larger interval of temperature application, with respect to
commercial type composites based on PLAmatrix. Moreover the
composition of 6 wt.% of CNT in ABS can be relatively easy
processed in quite common conditions, much more convenient
with respect to high performance conductive products, such
as thermoplastics polyimide, that require very high processing
temperature and specific equipments for production, and in the
same time guarantee a high temp application conditions.

The limits of the tested 3D printed for strain monitoring
applications are the maximum using temperature (no more than
80◦C) and the maximum deformation of strain 2–3%.

Each manufactured item requires to be properly calibrated
and tested for the determination of its intrinsic gauge factor,
and to evaluate any stabilization level depending on time and/or
temperature. Some further research developments could be
devoted to the long time aging up to 1–3 years, and to the
evaluation of accelerated temperature aging.
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This article reports the potential use of Polypyrrole (PPy) particles as anticorrosive
additive on an epoxy water-based paint to increase the corrosion protective property
of aluminum-coated panels. AA1200 aluminum panels were painted using the
electrophoretic deposition method and the coatings with different concentrations of
PPy particles were tested. PPy particles were synthetized by oxidative polymerization
of pyrrole (Py) with iron (III) chloride hexahydrate (FeCl3.6H2O) in the presence of
dodecylbenzenesulfonic acid (DBSA). Electrically conducting PPy particles (6.5 S cm−1)
were obtained with a size average of 154 nm. The as-prepared PPy particles were added
into a water-based epoxy paint and AA1200 panels were coated via electrophoretic
deposition method. The corrosion protective properties of e-coated AA1200 panels
were evaluated by means of electrochemical impedance spectroscopy over prolonged
exposure time in neutral non-aerated 0.1 M sodium chloride NaCl electrolyte. In
particular, the addition of 0.4% by weight PPy has improved the coating corrosion
protective property with respect to epoxy clearcoat and exhibited the highest value of
impedance modulus at low frequency among the studied coatings.

Keywords: conductive polymers, electrophoretic deposition, organic coatings, EIS, Polypyrrole

INTRODUCTION

Cathodic electrodeposition of paints, also known as e-coat or cathodic painting, denotes an
application paint method used to coat metals with organic coatings. In cathodic electrodeposition,
water is used as dispersive medium and the formulations are heavy-metals free (Romano et al.,
2011; Chimenti et al., 2017; Fedel, 2017). The water-based formulations, constituted of polymer
and stabilized additives are deposited onto the surface of the cathode, i.e., metal to be coated, under
the application of an electric field (Wicks et al., 1999). A variety of metals including aluminum alloys
can be used as cathodes (Dalmoro et al., 2015). The cathodes are coated with a homogeneous highly
adherent layer whose composition and dry film thickness are precisely controlled (usually within
10–30 µm) and with excellent resistance to corrosion (Bodo and Poth, 2012). In industry, cathodic
electrodeposition has advantages of ease of automation therefore it is a cost-effective method of
applying organic coatings in addition of being environmentally friendly (Krylova, 2001; García and
Suay, 2009; Fedel et al., 2010; Rossi et al., 2017). The automotive industry is the biggest successful
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example of cathodic electrodeposition application. The cathodic
painting has been used to coat automobile bodyworks since
its implementation in the 70′s and still remains widely used
nowadays due to the advantages previously described (Bodo
and Poth, 2012; Bučko et al., 2015). Recent studies in the use
of cathodic electrodeposition have dealt with the incorporation
of ceria oxide nanoparticles (Živković et al., 2014), graphene
(Rossi and Calovi, 2018), SiO2 (Abd El-Lateef and Khalaf,
2019) into the paint formulation as attempts to improve their
anticorrosion properties (Bodo and Poth, 2012).

In recent years, intrinsically conducting polymers (I)
have attracted attention of research groups for anticorrosion
applications (Hosseini et al., 2011; Gurunathan et al., 2013; Ecco,
2014; Kamaraj et al., 2015; Aravindan and Sangaranarayanan,
2016; Qiu et al., 2017; Contri et al., 2018; Chen et al., 2019).
Among them, the polypyrrole (PPy) stands out mainly because
of its properties, such as: ease of synthesis, low cost, control
of electrical conductivity, and high stability in environmental
conditions, compared to other polymers of the same class
(Ramôa et al., 2014). In addition, the PPy has the ability to
change its oxidation state, depending on the characteristics of
the medium. This behavior allows to create a passive layer on
the surface of the metal, reduce the corrosion reaction rate
and improve the corrosion protection of the metal (Castagno
et al., 2011; Gergely et al., 2011; González and Saidman, 2012;
Qi et al., 2015; Jiang et al., 2019). The PPy can be obtained by
several techniques and one of the most used is the chemical
oxidation of the pyrrole in the presence of stabilizers for the
production of an aqueous dispersion (Ramôa et al., 2014).
Thus, an aqueous dispersion modified epoxy resin system
based on PPy in aqueous dispersion can be employed on a
cathodic electrodeposition to produce a polymeric coating on
a metal surface.

Many studies reported in the open literature have shown
the potentiality of PPy-filled epoxy coatings in preventing for
corrosion of aluminum alloys (Arenas et al., 2008; Qi et al., 2008;
Yan et al., 2010; Castagno et al., 2011; Jadhav et al., 2013).
Good adhesiveness on metallic substrate, suitable chemical
and mechanical properties, environmental stability, excellent
corrosion resistance for metallic materials and non-toxicity
are among the strengths of PPy-filled epoxy coatings (Gupta
et al., 2013). Jadhav et al. (2013) noted the effectiveness
of PPy-filled-epoxy systems on the corrosion inhibition onto
AA 2024-T3 aluminum alloy surface. They concluded that
these coatings containing epoxy resin and conducting polymer
present comparable electrochemical properties to hexavalent
chromates. Therefore, they are promising candidates for
chromates replacement (Jadhav et al., 2013). Moreover, Hosseini
et al. (2011) have formulated “smart” corrosion protective
PPy/Epoxy coatings on AA5000 aluminum alloy panels. These
authors also demonstrated the importance of the secondary
dopant for corrosion mechanism (Hosseini et al., 2011). In
this work, anionic surfactant DBSA was used as the secondary
dopant to improve pigment dispersibility by improving pigment
wetting characteristics, preventing reaggregation, and increasing
the stability of the dispersion (Tracton, 2007). DBSA also is
used in the PPy synthesis acting as co-dopant improving it’s

electrical conductivity (Ramôa et al., 2015; Contri et al., 2018;
Vargas et al., 2018). To advance knowledge on the corrosion
inhibition effect of PPy as well as the viability of using PPy
as anticorrosive additive for e-coat water-based formulations,
this paper presents the potential of PPy particles to be used as
anticorrosive additive on an epoxy water-based paint in order
to increase the corrosion protective property of aluminum-
coated panels. The scientific and technological contribution of
this study is related to three main aspects: (i) obtaining a stable
cataphoretic bath containing PPy particles; (ii) deposition of a
thin film on the surface of a metal substrate by cataphoresis
technique and (iii) development of a coating for corrosion
protection of AA1200 H14 aluminum alloy. The obtained results
are expected to provide understandings on the potential of
PPy for Al corrosion inhibition as well as on the application
of PPy particles as anticorrosive additive for E-coat water-
based formulations.

EXPERIMENTAL

Synthesis of PPy
The used materials were: Pyrrole (Py) 98% and dodecylbenzene
sulfonic acid (DBSA) purchased from Sigma Aldrich. Iron (III)
chloride hexahydrate (FeCl3.6H2O) analytical grade purchased
from Vetec Química Fina, Brazil. Before use, the Py has been
double distilled for impurities removal and stored at 4◦C while
DBSA and FeCl3.6H2O were used as received.

In a typical preparation route to obtain PPy (Ramôa
et al., 2014), two aqueous solutions of 2.5 g DBSA and
0.25 mol of FeCl3.6H2O were prepared in distilled water
under mechanical stirring. FeCl3.6H2O was selected as reaction
initiator and DBSA acted as surfactant and dopant agent. The
solution containing FeCl3.6H2O was poured onto the DBSA
solution under mechanical stirring. The mixture was kept
under agitation for 10 min. After that, an aqueous solution
of 0.11 mol of Py was poured dropwise on the previous
prepared mixture under agitation. The reaction was carried
out for 24 h under agitation at room temperature, 22◦C. The
obtained PPy particles were vacuum filtered, abundantly washed
using distilled water and dried under reduced pressure at
60◦C for 24 h.

PPy Particles Characterization
The mean volumetric size and size distribution of the PPy
particles were evaluated using Dynamic Light Scattering (DLS)
at 180◦ with 780 nm laser using a NANO-flex equipment from
MICROTRAC EUROPE. Due to the pasty appearance of the
PPy dispersion, was necessary dilute with deionized water to
6 mg mL−1, to conduct the analysis. The analysis was conducted
at a temperature of 21 ± 2◦C, using as parameters spherical
and absorptive particles in the Microtrac software 11.1.1.0.3.
Readings were reported as the average of three consecutive
readings calculated by the software.

The PPy particles surface zeta potential measurements,
were evaluated using Microtrac Stabino R© equipment from
MICROTRAC EUROPE. The zeta potential obtained was directly
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calculated by Stabino Particle Metrix 2.00.27.02 software. The
PPy dispersion was diluted with deionized water to 6 mg. mL−1

at pH 5, equal to the pH of the cataphoretic bath, and the analysis
conducted at a temperature of 21± 2◦C.

Scanning electron microscopy (SEM) was used to observe
the PPy particles morphology using a JEOL equipment model
JSM-6390LV (JEOL, United States). Prior to the analysis, PPy
powder particles were gold-coated. An accelerating voltage of
15 keV was used.

Electrical conductivity of PPy measurements were taken at
room temperature using a four-probe apparatus. The electrical
current was applied with a Keithley 6220 (United States)
current source and the resulting voltage was registered by
a Keithley Model 6517A (United States) electrometer. For
sample preparation, first the powder was oven dried, and then
molded to a 13 mm diameter pastille by compression molding.
A Bovenau hydraulic press, model P15 ST, was used. The
average of five measurements for each sample was calculated for
results expression.

Aluminum alloy AA1200 panels (dimension of
75 × 35 × 1 mm) were used as substrates. Table 1 reports
the alloy composition. Before the experimental tests, the
panels were immersed in acetone for 10 min in an ultrasonic
bath, followed by rinsing with distilled water, soaking in 5%
by weight NaOH for 6 min, rinsed again with water and
let dry using compressed air. All steps were conducted at
room temperature.

Coatings Preparation
The epoxy paints deposition on AA1200 substrates was
conducted by electrophoretic deposition method using an
epoxy-based binder supplied by Arsonsisi, Lainate, MI, Italy
(Arsonkote 212). The coatings were prepared by diluting the
epoxy-based binder with distilled water under mechanical
stirring. The final volume was adjusted to 0.5 L. The
produced and studied specimens were the epoxy clearcoat
and epoxy loaded with PPy particles at 0.4%, 0.8%, and
1.2% by weight, as described in Table 2. The incorporation
of as-prepared PPy particles was calculated considering the

TABLE 1 | AA1200 H14 composition alloy as informed by the supplier.

Element Si + Fe Cu Mn Mg Zn Ti Others Al

% 0.74 0.01 0.02 0.01 0.01 0.02 0.03 99.18

TABLE 2 | Coatings identification (labels), fillings of each sample and their
dry film thickness.

Label Material PPy into E-coat
formulation (% by

weight)

Dry film
thickness (µm)

E-coat Dissolved epoxy-based
binder (Arsonkote 212)

– 10.7 ± 0.4

E-coat/PPy 0.4 Dissolved epoxy-based 0.4 12.4 ± 1.5

E-coat/PPy 0.8 binder + PPy particles 0.8 17.0 ± 1.1

E-coat/PPy 1.2 1.2 20.0 ± 1.0

dissolved epoxy-based binder final weight. The epoxy clearcoat
was used as the reference specimen and the variable under
investigation was the concentration of PPy particles in the
coating formulation. The deposition bath presented pH of
5.7, total solids content of 15.2% by weight and ionic
conductivity near 1.14 mS cm−1. The pH and the ionic
conductivity did not change by adding the PPy particles in the
cataphoretic bath.

Aluminum alloy AA1200 panels of 75× 35× 1 mm prepared
as mentioned in the item 2.2. were used as cathodes and one
AISI 316 stainless steel panel was used as the anode during
coatings deposition. The ratio between the electrodes areas was
1:1. The electrodeposition on the cathodes was carried out
applying 150 Volts for 120 s with a Pulsed DC Generator MKS,
model RDPG 50 5KW (United States). The cataphoretic bath
temperature was kept at 28◦C. After the depositions, the coated
aluminum panels were put at 180◦C for 30 min in vacuum
oven for crosslinking. The time, temperature, voltage, and pH
values used during the coating procedure and crosslinking,
are in accordance with the epoxy-based binder supplier’s data
sheet. Thickness measurements of dry film coatings were
taken with an AKSO equipment, model AK157 following the
ASTM D6132-13 standard (Table 2). Table 2 lists the coatings
identification, amount of added PPy particles and samples
dry film thickness.

Characterization of the Coatings
The obtained coatings were evaluated by fourier-transform
infrared spectroscopy (FTIR) in the range from 4000 up to
600 cm−1 with a step-size of 4 cm−1. An infrared spectrometer
Bruker Tensor 27 (Bruker, United States) with attenuated total
reflection (ATR) accessory were used for spectra acquisition.

Adhesion of e-coat films was assessed via cross-cut test
according to ISO 2409:2007 using Scotch fibrous tape #880
(purchased from 3M) before immersion tests. The spacing of the
cuts were 2 mm. The tape was placed parallel to one cutting
direction on the e-coat film, pressed for air removal and after
5 min it was pulled off. The appearance of the cross-cut site was
evaluated based on coating detachment amount and classified
according to the ISO 2409.

Electrochemical impedance spectroscopy (EIS) was carried
out to evaluate the coatings protective properties. Single-sine EIS
measurements were performed using a potentiostat combined
with a frequency response analyzer (FRA) module (Autolab
Metrohm PGSTAT302N). A single sine perturbation of 10 mV of
amplitude (peak-to-peak) was applied on the samples based on
the average open circuit potential (OCP), within the frequency
range of 105 up to 10−2 Hz. An OCP reading time of 5 min
and potential stabilization of dE/dt lower than 1 mV/s were
set before EIS data acquisition. In a typical three-electrode
arrangement, the coated AA1200 panels were used as the working
electrodes with an Ag| AgCl reference electrode (+205 mV
vs. SHE) and a stainless-steel ring counter electrode (21 cm2).
The coating area in contact with the electrolyte was 1 cm2.
All the measurements were conducted at 23◦C using a non-
aerated 0.1 M NaCl (sodium chloride) solution at a pH of
6.0± 0.2 as electrolyte.
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RESULTS AND DISCUSSION

Characterization of PPy Particles
Figure 1 depicts the relative frequency distribution by volumetric
size of PPy particles in water. A bimodal distribution is observed
and can be related to the difficulty of maintaining a homogeneous
PPy dispersion. The mean size of PPy particles was found to be
near 154.1 nm. The zeta potential of the PPy dispersion at pH
5 was verified to be near −35 mV. This can be attributed to the
presence of the DBSA’s SO3

− counter ions as the negative charge
source in the diffuse layer of the particles.

Scanning electron microscopy micrograph of PPy particles is
shown in Figure 2. The PPy in dry powder form is composed
of agglomerates particles of different sizes and irregular shapes
(Saremi and Yeganeh, 2014; Mert, 2016). Some aggregates
are observed, probably responsible by the larger size particles
detected in the particle size analysis. The observed particles are
not perfectly spherical, due to the not formation of micelles
surrounded by monomer during pyrrole polymerization (Aldissi
and Armes, 1991; Boeva and Sergeyev, 2014; Vargas et al., 2018).

FIGURE 1 | Particle size distribution of PPy.

FIGURE 2 | SEM micrograph of PPy.

The PPy particles showed d.c. electrical conductivity average of
6.5 S cm−1.

Characterization of the Coatings
The infrared spectra of neat e-coat, e-coat/PPy filled with 0.4%,
0.8%, and 1.2% by weight of conductive filler are depicted in
Figure 3. The absorption band of neat e-coat in 3697 cm−1 is
assigned to the N-H group of the primary amide of polyurethane
present in the epoxy-based coating formulation, according to the
product technical data sheet. The absorption band at 3361 cm−1

can be attributed to the hydroxyl/amine group of hydrogen
bonds. Absorption bands at 2975, 2934, and 2855 cm−1 are
attributed to the C-H stretch of aliphatic chain. In addition, the
stretching vibrations of the carbonyl group urethane are observed
in the absorption band at 1724 cm−1. The bands at 1646 and
1609 cm−1 are assigned to the NH2 group while at 1507 cm−1

the NH stretch of the benzene rings. The absorption band at
1226 cm−1 is attributed to the elongation of the vibrations of the
group = C-O-C, at 913 cm−1 is attributed to the absorption band
of the epoxy ring. And the absorption at 824 cm−1 attributed to
the CH bonds of the aromatic ring. Similar e-coat spectra were
obtained by Almeida et al. (2003), Reichinger et al. (2017) and
confirm the epoxy nature of the cataphoretic coating. The spectra
of coatings containing conductive additive show absorption
bands overlapping on the neat e-coat.

The band at 3361 cm−1, Figure 4A, is related to the
bonded OH or NH group, a displacement to 3324 cm−1 for
e-coat/PPy 0.4% by weight and to 3294 cm−1 for e-coat/PPy
0.8% and 1.2% by weight. According to Petrovic and Ferguson
(1991), the frequency of hydrogen bonds changes with the
strength of bonds, stronger bonds are displaced to larger wave
numbers. Possibly, the observed displacements are due to the
intermolecular interactions (H bonds) between the PPy additive
and the neat e-coat matrix.

FIGURE 3 | FTIR-ATR spectrum of panels of AA1200 coated with neat e-coat
and e-coat/PPy 0.4%, 0.8%, and 1.2% by weight.
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FIGURE 4 | Infrared spectra for the neat e-coat and e-coat containing 0.4%, 0.8%, and 1.2% by weight of PPy in the stretched region of the bound OH or NH
(A) and the carbonyl stretching region (B).

From Figure 4B, a shift in the absorption bands associated
with the hydrogen bonded carbonyl group at 1724 cm−1 of
the neat e-coat is observed for smaller values (1720, 1722,
and 1721 cm−1), with the addition of PPy, at respective
concentrations of 0.4%, 0.8%, 1.2% by weight. This result
indicates the occurrence of a higher number of hydrogen
bonds between the C = O and the -NH of the urethane
and/or -NH of the PPy.

Adhesion Test
The adhesion of neat e-coat and e-coats containing 0.4%,
0.8%, and 1.2% by weight of PPy was assessed using a
tape peel-test, according to ISO 2409:2007, before immersion
tests. All coatings were classified as grade 0 according to
the ISO standard due to the absence of coating detachment
as depicted in Figure 5. The excellent coating adhesion
on AA1200 H14 aluminum alloy, implies that the coating-
substrate interface presents good mechanical stability. These
results indicate a proper substrate surface preparation and that
the addition of different conductive additive contents in the
e-coat formulation did not affect the coating adhesion on the
metal substrate.

FIGURE 5 | Aspect of the samples submitted to the adhesion test of the
coatings of neat e-coat (A), e-coat/PPy 0.4% by weight (B), 0.8% by weight
(C), 1.2% by weight (D).

Electrochemical Tests of Coatings
Dry layer thickness is one of the most important measures
for inspection and quality control of anti-corrosion coatings,
which relates the barrier effect to the durability of the coating
(Olajire, 2018). According to the Table 2, with increasing PPy
concentration in the neat e-coat, the coating thickness and
electrolyte permeability in the coating| metal interface increased.

Figure 6 shows the Bode diagrams of EIS spectra of the
samples with neat e-coat (a1, a2), e-coat/PPy 0.4% by weight (b1,
b2), e-coat/PPy 0.8% by weight (c1, c2), and e-coat/PPy 1.2% by
weight (d1, d2) during 672 h immersion in chloride rich solution.
In the Bode phase plot for neat e-coat, Figure 6A1, partially
overlapping peaks indicating two-time constants are noticed.
One time constant is located in 104–102 Hz and the second
one in 101–10−1 Hz regarding the substrate-coating interface
and the dissipative phenomena occurring in the presence of
the coating, respectively. The presence of two-time constants in
the e-coat/PPy 0.4% by weight appeared just within 336–672 h
of exposure, which suggests an improvement in the corrosion
protection of the AA1200 H14 aluminum alloy panel at this
PPy load for a prolonged length of time. While the e-coat/PPy
0.8% by weight, Figure 6C1, and the e-coat/PPy 1.2% by weight,
Figure 6D1, behaved similarly, with two different segments of
the high and low frequency regions. These results indicate that
the corrosion protection at both PPy contents (0.8% and 1.2%
by weight) was not improved, since they have phase angles
near to the neat e-coat. Similar results to these described above
were found for Jadhav et al. (2013), Živković et al. (2015), Mert
(2016), Kumar et al. (2017).

The total impedance modulus of the neat e-coat at low
frequency range (| Z| 0.01 Hz) was 106 Ohm cm2 within the first
24 h of exposure (Figure 6A2). After 24 h, | Z| 0.01 Hz decreased
with exposure time indicating a gradual reduction of the coating
barrier effect until reaching 105 Ohm cm2 at 168 h of immersion
and remaining in this impedance range up to the end of the test.
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FIGURE 6 | Bode diagram for neat e-coat (A1,A2), e-coat/PPy 0.4% by weight (B1,B2), e-coat/PPy 0.8% by weight (C1,C2), and e-coat/PPy 1.2% by weight
(D1,D2) during 672 h exposure.
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The e-coat/PPy 0.4% by weight, Figure 6B2, shown values of
|Z| 0.01 Hz at 109 Ohm cm2 in the first 24 h of immersion test
decreasing up to 108 Ohm cm2 at the end of exposure time to the
electrolyte. Whereas the e-coat/PPy 0.8% by weight, Figure 6C2,
behaved similarly to the neat e-coat. And the e-coat/PPy 1.2% by
weight, Figure 6D2, increased by only one order of magnitude
(107 Ohm cm2) when compared to the neat e-coat, remaining in
this impedance range without further protection improvement.

It can be concluded that the addition of PPy in the cataphoretic
bath above an optimal concentration presented a detrimental
effect. Instead of increasing the corrosion protection compared
to the neat e-coat. This behavior can be attributed to an
increased porosity allowing the free migration of the electrolyte
through the coating (Bandeira et al., 2017). In this work the
probable optimal concentration of PPy particles is below 0.8%
by weight once the e-coat/PPy 0.4% by weight coating offered
much higher impedance moduli compared to neat e-coat, that
means an improved barrier effect (Huerta-Vilca et al., 2004;
Contri et al., 2018).

The electrical parameters have been extracted after modeling
the EIS data and the electrical equivalent circuit presented in
Figure 7. In the equivalent circuit shown in Figure 7A, Rs is
the electrolyte resistance, Rc the coating resistance and Qc the
constant phase element (CPE) of the coating, related to the

FIGURE 7 | Electrical circuits used for fitting the coatings electrical
parameters. (A) One-time constant Rs(QcRc) and (B) two-time constants
Rs{Qc[Rc(QdlRc)]}.

coating capacitance. A CPE replaced the pure capacitance since
the use of a CPE element with exponent n gives a better fitting
of the spectra. The Figure 7B shows two-time phase constant,
where Rct is the resistance associated with the transfer of charges
between the electrolyte and the surface of Al and the resistance
associated with the passive film, Qdl is the dielectric contribution
of the electric double layer generated at the Al electrolyte/surface
interface and the passive oxide film. Over immersion time,
the electrolyte reaches the metal, resulting in two-time phase
constants associated responses of oxides/hydroxides present in
the metal/coating interface (Kumar et al., 2017).

The stack plot given in Figure 8 shows the evolution, as
function of time, of the electrical parameters Rc as well as
the pre-factor “Y0” and the exponent “n” of the CPE labeled
Qsl + ox (ZCPE = [Y0(ωj)n)]−1). Rc and Qc values were taken
into account to evaluate the level of defects in the obtained
coatings (Figures 8A,B). The graph in Figure 8A shows a
significant decrease in Rc value after 24 h of testing due to
water absorption in the coating at the beginning of the test.
Again, the sample e-coat/PPy 0.4% by weight shows a superior
behavior, with resistance values always higher than 106 � cm2.
The other samples (neat e-coat, e-coat/PPy 0.8% and 1.2% by
weight) presented a poorer performance attributed to a higher
coating porosity due to conductive additive concentration bigger
than an optimal content losing of the barrier effect.

The graph of Figure 8B shows the evolution of Qc in the time
of exposure. The pre-factor of the CPE showed a continuous
reduction of its magnitudes during the period of testing. The
behavior for e-coat/PPy 0.8% and 1.2% by weight were similar
the neat e-coat. As a consequence, e-coat/PPy 0.8% and 1.2% by
weight samples exhibited higher capacitance values by increasing
the absorption of electroactive species with the time of exposure.
However, it is observed for the e-coat/PPy 0.4% by weight
that the capacitance values are smaller in comparison to the
other coatings, indicating low water absorption by the film and
presenting elevated barrier effect over time (Zanella et al., 2014).

FIGURE 8 | Electrical parameters evolution (A) Rc and (B) Qc over time for the AA1200 coated with neat e-coat and e-coat/PPy 0.4%, 0.8%, and 1.2% by weight.
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CONCLUSION

In this study, a new coating for corrosion application of the
AA1200 H14 aluminum alloy was successfully obtained from
epoxy resin (e-coat) and PPy by the cataphoresis technique.
According to the results presented in this work, it can be
concluded that the e-coat/PPy 0.4%, 0.8%, and 1.2% by weight
showed shifts to lower wavelengths for the absorption bands
to the bonded OH and NH groups and to the carbonyl
absorption bands of the urethane group, indicating that there
was interaction between the PPy and the epoxy matrix. The
electrodeposited coatings presented good adhesion on AA1200
H14 aluminum alloy panels, indicating that the addition of
different conductive additive contents in the e-coat formulation
did not affect coating performance on adhesion to the metal
substrate. The electrochemical tests showed that e-coat/PPy 0.4%
by weight coating provides higher impedance modulus values
when compared to neat e-coat, e-coat/PPy 0.8% and e-coat/PPy
1.2% by weight.

Finally, this study showed that the coatings of e-coat/PPy are
promising coatings with potential of corrosion protection for the
AA1200 H14 aluminum alloy, in particular e-coat/PPy 0.4% by
weight, which presented the highest anticorrosive performance
during the exposure.
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Hybrid conducting composites comprising thermoplastic polyurethane (TPU) and

mixtures of carbon black modified with polypyrrole (CB-PPy) and carbon nanotubes

(CNT) were prepared by melt mixing process. The electrical conductivity, rheological

properties and electromagnetic shielding effectiveness (EMI SE) of TPU/CB-PPy

and TPU/CNT composites were also investigated those results observed for

TPU/CB-PPy/CNT hybrid composites. TPU/CNT composites show a very sharp

insulator-conductor transition and the electrical percolation threshold was about 1 wt%

of CNT, which was lower than that found for TPU/CB-PPy (7 wt%). Moreover, EMI

SE values of TPU/CNT composites were higher than those for TPU/CB-PPy due to

the denser CNT conductive pathway into TPU matrix. In order to achieve the highest

electrical conductivity and EMI SE values, mixtures of CB-PPy/CNT were added in the

composites in different mass fractions. In fact, the electrical conductivity values increased

by combining CB-PPy and CNT, resulting in hybrid composites of TPU/CB-PPy/CNTwith

higher EMI SE values when compared to TPU/CB-PPy composites. The present study

demonstrates the potential use of hybrid polymer composites containing 5 or 8 wt% of

CB-PPy/CNT at specific CB-PPy/CNT ratios with good processabilty and EMI SE values

as high as −20 dB indicating the potential use of these materials for electromagnetic

shielding application in the X-band frequency region.
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INTRODUCTION

The production of electromagnetic shielding materials has been
extensively studied due to the proliferation of electromagnetic
interference (EMI) produced by high-performance electronic
devices (Håkansson et al., 2007; Ramoa et al., 2013; Kausar, 2016).
Metals are the most common materials to prevent EMI; however,
these materials have some disadvantages such as high density,
low corrosion resistance, high stiffness and processing difficulties
(Mahapatra et al., 2008). In this context, the interest in developing
electrically conductive polymer composites (CPC) comprising an
insulating polymer matrix and a disperse phase of electrically
conductive filler has increased because of their low weight,
corrosion resistance and ease of processing. Moreover, the
electrical properties and electromagnetic shielding effectiveness
(EMI SE) of these materials can be modified by adding different
amounts of conductive filler into insulating polymer matrix.

Several interesting works concerning the production of
EMI shielding polymer composites with improved electrical
conductivity and EMI SE values have been reported (Yavuz et al.,
2005; Mahapatra et al., 2008; Sudha et al., 2009; Kim et al., 2011;
Kaur et al., 2012; Zhang et al., 2012; Al-Saleh et al., 2013; Sharma
et al., 2016; Kumar et al., 2017; Kuester et al., 2018; Kumar
and Patro, 2018). The most commonly used conductive fillers
are carbon fillers, such as carbon nanotubes (CNT) (Mahapatra
et al., 2008; Socher et al., 2011; Kaur et al., 2012; Zhang et al.,
2012; Al-Saleh et al., 2013; Kumar et al., 2017; Yu et al., 2018),
expanded graphite (EG) (Piana and Pionteck, 2013; Kuester
et al., 2016), carbon black (CB) (Sumfleth et al., 2009; Chen
J. et al., 2013; Burmistrov et al., 2016; Pan et al., 2016; Jeddi
and Katbab, 2017; Mondal et al., 2018), graphene (GE) (Al-
Saleh, 2015; Sharma et al., 2016) and graphene nanoplateles
(GnP) (Chu et al., 2012; Al-Saleh, 2016), and intrinsically
conducting polymers (ICP), for instance, polypyrrole (PPy)
(Yavuz et al., 2005; Taunk et al., 2008) and polyaniline (PAni)
(Sudha et al., 2009; Kim et al., 2011; Oyharçabal et al., 2013).
Their advantages are good thermal stability, lightweight, ease of
processing, and compatibility with polymer matrices. Although
significant progress in this field has been achieved, a great effort
has been made to produce conductive polymer composites at
lower conductive filler concentrations in order to maintain the
rheological and mechanical properties of the insulating polymer
matrix. There are several strategies available to reduce the
electrical percolation threshold in CPC, including the adequate
choice of the filler, polymer matrix, manufacturing method and
the most suitable processing conditions.

The technique based on dispersion of two or more conductive
fillers into an insulating polymermatrix has been used to improve
the composite properties. In fact, some works in the open
literature demonstrate better EMI SE results when conductive
fillers with different geometries are combined into an insulating
polymer matrix (Zhang et al., 2012, 2018; Szeluga et al., 2015;
Jang et al., 2016; Kumar et al., 2017; Wu et al., 2017). For
instance, Sharma et al. (2016) and Kuester et al. (2017) observed
higher EMI SE values for hybrid composites containing CNT/GR
and CNT/GnP, respectively, than those found for composites
containing the individual fillers.

As previously mentioned, the selection of the polymer matrix
is another important key to developing CPC for EMI shielding
(Socher et al., 2011). Among insulating polymer matrices,
thermoplastic polyurethane (TPU) is widely used due to its
versatility. Besides its thermoplastic properties, TPU also has
the elasticity of vulcanized rubbers without the need of the
vulcanization process (Ramoa et al., 2013). In addition, TPU is
composed of two-phase microstructure based on a soft polyester
or polyether phase reinforced by a hard phase of aromatic
diisocyanate extended with a short-chain diol. Moreover, several
studies have reported the production of TPU/CNT composites
using various manufacturing methods including solution and
melt processing (Guo et al., 2008; Ramoa et al., 2013; Chen et al.,
2015). Generally, CNT-filled polymer composites show a better
EMI shielding effectiveness and electrical conductivity values at
the same filler content when compared to the conductive carbon
black (CB)-filled polymer composites. However, composites
containing high amount of CNT are more expensive and difficult
to process than CB-filled polymer composites. Based on this
context, this work proposes the preparation of conductive
hybrid composites composed of carbon black modified with
polypyrrole (CB-PPy), CNT, and TPU matrix through melt
mixing in order achieve the best relationship between electrical
conductivity, EMI shielding effectiveness and processability. The
microstructure, electrical conductivity, rheological properties
and EMI SE of TPU/CB-PPy/CNT hybrid composites were
evaluated and compared to those obtained for TPU/CB-PPy and
TPU/CNT composites.

EXPERIMENTAL

Materials
The thermoplastic polyether-based polyurethane Elastollan R©

1180 A10 used in this study was supplied by Basf –Brasil.

FIGURE 1 | Electrical conductivity of TPU/CNT and TPU/CB-PPy as function

of filler content.
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It was characterized by a specific gravity of 1.11 g.cm−3 and
electrical conductivity of 10−13 S.cm−1. The multi walled carbon
nanotubes were provided by Nanocyl SA (NC 7000) with carbon
purity of 90%, average diameter of 9.5 nm, average length
of 1.5µm and electrical conductivity of 104 S.cm−1. Carbon
black/polypyrrole was purchased from Sigma Aldrich (80 wt% of
carbon black) with electrical conductivity 3× 101 S.cm−1.

Composites and Sample Preparation
The composites were prepared by melt blending with different
amounts of carbon black/polypyrrole (from 0 to 15 wt%) and
carbon nanotubes (from 0 to 8 wt%). Initially, the materials were
dried overnight at 60◦C. The hybrid composites were produced
with 3, 5, and 8 wt% of total filler and the fraction of each filler
was 25:75, 50:50, and 75:25. Then, the polymer and the fillers
were mixed in a Thermo Haake Polylab Rheomix 600p internal
mixer at a rotor speed of 60 rpm for 15min and at 170◦C. The
mixed compounds were molded (in square plaques) by thermo-
compression using a hydraulic press at 170◦C for 5min and
under a 15 MPa pressure.

Methodology
The electrical conductivity of the high-conductive samples was
measured using a four-probe standard method. The current
source was a Keithley 6220 equipment and the voltage was
measured by a Keithley electrometer Model 6517A. For the high-
resistive samples a two-probe standardmethod was performed by
a Keithley 6517A electrometer connected to a Keithley 8009 test
fixture. The sample thickness was 0.5mm and the measures were
performed on both sides of three different films.

A field emission gun scanning electron microscope (FEG-
SEM) Jeol model JSM-6701F was used to investigate the
morphology and the filler dispersion. The samples were prepared
using liquid nitrogen to break the films in a brittle manner and
the fractured surface was sputtered with a gold layer. A tension
of 10 kV was applied during the analyses. Different regions of a
sample were analyzed.

The rheological properties of the composites in the molten
state were measured by a dynamic oscillatory rheometer
ThermoHaake MARS II with 20mm plate–plate geometry at
170◦C. The analysis was carried out under a nitrogen atmosphere
and the frequency scanned from 0.01 to 100Hz. Three specimens
were analyzed and the thickness and the diameter of the samples
were 1mm and 25mm, respectively.

The EMI SE analysis was performed by a N5230C Agilent
Technology PNA series analyser in the X-band frequency range
(8.2–12.4 GHz) connected to a waveguide used as the sample
holder. The thickness of the samples was 2mm and three
specimens of each composition were analyzed. The contribution
of reflection (SER) and absorption (SEA) shielding on the total
EMI SE values was determined using the experimental power
data (incident (I), reflected (R) and transmitted (T) power) and
equations (1)–(3):

SER = 10 log
I

I− R
(1)

SEA = 10 log
I− R

T
(2)

EMI SE = 10 log
I

T
(3)

FIGURE 2 | FEG-SEM micrographs of cryogenically fractured surfaces of (A) neat TPU, (B) TPU/CNT, and (C) TPU/CB-PPy containing 8 wt% of conductive filler.
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RESULTS AND DISCUSSION

In order to evaluate the effect of CB-PPy and CNT contents
on the electrical conductivity of the TPU matrix, composites
based on TPU/CB-PPy and TPU/CNT were produced. As
shown in Figure 1, TPU/CNT composites exhibit a very sharp
insulator-conductor transition and the electrical conductivity
enhances significantly with increasing CNT content. The
electrical conductivity of TPU/CNT composites containing 1 and
2 wt% of filler increased 104 and 1011 times, respectively, when
compared to the neat TPU (10−13 S.cm−1), reaching a maximum
value of about 1 S.cm−1 at 8 wt% of CNT content. These values
are quite similar to those observed by Ramoa et al. (2013) and
Zhang et al. (2007), suggesting that a good dispersion of CNT into
TPU matrix was achieved. On the other hand, a slight increase
on the electrical conductivity with the increasing in CB-PPy
content was observed. This behavior can be assigned to the higher
aspect ratio and better distribution of CNT into the TPU matrix

FIGURE 3 | Storage modulus as a function of conductive filler content and

frequency for (A) TPU/CNT and (B) TPU/CB-PPy.

than those found for CB-PPy. In fact, the percolation threshold
(fp) and the critical exponent (t) determined by a power law
equation (Equation 4) for TPU/CNT were 1 wt% and 2.4,
respectively, while TPU/CB-PPy showed a higher percolation

TABLE 1 | Complex viscosity of TPU and composites composition.

Material Composition

(wt%)

Complex viscosity

at 1Hz

(Pa.s)

TPU 100 2.1

TPU/CNT 97/3.0 82.4

TPU/CB-PPy 97/3.0 8.4

TPU/CNT 95/5.0 142.2

TPU/CB-PPy 95/5.0 14.8

TPU/CNT 92/8.0 358.9

TPU/CB-PPy 92/8.0 34.1

FIGURE 4 | EMI SE of (A) TPU/CNT and (B) TPU/CB-PPy composites with

different amounts of CNT and CB-PPy.
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threshold, 7 wt%, and lower t, 2.1. For both composites, the
critical exponent was higher than 2, which implies multiple
percolation or tunneling (Levon et al., 1993).

σ = c(f − fp)
t (4)

σ is the electrical conductivity of the composites, c is a constant,
f is the filler weight content, fp is the filler weight content
at the percolation threshold and t is the critical exponent.
The critical exponent t is related to the number of contacts
between the fillers at the percolation threshold. The Equation 4
is used as an empirical approximation for mixtures with weight
fraction compositions.

FIGURE 5 | Total EMI SE, SEA and SER values of composites as a function (A)

CNT and (B) CB-PPy content measured at 9 GHz.

FEG-SEM micrographs of cryogenically fractured surfaces of
neat TPU, TPU/CNT, and TPU/CB-PPy composites containing
8 wt% of the conductive fillers are observed in Figure 2.
The white points correspond to the disperse phase into TPU
matrix. The microstructure of both composites shows a typical
separation and the presence of conductive filler agglomerates
well-dispersed contributing to the formation of a conducive
pathway in the TPU matrix. As discussed on the above, CNT
have high aspect ratio, therefore, small filler content is necessary
to create a conductive network in the TPU matrix reducing
the percolation threshold. On the other hand, carbon black-
polypyrrole has spherical morphology with low aspect ratio and
higher percolation threshold, which means a larger amount of
this filler is necessary to form a conductive path.

The storage modulus (G′) and loss modulus (G′′) as a function
of the conductive filler and the frequency for both TPU/CNT and
TPU/CB-PPy composites are shown in Figure 3. The neat TPU

presents a liquid-like behavior (G
′′

>G′) and its transition from
liquid to solid-like behavior (G

′′
<G′) is observed at a frequency

of 64.8Hz. For both composites, G′ and G′′ increase significantly
with the increasing in the conductive filler content into the TPU
matrix, indicating that these systems exhibit a pseudo-solid-like
behavior. TPU/CNT and TPU/CB-PPy composites with 0.5 and
3 wt% of filler content, respectively, exhibit a transition from
liquid to solid-like behavior at the same frequency value found
for the neat TPU, while the values for G′ and G′′ become almost
independent of the frequency at lower frequencies for composites
containing 3 wt% of CNT and 10 wt% of CB-PPy. The origin
of this behavior can be assigned to the formation of a percolate
network, in which the number of interfaces between conductive
fillers into the insulating polymer matrix is considered.

It is important to highlight that complex viscosity of TPU
(2.1 Pa.s) increases abruptly with increasing the CNT content,
as shown in Table 1. For example, the complex viscosity of

FIGURE 6 | Electrical conductivity of composites as a function of

CNT/CB-PPy (wt%) ratio for hybrid composites containing a total filler amount

of 3, 5, and 8 wt%.

Frontiers in Materials | www.frontiersin.org 5 June 2020 | Volume 7 | Article 174125

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Bertolini et al. Hybrid Polyurethane Composites for Electromagnetic Shielding

neat TPU increased approximately 171- and 16-fold by adding
8 wt% of CNT and CB-PPy, respectively. Moreover, TPU/CNT
composites was partially impaired for CNT filler concentration
above 8 wt%. Therefore, conductive hybrid composites were
produced to achieve the best relationship between electrical
conductivity, EMI shielding effectiveness and processability at
the same reducing the cost.

Figure 4 displays the effect of the conductive filler type and
content on the EMI SE as a function of the frequency in the
range of 8–12 GHz. TPU/CNT composites exhibit higher EMI
SE at the same filler content in the whole frequency range
when compared with TPU/CB-PPy due to the higher aspect
ratio of CNT, what leads to the easier creation of the filler path
and consequently, higher increase in the electrical conductivity.
For example, composites with 3 wt% of CNT and CB-PPy
show EMI SE values of −21.2 and −3.1 dB, respectively. These
results are in good agreement with the electrical conductivity,
rheological properties and microstructure analyses of TPU/CNT

and TPU/CB-PPy composites, as discussed previously. The EMI
SE values of TPU/CNT composites obtained in the present work
are higher than those reported by Liu et al. (2007) and Ramoa
et al. (2013).

In addition, the EMI SE of TPU/CB-PPy is quite similar to
that presented by Ramoa et al. (2013) for TPU/CB composites.
Furthermore, the EMI SE values found for TPU/CNT composites
containing 3 to 8 wt% of filler are similar or quite higher
than those results observed in composites containing different
carbonaceous fillers (Al-Saleh et al., 2013; Jeddi and Katbab,
2017; Kumar et al., 2017; Kuester et al., 2018). According to the
literature (Li et al., 2006), the desirable EMI SE is at least−20
dB for commercial application, which corresponds to 99% of
radiation attenuation (Chen Z. et al., 2013; Ramoa et al., 2013).
This value was reached for TPU composites containing 15 wt%
of CB-PPy and 3 wt% of CNT.

Figure 5 illustrates the relationship between the conductive
filler and the contribution on the EMI SE by reflection and

FIGURE 7 | (A–C) Total EMI SE, SEA and SER values of TPU/CB-PPy/CNT composites as a function of filler content.
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TABLE 2 | Values of SEA, SER and electrical conductivity for hybrids composites

of TPU/CNT/CB-PPy measured at 10 GHz.

CB-PPy/CNT 5 wt% 8 wt%

SER SEA SET σ SER SEA SET σ

100/0 2.63 3.36 5.99 1.82E-09 3.54 5.52 9.06 2.13E-03

75/25 4.36 7.39 11.75 4.87E-03 3.88 13.80 17.68 4.96E-02

50/50 4.14 11.72 15.86 1.48E-02 4.80 20.91 25.71 1.94E-01

25/75 4.09 15.78 19.87 5.05E-02 4.75 22.43 27.18 3.05E-01

0/100 5.58 25.69 31.27 2.51E-01 6.02 33.50 39.52 7.64E-01

absorption shielding. The SER and SEA increase with the
increasing in the conductive filler content for both composites.
Moreover, the SEA values for TPU/CNT at all compositions are
higher than those found for TPU/CB-PPy composites, probably
due to the higher aspect ratio, better distribution and better
interaction between CNT and the electromagnetic radiation
when compared to those observed for CB-PPy.

In order to reach a maximum EMI SE and electrical
conductivity values at the lowest CB-PPy content, hybrid
composites of TPU/CB-PPy/CNT were produced. The
correlation between electrical conductivity and conductive
filler fraction for (a) 3 wt%, (b) 5 wt%, and (c) 8 wt% of total
filler content (CB-PPy/CNT) is illustrated in Figure 6. For
composites with 3 wt% of total filler concentration having
different filler ratios of CNT/CB-PPy = 0; 0.25; 0.5; 0.75; and
1, the electrical conductivity increases with decreasing CB-PPy
content, indicating that CNT played an important role on the
conductive network formation. On the other hand, the electrical
conductivity for all hybrid composites containing 5 and 8 wt%
of different filler ratio is quite similar probably due to the
high amount of CNT concentration, which is higher than the
percolation threshold for TPU/CNT composites.

Figure 7 illustrates the EMI SE of TPU/CB-PPy/CNT as a
function of filler content. With increasing CNT content for
the hybrid composites, the total EMI SE enhances and the
main shielding mechanism is by absorption. For hybrid polymer
composites containing 3 wt% of conductive filler, the EMI SE is
lower than the desirable value for shielding material applications.
As shown in Table 2, the EMI SE values are dependent on
the electrical conductivity of the composites because of the
conductive network formation. Therefore, polymer composites
with electrical conductivity below 10−3 S.cm−1 generally show
EMI SE values lower than −20 dB. On the other hand, hybrid
composites containing 5 wt% at CB-PPy/CNT ratio of 75:25 and
8 wt% at filler ratio of 75:25, 50:50, and 25:75 presented total EMI
SE values higher than −20 dB, suggesting that those composites
have a great potential as EMI shielding material.

CONCLUSION

Conducting polymer composites comprised of TPU/CB-PPy,
TPU/CNT, and TPU/CB-PPy/CNT were successfully produced
through melting mixing process. Electrical conductivity,

rheological properties and EMI SE were significantly affected by
the conductive network formation. Therefore, the increase of
filler content resulted in the raise of the electrical conductivity
and EMI SE values of both TPU composites. The electrical
conductivity of composites with 3 wt% of CNT and 15 wt% of
CB-PPy increases about 12 orders of magnitude when compared
to that found for neat TPU. TPU/CNT exhibited the desired level
of EMI SE,−20 dB, at a filler content higher than 3 wt% while 15
wt% of CB-PPy is required to reach this value. This behavior can
be assigned to the higher aspect ratio and better distribution of
CNT filler into TPU matrix when compared to the CB-PPy filler.
On the other hand, TPU composites containing CNT are more
difficult to be processed at the same conductive filler content
than CB-PPy-filled TPU composites. TPU/CNT composites was
partially impaired for CNT filler concentration above 8 wt%.
Concerning the hybrid composites (TPU/CB-PPy/CNT), the
CNT play an important role on the electrical conductivity, EMI
and rheological properties. In fact, with increasing the CNT
content in the TPU/CB-PPy/CNT these properties enhance
significantly. A schematic drawing of the interaction between
CNT/CB-PPy particles is shown in the Supplementary Figure.
For hybrid polymer composites containing 3 wt% of conductive
filler, the EMI SE is lower than the desirable value for shielding
material applications. Moreover, hybrid composites with good
processability at 5 wt% of CNT/CB-PPy ratio 75:25 and 8 wt% of
filler ratio 75:25, 50:50, and 25:75 presented total EMI SE values
higher than −20 dB, demonstrating the potential use of these
materials for electromagnetic shielding applications.
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