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Editorial on the Research Topic

Alzheimer’s Disease: Original Mechanisms and Translational Impact

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive and
irreversible worsening of cognitive functions, inability to perform everyday activities, and mood
disorders. Currently, AD is considered the leading cause of dementia and hospitalization of older
adults in nursing homes. In the United States, 5.8 million people has been calculated to suffer from
AD in 2019, 81% being 75 years or older; the percentage of individuals with AD increases with age,
from 3% of people aged 65–74 to 32% of people aged 85 and older. Women are more affected by AD
than men (M/F 2/1) probably because of their longer lifespan. Finally, African Americans and
Hispanics are about twice likely to develop AD as older Whites (Alzheimer’s Association, 2019). The
lack of any updated epidemiologic survey about AD in Europe is quite disappointing; the most
accurate analysis dates back 2017 and reveals an estimated prevalence at 5.05% (men 3.31% and
women 7.13%) increasing with age (Niu et al., 2017). In Europe, about 3 million people was
estimated to suffer from AD (Mayer et al., 2018).

From a pathogenetic viewpoint, the early “amyloid cascade hypothesis”, which considered
fibrillar b-amyloid (Ab) and hyperphosphorylated tau protein (pTau) as the main inducers of the
pro-oxidant status and neuroinflammation leading to neuronal death, was definitely challenged
(Selkoe and Hardy, 2016). Clinical evidence has clearly demonstrated both the evidence that the
amount of senile plaques, containing fibrillar Ab, does not correlate with the severity of AD and the
lack of efficacy of therapies targeting fibrillar Ab in terms of improvement of cognitive function
(Nelson et al., 2012; Penninkilampi et al., 2016; Wang et al., 2017). Over the last few years, soluble
Ab, mainly in the oligomeric form, has been proposed as the toxic species being responsible for the
early impairment of synaptic plasticity and neurotransmission occurring in AD (Abdel-Hafiz et al.,
2018; Li et al., 2018). Unfortunately, AD begins several years before the onset of symptoms, which
become evident when neurodegeneration reaches the point of no return. This is the reason why
drugs currently available, such as acetylcholinesterase inhibitors and the N-methyl-D-aspartate
(NMDA) receptor antagonist memantine, have only limited symptomatic effects; regrettably, there
is not any class of drugs capable of preventing or contrasting the evolution of the disease (Mancuso
et al., 2011; Mhillaj et al., 2017). As recently reported by Cummings et al. (2019), 132 drugs are
under clinical development for AD and only 28 of them are in phase III; among these latter, nine are
anti-amyloid agents, eight are compounds targeting neuropsychiatric symptoms, and only three are
antioxidant/neurotransmitter-based therapies.
in.org February 2020 | Volume 11 | Article 15715
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The aim of this Research Topic is to outline the multifactorial
etiology of AD and promising key factors for the development of
new and successful therapeutic strategies. The issues addressed in
this Research Topic include, among others, the interplay between
well-known and novel molecular mechanisms, such as oxidative
and neuroinflammatory events leading to synaptic failure, some
comorbidities secondary to exaggerated Ab deposition and the
potential therapeutic role for medicinal herbs or drugs to slow-
down the progression of AD. This Research Topic, in which
several leading experts have provided important contributions, is
organized in eight original research articles (including a brief
research report), four reviews, and six mini-reviews.

Caruso et al. examined the role of stress and the effects due to
the hyperactivation of the hypothalamic-pituitary-adrenal axis as
determinants of AD. This review is quite interesting because it
focuses the attention on potential lifestyle risk-factors whose
elimination could drastically reduce the onset of AD. That said,
everybody knows that a stress-free life is an unattainable dream,
and the possibility to prevent or contrast AD based on an
impossible lifestyle is a vain hope. However, the evidence that
specific genetic variants, by reducing either the activity of specific
enzymes involved in cortisol degradation (e.g., the 11ß-
hydroxysteroid dehydrogenase) or the sensitivity of
glucocorticoid receptor to cortisol, might increase or decrease
the risk to develop AD, respectively, opens new avenues about
the role of tailored medicine for an early diagnosis of dementia.
Chemokines and their receptors are widely distributed in both
neurons and glial cel ls and play a pivotal role in
neuroinflammation. Zuena et al. highlighted the contribution
of prokineticin 2 and its receptors in the pathogenesis of AD; the
authors, after a careful analysis of available preclinical data,
strong support the hypothesis that the pharmacological
antagonism of prokineticin receptors could reduce
neurodegeneration, thus including these chemokines in the
arena of novel and promising drug targets in AD. The
contribution of glial cells, in particular astrocytes, to
neuroinflammation is a blooming field of research. In an
interesting original research, Grimaldi et al. described the
detection of both Ab and pTau aggregates in the retina of AD
patients vis-à-vis with neuronal death and detrimental astrocytes
and microglial activation. These data, confirm the role of
aberrant glial cell activation as a milestone in the pathogenesis
of AD, but also suggest the hypothesis to consider retina as an
easily accessible window for an early detection of pathological
AD hallmarks. Dal Pra et al. described the role of family C G-
protein-coupled receptors (GPCR), in particular those expressed
by astrocytes, in the onset and progression of AD; furthermore,
these authors highlight the role of GPCR as possible drug-targets
to challenge neurodegeneration. The effect of aging on astrocyte
function was explored by Bronzuoli et al. in a transgenic mouse
model of AD (3xTg-AD): the authors demonstrated how aging,
rather than AD progression, importantly affects morphology and
functions of hippocampal glial cells. These results, novel and
provocative, should prompt researchers to further study the role
of astrocytes and microglia in both physiological and
pathological aging. Recent studies have demonstrated how
Frontiers in Pharmacology | www.frontiersin.org 26
brain microRNAs participate in multiple aspects of AD
pathology: in this regard, Wang, Liu et al. studied microRNA-
200a-3p (miR-200a-3p) in transgenic preclinical model of AD
(APP/PS1 and SAMP8 mice) and in the blood of AD patients.
The authors concluded that this microRNA is neuroprotective
through the inhibition of Ab overproduction via suppression of
the expression of BACE1 and the synergistic decrease of pTau
hyperphosphorylation. The contribution of mitochondria-
derived reactive oxygen species in neuronal death is another
quite exploited line of research in neurodegenerative diseases.
Cenini and Voos provided an updated and exhaustive review
about the potential therapeutic efficacy of several agents,
including some nutritional antioxidants, to challenge AD by
acting at the mitochondrial level. However, the authors
concluded that, despite the huge lines of preclinical evince
supporting this idea, there is no clinical evidence strong
enough to support the hypothesis that mitochondria
pharmacological manipulation is currently an option for
AD therapy.

The progressive loss of cognitive function in AD subjects was
associated to the early impairment in synaptic transmission due
to Ab deposition. Long-term potentiation (LTP) and long-term
depression (LTD) are the two most characterized forms of
durable synaptic strength, particularly in the hippocampal
region, and the magnitude of LTP and LTD is considered as
an index of cognitive function in many different experimental
conditions. In an interesting mini review, Mango et al. described
how LTP and LTD are dysfunctional in several preclinical
models of AD. Furthermore, these authors discussed the
possible beneficial effects of either investigational agents or
non-invasive treatments, such as repetitive transcranial
magnetic stimulation and transcranial direct current
stimulation, to contrast or slow-down dementia by modulating
synaptic plasticity. In a preclinical model of early AD
amyloidosis, the McGill-R-Thy1-APP transgenic rat, Qi et al.
described the effects of soluble Ab on synaptic plasticity.
According to this study, pre-plaque Ab mediated an age-
dependent inhibition of both LTP and novelty exploration-
induced depotentiation in these animals, but only at apical
synapses in the CA1 area of hippocampus. The differential
susceptibility of plasticity at apical and basal synapses suggests
a circuit-selective reduction in the dynamic range of synaptic
gain and weakening.

An important aspect that healthcare practitioners must deal
with, is the onset of comorbidities in AD patients due to the
abnormal Ab deposition in brain. Cordone et al. provided a
detailed review about the occurrence of sleep disturbances in AD
subjects as early as Ab accumulates in the brain. The authors
raised the alarm, based on a restricted number of clinical trials,
that sleep disruption could lead to deleterious effects on Ab
accumulation in healthy populations. The most useful approach
to reduce this risk is to encourage virtuous behavior, such as
reducing both the use of psychoactive substances and the time of
exposure to light in the evening, practicing physical and social
activities, and keeping constant bed and wake times. With regard
to pharmacological treatments, melatonin was extensively
February 2020 | Volume 11 | Article 157

https://doi.org/10.3389/fphar.2019.00976
https://doi.org/10.3389/fphar.2019.00622
https://doi.org/10.3389/fnins.2019.00925
https://doi.org/10.3389/fphar.2019.01282
https://doi.org/10.3389/fphar.2019.00644
https://doi.org/10.3389/fphar.2019.00806
https://doi.org/10.3389/fphar.2019.00902
https://doi.org/10.3389/fphar.2019.00778
https://doi.org/10.3389/fnins.2019.00861
https://doi.org/10.3389/fphar.2019.00695
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Mancuso and Gaetani Editorial: Alzheimer’s Disease: Original Mechanisms
studied for this purpose, but the final evidence supporting its
beneficial role to improve cognitive skills by restoring sleep
efficiency is still lacking. Depression is another comorbidity
frequently occurring in AD patients, in particular during the
preclinical stage, and several lines of evidence have linked soluble
Ab formation with depressive state (Colaianna et al., 2010; Chi
et al., 2014). On this regard, Morgese and Trabace summarized
the preclinical and epidemiological studies about the role of
monoaminergic system impairment as a cause of depression in
AD and proposed novel therapeutic approaches based on the
modulation of such a neurotransmitter system.

The use of medicinal plants, endowed with antioxidant and
neuroprotective features, to contrast neurodegeneration is
currently a hot field of research. Angeloni et al. provided a
complete mini review on the neuroprotective effects of icariin, a
prenylated flavonoid considered as the main bioactive of Herba
epimedii (a Chinese herbal medicine), in AD. The authors
described the pharmacokinetics of icariin as well as the
antinflammatory and antioxidant effects in AD. Similarly,
Retinasamy et al. described the neuroprotective and nootropic
outcomes of Orthosiphon stamineus, a medicinal plant abundant
in Southeast Asia, in scopolamine-treated rats. Beggiato et al.
overviewed the neuropharmacology ofN-palmitoylethanolamide
(PEA), a lipid mediator belonging to the class of the N-
acylethanolamides and firstly isolated from soy lecithin, egg
yolk, and peanut meal. On these bases, both icariin and
Orthosiphon stamineus, as well as PEA, have been proposed as
potential adjuvant therapies in AD subjects.

Over the last few years, many drugs, initially authorized and
marketed for the treatment of other diseases, have proven to be
potentially effective for the treatment of AD. Ono and Tsuji and
Balducci and Forloni put under the spotlight cilostazol and
doxycycline, respectively. The first is an antiplatelet drug used
for the treatment of intermittent claudication and the second is a
wide-spectrum antibacterial drug belonging to the tetracycline
family. Both cilostazol and doxycycline were mainly tested in
preclinical models of AD and they showed neuroprotective
Frontiers in Pharmacology | www.frontiersin.org 37
properties in terms of inhibition of soluble Ab oligomerization
and aggregation as well as improvement of antioxidant defense
in the brain. Although the efficacy of these two drugs in AD
subjects has not been definitively proven (some clinical trials are
still ongoing), a possible reposition strategy should be considered
for these two agents. LC1405 (7-pyrrolidinethoxy-40-
methoxyisoflavone) is a novel potential H3 receptor antagonist
which has been shown to reduce neurodegenerative damage,
ameliorate cholinergic dysfunction and improve learning and
memory in an APP/PS1 double transgenic mouse model of AD
(Wang, Fang et al.). Morroni et al. reported the neuroprotective
effects of a novel feruloyl-donepezil hybrid compound able to
reduce neural damage and improve spatial cognition in mice.
This approach is quite interesting, because these “chimeric”
drugs take advantage of the pharmacological activities of each
compound providing an efficient synergism in terms
of neuroprotection.
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Alzheimer’s disease (AD) is a neurodegenerative disorder affecting more than 35 million
people worldwide. As the prevalence of AD is dramatically rising, there is an earnest
need for the identification of effective therapies. Available drug treatments only target
the symptoms and do not halt the progression of this disorder; thus, the use of
natural compounds has been proposed as an alternative intervention strategy. Icariin, a
prenylated flavonoid, has several therapeutic effects, including osteoporosis prevention,
sexual dysfunction amelioration, immune system modulation, and improvement of
cardiovascular function. Substantial studies indicate that icariin may be beneficial
to AD by reducing the production of extracellular amyloid plaques and intracellular
neurofibrillary tangles and inhibiting phosphodiesterase-5 activity. Moreover, increasing
evidence has indicated that icariin exerts a protective role in AD also by limiting
inflammation, oxidative stress and reducing potential risk factors for AD such as
atherosclerosis. This mini-review discusses the multiple potential mechanisms of action
of icariin on the pathobiology of AD including explanation regarding its bioavailability,
metabolism and pharmacokinetic.

Keywords: icariin, icaritin, icariside, phytochemicals, Alzheimer’s disease, oxidative stress, inflammation

INTRODUCTION

Alzheimer’s disease (AD) is a progressive irreversible neurodegenerative disease that is becoming
a population aging-related concern for public health systems all over the world due to its direct
and indirect costs (Dos Santos et al., 2018). Clinically, AD is mainly characterized by cognitive
and memory decline and accounts for up to 70% of all dementia cases in the elderly (Hebert
et al., 2003) affecting more than 35 million people worldwide (Povova et al., 2012). AD possesses a
multifactorial etiology that involves different pathophysiological processes like abnormal protein
aggregation, neurons and synapses degeneration, neuroinflammation, mitochondrial damage,
oxidative stress and excitotoxicity, which interfere with several neurotransmitters signaling
pathways (Behl and Ziegler, 2017).

In particular, two major hallmarks characterized AD: extracellular accumulation of
amyloid β peptide (Aβ) and intraneuronal aggregation of tau protein also known as
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neurofibrillary tangles (NFTs) (Calderon-Garcidueñas and
Duyckaerts, 2017). Aβ is synthesized in the brain by the cleavage
of the transmembrane amyloid precursor proteins (APP). Two
secretases are responsible for Aβ production: β-secretase activity
cleaving enzyme (BACE1) and the γ-secretase complex. BACE1
cleaves APP, producing an APP C-terminal fragment, which
is subsequently cleaved within the transmembrane domain by
γ-secretase at 40 or 42 residues, leading to the release of two
different Aβ peptides Aβ1−40 or the most abundant Aβ1−42
(Thal et al., 2015) due to the variability in the C-terminus
of Aβ (Tamagno et al., 2005). When APP is catabolized by
other enzymatic activities (α- and Z-secretase complexes), Aβ

is not produced.
In the normal brain, tau has 2 or 3 phosphate groups and

binds to microtubules through electrostatic interaction (Jho
et al., 2010). In AD, tau becomes hyperphosphorylated and the
phosphorylation alters the net charge affecting the conformation
of the microtubule binding region, thereby causing detachment
of tau from microtubules that accumulates inside the neurons and
aggregate to form NFTs (Trojanowski and Lee, 2002).

Beside Aβ plaques and NFTs, more than 50% of AD patients
exhibit concurrent α-synuclein pathology (Twohig et al., 2018).
α-synuclein is a 140 amino-acid protein abundantly expressed
in neuronal presynaptic terminals. Different studies suggest that
α-synuclein might be involved in the development of AD from
the very early stages of Aβ pathology formation (Uéda et al., 1993;
Vergallo et al., 2018).

Two other recognized pathological features of AD are
neuroinflammation and oxidative stress (González-Reyes et al.,
2017). In the normal brain, microglia does not produce
proinflammatory molecules or reactive oxygen species (ROS), but
in AD, Aβ induces the activation of astrocyte and microglia with
a sustained release of proinflammatory molecules (Yucesoy et al.,
2006). Elevated brain concentrations of inflammatory cytokines
such as interleukin-1α (IL-1α), IL-β, IL-6, and tumor necrosis
factor-α (TNF-α) have been associated with AD (Zilka et al.,
2006). It has been shown that brain tissues in AD patients are
exposed to oxidative stress (Gella and Durany, 2009), a condition
characterized by an imbalance between ROS production and the
endogenous antioxidative defense system.

Another very common feature of patients with AD is
vascular dysfunction (Iadecola, 2005). It has been observed
that a reduction in cerebral blood flow leads to a decline of
Aβ clearance from the brain promoting neuronal degeneration
and onset of AD (Zlokovic, 2011). On these bases, it is very
important to improve endothelial function to prevent/counteract
AD. Phosphodiesterase-5 inhibitors might interfere with the
pathophysiological processes of AD such as neurovascular
dysfunction (Sabayan et al., 2010). In particular, they can
exert their positive effect on learning and memory by
activating the NO/cGMP pathway (Puzzo et al., 2009) that
produces a regulatory effect on endothelial function by relaxing
blood vessels (Schulz et al., 2002). Moreover, cGMP could
be used as a secondary messenger of the neurotransmitter
acetylcholine (de Vente, 2004). Consequently, the inhibition
of phosphodiesterase-5 is considered a novel approach to
prevent/counteract AD.

Nowadays, several therapeutic strategies are used in clinical
practice to counteract AD, however, all the drugs utilized are not
able to alt or slow AD progression and possess many side effects
(Mancuso et al., 2011). Therefore, there is a great interest in
exploring new potential drug candidates for the treatment of AD.
Antioxidant and anti-inflammatory activities of phytochemicals
have been widely reported (Angeloni and Hrelia, 2012; Tarozzi
et al., 2013; Angeloni et al., 2015, 2017). In this background,
nutraceuticals are interesting therapeutic compounds to be
explored as preventive and beneficial agents for AD. Icariin is a
flavonoid present in Herba Epimedii, a traditional Chinese herbal
medicine. Icariin has been shown to possess several biological
activities. This mini-review focuses on the role of icariin and
its metabolites in AD. Substantial studies indicate that icariin
and its metabolites may be beneficial to AD by reducing the
production of extracellular amyloid plaques and intracellular
NFTs and inhibiting phosphodiesterase-5 activity. Moreover,
increasing evidence has indicated that icariin exerts a protective
role in AD also by limiting inflammation, oxidative stress and
reducing potential risk factors for AD such as atherosclerosis.

ICARIIN

Icariin (molecular formula: C33H40O15, molecular weight:
676.67 g/mol) is a prenylated flavonoid considered as the
main bioactive of Herba Epimedii, a traditional Chinese herbal
medicine used since thousands of years. Giving its therapeutic
effects such as osteoporosis prevention, ameliorating sexual
dysfunction, modulation of immune system, and improvement
of cardiovascular function, Herba Epimedii has been included
into Chinese pharmacopeia, indicating icariin as quality marker
(Committee, 2010; Tang and Eisenbrand, 2011).

In tradition, icariin has been evidenced to possess anti-
inflammatory, antioxidant, antidepressant and aphrodisiac
effects (Liu et al., 2004; Tang and Eisenbrand, 2011; Liu et al.,
2015). In addition, several in vitro and in vivo reports show many
pharmacological activities elicited by icariin.

In different animal models of osteoporosis icariin
demonstrated significant osteogenic effects mediated by
Wnt/β-catenin and bone morphogenetic protein (BMP)
signaling pathways (Wei et al., 2011; Li et al., 2013, 2014).
Moreover, a clinical trial, conducted in postmenopausal women,
showed a positive effect of icariin on bone mineral density
(Zhang et al., 2007). Preliminary research suggests that icariin
could be useful for treating erectile dysfunction as it was active
on cavernous smooth muscle cells (Ning et al., 2006). The most
promising effect of icariin at cardiovascular level is the promotion
of stem cell differentiation into beating cardiomyocytes which
suggests its likely application in cardiac cell therapy or tissue
engineering (Jin et al., 2010; Zhou L. et al., 2013; Zhou et al.,
2014). Moreover, icariin has also been evaluated for prevention
and treatment of thrombosis in atherosclerosis as it reduces
platelet adhesiveness and aggregation besides a decrease in serum
cholesterol (Zhang et al., 2013). Multiple studies have indicated
that icariin has been found to be beneficial to cancer (Zhang Y.
et al., 2014), rheumatoid arthritis (Sun et al., 2013), immune

Frontiers in Pharmacology | www.frontiersin.org 2 March 2019 | Volume 10 | Article 27110

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00271 March 15, 2019 Time: 17:44 # 3

Angeloni et al. Icariin in Alzheimer’s Disease

system (Li et al., 2011), liver disease (Lee et al., 1995), diabetic
nephropathy (Qi et al., 2011), sedative (Pan et al., 2005) and so
on. Icariin has been found to possess multiple neuroprotective
effects: it improves survival and function of neurons (Guo et al.,
2010; Li F. et al., 2010) and triggers their self-renewal through
neural stem cells (Huang et al., 2014).

PHARMACOKINETICS OF ICARIIN

Despite the numerous studies on icariin, the main challenge
remains its very low oral bioavailability due to the
physicochemical characteristics (Chen et al., 2008), and
P-glycoprotein-mediated efflux in intestinal mucosa (Zhang Y.
et al., 2012). Different studies indicated the importance of icariin
hydrolysis by lactase phlorizin hydrolase in the small intestine
and by microbiota β-glucosidase to release metabolites before its
absorption (Zhao et al., 2010; Chen et al., 2011; Qian et al., 2012).
In addition, icariin is a prenylated flavonoid and it has been
reported that the prenyl-moiety decreases the bioavailability and
plasma absorption of prenylated flavonoids (Chen et al., 2014). In
this regard the presence of icariin in urine was less than 0.425%
showing that probably the most of icariin is metabolized and
excreted as metabolites (Figure 1) (Yu et al., 2016). Fortunately,
the modern techniques offer a range of methods to overcome
this issue. To increase icariin bioavailability, researchers have
developed several drug delivery systems such as combining
icariin with snailase (an exogenous hydrolase) to improve
intestinal hydrolysis (Liu et al., 2017), encapsulating icariin into
liposome (Yang et al., 2012), producing icariin/hydroxylpropyl-
beta-cyclodextrin inclusion complex that enhances intestinal
absorption probably through a solubilizing effect and/or the
inhibition of P-glycoprotein (Zhang Y. et al., 2012).

Several methods have been used to investigate the
pharmacokinetic characteristics of icariin and its metabolites
like UFLC-TOF/MS (Qian et al., 2012), HPLC-MS/MS (Cheng
et al., 2015; Sun et al., 2018), a liquid chromatographic

FIGURE 1 | Structures of icariin and its metabolites. “Glu” refers to Glucose,
“Rha” refers to Rhamnose.

method combined with electrospray ionization tandem mass
spectrometry (Xu et al., 2017), and GC-MS (Shen et al., 2007).

After oral administration of Epimedium extract, the HPLC-
MS/MS analysis of rat plasma revealed a rapid absorption and
elimination of icariin, with a t1/2 ranged from 0.5 to 1 h;
meanwhile the elimination of icariside II, which is chemically
the monoglycoside form of icariin and in vivo predominant
bioactive compound, from plasma takes a longer time from 3 to
18 h (Sun et al., 2018). Another study using a LC-MS method
reported icariside II and icaritin (the aglycone form of icariin)
as the major metabolites of icariin in rat feces after both oral
and intramuscular administration (Xu et al., 2017). Interestingly,
analyzing the data from various tissues (liver, heart, spleen, lung,
kidney, brain, testicle, uterus and ovary) of male and female rats,
the distribution of icariin differs in total tissue concentration
(much higher in male rats than female rats) with the exception of
genital organs (higher in females) (Xu et al., 2017). Interestingly,
the pharmacokinetic profile of pure icariin depends on the
route of administration. After oral administration, icariside II
is the main form in rat plasma as 91.2% icariin is converted
in it, but after intravenous injection only 0.4% of icariin is
transformed in icariside II, demonstrating the role of intestinal
microbiota in metabolizing icariin administrated per o.s. (Cheng
et al., 2015). Indeed, it has been reported that icariin is
metabolized to icaritin via icariside I and II by the rat intestinal
microbiota (Zhou J. et al., 2013). Recently, a study on icariin
metabolism by human microbiota evidenced a different pattern
of metabolites depending on bacterial strains, and interestingly
icariside I was not detected (Wu et al., 2016). In particular,
the metabolites produced by human bacteria were icariside II,
icaritin, and desmethylicaritin where the 4′-methyl of icaritin is
removed. In human serum, the peak of icaritin was observed
at 8 h after Epimedium decoction intake, suggesting that the
conversion of icariin to icaritin is primarily at intestinal level,
differently desmethylicaritin was not observed (Shen et al., 2007).
Unfortunately, studies of icariin metabolism and distribution
in humans are really few and should be improved to have a
comprehensive view of the icariin pharmacokinetics properties.
What emerged from these studies is that icariin is scarcely
present in plasma because of its rapid elimination, and the
tissue distribution of icariin in the brain is scarce, incoherently
with the largely literature supporting neuroprotective effects
(Xu et al., 2017; Zhang et al., 2017). Therefore, a possible
explanation to this controversial issue could be that the observed
biological effects are, in part, mediated by icariin metabolites.
However, it is important to further improve the knowledge of
the possible effects and mechanisms of icariin metabolites at
cerebral level and against AD, and to develop and characterize
novel delivery systems to increase the uptake and distribution of
icariin in the brain.

ICARIIN AND ITS METABOLITES IN Aβ

NEUROTOXICITY

The effects of icariin in counteracting Aβ deposition and Aβ

induced neurotoxicity have been largely investigated. The first
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study that reported an effect of icariin on Aβ was carried
out in rats challenged with Aluminum (Luo et al., 2007). In
particular, icariin (60 and 120 mg/kg) administrated by gavage
for 3 months significantly attenuated Aβ1−40 production induced
by Aluminum treatment. Besides, icariin counteracted learning
and memory deficit, increased SOD activity and decreased
MDA levels. These findings were further deepened by the
same authors in a different AD model (Nie et al., 2010). In
rats treated with Aβ25−35, icariin improved the learning and
memory deficits by both a decreased production of insoluble
fragments of Aβ due to the downregulation of β-secretase
expression (BACE1) and to its antioxidatant activity. In the
same experimental model, icariin nearly completely suppressed
the abnormal inward calcium currents induced by Aβ25−35 in a
dose dependent manner suggesting a potential neuroprotective
effect of icariin on Aβ25−35-induced neurotoxicity via the
balance of intracellular calcium homeostasis (Li L. et al., 2010).
Urano and Tohda (2010) showed that icariin (50 µmol/kg)
administrated for 8 days was effective in improving spatial
memory impairment in 5×FAD rats, an AD model characterized
by an elevated production of Aβ1−42 (Oakley et al., 2006).
In a rodent APP/PS1 model of cerebral amyloidosis for AD
a icariin (100 mg/kg by daily gavage) treatment for 10 days
significantly attenuated Aβ deposition and restored impaired
nesting behavior (Zhang Z. Y. et al., 2014). Zhang L. et al.
(2014) demonstrated that icariin (100 µmol/kg for 6 months)
counteracted Aβ burden and deposition in the hippocampus
of APPV7171 transgenic mice by reducing the expression
of both APP and BACE1. In the same experimental model,
icariin (30, 60 mg/kg twice a day for 4 months) improved
learning and memory of APP/PS1 mice in Y-maze tasks,
reduced Aβ deposition, and down-regulated both APP and
(phosphodiesterase-5) PDE5 (Zhang et al., 2010). Of note, the
inhibition of PDE5 stimulated the NO/cGMP signaling pathway
as evidenced by an increased expression of three nitric oxide
synthase (NOS) isoforms, together with increased NO and cGMP
levels in the hippocampus and cortex of mice. Similar results
were obtained by Li F. et al. (2015) in Tg2576 mice treated
with icariin (60 mg/kg) for 3 months. Icariin improved spatial
working memory, reduced the levels of both Aβ1−40 and Aβ1−42,
downregulated APP expression and enhanced neurogenesis.
These aspects were further investigated using a triple-transgenic
mouse model of Alzheimer’s disease (3× tg-AD) (Chen et al.,
2016). An icariin treatment (65 mg/kg) for 6 months enhanced
neuronal cell activity as identified by an increase of brain
metabolite N-acetylaspartate and ATP production, preserved the
expressions of mitochondrial key enzymes such as cytochrome
c oxidase subunit 4 (COX IV) and pyruvate dehydrogenase
E1 component subunit alpha (PDHE1α), and postsynaptic
density protein 95 (PSD95), reduced Aβ plaque deposition
in the cortex and hippocampus, and down-regulated BACE1
expression. Intragastric administration of icariin reversed the
decreases in PSD95, brain derived neurotrophic factor (BDNF),
pTrkB, pAkt, and pCREB expressions induced by Aβ1−42
injection in rats suggesting that icariin may improve synaptic
plasticity through the BDNF/TrkB/Akt pathway (Sheng et al.,
2017). The ability of icariin to increase pCREB was also observed

in a senescence accelerated prom mouse model (SAMP8)
characterized by early Aβ deposition (Zhang Z. et al., 2012).
Moreover, icariin decreased the level of Aβ in rat hippocampus
subjected to permanent occlusion of bilateral common carotid
arteries (BCCAO) (Li W. X. et al., 2015), a model used to
mimic cerebral hypoperfusion that occurs in vascular dementia
and Alzheimer’s. This reduction of Aβ deposition was related to
different effects such as the down-regulation of APP and BACE1,
and an increased expression of insulin-degrading enzyme (IDE)
and disintegrin and metalloproteinase domain 10 (ADAM10) in
rat hippocampus. In an in vitro model, icariin (40–160 µg/mL)
was able to dose-dependently protect cortical neurons against
Aβ1−40 induced damage by enhancing the expression of CART
and activating ERK signaling pathway (Sha et al., 2009). In
addition, icariin 0.01 µM was able to counteract the axon
and dendritic shortening induced by Aβ1−42 in rat cortical
neurons (Urano and Tohda, 2010). In cultured rat PC12 cells
icariin (20 µM) counteracted apoptosis induced by Aβ25−35
and this effect appeared to be mediated by the activation
of the PI3K/Akt signaling pathway (Zhang et al., 2015). In
agreement with these results, Zeng et al. (2010b) observed that
icariin (5–20 µM) dose dependently reduced cell death and
apoptosis in PC12 cells exposed to Aβ25−35. In addition, the
authors demonstrated that this protection is partially due to
activation of the PI3K/Akt signaling pathways that induces the
inhibition of GSK-3β and, consequently, reduces tau protein
hyperphosphorylation. Icaritin, another compound extracted
from Epimedium, demonstrated to be neuroprotective against
the toxicity induced by Aβ25−35 in primary rat cortical neurons
(Wang et al., 2007). In particular, icaritin increased cell viability
and reduced apoptosis by an estrogen receptor dependent
mechanism and by activating ERK1/2 MAPK pathway.

ICARIIN AND ITS METABOLITES IN
OXIDATIVE STRESS

Oxidative stress plays a crucial role in the pathogenesis of
many neurodegenerative diseases including AD. The antioxidant
activity of icariin has been demonstrated in primary cortical
neurons exposed to H2O2 (Zhang et al., 2010). In particular,
icariin (1.2 µM) counteracted H2O2-induced neurotoxicity by
reducing ROS production, increasing mRNA expression of
the antioxidant enzymes catalase and peroxiredoxin 1 (PRX1)
by a mechanism mediated by SIRT1 up-regulation. Icariin
(5-50 µM) attenuates LPS-induced oxidative stress in primary
microglial cells reducing ROS level in a dose dependent
manner (Zeng et al., 2010a). In an in vivo study carried
out in rats, icariin showed a protective effect against learning
and memory deficit induced by aluminum by increasing
SOD activity and decreasing malondialdehyde (MDA) levels
(Luo et al., 2007). It has been shown that iron overload
is involved in the progression of AD (El Tannir El Tayara
et al., 2006). Excessive iron levels lead to increased oxidative
stress through the Fenton reaction (Rolston et al., 2009).
In order to counteract iron overload, APP/PSI mice were
treated with icariin (120 mg/kg) for 3 months. Icariin reduced
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iron overload and protected mice against oxidative stress
reducing lipid peroxidation and increasing the activity of
the antioxidants enzymes SOD and glutathione peroxidase
(Zhang et al., 2018).

Icariside also demonstrated to be effective in counteracting
oxidative stress. Icariside II attenuated Aβ25−35-induced
intracellular and mitochondrial ROS generation in PC12
cells (Liu et al., 2018).

ICARIIN AND ITS METABOLITES IN
NEUROINFLAMMATION

As previously underlined, AD is associated with
neuroinflammation, which is triggered by microglia activation
in the brain (Heneka et al., 2015). It is now widely accepted
that these brain cells are likely to contribute to the mechanisms
of neuronal damage and cognitive loss (Sarlus and Heneka,
2017). Icariin has been reported to have an anti-inflammatory
effect on primary rat microglial cultures activated by LPS (Zeng
et al., 2010a). In particular, icariin (5–50 µM) reduced the
release of nitric oxide (NO), prostaglandin E (PGE)-2 in a
dose dependent manner and down-regulated the expression

of proinflammatory cytokines such as tumor necrosis factor
(TNF)-α, interleukin (IL)-1β and IL-6. Icariin also inhibited
the protein expression of inducible nitric oxide synthase
(iNOS) and cyclooxygenase (COX)-2. The authors showed
that the mechanisms behind this anti-inflammatory effect is
the inhibition of the TAK1/IKK/NF-κB and JNK/p38 MAPK
pathways. The ability of icariin (100 mg/kg for 10 days) to
counteract microglia activation was also observed in the
cortex and hippocampus of APP/PSI mice (Zhang Z. Y. et al.,
2014) and these data were corroborated by a recent study of
Zhang et al. (2018) that showed that icariin (120 mg/kg for
3 months) reduced neuroinflammation in the cerebral cortex
of APP/PSI transgenic mice inhibiting the release of IL-6, IL-1β

and TNF-α.
In an AD model obtained by ICV injection of STZ

in rats, icariside II (10 mg/kg for 21 days) reduced
the expression of TNF-α, IL-1β, COX-2, TGF-b1 by
preventing the degradation of IkB-α and NFK-B p65
phosphorylation (Yin et al., 2016). These findings were
confirmed by the results of Deng et al. (2017) showing that
icariside II (20 mg/kg for 15 days) attenuated Aβ25−35-
induced expression of TNF-α, IL-1β, COX-2, and iNOS in
rat hippocampus.

FIGURE 2 | Icariin molecular targets in AD.
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CONCLUSION

As reported, icariin, besides its use in complementary and
alternative traditional Chinese medicine, is a very promising
molecule to counteract many pathophysiological processes of
AD, having an impact on Aβ production and removal pathways,
on oxidative stress mediated effects and on neuroinflammatory
cascade (Figure 2).

The practical possibilities of AD prevention and counteraction
with this pleiotropic compound should be further investigated in
clinical studies and represent a challenge for future researches.
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In studies on the treatment of Alzheimer’s disease (AD), in which cognition is enhanced
even modestly or selectively, it has been considered that the histamine H3 receptor
(H3R) may be a potential target. In this study, we aimed at evaluating the ability of
7-pyrrolidinethoxy-4′-methoxyisoflavone (indicated as LC1405), a novel potential H3R
antagonist identified from our H3R antagonist screening system, to ameliorate amyloid
β (Aβ)-induced cognitive deficits, and to explore the underlying mechanisms that are
related to H3R-modulated signaling. Our results demonstrated that LC1405 effectively
reduced the progression of Aβ-associated disorders, such as improved learning
and memory capabilities, preserved tissues from suffering neurodegeneration and
ultrastructural abnormalities, and ameliorated cholinergic dysfunction in an APP/PS1
double transgenic mouse model of AD. In an in vitro model, LC1405 protected
neuronal cells against copper-induced Aβ toxicity, as demonstrated by the improvement
in cell viability and decrease in neuronal apoptotic ratio. In addition, treatment with
LC1405 resulted in the up-regulation of acetylcholine (ACh) or histamine release
and provided neuroprotection through cellular signaling cascades involving H3R-
mediated cAMP/CREB and AKT/GSK3β pathways. Furthermore, the beneficial effects
of LC1405 on Aβ-mediated toxicity and H3R-mediated cAMP/CREB and AKT/GSK3β

axes were reversed after pharmacological activation of H3R. In conclusion, our
results demonstrated that LC1405 blocked Aβ-induced toxicity through H3R-modulated
signaling transduction both in vitro and in vivo. The results also suggested that LC1405
might have translational potential as a complementary therapy to control disease
progression in AD patients who developed cognitive deficits with H3R-related ACh
neurotransmission abnormality.

Keywords: acetylcholine, Alzheimer’s disease, amyloid beta-peptide, cyclic AMP response element binding
protein, histamine H3 receptor
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INTRODUCTION

Alzheimer’s disease (AD), the most common cause of dementia
in elderly population, is characterized by complicated and
multifactorial pathophysiological alterations, primarily including
senile plaque deposits, Tau protein hyperphosphorylation, high
oxidative stress, metal ion dyshomeostasis, and neurotransmitter
system irregularities (Ballard et al., 2011; Chiang and Koo, 2014).
Currently, the principal treatment to combat AD in clinical
practice involves the administration of acetylcholinesterase
(AChE) inhibitors and the N-methyl-D-aspartate (NMDA)
receptor antagonist memantine, which resulted in limited
symptomatic improvement. However no effective treatment
strategy is available that results in recovery or even retardation
in the progression of the disease. Therefore, it is of utmost
importance to develop novel and effective therapies for the
treatment of AD.

Over the past decade, preclinical studies and clinical trials
identified histamine H3 receptor (H3R), a histamine receptor
subtype that is predominantly expressed in neurons of the
central nervous system (CNS), as a possible target for cognition-
enhancing candidates that may have beneficial effects on mild-
to-moderate AD (Esbenshade et al., 2006; Bonaventure et al.,
2007; Mani et al., 2017). Among the diverse H3R antagonists
investigated up to now, two small H3R antagonists, ABT-239
and A-431404, showed procognitive effects in ketamine and MK-
801-induced animal models (Brown et al., 2013). Pre-clinical
studies demonstrated that several H3R antagonists ameliorate
cognitive deficits and related behaviors in a substantial number of
animal models characterized by learning or memory dysfunction
(Browman et al., 2004).

In AD, H3R in the prefrontal cortex and hippocampus
acts as a presynaptic auto-receptor coupled to Gαi/o-proteins
that controls the synthesis and release of histamine, and as a
heteroreceptor on histaminergic and non-histaminergic neurons
in regulating the release of other neurotransmitters, including
acetylcholine (ACh), dopamine, glutamate, norepinephrine, and
gamma-aminobutyric acid (GABA) (Clapham and Kilpatrick,
1992; Ligneau et al., 1998; Bacciottini et al., 2002; Medhurst
et al., 2007). Furthermore, within the neuronal intracellular
signal transduction H3R participates in a variety of pathways
(Clapham and Kilpatrick, 1992; Esbenshade et al., 2008;
Bhowmik et al., 2014). When ligands bind to H3R-activated Gi
proteins, adenylyl cyclase (AC) is inhibited, leading to decreased
levels of cyclic adenosine monophosphate (cAMP) and reduced
phosphorylation-activation of cAMP response element binding
protein (CREB), a transcription factor that is closely related
to cognitive functions (Bhowmik et al., 2014). In addition,
pathological alterations of phosphatidylinositol-3-kinase/protein
kinase B/glycogen synthase kinase 3β (PI3K/AKT/GSK3β)
signaling transduction are due to β-amyloid (Aβ)-stimuli via
a variety of signal transduction pathways, thereby amplifying
Aβ-induced pathogenic responses in the brain through abnormal
H3R agonistic reactions (Bhowmik et al., 2014). Accordingly,
a large number of previous studies demonstrated that targeted
activation of H3R in neurons resulted in an accelerated cognitive
decline and aggravated Aβ-induced neuronal perturbation

in β-amyloid precursor protein (APP) transgenic mice,
accompanied by progressive loss of cholinergic neurons
and destructive signaling pathways involving cAMP/CREB and
AKT/GSK3β cascades (Bhowmik et al., 2014; Bardgett et al.,
2011; Bitner et al., 2011). Therefore, the central role of H3R in
AD suggests that it may be an attractive target in the development
of novel therapies against diseases using H3R antagonists.

In the present study, we have investigated cognitive
improvement and neuronal protection using a potential
non-imidazole H3R antagonist, 7-pyrrolidinethoxy-4′-
methoxyisoflavone (Figure 1A, indicated as LC1405) that
has affinity with human H3R and high H3R inhibition
power in vitro. We investigated its action against Aβ-induced
neurotoxicity, and the underlying mechanisms of action
against Aβ toxicity correlated with H3R-modulated signaling
both in APP and presenilin 1 (PS1) double transgenic mice
and copper-induced Aβ toxicity in APP Swedish mutation
overexpressing SH-SY5Y cells.

MATERIALS AND METHODS

Animals and Drug Treatment
Heterozygous APPswe695/PSEN1dE9 (APP/PS1) transgenic
mice and age-matched wild-type (WT, C57BL/6) littermates
were obtained from the Model Animal Research Center of
Nanjing University (Nanjing, China). All animal studies were
approved by the Institute of Medicinal Biotechnology, Chinese
Academy of Medical Sciences (Beijing, China) and performed in
accordance with ethical guidelines of the Experimental Animal
Care and Use Committee.

Nine-month-old WT mice and APP/PS1 transgenic mice were
randomly divided into four groups, including a WT control
group (n = 13, seven males and six females), LC1405-treated
WT group (n = 13, seven males and six females), APP/PS1
control group (n = 13, seven males and six females), and LC1405-
treated APP/PS1 group (n = 13, seven males and six females).
Mice in the WT+LC1405 and APP/PS1+LC1405 groups received
an intragastric administration of LC1405 for 6 d/week at a
dosage of 3 mg/kg. LC1405 was dissolved in 20% hydroxypropyl-
β-cyclodextrin (CMC-Na), thus, mice in the control group
received 20% CMC-Na according to the same modality. Drug
treatment was performed for 20 weeks.

After behavioral tests, mice were divided into three groups
for the parallel evaluation of different parameters. Three mice
per group were transcardially perfused with normal saline
solution, followed by 4% paraformaldehyde (PFA). Then, brains
were collected and subjected to immunohistochemical staining
and transmission electron microscopy. Four mice per group
were chosen for the detection of oxidative stress, cholinergic
activity, Aβ levels, and cAMP content in the brain. Four mice
per group were prepared for quantification of H3R-mediated
signaling transduction in the cortex and hippocampus, such
as phosphorylated CREB, AKT, and GSK3β using ELISA. The
brain of the remaining mice was quickly removed and stored
at −80◦C until further experiments. The acetylcholine and
histamine levels were evaluated in another two WT mouse groups
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(n = 4, two males and two females) that received an intragastric
administration of LC1405 at a dosage of 3 mg/kg dissolved
in CMC-Na or only CMC-Na as control. Mice were randomly
selected for both the initial division into treatment groups and
the subsequent selection for the three experiments.

Behavioral Assessment of Learning
and Memory
Behavioral tests were performed when mice were thirteen months
old, following 20 weeks of treatment with LC1405 or vehicle
control. The Morris Water Maze (MWM) test is a classical visual-
spatial learning technique used in rodents for assessing learning
and memory capabilities hippocampus-dependent (Vorhees and
Williams, 2006). Briefly, during the acquisition trial, mice were
subjected to four training trials per day for five consecutive days.
Both the escape latency (time required to find the platform) and
swimming speed were recorded. At the end of the last trial, the
platform was removed to proceed for the probe trial, which was
carried out at 2 and 48 h post-training. The time the mice spent
in the target quadrant and the frequency of passing through the
platform were recorded.

Contextual short-term memory of the mice was assessed using
a passive avoidance test (Nasehi et al., 2012). The apparatus
consisted of illuminated (bright) and non-illuminated (dark)
compartments. During the acquisition trial, mice were initially
placed in the bright compartment for a maximum of 300 s, and
upon entering the dark compartment received an electric foot
shock (0.3 mA, 2 s). As a measure of memory retention, the initial
latency of mice to enter the dark compartment and error times
were recorded at 24 h after acquisition training.

Immunohistochemical Staining
The brain was embedded in paraffin and dissected into
8 µM sections. Fluoro-Jade B (FJB, Histochem, Jefferson, AR,
United States) and Thioflavin S (Thio S, Sigma, St. Louis, MO,
United States) were used to evaluate neuronal degeneration
and fibrillar Aβ level in hemi-brain tissue sections, respectively,
and were performed using standard histological techniques as
previously reported (Liu et al., 2014, 2018). Brain pathological
features were evaluated on the sections under a fluorescence
microscope (Olympus IX70, Olympus, Tokyo, Japan). The
number of FJB-positive neurons and Thio S-positive neurons
were manually evaluated as the number of neurons in 1 mm2

of the cerebral cortex and hippocampus region. Cell count was
obtained by averaging the counts from 10 sections per mouse.

Ultrastructural Analysis by Transmission
Electron Microscopy
The prefrontal cortex and hippocampus were carefully harvested
from the PFA-perfused brain of the experimental mice and
placed overnight in the fixative [20 mL of 2.5% glutaraldehyde
(Merck, Darmstadt, Germany) and 2.0% PFA (Beijing Chemical
Works, Beijing, China) in 0.15 M cacodylate buffer (Merck,
Darmstadt, Germany)]. Ultrathin sections were cut as previously
described (Yu et al., 2015), and a LEO 906 transmission

electron microscope (Zeiss, Oberkochen, Germany) was used for
ultrastructural imaging.

Measurement of Oxidative Stress and
Cholinergic Activity in the Brain
The hemi-brains of APP/PS1 and WT mice were homogenized
via ultrasonication, and centrifuged at 12,000 × g for 10 min at
4◦C. The concentration of malondialdehyde (MDA), superoxide
dismutase (SOD) and glutathione peroxidase (GSH-Px) within
the homogenates was determined using commercial assay kits
(Jiancheng Biotech, Nanjing, Jiangsu, China) in accordance with
the corresponding manufacturer’s instructions. ACh levels and
the AChE activity were determined using the ultrasensitive
Amplex@ red ACh/AChE assay kit (Molecular Probes, Paisley,
United States) according to the manufacturer’s guidelines.

Acetylcholine Quantification Using
High-Performance
Liquid Chromatography
For conventional analysis, brain tissue ACh levels were quantified
using high-performance liquid chromatography (HPLC) coupled
to electrochemical detection. In brief, ACh was separated on
a BetaBasic C18 column (Thermo-Hypersil, Waltham, MA,
United States; 150 mm × 1.0 mm; particle size, 3 µm)
at a temperature of 25 ◦C using a mobile phase consisting
of 100 mM Na2HPO4, 2.0 mM sodium octanesulfonic acid,
0.5 mM tetramethylammonium chloride and 100 µL of Reagent
MB microbicide (ESA Inc., Chelmsford, MA, United States),
adjusting the pH to 8.0. The separated ACh fraction was placed
in an enzyme reactor (Bioanalytical Systems) which yielded
H2O2 for the detection with an enzyme-coated glassy carbon
electrode with a potential set at 100 mV versus silver/silver
chloride (Ag/AgCl). The sensitivity for ACh detection was
approximately 0.5 fmol/15 µL of sample. Chromatographic
data were collected and quantified by comparison with known
standard concentrations.

Histamine Determination Using
High-Performance
Liquid Chromatography
Brain histamine levels were determined by HPLC and quantified
by fluorometric detection. Brains were homogenized in
3% perchloric acid solution containing 0.5 mM EDTA,
and then centrifuged at 5500 × g for 15 min at 4◦C. The
supernatant was collected and histamine was separated
using a Waters Atlantis C18 HPLC column (Milford, MA,
United States; 150 mm × 3.0 mm; particle size, 3 µm) with
a mobile phase containing 160 mM KH2PO4, 0.45 mM
octanesulfonic acid, 1% methanol and 0.1 mM EDTA (pH
4.5), delivered at 0.5 to 0.7 mL/min. Using a T-piece, the
eluent line was connected to the reagent line, through
which a 0.02% solution of o-phthaldialdehyde (OPA) was
delivered in 0.15 M NaOH at a rate of 0.60 mL/min. The
OPA reagent was mixed with the eluent in a mixing coil
of metal tubing (outer diameter, 1.1 mm; inner diameter,
0.55 mm; length, 1 m) that enabled the derivatization
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reaction at room temperature. The fluorescence of the reaction
product was measured using a fluorometric detector (Ex/Em,
350 nm/450 nm). Chromatographic data were collected and
quantified by comparison with known standard concentrations.
The sensitivity for histamine detection was approximately
20 fmol/20 µL of sample.

Cell Culture and Treatments
To evaluate the neuroprotective effects of LC1405, the Swedish
mutant form of the human APP695 gene was stably transfected
into SH-SY5Y cells that were purchased from the ATCC
(ATCC R©CRL-2266, Manassas, VA, United States), to establish
an AD in vitro model (named APPsw cells). In this cell
model, copper acts as a promotor for triggering Aβ-mediated
neurotoxicity when added as a stimulator into the culture
medium (Zhang et al., 2006; Zhao et al., 2013). Cells
were cultured in DMEM/F12 medium (Invitrogen, Carlsbad,
CA, United States) supplemented with 10% fetal calf serum
(Invitrogen, Carlsbad, CA, United States) and incubated at 37◦C
in a humidified chamber containing 5% CO2. The detailed
protocol and groups were as follows. Cells were randomly
divided into two groups: one group was supplemented with
300 µM copper, whereas the other was not (indicated as
control cells). The group supplemented with copper was divided
into subgroups based on LC1405 concentrations as follows:
0 µM (copper-treated APPsw cells), 0.03 µM, 0.1 µM, 0.3 µM,
1.0 µM, 3.0 µM, and 10.0 µM. Different concentrations of
LC1405 were added at the start of copper-initiated injury, then
cells were incubated for 24 h at 37◦C. To determine whether
H3R inhibition was involved in the neuroprotective effects of
LC1405 against Aβ toxicity, the specific agonists of H1 to
H4, 2-(3-trifluoromethylphenyl) histamine (FMPH), amthamine
dihydrobromide, (R)-(α)-(-)-methylhistamine dihydrobromide
(RAMH) and VUF-8430 were used. Cells were pretreated with
the specific agonists at 1.0 µM for 30 min at 37◦C before being
treated with LC1405.

Cell Viability Assay
Viability was determined by 3-(4,5-dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
(MTS, Promega, Madison, WI, United States). In brief, cells
were incubated for 4 h at 37◦C with an appropriate amount
of MTS according to the manufacturer’s instructions. The
soluble product formazan was detected using a Spark 20M
multimode microplate reader (Tecan Group Ltd., Mannedorf,
Switzerland) at 490 nm.

Cell Immunofluorescence Assay
Cell immunofluorescence is a sensitive fluorescence-based
multiparametric technology that is used to determine the
expression and activity of proteins within a cell. Cells were
seeded in a 96-well plate at a density of 8000 cells/well
in 200 µL medium/well and subjected to all treatments
described in the section 2.8. The apoptotic ratio in vitro
was determined by simultaneous staining with acridine orange
(AO) and ethidium bromide (EB) (Sigma-Aldrich, St. Louis,
MO, United States). After treatment with LC1405 at different

concentrations, 100 µg/mL AO and 100 µg/mL EB were
added to the cells and incubated for 15 min at 37◦C. The
expression of β-APP, p-CREB, and p-PI3K was quantified
using cell immunofluorescence routine procedures as previously
described (Liu et al., 2012). The following primary polyclonal
rabbit antibodies were used: anti-β-APP [1:500, Cell Signaling
Technology (CST), Danvers, MA, United States], anti-p-CREB
(Ser133) (1:120, CST), and anti-p-PI3K p85α (Y607) (1:80,
Abcam, Cambridge, MA, United States). The fluorescent
secondary antibodies used were goat anti-rabbit conjugated
with Alexa Fluor 488 or Alexa Fluor 546 (1:1000, Invitrogen,
Carlsbad, CA, United States). The apoptotic ratio and mean
fluorescence intensity were determined and analyzed using
a Cellomics ArrayScan VTI HCS Reader (Cellomics Inc.,
Pittsburgh, PA, United States) running Morphology Explorer
BioApplication software for the average of 20 fields of view in
each selected well.

Determination of Aβ and
cAMP Concentrations
After the treatment, mouse hemi-brains and APPsw cells were
separately homogenized using ultrasonication and centrifuged
at 12,000 × g for 10 min at 4◦C. An aliquot of mouse hemi-
brains or APPsw cells after homogenization was resuspended
in 2% sodium dodecyl sulfate (SDS) containing protease
inhibitors. After centrifugation, the supernatant was collected
for the detection of soluble Aβ. The remaining SDS-insoluble
pellet was sonicated, dissolved in 70% formic acid, and
centrifuged for 60 min at 100,000 × g, and the supernatant was
collected for the detection of insoluble Aβ. The concentration
of both soluble and insoluble Aβ was quantified using
commercially available ELISA kits (BioSource, Camarillo, CA,
United States) specific for the detection of human Aβ1−40/42.
In addition, soluble Aβ oligomers (oAβ) were detected using
western blot as previously described (Liu et al., 2018).
Another aliquot of mouse hemi-brains was homogenized
in RIPA buffer (Cell Signaling Technology, Danvers, MA,
United States) containing protease inhibitor, phosphatase
inhibitor, and phenylmethyl sulfonylfluoride (PMSF). Forty µg
protein per lane were run on polyacrylamide gel, transferred
onto a polyvinylidenedifluoride membrane, blocked with 5%
BSA in Tris-buffer saline containing 0.1% Tween-20 (TBST)
for 2 h, and subsequently incubated with the primary antibody
overnight, using the rabbit anti-oligomer conformation-specific
A11 (pre-fibrillar Aβ oligomer, 1:1000, Invitrogen, Carlsbad,
CA, United States) diluted in blocking solution. Membranes
were washed with TBST prior to incubation with horseradish
peroxidase-labeled (HRP)-linked secondary antibody (1:1000,
ZSGB-Bio, Beijing, China) at room temperature for 1 h. The
signals were detected using an enhanced chemiluminescence
kit. Chemiluminescence image acquisition and densitometric
band quantitation were performed using Fusion-FX6 imaging
system (Vilber Lourmat, Marne-la-Valle, France). The cAMP
concentration was determined using a cAMP assay kit (R&D
Systems, Minneapolis, MN, United States) in accordance with the
manufacturer’s guidelines.
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Quantification of Phosphorylated CREB,
AKT, and GSK3β Using ELISA
After the treatment, the cortex and hippocampal tissue of
APP/PS1 and WT mice and APPsw cells were homogenized
after addition of RIPA buffer (CST, Danvers, MA, United States)
containing protease inhibitors, phosphatase inhibitors, and
PMSF, then centrifuged at 20,000 × g for 15 min at 4◦C.
The protein concentration of the samples was quantified
using a commercially available bicinchoninic acid (BCA) kit
(Thermo Fisher Scientific, Rockford, IL, United States). ELISA
kits were used for quantification of phospho-CREB (Ser133,
R&D Systems, Minneapolis, MN, United States), phospho-
AKT (Ser473, R&D Systems) and phospho-GSK3β (Ser9, CST,
Danvers, MA, United States) activity in accordance with the
manufacturers’ guidelines.

In vitro BACE-1 Assay
The ability of LC1405 at concentrations ranging from 0.3 and
300.0 µM to inhibit beta-site APP-cleaving enzyme (BACE-1)
activity was determined using a BACE-1 assay kit according to
the manufacturer’s guidelines.

Statistical Analysis
Data were analyzed using SPSS software (version 18.0, SPSS, Inc.,
Chicago, IL, United States), and presented as mean ± standard
error of the mean (SEM). Statistical analysis was performed by
using different tests as follows: (1) escape latency of the MWM
test the acquisition trial was analyzed using the ANOVA for
repeated measures (training days and treatment, with treatment
as main effect), and one-way ANOVA with Tukey’s post hoc
analyses were used to analyze treatment differences (treatment
as main effect); (2) treatment differences in the probe trials,
pathological and biochemical assays, and in vitro studies were
performed using a one-way ANOVA, followed by Tukey’s post hoc
testing to analyze the differences between groups; (3) the area
under the curve (AUC) of histamine and ACh levels in the brain
after LC1405 administration were analyzed by student t-test. The
statistical significance was set at a p-value of less than 0.05.

RESULTS

LC1405 Treatment Improves Cognitive
Deficits in APP/PS1 Mice
At 13 months of age, APP/PS1 mice underwent behavioral
testing using the MWM test, a widely-accepted test for spatial
learning and memory capability. During the acquisition trial, the
escape latency to the target platform for all mice is illustrated
in Figure 1B. Significant differences on escape latency within
groups [F(4,192) = 138.697, p< 0.001] and a significant treatment
effect on escape latency were found [F(3,48) = 20.572, p < 0.001].
Subsequent post hoc comparison illustrated that treatment with
3 mg/kg of LC1405 was considerable in improving the spatial
learning ability in APP/PS1 mice compared to APP/PS1 control
mice (p < 0.05). Probe trials were carried out to evaluate short-
term memory at 2 h and long-term memory at 48 h following

the five-consecutive-day trials. Our data indicated that APP/PS1
control mice stayed for a shorter time and completed fewer
crossings in the target quadrant at both time points compared
with WT control mice (Figures 1C,D) (2 h: 18.77 ± 1.25% vs.
30.14 ± 3.04%, 1.38 ± 0.31 vs. 3.46 ± 0.52, p < 0.001 and
0.01; 48 h: 17.94 ± 0.85% vs. 32.51 ± 1.37%, 1.38 ± 0.29 vs.
3.62 ± 0.24, both p < 0.001), while LC1405-treated APP/PS1
mice stayed in the target quadrant for a longer time (2 h:
27.29 ± 1.47% vs. 18.77 ± 1.25%, p < 0.01; 48 h: 26.51 ± 0.87%
vs. 17.94 ± 0.85%, p < 0.001), and performed more crossings
at the platform location compared with APP/PS1 control mice
(2 h: 3.00 ± 0.29 vs. 1.38 ± 0.31, p < 0.05; 48 h: 2.92 ± 0.28
vs. 1.38 ± 0.29, p < 0.01). Moreover, our results demonstrated
no significant differences in swimming speed among treatment
groups in the acquisition trial (Figure 1E), suggesting that the
improvement on learning capability in LC1405-treated APP/PS1
mice was not due to locomotor ability.

During the retention trial in the passive avoidance test,
APP/PS1 control mice re-entered the illuminated compartment
more frequently with shorter step-through latency compared
to WT control mice (Figures 1F,G) (151.58 ± 24.22 s vs.
236.57 ± 24.14 s, 3.22 ± 0.82 vs. 1.11 ± 0.45, both p < 0.05,),
while LC1405-treated APP/PS1 mice showed less tendency
toward the illuminated compartment, involving longer step-
through latency and fewer numbers of errors compared to
APP/PS1 control mice (220.75 ± 26.25 s vs. 151.58 ± 24.22 s,
1.44± 0.58 vs. 3.22± 0.82, both p< 0.05), indicating that LC1405
treatment ameliorated memory dysfunction.

In WT mice, LC1405 treatment did not affect cognitive
capabilities in the behavioral tests performed, therefore we
concluded that long-term oral administration of LC1405 plays a
role in ameliorating Aβ-dependent cognitive deficits rather than
affecting functions that are normal.

LC1405 Prevents Neuronal Degeneration
and Protects Ultrastructure, but Has No
Substantial Effect on the Reduction of Aβ

Burden or Oxidative Markers in
APP/PS1 Mice
FJB is a useful marker for the identification of neuronal
degeneration because of its ability to stain the entire neuron,
such as the cell body, dendrites, axons, and axon terminals
(Ballok et al., 2003). In both the cerebral cortex and the
hippocampus of WT control and LC1405-treated WT mice,
FJB-positive neurons were rarely detected. However, in the
cortical and hippocampal regions of APP/PS1 mice, the
number of FJB-positive neurons was significantly increased
(Figures 2A,B) (cortex: 18.67 ± 2.02 vs. 0; hippocampus:
23.00 ± 2.30 vs. 0.67 ± 0.67; both p < 0.001) compared to
WT control mice. LC1405 treatment decreased the number
of FJB-positive neurons in the cortex and hippocampus
of APP/PS1 mouse brains compared to APP/PS1 control
group (cortex: 5.67 ± 0.88 vs. 18.67 ± 2.02; hippocampus:
8.33 ± 1.20 vs. 23.00 ± 2.30; both p < 0.001), indicating
that LC1405 treatment relieved the degenerative pathology in
APP/PS1 mouse brain.
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FIGURE 1 | Long-term LC1405 treatment ameliorates cognitive deficits in APP/PS1 mice. (A) Chemical structure of LC1405. (B) Comparison of latency using the
platform Morris Water Maze test during 5 training days. (C) LC1405 treatment increased the time mice spent in the target quadrant as determined by the probe test.
(D) LC1405 treatment increased the number of crossings where the platform was previously located. (E) No significant differences in motor function were observed
in LC1405-treated mice and vehicle-treated controls as indicated by the swimming speed. (F) In the retention trial of the step-through passive avoidance test,
LC1405 treatment increased the latency to enter the dark compartment. (G) LC1405 treatment resulted in fewer occasions of re-entering the illuminated
compartment as a mistake. Data are presented as mean ± SEM, n = 13. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 vs. WT control,#p < 0.05, ##p < 0.01, ###p < 0.001
vs. APP/PS1 control.

To further evaluate degenerative changes at the ultrastructural
level, sections of the cortex and hippocampus were observed
using a transmission electron microscope (Figure 2C). The
cortical and hippocampal regions of WT control and LC1405-
treated WT mice were well-characterized, showing a compact
neuropil appearance with normal neurons (N) and astrocytes
(As), with no swelling or shrinkage. In APP/PS1 mouse brain
regions, neuropils were disrupted and neuronal degeneration
was detected as the neurons showed a shrunken appearance.

Degenerative neurons were embodied in the ruptured neuronal
membranes, with cytoplasm containing dark granules, and
condensed nuclei. In addition to degeneration of adjacent
neuropils, intracellular vacuolation and astrocyte edema were
observed, accompanied with Aβ plaques (SP) deposited in
the neuropils nearby. LC1405 treatment attenuated neuropil
degeneration in the cortex and hippocampus of LC1405-treated
APP/PS1 mice. Signs of swelling and disintegration of astrocytes
were disappeared, and Aβ plaque deposition was less apparent
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FIGURE 2 | LC1405 prevents neurodegeneration, protects neuronal ultrastructure, but has no effect on Aβ burden and oxidative stress in APP/PS1 mice.
(A) Representative images of Fluoro-Jade B (FJB) staining of neurodegeneration in the cerebral cortex and hippocampus. Scale Bar = 100 µM. (B) Mean number of
FJB-positive cells/mm2 in the cortex and hippocampus (n = 3). (C) Representative images of the neuropil ultrastructure in the cortex and hippocampus of WT and
APP/PS1 mice. As, astrocytes; N, neuron; SP, senile plaques. (D) Representative images of thioflavin S (Thio-S) staining. Scale Bar = 100 µM. (E) Quantitative
analysis of positive Thio-S staining of aggregates/misfolded proteins or similar (n = 3). (F) Soluble and insoluble Aβ1-42 (i, ii) and 1-40 (iii, iv) levels in brain
homogenates by ELISA, and soluble oAβ (v, vi) level in brain homogenates by Western blot (n = 4). (G–I) Measurement of oxidative markers MDA, SOD, and
GSH-Px in brain homogenates (n = 4). Data are presented as mean ± SEM. ∗∗∗p < 0.001 vs. WT control,###p < 0.001 vs. APP/PS1 control.

in surrounding neuropils. Together, these findings indicated
that LC1405 treatment was effective in preventing Aβ-mediated
neuronal degeneration.

Overproduction and aggregation of Aβ are considered key
pathological events in the neurodegenerative cascade in AD.
Although in this study neuronal degeneration and neuropil
ultrastructure were ameliorated by LC1405 treatment, Aβ

aggregates/misfolded proteins or similar in the cortex and
hippocampus as indicated by Thio S staining, were not reduced
after long-term oral administration of LC1405 (Figures 2D,E)
(cortex: 46.93 ± 1.98 vs. 42.27 ± 1.71; hippocampus:
33.67 ± 1.43 vs. 37.23 ± 3.32). Similarly, the levels of soluble or
insoluble Aβ1−42 or Aβ1−40 in the brain did not significantly
decrease following LC1405 treatment (Figures 2Fi–iv) (soluble
Aβ1−42: 246.80 ± 28.48 ng/g vs. 233.47 ± 25.05 ng/g; insoluble
Aβ1−42: 1236.65 ± 34.57 ng/g vs. 1246.66 ± 87.17 ng/g;

soluble Aβ1−40: 79.57 ± 10.45 ng/g vs. 79.18 ± 11.08 ng/g;
insoluble Aβ1−40: 221.98 ± 20.29 ng/g vs. 218.87 ± 31.29 ng/g).
Furthermore, the increased level of A11-immunoreactive
prefibrillar oligomers, which represented the presence of
potential neurotoxic Aβ oligomers and then underwent a
concerted conformation change from protofibrils to form fibrils
(Glabe, 2008; Gulisano et al., 2018), could not be significantly
decreased by LC1405 treatment either (Figures 2Fv,vi) (ratio of
WT control: 2.31 ± 0.20 vs. 2.43 ± 0.25). Combined, these data
suggested that LC1405 treatment did not have a substantial effect
in reducing Aβ levels in APP/PS1 mouse brain.

Oxidative stress is implicated in the pathology of AD, and
in this study, the APP/PS1 mouse model displayed alterations
in markers of oxidative stress in the brain, such as MDA, SOD,
and GSH-Px compared to WT control group (Figures 2G–I)
(MDA: 59.63 ± 3.32 nmol/mg protein vs. 27.87 ± 2.69 nmol/mg
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protein; SOD: 76.33± 2.25 U/mg protein vs. 126.78± 8.72 U/mg
protein; GSH-Px: 3.62± 0.35 U/mg protein vs. 7.78± 0.47 U/mg
protein; all p < 0.001). However, these markers were not
significantly ameliorated in APP/PS1 mouse brain after treatment
with LC1405 (MDA: 55.03 ± 3.71 nmol/mg protein vs.
59.63 ± 3.32 nmol/mg protein; SOD: 78.72 ± 6.10 U/mg protein
vs. 76.33 ± 2.25 U/mg protein; GSH-Px: 4.06 ± 0.31 U/mg
protein vs. 3.62± 0.35 U/mg protein).

LC1405 Treatment Does Not Alter AChE
Activity in APP/PS1 Mouse Brain Tissue,
but Increases the Level of ACh and
Improves the Release of Histamine
and ACh
Due to an early and severe depletion of cholinergic innervations
in AD pathology, a decrease in AChE activity in the brain
is a consistent finding (Dumas and Newhouse, 2011; Carvajal
et al., 2013). A slight decrease in AChE activity was observed
in APP/PS1 mouse brain, and LC1405 treatment did not
alter the AChE activity significantly either in APP/PS1 or in
WT mouse brain (Figure 3A) (LC1405-treated WT vs. WT
control: 1.05 ± 0.10 vs. 1.00 ± 0.06; LC1405-treated APP/PS1
vs. APP/PS1 control: 0.79 ± 0.11 vs. 0.84 ± 0.08). Up-
regulated ACh levels were observed in LC1405-treated WT
and APP/PS1 mice compared to the correspondent LC1405-
untreated groups (Figure 3B) (LC1405-treated WT vs. WT
control: 2285.69 ± 123.96 pg/g vs. 1900.43 ± 82.70 pg/g,
p < 0.05; LC1405-treated APP/PS1 vs. APP/PS1 control:
1761.88 ± 59.18 pg/g vs. 1222.23 ± 62.42 pg/g, p < 0.01),
suggesting that LC1405 might be effective in increasing the
responsiveness of ACh in cholinergic neurons.

In subsequent studies, the concentration of histamine and
ACh were compared in the brain of WT mice with and without
LC1405 treatment. After LC1405 administration, changes in ACh
and histamine levels were expressed in terms of the area under the

curve (AUC) for a 0 to 4 h time-period. The time course results of
histamine following LC1405 treatment revealed its rapid release
that peaked within 30–60 min of dosing and persisted over the
4 h test period. In addition, ACh levels increased over the 60-
min period after administration. When comparing the responses
with the results of WT control mice, significant increases in AUC
in histamine and ACh levels were observed after administration
of 3 mg/kg LC1405 (Figures 3C,D) (histamine: 14.61 ± 2.05
vs. 3.72 ± 0.72, p < 0.001; ACh: 20.27 ± 5.64 vs. 2.64 ± 0.80,
p < 0.05). This was not only the maximal response of ACh after
LC1405 treatment, but a sustained increase in the brain after
treatment from 60 to 120 min. The response of ACh could be
a consequence of increased histamine release. Therefore, these
results suggested that LC1405 might act on H3R, thereby leading
to an overall increase in histamine and ACh levels.

LC1405 Treatment Modifies
H3R-Mediated Signaling in APP/PS1
Mouse Brain
To identify whether H3R inhibition was a result of the
treatment with LC1405, the downstream signaling pathways
of H3R coupling were evaluated to assess the potential
therapeutic efficacy. Our results showed that transduction of
the cAMP/CREB pathway changed significantly in the brains
of APP/PS1 mice, which showed a significant decrease in
cAMP and p-CREB levels, of 76.12 and 62.78%, respectively
in 13-month-old APP/PS1 mice when compared with the
WT control (Figures 3E,F, all p < 0.001). The Tukey’s
post hoc comparison demonstrated that oral administration of
LC1405 resulted in increased cAMP levels and upregulated
p-CREB activity in APP/PS1 mouse brain compared to APP/PS1
control group (cAMP: 1.55 ± 0.17 nmol/mg protein vs.
0.66 ± 0.06 nmol/mg protein; p-CREB: 1.41 ± 0.14 ng/mg
protein vs. 0.72 ± 0.09 ng/mg protein, 1.68 ± 0.11 ng/mg
protein vs. 0.76 ± 0.09 ng/mg protein; all p < 0.001).

FIGURE 3 | LC1405 treatment increases the level of ACh and histamine and modifies H3R-mediated signaling in APP/PS1 mouse brain. (A) LC1405 treatment did
not alter AChE activity in mouse brain (n = 4). (B) LC1405 treatment increased ACh level in the brain of WT and APP/PS1 mice (n = 4). (C,D) LC1405 treatment
stimulated histamine and ACh responses in WT mouse brain (n = 4). (E) LC1405 treatment increased cAMP levels in WT and in APP/PS1 mouse brain (n = 4). (F)
LC1405 treatment up-regulated p-CREB level in the cerebral cortex and hippocampus of WT and APP/PS1 mice (n = 4). (G,H) LC1405 treatment increased the
signaling transduction of AKT/GSK3β in the cerebral cortex and hippocampus of APP/PS1 mice (n = 4). Data are presented as mean ± SEM. ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001 vs. WT control, ##p < 0.01, ###p < 0.001 vs. APP/PS1 control.
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It should be noted that LC1405 treatment also activated
cAMP/CREB cascades in WT control mice, indicating that an
oral dose of 3 mg/kg of LC1405 affected basal transduction
in normal brain (cAMP: 3.66 ± 0.13 nmol/mg protein vs.
2.79 ± 0.25 nmol/mg protein; p-CREB: 2.28 ± 0.15 ng/mg
protein vs. 1.93± 0.12 ng/mg protein, 2.29± 0.08 ng/mg protein
vs. 2.04± 0.07 ng/mg protein; p< 0.05-0.01). Thus, cAMP/CREB
pathway transduction following H3R inhibition might play a role
in the action of LC1405.

To investigate H3R downstream signaling, modification
of the AKT/GSK3β axis was evaluated. Up-regulation of
phosphorylated AKT was accompanied by a high level of GSK3β

phosphorylation in the cortex and hippocampus of APP/PS1
mice compared to WT control group (Figures 3G,H) (p-AKT:
2.58 ± 0.09 ng/mg protein vs. 0.73 ± 0.06 ng/mg protein,
2.91 ± 0.15 ng/mg protein vs. 0.69 ± 0.04 ng/mg protein;
p-GSK3β: 5.54 ± 0.40 ng/mg protein vs. 1.45 ± 0.20 ng/mg
protein, 5.82± 0.31 ng/mg protein vs. 1.76± 0.15 ng/mg protein;
all p < 0.001). However, LC1405 treatment suppressed the
phosphorylation in APP/PS1 mice (p-AKT: 1.56 ± 0.04 ng/mg
protein vs. 2.58± 0.09 ng/mg protein, 1.61± 0.05 ng/mg protein
vs. 2.91 ± 0.15 ng/mg protein; p-GSK3β: 3.44 ± 0.09 ng/mg

protein vs. 5.54 ± 0.40 ng/mg protein, 3.22 ± 0.11 ng/mg
protein vs. 5.82 ± 0.31 ng/mg protein; all p < 0.001), suggesting
that LC1405 might be able to reverse the activated signaling of
AKT/GSK3β in AD.

LC1405 Protects Neuronal Cells Against
Copper-Induced Aβ Toxicity in vitro
To better mimic Alzheimer’s deficits, copper treatment was used
to study metal ion imbalance triggering Aβ neurotoxicity using
cells overexpressing the Swedish mutant form of human APP
(Zhang et al., 2006; Liu et al., 2012). Before evaluating the
protective effects of LC1405, we first established its safe, non-
toxic dose in APPsw cells without copper treatment. Our results
indicated that LC1405 concentration ranging between 0.03 and
10.0 µM over 24 h did not have any toxic effect (Figure 4A).
However, in the presence of 300 µM copper, LC1405 significantly
increased cell viability at 0.3 µM, 1.0 µM, and 3.0 µM to in a
concentration-dependent manner (Figure 4B) (74.46 ± 2.99%,
78.15± 4.12%, 85.93± 3.40% vs. 55.30± 3.22%, p< 0.05-0.001).

Similar findings were observed in cells stained with the AO/EB
apoptosis-detection dye. The normal morphology of control cells

FIGURE 4 | LC1405 protects APPsw cells against copper-induced Aβ toxicity. (A) Non-toxic concentrations of LC1405 that could be safely used to treat APPsw
cells for 24 h without copper treatment (n = 8). (B) Treatment with LC1405 increased cell viability as evaluated by MTS cell proliferation assay (n = 8). (C)
Representative images of acridine orange (AO)/ethidium bromide (EB) and β-APP staining (×20 magnification). (D) LC1405 treatment decreased the percentage of
apoptotic cells in copper-treated APPsw cells (n = 4). (E) LC1405 treatment affected the mean fluorescence intensity of β-APP in copper-treated APPsw cells (n = 4).
(F) LC1405 treatment inhibited the content of Aβ1−40/42 in copper-treated APPsw cells (n = 4). (G) Higher concentrations of LC1405 resulted in slight BACE-1
inhibition. Data are expressed as mean ± SEM. ∗p < 0.05, ∗∗∗p < 0.001 vs. control cells, #p < 0.05,##p < 0.01, ###p < 0.001 vs. copper-treated cells.
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was characterized by the presence of green-colored nuclei and
an intact structure, whereas apoptotic characteristics included
shrinkage, membrane blebbing, chromatin condensation, and
the formation of apoptotic bodies were found in copper-treated
APPsw cells. In the presence of copper, the proportion of APPsw
cells undergoing apoptosis was 72.43 ± 3.76% compared to
control cells (Figures 4C,D, p < 0.001). LC1405 treatment at
concentrations of 0.3 µM, 1.0 µM, and 3.0 µM rescued the
morphological changes indicative of apoptosis, and reduced the
percentage of cells positively stained for the apoptosis-detection
dye in a concentration-dependent manner compared with the
cells treated with copper (41.41 ± 2.55%, 31.42 ± 3.78%,
26.77 ± 1.92% vs. 72.43 ± 3.76%, all p < 0.001). Combined
with these protective effects, LC1405 concentrations at 0.3 µM,
1.0 µM, and 3.0 µM were chosen to investigate the underlying
mechanism of LC1405 protection in the AD in vitro model.

LC1405 Has Limited Effects on
Decreasing β-APP Expression or
Attenuating Aβ1−40/42 Levels
Aβ peptides are primarily generated from the cleavage of APP,
which represent the major pathological event in the development
of AD. In the present study, administration of copper increased
the expression of β-APP by 2.11 fold. Similarly, the levels of
Aβ1−40 and Aβ1−42 in APPsw cells increased respectively by
11.65 and 5.56 fold (Figures 4C,E,F, all p < 0.001). Treatment
with LC1405 at the tested concentrations did not significantly
reduce the expression of β-APP or the levels of Aβ1−40 and
Aβ1−42 in APPsw cells, except at the highest concentration of
3.0 µM that showed an effect on inhibiting Aβ1−40/42 levels by
the reduction of 21.35% and 23.15% (Figure 4F, both p < 0.05).
Moreover, LC1405 at higher concentrations (100 and 300 µM)
resulted in a slight BACE-1 inhibition (Figure 4G, 7.42 ± 0.64%
and 9.76± 0.83%), what was outside the range of concentrations
tested in AD cells. Thus, our results suggested that LC1405
treatment might be independent of Aβ overproduction in the
β-amyloidogenic pathway.

H3R Inhibition Contributes to the
Neuroprotective Effects of LC1405
Against Aβ-Induced Toxicity
LC1405 might be identified as a candidate H3R antagonist
with neuroprotection through virtual screening, serial cell-based
assays, and extensive neuroprotection evaluation. In view of the
Bayesian prediction, LC1405, as a potential H3R ligand, serves
as a reference compound (Supplementary Table 2). In target
functional activity assays in vitro, LC1405 showed substantial
antagonistic effects combined with a relative high affinity for
human and rat H3R, but relatively lower affinities for H1,
H2, and H4 subtypes (Supplementary Table 2). Furthermore,
LC1405 itself blocked the decrease of cAMP induced by
RAMH (Supplementary Table 2), indicating that LC1405 might
interact with H3R, thereby directly increasing cAMP levels.
Importantly, LC1405 treatment exerted neuroprotective effects
on rat primary cortical neurons against Aβ25−35- and fibrillar
Aβ1−40 (fAβ1−40)-induced toxicity at 0.3 µM, 1.0 µM, and

3.0 µM in a concentration-dependent manner (Supplementary
Figure 2, p< 0.05-0.001).

To determine whether H3R contributed to LC1405-mediated
neuroprotection against Aβ-induced cytotoxicity, specific H3R
agonist and other histamine receptor subtype agonists were used.
As shown in Figure 5C, pharmacological activation of H3R with
RAMH blocked the ability of LC1405 to rescue the decreased
cell viability observed after exposure to copper at all the tested
concentrations (57.84± 1.07% vs. 69.80± 1.56%, 58.96± 1.63%
vs. 77.44 ± 5.07%, 60.91 ± 1.15% vs. 86.01 ± 3.27%, p < 0.05-
0.001). Other specific histamine receptor agonists that activated
H1, H2, and H4 subtypes did not exert any substantial effect
(Figures 5A,B) or only partly reduced cell viability that had
been increased by LC1405 (Figure 5D, 61.40 ± 1.66% vs.
71.87± 2.13%, p< 0.05: copper-injured APPsw cells treated with
LC1405 and VUF-8430 vs. copper-injured APPsw cells treated
with LC1405). Thus, these results suggested that neuroprotection
due to LC1405 against copper-induced Aβ injury might be largely
attributable to its inhibitory effects on H3R.

H3R Mediates the Neuroprotective Effect
of LC1405 Against Aβ Injury Through
cAMP/CREB and PI3K/AKT/GSK3β

Signaling Pathways
Histamine H3 receptor signaling caused negative coupling of AC,
thereby decreasing the intracellular activity of the cAMP/PKA
pathway, subsequently reducing CREB levels (Bhowmik et al.,
2014). In APPsw cells subjected to copper, a significant reduction
in the intracellular of cAMP level and a significant decrease in
phosphorylated CREB level were observed compared to the ones
without copper treatment (Figures 6A–C) (cAMP: 64.04 ± 2.06
nmol/mg protein vs. 84.92 ± 2.51 nmol/mg protein; p-CREB:
182.82± 7.39 vs. 772.98± 19.03; both p< 0.001), indicating that
the cAMP/CREB signaling pathway was inhibited in response
to copper-triggered Aβ toxicity. LC1405 treatment contrasted
Aβ-neurotoxicity by increasing intracellular levels of cAMP and
up-regulating phosphorylated CREB, both in a concentration-
dependent manner (cAMP: 76.27 ± 0.91 nmol/mg protein,
79.97 ± 0.84 nmol/mg protein, 81.71 ± 2.61 nmol/mg protein
vs. 64.04 ± 2.06 nmol/mg protein; p-CREB: 280.07 ± 9.85,
302.98 ± 11.49, 359.74 ± 16.54 vs. 182.82 ± 7.39; p < 0.05-
0.001). However, these effects of LC1405 were abolished at all the
tested concentrations by the pharmacological activation of H3R
treated with RAMH (cAMP: 63.48 ± 2.88 nmol/mg protein vs.
76.27± 0.91 nmol/mg protein, 64.10± 2.95 nmol/mg protein vs.
79.97 ± 0.84 nmol/mg protein, 65.92 ± 4.11 nmol/mg protein
vs. 81.71 ± 2.61 nmol/mg protein; p-CREB: 202.51 ± 6.27 vs.
280.07 ± 9.85, 217.85 ± 7.47 vs. 302.98 ± 11.49, 218.85 ± 14.51
vs. 359.74 ± 16.54; p < 0.05-0.001), suggesting the participation
of the cAMP/CREB pathway following H3R signaling in the
reduction of Aβ-mediated deficits by LC1405 using copper to
trigger neurotoxicity of Aβ.

Histamine H3 receptor is related to PI3K/AKT/GSK3β

cascade that play a role in neuronal survival, thereby
exerting neuroprotection on lesions due to multiple cytotoxic
factors (Provensi et al., 2016). Copper-triggered Aβ exposure
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FIGURE 5 | H3R contributes to LC1405 neuroprotection against copper-mediated Aβ toxicity. Histamine receptors were pharmacologically activated by their specific
agonists. The specific histamine receptor agonists activating: (A) H1, (B) H2 and (D) H4 subtypes did not clearly block the increased cell viability due to LC1405 after
exposure to copper, whereas activation of (C) H3R with RAMH blocked the increased cell viability at all tested concentrations of LC1405. Data are expressed as
mean ± SEM. n = 8. ∗∗∗p < 0.001 vs. control cells, ##p < 0.01, ###p < 0.001 vs. copper-treated cells, $p < 0.05, $$$p < 0.001 vs. copper+LC1405 treated cells.

increased the phosphorylated level of PI3K, AKT, and GSK3β

(Figures 6C–E) (p-PI3K: 853.62 ± 26.34 vs. 347.84 ± 10.75;
p-AKT: 3.98 ± 0.16 ng/mg protein vs. 1.23 ± 0.11 ng/mg
protein; p-GSK3β: 7.00 ± 0.36 ng/mg protein vs. 1.00 ± 0.07
ng/mg protein; all p < 0.001), whereas LC1405 treatment at
the concentration of 0.3 µM, 1.0 µM, and 3.0 µM prevented
the increased phosphorylation of PI3K, AKT, and GSK3β in
APPsw cells after exposure to copper (p-PI3K: 651.74 ± 26.29,
548.64 ± 12.29, 467.27 ± 18.17 vs. 853.62 ± 26.34; p-AKT:
2.85 ± 0.12 ng/mg protein, 2.20 ± 0.10 ng/mg protein,
1.94 ± 0.08 ng/mg protein vs. 3.98 ± 0.16 ng/mg protein;
p-GSK3β: 4.70 ± 0.11 ng/mg protein, 4.25 ± 0.13 ng/mg
protein, 3.90 ± 0.23 ng/mg protein vs. 7.00 ± 0.36 ng/mg
protein; all p < 0.001). However, in response to RAMH, H3R
activation affected the LC1405 effect of preventing the increased
phosphorylation of PI3K, AKT, and GSK3β induced by copper
(p-PI3K: 810.88 ± 16.18 vs. 651.74 ± 26.29, 778.13 ± 19.69
vs. 548.64 ± 12.29, 801.26 ± 13.68 vs. 467.27 ± 18.17;
p-AKT: 3.92 ± 0.15 ng/mg protein vs. 2.85 ± 0.12 ng/mg
protein, 3.42 ± 0.21 ng/mg protein vs. 2.20 ± 0.10 ng/mg
protein, 3.33± 0.06 ng/mg protein vs. 1.94± 0.08 ng/mg protein;
p-GSK3β: 5.66 ± 0.22 ng/mg protein vs. 4.70 ± 0.11 ng/mg
protein, 5.17 ± 0.11 ng/mg protein vs. 4.25 ± 0.13 ng/mg
protein, 5.15± 0.12 ng/mg protein vs. 3.90± 0.23 ng/mg protein;
p< 0.05-0.001). These observations indicated that H3R-mediated
PI3K/AKT/GSK3β signaling is involved in the protective role of
LC1405 against copper-induced Aβ cytotoxicity.

Based on the observations above, LC1405 protected neurons
against copper-triggered Aβ-induced toxicity through H3R-
dependent cAMP/CREB and PI3K/AKT/GSK3β signaling.

DISCUSSION

Two major contributions are provided by this study to
elucidate the underlying mechanism of action of LC1405.
First, LC1405 was identified as a prospective H3R antagonist
that prevented Aβ-induced neurotoxicity and as a potential
treatment of AD both in vitro and in vivo. Second, a
cellular signaling profile of LC1405 in H3R antagonism
was provided, characterized by a beneficial H3R-dependent
signaling of cAMP/CREB and AKT/GSK3β axes. These findings
revealed novel evidence and insights that focus on the role
of H3R, which might be a potential therapeutic target in the
treatment of AD.

From a previous multi-step screening process, LC1405 was
identified as a potential H3R-targeting compound as a result
of in silico prediction of H3R ligands, and subsequent cell-
based-target assays on H3Rs and in vitro neuroprotective
evaluation (see Supplementary Material). Furthermore, the
ability of LC1405 in reversing the effects of AD and underlying
mechanisms were evaluated in APP/PS1 double transgenic
mice, and SH-SY5Y cells that express APP with a familial
Swedish mutation, both excessively expressing the APP gene
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FIGURE 6 | LC1405 regulates H3R-mediated signaling pathways against Aβ-induced toxicity. (A) LC1405 treatment did not increase the cAMP level in APPsw cells
pre-treated with RAMH (n = 4). (B) LC1405 treatment did not increase the mean fluorescence intensity of p-CREB in APPsw cells against copper-induced Aβ toxicity
pre-treated with RAMH (n = 4). (C) Representative immunohistochemical images of p-CREB and p-PI3K staining ( × 20 magnification). (D) LC1405 treatment of
copper-induced Aβ toxicity of APPsw cells pre-treated with RAMH did not decrease the mean fluorescence intensity of p-PI3K (n = 4). (E) Effects of increasing
phosphorylation of AKT and GSK3β by LC1405 were inhibited by pre-treatment with RAMH (n = 6). Data are expressed as mean ± SEM. ∗∗∗p < 0.001 vs. control
cells, #p < 0.05,##p < 0.01, ###p < 0.001 vs. copper-treated cells. $p < 0.05,$$p < 0.01, $$$p < 0.001 vs. copper+LC1405 treated cells.

and mimicking β-amyloidogenic disturbance (Zhang et al., 2006;
Voss et al., 2014).

Our study found that LC1405 improved learning and
memory deficits in AD mice (Figures 1B–G). Consistent
with these findings, neurodegeneration and ultrastructural
abnormalities were rescued in the hippocampal and cortical
regions (Figures 2A–C). Importantly, these alterations were in
line with the in vitro cytoprotection and apoptotic preservation
demonstrated after LC1405 treatment (Figures 4A–D). Thus,
treatment with LC1405 is a promising approach in ameliorating
the pathology of AD.

Excessive oxidation has been recognized as a contributor
to Aβ-induced neurotoxicity with metal dyshomeostasis being
implicated in the Aβ aggregation process of AD. Extremely
high ion concentrations, such as copper, have been found
colocalized with Aβ deposits in the AD-affected brain (Jakob-
Roetne and Jacobsen, 2009; Duce and Bush, 2010). In addition,

redox active copper ions lead to ROS overproduction, resulting
in oxidative damage that triggers neurodegeneration of the
brain (Huang et al., 1999; Jakob-Roetne and Jacobsen, 2009).
Here, limited antioxidative effects were obtained after LC1405
treatment in APP/PS1 mice, as indicated by the limited reduction
in oxidative biomarkers, such as MDA, SOD, and GSH-Px
(Figures 2G–I). Thus, LC1405 did not provide a sufficient
antioxidant effect through scavenging ROS generation due to
Aβ-mediated neurotoxicity related with AD.

The widely accepted amyloid hypothesis suggests that the
assembly of Aβ to form aggregates, involving oligomers,
protofibrils, fibrils, and even senile plaques, is a central
event in the progression of AD (Ferreira et al., 2015;
Gulisano et al., 2018). Various reports also confirmed that
aggregated Aβ are toxic to neuronal cells, thereby indicating
that inhibition of Aβ aggregation as a potential AD therapy
is a reasonable strategy in AD treatment. However, the results
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FIGURE 7 | Schematic representation of LC1405 neuroprotective pathway
against amyloid-β peptide (Aβ)-induced toxicity. Aβ, β-amyloid; ACh,
acetylcholine; AKT, protein kinase B; cAMP, cyclic adenosine monophosphate;
CREB, cAMP response element binding protein; GSK3β, glycogen synthase
kinase 3β; H3R, histamine H3 receptor; PI3K, phosphatidylinositol-3-kinase.

from pathological, biological, and western blotting experiments
showed that LC1405 treatment did not provide a significant
reduction in Aβ burden in APP/PS1 mice (Figures 2C–F), which
resulted in Aβ plaque deposition as early as 2 months of age
and moderate levels of Aβ deposition at the age of 5 months
(Blanchard et al., 2003; Ding et al., 2008).

Apart from Aβ aggregation and deposition, the
β-amyloidogenic pathway in which Aβ is produced through
APP cleavage by BACE1 also plays a role in the evaluation of
neuroprotective agents. LC1405 was found to possess a weak
inactivation effect on BACE-1 (Figure 4G). This result partly
explained the limited down-regulation of APP expression in vitro
and failure of lowering multiple forms of Aβ levels, including
soluble and insoluble Aβ, A11-immunoreactive prefibrillar
oligomers, and amyloid aggregates/misfolded proteins or similar
(Figures 2D–F, 4C,E,F). Therefore, we initially presumed
that the beneficial effect of LC1405 on enhancing learning
capacity and reducing memory deficits might be independent
of changes in the amyloidogenic processing of APP, or in the
process of secretion or deposition of Aβ. Although we found that
LC1405 was effective in recuing neuronal cell viability due to
fibrillar Aβ1−40/42 toxicity (Supplementary Figure 2), whether
LC1405 had the definite effect on altering aggregation profile
of Aβ should be further studied on the synthetic peptide and
Alzheimer-related animal models.

In the part of the brain that is responsible for learning and
memory, H3R, both for integrity and function, is conserved in
Aβ over-expressing regions (Foley et al., 2009), indicating that
H3R may neither participate in the amyloidogenic processing of

APP nor alter the secretion or deposition of Aβ. In our study,
LC1405 might preferentially produce improvements in cognition
and neuroprotective effects by altering H3R-dependent processes
rather than by reducing Aβ deposition or decreasing oxidative
stress. Two potential beneficial effects of LC1405 involved in
preventing Aβ toxicity were identified in this work: LC1405
(i) improved cholinergic activity by up-regulating ACh and
histamine release; (ii) maintained cognitive molecular cascades
of H3R-dependent transduction, involving cAMP/CREB and
AKT/GSK3β signaling pathways.

Histamine H3 receptor is an auto- and heteroreceptor
that negatively regulates the release of histamine and several
cognition-related key neurotransmitters, such as ACh, which is
recognized as a major neurochemical modulator of cognitive
processing, particularly in AD (Bartus, 2000). In this study, we
found that oral administration of LC1405 increased the levels
of histamine and ACh in mouse brain (Figures 3C,D), which
was in accordance with the hypothesis that H3R antagonists
increased neurotransmitter levels involving ACh and histamine
in the brain, thus counteracting AD deficits (Bitner et al.,
2011). H3Rs on histaminergic neurons provide tonic inhibition
of the firing rate (Jin and Panula, 2005), whereas those on
presynaptic histaminergic terminals restrict histamine synthesis
and release (Arrang et al., 1983, 1987). Therefore, our hypothesis
was that LC1405 administration might inhibit presynaptic H3
autoreceptor activation and increase histamine levels in the
synaptic cleft. In addition, long-term administration of LC1405
increased ACh levels in the brain without the influence of
AChE activity (Figures 3A,B). Since an in vivo micro-dialysis
assay suggested that hetero-H3R-mediated regulation of ACh
is related to potassium levels in different regions of the brain
(Blandina et al., 1996), but not by counteracting the activation
of histamine H1 or the H2 subtype (Esbenshade et al., 2008),
our conclusion was that in response to Aβ toxicity, LC1405
treatment might increase endogenous ACh synthesis or its release
in cholinergic neurons that have been stimulated by increased
histamine derived from over-activated histaminergic terminals
through the antagonistic action of H3R, rather than by increasing
synaptic ACh via a reduction in enzymatic degradation by AChE.

Activation of H3Rs mediates a series of intracellular signaling
pathways that are involved in the pathogenesis of AD, including
the Gαi/o-protein-coupled inhibition of AC (Lovenberg et al.,
1999), downstream exaggeration of cognitive decline through
transduction of cAMP/CREB (Moreno et al., 2011), and
activation of PI3K/AKT/GSK3β signaling (Rapanelli et al., 2016).
Constitutively active H3R inhibits cAMP increase, which would
otherwise activate PKA phosphorylation of CREB (Shi et al.,
2012), an important signaling molecule located in the cell
nucleus and responsible for the synaptic plasticity implicated
in the cognitive function. In agreement with this hypothesis,
in our study, cAMP/CREB signaling was seriously weakened in
Aβ-mediated Alzheimer’s pathogenesis, whereas LC1405 rescued
aberrant cAMP/CREB signaling both in vitro and in vivo
(Figures 3E,F, 6A,B). When APPsw cells that were pretreated
with the H3R agonist (RAMH) were treated with LC1405 in
the presence of copper, restoration of the cAMP/CREB signaling
pathway was completely abolished (Figures 6A,B). Therefore,
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these results suggested that H3R inactivation of LC1405 plays
a pivotal role in neuronal transduction of the cAMP/CREB
pathway in response to Aβ neurotoxicity. It is reasonable to
believe that the ability of LC1405, as a H3R antagonist, to
stimulate the release of histamine and ACh might lead to
specific cellular signaling events as a property of auto-receptors
in the phosphorylation-activation of CREB that contributed to
enhanced cognitive function.

Besides H3R-mediated signaling through Gαi/o-proteins,
Gβγ-subunits are known to activate specific signal transduction
pathways involving the PI3K/AKT/GSK3β cascade (Rapanelli
et al., 2016). Similar to other G protein-coupled receptor
(GPCR) signaling transduction, H3R activation results
in AKT phosphorylation at Ser 473 and subsequently
GSK3β hyperphosphorylation occurring from increased
phosphorylation of S9 through PI3K activation via the
Gβγ-subunits of Gαi/o proteins, previously demonstrated in a
neuroblastoma cell line, primary cultures of cortical neurons,
and in striatal slices of Sprague-Dawley rats (Bongers et al.,
2007). Several studies support the findings that H3R antagonists
function as indirect inhibitors of GSK3β, thereby resulting in
decreased S9 phosphorylation and exert therapeutic effects in
neurodegenerative disorders beyond amelioration of symptoms
(Vohora and Bhowmik, 2012). Consistent with these studies,
our results showed that the PI3K/AKT/GSK3β pathway was one
pathway involved in LC1405 neuroprotection, which could be
diminished by a H3R agonist (Figures 3G,H, 6C–E). In this
regard, H3R-mediated postsynaptic PI3K/AKT/GSK3β cascade
resulted involved in LC1405-induced neuroprotection against
Aβ neurotoxicity.

Prior to the identification of the anti-AD effects of LC1405,
the safe dosage of LC1405 was evaluated from 0.3 to 10.0 µM
in vitro and long-term oral administration at 3 mg/kg
in vivo (Figures 2B–G, 4A). The phenomenon that LC1405
alone activated cAMP/CREB cascade was in accordance to
the fact that LC1405 targets H3Rs with the specific GPCR
characteristics (Figures 3E,F). Since PI3K/AKT/GSK3β signaling
pathway was regulated by several factors, we concluded that
in a physiological state, a single factor mediated by LC1405
influencing PI3K/AKT/GSK3β pathway resulted in well-balanced
effects. Therefore, LC1405 could trigger PI3K/AKT/GSK3β

pathway and attenuate cognition deficits under physiological, but
not pathological, conditions.

In summary, LC1405 had beneficial effects on blocking
Aβ-induced neuronal stress both in vitro and in vivo. Anti-
H3R therapy using LC1405 did not affect Aβ burden or
fully alter the redox balance system, but was effective in
increasing the level of histamine and ACh in the brain.
LC1405 improved cognition through H3R-dependent cellular

signaling cascades involving cAMP/CREB and AKT/GSK3β

pathways (Figure 7). Taken together, our results demonstrated
that LC1405 ameliorated cognitive deficits by blocking H3R-
modulated signaling transduction against Aβ-induced cellular
stress. Thus, LC1405 may be a prospective H3R antagonist
that holds a potential in controlling disease progression in AD
patients, who already developed cognitive deficits with H3R-
related ACh neurotransmission abnormalities.
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The prevalence of depression has dramatically increased, and it has been estimated that 
over 300 million people suffer from depression all over the world. Depression is highly 
comorbid with many central and peripheral disorders. In this regard, depressive states 
have been associated with the development of neurological disorders such as Alzheimer’s 
disease (AD). Accordingly, depression is a risk factor for AD and depressive symptomatology 
is common in pre-clinical AD, representing an early manifestation of this disease. 
Neuropsychiatric symptoms may represent prodromal symptoms of dementia deriving 
from neurobiological changes in specific cerebral regions; thus, the search for common 
biological substrates is becoming an imperative and intriguing field of research. Soluble 
forms of beta amyloid peptide (Aβ) have been implicated both in the development of early 
memory deficits and neuropsychiatric symptoms. Indeed, soluble Aβ species have been 
shown to induce a depressive-like phenotype in AD animal models. Alterations in 
monoamine content are a common feature of these neuropathologies. Interestingly, 
serotonergic system modulation has been implicated in alteration of Aβ production.  
In addition, noradrenaline is considered crucially involved in compensatory mechanisms, 
leading to increased Aβ degradation via several mechanisms, including microglia 
modulation. In further agreement, antidepressant drugs have also been shown to potentially 
modulate cognitive symptoms in AD and depression. Thus, the present review summarizes 
the main knowledge about biological and pathological substrates, such as monoamine 
and related molecules, commonly involved in AD and depression pathology, thus shading 
light on new therapeutic approaches.

Keywords: Alzheimer’s disease, depression, noradrenaline, serotonin, dopamine, beta amyloid

INTRODUCTION

Many pathologies have been indicated as comorbid with Alzheimer’s diseases (AD) and in 
particular neuropsychiatric disorders such as depression (Ownby et  al., 2006; Sun et  al., 2008). 
Indeed, depression is common in pre-clinical AD and may represent an early manifestation 
of this disease before the appearance of cognitive impairments (Geerlings et  al., 2000; Visser 
et  al., 2000). In this regard, much evidence endorses a strong relationship between depression 
and AD, so much that this mental illness has been proposed as a risk factor for AD or as 
a prodromic AD phase (Modrego and Ferrandez, 2004). The amyloid cascade hypothesis 
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postulates that neurodegeneration in AD is related to abnormal 
accumulation of amyloid beta (Aβ) plaques in various areas 
of the brain. However, soluble forms of this peptide have been 
implicated in the development of early memory deficits as 
well as of neuropsychiatric symptoms (Rowan et  al., 2005). 
Indeed, significant cognitive deficits have been directly attributed 
to soluble Aβ fragments (Mattson, 2004; Cleary et  al., 2005), 
and increased levels of soluble Aβ oligomers have been linked 
to synaptic dysfunction (Hardy and Selkoe, 2002; Selkoe and 
Schenk, 2003). Meanwhile, it has been reported that in depressed 
patients, Aβ peptide levels are increased (Pomara and Sidtis, 
2010). In good agreement, we  have previously demonstrated 
that Aβ, intracerebroventricularly (icv) injected in rats 7  days 
earlier, evokes a depressive-like profile accompanied by lower 
cortical serotonin (5-HT) and neurotrophin content (Colaianna 
et al., 2010). Furthermore, we later reported that such impairment 
was associated with altered stress response and increased 
noradrenaline (NA) levels (Morgese et  al., 2014, 2015). In 
addition, in the same model, cognitive impairment was 
demonstrated either acutely, such as 2 h after Aβ administration, 
or more enduringly, i.e., 7 days after the peptide central release 
(Morgese et  al., 2014; Tucci et  al., 2014; Mhillaj et  al., 2018). 
Although the role of dopamine (DA) was less studied concerning 
depression and AD, recently, its role has been brought to the 
fore (Nobili et al., 2017) but is still in need of further evaluation.

The present review is aimed at summarizing the main 
knowledge related to biological and pathological substrates, 
such as monoamines and related molecules, commonly involved 
in AD and depressive pathology, with the scope of shedding 
light on possible therapeutic approaches.

MONOAMINE SYSTEM IN DEPRESSION 
AND ALZHEIMER’S DISEASE

Serotonergic System
The treatment of affective disorders is mainly based on the 
enhancement of the noradrenergic and serotonergic systems 
through selective or nonselective reuptake inhibitors. Such a 
pharmacological schedule sinks the roots on the catecholaminergic 
theory of affective disorders stating the crucial role of lower 
central NA and 5-HT availability in the insurgence of depression 
(Mann et  al., 1986; Schildkraut, 1995; Mann, 1999). Alterations 
in these neurotransmitter systems have also been linked to 
neurodegenerative disorders such as AD. Impairment of the 
serotonergic system has been reported in the very early stages 
of AD (Versijpt et  al., 2003; Egashira et  al., 2005; Kepe et  al., 
2006), and substantial disruption of the serotonergic system in 
AD has been postulated according to both clinical and postmortem 
studies (Morgan et al., 1987; Lanctot et al., 2001). In this regard, 
Aβ in its soluble forms, either monomeric or oligomeric, has 
been associated with the modulation of these systems. In 
particular, we  have previously found that soluble Aβ injected 
icv in rats caused a significant reduction in 5-HT at the prefrontal 
cortex level, without interfering with the physiological functioning 
of other areas such as the striatum or the nucleus accumbens 
(Colaianna et al., 2010). These results indicated that the prefrontal 

cortex is an area highly sensitive to Aβ effects, and this area 
is also crucially involved in the etiopathogenesis of depressive 
phenomena. Indeed, impairment of 5-HT neurotransmission 
in the prefrontal area is central to both depressive disorders 
(Krishnan and Nestler, 2008) and several neurodegenerative 
diseases (Mattson, 2004; Egashira et  al., 2005). Furthermore, 
we  have more recently individuated the vulnerability of the 
hippocampal area to the action of exogenous Aβ icv injected. 
Indeed, we have found that this peptide can reduce 5-HT levels 
in the hippocampus, and this event is associated with a 
proinflammatory state and higher rate of activated microglia 
(Mhillaj et al., 2018). In addition, the treatment with a selective 
COX-2 inhibitor, such as celecoxib, was able to prevent the 
reduction in 5-HT levels, thus preventing the Aβ-induced 
depressive-like behavior and restoring Aβ plasma levels to control 
(Mhillaj et al., 2018; Morgese et al., 2018a). Accordingly, we have 
recently demonstrated that environmental factors, such as 
modified dietary factors, can lead to serotonergic impairment 
associated with increased levels of Aβ. In particular, we  found 
that deficiency in polyunsaturated fatty acids of the omega 3 
family, thus corresponding to a condition linked to a 
pseudoinflammatory state (Solbrig et  al., 2010; Graeber et  al., 
2011), led to a depressive-like phenotype characterized by 
reduced 5-HT content and higher Aβ levels (Morgese et  al., 
2017). Accordingly, an anti-inflammatory diet, such as a diet 
enriched in omega 3 fatty acids, was able to prevent the reduction 
in 5-HT caused by Aβ injection, preventing the depressive 
phenomenon (Bove et al., 2018; Morgese et al., 2018b). Likewise, 
depressed patients showed higher risk for the development of 
AD (Kessing and Andersen, 2004). On the other hand, postmortem 
studies performed in AD patients revealed low 5-HT and relative 
receptor content (Reynolds et  al., 1995). An in vitro model of 
familiar AD confirmed these observations, since cells 
overexpressing APP gene with the Swedish mutations associated 
with familial AD, indicated an altered sensitivity of the 
serotonergic system and 5-HT1B receptor subtype in particular 
(Tajeddinn et  al., 2016). Furthermore, in a double transgenic 
model of early AD, fluoxetine, an antidepressant drug acting 
as serotonin-selective re-uptake inhibitors (SSRIs), ameliorated 
the impairment of spatial learning by preventing neuronal loss 
(Ma et  al., 2017) and delayed the cognitive decline associated 
with synaptic changes (Zhou et  al., 2018). Accordingly, clinical 
evidence revealed that SSRIs significantly improve depressant 
symptoms and daily activities in AD patients (Werner and 
Covenas, 2015). This point is very intriguing considering that 
cognitive decline is recognized also as a clinical feature of 
depressive state. Interestingly, serotonergic system activation was 
reported to negatively modulate interstitial Aβ content. Indeed, 
in transgenic animal models of AD, the enhancing of 5-HT 
signaling, through the administration of SSRI antidepressants, 
rapidly reduced Aβ production in vivo via activation of 
extracellular regulated kinase (ERK) and the α-secretase-mediated 
pathway (Cirrito et  al., 2011; Fisher et  al., 2016). Indeed, the 
sequential proteolytic cleavage of amyloid precursor protein 
(APP) can also occur via α-secretase, leading to the production 
of α-CTF later transformed by γ-secretase into AICD and p3 
peptides (Chow et  al., 2010). This pathway is recognized as 
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the non-amyloidogenic pathway since APP is cleaved by 
α-secretase in the Aβ region, yielding to lower Aβ production 
(Chow et  al., 2010). This pathway has been described as 
neurotrophic and neuroprotective (Chow et al., 2010); therefore, 
therapeutic strategies steered at pushing APP processing toward 
α-secretase-mediated derivatives are under the spotlight. 
Furthermore, a PET imaging study carried out in cognitively 
normal individuals evidenced lower Aβ accumulation in 
consequence to increased 5-HT signaling (Sheline et  al., 2014), 
and retrospective analysis on patients under antidepressants 
further confirmed this finding (Vlassenko et  al., 2011). In this 
regard, we have recently demonstrated that fluoxetine treatment 
not only could restore 5-HT content in animals centrally injected 
with Aβ characterized by depressive-like phenotype but also 
reduced Aβ plasma levels (Schiavone et  al., 2017). In further 
agreement, activation of serotonergic receptors, such as 5-HT4, 
5-HT6, and 5-HT7, corresponded to lower Aβ content, whereas 
the opposite effect was retrieved after simultaneous 
pharmacological blockade of 5-HT4 and 5-HT7 (Cho and Hu, 
2007; Fisher et  al., 2016). 5-HT4 partial agonists have been 
proposed as fast-acting antidepressants (Lucas et al., 2007; Vidal 
et al., 2014) and have been shown to ameliorate cognitive deficit 
in anxiety/depressive models (Darcet et  al., 2016). In good 
agreement, pharmacological activation of 5-HT4 receptors was 
shown to enhance short- and long-term memory function 
(Meneses, 2007), endorsing the hypothesis of a putative role 
of these drugs for the amelioration of symptomatology of 
depression in AD. With regard to other receptor subtypes, it 
has been shown that APP can be  released upon activation of 
5-HT2A and 5-HT2C, and activation of 5-HT2C receptor promotes 
the expression of neprilysin, a well-characterized Aβ degrading 
enzymes (Tian et  al., 2015). However, it should be  considered 
that both 5-HT2C agonists and antagonists have been evaluated 
as antidepressants (Cryan and Lucki, 2000; Steardo et  al., 2000; 
Cryan et  al., 2005).

As regard to 5-HT2A receptors, genetic polymorphisms have 
been described in AD patients affected by major depression 
(Holmes et  al., 2003) and, in AD patients, lower binding to 
these receptors has been identified (Versijpt et  al., 2003). In 
addition, intra-hippocampal injection of Aβ was associated with 
a significant reduction in 5-HT2A expression (Christensen et al., 
2008). However, the effects of the activation of these receptors 
may vary depending on the cerebral pathway involved. Indeed, 
5-HT2A knocked down mice showed an altered phenotype with 
depressive-like symptoms (Popa et  al., 2005), and 5-HT2A 
antagonists have been evaluated as antidepressants (Zhang and 
Stackman, 2015); thus, a better understanding would help the 
developing of targeted compounds. On the other hand, 5-HT6 
receptors represent a novel therapeutic strategy in AD. Indeed, 
clinical trial for studying the efficacy and tolerability of the 
5-HT6 receptor antagonist, SB-742457, in subjects with mild-
to-moderate and probable AD, revealed a safe profile and 
possible utility in improving cognitive symptoms of AD  
(Maher-Edwards et  al., 2010). However, antagonists of these 
receptor subtypes have been indicated as useful also in the 
treatment of non-cognitive symptoms associated with AD 
(Garcia-Alloza et  al., 2004). However, despite early positive 

findings, larger phase-III trials have failed to demonstrate any 
statistically significant impact on cognition for either idalopirdine 
or intepirdine, two 5-HT6 antagonists, as adjunct to cholinesterase 
inhibitors. Paradoxically, 5-HT6 receptor agonists also hold 
cognitive enhancing properties (Khoury et  al., 2018). Likewise, 
polymorphism of these receptors has been associated with altered 
response to antidepressant treatment in major depressive disorder 
(Lee et al., 2005), although contrasting results have been reported 
(Wu et  al., 2001); hence, further research is warranted.

Noradrenergic System
The noradrenergic system is also implicated in the 
etiopathogenesis of both depression and AD. However, it has 
been recognized that the cause of depression is more complex 
than just an alteration in the levels of 5-HT and/or NA, being 
more directly caused by dysfunction in brain areas or neuronal 
systems modulated by monoamine systems (Delgado and Moreno, 
2000). It has been postulated that antidepressants, by enhancing 
neurotransmission in normal noradrenergic or serotonergic 
neurons, can restore lost functions in affected brain areas under 
monoamine control through a time-dependent process (Delgado 
and Moreno, 2000). Indeed, noradrenergic and serotonergic 
systems are strictly interconnected and control each other via 
heteroreceptors. In particular, a negative feedback has been 
hypothesized considering that increased 5-HT levels correspond 
to NA release, which in turn inhibits further 5-HT release 
via α2AR activation (Mongeau et  al., 1997). This process is 
mediated through inhibitory α2 receptors (α2AR) at 5-HT 
terminal levels and 5-HT3 receptors at NA terminals. Interestingly, 
increased α2AR have been found in postmortem brains of 
depressed patients (Meana et  al., 1992; Ordway et  al., 1994), 
and a theory of α2AR supersensitivity in depression was postulated 
early on Charney et  al., 1981. In this regard, increased 
α2-adrenoceptor density was retrieved in most regions of a 
rat model of depression, such as the flinders sensitive rat 
(Lillethorup et al., 2015) and in patients with depressive disorders 
(Cottingham and Wang, 2012). Interestingly, it has been 
postulated that tricyclic compounds can bind α2AR, thus 
functioning as arrestin-based ligands, and such an effect can 
explain their antidepressant property (Cottingham et al., 2015). 
Βeta-arrestins are a small family of regulators of G protein-
coupled receptors that regulate desensitization, internalization 
along, and initiation of their own signaling of such receptors 
(Jiang et  al., 2013). Long-term activation of these receptors 
causes endocytosis and downregulation through the recruitment 
of α2AR/arrestin complex (Cottingham et  al., 2015). The NA 
system is deeply affected also in neurodegeneration and in 
early AD (Haglund et al., 2006). Indeed, α2A adrenergic receptors 
modulate APP endocytic sorting and promote Aβ generation 
through disrupting APP interaction with a vacuolar protein 
sorting (Vps10) family protein, a family of receptors that plays 
a decisive role in controlling the outcome of APP proteolytic 
processing (Chen et  al., 2014). In addition, this study pointed 
to the use of α2A antagonists as a new direction for AD 
treatment. In this light, another putative target for the generation 
of novel AD treatments is targeting β-arrestin. Indeed, increased 
β-arrestin 1 levels were shown in a transgenic animal model 
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of AD as well as in postmortem study (Liu et  al., 2013). 
In keeping in mind a parallel route for depression and AD, 
β-arrestin signaling has also been associated with antidepressant 
properties of drugs (Golan et  al., 2013). Overexpression of 
β-arrestin 2 was associated with increased Aβ production. In 
particular, experimental conditions able to silence the β-arrestin 2 
gene corresponded to Aβ rate of production by regulating 
γ-secretase activity (Thathiah et al., 2013). Accordingly, Pontrello 
et  al. found that the loss of dendritic spine in hippocampal 
neurons caused by Aβ was prevented by deleting β-arrestin-2 
(Pontrello et  al., 2012). On the other hand, polymorphisms 
in the gene encoding for β2 adrenergic receptor have been 
associated with an increased risk of developing sporadic late 
onset AD (Yu et  al., 2008), while alterations in β adrenergic 
receptors were reported in depressed patients (Mann et  al., 
1986). Indeed, much evidence indicates that activation of these 
receptors yield to antidepressant effects (Overstreet et al., 2008; 
Gu et al., 2012). Nonetheless, Aβ interacts with the noradrenergic 
system directly binding to β-adrenergic receptors (Igbavboa 
et  al., 2006; Wang et  al., 2011). Aβ may cause desensitization 
and subsequently internalization of β2 adrenergic receptors in 
prefrontal cortical neurons (Wang et  al., 2011). Furthermore, 
β2 adrenergic receptor activation mediates phosphorylation of 
tau after Aβ exposure both in vivo and in vitro (Wang et  al., 
2013). On the other hand, we  have found that central icv 
injection of Aβ increases noradrenergic tone after either 2  h 
or after 7  days from the central injection, probably reflecting 
a neuroprotective phenomenon (Morgese et  al., 2014, 2015), 
considering that, NA is protective against neuroinflammatory 
processes. Accordingly, NA is able to modulate glial activation, 
and pharmacological strategies finalized to increase NA are 
considered a valid approach for neurodegenerative diseases 
(Braun et  al., 2014). In vitro studies have evidenced that 
neuroprotective effects of noradrenergic locus coeruleus (LC) 
afferents against Aβ rely on the stimulation of neurotrophic 
NGF and BDNF autocrine or paracrine loops via beta 
adrenoceptor activation of the cAMP response element binding 
protein pathway (Counts and Mufson, 2010; Liu et  al., 2015). 
After Aβ exposure, lower NA concentrations in LC projecting 
areas facilitate the inflammatory reaction of microglial cells, 
thus impairing microglial migration and phagocytosis, ultimately 
decreasing Aβ clearance (Heneka et  al., 2010). Accordingly, 
progression of AD is paralleled by the loss of noradrenergic 
function in LC (Kelly et  al., 2017), indicating the crucial role 
of this system in neurodegeneration.

Dopaminergic System
As regards the dopaminergic system, impairment of its 
neurotransmission has been implicated in many diseases including 
depression (Schmidt et al., 2001), and several pre-clinical studies 
have indicated the involvement of dopaminergic, either D1, 
D2, or D3, in antidepressant effects (Pytka et  al., 2016). In 
good agreement, it has been shown that pure dopaminergic 
drugs, such as pramipexole, DA precursors, and DA reuptake 
inhibitors, show therapeutic efficacy in depression  
(El Mansari et al., 2010; Belujon and Grace, 2017). In addition, 
neurodegenerative diseases associated with the loss of 

dopaminergic function, such as Parkinson’s or Huntington’s 
diseases, have high comorbidities with depression and anxiety 
(Dale et al., 2016; Schrag and Taddei, 2017; Smeltere et al., 2017).

Concerning AD, it was shown that prefrontal cortical and 
hippocampal areas showed lower DA receptor expression 
(Kemppainen et  al., 2003; Kumar and Patel, 2007). Interestingly 
accumbal expression of D2-like receptors, dopaminergic 
transporter, and tyrosine hydroxylase enzyme was found altered 
in AD brains (Rinne et  al., 1986; Allard et  al., 1990; Murray 
et al., 1995; Joyce et al., 1997). Imaging studies evidenced atrophy 
of this area in a cohort of AD patients (Pievani et  al., 2013). 
Aβ administration disrupts the cholinergic control of DA release, 
particularly in the nucleus accumbens (Preda et  al., 2008), but 
we  also reported a blunting of DA release in the prefrontal 
cortex of rat after icv injection of the peptide (Trabace et  al., 
2007). In addition, the increase in DAnergic tone has been 
proposed as a possible therapeutic strategy for AD, considering 
that dopaminergic dysfunction plays a pathogenic role in cognitive 
decline (Martorana et al., 2009, 2013; Koch et al., 2014; Martorana 
and Koch, 2014). Furthermore, selective DAnergic neuronal 
degeneration in ventral tegmental area was demonstrated in AD 
transgenic mice at pre-plaque stages, suggesting that lower 
hippocampal and accumbal DA outflow correlate to memory 
deficits and dysfunction of reward processing (Nobili et al., 2017).

CONCLUSIONS

It has been reported that depressed individuals are nearly twice 
as likely to develop dementia, often in the form of AD, compared 
with non-depressed individuals. Unfortunately, few 
pharmacological tools are available for dementia; thus, the need 
for novel therapeutic strategies is very compelling. Future studies 
aimed at elucidating the mechanisms through which drugs 
modulating monoamine release may prove helpful in 
individuating novel strategy for slowing down cognitive 
impairment in pre-clinical AD phase, often associated with 
mood alterations, taking into account their effects on Aβ 
production/clearance, aggregation status, and neuroinflammatory-
induced pathways. Furthermore, some of these molecules are 
already commercialized; thus, such a novel potential therapeutic 
approach for AD treatment may become rapidly clinically suitable.
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Alzheimer’s disease (AD), a slow progressive form of dementia, is clinically characterized 
by cognitive dysfunction and memory impairment and neuropathologically characterized 
by the accumulation of extracellular plaques containing amyloid β-protein (Aβ) and 
neurofibrillary tangles containing tau in the brain, with neuronal degeneration and high level 
of oxidative stress. The current treatments for AD, e.g., acetylcholinesterase inhibitors 
(AChEIs), have efficacies limited to symptom improvement. Although there are various 
approaches to the disease modifying therapies of AD, none of them can be used alone 
for actual treatment, and combination therapy may be needed for amelioration of the 
progression. There are reports that cilostazol (CSZ) suppressed cognitive decline progression 
in patients with mild cognitive impairment or stable AD receiving AChEIs. Previously, 
we showed that CSZ suppressed Aβ-induced neurotoxicity in SH-SY5Y cells via coincident 
inhibition of oxidative stress, as demonstrated by reduced activity of nicotinamide adenine 
dinucleotide phosphate oxidase, accumulation of reactive oxygen species, and signaling 
of mitogen-activated protein kinase. CSZ also rescued cognitive impairment and promoted 
soluble Aβ clearance in a mouse model of cerebral amyloid angiopathy. Mature Aβ fibrils 
have long been considered the primary neurodegenerative factors in AD; however, recent 
evidence indicates soluble oligomers to initiate the neuronal and synaptic dysfunction 
related to AD and other protein-misfolding diseases. Further underscoring the potential of 
CSZ for AD treatment, we  recently described the inhibitory effects of CSZ on Aβ 
oligomerization and aggregation in vitro. In this review, we discuss the possibility of CSZ 
as a potential disease-modifying therapy for the prevention or delay of AD.

Keywords: Alzheimer’s disease, amyloid β-protein, oligomer, cilostazol, neurotoxicity

INTRODUCTION

Alzheimer’s disease (AD), a progressive neurodegenerative disease, is associated with dementia. 
The brains of patients with AD are characterized by the occurrence of plaques primarily 
composed of amyloid β-protein (Aβ) and neurofibrillary tangles composed of tau protein 
(Selkoe and Hardy, 2016; Gao et  al., 2018). Despite the recent advances in symptomatic therapy 
involving the use of N-methyl-D-aspartate receptor (NMDAR) antagonist and cholinergic drugs, 
no disease-modifying therapies (DMTs) exist, which directly ameliorate AD-related 
neurodegenerative processes at the present (Cummings et  al., 2016).
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Aβ aggregation is considered one of the most important 
pathogenic processes, i.e., the amyloid hypothesis; therefore, 
studies on DMTs have primarily focused on the agents that 
prevent the accumulation of tau deposits and Aβ in the central 
nervous system (Cummings et  al., 2016). Indeed, in vitro and 
cell studies, human genetics analyses, and neurophysiological 
studies in animal models strongly implicate Aβ aggregation in 
AD-associated neurodegeneration via the promotion of oxidative 
stress, inflammation, and apoptosis (Selkoe and Hardy, 2016).

Aβ molecules aggregate to form soluble oligomers and fibrils 
(Ono, 2018). Subsequently, Aβ aggregates can directly cause 
neurodegeneration by acting on neurons or indirectly cause it 
by activating astrocytes and microglia, thereby triggering cytotoxic 
inflammatory cascades. Hence, to date, several DMTs have been 
developed targeting different Aβ aggregates (Ono, 2018).

Cilostazol (CSZ) is a selective phosphodiesterase (PDE) 3 
inhibitor, which increases intracellular cyclic AMP (cAMP) 
concentration and activates the cAMP-dependent protein kinase A 
(PKA), thus causing inhibition of platelet aggregation as well 
as inducing peripheral vasodilation. In addition, CSZ prevents 
oxidative stress (Kurtoglu et  al., 2014), promotes neurogenesis 
(Tanaka et  al., 2010), acts as an anti-atherogenic agent by 
enhancing cholesterol elimination from macrophages (Nakaya 
et  al., 2010), inhibits inflammatory cytokine production and 
signaling (Jung et  al., 2010), and improves systemic lymphatic 
function by inducing the proliferation and stabilization of 
lymphatic endothelial cells (Kimura et  al., 2014).

CSZ is primarily used to prevent cerebral ischemia (Shinohara 
et  al., 2010); however, it also reported slow cognitive decline 
in patients with mild cognitive impairment (MCI), AD, and 
cerebrovascular disease (CVD) (Arai and Takahashi, 2009; Sakurai 
et  al., 2013; Taguchi et  al., 2013; Ihara et  al., 2014; Tai et  al., 
2017). While the mechanisms of cognitive preservation remain 
unclear, CSZ has been shown to decrease Aβ25–35 accumulation 
and to concomitantly reduce cognitive deficits in animal models 
of AD (Hiramatsu et  al., 2010; Park et  al., 2011). Using the 
human-derived neuroblastoma cell line SH-SY5Y cells, we recently 
reported that CSZ suppressed Aβ1–42-induced neurotoxicity via 
the inhibition of oxidative stress, as demonstrated by coincident 
reduced reactive oxygen species (ROS) accumulation, mitogen-
activated protein kinase (MAPK)-p38 signaling, and nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase activity in 
SH-SY5Y cells (Oguchi et  al., 2017).

Although fibrils have long been considered to be  the primary 
neurodegenerative agents, recent evidence indicate that soluble 
oligomers initiate neuronal and synaptic dysfunctions associated 
with AD (oligomer hypothesis) (Selkoe and Hardy, 2016; Ono, 
2018). Furthermore, different evidence suggests that a tau 
pathogenesis is mediated by low-molecular-weight (LMW) oligomers 
of Aβ, e.g., dimers and trimers (Ittner and Gotz, 2011). If this 
is the case, DMTs should target the neurotoxic activity of these 
smaller Aβ assemblies to achieve the highest efficacy. Underscoring 
the potential efficacy of CSZ, we  recently demonstrated the 
inhibitory effects of CSZ on aggregation of Aβ isoforms in vitro, 
including oligomer formation (Shozawa et  al., 2018).

In this review, we  evaluate the therapeutic possibility of 
CSZ for AD pathogenesis based on clinical and basic research 

findings, taking account of the present situation in which no 
DMTs have been available and some effective combination 
therapy is seriously sought after.

PROTECTIVE EFFECTS OF CILOSTAZOL 
ON NEURONAL CELLS

CSZ has been known to protect various cell types from different 
stressors, e.g., endothelial cells from H2O2-induced oxidative 
stress (Ota et  al., 2008), vascular smooth muscle cells from 
endothelin-induced vasoconstriction (Kawanabe et  al., 2012), 
cells constituting the blood-brain barrier (BBB) from collagenase-
induced stroke damage (Takagi et  al., 2017), and primary 
cultured hepatocytes from ethanol-induced damage (Xie et  al., 
2018). It would be  reasonable to expect that CSZ may also 
be  neuroprotective and effective in the treatment of AD or 
vascular dementia.

Types of neurodegeneration that possibly cause dementia 
include synaptic transmission dysfunction, neuronal cell death, 
CREB-related loss of long-term potentiation, and so on. 
Researches on possible molecular mechanisms of neuroprotection 
by CSZ will be  reviewed in the following.

As mentioned in the Introduction, CSZ has been approved 
in various countries as an anti-platelet agent, whose inhibition 
of PDE3 results in PKA activation to suppress platelet aggregation. 
Some study indicated that neuroprotection by CSZ was associated 
with the inhibition of PDE3 (Mabuchi et  al., 2001), but the 
molecular mechanisms underlying neuroprotection remain 
uncertain because PDE3 is abundantly expressed in the heart 
and vascular smooth muscle cells, but far less in the human 
brain (Lakics et al., 2010). Thus, it is unlikely that CSZ-induced 
PDE3 inhibition in neuronal cells is the primary mechanism 
for improving cognitive impairments in AD. Further, in our 
experiments using SH-SY5Y cells, CSZ did not reverse the 
decrease in cAMP concentration induced by Aβ1–42 exposure 
despite a reduction in neurotoxicity (Oguchi et al., 2017). Thus, 
CSZ-mediated neuroprotection seems unrelated to PDE3. In 
addition to its action of selective PDE3 inhibition, CSZ is 
known to activate other serine/threonine kinase including 
AMP-activated protein kinase (AMPK) (Park et  al., 2016). 
Neuronal cells treated with CSZ exhibit increased expression 
of phosphorylated AMPKα, causing upregulation of Aβ autophagy 
and decreasing intracellular Aβ accumulation (Park et al., 2016).

Another possible protective mechanism involves the 
modulation of NMDA signaling that is critical in synaptic 
transmission. Seixas da Silva et  al. (2017) recently reported 
that NMDA receptor (NMDAR) activation mediates the reduced 
AMPK activity and metabolic deficits in cultured hippocampal 
neurons exposed to Aβ1–42 oligomers. CSZ suppressed the 
cognitive deficits caused by an NMDAR antagonist in mice 
(Hashimoto et al., 2010). In this case, cAMP-response element-
binding protein (CREB) decrease induced by an NMDAR 
antagonist was counteracted by CSZ treatment and the  
resulting increase in CREB suppressed the cognitive deficits. 
CSZ seems to activate AMPK via Sir1  in neurons, and this 
in turn activates CREB (Park et  al., 2016).
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CSZ appears to suppress oxidative stress through multiple 
mechanisms. Choi et  al. (2002) first reported that CSZ can 
ameliorate oxidative stress by scavenging hydroxyl and peroxy 
radicals, thus decreasing ischemic cerebral infarction. In a 
recent study of mice with permanent focal cerebral ischemia, 
CSZ suppressed oxidative stress in ischemic neurons by reducing 
NADPH oxidase (NOX) 2 expression, further resulting in 
reduced infarct volume (Shichinohe et  al., 2015). Moreover, 
CSZ treatment in SH-SY5Y cells significantly reduced ROS 
generation during Aβ1–42 exposure by downregulating NOX 
activation and Nox-4 mRNA expression (Oguchi et  al., 2017).

Furthermore, CSZ treatment significantly reduced the 
expression of the proapoptotic protein Bax and the activation 
of the apoptosis effector caspases, while significantly increasing 
the expression of the antioxidant enzyme superoxide dismutase 
and the antiapoptotic protein Bcl-2 (Oguchi et al., 2017). These 
results suggest that CSZ attenuates Aβ1–42-induced cytotoxicity 
in neuronal cells by inhibiting NOX-derived ROS production 
and mitochondrial damage, resulting in reduced apoptosis.

ROS generated during the early stage of Aβ aggregation 
also activates the p38-MAPK and JNK signaling pathways in 
AD brains (Zhu et  al., 2002; Tabner et  al., 2005). ERK1/2 is 
activated by neural signals associated with synaptic plasticity 
and cytoprotection. In the mouse hippocampus, ERK1/2 is 
activated in postsynaptic neurons by NMDAR activation during 
long-term potentiation (LTP) induction (Schmitt et  al., 2005). 
Calmodulin-dependent kinase kinase/calmodulin kinase I  
activity gates extracellular-regulated kinase-dependent LTP. 

NMDAR activation phosphorylates (activates) ERK1/2, which 
subsequently regulates the various gene expressions by the 
CREB phosphorylation. In our recent study, CSZ elevated 
ERK1/2 and CREB phosphorylation in SH-SY5Y cells treated 
with Aβ1–42 (Oguchi et  al., 2017). In another cell system, that 
is, mouse neuroblastoma Nm2a cells with overexpression of 
human mutated amyloid precursor protein (APP) cells, CSZ 
was shown to increase CREB phosphorylation (Lee et al., 2014).

Recent reports have implicated aberrant CREB signaling in 
cognitive and neurodegenerative disorders. The hippocampal 
accumulation of Aβ peptide causes synapse loss and disrupts 
LTP, which is critical for encoding long-term spatial, associative, 
emotional, and social memories, through deficient CREB signaling 
(Saura and Valero, 2011). Further, Qiu et  al. (2016) reported 
that Aβ1–42 oligomers induce apoptosis through decreased Akt 
and CREB phosphorylation in PC12 cells (Qiu et  al., 2016). 
In addition, the exposure of SH-SY5Y cells to Aβ1–42 decreased 
phosphorylated CREB, a response prevented by CSZ, and 
pretreatment with a MEK1/2 inhibitor significantly suppressed 
CSZ-stimulated CREB phosphorylation (Oguchi et  al., 2017).

In summary, Aβ-induced oxidative stress is inhibited by 
CSZ by scavenging and suppressing NOX activity. Amelioration 
of oxidative stress by CSZ reduces Aβ-induced activation of 
p38-MAPK signaling, which is strongly linked to apoptosis 
and inflammatory responses. Alternatively, CSZ increases ERK1/2 
activity in neuronal cells, promoting CREB phosphorylation 
and transactivation of CRE-controlled genes including Bcl-2 
(Figure 1). In addition, CSZ protects cells from mitochondrial 

FIGURE 1 | Proposed neuroprotective mechanism of CSZ against Aβ-induced neurodegeneration. This scheme shows that CSZ suppresses Aβ-induced 
neurotoxicity via ROS-activated p38MAPK and AMPK/CREB pathways. NOX, NADPH oxidase; ROS, reactive oxygen species; p38MAPK, p38 mitogen-activated 
protein kinase; ERK, extracellular regulated kinase; AMPK, 5′-adenosine monophosphate (AMP)-activated protein kinase; GSK3β, glycogen synthase kinase 3β; 
CREB, cAMP-responsive element-binding protein; SOD, superoxide dismutase.
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dysfunction, which is another ROS source, by inhibiting 
Aβ-induced increase in Bax and activation of effector caspases. 
Thus, CSZ may have multiple cytoprotective actions against 
oxidative stress, impaired synaptic plasticity, mitochondrial 
dysfunction, and apoptosis and therefore can prevent neuronal 
damage and associated cognitive deficits in AD.

CILOSTAZOL INHIBITS Aβ OLIGOMER 
FORMATION

Several studies have reported the LMW oligomers of Aβ to 
be  particularly toxic (Shankar et  al., 2007; Ono et  al., 2009; 
Ono, 2018). LMW oligomers from APP-expressing CHO cells 
caused progressive dysfunction of synaptic plasticity in rat 
hippocampal slices (Shankar et al., 2007). Further, LMW oligomers, 
especially dimers, that were isolated from AD brains exerted 
synaptic toxicity (Shankar et al., 2008). In our combined structural 
and cellular studies using pure Aβ oligomers, we  revealed that 
LMW oligomers (dimer, trimer, and tetramer) are more cytotoxic 
than monomer (Ono et al., 2009); this superior toxicity correlated 
with the increases in β-sheet content and the seeding activity 
to facilitate fibrillization (Ono et  al., 2009).

Shozawa et  al. (2018) recently demonstrated that CSZ 
significantly inhibited both Aβ1–40 and Aβ1–42 aggregation, 
but with a stronger inhibitory effect on oligomerization than 
on fibrillization. Although structural change to β-sheet and 
fibrillization generally correlate during peptide assembly 
(Levine, 1999), we  reported that LMW oligomers including 

PICUP-derived oligomers initiated exhibiting β-sheet content 
at the dimer stage; conversely, a thioflavin fluorescence increase 
was not observed, which is indicative of fibril formation 
(Ono et  al., 2009). Although Aβ oligomers were initially 
believed to be positioned on the ON-pathway from monomer 
to fibrils, some oligomers (e.g., amylospheroids and PICUP-
derived oligomers) are positioned on the OFF-pathway but 
exhibit higher toxicity (Hoshi et  al., 2003; Ono, 2018). 
Recently, we reported high-molecular-weight oligomers, e.g., 
protofibrils to also be positioned on the OFF-pathway using 
combined thioflavin T assay, electron microscopy, and high-
speed atomic force microscopy (Watanabe-Nakayama et  al., 
2016). Thus, an explanation for the superior inhibitory 
potency of CSZ against Aβ oligomerization than against 
fibrillization is the fact that LMW oligomers generated  
by PICUP are positioned on the OFF-pathway (Figure 2; 
Shozawa et  al., 2018).

Until now, we reported that several hydroxyl radical scavengers, 
e.g., rosmarinic acid, curcumin, and rifampicin, exhibit inhibitory 
effects on Aβ, tau, and α-synuclein (αS) oligomer formation 
(Ono et  al., 2012; Takahashi et  al., 2015; Umeda et  al., 2016). 
Yen and Hsieh (1997) and Tomiyama et  al. (1996) reported 
a phenolic compound with hydroxyl groups, particularly 
orthoquinone and naphthohydroquinone to be a good hydroxyl 
radical scavenger. Based on binding assays, we  hypothesized 
that the orthoquinone ring of rosmarinic acid and curcumin 
and naphthohydroquinone of rifampicin facilitate their specific 
binding to free Aβ/tau/αS, thereby inhibiting aggregation 
(Takahashi et  al., 2015; Umeda et  al., 2016). Regardless of the 

FIGURE 2 | Inhibitory effects of CSZ on Aβ aggregation. The Aβ monomer may aggregate to produce toxic intermediate aggregates, such as soluble oligomers, 
and finally mature fibrils. CSZ inhibits ON-pathway formation of Aβ fibrils concurrently with strong prevention of OFF-pathway Aβ oligomers (scale bars = 100 nm). 
This research was originally published in Neurosci. Lett. (Shozawa et al., 2018).
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absence of a quinone ring in CSZ, its quinolone ring with 
free radical scavenging activity may be  associated with Aβ 
binding and/or inhibition of Aβ oligomerization (Figure 2; 
Orhan Puskullu et  al., 2013; Shozawa et  al., 2018).

CSZ reportedly suppresses Aβ accumulation-induced 
tauopathy via increased PKA-linked CK2/SIRT1 expression in 
vitro (Lee et  al., 2014). Additionally, the oral administration 
of CSZ to C57BL/6J mice prior to Aβ25–35 injection showed 
significant improvement in spatial learning and memory, 
prevented Aβ-induced immunoreactivity of Aβ and 
phosphorylated tau, and suppressed microglia activation 
compared with control Aβ25–35-injected mice. Nevertheless, post-
treatment with CSZ following Aβ25–35 administration and Aβ 
accumulation did not reduce Aβ-induced neuropathology. 
Moreover, CSZ had no effect on neprilysin and insulin-degrading 
enzyme involved in Aβ peptide degradation (Park et al., 2011). 
Additionally, in a mouse model of cerebral amyloid angiopathy 
(CAA), CSZ facilitated soluble Aβ clearance and rescued cognitive 
deficits (Maki et  al., 2014).

Very recently, administration of CSZ was reported to increase 
proteasome activity and reduce the levels of total and aggregated 
tau species and cognitive decline in a mouse model of tauopathy 
(Schaler and Myeku, 2018).

In summary, these findings suggest that CSZ promotes the 
clearance of Aβ oligomers and blocks Aβ oligomer formation, 
thereby preventing tau pathogenesis. On the other hand, it 
does not facilitate the clearance of mature fibrils, possibly 
limiting its clinical efficacy in advanced AD.

CILOSTAZOL IMPROVES COGNITIVE 
DECLINE IN PATIENTS WITH 
ALZHEIMER’S DISEASE

As an antiplatelet therapy, patients generally use 100  mg 
CSZ orally twice daily; hence, one potential mechanism for 
cognitive improvement is anti-thrombotic activity and 
prevention of focal ischemia. At this dose, the plasma 
concentration attains a steady state between 1.5 and 3.2  μM. 
Similarly, rats orally administered 10 mg/kg CSZ had a plasma 
concentration of 993  ng/ml (2.69  μM) as measured by 
radioactive carbon; however, the concentration was only 
99  ng/g in the cerebrum and 946  ng/g in the hypophysis 
following an oral administration of 10 mg/kg CSZ, suggesting 
only a minor fraction of CSZ passes through the BBB (Akiyama 
et al., 1985). Whether the prevention of Aβ oligomer formation, 
neurodegeneration, and cognitive impairment can occur in 
patients with AD at these clinical CSZ doses needs to 
be  clarified.

The concentrations required to prevent Aβ aggregation are 
10- to 40-fold higher (25–100 μM) than the effective concentration 
of 2.5  μM identified in the present Aβ toxicity assay, which is 
notably within the range of normal plasma concentrations. Further, 
its brain concentrations may be substantially lower than its plasma 
concentrations. However, the cerebrospinal fluid concentrations 

of Aβ were only 200–300  pg/ml (~50 pM) in patients with AD 
(Hu et  al., 2015), which is approximately 1,000,000-fold lower 
than the Aβ concentrations observed in this aggregation study. 
Considering the effective Aβ to CSZ ratio, it needs to examine 
whether a long-term clinical administration of CSZ continues 
to inhibit Aβ oligomer formation in vivo.

In Japan and other Asian countries, CSZ is clinically 
used to prevent cerebral ischemic diseases (Shinohara et  al., 
2010), including CAA, because it carries a limited risk of 
hemorrhage in most elderly patients (Charidimou et  al., 
2012; Saito and Ihara, 2014). The second CSZ Stroke Prevention 
Study (CSPS2) for patients with cerebral infarction reported 
hemorrhagic stroke to be  significantly less frequent in a 
CSZ group than in an aspirin group (Shinohara et  al., 2010; 
Uchiyama et  al., 2014). These effects may be  explained, at 
least partially, by an inhibitory effect on matrix 
metalloproteinase-9 expression and the protection of vascular 
endothelial cells (Hase et  al., 2012; Kasahara et  al., 2012).

The efficacy of CSZ in patients with MCI (Taguchi et  al., 
2013), AChEI-treated patients with clinically probable AD (Arai 
and Takahashi, 2009; Tai et  al., 2017), and patients with AD 
and CVD (Sakurai et  al., 2013; Hishikawa et  al., 2017) has 
been evaluated in several small-scale clinical studies. In a pilot 
study involving 10 patients with moderate AD who were 
administered AChEI donepezil, a 5- to 6-month add-on CSZ 
treatment significantly increased the Mini Mental State 
Examination score in comparison with the baseline score (Arai 
and Takahashi, 2009). In a larger pilot study comprising 30 
participants, a 12-month CSZ add-on therapy improved cognitive 
impairments in those with stable AD (Tai et al., 2017). Recently, 
a pilot study including 101 patients with AD and asymptomatic 
lacunar infarction reported that combination therapy with CSZ 
and the AChEI galantamine significantly improved the Geriatric 
Depression Scale and Abe’s behavioral and psychological 
symptoms of dementia scores and a 6-month CSZ monotherapy 
significantly improved the Geriatric Depression Scale score 
(Hishikawa et al., 2017). The effects of a 6-month CSZ treatment 
on cognition and regional cerebral blood flow (rCBF) were 
examined in 20 elderly patients with mild-to-moderate AD 
and CVD (Sakurai et  al., 2013). As the results showed, the 
CSZ group did not show any changes in cognitive function, 
whereas the control group showed a cognitive decline on the 
AD Assessment Scale-Cognitive Subscale. Analysis of treatment 
effect revealed that the CSZ group showed increased rCBF in 
the right anterior cingulate lobe, whereas the control group 
showed decreased rCBF in the left middle temporal gyrus. 
On the other hand, initiated study in 2011 by the Seoul National 
University Hospital revealed that no difference between CSZ 
and placebo groups was reported on cognitive measures, which 
included the MMSE and the cognitive scale of the cognitive 
part of the AD Assessment Scale in 36 mild-to-moderate AD 
patients with subcortical white matter hyperintensities treated 
with donepezil for a 6-month period (Prickaerts et  al., 2017).

Furthermore, an approximately 2-year retrospective analysis 
concluded that CSZ improves cognitive function in patients 
with MCI (Taguchi et al., 2013). Randomized placebo-controlled 
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clinical phase II trials are currently ongoing for patients with 
MCI (Saito and Ihara, 2014).

Side effects of CSZ include most commonly headache, 
diarrhea, abnormal stools, irregular heart rate, and palpitations. 
It is contraindicated in patients with severe heart failure or 
severe hepatic/renal impairment (Chapman and Goa, 2003).

CONCLUSION

CSZ was reported to promote Aβ clearance, inhibit Aβ 
oligomerization, and suppress Aβ-induced neurotoxicity  
in vitro and in vivo. CSZ is reported to suppress cognitive decline 
progression in some patients with MCI or AD. For examination 
of these effects in a larger scale, randomized placebo-controlled 
phase II trials are ongoing for patients with MCI (Saito and 
Ihara, 2014). As future direction, potential effects of CSZ on 
AD comorbidities, such as depression or metabolic dysfunctions 
(e.g., diabetes), will also have to be  examined in AD or MCI 

patients with or without CVD because oxidative stress plays 
the important role in these diseases as in AD (Novais and 
Starkstein, 2015; Karki et  al., 2017; Morgese et  al., 2017).
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Alzheimer’s disease is the most common neurodegenerative disorder characterized by 
the presence of β-amyloid aggregates deposited as senile plaques and by the presence 
of neurofibrillary tangles of tau protein. To date, there is a broad consensus on the 
idea that neuroinflammation is one of the most important component in Alzheimer’s 
disease pathogenesis. Chemokines and their receptors, beside the well-known role 
in the immune system, are widely expressed in the nervous system, where they play 
a significant role in the neuroinflammatory processes. Prokineticins are a new family 
of chemokine-like molecules involved in numerous physiological and pathological 
processes including immunity, pain, inflammation, and neuroinflammation. Prokineticin 
2 (PROK2) and its receptors PKR1 and PKR2 are widely expressed in the central 
nervous system in both neuronal and glial cells. In Alzheimer’s disease, PROK2 sustains 
the neuroinflammatory condition and contributes to neurotoxicity, since its expression 
is strongly upregulated by amyloid-β peptide and reversed by the PKR antagonist 
PC1. This review aims to summarize the current knowledge on the neurotoxic and/
or neuroprotective function of chemokines in Alzheimer’s disease, focusing on the 
prokineticin system: it represents a new field of investigation that can stimulate the 
research of innovative pharmacotherapeutic strategies.

Keywords: Alzheimer’s disease, chemokines, prokineticin receptors, Aß-peptide, prokineticins

ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) is the most common progressive neurodegenerative disorder and is the 
most frequent cause of dementia, characterized by a progressive and irreversible mental decline with 
loss of cognitive skills and memory function. The histopathological hallmarks of AD are extracellular 
senile plaques that are aggregates of amyloid-β (Aβ) peptide, and intracellular aggregation of hyper-
phosphorylated tau protein that forms neurofibrillary tangles (Haass and Selkoe, 2007; Huang 
and Mucke, 2012). This aggregation causes a neurotoxic cascade, which, in turn, leads to neuronal 
degeneration and atrophy of the brain regions involved in memory and cognitive impairment 
(temporal and parietal lobe, pre-frontal cortex, and hippocampus), increasing, in this way, brain 
neuroinflammation (Raskin et al., 2015; Bronzuoli et al., 2016). It is well known, in fact, that neuronal 
dysfunction is not the solely cause of AD pathogenesis and progression. There are increasing evidences 
showing that microglia and astrocytes are implicated in the neuroinflammatory reactions that 
characterize this pathology. Microglia cells are the innate immune cells of the central nervous system 
(CNS) and are involved in regulating synaptic plasticity and remodelling neuronal circuits. Astrocytes 
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are the most numerous glial cells in the brain, and they provide 
nutrients and structural support to neurons. Moreover, microglia 
and astrocytes are responsible for brain homeostasis, and they 
react to disease stressors by innate immune responses such as 
production and release of inflammatory mediators that 
aim to resolve pathological state. In persistent pathological 
conditions, such as neurodegenerative diseases, however, microglia 
as well as astrocytes change their physiological phenotype and, 
consequently, lose their helpful function. Several studies from 
post-mortem brains of AD patients and AD animal models have 
revealed a co-localization of reactive glial cells with senile plaques 
and neurofibrillary tangles (Parachikova et al., 2007; Hickman 
et al., 2008; Lopez-Gonzalez et al., 2015). In particular, the early 
recruitment of microglia around plaques seems beneficial in AD by 
promoting phagocytosis of Aβ. However, the excessive amount of 
Aβ occurring with the disease progression overwhelms microglia, 
which loses its phagocytic capacity in favor of a pro-inflammatory 
role (Jay et al., 2015). It is known, in fact, that activation of microglia 
involves the release of several pro-inflammatory molecules 
(specifically IL-1β, TNFα, and C1q) and induces the activation 
of astrocytes that consequently lose their neuroprotective activity 
(Liddelow et al., 2017). Astrocytes’ neurotoxic phenotype is 
abundant in AD patients’ brain. Therefore, in these conditions, 
microglia and astrocytes promote neuroinflammatory response, 
being responsible for the synthesis of different pro-inflammatory 
mediators including chemokines and mediators with chemokine-
like function as defensins and macrophage migration inhibitory 
factor (MIF) (Casolini et al., 2002; Sudduth et al., 2013; Williams 
et  al., 2013; Azizi et al., 2014; Guerriero et al., 2017; Chun et al., 
2018).

This review aims to summarize the most current knowledge 
on role of chemokines in AD, focusing on the prokineticins, 
chemokine‐like molecules that have a role in the amyloid-induced 
neuronal damage (all the data shown below are summarized in 
Table 1).

CHEMOKINES

Chemokines are chemotactic cytokines originally identified as 
factors regulating immune cell migration to sites of inflammation 
(Luster, 1998). This family, also widely expressed in the CNS, 
exerts its functions through chemokine receptors that belong 
to the superfamily of G-protein-coupled receptors. Most 
chemokines bind to more than one receptor, and several distinct 
chemokines share common receptor (Rossi and Zlotnik, 2000). 
Chemokines can be classified into sub-families on the basis 
of the sequential position of the first two of the four cysteine 
residues: CXC, CC, CX3C, and C (Bachelerie et al., 2013). The 
main alteration in chemokines and receptors discriminating 
pathophysiological inflammatory conditions from physiological 
ones is their increased expression as demonstrated in plasma, 
cerebrospinal fluid (CSF), and brain tissue of patients with AD. 
Microglia, astrocytes, and neurons are believed to be the main 
source of chemokines and their receptors’ production (Liu et al., 
2014). In general, most of the chemokines and their receptors 
contribute to the neuroinflammatory component of AD by 

recruiting peripheral blood monocytes and promoting glial cell 
activation, even if emerging data hypothesize for some of them, a 
neuroprotective role.

CCL2 or monocyte chemoattractant protein 1 (MCP-1), 
mostly produced by glial cells, seems to have a detrimental role 
in AD pathogenesis, as its overexpression has been found in brain 
(Sokolova et al., 2009; Vukic et al., 2009), mature senile plaques, 
microglia, and microvessels of AD patients (Grammas and Ovase, 
2001). Clinical data of AD patients have shown an increase of 
CCL2 both in CSF and in plasma (Westin et al., 2012; Zhang et 
al., 2013), and, according to several authors, it correlates with 
the disease progression and the cognitive decline (Galimberti et 
al., 2006a; Kimura et al., 2018; Lee et al., 2018). Conversely, other 
studies report no association between CCL2 plasma levels and 
AD (Kim et al., 2011; Porcellini et al., 2013). On the other hand, 
the deficit of CCR2 (CCL2 receptor) may aggravate the disease 
progression. In transgenic mouse models of AD (Tg2576 mice and 
APPswe/PSEN1), Ccr2 deficiency accelerates memory deficits and 
disease progression increasing the Aβ soluble levels in the brain 
(El Khoury et al., 2007; Naert and Rivest, 2011). This could be due 
to an impaired macrophage recruitment, microglial accumulation, 
and Aβ clearance, which seems to be CCR2 dependent.

CXCL8 (or interleukin 8) is produced in CNS by neurons, 
microglia, and astrocytes in response to proinflammatory signals. 
It has been found to be increased in serum, CSF, and brains of AD 
patients (Galimberti et al., 2006b; Ashutosh et al., 2011; Alsadany 
et al., 2013). Moreover, high levels of its receptors (CXCR2) 
have been reported in neuritic plaques of AD tissue, as well as 
in microglia and astrocytes (Xia et al., 1997; Flynn et al., 2003). 
Bakshi and collaborators have demonstrated in vitro that the 
knock-down or the pharmacological block of CXCR2 with the 
antagonist SB225002 induces an inhibition in Aβ release, through 
inhibition of γ-secretase, while the activation of CXCR2, with the 
exogenous chemokines hrIL8 and hrGRO-α, leads to an increase 
in Aβ. These data have been confirmed by the same authors in in 
vivo studies, in which Cxcr2 deficient mice show a reduction of 
Aβ that is associated to γ-secretase decrease (Bakshi et al., 2008, 
Bakshi et al., 2011). Furthermore, the intra-hippocampal Aβ1–42 
injection induces microglial chemotactic response that involves 
the hippocampal overexpression of CXCL8/CXCR2 in a time-
dependent manner (Ryu et al., 2015). The hippocampal Aβ1–42 
injection also causes an up-regulation of CXCR2 in peripheral T 
cells associated with an increased T cell entry in the brain. These 
effects are reduced by intraperitoneal injection with the CXCR2 
antagonist SB332235 (Liu et al., 2010a).

CXCL10 (or IP-10). Clinical research in AD patients has 
demonstrated a positive correlation between the levels of CXCL10 
in CSF and cognitive impairment (Galimberti et al., 2006b). 
CXCL10 is physiologically expressed in astrocytes and elevated 
in AD patients (Xia et al., 2000) and AD transgenic mice, where 
it co-localizes with Aβ plaques (Duan et al., 2008; Zaheer et al., 
2013). CXCL10 binds to CXCR3 receptor that plays a critical 
role in the generation of AD pathology: in a transgenic AD 
mouse model, CXCR3 deficiency significantly reduces Aβ plaque 
formation and strongly diminishes Aβ peptide in brain tissue; 
this correlates with the improvement of the behavioral deficit 
(Krauthausen et al., 2015).

49

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


AD New Insight Into ProkineticinsZuena et al.

3 May 2019 | Volume 10 | Article 622Frontiers in Pharmacology | www.frontiersin.org

CX3CL1 (also named fractalkine), unlike other chemokines, 
is produced as a transmembrane-anchored protein and exerts 
its functions as a membrane protein or as soluble isoforms. 
It is produced by neurons and astrocytes, whereas microglia 
constitutively express CX3CR1, its sole receptor (Mizuno 
et al., 2003). CX3CR1 is also partly expressed in astrocytes and 
neurons (Meucci et al., 2000; Cardona et al., 2006), suggesting 
that CX3CL1/CX3CR1 pathway plays a major role in neuron/
microglia communication and allows neurons to regulate 
microglia activation (Limatola and Ransohoff, 2014). Clinical 
studies suggest that CX3CL1/CX3CR1 may participate to the 
development of AD pathogenesis: serum fractalkine is elevated 
in patients with mild AD, and its reduction is positively correlated 
with the cognitive decline (Kim et al., 2008). Moreover, an 
overexpression of CX3CL1 is present in the hippocampus 
of AD patients (Strobel et al., 2015). In AD animal models, 
different studies demonstrate a neuroprotective role of CX3CL1/
CX3CR1 axis in tau pathology by favoring an anti-inflammatory 

context. Transgenic mice lacking CX3CR1 show increased tau 
phosphorylation and aggregation associated with microglial 
activation and behavioral impairments (Bhaskar et al., 2010; Bolós 
et al., 2017). In a mouse model of AD, Nash and collaborators have 
confirmed these results: the overexpression of soluble fractalkine 
reduces tau pathology with a significant reduction of microglial 
activation and neuronal loss (Nash et al., 2013). Regarding the 
CX3CL1/CX3CR1 in Aβ pathology, data seem to be divergent 
(Finneran and Nash, 2019). CX3CR1 deficiency in three different 
AD mouse models reduces β-amyloid deposition, enhancing 
Aβ phagocytic ability by microglia (Lee et  al., 2010; Liu et al., 
2010b). Similarly, upregulation of CX3CR1 in the hippocampus 
of rats injected with Aβ1−40, induces microglial activation, synaptic 
dysfunction, and cognitive impairments (Wu et al., 2013). On the 
other hand, CX3CR1 deficiency in mice overexpressing human 
amyloid precursor protein (APP) exhibits enhanced tau pathology, 
microglial activation, expression of proinflammatory markers 
(IL-1β, TNF-α, and IL-6), neuronal death in the dentate gyrus, 

TABLE 1 | Summary of the effects of chemokines and prokineticins in different cellular and animal models of AD and their expression in AD patients.

Chemokines Receptors Effect on cellular or 
AD animal models

References AD patients References

CCL2 (MCP-1) CCR2 CCR2 deficient mice: 
↑ Aβ 

El Khoury et al., 
2007; Naert and 
Rivest, 2011

CCL2 ↑ in brain

CCL2 ↑ in CSF

CCL2 ↑ in plasma

Grammas and Ovase, 2001; 
Sokolova et al., 2009; Vukic 
et al., 2009
Westin et al., 2012; Kimura 
et al., 2018
Galimberti et al., 2006a; Zhang 
et al., 2013; Lee et al., 2018

CCL5 (RANTES) CCR1  
CCR3  
CCR5

CCR5 deficient mice: 
↑ Aβ

Lee et al., 2009 CCL5 ↑ in brain 
microvessels 

Tripathy et al., 2010

CXCL8 (IL-8) CXCR1  
CXCR2

In vitro
knock-down or 
pharmacological block of 
CXCR2: ↓ Aβ;
activation of CXCR2: 
↑ Aβ
In vivo
CXCR2 deficient mice:
↓ Aβ
Recruitment of
T-lymphocytes in the brain

Bakshi et al., 2008

Bakshi et al., 2011

Liu et al., 2010a

CXCL8 ↑ in brain
CXCL8 ↑ in CSF
CXCL8 ↑ in plasma
CXCR2 ↑ in microglia 
and astrocytes
CXCR2 ↑ in neuritic 
plaques

Ashutosh et al., 2011
Galimberti et al., 2006b
Alsadany et al., 2013
Flynn et al., 2003

Xia et al., 1997

CXCL10 (IP-10) CXCR3 CXCR3 deficiency mice:
↓ Aβ 

Krauthausen et al., 
2015

CXCL10 ↑ in brain Xia et al., 2000

CXCL12 (SDF-1α) CXCR4  
CXCR7

In vitro
CXCL12 prevents 
dendritic regression 
and neuronal apoptosis 
induced by Aβ

Raman et al., 2011
CXCL12 ↓ in plasma

CXCL12 ↓ in brain
CXCR4 ↑ in brain

Laske et al., 2008

Parachikova and Cotman, 2007
Parachikova and Cotman, 
2007; Weeraratna et al., 2007

CX3CL1 (Fractalkine) CX3CR1 CX3CR1 deficiency mice:
↑ p-tau

CX3CR1 deficiency mice:
↓ Aβ

Bhaskar et al., 2010; 
Bolós et al., 2017;
Nash et al., 2013
Lee et al., 2010;
Liu et al., 2010b

CX3CL1 ↑ in plasma

CX3CL1 ↑ in brain 

Kim et al., 2008

Strobel et al., 2015

PROK2 PKR1 PKR2 In vitro
Incubation of CNs with Aβ:
↑ PROK2/PKRs
In vivo
Non-transgenic AD mice 
model:
↑ PROK2/PKRs/TM4-7

Severini et al., 2015; 
Caioli et al., 2017

Severini et al., 2015; 
Lattanzi et al., 2019 
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and worsened learning abilities (Cho et al., 2011). Moreover, in 
the same mouse model, a decrease in CX3CL1 has been shown in 
cerebral cortex and hippocampus (Duan et al., 2008).

CCL5 (also known as RANTES) and its receptors CCR5 are 
found on endothelial cells, glia, and neurons throughout the 
brain. The functional role of RANTES in AD is not completely 
clear. Indeed, different in vitro studies have shown that treatment 
of neuronal cultures with RANTES enhances neuronal survival 
(Tripathy et al., 2010) and protects against Aβ toxicity (Bruno et al., 
2000). Conversely, in vivo studies have reported that RANTES 
and CCR5 are increased in transgenic mice brain (Subramanian 
et al., 2010; Haskins et al., 2016) as well as in microvessels of 
AD human brain (Tripathy et al., 2010). CCR5 also binds other 
chemokines such as CCL3, whose role in AD is still not clear. 
However, mice lacking CCL3 or CCR5 exhibit a reduced glial 
activation and an improvement of spatial learning deficit induced 
by the intracerebroventricular (ICV) Aβ1−40 injection (Passos 
et al., 2009). Moreover, the ICV administration of CCL3 in mice 
impairs synaptic transmission and spatial memory; these effects 
are reverted by a CCR5 antagonist (Maraviroc) (Marciniak et al., 
2015). Furthermore, CCR5 deficiency results in enhanced long-
term potentiation (LTP) and learning/memory performances, 
while neuronal CCR5 overexpression causes memory deficits 
(Zhou et al., 2016). In line with these findings, Lee and co-authors 
have demonstrated that CCR5 deficient mice have higher 
accumulation of Aβ, associated with astrocyte activation in the 
brain, and an impairment of memory and learning functions (Lee 
et al., 2009).

The chemokine CXCL12 (SDF-1α), and its receptor CXCR4, 
are expressed and widely detected in the developing and 
adult CNS (Ma et al., 1998; Zou et al., 1998; Banisadr et al., 
2002; Schönemeier et al., 2008). In addition to their role in 
neuroinflammation, they regulate neuronal excitability and 
synaptic transmission (Limatola et al., 2000) and modulate 
neuronal firing and neuron/glia communication (Bezzi et al., 
2001). An upregulation of Cxcr4 gene and protein levels has been 
found in the brains of AD (Weeraratna et al., 2007). Furthermore, 
a decrease in plasma CXCL12 is reported in early AD patients 
and negatively correlated with CSF tau protein levels (Laske et al., 
2008). In agreement with these results, Parachikova and Cotman 
(2007) show an increase of CXCR4 protein expression and a 
decrease of CXCL12 in the hippocampus of AD patients. However, 
the authors also demonstrate that transgenic AD mice, in which 
the mutation induces an overproduction of human APP, exhibit 
a reduction of CXCL12 and CXCR4 that correlates with deficits 
in different cognitive tasks. Moreover, chronic administration of 
a CXCR4 antagonist (AMD3100) results in impaired learning 
and memory in young non-transgenic mice, thus supporting 
the hypothesis that low levels of CXCL12/CXCR4 are linked to 
cognitive deficits (Lu et al., 2002). It has also been demonstrated 
that pre-treatment with CXCL12 inhibits the deleterious effect 
induced by the ICV injections of Aβ, suggesting that the beneficial 
effect of CXCL12/CXCR4 on memory and learning in AD could 
be linked to the prevention of dendritic regression and neuronal 
apoptosis induced by Aβ (Raman et al., 2011). In agreement with 
these data, a recent study demonstrates that CXCL12 mediates 
the neuroprotective and anti-amyloidogenic actions of human 

painless NGF (hNGFp) treatment in 5xFAD mice, transgenic 
mice that co-overexpress five familial AD mutant forms of human 
APP and presenilin 1 (Capsoni et al., 2017). Noteworthy, CXCL12 
also binds CXCR7 that seems to be involved in the progression 
of various CNS pathologies including AD (Puchert et al., 2017).

PROKINETICINS

The amphibian Bv8 and mammalian prokineticin 2 (PROK2) are 
two secreted bioactive peptides that belong to the prokineticin 
(PK) family. Prokineticins are highly conserved across the species. 
They are characterized by the presence of a conserved N-terminal 
sequence AVITGA, 10 cysteine residues, that create five disulphide-
bridged motifs and a tryptophan residue in position 24. A degree 
of similarity between prokineticin and defensins, a subclass of 
cationic antimicrobial peptides involved in innate immunity that, 
similarly to prokineticins, contain a high number of cysteine 
residues, was reported. However, their small size (8 kDa), signaling 
mechanisms, receptor coupling (G protein-coupled receptors, 
GPCR), as well as chemotactic and immune-modulatory functions 
classify prokineticins as chemokines (Monnier and Samson, 2008; 
see also Negri and Ferrara, 2018).

Prokineticins activate two GPCR, prokineticin receptor 1 
(PKR1) and 2 (PKR2), widely distributed in different organs and 
tissues as well as in CNS, in which PKR2 results more expressed. 
Both receptors are highly conserved sharing 85% amino acid 
identity and diverging mainly in their N-terminal region (Kaser et 
al., 2003). The PKRs are coupled to Gq, Gi, and Gs depending on the 
type of cellular localization and activate different intracellular signal 
pathways (for an explicative review, see Negri and Ferrara, 2018). It 
has also been reported that PKR2, at least in human neutrophils, 
undergoes dimerization (Marsango et al., 2011). Furthermore, in 
saccharomyces, the dimerization takes place from interactions 
between transmembrane domains TMs 4 and 5, with a specific role 
playing by TM5 on PKR2 function (Sposini et al., 2015).

PROK2 is abundantly expressed in CNS and associated with 
multiple physiological and pathological functions such as circadian 
rhythm, neurogenesis, angiogenesis, pain, inflammation, and 
neuroinflammation (Cheng et al., 2006; Zinni et al., 2017; Negri 
and Ferrara, 2018; Negri and Maftei, 2018).

The first evidence suggesting the potential role of PROK2/
PKRs in AD comes from in vitro and in vivo studies demonstrating 
their overexpression following Aβ1–42 exposure. The incubation 
of primary cortical cell cultures (CNs) with Aβ1–42 increases the 
PROK2/PKR mRNA and protein expression in a time-dependent 
way with a maximum increase at 48 h. Immunofluorescence studies 
revealed that PKR1 only increases in neuronal cell body, while 
PROK2 and PKR2 increase both in neurons and in astrocytes 
(Severini et al., 2015; Caioli et al., 2017). The Aβ1–42-induced 
PROK2 overexpression is strongly reduced by preincubation with 
PC1, a non-peptide PKR antagonist (Balboni et al., 2008; Congiu 
et al., 2014). Interestingly, PC1 reverts the Aβ1–42-induced neuronal 
death (in a concentration-dependent way), suggesting that reducing 
the activation of the PK system could be beneficial against Aβ1–42–
induced neuronal toxicity. In support of these data, we found that 
the incubation of CNs with Bv8, the amphibian homologue of 
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PROK2, induces neuronal apoptosis, comparable to the one exerted 
by Aβ peptide. It is also noteworthy that Bv8-induced neurotoxic 
effects are concentration-dependent, being achieved specifically 
at picomolar (and not at nanomolar) concentrations, and are 
blocked by pre-incubation with PC1. These low concentrations 
of Bv8, which induce the harmful effects, could be correlated 
with the small amount of PROK2, eventually released during Aβ 
incubation. Along this line, a harmful effect of PROK2 at picomolar 
concentration is reported in cerebral ischemia (Cheng et al., 2012).

It is known that Aβ1–42 induces a significant increase of the 
ionic current through the AMPA receptors (Parameshwaran et al., 
2008; Wang et al., 2010). We have demonstrated that in neurons 
from CNs, Aβ treatment affects the glutamatergic transmission 
through the involvement of the PK system (Caioli et al., 2017). 
Indeed, CNs incubated with Bv8, as well as with Aβ1–42, exhibit an 
alteration of glutamatergic transmission that results in increase 
in AMPA receptor ionic currents, measured both as evoked and 
as spontaneous, which are blocked by PC1. The up-modulation 
of AMPA ionic currents is not due to modifications of the GluR1 
or GluR2 AMPA receptor subunit expression; rather, it appears 
to be mediated by modification in phosphorylation of AMPA 

subunits by the activation of protein kinase C (PKC) intracellular 
pathway. This is confirmed by the antagonist effect of PKC 
inhibitor (Go6983). Of note, PC1 also reduces neuronal death 
induced by kainite, thus exerting a protective action.

The involvement of the PK system in AD is also strongly 
supported by in vivo evidences. In the Tg2576 (TG) transgenic 
mouse model, PC1 exposure prevents LTP impairment in 
hippocampal slices, indicating that the pharmacological block 
of PKRs in TG neurons is sufficient to rescue the synaptic 
plasticity and to protect against the deleterious effect of 
PROK2. No changes are observed in age-matched wild-
type controls, suggesting that PKR blockade does not affect 
synaptic plasticity in physiological conditions. In a non-
transgenic animal model of AD, induced by ICV injection of 
Aβ1–42, PROK2 and PKR mRNA expression is increased in both 
cortex and hippocampus (Severini et al., 2015). In addition, 
PKR2 mRNA levels in hippocampus are found to be increased 
not only in the early times (24 h after Aβ1–42 injection) but also 
in the later stage (14 days after Aβ1–42 injection), indicating a 
significant role of PK system in the progression of pathology 
(Lattanzi et al., 2019).

FIGURE 1 | Hypothetical role of the PK system in Aβ-mediated cell toxicity. Ab1−42 peptide (1) induces an increase of PROK2 in both neurons and astrocytes (2). 
Once released (3), PROK2 binds to PKR1 and PKR2 on neurons (4) and on PKR2 localized on astrocytes (5). PROK2 may also bind to the PKR2-truncated isoform 
(TM4-7) whose cell type localization and function is still unknown (6). At neuronal level, the increase of AMPA-receptor ionic currents induced by Aβ (but also by Bv8) 
(7) seems to be mediated by the PK system, as it is blocked by the PKR antagonist PC1 (8). The up-modulation of AMPA ionic currents may be mediated by the 
activation of PKC intracellular pathways (9) [in detail illustrated in the small box (10)], as confirmed by the antagonistic effect of PKC inhibitor Go6983 (11).
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In AD, the differential expression and the alternative splicing 
of genes notoriously involved in the pathology, such as APOE, 
APP, or tau, may contribute to the pathogenesis of the disease 
(Love et al., 2015). Alternative splicing of GPCR is a common 
mechanism that allows the formation of cell-specific isoforms 
with different biological activity in health and disease (Einstein 
et al., 2008; Wang et al., 2008).

In a recent paper, a PKR2 splice variant has been identified 
in rat hippocampus and called TM4-7 since the lack of the 
second exon gives rise to a receptor containing only four 
transmembrane domains. Interestingly, in the preclinical 
model of AD induced by ICV injection of Aβ in rat, the 
expression of TM4-7 receptor isoform is strongly up-regulated 
in the hippocampus and the expression ratio between the 
sliced form TM4-7 and the long form PKR2 increases with 
the progression of the disease, reaching maximum levels  
35 days after Aβ injection (Lattanzi et al., 2019). We can 
hypothesize that, as already observed in yeast (Lattanzi et al., 
2019), also in the brain, TM4–7 may generate homodimer 
or heterodimer functional receptors with PKR2, so adding 
versatility and complexity to the already complex mechanisms 
of brain regulation induced by PROK2 and its receptors. A 
summary of the hypothetical role of PK system in Aβ-induced 
cell toxicity is shown in Figure 1.

CONCLUSIONS

The work summarized in the present review indicates that 
chemokines and their receptors are crucial neuroinflammatory 
actors for AD pathogenesis and/or progression. However, 
many gaps remain in the knowledge on the specific role of 
neuroinflammation in AD, which impede the development of 
successful therapeutic strategies. Prokineticins represent a new 
class of chemokine-like proteins involved in Aβ-induced toxicity 
and represent an innovative approach for the study of AD 
pathogenesis. Although in our laboratory many studies are still 
in progress, the success of the pharmacological blockade of PKRs 
(that reduces the Aβ-induced neuronal death) leads us to hope 
for a future promising pharmacotherapeutic strategy of AD. This 
is particularly relevant considering that, to date, there are no 
drugs that block or slow down the progression of the disease.
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Aging and Not Alzheimer’s Disease: 
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Hippocampi of 3xTg-AD Mice
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Luca Steardo 1 and Caterina Scuderi 1*
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Old age is a risk factor for Alzheimer’s disease (AD), which is characterized by hippocampal 
impairment together with substantial changes in glial cell functions. Are these alterations 
due to the disease progression or are they a consequence of aging? To start addressing 
this issue, we studied the expression of specific astrocytic and microglial structural and 
functional proteins in a validated transgenic model of AD (3×Tg-AD). These mice develop 
both amyloid plaques and neurofibrillary tangles, and initial signs of the AD-like pathology 
have been documented as early as three months of age. We compared male 3×Tg-AD 
mice at 6 and 12 months of age with their wild-type age-matched counterparts. We also 
investigated neurons by examining the expression of both the microtubule-associated 
protein 2 (MAP2), a neuronal structural protein, and the brain-derived neurotrophic factor 
(BDNF). The latter is indeed a crucial indicator for synaptic plasticity and neurogenesis/
neurodegeneration. Our results show that astrocytes are more susceptible to aging than 
microglia, regardless of mouse genotype. Moreover, we discovered significant age-
dependent alterations in the expression of proteins responsible for astrocyte–astrocyte 
and astrocyte–neuron communication, as well as a significant age-dependent decline in 
BDNF expression. Our data promote further research on the unexplored role of astroglia 
in both physiological and pathological aging.

Keywords: aging, Alzheimer’s disease, 3×Tg-AD mouse, astrocyte, connexin-43, AQP4, S100B, brain-derived 
neurotrophic factor

INTRODUCTION

Alzheimer’s disease (AD) is currently considered a multifactorial disorder, although aging still 
remains its greatest risk factor (van der Flier and Scheltens, 2005; Hodson, 2018). Many targets are 
considered to design novel therapeutics. Glia represents one of them because of its contribution 
in the regulation of several highly specialized brain functions including glutamate, ions and water 
homeostasis, excitability and metabolic support of neurons, synaptic plasticity, brain blood flow, and 
neurotrophic support (Acosta et al., 2017; Bronzuoli et al., 2017). These functions are well integrated 
since astrocytes tightly communicate one to each other through gap junctions, comprised mainly 
of connexin-43 (CX43), that provide the structural basis for astrocyte networks (Bruzzone et al., 
1996; Theis et al., 2005). These cells quickly respond to brain insults, synergistically working with 
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microglia, the intrinsic immune effector of the brain, to remove 
injurious stimuli thus restoring brain homeostasis (Gehrmann 
et al., 1995; Scuderi et al., 2013). For example, during reactive 
astrogliosis, an event well described in both aged and AD brains 
(Scuderi et al., 2014a; Steardo et al., 2015; Rodríguez-Arellano 
et al., 2016), astrocytes modify their structure, usually studied 
by detecting the cytoskeletal glial fibrillary acidic protein 
(GFAP) and connexin expression (Peters et al., 2009; Giaume 
et al., 2010). Connexins form a “honeycomb” organization that 
creates edges between the end-feet enwrapping blood vessels. 
Here, astrocytes through aquaporin-4 (AQP4) water channels 
coordinate water flux and the clearance of interstitial fluid and 
neurotoxic solutes, including beta amyloid (Aβ). When such a 
clearance is dysfunctional, Aβ deposition occurs facilitating 
neurodegeneration (Iliff et al., 2012).

Astrocytes support neurons by releasing several neurotrophins, 
like S100B and the brain-derived neurotrophic factor (BDNF) 
(Marshak, 1990; Wiese et al., 2012). In the event of an abnormal 
production, as in some diseases including AD, such molecules 
contribute to neuronal damage (Vondran et al., 2010; Scuderi 
et al., 2014a; Bronzuoli et al., 2016). Glia involvement in the onset 
and/or progression of AD has been demonstrated by our and other 
groups (Esposito et al., 2007a; Esposito et al., 2007b; Esposito 
et al., 2011; Scuderi et al., 2011; Scuderi et al., 2012; Scuderi et al., 
2014b; Scuderi and Steardo, 2013; Cipriano et al., 2015; Salter and 
Stevens, 2017; Taipa et al., 2017). Less is known about their role 
during healthy aging. Therefore, in this brief research report, we 
provide a preliminary descriptive investigation of the effects of 
aging on morphology and functions of hippocampal astrocytes 
and microglia by comparing young adult (6-month-old) and aged 
(12-month-old) healthy (Non-Tg) and AD-like (3×Tg-AD) mice 
to model healthy and pathological aging, respectively. We explored 
the hippocampal expression of GFAP and S100B for astrocytes, 
and the ionized calcium binding adaptor molecule-1 (Iba1) and 
the cluster of differentiation 11b/c (CD11b/c) for microglia. 
Moreover, we examined deeper astrocyte functions by exploring 
AQP4 and CX43 expression. Since one of the most important 
astrocytes functions is the neurotrophic support (Kimelberg and 
Nedergaard, 2010), we also investigated BDNF production and the 
dendritic microtubule-associated protein 2 (MAP2).

Collectively, our findings reveal that aging negatively alters 
astrocytic functions, including their neurotrophic support. A main 
effect of aging and not of genotype was detected in all astrocytic 
markers here studied, thus suggesting that observed alterations to 
astroglia functions were related to aging itself rather than AD.

MATERIALS AND METHODS

All procedures involving animals were approved by the Italian 
Ministry of Health (Rome, Italy) and performed in compliance 
with the guidelines of the Directive 2010/63/EU of the European 
Parliament, and the D.L. 26/2014 of Italian Ministry of Health.

Animals
Six- and 12-month-old male 3×Tg-AD mice (homozygous for 
PS1M146V and homozygous for the co-injected APPswe, tauP301L 

transgenes) were used as model of pathological aging. This mutant 
mouse exhibits, indeed, AD-like plaques and tangles associated 
with synaptic dysfunction (Oddo et al., 2003a), observed also in 
our experimental conditions (see Supplementary Figure S1). To 
reproduce a condition of healthy aging, age-matched wild-type 
littermates (Non-Tg) (C57BL6/129SvJ) were used. Mice were 
housed in an enriched environment at controlled conditions (22 ± 
2°C temperature, 12-h light/12-h dark cycle, 50–60% humidity), 
with ad libitum food and water. Six male mice per group were 
decapitated, and their brains rapidly isolated and either flash 
frozen in 2-methylbutane to perform immunofluorescences or 
dissected to isolate hippocampi for western blot analyses. Tissues 
were stored at −80°C.

Western Blot
Hippocampi were processed as previously described (Scuderi 
et al., 2018a). Briefly, tissues were homogenized in ice-cold 
hypotonic lysis buffer and then centrifuged. Fifty micrograms 
of proteins was resolved on 12% acrylamide SDS-PAGE gels 
and then transferred onto nitrocellulose membranes, which 
were blocked for 1 h with either 5% bovine serum albumin 
(BSA) (Fitzgerald, MA) or non-fat dry milk (Bio-Rad, Italy) in 
tris-buffered saline-0.1% tween-20 (Corning, NY). Membranes 
were then incubated overnight with one of the following primary 
antibodies: rabbit anti-GFAP (1:25,000; Abcam, UK), rabbit 
anti-S100B (1:1,000; Novus Biological, CO), rabbit anti-Iba1 
(1:1,000; Abcam), rabbit anti-CD11b/c (1:1,000; Bioss, MA), 
mouse anti-CX43 (1:500; EMD Millipore, MA), mouse anti-
AQP4 (1:500; Santa Cruz, TX), rabbit anti-BDNF (1:1,000; 
Abcam), mouse anti-β-amyloid (1:200; Millipore, Germany), 
rabbit anti-p[Ser396]tau (1:1,000; Thermo Fisher Scientific, 
MA). Rabbit anti-β-actin (1:1,500, Santa Cruz) was used as 
loading control. After rinses, membranes were incubated with 
the proper secondary horseradish peroxidase (HRP)-conjugated 
antibody (1:10,000–1:30,000; Jackson ImmunoResearch, UK), 
and immunocomplexes detected by an ECL kit (GE Healthcare 
Life Sciences, Italy). Signals were analyzed by ImageJ.

Immunofluorescence
As previously described (Bronzuoli et al., 2018), hippocampal 
coronal slices (12-μm thickness) obtained at a cryostat were post-
fixed with 4% paraformaldehyde (Sigma-Aldrich). After blockage 
in 1% BSA dissolved in PBS/0.25% triton X-100, slices were 
incubated overnight with one of the following primary antibodies: 
mouse anti-CX43 (1:50, EMD Millipore), mouse anti-AQP4 
(1:50, Santa Cruz), rabbit anti-GFAP (1:1000, Abcam), mouse 
anti-MAP2 (1:250, Novus Biologicals). Sections were rinsed in 
PBS and incubated for 2 h with the proper secondary antibody 
[1:200 fluorescine-affinipure goat anti-rabbit IgG (H+L); 1:300-
1:400 rhodamine-affinipure goat anti-mouse IgG (H+L) (Jackson 
ImmunoResearch)] and DAPI (1:75,000, Sigma-Aldrich). 
Fluorescence was detected by an Eclipse E600 microscope 
(Nikon, Japan). To avoid the observation of differences among 
groups caused by artifacts, the exposure parameters, including 
gain and time, were kept uniform during image acquisitions. 
Pictures were captured by a QImaging camera and analyzed by 
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ImageJ. Immunofluorescence quantifications are expressed as 
ΔF/F0 = [(F− F0)/F0], where F is the mean fluorescence intensity 
and F0 is the mean background fluorescence. We performed 
immunofluorescence experiments in the hippocampus, focusing 
our analyses on the Ammon’s horn 1 (CA1) subregion because 
this area is one of the most vulnerable to AD, in both patients 
(Rössler et al., 2002; Mueller et al., 2010) and 3×Tg-AD mice 
(Oddo et al., 2003a). We analyzed three serial coronal sections 
per animal (between −1.82 and −1.94 mm from bregma) spaced 
36 µm apart, analyzing four ROIs in the stratum radiatum of each 
section (200 × 100 µm).

Statistics
Data were analyzed by two-way ANOVA using GraphPad 
Prism6. When applicable, Bonferroni’s post hoc test was used. 
Data were expressed as mean ± standard error of the mean (SEM) 
of percentage of control (6-month-old/Non-Tg mice).

RESULTS

Aging Affects Morphology and Functions 
of Hippocampal Astrocytes, Independent 
of Genotype
Results from Western blot experiments, performed in 
homogenates of hippocampi of Non-Tg and 3×Tg AD mice, 
showed that age significantly affects astrocyte morphology 
and functions. In fact, we observed a significant reduction of 
the cytoskeletal protein GFAP and the neurotrophin S100B 
in 12-month-old mice compared with 6-month-old mice, 
irrespective of genotype (Figure 1A, B, C). Moreover, we found 
a significant genotype-by-age interaction on GFAP data (p = 
0.0357). By immunofluorescence, we observed a significant 
reduction of GFAP in the hippocampal CA1 subregion of 
12-month-old mice compared with 6-month-old mice, 
independently of genotype (Figure 1F, G, H). In addition, 
results from immunofluorescence and Western blot revealed 
that aging impacts on astrocyte functions. Indeed, we found a 
significant decrease of CX43 expression in 12-month-old mice 
compared with 6-month-old mice, independently of genotype 
(Figure 1A, D, F, I). Moreover, in the same experimental 
conditions, we observed an increased expression of AQP4 in 
the hippocampi of aged mice regardless of genotype (Figure 
1A, E, G, L). For both AQP4 and CX43, no genotype-by-age 
interaction was detected.

Aging Does Not Significantly Affect 
Hippocampal Microglia
In hippocampal homogenates of Non-Tg and 3×Tg-AD mice, we 
performed Western blot experiments for Iba1, a calcium-binding 
protein constitutively expressed by both surveillant and activated 
microglia, and CD11b/c, a marker of proliferative reactivity. 
Obtained results showed that the expression of Iba1 was not 
affected by either age or genotype (Figure 2A, B). However, 
we observed a significant increase of CD11b/c in 6-month-old 
3×Tg-AD mice in comparison with their age-matched Non-Tg 

littermates, indicative of a potential microglial activation in 
young transgenic animals, but not in aged ones (Figure 2A, C).

Aging Reduces Hippocampal Expression 
of BDNF, With No Significant Impact on 
Neuronal Loss, Independent of Genotype
The neurotrophic factor BDNF is produced by neurons and, 
only under pathological circumstances, by astrocytes (Parpura 
and Zorec, 2010; Fulmer et al., 2014). Therefore, we tested 
whether aging could affect BDNF production and, in turn, 
cause neuronal loss. Results from Western blot experiments, 
performed in homogenates of hippocampi of Non-Tg and 3×Tg 
AD mice, showed a significant age-related decrease in BDNF 
production, irrespective of genotype (Figure 3A, B). Despite 
the observed reduction of this important neurotrophic factor, 
the hippocampal expression of the dendritic marker MAP2, 
analyzed by immunofluorescence, was not significantly different 
between all experimental groups (Figure 3C, D).

DISCUSSION

In the present study, we provide the first preliminary evidence 
of the effect of aging on structure and functions of hippocampal 
glial cells. Our primary goal was to study the impact of age on 
glial cells in conditions of physiological and pathological, AD-like, 
aging. To start addressing this issue, we used young adult and aged 
Non-Tg and 3×Tg-AD mice to simulate healthy and pathological 
aging, respectively. Collectively, our results indicate that aging 
affects astrocytes with no significant differences between the two 
genotypes.

The importance of glia in maintaining brain homeostasis and 
cerebral metabolism is well documented (Parpura and Haydon, 
2008; Dzamba et al., 2016). Growing evidence demonstrate 
the fundamental role of these cells in the etiopathogenesis of 
several neuropsychiatric disorders thus opening new scenarios 
to the development of glia-targeted drugs (Bronzuoli et al., 2017; 
Bronzuoli et al., 2018; Bronzuoli et al., 2019; Cartocci et  al., 
2018; Scuderi et al., 2018a). The role of glia in healthy aging is 
still poorly investigated. No data are yet available elucidating 
whether glial abnormalities involved in neurodegeneration were 
due to disease progression or they were just a consequence of 
aging itself. Therefore, we compared young adult (6-month-
old) and aged (12-month-old) healthy (Non-Tg) and AD-like 
(3×Tg-AD) mice. 3×Tg-AD mice progressively and hierarchically 
develop Aβ plaques and neurofibrillary tangles in AD-relevant 
brain regions (cortex, hippocampus, and amygdala) and show 
an age-related cognitive decline that closely mimics the human 
AD progression (Oddo et al., 2003b; Cassano et al., 2011; Cassano 
et al., 2012; Romano et al., 2014; Coughlan et al., 2018). Here, we 
demonstrate that aging affects glial cells, especially modifying 
astrocyte structure and functions. In our experimental conditions, 
we observed that aging reduces the expression of the cytoskeletal 
GFAP and the neurotrophin S100B, regardless of mice genotype. 
The age-dependent increase in astrocyte reactivity has been well 
documented (Beach et al., 1989; David et al., 1997; Janota et al., 2015).  
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However, data obtained from both human material and animal 
models demonstrate the existence of a complex and region-specific 
glial response in AD and aging that can be crudely summarized in 
glial reactivity or glial degeneration, atrophy, and loss of functions 
(Rodríguez et al., 2016; Verkhratsky et al., 2016; Scuderi et al., 
2018b). Our findings are apparently in contrast with the evidence 

indicating an age-matched astrogliosis in 3×Tg-AD mice (Oddo 
et al., 2003a; Zaheer et al., 2013). However, Oddo and colleagues 
analyzed cortical and hippocampal levels of GFAP in both 3×Tg-
AD and Non-Tg mice showing no substantial difference between 
genotype in the hippocampal levels of GFAP in agreement with the 
results of the present paper (Oddo et al., 2003a). GFAP expression 

FIGURE 1 | Effects of aging on morphology and functions of hippocampal astrocytes. (A) Representative western blots for GFAP, S100B, CX43 and AQP4 and 
(B, C, D, E) densitometric analyses normalized to β-actin loading control. Results are expressed as means ± SEM of percentage of controls (6-month-old/Non-Tg) 
(N = 3, in triplicate). (F) Representative fluorescent photomicrographs of CX43 (red) and GFAP (green) in the hippocampal CA1 region of both 6- and 12-month-old 
Non-Tg and 3×Tg-AD mice. White arrows indicate CX43 mainly expressed in astrocytes enveloping blood vessels. (G) Representative fluorescent photomicrographs 
of AQP4 (red) and GFAP (green) in the hippocampal CA1 region of both 6- and 12-month-old Non-Tg and 3×Tg-AD mice. White arrows indicate AQP4 expressed in 
astrocyte end-feet surrounding blood vessels. Fluorescence analyses of (H) GFAP, (I) CX43 and (L) AQP4 are expressed as ΔF/F0 = [(F− F0)/F0], where F is the mean 
fluorescence intensity and F0 is the mean background fluorescence. Nuclei were stained with DAPI (blue). Scale bar 50 µm. Statistical analysis was performed by 
two-way ANOVA followed by Bonferroni’s post hoc test (**p < 0.01; ***p < 0.001, 6-month-old vs 12-month-old).
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showed a trend toward being upregulated with increasing age 
in their experimental conditions; however, they compared 
2-month-old mice with 16-month-old mice. The different age 
chosen for comparison could explain the discrepancy with 
the present data. 3×Tg-AD mice show activated astrocytes and 
microglia as age increases and the majority of the studies detected 
them near amyloid plaques (Oddo et al., 2003a; Zaheer et al., 
2013; Rodríguez-Arellano et  al., 2016). Interestingly, numerous 
investigators reported the concomitant occurrence of astrogliosis 
and astroglial atrophy, demonstrating that the latter appears as 

a generalized process, whereas astrogliosis is triggered by senile 
plaques and Aβ aggregates (Rodríguez et al., 2009; Olabarria et al., 
2010; Heneka et al., 2010; Verkhratsky et al., 2010; Yeh et al., 2011). 
In parallel with activation, the AD progression is also associated 
with astrodegeneration. Accordingly, atrophic astrocytes have 
been observed in the hippocampus, prefrontal and entorhinal 
cortices of mouse models of AD (Verkhratsky et al., 2016). In line 
with these observations, our group has recently demonstrated a 
reduction of GFAP in the hippocampus of aged 3×Tg-AD mice 
(Scuderi et al., 2018a). Interestingly, Hoozemans and colleagues 
(2011) showed lower GFAP immunostaining in post-mortem 
brains from old AD patients (>80 years) compared with younger 
AD cases, concluding that the occurrence of astrocyte activation 
decreases with increasing age in AD dementia.

In our experimental conditions, aging negatively affected 
astrocyte functions, with particular regard to some of their 
homeostatic and neurotrophic roles. We found, in both 3×Tg-AD 
and Non-Tg mice, a significant reduction of CX43 expression, 
one of the major gap junction proteins that allow an efficient 
communication among astrocytes. Our data are in line with those 
obtained by Cotrina and collaborators (2001) demonstrating an 
age-dependent CX43 reduction in C57Bl/6 mice. The impairments 
observed in our experimental conditions seems to be caused by 
aging; in fact, we did not observe any significant differences 
between the two genotypes. We speculate that this finding together 
with the aforementioned astrocyte atrophy could be due to a 
reduced communication among astrocytes. This communication 
is usually mediated by endogenous peptides, growth factors, 
neurotransmitters, bioactive lipids, and structural proteins widely 
expressed in the astrocytic end-feet enveloping blood vessels 
(Rouach et al., 2002). Interestingly, some authors demonstrated 
that CX43 reduction boosts Aβ deposits (Koulakoff et al., 2012). 
In this context, our data could suggest a mechanism responsible 
for the observed deposition of a huge amount of Aβ in the brain of 
healthy subjects not affected by AD (Chételat et al., 2013).

AQP4 is another astrocytic protein implicated in the CNS 
lymphatic drainage and clearance of interstitial solutes, including 
Aβ (Cotrina et al., 2001; Iliff et al., 2012; Yang et al., 2016). We found 
that aging is responsible for the augmented AQP4 expression, 
independent of genotype. Accordingly, AQP4 is highly expressed 
near Aβ plaques in amyloidopathies (Moftakhar et al., 2010). The 
raise in AQP4 expression could be a compensatory process aimed 
at keeping water and ion homeostasis, and at encouraging the 
clearance of the interstitial fluid in the CNS in both physiological 
and pathological aging (Gupta and Kanungo, 2013). Interestingly, 
our data on CX43 and AQP4 are in line with those we obtained 
on Aβ(1-42) levels (Supplementary Figure S1). Indeed, we found 
higher hippocampal Aβ(1-42) levels in aged mice of both genotypes. 
We also observed a significant increase of Aβ(1-42) expression in 
3×Tg-AD mice in comparison to Non-Tg animals, at both ages. 
Given these results, further experiments are required to look for 
a correlation between severity of pathology and astrocyte protein 
expression, also investigating other areas crucially involved in AD.

Quite unexpectedly, we did not observe significant structural 
modifications in microglia in our experimental conditions, 
except for a significant activation in young transgenic 
mice, supposedly indicative of the presence of an early 

FIGURE 2 | Effects of aging on hippocampal microglia of 3×Tg-AD and 
Non-Tg mice. (A) Representative Western blots for Iba1 and CD11b/c and 
(B, C) densitometric analyses normalized to β-actin loading control. Results 
are expressed as means ± SEM of percentage of controls (6-month-old/
Non-Tg) (N = 3, in triplicate). Statistical analysis was performed by two-way 
ANOVA followed by Bonferroni’s post hoc test (#p < 0.05, 6-month-old/ 
3×Tg-AD vs 6-month-old/Non-Tg).
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pro-inflammatory status which disappears in adult mice. These 
findings are in line with those previously obtained in 3×Tg-AD 
mice showing that neuroinflammation occurs early in AD-like 
pathology (Bronzuoli et al., 2018; Scuderi et al., 2018a), and with 
some authors suggesting that neuroinflammation becomes less 
and less evident and spread as the disease progresses, remaining 
detectable in the proximity of Aβ plaques and neurofibrillary 
tangles (Yeh et al., 2011; Rodríguez-Arellano et al., 2016; 
Verkhratsky et al., 2016).

The role of microglia in aging and AD is complex and 
not fully elucidated. Microglial pro-inflammatory markers, 
including fractalkine and receptors, are reduced in the brain 
of aged mice compared to adult controls (Wynne et al., 2010), 
and microglia in aged animals appear irregularly distributed, 
with variable morphology of both cell bodies and processes, 
occupying smaller territories (Tremblay et al., 2012). Moreover, 
it has been demonstrated that 3×Tg-AD mice at 2, 3, and 6 
months progressively show significant microglia activation in 
the entorhinal cortex but not in the hippocampus (Janelsins 
et  al., 2005), as well as a significant increase of activated 
microglia at 18 months of age compared to 3×Tg-AD mice 
at 9 months, but not at 12 months of age (Rodríguez et al., 
2013). Conversely, very recently Belfiore and colleagues 
(2019) have demonstrate an age-dependent activation of 

hippocampal microglia in female 3×Tg‐AD mice, from 6 up to 
20 months of age. The heterogeneity of these results confirms 
that categorizing microgliosis is still particularly challenging. 
Nowadays, several authors hypothesize the presence of diverse 
microglial reactions to different disease stages, suggesting that 
the complete characterization of these processes may open new 
avenues for therapeutic intervention (Mosher and Wyss-Coray, 
2014; Sarlus and Heneka, 2017). Based on these considerations 
and keeping in mind that our study is preliminary, we believe 
that further experiments using more specific markers will 
be required to better characterize the microglia phenotype 
and its correlations with the neuroinflammatory process also 
investigating other brain areas importantly affected by AD.

Astrocytes produce and release several neurotrophins, 
including S100B and BDNF. S100B is a calcium-binding protein 
mainly involved in cell cycle progression and differentiation as 
well as neurite outgrowth (Scotto et al., 1998; Sen and Belli, 
2007). BDNF is produced mainly by astrocytes over neurons 
under pathological conditions (Dougherty et al., 2000). We 
found a significant reduction of both BDNF and S100B in 
aged mice, irrespective of genotype. Since BDNF regulates the 
astrocytic expression of S100B and both together are required 
to support at least serotonergic neurons (Ye et al., 2011), further 
studies would elucidate the cross-talk between astrocytes and 

FIGURE 3 | Effects of aging on BDNF and MAP2 expression in hippocampus of 3×Tg-AD and Non-Tg mice. (A) Representative Western blots for BDNF and 
(B) densitometric analysis normalized to β-actin as loading control. Results are expressed as means ± SEM of percentage of controls (6-month-old/Non-Tg) (N = 3, in 
triplicate). (C) Representative fluorescent photomicrographs of MAP2 (red) in the hippocampal CA1 region of both 6- and 12-month-old Non-Tg and 3×Tg-AD mice. 
(D) MAP2 fluorescence analysis is expressed as ΔF/F0 = [(F− F0)/F0], where F is the mean fluorescence intensity and F0 is the mean background fluorescence. Nuclei 
were stained with DAPI (blue). Scale bar 50 µm. Statistical analysis was performed by two-way ANOVA followed by Bonferroni’s post hoc test (*p < 0.05; 6-month-
old vs 12-month-old).
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neuronal cells. Despite the reduced neurotrophic support, we 
did not detect neuronal impairment, as assessed by MAP2.

In conclusion, in this brief research report, we provide 
preliminary data demonstrating that aging rather than AD 
progression importantly affects morphology and functions 
of hippocampal glial cells. In our experimental conditions, 
the most vulnerable cells were the astrocytes whose structure 
and functions appear profoundly modified. Additional 
studies are required to further reveal the role of astrocytes 
and microglia in both physiological and pathological aging, 
using more specific markers for the detection of changes 
in their morphology and/or functions, and extending such 
observations in other brain regions. Avoiding any superficial 
projection to human disease and keeping in mind that human 
astrocytes are more complex than their murine counterparts, 
these data open novel perspective in the field of astrocyte 
functions in health and disease.
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Alzheimer’s disease (AD) is the most frequent type of dementia in older people. The 
complex nature of AD calls for the development of multitarget agents addressing 
key pathogenic processes. Donepezil, an acetylcholinesterase inhibitor, is a first-line 
acetylcholinesterase inhibitor used for the treatment of AD. Although several studies 
have demonstrated the symptomatic efficacy of donepezil treatment in AD patients, the 
possible effects of donepezil on the AD process are not yet known. In this study, a novel 
feruloyl–donepezil hybrid compound (PQM130) was synthesized and evaluated as a 
multitarget drug candidate against the neurotoxicity induced by Aβ1-42 oligomer (AβO) 
injection in mice. Interestingly, PQM130 had already shown anti-inflammatory activity 
in different in vivo models and neuroprotective activity in human neuronal cells. The 
intracerebroventricular (i.c.v.) injection of AβO in mice caused the increase of memory 
impairment, oxidative stress, neurodegeneration, and neuroinflammation. Instead, 
PQM130 (0.5–1 mg/kg) treatment after the i.c.v. AβO injection reduced oxidative damage 
and neuroinflammation and induced cell survival and protein synthesis through the 
modulation of glycogen synthase kinase 3β (GSK3β) and extracellular signal–regulated 
kinases (ERK1/2). Moreover, PQM130 increased brain plasticity and protected mice 
against the decline in spatial cognition. Even more interesting is that PQM130 modulated 
different pathways compared to donepezil, and it is much more effective in counteracting 
AβO damage. Therefore, our findings highlighted that PQM130 is a potent multi-functional 
agent against AD and could act as a promising neuroprotective compound for anti-AD 
drug development.

Keywords: Alzheimer’s disease, amyloid-β oligomers, oxidative stress, apoptosis, neuroprotection, multitarget 
ligand, drug discovery, feruloyl-donepezil hybrid
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INTRODUCTION

The World Health Organization estimated the presence of 47.5 
million people worldwide with dementia in 2015 and predicted 
that the number of patients will be almost tripled by 2050 
(https://www.who.int/mental_health/neurology/dementia/
en/). Mainly owing to significant increases in lifespan, dementia 
represents one of the major global health crises of the 21st 
century. The most widespread form of dementia is Alzheimer’s 
disease (AD). AD is a lethal neurodegenerative illness that begins 
with brain alterations more than 20 years before the clinical 
symptoms (Mori et al., 2019). This multifaceted and progressive 
neurodegenerative disease is pathologically characterized by 
the amyloid-β (Aβ) accumulation in amyloid plaques and 
the hyperphosphorylation of tau in neurofibrillary tangles, 
followed by a consistent neuronal loss leading to brain atrophy 
and dementia. Although scientific research has changed course 
from fibrillar Aβ, implicated in plaque formation, to soluble Aβ, 
whose accumulation is probably the cause of the early synaptic 
dysfunction (Selkoe, 2002), the protein is still considered the 
keystone of AD. Levels of soluble Aβ oligomers (AβO) have 
been shown in several experimental models to potently inhibit 
hippocampal long-term potentiation (LTP), increase dendritic 
spine loss, and impair cognition in mice (Walsh et al., 2002; 
Lacor et al., 2007; Morroni et al., 2016; Herline et al., 2018). 
Although AD progression is tightly connected to Aβ aggregation, 
the scientific consensus is quite firm in suggesting that several 
other factors likely contribute to the development of AD. Such 
factors include loss of cholinergic transmission, mitochondrial 
dysfunction, progressive oxidative damage, excitotoxicity, and 
neuroinflammatory processes, which may trigger a “domino” 
cascade of events leading to manifestation of AD (Macchi et al., 
2014; Hampel et al., 2018; Pérez et al., 2018). It is likely that AD 
begins as a synaptic disorder and decreased synaptic activity is 
one of the best pathological signal of cognitive decline in AD 
(Coleman and Yao, 2003). Brain-derived neurotrophic factor 
(BDNF) is a pleiotropic growth factor in the brain, and it plays 
a crucial role in the survival and neuronal function (Hu et al., 
2019). Indeed, not only can it modulate synapse formation and 
neurogenesis, but it can also reduce oxidative stress and cell 
death. In the early stage of AD, the levels of the precursor form 
of BDNF, mature BDNF, or its mRNA are reduced in the parietal 
cortex and hippocampus (Phillips et al., 1991; Peng et al., 2005; 
Song et al., 2015).

There is currently no cure for AD. Unfortunately, the AD 
clinical trials targeting Aβ to date have been unsuccessful, 
demonstrating the need to investigate innovative therapeutic 

approaches beyond Aβ, and trying to focus attention on other early 
key events, in particular synaptic dysfunction, oxidative stress, or 
the early events of neuroinflammation (Marttinen et al., 2018). 
Thus, it is likely reasonable to argue that multifactorial diseases, 
such as AD, cannot be successfully treated by modulating a single 
target, but they will require multitarget drug treatment to address 
the different pathological facets of these diseases.

Acetylcholinesterase (AChE) inhibitors and N-methyl-d-
aspartate antagonists are the current therapies for AD-related 
symptoms with poor efficacy and no evidence of disease 
modification (Lanctôt et al., 2009). Donepezil is a highly centrally 
selective, reversible, and non-competitive AChE inhibitor and 
currently the most frequently prescribed drug for the treatment 
of AD. Clinical trials with donepezil have highlighted slight but 
reproducible improvements in cognitive function of the treated 
patients as compared to placebo. However, these effects were 
transient because cognitive function continued to decline over 
time in patients (Doody et al., 2007).

As a consequence of the failure of one target–one ligand 
approach to provide promising results in AD treatment, new 
findings suggested that one molecule hitting multiple targets 
could represent the winning strategy to treat complex diseases 
(Schmitt et al., 2004). Thus, “the multi-target-directed ligand 
(MTDL) approach is based on the design of new scaffolds 
with different pharmacophoric subunits connected in a single 
molecule, which could modulate multiple molecular targets 
at the same time” (Dias et al., 2017). Considering the MTDL 
approach, we studied here the activity of the multitarget ligand 
PQM130 (Figure 1), which is the most promising compound 
of a new series of molecular hybrids synthesized by the 
combination of two subunits, the N-benzylpiperidine group 
present in donepezil and responsible for its AchE selectivity, 
linked to the feruloyl group present in ferulic acid (Dias et al., 
2017). Ferulic acid is one of the degradation products of 
curcumin, which has already shown neuroprotective activities 
probably due to its ability to modify the kinetics of Aβ fibril 
formation, as well as to its anti-oxidative and anti-inflammatory 
activities (Hamaguchi et al., 2010; Sgarbossa et al., 2015). 
The multitarget ligand PQM130 has already been investigated 
for its in vitro anticholinesterase, metal-chelating, antioxidant, 
neuroprotective, and anti-inflammatory properties, in 
different in vivo models (Dias et al., 2017). Moreover, PQM130 
also highlighted an interesting pharmacokinetic profile 
from the in  silico evaluation of the absorption, distribution, 
metabolism, elimination (ADME) parameters, using the 
software QikProp 3.1 (Schrödinger, LLC, New York, NY, USA; 

FIGURE 1 | Chemical structure of PQM130.

Abbreviation: Aβ, amyloid-β; AβO, amyloid-β oligomers; AChE, acetylcholinesterase; 
ACTB, actin; AD, Alzheimer’s disease; ADME, absorption, distribution, metabolism, 
elimination; BDNF, brain-derived neurotrophic factor; DCF, 2′7′-dichlorofluorescein; 
DCFH-DA, 2′7′-dichlorodihydrofluorescein diacetate; DON, donepezil; ECL, 
enhanced chemiluminescence; GFAP, glial fibrillary acidic protein; GSH, glutathione; 
GR, glutathione reductase; H&E, hematoxylin/eosin; i.c.v., intracerebroventricular; 
i.p., intraperitoneal; LTP, long-term potentiation; MWM, Morris water maze; MTDL, 
multi-target-directed ligand; Nrf2, nuclear factor (erythroid-derived 2)-like 2; OD, 
optical density; pNA, p-nitroaniline; ROS, reactive oxygen species; TBS, Tris-buffered 
saline; TP53, tumor protein 53; UF, fluorescence intensity arbitrary units; VH, vehicle.
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see Supplementary Material 1) (Dias Viegas et al., 2018). 
Interestingly, ADME data of PQM130 showed a good human 
absorption and blood–brain barrier penetration in accordance 
with the software reference parameters (Dias Viegas et al., 
2018). A similar in silico approach was adopted to evaluate 
the PQM130 safety, using the VEGA platform (https://www.
vegahub.eu/; Mario Negri Institute for Pharmacological 
Research, Milan, Italy), which includes various QSAR 
models. In particular, mutagenicity (CONSENSUS) and 
carcinogenicity (IRFMN/ANTARES) models reported the 
absence of mutagenic and carcinogen effects of PQM130 (see 
Supplementary Material 2 and 3).

In the current study, we have further examined the 
neuroprotective effects of the multitarget ligand PQM130 in 
comparison also to donepezil in a mouse AD model generated 
by intracerebroventricular (i.c.v.) injection of Aβ1-42 oligomers 
(Aβ1-42O) and discussed the molecular mechanisms with 
particular attention to its nootropic, neuroprotective, and 
neurotrophic activities.

MATERIALS AND METHODS

Reagents
Aβ1–42 peptides were purchased by AnaSpec (Fremont, CA, 
USA). Aprotinin, bovine serum albumin (BSA), CHAPS, 
2’7’-dichlorodihydrofluorescein diacetate (DCFH-DA), dimethyl 
sulfoxide, 5,5′-dithiobis (2-nitrobenzoic acid), dithiothreitol, 
donepezil hydrochloride, EDTA, eosin, ethanol, glycerol, 
hematoxylin, Hepes pH 7.4, hexafluoroisopropanol, leupeptin, 
β-mercaptoethanol, sodium chloride, sodium fluoride, sodium 
orthovanadate, sucrose, sulfosalicylic acid, Triton-X 100, tris 
pH 7.5, xylen, and primary antibodies anti-synaptophysin and 
anti-β-actin were provided by Sigma-Aldrich (St Louis, MO, 
USA). Paraformaldehyde solution (4%) was provided by Santa 
Cruz Biotechnology (Dallas, TX, USA) and NP-40 was from 
Roche Diagnostic (Risch, Switzerland). Caspase substrates 
were purchased from Alexis Biochemicals (San Diego, CA, 
USA). Primary antibodies phospho-GSK3α/β (Ser21/9) and 
GSK3α/β, phospho-p44/42 MAPK (ERK1/2, Thr202/Tyr204) 
and p44/42 MAPK, and anti-GFAP were provided by Cell 
Signaling Technologies Inc. (Danvers, MA, USA). Secondary 
anti-mouse and anti-rabbit antibodies were purchased from 
GE Healthcare (Piscataway, NJ, USA) and fluorescein was 
from Life Technologies (Carlsbad, CA, USA). Bradford assay 
solution, enhanced chemiluminescence (ECL) solution, Tris-
buffered saline (TBS), and Tween 20 were purchased from 
Bio-Rad Laboratories S.r.L. (Hercules, CA, USA). Normal goat 
serum (NGS) was provided by Wako Pure Chemical Industries 
(Osaka, Japan). All experiment reagents were reagent grade and 
commercially available.

Animals
Adult male C57Bl/6 mice (9 weeks old, 25–30 g body weight; 
Harlan, Milan, Italy) were utilized. The mice were housed in a 
temperature-controlled room (23–24°C) with free access to 

food and water and presented with 12 h light/12 h dark cycles. 
Briefly, procedures on the mice were carried out according to 
the European Communities Council Directive 2010/63/EU and 
the current Italian Law on the welfare of the laboratory animal 
(D.Lgs. n.26/2014). The animal protocol was approved by the 
Italian Ministry of Health (Authorization No. 291/2017-PR) and 
by the corresponding committee at the University of Bologna. 
The number of experimental animals was minimized and care 
was taken to limit mice suffering.

Experimental Design
The animals were randomized into five groups (n = 10/group): 
Sham/VH, Aβ/VH, Aβ/DON, Aβ/PQM130 0.5 mg/kg, and Aβ/
PQM130 1.0 mg/kg. Four groups were treated with Aβ1-42O by 
a unilateral i.c.v. injection, while the other received a unilateral 
i.c.v. injection of saline solution (sham group). One hour after 
the brain lesion, mice received intraperitoneal (i.p.) treatment 
of 1 mg/kg of donepezil hydrochloride (DON, Sigma-Aldrich), 
0.5 or 1 mg/kg of PQM130, or vehicle (VH, saline). The dose 
injected was selected according to the literature (Furukawa-
Hibi et al., 2011; Dias et al., 2017). We treated the mice daily 
for 10 days. At the conclusion of the treatment period, the 
mice underwent behavioral assessment. After the behavioral 
analysis, the animals were deeply anesthetized before being 
sacrificed by cervical dislocation to collect the samples for 
immunohistochemical and neurochemical analysis (for 
experimental design, see Figure 2).

Aβ1-42 Oligomers Preparation and Injection
Aβ1–42 peptides (AnaSpec) were solubilized to 1 mg/ml in 
hexafluoroisopropanol before being sonicated and lyophilized at 
room temperature. The unaggregated Aβ1–42 film obtained was 
dissolved to a final concentration of 1 mM with sterile dimethyl 
sulfoxide and stored at −20°C until use. The Aβ1–42O were prepared 
according to the protocol of Tarozzi et al. (2008). Briefly, to enhance 
oligomer formation, the Aβ1-42 stock was diluted in saline buffer at 
40 μM and incubated for 48 h at 4°C (Hong et al., 2007; Maezawa 
et al., 2008). Six microliters of Aβ1-42O (40 μM) were injected 
i.c.v., using a stereotaxic mouse frame (myNeuroLab, Leica-
Microsystems Co., St. Louis, MO, USA) and a 10-µL Hamilton 
syringe, at a rate of 0.5 ml/min. After the injection, the needle was 
left in place for a few minutes before being retracted slowly and 
the wound was cleaned and sutured. The sham mice received the 
corresponding volume of saline. The following coordinates were 
used: anteroposterior: +0.22, mediolateral: +1.0, dorsoventral: 
−2.5, with a flat skull position.

Donepezil Hydrochloride and PQM130 Preparations
Donepezil hydrochloride was purchased from Sigma-Aldrich and 
PQM130 (purity 98% by HPLC) was synthesized and provided 
by Professor Claudio Viegas Jr from the PeQuiM-Laboratory of 
Research in Medicinal Chemistry, Institute of Chemistry, Federal 
University of Alfenas (Alfenas, MG, Brazil). Briefly, the powders 
were solubilized and aliquoted in sterilized saline (donepezil) or in 
dimethyl sulfoxide (PQM130). The work solutions were prepared 
at a concentration of 0.1 mg/ml (donepezil and PQM130) and 
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0.05 mg/ml (PQM130) in sterilized saline. Animals were daily 
i.p. injected with 1 mg/kg solution (donepezil and PQM130) or 
0.5 mg/kg (PQM130) for 10 days.

Behavioral Analysis
All the tests were performed between 9.30 a.m. and 3.30 p.m. All 
scores were attributed by a blinded observer.

Morris Water Maze (MWM)
The test was performed as described previously (Morroni et al., 
2018a). Briefly, the apparatus was a circular plastic tank (1.0 m 
diameter, 50 cm height) filled with water and milk (22°C), and a 
submerged platform (1.5 cm under the water surface) positioned 
in the center of one of the four quadrants of the maze. A camera was 
placed to register mice’s movements and send data to an automated 
tracking system (EthoVision, Noldus, The Netherlands). For each 
training trial, animals were placed into the pool at one of the four 
positions selected randomly, and the latency to find the hidden 
platform was recorded. Mice that could not reach the platform 
within 60 s were guided to it by the experimenter. After the trial, 
each mouse was placed under a warming lamp in a holding cage 
for 25 s until the next trial. Training trials were conducted four 
times a day for 5 days. On day 6, the platform was removed and 
animals were allowed to swim freely for 60 s. The parameters 
measured during the probe trial were escape latency, frequency in 
the platform zone, and time spent in the opposite quadrant to the 
platform zone.

Y-Maze Test
The spatial working memory was evaluated by recording 
spontaneous alternation behavior in the Y-maze as described earlier 
(Sarter et al., 1988). Briefly, each arm of the maze [Ugo Basile® 
S.r.L., Gemonio (VA), Italy] was 35 cm long, 15 cm high, and 5 cm 
wide and converged to a 120° angle. The mice were positioned at 
the end of the A arm and allowed to move freely through the maze 
for 5 min. The entry in all three arms consecutively was counted 
as an alternation. Thus, the number of maximum alternations was 

calculated as the total number of arm entries minus two and the 
percentage of alternation was calculated as (actual alternations/
maximum alternations) × 100 (Lopes et al., 2018).

Tissue Preparation for 
Immunohistochemistry and 
Neurochemical Analysis
At the end of behavioral tests, the mice were deeply anesthetized 
and sacrificed by cervical dislocation. The brains were quickly 
removed and one hemisphere of each mouse was fixed in 4% 
paraformaldehyde (Santa Cruz Biotechnology) for 48 h. The other 
hemispheres were immediately removed, and the hippocampi 
were isolated on ice and transferred to liquid nitrogen.

For the protein extraction, the tissues were homogenized 
in lysis buffer and the cytoplasmic protein concentration was 
determined by the Bradford method (Bradford, 1976).

Determination of Caspase-9 and -3 Activations
Caspase-9 and -3 enzyme activities were measured according 
to Movsesyan et al. (2002). Briefly, the tissue lysates were 
incubated with the assay buffer and a 50 mmol/L concentration 
of chromogenic p-nitroaniline (pNA) substrate (caspase-9, 
Ac-Leu-Glu-His-Asp-pNA; caspase-3, Z-Asp-Glu-Val-Asp-pNa; 
Alexis Biochemicals). Each sample was incubated for 3 h at 37°C 
and the amount of pNA released was measured with a microplate 
reader (GENios, TECAN®, Mannedorf, Switzerland) at 405 nm. 
The values were expressed as the mean ± SEM of optical density 
(OD) of each experimental group.

Determination of Cellular Redox Status
The redox status, in terms of reactive oxygen species (ROS) 
formation, was evaluated by measuring the oxidation of 
DCFH-DA to 2′7′-dichlorofluorescein (DCF) (Morroni et al., 
2014). The samples (60 μl) were incubated for 30 min with 2 mg/
ml of DCFH-DA, and the conversion into the fluorescent product 
DCF was measured (excitation at 485 nm, emission at 535 nm) 
using a microplate reader (GENios, TECAN®). The values were 

FIGURE 2 | Experimental protocol and treatment schedule. The mice received i.p. injections of DON (1 mg/kg) or PQM130 (0.5 or 1.0 mg/kg) or VH solution for 
10 days. The animals were sacrificed 20 days after Aβ1-42 oligomer injection.
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normalized to protein content and expressed as the mean ± SEM 
of fluorescence intensity arbitrary units (UF) of each experimental 
group.

Determination of Glutathione Content
Glutathione (GSH) content was assessed using the protocol 
described earlier (Morroni et al., 2018b). Briefly, samples were 
deproteinized with 4% sulfosalicylic acid, and the supernatants 
were added to 5,5′-dithiobis (2-nitrobenzoic acid) (4 mg/ml). 
The developed coloration was read quickly at 412 nm (GENios, 
TECAN®) and the results were calculated using a standard 
calibration curve. The values were normalized to protein content 
and expressed as the mean ±SEM of GSH mmol/mg protein of 
each experimental group.

Western Blotting
The samples (30 μg proteins) were run on 4–15% SDS polyacrylamide 
gels (Bio-Rad Laboratories S.r.L.) and electroblotted onto 0.45 μm 
nitrocellulose membranes. The membranes were incubated at 4°C 
overnight with primary antibody recognizing phospho-GSK3α/β 
(Ser21/9), phospho-p44/42 MAPK (ERK1/2, Thr202/Tyr204) 
(1:1,000; Cell Signaling Technology Inc), or anti-synaptophysin 
(1:1,000; Sigma-Aldrich). After washing with TBS-T (TBS + 
0.05% Tween20), the membranes were incubated with secondary 
antibodies (1:2,000; GE Healthcare). ECL was used to visualize the 
bands (Bio-Rad Laboratories). The membranes were then reprobed 
with GSK3α/β, p44-42 MAPK (1:1,000; Cell Signaling Technology 
Inc.), or anti-β-actin (1:1,000; Sigma-Aldrich). The data were 
analyzed by densitometry, using Quantity One software (Bio-Rad 
Laboratories® S.r.L.). The values were normalized and expressed as 
the mean ± SEM of the densitometry in each experimental group.

Immunohistochemistry
The fixed brains were sliced on a vibratome (Leica Microsystems, 
Milan, Italy) at 40 μm thickness, and the slices were stained as 
described earlier (Morroni et al., 2016).

Hematoxylin/Eosin Staining
Hematoxylin/eosin (H&E) staining was assessed as previously 
illustrated (Fischer et al., 2008). Briefly, the selected sections 
were rehydrated by a graded series of alcohols (Sigma-Aldrich). 
Then, the slices were counterstained in hematoxylin for 8 min and 
then rinsed for 10 min in tap water. Subsequently, the slices were 
immersed in distilled water and then in 80% ethanol before being 
stained in 25% eosin solution (in ethanol 80%) for 1 min. Finally, 
the slices were dehydrated with graded alcohol before being fixed 
in xylen.

Anti-Glial Fibrillary Acidic Protein (GFAP) Staining
The immunofluorescence staining was assessed according to 
our previous study (Morroni et al., 2018a). Selected slices were 
rinsed in phosphate buffer and then incubated in TBS-A (TBS 
0.1% Triton-X 100) and TBS-B (TBS-A 2% BSA) to reduce a 
specific absorption. The sections were then incubated with anti-
GFAP primary antibody (1:300; Cell Signaling Technology Inc.) 
in TBS-B with 3% NGS (Wako Pure Chemical Industries) at 4°C 

overnight. After 24 h, the slices were washed with TBS-A and 
TBS-B before being incubated with secondary antibody (1:200; 
Fluorescein, Life Technologies) in TBS-B with 3% NGS. To verify 
the binding specificity, some sections were incubated with only 
primary or secondary antibody. In these conditions, we did not 
find any positive staining.

Quantitative Images Analysis
Image analysis was conducted by an investigator unaware of the 
treatment groups, using a microscope (AxioImager M1, Carl 
Zeiss, Oberkochen, Germany) and an image analysis system 
(AxioCam MRc5, Carl Zeiss) equipped with dedicated software 
(AxioVision Rel 4.8, Carl Zeiss). The hippocampal region was 
defined at low magnification (2.5× objective), and the H&E or 
GFAP staining was evaluated by densitometry of five different 
sections for each sample analyzed at a higher magnification 
(10×, 20×, or 40× objective). Quantification and morphological 
analysis were assessed with the ImageJ software.

RNA Preparation and Gene Expression 
Analysis
Total RNA was isolated from hippocampus using the Pure link 
RNA mini kit (Ambion, Thermo Fisher Scientific, Carlsbad, CA, 
USA), as illustrated earlier (Morroni et al., 2018b). Briefly, the 
samples were lysed on ice with 1% β-mercaptoethanol by using a 
homogenizer SHM1 (Stuart, Bibby Scientific LTD, Staffordshire, 
UK). The samples were then added to an equal volume of 70% 
ethanol. The solution was filtered using a cartridge containing 
a clear silica-based membrane to which the RNA binds. RNA 
was finally eluted with RNase-free water and stored at −80°C. 
RNA was quantified by spectrophotometric analysis and reverse-
transcribed using High Capacity cDNA Reverse Transcription 
kit (Applied Biosystems, Thermo Fisher Scientific).

The mRNA encoding for the mouse nuclear factor (erythroid-
derived 2)-like 2 (Nrf2), GSH reductase (GR), tumor protein 53 
(TP53), and the actin (ACTB) as internal reference were quantified 
by Taqman RT-PCR with a 7900HT Fast Real-Time PCR system 
(Applied Biosystems). The samples were run in 96-well format in 
triplicate. The specific Taqman gene expression assays (Applied 
Biosystems) were Nrf2 (Mm0047784_m1), GSTP1 (Mm04213618_
gH), GR (Mm00439154_m1), TP53 (Mm01731290_g1), and 
ACTB (Mm00607939_s1).

To assess mRNA levels of different BDNF transcripts (total 
form, long 3′UTR form, exon IV, exon VI) and synaptophysin, 
samples were processed for RT-PCR reaction and subsequently 
analyzed by qRT-PCR instrument (CFX384 Real-Time system, 
Bio-Rad Laboratories S.r.l.) using the iScript one-step RT-PCR 
kit for probes (Bio-Rad Laboratories S.r.l.). The samples were 
run in 384-well format in triplicate as multiplexed reactions 
with a normalizing internal control (ACTB). The primers and 
probe sequences, respectively, were as follows: total BDNF (Fwd: 
AAGTCTGCATTACATTCCTCGA, Rev: GTTTTCTGAAAGA 
GGGACAGTTTAT, Probe: TGTGGTTTGTTGCCGTTGCCA 
AG), long 3′UTR BDNF (Fwd: GTTGTCATTGCTTTACTGGCG, 
Rev: AATTTTCTCCATCCCTACTCCG, Probe: AATCTACCCC 
TCCCATTCCCCGT), BDNF exon IV (Fwd: AGCTGCCTTGAT 
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GTTTACTTTG, Rev: CGTTTACTTCTTTCATGGGCG, Probe:  
AGGATGGTCATCACTCTTCTCACCTGG), BDNF exon VI 
(Fwd: GGACCAGAAGCGTGACAAC, Rev: ATGCAACCGAAG 
TATGAAATAACC, Probe: ACCAGGTGAGAAGAGTGATGAC 
CATCC), Synaptophysin (Fwd: CCTGTCCGATGTGAAGATGG, 
Rev: AGGTTCAGGAAGCCAAACAC, Probe: ACACATGCAAG 
GAACTGAGGGACC), and ACTB (Fwd: ACCTTCTACAATGA 
GCTGCG, Rev: CTGGATGGCTACGTACATGG, Probe: TCTG 
GGTCATCTTTTCACGGTTGGC).

Each RT-PCR run followed the manufacturer’s conditions: 
an incubation at 50°C for 10 min (RNA retrotranscription), 
followed by a step at 95°C for 5 min (TaqMan polymerase 
activation). Subsequently, 39 cycles of PCR were performed 
(95°C for 10 s, and then 30 s at 60°C). A comparative cycle 
threshold (Ct) method was used to determine the relative 
target gene expression versus the sham group (Rossetti et al., 
2016). Specifically, a fold change for each target gene relative 
to ACTB was determined by the 2−Δ(ΔCt) method, where ΔCt = 
Ct, target – Ct, β-actin; Δ(ΔCt) = Ct, exp. group – Ct, control 
group and Ct is the threshold cycle. For graphical clarity, the 
obtained data were then expressed as percentage versus the 
Sham/VH, which has been set at 100%.

Statistical Analysis
The data were analyzed with the PRISM 5 software (GraphPad 
Software, La Jolla, CA, USA) and expressed as mean ± SEM of 
each experimental group. The difference between the groups was 
analyzed by one-way ANOVA with Bonferroni post hoc test. The 
results were considered statistically significant when a p value 
was less than 0.05.

RESULTS

PQM130 Ameliorated Aβ1-42O-Induced 
Cognitive Deficits in Mice
The i.c.v. injection of Aβ1-42O induced cognitive impairment 
as shown in the MWM and Y-maze tests. During the MWM 
training phase, all the mice learned the platform location, as 
clearly highlighted by the decreased latency and the distance 
traveled to find the platform. However, the Aβ/VH mice needed 
more time and traveled a longer distance to locate the platform 
than the sham mice, which undoubtedly highlighted a short-
term memory impairment in these mice. From the fourth day 
of training, the treated groups (Aβ/DON and Aβ/PQM130) 

FIGURE 3 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on the performance in the training (A) and probe trials (B–D) of the MWM test in the 
Aβ1-42O-injected mice. The training trials were carried out for 5 days (four per day); the probe trial was performed on day 6. The escape latency (B), the frequency in 
the platform zone (C), and the time spent in the opposite quadrant to the platform zone (D) were recorded in the probe test. The values are expressed as mean ± 
SEM (n = 10) (A: *p < 0.05 vs. Aβ/VH group; D: *p < 0.05 and **p < 0.01 vs. Aβ/VH; ANOVA, post hoc test Bonferroni).
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showed a significantly lower escape latency than those in the 
Aβ/VH group (p < 0.05; Figure 3A). The swimming speed was 
not significantly different among the groups during the training 
(data not shown). In the probe trial, the mice in the Aβ/VH 
group revealed difficulties in locating the original position of 
the removed platform (longer latency to first enter the target 
zone, less frequency crossing the platform, and more time spent 
swimming in the opposite quadrant; Figure 3B–D). Interestingly, 
the Aβ/DON and Aβ/PQM130 mice performed better than the 
Aβ/VH, even though significantly only with regard to time spent 
in the opposite quadrant (donepezil p < 0.01; PQM130 p < 0.05 
and p < 0.01, respectively). In the Y-maze test, which assesses 
spatial working memory, the spontaneous alternation behavior 
of Aβ/VH group was significantly lower than the sham group 
(p < 0.05, Figure 4), confirming the difficulty in remembering 
which arm has already been visited. This behavioral impairment 
was significantly improved in the Aβ/DON and Aβ/PQM130 
groups (donepezil p < 0.001; PQM130 p < 0.05 and p < 0.001, 
respectively), demonstrating that DON and PQM130 could 
effectively increase spatial working memory in the early stage of 
AD development.

PQM130 Prevented Aβ1-42O-Induced 
Neuronal Death in Mice
We next observed the pathologic changes in different hippocampal 
areas through H&E-stained sections from the sham, the Aβ/VH 
group, and the mice under different treatments (DON and PQM130 
treatment groups: 1 and 0.5  mg/kg). In the Aβ/VH mice, H&E 
staining exhibited irregular and sparse neuronal arrangements 
in the CA1, CA3, and DG regions of the hippocampus. We also 
observed many unhealthy neurons (Figure 5A). Interestingly, 

PQM130 treatment but not donepezil ameliorated neuronal injury 
compared with the saline-treated Aβ group (p < 0.01, Figure 5B). 
In AD, increased p53 level was detected in various parts of patient 
brains (Cenini et al., 2008) when compared to the brains of healthy 
individuals. Likewise, data from animal AD models showed an 
increase in p53 level in affected neurons (Ohyagi et al., 2005). As 
could be expected, the Aβ treatment induced the up-regulation 
of p53 at gene level. On the contrary, PQM130 but not donepezil 
significantly down-regulated p53 expression (p < 0.05, Figure 6A). 
Subsequently, to elucidate the underlying mechanisms of 
the PQM130 improvement on Aβ-induced neuronal damage, the 
activations of caspase-9 and -3 were detected. Once activated, the 
caspase-9 cleaves and activates the effector procaspase-3 triggering 
the apoptotic pathway. As shown in Figure 6B and C, the caspase-9 
and -3 were markedly activated in the hippocampal samples of 
the Aβ1-42O-treated group, when compared to the sham group 
(p < 0.05). However, PQM130 treatment was able to inhibit the 
activation of both caspases induced by Aβ1-42O, especially at the 
highest dose (p < 0.05 and p < 0.01, respectively), while donepezil 
was effective to counteract the activation of the caspase-3 but not 
caspase-9 (p < 0.05).

PQM130 Antagonized Aβ1-42O-Induced 
Oxidative Stress in Mice
As shown in Figure 7A and B, the Aβ1-42O injection induced a 
predictable oxidative stress to the mice brain, as underlined by 
significant increased ROS formation (p < 0.001) and decreased 
GSH levels in the hippocampal samples compared to the 
sham group. However, the administration of PQM130, but not 
donepezil, resulted in the significant decrease of ROS compared 
with the Aβ/VH group (p < 0.001 and p < 0.01, respectively). 
Moreover, PQM130 treatment increased GSH levels in the 
hippocampi of the Aβ/VH mice close to the sham group levels, 
particularly with the 0.5 mg/kg dose group (p < 0.01). In addition, 
we carried out gene expression profiling as an effective biomarker 
to detect cellular stress. In this study, the gene expression analysis 
for GR enzyme and Nrf2 demonstrated that Aβ treatment 
decreased GR mRNA expression levels, while donepezil and 
PQM130 (0.5 mg/kg) significantly increased GR mRNA levels 
(p < 0.01 and p < 0.05, respectively; Figure 7C). As expected, the 
expression of Nrf2 was found to be significantly decreased in the 
hippocampi of the Aβ/VH mice (p < 0.001); conversely, PQM130 
(1 mg/kg) treatment markedly up-regulated the mRNA levels of 
Nrf2, compared to the Aβ/VH mice (p < 0.001).

PQM130 Regulated GSK3β and ERK1/2 
Protein Expressions in Mice
Because glycogen synthase kinase 3β (GSK3β) played a pivotal 
role in the pathogenesis of AD (Llorens-Martín et al., 2014), 
we examined the phosphorylation levels of GSK3β (Ser9) to 
investigate its potential involvement in the PQM130 mechanism 
of neuroprotection (Figure 8A). As shown in Figure 8A, the 
levels of phosphorylated GSK3β was decreased, although not 
significantly, in the Aβ/VH group. However, the treatment with 
PQM130 at a dose of 0.5 mg/kg significantly increased the levels 

FIGURE 4 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) 
on the performance in the Y-maze test in the Aβ1-42O-injected mice. The 
spontaneous alternation percentage was recorded in a 5 min trial. The values 
are expressed as mean ± SEM (n = 10) (#p < 0.05 vs. Sham/VH, *p < 0.05 
and ***p < 0.001 vs. Aβ/VH; ANOVA, post hoc test Bonferroni).
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of phosphorylated GSK3β protein (p < 0.05). In addition, the 
phosphorylation of ERK1/2 was also detected in our model, 
since the MAPK/ERK1/2 signaling pathway is involved in the 
modulation of neuronal apoptosis and may contribute to AD 
pathogenesis (Morroni et al., 2016). Results found the Aβ1-42O 
injection increased the phosphorylation of ERK1/2 compared 
with the sham group (p < 0.001). However, treatment with 
PQM130 and donepezil markedly repressed the phosphorylation 
of ERK1/2 induced by Aβ1-42O (p < 0.05, Figure 8B), indicating 
that the dephosphorylation of ERK1/2 concurred to the anti-
apoptotic effect of PQM130.

PQM130 Reduced Aβ1-42O-Induced 
Astrocytic Activation in Mice
To examine the effects of PQM130 on neuroinflammation 
induced by Aβ1-42O, we performed immunohistochemical 
staining for the astrocyte marker GFAP. The quantitative analysis 
showed that the percentages of the GFAP-stained hippocampal 
areas were markedly increased in the Aβ/VH group compared 
with the Sham/VH group (p < 0.01). However, in the PQM130-
treated mice (1 mg/kg), GFAP-positive areas decreased (p < 0.01, 
Figure 9B) compared to those in the vehicle-treated Aβ1-42O 
mice. These results suggested that PQM130 treatment alleviated 
the neuroinflammation induced by Aβ1-42O in the AD brain.

PQM130 Modulated Synaptic Plasticity 
in Mice
Firstly, we analyzed the total BDNF gene expression in our 
samples and the results did not show any significant difference 
among the different experimental groups (Figure 10A). In order 
to clarify the different responsiveness to PQM130, the expression 
profile of some neurotrophin transcripts, namely, long 3′UTR 
BDNF and exons IV and VI, were investigated (Figure 10B–D). In 
deep, PQM130 (1 mg/kg) increased significantly the expression 
of long 3′UTR BDNF (p < 0.05, Figure 10B) and isoform 
IV  (p < 0.05, Figure 10C), whereas no changes were found 
in the other experimental groups. Classic effects of BDNF 
consist of promoting differentiation, migration, and dendritic 
arborization, and enhancing neuronal viability. In addition to 
these recognized actions, recent findings highlighted that BDNF 
affects development, function, and plasticity in the synapse 
(Kuczewski et al., 2009). Thus, we next investigated the effect of 
PQM130 on the pre-synaptic protein synaptophysin. As shown 
in Figure 11A, there is a slight decrease in synaptophysin mRNA 
levels in the Aβ/VH and Aβ/DON groups, while the values of 
the PQM130 groups were maintained at the sham group levels. 
Even more interesting, the Western blot analysis (Figure 11B) 
revealed a more pronounced reduction of synaptophysin 
expression in the Aβ/VH and Aβ/DON hippocampal samples. 

FIGURE 5 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on neuronal cell death in the Aβ1-42O-injected mice. Representative H&E staining 
of coronal sections containing the hippocampus. Magnification, 20× and 40×; scale bar, 100 μm (A). Quantitative analysis of H&E staining (B). The values are 
expressed as mean of % of increment ± SEM (n = 10) of the density of each experimental group compared to the Sham/VH group (B: **p < 0.01 vs. Aβ/VH; 
ANOVA, post hoc test Bonferroni).
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However, after PQM130 treatment (1 mg/kg), the expression of 
synaptophysin was significantly increased as compared to the 
Aβ/VH group (p < 0.05).

DISCUSSION

The inhibition of AChE activity is the most realistic approach in the 
symptomatic treatment of mild to moderately severe AD. Patients 
are currently treated with AChE inhibitors, and among these, 
the first-line symptomatic drug is donepezil. In the light of the 
increasingly accepted conception of AD as a complex pathological 
network, intensive efforts are being made in the search of new 
drugs that can simultaneously hit several key biological targets of 
the network, including AChE. Moreover, AD has decades-long 

preclinical period (Jack and Holtzman, 2013), which suggests the 
need to find early therapeutic agents with efficacy at initial stages 
of the AD pathology. Taking into account all these considerations, 
the present study aimed to assess the efficacy of the feruloyl–
donepezil hybrid PQM130 on AD neurodegenerative processes 
and on cognitive outcomes, trying to make also a comparison with 
donepezil activity. In our previous study, PQM130 had already 
shown an interesting in vivo anti-inflammatory activity and in vitro 
metal chelator activity, as well as neuroprotective activity against 
oxidative damage (Dias et al., 2017). Here, we have elucidated the 
multifaceted activities of PQM130, like decreasing neuronal death 
and oxidative stress, improved neurotrophic effect, counteracted 
inflammation, and ameliorated spatial memory functions as 
compared to the Aβ1-42O lesioned group. It is clear that a successful 
neuroprotective and neurotrophic strategy could not only delay the 

FIGURE 6 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on tp53 mRNA relative expression (A) and caspase-9 (B) and caspase-3 (C) activations 
in the Aβ1-42O-injected mice. The tp53 mRNA relative expression was determined in hippocampal samples through the 2−ΔΔCt method and represented as 
percentage vs. the Sham/VH group. ACTB was used as control housekeeping gene. Caspase-9 and -3 activations were determined using a specific chromogenic 
substrate in the hippocampal samples. The values are expressed as mean ± SEM (n = 10) of optical density (OD) of each experimental group (A: *p < 0.05 vs. Aβ/
VH, §§p < 0.01 vs. Aβ/DON; B: #p < 0.05 vs. Sham/VH, *p < 0.05 vs. Aβ/VH; C: #p < 0.05 vs. Sham/VH, *p < 0.05 and **p < 0.01 vs. Aβ/VH; ANOVA, post hoc test 
Bonferroni).
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progression of neurodegeneration but also provide improvements 
in the disease condition.

In the MWM test, two main parameters are necessary to locate 
the hidden platform. Firstly, the mice should develop skills needed 
to handle the stressful condition, like swimming and recognizing 
the hidden platform as the only escape route. The second 
parameter is the spatial learning component, which implies that 
the mice have to learn exactly the platform’s position and reach it 
within a minute from the different starting position (Broadbent 
et al., 2004; Ghumatkar et al., 2015). Here, we found a progressive 
improvement in the spatial memory as shown by the significant 
reduction in escape latency time in the PQM130-treated mice 
as compared to the Aβ/VH mice when evaluated on the 4th and 
5th days. This improvement may be ascribed to PQM130’s ability 

to reduce oxidative stress and AChE activity to finally enhance 
cholinergic neuronal transmission. The Aβ/DON group showed a 
swimming performance comparable to the mice treated with the 
same dose of PQM130. This effect of donepezil may be related to 
its AChE inhibition (Ghumatkar et al., 2015). However, the probe 
trial was not implemented significantly in this study, only the time 
spent in the opposite quadrant markedly decreased after PQM130 
and donepezil treatments. Thus, the reduced escape latency time 
in the PQM130-treated group demonstrates its interesting effect 
on spatial learning ability. Working memory has been previously 
reported to be negatively involved in the early stages of AD (Kim 
et al., 2014; Okamoto et al., 2018), and spontaneous alternation 
behavior in the Y-maze test may be considered as a reflection of 
this kind of short-term memory. The continuous spontaneous 

FIGURE 7 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on cellular redox status in the Aβ1-42O-injected mice. Redox status was evaluated 
in the hippocampal samples based on DCF’s fluorescence emission at 535 nm after excitation at 485 nm. The values are expressed as mean ± SEM (n = 10) of 
fluorescence intensity arbitrary units (UF) of each experimental group (A). GSH content was measured using a colorimetric assay in the hippocampal samples. 
The values are calculated using a standard calibration curve and expressed as mean ± SEM (n = 10) of mmol GSH/mg protein (B). GR and Nrf2 mRNA relative 
expressions (C and D) were determined through the 2−ΔΔCt method and presented as percentage vs. the Sham/VH group. ACTB was used as control housekeeping 
gene. (A: ###p < 0.001 vs. Sham/VH, **p < 0.01 and ***p < 0.001 vs. Aβ/VH; B: **p < 0.01 vs. Aβ/VH group; C: *p < 0.05 and **p < 0.01 vs. Aβ/VH group; D: ###p < 
0.001 vs. Sham/VH group, ***p < 0.001 vs. Aβ/VH group, §§p < 0.01 vs. Aβ/DON group; ANOVA, post hoc test Bonferroni).
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FIGURE 8 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on GSK3 (A) and ERK1/2 (B) phosphorylations (pGSK3β Ser21/9 residue and 
pERK1/2) in the Aβ1-42O-injected mice. pGSK3β and pERK1/2 were determined by Western blotting in the hippocampal samples at 46 and 42/44 kDa, respectively, 
and using total GSK3, total ERK1/2, and β-actin (42 kDa) as loading control. Top: representative images of pGSK3β, GSK3, and β-actin (A) and pERK1/2, ERK1/2, 
and β-actin (B) expressions in hippocampus. Bottom: quantitative analysis of the Western blotting results for the pGSK3β (A) and pERK1/2 (B) levels. The graphs 
show densitometry analysis of the bands appertaining to the protein of interest. The values are expressed as mean ± SEM (n = 10) of each group. (A: *p < 0.05 vs. 
Aβ/VH group; B: ###p < 0.001 vs. Sham/VH, *p < 0.05 vs. Aβ/VH group; ANOVA, post hoc test Bonferroni).

FIGURE 9 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on astrocyte activation in the Aβ1-42O-injected mice. Representative photomicrographs 
(A) of immunostaining for GFAP in brain coronal sections containing hippocampal structure of each experimental group. Magnification, 10× and 40×; scale bar, 
100 μm. Quantitative analysis of GFAP immunostaining (B). The values are expressed as mean of % of increment ± SEM (n = 10) of the fluorescent intensity of each 
experimental group compared to the Sham/VH group (B: ##p < 0.01 vs. Sham/VH, **p < 0.01 vs. Aβ/VH; ANOVA, post hoc test Bonferroni).
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alternation in the Y-maze test can both elude stressful handling 
of animals and provide memory and locomotor evaluation 
(Kirshenbaum et al., 2015). Interestingly, we showed that PQM130 
counteracted the negative effect of Aβ1-42O on working memory in 
a dose-dependent manner. This was highlighted by the significant 
enhancement in percent of alternation behavior in the Y-maze, 
and the effects of the highest dose of PQM130 are comparable 
to those of donepezil. Our data are in agreement with previous 
studies showing that donepezil significantly improves alternation 
deficits in this test (Meunier et al., 2006; Hu et al., 2012) in the 
Aβ-injected mice.

Although it is not clearly known how Aβ injection can induce 
memory impairment in mice, we previously established that 
Aβ directly caused apoptosis leading to neuronal cell loss and, 
ultimately, neurodegeneration (Yao et al., 2005; Morroni et al., 
2016). The memory and cognitive decline in AD are strongly 
related to the apoptotic pathway (Obulesu and Lakshmi, 2014; Xu 
et al., 2017), which involves mitochondrial dysfunction, caspase 

activation, and DNA fragmentation (Ramalho et al., 2008). Our 
data showed that the hippocampal damage and caspase-9 and -3 
activations in lesioned mice were markedly reversed by PQM130. 
Meanwhile, donepezil did not show the same effectiveness 
in counteracting apoptosis and neuronal damage. Moreover, 
increased p53 level is infallibly detectable in brain areas attained 
by AD, in the corresponding brain areas of animal models, and in 
neuronal cells isolated from AD brains (Szybińska and Leśniak, 
2017). Interestingly, PQM130 substantially reduced the expression 
of p53, which corroborated its antiapoptotic activity. It is known 
that p53 directly binds to and increases the activity of GSK3β 
while inhibition of nuclear GSK3β attenuated p53-dependent 
transcription (Watcharasit et al., 2002). The link between p53 and 
GSK3β (i.e., between p53 and tau phosphorylation) may be more 
complex; however, in this study, we found that the decrease in p53 
expression levels after PQM130 treatment is most likely reflected 
in a phosphorylation (and thus deactivation) of GSK3β, leading to 
protection against neuronal death induced by Aβ1-42O.

FIGURE 10 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on the total BDNF (A), long 3′UTR BDNF (B), BDNF exon IV (C), and BDNF exon 
VI (D) mRNA relative expressions in the Aβ1-42O-injected mice. The mRNA relative expressions were determined in the hippocampal samples through the 2−ΔΔCt 
method and represented as percentage vs. the Sham/VH group. ACTB was used as control housekeeping gene. (B: §p < 0.05 vs. Aβ/DON; C: *p < 0.05 vs. Aβ/VH; 
ANOVA, post hoc test Bonferroni).
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Several studies demonstrated that oxidative stress precedes the 
rise of senile plaques and neurofibrillary tangles, therefore leading 
to dementia’s symptoms (Wang et al., 2014; Tian et al., 2019). 
Indeed, the increase of Aβ and oxidative stress, causing neuronal 
cell death, are common mechanisms in the progression of AD 
(Lee et al., 2011). Here, we found that PQM130 and not donepezil 
significantly ameliorates oxidative damage as demonstrated by 
the increase of GSH levels and GR and Nrf2 expressions in the 
Aβ1-42O-treated mice, confirming the similar evidences recorded 
by PQM130 in neuronal SH-SY5Y cells (Dias et al., 2017). The 
role of Nrf2 in Aβ-induced oxidative stress is controversial 
(Rong et al., 2018). Ramsey and colleagues described that in 
AD brains, Nrf2 is mostly found in the cytoplasm in its inactive 
form, which means that Nrf2 does not trigger the expression of 
antioxidant enzymes (Ramsey et al., 2007). Sarkar and colleagues 
demonstrated that Aβ25-35 increased oxidative stress and 
suppressed Nrf2 activation (Sarkar et al., 2017). Moreover, Branca 
et al. showed that reducing Nrf2 levels exacerbated cognitive 
impairments in a transgenic model of AD. They also speculated 
that “Nrf2 might act as a molecular link between brain aging and 
AD” (Branca et al., 2017). Numerous laboratories supported this 
hypothesis showing that Nrf2 activity decreased with aging (Suh 
et al., 2004; Zhang et al., 2015; Li et al., 2018). Moreover, Nrf2 
activity is strictly related to tau pathology, enhancing the link 
between Nrf2 and AD (Lastres-Becker et al., 2014). In our model, 
exposure to Aβ1-42O caused a marked decrease in Nrf2 activation, 
and only PQM130 significantly increased its expression, probably 
due to the presence of ferulic acid in this hybrid molecule. In 
this regard, the presence of α, β-unsaturated carbonyl system in 
PQM130 suggests the ability of this molecule to activate Nrf2 

through a Michael addition reaction (de Freitas Silva et al., 2018). 
Thus, the effect of PQM130 on Aβ1-42O-induced oxidative injury 
could explain the ability of PQM130 to counteract apoptotic cell 
death and cognitive impairment observed in our model.

Activity of ERK1/2 is modulated by ROS, and several studies 
demonstrated its activation in different AD models (Zhu et al., 
2002; Chong et al., 2006; Gan et al., 2014; Chang et al., 2018). 
Moreover, inhibition of ROS formation decreased ERK1/2 
activation in an AD model (Kim et al., 2009). The ERK pathway is 
fundamental to memory consolidation and synaptic plasticity in 
the hippocampus. Moreover, the fine regulation of ERK is crucial 
for the hippocampal functions (Goedert and Spillantini, 2006). 
Notably, in our model, Aβ1-42O contributed to the abnormal 
activation of ERK1/2 and there was an obvious decrease of 
p‐ERK1/2 levels by PQM130 administration.

ERK activation is also found in reactive astrocytes, affecting 
Aβ production through ROS formation (Kim and Wong, 2009). 
Therefore, compounds inactivating astrocytes and MAPK 
pathways could reduce Aβ formation and thus prevent or 
counteract neuronal injury in the AD brain (Butterfield, 2002; 
Lee et al., 2011). Additionally, glial cells and their resident protein 
GFAP are able to combine neuronal input, control synaptic activity, 
and translate signals tightly linked to learning and memory 
by the formation of cytoskeletal filaments (Konar et al., 2011; 
Ghumatkar et al., 2015). Our results showed that PQM130 and not 
donepezil might alleviate reactive gliosis, by reason of the ability of 
this treatment to reduce levels of GFAP in the hippocampus of the 
Aβ1-42O-lesioned mice.

BDNF belongs to the neurotrophin family of survival-
promoting molecules. It exerts significant protective effects on 

FIGURE 11 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on sinaptophysin levels in the Aβ1-42O-injected mice. Synaptophysin mRNA relative 
expressions in the hippocampal samples (A). The mRNA relative expressions were determined through the 2−ΔΔCt method and represented as percentage vs. the 
Sham/VH group. ACTB was used as control housekeeping gene. Synaptophysin activation was determined by Western Blotting in hippocampal samples at 33 kDa 
using β-actin (42 kDa) as loading control (B). Top: representative images of synaptophysin and β-actin expressions in hippocampus. Bottom: quantitative analysis of 
the Western blotting results for the synaptophysin levels. The values are expressed as mean ± SEM (n = 10) of each experimental group. (B: *p < 0.05 vs. Aβ/VH; 
ANOVA, post hoc test Bonferroni).
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fundamental neuronal pathways altered in AD (Nagahara et al., 
2009). The transcription of the BDNF gene is very elaborated. At 
least eight promoters encode to different mRNA transcripts, each 
containing a 5′ exon spliced to a common 3′ coding exon, and all of 
which generate the same BDNF protein (Aid et al., 2007; Chapman 
et al., 2012). We examined the expression of total BDNF mRNA, 
two 5′ exon-specific transcripts (IV and VI), and BDNF mRNA 
transcripts with a long 3′ untranslated region (3′UTR) in the 
hippocampal samples. BDNF mRNA transcripts with long 3′UTRs 
play essential roles in dendritic spine morphology and long-lasting 
synaptic plasticity (An et al., 2008; Chapman et al., 2012). In our 
model, the expression of these transcripts was not reduced by 
Aβ1-42O injection; however, PQM130 markedly increased long 
3′UTR and exon IV. Intriguingly, the increased level of BDNF in 
the hippocampus was accompanied by an up-regulated expression 
of synaptophysin. Therefore, these neurochemical results lead us to 
assume that PQM130 may activate the BDNF signaling pathway 
and thus control the expression of its downstream signaling 
components and the structural proteins associated to synaptic 
plasticity in the hippocampus, improving cognitive deficits in mice.

In conclusion, the results of this study demonstrated the 
nootropic, neuroprotective, and neurotrophic activities of the 
multi-target drug PQM130 in our AD experimental model. 
The nootropic effect could be related to the inhibition of AChE 
activity and the modulation of neuronal survival pathways, 
and consequently ameliorating the spatial memory formation. 
Neuroprotection might be attributed to its high potential as 
antioxidant, and to its ability to counteract apoptotic death and 
inflammation. Neurotrophicity might be ascribed to its increased 
BDNF and synaptophysin levels in the hippocampus. Compared 
to the first-line treatment donepezil, PQM130 appears a more 
attractive multipotent therapeutic molecule. Thus, our research 
findings prospect PQM130 as a promising candidate to be further 
investigated in AD therapy.
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The growing interest in the preclinical stage of Alzheimer’s disease (AD) led investigators to 
identify modifiable risk and predictive factors useful to design early intervention strategies. 
The preclinical stage of AD is characterized by β-amyloid (Aβ) aggregation into amyloid 
plaques and tau phosphorylation and aggregation into neurofibrillary tangles. There is a 
consensus on the importance of sleep within this context: the bidirectional relationship 
between sleep and AD pathology is supported by growing evidence that proved that 
the occurrence of sleep changes starting from the preclinical stage of AD, many years 
before the onset of cognitive decline. Hence, we review the most recent studies on sleep 
disturbances related to Aβ and the effects of sleep deprivation on Aβ accumulation in 
animal and human models. We also discuss evidence on the role of sleep in clearing the 
brain of toxic metabolic by-products, with original findings of the clearance activity of the 
glymphatic system stimulated by sleep. Furthermore, starting from new recent advances 
about the relationship between slow-wave sleep (SWS) and Aβ burden, we review the 
results of recent electroencephalographic (EEG) studies in order to clarify the possible 
role of SWS component disruption as a novel mechanistic pathway through which Aβ 
pathology may contribute to cognitive decline and, conversely, the eventual useful role of 
SWS in facilitating Aβ clearance. Finally, we discuss some promising innovative, effective, 
low-risk, non-invasive interventions, although empirical evidence on the efficacy of sleep 
interventions in improving the course of AD is at the very beginning.

Keywords: sleep, β-amyloid, Alzheimer’s disease, glymphatic system, slow-wave activity

INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia and represents one of the most 
dramatic challenges of modern society. The increase in elderly population and life expectations and 
the public health and economic challenges led investigators to develop sensitive biomarkers, risk 
and predictive factors able to facilitate early detection and effective intervention strategies (Sperling 
et al., 2011).

The relationship between sleep and AD is well known: a high percentage of AD patients 
complained sleep disturbances along the entire course of the disease, increasing in severity with the 
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progression of AD (Prinz et al., 1982; Vitiello et al., 1990; Moe 
et al., 1995).

Assuming that AD pathophysiology occurs many years before 
the manifestation of cognitive decline, recent literature data show 
that research in neuroscience is focusing on the preclinical stage 
of AD. This stage is characterized by deposition of extracellular 
amyloid-β (Aβ) into insoluble plaques in the brain associated with 
the aggregation of protein tau into intracellular neurofibrillary 
tangles (e.g., Lucey and Bateman, 2014). Amyloid deposition can 
be measured in vivo in humans by cerebrospinal fluid (CSF) Aβ 
concentration levels and by positron emission tomography with 
the amyloid tracer Pittsburgh compound B (PET-PiB). Through 
the use of both these measures, it has been observed that amyloid 
deposition was present approximately in 25–30% of cognitively 
intact individuals in their eighth decade (Morris et al., 2009).

Starting from the assumption that the intervention strategies 
are most effective in the preclinical stage of the disease, new 
research lines are investigating the modifiable factors occurring 
during this stage, together with the neuropathological events. In 
this context, the role of sleep in relation with Aβ is increasing in 
importance: sleep disturbances are present since the occurrence 
of Aβ accumulation, denoting a strict bidirectional relationship 
between sleep and Aβ. The subjective and objective measures 
of fragmented sleep are associated with the degree of Aβ 
accumulation and Aβ levels in the CSF (Lim et al., 2013; Spira 
et al., 2013; Mander et al., 2015).

For both animal and human models, it has been observed 
that sleep deprivation (SD) causes the augmentation of soluble 
Aβ (Kang et al., 2009; Ooms et al., 2014). Furthermore, in the 
mouse model, SD provokes also an increase in amyloid plaque 
deposition (Roh et al., 2014).

With the aim of investigating which aspects of sleep could 
be responsible for modulation of Aβ, an increasing number 
of electroencephalographic (EEG) studies (e.g., Ju et al., 2017) 
explored the role of slow-wave sleep (SWS) and specific 
non rapid eye movements (NREM) SWS components—with 
particular reference to slow-wave activity (SWA)—as candidates 
in the clearance of Aβ, promoting glymphatic system activity. 
The glymphatic system is a perivascular network diffused in the 
brain that has the role of achieving the exchange in interstitial 
fluid and CSF (Boespflug and Iliff, 2018) and is mainly implied in 
the clearing process of Aβ and other interstitial solutes. Growing 
evidence demonstrated that the glymphatic system mainly is 
active during sleep and impaired with aging and post-traumatic 
brain (Iliff et al., 2014; Kress et al., 2014; Zeppenfeld, 2017). 

Here, we briefly describe the bidirectional relationship 
between sleep and Aβ. Then, we review recent literature with 
particular reference to the last decade, reporting empirical 
evidence on the relationship between sleep disturbances and Aβ 
in elderly populations, and the most recent SD experimental data 
in animal and human models. We also discuss a new concept 
“beyond amyloid,” underlying the importance of other factors—
related directly and indirectly to sleep—that has been receiving 
growing interest as contributors in the pathophysiology and 
progression of AD. On the basis of the most recent advances, we 
also discuss findings on the role of sleep in clearing the brain of 
toxic metabolic by-products, providing the results of new studies 

about the clearance activity of the glymphatic system stimulated 
by sleep, with particular reference on the role of SWA.

On the basis of the reviewed data, we also report a recent 
promising research line, describing innovative early sleep 
intervention strategies.

SLEEP AND Aβ: A BIDIRECTIONAL 
RELATIONSHIP

For over 25 years, sleep disorders have been associated with AD, 
with a 25–66% of AD patients that exhibit sleep disturbances 
being considered one of the leading causes of patient 
institutionalization (Moran et al., 2005; Guarnieri et al., 2012).

During the last years, with the growing interest in the 
preclinical stage of AD, the role of sleep in association with AD 
has radically changed. Sleep changes occur many years before 
the appearance of cognitive symptoms, together with the early 
pathophysiological events. The presence of sleep disturbances, 
since the preclinical stage of the disease, underlines a possible 
crucial role of sleep in AD pathology and progression.

In 2009, Kang and colleagues showed in the AD mouse 
model that Aβ levels in the interstitial fluid increased during 
wakefulness and decreased during sleep. After this pioneering 
finding, many observational studies investigated on poor sleep as 
a potential human AD biomarker. Two physiological mechanisms 
could explain how poor sleep could promote AD: i) during SWS, 
the brain could be able to better clean metabolic waste, and Aβ 
clearance would be more effective during SWS (Xie et al., 2013); 
and ii) another mechanism was based on evidence that increased 
neuronal firing could promote Aβ production, and the firing is 
reduced in SWS as compared with wakefulness or REM sleep, 
and, consequently, sleep loss could lead to increase neuronal 
activity resulting in Aβ increase (Vyazovskiy et al., 2009; Ju et al., 
2014). At this purpose, it is important to underline that literature 
data remain controversial. In particular, the open issue seems 
to be related to the different frequencies of neuronal firing: it is 
known that the majority of cortical neurons fire at low frequency 
(Chauvette et al., 2010; Barth and Poulet, 2012). Starting from 
this assumption, while sleep seems to reduce the firing of high-
firing-rate neurons, in case of very-low-frequency-firing (around 
1 Hz) neurons, it seems to augment the firing as underlined in 
evidence conducted in both rodents and cats (Watson et al., 
2016). Moreover, Grosmark et al., (2012) examined the firing rates 
of hippocampal CA1 neurons and found that only REM episodes 
were related to a decreased firing rates at hippocampal level, 
revealing also an increase in firing during NREM sleep episodes.

During the last 15 years, many studies assessed the relations 
between subjective and objective sleep measures and increasing 
Aβ levels and lower cognitive performance in elderly populations, 
suggesting that poor sleep could increase the risk of obtaining low 
cognitive outcomes (Scullin and Bliwise, 2015). The focus on healthy 
elderly population represents a crucial methodological advance from 
earlier studies conducted in already-impaired older adults (Spira 
and Gottesman, 2017). Indeed, in the light of developing the most 
effective and early interventions, it becomes necessary to evaluate 
a series of age-related characteristics in a healthy population and, 

82

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Sleep and β-amyloid in Alzheimer’s Disease Cordone et al.

3 June 2019 | Volume 10 | Article 695Frontiers in Pharmacology | www.frontiersin.org

ideally, following across time any change in different physiological, 
structural, functional, and behavioral aspects.

Hence, current research lines are focusing their attention on 
the relationship between Aβ, sleep, and cognitive function in 
different experimental conditions, with particular reference to 
healthy elderly populations by investigating sleep disturbances 
and sleep deprivation related to Aβ burden.

Aβ AND SLEEP DISTURBANCES: A NEW 
PERSPECTIVE

Growing evidence supports the notion that insomnia, excessive 
daytime sleepiness (EDS), sleep-disordered breathing (SDB), 
and circadian sleep–wake alterations all seem to increase the 
risk of AD (for a review, see Yaffe et al., 2014). It has been shown 
that sleep disorders modify neurotransmitter activity that could 
cause consequent dysfunction of the “default mode network,” 
which has a crucial role in the pathophysiology of AD (Yulug 
et al., 2017).

Following the new perspective of Aβ and sleep bidirectional 
relationship, many studies investigated whether sleep disruption 
could lead to deleterious effects on Aβ accumulation in healthy 
populations (e.g., Cross et al., 2015).

Recently, Chen and colleagues (2018) assessed the CSF Aβ 
levels in 23 patients with chronic insomnia, to reveal the potential 
effects of chronic sleep lack on the pathogenesis of AD. The 
authors found that CSF Aβ42 levels are significantly increased 
in insomniac patients. Furthermore, Aβ levels significantly 
correlated with the Pittsburgh Sleep Quality Index (PSQI) 
scores (i.e., the most used self-report measure that assesses sleep 
quality).

Carvalho and co-workers (2018) conducted a longitudinal 
study to assess the association between EDS and Aβ levels, 
through the use of PiB-PET scans across time (3 years’ follow-up). 
The results show that cognitive normal elderly (n = 283) with 
a high score of EDS at baseline condition were subjected to a 
higher risk of developing changes related to AD, as shown by the 
progressive increase of their Aβ levels over 3 years. 

A similar longitudinal experimental design has been applied 
by Sharma and colleagues (2017) to investigate the association 
between obstructive sleep apnea (OSA) and Aβ levels in a 
cognitively intact elderly population (n = 208). The results show 
that high OSA indexes were related to higher Aβ levels measured 
by PiB-PET scans and the increasing in Aβ levels progressively 
augmented across time (2 years’ follow-up).

The strong limitation of these studies is, however, that their 
assessment of sleep disturbances was based only on a self-report 
questionnaire, without the use of objective or clinical measures.

Some of these observations were, however, confirmed in 
studies conducted using actigraphy to examine sleep disorders 
related to preclinical AD. For example, Lim and co-workers 
(2013), through a prospective actigraphic study with 10 
consecutive sleep recordings, show that participants with higher 
sleep fragmentation have a risk of developing AD symptoms in 
the successive 3 years, which is 1.5 times higher if compared with 
that of participants having lower fragmented sleep.

It is interesting to note that sleep fragmentation characterized, 
directly or indirectly, all these sleep disturbances: insomnia, 
EDS, and OSA are representative of poor sleep quality, restricted 
duration, and difficulty in maintaining sleep continuity.

The need for exploring sleep disturbances associated with 
Aβ with objective measures seems mandatory at this stage 
of evidence. Objective measures should include sleep EEG 
recordings, to obtain important details concerning macro-
structural and micro-structural EEG measures. 

Particular attention should be given to the changes in the 
sleep–wake cycle. Aging per se leads to many changes at the 
physiological level, and these modifications concern also sleep 
and circadian rhythm and could derive from hypothalamic 
functional alterations (Monk et al., 2011). Indeed, lateral 
hypothalamus contains also neurons that impact wakefulness, in 
terms of initiating and maintaining wakefulness state (Chemelli 
et al., 1999). This role seems to be accomplished by orexin 
(hypocretin) neuropeptides that could be considered as a sort of 
substrate connecting dysfunctional homeostatic and cognitive 
processes in case of aging or AD and has been receiving growing 
attention also concerning new intervention strategies based on 
sleep restoration (Guarnieri et al., 2014).

The hypothesis of a relevant role of orexin neuropeptide in AD 
has also been confirmed by a study conducted with transgenic 
2567 (TG2567) mice. This type of mouse model is commonly 
used in AD experimental procedures because it presents a 
mutation of the amyloid precursor protein but does not contract 
signs of AD at the behavioral level. Results show that orexin 
intracerebroventricular administration during inactive periods 
(that probably correspond to sleep) lead to an augmentation 
of wakefulness periods and Aβ levels in interstitial fluid (Kang 
et al., 2009).

Many evidence shows that alterations in circadian rhythm and 
sleep–wake cycle are strictly related to Aβ pathology: high Aβ 
levels are associated with fluctuations in alertness (e.g., Musiek 
et al., 2015), which contribute to the successive occurrence of 
“sundowning” with progressive neurodegeneration across time.

Considering animal models, the major concentrations of 
Aβ occur during wakefulness in TG2567 mice and wild type 
(WT; Kang et al., 2009), and, similarly, human models denote 
significant differences in Aβ levels measured during wakefulness 
(maximum concentration) and during normal sleep (minimum 
concentration; Huang et al., 2012).

The changes concerning sleep–wake cycle alterations include 
nocturnal sleep fragmentation, increased wakefulness, and 
functional impairment in daytime activity with diurnal napping 
(Vitiello  and Prinz, 1989; van Someren et al., 1996). The specific 
sleep alterations in the preclinical stage of AD regard SWS, while 
REM sleep seems to be affected in later stages, with the progression 
of the disease (Vitiello  and Prinz, 1989). Although brain remains 
electrically and metabolically active during sleep, a reduction of 
functional connectivity occurs at sleep onset (Vecchio et al., 2017) 
and with increasing depth of NREM sleep, with the maximal 
reduction observed during stage 3 (N3) of SWS (Horovitz et al., 
2009). It has been hypothesized that the decrease during N3 
could be due to decreased neuronal activity in this sleep stage. In 
support of these findings in humans, Fernandez and colleagues 
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in a study conducted on mice found similar results regarding the 
decreased connectivity during sleep (Fernandez et al., 2017).

A recent interesting contribution investigated the impact of 
Aβ on the sleep–wake cycle, demonstrating that Aβ disturbs the 
synchronization of the central nervous system clocks, which are 
crucial for many processes. The worsening in synchronization 
is typical of normal aging and could further worsen, leading to 
neurodegeneration (Cedernaes et al., 2017).

This hypothesis is also supported by 24-h fluctuations in CSF 
Aβ levels measured by PET that decrease with age in “amyloid 
positive” healthy adults (Kang et al., 2009; Huang et al., 2012).

THE EFFECTS OF SLEEP DEPRIVATION 
ON THE β-AMYLOID ACCUMULATION

SD studies have been providing crucial advancements in the 
understanding of the mechanisms underlying the intriguing 
bidirectional relationship between sleep and Aβ.

It is well known that, in general, SD is strictly associated with 
cognitive impairment. Both clinical and experimental studies 
show that sleep loss, even for a few hours, provokes cognitive 
impairments. A wide range of empirical evidence demonstrates 
impairments in memory, learning, attention, decision making, 
and emotional reactivity in healthy human subjects after sleep 
loss (Chee and Chuah, 2008; Goel et al., 2009; McCoy and 
Strecker, 2011).

SD experimental contributions derive from both animal 
and human models, and although animal models represent a 
fundamental approach in the field of translational research in 
AD, the findings on the animal model do not completely overlap 
those in humans.

Studies manipulating SD make a distinction between total 
sleep deprivation (lack of sleep for a specific period extending 
to a longer period of sleep), mild sleep restriction (long-
term shortening of the usual duration of sleep), and sleep 
fragmentation (interrupted sleep in different stages).

Starting from the assumption that sleep loss has an important 
negative implication in cognitive impairment, the most recent 
contributions of animal and human models in the field of AD are 
extending their focus on other interesting methodological and 
conceptual issues: i) scheduling different long-term SD periods; 
ii) investigating different subtypes of cognitive impairments; 
iii) testing the irreversibility of these impairments, by utilizing 
longitudinal experimental protocols; iv) increasing the use of 
non-genetically predisposed mouse model to better replicate 
adult-elderly individuals; v) considering sleep loss as a “stressor”; 
vi) investigating possible neuronal mechanisms implied in sleep–
Aβ relationship; and vii) considering the possible role of glia in 
AD pathogenic mechanisms.

Animal Models
Firstly, Rothman and colleagues (2013) tested the hypothesis that 
long-term mild restriction could worsen AD progression using 
the TG model with plaques and tangles, the 3×TgAD mouse 
model (n = 10). Mice were subjected to 6 h of sleep restriction 

per day for 6 weeks. The results showed that after chronic sleep 
restriction, there was an accentuation of Aβ accumulation in 
the cerebral cortex, demonstrating for the first time that long-
term mild sleep restriction could worsen AD progression. 
Furthermore, behavioral data also reveal a worsening of memory 
loss in sleep-restricted mice if compared with controls. This 
study also analyzed corticosterone circulating levels, which were 
elevated 1 week after the start of the SD period and lasted for 
4 weeks. The increase in corticosterone levels led to consider SD 
also in relation to stress intrinsically inherent to the procedures to 
sleep deprive, indicating that mice could not be able to acclimate 
to a stressor.

The notion of SD acting as a potential stressor was confirmed 
in other mice model studies. In particular, a successive study by 
Di Meco and co-workers (2014), utilizing the same 3×TgAD 
mouse model (n = 18), evaluated the functional and biological 
consequences of 4-h SD per day for 8 weeks. Compared 
with controls, mice subjected to SD show impaired cognitive 
performance in learning and memory abilities, but there are no 
significant differences in Aβ accumulation.

Interestingly, SD has an impact also in reducing postsynaptic 
density protein 95 levels with parallel augmentation of 
glial fibrillary acidic protein levels. This result confirms the 
importance of SD as a chronic stressor, able to influence also 
cognitive functions AD neuropathology.

Aiming to investigate the effects of chronic SD (mice 
underwent to 2-month SD; they were awakened from 12:00 PM 
to 8:00 AM of the next day) on cognition and Aβ accumulation 
in mice, Qiu and colleagues (2016) used a model of familial AD 
transgenic mice (n = 40) and their WT (n = 40). Results showed a 
worsening in cognition (learning and memory) in mice subjected 
to SD if compared with non-SD mice for both TG and WT 
models. Furthermore, the augmentation in Aβ accumulation and 
typical senile plaques was observed after SD in the cortex and 
hippocampus. It is interesting to note that the effects related to 
SD lasted for 3 months and remained stable also in normal, non-
experimental conditions.

These findings underline that chronic SD could be considered 
as a potential risk factor for AD.

This is the first study demonstrating that reversal learning 
ability is defected by chronic SD. The authors assume that SD as 
a stressor can cause damage to both the hippocampus and cortex 
and it could aggravate dementia. This study explores the effects 
of chronic SD on both familial AD model and sporadic one, to 
facilitate the understanding of the association between chronic 
SD and AD. On the basis of those results, it is possible to suggest 
that chronic SD is not only a risk factor for familial AD but also 
contributes to sporadic AD. 

Familial (i.e., early-onset AD) AD typically accounts for a 
quite small percentage of all AD cases (e.g., Bali et al., 2012), 
and it becomes fundamental to evaluate whether chronic SD 
could facilitate Aβ accumulation and make vulnerable the non-
genetically predisposed mice to the risk of dementia, specifically 
investigating sporadic AD (i.e., late-onset AD, which is the most 
common AD form). In a recent study of Zhao and co-workers 
(2017), non-genetically predisposed mice (adult and WT 
C57BL/6 mice) were submitted to chronic SD for 2 months 
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(equivalent to 6–8 years in humans). Mice usually sleep 10–12 h 
each day, and experimental SD protocol allowed mice to sleep 
restriction (4 h per day). This study had the aim of verifying 
alterations in cognitive function and Aβ levels after a period of 
SD. Results showed that cognitive function worsened for both 
learning and memory domains. Concerning Aβ accumulation, 
the most affected brain areas were at the prefrontal and temporal 
lobe levels, differing from above-mentioned findings, suggesting 
that it could be possibly due to variant genetic background.

Beyond the traditional mice models, the fruit fly Drosophila 
melanogaster has been established as a model for AD (e.g., 
Bonner and Boulianne, 2011) because it recapitulates some key 
pathophysiological and cognitive characteristics of AD (Tabuchi 
et al., 2015). A recent study of Tabuchi and colleagues (2015) 
hypothesized a functional mutual interaction that includes sleep, 
neuronal excitability, and Aβ levels also in animals different from 
mice model. To this purpose, using mechanical deprivation, 
authors subjected flies to SD for 1 week, starting from the 
assumption that sleep functions downscale synaptic strength 
and SD could have a deleterious effect on neuronal excitability 
related to AD pathology. The results of this study underline 
an augmentation in neuronal excitability due to abundant Aβ 
accumulation and a worsening of this effect after SD. These 
changes in electrical activity are also linked to cognitive 
impairment: mild cognitive impairment (MCI) patients showed 
augmented hippocampal activation by functional magnetic 
resonance imaging (fMRI), while its reduction improved memory 
performance (Bakker et al., 2012). The findings of this study raise 
the important issue of the strong interaction between sleep and Aβ, 
adding the negative relevance of neuronal hyperexcitation 
in case of sleep loss and, on the contrary, suggesting a possible 
beneficial role of intact sleep in AD pathophysiology.

Human Models
The first human study by Ooms and colleagues (2014) investigated 
the effects of one night of total SD on CSF Aβ42 levels in healthy 
middle-aged men (n = 26). A night of undisturbed sleep led to a 6% 
decrease in Aβ42 levels, whereas this decrease was not observed 
in case of sleep restriction. Furthermore, Aβ42 levels in a different 
time of the day were significantly different between the two groups 
in contrast to Aβ40 and tau protein levels that remained stable. 
These results suggest that SD could interfere with the physiological 
decrement in Aβ42 levels measured in the morning, and it elevates 
the risk of AD. Another study (Wei et al., 2017) tested the effects 
of short-term total sleep deprivation on plasma Aβ levels. Twenty 
healthy volunteers underwent 24 h of SD. Results show that SD 
can provoke Aβ40 plasma level augmentation and a decrement 
in Aβ42/Aβ40 ratio. As mentioned above for animal models, 
these results underline a possible mechanism that also implies 
oxidative stress in the impairment of peripheral Aβ clearance as a 
pathophysiological mechanism of AD. The plasma Aβ40 level was 
linearly correlated with the time of wakefulness, and the changes 
were reversed after sleep recovery. These sleep-related effects were 
not observed for plasma Aβ42.

In contrast, Lucey and colleagues (2017) found that disrupted 
sleep increases AD risk via increased Aβ38, Aβ40, and Aβ42 

levels by 25% to 30% in cognitively normal adults (n = 8; aged 
30 to 60 years).

Using PET, Shokri-Kojori and colleagues (2018) showed that 
acute SD impacts the Aβ burden in brain regions implicated in 
AD. In particular, the authors evaluated the effects of one-night 
SD on Aβ burden in healthy controls (n = 22). The increase in Aβ 
burden was found in the hippocampus and thalamus, confirming 
that SD has an impact on brain regions strictly connected with 
AD pathology starting from the first stages of the disease.

The most recent studies are trying to increase in the extent of 
SD manipulation. Olsson and co-workers (2018) investigated the 
effect of five consecutive nights of partial sleep deprivation (PSD) 
on CSF biomarkers in healthy adults (n = 13). After baseline 
condition (8 h per night for five nights), PSD protocol consisted 
in reducing sleep to 4 h for the successive eight nights. CSF 
biomarker included Aβ, tau, orexin, monoamine metabolites, 
neuron-derived biomarkers, and astro- and microglia-derived 
biomarkers. Results showed that five to eight consecutive nights 
of PSD only affected CSF orexin levels, in terms of augmentation. 
No impact was found on the other CSF biomarkers.

The above-mentioned empirical evidence related to animal 
and human models, with particular reference to new interesting 
methodological and conceptual issues, has provided new 
important insights going towards a “beyond amyloid” concept of 
AD pathologic mechanisms.

AD AS A MULTIFACTORIAL DISEASE: 
BEYOND AMYLOID

The growing evidence on AD pathogenesis is depicting a new 
conceptual and experimental framework that overcomes the 
mere “amyloid cascade hypothesis,” leading to even more 
complex considerations on other factors that could contribute, 
reciprocally interact, and have a role in AD pathogenesis 
and progression. Clinicians and researchers are increasingly 
considering AD as a multifactorial disease syndrome, trying 
to identify the roles of these different factors in relation to 
AD pathogenesis and progression. In recent literature, an 
open issue concerns the importance and the weight of the 
different “contributors” and their mutual interactions. A recent 
commentary of Mullane and Williams (2018) underlines the 
new consideration of AD as a “complex cellular phase consisting 
of feedback and feedforward responses of astrocytes, microglia, 
and vasculature” and a “holistic understanding of the spatial, 
temporal and cellular aspects of the disease process” (De Strooper 
and Karran, 2016) is required. In their commentary, authors did 
not question the already-known notions about Aβ burden as 
a key pathological feature in AD, but they suggest a complex 
framework that goes “beyond amyloid” in the understanding of 
AD pathogenesis. This concept also depends by clinical evidence 
that shows substantial independence of neurodegenerative signs 
(such as Aβ accumulation) from cognitive status: it has been 
shown that the removal of Aβ from AD brain could not have 
positive effects on cognition. This consideration also suggests 
that the amyloid cascade hypothesis of AD could be rejected 
(Egan et al., 2018).
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In the perspective of AD as a multifactorial disease, recent 
studies present many causal factors implicated in AD. These 
factors include inflammation (McGeer et al., 1990), neurotoxic 
protein accumulation in the brain (Boland et al., 2018) that can 
be associated in part with sleep deprivation, disruption of the 
glymphatic system and blood–brain barrier (BBB) dysfunction 
(Jessen et al., 2015; Sweeney and Zlokovic, 2018), oxidative 
stress, and microglia dysfunction. None of these factors could 
provoke, independently, AD occurrence, but their combinations 
and interactions could have a role in facilitating its occurrence. 
The role of these contributing factors could clarify the fact 
that a high percentage of individuals that present signs of AD, 
such as amyloid plaques, do not show impairment in cognition 
(Aizenstein et al., 2008); and, on the contrary, it is possible to 
develop AD without observed amyloid signs in the brain (Nelson 
et al., 2011; Herrup, 2015).

Within this new framework, the most relevant issue concerns 
how sleep is inserting in the mechanistic pathways underlying AD 
pathogenesis, to develop new preventive and early intervention 
strategies.

It is important to underline that many recent contributions 
investigated sleep also in relation to tau protein with dissociated 
findings for changes of Aβ and tau (e.g., Holth et al., 2017). Also, 
for this reason, the relationship between sleep and tau is not the 
subject of the present review.

THE ROLE OF SLEEP IN CLEARING 
THE BRAIN OF TOXIC METABOLIC 
BY-PRODUCTS

Recent reports indicate a strict relation between disrupted sleep, 
brain glymphatic system, and AD (O’Donnel et al., 2015; Krueger 
et al., 2016). Removing waste from the central nervous system 
is crucial for the maintenance of brain homeostasis during life 
span, and, at this purpose, the role of the glymphatic system has 
been profoundly investigated. The glymphatic system includes 
a perivascular network for CSF transport (Iliff et al., 2012) 
connected to a downstream lymphatic system (Aspelund et al., 
2015; Louveau et al., 2015). Xie and colleagues (2013) conducted 
the first pioneering studies that showed as Aβ protein was 
transported from the interstitial fluid space and out of the brain 
through the glymphatic system. The association between sleep 
and glymphatic system derived from evidence that demonstrate 
as sleep (with particular reference to SWS) augmented the 
action of the glymphatic system in clearing Aβ from the brain 
if compared with wakefulness state, suggesting a possible 
beneficial role of sleep also in intervention strategies with the 
aim of ameliorate cognitive status (Benveniste, 2018). The role of 
SWS in the clearance of Aβ via glymphatic system was tested by 
Xie and co-workers in an animal model: Aβ in rodent brain was 
cleared significantly faster in the cortex during SWS if compared 
with wakefulness. Although the presence of a glymphatic system 
in the human brain has not been proven, several correlation 
studies based on the investigation of the relationship between Aβ 
levels in the CSF and sleep/wake variables—together with SD 
deprivation evidence—hypothesized a plausible presence of a 

glymphatic system also in the human brain (Volkow et al., 2012; 
Xie et al., 2013). Furthermore, other evidence refers, specifically, 
to i) SWS disruption with a parallel increase in CSF Aβ levels (Ju 
et al., 2017) and ii) correlation of subjective measures regarding 
sleep duration and Aβ levels in the brain (Spira et al., 2013).

Again, the importance of sleep in Aβ clearance has also been 
confirmed in relation with a significant increase in interstitial 
fluid space volume at the cortex level in sleeping rodents than in 
wakefulness periods (Xie et al., 2013; Ding et al., 2016).

Animal and human models showed that Aβ levels in the 
interstitial fluid undergo diurnal oscillations (Musiek et al., 
2015) that seem to be due to decreased neural activity in SWS 
during NREM sleep in some brain areas, which could be linked 
to a decrement in Aβ production. Considering the specificity of 
SWS in clearing Aβ, a series of new experimental protocols have 
been conducted to clarify the role of SWS on the light of the new 
findings mentioned above.

THE RELATION BETWEEN SLOW-WAVE 
ACTIVITY (SWA), NREM OSCILLATION 
COMPONENTS, β-AMYLOID BURDEN, 
AND BRAIN STRUCTURAL AND 
FUNCTIONAL DIFFERENCES

By reviewing recent literature on sleep and AD relationship, 
it is evident that most experimental contributions have been 
conducted in healthy samples, in line with the concept of 
investigating the earliest preclinical pathological events related 
to AD and the possibility to target preventive and early-based 
sleep intervention.

Furthermore, the most recent innovative framework in the 
field of sleep and AD relationship derives from another new 
methodological perspective. The most important findings of the 
last decade show as the combination of different measurements 
represent the best overview to provide a complete vision of 
anatomical, electrophysiological, metabolic, and behavioral 
aspects underlying this relationship (Supplementary Table 1). 
In the light of SD animal and human models mentioned above, 
it emerges the need for examining specific brain regions—related 
to sleep—involved in AD pathogenesis. It becomes essential to 
investigate the complex interactions among the features related 
to AD with particular reference to the mechanistic pathways that 
could link specific Aβ accumulation in the brain, sleep state, and 
cognitive impairment (memory, at first).

Concerning the electrophysiological measurement of brain 
activity, the investigation of changes in electrical oscillations 
of sleep through EEG, with particular reference to NREM 
constituent oscillations—such as slow oscillations and sleep 
spindles—acquires great importance in this research line.

In particular, one quantification of slow waves entails the 
measurement of spectral EEG power in the 0.5- to 4.5-Hz 
range during SWS, also known as SWA. Studies conducted in 
healthy populations showed significant SWA power reductions 
with aging progression (Dijk et al., 1989; Landolt et al., 1996; 
Mander et al., 2013). In particular, the highest decreases in SWA 
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are observed within the prefrontal cortex (PFC) during the first 
part of the night, in correspondence with the first NREM cycle 
(Landolt et al., 1996; Mander et al., 2013).

Slow wave is strictly related to gray matter within specific 
PFC regions: atrophy in these brain areas seems to predict the 
degree of changes in NREM slow-wave characteristics in elderly 
populations (Mander et al., 2013; Varga et al., 2016).

At this purpose, a relevant contribution of Mander and 
co-workers (2013) that combined MRI, fMRI, EEG, and memory 
measurements demonstrated that atrophy in the prefrontal gray 
matter predicted NREM SWA disruption, and the interaction 
between those measures predicted cognitive performance in 
overnight episodic memory retention. fMRI scans obtained 
during memory task showed that memory impairment was 
related to continuous hippocampal activation and reduced 
connectivity between the hippocampus and prefrontal cortex 
(Mander et al., 2013). 

Considering the importance of the early Aβ accumulation in 
the brain, SWA has been investigated in relation to Aβ levels in 
CSF and memory consolidation. It is well known that Aβ’s earliest 
occurrence appears at the cortical level and also includes the 
medial Prefrontal Cortex (mPFC) (Buckner et al., 2005). Indeed, 
subcortical structures are affected successively. For this reason, 
Mander et al. (2015) hypothesized involving the hippocampus 
since the preclinical stage of AD (clearly observed with early 
memory impairment) with regards the indirect pathways in which 
Aβ could impact the hippocampal–neocortical functioning. The 
hypothesized pathway is a sort of loop that includes NREM sleep 
disruption, SWA, and memory destruction (Mander et al., 2013).

The same research group conducted a successive study 
(Mander et al., 2015) on older adult population (n = 26), to 
clarify whether the extent of Aβ accumulation at mPFC level 
was related to decreased NREM SWA. Furthermore, the authors 
had the aim of proving whether NREM SWA correlated with the 
degree of memory impairment. Memory evaluation referred, 
specifically, to overnight hippocampus-dependent memory 
consolidation. Experimental protocol combined PET-PiB 
scanning to measure regional Aβ burden for one night of sleep 
EEG recording of behavioral and functional fMRI for sleep-
dependent memory consolidation. This elegant study is the first 
evidence to demonstrate the correlation between cortical Aβ and 
impaired generation of NREM SWS, also related to the prediction 
of successive decline in the hippocampal–neocortical memory 
transformation and related overnight memory retention. 
The results of this study extend prior studies that showed the 
association among the accumulation of Aβ within mPFC, the 
NREM SWA impairment, and the further correlation of disrupted 
NREM SWA with impaired hippocampal–neocortical memory 
transformation and related overnight memory retention. Taken 
together, these results provide important insights at anatomical 
and electrophysiological levels, as discussed by the authors 
(Mander et al., 2015). Anatomically, through the analyses of 
source localization, a correspondence of mPFC regions impacted 
early by Aβ burden and slow-wave generator has been observed 
in healthy young adults (Sepulcre et al., 2013; Mander et al., 
2015). At the electrophysiological level, an important distinction 
within the delta frequency range (1–4 Hz) emerges: the relation 

between Aβ and NREM SWA regards only the low-frequency 
range of SWA (0.6–1 Hz). So it suggests that only this specific 
frequency range is associated with Aβ pathology.

Considering microstructural features of NREM sleep, both 
amplitude and density of slow waves are significantly reduced 
across aging (Dubè et al., 2015), showing the largest changes over 
the frontal lobe and be maximal during the greatest expression 
of NREM oscillation, in the first one to two NREM cycles. 
These changes in the morphology of waveforms could be due 
to the diminishing of synchronized neuronal firing that causes 
sleep oscillations, provoked by a disruption in the slow wave 
depolarized or hyperpolarized down states that shape the slow 
wave (Beenhakker and Huguenard, 2009; Mander et al., 2017). 
Within the same frequency range of slow waves, AD patients 
compared with healthy controls show a 40% decrease of frontal 
spontaneous K complex during NREM sleep, and this decrease 
was positively related with Mini Mental State Examination 
(MMSE) scores (De Gennaro et al., 2017). The lack of a similar 
decrease in the amount of SWA suggests that the <1-Hz slow 
activity could be the potential sleep EEG marker, even though it 
does not differentiate AD from MCI patients (Reda et al., 2017).

Concerning sleep spindles, these NREM characteristic 
features reflect transient bursts of oscillatory activity in the 12- to 
15-Hz range and are generated through an interaction between 
cortico-thalamic networks and reticular nucleus of the thalamus 
(De Gennaro and Ferrara, 2003). Rauchs and colleagues (2008), 
for the first time, reported a specific decrease in spindle in AD 
patients in association with learning abilities, underlying that 
these changes involved only fast spindles (13–15 Hz). Other 
studies demonstrated that the spectral power in this frequency 
range is decreased in middle-aged and older adults relative to 
young adults and is maximal over frontal EEG derivations (De 
Gennaro and Ferrara, 2003; Mander et al., 2014). A decreased rate 
of sleep spindles in older adults is also negatively associated with 
structural brain integrity: empirical evidence points to subcortical 
reductions in the gray matter within the hippocampus, and this 
decrement seems to predict the extent of decreased sleep spindle 
density at frontal lobe level in older adults (Fogel et al., 2017). In 
2012, Wersterberg and colleagues investigated sleep physiology 
and memory in amnestic MCI patients (aMCI; n = 10) during 
stage 2 (i.e., the sleep stage where spindle activity is maximally 
expressed). The results showed that aMCI patients had fewer 
stage 2 spindles than aged-matched healthy adults (n = 18).

Furthermore, aMCI patients, if compared with controls, 
show less time spent in SWS and lower delta and theta power. 
Importantly, sleep deficiency in aMCI was also implicated in 
declarative memory consolidation: altered sleep patterns seem 
to contribute to memory impairments by contrasting with sleep-
dependent memory consolidation. In this study, reduced stage 2 
spindles regarded fast (typically 13–15 Hz) but not slow spindles, 
in line with previous contributions that showed that fast spindles 
are most disrupted in AD (Rauchs et al., 2008), and these 
reductions were observed at frontal recording sites (Bliwise, 
1993). A decrease of parietal fast spindle density in AD and MCI 
patients compared with healthy controls was confirmed by others 
(Gorgoni et al., 2016). This decrease positively correlated with 
MMSE scores.
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The role of NREM activity, including the expression of sleep 
spindle EEG oscillations, has been further investigated by 
Mander and colleagues (2014). The authors started from the 
hypothesis that sleep could have a role in improving learning 
ability, in terms of better restoring next-day encoding learning 
abilities (e.g., Yoo et al., 2007). This role could be due, specifically, 
to the activity of fast-frequency sleep spindles over the left 
prefrontal cortex, as previously observed in healthy young adults 
(Mander et al., 2011). Experimental protocol combined fMRI 
and EEG recordings to i) evaluate the role of prefrontal fast sleep 
spindles in predicting next-day episodic encoding ability and 
ii) assess whether disruption in this EEG activity decreases the 
effectiveness of this positive benefit on hippocampal-dependent 
episodic learning ability.

The results showed that decreased prefrontal sleep spindle in 
older adults statistically mediated the effect of old age on next-day 
episodic learning and that the extent of this impairment in learning 
ability seems to depend on the degree of decreased prefrontal 
sleep spindles. Prefrontal spindle activity also seems to be related 
to hippocampal activation and could have an impact on learning 
ability in post-sleep phase. These results contribute to confirming 
the hypothesis that disrupted sleep physiology has a role in the age-
related cognitive decline in later life (Mander et al., 2014).

It is interesting to note that there is a strong resemblance 
concerning source generators of NREM SWS oscillations, which 
preponderate at mPFC level, and brain areas in which Aβ mainly 
accumulate in both cognitively healthy older adults and AD 
patients (e.g., Murphy et al., 2009).

NREM SWS disruption is exacerbated early in the course of 
AD, and this decrease predicts the severity of observed memory 
impairment (Wersterberg et al., 2012; Liguori et al., 2014). Finally, 
recent studies in human and rodents demonstrate that interstitial 
Aβ levels rise and fall with the brain states of wake and NREM 
sleep, respectively: shorter NREM duration and greater NREM 
fragmentation have been reported in mice over-expressing 
Aβ proteins (Kang et al., 2009; Roh et al., 2012), while human 
subjective reports of reduced sleep duration and diminished 
sleep quality correlate with cortical Aβ burden in healthy older 
adults (Spira et al., 2013). Moreover, direct manipulations of sleep 
and Aβ production in rodent models of AD have established 
bidirectional relationships between both factors (Kang et al., 
2009; Roh et al., 2012; Xie et al., 2013).

The role of disrupted NREM sleep in contributing to the 
impairment of new hippocampal-based memory has also been 
evaluated through an interesting experimental method. Evidence 
shows that disturbing deep NREM sleep by applying acoustic 
stimulation during SWS coupled with spindle activity [when 
clicks are presented in synchrony with upcoming slow oscillation 
(SO) up states] had an impact on next-day cognitive performance 
(Ngo et al., 2013).

The experimentally induced increase in NREM SWA (in 
particular in the slow <1-Hz frequency range) seems causally 
enhancing subsequent consolidation and, thus, long-term 
memory retention in young adults (Marshall et al., 2006). In 
sleeping humans, Ngo and colleagues (2013) applied auditory 
stimulation in the phase with the ongoing slow oscillatory EEG 
activity, in order to enhance train of slow-wave oscillation 

(SO; <1 Hz) and assess next-day memory performance. Results 
show that declarative memory improved after stimulation, but 
only after in-phase stimulation with the ongoing slow oscillation 
rhythm (Ngo et al., 2013), underlying the possible role of SO in 
getting better memory performance.

These findings suggest that the effectiveness of acoustic 
stimulation in enhancing SO and improving memory 
performance could be mainly due to the timing in phase 
with slow oscillatory activity, as shown also in transcranial 
direct current stimulation: the experimental augmentation 
of SO intensity improved cognitive abilities, in terms of better 
performance in post-sleep hippocampal-dependent learning 
capacity (Antonenko et al., 2013).

To summarize, the role of SWS NREM components discussed 
above could inspire new experimental intervention approaches, 
based on non-invasive, low-cost, and effective preventive strategies.

POSSIBLE INNOVATIVE TREATMENTS

The importance of developing sleep preventive and intervention 
strategies derives from the assumption that sleep could be 
considered as a modifiable and treatable risk factor for AD.

Some behavioral practices are well known and of concern, 
at first, due to the use of sleep hygiene in AD. In general, sleep 
hygiene guidelines suggest some preventive behaviors in terms 
of i) limiting the use of psychoactive substances (e.g., caffeine, 
alcohol, or smoking); ii) avoiding light exposure from television or 
computer in the evening; iii) practicing regular physical exercise; 
and iv) keeping constant bed and wake times with adequate light 
exposure upon waking (e.g., McCurry et al., 2012).

Some evidence suggests that physical and social activities 
could improve sleep quality, and the major benefits derived from 
multimodal treatments that combine sleep hygiene education, 
light physical exercise (walking), and bright light therapy have 
been observed (McCurry et al., 2005).

Concerning pharmacological treatment of sleep deficiency in 
AD, three drugs have been tested as alternatives to traditional 
hypnotics: melatonin, trazodone, and ramelteon (Mccleery et al., 
2014), but the reported efficacy only concerned mild, moderate, 
and severe AD patients, without being proved in preclinical 
stages of AD.

In general, the effectiveness of melatonin is the most 
investigated. A recent review (Xu et al., 2015) evaluated the 
effectiveness of melatonin assumption for sleep disturbance and 
cognitive function in dementia patients observed in seven studies 
(n = 520). Results showed that the use of melatonin protracted 
total sleep time (TST) and, marginally, sleep efficiency, but 
cognitive function did not change significantly.

Going beyond the already known non-pharmacological 
strategies, in the light of the new findings on the role of SWS 
related to AD, it is possible to propose a possible intervention 
based on NREM SWS. In particular, Mander and colleagues (2016) 
suggest that NREM sleep enhancement in midlife to late life may 
lead to a preventive positive effect that could decrease AD risk, 
probably improving Aβ clearance or combating oxidative stress. 
Consequently, sleep restoration could also improve memory 
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consolidation. Those authors suggest several promising tools 
for achieving NREM SWS enhancement benefit, with particular 
reference to <1-Hz NREM SWA. Currently, the experimental results 
associated with <1-Hz NREM SWA are contrasting: transcranial 
Direct Current Stimulation (tDCS) in the <1-Hz range seems to 
be effective in memory consolidation in young and older adults, in 
patients with schizophrenia, in individuals with attention-deficit 
hyperactivity disorders, and in patients with lobe epilepsy (Prehn-
Kristensen et al., 2014; Del Felice et al., 2015). The results of other 
contributions show no benefits in memory consolidation in young 
and older adults (Eggert et al., 2013; Sahlem et al., 2015).

Enhancement of <1-Hz NREM SWA was also tested through 
auditory closed-loop stimulation during NREM SWS with 
promising positive outcomes on hippocampus-dependent 
memory consolidation (Ngo et al., 2013; Papalambros et al., 
2017). Closed loop in phase auditory stimulation at low intensity 
might be considered a novel implement to improve restorative 
aspects of sleep rhythms, also in case of sleep disturbance 
(Riemann et al., 2011).

It is not possible to assume the real effectiveness of these 
methods, because, in our knowledge, there is no evidence of 
long-term benefits of this <1-Hz NREM SWA enhancement.  

CONCLUDING REMARKS

This review recapitulates recent contributions on the relationship 
between sleep and Aβ. Evidence from the last decade, deriving 
from sleep disturbances and sleep deprivation in relation with 
Aβ, raises important conceptual and methodological issues in 
the field of AD research. The concept of AD as a multifactorial 

disease is growing up, and, consequently, the need for exploring 
different contributing factors in the pathogenesis and progression 
of the disease becomes fundamental in future perspectives.

The current findings on the relationship between sleep and Aβ 
have been providing important contributions i) to increase the 
understanding of the mechanisms underlined this relationship; 
ii) to understand the role of the different sleep stages in the 
pathogenesis and progression of AD; and iii) to target innovative, 
non-invasive intervention strategies based on sleep restoration.

Reviewing recent literature, the major contributions derive 
from studies that combine more measurements and foresee 
longitudinal experimental designs, extending their focus on 
many contributing factors, overlapping the mere amyloid 
cascade hypothesis. Currently, these studies are few, and further 
investigations are needed to confirm and extend the new 
promising finding in the field of sleep and AD.
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Alzheimer’s disease (AD) is the most widespread form of dementia, affecting about 
45 million people worldwide. Although the β-amyloid peptide (Aβ) remains the most 
acknowledged culprit of AD, the multiple failures of Aβ-centric therapies call for alternative 
therapeutic approaches. Conceivably, the complexity of the AD neuropathological 
scenario cannot be solved with single-target therapies, so multiple-target approaches 
are needed. Core targets of AD to date are soluble oligomeric Aβ species and 
neuroinflammation, in an intimate detrimental dialogue. Aβ oligomers, the most 
neurotoxic species, appear to induce synaptic and cognitive dysfunction through the 
activation of glial cells. Anti-inflammatory drugs can prevent the action of Aβ oligomers. 
Neuroinflammation is a chronic event whose perpetuation leads to the continuous 
release of pro-inflammatory cytokines, promoting neuronal cell death and gross brain 
atrophy. Among the possible multi-target therapeutic alternatives, this review highlights 
the antibiotic tetracyclines, which besides antimicrobial activity also have pleiotropic 
action against amyloidosis, neuroinflammation, and oxidative stress. A particular focus 
will be on doxycycline (Doxy), a second-generation tetracycline that crosses the blood–
brain barrier more easily and has a safer clinical profile. Doxy emerged as a promising 
preventive strategy in prion diseases and gave compelling pre-clinical results in mouse 
models of AD against Aβ oligomers and neuroinflammation. This strongly supports its 
therapeutic potential and calls for deciphering its exact mechanisms of action so as to 
maximize its effects in the clinic.

Keywords: Alzheimer’s disease, beta-amyloid oligomers, neuroinflammation, tetracycline, memory

INTRODUCTION

Alzheimer’s disease (AD) is a subtle and so far incurable neurodegenerative disease that makes 
patients completely unable to run their daily life activities, remember their past and relatives 
(Selkoe, 2011). It affects about 45 million people worldwide with an enormous socio-economic 
burden, likely to increase further because of longer life expectancy, and aging as a major risk factor 
(Garre-Olmo, 2018).

The brains of AD patients present two main lesions: extracellular senile plaques and intracellular 
neurofibrillary tangles. Senile plaques, rich in aggregates of the β-amyloid peptide (Aβ), act both 
as a reservoir of the most neurotoxic Aβ soluble species, namely Aβ oligomers (AβOs), and a 
determinant of neuritic dystrophy and neuronal network interruption (Mucke and Selkoe, 2012). 
Neurofibrillary tangles are rich in hyperphosphorylated tau protein, which dissociates from 
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microtubules, causing their destabilization. Mitochondria are 
also compromised (Desler et al., 2018). Neuroinflammation is a 
chronic neurotoxic event (Heneka et al., 2015), and the vascular 
system is damaged due to the accumulation of Aβ on the vessel 
wall (Daulatzai, 2017). On the functional level, synaptic activity 
is severely impaired and responsible for the onset of cognitive 
deficits (Mucke and Selkoe, 2012). Progressive neuronal loss 
culminates in gross brain atrophy (Pini et al., 2016).

The drama of AD lies in the fact that when cognitive deficits 
arise bringing patients to clinical attention, their brain is already 
severely compromised and the pathology has progressed for 
about 10–15 years. This makes the identification of an efficacious 
therapy a very hard challenge and suggests that the complexity 
of AD means we must abandon single-target therapies and move 
on to multi-level approaches. All the single-target “Aβ-centric” 
clinical trials so far have failed to produce significant benefits 
(Panza et al., 2019).

The present review will focus on two vital therapeutic AD 
targets, AβOs and neuroinflammation, that have recently attracted 
much attention among scientists fighting AD. We highlight the 
possibility of counteracting AβOs’ detrimental activities and 
neuroinflammation with doxycycline (Doxy), a second generation-
tetracycline antibiotic, which has anti-AβOs, anti-inflammatory 
activities (Balducci et al., 2018), a good blood–brain barrier (BBB) 
penetration, and a safe pharmacological profile.

Aβ OLIGOMERS: THE MOST DANGEROUS 
SYNAPTIC ENEMY

The amyloid cascade hypothesis was first put forward by Hardy 
and Higgins in 1992, stating that: “Deposition of the Aβ peptide, 
the main component of senile plaques, is the primary event in 
the pathogenesis of AD” (Hardy and Higgins, 1992). About 
10 years later this theory underwent a significant revision, with 
Aβ plaques overtaken by smaller and soluble AβOs (Hardy and 
Selkoe, 2002).

AβOs are the first species originating from the amyloidogenic 
process, by which the Aβ peptide, with its remarked hydrophobicity 
and overload in AD brains, aggregates, leading to the formation of 
different-sized polymers including soluble oligomers, protofibrils, 
and insoluble fibrils.

AβOs are the small, soluble aggregates and the most potent toxic 
conformers of AD (Haass and Selkoe, 2007), as well as the best 
correlate of disease severity compared to plaques (Kuo et al., 1996; 
Lue et al., 1999; McLean et al., 1999). The number of Aβ plaques 
detectable many years before the onset of clinical symptoms (Perrin 
et al., 2009) does not correlate with the severity of the cognitive loss 
in patients (Lue et al., 1999; Naslund et al., 2000) and Aβ deposits 
are also found in cognitively healthy subjects.

Many experimental data have supported the important role of 
AβOs in synaptic dysfunction. From transgenic mouse models 
of AD, it emerged that the onset of synaptic and cognitive 
dysfunction preceded plaque deposition (Holcomb et al., 1998; 
Hsia et al., 1999; Mucke et al., 2000; Balducci et al., 2010b). 
Ultrastructural examination of AD mouse brains revealed the 
presence of AβOs in the synaptic compartment before plaque 

deposition (Balducci et al., 2010b). In vitro and in vivo data also 
indicated that the application of well-characterized synthetic 
AβO-enriched solutions, as well as oligomeric species extracted 
from patient brains or derived from AD mutated cell lines, 
abolished the formation of new dendritic spines, inhibiting 
synaptic plasticity and remodeling, thus impairing learning 
and memory when delivered in the brain of naive mice or rats 
(Cleary et al., 2005; Lesne et al., 2006; Poling et al., 2008; Shankar 
et al., 2008; Balducci et al., 2010a; Freir et al., 2011).

Also in humans, biochemical and morphological analyses 
indicate that AD represents, at least at the more initial stages of 
the pathology, an attack at the synapses. Indeed, the degree of 
cognitive decline has been correlated with a decrease of the pre-
synaptic marker synaptophysin in the hippocampal area and 
associated cortices. Notably, a 25% reduction in the expression 
of synaptophysin was described in the cortex of MCI or very 
mild AD subjects compared to aged-matched healthy controls 
(Selkoe, 2002).

In a virtual scenario, AβOs must be visualized as undisturbed 
dynamic entities, either newly formed or traveling in and out of 
plaques, perturbing the CNS at many functional levels (Benilova 
et al., 2012; Forloni et al., 2016).

For many years, synapses have been considered the main AβO 
target. Initial work supported this, by describing the ability of 
AβOs to interfere with post-synaptic receptors such as N-methyl 
D-aspartate receptors (NMDARs) (Balducci et al., 2010b; Yamin, 
2009), affecting calcium current, and α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptors (AMPARs), with 
the ultimate outcome of inhibition of synaptic plasticity and 
the induction of memory impairment through the prevention/
abolition of new dendritic spine formation where new memories 
are stored (Chidambaram et al., 2019). Action in the pre-synaptic 
compartment was also described, through an interaction with 
the nicotinic acetylcholine receptors α7-nAcChR (Dineley et al., 
2001; Puzzo et al., 2008). The cellular prion protein (PrPC) has 
been suggested to mediate AβO effects, although this remains 
controversial since we and others have confirmed direct binding 
between PrPC and AβOs, but not a functional contribution 
(Forloni and Balducci, 2011). Activation of the apoptotic 
machinery was also described as an AβO-mediated mechanism 
for synaptic loss (Jo et al., 2011).

However, compelling new theories have emerged in more 
recent years, bringing to light an intimate mutual interaction 
between AβOs and glial cells, responsible for synaptic perturbation 
and loss.

NEUROINFLAMMATION: THE OTHER 
SPECIAL CULPRIT TO WATCH OUT FOR

Neuroinflammation has re-emerged as a driving force 
of neurodegeneration (McManus and Heneka, 2017). 
Microglia are important in brain tissue homeostasis, secreting 
neurotrophic factors, and patrolling the microenvironment 
through the release of cytokines and chemokines that influence 
astrocytes and neurons, particularly after infection or cell 
injury. This triggers inflammatory events normally calling a 
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transient immune response followed by tissue repair. Under 
pathological conditions, resolution (Serhan et al., 2007; Serhan, 
2010) can fail, promoting chronic neuroinflammation and 
neurodegeneration.

Microglia are found in a chronic activated state in AD around 
senile plaques, and through the continuous release of pro-
inflammatory cytokines they drive neuropathology from the very 
early disease stages (Heneka et al., 2015). Neuroinflammation in 
the AD brain is chronic presumably because it is never resolved, 
as indicated by studies showing low levels of specialized pro-
resolving mediators (Wang et al., 2015).

A relation between the detrimental action of AβOs and 
microglial cells is illustrated by the fact that microglia are also 
crucial in the control of synapse modelling and activity, and 
consequently of cognitive functions. Resting-state microglia 
survey neuronal activity by establishing intimate contacts 
with neurons. They are highly dynamic and plastic cells which 
continuously extend and retract their processes and contact 
synapses in an activity- and experience-dependent manner 
(Morris et al., 2013). However, under pathological conditions, 
when microglial cell activation is chronic as in AD, synaptic 
surveillance is lost and cognitive functions are perturbed.

Substantial data have corroborated the existence of a 
“dangerous liaison” between AβOs and microglial cells, by which 
they mutually sustain their detrimental effects on synapses. A 
series of studies comparing the effect of AβOs with that of Aβ 
fibrils demonstrated that AβOs foster microglial activation to 
a greater extent and apparently in a conformation-dependent 
manner (Heurtaux et al., 2010), with the lightest oligomeric 
species more likely to induce neuroinflammation. Michelucci 
et al. (2009) reported that AβOs are stronger inducers of the M1 
microglial pro-inflammatory phenotype than fibrils. Then, He 
et al. (2012) described a more pronounced pro-inflammatory 
action of AβOs after chronic delivery inside the hippocampus 
of C57BL/6 mice, closely correlated with more severe cognitive 
deficit, altered neuronal organization, and ultrastructural 
changes. They also showed that AβOs increased the expression of 
toll-like receptor-4 (TLR4) and TNFα.

TLR4 belong to a well-known family of pattern recognition 
receptors initiating the innate immune response and are critically 
involved in AD (Drouin-Ouellet and Cicchetti, 2012). Using an 
AβO-induced acute mouse model, we also demonstrated that a 
single intracerebroventricular injection (ICV) of AβOs in C57BL/6 
naive mice induced a transient memory impairment in the novel 
object recognition test (Balducci et al., 2010a), associated with 
transient activation of glial cells and an increase in the expression 
of pro-inflammatory cytokines in the hippocampus within a 
2–24 h time window (Balducci et al., 2017), a crucial interval in 
the elaboration, and consolidation of long-term memory (Sutton 
and Schuman, 2006). Pre-treatment with anti-inflammatory drugs 
abolished the AβO-mediated memory impairment. While seeking 
further insight on the molecular mechanisms linking AβOs 
and microglial activation toward memory impairment, we also 
confirmed that TLR4 are vital, since neither memory impairment 
nor glial activation was observed in TLR4 null mice receiving 
AβOs ICV (Balducci et al., 2017).

Beside synaptic dysfunction and cognitive deficits, microglia 
activation also comes on stage to explain synapse loss. In a very 
elegant paper, Hong et al. (2016) demonstrated that microglia 
mediates abnormal synapse engulfment through C1q and 
C3 complement factors. C1q is the initiating protein of the 
classical complement pathway and, together with C3, localizes 
on synapses to mediate synaptic pruning through microglial 
phagocytosis (Presumey et al., 2017). In pathological conditions, 
such as AD, their expression is increased and localized on post-
synaptic proteins, exacerbating synapse loss. The fact that this 
phenomenon was detectable at very early pre-plaque ages in 
AD-mutated mice suggested that most likely soluble Aβ species 
were involved. This was confirmed by specifically injecting AβOs 
ICV in wild-type mice and demonstrating an increase in C1q 
synaptic deposition, as well as the C1q-mediated C3 opsonization 
marking synapses for their elimination (Hong et al., 2016).

TETRACYCLINES IN THE THERAPY 
OF AD: NOT ONLY ANTIBIOTICS

One of the most difficult challenges in AD is identifying an 
efficacious therapy to delay the onset, halt its progression, and 
prevent or reverse cognitive dysfunction. To date most attempts 
have focused on the Aβ peptide, with scarce or no beneficial effects 
(Panza et al., 2019). There might be several reasons to explain 
these multiple failures: wrong treatment timing, inappropriate 
treatment regimen, and poor or inadequate selection of patients. 
Although they are all valid possibilities, one of the main problems 
limiting therapeutic success may lie in the multi-factorial nature 
of AD, probably requiring multi-target therapies.

We therefore propose the antibiotic tetracyclines as a 
promising multi-target therapeutic approach, with a special 
focus on Doxy, a second-generation tetracycline with a safer 
pharmacological profile and a better passage across the BBB.

Interest in the tetracyclines in AD raised around the early 2000s 
when it was found, using cell-free approaches, that tetracyclines 
could inhibit the aggregation of both the synthetic PrP residues 
106–126 and 82–146 of human PrP and the Aβ peptide. Facilitation 
of PrP and Aβ disaggregation as well as the sensitivity of their 
aggregates to proteases were also described (Tagliavini et al., 2000; 
Forloni et al., 2001). These anti-amyloidogenic effects were later 
confirmed for a series of other misfolding proteins responsible 
for neurodegenerative disorders, including Huntington’s and 
Parkinson’s disease (reviewed in Stoilova et al., 2013).

Neuroprotective activities of tetracyclines were first 
demonstrated against PrP in vitro, and in vivo again using the 
synthetic PrP residues 82–146 and 106–126 and through infection 
with the pathological form of the PrP, namely PrP scrapie (PrPsc). 
In vitro, tetracycline prevented the PrP 106–126-mediated 
neurotoxicity and astroglial proliferation (Tagliavini et al., 
2000); in vivo pretreatment with either tetracycline or Doxy in 
experimental scrapie reduced infectivity, delayed the onset of 
pathology, and increased survival when intracerebrally injected in 
Syrian hamsters (De Luigi et al., 2008). Incubation of 263K PrPsc-
infected brain homogenate with 1 mM tetracycline or doxycycline 

95

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Doxycycline in the Therapy of Alzheimer’s DiseaseBalducci and Forloni

4 July 2019 | Volume 10 | Article 738Frontiers in Pharmacology | www.frontiersin.org

resulted in more than 80% reduction in the PK-resistant core of 
PrPsc. It was also reported that these compounds can interact 
with partially purified PrPsc from patients with the new variant of 
Creutzfeldt–Jakob disease (CJD) (Forloni et al., 2002).

At the clinical level, Doxy gave positive results in the initial 
observational studies in CJD patients, which, however, were not 
confirmed in a double blind against placebo trial in subjects with 
a diagnosis of definitive or probable sporadic CJD or genetic 
forms of the disease (Haik et al., 2014). Later it was reported that 
an asymptomatic CJD patient given Doxy for 4 years survived 
longer (Assar et al., 2015; Pocchiari and Ladogana, 2015), and 
Varges and coworkers (2017) showed a longer survival in early-
stage CJD patients, suggesting a preventive action of the drug.

In AD, Doxy has been tested in two clinical trials in mild to 
moderate patients, yielding both positive and negative results 
(Loeb et al., 2004; Molloy et al., 2013). In the first study there was 
less decline in cognitive abilities and functional behavior, whereas 
no benefits were obtained in the second one. The two trials were 
comparable in terms of patients’ stage of disease at enrolment. 
Doxy was given orally at the dose of 200 mg/day together with 
rifampin 300 mg/day in the first study. The same doses were used 
in the second trial, with the sole difference that Doxy was given 
at the dose of 100 mg twice a day, rather than one. The main 
difference lies in the fact that in the former, patients were treated 
for 3 months, whereas in the latter one, treatment continued for 
12 months. As stated by the authors, one possible explanation 
for the failure in the later study is that Doxy might have some 
negative properties that become evident when treatment is 
longer than 3 months. Unfortunately, the therapeutic effects were 
investigated only at the behavioral and functional levels, with no 
assessment of Aβ and tau levels in plasma and/or CSF, or of the 
inflammatory state.

Despite these controversies at the clinical level, preclinical 
studies indicated the therapeutic potential of Doxy. Initial 
investigation was done in two simple in vivo models. Diomede 
et al. (2010) tested Doxy in Caenorhabditis elegans (C. elegans), 
a simplified invertebrate model of AD where intracellular Aβ 
deposits caused C. elegans paralysis. Doxy protected against 
this damage by directly interacting with the Aβ aggregates and 
reducing the load of AβOs. Subsequently, Costa and colleagues 
(2011) demonstrated that Doxy treatment of Aβ42-expressing 
Drosophilae melanogaster did not improve their lifespan but 
slowed the progression of their locomotor deficits and partially 
rescued the toxicity of Aβ in the developing eye.

We recently found that Doxy had beneficial effects in acute 
and chronic mouse models of AD (Balducci et al., 2018). Chronic 
treatment with 10 mg/kg Doxy for 20 days or 2 months, injected 
intraperitoneally in APP/PS1dE9 transgenic mice, significantly 
restored memory independently of plaque reduction, but lowered 
the expression of the 18-mer oligomeric species. Interestingly, 
an acute treatment also led to memory recovery. On the basis 
of this evidence, and the lack of changes in plaque number, we 
assumed that Doxy was restoring memory by interfering with the 
oligomeric species. This was confirmed in the AβO-induced acute 
mouse model described above (Balducci et al., 2010a; Balducci 
and Forloni, 2014), which demonstrated that C57BL/6 naive mice 
treated ICV specifically with AβOs and pre-treated with Doxy 

were no longer impaired in their recognition memory. Moreover, 
because of the close relation between microglial activation and 
AβO detrimental cognitive effects (He et al., 2012; Balducci 
et al., 2017), we further show that the memory protection was 
associated with abolition of AβO-mediated microglial activation. 
The anti-inflammatory effect of Doxy together with memory 
recovery was also proved in the APP/PS1dE9 mice chronically 
treated with Doxy, and in LPS-treated mice, which present an 
AβO-independent inflammatory context (Balducci et al., 2018). 
The anti-inflammatory effect of Doxy has been demonstrated in 
a series of other pathological contexts (reviewed in Stoilova et al., 
2013). Figure 1 depicts all Doxy effects described above in our 
AD mouse models.

Although we did not find direct AβO-Doxy binding, we 
assume that—as described for AβOs and tetracycline—an atypical 
supramolecular interaction might occur, which will result in the 
formation of colloid structures sequestering and abolishing AβO 
toxicity in vitro (Airoldi et al., 2011). Accordingly, Costa et al. 
(2011), using transmission electron microscopy, dynamic light 
scattering, and thioflavin T binding, demonstrated that Doxy 
leads to the formation of smaller, non-amyloid and non-toxic Aβ 
aggregates. Figure 2 summarizes the expected Doxy-mediated 
changes in the brain of AD patients.

FIGURE 1 | Doxy-mediated effects in AD mouse models. AβOs are the 
most powerful toxic species in AD brain, which are responsible for the 
memory impairment. Such detrimental effect is associated with microglial cell 
activation, a chronic event in AD responsible for both cognitive dysfunction, 
synaptic loss, and neurodegeneration. Doxy apparently interferes with either 
the action of AβOs by directly neutralizing their effects at both neuronal and 
glial level, and/or exerting a direct anti-inflammatory effect. All these actions 
culminate in a positive outcome at the cognitive level by restoring memory to 
normal.
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Beside their anti-amyloidogenic and anti-inflammatory effects, 
tetracyclines also have anti-oxidative and anti-apoptotic activities 
(Stoilova et al., 2013; Santa-Cecília et al., 2019). Oxidative stress 
and apoptosis are typical features of AD, whose resolution in the 
intricate pathological scenario will help to better restore brain 
physiology.

This evidence and the favorable pharmacological features of Doxy 
in a translational prospect suggest that this drug holds a considerable 
therapeutic potential for AD and other neurodegenerative diseases. 
A recently published comprehensive review describes well the 
protective effect of Doxy also in Parkinson’s disease and multiple 
sclerosis (Santa-Cecília et al., 2019).

Despite the beneficial effects of Doxy, clinical trials tell us 
that not all treatment protocols are effective, or stages of disease 
adequate for patient enrollment. Patients with too advanced 

disease are apparently unlikely to respond (Assar et al., 2015; 
Pocchiari and Ladogana, 2015). This does not necessarily 
imply that the drug is ineffective, just that it must be used more 
appropriately. Because of this, Doxy deserves one more chance 
in AD therapy, more likely with application at a prodromal 
stage, and a “precision medicine” approach. The latter is strongly 
recommended, since it will enable us to define the clinical 
profile (i.e., inflammatory profile) of responders compared to 
non-responders.
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FIGURE 2 | The multiple beneficial actions of Doxy in AD brains. In (A), an AD brain before treatment with Doxy. Different-sized Aβ plaques are widely deposited 
with activated microglial cells surrounding them. AβOs are freely circulating entities closer to or far from plaques, which, in concert with neuroinflammation, lead to 
memory impairment. (B) A Doxy-treated AD brain, where the beneficial effects of the drug are summarized. Plaque load can be reduced by long treatment. AβOs 
interact with Doxy, probably producing non-amyloidogenic and non-toxic structures; microglial cells move closer to a resting state. Both reduction in AβO load and 
microglial activation may be responsible for the Doxy-mediated memory recovery.
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Long-term potentiation (LTP) and long-term depression (LTD) of hippocampal synaptic 
transmission represent the principal experimental models underlying learning and 
memory. Alterations of synaptic plasticity are observed in several neurodegenerative 
disorders, including Alzheimer’s disease (AD). Indeed, synaptic dysfunction is an early 
event in AD, making it an attractive therapeutic target for pharmaceutical intervention. 
To date, intensive investigations have characterized hippocampal synaptic transmission, 
LTP, and LTD in in vitro and in murine models of AD. In this review, we describe the 
synaptic alterations across the main AD models generated so far. We then examine the 
clinical perspective of LTP/LTD studies and discuss the limitations of non-clinical models 
and how to improve their predictive validity in the drug discovery process.

Keywords: long-term potentiation, long-term depression, synaptic plasticity, Alzheimer’s disease, predictive 
validity

INTRODUCTION

Long-term synaptic plasticity is considered the neural basis of learning and memory process (Bliss 
and Collingridge, 1993). Long-term potentiation (LTP) and long-term depression (LTD) are the 
major forms of durable synaptic strength changes in central nervous system abundantly studied in 
the hippocampal region (Malenka and Bear, 2004). The magnitude of LTP and LTD is largely used in 
many different experimental conditions and animal models as an indicator of cognitive function; on 
the other hand, dysregulation of synaptic plasticity underlies a large number of neurodegenerative 
disorders such as Alzheimer’s disease (AD) (Selkoe, 2002).

AD is a multifaceted neurodegenerative disorder typified by a progressive and irreversible 
memory deficits and cognitive decline. To date, AD can only be diagnosed post-mortem, through 
two characteristic neuropathological lesions in the brain: senile plaques, consisting of β-amyloid 
protein oligomers aggregates (Aβo, residues 1–40/42), and intracellular neurofibrillary tangles 
(NFT), constituted of abnormally hyperphosphorylated tau protein accumulation predominantly 

Abbreviations: Aβ, amyloid β protein; Aβo, β-amyloid protein oligomers aggregates; AD, Alzheimer’s disease; AMPAR, L-α-
amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor; APP, amyloid precursor protein; BST, basal synaptic transmission; 
E-LTP, early-LTP; FAD, familiar Alzheimer’s disease; LFS, low frequency stimulation; LTD, long-term depression; LTP, 
long-term potentiation; L-LTP, late- LTP; mGlu, metabotropic glutamate receptor; NFT; neurofibrillary tangles; PPF, paired 
pulse facilitation; Tg, transgenic; WT PS1, wild-type human PS1; NA, not assessed; rTMS, repetitive transcranial magnetic 
stimulation; sAD, sporadic Alzheimer’s disease; tDCS, transcranial direct current stimulation.
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in hippocampal and cortical regions. The “amyloid cascade 
hypothesis” is so far the prominent theory to describe the time-
course of AD neurodegeneration (Hardy and Higgins, 1992). 
Impaired synaptic function of the hippocampus is an early event 
leading to defective hippocampal-dependent memory appearing 
long before the buildup of amyloid plaques and neuronal cell 
death (Selkoe, 2002; Tanzi, 2005). Therefore, synaptic plasticity is 
often used to evaluate part of the phenotype. Accordingly, many 
electrophysiological studies on the different models have been 
performed to delineate such changes.

Early impairments in synaptic transmission were highlighted 
in different mouse models of AD and are caused, among other 
factors, by Aβ which leads to impairment of LTP via tau protein 
(Shipton et al., 2011). Notably, many studies investigated the 
correlation between age and synaptic dysfunction in order to 
describe the onset and development of pathology in a specific 
mouse model. Discrepancy in the results obtained by the 
different researchers across the various models of AD may reflect 
the type of mutation studied, in addition to several other sources 
of variations such as experimental design, age, or strain.

LTP AND LTD IN NORMAL CONDITIONS

Several studies indicate that the hippocampus plays a crucial 
role in higher cognitive functions and in information-storage 
(reviewed by Neves et al., 2008). LTP was first studied in 
the hippocampus and has been widely characterized using 
biochemical, electrophysiological, and molecular techniques 
(reviewed by Bliss et al., 2007). LTP is characterized by a short-
term phase (early- or E-LTP) and a subsequent long-term phase of 
potentiation (late- or L-LTP) (Reymann et al., 1989). Importantly, 
distinct forms of N-methyl-D-aspartate (NMDA) receptor 
LTP coexist at synapses (Park et al., 2014) and these can also be 
distinguished based on their responsiveness to protein kinase A 
(PKA) inhibitors (Park et al., 2016). E-LTP and L-LTP can be 
induced in hippocampal slices by different induction protocols 
and are sustained by distinct cellular and molecular pathways. 
E-LTP (<1 h) is characterized by the recruitment of postsynaptic 
2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propionic acid 
(AMPA) receptors, either from neighboring extra synaptic 
receptors or from intracellular reserve pool by exocytosis (Penn 
et al., 2017). On the other hand, L-LTP (>3 h) involves de novo 
protein synthesis promoting structural and functional changes 
(Frey et al., 1988). Among the key players facilitating the transition 
from E-LTP to L-LTP, brain-derived neurotrophic factor (BDNF) 
(Panja and Bramham, 2014) and transforming growth factor β1 
(TGF-β1) (Caraci et al., 2015; Caraci et al., 2018) are noteworthy.

The classical form of LTD can be experimentally elicited using 
specific electrical low-frequency stimulation (LFS) protocols 
in slices (Dudek and Friedlander, 1996). Most of the LTD 
forms studied imply activation of NMDA receptors (Dudek 
and Friedlander, 1996) and/or metabotropic glutamate (mGlu) 
receptors (Fitzjohn et al., 1999). Other chemical forms of LTD are 
obtained either by exogenous application of NMDA or muscarinic 
receptor agonists (reviewed by Collingridge et al., 2010), as well as 
through activation of microglia (Zhang et al., 2014).

LTP AND LTD IN EXPERIMENTAL AD

In Vitro Models
The peptide amyloid beta is released endogenously during 
physiologic neuronal activity and causes enhancement of 
synaptic plasticity and memory formation when administered at 
picomolar concentrations that likely resemble the physiological 
level in the brain (Puzzo et al., 2008; Morley et al., 2010; Puzzo 
et al., 2011; Lawrence et al., 2014). Conversely, a prolonged 
exposure to the same amount is able to impair synaptic plasticity 
by glutamate-induced excitotoxicity (Koppensteiner et al., 2016). 
Specifically, it has been demonstrated that NR2B-containing 
NMDA receptors and mGlu5 receptors mediate the synaptotoxic 
effects of Aβo (Rammes et al., 2017).

The effects of acute application of exogenous Aβ oligomers 
(Aβo) obtained from synthetic, secreted from AD transgenic cells, 
or extracted from AD patients’ brain, on synaptic transmission, 
have been widely studied in ex vivo hippocampal slices. All studies 
suggest that treatment of hippocampal slices with Aβo 200–500 
nM induces alteration in LTP and LTD, generally manifested as 
loss of LTP and enhancement of LTD (Lambert et al., 1998; Wang 
et al., 2002; Shankar et al., 2008; Li et al., 2009; Jo et al., 2011; 
Cavallucci et al., 2013; Mango et al., 2016). Additionally, another 
study has shown that over-expression of Aβ in organotypic slices 
reduces the number of surface L-α-amino-3-hydroxy-5-methyl-
4-isoxazole propionate receptor (AMPAR) similar to what occurs 
in mGlu receptor-dependent LTD (Kamenetz et al., 2003). 
Recently, we have demostrated that hippocampal mouse slices 
treated with Aβo display an enhancement of mGlu receptor-
dependent LTD (Mango and Nisticò, 2018).

AD Mouse Models
Animal models of AD should fully model human features of 
disease including gradual cognitive decline, synaptic dysregulation 
and spine loss, plaque load and NFT accumulation, inflammation, 
neurodegeneration, and atrophy of the central nervous sistem (CNS).

The breakthrough of amyloid precursor protein (APP) and PS 
human mutations has led to the generation of transgenic (Tg) 
animal models which strictly replicate the cardinal features of 
AD. AD models are largely used to explore in a spatiotemporal 
manner the pathogenic mechanisms of AD and the benefit of 
therapeutic approaches.

Several lines of transgenic models of AD have been generated 
so far; each recapitulates specific aspects of the disease. They 
exemplify more integrated approaches to examine the complex 
effects of Aβo on brain integrity and network function. Several 
mouse models have been so far analyzed for hippocampal 
synaptic function by means of electrophysiological techniques 
(see Table 1). To simplify, we divide them in APP-derived, PS1-
derived, APP/PS1, 3xTg, and 5xTg models. Most of these models 
are constructed on the overexpression of familial AD (FAD)-
linked mutated genes into the mouse genome, and magnitude of 
LTP and LTD has been used to study synaptic plasticity alterations. 
Several exhaustive reviews on this topic have been published in the 
literature (Morrissette et al., 2009; Ashe and Zahs, 2010; Elder et al., 
2010; Marchetti and Marie, 2011; Spires-Jones and Knafo, 2012;  
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Peineau et al., 2018 or visit the Alzheimer forum at http://www.
alzforum.org/res/com/tra/default.asp).

APP-Derived Models
These mice models over-express the human APP, which is 
mutated in one or more sites. The single mutations introduced 
in the APP gene represent mutations associated with FAD, which 
are termed the Swedish (swe, K670N & M671L, Mullan et al., 
1992), the Indiana (ind, V717F, Murrell et al., 1991; Hsia et al., 
1999), the London (Ld, V171I, Goate et al., 1991), and the Arctic 
(E693G, Nilsberth et al., 2001) mutations. Other mouse models 
show a double mutation, such as the Swe mutation together 
with either the Indiana or Arctic mutation. These models 
manifest progressive Aβ accumulation and plaques similar to 
those found in humans. Aβ plaques observed in AD Tg mice 
brain appear structurally comparable to those discovered in the 
human brain; they start as diffuse plaques consisting mainly of 
Aβ 42 with a dense Aβ 42 core that contains Aβ 40 with many 

other non-Aβ components, among which are ubiquitin and 
synuclein (Yang et al., 2000). Moreover, these mice models show 
hyperphosphorylated tau and hippocampal-dependent memory 
deficits similar to human AD pathology, but do not show NFTs, 
cholinergic deficits, or neuronal death (Morrissette et al., 2009).

APP23 mice (Sturchler-Pierrat et al., 1997) display normal 
LTP in the hippocampus and prefrontal cortex at all ages tested 
(Roder et al., 2003). Tg2576 and the hAPPJ20 mouse models 
present an age-dependent reduction in LTP in the CA1 area 
(Nalbantoglu et al., 1997; Chapman et al., 1999; Fitzjohn et al., 
2001; Balducci et al., 2011; D’Amelio et al., 2011) and in the 
dentate gyrus (Palop et al., 2007).

LTD has not been largely explored in APP-derived mouse 
models; only few studies have reported LTD measurement 
(D’Amelio et al., 2011; Cavallucci et al., 2013; Lanté et al., 2015). 
Both groups performed field recordings in hippocampal slices 
from Tg2576 mice and have shown enhanced NMDA receptor-
dependent LTD starting already from 3 to 4 months of age.

TABLE 1 | The table summarizes relevant data relative to experimental Alzheimer’s disease (AD) models for which hippocampal electrophysiological analyses were 
performed.

Categories Models Species Electrophysiological alteration References

BST PPF LTP LTD

In vitro models Soluble Aβ oligomers treatment of 
hippocampal slices

Rat – – ↓ CA1 – Lambert et al. (1998)
Rat NC   ↓ DG NC Wang et al. (2002)

Mouse NC NC ↓ CA1 ↑ CA1 Shankar et al. (2008)
APP over-expression in 
organotypic slices

Rat ↓ NC ↓ CA1 – Kamenetz et al. (2003)

Transgenic 
animal models

APP-derived 
models

APP (K670N/M671L) (APP23) Mouse  ↓ NC NC – Roder et al. (2003)

APP (K670N/M671L) (Tg2576) Mouse NC NC ↓ CA1 – Chapman et al. (1999)
↓ DG  

Mouse NC NC NC ↑ CA1 D’Amelio et al. (2011)
APP (V717F) (APPind) Mouse  ↓ NC NC – Hsia et al. (1999) 
APP (K670N/M671L)/APP 
(V717F)(J20)

Mouse NC NC ↓ CA1 NC Nalbantoglu et al. (1997)
Mouse NC ↓ ↓ DG – Palop et al. (2007)

APP (K670N/M671L)/PS1 
(P264L) (Tg2576/PS1)

Mouse NC NC ↓ CA1 ↑ CA1 Lanté et al. (2015)

PS1-derived 
models

PS1 (M146L) Mouse – – ↑ CA1 – Barrow et al. (2000)

PS1 (WT)/PS1 (A246E) Mouse NC NC ↑ CA1 – Parent et al. (1999)
PS1(A246E) Mouse – NC NC-CA1 – Schneider et al. (2001)
PS1 (L286V) Mouse NC NC ↓ CA1 – Auffret et al. (2009)

APP/PS 
models

APP (K670N/M671L)/PS1 
(M146L)

Mouse ↓ NC ↓ CA1   Trinchese et al. (2004)

APP (KM670/671NL)/PS1 
(L166P)

Mouse NC – ↓ CA1   Calella et al. (2010)

APP (K670N/M671L)/PS1 
(P264L)(Tg2576/PS1)

Mouse NC NC ↓ CA1 ↑ CA1 Chang et al., (2006)

APP (K670N/M671L)/PS1 
(M146V)

Mouse NC – ↓ CA1 ↓ CA1 Song et al. (2014)

APP (K670N/M671L)/PS2 (N141I) Mouse NC NC ↓ CA1 – Richards et al.(2003)
↑ ↓ ↓ DG –

3xTg model APP (K670N/M671L)/MAPT 
(P301L)/PS1 (M146V)

Mouse ↓ NC ↓ CA1 – Oddo et al. (2003)

5xFAD model APP (K670N/M671L) /APP 
(I716V) /APP (V717I)/PS1 
(M146L; L286V)

Mouse ↓ NC ↓ CA1 – Kimura et al. (2009)

Models were grouped into in vitro models, APP-derived, PS1-derived, APP/PS1, 3xTg, and 5xTg models. Electrophysiological readouts include basal synaptic transmission (BST), 
paired pulse facilitation (PPF), long-term potentiation (LTP), and long-term depression (LTD). For each model, we also report the principal references to the electrophysiological studies.
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In addition, a recent study described alteration of mGlu-
dependent LTD in 4-month-old Tg2576 mice, elicited by perfusion 
of the group I mGlu agonist DHPG (Mango and Nisticò, 2018).

PS1-Derived Models
These models over-express the human presenilin gene (PS1) 
encoding an FAD mutation. Being part of the secretase complex, this 
gene is involved in the APP proteolysis. Presenilin variants do not 
produce neuropathology, but potentiate plaque deposition in APP 
transgenic mice. Electrophysiological studies have been performed 
on M146L, A246E, and L286V mutants (Parent et al., 1999; Barrow 
et al., 2000; Schneider et al., 2001; Auffret et al., 2009). A mouse 
model was also generated harboring the PS1ÆE9 FAD mutation, 
which results in a functional and non-cleavable modification of 
PS1 (Zaman et al., 2000). One knock-in mouse was engineered 
in which mouse PS1 was exchanged by its mutant M146V (Sun 
et al., 2005). These presenilin FAD mutants consistently exhibit 
an age-dependent increase of Aβ42 with minor effect on Aβ40; 
however, they do show amyloid plaques, tau pathology, cholinergic 
alterations, or neurodegeneration and present only a mild cognitive 
deficit (Games et al., 2006). Most studies report that young adult 
(up to 6 months) transgenic mice over-expressing PS1M146L, 
PS1M146V, PS1A246E, PS1ΔE9, or PS1L286V display enhanced 
CA1-LTP elicited using different conditioning protocols (Schneider 
et al., 2001; Oddo et al., 2003; Dewachter et al., 2008; Auffret et al., 
2009). So far, no study described LTD in these mouse models.

APP/PS1 Models
To accelerate the brain Aβ accumulation and plaque aggregation, 
researchers crossed APP- and PS1-derived animal models. 
Most electrophysiological studies focused on double transgenic 
models harboring the human APPswe transgene together with 
the PS transgene.

APP/PS1 double mutant mice develop rapid and extensive Aβ 
plaque accumulation, tau pathology, and cognitive defects, even 
though they lack cholinergic deficits, neuronal loss, and NFTs 
(Morrissette et al., 2009).

Most studies report a reduction of LTP in APPswe/PS1M146L 
(Gong et al., 2004; Trinchese et al., 2004, Trinchese et al., 2008), 
APPswe/PS1P246L (Chang et al., 2006), APPswe/PS1L166P 
(Calella et al., 2010), and APPswe/PS2N141I (Richards et al., 
2003) mice. Using a standard LFS protocol, Chang and coauthors 
(2006) report a linear decline in CA1-LTD expression between 9 
and 20 months of age in the APPswe/PS1P246L model. Moreover, 
loss of LTD was described in the APPswe/PS1M146V mouse 
model (Song et al., 2014). Also, a recent study has shown mGlu 
receptor-LTD impairment in the APPswe/PSEN1/ΔE9 (Yang et 
al., 2016), whereas no alteration in the basal transmission was 
found in this model (Volianskis et al., 2010).

3xTg Model
The 3xTg model over-expressing human APPswe and tau 
MAPTP301L and encoding a knock-in of PS1M146V was 
generated for the first time by Oddo et al. (2003). These mice display 
both Aβ aggregates and NFT and show hippocampal-dependent 
memory decline during aging. Also, they show cholinergic 
alterations and neuronal loss in the cortex (Oddo et al., 2003; 

Perez et al., 2010). This model is advantageous since it presents 
a significant intracellular Aβ deposition before the occurrence of 
extracellular plaques, which become evident around 12 months of 
age, and notably, it develops NFTs comparable to humans.

Concerning the functional aspects, 6-month-old 3xTg mice 
display impairment of LTP (Oddo et al., 2003), which correlates 
with intracellular Aβ well before plaque and tangle pathology. 
Recently, other triple transgenic mice have been generated 
harboring APP, PS2, and tau mutations (Rhein et al., 2009; 
Grueninger et al., 2010) but electrophysiological investigations 
have not been performed so far.

5xFAD Model
5xFAD mice (Tg6799 line) harbor three APP and PS2 (M146V 
and L286V) mutations that are causally related to FAD (Oakley 
et al., 2006). They exemplify one of the most early-onset mouse 
models with robust amyloid pathology (Oakley et al., 2006; 
Ohno et al., 2006, Ohno et al., 2007). Indeed, 5xFAD mice 
start developing amyloid deposition already from 2 months of 
age and show early hippocampal dysfunction, as evidenced by 
reduced basal synaptic transmission and LTP (Kimura and 
Ohno, 2009; Crouzin et al., 2013). This mouse model exhibits 
a strong pathology: at 1.5 months of age mice already express 
intracellular Aβ42, which massively progresses at 2 months 
of age with extracellular Aβ accumulation, senile plaques, and 
lack of specific neuronal populations. Cognitive impairment is 
reported at 4–6 months of age (Oakley et al., 2006). LTD has not 
yet been investigated in this mouse model.

CLINICAL RELEVANCE OF LTP/LTD

Many of the mechanisms underlying LTP and LTD in the rodent 
hippocampal slice preparation are shared also in hippocampal 
tissue from patients undergoing surgery for intractable temporal 
lobe epilepsy. Indeed, LTP is induced in the temporal lobe 
and in the dentate gyrus in humans using similar protocols of 
stimulation (Chen et al., 1996; Beck et al., 2000) and is modulated 
by the different pharmacological approaches just as in non-
clinical models. These studies further support the notion that 
also the human brain manifests LTP- and LTD-like events even 
though linking synaptic plasticity to human learning and memory 
remains a challenge (Bliss and Cooke, 2011). It also should be kept 
in mind that the human tissue investigated in electrophysiological 
studies is found in a pathological state, deriving from patients 
with an epileptic focus in the temporal lobe.

Notably, LTP- and LTD-like events are nowadays exploited 
in humans for therapeutic purposes. These plastic changes 
can be induced through several noninvasive techniques such 
as repetitive transcranial magnetic stimulation (rTMS) and 
transcranial direct current stimulation (tDCS) and are used for the 
treatment of a variety of neurological and psychiatric conditions, 
such as epilepsy, drug addiction, depression, Parkinson disease, 
neuropathic pain, tinnitus, and stroke (Schulz et al., 2013).

We can therefore hypothesize that stimulation of 
neuroplasticity in the early stages of AD, through pharmacological 
and noninvasive approaches, can attenuate disease progression. 
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Even though numerous therapeutic interventions reverse 
synaptic alterations and improve behavior in the non-clinical 
AD models, so far, there has been no successful translation into 
disease-modifying compounds in humans (Nisticò et al., 2012).

PREDICTIVE VALUE OF AD MODELS

Considering the recent clinical trial failures in AD, there has 
been considerable discussion as to whether results obtained from 
non-clinical models are predictive or simply misleading. There 
are numerous reasons why non-clinical studies may have failed 
to predict clinical trial outcome. One of the main issues it that 
Tg mice carry FAD mutations, accounting for only 5–10% of all 
AD cases, while the vast majority of AD cases are sporadic (sAD). 
As a consequence, these models have a low face and predictive 
validity for the sporadic form of AD. Moreover, transgenic models 
normally overexpress APP with consequent overproduction 
several APP fragments. Of note, a knock-in mice with a phenotype 
more similar to human was recently generated (Saito et al., 2014). 
Another limitation is that each mouse model develops only 
specific characteristics of AD (i.e. Aβ vs. tau pahology) and does 
not recapitulate the complexity of the human disease. It has also 
to be taken into account whether animal models display a similar 
spatiotemporal profile of disease progression when compared 
to AD patients. For example, cognitive deficits usually precede 
plaque load in mice, whereas the opposite occurs in patients. An 
important issue to be considered is that the majority of AD models 
lack neuronal cell death, while a substantial neurodegeneration is 
observed in the human AD brain.

It can be argued that the various non-clinical models typify 
specific disease-related targets and pathways, a potential 
advantage for testing candidate molecules on selected targets 
involved in AD pathogenesis. Indeed, this target-driven approach 
in non-clinical models has been translated over the years into 
numerous clinical studies (Nisticò et al., 2012).

In addition to intrinsic limitations of animal models, 
experimental bias is another crucial factor. For example, 
gender- and litter-dependent differences, variability in transgene 
expression, and the different genetic background among models 
and even between active treatment and placebo groups should all 
be considered in translation. Also, diversities in brain anatomy, 
neuronal physiology, metabolism, and disease susceptibility play 
a central role. Moreover, given the complex dynamics of drug-
target interactions, in vivo studies in non-clinical models should 
include a complete pharmacokinetics/pharmacodynamics profile 
in order to ensure that the dose range and timing are specific to 
the target (e.g. based on receptor occupancy and/or correlative 
biomarker data). On the other hand, the therapeutic window and 
the off-target effects that may lead to adverse effects should also 
be identified especially for behavioral experiments.

To improve clinical translation, non-clinical endpoints 
need to be accurately selected and should employ a 
combination of disease-relevant approaches such as integrated 
neurophysiological/behavioral paradigms. Electrophysiological 
techniques record neural activity from large neural populations 
down to single cells and are ideal to measure synaptic plasticity, 

as well as firing activity and neural oscillations. A limitation is 
that this approach does not address spatiotemporal information 
and is not suitable for noninvasively detecting activity from deep 
brain regions. In contrast, functional neuroimaging provides 
a noninvasive spatiotemporal readout of changes in brain 
function, making it an invaluable tool for most clinical studies. 
Unfortunately, the use functional imaging has been limited in 
non-clinical setting due to the restricted applicability to animal 
models and the relatively high cost.

CONCLUSIONS

We have previously hypothesized that alterations in normal 
synaptic function are not only a key feature but also a leading cause 
of disease (Nisticò and Collingridge, 2012). In this respect, LTP and 
LTD can serve as synapse survival and death signals, respectively. 
Thus, conditions that promote LTD, i.e. following excessive Aβ load 
in the early-onset forms of disease, can lead to loss of synapses. On 
the other hand, promoting LTP, which is known to inhibit LTD 
(Peineau et al., 2007), can represent a protective mechanism to 
preserve synaptic plasticity and brain connectivity.

It seems important to investigate the molecular mechanisms 
that influence plasticity in the human brain and to determine 
whether its vulnerability to aging and neurodegeneration can 
be modified by pharmacological intervention. Considering that 
AD is a complex disease affecting multiple signaling pathways, 
therapeutic strategies should not be directed to a single target 
rather to a combination of targets. To ensure a successful outcome, 
therapy should start at an early stage of disease. In addition, highly 
sensitive and specific biomarkers should identify susceptible 
individuals at the onset of disease (Hampel et al., 2014).

Generally, the predictive value of non-clinical models in the 
drug discovery process has been largely debated independently 
of the therapeutic area (McGonigle and Ruggeri, 2014; Mullane 
and Williams, 2019). Accordingly, several compounds showing 
robust efficacy in experimental models of AD have failed so far in 
clinical trials. Once a lead compound is selected, selection of non-
clinical endpoints through integrated approaches should reflect 
the clinical endpoints in phase I studies. Correct design of non-
clinical studies can be a long, complex, and expensive process that 
may slow down the course of drug development (Mohs and Greig, 
2017); nonetheless, the probability of successful approval and 
hence time saving and return on investment is certainly increased.
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Alzheimer’s disease (AD) is characterized by two landmark pathologies, the overproduction 
of amyloid-beta peptides (Aβ), predominated by the β-amyloid protein precursor cleaving 
enzyme 1 (BACE1), and hyperphosphorylation of the microtubule protein, tau, because 
of an imbalance in a kinase/phosphatase system that involves the activation of the 
protein kinase A (PKA). Current evidence indicates that brain microRNAs participate in 
multiple aspects of AD pathology. Here, the role and underlying molecular mechanisms 
of microRNA-200a-3p (miR-200a-3p) in mediating neuroprotection against AD-related 
deficits were investigated. The expression of miR-200a-3p was measured in the 
hippocampus of APP/PS1 and SAMP8 mice and in an AD cell model in vitro, as well as in 
blood plasma extracted from AD patients. The targets of miR-200a-3p were determined 
using bioinformatics and dual-luciferase assay analyses. In addition, cell apoptosis was 
detected using flow cytometry, and related protein levels were measured using Western 
blot and enzyme-linked immunosorbent assay (ELISA) techniques. miR-200a-3p was 
confirmed to be depressed in microarray miRNA profile analysis in vitro and in vivo, 
suggesting that miR-200a-3p is a potential biomarker of AD. Subsequently, miR-200a-3p 
was demonstrated to inhibit cell apoptosis accompanied by the inactivation of the Bax/
caspase-3 axis and downregulation of Aβ1-42 and tau phosphorylation levels in vitro. Further 
mechanistic studies revealed that miR-200a-3p reduced the production of Aβ1-42 and 
decreased hyperphosphorylation of tau by regulating the protein translocation of BACE1 
and the protein kinase cAMP-activated catalytic subunit beta (PRKACB) associated with 
the three prime untranslated regions, respectively. Importantly, the function of miR-200a-3p 
was reversed by overexpression of BACE1 or PRKACB in cultured cells. This resulted in 
an elevation in cell apoptosis and increases in Aβ1-42 and tau hyperphosphorylation levels, 
involving the epitopes threonine 205 and serine 202, 214, 396, and 356, the favorable 
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia 
affecting people aged 65 and older, which is characterized by two 
landmark pathologies, extracellular senile plaques consisting 
of amyloid-beta peptides (Aβ) and intracellular neurofibrillary 
tangles (NFTs) composed of hyperphosphorylated tau proteins 
(Ulep et al., 2018). AD has a long preclinical latency and is difficult 
to diagnose and prevent at early stages. Currently, there are no 
effective drugs or treatment modalities to stop or reverse the 
progression of the disease process. Thus, it is of vital importance 
to explore the underlying mechanisms and potential targets of AD.

Among the complex etiology of AD, Aβ peptides are derived 
from the successive cleavage of the amyloid protein precursor (APP) 
by the β-APP cleaving enzyme 1 (BACE1), or β-secretase, and 
gamma (γ)-secretase enzyme to form Aβ aggregates that have the 
potential to develop into Aβ plaques (Li et al., 2000). Similarly, the 
abnormally hyperphosphorylated tau protein in NFTs is thought to 
be generated from an imbalance in the kinase/phosphatase system, 
indicated by a series of activity-altered enzymes involving cyclic 
AMP (cAMP)-dependent protein kinase/protein kinase A (PKA), 
cyclin-dependent protein kinase 5 (CDK5), glycogen synthase 
kinase 3β (GSK3β), protein phosphatase 1 (PP1), and protein 
phosphatase 2A (PP2A), which are key players in the progression 
of AD (Wang et al., 2014). Furthermore, other pathological factors 
associated with AD development include oxidative imbalance, 
neuroinflammation, and calcium homeostasis disturbance, which 
lead to an overproduction of Aβ peptides by activating BACE1 via a 
set of tau-associated phosphorylated kinases (Chami and Checler, 
2012). Considering key AD pathogenic mechanisms, simultaneous 
interference with two or more causes associated with Aβ-induced 
tau hyperphosphorylation may achieve better therapeutic efficacy 
with multiple benefits by combining collaborative mechanisms.

MicroRNAs (miRNAs) are short, single-stranded RNAs 
of about 20–25 base pairs (bp) in length, which regulate 
posttranscriptional expression of target messenger RNA (mRNA) 
by associating with the mRNA three prime-untranslated region 
(3’-UTR) (Geekiyanage et al., 2012). In addition, miRNA 
expression has been proven to have tissue, cell, and disease 
specificity (Ratnadiwakara et al., 2018). Abundance of miRNAs 
has been illustrated specifically in gene expression changes related 
to AD and can be also found in the cerebrospinal fluid (CSF) and 
blood plasma (Fransquet and Ryan, 2018; Zendjabil, 2018). Thus, 
miRNAs are excellent candidates as noninvasive biomarkers and 
potential regulators of associated target genes in AD.

MicroRNA-200a-3p (miR-200a-3p), belonging to the miR-200  
family of miRNAs and located on chromosome 1p36, plays an 

important role in human cancers and modulates cell apoptosis 
and proliferation (Feng et al., 2014; Wu et al., 2017). Accumulating 
evidence is available illustrating that miR-200a-3p may be involved 
in AD pathology; however, there is evident controversy about 
miR-200a-3p levels detected in different Alzheimer’s models. 
Some studies elucidated that miR-200a-3p was downregulated in 
K595N/M596L (APPswe)/presenilin 1 (PS1) deltaE9 (APP/PS1) 
mice during the progression of AD (Liu et al., 2014), whereas some 
other experiments showed that in the brain of AD patients and in 
the hippocampus of APP/PS1 mice, the expression of miR-200a-3p 
was increased (Lau et al., 2013; Zhang et al., 2017). In line with the 
finding that miR-200a-3p was downregulated in AD, miR-200a-3p 
was shown to inhibit apoptosis in the SH-SY5Y neuroblastoma cell 
line via the modulation of one of the targets of sirtuin-1 (Salimian 
et al., 2018). Nevertheless, miR-200a-3p appears to have multiple 
downstream targets, characterized by the aberrant expression 
involved in the gene regulation networks among diseases; 
therefore, the specific roles and underlying molecular mechanisms 
of miR-200a-3p in AD remains unexplored.

In this study, we investigated the expression of miR-200a-3p in 
the hippocampus of APP/PS1 and senescence-accelerated mouse 
prone 8 (SAMP8) mice and in an AD cell model in vitro, as well as 
in blood plasma extracted from AD patients. We further explored 
the roles of miR-200a-3p and its potential molecular mechanisms 
in the AD cell model. Collectively, this study revealed that miR-
200a-3p supplementation might play a neuroprotective role in 
AD, which highlights potential future research avenues and novel 
therapeutic targets for AD.

MATERIALS AND METHODS

Animals and Treatments
APP/PS1 mice and age-matched wild-type (WT) littermates were 
purchased from the Jackson Laboratory (Bar Harbor, ME). SAMP8 
and senescence-accelerated mouse resistance 1 (SAMR1) mice 
were provided by the Institute of Genetics and Developmental 
Biology of the Chinese Academy of Sciences. The animals had 
ad libitum access to food and water at stable room temperature 
and humidity environment according to the Guide for the Care 
and Use of Laboratory Animals. The experiment was approved by 
the ethical committee of the Institute of Medicinal Biotechnology 
(IMB-D8-2018071102).

The mice were then divided into the following groups: 1-month-
old, 3-month-old, 6-month-old, or 9-month-old  mice, with the 
inclusion of age-matched control mice (WT or SAMR1). Each 
group was composed of four mice (two males and two females 

phosphorylated sites of PKA. In conclusion, our study suggests that miR-200a-3p is 
implicated in the pathology of AD, exerting neuroprotective effects against Aβ-induced 
toxicity by two possible mechanisms: one involving the inhibition of Aβ overproduction 
via suppression of the expression of BACE1 and synergistically decreasing the 
hyperphosphorylation of tau via attenuation of the expression of PKA.

Keywords: Alzheimer’s disease, miR-200a-3p, BACE1, PRKACB, tau protein, apoptosis
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per group). Depending on the different ages of each group, brains 
were collected and then evaluated by real-time polymerase chain 
reaction (PCR) analysis during the course of the disease.

Human Blood Sample Data and Collection
Blood samples of seven AD patients and five normal age-
matched volunteers (NAVs) were acquired from the Xuanwu 
Hospital Capital Medical University, and the study was approved 
by the ethics committee of Xuanwu Hospital Capital Medical 
University, China (Table 1). The peripheral blood was collected 
from each patient after fasting for 12 h. The serum was separated 
by centrifugation at 1,000 × g for 10 min at room temperature, 
followed by centrifugation at 130,000 × g for 5 min at 4°C. The 
samples were stored at 80°C until required.

Cell Culture and Plasmid Transfection
Human neuroblastoma SH-SY5Y cells (ATCC; Manassas, VA) and 
human embryonic kidney (HEK)293 cells (ATCC) were maintained 
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 
with 10% fetal bovine serum (FBS) (Gibco/Invitrogen, Grand 
Island, NY) at 37°C in a humidified 5% CO2 incubator. SH-SY5Y 
cells transfected with the Swedish mutant form of human APP 
(referred to as “APPswe cells”) is an established AD cell model, 
in which copper can trigger the neurotoxicity of Aβ, leading to 
cell apoptosis (Liu et al., 2012; Zhao et al., 2013). APPswe cells 
were then cultured in DMEM/F-12 supplemented with 10% FBS 
and 500 μg/ml G418 (Invitrogen). miR-200a-3p mimics, miR-
200a-3p inhibitor, and respective negative controls (NCM or 
NCI), as well as BACE1-siRNA, PRKACB-siRNA, and respective 
NCs were synthesized by GenePharma (Shanghai, China). The 
oligonucleotides were transfected in a final concentration of 50 nΜ 
using the Lipofectamine 3000 reagent (Invitrogen; Carlsbad, CA). 
The BACE1 and PRKACB expression vectors were constructed by 
inserting human BACE1 and PRKACB cDNA into pCMV6 vector, 
and their promoters were CMV and tagged with Myc-DDK. The 
pCMV6-BACE1-Myc-DDK and pCMV6-PRKACB-Myc-DDK 
were purchased from ORIGENE (Beijing, China) and transfected 
into APPswe cells in a final concentration of 2 μg/ml using the 
Lipofectamine 3000 reagent.

Quantitative Reverse Transcription 
Polymerase Chain Reaction Analysis
The total RNA of neuronal cells and mouse brain tissue 
were extracted using TRIZOL (Invitrogen) according to the 
manufacturer’s instructions. The TaqMan microRNA Reverse 
Transcription reagent (Invitrogen) was used to reverse transcript 
10 ng of total RNA to complementary DNA (cDNA). The following 

reactions were performed in a total volume of 20 μl containing the 
following: 1 μl TaqMan small RNA assay, 1.3 μl cDNA sample, 
10 μl TaqMan universal PCR Master Mix, and 10 μl nuclease-free 
water. Each sample was run in triplicate. Small nuclear RNA U6 
was used as normalization. The thermo cycle conditions were set as 
follows: enzyme activation at 50°C for 2 min, denaturation at 95°C 
for 10 min, followed by 40 cycles of denaturation at 95°C for 15 s 
and extension at 60°C for 1 min. For mRNA analysis, 2 μg of total 
RNA was mixed with Maxima H Minus cDNA Synthesis Master 
Mix (Invitrogen) for reverse transcription. Subsequently, a qPCR 
assay was used using the SYBR Green Master Mix (Invitrogen) on 
an ABI-7500 Fast Real-Time PCR System (Applied Biosystems, 
Foster City, CA). The primers used are listed in Table 2. The data 
were analyzed using the 2-ΔΔCT method.

Dual-Luciferase Reporter Assay
The 3’-UTR of BACE1 and PRKACB containing the binding site 
of miR-200a-3p were cloned into the luciferase reporter plasmid 
(Promega; Madison, WI), and the binding site mutants were 
synthesized by a commercial company (Sangon Biotechnology, 
Shanghai, China). The WT or mutant luciferase plasmid together 
with the pRT-TK Renilla luciferase vector (Promega) were 
cotransfected with miR-200a-3p mimics or NCs into HEK293 
cells. After 48  h, the corresponding vector’s luminescence was 
detected using the GloMax Multi luminometer (Promega) with a 
Dual-Luciferase Reporter Assay system. The Renilla luminescence 
was used to normalize the signal. All of the experiments were 
repeated four times independently.

Western Blotting Analysis
Protein samples were extracted from differently treated cells 
using the M-PER Mammalian protein Extraction Reagent (Pierce 
Biotechnology; Rockford, IL) at appropriate time points, according 
to the manufacturer’s instructions. Then, sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) was used to 
separate target proteins and were subsequently transferred to a 
polyvinylidene fluoride (PVDF) membrane (Merck Millipore, 
Billerica, MA). The membranes were then blocked in 5% nonfat 
milk dissolved in tris-buffered saline (TBS) containing 0.1% Tween-
20 (TBST) for 1 h and then probed with the corresponding antibody 
as listed in Table 3 overnight at 4°C. The next day, membranes were 
washed three times with TBST and incubated with the appropriate 
secondary antibodies (Abcam, Cambridge, MA) for 1 h at room 
temperature. The protein bands were visualized and quantified 
by a protein imaging system (Biorad, Munich, Germany).

TABLE 2 | PCR primer sequences.

Primer Name Primer Sequence

BACE1-F 5’-CCGGCGGGAGTGGTATTATG-3’
BACE1-R 5’-GCAAACGAAGGTTGGTGGT-3’
PRKACB-F 5’-CCATGCACGGTTCTATGCAG-3’
PRKACB-R 5’-GTCTGTGACCTGGATATAGCCTT-3’
β-actin-F 5’-CATGTACGTTGCTATCCAGGC-3’
β-actin-R 5’-CTCCTTAATGTCACGCACGAT-3’

F, forward; R, reverse.

TABLE 1 | Clinical data of AD patients compared to normal age-matched volunteers 
(NAVs).

Group Cases (n) Age Gender

NAVs 5 67.60 ± 2.65 2 M/3 F
AD 7 77.14 ± 8.33 3 M/4 F

NAVs, normal age-matched volunteers; AD, AD patients; M, males; F, females.
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Aβ1-42 Assay
APPswe cells were seeded in 24-well plates and transfected with 
miR-200a-3p, BACE1, or PRKACB related plasmids. After 48 h, 
cells were lysed and detected using the Human Aβ1-42 enzyme-linked 
immunosorbent assay (ELISA)Kit (Invitrogen) according to the 
manufacturer’s instructions. The concentration of Aβ1-42 was 
determined by the absorbance value detected using a microplate 
reader (Tecan Group Ltd., Mannedorf, Switzerland) at 450 nm.

Cell Apoptosis Assay by Flow Cytometry
APPswe cells were transfected with miR-200a-3p mimics, 
miR-200a-3p inhibitor, pCMV6-BACE1-Myc-DDK, pCMV6-
PRKACB-Myc-DDK, BACE1 siRNA, PRKACB siRNA, and their 
relative controls separately or in combination. After transfection, 
copper was added to trigger the Aβ toxicity. The Annexin BD 
Pharmingen FITC-Annexin V/propidium iodide (PI) Apoptosis 
Detection Kit (BD Biosciences, San Jose, CA) was used to detect 
cell apoptosis of APPswe cells after different plasmid transfections, 
according to the manufacturer’s protocol. Briefly, cells were 
washed in cold phosphate buffer saline (PBS) and stained with 
a mixture of FITC-labeled Annexin-V and PI on ice for 15 min 
and analyzed in a FACSCalibur flow cytometry (BD Biosciences).

Caspase-3 Activity Assay
APPswe cells were transfected with miR-200a-3p mimics, miR-
200a-3p inhibitor, and the relative controls, as well as pCMV6-
BACE1-Myc-DDK and pCMV6-PRKACB-Myc-DDK separately 
or in combination. After different treatments, APPswe cells were 
used to detect the activity of caspase-3 using the Human Active 
Caspase-3 (Asp175) SimpleStep ELISA Kit (Abcam, Cambridge, 
MA) according to the manufacturer’s instructions.

Bioinformatics and Heatmap Analysis
The miR-200a-3p target predicted by computer-aided algorithms 
was obtained from TargetScan. The miRNA expression profiling 
was performed as described before (Wang et al., 2017). RNA 
extraction was performed with TRIzol regent and synthesized 
into cDNA. After purification, the cDNA was labeled with 
Hy3/Hy5 and hybridized to the microarray (Exiqon, Vedbæk, 
Denmark) according to the Exiqon’s instruction. The slides were 
scanned by Axon GenePix 4000B microarray scanner (Exiqon), 
and heatmap analysis of the expression of the selected miRNAs 

at different stages of AD development was accomplished using 
the color gradation function of Microsoft Excel 2016 (Microsoft 
Corporation, Redmond, WA).

Statistical Analysis
Data are represented as mean ± standard error of the mean (SEM). 
All of the experiments were repeated at last three times. Data were 
analyzed using Student’s t-test or one-way ANOVA followed by 
Tukey’s post hoc tests where appropriate. Comparisons between 
two groups were performed using Student’s t-test. P values of 
less than 0.05 were considered statistically significant. All of the 
analyses were performed using the GraphPad Prism Version 7.0 
(GraphPad Prism Software, La Jolla, CA).

RESULTS

The Expression of miR-200a-3p is 
Decreased During AD Progression
It has been described that the APP/PS1 double transgenic mouse 
model develops AD pathology and cognitive impairment with 
increasing age (Trinchese et al., 2004). Before exploring the role of 
miR-200a-3p in the pathological processes of AD, we determined 
the manifestation of miR-200a-3p in miRNA profiles of APP/PS1 
transgenic mice using microarray analysis. As shown in Figure 1A, 
the levels of miR-200a-3p were significantly downregulated in 
6-month-old and 9-month-old mice. Moreover, to assess the 
changes of miR-200a-3p expression during AD progression, 
SH-SY5Y cells overexpressing the APPswe plasmid and two mouse 
models, the APP/PS1 transgenic and the mutant SAMP8 strains, 
were used because they have been previously shown to express 
deficits closely similar to AD (Ding et al., 2008; Liu et al., 2012; 
Takagane et al., 2015). Our results demonstrated that the expression 
of miR-200a-3p was significantly reduced in APPswe cells when 
compared to normally cultured SH-SY5Y cells (Figure  1B, P < 
0.01). This was in line with the depressed levels of miR-200a-3p 
found in the hippocampus of APP/PS1 and SAMP8 mice at 3, 6, or 
9 months of age when compared to their corresponding WT control 
counterparts (Figures 1C, D, P < 0.05–0.01). Because miRNAs can 
circulate in the blood and the CSF, they are attractive candidates 
as biomarkers of AD. To this end, we explored the expression of 
miR-200a-3p in the plasma of AD patients and NAVs and found 
that miR-200a-3p levels were significantly downregulated in the 
blood plasma of AD patients when compared to those in NAVs 
(Figure 1E, P < 0.05). Therefore, these data confirmed a reduced 
tendency of miR-200a-3p expression levels in the pathological 
processes of AD and also indicated that miR-200a-3p might 
participate in the regulation of this process.

miR-200a-3p Inhibits Aβ1-42 Production, 
Attenuates Tau Phosphorylation, and 
Suppresses Apoptosis in APPswe Cells
Aβ1-42 peptides, derived via processing of APP by BACE1, 
contribute to AD pathogenesis (Li et al., 2000). We determined 
the effect of miR-200a-3p on Aβ1-42 production and found 

TABLE 3 | Primary antibodies used in this study.

Antibody Type Diluted Source

Anti-BACE1 Monoclonal 1:1,000 Abcam
Anti-PRKACB Monoclonal 1:1,000 Abcam
Anti-AT8 Monoclonal 1:1,000 Abcam
Anti-pTS396-Tau Monoclonal 1:500 Abcam
Anti-pTS214-Tau Monoclonal 1:500 Abcam
Anti-pTS356-Tau Monoclonal 1:500 Abcam
Anti-tau Monoclonal 1:500 Abcam
Anti-caspase-3 Monoclonal 1:1,000 Abcam
Anti-Bax Monoclonal 1:1,000 Abcam
Anti-GAPDH Monoclonal 1:1,000 Abcam
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that overexpression of miR-200a-3p inhibited the production  
of Aβ1-42 in miR-200a-3p mimics-transfected APPswe cells, 
whereas miR-200a-3p knockdown led to an Aβ1-42 overproduction 
in miR-200a-3p inhibitor-transfected APPswe cells (Figure 2A, 
P < 0.05).

The hyperphosphorylation of tau is associated with neural 
apoptosis and plays an important role in the development of 
AD. When we overexpressed miR-200a-3p in APPswe cells, 
the phosphorylation of tau protein at serine 202/threonine 205 
(AT8), serine 214 (S214), serine 396 (S396), and serine 356 (S356) 
epitopes was significantly decreased (Figures 2B, C, P < 0.01–
0.001), whereas the inhibition of miR-200a-3p led to opposite 
effects (P < 0.05–0.001).

Furthermore, flow cytometry using PI and Annexin V 
staining was performed to analyze the involvement of apoptotic 
pathways in APPswe cells transfected with miR-200a-3p mimics, 
miR-200a-3p inhibitor, or NCs. Our results revealed that the 

ratios of early apoptosis, late apoptosis, and total apoptosis in 
APPswe cells overexpressing miR-200a-3p were all significantly 
decreased (Figures 2D, E, all P < 0.001), whereas inhibition of 
miR-200a-3p significantly increased the apoptotic ratios (P < 
0.01–0.001). Among apoptotic pathways, the expression levels of 
the proapoptotic protein Bax were found to be downregulated 
when miR-200a-3p was overexpressed in APPswe cells and 
changed in an opposite manner when miR-200a-3p was inhibited 
(Figures 2F, G, P < 0.01, P < 0.001), accompanied by the activity 
and protein level of caspase-3, which were affected in the same 
manner in all transfected APPswe cells (Figures 2F–H, P < 0.05–
0.001). The apoptotic ratios, expression of Bax, and activity and 
protein level of caspase-3 in NC-transfected APPswe cells were 
not altered compared with those in the non-transfected groups. 
Collectively, these observations indicated that the upregulation 
of miR-200a-3p exerted a neuroprotective effect against AD 
deficits in APPswe cells.

FIGURE 1 | Aberrant expression of miR-200a-3p is involved in the progression of AD. (A) Expression of miR-200a-3p in APP/PS1 mouse brains using microarray 
analysis at different stages of the disease process. (B) Decreased expression of miR-200a-3p in APPswe cells compared with normally cultured SH-SY5Y cells 
(n = 3). (C, D) Decreased expression of miR-200a-3p in the hippocampus of APP/PS1 (C) and SAMP8 mice (D) (n = 4). (E) Reduced levels of miR-200a-3p in 
the plasma of AD patients compared with normal age-matched volunteers (NAVs) (n = 5–7). Data are shown as the mean ± SEM.*P < 0.05. **P < 0.01 versus 
relevant control.
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The BACE1 mRNA is a Direct Target 
of miR-200a-3p
To investigate the role of miR-200a-3p in AD development, 
it was necessary to find targets correlated with signaling 
transduction associated with AD pathology. For this, we 

first performed computational analyses to identify potential 
binding sites of miR-200a-3p using the miRNA target 
prediction database TargetScan. Our results indicated that miR-
200a-3p had a potential target site in the 3’-UTR of the BACE1 
mRNA (Figure 3A). Subsequently, the systematic diagrams 

FIGURE 2 | The activity of miR-200a-3p exhibits neuroprotective properties in APPswe cells. (A) miR-200a-3p mimics (200aM) inhibited the production of Aβ1-42 
in APPswe cells whereas miR-200a-3p inhibitor (200aI) increased Aβ1-42 production (n = 4). (B, C) miR-200a-3p mimics (200aM) decreased the phosphorylated 
levels of tau at Ser202/Thr205 (AT8), Ser214 (pTS214), Ser396 (pTS396), and Ser356 (pTS356) sites, as demonstrated here with representative images (B) and 
quantitative analysis (C) by Western blotting (n = 3). (D, E) Quantification of cell apoptosis in the presence of miRNA-200a-3p mimics (200aM), miRNA-200a-3p 
inhibitors (200aI), corresponding negative controls (NCM/NCI), and nontransfected controls (control) in APPswe cells, as demonstrated by representative images 
(D) and quantitative analysis (E) by flow cytometry (n = 3). (F, G) miR-200a-3p mimics decreased the expression of caspase-3 and Bax, as demonstrated here by 
representative images (F) and quantitative analysis (G) by Western blotting. (H) miR-200a-3p mimics decreased the activity of caspase-3 in APPswe cells (n = 4). 
Data are shown as the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 versus relative control.
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of miR-200a-3p and BACE1 mRNA 3’-UTR were established  
(Figure 3B).

Furthermore, a dual-luciferase reporter assay was used to 
investigate the manner in which miR-200a-3p regulated BACE1. 
For this, the 3’-UTR of BACE1 mRNA containing WT or mutation 
binding site of miR-200a-3p was cloned in a luciferase vector, and 
miR-200a-3p mimics or NCs together with Renilla plasmid were 
cotransfected into HEK293 cells. The luminescence activity was 
significantly decreased in the cells that were cotransfected with 
miR-200a-3p mimics plus BACE1 mRNA 3′-UTR WT (Figure 3C, 
P < 0.001). However, there was no effect on the luciferase activity 
in the cells cotransfected with luciferase plasmids containing 
mutation binding site of miR-200a-3p. Thus, we concluded that 
miR-200a-3p was specifically binding to the 3’-UTR of BACE1.

Because a direct relationship between miR-200a-3p and BACE1 
expression was established, Western blot and qRT-PCR analysis 
after the transfection of miR-200a-3p mimics, miR-200a-3p 
inhibitor, or NCs were performed to identify the target function 
of miR-200a-3p on the BACE1 gene. As shown in Figures 3E, F, 
overexpression of miR-200a-3p downregulated the expression of 
the BACE1 protein (P < 0.05), whereas the inhibitory expression 
of miR-200a-3p upregulated BACE1 protein levels (P < 0.01). 
Because of the result that miR-200a-3p mimics or miR-200a-3p 
inhibitor did not influence the expression of BACE1mRNA at 
the transcriptional level significantly (Figure 3D), we concluded 
that the interaction manner of miR-200a-3p with BACE1 relied 
on the regulation of the protein translation process, rather than 
influencing the stability of BACE1 mRNA.

The PRKACB is Another Target 
of miR-200a-3p
Our bioinformatic analysis predicted that there was another 
candidate target of miR-200a-3p, PRKACB, a universally 
conserved gene that encodes one of the paralogous catalytic 
subunits of PKA that increases the levels of phosphorylated 
tau at Ser214, Ser356, and Ser396 epitopes by a number of 
kinases, widely reported in AD brains and mouse models 
(Wang et al., 2013; Wang et al., 2015). Importantly, the 3’-UTR 
of the PRKACB transcript contains a putative miR-200a-3p 
binding site (Figure 4A). Subsequently, the luciferase reporters 
were constructed containing the WT or binding site mutations 
of PRKACB 3’-UTR (Figure 4B). Our results indicated that 
transfection of miR-200a-3p mimics significantly inhibited 
the activity of the luciferase reporter for WT 3’-UTR PRKACB 
(Figure 4C, P < 0.001), but not for binding site mutations of 
PRKACB 3’-UTR, indicating the potential interaction between 
miR-200a-3p and PRKACB. We further examined the regulatory 
manner of miR-200a-3p in PRKACB at the protein and mRNA 
levels in APPswe cells by transfecting miR-200a-3p mimics and 
miR-200a-3p inhibitors using Western blot and qPCR analysis. 
Our data illustrated that miR-200a-3p mimics significantly 
downregulated both the mRNA and protein expressions of 
PRKACB (Figures 4D–F, both P < 0.001), whereas miR-200a-3p 
inhibitors upregulated PRKACB at these two levels (P < 0.001 
and P < 0.01). Therefore, we suggested that PRKACB may act as 
another target of miR-200a-3p by associating with the 3’-UTR 
of PRKACB.

FIGURE 3 | The BACE1 mRNA is a direct target of miR-200a-3p. (A) Bioinformatic analysis predicting the binding site of miR-200a-3p and BACE1 mRNA. 
(B) Design of the recombinant Luc-BACE1-MUT (mutant) and Luc-BACE1-WT (wild-type) construction. (C) Changes in the relative luciferase activity in each group 
after plasmids transfection. miRNA-200a-3p mimics caused significant inhibition of reporter luciferase activity in the construct with a wild-type (WT) BACE1 3’-UTR 
in contrast to the mutant (Mut) BACE1 3’-UTR in HEK293 cells (n = 4). (D) Quantification analysis of the levels of BACE1 mRNA after transfection with miRNA-
200a-3p mimics (200aM), miRNA-200a-3p inhibitors (200aI), and corresponding negative controls (NCM/NCI) (n = 3). (E, F) The expression of the BACE1 protein 
is significantly decreased and increased after miR-200a-3p mimics (200aM) and inhibitor (200aI) transfection, respectively, relative to the corresponding negative 
controls (NCM/NCI), as demonstrated here by representative images (E) and quantitative analysis (F) by Western blotting (n = 3). The data are presented as the 
mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 versus relevant control.
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miR-200a-3p Displays a Neuroprotective 
Role in APPswe Cells by Regulating 
BACE1 and PRKACB, Decreasing 
Aβ Overproduction and tau 
Hyperphosphorylation, Respectively
During our study of miR-200a-3p on the pathological changes in 
AD associated with BACE1 and PRKACB, we explored the cell 
apoptosis, levels of Aβ1-42, and phosphorylation of the tau protein at 
several phosphorylated sites that PKA favors after overexpression 
of BACE1 and PRKACB cotransfected with miR-200a-3p mimics 
into APPswe cells. Apoptosis-related assays indicated that 
cotransfection of BACE1 and PRKACB with NCM increased 
the early, late, and total apoptotic ratios of APPswe cells and the 
activity of caspase-3, an apoptotic marker, as well (Figures 5A–D, 
P < 0.01–0.001). Meanwhile, the neuroprotection of miR-200a-3p 
mimics involving the suppression of apoptotic ratios and inhibition 
of active caspase-3 release in APPswe cells (P < 0.05–0.001) 
was reversed via cotransfection with BACE1 and PRKACB, 
respectively (P < 0.05–0.001). Additionally, when BACE1 and 
PRKACB were knockdown using BACE1 siRNA and PRKACB 
siRNA, a decreased tendency of miR-200a-3p neuroprotection 
was seen in APPswe cells (Supplementary Figure 1). These results 
indicated that there might be a direct neuroprotective relationship 
between miR-200a-3p and BACE1 and PRKACB.

As for Aβ overproduction and tau hyperphosphorylation, 
cotransfection of BACE1 and PRKACB with NCM increased the 
production of Aβ1-42 and the expression of tau phosphorylation at 

AT8, Ser214, Ser396, and Ser356 (Figures 5E–G, P < 0.05–0.001). 
Importantly, cotransfection of BACE1 and PRKACB together 
with miR-200a-3p mimics abolished the beneficial effects of miR-
200a-3p, increasing Aβ1-42 production and enhancing the levels of 
tau phosphorylation at detected phosphorylated sites (P < 0.05–
0.01). Collectively, these findings suggest that miR-200a-3p may 
protect neural cells by coregulating BACE1 and PRKACB in vitro.

DISCUSSION

AD is a complex neurodegenerative disease affected by multigene 
activity and layers, which to date has no effective therapeutic 
treatments. As a result, a multigene regulatory approach is sought 
out as an AD therapeutic modality. Markedly, miRNAs are 
considered to be attractive candidates for their modulatory role in 
mRNA transcription and protein translation. In the present study, 
we deduced three primary findings regarding the function of one 
identified miRNA and its role in the pathological progression of 
AD. First, miR-200a-3p was found to demonstrate the consistent 
depression observed in the brain tissue of AD mice, in cell culture 
models of AD, and in the blood of AD patients. Second, miR-
200a-3p was verified as a participant in the pathogenesis of AD 
directly via the regulation of BACE1 and PRKACB expression 
levels using a target prediction database and through a dual-
luciferase reporter assay. Third, miR-200a-3p was found to have 
neuroprotective effects by suppressing the overproduction of Aβ 
and the hyperphosphorylation of the tau protein via regulating the 

FIGURE 4 | The PRKACB is another target of miR-200a-3p. (A) Bioinformatic analysis indicating the binding site of miR-200a-3p with the 3’-UTR of PRKACB 
mRNA. (B) Design of the recombinant Luc-PRKACB-MUT (mutant) and Luc-PRKACB-WT (wild-type) construction. (C) Changes in the relative luciferase activity 
in each group after plasmids transfection. miRNA-200a-3p mimics caused significant inhibition of reporter luciferase activity in the construct with a wild-type (WT) 
PRKACB 3’-UTR in contrast to the mutant (Mut) PRKACB 3’-UTR in HEK293 cells (n = 4). (D) Quantification of PRKACB mRNA levels after transfection with 
miRNA-200a-3p mimics (200aM), miRNA-200a-3p inhibitors (200aI), and corresponding negative controls (NCM/NCI) (n = 3). (E, F) The expression of the PRKACB 
protein significantly decreases and increases after miRNA-200a-3p mimics (200aM) and inhibitor (200aI) transfection, respectively, relative to the corresponding 
negative controls (NCM/NCI), as demonstrated here by representative images (E) and quantitative analysis (F) by Western blotting (n = 3). Data are shown as the 
mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 versus relevant control.
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FIGURE 5 | Neuroprotection of miR-200a-3p by regulating the participation of BACE1 and PRKACB in Aβ overproduction and tau hyperphosphorylation, 
respectively, in APPswe cells. (A, B) Effects of miR-200a-3p, BACE1, and PRKACB overexpression on apoptosis of APPswe cells detected using flow cytometry 
assay (A) and demonstrated by quantitative analysis (B) (n = 3). (C, D) The release of active caspase-3 in APPswe cells when miR-200a-3p and BACE1 (C) or 
PRKACB (D) overexpression measured using ELISA (n = 4). (E) Effects of miR-200a-3p and BACE1 overexpression on the production of Aβ1-42 peptides in a cell 
model of AD (n = 4). (F, G) Effects of miR-200a-3p and PRKACB overexpression on tau phosphorylation at AT8, Ser214 (pTS214), Ser396 (pTS396), and Ser356 
(pTS356) sites in APPswe cells, as demonstrated by representative images (F) and quantitative analysis (G) by Western blotting (n = 3). Data are shown as the 
mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 versus NCM. $P < 0.05, $$P < 0.01, $$$P < 0.001 versus 200aM.
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protein expression of BACE1 and PRKACB in the AD cell model, 
respectively. Here, we provide an alternative strategy by targeting 
miR-200a-3p for the prevention and/or treatment of AD.

Although AD develops as a multifactorial process, the 
abnormal overproduction and accumulation of Aβ are still 
considered to be key events (Moore et al., 2014). BACE1 is highly 
expressed in neurons and is a crucial protease that functions 
in the first step of the pathway leading to the majority of the 
Aβ production in the pathology of AD (Marques et al., 2012). 
BACE1 has been proposed as a viable therapeutic target for 
AD; however, challenges with the currently investigated BACE1 
inhibitors, involving low oral bioavailability, long serum half-life, 
and low blood–brain barrier (BBB) penetration ratio (Vassar, 
2014), have not been fully overcome yet. Thus, investigators 
have turned toward miRNA replacement therapy in light of their 
specific interactions. There are several miRNAs that have been 
proven to target BACE1, such as miR-124, miR-29c, and miR-195 
(Zong et al., 2011; Fang et al., 2012; Zhu et al., 2012; Du et al., 
2017). Following deep data mining analysis combined with target 
prediction and confirmatory experiments, we found that the 
downregulation of miR-200a-3p was implicated in AD etiology 
and targeted the 3’-UTR of BACE1 mRNA. We also verified 
that there was a negative correlation between miR-200a-3p 
and BACE1 in the blood of AD patients and that the imposed 
upregulation of miR-200a-3p significantly downregulated the 
expression of BACE1 at the protein level. As BACE1 is known to 
be significantly increased in the brains of AD patients, as well as in 
their CSF (Stozická et al., 2007; Evin and Hince, 2013), we suggest 
that miR-200a-3p could act as a potential peripheral biomarker 
together with BACE1 for AD diagnosis and/or treatment.

miR-200a-3p is a member of the miR-200 family of miRNAs 
that plays a vital role in various cancers, including bladder cancer, 
breast cancer, colorectal cancer, and gastric cancer, among others 
(Feng et al., 2014; Muralidhar and Barbolina, 2015). Recently, the 
miR-200 family of proteins was found to be crucial for neural 
differentiation and proliferation, along with their participation 
in Aβ production in AD (Liu et al., 2014; Pandey et al., 2015). 
In the present study, we used the established AD in vitro model 
in APPswe cells and found through apoptotic and cytoactive 
analyses that Aβ led to high apoptotic ratios of neurons, 
accompanied by the activation of the Bax/caspase-3 axis, 
whereas upregulation of miR-200a-3p rescued neural apoptosis 
and recovered the apoptotic caspase-3 pathway. In addition, 
miR-200a-3p relieved the production of Aβ1-42, manifesting 
that miR-200a-3p protected against the injury derived from the 
overexpression of APP in the neuroblastoma SH-SY5Y cell line. 
Importantly, when miR-200a-3p and BACE1 expression were 
collaboratively established, the inversed effects of BACE1 on 
miR-200a-3p function were observed in APPswe cells, indicating 
an increase in cell apoptosis, an increase in caspase-3 activities, 
and an overproduction of Aβ1-42 peptides. Collectively, our 
findings may illuminate a potential mechanism indicating that 
miR-200a-3p contributed to the neuroprotective effects in AD 
via the regulation of BACE1.

In addition to the Aβ pathology, the role of tau 
hyperphosphorylation is another widely appreciated etiology 
in AD development. The tau protein is encoded by the 

MAPT gene, which consists of six isoforms in the central 
nervous system (CNS) generated by alternatively splicing and 
containing numerous sites that can be phosphorylated via the 
activity of various enzymes, including PKA, CDK5, GSK3β, 
and ΜΑPK (Lee and Leugers, 2012). The development of NFTs 
is composed of three stages involving phosphorylated tau 
proceedings, preneural NFTs (pre-NFTs), intraneural NFTs, 
and extraneural NFTs. Phosphorylation epitopes at serine 199, 
202, and 409 are associated with pre-NFT stages, whereas serine 
396, 404, and threonine 231 occur in intraneuronal NFT stages 
(Kimura et  al., 1996). The phosphorylation of tau at serine 
396 and 404 sites was observed in early and late stages of AD 
and has been demonstrated to have greater preference in the 
earliest formation of NFTs, whereas the serine 214, serine 202, 
threonine 205 sites have been shown to be mostly associated 
with mature NFTs (Mondragon-Rodriguez et al., 2014). PKA 
is an important kinase that phosphorylates multiple sites of 
the tau protein, including serine 214, 396, and 356, alone or by 
sequential phosphorylation via cooperation with other kinases, 
such as GSK3β or CDK5, in the progression of AD (Jensen et al., 
1999; Ksiezak-Reding et al., 2003; KyoungPyo et al., 2004; Wang  
et al., 2007). Essentially, prephosphorylated tau by PKA has been 
suggested to be the better substrate than the phosphorylation 
by other kinases, such as CDK5 and GSK3β (Liu et al., 2006). 
Thus, we chose the most representative phosphorylation sites 
of tau involved in AD and also PKA-preferred, such as serine 
396, serine 214, serine 356, serine 202, and threonine 205, to 
perform our research.

As demonstrated in the present study via miRNA target 
prediction and validation using a dual-luciferase reporter assay, 
PRKACB, the catalytic units of PKA, was also identified as a direct 
target of miR-200a-3p, which negatively regulates the expression of 
PRKACB, thereby inhibiting PKA protein expression and activation. 
Moreover, miR-200a-3p demonstrated a consistent inhibitory effect 
on the phosphorylation of tau at serine 202/threonine 205 (AT8) 
in APPswe cells, including the AKT-preferable phosphorylation 
site serine 214, 396, and 356 (Jensen et al., 1999; Ksiezak-Reding 
et al., 2003; KyoungPyo et  al., 2004). These observations provide 
further evidence of the miR-200a-3p-modulated pathological 
alterations of tau in AD. Moreover, our investigation showed 
that PKA overexpression blocked the inhibitory effects of miR-
200a-3p on the modulation of tau phosphorylation at the examined 
phosphorylation sites of tau, including the epitopes that were mainly 
phosphorylated by PKA, in vitro. Taken together, we propose the 
existence of a regulatory event between miR-200a-3p and PKA 
that could help explain the mediation of tau hyperphosphorylation 
leading to the pathology of AD.

CONCLUSIONS

In summary, our study suggests that miR-200a-3p is implicated 
in AD progression and can exert neuroprotective effects against 
Aβ-induced toxicity by two possible mechanisms: first, by 
directly and/or indirectly inhibiting the overproduction of Aβ via 
suppressing the expression of BACE1 and second, by simultaneously 
decreasing the hyperphosphorylation of tau through attenuating 
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the expression of PKA (Figure 6). In addition to this study, further 
mechanisms need to be explored, particularly those associated 
with the regulatory axis of miR-200a-3p. In addition, local delivery 
of miR-200a-3p into certain brain areas, such as the cortex and 
hippocampus, via proper and novel carriers may also shed a light 
on preventing detrimental effects of miRNA treatment in AD.
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N-Palmitoylethanolamide (PEA) is a non-endocannabinoid lipid mediator belonging to the 
class of the N-acylethanolamine phospolipids and was firstly isolated from soy lecithin, egg 
yolk, and peanut meal. Either preclinical or clinical studies indicate that PEA is potentially 
useful in a wide range of therapeutic areas, including eczema, pain, and neurodegeneration. 
PEA-containing products are already licensed for use in humans as a nutraceutical, a food 
supplement, or a food for medical purposes, depending on the country. PEA is especially 
used in humans for its analgesic and anti-inflammatory properties and has demonstrated 
high safety and tolerability. Several preclinical in vitro and in vivo studies have proven that 
PEA can induce its biological effects by acting on several molecular targets in both central 
and peripheral nervous systems. These multiple mechanisms of action clearly differentiate 
PEA from classic anti-inflammatory drugs and are attributed to the compound that has 
quite unique anti(neuro)inflammatory properties. According to this view, preclinical studies 
indicate that PEA, especially in micronized or ultramicronized forms (i.e., formulations that 
maximize PEA bioavailability and efficacy), could be a potential therapeutic agent for the 
effective treatment of different pathologies characterized by neurodegeneration, (neuro)
inflammation, and pain. In particular, the potential neuroprotective effects of PEA have been 
demonstrated in several experimental models of Alzheimer’s disease. Interestingly, a single-
photon emission computed tomography (SPECT) case study reported that a mild cognitive 
impairment (MCI) patient, treated for 9 months with ultramicronized-PEA/luteolin, presented 
an improvement of cognitive performances. In the present review, we summarized the 
current preclinical and clinical evidence of PEA as a possible therapeutic agent in Alzheimer’s 
disease. The possible PEA neuroprotective mechanism(s) of action is also described.

Keywords: neuroinflammation, preclinical studies, animal models, 3xTg-AD, ultramicronized formulation

INTRODUCTION

Neuroinflammation and synaptic dysfunction in Alzheimer’s disease (AD) have been originally 
considered as epiphenomena with inflammation and altered neurotransmission occurring when 
damaged neurons provoke glia activation and changes in neuron biology. However, the growth of 
knowledge about the molecular mechanisms underlying AD converted this earlier view and points to 
a causal role of these events in the pathology (Overk and Masliah, 2014; Heneka et al., 2015; Steardo 
et al., 2015; Van Eldik et al., 2016; González-Reyes et al., 2017; Ahmad et al., 2019). Specifically, it 
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is now well established that the pathogenesis of AD includes 
also interactions with immunological mechanisms/responses in 
the brain. Neuroinflammation in AD is predominantly linked to 
central nervous system (CNS)-resident microglia, astroglia, and 
perivascular macrophages, which have been implicated at the 
cellular level (Zádori et al., 2018). Regional inflammatory responses 
characterize the CNS in AD, with deposits of β-amyloid (Aβ) as 
foci, associated with increased expression of pro-inflammatory 
cytokines, acute phase proteins, and complement components, 
along with signs of activated microglia and reactive astrocytes 
(Skaper et al., 2018). According to this scenario, neuropathological 
studies in human brains, demonstrating the activation of glial cells, 
mainly microglia and astrocytes (Zimmer et al., 2014; Chaney 
et al., 2018; Edison et al., 2018; Knezevic and Mizrahi, 2018), have 
been corroborated by studies in animal models of AD in which 
an overproduction of pro-inflammatory signals by glial cells 
triggers a neurodegenerative cascade (Birch et al., 2014; Heneka 
et al., 2015; Chun et al., 2018; Saito and Saido, 2018). On the other 
hand, mounting evidence indicates that also oxidative stress and 
synaptic dysfunction are early events in AD (Overk and Masliah, 
2014; Wirz et al., 2014; Kamat et al., 2016; Cai and Tammineni, 
2017). Changes in neuronal activity/signaling in AD can promote 
the β-amyloidogenic pathway of amyloid precursor protein (APP) 
processing, leading to increased Aβ levels and thus creating a sort of 
a positive feedback or a vicious cycle to accelerate AD pathogenesis 
(Herrup, 2010; Wirz et al., 2014; Cai and Tammineni, 2017). These 
findings indicate that neuroinflammation, oxidative stress, and 
synaptic dysfunction are integral parts of AD pathogenesis, and 
not solely consequences of Aβ-induced CNS damage. Thus, the 
relationship between neurodegeneration and neuroinflammation 
is strictly interdependent, suggesting that compounds able to 
simultaneously target these processes might be effective therapeutic 
agents in AD. In this context, endocannabinoid signaling and 
endocannabinoid-related compounds have been demonstrated 
to modulate the main pathological processes during early AD, 
including protein misfolding, neuroinflammation, excitotoxicity, 
mitochondrial dysfunction, and oxidative stress (Aso and Ferrer, 
2014; Bedse et al., 2015; Fernández-Ruiz et al., 2015). Among these 
compounds, N-palmitoylethanolamide (PEA) has attracted much 
attention because it exerts a local anti-injury function through 
a down-modulation of mast cells and protects neurons from 
excitotoxicity through several mechanisms (Mattace Raso et al., 
2014; Petrosino and Di Marzo, 2017).

PEA is a non-endocannabinoid lipid mediator belonging 
to the class of the N-acylethanolamine (NAE) phospolipids, 
which also includes the first endocannabinoid to be discovered, 
N-arachidonoyl-ethanolamine (anandamide; AEA) and the 

anorectic mediator N-oleoyl-ethanolamine (OEA). PEA was 
firstly isolated from soy lecithin, egg yolk, and peanut meal 
(Ganley et al., 1958; Petrosino and Di Marzo, 2017). Either 
preclinical or clinical studies indicate that PEA is potentially 
useful in a wide range of therapeutic areas, including eczema, 
pain, and neurodegeneration. PEA-containing products 
(Normast®, Glialia®, Nevamast®, Adolene®, Visimast®, 
Mastocol®, and Pelvilen®) are already licensed for use in humans 
(generally 1,200 mg/day) as a nutraceutical, a food supplement, 
or a food for medical purposes, depending on the country. 
PEA is especially used in humans for its analgesic and anti-
inflammatory properties (Petrosino and Di Marzo, 2017; Tsuboi 
et al., 2018) and has demonstrated high safety and tolerability 
(Gabrielsson et al., 2016; Nestmann, 2016; Petrosino and Di 
Marzo, 2017). In the last decade, several studies suggested that 
PEA might exert protection against neuroinflammation and 
neurodegeneration, thus indicating that the compound possesses 
exceptional potential as a novel treatment for neurodegenerative 
disorders (Hansen, 2010; Skaper et al., 2014; Iannotti et al., 2016; 
Brotini et al., 2017; D’orio et al., 2018; Scuderi et al., 2018).

In this review, we initially briefly discuss the main molecular 
targets of PEA and its pharmacological properties, including the 
available pharmacokinetic data. Successively, we report the in 
vivo and in vitro findings, along with clinical results, supporting 
the possible role of PEA as a therapeutic agent in AD.

PHARMACOLOGY OF PEA

PEA attracted the interest of the scientific community mainly 
after the discovery by an Italian Nobel Prize laureate Rita Levi 
Montalcini and co-workers that some acylethanolamides, initially 
termed ALIA-amides (autacoid local injury antagonist; ALIA) 
are endogenously synthesized lipids exerting interesting anti-
inflammatory properties (Levi-Montalcini et al., 1996). PEA (C16:0 
N-acylethanolamine; Figure 1) is a lipid mediator biologically 
synthetized in many plants as well as in cells and mammal tissues. 
It belongs to the class of non-endocannabinoid NAE, which also 
includes stearoylethanolamide (C18:0 N-acylethanolamine), 
oleoyl-ethanolamide (OEA, C18:1 N-acylethanolamine), and  
linoleoylethanolamide (C18:2 N-acylethanolamine). These 
compounds are much more abundant than the endocannabinoid 
anandamide in several animal tissues and endowed with important 
biological actions. The biosynthesis and metabolism of PEA have 
been deeply described elsewhere (Petrosino et al., 2010; Tsuboi 
et al., 2013; Petrosino and Di Marzo, 2017; Tsuboi et al., 2018), and 
we refer to those reviews for their description.

FIGURE 1 | Chemical structure of palmitoylethanolamide.
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Mechanisms of Action of PEA: Focus 
on Neuroinflammation
Several preclinical in vitro and in vivo studies have demonstrated 
that PEA can induce its biological effects by acting on several 
molecular targets in both central and peripheral nervous systems 
(Mattace Raso et al., 2014; Iannotti et al., 2016; Petrosino and 
Di Marzo, 2017; Tsuboi et al., 2018). As reported above, it has 
been initially suggested that PEA, belonging to the class of 
acylethanolamides, exerts its anti(neuro)inflammatory effects 
by acting as an “autacoid local injury antagonist” (ALIA) leading 
to a down-regulation of mast cell activation (Levi-Montalcini 
et al., 1996). However, subsequent preclinical studies strongly 
supported the view that PEA can directly activate at least two 
different receptors: the peroxisome proliferator-activated receptor-
alpha (PPAR-α; Lo Verme et al., 2005) and the orphan GPCR 55 
(GPR55; Pertwee, 2007).

PPAR-α actually seems to be the main molecular target involved 
in the anti(neuro)inflammatory effects of PEA. PPAR-α is, in fact, 
known for its protective role against (neuro)inflammation, and 
PPAR-α ligands are recognized as possible anti-inflammatory 
compounds (Devchand et al., 1996; Straus and Glass, 2007). 
When activated by a ligand, PPAR-α forms a heterodimer with 
9-cis-retinoic acid receptor (RXR) able to interact with specific 
DNA sequences in the promoter regions of selective genes, 
thus leading to complex anti-inflammatory responses (Daynes 
and Jones, 2002). In vitro, PEA is able to activate PPAR-α with 
a half-maximal effective concentration (EC50) of 3.1  ±  0.4 μM 
(De Gregorio et al., 2018). Numerous studies demonstrated 
that PPAR-α antagonist or the genetic ablation of this receptor 
counteracts/prevents the protective effects of PEA against 
neuroinflammation and neurodegeneration in cellular or animal 
models of different pathologies (Scuderi et al., 2011; D’Agostino 
et al., 2012; Esposito et al., 2012; Paterniti et al., 2013a; Avagliano 
et al., 2016; Cristiano et al., 2018), thus supporting the relevance 
of this target in the mechanism of action of PEA.

PEA has shown agonist activity towards the orphan receptor 
GPR55 (Baker et al., 2006), which was proposed as a third 
cannabinoid receptor (Pertwee, 2007; Yang et al., 2016). In fact, 
cannabinoids are able to interact with GPR55, thus inducing 
some behavioral, immunological, and neuroinflammatory activities 
(De  Gregorio et al., 2018; Balenga et al., 2014). However, the 
limited sequence similarity between GPR55 and cannabinoid 
receptors does not support this concept (Baker et al., 2006). 
At the present, the relevance of this receptor activation in 
the anti-inflammatory/neuroprotective PEA-induced effects 
remains to be clarified. It has been reported that PEA improves 
murine experimental colitis and that this effect is, at least 
partially, mediated by GPR55 activation (Borrelli et al., 2015). 
Furthermore, PEA protects against atherosclerosis by promoting 
an anti-inflammatory and proresolving phenotype of lesional 
macrophages, and this effect involves GPR55 activation 
(Rinne et al., 2018). The expression of GPR55 was protective 
against the insult exerted by MPP+ in a cellular model of 
Parkinson’s disease, but an agonist of GPR55 did not enhance 
neuroprotection in GPR55-expressing cells (Martínez-Pinilla et 
al., 2019). However, the GPR55 agonist abnormal-cannabidiol 

(Abn-CBD), a synthetic cannabidiol isomer, displayed beneficial 
properties when chronically administered (5 weeks) to a murine 
model of Parkinson’s disease (Celorrio et al., 2017). Moreover, a 
neuroprotective role of GPR55 activation on neural stem cells in 
vitro and in vivo has been recently proposed, thus suggesting that 
GPR55 could provide a novel therapeutic target against negative 
regulation of hippocampal neurogenesis by inflammatory insult 
(Hill et al., 2019). Finally, a selective agonist for GPR55 protected 
dentate gyrus granule cells and reduced the number of activated 
microglia after NMDA induced lesions in an in vitro model of 
rat organotypic hippocampal slice cultures (Kallendrusch et al., 
2013). Taken together, these data suggest that the beneficial anti-
neuroinflammatory effects of PEA might be mediated, at least 
in part, by GPR55 activation. However, other data suggested 
anti-inflammatory properties of GPR55 blockade. For example, 
a GPR55 antagonist diminished inflammation in experimental 
colitis by reducing the levels of pro-inflammatory cytokines, 
tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and 
IL-6 and impairing leukocyte activation and migration (Stančić et 
al., 2015). In addition, anti-neuroinflammatory effects have been 
observed after the treatment of LPS-activated primary microglial 
cells with a GPR55 inverse agonist (Saliba et al., 2018). Thus, the 
precise role of GPR55 in the anti-inflammatory/neuroprotective 
PEA action remains to be elucidated.

Besides its direct action on PPAR-α and GPR55, compelling 
evidence indicates that PEA could produce several indirect 
receptor-mediated actions, through the so-called entourage 
effect (Mattace Raso et al., 2014; Petrosino and Di Marzo, 2017). 
Given its weak affinity for CB1 and CB2 receptors, cannabinoid 
receptors are not considered direct targets of PEA. However, PEA 
can indirectly activate cannabinoid receptors through different 
indirect mechanisms. In particular, PEA may indirectly activate 
CB1 and CB2 receptors by acting as a false substrate for fatty acid 
amide hydrolase (FAAH), the enzyme involved in the degradation 
of the endocannabinoid AEA (Petrosino et al., 2016; Petrosino 
and Di Marzo, 2017), thus leading to a reduced degradation 
of AEA. This action leads to increased levels of AEA and, in 
turn, an increased activation of cannabinoid receptor-mediated 
signaling. Furthermore, quite recent studies have demonstrated 
that PEA increases the levels of CB2 receptor mRNA and protein 
as a result of PPAR-α activation, and this effect is involved in 
PEA-induced microglia changes associated with increased 
migration and phagocytic activity (Guida et al., 2017). Finally, 
the discovery that GPR55 forms receptor heteromer with either 
CB1 or CB2 receptors (Balenga et al., 2014; Martínez-Pinilla 
et al., 2014; Martínez-Pinilla et al., 2019) raises the exciting 
possibility that PEA might modulate CB1- and/or CB2-mediated 
intracellular signaling by targeting the GPR55 protomer in these 
putative GPR55/CB1 or GPR55/CB2 heterodimers. PEA can also 
indirectly activate the transient receptor potential vanilloid type 1 
(TRPV1) channel, which is also a target for the endocannabinoids 
(Zygmunt et al., 2013), via different mechanisms. In particular, 
PEA-induced increase of endocannabinoid levels can modulate 
inflammation and other immune functions via TRPV1 channel 
(Ross, 2003). In addition, putative allosteric properties of PEA 
at TRPV1 channels have been proposed to possibly explain 
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the ability of the compound to increase the endocannabinoid-
induced activation and desensitization of TRPV1 channels 
(Petrosino and Di Marzo, 2017). Finally, as the existence of a 
direct biochemical interaction has been proposed, it seems likely 
that PEA can also indirectly activate TRPV1 channels via PPAR-α 
activation. The possible relevance of these mechanisms in the 
anti-neuroinflammatory/neuroprotective effects of PEA remains 
to be clarified. In fact, TRPV1 channel activation has been linked 
to either anti-neuroinflammatory or pro-neuroinflammatory 
signaling (Kong et al., 2017). Interestingly, it has been recently 
reported that TRPV1 activation reduces central inflammation in 
multiple sclerosis (Stampanoni Bassi et al., 2019). Accordingly, 
neuroprotective effects of TRPV1 activation in animal models 
of Parkinson’s and Alzheimer’s diseases have been reported (Jiang 
et al., 2013; Nam et al., 2015; Jayant et al., 2016; Xu et al., 2017; 
Zhao et al., 2017; Balleza-Tapia et al., 2018).

Taken together, the above findings strongly suggest that 
PEA by activating multifactorial pharmacological targets 
and by mediating several cellular mediators could play 
promising protective roles in contrasting neuroinflammation 
and neurodegeneration. The ability of PEA to synergistically 
interact via several mechanisms is attributed to the compound’s 
quite unique properties in respect to the traditional anti-
inflammatory drugs.

Pharmacokinetic
Given its poor water solubility, large particle size in the native state, 
and, possibly, short‐lived action, PEA might have limitations in terms 
of solubility and bioavailability. In fact, PEA is almost insoluble in 
water, while its solubility in most other aqueous solvents is very poor 
with a partition coefficient (log P) estimated to be > 5 (Lambert et al., 
2001). Published data on PEA bioavailability are still scarce, but recent 
findings are contributing to better understand the pharmacokinetic 
of the compound and the possible relevance of new oral formulations.

It was originally reported that in rats, following its intraperitoneal 
(i.p.) administration, N‐[1‐14C]‐PEA was mainly distributed in 
some peripheral organs, and the lower concentrations were found 
in the brain, plasma, and erythrocytes (Zhukov, 1999). Moreover, 
orally administered N‐[9,10‐3H]‐PEA (100 mg/kg of body 
weight) was able to penetrate through the blood–brain barrier 
(BBB), but only in small amounts with a brain bioavailability 
corresponding to 0.95% of the oral dose (Artamonov et al., 2005; 
Gabrielsson et al., 2016). It has also been reported that PEA 
administration to humans leads to a two- to nine-fold increase in 
plasma baseline concentrations, depending on the dose (Balvers 
et al., 2013). The poor pharmacokinetic of PEA prompted the 
development of different formulation strategies, especially 
aimed at ameliorating the compound distribution. For instance, 
it has been demonstrated that when PEA was formulated as an 
emulsion in corn oil and administered subcutaneously (s.c.) to 
young DBA/2 mice (10 mg/kg of body weight), the compound 
was more extensively distributed in several organs, including the 
brain (Grillo et al., 2013).

In addition, a PEA suspension in corn oil administered to 
rats by gastric gavage (100 mg/kg of body weight) led to an about 
20-fold increase in basal PEA plasma levels (Vacondio et al., 2015). 

The highest PEA plasma concentration was observed after 15 min 
(Cmax = 420 ± 132 nM); PEA plasma levels returned to the baseline 
ones ~2 h after the compound administration. The formulation 
of PEA as micronized or ultramicronized particles (m‐PEA and 
µm‐PEA, respectively) has been more recently proposed as a 
strategy to possibly increase PEA bioavailability, also in the CNS, 
without affecting the pharmacological efficacy of the compound 
(Impellizzeri et al., 2014; Petrosino and Di Marzo, 2017; Petrosino et 
al., 2018). It has been firstly reported that the oral administration of 
µm‐PEA (30 mg/kg of body weight) to a beagle dog led to a five-fold 
increase in blood PEA concentration. The peak of plasma PEA levels 
(~55–60 pmol/ml) was observed 1 and 2 h after the administration 
of the compound (Cerrato et  al., 2012). Subsequently, another 
study confirmed this finding (Petrosino et al., 2016). Another 
pharmacokinetic profile of m‐PEA and µm‐PEA after a single oral 
administration (15 mg/kg of body weight) to beagle dogs is reported 
in a US patent (Della Valle et al., 2013). In this case, blood samples 
have been taken at time 0 (immediately before the administration 
of PEA) and at times (t) 1, 2, and 3 h; the administration of m‐PEA 
and µm‐PEA leads to similar peak concentration values of PEA 
in serum (22.2 and 22.4 pmol/ml, respectively; ~2 times higher 
than the baseline values) measured in the blood samples taken 
1 h after the compound administration, with PEA concentrations 
returning to basal values at t = 2 h. Petrosino et al. (2016) reported 
the first preliminary pharmacokinetic data in humans. In particular, 
the authors measured blood PEA concentrations after the oral 
administration of m-PEA (300 mg) to human volunteers. Blood 
sample collection was carried out immediately before, and after 2, 
4, and 6 h after PEA assumption; under this conditions, the peak 
of plasma PEA levels (~22 pmol/ml) was observed 2 h after the 
compound assumption, with a drop to baseline levels within the 
following 2 h. Very recently, Petrosino et al. (2018) demonstrated 
by orally administering µm‐[13C]4-PEA or a naïve [13C]4-PEA 
(30 mg/kg of body weight) formulation to healthy and carrageenan-
injected rats, that ultramicronization increases the ability of PEA to 
reach peripheral and central tissues under either healthy or local 
inflammatory conditions. In particular, the plasma concentrations 
of [13C]4-PEA were measured at 5, 15, 30, and 60 min after the oral 
administration of the compound in ultramicronized and naïve 
formulations to healthy rats. Rats receiving µm-[13C]4-PEA showed 
higher mean plasma levels of the compound than rats receiving 
naïve [13C]4-PEA. In rats receiving µm‐[13C]4-PEA, the peak 
concentration of [13C]4-PEA (5.4 ± 1.87 pmol/ml) was found after 
5 min, and it was five times higher than the concentration measured 
in rats administered with the naïve formulation (1.1 ± 0.35 pmol/ml), 
in which no significant peak plasma concentrations were found.

Collectively, the above findings suggest that micronized or 
ultramicronized formulations of PEA maximize the compound 
bioavailability and efficacy, although further studies are necessary 
to undoubtedly confirm this hypothesis. Other strategies have 
been proposed to improve PEA bioavailability. For instance, 
PEA ester derivatives, prepared by conjugating PEA with various 
amino acids, have been synthetized as PEA prodrug and allowed 
to modulate the kinetics of PEA release in plasma and stability 
in liver homogenate (Vacondio et al., 2015). Two derivatives, 
l-Val-PEA, with suitable PEA release in plasma, and d-Val-
PEA, with high resistance to hepatic degradation, were orally 
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administered to rats, and plasma levels of prodrugs and PEA 
were measured at different time points, in comparison with naïve 
PEA (equimolar doses corresponding to 100 mg/kg of PEA). 
Both prodrugs showed significant release of PEA but provided 
lower plasma concentrations than those obtained with equimolar 
doses of naïve PEA. The highest PEA plasma concentrations 
were observed after 15 min following PEA, l-Val-PEA, or d-Val-
PEA (420  ±  132, 56.4  ±  13.5, or 53.9  ±  19.7 nM, respectively). 
It has also been reported that the loading of the compound 
in nanostructured lipid carriers (NLCs) enhances the ocular 
bioavailability of PEA (Puglia et al., 2018) and that polyethylene 
glycol esters of PEA proved to be able to delay and prolong the 
pharmacological activity of the compound (Tronino et al., 2015), 
thus suggesting that these formulations might also ameliorate 
systemic PEA pharmacokinetic.

PEA AND ALZHEIMER’S DISEASE

Several preclinical and some clinical indications support the 
view of PEA as a therapeutic tool with high potential for the 
effective treatment of different pathologies characterized by 
neurodegeneration and neuroinflammation (Calabrò et al., 2016; 
Brotini et al., 2017; Holubiec et al., 2018; Impellizzeri et al., 2019). 
In this context, the potential beneficial effects of PEA have been 
demonstrated in several in vitro and in vivo experimental models 
of AD.

Preclinical Evidence
In Vitro Studies
To our knowledge, the first experimental indication of PEA as a 
possible therapeutic agent in AD has been published by Scuderi 
et al. (2011). In their pioneering work, the authors evaluated the 
ability of PEA (10−7 M) to mitigate Aβ (Aβ1–42; 1 μg/ml)-induced 
astrogliosis in primary cultures of rat astrocytes. The results indicate 
that PEA treatment attenuated Aβ-induced astrocyte activation, 
as proven by its effects in reducing astrocyte hypertrophied cell 
bodies and thickened processes, along with the expression of 
glial fibrillary acidic protein (GFAP) and S100 calcium-binding 
protein B (S100B), two specific markers of astrocyte activity also 
linked to AD pathogenesis. Furthermore, PEA was able to blunt 
Aβ-induced neuroinflammation by significantly diminishing 
either the altered expression of pro-inflammatory molecules, 
such as cyclooxygenase-2 (COX-2) and inducible nitric oxide 
synthase (iNOS), or the enhanced release of prostaglandin 
PGE2, nitric oxide, IL-1β, and TNF-α. Interestingly, the PPAR-α 
antagonist MK886 was able to partly blunt the PEA-induced 
effects against Aβ-induced astrogliosis and neuroinflammation, 
thus suggesting a significant, but not exclusive, involvement of 
the PPAR-α in mediating the above-mentioned PEA actions. 
Concerning the possible intracellular signaling involved in 
PEA-induced effects, it has also been demonstrated that PEA 
critically diminished the Aβ-induced activation of p38 and Jun 
N-terminal kinase (JNK), as well as the subsequent activation 
of nuclear transcription factors, such as nuclear factor kappaB 
(NF-kB) and activator protein 1 (AP-1) (Scuderi et al., 2011). 
Later, the same group demonstrated that PEA treatment exerted 

protective effects against Aβ-induced toxicity also in primary 
rat mixed neuroglial co-cultures and organotypic hippocampal 
slices (Scuderi et al., 2012; Scuderi and Steardo, 2013). In 
particular, in mixed neuroglial co-cultures PEA prevented the 
increase in astrocyte number and the quantity of apoptotic nuclei 
in microtubule-associated protein 2 (MAP2)-positive neurons 
induced by Aβ challenge. Under these experimental conditions, 
the PEA antigliosis and neuroprotective effects were completely 
ascribed to PPARα activation, since MK886, the selective PPARα 
antagonist, almost completely abolished the PEA-induced 
effects. On the contrary, GW9662, a selective PPARγ antagonist, 
did not exert any significant influence. Furthermore, PEA 
decreased Aβ-induced astrocyte and microglia activation in 
organotypic cultures of rat hippocampi, an effect associated with 
a rescue of neuronal CA3 damage caused by Aβ challenge. PEA 
treatment also rescued neuron integrity and reduced the levels 
of neuroinflammation markers in this preparation. Once more, 
these effects were completely abolished by the pretreatment with 
a PPARα antagonist (Scuderi and Steardo, 2013). Finally, PEA 
was also evaluated for its possible effects in AD angiogenesis 
and neuroinflammation by using Aβ-treated C6 rat astroglioma 
cells and human umbelical vein endothelial cells (HUVEC)
(Cipriano et al., 2015). In line with the previous findings, under 
these experimental conditions, PEA concentration-dependently 
reduced the expression of pro-inflammatory and pro-angiogenic 
markers in Aβ (1 μg/ml)-stimulated C6 cells. Interestingly, the 
medium aspired from PEA-treated C6 cells was able to reduce 
the HUVEC proliferation induced by their exposure to the 
conditioned medium from Aβ-treated C6 cells. The possible 
anti-angiogenic properties of PEA were also supported by the 
demonstration that the compound inhibited the nuclear levels 
of mitogen-activated protein kinase 1, which is associated with 
the main pro-angiogenic pathway, as well as the cytoplasmic 
vascular endothelial growth factor in HUVEC exposed to the 
medium from Aβ-treated C6 rat astroglioma cells. Once again, 
these effects were blocked by the treatment with the PPAR-α 
antagonist GW6471. As the release of proangiogenic factors 
during astrogliosis has been suggested as a key step in controlling 
AD progression, these findings further support the role of PEA as 
therapeutic agents for AD (Cipriano et al., 2015).

During the last years, other groups confirmed the protective 
action of PEA against the in vitro toxic effects of Aβ. For instance, 
in a very elegant study, it has been demonstrated that in wild-type 
(WT) mice, the addition of several acylethanolamides (including 
PEA) partially reverted Aβ-induced inflammation. However, 
the genetic deletion of FAAH (i.e., the enzyme involved in the 
degradation of the endocannabinoid AEA) in astrocytes induced 
an increased sensitivity to the pro-inflammatory Aβ-induced 
action, and this effect involved PPAR-α, PPAR-γ, and TRPV1 
receptors, but not CB1 or CB2 receptors (Benito et al., 2012). 
Based on these findings, the authors raised the possibility that 
an excessively prolonged enhancement of the endocannabinoid 
tone may have harmful consequences, instead of the beneficial 
effects exerted by an acute increased tone.

Moving from the above data, we evaluated the protective 
role of PEA against Aβ-induced toxicity on cell viability and 
glutamatergic transmission in primary cultures of cerebral cortex 
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neurons and astrocytes from the triple-transgenic murine model 
of AD (3xTg-AD) and their WT littermates (non-Tg mice; 
Tomasini et al., 2015). 3xTg-AD mice were selected because 
these animals harbor three mutant human genes (APPSwe, 
PS1M146V, and tauP301L) and closely mimic many aspects of AD 
in humans. In fact, these animals are characterized by age-
dependent build-up of both plaques and tangles in the cerebral 
cortex, hippocampus, and amygdala regions, along with early 
synaptic dysfunction and cognitive decline, thus constituting a 
widely used and validated AD model. The results indicated that 
Aβ1-42 fragment (0.5 μM; 24 h) treatment induced a reduction 
of cell viability and an increase in glutamate levels in cultured 
cortical neurons and astrocytes from non-Tg mice, but not in 
those from the genetic model of AD. The Aβ-induced effects in 
non-Tg cell cultures were counteracted by a pretreatment with 
PEA (0.1 μM). Based on these findings, it has been hypothesized 
that exogenous Aβ treatment failed to induce deleterious effects 
in 3xTg-AD mice-derived cortical neurons, as these cells at 
8 days in vitro were already exposed to a quite high concentration 
of endogenous peptide fragment. In fact, Aβ levels were observed 
in these cell cultures after 6 days in vitro (Vale et al., 2010), and 
we demonstrated that control cultured cortical neurons obtained 
from 3xTg-AD mice displayed morphological alterations similar 
to those observed in Aβ-exposed cultured cortical neurons 
obtained from non-Tg mice (Tomasini et al., 2015). However, the 
treatment with PEA prevented the effects of Aβ in cultured cortical 
neurons and astrocytes from non-Tg mice but failed to affect 
the morphological alterations and glutamate levels in 3xTg-AD 
mice-derived cell cultures. This suggests that the compound may 
be effective in the early AD or when Aβ is accumulating, thus 
initiating to damage the CNS. Later, Bronzuoli et al. (2018), by 
using a different in vitro protocol, demonstrated that PEA did 
not display toxic effects in both astrocytes and neurons from 
3xTg-AD mice, at the tested concentrations (0.01, 0.1, and 1 μM), 
but it promoted neuron viability and counteracted reactive 
astrogliosis in mature 3xTg-AD primary astrocytes.

In a further study, we evaluated whether astrocytes could 
participate in regulating the Aβ-induced neuronal damage, 
by using primary mouse astrocyte cell cultures and mixed 
astrocyte–neuron cultures (Beggiato et al., 2018). The results 
indicated that in the presence of astrocytes pre-exposed to Aβ1-42 
fragment (0.5 μM; 24 h), there was a reduction of neuronal 
viability, an increase in the number of neuronal apoptotic 
nuclei, a decrease in the number of MAP-2-positive neurons, 
and an increase in the number of neurite aggregations/100 μm 
as compared with control (i.e., untreated) astrocyte–neuron 
co-cultures. Taken together, these data indicate that astrocytes 
contribute to Aβ-induced neurotoxicity and neuroinflammation. 
Interestingly, these effects were not observed when neurons 
were cultured in the presence of astrocytes pre-exposed to 
PEA (0.1 μM), applied 1 h before and maintained during Aβ 
treatment. Thus, it has been concluded that PEA, by blunting 
Aβ-induced astrocyte activation, improved neuronal survival in 
mouse astrocyte–neuron co-cultures.

Finally, other researchers investigated the possible anti-AD 
action of co-ultraPEALut, a co-ultramicronized formulation of 
PEA in combination with the vegetable flavonoid luteolin (Lut), 

which demonstrated antioxidant properties. Previous studies, 
in fact, indicated that the association of these two molecules, in 
a fixed ratio of 10:1 in mass, induced a strong neuroprotective 
activity (Paterniti et al., 2013b). The exposure of human neuronal 
cells obtained by differentiating SH-SY5Y neuroblastoma cells 
to Aβ1-42 (1 µM; 24 h) induced a reduction of cell viability and 
neuroinflammatory responses. These effects were counteracted by 
the pre-treatment with co-ultraPEALut (reference concentrations: 
27, 2.7, and 0.27 µM OF PEA) for 2 h (Paterniti et al., 2014). 
Similar results were obtained from an ex vivo organotypic model 
of AD. In particular, hippocampal slice cultures were prepared 
from mice at postnatal day 6, and after 21 days of culturing, the 
slices were pre-treated with co-ultraPEALut and then incubated 
with Aβ1-42 fragment (1 µM; 24 h). Under these experimental 
conditions, the pre-treatment with co-ultraPEALut significantly 
reduced iNOS and GFAP expression, restored neuronal iNOS 
and brain-derived neurotrophic factor (BDNF), and reduced 
the apoptosis (Paterniti et al., 2014). In line with these data, 
co-ultraPEALut reduced the expression of mRNA codifying 
serum amyloid A (SAA) in oligodendrocyte precursor cells 
subjected to TNF-α treatment. The relevance of this finding is 
supported by the evidence that SAA immunoreactivity is found 
in axonal myelin sheaths of cortex in AD (Barbierato et al., 2017).

In Vivo Studies
The promising in vitro results prompted the development of in 
vivo studies aimed at evaluating the neuroprotective properties 
of PEA in animal models of AD. Firstly, D’Agostino et al. (2012) 
tested PEA against the learning and memory dysfunctions 
induced in mice by the intracerebroventricular injection of 
Aβ25–35 peptide (9 nmol). To this purpose, PEA was administered 
once a day (3–30 mg/kg, s.c.), starting 3 h after Aβ25–35, for 1 or 
2  weeks, while water-maze, water-maze working memory, and 
novel object recognition tests were used to assess cognitive 
performances. The authors demonstrated that, depending on 
the dose, PEA reduced (10 mg/kg of body weight) or prevented 
(30 mg/kg of body weight) the cognitive impairments induced by 
Aβ25–35 peptide injection. In line with previous in vitro findings, 
the beneficial effects of PEA appear mediated by PPAR-α, as the 
compound failed to rescue memory deficits induced by Aβ25–35 
peptide injection in PPAR-α null mice, and GW7647 (a synthetic 
PPAR-α agonist) mirrored the effects of PEA. These encouraging 
behavioral results were corroborated by the evidence that in 
the same animals used for cognitive tests, PEA reduced brain 
lipid peroxidation, protein nitrosylation, iNOS induction, and 
caspase3 activation (D’Agostino et al., 2012). Comparable results 
have been obtained following the intrahippocampal injection of 
Aβ1–42 combined with PEA treatment in adult male rats (Scuderi 
et al., 2014). Immunofluorescence analysis of the hippocampal 
CA3 area ipsilateral to the injection site revealed that injection of 
Aβ1–42 induced astrocyte activation, as demonstrated by the fact 
that these cells showed a stellate shape and multiple branched 
processes. An increased expression of GFAP and S100B mRNA 
and protein, as well as increased densities of S100B-positive 
astrocytes, was also observed. Finally, intrahippocampal 
injection of Aβ1–42 was also associated with an upregulation of 
inflammatory markers, such as iNOS, COX-2, IL-1β, and TNF-α 
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in homogenates of hippocampi ipsilateral to the injection site. 
When PEA (10 mg/kg of body weight) was intraperitoneally 
administered once a day for seven consecutive days, starting from 
the day of Aβ1–42 injection, it was able to partially or completely 
antagonize Aβ1–42-induced toxic effects. Again, the effects of 
PEA were prevented by the treatment with GW6471 (2 mg/kg), 
thus demonstrating the involvement of PPAR-α. Moreover, the 
authors demonstrated the PPAR-α-dependent ability of PEA to 
restore the alteration in the Wnt signaling pathway caused by 
Aβ1–42 hippocampal infusion. This is relevant since Wnt signaling 
pathway plays different roles in the development of neuronal 
circuits and also in the adult brain, where it regulates synaptic 
transmission and plasticity and has been also implicated in 
various diseases including neurodegenerative diseases (Inestrosa 
and Varela-Nallar, 2014). Finally, PEA reduced phosphorylated 
tau protein overexpression and rescued cognitive functioning, 
further strengthening the potential properties of the compound 
as a therapeutic agent in AD (Scuderi et al., 2014).

More recently, in vivo studies demonstrated that PEA displays 
beneficial effects also in a genetic model of the pathology. In 
a first study, the effects of chronic administration (3-month 
treatment) of µm‐PEA in 3xTg-AD mice, at two different stages 
of the pathology, were evaluated by administering the compound 
via a subcutaneous delivery system to groups of 3-month-old 
and 9-month-old animals (Scuderi et al., 2018). The animals were 
then tested at the end of the 3-month treatment and thereafter at 
the age of 6 months (i.e., early-symptomatic stage) and 12 months 
(i.e., clearly symptomatic stage), respectively. A battery of 
cognitive and non-cognitive tasks, followed by biochemical 
assessments of neuropathology, have been performed. Under 
these experimental conditions, µm‐PEA rescued cognitive 
functions in 6-month-old 3xTg-AD mice as evaluated by 
means of novel object recognition test (short- and long-term 
memory), inhibitory passive avoidance task (contextual learning 
and memory), and Morris water maze (spatial learning). In 
12-month-old animals, µm‐PEA significantly improved the 
short-term memory in 3xTg-AD mice, with no significant effects 
on long-term memory. Furthermore, the compound did not exert 
significant effects on learning or memory in aged non-Tg mice. 
Interestingly, µm‐PEA also reduced depressive-like behaviors, 
measured by the tail suspension test and forced swim test, in 
early-symptomatic, but not in clearly symptomatic, 3xTg-AD 
mice, while it counteracted anhedonia-like phenotype of both 
young (6-month-old) and aging (12-month-old) 3xTg-AD mice. 
Overall, these findings indicate that µm‐PEA induces either 
beneficial cognitive or other non-cognitive effects that might be 
relevant to AD. Moreover, biochemical data also demonstrated 
that chronic µm‐PEA treatment reduced Aβ formation and 
phosphorylation of tau protein and promoted neuronal survival 
in the CA1 subregion of the hippocampus. These effects were 
associated with a normalization of the astrocytic function, 
a rebalancing of glutamatergic transmission, and a general 
reduction of neuroinflammatory conditions. The evidence that 
these biochemical/neurochemical effects were particularly 
manifest when the treatment was performed at a precocious 
stage of the pathology suggests the therapeutic potential of µm‐
PEA as an early treatment in AD.

In a recent study (Bronzuoli et al., 2018), the same treatment 
protocol as utilized in the above research was used to evaluate the 
effects of the chronic µm‐PEA treatment on reactive astrogliosis 
and neuronal function in the frontal cortex of 6-month-old 
3xTg-AD mice, compared with their age-matched non-Tg 
littermates. Once again, µm‐PEA demonstrated beneficial 
effects in reducing pathology-related biochemical alterations in 
this animal model of AD. In fact, 3-month µm‐PEA treatment 
markedly reduced astrocytic activation in 3xTg-AD mice, as 
demonstrated by the decrease in GFAP mRNA and protein 
expression and the trend toward a decrease of S100B protein 
expression levels. Furthermore, chronic treatment reduced iNOS 
levels, slightly dampened the expression of Aβ, and increased 
the expression of BDNF in 3xTg-AD mice. Taken together, these 
findings indicate that early-symptomatic 3xTg-AD mice display 
signs of reactive gliosis in the frontal cortex and that the chronic 
µm‐PEA may counteract such phenomenon, also improving 
the trophic support to neurons, in the absence of astrocytes and 
neuronal toxicity.

CLINICAL EVIDENCE

To the best of our knowledge, current clinical studies of PEA 
are mostly related to pain or peripheral inflammatory-related 
conditions, while there are very few studies aimed at evaluating 
the possible beneficial effects of PEA on CNS-related pathologies 
in human beings. This could be due to the fact that very little is 
known about the pharmacokinetics of PEA in humans (please 
see Pharmacokinetic). In fact, the bioavailability and apparent 
volume of distribution have not been clearly evaluated; and blood 
PEA levels, at least in animals, do not accurately reflect levels in 
the CNS (Davis et al., 2019). The micronized or ultramicronized 
forms of PEA increased bioavailability in animals compared 
with naïve forms, but there are very few and very recent clinical 
data to confirm that this is true for humans. Thus, while it seems 
likely that the new PEA formulations improve the compound 
bioavailability, complete pharmacokinetics data are urgently 
necessary to assess the precise tissue distribution and site of 
metabolism of PEA. These data will possibly allow to overcome 
the major difficulties in setting up clinical studies focused at 
evaluating the possible therapeutic role of PEA against CNS 
disorders.

In line with the above information, there are no clinical 
data concerning the possible beneficial effects of PEA in AD 
patients. However, Calabrò and colleagues (2016) in a case 
report described the case of a patient affected by mild cognitive 
impairment (MCI) who was treated for 9 months with high-
dose PEALut. As MCI may be symptomatic of normal aging or 
of a transition to early AD, the results of this observation are 
here reported. A 67-year-old patient presented, at the onset 
of the observational period, a mild memory impairment, as 
demonstrated by the specific neuropsychological assessment, 
including attentive matrices (AM), Babcock Story Recall Test 
(BSRT), Mini-Mental State Examination (MMSE), Montreal 
Cognitive Assessment (MoCA), Rey Auditory Verbal 
Learning Test (RAVLT), Trail Making Test (TMT), and verbal 
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fluency tests (VFTs). After a 3-month treatment with PEALut, 
the patient reported a non-significant cognitive amelioration, 
whereas her neuropsychological evaluation was almost 
normal after a 9-month treatment (significant improvement 
of RAVLT, AM, and TMT in comparison with those in the 
pre-treatment period).

To support the possible beneficial effect of PEA in 
neurodegenerative disorders, a study involving 30 Parkinson’s 
disease patients receiving levodopa demonstrated that uµ-PEA 
(600 mg for 1 year) slowed down disease progression and 
disability (Brotini et al., 2017).

CONCLUSIONS

To summarize, preclinical either in vitro or in vivo data 
(Tables 1 and 2) strongly suggest that PEA, especially in its 
ultramicronized formulation, exerts quite robust therapeutic 
effects in several animal models of AD. In particular, published 
findings indicate that µm‐PEA treatment ameliorates both 
cognitive deficits and a range of neuropathological features 

of AD. A correlation between PEA anti-inflammatory, 
neuroprotective, neurobehavioral, and neurovascular effects 
might be suggested from the results in animal AD models, 
thus attributing to the compounds’ unique properties, 
especially compared with those of classic anti-inflammatory 
drugs. Despite the obvious limits of the mentioned preclinical 
studies and by avoiding any simplistic extrapolation of data 
from the animal model to the human condition, the results 
of these intensive preclinical experiments propose µm‐PEA 
as a potential therapeutic agent, which could have an impact 
on the progression of AD, especially when the pathology is 
at an early stage. This hypothesis is also supported by studies 
demonstrating the PEA treatment efficacy in ameliorating the 
symptomatology of other neurodegenerative conditions such as 
Parkinson’s disease (Esposito et al., 2012; Avagliano et al., 2016; 
Brotini et al., 2017; Crupi et al., 2018) and multiple sclerosis 
(Loría et al., 2008; Orefice et al., 2016).

Based on the available results and for translational purposes, 
it becomes now urgent to evaluate the possible beneficial effects 
of orally administered µm‐PEA in animal models of AD. In the 
event of positive results, these studies would help to rapidly define 

TABLE 1 | Summary of in vitro preclinical studies supporting the role of palmitoylethanolamide (PEA) as a possible therapeutic agent in Alzheimer’s disease (AD).

In vitro preclinical studies

Preparation Treatment Main findings Reference

Primary cultures of rat astrocytes PEA (10−7 M) against Aβ1–42 
(1 μg/ml)

PEA counteracts Aβ-induced reactive astrogliosis, 
partially through PPARα activation

Scuderi et al., 2011

Primary rat mixed neuroglial co-cultures PEA (10−7 M) against Aβ1–42 
(1 μg/ml)

PEA blunts Aβ-induced astrocyte activation and improves 
neuronal survival through PPARα activation

Scuderi et al., 2012; Scuderi 
and Steardo, 2013

Rat organotypic hippocampal slices PEA (10−7 M) against Aβ1–42 
(1 μg/ml)

PEA decreases Aβ-induced astrocyte and microglia 
activation, rescues neuronal CA3 damage, and reduces 
neuroinflammation through selective PPARα activation

Scuderi et al., 2012; Scuderi 
and Steardo, 2013

Primary cultures of mouse astrocytes PEA (10−5 M) against Aβ1–42 
(1 μg/ml)

PEA partially reverted the Aβ-induced inflammation Benito et al., 2012

C6 rat astroglioma cells; HUVEC human 
endothelial cells

PEA (10−8–10−6 M) against 
Aβ1–42 (1 μg/ml)

PEA decreases pro-inflammatory and pro-angiogenic 
marker expression in Aβ-treated C6 rat astroglioma 
cells and in HUVEC cells exposed to the medium from 
Aβ-treated C6 rat astroglioma cells through PPARα 
activation

Cipriano et al., 2015

Primary cultures of cerebral cortex 
neurons and astrocytes from WT 
(non-Tg) and 3xTg-AD mice

PEA (10−7 M) against Aβ1–42 
(0.5 μM; 24 h)

PEA prevents Aβ-induced toxicity in cultured cortical 
neurons and astrocytes from non-Tg mice but fails to 
affect the morphological alterations and glutamate levels 
in 3xTg-AD mouse cell cultures

Tomasini et al., 2015

Primary mouse astrocytes cell cultures 
and mixed astrocytes-neurons cultures

PEA (10−7 M) against Aβ1–42 
(0.5 μM; 24 h)

PEA prevents Aβ-induced reduction of neuronal viability, 
increase of neuronal apoptotic nuclei, and decrease 
of MAP-2-positive neurons in astrocytes/neurons 
co-cultures

Beggiato et al., 2018

Primary cortical 3xTg-AD mouse 
astrocytes and neurons

PEA (10−8–10−6 M) PEA reduces astrogliosis and improves neuronal viability Bronzuoli et al., 2018

Human neurons from differentiated 
SH-SY5Y neuroblastoma cells

Co-ultraPEALut (2.7 and 
0.27 µM) against Aβ1–42; 
(1 μM; 24 h)

Co-ultraPEALut prevents Aβ-induced reduction of cell 
viability and neuroinflammation

Paterniti et al., 2014

Mouse organotypic hippocampal slices Co-ultraPEALut (2.7 and 
0.27 µM) against Aβ1–42; 
(1 μM; 24 h)

Co-ultraPEALut reduces Aβ-induced iNOS, GFAP, and 
apoptosis and restored BDNF levels 

Paterniti et al., 2014

Aβ1–42, β amyloid 1–42 peptide; BDNF, brain-derived neurotrophic factor; co-ultraPEALut, ultramicronized formulation of PEA/luteolin combination; GFAP, glial fibrillary acidic 
protein; iNOS, inducible nitric oxide synthase; MAP-2, microtubule-associated protein 2; PPARα, peroxisome proliferator-activated receptor-alpha.
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adaptive clinical trials and will hopefully allow to speed up the 
development of an innovative therapy for AD. In this context, it is 
worth noting that PEA-containing products (Normast®, Glialia®, 
Nevamast®, Adolene®, Visimast®, Mastocol®, and Pelvilen®) 
are actually used for certain medical indications, especially 
inflammatory pain. Moreover, as an endogenous compound, 
PEA has a safely profile at pharmacological doses. Relevant PEA-
induced side effects were not seen in humans at oral doses up 
to 1,800 mg/day. Finally, PEA has proven efficacious in humans 
in a number of clinical settings, and none of the clinical trials 
with PEA to date have reported treatment-related adverse events 
(Skaper et al., 2018).
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TABLE 2 | Summary of the available in vivo preclinical studies supporting the role of PEA as a possible therapeutic agent in AD.

In vivo preclinical studies

Animal model Treatment Main findings Reference

Mice receiving an i.c.v. 
injection of Aβ25–35 (9 nmol)

PEA (3–30 mg/kg, s.c.; starting 
3 h after Aβ25–35, once daily for 1 or 
2 weeks)

PEA, through PPARα activation, reduces/prevents Aβ25–35-
induced behavioral impairments neuroinflammation 

D’Agostino et al., 2012

Adult male rats receiving an 
intrahippocampal injection of 
Aβ1–42 (5 μg) 

PEA (10 mg/kg; i.p., starting the day 
of Aβ1–42 injection, once daily for 
1 week)

PEA prevents Aβ1–42–induced reactive gliosis, amyloidogenesis, 
tau protein hyperphosphorylation, and cognitive deficit, through 
PPARα activation

Scuderi et al., 2014

Young (6-month-old) and 
adult (12-month-old) 3xTg-AD 
mice

µm-PEA for 3 months (s.c. 
implantation of a 90-day-release 
pellet containing 28 mg of µm-PEA)

µm-PEA improves learning and memory, ameliorates depressive 
and anhedonia-like phenotype, reduces Aβ formation and 
phosphorylation of tau proteins, promotes neuronal survival in 
the CA1 subregion of the hippocampus, normalizes astrocytic 
function, rebalances glutamatergic transmission, and restrains 
neuroinflammation, especially in young early-symptomatic 
3xTg-AD mice

Scuderi et al., 2018

Young (6-month-old) and 
adult (12-month-old) 3xTg-AD 
mice

µm-PEA for 3 months (s.c. 
implantation of a 90-day-release 
pellet containing 28 mg of µm-PEA)

µm-PEA reduces astrocytic activation in 3xTg-AD mice and 
increases the expression of BDNF in 3xTg-AD mice

Bronzuoli et al., 2018

Aβ1–42 = β amyloid 1–42 peptide; Aβ25–35 = β amyloid 25–35 peptide; BDNF, brain-derived neurotrophic factor; µm-PEA, ultramicronized PEA formulation; PPARα, peroxisome 
proliferator-activated receptor-alpha.
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How endogenously produced soluble amyloid ß-protein (Aß) affects synaptic plasticity in
vulnerable circuits should provide insight into early Alzheimer’s disease pathophysiology.
McGill-R-Thy1-APP transgenic rats, modeling Alzheimer’s disease amyloidosis, exhibit
an age-dependent soluble Aß-mediated impairment of the induction of long-term
potentiation (LTP) by 200 Hz conditioning stimulation at apical CA3-to-CA1 synapses.
Here, we investigated if synaptic weakening at these synapses in the form of activity-
dependent persistent reversal (depotentiation) of LTP is also altered in pre-plaque rats
in vivo. In freely behaving transgenic rats strong, 400 Hz, conditioning stimulation
induced stable LTP that was NMDA receptor- and voltage-gated Ca2+ channel-
dependent. Surprisingly, the ability of novelty exploration to induce depotentiation of
400 Hz-induced LTP was impaired in an Aß-dependent manner in the freely behaving
transgenic rats. Moreover, at apical synapses, low frequency conditioning stimulation
(1 Hz) did not trigger depotentiation in anaesthetized transgenic rats, with an age-
dependence similar to the LTP deficit. In contrast, at basal synapses neither LTP,
induced by 100 or 200 Hz, nor novelty exploration-induced depotentiation was impaired
in the freely behaving transgenic rats. These findings indicate that activity-dependent
weakening, as well as strengthening, is impaired in a synapse- and age-dependent
manner in this model of early Alzheimer’s disease amyloidosis.

Keywords: soluble amyloid beta, synaptic plasticity, hippocampus, novelty exploration, depotentiation, apical
dendrites, basal dendrites, Alzheimer’s disease

INTRODUCTION

There is great interest in understanding how different forms of synaptic plasticity contribute
to normal brain function and how disruption of these physiological processes may underlie
key aspects of the pathophysiology of neurodegenerative diseases. Although much research has
elucidated the physiological significance of long-term potentiation (LTP) in memory mechanisms
and have implicated impairments of LTP in cognitive impairment, in particular in Alzheimer’s
disease (AD) models [for review see Spires-Jones and Knafo (2012), Puzzo et al. (2015)], much
less is known regarding activity-dependent persistent LTP reversal (depotentiation).
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Usually, LTP decay/reversal is an active process and
mechanisms underlying depotentiation are believed to play
important roles in the time- and state- dependent erasure of
certain forms of memory. Behaviourally induced depotentiation
at CA3-to-CA1 hippocampal synapses occurs within a specific
time-window when an animal acquires new information (Xu
et al., 1998; Manahan-Vaughan and Braunewell, 1999; Abraham
et al., 2002; Straube et al., 2003; Collingridge et al., 2010; Qi
et al., 2013). Similar depotentiation can be induced with low
frequency electrical conditioning stimulation both in vivo and
in vitro (Staubli and Lynch, 1990; Fujii et al., 1991; Bashir and
Collingridge, 1994; Migues et al., 2016).

Exogenous application of certain soluble aggregates of the
AD protein amyloid ß (Aß), in particular certain soluble
aggregates/oligomers of Aß (Aßo), potently inhibit LTP in wild-
type (WT) rodents (Cullen et al., 1997; Lambert et al., 1998; Hu
et al., 2008; Klyubin et al., 2014). Recently, we reported that prior
to the deposition of fibrillar Aß in plaques in APP transgenic
(TG) rats, endogenously produced Aß causes an age-dependent
disruption of LTP induced by 200 Hz at CA1 apical synapses, the
deficit being transiently rescued by subacute administration of
agents that lower soluble Aß (Qi et al., 2014). An accumulation of
Aß oligomers accompanies the impairment of NMDA receptor-
dependent LTP (Qi et al., 2014; Zhang D. et al., 2017) and
selective reduction in NMDA, but not AMPA, receptor-mediated
baseline synaptic transmission (Qi et al., 2014). The LTP deficit
in pre-plaque transgenic rats appears to be mediated by an age-
dependent pro-inflammatory milieu in the hippocampus (Leon
et al., 2010; Hanzel et al., 2014; Iulita et al., 2014; Qi et al., 2018)
driven by Aß oligomer binding to cellular prion protein and
glutamate acting at metabotropic glutamate receptor 5 (Zhang D.
et al., 2017). Somewhat similarly, an early intracellular buildup
of Aß oligomers correlates with impairment of hippocampus-
dependent memory (Leon et al., 2010; Hanzel et al., 2014; Iulita
et al., 2014) in the absence of observable synaptic structural
change (Martino Adami et al., 2017).

Whether or not other forms of synaptic plasticity such as
depotentiation are also affected in an age-dependent manner
is unknown. Based on our previous finding that exogenous
application on an Aß-containing APP fragment induced
depotentiation in a narrow time window (Kim et al., 2001)
and Aß facilitates low frequency stimulation-induced long-term
depression (LTD) in WT rats (Li et al., 2009; Hu et al., 2014),
we predicted that the induction of depotentiation would be
facilitated in TG rats. Furthermore, because the acute disruption
of synaptic plasticity by exogenously applied Aßo is synapse-
selective, with preferential vulnerability of apical over basal
synapses to LTP inhibition (Hu et al., 2009), we expected that the
disruption of LTP and depotentiation would be selective to apical,
as opposed to basal, synapses in TG rats.

Consistent with a key role for endogenous Aßo in mediating
LTP inhibition at apical synapses, an antibody that preferentially
binds soluble aggregates of Aß over monomer reversed the
deficit in freely behaving TG animals. Using a strong 400 Hz
conditioning protocol we induced robust LTP, thereby allowing
us to study depotentiation in these rats. To our surprise, we
found that depotentiation was impaired both in freely behaving

and anaesthetized TG animals. Interestingly, endogenous
Aß-mediated inhibition of both LTP and depotentiation was
restricted to apical synapses, with neither LTP nor depotentiation
in TG rats being significantly altered at basal synapses. These
findings indicate that in addition to synapse-selective deficits
in LTP induction, the synaptic plasticity mechanisms for time-
dependent weakening of previously strengthened synapses are
also disrupted by Aßo in early pre-plaque AD amyloidosis.

MATERIALS AND METHODS

Animals
Male TG rats (2.5–6 months old) expressing human APP751 with
Swedish and Indiana mutations under the control of the murine
Thy1.2 promoter (McGill-R-Thy1-APP) (Leon et al., 2010) and
their age-matched WT littermates were genotyped commercially
by Transnetyx (Cordova, TN, United States) using real time
PCR. All experiments were carried out in accordance with the
approval of the Health Products Regulatory Authority, Ireland,
using methods similar to those described previously (Qi et al.,
2014). Animals had free access to food and water and a 12-h
lights on/off cycle.

In vivo Surgery and Electrophysiology
For non-recovery experiments the rats were anaesthetized
with urethane (1.5 g/kg, i.p.) and core body temperature
was maintained at 37.5 ± 0.5◦C. For recovery experiments
the implantation procedure was comparable but carried out
under anaesthesia using a mixture of ketamine and xylazine
(80 and 8 mg/kg, respectively, i.p.) according to methods
similar to those described previously (Qi et al., 2013). For
the recovery experiments the rats were allowed at least
14 days after surgery before recordings began. These rats were
housed individually in their home cages post-surgery between
recording sessions.

Recording electrodes (Teflon-coated tungsten wire; external
diameter 75 µm bipolar or 112 µm monopolar) were positioned
in the stratum radiatum of area CA1. Similar wire electrodes
were placed either in the stratum radiatum or stratum oriens to
selectively stimulate either apical or basal synapses, respectively.
Screw electrodes located over the contralateral cortex were used
as reference and earth. The stimulation and recording electrodes
were optimally located using a combination of physiological and
stereotactic indicators. Field excitatory post-synaptic potentials
(EPSPs) were recorded in the stratum radiatum of the dorsal
hippocampus in response to stimulation of the ipsilateral stratum
radiatum (apical synapses) or stratum oriens (basal synapses)
(Figure 1). The recording site was located 3.8 mm posterior to
bregma and 2.5 mm lateral to midline, and the stimulating site
was located 4.6 mm posterior to bregma and 3.8 mm lateral
to midline. The final depths of the electrodes were adjusted to
optimize the electrically evoked EPSP and confirmed by post-
mortem analysis. With the stimulation electrode in stratum
oriens, the far-field EPSP from basal synapses was reversed
in polarity because the recording electrode was located in the
stratum radiatum (Leung et al., 2003).
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FIGURE 1 | Schema of electrode configuration in the CA1 area of the dorsal
hippocampus of the rat. A negative-going field EPSP (red trace), generated at
apical synapses, was evoked by placing both a single-strand wire recording
electrode (Rec, green) and a twisted-pair wire stimulation electrode (Stim, red)
in stratum radiatum (SR). In contrast, a positive-going far-field EPSP (blue
trace), generated at basal synapses, was evoked when the stimulation
electrode was located in stratum oriens (SO) while the recording electrode
(Rec, green) was implanted in SR.

Where necessary a stainless steel guide cannula (22 gauge,
0.7-mm outer diameter, length 13 mm) was implanted above
the right lateral ventricle before the electrodes were implanted
ipsilaterally. Injections were made via a Hamilton syringe which
was connected to the internal cannula (28 gauge, 0.36 mm outer
diameter). The injector was removed 1 min post-injection and a
stainless steel plug was inserted. The position of the cannula was
verified post-mortem by investigating the spread of ink dye after
i.c.v. injection.

Test stimuli were delivered to the Schaffer-collateral/
commissural pathway every 30 s to evoke field EPSPs that
were 45–60% maximum amplitude. To induce potentiation the
following high frequency stimulation (HFS) protocols were used:
w100 Hz, consisting of a single series of 10 trains of 10 stimuli
at test pulse intensity with an inter-train interval of 2 s; 100 Hz,
consisting of a single series of 10 trains of 20 stimuli at test pulse
intensity with an inter-train interval of 2 s; 200 Hz, consisting of
a single series of 10 trains of 20 stimuli at test pulse intensity with
an inter-train interval of 2 s; s200 Hz HFS, consisting of a single
series of 10 trains of 20 stimuli at high intensity (75% maximum)
with an inter-train interval of 2 s; 400 Hz, consisting of a single
series of 10 trains of 20 stimuli at test pulse intensity with an
inter-train interval of 2 s; s400 Hz, consisting of a single series
of 10 trains of 20 stimuli at high intensity (75% maximum) with
an inter-train interval of 2 s; and 3 sets of 10 trains of 20 high
intensity (75% maximum) pulses at 400 Hz with an inter-train
interval of 2 s and an inter-set interval of 5 min (3× s400 Hz). To
induce depotentiation with electrical low frequency stimulation
(LFS), 900 very high intensity pulses (95% maximum) were
applied at 1 Hz.

Hippocampal electroencephalogram (EEG) was monitored
between recordings of the evoked EPSPs from the same electrodes
as described previously (Qi et al., 2013). The power (mV ·ms)
frequency spectrum of theta EEG in the 6–8 Hz theta band
was calculated using the modulus of the amplitude (PowerLab
Chart version 7 for Windows, ADInstruments Ltd., Oxford,
United Kingdom).

Recovery animal experiments were carried out in a well-
lit room. The recording compartment consisted of the base of
the home cage, including normal bedding and food/water, but
the sides were replaced with a translucent Perspex plastic box
(27× 22× 30 cm) with an open roof. The rats had access to food
and water throughout the whole recording session from the same
position as in the home cage. All animals were first habituated to
the recording procedure over the post-surgery recovery period.

Novelty Exploration
The novelty exploration protocol used to trigger depotentiation
was similar to that described previously (Qi et al., 2013). Briefly,
novelty exposure was begun by placing one small elastic ball very
gently near the nose of the animal. Once the attention of the
animal was drawn to the ball, then the ball was placed on the floor
out of immediate reach of the animal. If the animal did not move
to explore the ball, the attention-drawing procedure was repeated
until the animal moved actively to explore it. Three minutes after
the ball was placed, another small object was introduced near the
animal using the same attention-drawing method. In order to
encourage the rats to continue undisturbed exploration, after four
objects, including the ball, had been explored for 12 min in total,
clean dark blue tissue paper was inserted gently, totally covering
the four walls of the recording compartment and the whole
floor including the animal and the objects, leaving animal partly
hidden from direct view for another 18 min. The tissue paper and
objects were gently removed from the recording compartment
at 30 min. In pilot experiments we confirmed (Qi et al., 2013)
that such novelty exploration does not persistently affect baseline
transmission in WT rats (n = 2).

Drugs
The monoclonal antibody 3A1 was generated by Dr. Brian
O’Nuallain against dityrosine cross-linked Aß1–40 with no
detectible binding to APP and an ∼700 fold preference for
soluble cross-linked Aß aggregates over Aß monomers in
Capture/Sandwich ELISA (Frost et al., 2017), and mouse IgG1
isotype control antibody (Biolegend, United Kingdom) were
administered in 5 i.c.v. injections (20 µg in 5 µl per injection)
over 3 days with the last injection 2 h prior to HFS. We chose
this regimen because we found a similar protocol was effective
for other anti-Aß strategies in this model. A 20 µg dose of
3A1 was selected because a 10 µg treatment regimen did not
reverse the LTP deficit in pilot experiments (n = 2, data not
shown). Mibefradil (50 nmol in 5 µl i.c.v., Sigma) and (R)-3-(2-
carboxypiperazin-4-yl) propyl-1-phosphonic acid (CPP, 7 mg/kg,
i.p., Ascent Scientific) were dissolved in distilled water and
administered 30 min and 2 h prior to HFS, respectively. The doses
were chosen based on their ability to inhibit LTP with different
HFS protocols in WT rats (Doyle et al., 1996; Ryan et al., 2010).
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Data Analysis
Unless otherwise stated, the magnitude of potentiation and the
power of 6–8 Hz EEG frequency are measured as a percentage
of the baseline recordings made during the initial 30-min period,
and expressed as the mean ± standard error of the mean. For
statistical analysis, EPSP amplitudes were grouped into 10-min
epochs. We used standard one-way ANOVA to compare the level
of potentiation between multiple groups and one-way ANOVA
with repeated measures to compare multiple times within
groups. Two-way ANOVA with repeated measures was used to
analyse the EEG. A significant overall ANOVA was followed
by post hoc Bonferroni-corrected t-tests. Paired and unpaired
Student’s t-tests were used to compare potentiation within one
group and between two groups, respectively. A P < 0.05 was
considered statistically significant.

RESULTS

Targeting Aß Oligomers Reverses the
LTP Deficit in Freely Behaving TG Rats
Previously we reported that an antibody that recognizes all
conformations of Aß, including monomers, soluble aggregates
and fibrils, reversed the LTP deficit in TG rats (Qi et al.,
2014). Here, we directly examined the involvement of soluble
Aß aggregates in mediating the inhibition of LTP at apical
synapses between CA3 and CA1 pyramidal cells in 4–6-month-
old, pre-plaque, TG rats using the conformation-selective anti-
Aß monoclonal antibody 3A1 (Frost et al., 2017). We followed
the same 3-day antibody injection protocol that we previously
employed to study the Aß-dependence of impaired LTP in these
animals (Qi et al., 2014) whereby TG animals received i.c.v.
injections of 3A1 or an isotype control antibody IgG1 (5× 20 µg
in 5 µl). Consistent with published findings (Qi et al., 2014),
whereas our standard, “200 Hz” induction protocol, consisting
of a single set of 200 Hz trains at test pulse intensity, triggered
LTP in vehicle-injected freely behaving 4–6-month-old WT rats
(3 h post-HFS, 120.6 ± 3.9%, p = 0.02 compared with pre-
HFS baseline, n = 4), the same protocol failed to induce LTP
in their TG littermates that had received the control antibody
(94.9 ± 2.7%, p = 0.42 compared with pre-HFS baseline, n = 5,
Figure 2A). Unlike the isotype control-treated TG rats, repeated
treatment with the conformation-selective anti-Aß antibody 3A1
(5 × 20 µg in 5 µl) reversed the LTP deficit in the TG rats
(114.8 ± 2.8%, n = 6, p = 0.009 compared with baseline,
p = 0.0007 compared with TG animals injected with IgG1,
p = 0.25 compared with WT littermates, Figure 2A). When these
TG animals were followed longitudinally (Figures 2B,C) it was
clear that the recovery of the ability to induce LTP by 3A1 was
transient. Thus, LTP was strongly inhibited in these rats when
tested again, a week after ceasing treatment with 3A1 (p = 0.385,
compared with pre-treated animals, p = 0.0028, compared with
animals immediately after treatment, n = 5, Figure 2B). In TG
animals treated with the control antibody LTP was inhibited
at all time points over the same period (Figure 2C). These
findings provide convincing evidence of a requirement for Aßo in

FIGURE 2 | An aggregate conformation-selective anti-Aß antibody, 3A1,
transiently rescues the LTP deficit in freely behaving transgenic rats. (A) In a
cross-sectional analysis, repeated i.c.v. treatment of 4–6-month-old TG rats
with 3A1 (TG 3A1) but not isotype control antibody IgG1 (TG IgG1) restored
LTP to a level indistinguishable from WT littermates injected with vehicle (WT
veh). Left hand panel shows LTP time course. Inserts show representative
EPSP traces at the times indicated. Calibration bars: vertical, 1 mV; horizontal,
10 ms. Summary bar chart of LTP (last 10 min post-HFS) is in the right-hand
panel. (B,C) A longitudinal analysis revealed the transient nature of the
recovery of LTP in TG animals injected with 3A1. The LTP time course from
the same TG animals the week before (TG pre), immediately after (TG 3A1 or
TG IgG1), and 1 week after (TG post) treatment is shown in the left panels.
Right hand panels show longitudinal data from individual rats. Arrows indicate
the time point of application of a single set of 200 Hz HFS at test pulse
intensity (200 Hz). The # symbol stands for a statistical comparison between
pre- and 3 h post-HFS values within one group (paired t-test) whereas an ∗

indicates a comparison of 3 h post-HFS values between groups (one-way
ANOVA (A) or one-way ANOVA with repeated measures (B,C) followed by
post hoc Bonferroni test). One symbol, p < 0.05; two symbols, p < 0.01;
three symbols, p < 0.001; ns, p > 0.05. Values are mean ± S.E.M.%
pre-HFS baseline EPSP amplitude.
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mediating LTP inhibition in the TG rats and are consistent with
our previous report of an age-dependent accumulation of Aßo in
the brains of these animals (Zhang D. et al., 2017).

Strong High Frequency Stimulation Is
Required to Induce Robust LTP in
Freely Behaving TG Rats
In order to study depotentiation in TG rats, we needed to
generate similar LTP to that induced in WT animals. Previously,
we found that increasing the strength of the HFS protocol,
using three sets of trains of high intensity pulses at 400 Hz,
overcomes the LTP deficit (Qi et al., 2014). We questioned if
such a strong protocol was necessary, or if other, intermediate
strength, protocols might be sufficient to induce robust LTP
in these TG rats. Therefore, we assessed the HFS-dependence
of the LTP inhibition in TG rats further by increasing the
frequency and intensity. Like 200 Hz HFS, a single train of
400 Hz tetanization at test pulse intensity triggered LTP in
4–6-month-old WT rats (118.6 ± 2.0%, p < 0.0001 compared
with pre-HFS baseline, n = 8) and not significant potentiation
in TG littermates (110.6 ± 3.9%, p = 0.093, compared with
pre-HFS baseline, n = 8, Figure 3A). Somewhat similar results
were obtained when the same protocol was applied but with
high intensity pulses during the tetanus (75% maximum, s400
Hz). However, in this case a significant LTP was induced in
both WT (125.3 ± 3.6%, p = 0.004 compared with pre-HFS
baseline, n = 5) and TG rats (114.1 ± 4.5%, p = 0.019, compared
with pre-HFS baseline, n = 7, Figure 3B). In contrast, and
consistent with our previous observations (Qi et al., 2014), three
sets of 400 Hz at high intensity (3 × s400 Hz) induced large
and stable LTP in 4–6-month-old TG rats (147.8 ± 11.0%,
p = 0.007, compared with pre-HFS baseline, n = 6) and their WT
littermates (153.8 ± 11.5%, p = 0.004 compared with pre-HFS
baseline, n = 6, Figure 3C).

We wondered if the mechanism underlying the induction
of LTP by 3 × s400 Hz in TG rats was similar to what we
had found previously in WT rats which required activation of
voltage-gated voltage-gated Ca2+ channels (VGCCs) in addition
to NMDA receptors (Ryan et al., 2010). Indeed, pretreatment of
TG rats with the NMDA receptors antagonist CPP (7 mg/kg, i.p.)
alone only partly reduced the magnitude of LTP (119.0 ± 5.8%,
p = 0.019, compared with pre-HFS baseline, n = 5, p = 0.009,
compared with vehicle-injected TG, 149.3 ± 6.6%, n = 5,
Figure 4A). In contrast, LTP was completely blocked when CPP
(7 mg/kg, i.p.) and the VGCC inhibitor mibefradil (50 nmol in
5 µl, i.c.v.) were administered in combination (99.4 ± 5.0%,
p = 0.48, compared with pre-HFS baseline, n = 5, Figure 4B).
We also confirmed that this combination completely inhibited
LTP induced by the 3 × s400 Hz protocol in WT littermates
(99.8 ± 4.2%, p = 0.43, compared with pre-HFS baseline, n = 5,
not illustrated).

These data indicate that in order to induce robust LTP in TG
rats it was necessary to use a strong HFS protocol that engages
VGCCs in addition to the NMDA receptors, in contrast to LTP
induced by our standard 200 Hz protocol in WT rats which only
requires NMDA receptors (Hu et al., 2008).

FIGURE 3 | Tetanus strength-dependent potentiation in freely behaving TG
rats. To develop a conditioning protocol that would induce robust LTP in TG
rats comparable to that found in WT littermates a range of HFS paradigms
were applied: (A) a single set of 400 Hz trains at 50% of maximal EPSP
amplitude (400 Hz); (B) a single strong set of 400 Hz trains at 75% of maximal
EPSP amplitude (s400 Hz); (C) three strong sets of 400 Hz trains at 75% of
maximal EPSP amplitude (3 × s400 Hz). Left-hand panels show LTP time
course. Inserts show representative EPSP traces at the times indicated.
Calibration bars: vertical, 1 mV; horizontal, 10 ms. The time point of HFS
application is indicated by arrow, arrow head and three arrow heads,
respectively. Summary bar charts of LTP (last 10 min post-HFS) are in right
hand panel. The # symbol stands for a statistical comparison between pre-
and 3 h post-HFS values within one group (paired t-test) whereas an “ns”
above the line indicates a comparison of 3 h post-HFS values between
groups (unpaired t-test). One symbol, p < 0.05; two symbols, p < 0.01; four
symbols, p < 0.0001; ns, p > 0.05. Values are mean ± S.E.M.% pre-HFS
baseline EPSP amplitude.
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Novelty Exploration-Induced
Depotentiation Is Impaired in an
Aßo-Dependent Manner in Freely
Behaving TG Rats
Just like memories, LTP is transiently susceptible to active
erasure due to the ability of additional experience or electrical
LFS to reverse this form of synaptic potentiation (Kim et al.,
2007; Clem and Huganir, 2010; Diaz-Mataix et al., 2011). Given
the potential importance of such activity-dependent persistent
reversal of previously established synaptic LTP in brain function
and our previous findings with exogenous Aß-containing APP
fragments (Kim et al., 2001), we wondered if behaviourally or
electrically induced depotentiation is also disrupted in TG rats.
Prolonged exploration of a non-aversive novel environment can
trigger a rapid depotentiation of LTP at CA3-CA1 synapses
that is prevented by prior acquisition of information about
the new environment (Xu et al., 1998; Manahan-Vaughan and
Braunewell, 1999). To compare the ability of novelty exploration
to instigate depotentiation in 4–6-month-old WT and TG rats,
first we applied the 3 × s400 Hz protocol to induce robust LTP
(Figures 5A,B). One h after the induction of LTP the animals
were allowed to actively explore novel objects that were placed
in the recording box for 30 min. Whereas novelty exploration in
the WT rats strongly reversed the previously established LTP (3 h
post-HFS, 116.2 ± 5.3%, p = 0.006, compared with a pre-novelty
potentiation, 157.3 ± 10.5%, p > 0.05, compared with pre-HFS
baseline, n = 5), similar novelty was much less effective in TG
rats (3 h post-HFS, 149.9 ± 10.7%, p = 0.29, compared with pre-
novelty potentiation, 145.3 ± 9.6%, p = 0.006, compared with
pre-HFS baseline, n = 6). In contrast, brief novelty exploration
was effective in triggering depotentiation in TG rats that had
received repeated i.c.v. injections of the anti-Aßo antibody 3A1
(5 × 20 µg in 5 µl over 3 days) (117.0 ± 3.8%, n = 5, p = 0.005,
compared with pre-novelty potentiation, 161.2± 7.3%, p = 0.008,
compared with pre-HFS baseline, p = 0.032 compared with TG
animals, p = 0.90 compared with WT littermates).

Consistent with a widespread activation of the hippocampus
during novelty exploration, theta power of the local EEG was
increased, particularly during the first 20 min (Figure 5C) and
there was no significant difference in the magnitude of the
increase in theta power between WT and TG rats (p = 0.33,
for the group × time interaction, two-way ANOVA with
repeated measures). This indicates that the extent of hippocampal
engagement was similar in both groups and therefore unlikely
to underlie the difference in the magnitude of depotentiation
induced in the two groups. Moreover, similar to our previous
finding in WT animals (Qi et al., 2013), novelty exploration did
not affect baseline synaptic transmission in TG rats (99.4± 3.0%,
p = 0.304, compared with pre-novelty values, n = 4, Figure 5D).

Age-Dependent Inhibition of Electrically
Induced Depotentiation in Anaesthetized
TG Rats
In addition to novelty exploration, the application of electrical
LFS triggers an NMDA receptor-dependent depotentiation

FIGURE 4 | LTP induced by three strong sets of 400 Hz HFS is both NMDA
receptor- and VGCC-dependent in freely behaving TG rats. (A) Pretreatment
with either the NMDA receptor antagonist CPP (2 h prior to 3 × s400 Hz HFS,
i.p.) or the VGCC inhibitor mibefradil (MBF, 30 min prior to 3 × s400 Hz HFS,
i.c.v.) alone only partly inhibited LTP induction. (B) Pretreatment with the
combination of these agents completely inhibits LTP in TG animals. Left-hand
panels show LTP time course. Inserts show representative EPSP traces at the
times indicated. Calibration bars: vertical, 1 mV; horizontal, 10 ms. The time
point of HFS application is indicated by three arrow heads. Summary bar
charts of LTP (last 10 min post-HFS) are in right hand panel. The # symbol
stands for a statistical comparison between pre- and 3 h post-HFS values
within one group (paired t-test) whereas an ∗ indicates a comparison of 3 h
post-HFS values between groups [one-way ANOVA followed by post hoc
Bonferroni tests in (A) or unpaired t-test in (B)]. One symbol, p < 0.05; two
symbols, p < 0.01; three symbols, p < 0.001; ns, p > 0.05. Values are
mean ± S.E.M.% pre-HFS baseline EPSP amplitude.

in vivo that can be studied under anaesthesia (Doyle et al., 1997).
This enabled us to evaluate depotentiation under conditions
where possible confounding effects of behavioral phenotype are
unlikely to affect the outcome.
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FIGURE 5 | A deficit in novelty exploration-induced depotentiation in freely behaving 4–6-month-old TG rats is reversed by the conformation-selective anti-Aß
antibody 3A1. (A) 1 h after LTP induction by 3 × s400 Hz the rats were allowed to continuously explore a novel environment for 30 min (Novelty, solid bar). Whereas
novelty exploration failed to reverse LTP in TG rats, depotentiation was induced in WT littermates and TG rats previously treated for 3 days with the monoclonal
antibody 3A1 (TG 3A1). Inserts show representative EPSP traces at the times indicated. Calibration bars: vertical, 1 mV; horizontal, 10 ms. (B) Summary bar chart of
the magnitude of potentiation both pre-novelty (50–60 min post-HFS epoch) and post-novelty (170–180 min post-HFS epoch). The # symbol stands for a statistical
comparison with pre-HFS values within one group and the & symbol stands for a statistical comparison with pre-novelty values within one group (one-way ANOVA
with repeated measures followed by post hoc Bonferroni test). An ∗ indicates a comparison of post-novelty values between groups (one-way ANOVA with post hoc
Bonferroni test). One symbol, p < 0.05; two symbols, p < 0.01; ns, p > 0.05. The time point of HFS application is indicated by three arrow heads. (C) Increased
theta band EEG power (6–8 Hz frequency range) during novelty exploration in both WT and TG rats. Top panels show representative examples of EEG band-pass
filtered at 5–15 Hz. Calibration bars: vertical, 0.1 mV; horizontal, 1 s. Bottom panel shows time course of EEG changes. (D) No discernable change in baseline
synaptic transmission after novelty exploration (Novelty, solid bar) in TG rats. Insert shows representative EPSP traces at the times indicated. Calibration bars:
vertical, 1 mV; horizontal, 10 ms. Values are mean ± S.E.M.% either pre-HFS baseline EPSP amplitude (A,B,D) or theta power (C).

First, we confirmed (Qi et al., 2014) that LTP induced
by 200 Hz at high pulse intensity (75% maximum, s200
Hz) was inhibited in anaesthetized 4–6-month-old TG rats

(1 h post-s200 Hz HFS, 123.6± 5.1%, n = 14, p = 0.009, compared
with WT littermates, 143.1± 4.3%, n = 13, Figure 6A). Following
this, we applied the 3 × s400 Hz HFS protocol, which induced
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FIGURE 6 | Age-dependent deficit in depotentiation in anaesthetized TG rats.
(A) Application of 1 Hz LFS (solid bar) following LTP induction by a sequence
of s200 Hz HFS (arrow) and 3 × s400 Hz HFS (three arrow heads) failed to
induce persistent depotentiation in 4–6-month-old TG rats, unlike their WT
littermates, under urethane anaesthesia. In contrast application of the same
1 Hz LFS protocol completely reversed LTP induced by 3 × s400 Hz HFS in
younger (2.5–3.5-month-old) TG animals (B). Left hand panels show LTP time
course. Inserts show representative EPSP traces at the times indicated.
Calibration bars: vertical, 1 mV; horizontal, 10 ms. Summary bar charts of
potentiation at the same three time points (s200 Hz, last 10 min post-s200 Hz
HFS; 3 × s400 Hz, last 10 min post-3 × s400 Hz HFS; 1 Hz, last 10 min
post-1 Hz LFS) are in the right-hand panels. The # symbol stands for a
statistical comparison with pre-HFS values within one group and the & symbol
stands for a statistical comparison with pre-LFS values within one group
(one-way ANOVA with repeated measures followed by post hoc Bonferroni
test). An ∗ indicates a comparison of potentiation values between groups
(one-way ANOVA with post hoc Bonferroni test). One symbol, p < 0.05; two
symbols, p < 0.01; three symbols, p < 0.001; ns, p > 0.05. Values are
mean ± S.E.M.% pre-HFS baseline EPSP amplitude.

LTP that was similar in magnitude in both groups (1 h post-
3xs400 Hz HFS, TG, 147.8 ± 7.6%, p = 0.47, compared with
WT, 155.0 ± 6.3%). One h later we applied LFS consisting of 900
very high intensity pulses (95% maximum) at 1 Hz. As expected,
LFS completely and persistently reversed LTP in WT rats (3.5 h
post-s200 Hz HFS, 90.3 ± 10.1%, p = 0.23, compared with pre-
s200 Hz HFS baseline). In contrast, the same 1 Hz protocol
in the TG littermates only caused a transient reversal of LTP

(3.5 h post-s200 Hz HFS, 131.1± 9.1%, p = 0.008, compared with
pre-s200 Hz HFS baseline).

To determine the possible age-dependence of the deficit in
depotentiation in the TG rats, we examined the efficacy of LFS
to reverse LTP triggered by either the 3 × s400 Hz HFS or the
s200 Hz protocol in 2.5–3.5-month-old TG rats, an age when
there is no apparent LTP deficit (Qi et al., 2014). Thus, one h
after the induction of LTP with the 3 × s400 Hz HFS protocol
in the younger rats the application of LFS triggered a strong
reversal of LTP (2.5 h post-3 × s400 Hz HFS, 111.5 ± 12.3%,
p = 0.41 compared with pre-HFS baseline, n = 7, Figure 6B).
Similar findings were observed for depotentiation after the
s200 Hz protocol (2.5 h post-s200 Hz HFS alone, 96.4 ± 8.1%,
p = 0.79 compared with pre-HFS baseline, n = 6, data not
illustrated), indicating that the deficit in depotentiation is age-
dependent, with a time of onset similar to the impairment in
LTP induction by the 200 Hz HFS protocol at these synapses
(Qi et al., 2014).

LTP and Depotentiation at Basal
Synapses Are Resistant to Disruption in
Freely Behaving TG Rats
Most research has focused on the disruptive effects of Aß on
plasticity at apical synapses between CA3 and CA1 hippocampal
pyramidal cells. At a circuit level, different CA1 pyramidal cells
have different inputs and outputs and perform multiple tasks in
parallel (Slomianka et al., 2011; Soltesz and Losonczy, 2018). This
diversity is reflected in the expression of different receptors and
types of plasticity at different input synapses (Roth and Leung,
1995; Colavita et al., 2016; Brzdak et al., 2019). Moreover, the
susceptibility of LTP at the different synaptic inputs to disruption
by Aß varies. Thus, we (Hu et al., 2009) and others (Zhao
et al., 2018) found that NMDA receptor-dependent LTP at basal
synapses, unlike apical synapses, is resistant to inhibition by
exogenously applied Aß.

First, we compared the ability of the standard 200 Hz
conditioning stimulation protocol to trigger LTP at basal
synapses in 4–6-month-old WT and TG freely behaving rats,
an age when LTP is inhibited at apical synapses. With the
stimulation electrode in stratum oriens, the far-field EPSP from
basal synapses was reversed in polarity because the recording
electrode was located in the stratum radiatum (Leung et al., 2003;
see Figure 1). Different from apical synapses, the application of
HFS at basal synapses induced similar magnitude of LTP in both
groups (WT, 152.6 ± 12.4, p = 0.004, compared with pre-HFS
baseline, n = 6, TG, 156.9 ± 13.6, p = 0.017, compared with
pre-HFS baseline, n = 5, WT versus TG, p = 0.82, Figure 7A).
Similarly, there was no evidence of inhibition of LTP when we
tested rats longitudinally between 3.5 and 6 months (p > 0.05 for
all ages tested, Figure 7D). Because we were primarily interested
in the effects of pre-fibrillar soluble Aß aggregates, we did not
investigate animals older than 6 months, when Aß plaques start
to be detectible in some TG rats (Leon et al., 2010; Hanzel et al.,
2014; Iulita et al., 2014).

Amongst other differences, the threshold for LTP induction
at basal synapses has been reported to be lower at basal
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FIGURE 7 | Lack of LTP deficit at basal dendrites in freely behaving TG
animals. (A–C) Cross-sectional studies of LTP inducibility by different HFS
protocols (200 Hz, a standard single set of 200 Hz HFS at test pulse intensity
consisting 20 pulses; 100 Hz, a standard single set of 100 Hz HFS at test

(Continued)

FIGURE 7 | Continued
pulse intensity consisting 20 pulses; w100 Hz, a weak single set of 100 Hz
HFS at test pulse intensity consisting 10 pulses) in 4–6-month-old rats. Left
hand panels show LTP time course. Inserts show representative EPSP traces
at the times indicated. Calibration bars: vertical, 1 mV; horizontal, 10 ms. The
time point of HFS application is indicated by an arrow. Summary bar charts of
LTP (last 10 min post-HFS) are in the right-hand panel. (D) Summary
longitudinal data for the magnitude of 200 Hz HFS induced LTP tracked
repeatedly in the same WT and TG rats every 2nd week between 3.5 and
6 months of age. The # symbol stands for a statistical comparison between
pre- and 3 h post- HFS values within one group (paired t-test) whereas an
“ns” above the line in (A–C) and throughout (D) indicates a comparison of 3 h
post-HFS values between groups (unpaired t-test). One symbol, p < 0.05;
two symbols, p < 0.01; ns, p > 0.05. Values are mean ± S.E.M.% pre-HFS
baseline EPSP amplitude.

compared with apical synapses (Leung et al., 2003). Because
the LTP deficit at apical synapses was associated with an
apparent increase in threshold, we decided to assess if the
threshold for LTP was altered at basal synapses using weaker HFS
protocols. When the frequency of the conditioning stimulation
was reduced from 200 Hz to 100 Hz, similar magnitude LTP
was induced both in 4–6-month-old TG and WT littermates
(WT, 139.0 ± 13.5, p = 0.04, compared with pre-HFS baseline,
n = 6, TG, 149.5 ± 14.7, p = 0.028, compared with pre-HFS
baseline, n = 6, Figure 7B). Moreover, in order to determine
if LTP might be facilitated in stratum oriens in the TG rats,
we reduced the number of pulses per train from 20 to 10
(w100 Hz). This very weak HFS didn’t induce LTP in either
group (WT, 108.7 ± 10.6, p = 0.59, compared with pre-HFS
baseline, n = 5, TG, 113.0± 6.2, p = 0.24, compared with pre-HFS
baseline, n = 4, Figure 7C).

Finally, we wondered if, like LTP, novelty exploration-induced
depotentiation at the basal synapses (Qi et al., 2013) is preserved
in freely behaving 4–6-month-old TG rats. Consistent with
previous studies (Hu et al., 2009; Qi et al., 2013), the initial post-
HFS potentiation appears decremental. Nevertheless, as seen in
Figure 7A, stable LTP was recorded in both WT and TG rats
during the subsequent 2 h post-200 Hz HFS. In contrast, LTP
reverted back to baseline when rats were allowed explore novel
objects for 30 min, starting 1 h after inducing LTP with the 200 Hz
protocol. Thus, the magnitude of depotentiation was similar in
both groups (WT, 106.4 ± 6.5, p = 0.30, compared with pre-HFS
baseline, n = 6, TG, 119.4± 9.8, p = 0.16, compared with pre-HFS
baseline, n = 5, Figure 8).

DISCUSSION

Here we provide evidence that, prior to plaque deposition,
Aßo mediate an age-dependent inhibition of both LTP and
depotentiation at apical synapses in the CA1 area of APP
TG rats. To allow us to study depotentiation in these rats
we used a strong protocol to induce an additional LTP that
was blocked by combined treatment with an NMDA receptor
antagonist and a VGCC inhibitor. Novelty exploration in freely
behaving animals and electrical LFS under anaesthesia failed
to trigger depotentiation at apical synapses at the pre-plaque
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FIGURE 8 | Depotentiation is normal at basal dendrites in freely behaving TG
animals. One hour after LTP induction by 200 Hz conditioning stimulation
4–6-month-old rats were allowed to continuously explore a novel environment
for 30 min (Novelty, solid bar). Left hand panels show the time course of LTP
and depotentiation. Inserts show representative EPSP traces at the times
indicated. Calibration bars: vertical, 1 mV; horizontal, 10 ms. Summary bar
chart of pre-novelty (pre, 50–60 min post-HFS epoch) and post-novelty (post,
170–180 min post-HFS epoch) potentiation is in right hand panel. The #
symbol stands for a statistical comparison with pre-HFS values within one
group and the & symbol stands for a statistical comparison with pre-novelty
values within one group (one-way ANOVA with repeated measures followed
by post hoc Bonferroni test). An “ns” above the line indicates a comparison of
post-novelty values between groups (one-way ANOVA with post hoc
Bonferroni test). One symbol, p < 0.05; two symbols, p < 0.01; ns, p > 0.05.
The time point of HFS application is indicated by an arrow. Values are
mean ± S.E.M.% either pre-HFS baseline EPSP amplitude.

stage. In contrast, neither LTP nor novelty exploration-induced
depotentiation was altered at basal synapses in similarly aged TG
rats. Thus, the age-dependent deficit in LTP and depotentiation
is selective for apical synapses. This differential vulnerability
of plasticity at apical and basal synapses strongly indicates a
circuit-selective reduction in the dynamic range of synaptic
gain and weakening.

The ability of repeated dosing with an Aßo-selective antibody,
3A1 (Frost et al., 2017) provides evidence that the age-dependent
LTP deficit in pre-plaque TG rats is mediated by Aßo. This
finding extends our previous reports that (a) soluble Aß is
necessary for the LTP inhibition (Qi et al., 2014), and (b) there is
an age-dependent increase in Aßo in the brain of TG rats starting
around the time of the onset of the LTP deficit (Zhang D. et al.,
2017). Similar to the beneficial action of the non-conformation-
selective anti-Aß antibody McSA1 (Qi et al., 2014), when followed
longitudinally in individual rats, the LTP impairment re-emerged
within 1 week of ceasing treatment with 3A1.

The inhibition of LTP induction by our standard 200 Hz
conditioning protocol, which is NMDA receptor-dependent
(Doyle et al., 1996; Hu et al., 2008), was hypothesized to
be due to an increase in the threshold for LTP induction
consequent to a reduction in NMDA receptor-mediated synaptic
transmission in TG rats (Qi et al., 2014). Consistent with this
proposal, in the present studies whereas intermediate strength

protocols were ineffective, repeated high intensity 400 Hz HFS
triggered robust LTP in the TG rats. This finding contrasts
with our previous report that acute exogenously applied Aßo
potently inhibited LTP induced by comparable 200 and 400 Hz
conditioning protocols (Klyubin et al., 2014). Similar to WT
rats (Doyle et al., 1996; Hu et al., 2008; Ryan et al., 2010),
a combination of an NMDA receptor antagonist and VGCC
blocker fully prevented LTP induction by repeated high intensity
400 Hz tetanus in TG rats. Since this protocol, unlike the
weaker protocols, triggered similar magnitude LTP in both
sets of animals, it is possible that VGCC-dependent LTP is
relatively spared compared to NMDA receptor-dependent LTP
in TG rats. Thus, the inhibition of LTP by endogenous Aßo in
TG rats may depend on the source of the initial Ca2+ entry
trigger for plasticity induction. Future in vitro studies with
saturating concentrations of selective antagonists will be required
to evaluate this possibility.

Contrary to our predictions based on the synaptic weakening-
promoting acute effects of exogenously applied Aß (Li et al.,
2009; Hu et al., 2014; O’ Riordan et al., 2018) and Aß-containing
APP fragments (Kim et al., 2001), depotentiation was strongly
inhibited at apical synapses in TG rats. This was the case
for both novelty exploration and LFS-induced depotentiation
in freely behaving and anaesthetized 4–6-month-old TG rats,
respectively. It appears that, in addition to LTP inhibition,
Aßo mediate the inhibition of depotentiation in the TG rats
since the monoclonal antibody 3A1 also reversed this deficit.
The age-dependent increase in Aßo (Zhang D. et al., 2017)
and similar age-dependence of the depotentiation and LTP
deficits supports a similar role of Aßo in both deficits. In
view of the known NMDA receptor-dependence of both novelty
exploration- and electrical LFS-induced depotentiation (Doyle
et al., 1996; Qi et al., 2013), it seems likely that the deficit in
depotentiation in TG rats is, like that suggested for the LTP
deficit, mediated by a reduction in NMDA receptor-mediated
transmission (Qi et al., 2014).

In order to study depotentiation in TG animals, we needed
to first apply the strong, repeated train of 400 Hz protocol
to induce robust LTP. Although LTP has been reported to be
resistant to activity-dependent reversal when induced by repeated
stimulus trains in vitro (Woo and Nguyen, 2003), we found that
high intensity LFS in vivo induced persistent reversal of LTP
triggered either by our standard 200 Hz or the strong 400 Hz
protocols in younger TG rats. Further studies are required to
determine if depotentiation depends on the LTP induction and/or
LTP reversal protocols in vivo. Based on available evidence, LTP
may be susceptible to depotentiation over a longer time period
in vivo (Doyle et al., 1997; Xu et al., 1998). Given our finding
that exploration-induced depotentiation was associated with
enhancement of theta power, it would be particularly interesting
in future studies to examine if LFS with different frequencies in
the theta range are differentially affected in TG rats.

In apparent contrast to the present findings, depotentiation
has been reported to be normal in hippocampal slices from
young pre-plaque APP TG (Tg2576) mice (Huh et al., 2016).
In that study depotentiation induced either by a 5 Hz electrical
stimulation protocol (applied 5 min after HFS) or the receptor
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kinase ErbB4 ligand neuregulin 1, was impaired only in plaque-
laden mice. The deficit in the older mice was attributed to damage
to certain interneurons that express ErbB4. Whether or not
similar changes are present in pre-plaque TG rats is not known.
Moreover, because Aß may bind ErbB4 and its ablation prevents
exogenously applied Aß-mediated inhibition of LTP (Zhang H.
et al., 2017), future studies should further examine its role in
depotentiation deficits at the pre-plaque stage of TG rats.

A corollary of the widely accepted theory that LTP-
like persistent synaptic strengthening provides an essential
component of memory formation is that depotentiation
will promote memory erasure. Indeed, interventions,
including novelty exploration, that relatively selectively induce
depotentiation can trigger the erasure of newly formed memories
or habits (Hayashi-Takagi et al., 2015; Medina, 2018; Ge et al.,
2019). Investigating whether patients with early AD have a deficit
in memory interference from novel information is a topic worth
pursuing (Muecke et al., 2018; Thomas et al., 2018).

Our finding that LTP at basal, as opposed to apical, synapses
appear to be unchanged in the pre-plaque TG rats is consistent
with previous reports that exogenously applied Aßo fails to
inhibit LTP in stratum oriens (Hu et al., 2009; Zhao et al., 2018).
Recently, it has become clear that CA1 pyramidal neurons with
cell bodies either near the stratum radiatum or stratum oriens
generally form different networks, with the latter having much
more extensive basal dendritic trees with a strong input from
CA2 (Graves et al., 2012; Soltesz and Losonczy, 2018). The known
different signaling pathways mediating LTP at these synapses
(Roth and Leung, 1995; Colavita et al., 2016; Brzdak et al.,
2019) and the finding that spines have high turnover rates in
stratum oriens (Pfeiffer et al., 2018), may help explain the relative
resistance of synaptic plasticity at basal synapses to disruption of
both LTP and depotentiation. A significant but relatively poorly
explored question for AD research is to understand why only
certain pathways are affected early in the disease process (Fu et al.,
2018). Understanding the mechanisms underlying the pathway
selectivity of the plasticity disrupting action of endogenously

generated Aßo, as reported here, may help clarify the early
pathophysiology of Alzheimer’s disease.
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Alzheimer disease (AD) is a progressive and deleterious neurodegenerative disorder 
that affects mostly the elderly population. At the moment, no effective treatments are 
available in the market, making the whole situation a compelling challenge for societies 
worldwide. Recently, novel mechanisms have been proposed to explain the etiology of 
this disease leading to the new concept that AD is a multifactor pathology. Among others, 
the function of mitochondria has been considered as one of the intracellular processes 
severely compromised in AD since the early stages and likely represents a common 
feature of many neurodegenerative diseases. Many mitochondrial parameters decline 
already during the aging, reaching an extensive functional failure concomitant with the 
onset of neurodegenerative conditions, although the exact timeline of these events is 
still unclear. Thereby, it is not surprising that mitochondria have been already considered 
as therapeutic targets in neurodegenerative diseases including AD. Together with an 
overview of the role of mitochondrial dysfunction, this review examines the pros and cons 
of the tested therapeutic approaches targeting mitochondria in the context of AD. Since 
mitochondrial therapies in AD have shown different degrees of progress, it is imperative 
to perform a detailed analysis of the significance of mitochondrial deterioration in AD and 
of a pharmacological treatment at this level. This step would be very important for the 
field, as an effective drug treatment in AD is still missing and new therapeutic concepts 
are urgently needed. 

Keywords: Alzheimer disease, therapeutic strategy, mitochondria, mitochondrial dysfunction, mitochondrial 
therapy

INTRODUCTION

Alzheimer disease (AD) is a complex and heterogeneous disorder strongly affecting the cognitive 
functions and the memory of seniors. 

Many risk factors were proposed to be significant contributors for the AD onset such as senescence, 
autophagy defects, genetic factors [i.e., ApolipoproteinaE-allele4 (APOE4), Triggering receptor 
expressed on myeloid cells 2 (Trem2)], microbiota alterations, lifestyle choices, cardiovascular and 
traumatic brain injury, as well as environmental factors (level of education, hypertension, obesity, 
diabetes, smoking, hearing loss, depression, physical inactivity, social isolation) (Livingston et al., 
2017). It is now well accepted that important cellular pathways are compromised in AD. Together 
with intraneuronal neurofibrillary tangles (NFT) made of hyperphosphorylated tau protein and the 
extraneuronal senile plaques (SP) made of beta-amyloid (Aβ) peptides, synaptic failure, vascular 
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damage, increased oxidative stress, neuronal and axonal injury, 
microglia-regulated neuroinflammation, and mitochondrial 
dysfunction are hallmarks of the disease (Figure 1).

Along the past years, Aβ peptides have been considered one of 
the most promising therapeutic targets for AD. However, many 
clinical studies based on the Aβ cascade hypothesis failed, and 
the idea that Aβ pathology is not anymore the leading primary 
cause of AD has risen (Morris et al., 2018). Instead, nowadays the 
belief that AD is a multi-factorial disease is growing steadily, and 
mitochondrial dysfunction is one of the factors that may actively 
contribute to the disease onset and progression (Iturria-Medina 
et al., 2017; Veitch et al., 2019). Despite that, a logical temporal 
order of the events in AD, as well as a valid and effective therapy, 
is still missing. However, our society urgently requires medical 
interventions to counteract this deleterious disease because of 
the severe negative impact on the quality of lives of the afflicted 
patients as well as on the health system as a whole due to a rapidly 
aging population. 

This review focuses on the description of the role of 
mitochondrial dysfunction and the status of mitochondrial 
therapy in AD. The main question addressed here is: could the 
mitochondrial organelle be a valid pharmacologic target to 
prevent or delay the AD onset or to block the AD progression?

MITOCHONDRIA

The mitochondrion is a cellular organelle with a characteristic 
and unique structure formed by two membranes, respectively 
called outer mitochondrial membrane (OMM) and inner 

mitochondrial membrane (IMM) that surround the matrix. 
Mitochondria are defined as the powerhouse of the cell because 
every cell in the human body relies on the energy provided by 
these organelles to sustain their vital functions. Mitochondrial 
energy production via the so-called process of oxidative 
phosphorylation takes place at the IMM through the activity 
of respiratory chain complexes (RCC), generating an inner 
membrane potential (mtΔΨ) that is used by the ATP-synthase 
enzyme complex to synthesize adenosine triphosphate (ATP). 
This process depends on the supply of reducing equivalents by 
the end-oxidation of nutrients via the Krebs cycle or β-oxidation 
in the mitochondrial matrix compartment (Stock et al., 2000). 
Mitochondria contain their own DNA (mtDNA) located in the 
matrix that encodes mainly 13 protein subunits of the RCC. All 
other mitochondrial protein components are encoded in the 
nuclear DNA (nuDNA) and are imported into the organelle after 
the translation at cytosolic ribosomes. Hence, the maintenance 
of an entire and functional mitochondrial proteome requires a 
fine-tuned and well-coordinated sequence of many reactions and 
a close integration of organellar and cellular biogenesis processes 
(Pfanner et al., 2019). 

Neurons are strictly dependent on the presence of mitochondria 
in particular at the synapses where these organelles produce ATP 
and buffer Ca2+-ion concentration, both fundamental processes 
for the implementation of neurotransmission and generation of 
membrane potential along the axon (Li et al., 2004; Verstreken 
et al., 2005; Gazit et al., 2016). This justifies the high amount of 
mitochondria at the synaptic area, higher than any other part of 
the neurons. Linked to that, a correct and efficient transport of 
neuronal mitochondria at the synaptic terminals is fundamental 

FIGURE 1 | The hallmarks that characterized AD are reported in the left side of the figure. On the right side, the mitochondria-related functions that are seriously 
compromised in AD are on focus.
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for their correct function. Both non-synaptic and synaptic 
mitochondria are usually synthesized in the neuronal soma and 
then transported in the other area of the neurons where they 
are required. The transport of mitochondria along the axons is 
guaranteed via microtubules and requires motor proteins such 
as kinesin, dynein, as well as the OMM protein Mitochondrial 
Rho GTPase (Miro). Axonal transport of mitochondria is also 
influenced by the metabolic demand and the Ca2+ status at the 
synaptic level (Yi et al., 2004; Glater et al., 2006; Russo et al., 2009; 
Sheng and Cai, 2012).

The enzymatic activity of the mitochondrial RCC results 
essentially in two “side effects.” First, the generation of the 
mtΔΨ along the IMM is essential also for the execution of 
mitochondrial import of nuclear-encoded proteins and overall it 
is a parameter that reflects the health status of mitochondria and 
cells (Shariff et al., 2004). Second, a leakage of electrons from the 
RCC contributes significantly to the formation of reactive oxygen 
species (ROS). Therefore, ROS are considered a typical by-product 
of bioenergetic pathways (Quinlan et al., 2013). However, 
under normal physiological conditions, ROS production is well 
balanced by the presence of adequate antioxidant systems, and 
the damage to the diverse cellular constituents is contained. 
However, during aging, as well as during several pathological 
conditions, in particular in neurodegenerative diseases, this 
equilibrium becomes unbalanced. Increased ROS concentrations 
result in molecular damage at the site where they are produced 
or, through diffusion, in surrounding areas, leading to the 
generation of the so-called oxidative stress condition. ROS 
targets essentially comprise all cellular macromolecules, ranging 
from proteins, lipids, carbohydrates, up to nucleic acids (Cipak 
Gasparovic et al., 2017). The hippocampus region, the cortex, 
and more generally the brain are particularly vulnerable to 
oxidative stress because of their high consumption of oxygen 
and dependence on mitochondrial energy production. This 
susceptibility is increased by low levels of antioxidant defenses 
and a high content of polyunsaturated fats, which are especially 
vulnerable to oxidative alterations (Cobley et al., 2018).

Mitochondria form a dynamic tubular network extended 
throughout the cytosol, a behavior that is often misrepresented 
by the cell biology textbooks. Two crucial processes, fusion and 
fission, regulate the entire morphology and structure of this 
mitochondrial network (Mishra and Chan, 2016). During the 
fission reaction, a part of the mitochondrial tubule is divided 
into fragments, a process that is regulated by a member of the 
dynamin family, Dynamin-1-like protein (Drp1), together with 
the OMM fission factors Mitochondrial fission 1 protein (Fis1) 
and Mitochondrial dynamics protein MID49 [Mitochondrial 
elongation factor 2 (MIEF2)]. Fusion, where two or more pieces 
of mitochondria are fused together to one structure, happens 
through joint activity of the proteins Dynamin-like 120 kDa 
protein [or Optic atrophy protein 1 (OPA1)] and Mitofusin 1 
and 2 (Mfn1 and Mfn2). Fusion/fission processes together with 
the precursor proteins import and internal proteins translation 
are part of the mitochondrial biogenesis in which the cells 
increase their mitochondrial mass (Sanchis-Gomar et al., 2014). 
A master regulator of mitochondrial biogenesis is Peroxisome-
proliferator-activated receptor γ coactivator-1α (PGC-1α) 

(Scarpulla, 2011) that activates a series of transcriptional factors, 
including the Mitochondrial transcription factor A (TFAM), 
which regulates transcription and replication of mtDNA (Kang 
et  al., 2018), and Nuclear respiratory factor 1 (NFR-1) and 2 
(NFR-2), which control the mitochondrial protein-encoded 
nuclear genes (Scarpulla, 2011).

The buffer of intracellular Ca2+ is mediated mainly by 
the cooperation between endoplasmic reticulum (ER) and 
mitochondria through the formation of contact sites (Krols 
et al., 2016) that permit the Ca2+ uptake from the cytosol and 
the exchange of the ion between the two organelles (Rizzuto 
and Pozzan, 2006). Ca2+ regulates important mitochondrial 
metabolic enzymes (McCormack et al., 1990). The mitochondria 
contain two types of Ca2+ channels: the Mitochondria calcium 
uniporter (MCU) with high selectivity for this ion and localized 
in the IMM (De Stefani et al., 2011) and the Voltage-dependent 
anion channel (VDAC) localized in the OMM that regulates the 
release of the Ca2+ from the mitochondria (Krols et al., 2016). 
Furthermore, VDAC cooperates with the adenine nucleotide 
transporter in the IMM and the cyclophin D (CypD) in the 
matrix on the formation of the mitochondrial permeability 
transition pore (mPTP) (Bernardi, 1999). An mPTP opening 
leads to activation of apoptosis and then cell death (Green and 
Kroemer, 2004). As already mentioned above, at the synaptic 
level, mitochondria regulate the amount of Ca2+ fundamental 
for neurotransmission and in general for the exertion of synaptic 
functions (Werth and Thayer, 1994; Billups and Forsythe, 2002).

Mitochondrial functions and eventually cellular homeostasis 
are guaranteed by a dedicated mitochondrial quality control 
system (mtQCS). The mtQCS comprises a multitude of different 
biochemical mechanisms that act at different levels, affecting 
individual polypeptides as well as the whole organelle. While 
the folding state and activities of mitochondrial proteins are 
controlled by endogenous chaperones and proteases (Voos, 
2013), damaged mitochondria may be removed by a selective 
autophagy pathway, termed mitophagy (Youle and Narendra, 
2011). The primary regulator of the mitophagy is a specialized 
signaling system consisting of the protein PTEN-induced kinase 
1 (Pink1) and the ubiquitin ligase Parkin that is activated after 
the loss of mtΔΨ (Rüb et al., 2017). An accumulation of Pink1 
at the OMM of damaged mitochondria is thought to recruit 
Parkin that leads to a labeling of the mitochondria for the 
subsequent mitophagy process. This is followed by the formation 
of an autophagosomal membrane engulfing the mitochondria 
followed by its fusion with the lysosomes where ultimately the 
digestion of the mitochondrial material takes place.

MITOCHONDRIAL DYSFUNCTION IN AD

In AD brain, the alteration of energetic pathways, also linked 
to the reduction of glucose consumption, is a well-established 
feature of the disease (Gibson and Shi, 2010). The glucose uptake 
in the brain is usually measured with the positron emission 
tomography (PET) tracer 18-fluorodeoxyglucose (fDG). In 
subjects with AD, PET studies have consistently demonstrated 
a low rate of glucose metabolism (between 20% and 30% 
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lower than healthy individuals) in brain regions involved in 
processing memory (e.g., the hippocampus, posterior cingulate, 
temporal, and parietal lobes) (Kapogiannis and Mattson, 2011). 
Furthermore, it was proposed that the metabolic changes 
appeared earlier than the onset of the histopathological markers 
and symptoms (Gibson and Shi, 2010). Although the real cause 
is still unclear, the defective metabolism that characterizes AD 
could be easily linked to mitochondrial dysfunction.

Since its formulation in 1992 (Hardy and Higgins, 1992), 
the “amyloid cascade hypothesis” has dominated the AD field 
in the past 30 years. This hypothesis was based on two clear 
evidences: Aβ peptides constitute the extraneuronal senile 
plaques and mutation of Aβ peptides precursor, amyloid-β 
precursor protein (APP), leads to an early onset of AD. However, 
due to the fails in all Phase III clinical trials in human AD, 
this hypothesis has substantially lost ground and needed to be 
strongly revised or integrated with other hypotheses (Karran et 
al., 2011). In 2004, a new hypothesis was proposed to explain 
the onset of sporadic AD. The hypothesis, called “mitochondrial 
cascade hypothesis,” described that each human genetic heritage 
influences mitochondrial functions with a primary repercussion 
on the onset of AD pathology. In other words, according to this 
hypothesis, the mitochondrial dysfunction is the primary process 
to trigger all the cascade of events that lead to sporadic late-onset 
AD (Swerdlow and Khan, 2004; Swerdlow et al., 2014). 

Despite the fact that the validity of the mitochondrial 
cascade hypothesis has yet to be demonstrated in different AD 
models as well as human patients, the following mitochondrial 
functions were found severely compromised in the AD context 
(Hauptmann et al., 2009): mitochondrial morphology (Johnson 
and Blum, 1970) and number (Hirai et al., 2001), oxidative 
phosphorylation, mtΔΨ, Ca2+ buffering, ROS production 
(Butterfield and Halliwell, 2019), mtDNA oxidation and 
mutation (Wang et al., 2006), mitochondrial-ER contact 
sites (Area-Gomez et al., 2018), mitochondrial biogenesis, 
mitochondrial transport along the neuronal axon (Calkins 
and Reddy, 2011), and mitophagy (Figure 1). In a neuronal 
context, any of these dysfunctional processes could lead to 
synaptic deficits and critical consequences not only for single 
neurons but also for a more complex structure like the brain  
(Cai and Tammineni, 2017). 

In AD brains, the activities of the enzymes involved in 
mitochondrial energy production, such as complex IV cytochrome 
c oxidase (COX), pyruvate dehydrogenase complex, mitochondrial 
isocitrate dehydrogenase, α-ketoglutarate dehydrogenase (αKGDH), 
and ATP synthase complex were found decreased, while the succinate 
dehydrogenase (complex II) and malate dehydrogenase activities 
were increased (Maurer et al., 2000; Cardoso et al., 2004; Gibson 
and Shi, 2010; Wojsiat et al., 2015). This definitely compromises the 
maintenance of the mtΔΨ and eventually of the mitochondrial ATP 
production (Beck et al., 2016). 

In line with that, the imbalance between ROS production and 
antioxidant power was observed in AD brains, cerebrospinal fluid 
(CSF), and blood (García-Blanco et al., 2017). Since the 1990s, the 
ROS-induced oxidative stress has received considerable attention 
as one of the main factors contributing to the AD pathogenesis 
(Mark et al., 1997). Already the mild cognitive impairment 

(MCI), an early stage in the AD chronology, is characterized by 
the significant increase of oxidative stress markers, such as lipid 
peroxidation and protein oxidation products, and the decrease of 
antioxidants in the brain and peripheral compartments (Praticò 
et al., 2002; Rinaldi et al., 2003; Butterfield et al., 2006).

The analysis of the samples from different AD experimental 
models and AD patients showed a strong link between 
the oxidative stress and mitochondrial dysfunction. In the 
transgenic mice over-expressing human APP (Tg mAPP mice), 
an early and progressive accumulation of Aβ peptide in synaptic 
mitochondria led to a mitochondrial synaptic dysfunction such 
as damaged mitochondrial respiratory activity, increased mPTP 
and oxidative stress, and impaired mitochondrial axonal transport 
(Du et al., 2010). Data from the 3xTg-AD mice showed that the 
compromised mitochondria bioenergetics together with elevated 
oxidative stress levels are early phenomena appearing before the 
development of observable Aβ plaques (Hauptmann et al., 2009; 
Yao et al., 2009). Oxidation of one of the mitochondrial enzymes 
involved in the oxidative phosphorylation, ATP synthase, was 
found in isolated lymphocytes from AD peripheral blood as well 
as in MCI and AD brains (Sultana et al., 2006; Reed et al., 2008; 
Tramutola et  al., 2018). This may explain the compromised 
activity of the ATP synthase and the reduction of ATP levels in 
AD. Another paper showed a correlation between the reduction 
of the mitochondrial enzyme Aconitase (ACO2) activity and 
the plasma antioxidant levels in peripheral lymphocytes from 
MCI and AD patients proving again the strong association 
between the oxidative stress and the mitochondrial dysfunction 
in AD (Mangialasche et al., 2015). Interestingly, the new and 
innovative technology for AD modeling obtained with the 
human induced pluripotent stem cells (iPSCs) directly from AD 
patients demonstrated further that AD-relevant mitochondrial 
aberrations, including oxidative stress, have a causative role in 
the developments of the disease. Indeed, neurons and astrocytes 
from AD-iPSCs presented increased ROS production and RCC 
levels and enhanced susceptibility to the stressors (Ochalek 
et al., 2017; Oksanen et al., 2017; Birnbaum et al., 2018).

The mitochondrial dynamics such as fusion and fission 
processes were found unbalanced in AD, potentially leading to 
i) compromised distribution and morphology of mitochondria in 
the neurons (Hirai et al., 2001) and ii) fragmented mitochondria 
observed in fibroblasts and brains from AD patients (Wang et al., 
2008a; Wang et al., 2009). The mitochondrial fusion and fission 
proteins were differentially expressed in AD hippocampus with 
an increase of the mitochondrial fission protein Fis1 alongside 
with a significant downregulation of Drp1 and fusion proteins 
Mfn1, Mfn2, and OPA1 (Wang et al., 2009). Similar results 
were found in a AD cybrids model, together with bleb like- 
and shorter mitochondria compared to control samples (Gan 
et  al., 2014). Furthermore, increased phosphorylation at Ser 
616 site and S-nitrosylation of Drp1, which both facilitate the 
mitochondrial fission (Taguchi et al., 2007; Cho et al., 2009), 
were higher in a AD brains compared to control (Wang et  al., 
2009). Beside that, the protein Drp1 was seen interacting with 
Aβ and phosphorylated tau in brain homogenates from AD 
patients (Manczak et al., 2011; Manczak and Reddy, 2012). A 
recent study performed in samples from AD and healthy control 
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subjects showed the significant association between a specific 
polymorphism in MFN2 gene and AD suggesting that genetic 
polymorphism of fusion process regulation might be involved 
in the AD pathogenesis (Kim et al., 2017). In addition, mfn2 
protein act as a tether between mitochondria and ER membranes 
(de Brito and Scorrano, 2008). In this regard, mfn2 influences the 
Presenilin 2 (PS2), whose mutation is linked to the familial AD 
(FAD), in the modulation of the mitochondria-ER contact sites  
(Filadi et al., 2016). 

Several experimental AD models linked to APP 
overexpression or Aβ peptides treatments are characterized 
as well by mitochondrial fragmentation and abnormal 
mitochondrial distribution along the neurons due to an alteration 
of mitochondrial fusion and fission proteins levels (Wang et al., 
2008b; Du et al., 2010; Zhao et al., 2010; Calkins and Reddy, 2011; 
Wang et al., 2017). All these results lead to two critical remarks: 
i) the altered balance between fusion and fission that interferes 
with mitochondrial transport contributes actively to the AD 
pathogenesis and ii) the mitochondrial dynamics impairment 
could be a new therapeutic target in AD.

Another key mitochondrial function, the mitochondrial 
biogenesis, was impaired in AD. The significant reduction of 
the number of mitochondria in AD human hippocampus and 
in cell culture models already suggests that the mitochondrial 
biogenesis is compromised (Hirai et al., 2001; Wang et al., 2008b). 
Furthermore, the level of protein regulating the mitochondrial 
biogenesis such as PGC-1α, NRF1 and 2, and TFAM was 
significantly reduced in human AD hippocampus and cellular 
models overexpressing APP Swedish mutation (Qin et al., 
2009; Sheng et al., 2012). In the AD mouse model harboring 
mutant human transgenes of APP and Presenilin-1 (PS1), the 
mitochondrial biogenesis markers were found again declined in 
particular in the hippocampus region, and the use of melatonin 
brought beneficial effects (Song et al., 2018).

Interestingly, on one side, mitophagy was able to reverse the 
memory impairment, to prevent the cognitive deterioration 
and the Aβ peptide/tau pathology in several AD models 
(Fang et al., 2019). However, on the other side, mitophagy was 
also strongly affected in AD, leading to the accumulation of 
damaged mitochondria and consequently to dysfunctional 
neurons. One cause may be the impairment of the fusion 
between the autophagosome and lysosomes. This was observed 
in cultured cells overexpressing mutant APP, in AD mouse 
models, and also in neurons from AD patients’ brain (Boland 
et al., 2008; Lee et al., 2010; Coffey et al., 2014). In AD brains, 
the somatic mutations found in mtDNA are higher than in 
healthy brains, potentially triggering other neuropathological 
consequences such as the increased ROS production in 
neurons and the promotion of amyloidogenic processing of APP  
(Lin et al., 2002).

The two major and typical histopathological markers of AD, 
Aβ peptide and tau, harmfully accumulate in or interact non-
specifically with mitochondria (Eckert et al., 2010). Aβ peptide and 
abnormal tau negatively affect axonal transport and consequently 
the transport of mitochondria along the axon from the neuronal 
soma to the synapses. AD mouse models, overexpressing Aβ 
peptides, have damaged mitochondria usually characterized by 

impaired axonal transport of mitochondria, a reduced mtΔΨ, 
and inhibited RCC with a compromised ATP production (Rui 
et al., 2006). The accumulation of Aβ peptides or of the precursor 
APP inside the mitochondria (Anandatheerthavarada et al., 
2003; Hansson Petersen et al., 2008) and even the interaction of 
Aβ peptides with some component of the mitochondrial matrix 
(Lustbader et al., 2004) would be the most straightforward and 
rational explanations to justify the mitochondrial dysfunctions 
in the animal models of AD. However, mitochondria lack APP 
and the set of the enzymes required for Aβ peptide generation, 
making a mitochondria-localized production of Aβ peptides 
unlikely. Furthermore, a solid mechanism that explains the 
mitochondrial import of Aβ peptides and the direct negative 
effects of Aβ peptides on mitochondria is still missing, suggesting 
that the mitochondrial dysfunctions identified in all these AD 
models are indirect effects of Aβ peptides. In support of this point, 
a recent study showed that Aβ peptides impaired mitochondrial 
import of nuclear-encoded precursor proteins due to an extra 
mitochondrial co-aggregation process (Cenini et al., 2016).

Tauopathies including AD are also characterized by 
mitochondrial dysfunction. Tau influences, directly and 
indirectly, the mitochondrial transport along the neuronal axon 
and the mitochondrial functions. This leads to the reduction 
and impairment of mitochondria at the presynaptic terminals 
with obvious deleterious consequences (Dubey et al., 2008; 
DuBoff et al., 2012). In AD brains, phosphorylated tau was 
found interacting with VDAC1 leading as well to mitochondrial 
dysfunction (Manczak and Reddy, 2012). Hyperphosphorylation 
of tau negatively affects complex I activity with a decrease of 
ATP production, an increase of oxidative stress, dissipation of 
mtΔΨ, induction of the mitochondrial fission, and excessive 
mitochondrial fragmentation in postmortem brains from AD 
patients and in murine models (Manczak et al., 2011; Eckert 
et al., 2014). In addition, mitochondrial stress was shown to 
promote tau-hyperphosphorylation in a mouse model (Melov 
et al., 2007). These observations argue for a prominent role of tau 
pathology in the mitochondrial dysfunction of AD. 

The Translocase of outer membrane 40 kDa submit homolog 
(Tomm40) is a mitochondrial channel localized in OMM that is 
fundamental for the import of nuclear-encoded mitochondrial 
preproteins (Chacinska et al., 2009). Aβ peptides affected 
directly or indirectly the mitochondrial import machinery 
including Tomm40, and this may also contribute to the 
mitochondrial dysfunction observed in AD (Devi et al., 2006; 
Anandatheerthavarada and Devi, 2007; Cenini et al., 2016). 
TOMM40 gene is contained in a tight gene cluster together 
with APOE gene in the chromosome 19 (Gottschalk et al., 2014; 
Subramanian et al., 2017). APOE is one of the most significant 
genetic risk factors for late-onset sporadic AD (LOAD) with the 
ε4/ε4 isoform linked to the highest risk (Saunders et al., 1993). It 
seems that also a variable-length, deoxythymidine homopolymer 
polymorphism in intron 6 of the TOMM40 gene represents 
a genetic risk for LOAD. However, different groups showed 
that TOMM40 SNPs (single-nucleotide polymorphisms) are 
associated with the LOAD (Martin et al., 2000; Takei et al., 2009; 
Kim et al., 2011; Davies et al., 2014). In a Caucasian ethnic group 
three variants of the TOMM40 polymorphisms were identified, 
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and the variant rs10524523 has received particular attention since 
it lowered the age of LOAD onset by 7 years in APOE3/4 carriers 
(Roses et al., 2010). Furthermore, this variant was associated with 
impaired cognition and the gray matter volume in the brain area 
susceptible to AD (Johnson et al., 2011). Different groups also 
demonstrated the strong influence of TOMM40 “523” variant on 
TOMM40 and APOE genes transcription (Linnertz et al., 2014; 
Payton et al., 2016).

The integration of all these facts into a significant biological 
context like neuronal cells in AD, suggests that the accumulation 
of dysfunctional mitochondria at the synapses and the lack 
of their replacement would contribute substantially to the 
neurons degeneration and consequently to the worsening of the 
AD condition.

MITOCHONDRIAL THERAPIES IN AD

AD is still without a cure and also essentially lacks a rational 
understanding of the primary event triggering the disease. 
Nevertheless, an improved comprehension of this deleterious 
disorder and the development of effective treatments are essential 
not only to heal the disease but also eventually to prevent or 
postpone the onset of the symptoms in the patients. 

The traditional cures used nowadays to treat the AD patients 
are so far the cholinesterase inhibitors (donepezil, rivastigmine, 
and galantamine) and memantine that block the N-methyl-D-
aspartate (NMDA) receptor and the excess of glutamate activity. 
NMDA receptors and acetylcholin (Ach) are fundamental in 
memory and learning processes and their concentration and 
function are compromised in AD (Francis, 2005). However, 
these treatments improve the cognitive and memory functions, 
without really slowing down the progression of the disease.

As described above, mitochondrial dysfunctions and a 
compromised energetic metabolism are two prominent aspects 
of AD pathology. Therefore, mitochondria should be seriously 
considered as pharmacological targets. In the course of history, 
nevertheless, different compounds affecting mitochondria were 
already tested in AD without a successful outcome. However, as the 
idea of AD as a multifactorial disease gained more ground in the 

last years, a reconsideration of mitochondria as a valid therapeutic 
target together with other medications is strongly recommended.

Mitochondria could be targeted through two ways: i) by 
pharmacologic approaches acting on mitochondria directly or 
ii) by action on the lifestyle that indirectly hits this organelle 
(Figure 2). In the following section, we describe the most 
popular mitochondrial treatments that have been used until 
today on AD patients, and in Table 1, we summarize specifically 
the beneficial effects of these compounds on mitochondria 
in different experimental AD models. The table is also a proof 
that these treatments are able to act effectively and positively on 
mitochondria, and therefore a revision and improvement of their 
use in AD would be worthy.

More information about the ongoing clinical trials 
concerning mitochondria in AD are summarized in Wilkins et 
al. and in Perez Ortiz et al. (Perez Ortiz and Swerdlow, 2019; 
Wilkins and Morris, 2017), and they can also be found in www.
clinicaltrials.gov. 

Antioxidants
Since the increased oxidative stress accompanied by the 
reduction of the antioxidant power was measured in the brain, 
CSF, and blood from AD patients, treatments with antioxidant 
compounds were tested to counteract this oxidative unbalance 
and slow down the progression of the AD symptoms. 

Typical antioxidants were the vitamins, E and C, but their 
effects in the context of AD remain questionable. For example, in 
two studies with vitamin E, some markers of lipid peroxidation 
were found decreased in AD patients’ CSF, with no consistent 
effect on or even a deterioration of cognitive functions (Arlt et al., 
2012; Galasko et al., 2012). Vitamin E was also administered in 
combination with selenium. However, high levels of selenium 
were found toxic with a pro-oxidant effect, glial activation, and 
neuronal death (Vinceti et al., 2014). There is an important 
study called PREADViSE that was performed to see the long-
term effect of anti-oxidant supplements (Vitamin E, selenium, 
Vitamin E + selenium or placebo) on dementia incidence among 
asymptomatic men. However, the supplement did not prevent 
dementia occurrence (Kryscio et al., 2017).

FIGURE 2 | Schematic summary of mitochondrial-targeted therapies used in AD models and clinical trials. 
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TABLE 1 | List of compounds and lifestyle activities effects on mitochondria in experimental models for AD.

Treatment Effect on mitochondria Experimental AD models References

Antioxidants
Vitamin E Increase mtΔΨ and ATP 

ROS scavenger
Reduction of lipid peroxidation

In vitro glutamate-injured astrocytes
In vivo aged old mice

(Selvaraju et al., 2014; 
Schloesser et al., 2015)

Selenium Inhibition of ROS production and oxidative damage 
Reduction of mitochondrial membrane depolarization

In vitro Aβ42-CFP-overexpressed HEK293 
cell line
In vivo scopolamine-treated aged rats

(Chen et al., 2013; Balaban 
et al., 2017)

Vitamin C Maintenance of mitochondrial integrity through reduction 
of oxidative damage 
Reduction of mitochondrial membrane depolarization and 
mitochondria-mediated apoptosis

In vitro Aβ1-42 peptide-treated human cortical 
neurons
In vivo 5XFAD Tg mice
In vivo APP/PSEN1 mice

(Medina et al., 2002; Kook 
et al., 2014; Dixit et al., 2017)

Coenzyme Q10 Attenuation of decreased oxidative phosphorylation 
efficiency and of increased H2O2 production
Reduction of mitochondrial accumulation of Aβ peptide 
Prevention of Aβ peptide-induced mPTP opening
Protection against dissipation of mtΔΨ
Beneficial effect of mitochondrial ETC

Isolated mitochondria from Aβ1-40 peptide-
treated diabetic Goto–Kakizaki aged rats 
In vitro Aβ25-35 peptide-treated HUVEC cell line 
In vitro Aβ1-42 peptide-treated M17 cell line 
In vivo TgP301S mice 
In vivo Tg19959 mice 

(Moreira et al., 2005; Dumont 
et al., 2011; Elipenahli et al., 
2012; Sadli et al., 2013; Durán-
Prado et al., 2014)

Mitoquinone 
(MitoQ)

Prevention of increased ROS production, loss of mtΔΨ, 
decreased GSH/GSSG ratio, increased MDA and 3-NT
Regulation of mitochondrial fusion, fission, and matrix 
genes
Protection of mitochondrial structure
Amelioration of ATP production, COX activity, and 
depletion of the cardiolipin

In vitro Aβ22-35 peptide-treated mouse cortical 
neurons and N2a cell line 
In vivo 3xTg-AD and Tg2576 mice
In vivo human Aβ-overexpressed C. elegans

(Manczak et al., 2010; 
McManus et al., 2011; Ng 
et al., 2014)

SkQ1 Preservation of mitochondrial structure
Improvement of mitochondrial biogenesis
Increase of COX activity
Inhibition of ROS production 
Reduction of mtDNA deletion 

In vivo OXYS rats (Loshchenova et al., 2015; 
Stefanova et al., 2016; 
Kolosova et al., 2017)

MitoApo or 
apocynin

Protection against oxidative stress-induced cell death
Reduction of superoxide production

In vitro 6-OHDA-treated LUHMES cell line (Brenza et al., 2017)

Astaxanthin Prevention of mitochondrial H2O2 production In vitro Aβ1-42 oligomers-treated mouse 
hippocampal neurons

(Lobos et al., 2016)

Melatonin Restoration of: respiration rate, RCC proteins expression, 
mtΔΨ, ROS production, ATP levels
Prevention of decreased mitochondrial volume
Improvement of mitochondrial biogenesis factors 
expression and mtDNA/nuDNA ratio
Amelioration of mitochondrial membrane fluidity and 
mitochondrial structure
Stabilization of cardiolipin and mPTP
Decrease of mitochondrial Ca2+ levels

Isolated mitochondria from APPswe and APP/
PSEN1 mice 
In vitro APPswe-overexpressed HEK293 cell 
line
In vitro Aβ22-35 peptide-treated cultured rat 
hippocampal neurons 
In vitro Aβ peptide-treated NARP cybrids cell 
line 
In vivo OXYS rats 
In vivo injection of Aβ1-42 peptide in rats 
hippocampus
In vivo APP/PSEN1 mice 

(Dong et al., 2010; Dragicevic 
et al., 2011a; Dragicevic 
et al., 2012; Peng et al., 
2012; Rosales-Corral et al., 
2012b; Gerenu et al., 2015; 
Rudnitskaya et al., 2015; Wang 
et al., 2019)

α-Lipoic acid (LA) Decrease of oxidative stress and apoptotic markers
Preservation of COX assembly
Elevation of ATP levels, Krebs cycle dehydrogenase, 
complex I, and COX activities 

In vitro AD fibroblast 
In vivo aged rats
In vitro Aβ1-42 peptide-treated differentiated 
SH-SY5Y cell line 
In vivo ApoE4 Tg mice

(Moreira et al., 2007; Ajith 
et al., 2014; Marinelli et al., 
2017)

N-Acetyl-cysteine 
(NAC)

Decrease oxidative stress and apoptotic markers
Preservation of COX assembly

In vitro AD fibroblast (Moreira et al., 2007)

Ginkgo biloba Stabilization of mtΔΨ and ATP production
Reduction of ROS/RNS production
Increase of mitochondrial APE1 levels 
Enhancement of complex I, III, COX activities 
Improvement of oxygen consumption
Up-regulation of mitochondrial DNA
Block of mitochondria-mediated apoptosis

In vitro APPmutant-overexpressed and Aβ 
peptide-treated PC12 cell line
In vitro Aβ25-35 peptide-treated IMR-32 and 
SH-SY5Y cell line 
In vitro APP-overexpressed SH-SY5Y cell line 
In vivo Aβ25-35 peptide-injected rats 

(Eckert et al., 2003; Eckert 
et al., 2005; Rhein et al., 2010; 
Tian et al., 2013; Kaur et al., 
2015)

(Continued)
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TABLE 1 | Continued

Treatment Effect on mitochondria Experimental AD models References

Szeto-Schiller 
tetrapeptides 31 
(SS31)

Increase of mitochondrial biogenesis and dynamics 
proteins level
Rescue of mitochondrial anterograde transport
ROS scavenger and reduction of H2O2 and lipid 
peroxidation levels
Prevention of mPTP, mitochondrial swelling, and 
mitochondria-mediated apoptosis
Protection of mitochondrial structure
Increase of ATP production and supply at nerve terminals
Increase of COX activity, and mtΔΨ
Increase of mtDNA copy number and mitochondrial 
network

In vitro primary neurons from Tg2576 mice
In vitro Aβ22-35 peptide-treated 
or APPswe and APPInd-overexpressed N2a 
cell line
In vivo Tg2576 mice

(Manczak et al., 2010; Calkins 
et al., 2011; Reddy et al., 
2017, Reddy et al., 2018)

Catalase Reduction of abnormal APP process, oligomeric Aβ 
peptides, and BACE1 activity and levels, and oxidative 
damage
Increase of protective soluble APPα and CTF83 fragments

In vivo MCAT/APP mice (Mao et al., 2012)

Phenylpropanoids
Resveratrol Attenuation of ROS accumulation, mtΔΨ, and 

mitochondria-mediated apoptosis
Increase of COX levels
Stimulation of mitophagy/autophagy

In vitro Aβ peptide-treated PC12 cell line
In vivo APP/PSEN1 mice 

(Jang and Surh, 2003; Porquet 
et al., 2014; Deng and Mi, 
2016; Wang et al., 2018)

Quercetin Restoration of mtΔΨ, ROS production, and ATP levels, 
and the normal mitochondrial morphology
Increase MnSOD activity
Prevention of mitochondria-mediated apoptosis

In vivo APP/PSEN1 mice 
In vitro Aβ peptide-treated rat hippocampal 
neurons 
In vitro OA-treated HT22 hippocampal 
neurons 
In vivo aluminum-treated rats

(Wang et al., 2014; Jiang et al., 
2016; Sharma et al., 2016; 
Godoy et al., 2017)

Wogonin Rescue the mtΔΨ loss 
Attenuation of mitochondria-mediated apoptosis

In vitro Tet-On Aβ42-GFP-overexpressed 
SH-SY5Y cell line
In vivo 3xTg-AD mice 

(Huang et al., 2017)

Epigallocatechin-3-
gallate (EGCG)

Attenuation of ROS accumulation 
Increase of MnSOD level
Restoration of altered mtΔΨt, ATP levels, and 
mitochondria respiratory rates

Isolated mitochondria from hippocampus, 
cortex, and striatum of APP/PSEN1 mice 
In vitro APP695-overexpressed N2a cell line 
In vitro APPmut-overexpressed 
neuroblastoma cell line
In vivo streptozotocin-infused Wistar rats

(Dragicevic et al., 2011b; 
Biasibetti et al., 2013; Zhang 
et al., 2017)

Curcumin Increase of ATP levels and COX activity
Positive effect on mtΔΨ and respiratory control ratio
Reduction of ROS production and mitochondria-mediated 
apoptosis
Restoration of complex I, II, COX levels and activities 

In vitro Aβ22-35 peptide-treated SH-SY5Y cell 
line
In vitro glutamate-treated PC12 cell line 
In vivo APP751SL mice 
In vivo APP/PSEN1 mice 
In vivo aluminum-treated rats 

(Sood et al., 2011; Chang 
et al., 2014; Hagl et al., 2014; 
Gerenu et al., 2015; Reddy 
et al., 2016)

Action of the life style

Calories restriction Decrease of F0F1-ATPase activity In vivo P301L mice (Delic et al., 2015)
Oleuropein 
aglycone (OLE) 

Stimulation of mitophagy/autophagy In vivo TgCRND8 mice (Grossi et al., 2013; Pantano 
et al., 2017)

Hydroxytyrosol 
(HT)

Reduction of mitochondrial carbonyl protein 
ROS scavenger
Enhancement of MnSOD level

In vivo APP/PSEN1 mice 
In vitro copper-treated SH-SY5Y cell line

(Peng et al., 2016; Omar et al., 
2017)

Ketones Increase of TCA cycle intermediates and ATP hydrolysis
Reduction of mitochondrial redox potential (free 
mitochondrial [NAD+]/[NADH] ratio oxidation)

In vivo 3xTg-AD mice (Pawlosky et al., 2017)

Physical exercise 
(PE)

Increase of mitochondrial mass, mtΔΨ, complexes I, COX, 
αKGDH, and ATP synthase activities 
Reduction of ROS production and mtDNA oxidative 
damage
Restoration of mitochondrial antioxidant enzymes and 
OGG1 activities 
Suppression of OGG1 and MnSOD acetylation 
Modulation of mitochondrial dynamics proteins (Mfn1 
and Drp1)

Isolated mitochondria from APP/PSEN1 mice 
In vivo swimming-trained pregnant rats
In vivo 3xTg-AD mice 

(Bo et al., 2014; Klein et al., 
2019)

(Continued)

152

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Mitochondrial Therapy in ADCenini and Voos

9 August 2019 | Volume 10 | Article 902Frontiers in Pharmacology | www.frontiersin.org

Targeting directly the mitochondria with antioxidant 
compounds was always one of the most considered therapeutic 
strategies in AD. In this regard, an antioxidant directed to 
mitochondria that has been tried was the coenzyme Q10 
(CoQ10). CoQ10 has a quinone structure and is a component of 
the mitochondrial RCC. In a rat model for AD, CoQ10 prevented 
the cognitive decline (Dehghani Dolatabadi et al., 2012). Still, due 
to a low bioavailability in the brain (Kwong et al., 2002), CoQ10 
has never been successful in humans. To overcome this issue, 
the mitoquinone mesylate (MitoQ) was optimized. MitoQ is 
an antioxidant compound made of ubiquinone conjugate with 
triphenylphosphonium (TPP). The TPP is necessary to target 
the molecule to the mitochondria because it helps to cross the 
lipid bilayers accumulating on the negative site of mitochondrial 
membranes (Kelso et al., 2001; Smith et al., 2003). MitoQ behaved 
as ROS scavenger and was tested in different AD model systems 
(see Table 1). Here, MitoQ shown to prevent oxidative damage, 

to protect RCC activity, to reduce Aβ peptide levels, synaptic loss, 
and astrogliosis, and to improve cognitive functions (McManus 
et al., 2011; Ng et al., 2014). As reported in the review from Ortiz 
(Perez Ortiz and Swerdlow, 2019), at the moment, MitoQ is tested 
in a small clinical trial to check its effect on cerebrovascular blood 
flow in AD. Similarly to MitoQ, other antioxidant compounds 
(SkQ1, MitoApo, astaxanthin) affect positively the mitochondrial 
functions (see Table 1) and could be potentially used to treat AD 
(Lobos et al., 2016; Stefanova et al., 2016; Brenza et al., 2017). 

Another group of antioxidant molecules such as melatonin, 
α-lipoic acid (LA), N-Acetyl-cysteine (NAC), and Ginkgo biloba 
were tested in vivo and in vitro and showed protective effects on 
Aβ peptide accumulation and mitochondrial toxicity as well as on 
cognitive functions (Dong et al., 2010; Rosales-Corral et al., 2012a). 
Melatonin is a neurohormone produced by the pineal gland with 
neuroprotective functions in AD pathogenesis (Shukla et al., 2017). 
Melatonin is a ROS scavanger and showed some anti-amyloidogenic 

TABLE 1 | Continued

Treatment Effect on mitochondria Experimental AD models References

2-deoxyglucose Increase of αKGDH level
Reduction of mitochondrial APP and Aβ oligomer level, 
mitochondrial stress response proteins levels, mtΔΨ

In vivo 3xTg-AD mice 
In vivo Aβ peptides-treated adult rats

(Guo and Mattson, 2000; Yao 
et al., 2011)

Rapamycin Prevention of decrease of mtΔΨ
Stimulation of mitophagy/autophagy

In vitro Aβ1-42 peptide-treated PC12 cell line (Xue et al., 2016)

Spermidine, 
Urolithin A, 
Actinonin

Stimulation of mitophagy/autophagy In vivo Aβ and tau Caenorhabditis elegans 
models
In vivo APP/PSEN1 mice 

(Fang et al., 2019)

Other mitochondrial-based therapy 

Nicotinamide 
adenine 
dinucleotide (NAD)

Prevention of OCR deficits
Promotion of PGC-1α level
Restoration of NAD+ and ATP level
Changes of mitochondrial dynamics fusion–fission
Block of ROS accumulation
Stimulation of mitophagy/autophagy

In vitro APP/PSEN1-overexpressed 
hippocampal neuroblastoma 
In vitro NMN-treated organotypic 
hippocampal slice cultures (OHCs)
In vivo APP/PSEN1 mice 
In vivo Aβ oligomer-infused rats
In vivo Tg2576 mice
In vivo Aβ and tau Caenorhabditis elegans 
models

(Long et al., 2015; Wang et al., 
2016; Fang et al., 2019)

Pioglitazone Restoration of mitochondrial energy metabolism and 
activity

Isolated mitochondria from APP/PSEN1 mice 
In vitro APP695-overexpressed CHO cell line

(Chang et al., 2015, Chang et 
al., 2019)

Dimebon 
(Latrepirdine)

Increase and maintenance of succinate dehydrogenase 
and RCC activities, mtΔΨ, ATP levels, TIM and TOM 
proteins levels, mitochondrial dynamics and morphology
Attenuation of Ca2+ induced mitochondrial swelling 
Restoration of impaired autophagy/mitophagy and mPTP 
proteins levels

Isolated mitochondria from rat 
In vitro mouse cortical neurons and SH-SY5Y
In vitro APPswe-overexpressed HEK293 cell 
line 
In vitro glutamate-treated CGNs

(Zhang et al., 2010; Naga and 
Geddes, 2011; Eckert et al., 
2012; Weisová et al., 2013)

AD, Alzheimer’s disease; ETC, electron transport chain; RCC, respiratory chain complexes, mtΔΨ: mitochondrial membrane potential; OCR, oxygen consumption rates; ATP, 
adenosine triphosphate; mPTP, mitochondrial permeability transition pore; mtDNA, mitochondrial deoxyribonucleic acid; nuDNA, nuclear deoxyribonucleic acid; APE1, apurinic/
apyrimidinic endonuclease 1; MnSOD, manganese superoxide dismutase; OGG1, oxoguanine DNA glycosylase-1; αKGDH, α-ketoglutarate dehydrogenase; COX, cytochrome c 
oxidase or complex IV; TIM, translocase inner membrane; TOM, translocase outer membrane; Mfn1, mitofusin-1; Drp1, dynamin-1-like protein; PGC-1α, peroxisome-proliferator-
activated receptor γ coactivator-1α; NAD, nicotinamide adenine dinucleotide; NADH, reduced nicotinamide adenine dinucleotide; ROS, reactive oxygen species; RNS, reactive nitrogen 
species; GSH, glutathione; GSSG, oxidized glutathione; 3-NT, 3-nitrotyrosine; MDA, malondiaaldehyde; SelM, selenoprotein M; 6-OHDA, 6-hydroxydopamine; OA, okadaic acid; 
H2O2, hydrogen peroxide; NMN, nicotinamide mononucleotide; Aβ, β-amyloid peptide; AβPP, β-amyloid precursor protein; PS1, presenilin 1; BACE1, β-secretase-1; HEK293, human 
embryonic kidney 293 cell lines; HUVEC, human umbilical vein endothelial cell line; M17, human neuroblastoma cell line; N2a, mouse neuroblastoma cell line; LUHMES, Lund human 
mesencephalic cell line; SH-SY5Y, human neuroblastoma cell lines; IMR-32, human neuroblastoma cell lines; PC12, pheochromocytoma of rat adrenal medulla-derived cell lines; 
OHCs, organotypic hippocampal slice cultures; NARP, cybrid cell lines bearing mtDNA mutation T8993G; CGN, cerebellar granule neurons; 5xFAD, mice expressing human APP and 
PSEN1 genes with a total of five AD-linked mutations, the Swedish, Florida, and London mutations in APP, and the M146L and L286V mutations in PSEN1; APP/PSEN1, mice contain 
human APP gene bearing the Swedish mutation and PS1 gene containing L166P mutation; TgP301S, mice expressing mutant human microtubule-associated protein tau (MAPT); 
Tg19959, mice expressing human APP gene bearing the Swedish mutation and Indiana mutation; TgCRND8, mice expressing human APP695 gene with the Swedish mutation and 
Indiana mutation; 3xTg-AD, mice contain three mutations (Swedish, MAPT, PS1) associated with familial AD; Tg2676 mice, mice expressing mutant human form of APP (isoform 
695) with Swedish mutation; APP751SL, mice expressing the human APP bearing both Swedish and the London mutation; ApoE4 Tg mice, mice expressing human apolipoprotein E 
(APOE) gene; OXYS rats, senescence-accelerated rats; MCAT, mitochondria-targeted catalase; C. elegans, Caenorhabditis elegans. 
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properties (Dong et al., 2010; Rosales-Corral et  al., 2012a). At 
mitochondrial level, melatonin prevented the ROS production, the 
cardiolipin oxidation, and the mPTP opening, restored the Ca2+ 
balance, and reduced the caspase-3 and -9 levels (Feng and Zhang, 
2004; Jou et al., 2004; Petrosillo et al., 2009; Espino et al., 2010). 
Treatments with α-lipoic acid, a cofactor for many RCC enzymes, 
exhibited a positive effect on cognitive functions in clinical trials on 
AD patients and in murine models of aging and AD, α-lipoic acid 
affected also the formation and the stabilization of Aβ peptide fibril 
as well as the protection against the Aβ peptide toxicity in cultured 
hippocampal neurons (Liu et al., 2002; Lovell et al., 2003; Ono et al., 
2006; Hager et al., 2007; Quinn et al., 2007; Sancheti et al., 2013). 
N-Acetyl-cysteine (NAC) is the precursor of the endogenous 
antioxidant glutathione (GSH), a key molecule for the maintenance 
of mitochondrial functions (Traber et al., 1992). In vitro and in vivo, 
NAC had beneficial effects on Aβ peptide and phosphorylated tau 
levels with improvement of cognitive functions, protection against 
memory decline, and reduction of oxidative stress markers (see 
also Table 1) (Studer et al., 2001; Fu et al., 2006; Huang et al., 2010; 
Costa et al., 2016). In two clinical trials, subjects with MCI, AD, or 
early memory loss were treated for a long time with a nutraceutical 
formulation that also included NAC. Improvement of cognitive 
and behavioral functions was observed (Remington et al., 2015; 
Remington et al., 2016). G. biloba is a natural antioxidant already 
used in the Chinese traditional medicine. Table 1 shows all the 
effects of G. biloba on mitochondrial functions. Two clinical trials 
were performed to test the effect of G. biloba in the prevention 
against memory and cognitive decline in older adults and AD 
subjects. Unfortunately, no positive effects were observed in these 
tests (Snitz et al., 2009; Vellas et al., 2012).

The Szeto-Schiller (SS) tetrapeptides are a group of small 
peptides that due to their structure act as antioxidants and 
can reach the mitochondrial matrix and the IMM (Szeto, 
2006). In one of AD murine models, the SS31 reduced Aβ 
peptide production, mitochondrial dysfunction, and enhanced 
mitochondrial biogenesis and synaptic activity (Calkins et  al., 
2011; Reddy et al., 2017). Recently, a combination of SS31 and 
the mitochondrial division inhibitor 1 (Mdivi1) was tested in 
cultured AD cells with positive effects, suggesting that a combined 
treatment of mitochondria-targeted antioxidants could have 
higher effectiveness (Reddy et al., 2018).

An interesting preclinical study proposed to target the 
antioxidant enzyme catalase to the mitochondria. Catalase 
catalyzes the decomposition of hydrogen peroxide (H2O2) in 
water (H2O) and oxygen (O2) and is typically localized in the 
peroxisome. A double transgenic mouse with mitochondria-
targeted catalase (MCAT) and APP was created, and the 
protective effects against abnormal APP processing, Aβ peptide 
pathology, and lifespan extension were tested. Mitochondrial 
catalase showed beneficial outcomes in this highly artificial 
model. Although most of the antioxidant clinical trials were not 
entirely successful, this study proved that a direct target of an 
antioxidant to the mitochondria might still have a chance as a 
therapeutic approach in AD (Mao et al., 2012).

Despite the oxidative stress unbalance is an evident hallmark 
in AD and some mitochondrial-targeted antioxidant strategies 
showed promising effect on cognitive functions, none entered 

so far in the market as a valid AD treatment. There are different 
reasons to justify the failures (summarized in Persson et al. paper; 
Persson et al., 2014). The antioxidants at certain concentrations 
and conditions could behave as pro-oxidants and therefore they 
are more harmful than useful. The antioxidant administration 
during the clinical trials was probably started too late during the 
development of the disease suggesting that an early intervention 
could be more effective. Last, the antioxidant bioavailability in 
the brain could be low due to the difficulty of these molecules 
to cross the blood–brain barrier (BBB) requiring a rational 
modification of their structure to overpass this issue. 

Phenylpropanoids
The phenylpropanoids are natural compounds that exert many 
physiological functions crucial for the survival of plants. In this 
heterogeneous group of substances, many subclasses have been 
identified such as stilbenoids, flavonoids, curcuminoids, phenolate 
esters, and lignans. These compounds showed an effect against 
the Aβ peptide and tau pathologies, on the activation of the 
inflammation response, on the oxidative stress, and also on the 
mitochondrial dysfunction (Kolaj et al., 2018). Between others, 
resveratrol, quercetin, wogonin, epigallocatechin-3-gallate 
(EGCG), and curcumin were already tested and showed to promote 
mitochondrial biogenesis, to impede apoptotic pathways through 
inhibition of DNA fragmentation, ROS formation, and caspase-3 
activation, and to reduce perturbation of mtΔΨ and ATP levels (see 
also Table 1 for the effects of phenylpropanoids on mitochondria 
in AD models) (Lagouge et al., 2006; Davis et al., 2009; Im et al., 
2012; Valenti et al., 2013; Reddy et al., 2016). Furthermore, these 
compounds were able to restore the mitochondrial functions in 
a transgenic mouse model of AD (Dragicevic et al., 2011b). In 
particular in an in vitro study, EGCG, a major flavonoid component 
of the green tea, accumulated in mitochondria and exerted a 
strong influence on the mitochondrial functions proposing it 
as pharmacological treatment in AD (Schroeder et  al., 2009; 
Dragicevic et al., 2011b). However, phenylpropanoids have a dual 
effect on mitochondrial function, depending on the concentration. 
For example, EGCG could increase apoptosis in cultured neurons 
at specific concentrations, while quercetin protected cultured 
hippocampal cells against Aβ peptide-induced apoptosis only 
in low concentrations (Chung et al., 2007; Ansari et al., 2009). 
Curcumin is an antioxidant compound with massive potential 
for the prevention and treatment of AD. It showed beneficial 
effects on Tg2576 AD model mice, such as reduction of the brain 
oxidative stress and the neuroinflammation, but no effect in AD 
patients, probably due to a low bioavailability (Lim et al., 2001; 
Baum et al., 2008; Ringman et al., 2012). New strategies have been 
implemented to overpass this limitation and improve the curcumin 
pharmacokinetics, such as the nanotechnology-based delivery 
system, new pharmaceutical formulations, and the change in the 
way of administration (Reddy et al., 2014; Serafini et al., 2017). 

Like the antioxidant, the use of the phenylpropanoids in AD 
treatment needs to be considered with caution and none of them 
has become a real therapy yet. The new AD clinical trials based 
on this group of molecules definitely require a broad design, a 
substantial revision, and a careful implementation.
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Action on the Lifestyle
Calories Restriction, Diet, Exercises
Lifestyle activities, in particular exercise and diet, have been 
known to act at the mitochondrial level and should therefore be 
considered as possible interventions to treat AD. Table 1 reports 
the effects of the compounds and activities strictly related to the 
lifestyle on mitochondria from AD models. 

A Mediterranean diet has been correlated to the reduction of 
the incidence of AD (Scarmeas et al., 2006; Karstens et al., 2019). 
The Mediterranean diet is mainly composed of fruits, vegetables, 
and omega-3 fatty acids, which are enriched in olive oil. It was 
observed that, for example, polyphenol-rich extra-virgin oil 
reduced mitochondria-generated oxidative stress and insulin 
resistance in high-fat diet fed rats (Lama et al., 2017). Another 
polyphenol component of olive oil called oleuropein aglycone 
(OLE) promoted autophagy, decreased aggregated proteins 
levels, and reduced the cognitive impairment in AD patients’ 
brain (Grossi et al., 2013; Cordero et al., 2018). Hydroxytyrosol 
(HT), another bioactive compound of olive oil, ameliorated 
mitochondrial dysfunction in an animal model of AD (Peng 
et al., 2016). On the other side, higher consumption of fructose 
affected negatively the mitochondrial function in hippocampus 
from adult rats, suggesting that fructose consumption should 
be actively avoided (Cigliano et al., 2018). Ketones are another 
source of energy for the brain when there is a limited amount 
of available glucose (Owen et al., 1967). The ketone ester 
diet in a model of AD (3xTgAD) had positive effects also on 
mitochondrial functions (Pawlosky et al., 2017). The therapeutic 
ketosis was suggested to reduce the AD brain pathology including 
the accumulation of Aβ plaques and NFT (Kashiwaya et al., 
2013). Of course, the results obtained in AD murine models have 
to be proven in humans through clinical trials (Puchowicz and 
Seyfried, 2017). In this regard, there are experiments going on at 
the University of Kansas about the effect of a ketogenic diet (KD) 
on participants with AD, but no definitive results are available yet 
(Taylor et al., 2018; Taylor et al., 2019).

An extreme form of diet is represented by calorie restriction 
(CR). CR is a strong limitation on calorie intake without facing a 
lack of nutrients. It is well known that CR is an excellent way to 
extend lifespan, to increase insulin sensitivity, and to prevent age-
related diseases (Mattison et al., 2017). At the mitochondrial level, 
CR showed positive effects by affecting mitochondrial biogenesis 
through the induction of NO synthetase (eNOS) (Nisoli et al., 
2005). Newly synthesized mitochondria led to an increase of 
mitophagy, reduction of ROS, increased ATP levels, and overall 
improvement of the mitochondrial quality and cell bioenergetics 
(López-Lluch et al., 2006). Furthermore, CR affected the mtDNA 
content as well as the amount of TFAM-bound mtDNA in rats 
(Picca et al., 2013). There are ongoing clinical studies around the 
world concerning the effect of CR and dietary intervention on 
MCI (Wilkins and Morris, 2017).

Physical exercise (PE) has been demonstrated to generally 
benefit the health of the body and mind, affecting properties 
such as brain plasticity and cognitive function. Hence, it could 
be a good prevention for age-related diseases (Hernández et al., 
2015; Paillard et al., 2015). It is well known that PE targets 

mitochondria and improved mitochondrial function (see Table 
1 to check the effects of PE on mitochondria in AD models). 
A study showed that PE increased mtDNA repair, ameliorated 
mitochondria respiratory function through the increase of 
RCC activity, attenuated ROS generation capacity together 
with a reduction of Aβ1-42 peptide levels, and correlated with 
an amelioration of cognitive function in the hippocampus from 
the APP/PS1 transgenic mouse model of AD (Bo et al., 2014). 
However, data obtained in another AD mouse model (3xTg-AD) 
demonstrated that short-term exercise did not augment the 
critical gene expression of mitochondrial biogenesis, even if 
the glucose metabolism was overall improved (Do et al., 2018). 
Maternal exercise during pregnancy resulted in a positive 
effect on mitochondrial function concerning the onset of AD. 
In this study, a protective effect against Aβ oligomer-induced 
neurotoxicity in the adult offspring brain rats was shown (Klein 
et al., 2019). Clinical trials with PE were performed in older 
adults with healthy as well as impaired cognitive function. 
Aβ1-42 concentration in plasma and CSF was modified. In the 
brain, improvements of cognitive and executive functions, 
and even a change of hippocampal volume and memory, were 
observed, together with a reduced brain atrophy (Baker et al., 
2010; Erickson et al., 2011; Vidoni et al., 2015; Yokoyama et al., 
2015). Of course, in these human studies, neither a direct effect 
of PE on mitochondria nor the molecular mechanisms of PE 
benefits have been proved. However, all the studies performed in 
animal models positively supported the hypothesis that PE may 
have a beneficial effect on mitochondrial functions and glucose 
metabolism also in humans.

Diet, CR, and PE can also be combined to improve the quality 
of human aging and to prevent neurodegenerative disease (Rege 
et al., 2017). These approaches were shown to affect mitophagy, 
the cellular removal mechanism for damaged mitochondria, 
indicating the mitophagy as a new and promising therapeutic 
target to prevent the progression of the diseases. Experimental 
evidences from rodent studies showed that fasting and exercises 
could have a beneficial effect not only on mitophagy but also 
on mitochondrial biogenesis, reduction of oxidative stress, 
and overall neuronal plasticity (Alirezaei et al., 2010). Other 
strategies to boost mitophagy in order to delay AD are the use 
of compounds like 2-deoxyglucose, which protects neurons and 
enhances mitochondrial functions (Table 1) (Duan and Mattson, 
1999; Yao et al., 2011). Additional molecules that promote 
autophagy/mitophagy are rapamycin, spermidine, urolithins, 
and the antibiotic actinonin (Spilman et al., 2010; Morselli et al., 
2011; Ryu et al., 2016; Fang et al., 2019). The mTOR inhibitor 
rapamycin was already demonstrated to have beneficial effects 
on a mouse AD model (Spilman et al., 2010). Testing these 
molecules in clinical AD might be worth it.

Other Mitochondria-Based AD Therapy 
Oxaloacetate 
Treatment with oxaloacetate (OOA), an intermediate of 
the Krebs cycle and gluconeogenesis, has been proposed 
as a new therapeutic approach for AD, and it was already 
tested in some AD subjects (Swerdlow et al., 2016). Studies 
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involving OOA performed in mice showed positive effects on 
glycolysis, respiratory fluxes, mtDNA and mtDNA-encoded 
proteins, activation of mitochondrial biogenesis, hippocampal 
neurogenesis activity, neuroinflammation, and change in 
brain insulin signaling (Wilkins et al., 2014). Despite there 
are no studies about the direct efficacy of OOA treatment on 
mitochondria in AD models, clinical trials with OOA in AD 
are ongoing. 

NAD
Nicotinamide adenine dinucleotide (NAD) is an intermediate 
common to several mitochondrial metabolic pathways such 
as glycolysis, TCA cycle, and oxidative phosphorylation. 
Studies on in vitro and in vivo AD models proved that NAD 
treatments acted directly on mitochondrial functions and were 
beneficial (Table 1). In the past, the effect of a stabilized oral 
NAD formulation on cognitive functions in AD patients was 
also tested. The rationale behind this testing was based on the 
enhancement of the cellular bioenergetic to improve brain 
performance in the fight against neurodegenerative diseases. 
Interestingly, after 6 months of treatment, the subjects with 
probable AD showed no cognitive deterioration suggesting 
that NAD could be an excellent method to prevent the AD 
progression (Demarin et al., 2004). However, further studies 
are needed to prove NAD as an effective treatment to slow 
down AD.

Pioglitazone
The pioglitazone is a peroxisome proliferator-activated receptor 
gamma (PPARγ) agonist. PPARγ is a ligand-activated nuclear 
transcription factor that has a role in regional transcriptional 
regulation of chr19q13.32 (Subramanian et al., 2017). This region 
contains the TOMM40-APOE-APOC1 genes and, as already 
mentioned, TOMM40 and APOE4 genes are risk factors for 
the LOAD development. Pioglitazone was able to decrease the 
transcription of TOMM40, APOE, and APOC1 genes making 
this molecule an interesting candidate in the AD therapy 
(Subramanian et al., 2017). In CHO cell line overexpressing 
APP695 isoform, pioglitazone lowered the Aβ1-42 level and 
restored the mitochondrial activity (Chang et al., 2015). These 
results were then confirmed in vivo in APP/PSEN1 mice (Table 1) 
(Chang et al., 2019). 

Pioglitazone is usually used to treat diabetes mellitus type 2. 
Some years ago, the pharmaceutical company Takeda used this 
compound in a large and global Alzheimer’s prevention study 
called TOMMORROW to slow down the progression from 
MCI to AD. The people involved were selected based on their 
APOE and TOMM40 genotype without considering Aβ status. 
In 2018, phase III of this prevention trial, unfortunately, closed 
down because the results against symptomatic AD were negative, 
despite some improvement in brain metabolism. 

Dimebon
Another compound that affects mitochondria but failed the 
AD clinical trial was dimebon (latrepirdine). Dimebon 
(latrepirdine) is an old antihistaminic drug (first generation of 

H1-antagonist) used against allergies that was selected in an AD 
clinical trial because it demonstrated cognition and memory-
enhancing properties in rats treated with neurotoxin (Bachurin 
et al., 2001). Moreover, dimebon showed a substantial effect on 
mitochondria from different AD models (Table 1). Anyway, 
dimebon lacked reproducibility in the AD clinical trials and 
showed opposite effects on neuropsychiatric and cognitive 
symptoms, and daily activities (Bachurin et al., 2001; Doody 
et  al., 2008). In a review from 2018, Eckert et al. asked the 
scientific community to reevaluate the drug dimebon as a 
potential treatment of AD since one of the clinical trials was 
able to show a slight improvement of mitochondrial functions 
after using dimebon in respect of the substantial effect on 
cognition and behavior (Eckert et al., 2018).

CONCLUSION

In a multitude of studies, mitochondrial dysfunction has been 
demonstrated to be a crucial feature of AD. Several experimental 
results suggested that a decline of mitochondrial activity 
happens during aging and may get worse at early stages of the 
disease, contributing to disease onset. However, more thorough 
investigations are needed to properly address this point. The 
suitability of the mitochondria as a target in AD treatment is 
still under discussion, considering that some pharmacological 
trials were not successful and others were more promising, but 
none led to a real marketable AD drug. Nevertheless, the current 
understanding of AD indicates that a complete cure may not be 
reachable yet. Future research efforts should be invested to i) 
understand the real chronology of events, ii) collocate correctly 
the mitochondrial dysfunction inside this temporal sequence, and 
iii) establish if the mitochondrial dysfunctions are a primary cause 
or a secondary event. Only when these three key points will be 
correctly settled, it will be easier to intervene pharmacologically 
and no more time and money will be wasted for futile therapeutic 
studies. The failures of the respective drugs or clinical trials 
often happened because the underlying scientific background 
was not always very robust or because the models and the tools 
used to prove the basal hypothesis were not always well defined 
or validated. Therefore, a more rational approach to a complex 
human disease like AD is needed as well as an improvement of 
communication between the different scientific disciplines in 
order to achieve a better understanding of the disease etiology 
and to develop new and more effective drugs.
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Alzheimer’s disease (AD), a primary cause of dementia in the aging population, is
characterized by extracellular amyloid-beta peptides aggregation, intracellular deposits
of hyperphosphorylated tau, neurodegeneration and glial activation in the brain. It is
commonly thought that the lack of early diagnostic criteria is among the main causes
of pharmacological therapy and clinical trials failure; therefore, the actual challenge is
to define new biomarkers and non-invasive technologies to measure neuropathological
changes in vivo at pre-symptomatic stages. Recent evidences obtained from human
samples and mouse models indicate the possibility to detect protein aggregates and
other pathological features in the retina, paving the road for non-invasive rapid detection
of AD biomarkers. Here, we report the presence of amyloid beta plaques, tau tangles,
neurodegeneration and detrimental astrocyte and microglia activation according to a
disease associated microglia phenotype (DAM). Thus, we propose the human retina
as a useful site for the detection of cellular and molecular changes associated with
Alzheimer’s disease.

Keywords: Alzheimer’s disease, microglia, astrocytes, retina, beta-amyloid, tau, human, neurodegeneration

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder leading to dementia during elderly. This
pathology is manifested with cognitive and psychiatric symptoms such as memory and cognitive
impairments, behavioral abnormalities, disorientation and circadian rhythms disturbances (Hart
et al., 2016). Due to population aging, AD cases are constantly increasing and it is estimated
that by the year 2050 AD will globally affects about 115 million people (Alzheimer’s Disease
International World Alzheimer Report, 2009; Scheltens et al., 2016) thus posing a growing concern
on public health.
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Studies from post-mortem brains revealed that, at the
neuropathological level, distinctive features of AD include
aggregation of amyloid beta protein (Aβ) and tau protein
hyperphosphorylation (pTau), which cause synapses loss and
neuronal degeneration. These plaques and tangles are generally
associated with activated microglia and reactive astrocytes in AD
brain (Ahmed et al., 2017; Henstridge et al., 2019). Over the years
several candidate drugs have been proposed as a putative therapy
for AD. However, despite many attempts, a definitive cure has not
been found yet and only symptomatic treatments are available.

A possible explanation for this arises from the fact that
AD is a complex multifactorial disorder, while pharmacological
treatments are preferentially directed against a specific cellular
target. Moreover, proteins aggregation can occur decades
before the appearance of neurological symptoms, thus making
interventions at later stages less effective.

It is therefore tempting to speculate that AD diagnosis at
earlier stages, possibly when synapses and neuronal functions
are not yet compromised, could give better results in terms of
pharmacological and clinical intervention (Frisoni et al., 2017).

The search for early biomarkers in AD has become a
very attractive area of study. Imaging brain changes in Aβ

with techniques such as computed tomography (CT), magnetic
resonance index (MRI) and positron emission tomography (PET)
in combination with the analysis of cerebrospinal fluid (CSF)
have established Aβ and tau as an indicator of the AD disease.

In particular, both PET and CSF biomarkers allow to diagnose
AD during the prodromal phase of the disease (Rowe et al.,
2013; Petersen et al., 2016), but pitfalls such as high cost
and invasiveness make these tests unsuitable for a population-
wide screening.

Recently, researchers focused their interests on the retina in
order to find new biomarkers for AD. The rationale behind
this choice rely on the fact that, the retina and the brain
share a common embryological origin therefore they could
share pathological mechanisms as well (Sernagor et al., 2001;
Kavcic et al., 2011; Chang et al., 2014; Lee et al., 2014; Bambo
et al., 2015; Javaid et al., 2016). Recent studies have shown
that anatomical alterations such as thinning of the ganglion
cell and retinal nerve fiber layers can be detected already
during AD early stages (Thomson et al., 2005; Paquet et al.,
2007) thus strengthening the idea that the retina could be
used in early AD diagnosis. However, far from reaching a
consensus, studies on retinal tissues from AD patients and mouse
models produced contrasting results. For instance, amyloid
plaques have been found in AD post-mortem retinas (but
not in control cases) by Löffler et al. (1995). Similar results
have been confirmed by other research groups (Hoh Kam
et al., 2010; Alexandrov et al., 2011; Koronyo-Hamaoui et al.,
2011; Koronyo et al., 2017), in addition a positive correlation
between inclusion body and cortical amyloid burden has been
observed (Snyder et al., 2016). On the contrary, den Haan and
collegues detected a signal for phosphorilated Tau (pTau) in the
inner and outer plexiform layer of the retina (IPL and OPL
respectively), but they did not find any signal for Aβ plaques
and neurofibrilary tangles (den Haan et al., 2018). Most likely,
these discrepancies may be attributed to differences in staining

methods, sections preparation and time of tissue harvesting.
Moreover, restricting retinal analysis to the presence of protein
aggregates and vascular alterations solely may be poorly specific
for AD diagnosis, as Aβ deposits have been found also in
other pathological conditions such as macular degeneration
(Zhao et al., 2015). Beyond classical neuropathological hallmarks,
proteomic analysis of cerebrospinal fluid from AD patients
revealed the upregulation of proteins related to microglia and
astrocytes activation. For instance, Aβ plaques aggregation can
activate astrocytes and microglia thus inducing the release of
mediators of inflammation such as interleukin-1 beta (IL-1β)
and ultimately cellular and neuronal apoptosis both in brain and
retina (Liu et al., 2014).

In neurodegenerative disease, microglia response consists in
migrating to sites of damage or injury, secreting numerous
inflammatory molecules, and phagocytizing debris and
aggregated proteins (Heneka et al., 2015; Song and Colonna,
2018). However, microglia, astrocytes and immune signaling
are not just secondary players in disease processes but actually
contribute to synaptic and neuron loss and buildup of pathogenic
proteins even at the earliest stages of disease (Hong et al., 2016;
Shi et al., 2017; Sosna et al., 2018). Aggregation of Aβ plaques
can lead to inflammatory reactions, astrocytes and microglia
activation, release of inflammatory cytokines such as interleukin-
1 beta (IL-1β) and cellular and neuronal apoptosis in both the
brain and retina (Liu et al., 2014). Moreover, the misregulated
expression of glia released soluble factors in AD has been linked
to disease associated microglia, and to microglia induced NLRP3
inflammasome and complement activation (Heneka et al., 2013;
Sheedy et al., 2013; Lian et al., 2015; Iram et al., 2016) and
synaptic loss (Hong et al., 2016). Moreover, a specific microglia
phenotype has been described in neurodegenerative diseases
characterized by the downregulation of microglia homeostatic
genes, the upregulation of specific degeneration associated
markers (DAM), and sustained by the upregulation of TREM2
(Yeh et al., 2017; Deczkowska et al., 2018).

To gain a better understanding and to identify new molecular
targets for a more complete panel of putative biomarkers
for AD diagnosis, we performed immunostaining on human
retinas obtained from both AD patients and age matched
controls. We report the presence of Aβ and pTau protein
aggregates together with neuronal loss. We also report, for
the first time, the upregulation of IL1-β on microglia and the
presence of neurotoxic A1 astrocytes in AD retina. These findings
highlight protein aggregates and cellular markers as targets to be
considered for AD diagnosis.

MATERIALS AND METHODS

Human Samples
Human retinal slices from AD patients and age matched controls
were purchased from Human Eye Biobank for Research, St
Michael Hospital, Toronto, Canada. Prior to death, donors signed
informed consent for autopsy and use of tissue and medical
records for research purposes. No documented history of eye
disease was reported for the AD or control cases. The use of
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human tissue has been approved by the Ethics Committee of
Fondazione Santa Lucia I.R.C.C.S. to GR.

Immunofluorescence
Slices were deparaffined with absolute Xylene (3 × 5 min)
and rehydrated by scaling down from 100% to 50% ethanol,
2× 10 min for each concentration. After PBS washes (3× 5 min),
antigen retrieval has been performed by soaking slices for 40 min
in a warm solution containing (in mM): 10 Na-citrate, 0.05%
Tween 20, pH 6.0, 90◦C. Subsequently, slices were incubated for
45 min in a blocking solution (3% goat serum and 0.3% Triton
X-100 in PBS). Primary antibodies diluted in blocking solution
were incubated over-night at 4◦ [anti-βTubulin III, T2200,
Sigma, clone Aa441-450, 1:500; anti-GFAP, MAB360, Millipore,
clone GA5; 1:400; anti-Iba1, 019-19741, Wako, 1:400; anti-
OPN, 691302, Biolegend, clone A15059B, 1:100; Anti-βAmyloid,
8243s, CELL SIGNALING, clone D54D2, 1:100; anti-Cleaved-
Casapase3, 9661s, CELL SIGNALING, clone Asp175, 1:100; anti-
PhosphoTau (Thr212, Ser214), MN106, INVITROGEN clone
AT100 1:50; anti-PhosphoTau (Ser 202, Thr205), INVITROGEN,
clone AT8, 1:40; anti-C3d, A0063, Dako, 1:500; anti-IL-1β,
sc-32294, Santa Cruz Biotechnology, clone E7-2-hIL1β, 1:50].
After three washes in PBS, sections were stained for 45 min
with a secondary antibody and Hoechst in order to visualize
nuclei, then coverslips were mounted with Diamond Antifade
Mountant (Molecular Probes) and images acquired with a
confocal microscopy.

Confocal Spinning Disk and VCS
Microscopy
The acquisition of the images was performed through a
Nikon Eclipse Ti equipped with a X-Light V2 spinning disk
combined with a VCS (Video Confocal Super resolution) module
(CrestOptics) based on structured illumination and with a LDI
laser source (89 North). The images were acquired by using
Metamorph software version 7.10.2. (Molecular Devices) with
a 60x PlanApo λ oil objective (1.4 numerical aperture) and
sectioning the slice in Z with a step size of 0.2 µm for spinning
disk and 0.15 µm for VCS to obtain a total Z-stack of about
10 µm. In order to achieve super-resolution, raw data obtained by
the VCS module have been processed with a modified version of
the joint Richardson-Lucy (jRL) algorithm (Ingaramo et al., 2014;
Ströhl and Kaminski, 2015; Chakrova et al., 2016), where the
out of focus contribution of the signal has been explicitly added
in the image formation model used in the jRL algorithm, and
evaluated as a pixel-wise linear “scaled subtraction” (Heintzmann
and Benedetti, 2006) of the raw signal. The acquisitions obtained
were transformed into a z-projection and then analyzed using the
ImageJ software.

Laser Scanning Acquisitions
For conventional confocal laser scanning analysis of retinal slices,
images acquisition has been performed through a confocal laser
scanning microscope (microscope (FV10i Olympus) equipped
with a 60x water immersion objective. Acquired images were
processed and analyzed off line using ImageJ. For each retina six

images were acquired. For every image the maximum intensity
projections of z-series stacks was created.

Microglia Density Analysis
The number of Iba1+ microglia cells has been reported as
number of somas per acquired area (400 µm2). To quantify
microglia density, the same images were analyzed by Metamorph
software. A z-projection based on the maximal intensity signal
was obtained and after threshold setting, fluorescence intensity
value has been recorded. Data are expressed as area occupied by
fluorescent cells versus total slice area.

Astrogliosis Analysis
Astrogliosis analysis has been performed by staining retinas
section for GFAP and C3. Following threshold adjustment
astrogliosis was quantified as fluorescence intensity above
threshold. Data are expressed as area occupied by fluorescent
cells versus total slice area. For the measurement of GFAP/C3
colocalization, the value of GFAP-overlapping the C3
signal was considered.

Analysis of Neurodegeneration
Confocal images of cells positive for cleaved caspase 3, an effector
enzyme of the apoptotic pathway, were analyzed by means of
Metamorph software. We manually counted the number of cells
positive for the signal of the cleaved caspase 3 within each
image. Thereafter, this number has been divided by the total
number of ganglion neurons counted in the region of interest
(ROI) and thus expressed as percentage of degenerating ganglion
cells in each slice.

FISH
Sections were deparaffined with absolute Xylene (3× 5 min) and
partially rehydrated with 70% ethanol (2 × 10 min each) before
proceeding with RNA FISH staining. RNA in situ hybridization
was performed as described previously (Raj and Tyagi, 2010)
with minor modifications: briefly, sections were incubated in
Wash Buffer A (Stellaris, Biosearch Technologies) for 5 min and
then, in the Hybridization Buffer supplemented with 2 mM VRC
complex (Sigma, R3380) and 125 nM TREM2 FISH probes 3′-end
labeled with Quasar 670 fluorophore (Biosearch Technologies,
SMF-1063-5). Incubation was performed overnight at 37◦C
in Top Brite automatic slide hybridizer (Resnova). After two
washes in Wash buffer A for 30 min and one wash with Wash
Buffer B for 5 min at 37◦C, Hoechst was added for 15 min at
room temperature. Finally, slices were mounted with ProLong
Diamond Antifade Mountant (Thermo Fischer Scientific P-
m36961) and analyzed with a confocal laser scanning microscope.
Immunofluorescence for IBA1 was performed sequentially to
RNA FISH staining.

Protein Aggregates
The size of the amyloid plaques and tau tangles was studied on
images acquired with the confocal microscope and subsequently
analyzed with the Metamorph program (version 7.6.5.0). The
“Trace Region” function of this program makes it possible to
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surround the deposits of these proteins and to obtain their
volume expressed in µm3. Their density has been studied with
the ImageJ program through which it was possible to count the
number of these aggregates within each slice analyzed.

Statistics and Data Analysis
Data are shown as the Mean ± SEM. Statistical significance
between controls and AD patients was assessed with the non-
parametric Mann–Whitney test or T-test as indicated. A p-
value < 0.05 was considered significant. All statistical analyses
were done using Sigma Plot 11.0, Origin or Clampfit software.

RESULTS

Typical Aβ and pTau Protein Aggregates
in AD Human Retina
The accumulation of Aβ and pTau aggregates in the retinal tissue
has been reported on both AD human tissue (Koronyo-Hamaoui
et al., 2011; Koronyo et al., 2017) and mouse models (Criscuolo
et al., 2018; Grimaldi et al., 2018), thus suggesting a putative use
of the eye as a valuable structure for the study and the diagnosis
of AD and other neurodegenerative disease. However, due to the
complex nature of the disease, and to the positive Aβ staining in
macular degeneration (Lynn et al., 2017), a more comprehensive
panel of biomarkers needs to be defined to avoid misleading
AD diagnosis. Using human retinal slices from AD patients and
controls (samples were obtained from the St. Michael’s Hospital
Human Eye Biobank), we first confirmed the presence of Aβ and
pTau aggregates in the retinal layers.

We analyzed retinal cross sections from 10 clinically and
neuropathologically confirmed AD patients (mean age ± SEM:
85.7± 2.7 years; range 71–98 years; 8 females and 2 males) and 10
healthy controls (mean age ± SEM: 75.3 ± 2.9 years; range: 65–
93 years; 6 females and 4 male). In all AD patients we detected
retinal Aβ immunoreactivity and deposits both in the inner
and outer layers (minimum diameter: 110 nm; Figures 1A,B).
Aβ staining, evaluated as Aβ plaques number in a region of
400 µm2, was significantly higher in AD patients (10.4 ± 1.8
n = 45/5 fields/patients) compared to controls (3.8± 0.7 n = 44/5
fields/controls; p < 0.01; Figure 1C). Sparse and diffuse retinal Aβ

deposits were found occasionally also in control slices (Figure 1A,
left), as previously reported (Koronyo et al., 2017). Plaques
volume measured on 3D stacks was higher in AD patients respect
to controls as reported in the histogram in Figure 1D.

In order to assess the presence of hyperphosphorylated
tau isoforms we performed immunofluorescence analysis using
two different monoclonal antibodies directed against the
hyperphosphorylated tau protein (pTau; clone AT-8 and clone
AT-100, Figure 1E). Following the staining with the AT-100 clone
we observed a strong and diffuse staining for pTau both in the
IPL and OPL in the majority of AD patients (6/10). Indeed,
pTau immunoreactivity was significantly higher in the AD retina
compared to age matched controls as quantified by fluorescence
intensity in each field of view (AD: 0.76 ± 0.11, n = 38/6
fields/patients; CTRL: 0.22 ± 0.06, n = 32/6 fields/controls;
p < 0.005; FOV = 400 µm2; Figure 1F), thus confirming the

accumulation of neurofibrillary tangles deposits in AD patients
retina (Figure 1E, right). Using the AT-8 clone we found discrete
pTau immunofluorescence in the IPL and in the OPL only in
two out of 10 patients analyzed; in these AD patients the number
of pTau tangles was significantly higher respect to control (AD:
4.4 ± 1.7, n = 15/2 fields/patients; CTRL: 0.9 ± 0.4; n = 15/2
fields/controls; p < 0.05; not shown). Co-labeling the retina with
AT-100 and TUJ1 as neuronal marker indicated that in AD retina
pTau expression was mainly in the Retinal Ganglion Cells (RGC)
of the inner layer (IL; Figure 1G).

These findings clearly demonstrate an increase in Aβ and pTau
aggregates in the retina of AD patients respect to controls thus
pointing at them as putative biomarkers for AD diagnosis.

AD Human Retina Displays
Neurodegeneration in the Ganglion Cell
Layer
An increased cleavage of proteins such as APP and
presenilins operated by caspase-3, has been associated with
neurodegeneration in AD (Louneva et al., 2008). In a previous
paper from our laboratory, we reported immunoreactivity for the
cleaved caspase-3 at the level of the RGC layer of the 3xTg-AD
mouse model (Grimaldi et al., 2018). A positive staining for
caspase-3 is also present in the IL of human retinas (Figure 2A,
green dots) in TUJ1 positive cells (red). In particular we found
that the number of caspase-3 positive retinal ganglion cells in
each field of view (FOV) examined was increased compared to
age matched controls (AD: 11.4 ± 2.2%, n = 17/6 fields/patients;
CTRL: 6.0 ± 1.0%, n = 18/6 fields/control; p < 0.05; Figure 2B)
These results indicated that the AD retinal IL is more subject
to neuronal death thus suggesting that visual defects and optic
nerve thinning observed in AD may rely on retinal ganglion cells
neurodegeneration.

Increased Astrocytosis and Microglia
Reactivity in AD Patients Retina
In AD brain, astrocytes have been found closely associated with
fibrillar amyloid plaques suggesting that Aβ accumulation may
serves as a cue for the activation of this cell type (Henstridge et al.,
2019). Astrocytes activation can have a neuroprotective effect
but it may trigger the release of pro-inflammatory species such
as cytokines and chemokines (Stadelmann et al., 2002; Farina
et al., 2007). To evaluate putative astrogliosis in the retina of AD
patients we performed immunostaining for the GFAP. Analysis
of acquired images showed a marked astrogliosis localized at the
level of the ganglion cell layer. Astrogliosis may arise also as a
consequence of aging however, the amount of astrocyte activation
was more pronounced in the AD retina compared to controls
(Figure 3A), as quantified by fluorescence intensity in each field
of view (AD: 5.5 ± 1.1, n = 44/6 fields/patients; CTRL: 1.9 ± 0.3,
n = 44/6 fields/controls; p < 0.001; Figure 3B).

As for astrocytes, also microglia activation can show a dual
role in inflammatory processes. Increased microglia reactivity
in the retina has been observed in post-mortem tissues from
AD patients (Beach et al., 1989) and in the 3xTg-AD mouse
model (Grimaldi et al., 2018). Immunostaining against Iba1 a
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FIGURE 1 | Human AD retina displays β-amyloid and pTau aggregates. (A) Representative images of retinal slices from AD patients and control cases
immunolabeled with anti-β-amyloid antibody (green) and Hoechst for nuclei visualization (blue); bar 20 µm. (B) Insert representing β-amyloid staining in AD retina at
higher magnification; bar 20 µm (C) Number of β-amyloid plaques/field of view (∗∗p < 0.01 AD vs. Ctrl; t-test; n = 45/5 fields/patients). (D) Distribution of β-amyloid
plaque volume measured in AD patients and control cases. (E) Representative images of retinal slices from AD patients and control cases immunolabeled with
anti-p-tau AT-100 antibody (green) and Hoechst for nuclei visualization (blue); bar 20 µm. (F) Quantification of p-tau AT-100 area covered by fluorescent signal/field of
view (∗∗∗p < 0.001 AD vs. Ctrl; t-test; n = 38/6 fields/patients). (G) Representative images of retinal slices from AD patients and control immunolabeled with
anti-p-tau AT-100 (green) and anti-TUJ1 as RGC marker (red) at higher magnification (Hoechst for nuclei visualization in blue; bar 20 µm). IL, inner layer; OL, outer
layer.

FIGURE 2 | Ganglion cell neuron degeneration in AD patient’s retina. (A) Representative images of retinal slices from AD patients and control cases immunolabeled
with anti-cleaved caspase-3 antibody (green), anti-TUJ1 as RGC marker (red) and Hoechst for nuclei visualization (blue); bar 20 µm. (B) Bar chart representing the
percentage of RGC neuron positive for cleaved caspase-3 on each field of view (∗p < 0.05 AD vs. Ctrl; t-test; n = 17/4 fields/patients). IL, inner layer; OL, outer layer.

microglia marker, revealed that this cell type was mainly present
in two layers: the inner plexiform and the outer plexiform
layers (Figure 3C). Microglia cell density was increased in
AD patients retina compared to age matched controls (AD:
3.9 ± 0.3; n = 73/10 fields/patients; CTRL: 2.5 ± 0.3, n = 73/10
fields/controls; p < 0.005; Figure 3D).

These results, confirming the presence of altered astrocyte and
microglia density in human AD retina, suggest the possibility to
add markers for glial activation in the set of retinal biomarkers
for AD diagnosis.

AD Human Retina Displays Upregulation
of Neurotoxic Microglia and Astrocytes
Several different proteins have been demonstrated to be involved
in the interplay among neurons, astrocytes and microglia in
neurodegenerative diseases. Particularly, altered expression of
these proteins in AD has been linked to disease associated
microglia, to microglia induced detrimental astrocytes activation
(Heneka et al., 2013; Sheedy et al., 2013) and synaptic loss (Hong
et al., 2016). Here we examined and compared the expression
of IL-1β, TREM-2 (triggering receptor expressed on myeloid
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FIGURE 3 | Increased astrocytes and microglia cell density in the retina of AD
patients. (A) Representative images of retinal slices from AD patients and
control cases immunolabeled with anti-GFAP antibody (red) and Hoechst for
nuclei visualization (blue); bar 20 µm. (B) Quantification of GFAP area covered
by fluorescent signal/field of view (∗∗∗∗p < 0.001 AD vs. Ctrl; t-test; n = 44/6
fields/patients). (C) Representative images of retinal slices from AD patients
and control cases immunolabeled with anti-Iba1 antibody (red) and Hoechst
for nuclei visualization (blue); bar 20 µm. (D) Quantification of Iba1 area
covered by fluorescent signal/field of view (∗∗∗p < 0.005 AD vs. Ctrl; t-test;
n = 73/10 fields/patients). IL, inner layer; OL, outer layer.

cells-2), complement component C3 and OPN (Osteopontin)
between AD and control samples.

Immunofluorescence analysis of IL-1β expression on AD
retinal slices showed enhanced IL-1β cytoplasmic staining in
the inner nuclear layer (INL) of AD patients compared to age
matched controls (Figure 4A, left). IL-1β immunostaining in AD
patients retina was found to be colocalized with Iba1-expressing
cells, a marker of microglia, but not with the astrocytes marker
GFAP (not shown). Indeed, co-labeling with Iba1 (Figure 4A,
right) revealed that the number of microglia cells positive for IL-
1β was significantly higher compared to control (AD: 3.5 ± 0.4,
n = 31/5 fields/patients; CTRL: 2.2± 0.4, n = 29/5 fields/controls;
p < 0.05; Figure 4B; average number of Iba1/IL-1β + cells
for each FOV), with almost all microglia cells expressing IL-
1β in AD.

Astrocytic C3 upregulation has been demonstrated to be
downstream of the microglia induced IL1-β activation. Moreover,
its expression seems to be regulated by β-amyloid in both
AD mouse models and human brain (Lian et al., 2015).
C3 upregulation is now considered to be a marker for
detrimental A1 astrocytic phenotype taking part in AD related
synaptic loss. We examined C3 expression in human retina by
immunofluorescence analysis. We found C3 to be expressed
in the ganglion cell layer. Co-staining with GFAP revealed
that C3 immunoreactivity was confined in GFAP positive cells
as shown in Figure 4C. Fluorescence intensity quantification
showed that the percentage of C3 positive astrocytes was strongly
upregulated in AD retina respect to control (AD: 26 ± 4,

n = 45/6 fields/patients; CTRL: 7.8± 1.6, n = 46/6 fields/controls;
p < 0.001; Figure 4D).

Upregulation of OPN in AD patients CSF may arise from
neurons, microglia or both. Indeed, while the OPN encoding
gene SPP1 (secreted phosphoprotein 1) is now considered a
good DAM microglia marker (Ulland et al., 2017), AD brains
display OPN upregulation in CA1 pyramidal neurons (Wung
et al., 2007). We analyzed the expression level of OPN in
human retinal slices of AD patients and age matched controls
by immunofluorescence analysis using a monoclonal antibody
against the full length OPN peptide (Figure 5A, left). We
found significant upregulation of OPN expression in AD retinas,
quantified as fluorescence intensity over threshold in each field
of view (400 µm2) (AD: 3.0 ± 0.6, n = 24/3 fields/patients)
compared to age matched controls (CTRL: 0.7 ± 0.2, n = 27/4
fields/patients; p < 0.001) (Figure 5B). OPN expression was
localized in the retinal ganglion cell layer as demonstrated by
the co-staining against tubulin isoform βIII (TUJ1; Figure 5A,
middle), a selective marker for RGC neurons. Indeed, the
percentage of RGC neurons positive for OPN (Figure 5A, left)
was significantly higher in AD respect to control retinas (AD:
84 ± 5%, n = 36/6 fields/patients; CTRL: 63 ± 6%, n = 34/6
fields/patients; p < 0.01; Figure 5C). Conversely, co-labeling with
anti-Iba1 did not show upregulated OPN expression on microglia
(data not shown).

TREM2 is now considered a crucial regulator in promoting
microglia responses to Aβ in AD. TREM2 transcript has been
shown to be over-expressed by microglia both in the brain of
AD mouse models as well as human patients (Frank et al., 2008;
Lue et al., 2015; Wang et al., 2015), suggesting that TREM2 up-
regulation could mirror with AD progression. Moreover, in the
3xTg-AD mouse model, we reported the upregulation of TREM2
mRNA in sorted retinal microglia cells (Grimaldi et al., 2018).
Due to the lack of specific antibodies against human TREM2,
FISH experiments have been performed in order to evaluate the
expression level of TREM2 transcript in retinal slices of AD
patients and age matched controls (Figure 5D). The analysis
of TREM2 RNA levels obtained with fluorescence threshold
analysis did not show, on average, any difference between AD and
control retinas (AD: 0.18 ± 0.03, n = 31/4 fields/patients; CTRL:
0.22 ± 0.06, n = 37/4 fields/controls; p = 0.3; data not shown).
However, the number of TREM2 positive cells in each field of
view (400 µm2) was higher in AD retina respect to control (AD:
8.5 ± 0.8, n = 31/4 fields/patients; CTRL: 6.2 ± 0.6, n = 37/4
fields/controls; p < 0.05; Figure 5E), indicating an increased
TREM-2 expression. When TREM2 FISH analysis was performed
together with immunofluorescence for Iba1, we observed Iba1
positive cells expressing TREM2 in AD retina (Figure 5D, left).
It should be noticed, however, that in our experiments TREM2
staining was not exclusively confined to Iba1-positive cells. This
could be ascribed to protein denaturation taking place during
FISH protocol, preventing an absolute quantification of TREM2
expressing retinal microglia cells.

These data indicate that detrimental astrocytic and microglia
activation can be detected in AD patients retina with increased
release of pro-inflammatory compounds that could be considered
as possible biomarkers for AD diagnosis.
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FIGURE 4 | AD patient’s retina display complement C3 and IL-1β upregulation. (A) Representative images of retinal slices from AD patients (bottom) and control
cases (top) immunolabeled with anti-IL-1β antibody (green), Iba1 (red) and Hoechst for nuclei visualization (blue); bar 20 µm. (B) Quantification of cells positive for
both Iba1 and IL-1β signal/field of view (∗p < 0.05 AD vs. Ctrl; t-test; n = 31/5 fields/patients). (C) Representative images of retinal slices from AD patients and
control cases immunolabeled with anti-GFAP antibody (red), C3 (green) and Hoechst for nuclei visualization (blue); bar 20 µm. (D) Quantification of GFAP/C3
co-localization area/field of view (∗∗∗∗p < 0.001 AD vs. Ctrl; t-test; n = 45/6 fields/patients). IL, inner layer; OL, outer layer.

DISCUSSION

As of now, a definitive AD diagnosis is made possible only
after post-mortem examination of brain tissue (Elahi and Miller,
2017). Despite many attempts there is an urgent need to find new
easy-to-acquire, cost-effective strategies for AD diagnosis, even
at early stages in order to allow a timely and effective therapeutic
program (Frisoni et al., 2017).

The retinal tissue is now considered as a very promising
structure to be used in searching of new AD biomarkers as it is
thought that it could mirror the pathological changes happening
in the brain during the disease progression. Even more, the retina
is an accessible structure and this anatomical feature could be of
extreme importance in the development of new imaging methods
for its examination.

However, Aβ and pTau protein aggregates could not
be considered specific markers to AD therefore, a more
comprehensive panel of biomarkers is needed.

For this reason, we used post-mortem retinal slices from
AD patients to investigate the presence of classical AD features
and the expression of specific neuron-to-glia signaling proteins
found both in the CSF of AD patients and in the brain of AD
mouse models (Doens and Fernández, 2014). We here report

that AD patients retina show, in addition to the presence of
Aβ plaques and pTau tangles, ganglion neuron degeneration,
astrogliosis, microglia activation, and up-regulation of specific
disease associated neuron-to-glia signaling proteins, such as IL-
1β, C3, OPN and TREM2.

In agreement with previous results (Koronyo et al., 2017;
den Haan et al., 2018), we observed increased Aβ deposits and
diffuse spreading of pTAu signals in the inner retinal layer of AD
patients compared to age-matched controls. However, it has to
be noticed that only a subset of AD retinal slices here analyzed
were positive for pTau staining with AT-8 and AT-100 antibodies,
this could be ascribed to pTau specific topographic distribution
in human retina; indeed pTau staining was clearly reported in the
anterior part of the superior retina (Koronyo et al., 2017; den
Haan et al., 2018), and using transverse retinal slices obtained
from the Human Eye Bank we could not asses which part of
the retina we were analyzing. Due to this technical issue it is
plausible that we are underestimating the amount of pTau in
the AD patients retina. Also, we show that neuronal apoptosis is
significantly higher in the retina of AD patients compared to age
matched controls, predominantly in RGC layer.

As it is well known that glial cells are activated in AD
associated inflammatory states, we performed immunostaining to
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FIGURE 5 | Osteopontin and TREM2 expression in AD patient’s retina. (A) Representative images of retinal slices from AD patients (bottom) and control cases (top)
immunolabeled with anti-OPN (green), tuj-1 (red) and Hoechst for nuclei visualization (blue); bar 20 µm. (B) Quantification of OPN area covered by fluorescent
signal/field of view (∗∗∗∗p < 0.001 AD vs. Ctrl; t-test; n = 24/3 fields/patients). (C) Quantification of OPN/TUJ1 co-localization area/field of view, in% (∗∗p < 0.01 AD
vs. Ctrl; t-test; n = 36/6 fields/patients). (D) Representative images of retinal slices from AD patients (bottom) and control cases (top) stained with anti TREM2 mRNA
fluorescent probe (red), anti-Iba1 (green) and Hoechst for nuclei visualization (blue); bar 20 µm. Note that cells expressing TREM2 are not always positive for Iba1.
(E) Number of TREM2 positive cells/field of view (∗p < 0.05 AD vs. Ctrl; t-test; n = 31/4 fields/patients). IL, inner layer; OL, outer layer.

evaluate putative difference between controls and AD samples.
Although GFAP and Iba1 reactivity was present both in AD
and aged controls, the area of GFAP positive staining and
the number of microglia cells were significantly higher in AD
retinas thus indicating that glia (both astrocytes and microglia)
activation is significantly more pronounced in AD retinas
compared to controls.

We show here for the first time that retinal microglia of AD
patients display, respect to their age matched controls, higher
expression of IL-1β a typical marker of pro-inflammatory and
DAM microglia (Keren-Shaul et al., 2017) suggesting microglia
response to Aβ and pTau accumulation. These results are in line
with the increased expression of IL-1β found in brain microglia
in human patients and mouse models (as reviewed in Shaftel
et al., 2008). Conversely, while in the brain of 5xFAD mouse
model IL-1β was overexpressed by astrocytes (Rosenzweig et al.,
2019), in human AD and control retina we did not observe IL-
1β expression in GFAP positive cells. It should be noted that we
found enhanced IL-1β staining also in other cells in the INL of
AD retina, probably due to the NLRP3 inflammasome activation
and monocytes infiltration.

We also report an increase of TREM2 mRNA level in the
retina of AD patients respect to aged controls. The importance
of TREM2 in the central nervous system (CNS) is widely
recognized, as TREM2 mutations are linked to an increased
risk of developing several neurodegenerative diseases (Ulland
and Colonna, 2018), and TREM2 RNA has been found to
be upregulated in the brain of patients and mouse models
(Keren-Shaul et al., 2017). Moreover, we previously reported
TREM2 upregulation in retinal microglia sorted from early
symptomatic 3xTg-AD mice (Grimaldi et al., 2018). However,
while it is evident that TREM2 expression on microglia cells
plays a prominent role in driving microgliosis in the brain
of AD mouse models and patients (Keren-Shaul et al., 2017),
we did not find increased expression of TREM2 transcript
on Iba1 positive cells in the retina of AD patients. It can
be speculated that in our samples the expression of TREM2
on microglia cells is underestimated due to technical reasons.
Indeed, RNA FISH experiments on post-mortem paraffin-
embedded tissue is per se technically challenging, requiring
the use of formamide to increase the hybridization efficiency
(Cattoretti et al., 1993; Gilbert et al., 2007). This procedure might
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induce protein denaturation causing the failure of subsequent
immunofluorescence analysis. Another possible explanation may
rely on the age of AD patients here analyzed. Indeed, while
microglia TREM2 expression is important in triggering and
sustaining the DAM phenotype in response to protein aggregates
during disease progression (Song and Colonna, 2018; Ulland and
Colonna, 2018), downregulation of TREM2 has been reported
in human post-mortem retinal tissues of patients suffering from
Age-Related Macular Degeneration (Bhattacharjee et al., 2016)
where Aβ deposits are present. In this framework it is likely
that post mortem retinal tissue from aged patients is not the
ideal specimen for TREM2 analysis. Moreover, the observed
increase in TREM2 transcript level could be due to infiltrating
monocytes negative for Iba1, as reported in the brain of AD
patients (Fahrenhold et al., 2018).

The analysis of osteopontin expression in retinal tissue
revealed increased OPN staining in AD retinal ganglion cells
with evident colocalization with tubulin β-III. This result is
partially in contrast with previous findings in the AD brain.
Indeed, although OPN transcript (SPP1) expression has been
shown to be upregulated in microglia in AD models (Ulland
et al., 2017) and thus considered a marker for DAM phenotype,
we did not find OPN upregulation on Iba1 positive cells. On
the other hand our result is in line with data reporting that
the protein osteopontin is upregulated on CA1 hippocampal
pyramidal neurons in human AD brain (Wung et al., 2007).
Moreover, in mouse retina, OPN is reported to be expressed on
RGC (Ju et al., 2000; Duan et al., 2015). These considerations
make OPN a good candidate biomarker for retinal AD diagnosis
despite its cellular localization.

Here, for the first time we report the presence of A1 astrocytic
phenotype in the retina of AD patients, as revealed by the strong
upregulation of C3 protein on retinal astrocytes. This result
is consistent with the reported presence of A1 reactive brain
astrocytes in neurodegenerative diseases (Liddelow et al., 2017).
The importance of reactive A1 astrocytes in neurodegenerative
diseases rely on the evidence that synaptic loss can be favored by
element of the complement cascade released by the A1 astrocytes
(Stevens et al., 2007; Hong et al., 2016; Sekar et al., 2016). It
is noteworthy that A1 activation may be initiated by microglia
released IL-1β as well as by extracellular Aβ accumulation (Lian
et al., 2015; Liddelow and Barres, 2017), both found and here
reported in retina of AD patients.

These observations further support the possibility that ocular
biomarkers could be used for early detection of AD associated
neurodegeneration. It should be noted, however, that other ocular
pathologies, such as glaucoma shares histopathological hallmarks
with AD including increased levels of tau protein and microglial
activation (Ramirez et al., 2017). It is therefore desirable that a

complete panel of biomarkers able to discriminate between age-
related and disease-related retinal changes would be available
and could be used as a target for in vivo imaging through a
retinal scan. However, this will requires the development of both
specific AD biomarkers ligands and long working distance high
resolution imaging techniques, in order to achieve a non-invasive
and inexpensive diagnosis of AD through the retinal scan.
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In vulnerable individuals, chronic and persistent stress is an established risk factor for 
disorders that are comorbid with Alzheimer’s disease (AD), such as hypertension, obesity 
and metabolic syndrome, and psychiatric disorders. There are no disease-modifying drugs 
in the treatment of AD, and all phase-3 clinical trials with anti-amyloid drugs (e.g., β- or 
γ-secretase inhibitors and monoclonal antibodies) did not meet the primary endpoints. There 
are many reasons for the lack of efficacy of anti-amyloid drugs in AD, the most likely being a 
late start of treatment, considering that pathophysiological mechanisms underlying synaptic 
dysfunction and neuronal death begin several decades before the clinical onset of AD. The 
identification of risk factors is, therefore, an essential step for early treatment of AD with 
candidate disease-modifying drugs. Preclinical studies suggest that stress, and the resulting 
activation of the hypothalamic–pituitary–adrenal axis, can induce biochemical abnormalities 
reminiscent to those found in autoptic brain samples from individuals affected by AD (e.g., 
increases amyloid precursor protein and tau hyperphosphorylation). In this review, we will 
critically analyze the current knowledge supporting stress as a potential risk factor for AD.

Keywords: stress, glucocorticoids, Alzheimer’s disease, risk factor, animal model

INTRODUCTION

According to the World Health Organization, “a risk factor is any attribute, characteristic or 
exposure of an individual that increases the likelihood of developing a disease or injury” (www.who.
int/topics/risk_factors). Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by 
progressive impairments in cognitive functions (Hampel et al., 2015). AD is characterized by loss of 
neurons and synapses in the cerebral cortex and hippocampus (Nisticò et al., 2012). Formation of 
aggregates of the β-amyloid peptide (Aβ1-42) and neurofibrillary tangles resulting from tau protein 
hyperphosphorylation are the major hallmarks of AD. These histopathological processes occur in 
brain regions that are involved in memory formation and emotional regulation (Gómez-Isla et al., 
1996; Murray et al., 2006; Holtzman et al., 2011). The hippocampus is particularly vulnerable to 
AD-associated neuronal damage (Mu and Gage, 2011; Hollands et al., 2016). Genetic studies of 
early-onset familial AD (eFAD) have demonstrated that the formation of Aβ1-42 aggregates, rather 
than tau hyperphosphorylation, lies at the core of AD. eFAD is caused by mutations in the genes 
encoding for amyloid-ß precursor protein (APP) (Goate, 2006), presenilin 1 (PSEN1) (Sherrington 
et al., 1995), and presenilin 2 (PSEN2) (Levy-Lahad et al., 1995; Rogaev et al., 1995) inherited as an 
autosomal dominant trait (Guerreiro et al., 2012). PSEN1 mutations account for most eFAD, while 
APP and PSEN2 are rarer. However, these findings have constituted the bases that led to the proposal 
of the so-called “amyloid cascade hypothesis,” which posits that dysregulation of amyloid-ß (Aß) 
peptide production and/or proteolytic degradation plays a key role in triggering the pathological 
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and behavioral changes observed in AD patients (Selkoe and 
Hardy, 2016). Although our knowledge of neuropathological and 
neurochemical alterations associated with AD has impressively 
increased in the last decades, the current treatment is limited to 
cholinesterase inhibitors and the N-methyl-D-aspartate (NMDA) 
receptor channel blocker, memantine. None of these drugs can 
slow the progression of AD. Several putative disease-modifying 
drugs have been developed and continue to be developed with 
the hope of restraining the progression of the disease. Most of 
these drugs target either the production or the aggregation 
process of Aβ1-42 (Anand et al., 2017). Results of clinical studies 
with all these drugs have been highly disappointing. For example, 
a recently concluded randomized clinical trial with an inhibitor 
of β-secretase (BACE1), the enzyme that cleaves APP to uncover 
the N-terminus domain of Aβ1-42, did not show any reduction in 
cognitive or functional decline in AD patients, suggesting that 
either disease progression does not rely exclusively on amyloid 
formation or, alternatively, that anti-amyloid drugs should be 
administered several years prior to the onset of AD to be effective 
(Egan et al., 2018). The entire AD community was frustrated by 
the lack of efficacy of aducanumab, an anti-amyloid monoclonal 
antibody that was considered as highly promising based on a 
phase 1b clinical trial (Sevigny et al., 2016). If these drugs fail 
because treatment starts too late, i.e. when pathophysiological 
mechanisms of AD are already established, research should be 
directed to the identification of risk factors that can reliably 
predict the development of AD. As highlighted above, a minority 
of patients has eFAD with autosomal dominant transmission. 
Children have 50% chance to inherit the same mutation, and 
they are natural candidates for early treatment with candidate 
disease-modifying drugs. Apolipoprotein E4 (ApoE4) is the 
most established risk factor for sporadic AD (besides age), and 
subjects who are homozygous for ε4 (the gene encoding for 
ApoE4) and showed brain amyloidosis by PET scanning at an 
early age are also candidates for early treatment. The presence 
of ApoE4 may also predict responses to drug treatment in AD. 
For example, inhibitors of angiotensin-converting enzyme 
(ACE) improve cognition in patients affected by AD carrying 
ApoE4 and certain ACE polymorphisms (de Oliveira et al., 2014; 
de Oliveira et al., 2018). However, only about half of AD patients 
are ApoE4-positive, and the presence of cerebral amyloidosis is 
only suggestive of later development of AD (old individuals may 
have cerebral amyloidosis without AD).

Cardiovascular and metabolic disorders, such as hypertension, 
type-2 diabetes, metabolic syndrome, hypercholesterolemia, 
unhealthy dietary pattern, poor physical and cognitive activity, and 
smoking may increase the vulnerability to develop AD (Barnard 
et al., 2014; Xu et al., 2015). This review aims to comment on 
preclinical and clinical data on stress and glucocorticoids as risk 
factors for AD. Stress activates the hypothalamic–pituitary–
adrenal (HPA) axis, with an ensuing increase in blood levels of 
glucocorticoid hormones (cortisol in humans and corticosterone 
in rodents). Hypothalamic corticotrophin-releasing hormone 
(CRH) is the main secretagogue of adrenocorticotropic 
hormone (ACTH) from the pituitary gland. ACTH, in turn, 
stimulates the production of glucocorticoids from the adrenal 
cortex. Glucocorticoids exert a crucial role in the adaptive 

physiological and behavioral responses to stress. Moreover, 
glucocorticoid hormones exert a negative feedback signal capable 
of inhibiting the activation of the HPA axis: the main targets 
of glucocorticoid-induced negative feedback are the anterior 
pituitary, the hypothalamus, and the hippocampus. Glucocorticoid 
binds to two receptors: the mineralocorticoid receptor (MR) and 
the glucocorticoid receptor (GR). Both are ligand-dependent 
transcription factors. Of the two receptors, MRs have one order 
of magnitude higher affinity for glucocorticoids than GRs. At low 
levels of circulating glucocorticoids, e.g., during the circadian nadir, 
MRs are fully occupied; in contrast, GR activation occurs at the 
circadian peak of glucocorticoids or in response to stressful events. 
Interestingly, both MRs and GRs are highly expressed in pyramidal 
neurons of CA1 and CA2 and in granule cells of the dentate gyrus 
of the hippocampus (Han et al., 2005), which is a vulnerable brain 
region in AD (Henneman et al., 2009). It has been hypothesized that 
long-lasting stress and the resulting sustained hypocortisolemia 
could be a potential neurodegenerative factor for the hippocampus 
(Angelucci, 2000). However, recent findings have depicted a more 
complex relationship between stress and neurodegeneration.

HYPOTHALAMIC–PITUITARY–ADRENAL 
AXIS DYSFUNCTION IN ALZHEIMER’S 
DISEASE

Clinical reports of hypercortisolism in AD patients suggest 
a causal role for glucocorticoids in AD (Bruno et al., 1995; 
Hatzinger et al., 1995; Greenwald et al., 1986; Peskind et al., 
2001; Rasmuson et al., 2001; Wilson et al., 2003; Hoogendijk 
et al., 2006; Johansson et al., 2010; Curto et al., 2017; Ouanes 
and Popp, 2019). However, it should be considered that some 
degree of stress could be present in a condition involving bodily 
or psychic suffering, especially when patients are cognitively 
able to perceive memory impairment, which is among the first 
symptoms reported by patients suffering from AD (Saydak 
et al., 1987). Dysregulation of the corticotropic axis is present in 
individuals suffering from depression, diabetes, and metabolic 
syndrome. These clinical conditions have been hypothesized to 
increase the risk to develop AD later in life (Ownby et al., 2006; 
Huang et al., 2014; Rojas-Gutierrez et al., 2017). In particular, it 
has been reported that patients who experienced late-life, but not 
early- or mid-life, depression had a two-fold increased risk for AD 
(Barnes et al., 2012; Singh-Manoux et al., 2017). Single nucleotide 
polymorphism (SNP) analysis in patients affected by AD supports 
the hypothesis that elevated glucocorticoid levels increase the risk 
to develop AD. de Quervain et al. (2004) analyzed SNPs in 10 
glucocorticoid-related genes in 814 AD patients. They found an 
association between AD and a rare haplotype in the 5’ regulatory 
region of the gene encoding for type-1 11ß-hydroxysteroid 
dehydrogenase (11ß-HSD1). 11ß-HSD1, also known as cortisone 
reductase, catalyzes the conversion of cortisol into the biological 
inert 11-keto derivative (cortisone). Thus, subjects carrying this 
rare haplotype with reduced 11ß-HSD1 transcription show less 
inactivation of glucocorticoids, which, in turn, is associated with 
an increased vulnerability to the clinical manifestation of AD. 
On the contrary, subjects bearing a polymorphism of the GR 
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gene (NR3C1) are characterized by a reduced risk to develop 
AD (van  Rossum et al., 2008). More precisely, carriers of the 
ER22/23EK allele (approximately 7% of the entire population) 
were associated with a decreased risk of developing dementia. The 
presence of the ER22/23EK allele leads to a decreased sensitivity 
of GRs to glucocorticoids (Russcher et al., 2005).

Several lines of evidence suggest a tight connection between 
neuroinflammation and AD (see Nichols et al., 2019 for a recent 
review). In a double-blind, placebo-controlled trial, 138 AD patients 
received prednisone (10 mg daily for 1 year). Glucocorticoid 
treatment not only failed to ameliorate cognitive decline as assessed 
by the Alzheimer’s Disease Assessment Scale but also caused a 
greater behavioral decline, as measured by the Brief Psychiatric 
Rating Scale (Aisen et al., 2000). These findings suggest a 
detrimental effect of glucocorticoids in AD. Some clinical trials have 
investigated the effects of the glucocorticoid receptor antagonist, 
mifepristone, in AD patients (Belanoff et al., 2002; DeBattista and 
Belanoff, 2005). Although a significant improvement of cognitive 
function was observed in AD patients after a 6-week treatment with 
200 mg of mifepristone (Pomara et al., 2002), there are no ongoing 
clinical trials with glucocorticoid antagonists in AD.

PRECLINICAL STUDIES ON STRESS 
AS RISK FACTOR FOR ALZHEIMER’S 
DISEASE

Preclinical studies aimed at elucidating the role of glucocorticoids 
as a risk factor for AD have been mostly conducted in transgenic 
(Tg) mice, such as Tg2576 mice expressing human APP carrying 
the Swedish mutation (KM670/671NL), mice with a double 
mutations of APP and PSEN1, and 3xTgAD mice, characterized by 
a triple mutations of APP (Swedish mutations), PSEN1 (M146V), 
and the P301L mutation in the gene encoding tau protein 
(MAPT) (Götz et al., 2018). However, it is important to note that 
transgenic AD mice recapitulate features of eFAD that represents 
only 3% of AD (Bird, 1999), with the important limitation of the 
limited lifespan of mice. Rats have been used for the induction 
of “AD-like” pathology using i.c.v. or intrahippocampal injection 
of Aβ1-42 oligomers, tau protein, or excitotoxins (see Shree et al., 
2017 for a recent review). In both Tg and non-Tg models, the 
effect of stress was investigated by either exposing animals to 
stress of variable duration or administering glucocorticoids (the 
natural hormone, corticosterone, or the synthetic, long-acting, 
and GR-selective glucocorticoid, dexamethasone). Some studies 
have investigated the role of CRH independently of its function 
in the regulation of the HPA axis and the potential use of CRH 
receptor antagonists as disease-modifying drugs in AD (Rissman 
et al., 2012). One of the first demonstrations that stress hormones 
are linked to AD-like neuropathology was provided by the 
evidence that kainic acid-induced tau hyperphosphorylation was 
amplified by repeated (i.e., 7 days) corticosterone administration 
in rats (Elliott et al., 1993). Dexamethasone treatment in rats 
was also found to increase the expression of APP in the cerebral 
cortex, cerebellum, and brain stem (Budas et al., 1999). The effect 
of glucocorticoids on APP processing and Aβ1-42 production 

was also investigated in 3xTgAD mice, in which dexamethasone 
treatment for 7 days caused a significant increase in soluble and 
insoluble Aβ1-42 in the hippocampus, cortex, and amygdala, and 
also leads to the mislocalization of tau to the somatodendritic 
compartment (Green et al., 2006). Moreover, neuroblastoma 
N2A cells incubated with dexamethasone or corticosterone 
showed an increased expression of both APP and BACE leading 
to enhanced production of Aβ1-42. Interestingly, 3xTgAD mice 
showed an age-dependent increase in serum corticosterone 
levels, which is observable already at 9 months of age (Green 
et al., 2006). Although glucocorticoid administration mimics 
only partially the hormonal endpoint of stress-induced HPA 
activation, the above findings paved the way to explore the 
effect of stress (of different intensity and duration) on AD 
neuropathology. One of the most popular Tg mouse models of 
AD expresses human APP with the London mutation (V717I). 
Using this model, it has been demonstrated that exposure to long-
term (8 months) restraint stress caused learning and memory 
deficits as well as an increase in extracellular amyloid plaque 
deposition and intraneuronal APP and Aβ1-42 immunoreactivity, 
and neurodegeneration in the hippocampus and cerebral cortex 
(Jeong et al., 2006). Tg2576 transgenic mice expressing human 
APP with the Swedish mutation (K670M/N671L) were used to 
study the effects restraint stress (2  h daily for 16 consecutive 
days) (Lee et al., 2009). Stress caused a rapid increase in plaque 
formation, insoluble Aβ accumulation, and dendritic atrophy of 
cortical neurons (Lee et al., 2009). Besides, restraint stress caused a 
down-regulation of matrix metalloproteinase-2 (MMP-2), which, 
similarly to MMP-9, is involved in the clearance of Aβ (Roher 
et al., 1994). In the same study, the authors have demonstrated 
that MMP-2 down-regulation and Aβ pathology were completely 
prevented by the administration of the CRH receptor antagonist, 
NBI 27914, reinforcing the hypothesis that over-activation of 
the HPA axis contributes to the development of stress-induced 
AD-like pathology. The hypothesis that a down-regulation of 
MMP-2 is a linking bridge between stress and AD pathology 
is supported by the evidence that i) MMP-2 expression was 
reduced in cortical neurons treated with corticosterone (Lee et al., 
2009); ii) infusion of the MMP inhibitor, GM6001, increases Aβ 
formation in Tg2576 mice (Yin et al., 2006); and iii) MMP-2 was 
reduced in the parietal cortex of Tg2576 mice (Lee et al., 2009).

Tau hyperphosphorylation is a molecular hallmark present in 
both the hereditary and sporadic forms of AD. Hyperphosphorylated 
tau protein has a key pathogenic role in AD neuronal dysfunction 
because it accumulates in form of insoluble aggregates and 
neurofibrillary tangles with a consequent malfunction of axonal 
transport (Iqbal et al., 2010; Fitzpatrick et al., 2017). When exposed 
to dexamethasone, neuronal cell lines bioengineered to express the 
human homolog of the protein tau (PC12-htau) showed a greater 
degree of susceptibility to the neurotoxic actions of Aβ1-42 as well as 
marked increases in tau hyperphosphorylation at specific epitopes 
implicated in AD neuropathology. More specifically, exposure to 
dexamethasone reduced tau turnover and, consequently, increased 
cytoplasmic accumulation of tau. These effects were abolished by 
pharmacological blockade of GRs with mifepristone, indicating 
that activation of GRs mediates the effects of glucocorticoids on 

178

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Stress and Alzheimer’s DiseaseCaruso et al.

4 September 2019 | Volume 10 | Article 976Frontiers in Pharmacology | www.frontiersin.org

tau protein. Tau hyperphosphorylation was ultimately mediated 
by a GR-dependent activation of cyclin-dependent kinase 5 
(CDK5) and glycogen synthase kinase-3β (GSK3β) (Sotiropoulos 
et al., 2008). The effect of stress on tau hyperphosphorylation 
has been extensively studied in recent years. Sotiropoulos et  al. 
(2011) found that in Wistar rats, exposure to unpredictable 
chronic (1 month) stress induced tau hyperphosphorylation in the 
hippocampus and prefrontal cortex. In line with the hypothesis 
that glucocorticoids mediate the action of stress, these authors 
also demonstrated that treatment with dexamethasone for 
14 days mimicked the amplifying effect of stress on Aβ-induced 
tau hyperphosphorylation. Both stress and glucocorticoid 
administration activated GSK3β and CDK5, as well as calcium-
calmodulin-dependent protein kinase-II, the MAP kinase pathway, 
and the JUN kinase pathway in the hippocampus and prefrontal 
cortex, and caused an impairment in the hippocampus- and 
prefrontal cortex-dependent memory. Based on these findings, 
the authors concluded that sustained stress, via glucocorticoid 
hypersecretion, could influence the onset and progression of AD 
pathology and highlighted the role of tau hyperphosphorylation 
in the effect of stress on AD. CRF is the principal driving force, 
which controls both tonic and phasic activation of the HPA axis. 
However, the hypothesis that CRF might have a causative role in 
AD independently of ACTH and glucocorticoid secretion has 
been addressed in several studies. Rissman and colleagues have 
demonstrated that stress-induced tau hyperphosphorylation was 
not prevented by adrenalectomy, while it was absent in type-1 
CRF receptor (CRFR1)-deficient mice and mice treated with a 
selective CRFR1 antagonist (antalarmin). This suggested that CRF 
induced tau pathology through a central mechanism independent 
of the activation of the HPA axis (Rissman et al., 2007). They 
used two mouse models of AD, i.e., Tg2576 mice, which express 
APPK670/671L, and PS19 mice, which express human P301S 
mutant tau. They also used two different stress protocols: chronic 
restraint stress (CRS) and chronic unpredictable stress (CUS), both 
delivered for 1 month. In both Tg2576 and PS19 mice, CRS, but 
not CUS, induced an increase in Aβ1-42 and hyperphosphorylated 
tau in the hippocampus and frontal cortex. Moreover, CRS, but 
not CUS, caused deficits in hippocampus-dependent memory. In 
apparent contrast with the glucocorticoid-centric hypothesis of 
stress and AD, PS19 mice implanted with a corticosterone pellet 
did not show increases in the levels of hyperphosphorylated tau. 
In contrast, injection of the CRF antagonist, NBI 27914, 15 min 
before the onset of restraint stress abolished tau accumulation and 
prevented memory impairment. The hypothesis of a central action 
of CRF in causing AD-like neuropathology was further supported 
by the demonstration that transgenic mice overexpressing CRF 
showed an increase in tau phosphorylation in the hippocampus, 
and CRFR1 ablation in Tg mice carrying a double mutation of 
APP and PS1 reduced Aβ accumulation in several brain regions 
(Campbell et al., 2015). Intriguing findings were reported by 
Kvetnansky et al. (2016), who used CRF knockout mice showing 
that CRF potentiated tau phosphorylation during acute stress, 
but inhibited phosphorylation in response to repeated stress. 
Although the precise mechanism(s) by which CRF may exacerbate 
AD neuropathology remains to be determined, studies in neuronal 
cultures have demonstrated that CRF-induced tau phosphorylation 

hampers neuronal energetics and interferes with axonal transport 
of mitochondria (Le et al., 2016).

Tau mislocation has recently been proposed as a relevant 
pathophysiological mechanism in AD (Hoover et al., 2010; Tai 
et al., 2012; Zempel et al., 2013; Le et al., 2016). A large body 
of evidence suggests that hyperphosphorylated tau causes a 
derangement of synaptic function with a resulting impairment 
of excitatory synaptic transmission (Ittner et al., 2010; Crimins 
et al., 2013; Xie et al., 2017), leading to deficit in learning and 
memory (Kimura et al., 2007). In mice overexpressing APP 
(APP23 mice) crossed with tau transgenic mice, a redistribution 
of hyperphosphorylated tau from axons to dendrites increased 
the localization of Fyn in the postsynaptic density. Fyn, in turn, 
phosphorylates the GluN2B subunit of NMDA receptors at Y1472, 
leading to excitotoxic downstream signaling (Ittner et al., 2010). 
A direct effect of glucocorticoids on tau mislocation has been 
studied by Pinheiro and colleagues (Pinheiro et al., 2016). In male 
Wistar rats, prolonged (14 days) dexamethasone exposure led to 
cytosolic and dendritic tau accumulation in the hippocampus, but, 
interestingly, Fyn levels were not altered. Additional evidence of a 
relationship between stress-induced glucocorticoid hypersecretion 

FIGURE 1 | In vulnerable individuals, stress increases the risk to develop 
Alzheimer’s disease.
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and synaptic tau missorting was provided by Lopes et al. (2016), 
who used wild-type and tau knockout mice. In wild-type mice, 
exposure to CUS for 6 months caused behavioral disturbances 
as well as synaptic tau missorting and enhanced levels of Fyn in 
hippocampal postsynaptic density fractions. None of these effects 
were observed in mice lacking tau. Interestingly, as opposed to 
wild-type mice, tau knockout mice did not show changes in plasma 
corticosterone levels in response to CUS as well as following an 
acute restraint stress application. Collectively, these findings 
suggest that the phosphorylation status of the tau protein exerts an 
important role in the relationship between sustained stress and AD 
synaptic pathology. If chronic glucocorticoid elevation represents 
a causative factor contributing or exacerbating the development of 
AD (see also Lopes et al., 2016; Fitzpatrick et al., 2017), this would 
offer a pharmacotherapeutic target for AD and other tauopathies. 
Several studies have shown that negative experiences during 
childhood not only increase the probability to develop anxiety, 
depression, and substance use disorder but also increase the 
vulnerability to several clinically relevant diseases (Dich et al., 2015; 
Berg et al., 2017). Experimental findings support the hypothesis 
that early life experiences can affect adrenocortical stress response 
in adult life, which in turn may cause cognitive dysfunction (Chen 
and Baram, 2016). For the relationship between early life events 
and AD, see the excellent review by Lesuis et al. (2018). Here, 
we focus on the principal findings related to perinatal stress and 
AD. Exposure of pregnant APPswe/PS1dE9 mice to restraint 
stress during the first week of gestation caused gender-dependent 
behavioral and histopathological changes in the offspring. Adult 
male offspring showed impairment in spatial memory, while 
females exhibited a better performance in a spatial memory task 
and, interestingly, a reduced plaque load in the hippocampus 
(Sierksma et al., 2013). Accordingly, the effects of early life stress 
on the developmental trajectory of the CNS have been often 
reported to be gender-dependent (Naninck et al., 2015; Loi et al., 
2017). In male APPswe/PS1dE9 mice, early postnatal stress (from 
postnatal day 2 to 9), in the form of reduced availability of bedding 
and nesting material, increased plaque load and impairs synaptic 
plasticity in the adult life (Lesuis et al., 2019). Riluzole, a drug that 
reduces glutamate release, prevented the effects of early life stress 
when added to the drinking water from weaning onwards. The 

effects of early life stress were also evaluated in wild-type rodents. 
In Wistar rats, daily maternal separation during the first 3 weeks 
of life induced in the adult male offspring cognitive deficits as well 
as increases in both Aβ40 and Aβ42 hippocampal levels in the 
adult male offspring. These effects were paralleled by an increased 
expression of BACE1 and hyperphosphorylated tau (Martisova 
et al., 2013). In contrast, exposure to an enriched and ‘positive’ 
environment during early postnatal life exerts protective effects 
against AD-related neuropathology and cognitive functions. 
In these studies, neonatal handling has been the most used 
experimental paradigm. Neonatal handling increases maternal 
care causing permanent neurochemical and behavioral alterations 
in the adult progeny (Meaney, 2001). Lesuis et al. (2017) have 
studied the effects of neonatal handling from postnatal days 2 
to 9 in APPswe/PS1dE9 mice. In adulthood (11 months) mice 
subjected to neonatal handling showed a reduced amyloid load in 
the hippocampus paralleled by increased performance in learning 
paradigms (e.g., t-maze and contextual fear memory). In APP-
V717I x Tau-T301P (biAT) bigenic mice, neonatal handling was 
shown to reduce hippocampal Aß accumulation and to prolong 
lifespan (Lesuis et al., 2016). Finally, 3xTg-AD mice daily handled 
from birth to weaning (postnatal day 21) showed reduced deficits 
in spatial learning and exploratory behavior (Cañete et al., 2015).

CONCLUSIONS

In the last years, our knowledge on the pathogenetic mechanisms 
of AD has dramatically improved. Several preclinical studies have 
demonstrated that stress is a potential risk factor for AD (Figure 1). 
However, the marked individual difference in perceiving and 
coping with stress makes any generalization difficult at the 
moment. Nevertheless, we suggest that behavioral, psychological, 
or pharmacological strategies aimed at increasing resilience to 
stress might delay the onset or slow the progression of AD.
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Family C G-Protein-Coupled 
Receptors in Alzheimer’s Disease 
and Therapeutic Implications
Ilaria Dal Prà *, Ubaldo Armato and Anna Chiarini *

Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy

Alzheimer’s disease (AD), particularly its sporadic or late-onset form (SAD/LOAD), is 
the most prevalent (96–98% of cases) neurodegenerative dementia in aged people. 
AD’s neuropathology hallmarks are intrabrain accumulation of amyloid-β peptides 
(Aβs) and of hyperphosphorylated Tau (p-Tau) proteins, diffuse neuroinflammation, 
and progressive death of neurons and oligodendrocytes. Mounting evidences suggest 
that family C G-protein-coupled receptors (GPCRs), which include γ-aminobutyric 
acid B receptors (GABABRs), metabotropic glutamate receptors (mGluR1-8), and the 
calcium-sensing receptor (CaSR), are involved in many neurotransmitter systems that 
dysfunction in AD. This review updates the available knowledge about the roles of 
GPCRs, particularly but not exclusively those expressed by brain astrocytes, in SAD/
LOAD onset and progression, taking stock of their respective mechanisms of action 
and of their potential as anti-AD therapeutic targets. In particular, GABABRs prevent 
Aβs synthesis and neuronal hyperexcitability and group I mGluRs play important 
pathogenetic roles in transgenic AD-model animals. Moreover, the specific binding of 
Aβs to the CaSRs of human cortical astrocytes and neurons cultured in vitro engenders 
a pathological signaling that crucially promotes the surplus synthesis and release of 
Aβs and hyperphosphorylated Tau proteins, and also of nitric oxide, vascular endothelial 
growth factor-A, and proinflammatory agents. Concurrently, Aβs•CaSR signaling hinders 
the release of soluble (s)APP-α peptide, a neurotrophic agent and GABABR1a agonist. 
Altogether these effects progressively kill human cortical neurons in vitro and likely 
also in vivo. Several CaSR’s negative allosteric modulators suppress all the noxious 
effects elicited by Aβs•CaSR signaling in human cortical astrocytes and neurons thus 
safeguarding neurons’ viability in vitro and raising hopes about their potential therapeutic 
benefits in AD patients. Further basic and clinical investigations on these hot topics are 
needed taking always heed that activation of the several brain family C GPCRs may elicit 
divergent upshots according to the models studied.

Keywords: Alzheimer’s disease, G-protein-coupled receptors, amyloid-beta, calcium-sensing receptor, 
GABAB receptors, metabotropic glutamate receptors
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INTRODUCTION

Alzheimer’s disease (AD), particularly its sporadic or late-onset 
form (SAD/LOAD), is by far the most prevalent cause of senile 
dementia in humans (Alzheimer’s Association, 2018). Typically, 
multiple neurotoxic factors accumulate in the AD brain, such as 
soluble amyloid-β oligomers (sAβ-os) and insoluble Aβ fibrils 
(fAβs), the latter aggregating into senile plaques (Gouras et al., 
2015); hyperphosphorylated soluble Tau oligomers (p-Tau-os) 
that collect into insoluble neurofibrillary tangles (NFTs) (Bloom, 
2014); overproduced reactive oxygen species (ROS) (Butterfield 
and Boyd-Kimball, 2018); nitric oxide (NO); vascular endothelial 
growth factor-A (VEGF-A), and proinflammatory agents (Dal Prà 
et al., 2014a; Chiarini et al., 2016). Altogether, these neurotoxins 
cause a spreading neuroinflammation, progressive synaptic 
losses, and cortical human neurons and oligodendrocytes deaths 
with the consequent breaking up of neural circuits. The clinical 
counterparts of AD neuropathology are steadily worsening 
losses of memories and cognitive abilities, which inexorably lead 
to patients’ demise (Dal Prà et al., 2015a; Dal Prà et al., 2015b; 
Calsolaro and Edison, 2016).

Amyloid precursor protein (APP), a multifunctional protein 
widely expressed in the central nervous system (CNS), represents 
the source of the neurotoxic sAβ-os and fAβs that progressively 
accumulate in AD brains. Transmembrane APP holoprotein can 
undergo alternative enzymatic handling: (i) nonamyloidogenic 
processing (NAP) by α-secretases that leads to the production of 
the soluble (s)APP-α while obstructing Aβs synthesis (Chiarini 
et al., 2017b; Rice et al., 2019) (Figure 1); and (ii) amyloidogenic 
processing (AP) by β-secretase (BACE1) and γ-secretase liberating 
Aβs (Figure 2). Notably, sAPP-α’s physiological roles are 
multifaceted, and to-date only partly understood. The available 
evidence reveals that sAPP-α promotes the neural differentiation 
of human embryo stem cells (Freude et al., 2011) and protects 
hippocampal neurons from the harm due to ischemia (Smith-
Swintosky et al., 1994), glucose deficiency (Furukawa et al., 1996), 
brain trauma, and excitotoxicity (Mattson et al., 1993; Goodman 
and Mattson, 1994). In addition, sAPP-α complexes with and 
inhibits the activity of BACE1/β-secretase protein thus hindering 
any excess production of toxic Aβ42/Aβ42-os (Stein and Johnson, 
2003; Obregon et al., 2012; Peters-Libeu et al., 2015). Moreover, 
sAPP-α stimulates axonal outgrowth (Ohsawa et al., 1997), 
synaptogenesis, and synaptic plasticity (Hick et al., 2015; Habib 
et al., 2016). Remarkably, sAPP-α also curbs the activity of glycogen 
synthase kinase (GSK)-3β and the hyperphosphorylation and 
overrelease of neurotoxic p-Tau/p-Tau-os, the main components 
of NFTs (Deng et al., 2015). And an increased activity of GSK-3β 
has been linked to hyperphosphorylation of Tau in the brains of 
AD patients. Typically, in AD Tau is phosphorylated at over 30 
serine/threonine residues by various protein kinases, including 
GSK-3β (Pei et al., 1999). The D1 and D6a domains of sAPP-α are 
the locations of its neuroprotective and neurotrophic activities 
since they stimulate axons outgrowth when added as separate 
fragments to in vitro hippocampal neurons (Jin et al., 1994; Qiu 
et al., 1995; Ohsawa et al., 1997). In keeping with such findings, 
sAPP-α upholds cognition and memory integrity in animal 
models of physiological aging and of AD (Roch et al., 1994; 

Meziane et al., 1998; Bour et al., 2004; Ring et al., 2007; Corrigan 
et al., 2012; Xiong et al., 2016) (Figure 1).

SAD/LOAD, which comprises ~98–96% of the cases, starts 
from neuronal nests in the layer II of the lateral entorhinal cortex 
(LEC) in the temporal lobe (Khan et al., 2014) where small 
ischemic areas may occur in aged subjects (Ishimaru et al., 1996). 
Thence, in the course of 20–40 years (asymptomatic stage) SAD/
LOAD silently spreads to wider and wider upper cerebral cortex 
areas, particularly to those involved in storage and retrieval of 
memories and in handling complex cognitive activities (Khan 
et al., 2014). When the unremitting attrition depletes the 
cortical human neurons’ functional reserve, SAD/LOAD’s first 
clinical symptoms start manifesting as amnesias. This marks 
the onset of the amnestic minor cognitive impairment or aMCI 
stage that lasts 3–5 years while its symptoms progressively 
worsen. Eventually, the full symptomatic stage takes over, whose 
exacerbating symptoms include permanent losses of short-term 
(first) and long-term (later) memories, changes in personality 
and behavior, loss of the several language-related abilities, failure 
to cope with daily tasks and needs, motor problems, cognitive 
shortfalls, dementia, and eventually death. However, it is still 
hard to diagnose the earliest asymptomatic stage of AD because 
specific biomarkers are few and the highly neurotoxic, synapse-
destroying sAβ42-os are hardly detectable when senile plaques 
and NFTs are still absent (Selkoe, 2008a; Selkoe, 2008b; Ferreira 
and Klein, 2011; Klein, 2013; Dal Prà et al., 2015a). Even so, the 
ghostly sAβ42-os eventually cause a noticeable accumulation 
of Aβ42 as fibrils and senile plaques, and of p-Tau-os as NFTs 
(Medeiros et al., 2013). Presently, the diagnosis of SAD/LOAD 
is based upon detecting brain deposits of insoluble Aβs (senile 
plaques) via PET imaging and specific changes in Aβ42/Aβ40 
and Tau/p-Tau ratios values in the cerebrospinal fluid (CSF), 
which are deemed to be pathognomonic (McKhann 2011). PET 
imaging can also detect the brain accumulation of NFTs (Hall 
et al., 2017). The quest of blood biomarkers of AD is still ongoing 
with some preliminary promising results (Nabers et al., 2018; 
Nakamura et al., 2018; Palmqvist et al., 2019).

Presently, no drug therapy modifies or mitigates AD’s 
relentless course (Jessen et al., 2014). This unsatisfactory 
situation still lingers because of various reasons. First, SAD/
LOAD pathogenesis remains unclear and, hence, an open to 
speculation topic. Second, animal models closely mirroring 
human SAD/LOAD are as yet not available (Ameen-Ali et al., 
2017). Transgenic (tg) animal (mostly rodent) AD-models only 
partially and imperfectly emulate the early-onset familial (EOF)
AD variety, which comprises at most 2–4% of AD cases. It is well 
established that EOFAD results from mutations in the amyloid 
precursor protein (APP) or presenilin1 (PSEN1) or presenilin2 
(PSEN2) genes. These mutations drive a constitutive, diffuse 
intrabrain overproduction and overload of sAβ-os, insoluble Aβ 
fibrils, and hence Aβ-heaped senile plaques and concurrently of 
p-Tau-os and NFTs. Conversely, no genetic mutations underlie 
SAD/LOAD pathogenesis, although APOE (Huang and Mahley, 
2014) and TREM2 (Gao et al., 2017) gene variants could increase 
AD proclivity. While Aβ-os appear as the first main AD drivers, 
in such tg AD-model animals p-Tau accumulates as NFTs 
later and only when a mutated MAPT transgene is inserted 
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too (Oddo  et al., 2003; Cohen et al., 2013). Third, AD-model 
rodent brains substantially differ under several cytological, 
structural, and functional standpoints from the human brain. 
Some differences are obvious, such as brain size and weight, the 
cerebral cortex limited extent, the largely prevailing primitive 
olfactory cortex, and so on. Other differences are more subtle, 

but still exceedingly important, as they critically regard a genetic 
homology of only 80% and structural and functional features 
of cortical neurons and neuroglial cells--e.g. the total absence 
of some human cortical astroglial subtypes from rodent brain 
cortices--and the dissimilar extension of the astrocytes’ domains, 
and the unlike reactions (e.g. Ca2+ fluxes) of each neural cell 

FIGURe 1 | The nonamyloidogenic processing (NAP) of amyloid precursor protein (APP) holoprotein. By itself, APP holoprotein is not neurotoxic and is cleaved 
at three different locations by α- or β- and/or γ-secretase. Proteolytic cleavage by α-secretase represents the NAP of membrane-inserted APP holoprotein. NAP 
occurs just within the amino acid sequence of Aβ42, whose synthesis it consequently obstructs. Thus, α-secretase activity (mostly due to ADAM10) sheds from APP 
holoprotein the soluble (s)APP-α peptide, whose multiple neurotrophic and neuroprotective effects are summarized in this figure. Recent evidence indicates that as 
a GABAB1aR agonist sAPP-α also constitutively moderates neuronal excitability thus preventing neurons’ harm. In summary, APP holoprotein’s NAP hinders the 
development of AD and preserves neuronal viability, trophism, and function.
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type once exposed to AD-driving neurotoxins. As a revealing 
example, in tg AD-model animals, the cortical astrocytes die 
sooner than neurons, whereas cortical neurons die earlier than 
astrocytes in human AD brains. Altogether, such a complex set of 
divergences has suggested that tg rodent AD-model animals may 
not be the ultimate means to identify therapeutic approaches 
benefiting human AD patients (Ransohoff, 2018). Hitherto, all 
drugs that resulted advantageous when given to tg AD-model 
animals have failed to act as beneficial therapeutics in human 
AD patients (Cummings, 2017). It should be noted that this is 

a currently recognized general problem affecting the quest for 
and successful trial of novel drugs preclinically tested in animal 
models of other human diseases besides AD (Gabrielczyk, 
2019). Unquestionably, novel rodent and non-human primate 
(NHP) AD models are under development (Podlisny et al., 1991; 
Sasaguri et al., 2017) but their potential worth for human AD 
therapeutic research remains to be assessed.

So, are there acceptable alternatives to AD-model animals? 
Given the just mentioned species-related differences, one 
should take stock of untransformed human neural cells making 

FIGURe 2 | The amyloidogenic processing (AP) of amyloid precursor protein (APP) holoprotein. In this pathway β-secretase/BACE1 and γ-secretase sequentially 
cleave APP holoprotein yielding several Aβ peptide isoforms. The two most prevalent Aβ isoforms are the 40- and 42-amino acid-long residues, the length of which 
is determined by the cleavage site of the γ-secretase. Under physiological conditions the synthesis of monomeric neurotrophic Aβ peptides is very limited. However, 
when over produced Aβ peptide monomers end up aggregating first into soluble oligomers (Aβ-os), the first Alzheimer’s disease (AD) drivers, next into insoluble 
fibrils, and eventually into senile plaques. The latter can both take up and release the neurotoxic Aβ-os. The Aβ42 isoform is the main component of senile plaques 
as is it highly prone to oligomeric and polymeric (fibrillar) aggregation. The Aβ-os interact with several nerve cell membrane receptors, including the calcium-sensing 
receptor (CaSR). Notably, CaSR-bound Aβ-os trigger a complex set of intracellular signals that promote the development and progression of AD neuropathology 
(see Figure 3 for further details).
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up “preclinical AD models in Petri dishes”. An example of this 
kind may be neural cells differentiated from human induced 
pluripotent stem cells (iPSCs) isolated from normal subjects 
and/or from EOFAD and SAD/LOAD patients and set into 2D or 
3D cultures (Kim et al., 2015). Human iPSC models are easier to 
handle than NHP models and may also be integrated into mouse 
AD models (Espuny-Camacho et al., 2017).

Still another suitable preclinical human AD model in vitro 
consists of untransformed cortical adult human astrocytes and/
or neurons. Human astrocytes from the temporal lobe cerebral 
cortex exhibit a stable (“locked-in”) differentiated phenotype 
and give reproducible responses when exposed to fAβs and/
or sAβs. The experimental exploitation of the latter cells has 
revealed that exogenous Aβs specifically bind the calcium-
sensing receptor (CaSR) (Dal Prà et al., 2014a; Dal Prà et al., 
2014b; Dal Prà et al., 2015b), a member of family C G-protein 
coupled receptors (GPCR), and activate a pathological signaling 
that could drive human LOAD/SAD onset and progression and 
also worsen EOFAD’s course. These findings have clearly pointed 
out to a class of therapeutic agents, the CaSR negative allosteric 
modulators (NAMs), which effectively block all such AD’s 
pathogenetic mechanisms in untransformed cortical human 
neurons and astrocytes in vitro and could stop the progression of 
AD neuropathology in the patients (Armato et al., 2013; Chiarini 
et al., 2017a; Chiarini et al., 2017b).

Family C GPCRs also include the metabotropic glutamate 
(mGlu) and GABAA/B receptors (Bräuner-Osborne et al., 2007; 
Urwyler, 2011). Results of studies in animal model suggest 
that mGlu-Rs and GABA-Rs might also be involved in AD 
pathophysiology because AD concurs with alterations of 
glutamatergic transmission (Caraci et al., 2018). Therefore, we 
discuss here the roles of family C GPCRs in AD progression and 
hence their potential relevance to human AD therapy.

FAMILY C G-PROTeIN-COUPLeD 
ReCePTORS

In general, GPCRs are among the most numerous groups of 
transmembrane proteins of the mammalian genome. To date, 
about 800 of these proteins have been identified in humans 
(Fredriksson et al., 2003). The relevance of their manifold 
functions has made them therapeutically attractive as shown 
by the fact that they are the targets of ~34% of United States 
Food and Drug Administration-approved drugs (Hauser et al, 
2017). Currently, GPCRs are distinguished into six classes 
(families A–F) (Table 1) based upon amino acid sequence 
homologies, elected signal transduction pathways, and 
pharmacological outlines.

Details concerning the structure of family C GPCRs are 
known for the mGluRs (Kunishima et al., 2000; Tsuchiya et al., 
2002; Muto et al., 2007; Doré et al., 2014; Wu et al., 2014), 
GABABR (Geng et al., 2013), and CaSR (Gama et al., 2001; Geng 
et al., 2016) extracellular domains (ECDs), and for the mGluRs 
and CaSR transmembrane domains (Doré et al., 2014). Family 
C GPCRs share a common general structure characterized 
by a huge bilobed N-terminal extracellular domain (ECD) or 

“Venus Flytrap” (VFT) (Fredriksson et al., 2003; Lagerström 
and Schlöth, 2008; Rosenbaum et al., 2009). A cysteine-rich 
region (CR) links the ECD/VFT to the 7TM domain including 
seven transmembrane helical hydrophobic regions (TM1–TM7) 
connected extracellularly by three loops (ECL1–ECL3) and 
intracellularly by three loops (ICL1–ICL3). The CR domain is 
extant in all family C GPCRs save for GABABRs. Finally, the 7TM 
domain is linked to the intracellular C-terminal domain (ICD), 
whose tail interacts with G proteins to activate downstream 
signaling pathways.

Family C GPCRs function as mandatory dimers (El 
Moustaine et al., 2012) joined by a disulfide bond topping the 
two VFTs. GPCRs can be formed into homodimers or into 
heterodimers with other members of the same group or family 
(Goudet et al., 2005; Doumazane et al., 2011; Kammermeier, 
2012; Sevastyanova and Kammermeier, 2014) or with extraneous 
GPCRs (Ciruela et al., 2001; Gama et al., 2001; Cabello et al., 
2009; Kniazeff et al., 2011). The orthosteric ligands bind the 
pockets placed in the slit between the two VFT’s lobes causing 
the active closure of both slits (closed-closed conformation) or of 
only one slit (open-closed conformation) (Parnot and Kobilka, 
2004). Conformational changes inside the VFT domains are 
conveyed through the cysteine-rich and 7TM regions to the ICD 
domain to regulate G-proteins binding and activate intracellular 
signals (Rondard et al., 2006).

The family C GPCRs subtype specificity of orthosteric agonists 
and antagonists varies because the amino acid sequence of the 
VFT binding pocket may or may not be extensively conserved. 
Group III mGluRs are an example of the former case, as their 
orthosteric agonists and antagonists are possessed of a mostly 
unchanging broad-spectrum activity (MacInnes et al., 2004; 
Austin et al., 2010). To overcome this obstacle to therapeutic 
applications, an active quest has been and still is going on for 
drugs that bind on particular amino acid sequences defined as 
allosteric sites or pockets (e.g. on the ECL1–ECL3 of the 7TM 
domain) and placed well outside the VFT-inside orthosteric site. 
A number of allosteric sites located within the 7TM domain were 
identified by investigations using site-directed mutagenesis and 
allosteric modulator cocrystal methods (Gregory et al., 2012; Doré 
et al., 2014; Wu et al., 2014; Christopher et al., 2015). These novel 
drugs selectively modify the receptor signaling triggered by an 
orthosteric ligand acting as either positive allosteric modulators 
or PAMs or negative allosteric modulators or NAMs (Engers and 

TABLe 1 | G-Protein-coupled receptors (GPCRs) Families.

Family A rhodopsin-like receptors
Family B secretin receptors
Family C γ-aminobutyric acid B (GABAB) receptors; metabotropic 

glutamate receptors (mGluR1-8); calcium-sensing receptor 
CaSR; taste receptors 1-3; *V2 pheromone receptors; *GPRC6A 
receptor;**various orphan receptors.**

Family D fungal mating pheromone receptors
Family E cyclic AMP receptors
Family F frizzled/smoothened receptors

*These receptors abound in rodents but are absent from humans
(Niswender and Conn 2010; Alexander et al., 2017).
**Not considered in this review.
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Lindsley, 2013). PAMs favor whereas NAMs hinder the binding 
affinity/activity (the so-called cooperativity) of orthosteric 
ligands. Finally, neutral allosteric ligands (NALs) bind their 
sequence on a receptor but do not change the cooperativity of its 
orthosteric ligand (Wootten et al., 2013; Christopoulos, 2014). 
The otherwise steady structural conformation of orthosteric 
ligand-bound GPCRs undergoes transient changes, which 
impact on the interactions with G proteins or other transducers, 
when the receptors also bind allosteric modulators (Canals et al., 
2011). Lipophilic PAMs and NAMs cross the blood–brain barrier 
(BBB) (Ritzén et al., 2005). However, extremely lipophilic PAMs 
and NAMs may exhibit a lesser ability to reach the neural cells 
while their unwanted side effects may become stronger (Goudet 
et al., 2012). Present-day methods used to evaluate allosteric 
interactions, i.e. functional and radio-ligand binding assays, need 
proper probes to reveal the receptor’s response and fully disclose 
the allosteric ligand’s properties (Price et al., 2005; Hellyer et al., 
2018). The affinity and effectiveness of allosteric modulators 
can be quantified via the allosterism’s operational model that 
associates the allosteric ternary complex model (ATCM) with 
Black–Leff ’s operational model of pharmacological agonism 
(Black and Leff, 1983; Ehlert, 1988; Leach et al., 2007; May et al., 
2007). The latter allows to quantify the modulator’s effectiveness 
and its impact on orthosteric agonist affinity vs. efficacy (Black 
and Leff, 1983; Leach et al., 2007; Keov et al., 2011; Gregory et  al., 
2012). Classically, NAMs and PAMs are effective only when the 
natural orthosteric ligands (or probes) are present (Conn et al., 
2009). At times, surrogate orthosteric probes are required for 
functional assays. Probes of different chemical nature may affect 
the cooperativity in opposite directions or leave it unchanged 
(Koole et al., 2010; Valant et al., 2012; Sengmany et al., 2017). 
Remarkably, allosteric modulators evoke saturable effects, i.e. 
no further activity obtains when they reach saturating doses 
(May et al., 2007; Klein, 2013). Specific PAMs and NAMs may 
or sometimes may not elicit the internalization of their receptors, 
and hence may or may not desensitize the cells to corresponding 
orthosteric ligands (Conn et al., 2009). Some PAMs and NAMs 
are of a mixed type acting as both orthosteric agonists and PAMs, 
while others act as both agonists for one receptor subtype and 
as antagonists for another receptor subtype. Preferred PAMs 
or NAMs should not permanently activate or inactivate the 
involved receptors because this could elicit harmful effects 
(Célanire and Campo, 2012). Clearly, receptor subtype-specific 
PAMs and NAMs are indispensable tools for basic and preclinical 
pharmacological research and, when beneficial, might be 
transformed into drugs apt for clinical trials. For example, one 
chemokine receptor-5 NAM, i.e. Maraviroc, successfully reached 
the clinical use to treat late-stage HIV disease (Dorr et al., 2005).

Here, a cautionary note is in order about the interspecies 
translatability of experimental results related to family C 
GPCRs. In fact, brain locations of the same family C GPCRs can 
significant vary between animal species (e.g. mouse vs. rat) and 
between animals and humans. Such species-related divergences 
could explain the inconsistent observations one may make when 
experimenting with more than one animal species. This is a further 
drawback to translating the beneficial effects evoked by orthosteric 
agonists/antagonists or allosteric PAMs/NAMs in animal models 

of diseases into beneficial therapeutic upshots in disease-matching 
human patients. Moreover, one should not overlook another 
caveat concerning the extrapolation to postnatal life of results 
gained by administering PAMs or NAMs to animal embryo-fetal 
cellular models. In fact, during development mGluRs expression 
undergoes divergent changes in distinct types of cells. Finally, on a 
positive note, the combined administration of orthosteric agonists 
or antagonists with NAMs or PAMs can provide additive or 
synergistic neuroprotection, which might have future therapeutic 
applications (Vernon et al., 2005; Bennouar et al., 2013).

GABABRs, APP, Aβs, AND AD

There are two classes of GABARs, i.e. GABAARs and GABABRs. 
While GABAARs are fast-acting ionotropic receptors functioning 
as ligand-gated ion channels, GABABRs are metabotropic family 
C GPCRs, whose structure comprises the subunits R1a, R1b, 
and R2 (Chang and Shoback, 2004). Receptor dimerization 
or oligomerization is obligatory for GABARs as it impacts on 
function. Only GABAB R1a/R2 or R1b/R2 heterodimers do 
reach the cell surface, bind GABA to R1 subunit, and activate 
G-protein-mediated intracellular signals via R2 subunit (White 
et al., 1998; Marshall et al., 1999; Margeta-Mitrovic et al., 2001). 
Of note, GABABR1 and R2 subunits form heterodimers also with 
the CaSR (this topic will be further discussed below). Two “sushi 
domains (SDs)” abut from the N-terminus of GABABR1a VFT, 
which are required for the receptor’s trafficking to the cell surface 
and for its presynaptic inhibitory activity (Gassmann and Bettler, 
2012; Hannan et al., 2012). Adaptor proteins link the GABABR1a 
SD1 domains to axoplasmic kinesin-1 motors. Recently, 
proteomic methods permitted to identify three adaptor proteins 
playing this role, i.e. APP, adherence-junction associated protein 
1 (AJAP-1), and PILRα-associated neural protein (PIANP). 
Thus, axonal trafficking cargo vesicles carry at least three distinct 
types of GABABR1a/adaptor protein/kinesin-1 complexes. It is 
noteworthy that the formation of any of such GABABR1a/APP/
kinesin-1 complexes obstructs the amyloidogenic processing 
(AP) of the involved APP molecules into Aβ42/Aβ42-os, the AD 
main drivers. This could be a novel AD-preventing mechanism 
involving GABABR1a axonal trafficking (Dinamarca et al., 2019).

Neurons express GABABRs on both presynaptic and 
postsynaptic membranes. Neuronal activity controls GABABRs 
presynaptic expression (Guetg et al., 2010; Terunuma et al., 2010; 
Orts-Del’Immagine and Pugh, 2018). Conversely, model animals 
of AD (Chu et al., 1987; Iwakiri et al., 2005) and of various other 
diseases, like chronic epilepsy (Thompson et al., 2006–2007), 
fragile X syndrome (Kang et al., 2017), and Parkinson disease 
(Borgkvist et al., 2015), downgrade GABABRs expression 
and inhibitory function causing neuronal hyperexcitability. 
Human astrocytes express both GABAARs and GABABRs and 
constitutively synthesize and release GABA, therefore being 
GABAergic cells. GABA release from human astrocytes is dose-
dependently increased by glutamate or by NMDAR coagonists 
like D-serine and glycine. Conversely, inhibitors of kainic acid 
receptors and of NMDARs decrease GABA release from human 
astrocytes. Interestingly, the administration of exogenous 
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GABA suppresses the proinflammatory responses of activated 
astrocytes and microglia to noxious stimuli (Lee et al., 2011a; 
Lee et al., 2011b).

The GABABRs classical ligand is γ-aminobutyric acid 
(GABA), which is the chief inhibitory neurotransmitter of the 
mature central nervous system (CNS) of vertebrates. GABA-
releasing (GABAergic) neurons are ubiquitous in the CNS. 
Nearly half of all CNS synapses express some GABABRs and 
thus respond to GABA (Li et al., 2016). The signaling activated 
by the GABA•GABABR complexes inhibits the release of 
neurotransmitters from the targeted postsynaptic neurons 
(Benes and Berretta, 2001; Bettler et al., 2004). But the signaling 
activated by the presynaptic GABA•GABABR complexes of the 
GABAergic neurons blocks their further GABA release thus 
acting as a physiological self-controlling mechanism exerting an 
indirect excitatory effect on postsynaptic neurons. An astrocyte 
→ neurons metabolic cycle upkeeps the neuronal stores of GABA 
(Losi et al., 2014; Mederos et al., 2018). The released GABA 
moieties are taken up by both pre- and postsynaptic neurons 
and by the astrocytes enveloping tripartite synapses. In their 
mitochondria, the astrocytes convert the uptaken GABA into 
glutamine and forward the glutamine to adjoining neurons. 
In presynaptic neurons, two sequentially acting enzymes 
synthesize GABA from glutamine: first, glutaminase, which 
converts glutamine into glutamate; and second, glutamic acid 
decarboxylase (GAD), which transforms glutamate into GABA. 
Next, the vesicular transporter of GABA (VGAT) transfers 
it into cargo/synaptic vesicles, which release GABA into the 
synaptic cleft after the neuron’s membrane depolarization. GABA 
signaling regulates several physiological aspects of CNS activity, 
like neurogenesis, neuronal development, sexual maturation, 
circadian rhythms, motor functions, learning, and memory 
(Petroff, 2002). GABAergic interneurons are the chief inhibitory 
neurons in the CNS. Abundant reports in the literature stress 
how dysfunctions of the activity of GABAergic interneurons 
disrupt the glutamatergic excitatory/GABAergic inhibitory (E/I) 
balance in neural circuits of the cerebral cortex, hippocampus, 
and subcortical structures (e.g. amygdala) causing declining 
cognitive capabilities and worsening memory losses. Therefore, 
it is generally held that E/I imbalance significantly impacts on 
the pathogenesis of AD (Govindpani et al., 2017; Villette and 
Dutar, 2017) and of various other CNS disorders, such as major 
depression (Fee et al., 2017), schizophrenia, autism’s spectrum, 
bipolar disorder (Benes and Berretta, 2001; Lehmann et al., 2012; 
Gao and Penzes, 2015; Xu and Wong, 2018), and anxiety (Babaev 
et al., 2018).

Unfortunately, the results of postmortem studies on AD 
patients did not throw much light onto GABABRs role(s) in 
AD and this for good reasons--one being the wide-ranging 
variability of the patients’ terminal lifetime. Different alterations 
of biological parameters--such as expression of RNA, proteins, 
and enzymes--can be induced by co-morbidities, medications, 
aging, and leading death causes and are all directly linked to 
the duration and severity of the full-blown or symptomatic AD 
phase (Govindpani et al., 2017). Therefore, it is not surprising 
that divergent findings abound concerning GABABRs’ possible 
role(s) in AD. Thus, recent postmortem studies of human brains 

and of tg AD-model animals reported that GABAergic neurons 
and GABABRs were unaffected by AD neuropathology (Li et al., 
2016). Conversely, earlier studies had conveyed the opinion 
that GABABRs signaling undergoes profound changes in AD 
(Takahashi et al., 2010). Significantly lowered GABA levels 
were detected in the temporal cortex of AD patients (Gueli 
and Taibi, 2013) and in cerebrospinal fluid (CSF) samples from 
both AD patients and the cognitively normal elderly (Grouselle 
et al., 1998). Conversely, raised GABA levels turned up in the 
hippocampus and CSF samples of AD patients and were ascribed 
to the impairment of synaptic plasticity (Jo et al., 2014). These 
studies also noted that the reactive astrocytes surrounding 
Aβs senile plaques overproduced GABA via monoamine 
oxidase-B (MAO-B) activity and abnormally released it through 
the bestrophin-1 channels. Under physiological conditions, 
bestrophin-1 channels are mostly localized at the microdomains 
of hippocampal astrocytes nearby glutamatergic synapses and 
mediate glutamate release. A switch from the glutamate-releasing 
normal astrocyte to the reactive astrocyte releasing GABA via 
bestrophin-1 channels is a common phenomenon occurring in 
various pathological conditions coupled with astrogliosis, such as 
traumatic brain injury, neuroinflammation, neurodegeneration, 
and hypoxic and ischemic insults. In AD, bestrophin-1 channels 
are redistributed to the soma and the processes of hippocampal 
reactive GABA-containing astrocytes. Bestrophin-1 channels-
mediated GABA release from reactive astrocytes hinders 
synaptic plasticity and transmission and spatial memory 
by reducing dentate granule cell excitability (Oh and Lee, 
2017). It was claimed that suppressing GABA overproduction 
by monoamine oxidase-B (MAO-B) or GABA overrelease 
through bestrophin 1 channels from the dentate gyrus reactive 
astrocytes fully restored learning and memory in AD-model 
mice (Jo et al., 2014). However, the long-term administration of 
selegiline, an irreversible MAO-B inhibitor, did not improve AD 
neuropathology in a clinical trial (Park et al., 2019). To explain 
this unforeseen upshot, the authors suggested that multiple 
factors, like age, sex, and differences in brain regions could 
impact on the GABA release from astrocytes and neurons and 
should not be ignored when planning therapeutic drug attempts. 
Indeed, different brain regions of Tg2576 (human APP695 plus 
the Swedish double mutation K670N, M671L) AD-model mice 
released dissimilar amounts of GABA in relation to their actual 
age and sex. Cortical GABA levels were higher in older than 6 
months female than male mice; however, at a more advanced age, 
this difference vanished in the parietal cortex but became more 
pronounced in the prefrontal cortex. Moreover, at 12–18 months 
of age, hippocampal levels of GABA were lower in female than in 
male mice. Altogether, these data revealed that with advancing 
age the functional disruption of GABA signaling turns out to 
be more intense in AD-model female mice (Hsiao et al., 1996). 
Conversely, under or up to 9 months of age, hippocampal GABA 
levels were higher in female than in male mice, likely because the 
former enjoyed the protective activity of estrogens (Roy et al., 
2018). By extrapolating these data from animals to humans one 
can infer that a single therapeutic strategy addressing GABABRs 
modulation might not be so easily feasible in AD. In fact, any 
drug inhibiting the GABABRs residing in one brain region might 
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exacerbate the dysregulation of GABAergic signaling in other 
brain areas.

Hence, the role(s) of GABA/GABABRs signaling in the 
pathogenesis of AD has(ve) hitherto remained unclear if not 
confusing (Govindpani et al., 2017). However, the recent studies 
we mention just below performed on wild-type and AD-model 
animals have thrown some more light on the contribution of 
GABAergic remodeling to the pathogenesis of both early and late 
stages of AD.

First, we recall here that the ε4 allele of apolipoprotein E 
(APOE) is the main known genetic risk factor for LOAD/SAD. 
Notably, in the brains of aged APOEε4 mice, an attenuation of 
GABAergic inhibitory inputs on associated excitatory neurons 
drives a specific neuronal hyperactivity phenotype. Hence, an 
APOEε4-driven hippocampal neuronal excitatory hyperactivity 
might be among the causative factors underlying the increased 
risk of AD among APOEε4 carriers (Nuriel et al., 2017). In 
addition, several AD-mouse models exhibit an early and marked 
neuronal hyperactivity in the hippocampus (Busche et al., 2012; 
Busche et al., 2015). Moreover, functional magnetic resonance 
imaging (fMRI) studies have revealed that humans with mild 
cognitive impairment (MCI), as well as presymptomatic carriers 
of EOFAD mutations show enhanced neuronal activity in 
the same brain region, the hippocampus (Quiroz et al., 2010; 
Haberman et al., 2017). Therefore, when the increase in brain 
activity takes place early in the pathogenetic process it may be 
rightly considered a driving factor in AD development.

Second, according to a recent report, Aβs, AD’s main drivers, 
are intensely degraded by endothelin-converting enzyme-2 
(ECE-2) and neprilysin (NEP) in the somatostatinergic and 
parvalbuminergic synapses of GABAergic interneurons residing 
in the neocortex and hippocampus. These observations support 
the view that under physiological conditions Aβs may partake 
in the regulation of interneurons’ inhibitory signaling in 
AD-relevant brain areas (Pacheco-Quinto et al., 2016). However, 
it must be stressed here that a reduction of Aβs catabolism at 
the synapses of these two distinct populations of GABAergic 
neurons is not the unique GPCRs-mediated mechanism favoring 
Aβs accumulation in AD brains.

Third, the exciting results of very recent studies have revealed 
that GABABR1a receptors bind three novel orthosteric agonists 
besides GABA, i.e. soluble (s)APP-α, sAPP-β, and sAPP-η 
proteins. The α-, β-, and η-secretases, respectively, shed them 
from the extracellular domain of APP into the brain environment. 
Next, each of these peptides can bind GABABR1a receptors 
and block the release of neurotransmitters from hippocampal 
presynaptic excitatory axonal terminals thus silencing synaptic 
transmission. Most interesting, a 17-mer peptide of the ExD 
flexible portion of sAPP-α, which binds the extracellular Sushi1 
domain of the GABABR1a could replicate the squelching effect 
on neurotransmission brought about by the whole sAPP-α 
molecule. These results explain, at least in part, the synaptic 
dysfunction affecting some APP-overexpressing AD-model 
animals. Moreover, they suggest that this 17-mer peptide 
could therapeutically counteract the excitatory hyperactivity of 
neuronal synaptic function brought about by Aβs (Rice et al., 
2019; Tang, 2019).

mGLURs AND AD

The seven-transmembrane-spanning mGluRs physiologically 
control synaptic transmission and neuronal excitability in the 
CNS and influence behavioral output processes. These receptors 
are assigned to three groups according to their G-protein coupling 
and signal transduction pathways. Group I encompasses mGluR1 
and mGluR5; group II includes mGluR2 and mGluR3; and group 
III embraces mGluR4, mGluR6, mGluR7, and mGluR8. In 
general, group I receptors are coupled to the phospholipase (PL)
C/InsP3/Ca2+ release cascade, whereas groups II and III receptors 
are linked up to the adenylyl cyclase/cyclic AMP/PKA release 
cascade (Niswender and Conn, 2010). Initial studies performed 
with agonists (or antagonists), which bind the intragroup-shared 
extracellular orthosteric sites, indicated that activation of group 
II or group III mGluRs brought about neuroprotection, whereas 
activation of group I mGluRs elicited either neuroprotection or 
neurotoxicity according to experimental models and conditions 
employed (Nicoletti et al., 1999; Bruno et al., 2001). More recent 
studies using PAMs or NAMs, which are receptor subtype-
specific, brought to light a somewhat different picture (see for 
references: Gregory and Conn, 2015). Indeed, the allosteric 
modulation of mGluRs is a major area of interest for Basic and 
Clinical Pharmacology (Stansley and Conn, 2019). In the CNS, 
mGluRs are involved in the regulation of glutamate uptake, 
cell proliferation, neurotrophic support, and proinflammatory 
responses. Accordingly, the potential therapeutic spectrum of 
mGluRs allosteric modulators embraces AD, and also covers PD, 
stress, anxiety, autism, depression, and schizophrenia (Stansley 
and Conn, 2019).

Group I mGluRs (-1 and -5)
Group I mGluR1 and mGluR5 are expressed at postsynaptic 
membranes, couple to Gαq, and positively modulate neuronal 
excitability through the interaction with scaffolding proteins such 
as Homer or Shank. The consequent activation of phospholipase 
C leads to an increase in [Ca2+]i. Activation of group I mGluRs 
may set off a multiplicity of neurons’ and astrocytes’ signaling 
pathways variously modulating synaptic plasticity and, likely, 
synaptic protein synthesis (D’Antoni et al., 2014). These 
transduction mechanisms form a highly complex network 
including polyphosphoinositide hydrolysis, mitogen-activated 
protein kinase/extracellular signal-regulated kinase (MAPK/
ERK), phospholipase D, phospholipase A2, phosphoinositide 
3-kinase (PI3K), mammalian target of rapamycin (mTOR), and the 
endocannabinoid 2-arachidonoylglicerol synthesis. Activation of 
ERK and mTOR by group I mGluRs is especially linked to de 
novo protein synthesis in neurons, a process that underlies long-
term changes in activity-dependent synaptic plasticity. Group I 
mGluRs also enhance postsynaptic excitability thus exacerbating 
neuronal damage (Nicoletti et al., 1996). It is also noteworthy to 
recall here that in preclinical studies antagonists of mGluR1 and 
mGluR5 exhibited anxiolytic-like properties just as did agonists 
of group II/III mGluRs (Stachowicz et al., 2007).

By interacting with NMDARs, mGluR1 and mGluR5 regulate 
neuronal developmental plasticity. The interaction between group 
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I mGluRs and NMDARs is reciprocal (Alagarsamy et al., 1999). 
Moreover, the expression of these receptors is developmentally 
regulated (Nicoletti et al., 1986; Schoepp and Johnson, 1989; 
Minakami et al., 1995; Romano et al., 1996; Casabona et al., 
1997). Group I mGluRs are cross-linked with NMDARs through 
a chain of anchoring proteins (Tu et al., 1999), and their activation 
amplifies NMDA currents (Aniksztejn et al., 1995; Awad et al., 
2000; Pisani et al., 2001; Skeberdis et al., 2001; Heidinger et al., 
2002; Kotecha and MacDonald, 2003). In addition, activation of 
mGluR1 accelerates NMDARs trafficking (Lan et al., 2001). The 
NMDA component of long-term potentiation (LTP) is abolished 
in mice lacking mGluR5 (Jia et al., 1998). In cultured neurons and 
developing brains the interaction between mGluR5 and NMDAR 
is amplified by EphrinB2 (Calò et al., 2005), a ligand for EphB 
receptor tyrosine kinases playing a role in activity-dependent 
synaptic plasticity in the CNS (Slack et al., 2008).

In the developing brain, mGluR5 contributes to the functional 
maturation of astrocytes since mGluR5 ablation leads to 
serious deficits in arborization of astroglial processes and in 
the expression of glutamate transporters (Morel et al., 2014; 
Verkhratsky and Nedergaard, 2018).

To date, the roles of group I mGluRs in the pathogenesis of 
AD are poorly understood and the object of controversy.

In vitro cultured fetal (E15) Sprague–Dawley rat neurons 
expressed mGluR1 whereas neonatal astrocytes did not. 
These findings limited to neurons the investigation of an 
alleged neuroprotective effect of the mGluR1/R5 agonist, 
3,5-dihydroxyphenylglycine (DHPG), against Aβ neurotoxicity, 
which was instead suppressed by the mGluR1 antagonist JNJ 
16259685 (3,4-dihydro-2H-pyrano(2,3-b)quinolin-7-yl)-(cis-
4-methoxy-cyclohexyl)-methanone). Interestingly, estrogen-α 
receptors (E-αRs) could activate the same neuroprotection 
against Aβ toxicity and cell survival pathways as mGluR1 did. 
Indeed, E-αRs and mGluR1 were colocalized in cultured cortical 
neurons and were interdependent in activating the PI3K/Akt 
pathway that favors cell survival in pure neuronal cultures 
(Spampinato et al., 2012).

As regards mGluR5s, they are expressed by both astrocytes 
and neurons in all the CNS areas, signal through Gq protein 
(Vanzulli and Butt, 2015), and partake in synaptic plasticity, 
assembly of neuronal circuitry, and neuronal viability (Ballester-
Rosado et al., 2010; Purgert et al., 2014).

Data gained from both in vitro and animal models suggest 
that the synaptic dysfunction of mGluR5s might favor the 
development of AD (Kumar et al., 2015). mGluR5s are 
overexpressed by astrocytes as a reactive response induced by 
stimulation with growth factors (i.e. FGF, EGF, and TGF-β1) 
or by exposure to soluble Aβ oligomers (Aβ-os) in vitro (Casley 
et al., 2009; Grolla et al., 2013; Lim et al., 2013). Aβ-os exposure 
also raises the expression of type I InsP3Rs, which are placed 
downstream from mGluR5, and strengthens Ca2+ responses 
mediated through the mGluR5/InsP3R cascade in hippocampal 
astrocytes (Grolla et al., 2013). Notably, astrocytes surrounding 
Aβ senile plaques overexpressed mGluR5, which was associated 
with Ca2+ signaling dysregulation and abnormal ATP release in 
APPswe/PS1 transgenic AD-model mice (Shrivastava et al., 2013). 
Reportedly, Aβ-os exposure caused an excessive clustering 

and widely reduced diffusion of Aβ-os/mGluR5 complexes on 
the plasma membrane of in vitro rat embryo astrocytes. These 
effects were coupled with an augmented Ca2+ influx altogether 
damaging synapses (Renner et al., 2010; Shrivastava et al., 2013). 
Activation of mGluR5s by the allosteric agonist DHPG increased 
ATP release from Aβ-os-exposed astrocytes, which delayed 
mGluR5 diffusion in cultures of astrocytes plus/minus neurons 
in vitro (Renner et al., 2010)—an effect mGluR5’s selective 
antagonist MPEP counteracted thus preventing Aβ-os/mGluR5-
driven synaptotoxicity (Shrivastava et al., 2013).

Interestingly, proinflammatory cytokines like interleukin-1β 
(IL-1β) and tumor necrosis factor-α (TNF-α) downregulated 
the expression of mGluR5 while upregulating that of mGluR3 
in cortical astrocytes isolated from the hSOD1(G93A) rat model 
of amyotrophic lateral sclerosis (entailing like AD an intense 
neuroinflammation) and cultured in vitro. These findings 
suggested the existence of a protective antiexcitotoxic adaptive 
mechanism (Berger et al., 2012). In fact, the mGluR5 selective 
antagonist MPEP hampered the astrocytes’ secretion of two 
proinflammatory cytokines, IL-6 and IL-8 (Shah et al., 2012). 
Therefore, the activation of astrocytes’ mGluR5 advances the 
release of proinflammatory cytokines, which then downregulate 
mGluR5 expression. This indicates that under physiological 
conditions a reciprocal feed-back mechanism controls the 
expression levels of mGluR5 in astrocytes and in microglia too 
(Berger et al., 2012). This mechanism might be offset by the 
Aβ-os-forced overexpression of mGluR5 in AD, thus potentiating 
the release of toxic amounts of proinflammatory cytokines and 
glutamate. Next, the latter increases the production/release 
of p-Tau-os and of NO and the activity of apoptotic caspase-3 
(Talantova et al., 2013; Lee et al., 2014).

Another noteworthy study showed that the activation of 
mGluR5 stimulated the α-secretase-mediated extracellular 
shedding of neurotrophic and neuroprotective sAPP-α (Sokol 
et al., 2011), also an agonist of GABABR1a receptors (Rice et al., 
2019). But mGluR5 forms complexes with the Homer proteins that 
interact with and activate NMDARs (Tu et al., 1999; Awad et al., 
2000; Attucci et al., 2001; Moutin et al, 2012). Aβ1-42-os can bind 
mGluR5s and enhance their clustering together, causing mGluR5 
signaling overactivation, intracellular Ca2+ accumulation, 
impaired calcium homeostasis, and synaptic disruptions (Renner 
et al., 2010; Zhang et al., 2015b). In greater detail, mGluR5s act as 
coreceptors for Aβ-os bound to prion protein (PrPc). Next PrPc 
activates the mGluR5, which elicits the loss of synapses through 
Fyn tyrosine kinase activation and eukaryotic elongation factor 
2 (eEF2) phosphorylation (Um et al., 2013). Fyn phosphorylates 
NR2A and NR2B subunits of NMDA receptors thus altering the 
receptors’ intracellular trafficking that is essential for synaptic 
plasticity. Moreover, interactions between Fyn tyrosine kinase 
and Tau proteins play a role in regulating the synapse function 
and the postsynaptic toxic signaling pathways driven by Aβ-type 
excitotoxicity, causing the loss of dendritic spines. Notably, 
Aβ-os exposure also induces the eEF2 phosphorylation by eEF2 
kinase that is known to associate with mGluR5. Aβ-os-induced 
impairment of LTP is dependent on eEF2 phosphorylation that is 
increased in brains from both tg AD-model mice and AD patient 
autopsies (Nygaard, 2018).
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Altogether these data support the view that mGluR5 
activation by specific PAMs facilitates excitotoxic mechanisms 
causing the death of neurons (Parmentier-Batteur et al., 
2014), whereas mGluR5-specific NAMs act neuroprotectively 
in AD-model animals (Bruno et al., 2017). Administering 
MPEP, a mGluR5 selective antagonist, prevents this synaptic 
loss in tg AD-model mice (Rammes et al., 2011; Hu et al., 
2014; Kumar et al., 2015). In addition, deletion of mGluR5 
prevents memory loss in AD-model mice (Hamilton et al., 
2014). But to gain these benefits there is a price to pay, which 
is the negative impact of mGluR5 selective antagonists on 
activity-dependent synaptic plasticity mechanisms in brain 
regions that are not affected by AD (Bruno et al., 2017). Of 
course, the translatability of these interesting results to human 
AD patients remains a topic worth exploring.

Group II mGluRs (-2 and -3)
Group II mGluR2 and mGluR3 are mostly localized 
presynaptically. Depending on the nature of the ligand, 
mGluR2s signal via Gi/o or Gq11 proteins (González-Maeso 
et al., 2008; Fribourg et al., 2011) and negatively modulate 
neuronal excitability (Conn and Pin, 1997). Thus, activation 
of group II mGluRs is endowed with potential neuroprotective 
properties as it may curtail glutamatergic signaling and mitigate 
neuronal hyperexcitability (Nicoletti et al., 1996). Stimulation 
of group II mGluRs inhibits adenylyl cyclase (AC), activates 
K+ channels, and blocks presynaptic voltage-gated calcium 
channels, thus hindering intracellular Ca²+ fluxes and synaptic 
neurotransmitters release (Benarroch, 2008; Niswender and 
Conn, 2010). Groups II mGluRs also team with the MAPK and 
PI3K pathways to confer neuroprotection (D’Onofrio et al., 
2001). As mentioned also below, neuroprotection is mediated 
by transforming growth factor-β1 (TGF-β1) released through 
astrocytes’ mGluR3 signaling. TGF-β1 binds and activates its 
membrane receptors coupled with serine/threonine kinase 
activity thereby inducing the Smad signaling cascade. It also 
synergistically operates with other neurotrophins such as 
nerve growth factor (NGF), brain-derived neurotrophic factor 
(BDNF), and glial-derived neurotrophic factor (GDNF) (Caraci 
et al., 2011b). In the rodents’ thalamus, the selective activation 
of mGluR2 modulates the inhibition at synapse level of sensory 
neurons functionally linked to information processing, attention, 
and cognition (Copeland et al., 2017). Conversely, the selective 
activation of mGluR2 increases the incidence of neuronal deaths 
in vitro (Corti et al., 2007; Caraci et al., 2011b). Accordingly, 
a mGluR2-specific NAM hindered the death of ischemia-
sensitive neurons in the hippocampal CA1 area, whereas a 
mGluR2-specific PAM promoted the death both of ischemia-
sensitive CA1 neurons and of ischemia-resistant CA3 neurons 
(Motolese et al., 2015). Recent investigations have revealed the 
formation of intragroup and intergroup heterodimers between 
different mGluRs (Doumazane et al., 2011; Rondard et al., 2011; 
Kammermeier, 2012). New allosteric modulators capable of 
differentiating homodimers from heterodimers have disclosed 
the assembly of mGluR2/mGluR4 heterodimers in corticostriatal 
fibers (Yin et al., 2014).

The mGluR3, whose activation inhibits AC activity and hence 
cyclic AMP production, is the most abundant astroglial receptor 
along all the lifetime (Sun et al., 2013). Mounting evidence 
indicates that mGluR3 upkeeps synaptic homeostasis, including 
synaptic plasticity and synaptogenesis (see for references: 
Durand et al., 2013). In addition, activated mGluR3 plays 
major neuroprotective roles in AD and other neuropathologic 
conditions. Once added to pure cultures of newborn rat 
astrocytes, the orthosteric agonists LY379268 or LY354740 
specifically activated mGluR3 (rodent astrocytes do not express 
mGluR2), promoting the production and release of TGF-β and 
of GDNF (see also above and Caraci et al., 2011a). The same 
agonists increased the expression of α-secretase, whose activity is 
essential for APP’s physiological NAP. The upshot is an amplified 
extracellular shedding of the neurotrophic and neuroprotective 
and GABABR1a agonist sAPP-α (Figure 1) (Bruno et al., 1997; 
Bruno et al., 1998; Corti et al., 2007; Battaglia et al., 2009; 
Di Liberto et al., 2010; Battaglia et al., 2015; Rice et al., 2019). 
Moreover, an indirect role for mGluR3 in AD is denoted by 
the progressive decrease with aging in mGluR2 and mGluR3 
expression and, consequently, in their antiamyloidogenic action 
in hippocampal astrocytes from PDAPP-J20 AD-model mice 
(Durand et al., 2014). In subsequent studies, the same authors 
showed that the LY379268-elicited activation of astrocytes’ 
and neurons’ mGluR3 suppressed or mitigated the Aβ-driven 
neurotoxicity and death of both neurons and astrocytes. In both 
cell types, agonist-activated mGluR3 increased the shedding 
of neuroprotective sAPP-α and the expression of BDNF. In 
addition, LY379268-activated mGluR3s induced astroglia- and 
microglia-mediated phagocytosis and removal of Aβs from the 
extracellular environment. Finally, mGluR3 orthosteric agonists 
LY379268 or LY404039 suppressed the nitric oxide (NO)-
induced death of cultured rat astrocytes via the inhibition of AC, 
which reduced intracellular cAMP levels, the activation of Akt, 
and the formation of antiapoptotic p65 and c-Rel complexes of 
the NF-κB family (Durand et al., 2011; Durand et al., 2017).

Conversely, Caraci et al. (2011a) showed that mGluR2 and 
mGluR3 enhanced neurotoxicity in pure cultures of rat brain 
neurons challenged with Aβ1–42 or with its neurotoxic fragment 
Aβ25–35. However, if the neurons were cocultured with the 
astrocytes, the activation of mGluR2 and mGluR3 brought 
about neuroprotective effects through the release of TGF-β1 
from the astrocytes. TGF-β1 is a well-known agent endowed 
with neuroprotective and anti-inflammatory activities (see 
also above) in experimental AD-models (Chen et al., 2015) as 
it also stimulates microglia to scavenge Aβs (Tichauer and von 
Bernhardi, 2012).

Group III mGluRs (-4, -6, -7, and -8)
Group III mGluRs (-4, -6, -7, and -8) are mainly localized 
presynaptically, couple to Gαi/o, and negatively modulate 
neuronal excitability (Conn and Pin, 1997). They are likely to 
act as autoreceptors on glutamatergic synaptic terminals and as 
heteroceptors on GABAergic and other neurotransmitter terminals 
(Cartmell and Schoepp, 2000; Ferraguti and Shigemoto, 2006). 
Group III mGluRs stimulation results in AC inhibition, K+ channels 
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activation, and block of presynaptic voltage-gated calcium channels, 
thus decreasing Ca²+ flow into cells and neurotransmitters release 
from synapses (Benarroch, 2008; Niswender et al., 2008). Therefore, 
their activation elicits potential neuroprotective effects that dampen 
glutamatergic signaling and inhibit neurotransmitters release 
thereby mitigating neuronal excitability (Nicoletti et al., 1996). As a 
particularity, activated mGluR7 stimulates protein kinase C (PKC) 
or phospholipase C resulting in the inhibition of neuronal calcium 
channels (Perroy et al., 2000; Pelkey et al., 2007). Brain expression of 
mGluR4, -7, and -8 is proper of cortical and hippocampal neurons 
and of synapses located in the basal nuclei (striatum, pallidum), 
subthalamic nucleus, and substantia nigra (both pars compacta 
and pars reticularis) (Bruno et al., 1996; Faden et al., 1997; Hovelsø 
et al., 2012). Instead, mGluR6 expression is exclusive of the retina 
(Nakajima et al., 1993). The main subcellular location of mGluR7 is 
at the central area of presynaptic terminals just where the membrane 
coalesces with synaptic vesicles: this suggests its involvement in 
the modulation of neurotransmitter release. Conversely, mGluR4 
and mGluR8 are placed at the periphery of presynaptic terminals 
(Shigemoto et al., 1997; Schoepp, 2001; Palucha and Pilc, 2007). 
Group III mGluRs also cooperate with MAPK and PI3K signaling 
pathways to impart neuroprotection (Iacovelli et al., 2002). Recently, 
these receptors have become the focus of therapeutic attempts 
because they (i) can modulate defective neurotransmission 
yielding symptomatic improvements through the neuroprotective 
hindering of multiple neurodegenerative mechanisms and (ii) 
have more favorable safety and tolerability profiles (Hovelsø et al., 
2012). Activation of group III mGluRs by glutamate and/or other 
agonists is neuroprotective as it inhibits glutamate release from 
neurons’ presynaptic terminals and from microglia, thus mitigating 
excitotoxicity; concurrently, astrocytes intensify the uptake of 
glutamate and microglia increase neurotrophic factors synthesis 
(see Williams and Dexter, 2014 for an in-depth review on this topic).

Rather few studies exist about the effects on a 
neurodegenerative disease like AD exerted by group III 
mGluRs activation via broad spectrum agonists and PAMs 
or inactivation via NAMs. Copani et al. (1995) reported 
that broad-spectrum group III mGluRs agonists L-serine-O-
phosphate (L-SOP) and l-2-amino-4-phosphono-butanoate 
(L-AP4) could lessen the apoptotic death rate of neurons 
exposed to Aβs. The authors suggested that such agonists 
would exert neuroprotective effects in AD. Similarly, group 
III agonist RS-PPG, which activates preferentially mGluR8 
and likely also mGluR4, exerted neuroprotective actions 
on neurons exposed to harmful hypoxic or hypoglycemic 
conditions (Bruno et al., 2000; Sabelhaus et al., 2000). 
Notably, acute hypoxia can induce neurons to overproduce 
lethal amounts of Aβs via a mechanism. involving another 
family C GPCR, the CaSR (Kim et al., 2014; Bai et al., 2015). 
Besides, PHCCC, a specific mGluR4 PAM, and also a partial 
antagonist of group I mGluRs, protected cultured cortical 
mouse neurons against the Aβs-elicited cytotoxicity and 
NMDAR excitotoxicity (Maj et al., 2003).

But what about the astrocytes? Under basal conditions, 
rodent (rat and mouse) astrocytes in primary cultures express 
mGluR4, but neither mGluR7 nor mGluR8 (Phillips et al., 1998; 
Janssens and Lesage, 2001). However, mGluR8 is expressed 

by reactive astrocytes adjacent to chronic inflammatory 
lesions (Geurts et al., 2005). Besong et al. (2002) provided 
evidence that broad spectrum orthosteric agonists activating 
group III mGluRs, like L-AP4, 4-phosphonophenylglycine 
(4-PPG), or L-SOP hindered the expression and secretion 
of the proinflammatory chemokine RANTES in astrocyte 
cultures. These beneficial effects of the mGluR4 broad 
spectrum agonists were counteracted by pretreating the 
astrocytes cultures with the selective group III mGluRs NAM 
(R,S)-α-methyl-serine-O-phosphate or with pertussis toxin. 
Altogether, these findings suggest that such agonists might 
mitigate neuroinflammation in conditions like AD, multiple 
sclerosis, and experimental allergic encephalomyelitis.

Extracellular glutamate homeostasis, which is essential 
for physiological glutamatergic neurotransmission and 
excitotoxicity prevention, depends on the activity of astrocytes’ 
transporters like GLT-1 and GLAST (Anderson and Swanson, 
2000). Neuroinflammatory conditions associated with a 
neurodegenerative disease like AD or experimental treatments 
(e.g. with LPS, MPTP, etc.) reduce astrocytes’ GLT-1- and 
GLAST-mediated glutamate uptake due to a fall in endogenous 
antioxidant glutathione (GSH) activity. Broad spectrum group 
III mGluRs agonists rescue GSH normal levels and restore 
astrocytes’ GLT-1- and GLAST-mediated glutamate uptake 
alleviating neuronal excitotoxicity (Yao et al., 2005; Zhou et al., 
2006; Foran and Trotti, 2009). Thus, activation of astrocytes’ 
group III mGluR3 and mGluR5 and also of group II mGluRs by 
broad spectrum agonists increases GLT-1- and GLAST protein 
expression and glutamate uptake activity as the signaling of 
both groups likely involves Gi/o, MAPKs, and PI3K pathways 
(Aronica et al., 2003; Beller et al., 2011; Williams and Dexter, 
2014). The activation of group III mGluRs by wide spectrum 
agonists also curtails the release of proinflammatory cytokines 
from activated microglia (Combs et al., 2000). Wide spectrum 
group III mGluRs agonists also hinder proinflammatory 
cytokines release, RANTES included, from the astrocytes 
exposed to neurotoxic agents (Mennicken et al., 1999; Besong 
et al., 2002), thereby helping mitigate neuroinflammation and 
reduce neuronal demise. Therefore, one might surmise that 
the effects of these agonists on astrocytes and microglia would 
likely impact on the course of AD and perhaps also of other 
neurodegenerative diseases.

CALCIUM SeNSING ReCePTOR

The CaSR is a (poly)cationic receptor, as its evolutionary history 
shows (Riccardi and Kemp, 2012). This is why CaSR’s preferred 
yet not unique orthosteric agonist is Ca2+. A CR region, necessary 
for receptor activation (Huang et al., 2011; Hendy et al., 2013) 
connects CaSR’s huge (~612 amino acids) ECD, the bilobed (LB1 
and LB2) VFT to the 7TM domain whose seven transmembrane 
α-helices (TM1–TM7) are joined by three extracellular and three 
intracellular loops. Two domains of the CASR’s intracellular 
C-terminal tail are necessary for CaSR expression at the cell 
surface and its composite signaling functions via G-proteins 
(see below). The VFT contains the binding pockets for the 
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orthosteric (type I) agonists (Hendy et al., 2013), which besides 
extracellular Ca2+ (Hofer and Brown, 2003), include various 
divalent and trivalent cations, polyamines, aminoglycoside 
antibiotics, and cationic polypeptides (Silve et al., 2005; Saidak 
et al., 2009; Magno et al., 2011; Zhang et al., 2015a). The CaSRs of 
human cortical astrocytes also specifically bind Aβs, likely at the 
VFTs (Dal Prà et al., 2014a; Dal Prà et al., 2014b, Dal Prà et al., 
2015b). Moreover, X-ray crystallography studies (Geng et  al., 
2016) have revealed that in the resting state the 3D structure of 
CaSR’s ECD exhibits an open conformation kept up by PO4

3− 
anions. Independently of the presence or absence of Ca2+ ions, 
CaSR activation occurs when an L-α-amino acid closes the VFT 
groove, triggering the formation of a new homodimer interface 
between the membrane-proximal LB2 and the CR domains. Ca2+ 
ions stabilize the active state to fully activate the receptor. Indeed, 
CaSR’s ECD is endowed with four Ca2+-binding sites, of which 
the Ca2+ ion at site #4 stabilizes, upon orthosteric agonist binding, 
the CaSR homodimer’s active conformation (Geng et al., 2016). 
Importantly, orthosteric agonists also induce the dissociation 
of inhibitory PO4

3− anions from the arginine residues acting as 
their relatively weak binding sites. Thus, the CaSR-inactivating 
action of bound PO4

3− anions is overturned (Quinn et al., 1997; 
Cheng et al., 2004; Geng et al., 2016). As the other GPCRs do, 
CaSR swings between conformation-varying active and inactive 
states (Rosenbaum et al., 2011). The changes in conformation 
due to activation include a rearrangement of the 7TM and ICD 
domains. The CaSR’s 7TM helical domains can modulate signal 
transduction. The 7TM’s intracellular loops 2 and 3 are crucially 
involved in the activation of downstream effectors (Goolam 
et  al., 2014). Besides, various CaSR’s 7TM sites bind allosteric 
(type II) ligands. The latter include both the aromatic L-α-amino 
acids and the highly selective allosteric agonists or PAMs, short-
termed calcimimetics, and allosteric antagonists or NAMs, short-
termed calcilytics (Nemeth, 2002). As will be discussed later, 
these pharmacological agents offer exciting perspectives in the 
field of clinical therapeutics. In response to orthosteric ligand 
binding, the CaSR’s ICD tails interact with Gs or Gq/11 or G12/13, 
or Gi/o, proteins (Chang et al., 2001; Hofer and Brown, 2003; 
Conigrave and Ward, 2013), and with β-arrestin 1/2 (Thomsen 
et al., 2012). Such interactions turn on several signaling pathways 
(Saidak et al., 2009; Magno et al., 2011), which underlie the 
receptor’s complex actions and comprise: (i) second messenger-
producing enzymes (e.g., AC); (ii) phospholipases A2, C, and 
D; (iii) protein kinases (e.g. PKCs, MAPKs, AKT); (iv) Ca2+ 
influx via TRPC6-encoded receptor-operated channels; and 
(v) transcription factors (reviewed in Zhang et al., 2015a). 
Moreover, the intracellular adaptor-related protein complex 
(AP2) binds the CaSR’s ICD promoting the receptor’s clathrin-
mediated endocytosis (Nesbit et al., 2013). Finally, CaSR’s ICD 
ubiquitylation and phosphorylation modulate the receptor’s 
recycling, degradation, and desensitization (Zhuang et al., 2012; 
Breitwieser 2013).

In general, the CaSR preserves systemic Ca2+ homeostasis 
by promptly sensing any changes in the extracellular calcium 
concentration [Ca2+]e and, accordingly, by modulating the 
amounts of parathyroid hormone (PTH) released from 
parathyroid glands as well as the reabsorption of Ca2+ from 

kidneys and its deposition in bones (Hofer and Brown, 
2003). Dysfunctions of the CaSR severely alter systemic Ca2+ 
homeostasis (Brown, 2007; Hendy et al., 2009). Gain-of-function 
CaSR mutations result in autosomal dominant hypocalcemia, 
whereas loss-of-function CaSR mutations cause severe neonatal 
primary hyperparathyroidism (Hendy et al., 2009; Ward et al., 
2012; Hannan et al., 2018).

But, what about the CaSR in the brain? All types of brain 
neural and cerebrovascular cells express the CaSR, with 
particular intensely in the hippocampus, an AD-relevant area 
(Chattopadhyay, 2000; Yano et al., 2004; Noh et al., 2015). Dal 
Prà et al. (2005) showed that untransformed astrocytes isolated 
from the adult human temporal cortex and cultured in vitro 
express functional CaSRs, less intensely when proliferating but 
more strongly when mitotically quiescent. Notably, changes in 
the growth medium [Ca2+]e did not impact on CaSR expression 
levels by adult human astrocytes. But preservation of systemic 
Ca2+ homeostasis is not the CaSR’s main task in the brain. 
In fact, fluctuations in [Ca2+]e physiologically modulate, via 
corresponding adaptations of CaSR signaling, a variety of neural 
cells activities like CaSR’s L-amino acid sensing (Conigrave 
and Hampson, 2006), K+ fluxes (Chattopadhyay et al., 1999), 
proliferation, differentiation, migration of both neurons and 
oligodendrocytes during growth, and synaptic plasticity and 
neurotransmission during postnatal life (Bandyopadhyay et al., 
2010; Riccardi et al., 2013; Ruat and Traiffort, 2013; Kim et al., 
2014; Noh et al., 2015; Tharmalingam et al., 2016).

Remarkably, CNS diseases, such as AD and ischemia/
hypoxia/stroke, change the CaSR’s expression levels and hence 
alter the cellular processes CaSR signaling regulates (Armato 
et al., 2013; Dal Prà et al., 2014a; Dal Prà et al., 2014b; Bai et al., 
2015; Dal Prà et al., 2015b). The first hint that the CaSR might 
play a role in AD pathogenesis stemmed from the observation 
that Aβs-elicited peaks of cytosolic [Ca2+]i had a killing effect 
on hippocampal neurons (Brorson et al., 1995). A second clue 
was the opening of Ca2+-permeable nonselective cation channels 
(NSCCs) by fibrillar Aβ1–40 or Aβ25–35 in hippocampal neurons 
of wild type (WT) CaSR+/+ rats; notably, this effect could not be 
replicated in CaSR−/− rats. The authors speculated that Aβs might 
bind the CaSR because they have, just like polyamines, orderly 
spaced arrays of positive charges (Ye et al., 1997).

In this regard, the specific formation of plasma membrane 
Aβs•CaSR complexes and their subsequent endocytosis in 
cultured cortical untransformed adult human astrocytes could 
be proven by using the in situ proximity ligation assay (isPLA), 
which reveals the specific formation of stable complexes 
between two molecules placed within a 30 nm range (Dal Prà 
et al., 2014a; Dal Prà et al., 2014b; Dal Prà et al., 2015b). The 
latter results implied that since all types of human neural and 
cerebrovascular cells express the CaSR, they are vulnerable to 
the neurotoxic effects driven by pathological Aβ•CaSR signaling 
(Chiarini et al., 2016). However, it remains to be ascertained 
whether at the level of CaSR•GABABR1 heterodimers of human 
cortical astrocytes and neurons Aβs•GABABR1 complexes 
also form and what their functional roles would be under 
both physiological and pathological conditions: topics worth 
investigating further.
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Moreover, a genetic analysis study on cohorts of 435 
healthy controls and 692 SAD patients showed that an intron 
4 polymorphic dinucleotide repeat marker of the CASR gene 
associated with an AD susceptibility, while three nonsynonymous 
SNPs of exon 7 were linked with an AD propensity only in non-
APOEε4 allele carriers. Hence, variations in the CASR gene 
sequence may impact on SAD susceptibility especially in subjects 
having no APOEε4 allele (Conley et al., 2009).

The CASR gene P1 and P2 promoters regulate its transcription 
by binding several transcription factors, including SP1, SP3, 
STAT1, STAT3, CREB, and NFκB, which concurrently control 
the expression of other AD-related genes (see for details and 
references: Chiarini et al., 2016). Therefore, the transcription 
factors regulation of CaSR expression is tightly linked to the 
pathophysiology of AD.

It is well known that Aβ42-os simultaneously bind to several 
other CNS cells surface receptors besides the CaSR (see for 
details and references: Chiarini et al., 2016). Therefore, Aβ42-
os•CaSR signaling triggers a throng of cellular responses sosme 
authors include in the so called “calcium dyshomeostasis”, such as 
toxic ROS overrelease from mitochondria, and intracellular Ca2+ 
surges via NMDARs’ activation driving further mitochondrial 
ROS releases (Kam et al., 2014; Jarosz-Griffiths et al., 2016).

However, it must be stressed here that the pathological 
Aβ42-os•CaSR signaling performs much more AD-specific 
upstream feats than those just mentioned. In fact, it drives 
the overproduction and overrelease of Aβ42-os and p-Tau-os, 
the two main AD culprits, from human cortical neurons 
and astrocytes. Moreover, it also induces the production and 
release of surpluses of other neurotoxic agents, such as NO and 
VEGF-A, and likely others more, from the adult human cortical 
astrocytes. Additionally, the pathological Aβ42-os•CaSR signaling 
profoundly suppresses sAPP-α extracellular shedding from 
human astrocytes and neurons (Chiarini et al., 2016; Chiarini 
et al., 2017a; Chiarini et al., 2017b). These Aβ-os-elicited noxious 
effects associate with concurrent upsurges in the expression of 
APP, BACE1, and CaSR proteins. Remarkably, the crucial upshot 
of all the mentioned effects of Aβ42-os•CaSR signaling is the death 
of human cortical neurons both in vitro (Armato et al., 2013) and 
in the in vivo brain. In the latter, the progressive disconnections 
of neural circuits—a cause of advancing cognitive decline—and 
a chronic diffuse reactive neuroinflammation eventually lead to 
full blown or symptomatic AD (Crimins et al., 2013; Kayed and 
Lasagna-Reeves, 2013; Medeiros et al., 2013).

Moreover, a study using 3xTg AD-model mice showed that the 
amount of brain CaSR immunoreactivity progressively increased 
with age, particularly in areas where Aβ42 fibrils accumulate 
most, such as the hippocampi. Thus, local fibrillar Aβ42 buildup 
and CaSR expression raise in parallel in both Aβ-exposed 
human cortical neurons and astrocytes cultured in vitro and 
in the hippocampi of 3xTg AD-model mice (Armato et  al., 
2013; Chiarini et al., 2016; Gardenal et al., 2017). This soaring 
expression of neural cells’ CaSRs associates with a declining 
expression of inhibitory GABABR1as (Chang et al., 2007; Kim 
et al., 2014).

Whereas GABAB and taste receptors obligatorily function as 
heterodimers (Jones et al., 1998; Nelson et al. 2002), mGluRs 

and CaSR function both as disulfide-linked homodimers (Zhang 
et al., 2001; Pidasheva et al., 2006) and as CaSR/GABABRs, 
CaSR/mGlu1αR and CaSR/mGlu5R heterodimers (Gama et al., 
2001). Ectopic overexpression and coimmunoprecipitation 
studies revealed that CaSR/GABABR1a heterodimers do affect 
CaSR protein expression in opposing ways. The total and cell 
surface expression and signaling of the CaSRs were suppressed 
by coexpressing GABABR1as, being instead increased (i) by 
co-expressing GABAB2Rs; (ii) by knocking out GABABR1a 
in mouse brains; and (iii) by deleting GABABR1a in cultured 
hippocampal neurons. The GABABRs and CaSRs form 
heterodimers as soon as they are synthesized, since these protein 
complexes are already detectable around the cells’ nuclei and in 
the endoplasmic reticulum. In such early complexes GABABRs 
bind an immature form of the CaSR. Clearly, GABABR1a and 
GABABR2 subunits compete for the CASRs. The CaSR/GABABR 
heterodimers appear to have altered pharmacological properties 
with respect to the prevailing CaSR homodimers. Results gained 
using (i) the GABABRs agonists baclofen and GABA, (ii) the 
GABABR1a antagonist CGP-3548, and (iii) GABABR1a expression 
knockdown in cultured mouse growth plate chondrocytes 
indicated that GABABR1a can elicit both CaSR-independent and 
CaSR-mediated actions. However, divergent results gained from 
different experimental models suggested that an endogenous 
expression or a targeted overexpression of one or more of these 
receptors, coexisting differences in ligands and in their relative 
quantities and in downstream intracellular signaling pathways 
could elicit unlike upshots under various physiological and/or 
pathological conditions (Gama et al., 2001; Chang et al., 2007). 
During the initial phases of disease progression in AD-model 
animals, the decline of GABABR1s’ availability, which concurs 
with CaSR’s overexpression, induced a neuronal hyperactivity 
in hippocampal and cerebrocortical circuits, whose upshot 
was functional impairment (Busche and Konnerth 2015). The 
mechanism(s) underlying this loss of neuronal working capability 
remain(s) unclear: an overconsumption of O2 on the part of the 
hyperactive neurons might be a contributory factor. Nothing is 
so far known about the existence and pathophysiological roles of 
CaSR heterodimers in cortical human untransformed astrocytes 
and neurons. Therefore, to-date the impacts (if any) the CaSR/
GABABRs and CaSR/mGluRs heterodimers might exert on 
human AD’s course and on anti-AD therapeutic approaches 
remain to be assessed.

Notably, in cortical adult human astrocytes the pathological 
Aβ•CaSR signaling heavily affects the APP holoprotein 
metabolism significantly deflecting it from its physiological NAP 
(Figure 3). APP’s NAP typically obstructs the de novo production 
of Aβ42s/Aβ42-os since the α-secretases (mainly ADAM 10) cut the 
APP molecule just within the Aβ42 amino acid sequence (Kuhn 
et al., 2010) (Figures 1 and 3). Notably, APP’s NAP prevails over 
APP’s AP in untreated (control) cortical adult human astrocytes, 
which directly shed all the sAPP-α they produce into the 
environment while secreting only tiny amounts of monomeric 
Aβ42 (Chiarini et al., 2017b). Hence, it has been posited that by 
constitutively releasing substantial amounts of sAPP-α, which is 
an agonist of GABABR1as (Rice et al., 2019), human astrocytes 
could continually abate any noxious neuronal hyperexcitability. 
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Under the same basal conditions, CaSR signaling is only 
modulated by extracellular cations levels, particularly by the 
[Ca2+]e. On the other hand, a dramatic change in this mechanism 
occurs when increased quantities of exogenous Aβs bind the 
human astrocytes’ (and neurons’) CaSRs and activate their 
pathological signaling that strongly promotes APP’s AP over 
APP’s NAP (Figure 3). This leads to an excess production, 
accumulation, and secretion of neurotoxic Aβ42/Aβ42-os from the 
cortical astrocytes and from the neurons in which an alike APP’s 
AP mechanism operates (Armato et al., 2013). Concurrently, the 
astrocytes’ and neurons’ intense extracellular shedding of sAPP-α 
is curtailed by ~70%, while sAPP-α abnormally accumulates 
within the cells (Chiarini et al., 2017a). On the basis of such results 
the authors posited that an ongoing Aβ•CaSR signaling that 
would spread in vicious cycles from teams to teams of “master” 
astrocytes’ and “client” neurons could cause a substantial loss of 
the neurotrophic and neuroprotective effects otherwise brought 
about by extracellularly shed sAPP-α, including its agonistic 
action on GABABR1as, thereby favoring a harmful neuronal 
hyperexcitability. In addition, the Aβ42/Aβ42-os-exposed human 
astrocytes and neurons could simultaneously release increasing 
amounts of neurotoxic Aβ42-os (Armato et al., 2013), p-Tau-os 

(within exosomes) (Chiarini et al., 2017a), NO, VEGF-A (Dal 
Prà et al., 2005; Chiarini et al., 2010; Dal Prà et al., 2014a; Dal 
Prà et al., 2014b; Chiarini et al., 2016). and likely other noxious 
agents. Therefore, it would not be surprising that under such dire 
circumstances cortical human neurons keep losing synapses and 
consequently die. Interestingly, in line with the just mentioned 
findings, CSF levels of sAPP-α significantly decrease in LOAD/
SAD patients (Lewczuk et al., 2010, which indirectly confirms 
the substantial fall of its extracellular shedding from human 
astrocytes (Chiarini et al., 2017b).

CaSR NAMs as Potential Anti-AD 
Therapeutics
As mentioned above, several PAMs and NAMs of the CaSR are 
available. L-α-amino acids with an aromatic ring and positively 
charged amino groups (NH3+) are naturally occurring CaSR 
PAMs (Lee et al., 2007). Synthetic phenylalkylamine CaSR 
PAMs (“calcimimetics”; e.g. AMG 416, Cinacalcet, and NPS 
R-568) having two-to-four aromatic rings and NH3+ groups 
have been synthesized. PAMs augment the CaSR’s sensitivity 
to activation by [Ca2+]e and hence lower the EC50 for [Ca2+]e.  

FIGURe 3 | The pathological effects of Aβ•CaSR signaling on the metabolic processing of amyloid precursor protein (APP) and Tau proteins in untransformed 
cortical human astrocytes and neurons and their complete suppression by highly selective calcium-sensing receptor (CaSR) negative allosteric modulators (NAMs) 
(or calcilytics). Under physiological conditions, the NAP of APP largely prevails in cortical human astrocytes and neurons. Conversely, the pathological Aβ•CaSR 
signaling hugely enhances the APP holoprotein’s AP at the expense of NAP in both human cell types. This leads to a surplus synthesis, intracellular accumulation, 
and extracellular release of Aβ42-os. The latter spread extracellularly to bind and activate the signaling of the CaSRs of adjoining teams of astrocytes and neurons 
(Chiarini et al., 2017a). Such self-sustaining vicious cycles amplify and propagate the pathological Aβ•CaSR signaling and its neurotoxic effects to wider and wider 
cortical areas. The Aβ•CaSR signaling also increases the activity of the glycogen synthase kinase-3β (GSK-3β), which strongly phosphorylates Tau proteins at amino 
acid sites typical of Alzheimer’s disease (AD). The thus hyperphosphorylated Tau proteins also form oligomers (p-Tau-os) that are next released extracellularly within 
exosomes (not shown), thereby starting the tauopathy typical of AD. Other noxious effects of Aβ•CaSR signaling, such as increases in the synthesis and release 
of nitric oxide (NO) and vascular endothelial growth factor-A (VEGF-A), and other proinflammatory agents are not shown here for the sake of clarity. The crucial 
upshot of the harming effects of pathological Aβ•CaSR signaling is the progressive death of the cortical human neurons crucially involved in memories and cognition 
processing. In a most striking fashion, highly selective CaSR NAMs (calcilytics) suppress all the just mentioned neurotoxic effects brought about by pathological 
Aβ•CaSR signaling thus restoring the APP’s NAP, Tau, NO, and VEGF-A to their physiological settings and consequently preserving the viability and function of 
human neurons notwithstanding the presence of Aβ peptides. Hence, NAMs could stop AD progression, safeguard the survival of the cortical human neurons, and 
preserve the memories, cognitive and coping capabilities of the patients. — blocking effects; +++, stimulating effects.
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Notably, three CaSR PAMs, i.e. Evocalcet, Etelcalcitide, and 
Cinacalcet, have successfully reached the clinical use to mitigate 
primary and secondary hyperparathyroidism and tumor-elicited 
hypercalcemias (Nemeth and Goodman, 2016).

CaSR NAMs are small amino-alcohol molecules like NPS 
2143 (Nemeth et al., 2001), Calhex 231 (Kessler et al., 2006), 
NPSP795 (Gafni et al., 2015), or quinazolinones like ATF936 
and AXT914 (Wildler et al., 2010). CaSR NAMs right-shift the 
[Ca2+]e response curve decreasing the CaSR sensitivity to [Ca2+]
e and thus increasing the EC50 for [Ca2+]e (Ferry et al., 1997; 
Huang and Breitwieser, 2007). As previously anticipated, both 
PAMs and NAMs bind the 7TM domain of the CaSR. The CaSR 
binding pockets of NAMs and PAMs partially overlap but are not 
identical. NAMs bind between the TM3 and TM5 loops, whereas 
both PAMs and NAMs attach between the TM6 and TM7 loops 
(Petrel et al., 2003; Petrel et al., 2004; Miedlich et al., 2004). It 
has been shown that point mutated residues of the 7TM helices 
(i.e. Phe668, Phe684, Trp818, Phe821, Glu837, and Ile841) lessen the 
antagonism of CaSR NAM NPS 2143 (Petrel et al., 2003; Petrel 
et al., 2004; Miedlich et al., 2004). CaSR’s allosteric agonism 
and antagonism are modulated via the involvement of distinct 
amino acids and mechanisms (see for further details Leach et al., 
2016; Keller et al., 2018). The identification of synthetic allosteric 
modulators of the CaSR has prompted searches for their 
therapeutic applications in diseases in which the CaSR signaling 
is dysfunctional (Hannan et al., 2018). However, hitherto the 
therapeutic potentials of both PAMs and NAMs of the CaSR 
have been only modestly exploited (Nemeth, 2013; Saidak et al., 
2009; Widler, 2011; Ward et al., 2012). Like other GPCRs, CaSRs 
exhibit the “ligand-biased signaling” feature, i.e. in a certain type 
of cell a signaling pathway may be steadily picked up over the 
others according to the specific ligand involved (Leach et al., 
2015). Interestingly, NAMs and PAMs too can induce this biased 
signaling, which in future might allow to therapeutically target a 
specific cell type over others (see for details: Davey et al., 2012; 
Leach et al., 2015; Hannan et al., 2018).

Let’s zero in on an important NAMs’ feature: they enhance 
parathyroid hormone (PTH) secretion from the parathyroid 
glands and increase blood calcium levels (calcemia) (Nemeth, 
2004; Nemeth, 2013). Several phase II clinical trials were 
undertaken to assess CaSR NAMs potential therapeutic efficacy 
in women with postmenopausal osteoporosis based on the 
assumption that the released PTH would stimulate osteogenic 
processes. However, these trials failed because NAMs induced a 
several hour-lasting oversecretion of PTH that stimulated both 
osteogenic and osteolytic processes in the osteoporotic bones. 
These failures prompted to search for new CaSR NAMs inducing 
a lesser and shorter-lasting PTH release (Nemeth, 2013; Riccardi 
and Kemp, 2012; Davey et al., 2012; Ward et al., 2012). The same 
failures also demoted CaSR NAMs from the drugs potentially 
beneficial in humans even because of the modest hypercalcemia 
(hyperparathyroidism) they induced. However, attempts 
were performed to treat hypoparathyroidism and autosomal 
dominant hypocalcemia (ADH) driven by gain-of-function 
CaSR mutations with CaSR NAMs (Nemeth, 2013; White et al., 
2009; Letz et al., 2010; Park et al., 2013; Nemeth and Goodman, 
2016). The use of CaSR NAMs was also considered in cases of 

breast and prostate carcinomas to prevent bone metastases, 
which are established through a CaSR-mediated signaling (Liao 
et al., 2006; Mihai et al., 2006). Other potential therapeutic uses 
of CaSR NAMs have included asthma attacks (Yarova et al., 
2015); pulmonary artery idiopathic hypertension (Yamamura 
et al., 2012; Yamamura et al., 2015); stroke (Kim et al., 2014); and, 
last but not least, LOAD/SAD and EOFAD (Armato et al., 2013; 
Chiarini et al., 2016; Chiarini et al., 2017a; Chiarini et al., 2017b; 
Chiarini et al., 2017c).

The use of CaSR NAMs as therapeutics in SAD/LOAD and 
EOFAD is supported by the results gained from preclinical AD 
models “in Petri dishes” made up by untransformed human cortical 
astrocytes and/or neurons. In fact, a 30-min administration of a 
CaSR NAM, be it NPS 2143 or NPS 89696, completely suppressed 
all the above-mentioned neurotoxic responses evoked by the 
pathological Aβ•CaSR signaling (Chiarini et al., 2010; Armato 
et  al., 2013; Dal Prà et al., 2014b; Dal Prà et al., 2015a; Chiarini 
et al., 2016; Chiarini et al., 2017c). Therefore, the authors posited 
that in vivo administered CaSR NAMs would (A) preserve the 
shedding of neurotrophic and neuroprotective and GABABR1a 
agonist sAPP-α from the plasma membranes of astrocytes and 
likely neurons, thereby (i) obstructing the amyloidogenesis from 
APP and hence the cerebral accumulation of neurotoxic soluble 
Aβ42-os and fibrillar Aβ42 polymers, and (ii) abating the noxious 
neuronal hyperexcitability via sAPP-α•GABABR1a signaling; 
(B) suppress the surplus synthesis and exosomal intrabrain 
dissemination of neurotoxic p-Tau-os and the consequent 
hypertoxic effects elicited by combined actions of the Aβ42-
os/p-Tau-os duet (Ittner and Götz, 2011; Chiarini et al., 2017a); 
(C) reduce the increased synthesis and secretion of neurotoxic 
amounts of NO, VEGF-A, and likely other neurotoxic agents; (D) 
suppress any other harmful effects elicited by Aβ•CaSR signaling in 
oligodendrocytes, microglia, cerebrovascular cells of any kind; and 
(E) safeguard the blood–brain barrier (BBB) functional integrity. 
The above in vitro results also indicate that NAM efficacy persists 
notwithstanding a continued presence of soluble Aβ-os, fibrillar 
Aβs, and p-Tau-os (Chiarini et al., 2017a; Chiarini et al., 2017b; 
Chiarini et al., 2017c). Therefore, it is likely that CaSR NAMS could 
safeguard in vivo, as they do in vitro (Armato et al., 2013), the 
viability and functions of the cortical human neurons preserving 
the integrity of critical cognition-essential upper cerebral cortical 
regions (Choi et al., 2013; Lee et al., 2013; Barateiro et al., 2016). 
In brief, CaSR NAMs would uphold the patients’ ability to record 
and recover memories and to deal with their daily needs. Most 
important, the relatively cheap to synthesize CaSR NAMs appears 
to be the so far unique class of anti-AD therapeutics capable of 
concurrently targeting the multiple noxious effects triggered by 
pathological Aβs•CaSR signaling in human neurons, astrocytes, 
and the other brain cell types (Chiarini et al., 2010; Dal Prà et al., 
2011; Armato et al., 2013; Dal Prà et al., 2014b; Dal Prà et al., 
2015a; Chiarini et al., 2016).

Ischemic neuronal injury is known to locally generate Aβs 
surpluses (Ishimaru et al., 1996). More recent studies showed that 
the intraventricular administration of CaSR NAMs did decrease 
the death of neurons in the cortical penumbra zone of animal 
models of ischemia/hypoxia/stroke by effectively suppressing the 
concurrent acute increase in the local Aβ-os production (Kim et al., 
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2014; Bai et al., 2015). These results further strengthen the idea that 
pathological Aβ•CaSR signaling is crucially involved in both acute 
(ischemia/stroke) and chronic (AD) conditions causing neuronal 
death (Armato et al., 2013; Dal Prà et al., 2015a; Chiarini et al., 2016).

Fyn kinase inhibitor Saracatinib (AZD0530) and NMDAR 
inhibitors Memantine and Nitromemantine were endorsed as 
drugs to counteract the neurotoxicity driven by the extracellular 
accumulation of Aβ42-os (Kaufman et al., 2015). However, 
CaSR NAMs act on Aβ•CaSR signaling well upstream of Fyn 
and NMDARs. In addition, CaSR NAMs obstruct any cytotoxic 
effects and likely also any impediments to proliferation and  
differentiation of neural stem cells in the dentate gyrus subgranular 
zone (Unger et al., 2016).

Concerning their most salient pharmacological characteristics, 
because of their lipid-soluble chemical structures and limited 
numbers of electrical charges, CaSR NAMs traverse the BBB. They 
can be administered by any route: hitherto the oral route has been 
the preferred one for clinical trials. Rodents could endure NAM 
NPS 2143 administration with no serious off-target effects being 
reported (Nemeth, 2002; Kim et al., 2014). During the failed phase I 
and phase II clinical trials assessing NAMs antiosteoporosis activity, 
human subjects also satisfactorily tolerated the administration 
of novel NPS 2143 derivatives, which affected PTH release less 
intensely (no record was taken concerning any brain-related 
effects). In general, the safety data collected from the clinical trials 
of CaSR NAMs did not record any major side-effect. Obviously, the 
calcemia levels had to be checked periodically due to NAM-elicited 
increases in plasma PTH levels (Nemeth and Shoback, 2013).

CONCLUSIONS

This survey--necessarily short given the huge amount of literature 
concerning this verily fascinating topic--leads us to several closing 
considerations. First and foremost, a lot of data from AD-model 
animals had to be forcibly mentioned because analogous human 
data are not available. Therefore, there is still quite a lot to 
discover and learn about the physiological roles of family C GPRS 
particularly in relation to human CNS and other viscera. Second, 
it is undeniable that some of these GPCRs could play central roles 
on human AD. Our work has been mainly, but not exclusively, 
based upon the experimental exploitation of human cortical 
astrocyte cultures and has focused on the pivotal role pathological 
Aβ•CaSR signaling exerts on the onset and progression of AD 

and on the potentially beneficial therapeutic effects CaSR NAMs 
could exert in LOAD/SAD patients. The interactions of CaSR 
heterodimers with other family C GPCRs, e.g. GABABRs and group 
I mGluRs, still constitute a mostly unexplored field of endeavor 
and their impact on AD onset and progression (if any) needs to 
be clarified. Notably, even in the gene mutations-driven EOFAD, 
CaSR NAMs could bring to bear mitigating and life-lengthening 
upshots by suppressing the additional aggravating consequences 
brought about by the concurrent Aβ•CaSR signaling adding up 
to those stemming from the mutated genes. Third, any possible 
AD-promoting effects of CaSR PAMs (calcimimetics) in humans 
should be thoroughly investigated since in our preclinical in vitro 
AD model PAM NPS R-568 significantly increased Aβ42/Aβ42-os 
release from untransformed human adult cortical astrocytes 
(Armato et al., 2013). Fourth, we wish to add a last comment about 
CaSR NAMs as candidate therapeutics for human AD. For reasons 
pertaining to normal physiology, CaSR NAMs failed their initial 
task as antiosteoporosis therapeutics (Nemeth, 2004; Nemeth, 
2013; Nemeth and Shoback, 2013; Nemeth and Goodman, 2016). 
Moreover, the induction of a mild hypercalcemia by CaSR NAMs 
has been a bit too much stressed as “hyperparathyroidism” creating 
a prejudice against their use in humans. Nevertheless, one should 
remember that no drug is devoid of unwanted and/or off-target 
effects: the chemotherapeutics administered to oncological patients 
are a striking example of this. Therefore, CaSR NAMs’ rather slight 
off-target effects, chiefly the mild controllable hypercalcemia, 
should be objectively weighed against CaSR NAMs’ crucial 
capability of averting the worsening loss of memories and cognitive 
abilities, including recognition of the self, and the later unavoidable 
demise AD would inexorably deliver.
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Ethanolic Extract of Orthosiphon 
stamineus Improves Memory 
in Scopolamine-Induced 
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Alzheimer’s disease (AD) is a chronic neurodegenerative brain disease which is 
characterized by impairment in cognitive functioning. Orthosiphon stamineus (OS) Benth. 
(Lamiaceae) is a medicinal plant found around Southeast Asia that has been employed as 
treatments for various diseases. OS extract contains many active compounds that have 
been shown to possess various pharmacological properties whereby in vitro studies have 
demonstrated neuroprotective as well as cholinesterase inhibitory effects. This study, 
therefore aimed at determining whether this Malaysian plant derived flavonoid can reverse 
scopolamine induced learning and memory dysfunction in the novel object recognition 
(NOR) test and the elevated plus maze (EPM) test. In the present study, rats were treated 
once daily with OS 50 mg/kg, 100 mg/kg, 200 mg/kg and donepezil 1 mg/kg via oral 
dosing and were given intraperitoneal (ip) injection of scopolamine 1 mg/kg daily to 
induce cognitive deficits. Rats were subjected to behavioral analysis to assess learning 
and memory functions and hippocampal tissues were extracted for gene expression and 
immunohistochemistry studies. All the three doses demonstrated improved scopolamine-
induced impairment by showing shortened transfer latency as well as the higher inflexion 
ratio when compared to the negative control group. OS extract also exhibited memory-
enhancing activity against chronic scopolamine-induced memory deficits in the long-
term memory novel object recognition performance as indicated by an increase in the 
recognition index. OS extract was observed to have modulated the mRNA expression 
of CREB1, BDNF, and TRKB genes and pretreatment with OS extract were observed to 
have increased the immature neurons against hippocampal neurogenesis suppressed by 
scopolamine, which was confirmed by the DCX-positive stained cells. These research 
findings suggest that the OS ethanolic extract demonstrated an improving effect on 
memory and hence could serve as a potential therapeutic target for the treatment of 
neurodegenerative diseases like AD.
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INTRODUCTION

Neurodegenerative diseases have emerged to become a globally 
critical burden with the aging population. The number of 
Alzheimer’s patients have steadily increased over the years with 
currently more than 46 million people living worldwide with the 
disease and the number is expected to increase to 131.5 million 
by 2050 (Mat et al., 2017). Alzheimer’s disease (AD) is the most 
common cause of cognitive impairment in the elderly population 
and is characterized by various symptoms that include learning 
and memory impairment, cognitive dysfunction, language 
impairment and behavioral dysfunction like depression, 
agitation and psychosis that continue to become more severe 
with the disease progression (Brookmeyer et al., 2007; Mahdy 
et al., 2012). Thus, due to the debilitating nature of the disease, it 
continues to exist as a huge societal social and economic burden.

One of the key neuropathological features underlying the 
symptoms associated with Alzheimer’s is neuronal loss and when 
examined microscopically, the presence of senile plaques and 
neurofibrillary tangles (NFTs) serves as the main features of the 
disease. A number of mechanisms have been conjectured to further 
elucidate the pathogenesis of Alzheimer’s like cholinergic dysfunction, 
oxidative damage, beta amyloid toxicity, hyperphosphorylation 
of tau protein, and inflammation of senile plaques (Mahdy et al., 
2012; Von Bernhardi et al., 2015). The cholinergic system that 
comprises of the cholinergic neurotransmitters play a vital role in 
memory processing whereby loss of the cholinergic neurons and its 
subsequent decrease results in learning and memory dysfunction 
characteristic of Alzheimer’s (Watanabe et al., 2009; El-Marasy et 
al., 2012; Blake et al., 2014). Thus far there are yet to be disease-
modifying drugs approved for Alzheimer’s. The medications 
available are only capable of temporarily alleviating the symptoms 
of cognitive impairment; however, they do not halt the inevitable 
progression of the disease. To date, four cholinesterase inhibitors 
or ChEI (tacrine, rivastigmine, donepezil and galantamine) and 
a partial NMDA receptor antagonist (memantine) are the only 
approved treatment options for AD. However, these drugs fail to 
completely cure the disease, which warrants a search for newer 
class of targets that would eventually lead to effective drugs for the 
treatment of AD (Obulesu and Rao, 2011). Thus, major therapeutic 
research is underway to explore the memory enhancing activities 
of natural products.

The pharmacological and therapeutic effects of traditional 
medicinal plants have been associated with the various chemical 
constituents isolated from their crude extract whereby in particular, 
active constraints that demonstrate antioxidant activity have been 
linked to play a central role in various neurodegenerative diseases 
(Silva et al., 2005; Mahdy et al., 2012). Orthosiphon stamineus (OS) 
Benth. (Lamiaceae) is an Asian folklore medicinal plant that has 
been employed as treatments for various diseases like influenza, 
inflammation, urinary tract infections, and angiogenesis related 
conditions like cancer (Geng et al., 2013; Yehya et al., 2018). OS 
have been reported to demonstrate anti-inflammatory, antioxidant, 
antibacterial and hypoglycemic effects (Awale et al., 2003; Akowuah 
et al., 2004; Ho et al., 2010; Abdelwahab et al., 2011; George et al., 
2015). Additionally, several scientific studies have also reported the 
safety profile of 50% ethanol extract of OS in in vivo rat models and 

the LD50 have been said to be more than 5000 mg/kg (Chin et al., 
2008; Mohamed et al., 2011; Yehya et al., 2018). Phytochemical 
studies have demonstrated that OS leaves extracts contain more 
than 20 phenolic bioactive compounds like rosmarinic acid, 
2,3-dicaffeoyltartaric acid, eupatorine, sinesitin, oleanolic acid, ursolic 
acid, pentacyclic triterpenes, and b-sitosterol (Awale et al., 2003; Shin 
et al., 2015; Yehya et al., 2018). Among these active compounds, 
rosmarinic acid has been reported to be the main flavonoid present 
in the 50% ethanol extract of OS extract and plays a central role for 
the various pharmacological activities exerted by the OS extract. 
Flavonoids which are the principal group of polyphenols are also 
reported to be efficacious in decreasing oxidative stress and are said to 
promote various physiological benefits, particularly in learning 
and memory, scavenging free radicals and cognitive impairment 
(Bhullar and Rupasinghe, 2013; Bhullar and Rupasinghe, 2015; 
Ghumatkar et  al., 2015). Besides that, standardized ethanolic 
extract of OS were also found to be able to reverse age-related 
deficits in short-term memory as well as prevent and reduce the 
rate of neurodegeneration (George et al., 2015).

Additionally, preliminary studies of OS extract have also 
demonstrated neuroprotective and choline esterase inhibitory 
effects; this in turn further indicates OS extract’s potential in 
prompting CNS related reactions. Although OS extract possesses 
various uses, there are yet no studies on its neuropharmacological 
activities against AD-like conditions. Therefore, this present 
study aimed at distinguishing the anti-amnesic potential of 
this plant derived flavonoid memory deficits in a rat model of 
cognitive impairment caused by scopolamine.

MATERIALS AND METHODS

Plant Materials
The 50% ethanolic OS extract was procured from NatureCeuticals 
Sendirian Berhad, Kedah DA, Malaysia. The extract from leaves 
of OS was prepared under GMP-based environment using DIG-
MAZ technology by Natureceuticals Sdn. Bhd., Malaysia. The 
DIG-MAZ is an extraction system which involves all of the key 
extraction processes like percolation, digestion, maceration, 
and distillation. The extract was kept in an airtight container 
until further experimentations. The OS extract was dissolved in 
distilled water and filtered using a membrane filter unit (0.22 lm) 
before being administered to the rats for the study.

Experimental Animals
In-house-bred adult male Sprague Dawley rats weighing between 
200–300 g and between 6 and 8 weeks old were acquired from 
the animal facility of School of Medicine and Health Sciences of 
Monash University Malaysia. The rats were kept and maintained 
in cages under standard husbandry conditions (12:12 h light/
dark cycle, at controlled room temperature (22 ± 2°C), stress free, 
water ad libitum, standard diet, and sanitary conditions). Prior to 
the experiment, the rats were allowed to acclimatize for a period 
of 1 week to reduce environmental stress. All the experimental 
protocols were approved and conducted according to the approval 
of the Monash Animal Research Platform (MARP), Australia 
with the reference number MARP/2016/028.
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Experimental Design
The range of OS extract doses was determined following the 
pre-screening results. OS extract, donepezil and scopolamine 
were prepared by dissolving it in saline. Normal control rats 
were administered with saline throughout the experiment. The 
treatments were given both orally and intraperitoneally (i.p.) 
at a volume corresponding to 0.1 ml/100 g of bodyweight. All 
experiments were performed in a balanced design (eight animals 
per group) to avoid being influenced by order and time. The 
behavioral studies were divided into two categories namely the 
nootropic and the scopolamine models.

Nootropic Model
Group 1: Normal control (saline)
Group 2: Positive control [Donepezil (DPZ) 1 mg/kg]
Group 3: Low dose of OS (50 mg/kg OS)
Group 4: Medium dose of OS (100 mg/kg OS)
Group 5: High dose of OS (200 mg/kg OS)

Scopolamine Model
Group 1: Normal Control (saline)
Group 2: Positive control (DPZ 1 mg/kg)
Group 3: Negative control (Scopolamine 1 mg/kg)
Group 4: Low dose of OS (50 mg/kg OS + Scopolamine; 

1 mg/kg)
Group 5: Medium dose of OS (100 mg/kg OS + 

Scopolamine; 1 mg/kg)
Group 6: High dose of OS (200 mg/kg OS + Scopolamine; 

1 mg/kg)

For the nootropic activity, all the groups received pre-
treatment orally for 6 consecutive days before being subjected to 
a battery of behavioral tests from Day 6 until Day 8 for the novel 
object recognition (NOR) and the elevated plus maze (EPM) 
tests, respectively, as observed in Figure 1. For the scopolamine 
model, amnesia was induced in all the groups except the control 
group by daily intraperitoneal injections of scopolamine (1 mg/
kg) for 9 days after OS extract pre-treatment (Day nine to Day 
17). Thirty minutes prior to the administration of scopolamine, 

NOR was conducted on Day 10 and Day 15, and EPM was 
carried out on Days 11 and 12, and Days 16 and 17 of the study 
as seen in Figure 1. At the end of the experiment, the rats were 
sacrificed, and their brains were isolated for further biochemical 
and immunohistochemistry analysis.

Novel Object Recognition
In the object recognition task, the experimental apparatus 
consisted of an open field box (40 × 40 × 40 cm) made of black 
acrylic material. The method used was the same as described by 
(Ennaceur and Delacour, 1988), with slight modifications. The 
behavior test was conducted between 9:00 AM and 6:00 PM 
under dim red-light illumination conditions. The objects to be 
discriminated were two similar transparent cultured flasks filled 
with water and a toy Lego of the same height (new object). One day 
prior to the experiment, each rat was habituated to the open field 
box without any object for 10 min. On the experiment day, during 
the first trial, each rat was placed in the open field for 5 min and 
allowed to freely explore the two identical objects (transparent 
cultured flasks with water). After 90 min of post-training session, 
one old object used during the training session was replaced by 
a novel object and the rat was left to explore the objects for 2 
min. The time spent with each object was recorded and evaluated 
using SMART software version 3.0 (Panlab, Harvard Apparatus). 
Both objects presented during the test session were different in 
texture, color, and size. The open field box was cleaned with 70% 
ethanol between runs to minimize scent trails. The recognition 
index was computed using the formula [TB/(TA + TB) * 100] 
where TA and TB are time spent exploring familiar object A and 
novel object B respectively (Batool et al., 2016). Exploration of an 
object was deemed when a rat sniffed or touched the object with 
its nose and/or forepaws.

Elevated Plus Maze Test
The elevated plus maze test measures anxiety in animals but a 
significant parameter measured in EPM called the transfer latency 
(the time taken for the animal to move from an open arm to the 
closed arm) has been shown to be noticeably reduced if the animal 
has had prior experience of entering into the open and closed arm 

FIGURE 1 | Schematic representation of the experimental procedure.
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and this reduced transfer latency has been demonstrated to be 
associated with memory process and an increase in inflexion ratio 
indicates nootropic activity. Additionally, several studies of various 
nootropics and amnesic agents on EPM have further reiterated 
this model as a widely accepted paradigm to study learning 
and memory processes in rodents (Itoh et al., 1990; Yadav et al., 
2017). In EPM, transfer latency on Day 1 is deemed as acquisition 
(learning) and memory retention is then examined after 24 h.

The EPM apparatus consists of four arms of equal 
dimensions, i.e., two open arms (50 × 10 cm) that are crossed 
with two closed arms, enclosed by high walls of 40 cm high. 
These arms are connected with the help of a central square 
(10 × 10 cm) that gives an appearance of a plus sign to the 
maze. This maze is elevated from the ground by 50 cm. The 
method used was the same as described by (Vasudevan and 
Parle, 2006). The behavior test was conducted between 9:00 
AM and 6:00 PM under dim red-light illumination conditions. 
The memory was assessed in EPM in two sessions, 24 h apart. 
During the training session, the rats were placed at the end of 
the open arm, facing away from the central platform. With the 
help of the stopwatch, the transfer latency (TL1) was noted, 
i.e., the time taken by rat with all its four legs to move into 
any one of the enclosed arms. If the rat failed to enter any one 
of the enclosed arms within 90 s, it was gently pushed into 
one of the two enclosed arms and the TL was assigned as 90 s. 
The rat was allowed to explore the maze for the next 10 s and 
then returned to its home cage. The maze was cleaned with 
70% ethanol between runs to minimize scent trails. To assess 
memory, the retention test phase was carried out 24 h after 
the training session whereby a decrease in time latency (TL2) 
during the test session was deemed as an index of memory 
improvement. The cut-off time for each rat to explore the maze 
in both the phases (training and test) was 90 s.

The transfer latency was expressed as inflexion ratio, calculated 
using the formula:

 
IR

L L
L

=
−( )1 0
0   

L0: Initial TL (s) on the 1st day and
L1: TL (s) on the 2nd day.

Tissue Processing
All the rats were sacrificed 1 hour after the behavioral test 
under ketamine-xylazine anesthesia. In each group half the rats 
(n = 4/group) were fixed with 4% paraformaldehyde (PFA) for 
immunohistochemistry analysis while the remaining half of 
the rats (n = 4/group) were used for gene expression analysis. 
The hippocampal region from the whole brain was isolated 
immediately and were homogenized on ice cold 200 µL Trizol and 
stored at −80°C for real-time PCR analysis.

Gene Expression
Total RNA from the rat brain’s hippocampal region was extracted 
following the method employed by (Bhuvanendran et al., 2018), 

with some minor modifications. The single-step method, phenol-
chloroform extraction and Trizol reagent (Invitrogen) was used 
to isolate the total RNA from the hippocampal region. Briefly, the 
tissues were homogenized in 200 µL of Trizol solution. The mixture 
was then extracted using chloroform and centrifuged at 135,000 
rpm at 4°C. The alcohol was removed, and the pellet was washed 
twice with 70% ethanol and resuspended in 20 µL of RNase free 
water. RNA concentration was determined by reading absorbance 
at 260 nm using Nanodrop. A 500 ng amount of total RNA was 
reverse transcribed to synthesize cDNA using Quantitect® Reverse 
Transcription Kit according to the manufacturer’s protocol. Then 
the mRNA expression of genes encoding cAMP response element-
binding protein (CREB1), brain-derived neurotrophic factor 
(BDNF), tropomyosin receptor kinase B (TrkB), and IMPDH2 
in the hippocampus was measured via real-time PCR using the 
StepOne Real-Time PCR system. Subsequently, the cDNA from 
the reverse transcription reaction was subjected to Real-Time 
PCR using QuantiNova™ SYBR® Green PCR kit according to 
manufacturer’s protocol. The comparative threshold (CT) cycle 
method was used to normalize the content of the cDNA samples, 
which consists of the normalization of the number of target gene 
copies versus the endogenous reference gene, IMPDH2.

Immunohistochemistry
Immunohistochemical analysis was performed by assessing 
neurogenesis using Doublecortin (DCX) in the hippocampus. 
Four brain tissues from each group were immersed in the 
fixative solution, 4% paraformaldehyde overnight and were 
methodically cryoprotected in 10%, 20%, and 30% sucrose 
solution respectively for 24 h. The brains were then embedded 
in 15% Polyvinypyrrolidone, frozen using dry ice and cut 
into coronal frozen sections (40 µm) using a Leica CM3050 
cryostat. The sections were stored in an anti-freeze buffer. The 
free-floating sections were subjected to endogenous peroxidase 
quenching with 1% H2O2 in methanol for 30 min. After washing 
with phosphate buffered saline, PBS, the tissues were treated 
with blocking buffer (1% Bovine Serum Albumin and 0.3% 
Triton X-100) for 1 hour followed by incubation with primary 
DCX (1:250, Abcam) antibodies overnight at 4°C. After washing 
with PBS, the tissues were then biotinylated with goat anti-rabbit 
secondary antibody (Abcam) for 2 h. The tissues were then 
subsequently washed with PBS and exposed to an avidin biotin 
peroxidase complex (Vectastain ABC kit, Vector) for another 
2 h. The peroxidase activity was then visualized using a stable 
diaminobenzidine solution (DAB, Sigma). All immunoreactions 
were observed under a microscope (BX41, Olympus) and these 
results were quantified using DigiAcquis 2.0 software.

Statistical Analysis
Data obtained from all studies were expressed as mean ± SEM. The 
data were analyzed using one-way analysis of variance (ANOVA) 
followed by Dunnett post hoc test. The P-values of *P < 0.05, **P < 
0.01, and ***P < 0.001 were considered as statistically significant. 
All the experimental groups were compared with the Scopolamine 
(SCP) 1 mg/kg group except for the nootropic model where the 
experimental groups were compared with the control group.
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RESULTS

Scopolamine Induced Model Behavioral 
Analysis
Effect of OS Extract in Nootropic Model
The NOR test was used to evaluate whether OS treatment 
could reverse scopolamine-induced recognition impairment 
whereby the effect of OS extract at different doses were assessed 
following 7 days of pretreatment. Based on the results obtained 
in Figure 2A, pretreated group of OS extract demonstrated an 
increase in recognition index [F (4, 32) = 1.096, P = 0.3752] 
for novel object particularly observable in animals treated with 
dose of 50  mg/kg and 200 mg/kg OS extract. Overall, it can 
be said that the preference for the novel object was more or 
less the same among the OS treated groups when compared  
to the controls.

The memory function was also assessed using the EPM test 
to gauge the spatial long-term memory. Based on the results 
obtained in Figure 2B, the time taken for each rat to move 

from the open arm to either of the enclosed arms on the first 
trial (familiarization session), termed transfer latency 1, did not 
significantly differ between groups. However, during the test 
session, termed transfer latency 2, a decrease in time for transfer 
latency 2 was observed within the groups. Significant results were 
observed in rats administered with 100 mg/kg and 200 mg/kg OS 
extract thus indicating improvement in inflexion ratio [F (4, 35) 
= 3.713, P = 0.0127] observed among all groups. These results 
demonstrate that supplementation of OS extract significantly 
improved memory function in rats thus demonstrating optimal 
nootropic effects.

Effect of OS Extract in Acute Scopolamine Model
In the acute scopolamine-induced memory impairment in rats 
as depicted in Figure 3 (A1), the percentage of recognition index 
for the positive control (donepezil 1 mg/kg), negative control 
(scopolamine 1 mg/kg) and the OS extract treated groups, were 
found to be unchanged, indicating that the acute scopolamine-
induced memory was not impaired [F (5, 38) = 0.691, P = 0.6333].

For the EPM test, the scopolamine administered group 
(negative group) demonstrated a decrease in inflexion ratio 
when compared to the control and the other treated groups as 
depicted in Figure 3 (B1). When donepezil (positive group), 
a well-established standard drug for Alzheimer’s disease was 
administered, a significant increase in inflexion ratio was 
observed when compared to the scopolamine treated rats. 
Similarly, significant improvement in inflexion ratio [F (5, 42) = 
23.32, P < 0.0001] was observed in all the 3 doses of OS extract 
with both 50 mg/kg and 100 mg/kg demonstrating a notable 
increase in inflexion ratio when compared to the scopolamine 
treated group indicating that the memory impairment induced 
by scopolamine was reversed. These results further reiterate 
that OS extract were able to improve retention memory.

Effect of OS Extract in Chronic Scopolamine Model
In the chronic scopolamine model, the NOR test showed that 
there was a relatively large drop in the percentage of recognition 
index for the scopolamine treated group as shown in Figure 3 
(A2). The percentage of recognition index for all the OS extract 
groups were observed to have a significant increase [F (5, 42) = 
13.74, P < 0.0001] when compared to the scopolamine treated 
group indicating improved memory retention.

For the EPM test as observed in Figure 3 (B2), when chronic 
exposure of scopolamine was given to the rats, a notable decrease 
in inflexion ratio was observed in the scopolamine treated 
group whereas both 50 mg/kg and 100 mg/kg dose of OS extract 
demonstrated a significant improved inflexion ratio [F (5, 42) = 
23.32, P < 0.0001] when compared to the scopolamine treated 
group indicating that the increase could be due to the repeated 
exposure of scopolamine. However, the 200 mg/kg OS extract 
demonstrated a significant increase in inflexion ratio when 
compared to the negative group, but when compared between 
the OS extract doses, it was much lower compared to the other 
two doses. Based on these results, we can say that OS extract 
does improved memory retention when exposed repeatedly 
to scopolamine.

FIGURE 2 | Behavioral analysis for novel object recognition (NOR) and 
elevated plus maze (EPM). (A) represent the graph plot for the recognition 
indices in NOR for the nootropic model (B) represents the graph plot 
for the inflection ratios in EPM for the nootropic model. The behavioral 
analysis for (A,B) were compared to control group. Data are expressed as 
Mean ± SEM, n = 8 and statistical analysis by one-way ANOVA followed 
by Dunnett test *P < 0.05 and **P < 0.01.

213

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Orthosiphon stamineus in Alzheimer’s DiseaseRetinasamy et al.

6 October 2019 | Volume 10 | Article 1216Frontiers in Pharmacology | www.frontiersin.org

Scopolamine Induced Model Gene 
Expression Analysis
Gene Expression in the Hippocampal Region
In the hippocampal region, the BNDF mRNA levels were found to 
be significantly down regulated [F (6, 49) = 3.948, P = 0.0027] when 
injected with scopolamine as compared to the control group, as 
depicted in Figure 4A. Similarly, even the CREB1 [F (6, 49) = 7.517, 
P < 0.0001] and TRKB [F (6, 49) = 10.23, P < 0.0001] mRNA levels 
were observed to be down regulated when given scopolamine as 
shown in Figures 4B, C, respectively. This down regulation was 
ameliorated significantly by OS extract pretreatment as compared 
with the negative (scopolamine 1 mg/kg) group. Moreover, in all 
the three mRNA expression levels, namely CREB1, BDNF, and 
TRKB were observed to be significantly higher when the rats were 
treated with 100 mg/kg OS extract. Similar up regulation in the 
mRNA levels were also observed in the positive group rats that 
were treated with donepezil.

Scopolamine-Induced Model Immunohistochemistry 
Analysis
In the immunohistochemical studies, scopolamine injection 
was observed to have suppressed adult neurogenesis, shown as 
distributed dendrites and neuron bodies in the dentate gyrus 
(DG) region by DCX staining, particularly in the sub-granular 
zone (SGZ). Additionally, pretreatment with OS extract were 
observed to have ameliorated [F (5,18) = 12.74, P < 0.0001] 
the adult neurogenesis by enhancing immature neurons in the 

SGZ compared to the scopolamine treated group, as depicted 
in Figure 5.

DISCUSSION

The present study demonstrated that pretreatment with OS 
extract improved memory retention as evident by the improved 
inflexion ratio observed in the EPM test as well as the increase in 
the recognition index observed in the OS treated rats. Previous 
studies have demonstrated scopolamine to show profound amnesic 
effects in various learning paradigms through the disruption 
of the cholinergic neurotransmission whereby when given 
acutely, scopolamine was said to produce spatial memory deficit 
(Goverdhan et al., 2012; Ghumatkar et al., 2015). In our study, similar 
results were observed whereby the scopolamine treated group in 
both the acute and chronic model for the EPM test demonstrated 
decreased inflexion ratio indicating impairment of spatial memory. 
Similarly, in the NOR test, the recognition index was decreased in 
the scopolamine treated group in the chronic model indicating 
cognitive deficit. However similar results were not observed in 
the acute model further corroborating that the NOR test were not 
influenced by the acute scopolamine treatment. Donepezil is a 
well-established drug used to treat dementia associated with AD 
(Sumanth et al., 2010; Sumanth et al., 2010) and was hence used 
as the positive control in our in vivo study as it was said to be able 
to reverse scopolamine induced memory impairment in previous 
studies (Cachard-Chastel et al., 2008; Ghumatkar et al., 2015). The 

FIGURE 3 | Behavioral analysis for NOR and EPM. (A1 and A2) represents the graph plot for the recognition indices in NOR for both the acute and chronic 
scopolamine model respectively (B1 and B2) represents the graph plot for inflection ratios in EPM for both the acute and chronic scopolamine model. All the 
behavioral analysis was compared to the negative control (SCP 1 mg/kg). Data are expressed as Mean ± SEM, n = 8 and statistical analysis by one-way ANOVA 
followed by Dunnett test **P < 0.01 and ****P < 0.0001.

214

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Orthosiphon stamineus in Alzheimer’s DiseaseRetinasamy et al.

7 October 2019 | Volume 10 | Article 1216Frontiers in Pharmacology | www.frontiersin.org

rats that were treated with 50 mg/kg OS extract showed a decrease 
in transfer latency in which the rats were able to remember and 
enter the closed arm quickly compared to the training session, 
which was observable by the improved inflexion ratio, however the 
rats that were treated with 200 mg/kg did show improved memory 
retention as compared to the scopolamine treated group but not 
as that observed in the 50 mg/kg OS treated group. A ceiling effect 
was observed with higher doses. Therefore, based on the behavioral 
analyses, we can conclude that the spatial memory was improved in 
both the acute and chronic scopolamine model and this improved 
performance may be attributed to its enhanced cholinergic 
neuronal transmission.

Scopolamine is a non-selective muscarinic cholinergic 
receptor antagonist that inhibits the central cholinergic 
neuronal activity which in turn leads to impairment in spatial 
learning and memory in rodents and humans (Konar et al., 
2011). The central cholinergic system is also found to be closely 
associated with neurogenesis and/or cell proliferation in the 
hippocampus (Yoo et al., 2011). In this study, we illustrated 

the nootropic and neuroprotective effects of OS extract in a 
scopolamine induced amnesia model. The medicinal value of 
OS extract has been well recognized, particularly in regard 
to its anti-oxidant and anti-inflammatory activities (Arafat 
et al., 2008) In particular, rosmarinic acid which is the main 
flavonoid component of OS extract has demonstrated various 
pharmacological properties that may potentially hinder 
neurodegeneration and improve memory and cognitive 
functioning (Essa et al., 2012). Thus, this cocktail of flavonoids 
could be in turn responsible for the positive behavioral results 
observed.

The underlying mechanism for the improvement in 
memory retention observed in the behavioral studies was 
further explored by evaluating the biochemical parameters 
like expression of CREB1, BDNF. and TrkB genes in rats 
treated with OS extract and scopolamine. Adult hippocampal 
neurogenesis and neuroplasticity are modulated by many 
neurotrophic factors such as BDNF (Begni et al., 2017; Begni 
et al., 2017). BDNF is a small dimeric protein which is one of the 

FIGURE 4 | Gene expression in the rat hippocampi determined by real time-PCR. The genes included are (A) BDNF, (B) CREB1, and (C) TrKB. All changes in 
the expression levels were compared to the negative control group (SCP 1 mg/kg). Data are expressed as Mean ± SEM, n = 4 and statistical analysis by one-way 
ANOVA followed by Dunnett test *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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neurotrophic factors that play a vital role in regulating not only 
the neuronal development, maintenance and survival, but also 
in the cognition, formation and storage of memory. In 1991, 
reduced expression of BDNF were first seen in hippocampus 
samples from AD donors suggesting that this decrease may 
contribute to the progressive cell death characteristic of AD 
(Phillips et al., 1991). Furthermore, BDNF was also found 
to promote the survival of all major types of neurons related 
to functional changes in AD, and has been suggested as an 
essential contributor of the etiology of neurodegenerative 
disorders (Schindowski et al., 2008). As stated earlier, BDNF 
is involved in neuronal survival and plasticity that binds to 
high-affinity receptors, TrkB (tropomyosin receptor kinase B) 
(Givalois et al., 2004). Previous studies have also demonstrated 
that both BDNF and TrkB play a critical role in long-term 
synaptic plasticity in the adult brain (Schinder and Poo, 2000; 
Dwivedi, 2009). BDNF-TrkB interaction promotes the survival 
and differentiation of neurons and synaptic plasticity of the 

central nervous systems (Lu et al., 2008; Kim et al., 2010). Thus, 
a decrease in BDNF and its receptor, TrkB may lead to synaptic 
and cellular loss and memory deficits characteristic of AD. 
In the present study, the induction of scopolamine-induced 
amnesia showed suppression of BDNF and TrkB expressions 
in the hippocampus. Similar results were also observed in 
the prefrontal cortex whereby scopolamine reduced mRNAs 
of BDNF and TrkB. OS extract was found to have increased 
both the BDNF and TrkB stained cells in the hippocampus and 
the prefrontal cortex region. In the hippocampus, all the OS 
extract doses were found to be effective and showed maximum 
protection by increasing the BDNF and TrkB levels.

On the other hand, CREB1 is a co-factor of CREB and is 
essential for memory and synaptic plasticity in the central 
nervous system whereby disruption of phosphorylated CREB 
within the hippocampal region triggers the progression of 
neurodegenerative diseases like AD, Parkinson’s disease and 
Huntington’s disease (Lee et al., 2015). Previous studies have 

FIGURE 5 | DCX immunohistochemical analysis of the effects of OS extract in improving scopolamine-induced suppression of neurogenesis in the dentate gyrus. 
(A) DCX-positive staining in immature neurons is shown in the SGZ of the dentate gyrus. Photomicrographs of the hippocampal section of treatment groups was (i) 
Control (ii) SCP 1 mg/kg alone (iii) DPZ 1 mg/kg + SCP 1 mg/kg (iv) 50 mg/kg OS + SCP 1 mg/kg (v) 100 mg/kg + SCP 1 mg/kg (vi) 200 mg/kg + SCP 1 mg/kg. 
Representative photomicrographs were taken at magnifications of 40× and 200×. (B) Quantification of DCX population. Data are expressed as means Mean ± SEM, 
n = 4 – 6 and statistical analysis by one-way ANOVA followed by Dunnett test **P < 0.01, ***P < 0.001 and ****P < 0.0001.
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demonstrated that the activation of CREB ameliorated cognitive 
impairment via the cholinergic system (Kotani et al., 2006; Lee 
et al., 2015). This was congruent with our results whereby the 
expression of the CREB1 gene was reduced by scopolamine and 
pretreatment with OS extract markedly increased the CREB1 
mRNA levels. So, it can be suggested that OS extract could be a 
potent treatment for neurodegenerative diseases and its possible 
mechanism might be modulating the cholinergic activity via the 
CREB-BDNF pathway.

The hippocampus is a pivotal region of the brain that 
is critical for learning and memory function and is highly 
susceptible to neuronal injury produced by scopolamine-
induced cholinergic activity dysregulation, which can in turn 
trigger impairment of synaptic plasticity and loss of spatial 
learning memory (Mattson et al., 2002; Heo et al., 2014a). 
DCX is a marker of neuroblasts, neuronal precursor cells, and 
immature neurons. It is associated with structural plasticity in 
the adult mammalian brain, and has been used as a marker of 
newly formed neurons in the DG of the adult hippocampus 
(Bonfanti 2006; Heo et  al., 2014b; Heo et al., 2014b). DCX is 
involved in neuronal migration and development, and it is 
continuously expressed during adult neurogenesis thus enabling 
it to be used to measure neurogenesis (Knoth et al., 2010; Heo 
et al., 2014b). Previous studies have reported decreased DCX 
expression during aging and thus decrease in neurogenesis 
(Brown et al., 2003; Hwang et al., 2008; Heo et al., 2014b). In 
our study, similar results were observed whereby the number 
of DCX-positive cells in the hippocampal DG was decreased 
in scopolamine induced rats, whereas the OS treated rats were 
observed to have increased number of DCX-positive cells. 
However, further research is necessary to verify its mechanism. 
Based on the behavior results for EPM, improved inflexion 
index was observed for both 50 and 100 mg/kg which was 
equivalent to the positive group, Donepezil indicating that OS 
at these doses were able to completely reverse the scopolamine 
induced memory impairment. This was further reiterated by the 
increase in dendrites and neuron bodies observed. For the 200 
mg/kg dose, behavioral studies did show a slight improvement 
in inflexion index compared to the only scopolamine induced 
group but when compared to the positive group, Donepezil and 
the other 2 doses, 50 and 100 mg/kg groups, the improvement 

was not that convincing. This result was further supported as 
there were dendrites and neuron bodies observed during the 
cell counting but not as much as the other 2 doses.

CONCLUSION

In conclusion, the present work demonstrated that OS extract 
was able to revert the scopolamine induced amnesia in the rats 
thus further distinguishing its anti-amnesic effects. Additionally, 
we also established that the positive effects of OS extract could 
be mediated via the BDNF-TrKB pathway, CREB-BDNF 
pathway and also the hippocampal neurogenesis. This suggests 
that the OS extract could be a promising candidate as a memory 
enhancer or as a therapeutic treatment for neurodegenerative 
diseases like AD.
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