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Example pedigree for linkage analysis where the A/A genotype confers risk for affection status of a 
complex disease.

Figure by Jill S. Barnholtz-Sloan
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Genome-wide association studies (GWAS) for complex disorders with large case-control popu-
lations have been performed on hundreds of traits in more than 1200 published studies (http://
www.genome.gov/gwastudies/) but the variants detected by GWAS account for little of the 
heritability of these traits, leading to an increasing interest in using family based designs. While 
GWAS studies are designed to find common variants with low to moderate attributable risks, 
family based studies are expected to find rare variants with high attributable risk. Because fami-
ly-based designs can better control both genetic and environmental background, this study design 
is robust to heterogeneity and population stratification. Moreover, in family-based analysis, 
the background genetic variation can be modeled to control the residual variance which could 
increase the power to identify disease  associated rare variants. Analysis of families can also help 
us gain knowledge about disease transmission and inheritance patterns. 
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Although a family-based design has the advantage of being robust to false positives, novel and 
powerful methods to analyze families in genetic epidemiology continue to be needed, especially 
for the interaction between genetic and environmental factors associated with disease. Moreover, 
with the rapid development of sequencing technology, advances in approaches to the design 
and analysis of sequencing data in families are also greatly needed. 

The 11 articles in this book all introduce new methodology and, by using family data, substantial 
new findings are presented in the areas of infectious diseases, diabetes, eye traits, autism spectrum.
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THE IMPORTANCE OF FAMILY DATA
The study of Genetic Epidemiology has historically focused on
the inheritance of genetic factors and phenotypes within fami-
lies. In fact, much of genetics involves the study of patterns of
familial resemblance and identifying the factors that explain the
observed patterns. However, in recent years the most common
study design for investigating the genetic determinants of diseases
has become that of genome wide association studies (GWAS) uti-
lizing samples of unrelated individuals. The popularity of this
approach has been driven primarily by a flood of ever improving
technologies. Unfortunately, while GWAS using unrelated indi-
viduals have revealed a great many interesting disease associated
variants, these variants are typically of small effect and cannot
explain the observed patterns of heritability for many traits. In
contrast there are numerous examples of highly penetrant rare
segregating alleles that have been discovered using family based
approaches. Furthermore, family based approaches have other
advantages: the ability to overcome confounding factors such as
population stratification, and the numerous studies that have col-
lected large amounts of family data and which should continue to
be leveraged. Unfortunately, family based approaches to genet-
ics have an added layer of complexity at all stages from design to
analysis.

This editorial introduces the Frontiers in Genetics Research
Topic and Ebook: “Novel approaches to the analysis of family
data in genetic epidemiology.” The papers in this issue reveal that,
even with easy access to high-throughput genotyping tools such
as SNP arrays and next generation sequencing, family based study
designs still play an important role in untangling the complex web
of environmental and genetic factors that lead to disease.

FAMILY BASED STUDY DESIGNS
A number of articles in this issue shed light on unique study
designs and approaches to analyzing family data. Stein et al.
(2013) describe a household contact study design which involves
collecting data on households that may include both related and
unrelated individuals. They argue that this research study design
may be a powerful approach for jointly studying genetic and
environmental exposures. Similarly, Estus et al. (2013) describe
an approach to combining family based and population based
data by utilizing a combined association test. Wang et al. (2013)

describe an approach of using only the independent probands
from a family based study of autism to investigate genetic factors
that account for IQ differences in autism patients. Nelson et al.
(2013) describe a unique population based registry in Utah that
contains pedigree information for all residents of the state and
dates back many decades. Using this information they show that
certain subsets of prostate cancer, such as early onset, high BMI,
and lethal prostate cancer, cluster in families more strongly than
other forms of prostate cancer. They further suggest that future
studies should focus on families that display a clear clustering of
a more carefully defined cancer phenotype to reduce the signal
to noise ratio. Uemoto et al. (2013) discuss the power of regional
heritability mapping with a mixed model approach applicable to
both related and unrelated persons. This approach leverages the
fact that even distantly related individuals share small regions of
the genome that are inherited from a common ancestor.

ANALYSIS OF FAMILY DATA
The analysis of family data is generally more complex than the
analysis of unrelated samples, and, thus, specialized statistical
methods and software are often needed. Huang et al. (2013) pro-
pose a novel method of linkage analysis using sequence data on
large pedigrees. This method, which uniquely combines MCMC
based approximations with non-stochastic approaches, can be
used to map disease genes using linkage and/or association evi-
dence. Song and Elston (2013a) investigate the distributional
properties of a commonly used linkage analysis statistic. These
authors also describe a new web based software package which,
among other things, plots pedigrees, calculates genetic similarity
coefficients and performs visualization of the relatedness among
family members (Song and Elston, 2013b). Similarly, Lutz et al.
(2013) describe a method of using data from family based studies
to test for a direct genetic effect, an extension of a method previ-
ously used for analysis of unrelated individuals. Additionally, Lutz
et al. (2014) describe an approach to look at secondary pheno-
types in case-control genetic association studies that circumvents
the computational issues of a former approach.

CONCLUSION
Although GWAS with unrelated samples have become one of the
most common study designs currently used in human genetics,
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utilizing a family based design has many advantages. If a vari-
ant can be observed to co-segregate with a phenotype within a
family, the evidence for its association with the disease is greatly
strengthened. Family data provide excellent opportunities to find
highly penetrant rare variants, and thus discover important biol-
ogy informing us about disease. The articles in this issue illustrate
how family based genetic designs remain a foundational part of
human genetics.
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The increased feasibility of whole-genome (or whole-exome) sequencing has led to
renewed interest in using family data to find disease mutations. For clinical phenotypes
that lend themselves to study in large families, this approach can be particularly effective,
because it may be possible to obtain strong evidence of a causal mutation segregating
in a single pedigree even under conditions of extreme locus and/or allelic heterogeneity
at the population level. In this paper, we extend our capacity to carry out positional
mapping in large pedigrees, using a combination of linkage analysis and within-pedigree
linkage trait-variant disequilibrium analysis to fine map down to the level of individual
sequence variants. To do this, we develop a novel hybrid approach to the linkage portion,
combining the non-stochastic approach to integration over the trait model implemented in
the software package Kelvin, with Markov chain Monte Carlo-based approximation of the
marker likelihood using blocked Gibbs sampling as implemented in the McSample program
in the JPSGCS package. We illustrate both the positional mapping template, as well as the
efficacy of the hybrid algorithm, in application to a single large pedigree with phenotypes
simulated under a two-locus trait model.

Keywords: linkage analysis, linkage disequilibrium, MCMC, genome-wide association, PPL, PPLD, epistasis, whole-

genome sequence

INTRODUCTION
The increased feasibility of whole-genome (or whole-exome)
sequencing has led to renewed interest in using family data to find
disease mutations. For clinical phenotypes that lend themselves to
study in large families, this approach can be particularly effective,
because it may be possible to obtain strong evidence of a causal
mutation segregating in a single pedigree even under conditions of
extreme locus and/or allelic heterogeneity at the population level.

The template for this type of “single large pedigree” design
is straightforward. Linkage analysis can be used to narrow the
region of interest to a relatively small locus. From there, linkage
disequilibrium (LD, or association) analysis can be used for fine-
mapping within the linked locus. This step can be based on all
sequence variants within the region (whether measured directly
in all individuals or partially imputed from selected individuals
with sequence and single nucleotide polymorphism (SNP)-chip
data in remaining family members). That is, rather than relying
solely on bioinformatic filtering approaches to reduce the set of
all observed sequence variants down to a manageable number, the
set of candidate sequence variants is obtained by (i) restricting the
region of interest based on co-segregation with the phenotype, and
then within that region, further restricting the set of interesting
variants to specific individual mutations co-segregating with the
phenotype. Of course, in the presence of appreciable LD among
mutations, further filtering and follow-up experiments may be
needed to resolve which among a set of correlated mutations is the
functional one.

One challenge to this approach is that linkage analysis of large
pedigrees is itself not trivial. As is well-known, the Elston–Stewart
(ES) algorithm (Elston and Stewart, 1971) can handle relatively
large pedigrees, but only a small number of markers at a time.
This was less of an issue in the era of microsatellite marker maps,
but renders ES relatively ineffective when conducting multipoint
analyses using SNPs, because relying on a small number of SNPs
per calculation leaves substantial gaps in map informativeness. On
the other hand, the Lander–Green (LG) algorithm (Lander and
Green, 1987), which can make simultaneous use of large numbers
of SNPs, is constrained to smaller pedigrees. Pedigrees with more
than around 25 individuals can exceed the limits of the LG algo-
rithm, but these are precisely the pedigrees that can show strong
evidence on their own. Trimming or breaking up pedigrees to
circumvent LG limitations can lead to substantial loss of infor-
mation and potentially to misleading results. This is also true of
the practice of selecting a small number of affected individuals to
use for identity-by-state (IBS) sharing of rare sequence variants,
rather than utilizing identity-by-descent (IBD) methods to track
variants through the full pedigree structure.

One widely used approach to circumventing the computational
complexity of large pedigree calculations is to use statistical meth-
ods that avoid calculation of the full pedigree likelihood, such
as variance-components (as implemented, e.g., in Almasy and
Blangero, 1998). Another familiar alternative is to use Markov
chain Monte Carlo (MCMC). This supports the use of the full
likelihood, but the difficulties of optimizing performance of
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samplers tends to limit flexibility in handling the trait model. In
particular, we have developed a suite of linkage methods with a
very flexible underlying framework for handling the trait model
(Vieland et al., 2011) by integrating trait parameters out of the like-
lihood, one advantage of which is the ease with which new trait
models or additional trait parameters can be added to the calcula-
tion. MCMC would require separate development and tuning of
samplers for each variation of the model, and success in develop-
ing well-behaved samplers for all variations is far from guaranteed.
For this reason, we have been reluctant to turn to MCMC in the
past.

Here we take a novel hybrid approach, combining MCMC
to handle the marker data, while retaining the non-stochastic
approach to trait–model integration implemented in Kelvin
(Vieland et al., 2011). Specifically, we use the graphical-model-
based MCMC approach of (Thomas et al., 2000) for the marker
data combined with the adaptive numerical integration algorithm
described in detail in Seok et al. (2009) for the trait data. This
allows us to exploit the power of MCMC in the context of the
posterior probability of linkage (PPL) framework (Vieland et al.,
2011). We illustrate the application of this new approach by
applying it to a single large family.

MATERIALS AND METHODS
In this section, we (i) present background on Kelvin, the software
package in which the PPL framework is implemented, and (ii) on
McSample, which implements the underlying MCMC techniques
used here. We restrict attention to background directly relevant to
this paper (see Vieland et al., 2011 for details on the PPL framework
and Thomas et al., 2000 for details on the MCMC methodology).
We then (iii) describe the software engineering used to implement
the new hybrid method, and (iv) describe the application of the
new method to a single large pedigree.

KELVIN
The PPL framework, as implemented in the software package
Kelvin (Vieland et al., 2011), can be used to calculate two pri-
mary statistics, both illustrated here: the PPL and the PPLD
(posterior probability of linkage disequilibrium, or trait–marker
association). The PPL framework is designed to accumulate evi-
dence both for linkage and/or LD and also against linkage and/or
LD. All statistics in the framework are on the probability scale,
and they are interpreted essentially as the probability of a trait
gene being linked (and/or associated) to the given location (or
marker). The PPL assumes a prior probability of linkage of 2%,
based on empirical calculations (Elston and Lange, 1975), while
the PPLD assumes a prior probability of trait–marker LD of 0.04%
based on reasoning in Huang and Vieland (2010). This is one
caveat to interpretation of the statistics as simple probabilities,
since values below the prior indicate evidence against linkage
(or LD), while values above the prior indicate evidence in favor.
Note too that the small prior probabilities constitute a form of
“penalization” of the likelihood; moreover, as posterior proba-
bilities rather than p-values, statistics in the PPL framework do
not require correction for multiple testing (see, e.g., Edwards,
1992; Vieland and Hodge, 1998 for further discussion of this
issue).

One distinguishing feature of this framework is how it handles
the trait parameter space. An underlying likelihood in a vector of
trait parameters is used. The base models are a dichotomous trait
(DT) model parameterized in terms of a disease allele frequency,
three genotypic penetrances, and the admixture parameter α of
Smith (1963) to allow for intra-data set heterogeneity; and a quan-
titative trait (QT) model parameterized in terms of a disease allele
frequency, three genotypic means and variances corresponding to
normally distributed data at the genotypic level, and α. The QT
model has been shown to be highly robust to non-normality at
the population level and it is inherently ascertainment corrected,
so that no transformations of QTs are necessary prior to analysis
(Bartlett and Vieland, 2006). Models assuming χ2 distributions
at the genotypic level are also available to handle QTs with floor
effects. The basic QT model can also be extended to cover left- or
right-censoring, using a QT threshold (QTT) model (Bartlett and
Vieland, 2006; Hou et al., 2012).

Whatever specific model is used, Kelvin handles the unknown
parameters of the model by integrating over them for a kind of
model-averaging. [Independent uniform priors are assumed for
each (bounded) parameter, with an ordering constraint imposed
on the penetrances (DT) or genotypic means (QT); see Vieland
et al., 2011 for details.]. Kelvin also uses Bayesian sequential updat-
ing to accumulate evidence across data sets, integrating over the
trait parameter space separately for each constituent data set. This
is an explicit allowance for inter-data set heterogeneity with respect
to trait parameters, and it also means that the number of param-
eters being integrated over does not go up with the number of
data sets analyzed (see below). A related technique is Kelvin’s use
of liability classes (LCs): individuals are assigned to an LC, and
the integration over the penetrances or means is done separately
for each LC. This is an explicit allowance for dependence of the
penetrances (or means) on a classification variable. While current
computational restrictions preclude the use of more than three or
four LCs at a time, one very important use of this model is incor-
poration of gene–gene interaction by classifying individual based
on their status at a known gene or SNP; we illustrate this approach
below.

Due to the nature of the underlying trait models, which are
formulated based on genetic considerations without regard to
computational convenience, analytic solutions to the resulting
multi-dimensional integrals are not possible. Instead, Kelvin car-
ries out the integration over the trait parameters using a modified
version of DCUHRE (Berntsen et al., 1997; Seok et al., 2009), a
sub-region adaptive or dynamic method, tailored to the specific
features of our application. While non-stochastic in nature, the
method tunes the amount of resampling of the parameter space
to the shape of that space (peakedness) on a position-by-position
basis for each data set, resulting in a highly efficient approach to
obtaining accurate estimates of the integral. The algorithm is the-
oretically guaranteed to be accurate for up to 13–15 dimensions,
a limit that we generally do not exceed (see above); and because
the method is non-stochastic, we do not need to worry about
burn-in, convergence or other issues that can complicate Monte
Carlo-based approaches.

Kelvin source code is available for download at http://kelvin.
mathmed.org/ and Kelvin documentation is accessible on the same
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site. Help with access, installation, and use can be requested by
emailing kelvin@nationwidechildrens.org.

McSAMPLE
McSample is a program for sampling the inheritance states
in a pedigree of relatives from the conditional distribution
given the structure of the pedigree, observed genotypes and/or
phenotypes for individuals in the pedigree, and a model for
the founder haplotypes. It is written in Java and is part
of the Java Programs for Statistical Genetics and Computa-
tional Statistics (JPSGCS) package available from Alun Thomas
(http://balance.med.utah.edu/wiki/index.php/Download). The
sampling is done using blocked Gibbs updates of two types: ones
involving all the inheritance states associated with a locus, and
ones involving inheritance states associated with sets of individ-
uals as described by Thomas et al. (2000). Founder haplotype
models can be derived under the assumption of linkage equilib-
rium from the allele frequencies in a sample. It is also possible
to estimate models under LD using the FitGMLD program that
is also available in JPSGCS, as described by Thomas (2010) and
Abel and Thomas (2011). In the case that LD is allowed, only
locus block Gibbs updates can be made which typically leads to
poorer mixing of the MCMC sampler. The input to McSample
must be provided in the format used by the LINKAGE programs
(Ott, 1976) with extensions when there is LD. Missing data are
allowed in the input. In McSample output, the inheritances are
specified by labeling each founder allele uniquely and listing the
alleles inherited by each person in the pedigree. There are no miss-
ing data in the output. A different output file is created for each
iteration. These output files can then be used as input, e.g., to stan-
dard lod score calculating programs, with the results averaged over
iterations. Note that a standard application would consist of aver-
aging over MCMC-based marker likelihoods for a single, fixed trait
model.

SOFTWARE ENGINEERING
The only difficulty in combining MCMC to handle the marker
data with Kelvin’s non-stochastic algorithm for the trait param-
eter space is one of order of operations. On the MCMC side,
calculations are done on a per-pedigree basis for an entire chro-
mosome at a time, and likelihoods are averaged across iterations.
For the trait model, however, the adaptive algorithm works by
averaging the likelihood ratio (LR, not likelihood; see Vieland
et al., 2011 for details) across pedigrees, one calculating posi-
tion at a time as we walk down each chromosome. Thus there
are two iterative processes that need to be decoupled and prop-
erly tracked: first, repeated MCMC marker-sample generation for
each pedigree across the chromosome; second, repeated (adaptive)
trait-space sampling across pedigrees at each position on each
chromosome, conditional upon the marker data obtained from
the MCMC runs and the trait data. In order to minimize confu-
sion in the exposition that follows, we use “iteration” to describe
each individual marker configuration as generated by the MCMC
routine in obtaining the marker likelihood, and “trait vector” to
describe each individual vector of values for the trait parameters
generated by Kelvin to calculate the trait likelihood conditional on
the marker information.

To address the required bookkeeping issues while maintaining
modular code with minimal changes to existing logic, we adapted
Kelvin by simply inserting a set of McSample runs at the begin-
ning of the calculation. At this step, multiple MCMC iterations are
generated for each pedigree conditional on the marker data only.
Each iteration creates a set of pedigree files with fully informative,
phased marker genotypes for each pedigree and each chromosome.
We create a single pedigree file incorporating all iterations for each
pedigree, with the pedigree label modified to reflect both the pedi-
gree and the iteration. To calculate the LR for a pedigree, we first
calculate the LR for each iteration as if it represented a unique pedi-
gree. For each trait vector we average these LRs across iterations
for each pedigree at each calculation position along the chromo-
some, returning a set of LRs by pedigree by position for each trait
vector. These LRs are multiplied across pedigrees to obtain the LR
by position across pedigrees for each vector, and averaged over all
trait vectors. The average LR per position is then evaluated, on the
basis of which additional trait vectors may be added in an itera-
tive process until the adaptive trait–model integration algorithm
terminates.

The marker likelihood calculation itself is done using the ES
algorithm, based on the two markers flanking each calculation
position in turn. Because each individual MCMC iteration is fully
phased and fully informative, using two markers is equivalent to
using all markers with computational complexity no longer a func-
tion of the total number of markers. (Indeed a single marker could
be used, but because of Kelvin’s built-in algorithm for walking
down each chromosome in multipoint analysis, three-point calcu-
lations were simpler to implement.) Trait calculations per position
are also done based on the ES algorithm regardless of pedigree
complexity (Wang et al., 2007). Thus the overall complexity of the
MCMC-PPL analysis is linear to the product of the number of
iterations, the number of pedigrees, the number of individuals
and the number of trait vectors, the last of which differs across
calculating positions.

In order to decouple the adaptive trait–model integration
process from the likelihood calculations, we use the software engi-
neering trick of employing a client–server architecture together
with a database to facilitate the operations (see Figure 1). The
client is the driver for the generation of trait vectors, deciding
which trait vectors are needed for the likelihood evaluation at each
position, as described in detail in Seok et al. (2009). The client
requests likelihoods for the trait vectors from the server using
the database as an intermediary. If requested trait vectors are not
available in the database, the client adds the required entries to
the database for each pedigree for the given calculation position.
Once the likelihoods are available for all pedigrees, the client uses
them to calculate integrals for the current set of trait vectors and
to decide whether additional trait vectors are needed, in which
case the process is repeated until the client determines that no
additional sampling of the trait vector space is needed.

On the server side, once initiated the server searches the
database for trait vector entries flagged as new. It performs the
needed likelihood calculations, stores the results in the database,
and marks the entry for that trait vector, pedigree, and posi-
tion as complete/available. Here the server is not a physical node,
but rather a likelihood-calculation process. Typically our analyses
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FIGURE 1 | Client–server architecture in Kelvin.

involve a small number of client processes and many likelihood
servers. (Thus this is the reverse of the typical client–server model
with a small number of servers and many clients. Nonetheless,
our likelihood client plays the usual client role, by sending many
requests to the likelihood servers.) The integration process is fast
and efficient, requiring very little in terms of computing resources,
and for this reason only a few client processes are required. By
contrast, the likelihood calculations are highly computationally
intensive. Thus the more servers, the faster the overall speed of
the analysis. Here the database serves not only as a bookkeeping
device, but also as the single server interface to a large pool of
server processes.

The client–server architecture supports considerable flexibility
in overall Kelvin functionality. It allows us to dynamically add and
delete servers as needed. It also allows us to dedicate each server to
one pedigree, with the amount of memory and number of cores
tailored to the complexity of the pedigree, for efficient use of a
distributed computing resource. The client is also by design indif-
ferent as to how the underlying marker likelihood is calculated,
i.e., the mechanism used to request and retrieve likelihoods is the
same regardless of what approach was used to generate the likeli-
hood. This allows us in principle to mix and match approaches to
the marker data, e.g., using the LG algorithm for pedigrees small
enough for LG to handle while simultaneously employing MCMC
for larger pedigrees, all within the same data set.

APPLICATION TO SIMULATED DATA
To illustrate the use of this new hybrid MCMC–Kelvin approach,
we selected a single large pedigree from an ongoing study of
real human data. The pedigree has 48 individuals spanning
four generations (see Figure 2); all but 10 individuals were
genotyped. We used actual genotypes for 664,278 SNPs (after
comprehensive cleaning) from the Illumina Human OmniEx-
press 12 V1.0. However, we simulated a new phenotype (for all
but the 10 individuals missing genotypes) by selecting two SNPs
(rs6851302@178.68cM on chromosome 4, which we call locus
1, and rs1145787@102.65cM on chromosome 6, which we call

locus 2), with population frequencies (based on additional data
not used here) matching our generating model as specified below;
these SNPs were selected additionally for entering the pedigree
through the top-most founders and segregating to the next gener-
ation at least four times to ensure they would be at least moderately
informative in this pedigree.

Phenotypes for each individual were generated assuming an
underlying two-locus (2L) disease model based on genotypes at
this pair of SNPs. The generating model stipulated disease gene
frequency of 1% (locus 1) and 20% (locus 2), and a fully pene-
trant dominant–dominant (DD) model. This model was selected
from a set of 2L models considered in Vieland et al. (1992), which
suggested that locus 1 would be moderately easy to map given
sufficient meiotic information, while locus 2 might be very diffi-
cult to map; the model also represents a major gene effect with a
modifier, something we might be interested in studying individual
pedigrees. However, the purpose here is not to undertake a com-
prehensive study of power under different models, but simply to
illustrate our approach in application to a single, albeit possibly
atypical, pedigree.

Our overall approach to analyzing the pedigree is as follows:

1. We thinned the marker map following standard procedures to
eliminate marker–marker LD, after filtering out markers with
minor allele frequencies lower than 25%, and applied the new
hybrid MCMC–Kelvin method to perform genome-wide link-
age analysis. For purposes of this analysis the locus 1 and 2 SNPs
were omitted from the marker set analyzed. We based the anal-
ysis on 2,000 MCMC iterations combined from 10 independent
sampling processes (with different seeds), each with a 1,000-
sample burn-in and 200 iterations/sampling run. (See below for
rationale.) Linkage calculations were made every 2 cM under
Kelvin’s standard single-locus (SL) DT model.

2. We applied the PPLD to fine map under the (primary) linkage
peak obtained in the first step, now utilizing all of the available
SNPs (including those trimmed out during the first step and
the locus 1 and 2 SNPs). While we did not have whole-genome
sequence available for this pedigree, if such data were available,
then this step would be applied to each variant in turn under
the peak(s).

3. We repeated step 1, this time conditioning on genotypes at the
most highly associated SNP from step 2, under a 2L model.
Specifically, we assigned each individual to a LC based on the
individual’s SNP genotype. Kelvin then integrates over the trait
parameters separately within LC as described above, which
allows for dependence of penetrances on LC. We rescanned the
genome under this model in order to look for possible modifier
loci interacting with the gene under the primary linkage peak.
We also carried out conditional 2L-PPLD analyses to see if we
could fine map under a secondary linkage peak down to the level
of the individual modifier SNP (or sequence variant, if we had
sequence available).

In addition to these analyses, we also used the simulated pedi-
gree to assess variability of the MCMC portion of the calculations.
First, we repeated the entire MCMC process as described above
five times, and examined variability of the results across these
five runs. Second, we ran a single, much longer sampling process
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FIGURE 2 | Structure of the analyzed pedigree (filled, affected; empty, unaffected; ?, unknown phenotype and genotype).

(20,000 iterations) for which convergence was almost certainly
achieved, then compared our results as described in step 1 with
the final 5,000 iterations from the tail (post-convergence) end of
this run. Finally, we considered variability across individual runs
of 200 iterations with a 1,000-sample burn-in, that is, the length
of runs that were averaged over in step 1 above.

RESULTS
In this section we (i) show results of the analysis of the single
large pedigree. We then (ii) consider the accuracy of the MCMC
component of the analysis.

DATA ANALYTIC RESULTS
Figure 3A shows the initial linkage scan. A peak on chromosome
4 clearly stands out above background noise, and we considered
this to be our primary linkage finding. The PPL is elevated across
a broad region of the chromosome (Figure 3B). However, the
strongest evidence of linkage spans a relatively short region at
approximately 175–181 cM.

For purposes of fine-mapping, we considered any positions
on this chromosome with PPL ≥ 10%. The resulting (non-
contiguous) region contained 9,433 SNPs from the full original
marker set. Forty-nine percent of the analyzed SNPs within the
linked regions gave evidence against LD (PPLD < 0.0004), while
only six SNPs (0.064%) showed PPLD ≥ 5% (Table 1). Two SNPs
(rs6851302 and rs654089) clearly stand out from the rest, with
PPLD = 0.43 in both cases. These two are in complete LD with

Table 1 | Chromosome 4 SNPs with PPLD ≥ 5%.

Chromosome SNP cM BP PPLD

4 rs1800792 157.60 155753857 0.07

4 rs11100000 158.54 156542439 0.1

4 rs1460128 158.54 156544989 0.09

4 rs11934037 178.57 176255309 0.06

4 rs6851302 178.68 176328488 0.43

4 rs654089 178.71 176347501 0.43

one another (R2 = 1) and in fact they share the same genotypes
across this pedigree; rs6851302 and rs11934037 also show some
LD (R2=0.28). Note that even had we restricted fine-mapping to
just the best supported region (175–181 cM), we would have suc-
cessfully found this LD peak. Also for reference purposes, had
we selected all 15,531 SNPs from all regions across the entire
genome with PPL ≥ 10%, only one additional SNP would have
given PPLD ≥ 5% (rs9916791, at 21.73 cM on chromosome 17,
PPLD= 0.05).

We then conditioned on rs6851302 in order to rescan the
genome for evidence of modifier loci. (Clearly choosing to use
rs11934037 instead would yield identical results.) Figure 4A shows
the 2L genome scan and Figure 4B shows the difference between
the 2L and SL-PPLs across the genome (a measure of how much
the data “prefer” the 2L model over the SL model). There are no

FIGURE 3 | (A) Single-locus (SL) genome scan; (B) chromosome 4 alone.
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FIGURE 4 | (A) Two-locus (2L) genome scan; (B) 2L-PPL – SL-PPL across the genome; note that the scale of the y -axis is [−0.1, 0.1]. (C) Chromosome 6 alone.

FIGURE 5 | (A) SL-PPLD under linkage peak region on chromosome 4 with solid line depicting PPL; (B) 2L-PPLD – SL-PPLD across linked region on
chromosome 6; (C) 2L-PPLD under the 2L linkage peak on chromosome 6.

large 2L peaks (Figure 4A). However, using the difference between
the 2L and SL-PPLs as an indication of how much the data “prefer”
the 2L model over the SL model (Figure 4B), the largest positive
difference occurs on chromosome 6 at 112 cM (SL-PPL= 5%; 2L-
PPL = 10%). The doubling of the PPL under the epistasis model
suggested a possible modifier gene location. We determined the
width of the linkage peak by visual inspection as covering approxi-
mately 100–114 cM (see Figure 4C), and ran conditional 2L-PPLD
analyses on all 3,120 SNPs in this region.

Figure 5A shows the SL-PPLD under the linkage region on
chromosome 4, and Figure 5B shows the 2L-PPLD – SL-PPLD
across the linkage region on chromosome 6; again a single region
is elevated in the 2L analysis, with the highest positive change
in the PPLD occurring at rs1145787 (SL-PPLD = 0.71%, 2L-
PPLD = 1.48%; see Figure 5C). While these numbers are very
small, they are still considerably higher than the prior probabil-
ity of LD, and viewed in terms of 2L–SL differences, rs1145787 is
clearly salient.

In summary, SL linkage analysis in this single pedigree enabled
us to narrow the primary genomic region of interest to 6 cM
on chromosome 4, while fine-mapping based on LD within this
region detected the true causal variant (locus 1) within this region
along with one other variant in complete LD with the causal one.
The modifier locus was not salient in the initial linkage scan,
however, 2L analysis conditioning on genotype at locus 1 led to
discovery of the true modifier variant. While both the PPL and the
PPLD at this locus were relatively small, they were easily detected
based on the amount of increase of the 2L signals relative to the
original SL signals.

Kelvin can also be used to estimate the trait model using
maximum likelihood estimators (m.l.e.’s) following the theory
developed in Clerget-Darpoux et al. (1986), Elston (1989), Green-
berg (1989), and Vieland and Hodge (1998). While our numerical
integration routine is not optimized for maximization and there-
fore returns approximate rather than exact m.l.e.’s, it is interesting
to note the models obtained from these analyses (Table 2). The
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Table 2 | Approximate maximum likelihood trait parameter estimates.

Analysis Locus Disease allele frequency Penetrances

SL-PPL 1 0.011 0.75, 0.56, 0.006

SL-PPLD 1 0.022 0.50, 0.49, 0.01

2L-PPL 2 0.125 0.99, 0.97, 0.011

2L-PPLD 2 0.25 0.99, 0.98, 0.011

Penetrances are given for: (SL), D1D1, D1d1, and d1d1 genotypes, respectively,
where “D1” indicates the putative disease allele at locus 1; (2L) D2D2, D2d2,
and d2d2 genotypes, respectively at locus 2, among those individuals who carry
D1D1 or D1d1.

disease allele frequency is estimated quite accurately by both
PPL and PPLD analyses at locus 1; while at locus 2, the 2L-
PPLD in particular returns an estimate reasonably close to the
generating model. (Particularly at locus 2 where the PPL and
PPLD themselves are quite low, the standard error of these esti-
mates is likely to be substantial. Kelvin itself has no direct way
to calculate these, but see Nouanesengsy et al., 2009 for further
discussion.) More interesting, however, are the penetrance esti-
mates. While there is no exact analog of the random reduced
penetrance parameter of the SL model for a 2L generating model,
using the approach described in Vieland et al. (1993), we obtain a
SL penetrance vector “corresponding” to the generating model
of (0.62, 0.62, 0) for the putative disease genotypes, respec-
tively. This vector is approximated very closely by both the PPL
and PPLD m.l.e.’s at locus 1. At the modifier locus, consid-
ering only individuals coded in the “dominant” LC based on
locus 1, the estimated penetrance vectors indicate a virtually fully
penetrant 2L dominant–dominant epistatic model. Thus over-
all, we were able not only to map both loci to the level of the
individual variant, but also to determine the correct generating
model with great accuracy, all in a single, highly informative
pedigree.

MCMC ACCURACY
As seen in Figure 6A, repeating the entire MCMC sampling process
five times produced very similar, albeit not identical, PPL profiles
across chromosome 4. The marker log likelihood for chromosome
4 from the single long MCMC run still showed some upward con-
vergence up to about 14,000 iterations, at which point it remained
essentially flat. Comparing the final (post-convergence) 5,000 iter-
ations with the original results (Figure 6B) again supported the
accuracy of the original analysis in terms of the PPLs themselves.
Again, however, the results are not identical. Figure 6C shows
PPLs based on each of the component shorter sampling runs (as
averaged over to obtain the original results) considered indepen-
dently. There is considerable variation, particularly at positions
further away from the true casual SNP. This strongly suggests, not
surprisingly, that shorter runs of this length are not individually
sufficient.

However, averaging across this set of shorter runs did enable
us to achieve accurate results. Compared to a single, extremely
long run, this is also a highly cost-effective approach insofar as it
enables us to distribute the MCMC iterations to run concurrently
on separate processors. On our hardware, the pooled-iteration
process (using 10 servers with 2.5 GHz CPUs and 8 G memory)
required 4 h, 40 min to complete chromosome 4, while the sin-
gle long run (using one server) required 3 days, 5.5 h. Additional
simulation studies are needed to further compare averaging across
shorter sampling runs with use of single long sampling runs, espe-
cially across different pedigree structures with different patterns
of missing data.

DISCUSSION
We have illustrated an approach to gene discovery based on a single,
highly informative family. This approach involves narrowing the
genomic region(s) of interest using linkage analysis, followed by
fine-mapping based on targeted LD (association) analysis in the
same family. We have additionally illustrated how not just primary
but even modifier genes can in principle be detected within a single
pedigree.

FIGURE 6 | (A) Five replicates of chromosome 4 analysis; (B) original analysis compared to single long sampling run; (C) original (averaged) analysis compared
to individual component short runs.
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Of course, we“cheated”by including the two causal SNPs in our
association panel. In general, we might expect to have data from a
standard SNP chip available on most family members for purposes
of linkage and association mapping, together with sequence on a
subset of individuals. In this case, the association analyses could
be conducted on every observed sequence variant in the regions
of interest, ensuring that the true mutation would be included
(assuming that the relevant disease-causing element is a SNP). Of
course to do this, the sequence variants would need to be mea-
sured in many family members, but at least in principle this could
be done in part through imputation of sequence using sequenc-
ing in a subset of individuals combined with SNP data on the
remaining individuals.

We chose our 2L generating model to be moderately mappable
at the primary locus but with a modifier locus that was much
harder to find. Of course in practice, realistic models may present
more difficult challenges at all component loci, and this illustration
is in no way to be construed as an estimate of any kind of power
to find the genes. However, one salient feature of this approach
is that it is not dependent on bioinformatic “filtering” approaches
to prioritizing sequence variants as likely candidates. Instead, fol-
lowing the now classical reverse genetic paradigm, we rely entirely
on positional mapping even at the variant-selection stage. Again,
in practice this is likely to still leave a number of variants as can-
didates, since highly correlated variants under a peak may still be
difficult to resolve statistically. Nevertheless, the number of such
variants likely to be left on the list of candidates is greatly reduced
by focusing on the linked and associated regions.

As noted above, the PPL framework is designed to measure
strength of evidence, and not to test hypothesis or serve as a
decision making algorithm. Thus at no point in the discussion
did we consider “significance levels” or decide whether the evi-
dence was “strong enough” to declare success. Rather, we relied
on the accuracy of the framework overall as an evidence mea-
surement technique, and simply followed up on the strongest
evidence wherever that occurred. In this particular case, doing so
led us to find both genes and both causal SNPs, without any “false
positive” results. In practice, of course, difficult decisions would
need to be made before, e.g., expending substantial resources fol-
lowing up functionally on the locus 2 SNP, given the very low
PPLD. Nevertheless, had we set very stringent significance criteria
from the outset and refused to follow-up on the strongest evi-
dence regardless of the absolute numbers involved, we would have
missed the modifier locus entirely. We note too that in consortium
settings, Kelvin’s use of Bayesian sequential updating to accumu-
late evidence across data sets provides an alternative to traditional
meta-analysis. Access to primary data, and not just summary mea-
sures such as p-values, is required for this. However, Kelvin outputs
posterior marginal distributions, which can be used to sequentially

update results across data sets without the need to actually pool
the data themselves across sites.

The study design utilized here presented us with one salient
computational challenge: how to compute the (parametric) like-
lihood for so large a pedigree. For this purpose we engineered a
hybrid version of Kelvin using MCMC for the marker data and a
non-stochastic method for integration over the trait parameters.
This method proved to be quite accurate and computationally fea-
sible, at least for data of this type. Of course the method can also
be applied to sets of large pedigrees, and as noted, combined with
ES- or LG-based analyses of smaller pedigrees or pedigrees with
sparser marker maps for greater computational efficiency when
analyzing data sets with variable family sizes.

Further studies in additional pedigree structures are needed
to make specific recommendations regarding burn-in lengths and
number of iterations needed to maximize the chances of accurate
results for the MCMC portion of the calculation. In this regard,
our new method is no better and no worse than McSample itself.
However, we have some reason to think that the PPL and PPLD
themselves may be relatively robust to some level of sampling
variability in the underlying marker likelihood, possibly in part
because integration over the trait model protects against modest
amounts of imprecision at the marker level. This remains a subject
for further investigation.

In this particular application, however, 2,000 samples derived
from pooling the results of 10 independent sampling processes,
each with 200 iterations following a 1,000-sample burn-in, appears
to have been highly accurate. Still, this approach remains out of
reach for genome-wide analysis on a typical desktop machine,
requiring instead a distributed cluster environment to make
real-time completion of results feasible. As high performance
computing environments become more common for purposes
of whole-genome sequence analysis and other “-omics” appli-
cations, we hope that this will become less of an impediment
to analyses of the sort proposed here. Given the costs of data
collection, we would argue that the additional computational
demands are worth while if the methods are effective. The most
definitive demonstration that they were effective in the current
application is in the final results: successful mapping of two inter-
acting disease loci down to the level of the individual causal
variants.
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Most genetic epidemiological study designs fall into one of two categories: family based
and population-based (case–control). However, recent advances in statistical genetics call
for study designs that combine these two approaches. We describe the household contact
study design as we have applied it in our several years of study of the epidemiology
of tuberculosis. Though we highlight its applicability for genetic epidemiological studies
of infectious diseases, there are many facets of this design that are appealing for
modern genetic studies, including the simultaneous enrollment of related and unrelated
individuals, closely and distantly related individuals, collection of extensive epidemiologic
and phenotypic data, and evaluation of effects of shared environment and gene by
environment interaction. These study design characteristics are particularly appealing for
current sequencing studies.
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INTRODUCTION
The advantages of family studies for genetic epidemiology have
long been established (Stein and Elston, 2009). Early methods in
genetic epidemiology utilized twins, sibling pairs, and other rel-
ative pairs to establish the relative recurrence risk of a disease.
Segregation analysis and traditional linkage analysis can only be
conducted using pedigree data. Concerns of population stratifica-
tion are easily accounted for. In addition to these analytical issues,
family studies have the advantage of investment of relatives; if
someone in the family has a particular disease, family members
are more likely to participate in research in order to somehow help
their relative and others affected with the disease. Today, with the
advent of whole exome and whole genome sequencing technolo-
gies, there are additional advantages of family studies, which we
shall review below.

These advantages of family studies are further amplified for
genetic epidemiological studies of infectious diseases. It was once
believed that tuberculosis (TB) was a familial disease because it
occurred within families. Once the disease was determined to
be caused by a mycobacteria, the ideas surrounding the famil-
ial component recessed to the background. Now decades after
the causal pathogen, Mycobacterium tuberculosis (Mtb), has been
identified, many studies have shown that human genetic fac-
tors influence risk for development of TB infection and disease
(Moller and Hoal, 2010; Stein, 2011). Development of TB infec-
tion and disease is essentially a phenotype resulting from a gene by
environment interaction, so a well-constructed genetic epidemio-
logical study must account for host genetics, shared environment,
and gene x environment interaction. In this paper, we provide

an overview of our household contact (HHC) study of TB and
its advantages for genetic epidemiological studies, particularly
in light of study designs best suited to identify rare genetic
variants.

OVERVIEW OF THE HOUSEHOLD CONTACT STUDY DESIGN
In its natural history, TB is a two-stage process of infection fol-
lowed by disease (Comstock, 1982). The household provides a
natural setting to study TB because the genetic epidemiology of
the two stages of infection and disease can be characterized. In our
previous studies (Guwatudde et al., 2003), we defined a house-
hold as a group of people living within one residence and share
meals together with a head of family who makes decisions for the
household. Extensive epidemiological data are collected on indi-
vidual risk factors, such as proximity and frequency of contact
with the index case as well as other factors that may increase sus-
ceptibility, characteristics of the home that may increase the risk of
transmission, as well as clinical data. Blood samples are obtained
at baseline and longitudinally for genetic and immunologic
studies.

In our HHC study, the first TB patient is identified in the house-
hold and referred to as the index case. Thereafter individuals who
reside in the same household with the index case for a certain
period prior to the diagnosis of the index case are identified and
screened for TB as HHCs. Each HHC is also evaluated clinically for
latent Mtb infection with the tuberculin skin test (or interferon-γ
response assay in the future). Individuals who are tuberculin skin
test negative have repeated skin tests several times over the 2-
year study follow-up. Thus, the HHC evaluation is efficient in

www.frontiersin.org April 2013 | Volume 4 | Article 61 | 16

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Applied_Genetic_Epidemiology/10.3389/fgene.2013.00061/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=CatherineStein_1&UID=79365
http://community.frontiersin.org/people/LASHAUNDAMALONE/89311
http://community.frontiersin.org/people/EzekielMupere/89319
mailto:catherine.stein@case.edu
http://www.frontiersin.org/
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


“fgene-04-00061” — 2013/4/27 — 13:28 — page 2 — #2

Stein et al. Household contact studies for genetics

identification of individuals with different phenotypes or stages of
TB infection in a household including: (1) exposed and uninfected,
(2) exposed and infected without disease, (3) recent infection, and
(4) active TB. These different household phenotypes or categories
can provide the basis to compare genetic factors associated with TB
infection and disease. As all of these stages of infection and disease
are diagnosed, both the index case and his/her contacts receive
appropriate clinical care and treatment, which is an immediate
benefit to all study participants.

The design of the HHC study is ideal for evaluating genetic
susceptibility to TB (Stein et al., 2003, 2005, 2007, 2008). The fam-
ily structure and the ability to identify sibling pairs can form the
basis for linkage analysis studies. Evaluation for new candidate
genes for TB can be done through conduct of association stud-
ies such as case–control, family based, and/or case–parent studies.
Heritability to TB can be determined using standard quantitative
genetic approaches which can be based on host immune responses
as intermediate phenotypes (Stein et al., 2005; Tao et al., 2013).
Studies of HHCs have demonstrated that young children are at
greater risk for developing TB and the clustering of cases within
families does give hint at a familial susceptibility (Brailey, 1940;
Puffer et al., 1952).

In sum, the essence of an HHC design is the recruitment of an
entire household through an index case/proband, and collection
of extensive clinical and epidemiological data. All age ranges and
relative pair types are enrolled, and the entire spectrum of disease
is captured. There is flexibility for collection of biological samples
and a longitudinal component to observe changes in phenotypes
and biomarkers.

ADVANTAGES OF THE HHC DESIGN FOR CURRENT GENETIC
EPIDEMIOLOGICAL STUDIES
RECRUITMENT AND PHENOTYPE COLLECTION
As summarized above, the household is ascertained through an
index case with TB (aka proband). Thus, as long as each individ-
ual in the household provides informed consent (or assent in the
case of children), an entire family is enrolled in the study. Some-
times, there is another individual with TB in the household at
the time of enrollment (co-prevalent case). In some households,
another individual develops TB later on during the course of study
follow-up (incident case). In this respect, no additional recruit-
ment efforts are needed to identify additional affected individuals.
The longitudinal component of the HHC design is valuable, espe-
cially for TB, where individuals have a 5–10% lifetime risk of
developing active disease after exposure. In our studies, we have
observed incident cases develop 2 years after initial enrollment
of the household. If related individuals are desired for analytical
and study design reasons (see “Analytical Considerations” below),
the HHC design allows for easier enrollment of relatives, partic-
ularly in settings where literacy is low and roads are impassable
(Bennett et al., 2002). Since both HIV co-infected and uninfected
individuals may live within the same household, both will be
enrolled in the study; this enables the examination of gene by
HIV interaction effects (Stein et al., 2007). Finally, the ideal set-
ting for a case-contact study is where the balance of household
vs. community spread of disease is in favor of the household
(Hill and Ota, 2010).

Both pediatric and adult TB cases may be diagnosed because
the HHC design does not restrict enrollment by age. Studies
suggest that the genetic influences on pediatric vs. adult TB dif-
fer (Malik et al., 2005; Alcais et al., 2010) and the HHC study
design is an efficient method for ascertaining both types of cases.
By contrast, studies that focus solely on recruitment of pedi-
atric TB cases are challenging – school-based studies are limited
because children living in poverty may not have access to edu-
cation, and hospital- and clinic-based studies may also miss out
on enrolling children because many babies are born at home in
developing countries and families in poverty who are most at risk
for developing TB may not have access to medical care. Door-
to-door case finding strategies would require a great number of
resources in order to identify a sufficient number of pediatric
cases.

The HHC design also enables the enrollment of appropriate
“controls.” For a proper case–control study, controls must be sim-
ilar in every way to the cases except that they do not have the
disease of interest. For infectious diseases like TB, this is especially
true, and in order for an individual to have the opportunity to
become a case, he/she must have been exposed to an infectious
TB case. This is particularly important for TB, because clinical
status of the controls determines whether observed genetic asso-
ciations are with susceptibility to latent infection or progression
to active disease (Stein, 2011). By virtue of the HHC design, all
the household members have been exposed to the index case. The
selection of appropriate controls in community-based studies of
TB is problematic (Hill and Ota, 2010).

Finally, studies of large pedigrees often include extensive and
highly detailed phenotype information (Wijsman, 2012). This
is extraordinarily useful for infectious diseases such as TB for a
number of reasons. As the natural history of Mtb infection and
disease follows a two-stage process, the longitudinal HHC design
captures all of these stages, and progression from one stage to
another. Furthermore, the HHC design can also include collec-
tion of extensive immunological data. The HHC design therefore
is flexible enough to analyze immunological correlates of the nat-
ural history of TB (Whalen et al., 2006; Mahan et al., 2012), and
also genetic influences on the immune response to Mtb (Stein
et al., 2007, 2008). Omics technologies, such as gene expression
and proteomic arrays, can also be incorporated into a study that
has an established blood draw protocol and rigorous clinical clas-
sification. Finally, as we describe later, data are also collected
on important epidemiological factors, which can be incorpo-
rated as covariates as well as in gene by environment interaction
models.

ANALYTICAL CONSIDERATIONS
One unique aspect of HHC studies is that households may contain
all sorts of relationship types – nuclear families, extended relatives,
and unrelated individuals. Half-siblings are common in African
settings where polygamy is practiced (Bennett et al., 2002). Sim-
ilarly, adoption by extended relatives is common when children
are orphaned, which may be particularly relevant in areas with a
heavy AIDS burden.

A few studies have developed strategies for jointly analyzing
family based and case–control/population-based data (Chen and
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Lin, 2008; Gray-McGuire et al., 2009; Lasky-Su et al., 2010; Zheng
et al., 2010; Mirea et al., 2012). Though they differ in how they
combine data from these two different study designs – some ana-
lyze them all together, and some combine p-values or test statistics
– there are some common themes. First, joint analysis of data
from these two different study designs results in increased power
due to increased sample size, enabling the detection of smaller
effect sizes. Second, family based data have the advantage of con-
trolling for population substructure, which alleviates this common
concern of population-based studies.

There have been many recent reports detailing the usefulness
of extended pedigrees for the analysis of sequence data and detec-
tion of rare variants. Cirulli and Goldstein (2010) explain how
the analysis of distantly related, co-affected individuals is an eco-
nomical design, because there will be fewer genetic variants in
common, thereby reducing the search space for rare variants.
Stringent filtering could use identity-by-descent sharing to cap-
italize on this biological phenomenon (Akula et al., 2011). Large
pedigrees also have increased power to detect linkage, even in the
presence of linkage heterogeneity among families, and are enriched
for variants of interest (Wijsman, 2012). Linkage analysis with
pedigree data can be used as a filtering strategy of chromosomal
regions, and can guide the selection of subjects to sequence (Wijs-
man, 2012). In addition, linkage analysis may be conducted to
examine co-segregation between the trait and variant(s) of inter-
est (Clerget-Darpoux and Elston, 2007; Ziegler and Sun, 2012).
Consanguineous marriages are common in West Africa, which
increases the power to detect rare recessive alleles (Bennett et al.,
2002). To summarize, all of the relationship types that are useful
for the identification of rare variants are easily obtainable in the
HHC design.

IMPACT OF ENVIRONMENT
A well-designed HHC study includes vast epidemiologic data
about environmental risk factors for transmission of disease within
homes. For TB, these include factors related to ventilation and
crowding within the home, poverty, clinical characteristics of
the index case that make him/her more infectious, and proxim-
ity to the index case that increase degree of contact (Stein et al.,
2005; Mandalakas et al., 2012). Risk of infection by Mtb is deter-
mined by a number of epidemiological risk factors (Guwattude
et al., 2003; Lienhardt et al., 2003; Mandalakas et al., 2012), and
many variables associated with high risk of TB transmission are
automatically present in the HHC design. Analysis of foster rela-
tionships as seen in adoptions may be useful for the estimation
of effects due to shared environment (Bennett et al., 2002), and
many such relationships occur in HHC studies in the developing
world.

Genetic substrains of Mtb may differ in their transmissibil-
ity. All of these factors relate to the risk of an individual to
acquire infection, and develop disease, and thus are important
in epidemiological characterization of affected individuals. Fur-
thermore, recent studies have also suggested that substrains of
Mtb have synergistic effects with host genes, thus resulting in
gene x environment interaction effects related to TB risk (Caws
et al., 2008). Case-only designs can be nested within HHC stud-
ies to examine these gene x environment effects (Bennett et al.,

2002). Because exposure to the index case is generally high-
est, and in turn exposure to that individual’s strain of Mtb,
the HHC design provides a natural setting to test both trans-
missibility, gene x environment interaction, and role of shared
environment.

Nutrition and nutritional status are also important factors
in TB-related outcomes (Jaganath and Mupere, 2012; Mupere
et al., 2012a). We have shown that nutritional status of a patient
may be an indicator on how the food basket is shared in the
household and the subsequent macro- and micronutrient intake
(Mupere et al., 2012b). Because of the shared environmental
and genetic components of diet and obesity (or in the case
of TB, malnutrition), the HHC design provides a robust set-
ting to test the role of nutritional status on infectious disease
outcomes.

EXAMPLES FROM OUR STUDIES
Our genetic association studies have taken the approach by Gray-
McGuire et al. (2009). We identified the first reported association
between TNFR1 gene and TB and also a gene by HIV interaction
for this same gene (Stein et al., 2007). Our genome-wide link-
age scan (Stein et al., 2008) and subsequent fine mapping studies
(Baker et al., 2011) replicated previously a novel set of genes on
chromosome 20, CTSZ, and MC3R. We have also identified novel
chromosomal regions linked to a unique resistance phenotype
(Stein et al., 2008); we are uniquely able to clinically and epi-
demiologically characterize this phenotype because of our solid
study design. Our future plans will incorporate structural equa-
tion modeling (SEM to multivariately analyze the influences of
host genetics, immunology, and environment on clinical out-
come; this shall be done using a SEM approach that jointly
models familial relationship and covariance among variables
(Morris et al., 2011).

CONCLUSION
Certainly HHC designs may be expensive to implement, because
they include repeated clinical visits, longitudinal data collection,
and travel to the homes. However, the wealth of data collected
through HHC studies is invaluable for genetic epidemiological
studies, as described here. HHC study designs offer unique advan-
tages for genetic epidemiological studies, including the presence
of related and unrelated individuals, and the ability to quantify
environmental factors that are important for both shared environ-
mental influences on the phenotype as well as gene x environment
interaction. Though our focus has been primarily on studies of
TB, this study design has advantages for the study of infectious
diseases in general (Hill and Ota, 2010).
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Background: Prostate cancer is a common and often deadly cancer. Decades of study
have yet to identify genes that explain much familial prostate cancer. Traditional linkage
analysis of pedigrees has yielded results that are rarely validated. We hypothesize that
there are rare segregating variants responsible for high-risk prostate cancer pedigrees,
but recognize that within-pedigree heterogeneity is responsible for significant noise that
overwhelms signal. Here we introduce a method to identify homogeneous subsets of
prostate cancer, based on cancer characteristics, which show the best evidence for an
inherited contribution.

Methods: We have modified an existing method, the Genealogical Index of Familiality
(GIF) used to show evidence for significant familial clustering. The modification allows a
test for excess familial clustering of a subset of prostate cancer cases when compared to
all prostate cancer cases.

Results: Consideration of the familial clustering of eight clinical subsets of prostate cancer
cases compared to the expected familial clustering of all prostate cancer cases identified
three subsets of prostate cancer cases with evidence for familial clustering significantly in
excess of expected. These subsets include prostate cancer cases diagnosed before age
50 years, prostate cancer cases with body mass index (BMI) greater than or equal to 30,
and prostate cancer cases for whom prostate cancer contributed to death.

Conclusions: This analysis identified several subsets of prostate cancer cases that cluster
significantly more than expected when compared to all prostate cancer familial clustering.
A focus on high-risk prostate cancer cases or pedigrees with these characteristics will
reduce noise and could allow identification of the rare predisposition genes or variants
responsible.

Keywords: familiality, prostate cancer, lethal, UPDB

INTRODUCTION
Prostate cancer is the most commonly diagnosed cancer in men
and is the second leading cause of cancer deaths among men
(ACS, 2013). While there is significant evidence of a genetic con-
tribution (Cannon et al., 1982; Carter et al., 1993; Stanford and
Ostrander, 2001; Langeberg et al., 2007), decades of investiga-
tion into the genetic causes of familial prostate cancer has yet
to clearly identify genes or variants which explain much more
than a small number of pedigrees with an excess of prostate can-
cer. Traditional linkage analysis of thousands of high-risk prostate
cancer pedigrees has elucidated little in the identification of pre-
disposition genes responsible for prostate cancer pedigrees. This
may reflect the heterogeneous nature of prostate cancer, and
this could confound identification of informative homogeneous
pedigrees segregating rare predisposition variants.

We hypothesize that there exist rare prostate cancer predispo-
sition variants that are responsible for our observation of high
risk prostate cancer pedigrees including homogeneous prostate
cancer cases (defined by clinical characteristics). We present a

methodology to compare subsets of prostate cancer cases and
identify those that show more familial clustering than expected
for all prostate cancer cases.

Using a population-based resource in Utah that combines
genealogy and cancer data, we identified 3 subsets of prostate can-
cer cases that cluster in pedigrees more than expected: prostate
cancer which is diagnosed before age 50 years, lethal prostate can-
cer (leading to metastasis and death from prostate cancer), and
prostate cancer in men with BMI ≥ 30. We propose that analysis
of the high-risk prostate cancer cases or pedigrees with an excess
of prostate cancer cases with these characteristics could lead to
identification of the rare predisposition variants responsible.

DATA AND METHODS
The Utah Population Data Base (UPDB) integrates three key elec-
tronic datasets: a Genealogy of the Utah pioneers constructed
in the 1970s and kept current (Skolnick, 1980), death certifi-
cates for Utah, and a statewide cancer registry. The original Utah
genealogy had approximately 1.6 million individual records for
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186,000 three-generation families. Since the genealogy was cre-
ated in the 1970s, state vital records have been used to create
genealogy triplets (mother, father, and child) to extend the geneal-
ogy to present day. The UPDB has become a person-oriented
database with information on 7 million Utahns, some 2.5 mil-
lion of whom have at least three generations of genealogy. The
Utah Cancer Registry (UCR) was created in 1966 to collect data
on all cancer diagnosed in Utah. It became a SEER (Surveillance,
Epidemiology, and End-Results) Registry of the National Cancer
Institute in 1973. The UCR individual records are linked to
the Utah genealogy annually; approximately 2/3 of UCR cases
link to a record in the UPDB. Cause of death from Utah state
death certificates from 1904 to present have been coded to ICD
Revisions 6–10, and record linked to the UPDB. Utah Drivers
License records from 1970 have been linked to the UPDB and
include height and weight measurements for calculation of body
mass index (BMI). The combination of genealogy, death certifi-
cates, drivers license data, and cancer registry data facilitates the
identification of all Utah prostate cancer cases and the genetic
relationships between them.

To perform the genetic analyses presented here we restrict our-
selves to those individuals in the UPDB with ancestral genealogy
data. We identified all individuals in the UPDB who were born
before 1972 (when the original Utah genealogy was constructed)
and whose parents, four grandparents, and six (of eight total)
great grandparents are present in the UPDB genealogy data. This
identifies 1.2 million individuals with ancestral genealogy data
who are used for all analyses.

We have extended a well-published analysis method, the
Genealogical Index of Familiality (GIF), to enable comparison of
the relatedness of a subset of prostate cancer cases to the related-
ness of all prostate cancer cases. Those subsets with evidence for
significantly more relatedness than all prostate cancer cases are
hypothesized to represent homogeneous genetic subsets that will
be most informative for gene identification studies.

GENEALOGICAL INDEX OF FAMILIALITY (GIF) METHOD
For decades the GIF statistic has been used to quantify famil-
ial clustering of cancer and other phenotypes in the UPDB. This
well-established statistical method has yielded strong evidence of
heritability for several cancer phenotypes (Cannon et al., 1982;
Cannon-Albright et al., 1994; Larson et al., 2006; Albright et al.,
2012). The GIF was developed to test the hypothesis of excess
relatedness of individuals with a common phenotype. Excess
relatedness is measured by comparing the average relatedness
between all pairs of cases of interest to the expected relatedness
of matched controls from the Utah population. Since record link-
age of any subset of UPDB records may indicate better or different
quality data, for individuals with a death certificate, we select con-
trols from all UPDB individuals who have a Utah death certificate.
Since the UCR is statewide, we select controls for cancer cases
from the entire UPDB resource.

The relatedness of a pair of individuals in a set is measured
using the Malécot coefficient of kinship. The Malécot coefficient
of kinship mathematically expresses Mendelian inheritance pat-
tern probabilities that randomly selected homologous chromo-
somes are identical due to inheritance from a common ancestor.

For example, the Malécot coefficient for siblings is 1/4, avunculars
is 1/8, and first cousins 1/16. The GIF analysis tests excess related-
ness by comparing all pairwise relationships within a set of cases
to the expected relatedness measured in all pairwise relation-
ships in 1000 sets of matched controls randomly selected from
the UPDB. Controls were matched on characteristics that might
be associated with record linking and disease rates, including
five-year birth year cohort, sex, and birth state (Utah or not).

The overall GIF analysis tests for significant excess relatedness
(over what is expected in the UPDB population) among a group
of individuals. It can be performed on all prostate cancer cases,
and on subsets of cases based on cancer characteristics. It cannot,
however, determine which, if any, of these subsets exhibits the best
evidence for a genetic predisposition, and which therefore might
be the best set of high-risk pedigrees in which to search for genes.

NEW SUBSETGif TEST
Here we consider a modified GIF test and test the relatedness of
multiple subsets of prostate cancer cases to identify those which
exhibit excess relatedness above the observed relatedness among
all Utah prostate cancer cases. This modified GIF test is referred
to as the SubsetGif. Evidence for significant excess relatedness
for a subset of prostate cancer cases above the expected for all
prostate cancer cases could indicate the presence of a common
genetic cause shared by the homogeneous subset. The identifi-
cation and subsequent study of pedigrees including cases of such
a homogeneous subset might facilitate the identification of rare
predisposition genes.

CONTRIBUTION TO THE GIF BY GENETIC DISTANCE
It is possible to view the distribution of the contribution to the
GIF statistic by the pairwise genetic distance of the different rela-
tionships observed in cases (and controls). The genetic distance
represents the number of paths between a pair of individuals.
Genetic distance 1 represents parent/offspring pairs, genetic dis-
tance 2 represents siblings or grandparent/grandchild, genetic
distance 3 represents avunculars, and so forth.

RESULTS
In the UPDB resource, 18,291 prostate cancer cases were iden-
tified who also had ancestral genealogical records. The available
prostate cancer subsets and their corresponding sample sizes are
outlined in Table 1.

Table 1 | Subsets of prostate cancer and sample size.

Set of prostate cancer cases n

All prostate cancers 18,291
Age at diagnosis <50 years 213
Metastatic disease at diagnosis 912
With at least 1 primary cancer of other site 2922
Gleason score >7 at diagnosis 4784
Short survival (0–9 months) 1180
Long survival (240 + months) 806
High BMI (≥30) 2459
Prostate cancer cause of death (lethal prostate cancer) 3982
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ANALYSIS OF EXCESS RELATEDNESS
Previous studies have strongly supported evidence for a genetic
contribution to predisposition to prostate cancer in the Utah
population, as well as other populations (Cannon et al., 1982;
Cannon-Albright et al., 1994, 2005). When all prostate cancer
cases with genealogy data in the UPDB are analyzed there is evi-
dence of excess relatedness (represented by both close and distant
genetic relationships) over expected relatedness in matched Utah
population controls. Table 2 shows the traditional GIF test for
excess relatedness compared to matched Utah population con-
trols for all prostate cancer cases, and for each subset. The mean
relatedness for cases and controls is shown. All prostate can-
cer cases and subsets, except prostate cases who survived less
than 10 months after diagnosis, show strong evidence for excess
clustering compared to Utah population controls. These results
suggest a genetic contribution to prostate cancer predisposition,
and suggest that study of almost all subsets of prostate cancer
could be fruitful, but the results do not allow identification of
which, if any, of the subsets are significantly more related than
expected when compared to all prostate cancer cases, and thus
show the best evidence for a genetic contribution.

In order to consider the hypothesis that a subset of prostate
cancer cases represents a more homogeneous subset of highly
related cases, we propose use of the SubsetGif analysis. The
average pairwise relatedness of each subset of cases is compared

to the average pairwise relatedness of 1000 sets of matched “con-
trols”; these controls are selected from the set of 18,291 Utah
prostate cancer cases. The results for this SubsetGif test are shown
in Table 3. The average pairwise relatedness of the cases does
not change for any subset (as expected), but the mean control
GIF statistic is higher than in Table 2 for each subset because
the “controls” here are randomly selected prostate cancer cases,
who are more closely related than random members of the Utah
population.

Table 3 results show that the average pairwise relatedness of
three different subsets of prostate cancer cases is significantly
higher than expected among prostate cancer cases, supporting
the hypothesis that these subsets of cases cluster more than all
prostate cancer cases and represent sets on which to focus for pre-
disposition gene identification. The three subsets include prostate
cancer cases diagnosed before age 50 years, prostate cancer cases
with BMI ≥ 30, and prostate cancer cases whose cause of death is
prostate cancer (lethal prostate cancer).

It is difficult to determine whether these three subsets repre-
sent independent groups of interest or whether there is overlap
between the groups because not all cases have BMI and death cer-
tificate data. There were 222 prostate cancer cases with BMI ≥
30 among the 3982 cases with prostate cancer as a cause of death
(6% total and 17% of the 1300 lethal cases with BMI data), and
58 prostate cancer cases with BMI≥ 30 of the 213 cases who were

Table 2 | GIF analysis of prostate cancer relatedness compared to expected relatedness in the UPDB population.

Group n Case GIF Mean control GIF Empirical significance

All prostate cancers 18,291 5.54 4.74 <0.001

Age at diagnosis <50 years 213 11.72 4.54 <0.001

Metastatic disease at diagnosis 912 5.94 4.89 <0.001

With at least 1 primary cancer of other site 2922 5.58 4.74 <0.001

Gleason score >7 at diagnosis 4784 5.41 4.69 <0.001

Short survival (0–9 months) 1180 5.19 4.92 0.138

Long survival (240 + months) 806 5.64 4.75 0.005

BMI ≥ 30 2459 5.81 4.71 <0.001

Prostate cancer cause of death* (lethal) 3982 5.98 4.93 <0.001

*Because the subset of lethal prostate cancer cases differs from all prostate cancer cases with respect to the identification of a linked death certificate record, and

because the fact of record linking may suggest different data quality, we performed the GIF analysis for the subset of cases with prostate cancer contributing to

death in Tables 2, 3 using only the 10,421 prostate cancer cases with a linked Utah death certificate as controls; this is the standard for analysis of sets of individuals

selected from Utah death certificate data (Cannon-Albright, 2008).

Table 3 | Subset prostate cancer relatedness compared to expected prostate cancer case relatedness in the UPDB.

Prostate cancer subsets n Case GIF Mean control GIF Empirical significance

Age at diagnosis <50 years 213 11.72 7.51 0.024

Metastatic disease at diagnosis 912 5.94 5.95 0.506

With at least 1 primary cancer of other site 2922 5.58 5.51 0.303

Gleason Score >7 at diagnosis 4784 5.41 5.39 0.417

Short Survival (0–9 months) 1180 5.19 6.08 1.000

Long Survival (240 + months) 806 5.64 5.56 0.400

BMI ≥ 30 2459 5.81 5.27 <0.001

Prostate cancer cause of death (lethal) 3982 5.98 5.76 0.030

Controls randomly selected from 18,291 prostate cancer cases.
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diagnosed before age 50 years (27%). Overall, 11,536 prostate
cancer cases had BMI data, and 21.3% were BMI≥ 30. There were
26 prostate cancer cases diagnosed before age 50 years (0.7%)
among the 3982 lethal prostate cancer cases, and overall the 213
prostate cancer cases diagnosed before age 50 years represented
1% of all cases.

In order to determine the overall distribution of excess relat-
edness we can view the contribution to the GIF statistic by the
pairwise genetic distance for cases and for controls. Figure 1
shows the GIF distribution for all 18,291 prostate cancer cases
compared to the distribution for the 1000 sets of matched Utah
population controls. The comparison shows that the relatedness
for prostate cancer cases exceeds that expected in the Utah popu-
lation, as observed in random matched Utah controls, for genetic
distances up to 7 (e.g., second cousins once removed).

Figures 2–4 show the contribution to the GIF statistic for the
three subsets of cases, with matched controls randomly selected
from all Utah prostate cancer cases. Figure 2 shows this distribu-
tion for prostate cancer cases with BMI ≥ 30; as seen in Table 3
there is significant excess relatedness for prostate cases with
BMI ≥ 30. This excess extends to a genetic distance of 5, equiv-
alent to first cousins once removed, for example. Figure 3 shows
this distribution for prostate cancer cases diagnosed before age
50 years, which is also observed to show significant excess relat-
edness. The excess relatedness is irregular, but is clearly observed
for genetic distance = 2 (siblings primarily), and distance = 8
(third cousins, for example). Figure 4 shows the GIF distribution
for lethal prostate cancer cases, also observed to show significant
excess clustering when compared to all deceased prostate cancer
cases. The excess extends to genetic distance = 4, equivalent to
first cousins, for example.

Figures 5–7 show examples Utah high-risk prostate cancer
pedigrees for each of the subset characteristics identified.

DISCUSSION
Analysis of a population-based Utah resource linking cancer
characteristics data with genealogy data has previously shown evi-
dence for a genetic contribution to prostate cancer predisposition

FIGURE 1 | Contribution to the GIF statistic by pairwise genetic

distance for cases and controls for all prostate cancers vs. population.

(Cannon et al., 1982; Cannon-Albright et al., 1994, 2005; Albright
et al., 2012; Teerlink et al., 2012). Here we have extended a well-
published analysis method which tests for excess relatedness in a
set of individuals to allow the identification of subsets of prostate
cancer cases who show the strongest evidence for excess familial
clustering. The subsets identified might be argued to represent the
most informative sets of cases or pedigrees to be studied for rare
predisposition gene identification.

Some of the subsets of prostate cancer cases that show sig-
nificant evidence of clustering in excess of expected for prostate
cancer were expected, some represent new subsets of interest
for genetic studies. The subset of men diagnosed with prostate
cancer before age 50 years is not surprising; there is much liter-
ature suggesting a strong genetic contribution to cancer of most
sites that is diagnosed early (Goldgar et al., 1994; Brandt et al.,
2008) and much analysis of this subset of prostate cancer cases
and pedigrees has been performed (Gronberg et al., 1999; Xu
et al., 2005). However, the other two groups of prostate cancer

FIGURE 2 | Contribution to the GIF statistic by pairwise genetic

distance for cases and controls for prostate cancer cases with a BMI of

30 or greater.

FIGURE 3 | Contribution to the GIF statistic by pairwise genetic

distance for cases and controls for prostate cancer cases diagnosed

before age 50.
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FIGURE 4 | Contribution to the GIF statistic by pairwise genetic

distance for cases and controls for prostate cancer cases that have

prostate cancer as a cause of death.

FIGURE 5 | High risk Utah prostate cancer pedigree (56 prostate cancer

cases observed among descendants of the pedigree founder, 36

expected, p = 0.001); cases with BMI ≥ 30 are shown.

FIGURE 6 | High risk Utah prostate cancer pedigree (173 prostate

cancers observed among descendants of the pedigree founder, 131

expected, p = 0.0003); cases diagnosed before age 50 years are

shown. The two cases with an asterisk were also observed to have
BMI ≥ 30 (data not available for all cases).

cases identified, high BMI (≥30) and lethal prostate cancer cases,
have not been suggested previously as associated with a strong
genetic contribution for prostate cancer. There was some overlap
of prostate cancer cases between these sets; further investigation
of specific high-risk pedigrees will determine whether they are
independent.

Although epidemiologic studies have shown that systemic
metabolic disorders including obesity might increase risk for
prostate cancer, BMI in the context of high risk prostate cancer

FIGURE 7 | High risk Utah prostate cancer pedigree (76 prostate cancer

cases observed among descendants of the pedigree founder, 51.5

expected, p = 0.0008); cases known to have died from prostate cancer

are shown.

pedigrees does not appear to have been studied. Since there is evi-
dence for familial clustering of high BMI or obesity (independent
of cancer status), it is possible that these results are due, at least
in part, to a shared predisposition to obesity. Nevertheless, these
results suggest this is an informative set of pedigrees to be studied
for prostate cancer risk.

The familiality of aggressive prostate cancer has been noted,
and subsets of aggressive prostate cancer cases have been stud-
ied, without any gene identifications (Paiss et al., 2003; Lange
et al., 2006; Schaid et al., 2006; Christensen et al., 2007). Little
progress has been made in understanding why 30% of all patients
with localized prostate cancer eventually develop recurrent, and
subsequently fatal, prostate cancer. Rather than subset aggres-
sive prostate cancers, we specifically targeted the pathogenesis of
lethal prostate cancer. This subtle definition difference focuses
on the subtype of prostate cancer which is associated with the
worst prognosis i.e., which kills, but our definition ignores age
at onset and pathology grading data for the individual, both of
which are more commonly used to classify prostate cancer cases
for aggressive status, but which can be poor markers for survival.
This subset of lethal prostate cancer cases, among all others, is
the most clinically significant and that which could yield the most
translational opportunities were genes to be identified.

The Utah population has proven valuable to the study of many
common cancers, and to the isolation of multiple cancer predis-
position genes. The University of Utah group has been studying
high-risk cancer pedigrees since 1972, and has built a resource
of thousands of extended high-risk pedigrees that includes over
35,000 DNA samples. The study of extended pedigrees allowed
our research group to isolate BRCA1 (Miki et al., 1994), to local-
ize and isolate BRCA2 (Wooster et al., 1994; Tavtigian et al.,
1996), to localize and isolate p16 (Cannon-Albright et al., 1992,
1994; Kamb et al., 1994), and to localize and isolate HPC2/ELAC2
(Tavtigian et al., 2001). These findings of excess relatedness in the
UPDB for three subsets of prostate cancer cases represent multiple
Utah high-risk prostate cancer pedigrees for each of the subsets.
Analysis of these high risk pedigrees will lead to identification of
the predisposition genes responsible, which might otherwise not
be identifiable in studies of all high-risk prostate cancer pedigrees
combined.

We have identified significant evidence for three charac-
teristics of prostate cancer that independently coaggregate in
both close and distant relatives. We have identified multiple
high-risk prostate cancer pedigrees that independently include
multiple prostate cancer cases with the characteristics of interest.
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Figures 5–7 show an example Utah high-risk prostate cancer
pedigree for each of the three characteristics identified. We pro-
pose that linkage analysis or shared genomic segment (Thomas
et al., 2008) analysis can identify chromosomal regions shared
in the related cases and that sequence analysis of predisposition
carriers in the targeted regions located will lead to identification
of the responsible predisposition genes. Rather than studying all
high-risk prostate cancer pedigrees, we instead will focus on those
that exhibit multiple cases with those characteristics most likely
to have a genetic contribution. These studies will examine fewer
pedigrees than a typical prostate cancer pedigree study, but will
focus on the homogeneous subsets most likely to represent rare
segregating predisposition genes or variants.

These findings should be generalizable to the U.S.A. popula-
tion. Utah was originally settled by ∼10,000 Mormons of British,
Scandinavian, and German origin. They, and the more than
50,000 migrants from the same areas who arrived in the next
generations, have typical Northern European gene frequencies
(McLellan et al., 1984) and low to normal levels of inbreed-
ing compared to the U.S. (Jorde, 1989). These characteristics

make this population appropriate for inferences in populations
of Northern European descent. The predisposition genes identi-
fied in Utah are represented similarly in other studies in terms
of frequency, penetrance, and interactions with risk factors and
modifier genes. Utah cancer rates are lower than U.S. rates, most
likely due to lower rates of smoking and alcohol use.

Recent advances in mapping the genome, combined with the
unique resources of Utah, provide a rare opportunity for a suc-
cessful search for predisposition genes or variants for prostate
cancer and the definition of their role at a population level. Recent
evidence has shown the advisability and efficiency of rare pre-
disposition gene identification by study of extended pedigrees
(Ewing et al., 2012; Roberts et al., 2012). Here we identify char-
acteristics of prostate cancer that can be used to more specifically
focus gene identification efforts on appropriate pedigrees. The
eventual identification of predisposition genes for prostate cancer,
accompanied by a greater understanding of how these genes con-
tribute to morbidity and mortality, will lead to the development
of diagnostic tests and more personalized treatments for prostate
cancer.
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A novel web-based tool PedWiz that pipelines the informatics process for pedigree data is
introduced. PedWiz is designed to assist researchers in the analysis of pedigree data.
It provides a convenient tool for pedigree informatics: descriptive statistics, relative
pairs, genetic similarity coefficients, the variance-covariance matrix for three estimated
coefficients of allele identical-by-descent sharing as well as mean allele sharing, a plot of
the pedigree structures, and a visualization of the identity coefficients. With a renewed
interest in linkage and other family based methods, PedWiz will be a valuable tool for the
analysis of family data.
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INTRODUCTION
When a researcher has collected or is provided with a set of nuclear
family or extended pedigree data for genetic analysis, the first
thing that needs to be done is to find out what information is
available on the family or families before proceeding in the analysis
of phenotype and/or genotype data to study the characteristics of a
certain disease or trait, i.e., pedigree informatics. This can include
descriptive statistics, visualization of family data, the degree of
genetic relatedness among members of a family, and so on.

Descriptive statistics summarize and provide basic information
on the family data, as done in the PEDINFO program in S.A.G.E.
(2012). The visualization of family data is a fundamental task for
both family studies and genetic counseling. There are many com-
puter programs available that provide the graphical representation
of pedigree data, including the R packages kinship (Zhao, 2006)
and pedantics (Morrissey, 2010). The concept of genetic related-
ness is essential in modern genetic analysis, and the applications
of kinship and condensed identity coefficients are everywhere in
analyses that have a genetic component. In human genetics, they
are used in genotype prediction, calculation of genetic risk ratios
for binary disease status, calculations of correlations between rel-
atives, and robust linkage analysis. Robust linkage analysis, a
powerful approach to map disease genes, is based on comparing
the genetic marker profiles, i.e., allele identical-by-descent (IBD)
sharing, of pairs of relatives. There are many software programs
that calculate kinship and inbreeding coefficients, but not many
for the nine condensed coefficients of IBD sharing.

A brief survey of available R packages with their relevant com-
ponents of pedigree informatics is shown in Table 1. As can be seen,
there is no program that provides all the different genetic similar-
ity measurements together with the variance-covariance matrix of
the estimated coefficients of IBD. Abney (2009)’s graphical algo-
rithm for the computation of the generalized kinship coefficients
is implemented in idcoefs2 (written in C++, and implemented

as the R package identity), and this is the only currently avail-
able program that outputs the nine condensed coefficients of IBD.
The R package ibdreg by Schaid et al. (2007) has two functions,
sim.ibd.var and exact.ibd.var, to calculate the variance-covariance
of mean allele sharing, but not the variance-covariance of the
individual coefficients of IBD. An essential part of score tests is
the choice of the denominator variance, and some of these tests
for genetic linkage require the variance-covariance of allele IBD
sharing statistics under the null, i.e., of the coefficients of IBD. It
would be useful to make available the variance-covariance matrix
of these coefficients for a pedigree independent of the choice of
test statistics, so that it can be used for different choices of test
statistics. Currently, no such tools are available.

PedWiz (Pedigree Informatics Wizard) is designed to fulfill
this need as a web-based tool for pedigree informatics, to assist
researchers in the analysis of pedigree data. It provides a con-
venient “one-stop-shop” for pedigree informatics. It provides all
the genetic similarity coefficients mentioned above, including the
nine condensed coefficients of IBD and the variance-covariance
matrix of the one-locus three marginal coefficients of allele IBD
sharing, as well as other pedigree descriptive statistics. Addition-
ally, it provides a plot of the pedigree structure and a visualization
of the identity coefficients, something that no other program pro-
vides. PedWiz is an automated pipeline for extracting pedigree
informatics before conducting specialized analyses of phenotype
and/or genotype data.

MATERIAL AND METHODS
IMPLEMENTATION
The web interface of PedWiz is implemented using a combination
of XHTML (eXtensible HyperText Markup Language), CSS (Cas-
cading Style Sheets), and PHP (Hypertext Preprocessor) on an
Apache web server. The interactivity is provided by JavaScript and
Ajax technologies. Custom Python modules handle the overall
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Table 1 | R packages available for pedigree informatics.

Name Plot Stat F � � VC(2�) VC(�) Simulation

adegenet
√

gap
√ √

geneland
√

ibdreg
√

identity
√

kinship
√ √

pedantics
√ √ √ √

pedigree
√

pedigreemm
√

GeneticsPed
√

Plot, pedigree plot; stat, descriptive statistics; F, inbreeding coefficient; �, kinship
coefficient; �, 9 condensed IBD coefficients; VC(2�), variance-covariance matrix
of mean allele sharing; VC(�), variance-covariance matrix of 3 IBD coefficients.

flow of the pipeline by calling pre-existing programs written in
C++ or R.

USER INPUT
PedWiz accepts a plain ASCII text file format for pedigree input.
Since PedWiz extracts the information contained in a pedigree
structure, it requires a pedigree file to have five essential columns:
pedigree ID, individual ID, the two parents’ IDs and sex. These
five columns do not need be in any specific order, nor need they
be consecutive. If a pedigree file contains other columns, they are
ignored. The pedigree file is required to be in either tab-delimited
or comma-delimited format. It may optionally contain a header
line specifying the names of the columns. The user inputs config-
uration information and the location of the pedigree file through
a user-friendly interface, and then submits it to start the analysis
pipeline.

ANALYSIS TOOLS
Once the user submits a pedigree file and configuration infor-
mation, the informatics process starts by running the first tool.
Currently, the PedWiz process consists of six main tools (Figure 1).
The complete process utilizes many internal Python scripts (which
are not detailed here) to create junctions between the programs
(format compatibility) and to create the necessary R scripts.

The descriptive statistics tool
This tool is used to calculate the descriptive statistics for each pedi-
gree contained in the user-submitted pedigree file. PedWiz utilizes
the existing C++ program PEDINFO of the S.A.G.E. package
(v6.3 with each_pedigree= true option). PEDINFO provides many
useful descriptive statistics on pedigree data including means, stan-
dard deviations; family, sibship and pedigree sizes; and counts of
each type of relative pair. The results are parsed and reported to
the user by PedWiz as a table on the website. From here, the user
selects a pedigree to proceed with other tools.

The pedigree plot tool
This tool is used to visualize a pedigree. PedWiz utilizes the R
package kinship to generate the plot (Zhao, 2005). As in a typical

pedigree diagram, males and females are shown as squares and
circles, respectively. The resulting pedigree plot is reported to the
user as a pdf file on the website.

The relative pairs tool
This tool is used to report all relative pairs existing in a pedigree.
PedWiz uses an internal C++ program that finds all existing rel-
ative pairs by traversing the pedigree structure recursively as done
in the FCOR program in S.A.G.E. (2012). The results are reported
to the user on the website as a text file containing the relative pair
matrix and the list of relative pairs for each relative type.

The genetic similarity tool
This tool is used to provide the various genetic similarity coeffi-
cients. PedWiz uses an internal C++ program to perform this
task. The results include two matrices; one is the matrix of
kinship/inbreeding coefficients (inbreeding coefficients on the
diagonal and kinship coefficients off the diagonal), and the other
is the matrix of nine condensed coefficients of IBD. The coeffi-
cients of relationship, which are twice the kinship coefficients, can
be easily calculated from the kinship/inbreeding coefficients. The
resulting matrices are reported to the user on the website as a text
file.

The visualization of genetic similarity tool
This tool is used to visualize the two matrices generated by the
genetic similarity tool. PedWiz uses a custom R script to represent
a matrix graphically as a heat map. The resulting heat maps are
reported to the user as a pdf file on the website.

The variance-covariance of genetic similarity tool
This tool is used to find the variance-covariance matrix of the
coefficients reported by the genetic similarity tool. PedWiz uses
an internal C++ program to perform this task. The variance-
covariance matrix of kinship coefficients is estimated by an
exact method given by Chen and Abecasis (2006). The variance-
covariance matrix of IBD coefficients is estimated by a simulation
method, given a pedigree structure (MacCluer et al., 1986), based
on 500 simulation replicates. The simulation method approxi-
mates the distribution of IBD states by gene dropping, so it can
be used regardless of pedigree size and structure. The results are
reported to the user on the website as a text file.

RESULTS
We developed a novel web-based tool that pipelines the infor-
matics process for pedigree data. PedWiz may be accessed at
http://darwin.cwru.edu/∼song/pedwiz. Here we present an appli-
cation example using pedigree data from the Madeline 2.0 website
(Trager et al., 2007). These pedigree data contain a consanguineous
marriage between cousins. The user inputs configuration informa-
tion and the location of the pedigree file through the interface on
the website as shown in Figure 2.

After configuration information and the location of the pedi-
gree file have been submitted by the user, PedWiz produces a table
with the descriptive statistics for each pedigree on the website as
shown in Figure 3. All results are accessed through a set of buttons
under the descriptive statistics table for each pedigree. The user
uses a radio button to select a pedigree for an analysis pipeline.
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FIGURE 1 | PedWiz overview. This figure illustrates the analysis pipeline
implemented in PedWiz. It consists of six tools to mine the information in a
pedigree structure: descriptive statistics, pedigree plot, relative pairs, genetic

similarity coefficients, visualization of genetic similarity coefficients, and the
variance-covariance matrix of coefficients of IBD. The tools denoted by dotted
lines are anticipated future extensions.

This selection information is reflected under the table (shown in
the green eclipse). The resulting output from each tool for the
example pedigree is shown also.

DISCUSSION
We developed a novel web-based tool PedWiz that pipelines the
informatics process for pedigree data. PedWiz is designed to
assist researchers in the analysis of pedigree data. It provides a
convenient tool for pedigree informatics: descriptive statistics, rel-
ative pairs, genetic similarity coefficients, the variance-covariance
matrix of three coefficients of allele IBD sharing, as well as mean
allele sharing, a plot of the pedigree structure, and visualization of
identity coefficients. PedWiz is an automated pipeline for extract-
ing pedigree informatics before conducting specialized analysis of
phenotype and/or genotype data.

Emerging availability of whole genome sequence data has led
to a renewed interest in linkage and other family based methods

(Ott et al., 2011). Many researchers have been emphasizing the
importance and advantages of family studies all along (Clerget-
Darpoux and Elston, 2007; Stein and Elston, 2009), especially to
interpret next generation sequence data (Bailey-Wilson and Wil-
son, 2011; Wijsman, 2012). Family study designs provide not only
the enrichment of genetic loci containing rare variants, but also
methods to control for genetic heterogeneity and population strat-
ification. PedWiz is a valuable tool for initial analysis of those
family data.

Additionally, the results from each tool in Pedwiz will be useful
for later analysis of phenotype and/or genotype data. As stated
before, an essential part of score tests is the choice of the denomi-
nator variance, and some of these tests for genetic linkage require
the variance-covariance of the coefficients of IBD. No software
tools are currently available to provide this information indepen-
dent of the choice of test statistics. The variance-covariance of
the genetic similarity tool of PedWiz provides this need, so that it
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FIGURE 2 | Starting PedWiz. This figure illustrates the user interface to start PedWiz.

can be used for different choices of test statistics. The information
from the genetic similarity tool of PedWiz can be used for weight-
ing pedigrees of different sizes. Another potential use of this tool is
for selecting families with the most information in terms of genetic
relatedness that would best suit a phenotype/genotype analysis of
choice. Selecting families with multiple affected subjects, or fami-
lies with extreme values, is known to provide improved ability to
measure, and detect, the effects of rare variants (Ionita-Laza and
Ottman, 2011; Wijsman, 2012). The strategy of selecting “large
linked families” for initial screening has long been a successful
strategy (Bowden et al., 2010). To be successful with this approach,
selecting families with a real linkage signal in specific regions is
essential. This new tool will be useful for selecting such families
when used together with phenotype/genotype information.

With a modular design, each analysis tool within PedWiz is
independent of the others, so it is very easy to extend and add

more tools. Planned additions in the near future are simulation
and pedigree split tools, shown in Figure 1 with dotted lines.
PedWiz is currently specialized to deal with the information con-
tained within pedigree structures only. Therefore, it is very fast
and safe with regard to data transfer over the web. However, it
is always possible to add more pipeline modules that could pro-
cess the information from phenotype and/or genotype data. Good
candidates for this addition would be simulation conditional on
given phenotype and/or genotype data, and imputation. Another
extension that could be added on is the inclusion of a backend
database to save data and results for reuse.

The genetic similarity tool of PedWiz is specifically designed
to provide the information on within-pedigree relatedness. As
a reviewr pointed out, a tool that addresses between-pedigree
relatedness, especially for pedigrees from a relatively isolated
population like the Hutterites, would be a useful addition to
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FIGURE 3 | Different types of outputs from PedWiz. All results are accessed through a set of buttons under the descriptive statistics table for each pedigree.

PedWiz. Cryptic relatedness among unrelated individuals can be
estimated by incorporating a number of dense markers across
different chromosomes (Weir et al., 2006; Bink et al., 2008; Astle
and Balding, 2009; Sillanpää, 2011). There are many software
tools available to estimate the genome-average relatedness, for
example, SPAGeDi (Hardy and Vekemans, 2002), PLINK (Purcell
et al., 2007), FEST (Skare et al., 2009), CoCoa (Maenhout et al.,
2009), CrypticIBDcheck (Nembot-Simo et al., 2013). Adding this

to PedWiz would require an extension to process information from
phenotype and/or genotype data, as mentioned above.
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Genome-wide association studies (GWAS) explore the relationship between genome
variability and disease susceptibility with either population- or family-based data. Here, we
have evaluated the utility of combining population- and family-based statistical association
tests and have proposed a method for reducing the burden of multiple testing. Unrelated
singleton and parent-offspring trio cases and controls from the Genetics of Kidneys in
Diabetes (GoKinD) study were analyzed for genetic association with diabetic nephropathy
(DN) in type 1 diabetics (T1D). The Cochran-Armitage test for trend and the family-based
association test were employed using either unrelated cases and controls or trios,
respectively. In addition to combining single nucleotide polymorphism (SNP) p-values
across these tests via Fisher’s method, we employed a novel screening approach to
rank SNPs based on conditional power for more efficient testing. Using either the
population-based or family-based subset alone predictably limited resolution to detect DN
SNPs. For 384,197 SNPs passing quality control (QC), none achieved strict genome-wide
significance (1.4× 10−7) using 1171 singletons (577/594 cases/controls) or 1738 pooled
singletons and offspring probands (841/897). Similarly, none of the 352,004 SNPs passing
QC in 567 family trios (264/303 case/control proband trios) reached genome-wide
significance. Testing the top 10 SNPs ranked using aggregated conditional power
resulted in two SNPs reaching genome-wide significance, rs11645147 on chromosome
16 (p = 1.74× 10−4 < 0.05/10 = 0.005) and rs7866522 on chromosome 9 (p = 0.0033).
Efficient usage of mixed designs incorporating both unrelated and family-based data may
help to uncover associations otherwise difficult to detect in the presence of massive
multiple testing corrections. Capitalizing on the strengths of both types while using
screening approaches may be useful especially in light of large-scale, next-generation
sequencing and rare variant studies.

Keywords: genome-wide association, combined study design, family-based association analysis, case-control

study, diabetic nephropathies

INTRODUCTION
The successes and failures of genome-wide association studies
(GWAS) have made for both interesting scientific dialog and
the development of innovative statistical methodologies. While
debate continues around reasons for the so-called missing her-
itability of GWAS, the sheer number of replicable genetic asso-
ciations discovered using this approach is unarguable (Hindorff
et al., 2013). Next-generation sequencing has taken the baton (or
at least begun its own race) to continue the search for genetic
association with complex disease outcomes. Many unique analyt-
ical issues have arisen with sequencing data, but two paramount
themes of concern, in particular, persist regardless of the assay
technology—quality control (QC) and study design. Here, we
examine the latter in the context of the Genetics of Kidneys in
Diabetes (GoKinD) study, a GWAS comprising one subset of
unrelated subjects and another of mother-father-proband trios.

The relative merits of a genetic association study being
designed around either families or unrelated subjects, most often

cases and controls, has been addressed previously (Fardo et al.,
2012). Briefly, case-control studies are generally considered easier
to implement, less costly and more powerful than studies incor-
porating related subjects. Family-based studies on the other hand
are robust to the discovery of spurious association due to unre-
solved population substructure and also provide more textured
information such as improved haplotype resolution, Mendelian
error checking and the ability to test for imprinting effects. This
obviously oversimplifies the comparison of two very broad classes
of designs—in this work we are concerned with implications of
combining the two rather than simply choosing one or the other.

Many genetic association studies spawn from existing cohorts
that either had previously employed linkage analysis with pedi-
gree recruitment (Clerget-Darpoux and Elston, 2007) or had ini-
tially not explored genetic risk factors. Studies in these scenarios
can then quite naturally comprise both unrelated subjects and
families. Because this is not uncommon, there are many statistical
methodologies that have been developed to combine information
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from unrelated cases and controls with family pedigrees, and sev-
eral of these have been compared via simulation (Fardo et al.,
2011). Our focus here is not to again compare distinct method-
ologies across a simulation study but rather to compare simple,
easily implementable approaches in handling the unrelated and
family subsets from the GoKinD study.

The GoKinD study aimed to identify genes associated with dia-
betic nephropathy (DN) in type 1 diabetics (T1D). T1D patient
probands were screened to identify cases with kidney disease
and controls with normal renal status despite long-term diabetes.
When possible, both parents of the proband were enrolled to form
family trios and DNA was collected for all T1D patients and par-
ticipating parents (Mueller et al., 2006). In the original GWAS,
Pezzolesi et al. (2009) combined all GoKinD cases and con-
trols (unrelated singletons and trio offspring) to test for genetic
association with DN. No single nucleotide polymorphism (SNP)
reached genome-wide significance but several loci were “sugges-
tive” (p < 1 ×10−5). This strategy of combining the offspring
from trios, or, more generally, a randomly selected non-founder
from a pedigree, with the unrelated cases and controls has been
common practice (Infante-Rivard et al., 2009).

Here, we propose a simple, intuitive, and straightforwardly
implementable strategy to combine association metrics from
unrelateds and families while providing a working solution to the
multiple testing problem when these types of data are available.
The main goal of this work, however, is two-fold: to thoroughly
examine the differences between first-pass approaches and those
using all available information; and to make the case for using and
developing methods for aggregation while suggesting a direction
for this methodological research. Due to the nature of the study
designs employed, the GoKinD study is an ideal dataset to present
these comparisons. In what follows, we further describe the moti-
vating GoKinD dataset and QC procedures employed, we outline
the various methodological approaches explored including our
initial suggestion of a combined screening and testing method,
and finally we thoroughly compare results from the GoKinD
study.

METHODS
THE GoKinD STUDY
Subjects
Detailed information regarding these data can be found in
Mueller et al. (2006). Briefly, the GoKinD study comprises
1869 T1D patients with and without kidney impairment who
were recruited through the George Washington University
Biostatistical Center (GWU) and the Joslin Diabetes Center, sec-
tion of Genetics and Epidemiology (JDC). Patients were 18–59
years old at the time of enrollment, received a T1D diagnosis
before age 31 and had diabetes duration of more than 10 years
in cases and more than 15 years in controls. DN cases were
defined as either persistent proteinuria or end stage renal dis-
ease requiring dialysis or renal transplant. Controls were defined
as having normal renal function and normal urine albumin.
Of the 1285 unrelated singletons (664/621 DN cases/controls)
and 584 mother-father-offspring trios (268/316 DN case/control
offspring) recruited and genotyped, 1270 unrelated singletons
(651/619 DN cases/controls) and 571 mother-father-offspring

trios (266/305 DN case/control offspring) were released for anal-
ysis through dbGaP (Mailman et al., 2007; Pluzhnikov et al.,
2010).

Quality control
We replicated the extensive and well-documented QC procedures
conducted in the original GoKinD GWAS which employed the
Affymetrix 5.0 500K SNP array (Pezzolesi et al., 2009). To main-
tain consistency, we repeated the entire QC pipeline with and
without the addition of trio offspring cases and controls using
the 469,094 SNPs provided by dbGaP. The former mirrors the
original study that incorporated family data which allowed for
additional Mendelian error QC filtering and the latter comprises
the QC for the population-based subset within the proposed
methodology and typical of case-control GWAS studies. Over
35,000 SNPs were removed due to the detection of 3 or more trios
exhibiting a Mendelian error (Supplemental Table 2). Principal
component analysis (PCA) was applied to both population-based
subsets to minimize spurious associations due to population sub-
structure by removing potential ethnic outliers (Price et al., 2006)
(Supplemental Figure 2). More details on QC can be found in the
Supplementary Materials.

STATISTICAL ANALYSIS
We first compared the approach of separating subjects into sub-
sets of unrelated population-based cases and controls (singletons)
and family-based subjects (trios), against adding the trio off-
spring into a pooled unrelated subset, to analyze using common
case-control statistics as in the initial analysis of Pezzolesi et al.
(2009). We then implemented a two-step approach combining
statistical tests across unrelated and family-based study designs
(Figure 1).

Population-based association
Genetic association using the subset of unrelateds was examined
using the Cochran-Armitage test for trend assuming an additive
genetic mode of inheritance. The trend test was adjusted for sex
and stratified by center using a Cochran-Mantel-Haenszel test as
in the original GoKinD GWAS. These tests were conducted with
and without the addition of offspring cases and controls in order
to replicate the original findings and to use within the proposed
framework, respectively (Figure 1; Singletons Only vs. Singletons
and Trios). All analyses were conducted using the freely-available
softwares PLINK (Purcell et al., 2007) and R (R Development
Core Team, 2010).

Incorporation of trio parents
Along with adding resolution for QC, the addition of par-
ents makes possible traditional family-based association testing
(FBAT). FBATs were calculated using the FBAT package (Laird
et al., 2000) assuming a DN prevalence within T1D of 30%
(Krolewski et al., 1996; Steinke, 2009). Using true prevalence as
an offset in the FBAT numerator is known to maximize power
for the test in population samples (Whittaker and Lewis, 1998;
Lunetta et al., 2000; Lange and Laird, 2002). Because ascertain-
ment was not conditioned on DN status in GoKinD, this estimate
should perform optimally.
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FIGURE 1 | Testing schematic for the GoKinD collection. Subjects with
type 1 diabetes with (affected) and without (unaffected) diabetic
nephropathy were studied for genetic association. Population- and
family-based subsets were either tested in a typical straight-forward
single-step strategy or in a two-step combination strategy with conditional
screening for power, association testing and subsequent combination of the
two. To distinguish between the data subsets used, 1′ s indicate unrelateds
and 2′ s are from the family samples. A denotes affected and U unaffected.
The analytic methods used are indicated above the corresponding arrows.

Fisher’s combined probability test
We adopted a simple procedure to combine test statistics across
study designs. Fisher’s method (Fisher, 1925), often used in meta
analyses, is a commonly used approach to aggregate indepen-
dent p-values. Here, our testing is done in two separate sub-
sets, family trios and case-control singletons, which maintains
the independence necessary to implement this test. There are
other methodologies to combine p-values, and all of our work
could be adapted straightforwardly to accommodate alternative
choices.

Dealing with multiple comparisons
For the trio subset, offspring genotypes are treated as missing and
then imputed assuming Mendelian transmissions from parental
genotypes in order to provide information for screening that is
completely independent of the actual family-based association
test. That is, offspring genotypes are not used in the screening
step so that they may be used in a completely independent testing
step. SNPs with favorable configurations (i.e., enough allelic vari-
ation and informative families) will be ranked highly by virtue
of providing more likelihood of finding an association that is
present. More formally, the Van Steen algorithm (Van Steen et al.,

2005) decomposes the joint data likelihood into two independent
pieces [i.e., P(Y,X,S) = P(X|Y,S)P(Y,S), where Y is the offspring
phenotype, X is the offspring genotype score (e.g., the count of
minor alleles) and S are the sufficient statistics for offspring geno-
types which are equal to the parental genotypes when available].
SNPs are screened based on information from P(Y,S), either from
obtaining significance rankings from regression of Y on E(X|S)
or from analytically calculating the conditional power for a SNP-
phenotype pair; we employed the latter approach throughout.
Note that E(X|S) is simply the expected offspring genotype score
given the parental genotypes. These analyses were conducted
using the freely-available PBAT software (Lange et al., 2004). The
SNP rankings produced in this step use information that is com-
pletely independent of the offspring genotypes so that FBAT test
statistics are orthogonal and do not require adjustment from the
screening step. Thus, the top 10 SNPs, for example, can be tested
with only a multiple testing adjustment for the 10 tests conducted.
Extensions to the top K approach have been developed and could
easily be employed (Ionita-Laza et al., 2007). The screening step
is susceptible to effects of population stratification, but the testing
step remains robust to spurious association.

C2BAT as proposed by McQueen et al. (http://rss.acs.unt.edu/
Rdoc/library/pbatR/html/c2bat.html) and described by Sharma
et al. (2012) was developed as the case-control analog to the Van
Steen screening approach. Information from each SNP is split in
order to screen for highly powered SNPs and then independently
test for association. Similar to conditioning on the sufficient
statistics for offspring genotypes, the random variables in the
family-based testing framework, the margins of the affection-by-
genotype contingency table are the appropriate sufficient statistics
for the corresponding cell counts, which are the random variables
in the population-based framework. Briefly, the C2BAT algorithm
splits subjects from the contingency table into a non-informative
table for screening and a testing table. These splits can be done
to preferentially over-select minor homozygotes for the testing
step. We employed the default selection of 75%, 50%, 25% minor
homozygotes, heterozygotes, and major homozygotes to the test-
ing table, respectively. The margins of the resulting testing table
are used to randomly impute (under the null) cell counts, which
are then combined with the non-informative table to rank SNPs.
The testing table is then used to perform an orthogonal test for
association for the highest ranking SNPs. We used the C2BAT ver-
sion implemented in the pbatR package (Hoffmann and Lange,
2013).

To combine the rankings between the trio and case-control
subsets, we averaged log-transformed rankings to come up with
an aggregate ranking. The top 10 SNPs were then assessed for
statistical significance at a lower multiple testing penalty (i.e.,
0.05/10 = 0.005).

Note that our selection approach results in rankings equiva-
lent to those from multiplying the rankings from both subsets.
Importantly, this method is subjectively chosen and can likely be
optimized in future research.

Methodological comparisons
Our primary methodology to combine information across
study designs employs p-value aggregation, so we compare our
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approach to METAL (Willer et al., 2010), an efficient meta-
analysis program that incorporates the disparate association
information via sample size weights and effect directionality into
an aggregate statistic. Briefly, each of the trio and singleton test
p-values is converted into a Z-score and then weighted by the
square root of the subset sample size to comprise a meta-analytic
Z-score. In addition to meta-analytic methodologies, we also
compared to an approach the aggregates data across the subsam-
ples rather than the p-values (Zhang et al., 2009). The method
proposed by Zhang et al. was chosen due to its implementa-
tion in the Genetic Association analysis Platform (GAP) and its
superior performance in a previous comparison between other
similar data aggregation methodologies (Fardo et al., 2011). The
proposed score test comprises components from each subsample
separately and is explained in detail in Zhang et al. (2009). Similar
to the FBAT approach, we employ a phenotypic offset equal to the
estimated prevalence of DN in T1D.

RESULTS
In the population-based analyses, no SNP achieved Bonferroni
adjusted genome-wide significance for association with DN in
T1D (0.05/384,197 = 1.3× 10−7). Areas of suggestive associa-
tion noted in the pooled population-based analysis (Figure 2) are
diminished in the singletons alone analysis (Figure 3). In the sin-
gleton alone subset, only four SNPs exceeded a suggestive p-value
of 1× 10−5.

In the family-based analysis, no SNP achieved genome-wide
significance using an FBAT statistic (Figure 4). Suggestive areas
of associations in chromosome 11p in the CARS gene (cysteinyl-
tRNA synthetase) were similar to results from Pezzolesi et al.
(2009). New areas of interest in chromosome 6p within the
major histocompatibility complexes (MHC) class II and III and
in chromosome 7p are noted (Supplemental Table 3). The 13q
chromosomal peak reported by Pezzolesi et al. (2009) was not
observed.

No SNPs achieved significance using Fisher’s combined prob-
ability method without the benefit of Van Steen-type screening

FIGURE 2 | Manhattan plot for population-based study with pooled

singletons and trio probands. Summary of genome-wide association
scan results in the GoKinD population-based singletons and trios combined.
The −log10P-values were calculated for SNP association with diabetic
nephropathy among subjects with type 1 diabetes using the
Cochran-Armitage test for trend for an additive genetic model adjusted for
sex and stratified by center ascertainment using Cochran-Mantel-Haenszel
method. The red horizontal line corresponds to genome-wide significance
(P-value = 0.05/357, 887 = 1.4× 10−7). The blue horizontal line
corresponds to suggestive significance (P-value = 1× 10−5).

approaches (Figure 5). The SNPs of suggestive significance in the
population-based singleton only and pooled singleton and trio
proband analysis were diminished by the addition of family-based
information, suggesting potential population structure correc-
tion. Compared to the family-based subset, associations remained
similar in other regions.

There were no genome-wide significant SNPs from either
METAL or GAP, although six and four SNPs reach the sugges-
tive significance level for METAL (Figure 6) and GAP (Figure 7),
respectively. Three of these variants were not identified using
other approaches. GAP analysis supports the chromosome
6p finding from the FBAT. This region harbors multiple
genome-wide significant SNPs when employing either FBAT or
GAP without the optimal phenotypic offset (not shown) and may
actually be testing for T1D associations rather than those from
DN within a TID population since, without the offset, the analysis
reduces to a traditional, affecteds-only TDT.

Selection of the top 10 ranked SNPs from screening approaches
combined across the unrelated and trio subsets and testing with

FIGURE 3 | Manhattan plot for population-based study with case and

control singletons only. Summary of genome-wide association scan
results in the GoKinD cases and controls, singletons only. The
−log10P-values were calculated for SNP association with diabetic
nephropathy among subjects with type 1 diabetes using the
Cochran-Armitage test for trend for an additive genetic model adjusted for
sex and stratified by center ascertainment using Cochran-Mantel-Haenszel
method. The red horizontal line corresponds to genome-wide significance
(P-value = 0.05/384, 094 = 1.3× 10−7). The blue horizontal line
corresponds to suggestive significance (P-value = 1× 10−5).

FIGURE 4 | Manhattan plot for family-based study. Summary of
genome-wide association scan results in the GoKinD cases and controls
family-based trios and duo parent/offspring pairs. The −log10P-values were
calculated for SNP association with diabetic nephropathy among subjects
with type 1 diabetes using the generalized FBAT method with an offset of
0.3 (the prevalence of diabetic nephropathy in type 1 diabetics). The red
horizontal line corresponds to genome-wide significance (P-value =
0.05/351,951 = 1.4 ×10−7). The blue horizontal line corresponds to
suggestive significance (P-value = 1× 10−5).
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FIGURE 5 | Manhattan plot for Fisher’s combined probability of

population- and family-based studies. Summary of genome-wide
association scan results in the GoKinD collection of combined probability of
the population-based and family-based P-values. The −log10P-values were
calculated for SNP association with diabetic nephropathy among subjects
with type 1 diabetes by combining each study P-values using Fisher’s
combined probability method. Power ranking was obtained using
conditional mean model for family-based data and data partitioning for
population-based cases and controls. Rankings were obtained for each
subset and then log transformed and summed. The top ten ranked SNPs
were tested; the two SNPs significant at 0.05/10 = 0.005 are indicated in
red, while the other eight are in green. The red horizontal line corresponds
to genome-wide significance (P-value = 0.05/374, 042 = 1.3× 10−7). The
blue horizontal line corresponds to suggestive significance (P-value
= 1× 10−5).

FIGURE 6 | Manhattan plot for METAL. Summary of genome-wide
association scan results in the GoKinD collection of the meta-analyzed
population-based and family-based P-values. The −log10P-values were
calculated for SNP association with diabetic nephropathy among subjects
with type 1 diabetes by combining each study P-value using the METAL
sample size method. The red horizontal line corresponds to genome-wide
significance (P-value = 0.05/385, 830 = 1.3× 10−7). The blue horizontal
line corresponds to suggestive significance (P-value = 1× 10−5).

Fisher’s test resulted in two SNPs achieving genome-wide sig-
nificance (p = 0.05/10 = 0.005; Table 1, Supplemental Table 3,
Figure 5). SNP rs7866522 on chromosome 9p (p-value= 0.0033)
is contained in the protein tyrosine phosphatase, receptor, D gene
(PTPRD). Members of the protein tyrosine phosphatase family
are known to be signaling molecules which regulate processes
such as cell growth, differentiation, mitotic cycle, and onco-
genic transformation (Wheeler et al., 2007). This region has
been in identified in type 2 diabetic risk genome-wide studies
(Tsai et al., 2010; Below et al., 2011; Chang et al., 2012) poten-
tially related to glucose homeostasis and insulin sensitivity (Ren
et al., 1998; Chagnon et al., 2006). SNP rs11645147 on chro-
mosome 16p (p-value = 0.00017) is located in proximity to the
glutamate receptor, ionotropic, N-methyl D-aspartate 2A gene
(GRIN2A).

FIGURE 7 | Manhattan plot for GAP. Summary of genome-wide
association scan results in the GoKinD collection of combined
population-based and family-based data. The −log10P-values were
calculated for SNP association with diabetic nephropathy using the method
of Zhang et al. (2009). The red horizontal line corresponds to genome-wide
significance (P-value = 0.05/386, 822 = 1.3× 10−7). The blue horizontal
line corresponds to suggestive significance (P-value = 1× 10−5).

We sought to replicate the two genome-wide significant SNPs
using the Family Investigation of Nephropathy and Diabetes
(FIND) study (Knowler et al., 2005; Iyengar et al., 2007; Igo et al.,
2011). The FIND study recruited diabetic subjects with and with-
out nephropathy. Most FIND participants with GWAS have type
2 diabetes (between 90 and 95%), and the majority of nephropa-
thy controls used in this sub-study are relatives of index cases.
To be consistent with the GoKinD population, we examined only
European American subjects. Rs11645147 conferred a p-value of
0.004 assuming a dominant mode of inheritance; rs7866522 failed
to reach significance. While FIND shares the nephrotic phenotype
with GoKinD, it includes primarily type 2 diabetics as opposed to
type 1, making comparisons inexact. In addition, the dominant
mode of inheritance was the only one for which rs11545147 gar-
nered nominal significance, although it still reached significance
after adjusting for testing multiple modes of inheritance.

DISCUSSION
The primary finding of this study is that analysis of GoKinD
collection by any of a strict population-based design, a family-
based design or the combined approach without any screen-
ing, did not detect genome-wide significant SNPs. Simply
combining family-based association results with those from
population-based data actually suppressed areas of suggestive
genome-wide significance compared to the original GoKinD
GWAS, possibly by correcting for previously unrecognized pop-
ulation substructure; however, the definitive reason for this is
unknown. Conversely, the incorporation of family-based infor-
mation also uncovered new areas of possible interest. Two SNPs
reached significance in our combined data analysis by the novel
two-step approach using Van Steen screening with the family-
based trios and C2BAT data partitioning in the unrelated case-
control data, which ranks markers by conditional power and then
selects the top 10 overall ranked markers.

Suggestive findings using only population-based association
tests with all unrelated cases and controls, when pooled with
trio probands as in the Pezzolesi study, were not replicated by
either the family-based or combined analyses. This finding could
suggest the presence of unresolved population structure despite
using PCA to select a homogenous population, and that earlier
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Table 1 | Top ten SNPs by population- and family-based screening aggregation.

Power SNP CHR BP Minor Fisher’s METAL GAP FBAT Singletons only Pooled cases/

rank Allele Freq. p-value p-value p-value p-value p-value controls p-value

1 rs11645147 16 9802457 0.377 1.74E-04 3.28E-07 3.09E-06 1.16E-03 5.71E-05 7.93E-04

2 rs7866522 9 8812704 0.284 3.28E-03 3.02E-03 5.61E-03 3.95E-01 1.10E-04 1.26E-01

3 rs847986 7 12454877 0.089 4.98E-02 6.81E-03 5.53E-03 2.71E-01 1.14E-03 3.52E-02

4 rs980519 4 72180823 0.065 8.42E-01 1.27E-01 5.90E-02 8.63E-01 1.23E-01 2.47E-03

5 rs11673097 19 57119434 0.293 3.25E-02 3.80E-04 1.50E-03 8.38E-01 2.77E-05 2.85E-03

6 rs4707991 6 73493822 0.332 6.78E-01 1.00E-01 1.28E-01 8.81E-01 7.15E-02 1.13E-03

7 rs17689531 4 72022775 0.120 8.81E-01 9.33E-01 9.15E-01 9.23E-01 9.59E-01 9.26E-02

8 rs1901712 4 72147303 0.065 9.25E-01 9.37E-02 3.70E-02 6.38E-01 1.08E-01 2.01E-03

9 rs17470789 5 144584265 0.125 5.88E-02 2.72E-01 1.78E-01 1.86E-02 8.41E-01 5.92E-01

10 rs8179278 1 234379913 0.091 5.01E-02 5.19E-05 5.25E-05 8.67E-01 2.18E-05 2.66E-03

Aggregated SNP rankings based on conditional power for family-based and population-based studies were calculated. The top ten ranked SNPs were selected per

convention to minimize the need for multiple comparison correction (0.05/10 = 0.005). Fisher’s combined p-values for diabetic nephropathy trait association were

obtained using the corresponding association method used for power analysis from FBAT and C2BAT. METAL and Genetic Association analysis Platform (GAP)

aggregated p-values were also obtained but are subjected to genome-wide multiple comparison correction (0.05 /384,197 = 1.3 × 10−7). Genome-wide family-

based association testing (FBAT) included trio probands and parents. Cochran-Armitage test for trend for an additive genetic model adjusted for sex and stratified

by center ascertainment using Cochran-Mantel-Haenszel method were obtained using unrelated cases and controls only (singletons only) and by combining cases

and controls from unrelated subjects and trio probands (pooled cases and controls).

suggestive SNPs were likely false positive associations. It also
could be a result of a decrease in power from using family-based
tests. This balance of increased robustness against problems of
population stratification and a decrease in power are common
factors when considering family-based tests.

Compared to analyzing either of the unrelated case-control or
trio datasets alone, the additional sample size via the combined
Fisher’s method increases study power, and this may explain
the new areas of suggestive significance. The lack of findings of
genome-wide significant SNPs may reflect that there are truly
no associations between DN and genotyped markers among the
GoKinD dataset or that the study reflects the difficulties encoun-
tered with the multiple testing problem inherent to GWAS.

Applying screening methods due to Van Steen et al. (2005) and
McQueen et al. (http://rss.acs.unt.edu/Rdoc/library/pbatR/html/
c2bat.html), statistically independent assessments of each SNP’s
power to detect an association allows for more efficient genome-
wide testing. Here we aggregated the independently obtained
marker rankings using parental information in the family-based
data and data partitioning in the population-based data. By lim-
iting testing to the conventionally-used top 10 highest ranked
markers (Herbert et al., 2006), two SNPs reached genome-wide
significance. While this result is appealing, without extensive sim-
ulation to establish operating characteristics of the suggested
approach in other settings, caution must be taken to not over
interpret. It does suggest, at the least, that future methodologi-
cal work in this regard is warranted. We plan to investigate the
performance of this approach in other scenarios and examine
implications of varying the choice of the number of SNPs to carry
to the testing stage as well as the function for rank aggregation.

With the growing availability of GWAS and now sequenc-
ing data, association studies have increasingly reported positive
results. Multiple-hypothesis testing, low power, study design vari-
ability, phenotypic definition, and population structure continue

to pose investigational difficulties (Laird and Lange, 2006).
Family-based and population-based case control designs each
have unique strengths and weaknesses, but when used in a
complementary fashion as proposed, they may overcome these
challenges.
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Figure S1 | Q-Q Plots for association within controls and cases. When

controls and cases from each center of ascertainment are combined by

affection status, an over dispersion of the Cochran-Armitage test statistic

for trend is noted. The deviation from expected, confirmed by an elevated

genomic control inflation factor (λGC > 1.05), suggests underlying

confounding and stratification by center ascertainment between the Joslin

Diabetes Center and the George Washington University Biostatistical

Center.

Figure S2 | Mendelian errors per GoKinD family trio. In the GoKinD

family-based study, 551 trios (two parents and one offspring) were

assessed for Mendelian errors of transmission. Number of Mendel SNP

errors per family was log10 transformed. A single outlier family was

determined by a greater than 5% Mendel error rate (>20,000 errors,

indicated by the red arrow). Mendelian errors reflect poor quality SNP

genotype calling, poor DNA sample quality or inconsistent familial

relationship.

Figure S3 | Projection of principal components of population-based

GoKinD subjects onto HapMap populations. A pruned set of SNPs

(85,051) from the population-based cases and controls were projected

onto a similar set of SNPs from the original three International HapMap

populations [GoKinD subjects in blue, (A)]. Using Z -scores based on

median absolute deviation, a homogenous population was selected for

association analysis [selected GoKinD population shown in blue and

outliers in red, (B)]. HapMap populations: CEU (Eastern and Western

European) samples are shown in green, YRI (Yoruba in Ibadan, Nigeria) are

in black, and JPT + CHB (Japanese in Tokyo, Japan and Hans Chinese in

Beijing) are shown in violet.
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APPENDIX
RECRUITMENT
Of the 1879 T1D subjects initially recruited, 10 failed geno-
typing on an Affymetrix 5.0 (500 K) SNP array conducted
by the GAIN genotyping laboratory at the Broad Institute
(Cambridge, MA) and the Central Biochemistry Laboratory at
the University of Minnesota. Of the remaining 1869 subjects,
21 were excluded from the data release due to sample duplica-
tion detected by identifying cryptic relatedness and eight were
removed due to assay plate failure via genotype calling interfer-
ence (https://www.niddkrepository.org/GOKIND) (Pluzhnikov
et al., 2010). Of the 1840 remaining, none were detected as cryp-
tically related using identity-by-descent proportion estimation
(π̂ < 0.1621).

GoKinD samples were recruited under two separate ascertain-
ment protocols at JDC and GWU. Using Q-Q plots, over disper-
sion of the Cochran-Armitage test statistic for trend for JDC vs.
GWU, among controls and cases, separately were demonstrated
(Supplemental Figure 1). To test if the observed overall inflation
factor (λGC) (Devlin and Roeder, 1999) for cases (λGC = 1.097)
and controls (λGC = 1.115) were truly significant for stratifi-
cation, centers were permutated by affection status. For 1000
permutations in cases and controls, no λGC were more extreme
(p-value < 10−3); hence further association testing was stratified
by center.

SINGLETONS
Of the 1270 population-based singletons remaining, four were
removed for sex mismatch and one for high individual genotype
missingness (>0.10), which left 1265 (650 cases and 615 controls)
(Supplemental Table 1).

TRIOS
Of the 571 family-based trios, 551 included genotyping for both
parents (full trios) while 20 included only a single founder.
Three subjects and their parents were excluded for sex mis-
match. Families were evaluated for Mendelian error rates to
assess validity of relatedness and the degree of genotyping error:
one was excluded with a Mendelian error rate greater than
5% (Supplemental Figure 2). This subject was added to the

singletons but was excluded due to high individual genotype
missingness, which confirms the original Mendelian error find-
ing. A total of 567 parent(s)/offspring were included (264 case
and 303 control offspring) (Supplemental Table 1).

SNP QUALITY CONTROL
For autosomal chromosomes, both population- and family-based
SNPs were filtered for an overall minor allele frequency (MAF)
<0.01, Hardy-Weinberg equilibrium probability = 1× 10−5,
duplicate SNPs, and sequential missingness by MAF; 95% overall
minimum completeness, 97% for MAF between 5–10%, and 99%
for infrequent SNPs with MAF between 1 and 5% (Burton et al.,
2007; Ziegler et al., 2008; Pezzolesi et al., 2009). For population-
based C2BAT power analysis, an overall MAF <0.05 screening was
used per computational software restriction. In addition, family-
based SNPs were filtered for a Mendelian error rate of 3 per SNP
based on a subset of full trios excluding families with > 10,000
errors per family. A final 384,197 and 338,970 singleton SNPs
(PLINK and C2BAT analysis, respectively) and 352,004 trio SNPs
were analyzed (Supplemental Table 2).

POPULATION STRUCTURE
To select a homogenous population in the singleton cases and
controls, PCA was performed by projection of a pruned subset
of SNPs (85,051) onto the three original HapMap popula-
tions [Utah residents with ancestry from northern and western
Europe (CEU), Yoruba in Ibadan, Nigeria (YRI), Japanese in
Tokyo, Japan and Hans Chinese in Beijing, China (JPT_CHB),
http://pngu.mgh.harvard.edu/∼purcell/plink/res.shtml#hapmap,
Phase 2, release 23] (Gibbs et al., 2003) using EIGENSOFT
(Patterson et al., 2006; Price et al., 2006) and EIGENSOFTplus
(Weale, 2009, 2010) software. Singleton genotypes were pruned
with PLINK’s (Purcell et al., 2007) in-depth pairwise option (500
SNP sliding window, 5 SNP step), with additional removal of long
range linkage disequilibrium areas (Supplemental Figure 3A).
Outliers were determined using visual assessment and calculated
Z-scores based on median absolute deviation, i.e., median (|X—
median (X) |). Ninety-four subjects were excluded at a Z-score of
9.1 for a final singleton sample of 1171 (576 cases, 597 controls)
(Supplemental Figure 3B).
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Autism spectrum disorders (ASD) comprise a number of underlying sub-types with various
symptoms and presumably different genetic causes. One important difference between
these sub-phenotypes is IQ. Some forms of ASD such as Asperger’s have relatively intact
intelligence while the majority does not. In this study, we explored the role of genetic factors
that might account for this difference. Using a case–control study based on IQ status in
1657 ASD probands, we analyzed both common and rare variants provided by the Autism
Genome Project (AGP) consortium via dbGaP (database of Genotypes and Phenotypes).
We identified a set of genes, among them HLA-DRB1 and KIAA0319L, which are strongly
associated with IQ within a population of ASD patients.

Keywords: GWAS, functional variants, rare variants, common variants, autism, cognitive development

INTRODUCTION
Autism gained recognition in the 1940s as a mental disorder
characterized by social deficits, communication difficulties, and
other abnormalities. Since then, scientists have increasingly rec-
ognized that autism is not one but a family of conditions that
share certain clinical characteristics. Currently, classical autism,
Asperger’s syndrome, Rett’s syndrome, childhood disintegrative
disorder, and pervasive developmental disorder not otherwise
specified (PDD-NOS) are grouped together as autism spectrum
disorders (ASD). However, the recent revision of in the Diagnos-
tic and Statistical Manual of Mental Disorders version 5 replaced
this categorization with a continuous scale of severity (Halfon and
Kuo, 2013).

There is considerable evidence for the role of inheritance in
the etiology of autism and related disorders. Studies have consis-
tently reported that the prevalence of autism in siblings of autistic
children is approximately 15–30 times greater than the rate in
the general population (Szatmari, 1999). More recently, identified
genetic variants include inherited mutations, de novo mutations,
single point mutations, and copy number variants (CNVs). In par-
ticular, researchers reported hundreds of ASD risk factors, ranging
from de novo to inherited, CNVs to single point mutations (Anney
et al., 2012).

Some variants found to be associated with ASD were dis-
covered only when researchers restricted the study subjects to a
specific population group. The distinction by IQ may be partic-
ularly relevant in ASD research, helping to separate Asperger’s
syndrome, an ASD sub-type which spares language development,
from autism, which does not. For example, in a recent study,
Anney et al. (2012) identified a variant, rs1718101, which was
strongly associated with ASD only in Europeans with high-IQ.

In the current study, we hypothesized that the genetic etiology of
ASD may be different based on IQ status. To test this hypothesis,
we compared genotypic frequencies in high-IQ ASD probands
with those of the low-IQ probands. We analyzed both common
and rare variant. Specifically, we used the sequence kernel asso-
ciation test (SKAT) developed by Wu et al. (2011) to analyze
the rare variants with minor allele frequency (MAF) less than
0.05.

MATERIALS AND METHODS
DATA DESCRIPTION
The study was conducted using a genome-wide association study
(GWAS) data set of ASD families evaluated by the Autism Genome
Project (AGP) consortium [provided by dbGaP (database of
Genotypes and Phenotypes); Anney et al., 2012]. The AGP con-
sortium represented more than 50 centers in North America and
Europe. The centers collected clinical information from 2705 ASD
families for the combined stage 1 and 2 study. Autism Diagnostic
Interview-Revised (ADI-R) (2) and Autism Diagnostic Obser-
vation Schedule (ADOS) (3) were used for research diagnostic
evaluation. Individuals were classified into “strict” or “spectrum”
(i.e., includes strict) disorders, based on ADI-R and ADOS classi-
fication. Individuals with known karyotypic abnormalities, fragile
X mutations, or other genetic disorders were excluded. Geno-
typing was performed by using the Illumina Human 1M-single
Infinium BeadChip array (Anney et al., 2012). This resulted in
2665 ASD families (7880 individuals). We checked for Mendelian
errors using PedCheck, and found none (O’Connell and Weeks,
1998). We further checked for per-individual genotyping miss-
ing rate, and removed those with more than 50%, leaving 7769
individuals within 2604 pedigrees. Because our research aim was
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to investigate the role of genetic variants associated with IQ dif-
ference in IQ in ASD patients, we focused on the probands and
excluded their parents from this study.

ANALYTICAL METHODS
High-IQ probands in the AGP data set were defined by the
AGP committee as those with IQ greater than 80, while low-IQ
probands were defined as those with IQ of between 25 and 70.
Using this definition, out of 2095 probands with non-missing IQ
statues included in the data, 1034 were classified as high-IQ, 623 as
low-IQ, and 438 as normal-IQ. Probands with missing IQ statuses
were not included in the analyses. In this paper, we compared the
1034 high-IQ probands to the 623 low-IQ probands for a total of
1657 individuals. Of these 1657 individuals, 918 high-IQ individu-
als and 511 low-IQ individuals for a total of 1429 were Caucasian.
This required us to account for population stratification in this
study.

Our approach differed for common and rare variants. We
used MAF of 0.05 as the threshold to differentiate between the
two types of variants. For common variants, we used PLINK’s
(v1.07) built in function to account for population stratification.
We first calculated the pair wise identity by state (IBS) matrix,
and then performed a multidimensional scaling (MDS) analy-
sis using two dimensions. We then used the two-dimensional
MDS statistics along with sex as covariates to perform a logis-
tic regression for each individual common single nucleotide
polymorphism (SNP).

The analysis of rare variants is more complicated since, given
the low numbers of informative individuals, association results
for single rare variants tend to be unreliable. For this study, we
used the SKAT (Wu et al., 2011). As with many other methods
designed for rare variant analysis, SKAT analyzes multiple vari-
ants together as a unit. This remedied the lack of power for single
rare variants by combining the effects of multiple variants. How-
ever, unlike the burden tests such as collapsing methods, which
aggregate variants into a single variable before performing statis-
tical regression, SKAT combines individual variant-test statistics
after analyzing each variant independently. This is advantageous
compared to collapsing methods when large numbers of variants
affect the phenotype to increase or decrease the risk, and also when
a large fraction of variants is non-causal. We used a gene-based
method in our approach to rare variants, in which rare variants
outside of known genes were not included in our analysis and
the rest analyzed collectively via SKAT on a gene-by-gene basis.
Dealing with population stratification via MDS analysis was not
satisfactory for rare variants; thus, we included only Caucasian
probands in this analysis.

RESULTS
POPULATION STRATIFICATION
Of 1657 probands, 1429 are of Caucasian descent. The MDS plot
obtained during the common variant analysis process is shown
in Figure 1. Population stratification is significant for the sam-
ple. The Caucasian probands were relatively close genetically,
while non-Caucasian individuals showed wide genetic differ-
ences among themselves. Specifically, non-Caucasians seemed
to group themselves into two clusters. These could be different

FIGURE 1 |Two-dimensional MDS plot of the AGP population. The
green circles are Caucasian individuals; the red circles are those of other
ethnicities.

FIGURE 2 | QQ-plot of the p-values of common variant analysis.

non-Caucasian ethnicities, but data were not available for proper
identification. We presented a QQ-plot with the p-value of our
adjusted analysis (Figure 2).

COMMON VARIANTS
We analyzed a total of 878,930 SNPs. Fifteen SNPs had associations
with p-value lower than 10−5, and 82 with p-values lower than
10−4 (data not shown). Forty-eight of the variants found in the
high-IQ vs. low-IQ comparison have odds-ratio of less than 1,
indicating an association with low-IQ, while the remainders are
associated with high-IQ. We probed into the biological relevance of
all SNPs with p-values lower than 10−4 in the NCBI SNP database,
by analyzing genes that contain or are situated close to the SNP.
Seventeen SNPs out of 192 in the high-IQ vs. low-IQ analysis fell
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Table 1 | Common variant analysis results of high-IQ vs. low-IQ.

CHR SNP BP Risk allele TEST Sample size OR STAT p-Value Gene

6 rs9268880 32539336 A ADD 1657 0.7089 −4.443 8.85 × 10−6 HLA-DRB1

6 rs6903608 32536263 G ADD 1656 0.7121 −4.391 1.13 × 10−5 HLA-DRB1

6 rs6923504 32536164 C ADD 1656 0.7135 −4.365 1.27 × 10−5 HLA-DRB1

4 rs17012830 88670120 A ADD 1650 0.6437 −4.242 2.22 × 10−5 SPARCL1

6 rs4715377 13622276 G ADD 1656 1.809 4.176 2.97 × 10−5 GFOD1

2 rs10190416 36405331 G ADD 1652 1.41 4.141 3.46 × 10−5 CRIM1

18 rs238129 3478151 A ADD 1657 1.359 4.131 3.62 × 10−5 DLGAP1

17 rs12453363 45576919 A ADD 1655 0.6792 −4.076 4.58 × 10−5 PPP1R9B

13 rs12872448 98393248 A ADD 1653 0.6773 −4.041 5.31 × 10−5 DOCK9

7 rs805803 122842791 A ADD 1653 1.449 4.032 5.52 × 10−5 IQUB

2 rs968796 3872434 G ADD 1657 1.35 3.976 7.02 × 10−5 DCDC2C

10 rs10884381 108676055 G ADD 1655 0.7411 −3.95 7.80 × 10−5 SORCS1

3 rs9289026 116838866 G ADD 644 0.5493 −3.917 8.98 × 10−5 GAP43

8 rs1469039 140720961 A ADD 1653 1.527 3.913 9.10 × 10−5 KCNK9

10 rs10786981 108671720 A ADD 1657 0.7437 −3.907 9.33 × 10−5 SORCS1

17 rs8066520 24400717 A ADD 1657 1.498 3.898 9.72 × 10−5 DCC

within or near genes that have a significant role in the nervous
system and neurodevelopment. The details are listed in Table 1.

RARE VARIANTS
We used the hg19 database as the standard for gene annotation.
Excluding genes that do not have rare variants, we analyzed 8060
genes for high-IQ vs. low-IQ comparisons. The top 15 ranked
genes are presented in Table 2. Genes that are functionally rele-
vant to the nervous system and neurodevelopment are discussed
below.

DISCUSSION
The AGP dataset consists of ASD probands and their parents
sequenced using a GWAS platform. Its purpose is to explore the
role of common variants in ASD by using a transmission dise-
quilibrium test (TDT) approach. In this study, we focused on the
probands themselves and excluded their parents. We speculated
that by using a case-comparison design, we could potentially iden-
tify the specific variants that differentiate high- vs. low-functioning
ASD individuals.

A total of 15 SNPs met the p-value threshold of 10−5 while 82
genes met the less stringent significance threshold of 10−4. We
then examined the properties of genes that contain or are close to
these SNPs using the NCBI database. We were particularly inter-
ested in genes known to be related to neurological disorders and
neurodevelopment. These genes, as well as their related biological
functions are summarized in Table 3.

The most interesting finding is that three of the SNPs are
included within the human leukocyte antigen (HLA) region
on chromosome 6, very close to the gene HLA-DRB1, which
was implicated in a paper by Torres et al. (2012) to be
protective against ASD. All three of the SNPs (rs9268880,
p = 8.85 × 10−6; rs6903608, p = 1.13 × 10−5; rs6923504,

Table 2 | Rare variant results of high-IQ vs. low-IQ.

Gene p-Value N. marker test

LTA4H 0.000132 1

STEAP2 0.000201 2

ALK 0.000268 29

ZMYM4 0.000303 5

LINC00550 0.000316 1

FKTN 0.000402 2

KIAA0319L 0.000536 4

TFAP2E 0.000639 1

NRD1 0.000659 7

SEMA6A 0.000662 9

ACAD11 0.000769 1

UBA5 0.000769 1

SLC16A4 0.000782 2

RAB3B 0.000991 1

N. marker test is the number of markers to test for an association after excluding
non-polymorphic or high missing rates markers.

p = 1.27 × 10−5) near HLA-DRB1 are associated with
lower IQ.

Among the remaining genes, there are three general categories.
The first category includes genes related to neurodevelopment.
One of these is the gene DCDC2C, a member of the dou-
blecortin gene family, which has been implicated in neuronal
migration, neurogenesis, and retina development through regu-
lation of cytoskeletal structure and microtubule-based transport.
Mutations in genes of this family have been implicated in epilepsy
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Table 3 | Summary of known biologically relevant genes found in

common variant analysis.

Gene Effect

HLA-DRB1 ASD

SPARCL1 Astroglial cells

gfod1 ADHD

crim1 CNS development

dlgap1 Schizophrenia

ppp1r9b Dendritic spines

DOCK9 Bipolar

IQUB Intelligence

dcdc2c Neurogenesis

sorcs1 Memory

GAP43 Neurogenesis

DCC Axon guidance

and developmental dyslexia, among other disorders (Dijkmans
et al., 2010). Another gene of this class is GAP43, named growth
associated protein 43 because it is expressed at high levels in neu-
ronal growth cones during development and axonal regeneration,
and considered a crucial component of regenerative response in
the nervous system (Skene et al., 1986; Aigner et al., 1995). The
third of these genes is DCC, which encodes a netrin 1 receptor that
acts as a cue for axon growth and guidance (Forcet et al., 2002).
The fourth gene, SPARCL1, has been implicated in multiple cellu-
lar processes during brain development. Specifically, SPARCL1 is
prominently expressed in radial glia, where it terminate radial glial
guided neuronal migration, and is further expressed in the pro-
liferative ventricular zone (VZ) of the embryonic cortex (Weimer
et al., 2008). Another gene, CRIM1 has also been implicated in
central nervous system (CNS) development, possibly via growth
factor binding (Kolle et al., 2000).

The second category contains genes that are related to neural
function. PPP1R9B belongs to this category. This gene encodes
spinophilin, which is a regulatory subunit of protein phosphatase-
1 catalytic subunit (PP1) and is highly enriched in dendritic
spines. Allen et al. (1997) suggested that spinophilin may serve
as a neuronal targeting subunit for PP1 and might be responsive
to neuronal inputs.

The third category contains genes linked to neurological condi-
tions via bioinformatic methods, but has not yet been verified via
biological experiments. These include GFOD1, which is associated
with attention deficit hyperactivity disorder (ADHD), DLGAP1

which is associated with schizophrenia, DOCK9 associated with
bipolar disorder, and SORCS1 which is associated with memory
(Detera-Wadleigh et al., 2007; Lasky-Su et al., 2008; Reitz et al.,
2011; Li et al., 2013). Interestingly, the SNP rs805803 is in close
proximity (75 kb) to rs7791660, which was shown to be associated
with mathematical ability (Docherty et al., 2010).

Considering rare variants, three genes are noteworthy. The first
is ALK, which is an oncogene whose mutation also disrupts CNS
development (de Pontual et al., 2011). The second is KIAA0319L
located on chromosome 1, which has been identified as a candi-
date for dyslexia. This gene is expressed in the brain and, based
on its structural similarities to the gene KIAA0319, has been sug-
gested to play a role in neuronal migration (Couto et al., 2008).
The third gene SEMA6A is expressed in developing neural tissue
and is required for proper development of the thalamocortical
projection (Leighton et al., 2001).

CONCLUSION
In this study, we used a case–control approach to investigate the
association of genetic variants with IQ in the ASD population.
We analyzed common variants and rare variants separately and
in different ways, using a standard case–control association test
implemented in PLINK for common variants, and the SKAT for
rare variants. Considering their previously reported biological
roles, we were able to identify several genes that are plausible can-
didates for involvement in brain development in ASD patients. To
our knowledge, this is among the first studies that addresses this
issue.

These genes are biologically relevant to CNS and neurodevelop-
ment based on published literature, the most prominent examples
being the genes KIAA0319L and HLA-DRB1. These genes warrant
further investigation of their properties, both in regard to their
connection with intelligence and relationship to ASD.

We acknowledge that the findings reported are preliminary,
and it is possible that at least some of the associated genes are false
positives. Thus, further molecular validations are warranted.
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Genome-wide association studies (GWAS) have provided valuable insights into the genetic
basis of complex traits. However, they have explained relatively little trait heritability.
Recently, we proposed a new analytical approach called regional heritability mapping
(RHM) that captures more of the missing genetic variation. This method is applicable
both to related and unrelated populations. Here, we demonstrate the power of RHM in
comparison with single-SNP GWAS and gene-based association approaches under a wide
range of scenarios with variable numbers of quantitative trait loci (QTL) with common
and rare causal variants in a narrow genomic region. Simulations based on real genotype
data were performed to assess power to capture QTL variance, and we demonstrate
that RHM has greater power to detect rare variants and/or multiple alleles in a region
than other approaches. In addition, we show that RHM can capture more accurately the
QTL variance, when it is caused by multiple independent effects and/or rare variants. We
applied RHM to analyze three biometrical eye traits for which single-SNP GWAS have
been published or performed to evaluate the effectiveness of this method in real data
analysis and detected some additional loci which were not detected by other GWAS
methods. RHM has the potential to explain some of missing heritability by capturing
variance caused by QTL with low MAF and multiple independent QTL in a region, not
captured by other GWAS methods. RHM analyses can be implemented using the software
REACTA (http://www.epcc.ed.ac.uk/projects-portfolio/reacta).

Keywords: common and rare variants, GWAS, regional heritability mapping, multiple independent effects, missing

heritability

INTRODUCTION
Genome-wide association studies (GWAS) have provided valu-
able insights into the genetic basis of complex traits. However,
the reported SNPs associated with a trait typically explain only
a small proportion of genetic variance. For example, the heri-
tability of human height is about 80% (Visscher et al., 2008),
but the SNPs significantly associated with height explain only
10% of the phenotypic variance (Lango Allen et al., 2010). This
has been called the “missing heritability” problem (Maher, 2008).
Recently, Yang et al. (2010) showed that 45% of the phenotypic
variance for human height is accounted for by common SNPs,
and the difference between 10 and 45% was due to many SNPs
with small effects that fail to reach significance in GWAS. Yang
et al. (2010) suggested that the remaining variance evaded cap-
ture due to imperfect linkage disequilibrium (LD) between the
genotyped SNPs and causal variants. Causal variants may have
lower minor allele frequency (MAF) than genotyped SNPs if they
are subject to purifying natural selection. In this case the varia-
tion explained by the genotyped SNPs will be lower than that due

to causal variants because of low LD. A pressing need is analytical
approaches adapted to capturing genetic variation due to causal
variants with low MAF.

Recent studies have shown that multiple independent loci with
different allele frequencies and effects are often located on the
same gene region or narrow segment region. For example, seven
independent alleles at 8q24 region affect prostate cancer (Haiman
et al., 2007), three at the IRF5 gene affect systemic lupus ery-
thematosus (Graham et al., 2007), and two at the IL23R gene
affect Crohn’s disease (Duerr et al., 2006). Such loci may escape
detection by single SNP analyses if the individual allele effects
are not large enough to be detected even though the cumula-
tive effect of the whole locus on trait variance is quite large.
An alternative method to analyze GWAS data is to consider
an association between a trait and a composite P-value gener-
ated by all markers within a segment of the genome or a gene
region, as opposed to individual SNPs. For a gene region, this
method is called gene-based association (Neale and Sham, 2004),
and can potentially increase the power to identify a causal gene
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that harbors several functional alleles. A new variance compo-
nent approach called regional heritability mapping (RHM) that
screens the genome by analyzing small regions has been suggested
to capture more of the missing genetic variation (Nagamine et al.,
2012). In RHM, a mixed model framework based on restricted
maximum likelihood (REML) is used, and two variance com-
ponents, one contributed by the whole genome and a second
one by a specific genomic region, are fitted in the model to
estimate genomic and regional heritabilities, respectively. RHM
facilitates the capture of genetic variation that is associated with
each segment of the genome by combining the effects of both
common and rare variants in a region. By analyzing real data,
Nagamine et al. showed that the results of RHM are corre-
lated with results from GWAS but capture more of the missing
genetic variation and identify additional quantitative trait loci
(QTL).

The objective of this study is to investigate the effectiveness
of RHM to capture QTL variance that is potentially not detected
by single-SNP GWAS and gene-based association analyses. Such
variance may be due to low MAF alleles and multiple indepen-
dent QTL with small effects located on a narrow genomic region.
We investigated the power to detect significant regions and accu-
racy of estimating regional heritability using simulation based on
real genotype data from a human population. We used imputa-
tion to generate a dense map of SNPs from which to randomly
select subsets at different frequencies to represent causative vari-
ants (QTL) in our simulations, using only the genotyped SNPs in
the analyses. We studied the impact of different window sizes in
RHM on its power and accuracy, and compared them to those
of other methods that include single-SNP GWAS and a range
of gene-based association approaches under several different sce-
narios. In addition, we also applied a RHM to analyze three eye
traits to evaluate the effectiveness of this method in real data
analysis.

MATERIALS AND METHODS
POPULATION AND SNP ARRAY INFORMATION USED IN THE
SIMULATION STUDY
Samples were available from two Croatian cohorts recruited
from two Dalmatian islands, Vis and Korcula, and both cohorts
were approved by the Ethical Committee of the Medical School,
University of Zagreb and the Multi-Centre Research Ethics
Committee for Scotland. All participants gave written informed
consent. The cohorts are usually referred to as CROATIA-Vis and
CROATIA-Korcula, but will be referred to as Vis and Korcula in
the remaining of the manuscript.

DNA samples were genotyped using the Illumina Human
Hap300 (282,415 autosomal SNPs) for Vis and Illumina CNV370
(302,507 autosomal SNPs) for Korcula. Our quality control pro-
tocol excluded SNPs with MAF <0.0005, call rate <0.98 or
Hardy–Weinberg equilibrium (HWE) P-value < 1.0× 10−6. The
exclusion criterion for individuals was call rate <0.97. A total of
269,706 SNPs on autosomal chromosomes were common to Vis
and Korcula samples and were used in this study. In total, 953
individuals passed all quality control thresholds from Vis and 898
from Korcula, and the total of 1851 individuals were then used in
the simulation study.

SNP IMPUTATION FOR SIMULATION ANALYSIS
SNPs were imputed to provide a dense map from which to
select simulated causative variants (QTL). SNP imputation was
performed using the IMPUTE2 program (Howie et al., 2009),
incorporating 1000 Genomes Phase I (interim) data as refer-
ence panel for the Vis and Korcula genotypes, respectively. This
imputation yielded posterior probabilities for genotypes at ∼35
million SNPs, and an estimate of imputation quality [IMPUTE2-
info score ranging from 0 (low confidence) to 1 (high con-
fidence)]. Imputed SNPs were assigned to one of two groups
depending on their IMPUTE2-info score (high_info group: 0.7≤
IMPUTE2-info score≤ 1.0 and low_info group: 0.0≤ IMPUTE2-
info score ≤ 0.5) in both populations. IMPUTE2 gives posterior
probabilities for all three genotypes at each locus for each indi-
vidual. Individual genotypes at each imputed SNP locus were
randomly assigned according to the posterior probabilities for
the three genotypes from IMPUTE2. These imputed SNPs were
then assessed by the exclusion criteria of very rare MAF <0.0005
and HWE P-value < 1.0× 10−6. The total number of selected
SNPs were 3,793,540 SNPs in the low_info group and 6,704,137
SNPs in the high_info group. Comparison of imputed SNPs in the
high_info group with the same SNPs genotyped on a commercial
exome array indicates that the LD structure of the real popula-
tion is well-represented by the imputed SNPs (see Figure S1 in
Supplementary Material).

GENERATING PHENOTYPES UNDER THE NULL HYPOTHESIS
We simulated phenotypes under the null hypothesis based on
the observed genotype data of 1851 individuals at 269,706 SNPs.
The phenotypes under the null hypothesis were simulated using
a polygenic model in which all SNPs were assumed to have a
very small effect on the phenotype. The polygenic model was
yi =∑n

j xijbj + ei, where xij is the genotype for j-th causal vari-
ant of the i-th individual (coded as 1, 2, or 3), bj is the allele
effect of the j-th causal variant generated from N(0, 1), and
ei is the residual effect generated from N(0, σ2

g(1/h2 − 1)). σ2
g

is the total genetic variance of
∑n

j xijbj and h2 is the setting
value of genome heritability. Three setting values of genome her-
itability (h2 = 0.20, 0.40, and 0.80) were used for generating
phenotypes. These generated phenotypes were under the null
hypothesis of no phenotype-window correlation (i.e., there was
no significant effect for RHM), and were then used for simu-
lation analysis (see the details in Figure S2 in Supplementary
Material).

SIMULATION DESIGN AND ANALYSES
The genotyped and imputed SNPs were assigned to genomic
regions on the basis of their location in 1000 Genomes Phase
I (interim) information. Once the polygenic background was
simulated based on the genotyped SNPs as described above, we
added to it regional effects, based on the simulated genotypes
at imputed SNPs. For imputed SNPs, two MAF categories were
defined as low MAF (MAF < 0.10) and high MAF (MAF≥ 0.10),
respectively. We carried out simulations in the high_info and
low_info imputed SNPs categories. The parameters considered in
the simulation are summarized in Table 1, and shown in detail
below.
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Table 1 | Settings criteria in the simulation study.

Condition Criteria

Low_info group High_info group

Minor allele frequency Low MAF
(0.0005 < MAF < 0.10)

Low MAF (0.0005 <

MAF < 0.10), high MAF
(0.10 ≤MAF ≤ 0.50)

Number of QTL 1, 5, 10 1, 5, 10

QTL heritability 0.05 0.025, 0.050

Genome heritability 0.20, 0.40, 0.80 0.20, 0.40, 0.80

The division of the genome into regions was based on numbers
of genotyped markers. A window containing 100 adjacent geno-
typed SNPs was named as win100. A total of 2686 win100 without
overlap covered the autosomes and from these 300 win100s were
randomly picked for the simulation analysis. Each win100 was
divided equally into 10 10-SNP-windows (named as win10). One
win10 was randomly selected from the six centermost win10s of
a win100, and assumed as a gene region (i.e., we simulated causal
variants in the chosen win10). This gene region contained at least
10 imputed SNPs with high MAF or low MAF. Of these 1, 5, or
10 with either high MAF or low MAF were randomly selected and
assumed as QTL with joint heritabilities of either 0.025 or 0.05,
which are based on the proportion of total genetic variance gen-
erated under the null hypothesis. The effect of these selected SNPs
was generated, and then added to the phenotypic value generated
under null hypothesis and an error value to generate a new pheno-
typic value with genome heritability (0.20, 0.40, and 0.80). Each
selected SNP had an equal effect (and a randomly selected effect
direction) that contributed to the total (“joint”) QTL variance.
Each win100 was divided equally into 2, 5, and 10 windows, and
each window with 50 SNPs (named as win50), 20 SNPs (named as
win20) and 10 SNPs, respectively, was then used to calculate the
power to detect QTL and estimate regional heritability in order to
assess the optimum analysis window size for these simulated data.
Average window length across all autosomal chromosomes was
1030.2 kbp for win100, 515.1 kbp for win50, 206.0 kbp for win20,
and 103.0 kbp for win10.

A total of 18 RHM analyses were performed per 100-SNP
window (1 win100, 2 win50, 5 win20, and 10 win10 analyses),
and a P-value of win100 and the minimum P-values results of
win50, win20, and win10 were selected in each window size.
To determine the threshold value of win100, win50, win20, and
win10, a Bonferroni correction was applied by using 2686 win-
dows, 5372 windows, 13,430 windows, and 26,860 windows,
respectively. The power to achieve 5% genome-wide significance
was calculated as the proportion of replicates with a significant
window for each window size, genomic heritability, number of
QTL, IMPUTE2-info score levels, MAF, and QTL heritability. The
regional heritability and minimum P-value were also computed
in all replicates for win100, win50, win20, and win10, and the
average value of estimated regional heritability in all simulation
replicates was calculated for each window size.

We wanted to compare the power and estimated regional
heritability of RHM and a range of single SNP or gene-based

association methods. We used two single-SNP GWAS analyses
based on the Genome-wide rapid association using mixed
model and regression (GRAMMAR) method (Aulchenko et al.,
2007) and the genome-wide efficient mixed-model association
(GEMMA) method (Zhou and Stephens, 2012). GRAMMAR is
a two-step method that first estimates the residuals from mixed
model without a SNP effect and then treats these residuals as
corrected phenotypes for GWAS by simple linear regression.
GEMMA is an exact mixed model approach that tests for asso-
ciation efficiently by using the mixed model with a SNP effect at
one step. The whole genomic relationship matrix used in RHM
was also used to perform the GRAMMAR and GEMMA anal-
yses. The minimum P-values of GWAS were recorded in each
win100 replicate. The P-value of thresholds for genome-wide sig-
nificance came from the Bonferroni correction accounting for
268,600 SNPs, and the power to achieve 5% genome-wide sig-
nificance was calculated as the proportion of replicates with a
significant association. The heritability at the most significant
SNP was calculated assuming Hardy–Weinberg proportions for
the SNP genotypes; SNP heritability at the SNP with the mini-
mum P-value, h2

SNP, was calculated as h2
SNP = 2p(1 − p)b2/σ2,

where p was the SNP MAF, b was the SNP effect (regression
coefficient estimated from the analysis), and σ2 was the resid-
ual variance for GRAMMAR and the phenotypic variance for
GEMMA (Falconer and Mackay, 1996). An average value of SNP
heritability across simulation replicates was calculated for the
GRAMMAR and GEMMA analyses.

To investigate the power of RHM and other GWAS methods
that consider several variants in a (gene) region simultaneously,
we analyzed the data using three recently reported gene-based
association tests. These GWAS methods implement gene-based
association approaches which consider an association between
a trait and all markers within a gene rather than each marker
individually, and generate one new P-value as a representative
value of the gene. These methods can account for the number of
independent effects within a gene. Three gene-based association
approaches were as follows:

A versatile gene-based test for genome-wide association stud-
ies (VEGAS): VEGAS proposed by Liu et al. (2010) sums the
SNP-based chi-square test statistics from all the SNPs within a
gene and then corrects the sum for LD to generate a gene-based
test statistic. VEGAS requires the pairwise LD correlation matrix
of the SNPs from HapMap genotype information calculated by
the PLINK software (Purcell et al., 2007). In this study, a custom
set of individual genotypes was used to estimate an LD correla-
tion matrix by using genotype data from our population, instead
of HapMap genotype information, because the selected region is
not a gene locus. The VEGAS test was performed by using the
P-values obtained from GEMMA analysis.

Sequence kernel association test (SKAT): As a kernel machine
based test, SKAT proposed by Wu et al. (2011) aggregates genetic
information across the region using a kernel function and uses a
computationally efficient variance component test to test for asso-
ciation. This method has an advantage if the causal mutation is
rare. SKAT’s power is greater than that of several burden tests such
as the cohort allelic sum test (Morgenthaler and Thilly, 2007). In
this study, the GRAMMAR method was used obtain a phenotype
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adjusted for population stratification that was then used in SKAT
analysis. We used the default beta (1, 25) weight in this study.

Canonical Correlation Analysis (CCA): Tang and Ferreira
(2012) explored the gene-based association test using canonical
correlation to test multiple SNPs for association with a single
or multiple phenotypes measured in unrelated individuals. CCA
removes any multicollinearity between SNPs by accounting for
pairwise (LD) correlations and variance inflation factor, calculates
canonical correlations between selected SNPs and phenotypes,
and tests the significance of all canonical correlations. Tang and
Ferreira (2012) showed that the power of this method was greater
than that of GWiS (Huang et al., 2011) and single-SNP GWAS. We
used the GRAMMAR-adjusted phenotypes as input in the CCA
analysis.

In our simulated 300 “gene regions,” for the high_info group,
RHM with win10, single-SNP GWAS by GEMMA and three gene-
based association approaches were performed, and the power
to achieve 5% genome-wide significance was calculated. For
single-SNP GWAS, only GEMMA was performed in this analysis,
because the power to detect QTL using GEMMA was greater than
that obtained using GRAMMAR in all simulations (see Results),
and the minimum P-value was calculated in a gene region. For
the low_info group, there was no significant result for any meth-
ods in all simulations (see Results), and therefore results of these
analyses are not presented.

REGIONAL HERITABILITY MAPPING
We performed RHM based on two-step variance component
method described by Nagamine et al. (2012) using ASReml soft-
ware (Gilmour et al., 2006). The mixed model is as follows;

y = 1nμ+ Xu+ Zw+ e (1)

where y is the vector of phenotypic values and X and Z are the
design matrices for random effects. 1n is a vector of 1s and μ is
the mean. u ∼ N(0, Gσ2

u) is the whole genomic additive genetic
effect, w ∼ N(0, Qσ2

w) is the regional genomic additive genetic
effect and e ∼ N(0, Iσ2

e ) is the residual effect. Matrices G, Q, and I
are a whole genomic relationship matrix, a regional genomic rela-
tionship matrix using SNPs within the short region of genome,
and an identity matrix, respectively. Elements of matrices G and Q
are based on genomic kinship and inbreeding coefficient between
individual i and j using identity by state (IBS), and element fij of
both G and Q is defined as follows,

fij = 2

n

n
∑

k= 1

(xik − pk)(xjk − pk)

pk(1− pk)
, (i �= j)

fij = 1+ 1

n

n
∑

k= 1

Obs(#hom)ik − E(#hom)k

1− E(#hom)k
, (i = j)

where xik (xjk) is the genotype of the i-th (j-th) person at the
k-th SNP (coded as 0, 0.5, and 1 for AA, AB, and BB, respec-
tively). Here n represents the total genomic SNPs for matrix G or
the number of SNPs in the region for matrix Q. The frequency
pk is for the B allele at the k-th SNP, and n is the number of
SNPs. Obs(#hom)ik and E(#hom)k are the observed and expected

number of homozygous genotypes in the i-th person at the k-th
SNP. Regional heritability h2

RH and genome heritability h2
GH are

calculated as follows,

h2
RH =

σ2
w

σ2
u + σ2

w + σ2
e

h2
GH =

σ2
u

σ2
u + σ2

w + σ2
e

where σ2
u, σ2

w, σ2
e are whole genome additive genetic vari-

ance, regional genomic additive variance, and residual variance,
respectively.

TEST STATISTICS AND THEIR DISTRIBUTION
To test for the presence of QTL effect against the null hypothesis
(no regional variance) at a test region (window), the likelihood
ratio test statistics (LRT) = −2 ln(L0–L1) was calculated, where
L0 and L1 represent the likelihood values under the hypothesis of
no presence (H0) and presence (H1) of regional variance, respec-
tively. The L1 was calculated by using the model (1), and the
L0 was calculated by using the following mixed model (2) that
does not include regional genomic additive genetic effect from the
model (1).

y = 1nμ+ Xu+ e (2)

Statistical theory states that the LRT follows a χ2 distribution with
the degrees of freedom equal to the number of random param-
eters being tested (Wilks, 1938). However, for testing a single
variance component in a REML context, the asymptotic distri-
bution of the LRT under the null hypothesis follows a mixture of
χ2 distributions with different degrees of freedom (e.g., Visscher,
2006). Hence for the RHM method, the LRT follows a 50:50
mixture distribution, where one mixture component is a peak
at 0 and the other component is a χ2

1 distribution (Nagamine
et al., 2012). In this study, phenotypes under the null hypothe-
sis were generated, and LRTs for each non-overlapping win100
were calculated to obtain an empirical distribution of −log10(P-
value) under the null hypothesis and compared with the the-
oretical distribution. The results show that the 50:50 mixture
distribution is more appropriate (see Figure S2 in Supplementary
Material).

ANALYSES OF REAL POPULATION DATA ON THREE BIOMETRICAL EYE
TRAITS
To illustrate the applicability of RHM in the real population
data, we considered three eye traits measured in four populations
[three Croatian (CROATIA-Vis, CROATIA-Korcula, CROATIA-
Split) and one from Orkney (ORCADES), including axial length
(AL), central corneal thickness (CCT), and spherical equiva-
lent refraction (SER)]. These are quantitative endophenotypes
related to common eye disorders; AL and SER are related to
incidence of myopia and hyperopia and CCT is related to the inci-
dence of corneal disorders and probably glaucoma. All cohorts
have contributed to large single-SNP GWAS meta-analyses efforts
studying these phenotypes (Lu et al., 2013; Verhoeven et al.,
2013). All the Croatian cohorts (that will be referred from here as
Vis, Korcula, and Split) received ethical approval from the Ethics
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Committee of the Medical School, University of Split and the
NHS Lothian (South East Scotland Research Ethics Committee).
The ORCADES cohort, referred to as Orkney from now on
received ethical approval from the NHS Orkney Research Ethics
Committee and North of Scotland Research Ethics Committee.
All studies followed the tenets of the Declaration of Helsinki
and all participants gave written informed consent. A total of
2245 individuals for AL, 2261 individuals for CCT, and 2251
individuals for SER were measured, and descriptive statistics
for these three traits were shown in Table S1 in Supplementary
Material. The Vis cohort genotyping was performed using the
Illumina HAP300v1 SNP array, the Korcula and Split cohorts
were genotyped using the Illumina HAP370CNV SNP array, and
the Orkney cohort used the Illumina HumanHap300 beadchip.
A total of 3210 individuals in four populations were genotyped
(the number of individuals in each population is shown in
Table S1 in Supplementary Material). A total of 344,065 SNPs
with overlap among four populations were assessed by the same
protocol as above, and 272,315 SNPs on autosomal chromosomes
passed the quality control (the number of SNPs in each chro-
mosome is shown in Table S2 in Supplementary Material). We
performed single-SNP GEMMA analysis and RHM across the
whole genome to detect any significant regions. To account for
non-genetic effects in these two analyses, population, and sex
were included as fixed effects, and age (and height in AL) was
used as a covariate in these analyses. The significance thresh-
old value for single-SNP GEMMA was determined by Bonferroni
correction with 272,315 SNPs. For RHM, we applied a two-step
approach to reduce computation. At first, RHM with win100
was performed across all autosomes. The window was shifted
every 50 SNPs to overlap a region, and a total of 5412 win-
dows were tested across chromosomes. In the second step, the top
100 win100s with higher LRT were selected from all 5412 win-
dows, and then each win100 was divided equally into 10 win10s
and 5 win20s, and RHM with win10 and win20 was performed.
To evaluate the power of other GWAS methods, the windows
with P-value < 1.0× 10−5 in RHM analyses were then ana-
lyzed by three gene-based association approaches (VEGAS, CCA,
and SKAT), and the window was assumed as a “gene region”
in these methods. The methodologies of these gene-based asso-
ciation approaches were the same as above. To determine the
significance threshold value of RHM and the three gene-based
association approaches with win20 and win10, the Bonferroni
correction was applied by using 27,060 and 54,120 windows,
respectively.

RESULTS
IMPUTED SNPs
After removing markers with the exclusion criteria we have
described, a total of 6,704,137 SNPs in the high_info group and
3,793,540 SNPs in the low_info group were available. Table 2
shows the summary of imputed SNP number within a win10
region for low_info and high_info groups. In the low_info group,
almost all SNPs had low MAF, and therefore only SNPs with
low MAF were used in the simulation. In the high_info group,
45% of SNPs had low MAF and 55% of SNPs had high MAF.

Table 2 | Total number of imputed SNPs and summary of SNP

number in a window containing 10 genotyped SNPs (win10) for two

different IMPUTE2-info scores in the simulation study.

IMPUTE2-info Total number Number of SNPs in win10

score of SNPs
Total Low MAF High MAF

Low_info group 3,793,540 Mean 141 140 1

Max 3749 3241 508

Min 0 0 0

High_info group 6,704,137 Mean 250 112 138

Max 5126 1965 3161

Min 0 0 0

FIGURE 1 | Distribution of minor allele frequencies (MAFs) for

genotyped and imputed SNPs. The distributions of MAF for imputed
SNPs within the high_info group and for genotyped SNPs in this population
are shown. The x-axis indicates the MAF of both groups of SNPs. The y-axis
represents the proportion of SNPs in each MAF category.

The density distributions of MAF for imputed SNPs within the
high_info group and for genotyped SNPs are plotted in Figure 1.
The MAF distribution shows a very low ratio of genotyped to
imputed SNPs at low MAF, pointing to the difficulty of captur-
ing genetic variance if imputed SNPs at low MAF are assumed to
be QTL.

THE POWER OF RHM AND SINGLE-SNP GWAS IN THE 100-SNP
WINDOW
In the low_info group, there was no significant replicate in all
simulations, indicating that the power was low for both methods.
For the high_info group, the power to detect QTL for the pheno-
type with genome heritability 0.4 is shown in Figure 2. For RHM,
as the number of QTL increased, the power to detect QTL was
almost constant in all simulated scenarios, except when the QTL
had low MAF and 0.05 QTL heritability. For RHM, using smaller
window sizes (win10 and win20) yielded greater power than using
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FIGURE 2 | The power to achieve 5% genome-wide significance and

estimated regional heritability in the 100-SNP window. The powers (A)

and estimated regional heritabilities (B) in the simulation study for genome
heritability 0.4 were calculated by RHM with four different window sizes (100
SNPs as win100, 50 SNPs as win50, 20 SNPs as win20, and 10 SNPs as

win10), and two single-SNP GWAS methods (GRAMMAR and GEMMA) in
the different situations. The number of QTL is on the x-axis, and the power to
detect QTL (A) or the estimated regional heritability (B) are on the y-axis.
Each graph shows the different situations for genome heritability 0.4 (QTL
heritability is 0.05 or 0.025, and MAF is high or low).

larger window sizes (win50 and win100), and the difference in
power among window sizes was almost the same for different
numbers of simulated QTL. There was no significant difference
in power among simulations with different genome heritabil-
ity (see Figure S3 in Supplementary Material). For single-SNP
GWAS, as the number of QTL increased, the power to detect

QTL decreased, except for QTL with low MAF and 0.05 QTL
heritability, where it increased as was also the case for RHM.
Changes in genome heritability, had no large impact in power
for the GEMMA analyses, but the power of GRAMMAR analy-
ses decreased as the genome heritability increased (see Figure S3
in Supplementary Material). The difference in power between
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RHM and single-SNP GWAS varied with QTL MAF. For high
MAF QTL, the power of single-SNP GWAS was greater than
that of RHM when the number of QTL was one. But as the
number of QTL increased, the power of RHM was greater than
that of single-SNP GWAS. For low MAF, the power of RHM
was higher than that of single-SNP GWAS for 0.05 QTL her-
itability, but lower for 0.025 QTL heritability for all numbers
of QTL.

THE ESTIMATED REGIONAL HERITABILITY OF RHM AND SINGLE-SNP
GWAS IN THE 100-SNP WINDOW
In the high_info group for a genome heritability of 0.40, the esti-
mated regional and genome heritabilities are shown in Figure 2
and Table S3 in Supplementary Material, respectively. For all
methods the mean heritability captured was less than that actu-
ally simulated but RHM generally captured a substantially greater
proportion than GEMMA, the best of the single SNP meth-
ods, although RHM and GEMMA captured a similar proportion
of simulated heritability when there was a single high MAF
QTL. For RHM, as the number of QTL increased, the esti-
mated regional heritability remained almost constant (averag-
ing about 80% of the amount simulated) for QTL with high
MAF, but it increased slightly with the number of QTL at low
MAF (averaging around 60% of the amount simulated). Overall,
there were no large differences in the amount of heritability
captured by RHM using different window sizes and no over-
all trend in the size of window capturing most heritability.
There was also no big difference for estimated regional her-
itability with different genome heritabilities (see Figure S4 in
Supplementary Material). For single-SNP GWAS, as the number
of QTL increased, the estimated regional heritability decreased
for high MAF QTL, but was almost constant for low MAF
QTL. On average GEMMA estimates of the QTL heritability
were almost 80% of that simulated for a single high MAF
QTL, but the estimates dropped to around 60% of the simu-
lated values for 5 or 10 high MAF QTL and were only about
40% of the simulated values for 1, 5, and 10 simulated low
MAF QTL. Varying the genome heritability produced no big
difference in the QTL heritability captured by GEMMA. As
the simulated genome heritability increased, the regional her-
itability estimated by GRAMMAR decreased (see Figure S4 in
Supplementary Material). Table S3 in Supplementary Material
also showed the genome heritability estimated by model (2). The
genome heritability estimated for high MAF was close to the sim-
ulated value, but genome heritability was underestimated for low
MAF QTL.

THE POWER OF RHM AND OTHER METHODS IN THE GENE REGION
For the genome heritability of 0.40, Figure 3 shows the results
of power for RHM with win10, single-SNP GWAS (GEMMA),
and three gene-based association approaches (VEGAS, SKAT,
and CCA) in a gene region. The power of RHM was higher
than that of all other methods for most simulation conditions,
with the exception of the single QTL with 0.025 heritability, for
which GEMMA had slightly higher power than RHM. As the
number of QTL increased, the power to detect QTL generally
remained almost constant or slightly reduced in all methods,

FIGURE 3 | The power to achieve 5% genome-wide significance in the

gene region. The powers in the simulation study for genome heritability
0.4 were calculated by RHM with window size 10 (RHM), single-SNP
GWAS (GEMMA), and three gene-based association approaches (VEGAS,
CCA, and SKAT) in the different situations. The number of QTL is on the
x-axis, and the power to detect QTL is on the y-axis. Each graph shows the
different situations for genome heritability 0.4 (QTL heritability is 0.05 or
0.025, and MAF is high or low).

but it increased slightly for all methods with low MAF and
0.05 QTL heritability. As for the other methods, CCA was the
most powerful for QTL with high heritability, and GEMMA was
the most powerful for QTL with low heritability. The power of
VEGAS and SKAT was the lowest for QTL with low MAF and high
MAF, respectively. The magnitude of the genome heritability had
no great impact of on the power of RHM or GEMMA based meth-
ods (single-SNP GWAS and VEGAS), but the power of meth-
ods using GRAMMAR-adjusted phenotype (SKAT and CCA)
decreased as the genome heritability increased (see Figure S5 in
Supplementary Material).

The Venn diagrams for comparisons of the significantly asso-
ciated regions identified by three different methods (RHM,
GEMMA, and gene-based association approach) are shown in
Figure 4. As the number of QTL increased, the probability
that QTL were detected only by RHM increased. For GEMMA
and gene-based association approaches, as the number of QTL
increased, the power to detect QTL by each method increased for
low MAF but decreased or stayed constant for high MAF. In addi-
tion, RHM identifies some additional loci, even where GEMMA
has higher power than RHM as is the case for the single QTL with
0.025 heritability. By using RHM and GEMMA, more than 90%
of the QTL which were detected in all methods can be captured in
all simulations.
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FIGURE 4 | Venn diagrams for comparisons of the significantly

associated gene regions identified by three different methods. The
percentages in circles are the proportions of the significantly associated
gene regions identified by three different methods: blue circles for RHM,
read circles for single-SNP GWAS (GEMMA), and green circles for
gene-based association approaches including VEGAS, CCA, and SKAT
(Gene-based association). Percentages in purple represent the significant
replicates shared by all three methods, percentages in black represent the
significant replicates shared only by two methods, and percentages in
other colors are the significant replicates identified only by the
corresponding method. The percentages in the squares are the proportion
of not-significantly associated replicates. Each Venn diagram shows the
different situations for genome heritability 0.4 (Number of QTL is 1 or 10,
QTL heritability is 0.05 or 0.025, and MAF is high or low).

ANALYSES OF REAL POPULATION DATA ON THREE BIOMETRICAL EYE
TRAITS
Quantile-quantile plots for the GEMMA results shown in
Figure S6 in Supplementary Material demonstrate that

population stratification was successfully accounted by this
method. Genome-wide plots of P-values for AL, CCT, and
SER by GEMMA are shown in Figure S7. For GEMMA, two
significant SNPs were detected for CCT, the significant SNPs
being rs1536482 (P-value = 1.0× 10−7) on chromosome 9
and rs12447690 (P-value = 3.3× 10−11) on chromosome 16.
These hits represent the RXRA-COL5A1 and ZNF469 loci as
reported by Vitart et al. (2010) and both replicated in multiple
studies (Lu et al., 2013). For RHM, the top 100 win100s with
higher LRT were selected for further analysis using win10 and
win20. The results from these latter analyses that gave P-values <

1.0× 10−5 are given in Figure 5 and Table 3. For AL, there
was no significant region, but a novel region with a P-value
< 1.0× 10−5 was detected on chromosome 10 by RHM with
win10. For CCT, there was a significant region on chromosome
16 that included the significant SNP detected by GEMMA and
with the ZNF469 gene located near this region (Figure S8 in
Supplementary Material). For SER, there were two significant
novel regions [unreported in the largest single-SNP GWAS
meta-analyses published by Verhoeven et al. (2013); Kiefer et al.
(2013)] detected by RHM with win20 on chromosome 2 and
with win10 on chromosome 10, this latter was the same region
as detected for AL, a trait phenotypically correlated to SER. On
chromosome 2, the two genes (CREG2 and RNF149 loci) and
four genes (CREG2, RNF149, SNORD89, and C2orf29 loci) were
located within win10 with the lowest P-value and the significant
win20, respectively, and there was no coding gene in the signif-
icant region of chromosome 10 (Figure S8 in Supplementary
Material). On chromosome 9, the RXRA-COL5A1 locus detected
by GEMMA was not significant by RHM. To evaluate the power
of three gene-based association approaches, these windows were
analyzed, and the results were shown in Table 3. The significant
region was detected by VEGAS on chromosome 16, but there
were no other significant regions detected by VEGAS or other
methods (SKAT and CCA).

DISCUSSION
Nagamine et al. (2012) introduced a new variance component-
based mapping methodology, referred to as regional genomic
relationship mapping or RHM, to localize some of the genetic
variation that cannot be detected by single-SNP GWAS analy-
ses. Here, we study in depth the implementation and power of
RHM in a range of circumstances. In particular, we describe the
power to detect regions harboring different numbers of QTL
with different MAFs (common and rare) explaining different
proportions of the trait variance and the accuracy for estimat-
ing regional heritability. We also compare these results to those
obtained using a range of single-SNP GWAS and gene-based asso-
ciation approaches. In addition, we applied RHM to the analysis
of eye traits to show the effectiveness of this method.

Our simulation was based on real genotype data from a human
population in an attempt to accurately account for LD found in
real populations between marker SNP and QTL. Using imputed
SNPs as the simulated QTL allowed us to generate a number
of QTL in a region at both high and low MAF whilst retain-
ing the genotyped SNPs as the markers for analysis. As might be
expected, in our analyses of QTL based on poorly imputed SNPs
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FIGURE 5 | Comparisons of regional heritability mapping (RHM)

among different window sizes on a significant region for three eye

traits. Comparisons shown on the results of higher −log10(P-value)
(>5.0) for axial length (AL), central corneal thickness (CCT), and spherical
equivalent refraction (SER). (A) The results of AL on chromosome 10.
The plot shows the −log10(P-value) of 100-SNP-window number 161 for
RHM with win100 (Window161_100SNPs) and win20 (Window161_20
SNPs), 100-SNP-window number 162 for RHM with win100
(Window162_100SNPs) and win20 (Window162_20SNPs), and
100-SNP-window numbers 161 and 162 for RHM with win10 (10SNPs).
The red horizontal line is drawn at the 5% genome-wide significance for
RHM with win10. (B) The result of CCT on chromosome 16. The plot
shows the −log10(P-value) of 100-SNP-window number 156 for RHM with
win100 (Window156_100SNPs) and win20 (Window156_20 SNPs),
100-SNP-window number 157 for RHM with win100
(Window157_100SNPs) and win20 (Window157_20SNPs), and

100-SNP-window numbers 156 and 157 for RHM with win10 (10SNPs).
The red horizontal line is drawn at the 5% genome-wide significance for
RHM with win10. (C) The result of SER on chromosome 2. The plot
shows the −log10(P-value) of 100-SNP-window number 197 for RHM with
win100 (Window197_100SNPs) and win20 (Window197_20 SNPs),
100-SNP-window number 198 for RHM with win100
(Window198_100SNPs) and win20 (Window198_20SNPs), and
100-SNP-window numbers 197 and 198 for RHM with win10 (10SNPs).
The red horizontal line is drawn at the 5% genome-wide significance for
RHM with win20. (D) The result of SER on chromosome 10. The plot
shows the −log10(P-value) of 100-SNP-window number 161 for RHM with
win100 (Window161_100SNPs) and win20 (Window161_20 SNPs),
100-SNP-window number 162 for RHM with win100 (Window162_
100SNPs) and win20 (Window162_20SNPs), and 100-SNP-window
numbers 161 and 162 for RHM with win10 (10SNPs). The red horizontal
line is drawn at the 5% genome-wide significance for RHM with win10.

(information score <0.5) no method was able to detect the sim-
ulated QTL. With QTL simulated based on well-imputed SNPs
(information score >0.7) all methods we used had some power
and often they were quite similar. Nonetheless, overall RHM was
similar or greater in power to detect QTL than single SNP GWAS
and had greater power than other gene-based methods. In par-
ticular, RHM had greater power to detect low MAF QTL and/or
multiple independent QTL effects acting in a region than any
of the methods of single-SNP GWAS and gene-based associa-
tion approaches we tested, especially when RHM was performed
using smaller analysis window sizes. RHM also captured a larger
proportion of the QTL variance caused by multiple independent
QTL and/or low MAF QTL. Importantly, for QTL with low MAF,
RHM was capable of capturing more of the QTL variance than
single-SNP GWAS for all magnitudes of QTL heritability.

GEMMA had slightly higher power than RHM when we sim-
ulated a single QTL with 0.025 QTL heritability. However, even
in this case RHM found additional loci not detected by GEMMA.
RHM also had greater power to detect QTL than GEMMA when
several QTL in a region contribute trait variation and all have low
MAF.

The effect of QTL MAF was evaluated by simulating QTL in
the low MAF (MAF < 0.1) and high MAF (MAF ≥ 0.10) groups.
As the number of QTL per window increased, the power to detect
QTL also increased when the QTL had low MAF and 0.05 QTL
heritability (Figure 2 and Supplementary Figure S3). When a sin-
gle low MAF QTL is randomly selected, it is likely to be very rare
(as very rare SNPs are more common within the low MAF group
than moderately rare ones, see Figure 1) and hence not well-
captured by genotyped SNPs. When multiple (5 or 10) low MAF
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QTL are selected, one or more of the less rare ones within the
low MAF group may well be chosen. These will contribute much
of the variance and are likely to be better captured by genotyped
SNPs leading to increased power when there were more QTL per
window.

The power to detect QTL by RHM was greater than that
of the three gene-based association approaches studied. We
found that these gene-based association methods are strongly
affected by the QTL MAF. The power of VEGAS and SKAT
was greatly decreased for low MAF or high MAF QTL, respec-
tively. SKAT was developed as a rare-variant association test (Wu
et al., 2011), and uses a weighting scheme that upweights the
contribution of rare variants and downweights the contribu-
tion of common variants in its default setting. Therefore, this
default setting would be less powerful when variants have high
MAF. VEGAS corrects the test statistics by LD between geno-
typed SNPs (Liu et al., 2010), and this correction might lose
the power in the condition with low MAF because of incom-
plete LD between genotyped SNPs and QTL. In addition, these
methods are also affected by the genome heritability. In this sim-
ulation, GRAMMAR-adjusted phenotypes are used to correct the
effect of population stratification in SKAT and CCA, because
these methods are not designed within a mixed model frame-
work and cannot readily account for family relatedness among
samples. The power for high genome heritability is lower than
that for low genome heritability in these methods. But RHM was
also more powerful than all gene-based association approaches
at low genome heritability. For comparisons of the significant
regions identified by RHM, GEMMA, and gene-based associa-
tion approaches, more than 90% of the QTL can be captured
by only RHM and GEMMA. Therefore, we suggest that RHM
should be used as the complementary method which detects
a different set of QTL when the power to detect QTL is not
complete.

RHM has the potential to capture some of the “missing heri-
tability.” Yang et al. (2010) estimated that common SNP variation
explained more than half of the expected heritability of human
height, and suggested that missing heritability is due to imper-
fect LD between genotyped SNPs and causal variants. Yang et al.
(2010) also simulated a quantitative trait by randomly sampling
causal variants from the SNPs with MAF≤ 0.10, and showed that
estimated genome heritability was underestimated in compari-
son with the true genome heritability. In this study, the genome
heritability estimated by model (2) for low MAF QTL was also
underestimated in comparison with that for high MAF QTL.
However, RHM captured more QTL variance with low MAF
QTL than single-SNP GWAS and hence may capture heritability
missed by single SNP GWAS.

Many explanations for the missing heritability have been sug-
gested: a large number of common variants with small effect, a
moderate number of rare variants with large effect, and some of
combination of genotypic, environmental and epigenetic inter-
actions (Manolio et al., 2009; Gibson, 2012). In this study, we
show that RHM has the potential to explain some of the miss-
ing heritability through identification of trait-associated low MAF
QTL by using common SNPs. However, some genetic variance
could not be captured as some of the QTL variance is not in

LD with individual common SNPs. An alternative method to
capture QTL variance using common SNPs would be haplotype-
based association, and some of the unknown low MAF QTL
might be recovered by re-constructing haplotypes using com-
mon SNPs. However, some rare variants will be unique to
particular populations and it will be difficult to detect QTL
which are in linkage equilibrium with common SNPs. In this
case we suggest that using exome sequencing or exome geno-
typing arrays combined with RHM on these types of data
has the potential to capture even more of the missing vari-
ance.

In the study of real population data, some significant regions
were detected by single-SNP GWAS, RHM or gene-based associ-
ation approaches, corresponding to known loci but, additionally,
two loci were newly identified, only by RHM, for SER. For the first
one on chromosome 2, the P-value of win20 (SNP number 9871–
9890) was lower than that of win10 (SNP number 9881–9890),
and the win20 had high regional heritability 0.150 and contains
four loci genes not previously implicated in refractive error con-
trol. There, multiple independent QTL of low MAF might be
located on this narrow segment region. For the putative second
novel SER locus, on chromosome 10, the regional signal was also
suggestive for the phenotypically correlated trait AL making it
unlikely to be a false positive finding. The closest genome-wide
significant hit reported in the large GWAS meta-analyses of sim-
ilar traits (SER or myopia) is a megabase away [Myopia GWAS
SNP rs6480859 reported by Kiefer et al. (2013)] and although it is
unlikely that the two findings reflect the same causal signal, they
may highlight the same gene. Further analyses using other pop-
ulations will be needed to validate these findings but this may
be difficult if the variants are rare and their contribution to the
trait variance large enough to be detectable in specific populations
only. Functional analysis of the regions highlighted may also help
confirming involvement of these regions. In this study, the signif-
icant RXRA-COL5A1 CCT lead SNP on chromosome 9 detected
by single-SNP GWAS was not detected by RHM. These mirrored
the same trend as our simulation study, and also suggest that
RHM should be an important complementary method to single-
SNP GWAS, where multiple variants of low effect size and a range
of MAFs may be segregating.

Nagamine et al. (2012) introduced RHM approach, and we
present the effectiveness and implementation of RHM by assum-
ing QTL in a narrow segment region, evaluating the impact of
window size, and comparing with other single-SNP GWAS and
gene-based association approaches under many different condi-
tions. In addition, we detected some additional loci which were
not detected by single-SNP GWAS and gene-based association
approaches in real population data. We suggest in this study that
RHM using common SNPs has the potential to explain some of
missing heritability by capturing QTL variance with low MAF
and localizing multiple independent QTL in a segment region. In
conclusion, the results reported in this study support that RHM
is more powerful to detect QTL and capture QTL variance than
other single-SNP GWAS and gene-based association approaches
under most conditions in populations structured similarly to
those we studied, which include both related and unrelated
individuals.
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AUTHOR NOTE
For software capable of implementing Regional Heritability
Mapping (RHM) analyses in populations of related and/or
unrelated individuals, see REACTA: Regional Heritability
Advanced Complex Trait Analysis at http://www.epcc.ed.ac.uk/
projects-portfolio/reacta.
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Figure S1 | Average r2-value plotted against inter-marker distance and

Correlation plot. To evaluate the quality of SNP imputation in this study,

the difference of linkage disequilibrium (LD) between exome SNP and

imputed SNP was investigated to evaluate whether the relationship

between imputed SNPs is based on actual LD in this population or linkage

equilibrium (LE). A total of 820 DNA samples from 898 Korcula samples

were genotyped using the Illumina HumanExome-12v1 SNP array, that

genotypes in excess of 250,000 exonic variants. These exome SNPs were

then assessed by the exclusion criteria of minor allele frequency

(MAF) <0.0005, call rate <0.98 and Hardy–Weinberg Equilibrium

(HWE) < 1.0× 10−6; SNPs included in Illumina CNV370 array were also

excluded. A total of 7283 SNPs which were included in the low_info group

and 25,313 SNPs in the high_info group were extracted from the exome

array data. We estimated r2, a measure of LD, for all segregating pairs of

SNPs less than 10 Mbp apart in each of these groups using the PLINK

software (Purcell et al., 2007). Average r2-values for a given inter-marker

distance, with markers distances grouped in 250 bp bins, were calculated

in each autosome and plotted for each group. For the high_info group,

r2-values for low MAF (MAF <0.10) and high MAF (MAF ≥ 0.10) SNPs

were also calculated and plotted. The imputed SNPs for individuals with

corresponding exome SNP data were extracted from the imputed SNP

data, and r2-values were calculated as above. The correlation of r2-values

obtained from genotyped SNPs (i.e., exome array data) and imputed SNPs

was also estimated. The average r2-value was plotted against inter-SNP

distance for exome SNPs and imputed SNPs in (A), and the correlation of

r2-value between exome SNPs and imputed SNPs was also plotted in (B).

In the high_info group, 12,636 SNPs with low MAF and 12,677 SNPs with

high MAF were also used to calculate r2-values separately and then

plotted. In the low_info group, there was no relationship between r2-value

and marker distance, and no correlation of r2-value between exome SNPs

and imputed SNPs. This result indicates that a high proportion of these

exome and imputed SNPs in low_info group are estimated to be in linkage

equilibrium (LE). On the other hand, in the high_info group, the r2-value in

shorter inter-marker distances was higher than that in greater inter-marker

distances, and there was high correlation of r2-values between exome

SNPs and imputed SNPs. For the high_info group, the results within each

MAF showed the same trend as the result for all SNPs and are not shown.

The distribution and correlation of r2-values for high MAF was tighter than

that for low MAF. In addition, the slopes of correlation in the high_info

group were about 1.0 in all results, and the magnitude of LD between

exome SNP and imputed SNPs was almost the same. This result indicates

that the LD structure of the real population is still preserved in these

imputed SNPs. (A) Average r2-value plotted against inter-marker distance

for exome SNPs and imputed SNPs. The inter-marker distance grouped in

250 bp bins is on the x-axis, and average r2-value is on the y-axis. Each

figure shows the results of SNPs with low MAF in the low_info group, and

all SNPs, SNPs with low MAF, and SNPs with high MAF the in high_info

group. (B) Correlation plot between average r2-values of exome SNPs and

imputed SNPs. The average r2-value of imputed SNPs is on the x-axis, and

the average r2-value of exome SNPs is on the y-axis. Each figure shows

the results of SNPs with low MAF in the low_info group, and all SNPs,

SNPs with low MAF, and SNPs with high MAF in the high_info group.
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Figure S2 | Quantile-quantile plot of the P-values for Regional Heritability

Mapping (RHM) with 100-SNP-windows. For each value of simulated

genome heritability (0.20, 0.40, and 0.8), the phenotype was generated,

and then genome heritability was estimated by using model (2). The

estimated genome heritabilities were 0.20± 0.07, 0.40± 0.07, and

0.80± 0.06 for the simulated values of 0.20, 0.40, and 0.80, respectively.

We then performed RHM analyses using 100-SNP window (win100) using

these phenotypes, to obtain empirically a distribution of test statistics

under the null hypothesis. For each genome heritability, a quantile-quantile

plot of the P-values of the RHM analyses with win100 assuming that they

follow either a 50:50 mixture distribution of a χ2
1 and a pick at 0 or a χ2

1

distribution are shown. Results of analysis of generated phenotypes with

genome heritability = 0.2, 0.4, and 0.8 are presented. The red circles

represent the −log10(P-value) value assumed as following the χ2
1

distribution, and the blue triangles represent the −log10(P-value) value

assumed as following the 50:50 mixture (one component mixture is a peak

at 0 and the other is a χ2
1) distribution. The black line represents where the

dots are expected to fall under the null hypothesis of no association. The

plots show that the 50:50 mixture is more appropriate, and also reflect the

fact that our simulations generated appropriate phenotypes under the null

hypothesis of no phenotype-window correlation.

Figure S3 | The power to achieve 5% genome-wide significance for

100-SNP windows: the case of genome heritability 0.2 and 0.8. The

powers in the simulation study for genome heritability 0.2 and 0.8 were

calculated by regional heritability mapping (RHM) with four different

window sizes (100 SNPs as win100, 50 SNPs as win50, 20 SNPs as

win20, and 10 SNPs as win10), and two single-SNP GWAS methods

(GRAMMAR and GEMMA) in the different situations. The number of QTL

is on the x-axis, and the power to detect QTL is on the y-axis. The results

for genome heritability 0.2 are shown in (A) and 0.8 in (B). The

parameters considered in this simulation are QTL heritability (0.05 or

0.025) and MAF (low or high) in each genome heritability.

Figure S4 | The estimated regional heritability for 100-SNP windows: the

case of genome heritability 0.2 and 0.8. The regional heritabilities in the

simulation study for genome heritability 0.2 and 0.8 were estimated by

regional heritability mapping (RHM) with four different window sizes (100

SNPs as win100, 50 SNPs as win50, 20 SNPs as win20, and 10 SNPs as

win10), and two single-SNP GWAS methods (GRAMMAR and GEMMA) in

the different situations. The number of QTL is on the x-axis, and the

estimated regional heritability is on the y-axis. The results for genome

heritability 0.2 are shown in (A) and 0.8 in (B). The parameters considered

in this simulation are QTL heritability (0.05 or 0.025) and MAF (low or high)

in each genome heritability.

Figure S5 | The power to achieve 5% genome-wide significance in the

gene region: the case of genome heritability 0.2 and 0.8. The powers in

the simulation study for genome heritability 0.2 and 0.8 were calculated

by regional heritability mapping with window size 10 (RHM), single-SNP

GWAS (GEMMA), and three gene-based association approaches (VEGAS,

CCA, and SKAT) in the different situations. The number of QTL is on the

x-axis, and the power to detect QTL is on the y-axis. The results for

genome heritability 0.2 are shown in (A) and 0.8 in (B). The parameters

considered in this simulation are QTL heritability (0.05 or 0.025) and MAF

(low or high) in each genome heritability.

Figure S6 | Quantile–quantile plots for genome-wide association scan for

three eye traits. Quantile-quantile plots of 272,315 SNPs in the

genome-wide association scan were shown for Axial Length, Central

Corneal Thickness, and Spherical Equivalent Refraction by single-SNP

GEMMA analysis. The red circles represent the observed statistics, and

the black line represents where the dots are expected to fall under the

null hypothesis of no association. The plots show that this method

successfully accounts for population stratification.

Figure S7 | Genome-wide plots of −log10 (P-values) for an association

with three eye traits. Manhattan plots for Axial Length, Central Corneal

Thickness, and Spherical Equivalent Refraction analyses by single-SNP

GEMMA are shown. The genomic position is represented along the x-axis

(chromosome number is indicated at the bottom of the plot).

The −log10(P-value) is on the y-axis. The red dotted horizontal line is

drawn at the 5% genome-wide significance. The significant threshold of

genome-wide significance at 5% by Bonferroni correction was P-value =
1.8× 10−7. For Central Corneal Thickness, there were two significant

SNPs which were reported by Lu et al. (2013).

Figure S8 | Regional association plots for three eye traits near the

significant region by regional heritability mapping (RHM) with window

size 10 (win10). The results of regional association signals

[higher −log10(P-value) > 5.0] are shown for Axial Length, Central Corneal

Thickness, and Spherical Equivalent Refraction by RHM with win10. Plots

were generated using LocusZoom (Pruim et al., 2010), and the color of

each dot represents the SNP’s linkage disequilibrium r2 in the HapMap

Phase II CEU with the labeled SNP (1st SNP within win10 with the lowest

P-value) plotted as a purple diamond. The blue bars show the

recombination rate based on HapMap phase II CEU population, and the

bottom panels illustrate the locations of known genes.

Table S1 | Descriptive statistics for Axial Length, Central Corneal

Thickness, and Spherical Equivalent Refraction.

Table S2 | SNP number and the average distance between SNPs by

chromosome.

Table S3 | Estimated genome heritability for Regional heritability mapping

(RHM) in the high_info group of the simulation study.
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Olson’s conditional-logistic model retains the nice property of the LOD score formulation
and has advantages over other methods that make it an appropriate choice for complex
trait linkage mapping. However, the asymptotic distribution of the conditional-logistic
likelihood-ratio (CL-LR) statistic with genetic constraints on the model parameters is
unknown for some analysis models, even in the case of samples comprising only
independent sib pairs. We derive approximations to the asymptotic null distributions of
the CL-LR statistics and compare them with the empirical null distributions by simulation
using independent affected sib pairs. Generally, the empirical null distributions of the
CL-LR statistics match well the known or approximated asymptotic distributions for all
analysis models considered except for the covariate model with a minimum-adjusted
binary covariate. This work will provide useful guidelines for linkage analysis of real data
sets for the genetic analysis of complex traits, thereby contributing to the identification of
genes for disease traits.

Keywords: linkage analysis, affected sib pairs, identity-by-descent, conditional-logistic model, genetic constraints,

null distribution, likelihood-ratio statistics

INTRODUCTION
In the study of human data by genetic linkage analysis, the tradi-
tional LOD score method, also called a “parametric” or “model-
based” method because it requires information about an assumed
genetic model, is efficient for single-gene Mendelian traits but is
much less well suited for the analysis of traits with complex non-
Mendelian modes of inheritance. In the absence of a well-defined
disease inheritance model, alternative robust “non-parametric,”
“weakly-parametric” or “model-free” linkage methods, which do
not require the specification of a disease model, have been used
for deciphering the genetic basis of complex traits.

One such approach that has been extremely useful in the anal-
ysis of human genetic diseases is the affected sib pair (ASP) study
design, as in tests based on the mean proportion of identity-by-
descent (IBD) sharing (Blackwelder and Elston, 1985) or tests
based on the likelihood-ratio (LR) defined by Risch (1990a,b)
that uses the same one-parameter model to analyze ASPs or any
other affected unilineal relative pairs by producing a LOD score.
Holmans (1993) extended Risch’s maximum LOD score method
into a two-parameter model for ASPs, but with the genetic con-
straints required for single locus Mendelian inheritance; here
we call this the Risch and Holmans (RH) model. Olson (1999)
proposed a general conditional-logistic (CL) model that com-
bines several extensions and modifications (Cordell et al., 1995;
Rogus and Krolewski, 1996; Greenwood and Bull, 1997, 1999;
Olson, 1997; Lunetta and Rogus, 1998) into a unified framework:
the likelihood is conditioned on sampling affected relative pairs
(ARPs) and the parameterization is done in terms of the log-
arithm of allele sharing specific relative risks, instead of allele
sharing probabilities as in the RH model. The CL model not only
retains the “nice” property of the LOD score formulation of the

RH model, i.e., it is additive over independent sets of data, but it
also has advantages over the RH model. It is valid for any type of
ARPs with the same allele sharing specific parameters. In contrast,
the RH model is parameterized in terms of relative-type specific
IBD probabilities, so it can accommodate only one ARP type at a
time. The other advantage of this CL model is that it can allow for
incorporation of covariate effects by re-parameterizing the model
in terms of the logarithms of genetic relative risk parameters. A
modification of this original two-parameter CL model into a one-
parameter model was proposed by Goddard et al. (2001). Linkage
analysis using the CL model has been proven to be an effective
tool for evaluating genetic linkage (Goddard et al., 2001; Arcos-
Burgos et al., 2004; Reck et al., 2005; Doan et al., 2006; Rybicki
et al., 2007; Stein et al., 2007; Zandi et al., 2007; Song et al., 2011).

One limitation of the general two-parameter CL model is the
unknown asymptotic distribution of certain cases when single-
locus genetic constraints are imposed on the model parameters,
even in the case of analyzing only independent ASPs. Because of
the genetic constraints (Holmans, 1993), the distribution of the
CL-LR (i.e., 2ln(10) ∗ LOD score) statistics for linkage are mix-
tures of χ2 distributions that are difficult to specify. The use of
simulation methods to obtain p-values has been recommended
to ensure accuracy of the inference in complex situations (Olson,
1999). Although gene-dropping techniques can be used for this
purpose, the ideal method to infer the statistical significance of a
test statistic is to compare it with its permutation distribution.
When analyzing affected pairs alone, however, permuting the
allele sharing of relative pairs does not lead to a useful permuta-
tion distribution. As an alternative, Sinha et al. (2006) developed
regression prediction models that provide more accurate p-values
under the CL model framework. However, their results are limited
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to the cases they evaluated, so it is not a general solution for the
unknown distribution of the CL-LR statistic.

Here, we first derive approximations to the asymptotic dis-
tributions of the CL-LR statistics when using the constrained
two-parameter analysis model for independent ASPs. The deriva-
tion is done under the null hypothesis of no linkage and assuming
complete marker information, by following Self and Liang (1987),
as done for the RH model (Holmans, 1993; Whittemore and
Tu, 1998; Feng et al., 2006). Next, we study the empirical null
distributions of the CL-LR statistics by simulation, again for inde-
pendent ASPs, examining several analysis models with different
constraints on the model parameters when using the LODPAL
program in the S.A.G.E. package (2012). Then, we compare these
distributions to the derived asymptotic distributions - either
known or approximated in the previous step.

MATERIALS AND METHODS
CONDITIONAL-LOGISTIC MODEL
We first briefly describe the original two-parameter CL model
from Olson (1999). The unconditional (prior) probability that a
pair of type r relatives shares i alleles IBD is denoted as fri, and the
estimated probability that the pair shares i alleles IBD conditional

on the available marker data Im is denoted as f̂ri. Then the likeli-
hoods under the null hypothesis (H0) of no linkage and under the
alternative (H1) can be written as

H0 : L (λ1 = 1, λ2 = 1) = P (Im|r)

and

H1 : L (λ1,λ2) = P (Im|r)

∑

i= 0, 1, 2
λi f̂ri

∑

i= 0, 1, 2
λifri

,

where λi is the relative risk to an individual who shares i alleles
IBD (i =0, 1, 2) with an affected relative: equating with the nota-
tion used in the RH model,λ0 = λu(= 1) is the relative risk for
unrelated individuals, λ1 = λo is the offspring relative risk, and
λ2 = λm is the MZ-twin relative risk. The CL model is param-
eterized in terms of the logarithms of relative risk, so λi = eβi .
Under the null hypothesis of no linkage, the parameters (β1, β2)=
(0, 0) correspond to Risch’s allele sharing probability parameters
(z1, z2) = (½, ¼), where z1 and z2 are the respective probabilities
an ASP shares 1 and 2 alleles IBD at a locus. The LR contribu-

tion for an ARP of type r is LR =
∑

i = 0 1 2 λi f̂ri
∑

i = 0 1 2 λifri
, and for a sample

of independent ARPs the LOD score is obtained by summing the
base-10 logarithms of the pair-specific LRs. For the test of linkage,
this LOD score is maximized over a possible range of the param-
eter space that depends on the constraints imposed, as discussed
in the following section. For details of the derivation of the LR
and the equivalence of the LR whether the parameterization is in
terms of allele sharing probabilities or allele sharing relative risks,
we direct the reader to Olson (1999).

When the parameters β1 and β2 are completely free without
any constraints, the parameter space is the whole 2-dimensional

plane with two coordinate axes defined by the two parameters.
The values of the two parameters under the null hypothesis fall
into interior points of this parameter space, and so the CL-LR
statistic under the null hypothesis of no linkage is distributed as
χ2

2 asymptotically. We refer to this model as the unconstrained
two-parameter model.

When the (pure single-locus etiology) genetic constraints
(Holmans, 1993) are imposed, the parameter β1 and β2 are con-
strained to be β1 ≥ 0 and β2 ≥ loge

(

2eβ1 − 1
)

, or equivalently,
λ1 ≥ 1 and λ2 ≥ 2λ1 − 1, to reflect the possible allele sharing
probabilities for ASPs. In this case, the values of the parameters
under the null hypothesis are on the edge of the parameter space,
so that the LR statistic is asymptotically distributed as the mixture
( 1

2 − c
)

χ2
0 + 1

2χ2
1 + cχ2

2 with the mixing proportion c represent-
ing the probability that the allele sharing estimates fall inside a
triangle that is part of the two-dimensional plane. We refer to this
model as the constrained two-parameter model.

MIXING PROPORTION c
The mixing proportion c is a function of the expected informa-
tion matrix. For the RH model with allele sharing parameters, it
has been derived to be c ≈ 0.098 when there is complete marker
information (Holmans, 1993; Whittemore and Tu, 1998; Feng
et al., 2006), regardless of the choice of any two free parame-
ters, i.e., (z0, z1), (z0, z2), or (z1, z2). However, for the CL model
with the parameters in terms of the logarithms of relative risk, this
value is unknown. We apply the method of Self and Liang (1987),
as for the RH model, to derive the mixing proportion c for the LR
statistic in the CL genetic constrained, two-parameter model.

As shown in Figure 1, let (β1,β2) represent a point in the
2-dimensional plane with two coordinate axes that are defined
by the parameters β1 and β2, constrained to be β1 ≥ 0, β2 ≥
loge

(

2eβ1 − 1
)

(gray area). We first define the three vertices of
possible triangles in the (β1,β2) plane. Let N = (0, 0) be the
null point, A denote an additive inheritance point, and D a
dominant inheritance point. The point A will be on the line
β2 = loge

(

2eβ1 − 1
)

. We define D =(0, β2) as a point on the
β2 axis where the value of β2 is the same as the point A, as in
Figure 1. Let I be the Fisher information matrix of the likelihood

function L
(

data|β̂1, β̂2

)

evaluated at the null values. Assuming

complete information, the variance-covariance matrix of the

parameters is the inverse of I, i.e., I−1 =
(

6 4
4 8

)

. Let P�PT be

the spectral decomposition of I−1, and YN , YA, and YD be the
orthogonally transformed vertices of N, A and D such that Y =
�1/2PT

(

β̂− N
)

. Let yN , yA, and yD be the rotated vertices of YN ,

YA and YD such that YA lies on the β1 axis and the ray defined by
two points YN and YD becomes the hypotenuse in the upper right
quadrant of the plane. Now, the three rotated vertices yN , yA, and
yD define the triangle area in the orthogonal space, and the angle
θ formed by the two rays −−→yN yA and −−→yN yD represents the mixing
proportion c. Letting the end point of the hypotenuse be (x, y),
θ = arctan

( y
x

)

and c = θ
2π

.
If a model with no dominance genetic variance is to fit, then

β2 = loge

(

2eβ1 − 1
)

, as shown by a solid red line in Figure 1.
Owing to the fact that this line is not straight, the angle θ differs
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FIGURE 1 | The three points (A1, A2, and A3) used to approximate the

relation between β1 and β2 and the upper bound of β1 under genetic

constraints in the CL model. The corresponding dominant points are
denoted (D1, D2, and D3), and the shaded area is the possible triangle area
in the CL model.

according to the choice of the point A on the line. The point
A depends on both the assumption we make about the relation
between β1 and β2, and the upper value of β1 that is chosen.
We consider 3 different points for A, denoted A1, A2, and A3,
as shown in Figure 1. First, under the A1 assumption, we take
the exact relation between β1 and β2, i.e., β2 = loge

(

2eβ1 − 1
)

,
and approximate the angle θ under the assumption that β1 repre-
sents the allele sharing probability z1, which has maximum value
½. Second, with the A2 assumption, we approximate a straight
line about the null value using a Taylor series expansion, i.e.,
β2 = 2β1 (dotted red line in Figure 1). In this case, the upper
bound of β1 is irrelevant. This is equivalent to using the trian-
gle obtained from the constraints on λ, i.e., λ2 = 2λ1−1. Third,
with the A3 assumption, we take the exact relation between β1

and β2 and approximate the angle θ under the assumption that
β1 can go up to 1. This is equivalent to assuming the maximum
offspring relative risk λ1 = λ0 ≈ 2.718. We derive the resulting
mixing proportions for these 3 cases and expand them for more
values in the results section.

ONE-PARAMETER MODEL
Goddard et al. (2001) proposed to modify the two-parameter
model into a one-parameter model on the basis of the min-
max model developed by Whittemore and Tu (1998). In
this one-parameter model, the constraint λ2 = (π+ 1)λ1−π

was imposed, where π is a parameter associated with the
mode of inheritance and is fixed to be 2.634, i.e., β2 =
loge

(

3.634eβ1 − 2.634
)

(Olson, 2002). This constraint assumes
a genetic model approximately halfway between a recessive and
a dominant mode of inheritance, which has been shown to be
usually more powerful for most genetic models.

For this one-parameter model, the CL-LR statistic is known
to be asymptotically distributed as a χ2

1 when β1 is free with-
out any constraints, because its null value is an interior point of
the parameter line. Even though Whittemore and Tu’s minmax
constraint is already imposed to make it a one-parameter model,
we refer to this model as the unconstrained one-parameter model
because β1 is completely free without any genetic constraints.
When the parameter space for β1 is constrained by β1 ≥ 0 (equiv-
alently λ1 ≥ 1) to reflect non-negative allele sharing probabilities,
the CL-LR statistic is asymptotically distributed as a 50:50 mix-
ture of a point mass at 0 and χ2

1. We refer to this as the constrained
one-parameter model.

COVARIATES
If there are K covariates in the model, assuming a log-linear
(i.e., multiplicative) effect of the covariate on genetic relative risk,
which is a common, natural, and flexible way to model relative
risk in general epidemiology (Olson, 1999), the relative risk is

λi = exp
(

βi +∑K
j=1 δijxj

)

, where the δij are the two parameters

associated with the covariate xj, with β0 = δ0j = 0. Therefore,
each covariate added requires two additional parameters for the
two-parameter model but only one additional parameter for the
one-parameter model.

When there are no constraints imposed on the covariate
parameters, with the addition of K covariates the CL-LR statistic
is asymptotically distributed as χ2

2(k+1)
in the unconstrained two-

parameter model. For the triangle-constrained two-parameter
model, with the addition of K covariates the distribution of the
CL-LR statistic is a mixture of a point mass at 0 and several χ2s
with up to 2(K + 1) df, asymptotically. However, no covariates
are allowed in the two-parameter model in the LODPAL program
in the S.A.G.E. package (2012), owing to the practical difficulty of
maximizing the likelihood of models with two additional parame-
ters for each covariate. Therefore, in this study we did not consider
the two-parameter models with covariates.

For the one-parameter model, addition of covariates requires
one additional parameter for each covariate. With the addition
of K covariates, without any additional constraints imposed on
covariate parameters the CL-LR statistic is asymptotically dis-
tributed as χ2

k+1 in the unconstrained one-parameter model.
Addition of K covariates in the constrained one-parameter
model, again without any additional constraints imposed on the
covariate parameters, gives a CL-LR statistic with a distribution
that is asymptotically a 50:50 mixture of a χ2 with K df and a
χ2 with K + 1 df, (Goddard et al., 2001). In this study, we only
included the constrained one-parameter model with covariate(s),
and this is referred to as the covariate model.

Depending on additional constraints on the covariates, we
define two covariate models. By including a “mean-centered”
covariate (x − x̄), no constraints on the δ1j are required (Olson,
1999), so the CL-LR statistic is asymptotically distributed as a
50:50 mixture of two χ2s depending on the number of such
covariates, as stated previously. This is reasonable for many
covariates, in particular continuous covariates such as age. We
refer to this as the unconstrained covariate model.

However, for some covariates, such as indicator variables that
represent different populations or a binary factor, the offset from
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the minimum value of the covariate, i.e., “minimum-adjusted,”
[xa = x −min(x)] is included in the model, so that the smallest
value of the covariate equals zero. For such covariates, the con-
straint min

xaj > 0

∑

j xajδ1j ≥ −β1 is applied; it is not then feasible to

derive the asymptotic distribution of the CL-LR statistic under
the null hypothesis theoretically, since it depends on the distribu-
tion of the covariate values in the given data. We refer to this as
the constrained covariate model.

SIMULATIONS
To examine the precision of the expected asymptotic distribu-
tions in the previous section, we used simulation to determine
the empirical null distributions of the CL-LR statistics. We con-
sidered 6 different analysis models described in the previous
section. We considered the covariate model with just one covari-
ate. For the unconstrained covariate model, we included one
with a mean-centered continuous covariate. For the constrained
covariate, we included one with a minimum-adjusted binary
covariate.

We first simulated 100,000 replicates of 500 nuclear families
having two parents and two affected siblings, i.e., 500 indepen-
dent ASPs. For each case, one fully informative unlinked marker
was simulated by assigning a unique allele to each founder, and
then the alleles were randomly segregated to all offspring. For
covariate models, under the null hypothesis of no linkage and
no covariate effect, the covariate was simulated such that it was
correlated with affection status but not with genotype. A random
continuous value from a normal distribution with mean 0 and
variance 1 was first assigned to each individual, regardless of affec-
tion status. Then a continuous covariate was simulated by adding
a pre-fixed covariate effect to this value. A binary covariate was
generated by dichotomizing this continuous covariate such that
its population prevalence was 0.2. Given the covariate values for
each member of the pair, the pair-level covariate for a pair was
created by summing the two individual-level covariates. The con-
tinuous pair-wise covariate values for the unconstrained covariate
model are mean-centered, and the binary pair-wise values for
the constrained covariate model are minimum-constrained when
they are included in the analysis.

To check the performance of the expected asymptotic null dis-
tribution for each analysis model under different sample sizes,
we also simulated 100,000 replicates of 30, 50, and 100 fami-
lies, as above. Additionally, the precision of the approximated
asymptotic null distributions of the CL-LR statistics for the con-
strained two-parameter model was compared with the empirical
null distributions under different marker information levels. We
simulated 100,000 replicates of 100 independent ASPs for markers
with 2, 4, 8, and 20 equally frequent alleles. These numbers corre-
spond to PIC values of 0.38, 0.70, 0.86, and 0.95, respectively. We
checked two cases, when both parents are typed and when neither
is typed.

The empirical p-value corresponding to the LOD score was
determined by assigning p = (r + 1)/(100, 000+ 1) to the rth of
the ranked LOD scores from 100,000 replicates. The asymptotic
p-value corresponding to the same LOD score was calculated
using the known or approximated asymptotic distribution, as
described above.

RESULTS
ASYMPTOTIC NULL DISTRIBUTIONS UNDER TRIANGLE CONSTRAINTS
The resulting triangles under assumption A1 are graphically
illustrated in Figure 2, showing the steps to derive the mixing
proportion for a given value of A. In this figure, the possi-
ble triangle space for ASPs on the original (β1, β2) plane is
in black, formed by the three vertices (N, A, D) = {[0, 0],
[½, loge(2e1/2 − 1)], [0, loge(2e1/2 - 1)]}. Then, we have

YN =
(

11.12 0
0 2.88

)1/2 (

0.615 −0.788
0.788 0.615

)T (

0
0

)

=
(

0
0

)

,

YA =
(

11.12 0
0 2.88

)1/2 (

0.615 −0.788
0.788 0.615

)T (

0.5
loge

(

2e0.5 − 1
)

)

=
(

3.213
0.199

)

,

YD =
(

11.12 0
0 2.88

)1/2 (

0.615 −0.788
0.788 0.615

)T (

0
loge

(

2e0.5 − 1
)

)

=
(

2.187
0.868

)

;

and then yN =
(

0
0

)

, yA =
(

3.219
0

)

, and yD =
(

2.236
0.731

)

.

The corresponding orthogonally transformed triangle (YN , YA,
YD) is in blue, and the green dashed triangle (yN ,yA,yD) is the
same orthogonally transformed triangle after rotation such that
YA lies on the β1 axis and the ray defined by YN and YD becomes
the hypotenuse in the upper right quadrant of the plane. Then
the angle θ formed by the two rays −−→yN yA and −−→yN yD in the green
triangle is arctan

( 0.731
2.236

) ≈ 0.316, and the corresponding mixing

proportion c1 is θ
2π ≈ 0.050. By following the same steps, we

find the mixing proportions to be c2 ≈ 0.044 and c3 ≈ 0.054,
respectively, under the A2 and A3 assumptions.

FIGURE 2 | The distribution of constrained CL-LR statistics under the

A1 approximation. The black area (N, A, and D) is the original possible
triangle space for ASPs, the blue area (YN , YA, and YD ) is the orthogonally
transformed triangle, and the green dashed triangle (yN , yA, and yD ) is the
space after rotation. The angle θ formed by the two rays yNyA and yNyD

represents the mixing probability c.
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The value of c2 obtained from the A2 assumption provides the
minimum bound for c and, from the A1 and A3 assumptions, we
can see that the mixing proportion value c becomes larger as we
take a larger upper value for β1. Figure 3 shows how the value of
c depends on the value of the parameter β1. It can be seen that
the maximum value converges to around 0.070, which is smaller
than the value for the RH model. The critical LOD score values
corresponding to the test sizes 0.05, 0.01, 0.001, 0.0001 [the clas-
sical “LOD score 3” criterion given by Morton (1955)], 0.000049
[significant evidence for linkage given by Lander and Kruglyak
(1995)] and 0.00001 are given in Table 1 for the different mixing
proportion values. Given the same size of test, the critical LOD
scores for the CL model are smaller than those for the RH model.
Therefore, the null hypothesis is more likely to be rejected using
the CL-LR test, and the CL-LR statistic is more powerful.

EMPIRICAL NULL DISTRIBUTIONS
Two-parameter model
In Figure 4, we show plots of –log10(empirical p-value) against
–log10(asymptotic p-value) corresponding to the observed CL-
LR statistics with a sample size 500 for two two-parameter
models. For the unconstrained model, the empirical p-values well
matched the asymptotic p-values from the expected chi-square

FIGURE 3 | The range of the mixing proportion values according to the

different beta1 values for the distribution of the CL-LR statistics from

the constrained two-parameter model.

Table 1 | Critical LOD scores obtained from the constrained

two-parameter models for different mixing proportion values;

CL − cmin and CL − cmax are the minimum and maximum c values for

the CL model, A1-c is the value from the A1 approximation, and RH-c

is the mixing proportion for the RH model.

Mixing

proportion

Size of test

0.05 0.01 0.001 0.0001 0.000049 0.00001

CL-cmin 0.662 1.276 2.202 3.154 3.452 4.118

A1-c 0.672 1.289 2.219 3.172 3.470 4.138

CL-cmax 0.702 1.328 2.265 3.225 3.524 4.195

RH-c 0.742 1.377 2.324 3.290 3.591 4.265

distribution with 2 df. For the constrained model, the mixture
distribution from the A1 assumption was also close to the empir-
ical distribution. Since the mixing proportions from the three
approximations are so close to each other, the empirical distri-
butions matched the asymptotic distributions well for all three
different mixing proportions (results not shown).

For each sample size simulated, the specific LOD score val-
ues corresponding to the empirical p-values 0.05, 0.01, 0.001, and
0.0001 for these two models are given in Figure 5, compared with
the theoretical values (shown as a red line for each p-value). These
values are the critical values for the type I error rates equal to the
given empirical p-values. Overall, for all sample sizes, the criti-
cal LOD scores from the empirical distributions were similar and
very close to the values from the asymptotic distributions, well up
to about –log10(p-value)= 3. When the type I error rate is 0.0001,
the critical LOD scores varied depending on the sample size.

The empirical null distributions under different marker infor-
mation levels for the constrained two-parameter model are shown
in Figure 6 (A for parents typed, B for parents not typed). For
the two types of parental information, the specific LOD score val-
ues corresponding to the empirical p-values 0.05, 0.01, 0.001, and
0.0001 are again compared with the theoretical values from the
A1 assumption (shown as a red line for each p-value). Again, it
can be seen that the approximated asymptotic null distribution
well matched the empirical distribution for the different levels of
marker information, both in terms of the number of alleles and
the amount of parental information.

One-parameter model
Here again, we found that the distribution of LOD scores follows
the theoretical distribution well (results not shown). For both
one-parameter models, the empirical p-values well matched the
asymptotic p-values from the expected chi-square distributions.
For the unconstrained case, the CL-LR statistic was distributed as
a χ2

1, as expected. The empirical distribution of the CL-LR statis-
tics for the constrained model followed closely a 50:50 mixture of
a point mass at 0 and a χ2

1, which again agrees with the asymptotic
distribution. For all sample sizes, the critical LOD scores from
the empirical distributions were again similar and very close to
the values from the asymptotic distributions well, up to about -
log10 (p-value) = 3, and they varied depending on the sample
size when the type I error rate is 0.0001, as for the two-parameter
model.

Covariate model
In Figure 7, we show the distributions of empirical p-values under
the null hypothesis of no linkage for the unconstrained covari-
ate model. The empirical p-values for the covariate model with
one unconstrained continuous covariate matched well the asymp-
totic p-values from a 50:50 mixture of a χ2

1 and a χ2
2 distribution

when the sample size was 500, as expected. However, unlike
other analysis models, the distribution of LOD scores did not
follow the theoretical distribution for the smaller sample sizes.
We found the empirical null distribution departed more from
the asymptotic null distribution the smaller the sample size, as
expected. For example, the critical LOD scores were over 10.0
for sample sizes 30, 50, and 100, compared to 3.77 from the
asymptotic distribution for the test size 0.0001.
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FIGURE 4 | Null distributions of the CL-LR statistics for the

two-parameter models, using 500 independent ASPs and a fully

informative marker. The empirical p-values for the observed LR statistics
(y-axis) are plotted against the asymptotic p-values from known chi-square

distribution (x-axis) for the unconstrained model (A) and for the constrained
model (B) Note that the asymptotic distribution for the constrained model is
under the A1 assumption, and a 95% confidence interval is shown by the
dotted red line.

FIGURE 5 | The LOD score values corresponding to the empirical

p-values 0.05, 0.01, 0.001, and 0.0001 for the unconstrained

two-parameter model (A) and the constrained two-parameter model (B),

by sample size and size of the test. These values are the critical values for
the type I error rates equal to the given empirical p-values. The theoretical
values are shown as a red line for each p-value.
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FIGURE 6 | LOD score values corresponding to the empirical p-values

0.05, 0.01, 0.001, and 0.0001 under different marker information levels for

the constrained two-parameter model, when the parents are typed (A)

and not typed (B). These values are the critical values for the type I error
rates equal to the given empirical p-values. The theoretical values are shown
as a red line for each p-value.

FIGURE 7 | Null distributions of the CL-LR statistics for the

unconstrained covariate models, using 30, 50, 100, and 500 independent

ASPs and a fully informative marker. The empirical p-values for the

observed LR statistics (y -axis) are plotted against the asymptotic p-values
from the known chi-square distribution (x-axis) for the unconstrained
covariate model. The dotted red line is the 95% confidence interval.
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FIGURE 8 | Null distributions of the CL-LR statistics for the constrained

covariate model, using 500 independent ASPs and a fully informative

marker. The empirical p-values for the observed LR statistics (y-axis) are

plotted against the asymptotic p-values from a 50:50 mixture of a χ2
1 and a χ2

2
distribution (A), and from a 50:50 mixture of a point mass at 0 and a χ2

1 (B)

The dotted red line is the 95% confidence interval.

FIGURE 9 | LOD scores corresponding to the empirical p-values

0.05, 0.01, 0.001, and 0.0001 for the constrained covariate model

by sample size and size of test. These values are the critical
values for the type I error rates equal to the given empirical

p-values. The theoretical values are shown as a red line for each
p-value. The dotted lines are from a 50:50 mixture of a χ2

1 and a
χ2

2 distribution and the solid lines are from a 50:50 mixture of a
point mass at 0 and a χ2

1.

For the constrained covariate model with a minimum-
adjusted binary covariate, we show the empirical null distribution
compared with two asymptotic distributions in Figure 8, one
with a 50:50 mixture of a χ2

1 and a χ2
2 distribution (A) and the

other with a 50:50 mixture of a point mass at 0 and χ2
1 distribu-

tion (B). The asymptotic p-values from a 50:50 mixture of a χ2
1

and a χ2
2 distribution were too conservative, while the asymptotic

p-values from a point mass at 0 and χ2
1 distribution well matched

the empirical p-values. In the simulated data for this model, the
possible pair-wise covariate values are 0, 1, or 2, since we included
the sum of two individual binary covariate values. Since β1 ≥ 0

and min
xaj > 0

∑

k xajδk ≥ −β1, δ1 ≥ 0 when β1 = 0. When β1 > 0,

the minimum value of δ1 is −β1
2 . Therefore, the two-parameter

space is constrained to be 1/3 of the whole plane, instead of 1/2
of the plane, which causes the asymptotic p-values from a 50:50
mixture of a χ2

1 and a χ2
2 distribution to be too conservative. In

practice, the distribution will depend on the distribution of the
covariate values in the data.

In Figure 9, the specific LOD score values corresponding to the
empirical p-values 0.05, 0.01, 0.001, and 0.0001 are given for each
sample size simulated. These values are again the critical values
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for the type I error rates equal to the given empirical p-values,
compared with theoretical values (shown as a red line for each
p-value). The dotted lines are from a 50:50 mixture of a χ2

1 and a
χ2

2 distribution, and the solid lines are from a 50:50 mixture of a
point mass at 0 and a χ2

1.

DISCUSSION
In the RH model, the mixing probability c (which represents the
probability that the allele sharing estimates fall inside the possi-
ble triangle) is the same for any two allele-sharing parameters.
However, this is not so in the CL model owing to the non-straight
line relation between the two parameters β1 and β2, the loga-
rithms of relative risks. In this paper, we developed three approx-
imations to the asymptotic distributions of the CL-LR statistics
for the constrained two-parameter model, under the null hypoth-
esis of no linkage, for independent ASPs. We derived the mixing
probability c assuming complete information, as was done for the
RH model with Risch’s allele sharing parameters, following the
method given by Self and Liang (1987). From these three approx-
imations, we also investigated the relation between the parameter
values for β1 and c. We found the range of the c values to be
(0.0439–0.070), which is lower than the value obtained for the RH
model. This results in critical LOD score values lower by 5–11%
(0.702–0.662 vs. 0.742) for a test size 0.05, and by 3–5% (2.265–
2.202 vs. 2.324) for a test size 0.001, compared to the RH model.
Therefore, the test using the CL-LR statistic will be more power-
ful, though perhaps not significantly so. In practice, the estimate
of β1 can be used to decide on an appropriate value for c to obtain
a reasonably accurate test of linkage for a particular set of data.

By simulation, the performance of the approximate asymp-
totic distribution was checked for various sample sizes both when
there is perfect information and under different marker informa-
tion levels. This was done for two different parental information
cases (typed and not typed) for a fixed sample size of 100 inde-
pendent ASPs. Generally, for all sample sizes and the different
levels of information content investigated, we found the empiri-
cal null distribution of the CL-LR statistic from the constrained
two-parameter model matches well the approximated asymptotic
distribution.Thisresultshowstheapplicabilityoftheapproximated
asymptotic distribution to real data analysis for any marker.

Fortheunconstrainedtwo-parametermodel,theunconstrained
one-parameter model, and the constrained one-parameter model,
we also found that the known asymptotic distributions matched
the empirical distributions well. Therefore, for these models, the
test of linkage using the CL-LR statistic can be performed using

the known asymptotic null distribution to find the p-value. The
unconstrained models may not be biologically plausible, but could
be useful for the purpose of comparison, or when the data include
ASPs with a different direction of genetic effect caused by other
factors, as investigated by Dizier et al. (2000).

Unlike for the other models, a large sample size was needed
for the asymptotic distribution to hold well for the unconstrained
covariate model, i.e., the constrained one-parameter model with
an unconstrained covariate. Sinha et al. (2006) also reported this
vast discrepancy between the asymptotic p-values and the empir-
ical p-values for this model. Their result was based on average
sample sizes of 20, 40, 80, 120, and 320 affected pairs. To deter-
mine the sample size necessary for the asymptotic p-values to
be applicable, we additionally simulated 200 and 300 ASPs. This
showed that with 200 ASPs the empirical distribution matched
well the asymptotic distribution (results not shown). Therefore,
in practice, for this model we recommend the use of simulation
methods or the Sinha et al. method when the sample size is less
than 200, to ensure accurate p-values.

Though the results are not shown, from additional simula-
tions with two and three covariates and 500 ASPs, except in the
tail, the distributions of CL-LR statistics for the unconstrained
covariate model with two covariates also closely matched a 50:50
mixture of a χ2

2and a χ2
3, and that for three covariates a 50:50

mixture of a χ2
3 and a χ2

4, as expected from the asymptotic distri-
butions. These results confirm that the empirical distribution of
the CL-LR statistic for comparing nested unconstrained covariate
models that differ by J covariates has a χ2 distribution with J df,
as expected from the asymptotic distribution. Therefore, in large
samples it is valid to test the significance of the contribution of a
covariate using the asymptotic distribution.

It was interesting to find in our simulated data that the empir-
ical null distribution for the constrained covariate model, i.e.,
constrained one-parameter model with a constrained covariate,
was closer to a 50:50 mixture of a point mass at 0 and χ2

1 dis-
tribution than to a 50:50 mixture of a χ2

1 and a χ2
2 distribution.

This is due to the functional dependency of δ1 on the maxi-
mum covariate value in the data when β1 > 0. This dependency
effectively reduces the degrees of freedom and hence changes
the distribution. To show how the range of the covariate val-
ues in the data changes the null values of the parameters, and
therefore the distribution of the CL-LR statistics, we additionally
simulated datasets with pair-wise covariate values (0 or 1), (0,
1, 2, or 3), (0, 1, 2, 3, or 4), and a random number in the
range (0, 8). In Figure 10, we show a plot of the estimates of

FIGURE 10 | Distributions of the estimates of β1 and δ1 under the constrained covariate model for different covariate distributions. The covariate values
were (0 or 1) (A), (0, 1 or 2) (B), (0, 1, 2, or 3) (C), (0, 1, 2, 3, or 4) (D) and a random number in the range (0, 8) (E)
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the parameters β1 and δ1, including the result from the (0,
1, or 2) case in the previous simulation. We can see that the
space for two parameters becomes smaller as the maximum value
of the minimum-adjusted covariate increases. For the (0 or 1)
case, it seems the CL-LR statistics will be closely distributed as
the mixture c0χ

2
0 + c1χ

2
1 + c2χ

2
2. In other cases, a 50:50 mix-

ture of a point mass at 0 and χ2
1 distribution closely matched

the empirical distribution. Therefore, in practice, the distribu-
tion will depend on the distribution of the covariate values in
the dataset, so careful examination of the distributions of the
covariates in the dataset is needed before including them in any
analysis.

We did not include any power analysis in this study because
our purpose was to find an approximation to the theoretically
unknown null distributions and to compare them with the empir-
ical null distribution, to provide guidelines for testing linkage
when using the CL-LR statistics in various analysis models. To our
knowledge, there has not been any study of the null distribution
of LOD scores for the CL model, neither theoretical nor empiri-
cal. The results from this study should provide useful guidelines
for the linkage analysis of real datasets since our results are based
on both a perfect scenario as well as on non-perfect cases. Our
results for various sample sizes will also provide guidelines for
cases with missing data, since these will in general correspond
to a reduced sample size. We assumed no errors in the relation-
ship between pairs. When the information content in the marker
and/or pedigree structure in real data are reduced due to errors
in the data, we would generally expect the power to be lower for
given type I error; but the test of linkage based on our results
will still be valid, as long as the analysis is done on independent
pairs.
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In genome wide association studies (GWAS), family-based studies tend to have less power
to detect genetic associations than population-based studies, such as case-control studies.
This can be an issue when testing if genes in a family-based GWAS have a direct effect on
the phenotype of interest over and above their possible indirect effect through a secondary
phenotype. When multiple SNPs are tested for a direct effect in the family-based study,
a screening step can be used to minimize the burden of multiple comparisons in the
causal analysis. We propose a 2-stage screening step that can be incorporated into the
family-based association test (FBAT) approach similar to the conditional mean model
approach in the Van Steen-algorithm (Van Steen et al., 2005). Simulations demonstrate
that the type 1 error is preserved and this method is advantageous when multiple markers
are tested. This method is illustrated by an application to the Framingham Heart Study.
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INTRODUCTION
Some of the recently published genome-wide association studies
identified the same genetic locus as a disease susceptibility locus
for different complex diseases (Amos et al., 2008; Thorgeirsson
et al., 2008). One possible mechanism is that the marker locus
is pleiotropic and has genetic effects on several, different pheno-
types. Determining whether the marker acts directly on each of
these phenotypes or only indirectly via one or more intermediate
phenotypes is an important step in understanding the biologi-
cal significance of the genetic associations. In order to understand
and characterize the underlying genetic effect, methods have been
proposed to disentangle these potential direct and indirect genetic
effects (Vansteelandt et al., 2009; Vansteelandt, 2010; Berzuini
et al., 2012; Vansteelandt and Lange, 2012; VanderWeele et al.,
2012). All currently available methods focus on the direct and
indirect genetic effects relative to one (group of) secondary phe-
notypes. Because the magnitude of the indirect effect depends on
how strongly these secondary phenotypes affect the primary phe-
notype, these methods consider adjustment for confounding of
the relationship between these phenotypes by measured extrane-
ous factors. Some of these methods quantify both the direct and
indirect genetic effects, but assume that none of these extrane-
ous confounding factors is influenced by the considered marker
(VanderWeele et al., 2012). Some of these methods allow for some
of the extraneous confounding factors to be influenced by the
considered marker, but they merely quantify direct genetic effects
(Vansteelandt et al., 2009; Vansteelandt, 2010; Berzuini et al.,
2012).

Regardless of the considered framework, all available meth-
ods only test one gene at a time and need to be corrected for
multiple comparisons. This concern over multiple comparisons
becomes an issue in family-based genome wide association

studies (GWAS). When there is a region with a strong associa-
tion with both the endo-phenotype and phenotype, identifying
SNPs in the region that are still associated with the phenotype
of interest after accounting for the association with the endo-
phenotype requires testing for a direct causal effect for every SNP
in the region. In order to increase power to detect this direct
genetic effect, we propose a 2-stage testing strategy to minimize
the burden of multiple comparisons in the causal analysis (Van
Steen et al., 2005; Murphy et al., 2008; Won et al., 2009). The
application of a screening step when testing for direct genetic
effects is an important advantage in this scenario where the
multiple-comparison problem is a major hurdle. The power of
our approach is assessed by simulation studies. We show that the
type-1 error is preserved and the method is shown to be advan-
tageous when multiple SNPs are tested for a direct effect on the
phenotype of interest.

METHODS
Suppose that in the family-based study, n trios (offspring and
both parents) have been genotyped at a specific marker locus.
Assuming there is no bias due to ascertainment conditions, the
variable Xi denotes the coded genotype of the offspring and
Si denotes the parental genotypes for individual i. If genotypic
data is unavailable for the parents but genotypic information is
available on the subject’s siblings, the variable Si denotes the suf-
ficient statistic by Rabinowitz and Laird (2000) For offspring i,
Yi denotes the target phenotype in the association study and Ki

denotes the secondary phenotype in the study.
Suppose that an association has been observed between the

secondary phenotype of interest, Ki, and the marker locus. Given
this association, the goal is to test for an association between
the target phenotype Yi and the marker locus that cannot be
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explained by a possible indirect effect mediated by Ki. To achieve
this goal, data is needed on all risk factors of the secondary pheno-
type Ki that are also associated with the primary phenotype (Cole
and Hernan, 2002). Let Li denote this collection of measured con-
founding variables. Because L may be high-dimensional, we do
not assume that it is only related with Y by means of a causal
effect, but allow for their association to be itself confounded by
potentially unmeasured factors U . This is shown in the causal
diagram of Figure 1, where the presence of U additionally cap-
tures the potential for confounding of the genetic association as
a result of population admixture (Vansteelandt and Lange, 2012).
Throughout, in contrast to other mediation analysis techniques
(namely those based on so-called natural direct and indirect
effects), we will allow for the possibility that some of these con-
founding variables are themselves affected by the studied marker,
as illustrated via the edge from X to L in the causal diagram
(VanderWeele et al., 2012).

Consider model

E[Yi|Xi, Ki, Li] = γ0 + γ1Ki + γ2Xi + γ3Li (1)

where γj for j = 0, 1, . . . , 3 denote the mean parameters and can
be estimated by ordinary least squares. Note that γ1 represents the
true effect of Ki on Yi and not a spurious association because, by
assumption, the above model includes all relevant risk factors of
Ki. In order to construct an adjustment principle that tests for a
direct genetic effect of the marker locus X on the target phenotype
Y , the effect of the secondary phenotype K has to be estimated.
Vansteelandt et al. use an estimate for γ1 based on model (1) to
adjust the phenotype Yi to Yi − γ1Ki. A family-based association
test (FBAT) on this adjusted phenotype is then a test for the direct
genetic effect in the family-based setting (provided that the dis-
tribution of the test statistic acknowledges the uncertainty in the
estimated effect γ1) (Vansteelandt et al., 2009).

To reduce the number of multiple comparisons, we adapt the
conditional mean model approach in the VanSteen-algorithm
(Van Steen et al., 2005) to model (1). By replacing the observed
marker score in model (1) by the expected marker score con-
ditional upon the parental genotypes or sufficient statistic, the
genetic effects of locus Xi can be assessed without having to adjust
the α-level of any subsequently computed FBATs (Lange et al.,

FIGURE 1 | Causal diagram illustrating the confounding of the target

phenotype Y and the marker locus X. S denotes the parental genotype
or Rabinowitz and Laird’s sufficient statistic. K denotes the secondary
phenotype of interest. L allows for confounding between K and Y .
U represents a collection of unmeasured factors that allow for confounding
due to population stratification or confounding between the two
phenotypes K and Y . Note that causal diagrams assume that all variables
that jointly affect any two variables are included. The absence of an arrow
between any two variable denotes that there is no direct causal effect. For
instance, U has no direct causal effect on X .

2003a,b; Van Steen et al., 2005). Similar to the idea of the con-
ditional mean model approach, model (1) can be rewritten by
substituting Xi with its expected value E(Xi|Si),

E[Yi|Ki, Li, Si] = β0 + γ1Ki + β2Li + β3E(Xi|Si) , (2)

As shown in the proof given in the appendix, the parameter γ1 is
the same in both model (1) and model (2) when the null hypoth-
esis holds that there is no direct effect and, moreover, there is no
confounding due to population substructure. For testing the null
hypothesis of no direct genetic effect, model (2) can thus be used
to estimate the parameter γ1 in a screening step without bias-
ing the significance level since Xi is not included in this model,
provided there is no confounding due to population substructure.

For the screening step, each subject contributes

T∗i = {E(Xi|Si)} Ỹ∗i (3)

where Ỹ∗i = Yi − ȳ − γ̂∗1(Ki − k̄) and γ̂∗1 is the ordinary least
squares estimate for γ1 in model (2), which does not involve the
genetic marker X. Ỹ∗i is not adjusted for the covariates Li since
including factors such as Li in the phenotypic adjustment would
introduce bias if the common risk factor Li is associated with
the DSL Xi (Vansteelandt et al., 2009). The parameters ȳ and k̄
are the observed phenotypic means of Y and K in the sample,
respectively. Then the test statistic for the screening step is

(∑n
i= 1 T∗i

)2

∑n
i= 1 var ˜(T∗i )

(4)

where

T̃∗i = T∗i − E
[{E(Xi|Si)} (Ki − k̄)

]

(

Ki − μ
∗(i)
k

)

σ∗2k

ε∗i (5)

where var( ˜T∗i ) is calculated based on the sample variance

of T̃∗ and ε∗i denotes the residual from model (2). μ
∗(i)
k =

E(K|Li, E(Xi|Si)) is the predicted value for K under a linear
regression model for K with the covariates Li and E(Xi|Si), and
σ∗2k denotes the residual variance in that model. The variance cor-
rection given in Equation (5) is needed to account for estimating

γ1 in the proposed phenotype adjustment Ỹ∗i (Vansteelandt et al.,
2009).

For step 1, the test statistic given in Equation (4) can be
used for the screening step to pick the SNPs with the highest
power since X is not used in this test statistic. For step 2, this
smaller subset of SNPs are used to test the null hypothesis of
no direct effect using the test statistic based on Equation (1)
proposed by Vansteelandt et al. (2009)

Ti = {Xi − E(Xi|Si)}Ỹi (6)
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where Ỹi = Yi − ȳ − γ̂1(Ki − k̄) and γ̂1 is the ordinary least
square estimate for γ1 in model (1), which does involve the
genetic marker X. Using this association test with the adjusted
phenotype Ỹi as the target phenotype provides a robust and valid
test for the null hypothesis that there is no direct effect between
the target phenotype Yi and the DSL; i.e., the association between
the target phenotype Yi and the DSL is solely a result of the
association between the secondary phenotype Ki and the DSL.
Adjusting for estimating γ1 based on model (1), the test statis-
tic is distributed chi-square with one degree of freedom under the
null hypothesis of no direct effect of X on Y and has the following
form

(∑n
i= 1 Ti

)2

∑n
i= 1 var(T̃i)

(7)

where

T̃i = Ti − E[{Xi − E(Xi|Si)}Ki]

(

Ki − μ
(i)
k

)

σ2
k

εi (8)

where var(T̃i) is calculated based on the sample variance

of T̃ and εi denotes the residual from model (1). μ
(i)
k =

E(K|Li, Xi, E(Xi|Si)) is the predicted value for K under a linear
regression model for K with the covariates Li, Xi, and E(Xi|Si),
and σ2

k denotes the residual variance in that model. The variance
correction given in Equation (8) is needed to account for estimat-
ing γ1 in the proposed phenotype adjustment Ỹi (Vansteelandt
et al., 2009). Note that Equation (3) is similar to Equation (6), but
Equation (6) contains the genetic marker Xi. Similarly, Equation
(5) is similar to Equation (8), but Equation (8) contains the
genetic marker Xi.

Note that under the alternative hypothesis, the association
between K and Y is different in models (1) and (2), even in the
absence of population admixture. Model (1) represents the causal
effect of K on Y under the alternative hypothesis, but model (2)
does not represent the causal effect of K on Y because there is a
remaining spurious association between X and Y along the path
K ← X→ Y in Figure 1. Under the null hypothesis, this path
does not exist. As a result, the proposed approach is valid for
testing in the absence of population stratification, but may have
less power when either the X→ K or the X→ Y link is strong.

This scenario is explored further in the simulation section of this
paper.

Because the test statistic for the screening step given in
Equation (4) is susceptible to population stratification, we
examined this scenario in the simulation section as well. Principal
component analysis (PCA) can be used in the screening step to
correct for population stratification.

SIMULATIONS
Using simulation studies, we asses the type-1 error rate, the
power, and robustness of this new approach which uses a trait
that estimates γ1 based on model (2) in the screening step and
compare it to the approach proposed by Vansteelandt et al. (2009)
which uses a trait that estimates γ1 based on model (1). Similar to
Vansteelandt et al. (2009), both methods are evaluated under var-
ious conditions. All simulations use a sample size of 1000 trios
and are based on 5000 replications. The simulations are run for
allele frequencies 5, 10, 15, 20, 25, 30, 35, 40, and 45%.

To reflect a realistic setting, the data is simulated to reflect
covariances found in the Framingham Heart Study (Herbert et al.,
2006). The phenotype of interest Y is simulated such that it
resembles FEV1. The secondary phenotype K resembles weight
and the set of common confounding variables resemble height
and age. As seen in Figure 2, the first scenario assumes there is
a direct genetic effect of the marker on the intermediate phe-
notype K and on the common covariate L. Each genetic effect
has a locus specific heritability of 1%. The intermediate pheno-
type K explains 1% of the phenotypic variation in Y , creating an
association between the SNP and Y . The second scenario is sim-
ilar to the first scenario except that there is no genetic effect on
the confounder L. The genetic association with the intermediate
phenotype K is still present. The third scenario is similar to the
first scenario except there is no association between K and Y . The
fourth scenario is similar to the second scenario except that there
is no genetic effect on the intermediate phenotype K.

As seen in Table 1, the type-1 error rate is similar whether
model (1) or model (2) is used to estimate γ1. For lower allele
frequencies, under scenario 1 and 3, the type-1 error rate is 1–2%
higher than expected. For higher allele frequencies under all four
scenarios, the type-1 error rate is 0.5% lower than expected. In
general, the type-1 error rate is close to 0.05 regardless of how
γ1 is estimated. As seen in Table 2, the power is similar whether
model (1) or model (2) is used to estimate γ1 assuming no pop-
ulation admixture. For lower allele frequencies, the method by

FIGURE 2 | The top left figure represents scenario 1. The top right figure
represents scenario 2 which is the same as scenario 1 except that X does
not cause L. The bottom left figure represents scenario 3 which is the same

as scenario 1 except that K does not cause Y . The bottom right figure
represents scenario 4 which is the same as scenario 2 except that X does
not cause K .
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Table 1 | This table displays the type-1 error rate for the test statistics using Model 1 [the Vansteelandt et al. test statistic (Vansteelandt et al.,

2009)] or Model 2 (the screening test statistic) to estimate γ1 for different allele frequencies.

Allele frequency (%) Type-1 error rate when 1 SNP is tested

5 10 15 20 25 30 35 40 45

Scenario 1: Model 1 0.071 0.059 0.049 0.047 0.045 0.047 0.049 0.051 0.050

Scenario 1: Model 2 0.069 0.058 0.048 0.046 0.046 0.046 0.049 0.050 0.051

Scenario 2: Model 1 0.044 0.045 0.045 0.045 0.045 0.045 0.045 0.043 0.045

Scenario 2: Model 2 0.045 0.044 0.045 0.045 0.045 0.043 0.045 0.043 0.045

Scenario 3: Model 1 0.058 0.048 0.043 0.045 0.045 0.046 0.044 0.047 0.044

Scenario 3: Model 2 0.052 0.050 0.044 0.046 0.044 0.046 0.045 0.047 0.046

Scenario 4: Model 1 0.044 0.045 0.045 0.043 0.046 0.044 0.045 0.045 0.042

Scenario 4: Model 2 0.044 0.044 0.045 0.043 0.046 0.044 0.046 0.045 0.042

Table 2 | This table displays the power for the test statistics using Model 1 [the Vansteelandt et al. test statistic (Vansteelandt et al., 2009)] or

Model 2 (the screening test statistic) to estimate γ1 for different allele frequencies.

Allele frequency (%) Power when 1 SNP is tested

5 10 15 20 25 30 35 40 45

Scenario 1: Model 1 0.264 0.363 0.448 0.504 0.576 0.629 0.669 0.692 0.706

Scenario 1: Model 2 0.241 0.361 0.444 0.508 0.581 0.633 0.671 0.696 0.710

Scenario 2: Model 1 0.180 0.302 0.406 0.492 0.564 0.610 0.649 0.667 0.686

Scenario 2: Model 2 0.180 0.302 0.408 0.491 0.563 0.610 0.646 0.666 0.685

Scenario 3: Model 1 0.265 0.365 0.449 0.504 0.581 0.632 0.669 0.696 0.712

Scenario 3: Model 2 0.246 0.361 0.451 0.510 0.586 0.634 0.671 0.699 0.716

Scenario 4: Model 1 0.175 0.304 0.408 0.499 0.558 0.607 0.647 0.671 0.681

Scenario 4: Model 2 0.174 0.303 0.407 0.498 0.557 0.605 0.648 0.672 0.682

Vansteelandt et al. (2009) has higher power and for higher allele
frequencies the proposed method has higher power. However, this
difference in power is negligible; the power never differs by more
than 2%.

The advantage of our approach becomes clear when testing
multiple SNPs. Table 4 shows how the power to detect the causal
SNP for our approach compares to Vansteelandt et al. (2009)
when one SNP has a direct effect on the phenotype as simulated
above in Table 2 and 49 other SNPs are not associated with the
phenotype of interest. Table 1 shows the type-1 error rate in this
scenario where the one SNP has an indirect effect on the phe-
notype as simulated above in Table 1 and 49 other SNPs are not
associated with the phenotype of interest or any of the other phe-
notypes. Table 6 shows how the power to detect the causal SNP
for our approach compares to Vansteelandt et al. (2009) when one
SNP has a direct effect on the phenotype as simulated above in
Table 2 and 99 other SNPs are not associated with the phenotype
of interest. Table 5 shows the type-1 error rate in this scenario
where the one SNP has an indirect effect on the phenotype as sim-
ulated above in Table 1 and 99 other SNPs are not associated with
the phenotype of interest or any of the other phenotypes.

Our approach allows for a screening step similar to the Van
Steen algorithm (Van Steen et al., 2005) where the top 3 SNPs out
of 50 and the top 5 SNPs out of 100 with the highest test statis-
tic given by Equation (4) are chosen. We chose 3 SNPs out of 50

and 5 SNPs out of 100 since this is roughly 5% of the SNPs. After
the top 3 or 5 SNPs are chosen based on the screening step, the
test statistic described in Equation (7) is used to obtain a p-value
which is compared to α/3 and α/5, respectively. We compare our
approach with the screening step to the approach by Vansteelandt
et al. (2009) with a Sidak correction. Since our approach allows
for a screening step, we are better able to detect the SNP that
has a direct causal effect on the target phenotype as seen in
Tables 4, 6.

Note that the power in Tables 4, 6 is lower than that in
Table 2 which is expected since multiple SNPs are tested. For
more common allele frequencies, the power of using the proposed
method with a screening step is more than double that of the
Vansteelandt algorithm with a Sidak correction while the type-1
error rates are similar as seen in Tables 3, 5. Therefore, if multiple
SNPs are tested, the proposed approach has better power to detect
the SNP that has a direct effect on the phenotype of interest.

Since the proposed approach is valid for testing, but may have
less power when either the X→ K or the X→ Y link is strong,
we looked at the effect of increasing the association between X
and K when K influences Y (X→ K) and X and Y (X→ Y).
We increased the correlation between X and K from 0.025 to 0.05
and then 0.075. We also increased the correlation between X and
Y from 0.05 to 0.10 and then 0.15. The power of both statis-
tics remained very close. At most, the power of the Vansteelandt
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et al. statistic (Vansteelandt et al., 2009) was 0.9% better than our
approach.

Since the test statistic for the screening step given in Equation
(4) is susceptible to population stratification, we examined a
few scenarios where population stratification was present. We

simulated half of the subjects to have allele frequency of 5, 5,
20, and 40% and the other half of the subjects to have allele fre-
quency of 10, 45, 25, and 45%, respectively. Similar to Tables 3, 4,
one SNP has a direct effect on the phenotype of interest and 49
other SNPs are not associated with the phenotype of interest in

Table 3 | This table displays the significance rate when one SNP does not have a direct effect on the phenotype Y but acts as seen in Figure 2

without the arrow from X to Y and 49 SNPs are not associated with the phenotype Y.

Allele frequency (%) Type-1 error rate when 50 SNPs are tested

5 10 15 20 25 30 35 40 45

Scenario 1: Model 1 0.0018 0.0008 0.0008 0.0006 0.0004 0.0006 0.0008 0.0006 0.0010

Scenario 1: Model 2 0.0014 0.0006 0.0002 0.0006 0.0012 0.0012 0.0006 0.0012 0.0006

Scenario 2: Model 1 0.0014 0.0006 0.0008 0.0012 0.0004 0.0008 0.0004 0.0008 0.0002

Scenario 2: Model 2 0.0004 0.0010 0.0012 0.0016 0.0012 0.0006 0.0010 0.0004 0.0006

Scenario 3: Model 1 0.0018 0.0006 0.0008 0.0014 0.0006 0.0010 0.0008 0.0008 0.0002

Scenario 3: Model 2 0.0014 0.0006 0.0008 0.0016 0.0012 0.0010 0.0012 0.0004 0.0006

Scenario 4: Model 1 0.0014 0.0006 0.0008 0.0012 0.0004 0.0008 0.0004 0.0008 0.0002

Scenario 4: Model 2 0.0008 0.0010 0.0013 0.0016 0.0012 0.0006 0.0010 0.0004 0.0006

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 is used estimate γ1 with a screening step where the three SNPs with the largest test statistic

given by Equation (8) are tested.

Table 4 | This table displays the power when one SNP has a direct effect on the phenotype Y and 49 SNPs are not associated with the

phenotype Y.

Allele frequency (%) Power when 50 SNPs are tested

5 10 15 20 25 30 35 40 45

Scenario 1: Model 1 0.031 0.039 0.073 0.075 0.120 0.150 0.176 0.191 0.191

Scenario 1: Model 2 0.038 0.073 0.133 0.188 0.255 0.321 0.356 0.368 0.431

Scenario 2: Model 1 0.013 0.030 0.040 0.074 0.110 0.112 0.158 0.162 0.172

Scenario 2: Model 2 0.015 0.056 0.117 0.18 0.236 0.292 0.344 0.356 0.378

Scenario 3: Model 1 0.031 0.039 0.074 0.083 0.121 0.130 0.185 0.191 0.201

Scenario 3: Model 2 0.038 0.073 0.136 0.194 0.257 0.312 0.368 0.370 0.445

Scenario 4: Model 1 0.012 0.030 0.063 0.076 0.110 0.113 0.159 0.176 0.177

Scenario 4: Model 2 0.015 0.057 0.107 0.181 0.235 0.290 0.344 0.376 0.416

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 is used estimate γ1 with a screening step where the three SNPs with the largest test statistic

given by Equation (8) are tested.

Table 5 | This table displays the significance rate when one SNP does not have a direct effect on the phenotype Y but acts as seen in Figure 2

without the arrow from X to Y and 99 SNPs are not associated with the phenotype Y.

Allele frequency (%) Type-1 error rate when 100 SNPs are tested

5 10 15 20 25 30 35 40 45

Scenario 1: Model 1 0.0010 0.0006 0.0004 0.0006 0.0007 0.0006 0.0002 0.0004 0.0005
Scenario 1: Model 2 0.0008 0.0004 0.0004 0.0006 0.0006 0.0006 0.0008 0.0002 0.0006
Scenario 2: Model 1 0.0006 0.0000 0.0008 0.0000 0.0000 0.0004 0.0002 0.0006 0.0002
Scenario 2: Model 2 0.0004 0.0004 0.0008 0.0002 0.0004 0.0006 0.0010 0.0004 0.0008
Scenario 3: Model 1 0.0010 0.0010 0.0002 0.0004 0.0000 0.0004 0.0002 0.0008 0.0000
Scenario 3: Model 2 0.0008 0.0004 0.0002 0.0002 0.0002 0.0006 0.0002 0.0002 0.0004
Scenario 4: Model 1 0.0006 0.0003 0.0004 0.0006 0.0007 0.0006 0.0002 0.0004 0.0005
Scenario 4: Model 2 0.0002 0.0004 0.0004 0.0006 0.0006 0.0006 0.0008 0.0002 0.0006

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 is used estimate γ1 with a screening step where the five SNPs with the largest test statistic

given by Equation (8) are tested.
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Table 6 | This table displays the power when one SNP has a direct effect on the phenotype Y and 99 SNPs are not associated with the

phenotype Y.

Allele frequency (%) Power when 100 SNPs are tested

5 10 15 20 25 30 35 40 45

Scenario 1: Model 1 0.014 0.028 0.049 0.048 0.084 0.109 0.111 0.147 0.142
Scenario 1: Model 2 0.021 0.056 0.099 0.136 0.196 0.262 0.277 0.332 0.351
Scenario 2: Model 1 0.004 0.018 0.040 0.055 0.076 0.099 0.098 0.116 0.123
Scenario 2: Model 2 0.014 0.042 0.088 0.145 0.178 0.246 0.249 0.284 0.332
Scenario 3: Model 1 0.018 0.028 0.038 0.049 0.087 0.094 0.112 0.128 0.139
Scenario 3: Model 2 0.023 0.057 0.099 0.137 0.198 0.229 0.283 0.315 0.368
Scenario 4: Model 1 0.006 0.018 0.040 0.041 0.076 0.086 0.098 0.116 0.123
Scenario 4: Model 2 0.011 0.042 0.088 0.126 0.178 0.209 0.249 0.284 0.332

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 is used estimate γ1 with a screening step where the five SNPs with the largest test statistic

given by Equation (8) are tested.

Table 7 | This table displays the significance level when one SNP has

an indirect effect on the phenotype Y as seen in Figure 2 without the

arrow from X to Y and 49 SNPs are not associated with the

phenotype Y.

Allele frequency Type-1 error rate when the following population

stratification is present

5 and 10% 5 and 45% 20 and 25% 40 and 45%

Scenario 1: Model 1 0.0012 0.0014 0.0011 0.0013

Scenario 1: Model 2 0.0006 0.0006 0.0004 0.0005

Scenario 2: Model 1 0.0010 0.0006 0.0004 0.0006

Scenario 2: Model 2 0.0012 0.0013 0.0018 0.0020

Scenario 3: Model 1 0.0009 0.0002 0.0004 0.0011

Scenario 3: Model 2 0.0008 0.0012 0.0016 0.0008

Scenario 4: Model 1 0.0006 0.0014 0.0008 0.0009

Scenario 4: Model 2 0.0009 0.0006 0.0006 0.0012

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 to is used

estimate γ1 in a screening step where the three SNPs with the largest test

statistic given by Equation (4) are tested. Population stratification is present such

that half of the subjects have one of the allele frequencies listed and the other

half of the subjects have the other allele frequency listed.

Tables 7, 8. Similar to Tables 5, 6, one SNP has a direct effect
on the phenotype of interest and 99 other SNPs are not associ-
ated with the phenotype of interest in Tables 9, 10. As seen in
Tables 7, 9, the type-1 error rates are similar for both methods. As
seen in Tables 8, 10, even though there is some population strat-
ification present, the proposed method with a screening step still
performs better than the Vansteelandt algorithm, especially when
the allele frequencies are more common.

DATA ANALYSIS: AN APPLICATION TO THE FRAMINGHAM
STUDY
We evaluated the practical relevance of the proposed adjust-
ment principle by an application to the Framingham Heart Study
with 1400 probands (Herbert et al., 2006). For the target phe-
notype, we selected the lung-function measurement FEV1. For
the secondary phenotype K, we selected height. Gender, and age

Table 8 | This table displays the power when one SNP has a direct

effect on the phenotype Y and 49 SNPs are not associated with the

phenotype Y.

Allele frequency Power when the following population

stratification is present

5 and 10% 5 and 45% 20 and 25% 40 and 45%

Scenario 1: Model 1 0.025 0.070 0.111 0.171

Scenario 1: Model 2 0.064 0.199 0.248 0.394

Scenario 2: Model 1 0.016 0.070 0.103 0.163

Scenario 2: Model 2 0.040 0.205 0.227 0.366

Scenario 3: Model 1 0.025 0.070 0.113 0.172

Scenario 3: Model 2 0.064 0.202 0.249 0.396

Scenario 4: Model 1 0.016 0.064 0.103 0.163

Scenario 4: Model 2 0.040 0.186 0.227 0.366

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 to is used

estimate γ1 with a screening step where the three SNPs with the largest test

statistic given by Equation (4) are tested. Population stratification is present such

that half of the subjects have one of the allele frequencies listed and the other

half of the subjects have the other allele frequency listed.

represent L, the collection of common risk factors between FEV1
and height. For rs2415815 a SNP associated with both height and
FEV1, the test statistic equals 0.044 with corresponding p-value
equal 0.83. As a result, we fail to reject the null hypothesis and
conclude that there is no evidence that the SNP acts directly on
FEV1 other than via body height.

DISCUSSION
Our proposed FBAT assesses the direct genetic effect of a marker
locus on the phenotype of interest, other than through another
correlated phenotype. The adjustment is based on the conditional
mean model approach and can be incorporated into the FBAT-
approach in a straightforward fashion. The power of the approach
is assessed by simulation studies and shown to be similar to the
Vansteelandt et al. method when only one SNP is being tested
and superior when multiple SNPs are being tested (Vansteelandt
et al., 2009). Unlike the Vansteelandt et al. method, this method
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Table 9 | This table displays the significance level when one SNP has

an indirect effect on the phenotype Y as seen in Figure 2 without the

arrow from X to Y and 99 SNPs are not associated with the

phenotype Y.

Allele frequency Type-1 error rate when the following population

stratification is present

5 and 10% 5 and 45% 20 and 25% 40 and 45%

Scenario 1: Model 1 0.0011 0.0005 0.0007 0.0003

Scenario 1: Model 2 0.0009 0.0006 0.0008 0.0003

Scenario 2: Model 1 0.0004 0.0015 0.0009 0.0005

Scenario 2: Model 2 0.0003 0.0011 0.0012 0.0005

Scenario 3: Model 1 0.0004 0.0010 0.0008 0.0004

Scenario 3: Model 2 0.0006 0.0009 0.0010 0.0006

Scenario 4: Model 1 0.0008 0.0013 0.0007 0.0004

Scenario 4: Model 2 0.0010 0.0008 0.0011 0.0006

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 to is used

estimate γ1 with a screening step where the five SNPs with the largest test

statistic given by Equation (4) are tested. Population stratification is present such

that half of the subjects have one of the allele frequencies listed and the other

half of the subjects have the other allele frequency listed.

uses a screening step and has the unique advantage in situations
in which a large number of SNPs are tested for a direct effect on
the phenotype of interest. Since the number of tests will be much
smaller than the total number of SNPs, this will lead to substan-
tial reduction in the adjustment for multiple-comparisons and
will result in improved overall statistical power. In this process,
the screening step works under the assumption of no population
admixture, but the final analysis of the selected SNPs is robust
against it.

While we considered several causal scenarios, if the causal rela-
tionships assumed in the DAGs are not true this could cause
problems for the proposed method. For example, a causal arrow
K ← Y or L→ Y could introduce spurious association for this
method. Therefore, one needs to makes sure that the assumptions
of the DAG are met before using the proposed approach. While
the simulations considered 50 and 100 SNPs, a realistic appli-
cation could involve thousands of GWAS SNPs. This leads to
extreme multiple test corrections and may lead to very different
behavior than the behavior observed in the simulation studies
(Morris and Elston, 2011). Furthermore, if phenotypes of the
founders are known, the proposed method could perform poorly
compared to population-based approaches.

For the screening step in the Simulations section, we chose 3
out of 50 and 5 out of 100 SNPs since this is roughly 5% of the
tested SNPs. Another number of SNPs could be chosen for the
screening step. Although, if the majority of SNPs are chosen in the
screening step (i.e., 40 out of 50 SNPs), this increases the num-
ber of multiple comparisons and can decrease power. If too few
SNPs are chosen in the screening step (i.e., 1 out of 50 SNPs), this
decreases the number of multiple comparisons, but one may fail
to detect the causal SNP since too few SNPs were chosen. Care
needs to be given to the number of SNPs chosen in the screening
step (Van Steen et al., 2005). One cannot simply choose different
numbers of SNPs for the screening step until significant results

Table 10 | This table displays the power when one SNP has a direct

effect on the phenotype Y and 99 SNPs are not associated with the

phenotype Y.

Allele frequency Power when the following population

stratification is present

5 and 10% 5 and 45% 20 and 25% 40 and 45%

Scenario 1: Model 1 0.022 0.050 0.073 0.157

Scenario 1: Model 2 0.044 0.141 0.170 0.324

Scenario 2: Model 1 0.014 0.046 0.071 0.148

Scenario 2: Model 2 0.036 0.137 0.161 0.298

Scenario 3: Model 1 0.022 0.050 0.076 0.159

Scenario 3: Model 2 0.045 0.143 0.174 0.326

Scenario 4: Model 1 0.014 0.046 0.071 0.148

Scenario 4: Model 2 0.036 0.137 0.161 0.298

Model 1 is used to estimate γ1 with a Sidak correction and Model 2 to is used

estimate γ1 with a screening step where the five SNPs with the largest test

statistic given by Equation (4) are tested. Population stratification is present such

that half of the subjects have one of the allele frequencies listed and the other

half of the subjects have the other allele frequency listed.

are found since this will inflate the type-1 error rate (Van Steen
et al., 2005).
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APPENDIX
The following proof shows that the test statistics in the first and
second screening steps are uncorrelated under the null hypothe-
sis. As discussed in the introduction and methods sections, Ỹ =
Y − ȳ − γ1K − k̄ is the adjusted phenotype for the effect that the
phenotype K has on the target phenotype Y . For ease of notation,
we will use Ỹ = Y − γ1(K) for this proof. Suppose that the null
hypothesis is true that X has no effect on Y other than through
K. Let

E(Y |X, K, U) = E(Y |K, U) = �{w(U)+ γ1K} (9)

where � equals the identity link or exponential link and w(U) is
an arbitrary function. Without loss of generality, for the following
proof, let � equal the identity link. This model does not involve
X because we are working under the null hypothesis of no direct
effect. Furthermore, the parameter γ1 in this model is the same as
in model

E(Y |X, K, L, S) = w∗(X, L, S)+ γ1K (10)

for some function w∗(X, L, S) of (X, L, S), which can be seen
by inferring this model from model (9) upon noting that
Y ⊥⊥ (L, S)|X, K, U and U ⊥⊥ K|L, X, S. Using model (9) and
model (10) and noting that Y ⊥⊥ S|X, K, U and X ⊥⊥ U|S,
then

E[Ỹ(X − E[X|S])] = E[(Y − γ1K)(X − E[X|S])]
= E[w(U)(E[X|S, U] − E[X|S])] = 0 (11)

As a result of Equation (11) and model (9), the
Cov(Ỹ(X − E[X|S]), ỸE[X|S]) can be written as follows

Cov(Ỹ(X − E[X|S]), ỸE[X|S])
= E[(Y − γ1K)2E(X|S)(X − E[X|S])]
= E[(Y − E(Y |X, K, U)+ w(U))2E(X|S)(X − E[X|S])]
= Part1 + Part2 + Part3

where
Part1 = E[(w(U)2) E[X|S](X − E[X|S])]
Part2 = E[(2(w(U)(Y − E[Y |X, K, U])) E[X|S](X − E[X|S])]
Part3 = E[((Y − E[Y |X, K, U])2) E[X|S](X − E[X|S])] (12)

We will show that the Cov(Ỹ(X − E[X|S]), ỸE[X|S]) = 0 by
showing that each part of the above equation equals zero.

Part1 = E[w(U)2E[X|S](X − E[X|S])]
= E[w(U)2E[X|S](E[X|S, U] − E[X|S])] = 0 (13)

because X ⊥⊥ U|S.

Part2 = E[2w(U)(Y − E[Y |X, K, U])E[X|S](X − E[X|S])] = 0
(14)

because Y ⊥⊥ S|X, K, U .

Part3 = E[(Y − E[Y |X, K, U])2E[X|S](X − E[X|S])]
= E[E[X|S](X − E[X|S])Var[Y |K, U]] (15)

because Y ⊥⊥ S|X, K, U and Y ⊥⊥ X|K, U .
Assuming that Var(Y |K, U) is constant, as we do throughout,

it is immediate that the term Part3 is zero. As a result, this shows
that Cov(Ỹ(X − E[X|S]), ỸE[X|S]) = 0.
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INTRODUCTION
For the analysis of secondary phenotype data collected in a
case-control study, Lin and Zeng have proposed a method that
properly reflects the case-control sampling (Lin and Zeng, 2009).
This work is motivated by the challenges associated with account-
ing for the ascertainment when analyzing secondary phenotypes
that are correlated with case-control status. Several methods
have been proposed that accurately estimate the odds ratio of
genetic variants for binary secondary phenotypes associated with
case-control status, but most of these methods do not read-
ily accommodate continuous secondary phenotypes (Greenland,
2003; Kraft, 2007; Richardson et al., 2007; Monsees et al., 2009;
Li et al., 2010; Wang and Shete, 2011a,b; He et al., 2012; Li and
Gail, 2012). While two of these methods use an inverse probabil-
ity weighted (IPW) regression approach that can accommodate
continuous secondary phenotypes, these methods focus on cor-
recting for the bias in the estimator due to the ascertainment
conditions and involve a known disease rate (Richardson et al.,
2007; Monsees et al., 2009). Since this paper focuses on hypothesis
testing versus estimation of disease-association parameters with
an equal number of cases and controls, we do not present these
methods here.

Alternatively, the Lin and Zeng method has the advantage
of accurately estimating effect sizes for secondary phenotypes
that are normally distributed or dichotomous (Lin and Zeng,
2009). Under the null hypothesis when the likelihood surface
that needs to be maximized can be relatively flat, this method
can be computationally intensive in practice. To circumvent these
computational issues, we propose an extension of the Lin and

Zeng method for hypothesis testing that uses proportional odds
logistic regression. Since the approach by Lin and Zeng has the
advantage that effect sizes can also be estimated, we recommend
the following work-flow for the analysis of continuous secondary
phenotypes.

1. Test all SNPs with our approach using proportional odds logis-
tic regression since the vast majority of SNPs will be under the
null hypothesis.

2. For the significant SNPs, apply Lin and Zeng’s method to
obtain parameter estimates and confidence intervals.

This proposed approach circumvents the computational issues
encountered in the Lin and Zeng approach under the null hypoth-
esis, but utilizes the Lin and Zeng’s method to accurately estimate
effect sizes for significant SNPs found in Step 1. Through simula-
tion studies, we compare the power and type-1 error rate of our
method to standard approaches and Lin and Zeng’s approach.

METHODS
When the secondary phenotype is normally distributed, Lin and
Zeng propose an adjusted score test that incorporates genetic
associations with affection status into the test statistic and models
the likelihood function as follows (Lin and Zeng, 2009):

n
∏

i= 1

P(Yi, Xi|Di) =
n

∏

i= 1

{

P(Di = 1|Xi, Yi)P(Yi|Xi)P(Xi)

P(Di = 1)

}Di

{

P(Di = 0|Xi, Yi)P(Yi|Xi)P(Xi)

P(Di = 0)

}1−Di

(1)
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where D denotes the case-control status (1 = case and 0 = con-
trol), Y denotes the secondary phenotype, n denotes the total
number of subjects, and X denotes the genotype of interest.

Lin and Zeng calculate P(Di = 1) =
∑

y

∑

x

P(Di =
1|x, y)P(y|x)P(x). The probability P(D|X, Y) is defined as a
logistic regression model. They model P(Y |X) as a logistic
regression for dichotomous Y or a linear regression for normally
distributed Y. They maximize the likelihood with respect to P(X)
by the Newton Raphson algorithm. In this framework, likelihood
based statistics (i.e., Wald, score, and likelihood-ratio statistics)
can be used to make inference.

The Lin and Zeng approach requires the secondary phenotype
to be normally distributed and the method can be problem-
atic under the null hypothesis since the likelihood surface that
needs to be maximized can be relatively flat. Since Lin and Zeng’s
method estimates the parameters in the model by maximizing
the likelihood given in Equation (1), the approach is numeri-
cally exhaustive when testing a large number of SNPs where a
majority of the SNPs are under the null hypothesis. This is a
result of the maximization of the likelihood function being dif-
ficult under the null hypothesis, since the surface can be flat due
to the ascertainment condition.

If the primary goal of the secondary phenotype analysis is
hypothesis testing as opposed to estimation of disease-association
parameters, an alternative approach is to use the following likeli-
hood composition, which ultimately does not require maximizing
a relatively flat likelihood surface. Therefore, for the association
testing of secondary phenotypes in case-control studies, we pro-
pose using a simpler break down of the likelihood that requires
few assumptions.

n
∏

i= 1

P(Yi, Xi|Di) =
n

∏

i= 1

P(Xi|Yi, Di)P(Yi|Di) (2)

Under the null hypothesis, X is independent of Y given D and any
confounders. The likelihood ratio test becomes

LRT = −2ln

⎛

⎜

⎜

⎜

⎜

⎝

n
∏

i= 1

P(Xi|Di)P(Yi|Di)

n
∏

i= 1

P(Xi|Yi, Di)P(Yi|Di)

⎞

⎟

⎟

⎟

⎟

⎠

= −2ln

⎛

⎜

⎜

⎜

⎜

⎝

n
∏

i= 1

P(Xi|Di)

n
∏

i= 1

P(Xi|YiDi)

⎞

⎟

⎟

⎟

⎟

⎠

∼ χ2
1df (3)

As a result, one only needs to model P(X|D) and P(X|Y, D). For
an additive genetic model, i.e., X = 0, 1, 2, corresponding to allele
counts, instead of modeling the likelihood function, one can use
a cumulative logistic regression model with proportional odds
proportional for P(X|D) and the P(X|Y, D) such that

logit[P(X ≤ j|Y, D)] = α1j + δ1Y Y + δ1DD
logit[P(X ≤ j|D)] = α0j + δ0DD

(4)

for j = 0, 1. To control for any known confounders, these covari-
ates can be added to Equation (4). This model assumes the same
effect for different cumulative logits (Agresti, 2002). If assump-
tions are not met then we recommend a link function for which
the response curve is non-symmetric or adding a dispersion
parameter. For imputed dosages, j becomes the number of dosage
levels minus one, meaning the levels of X in the cumulative
logistic regression are increased to the number of dosage levels
minus one.

SIMULATIONS
To assess the performance of this approach and compare it to Lin
and Zeng’s method, we conducted simulation studies following
Lin and Zeng’s manuscript with a MAF of 0.3, an additive mode
of inheritance, and α = 0.01 level of significance (Lin and Zeng,
2009). We also compared both of these methods to the standard
case-only method, control only method and combined case and
control method where both cases and controls are included in the
analysis. For the model of the secondary quantitative trait Y and
the disease D,

Y |X ∼ N
(

β0 + β1X, σ 2) (5)

P(D = 1|X, Y) = exp (γ0 + γ1X + γ2Y)

1+ exp (γ0 + γ1X + γ2Y)
(6)

where β0 = σ 2 = 1, β1 = 0 under the null hypothesis and β1 =
−0.12 under the alternative hypothesis. We let γ2 = log(2), γ1

varies from 0 to log(1.5), and γ0 was chosen such that the disease
rate is 1% or 5%. For each combination of simulation parameters,
we generated 1000 data sets with 500 cases and 500 controls.

Figure 1 shows the type 1 error rates and power for a disease
rate of 1% and 5%. Our method, using the proportional odds
logistic regression, maintains the type 1 error rate and has slightly
higher power as compared to Lin and Zeng’s method and supe-
rior power compared to the other methods. While the proposed
method and Lin and Zeng’s method have similar power, the pro-
posed method is computationally more feasible under the null
hypothesis than Lin and Zeng’s method since it does not involve
maximizing a relatively flat likelihood surface. The computing
time for the proposed approach is under 1 s per SNP where as the
software associated with the Lin and Zeng approach needs to be
run multiple times if there are issues with convergence which can
take 5 min to an hour per SNP. When running a GWAS with about
500,000 SNPs, this difference in computing time per SNP can be
substantial. To examine this concept further, the plot on the left
in Figure 2 shows the log Likelihood specified by Lin and Zeng
for varying values of β0 and β1 with all other parameters fixed at
their true values and for data generated under the null hypoth-
esis with γ1 = log(1.5) and the disease rate equal 5%. The plot
on the right is the log Likelihood specified by Lin and Zeng for
varying values of γ1 and γ2 with all other parameters fixed at their
true values, and for data generated under the null hypothesis with
γ1 = log(1.5) and the disease rate equals 5%. The red dots on the
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FIGURE 1 | Type 1 error rates and power for a disease rate of 1%

and 5%. As seen in the plots above the new method using
proportional odds logistic regression maintains the type 1 error rate.

The new method has similar power compared to Lin and Zeng’s
method called SPREG and superior power compared to the other
methods.

plots represent the true maximum. The surface for β0 and β1 has a
clear maximum whereas the surface for γ1 and γ0 is relatively flat,
demonstrating the difficulty in maximizing the likelihood surface
defined by Lin and Zeng under the null hypothesis.

DISCUSSION
While the power of the proposed method is comparable to the
method of Lin and Zeng, the proposed approach does not have
the issue of maximizing a flat likelihood surface under the hull
hypothesis that can be computationally intensive. Since the pro-
posed approach is limited in it’s ability to accurately estimate
effect sizes while the approach by Lin and Zeng has the advan-
tage that effect sizes can be accurately estimated, we recommend
the following work-flow for the analysis of secondary phenotypes.

1. Test all SNPs with the proposed approach using proportional
odds logistic regression since the vast majority of SNPs will be
under the null hypothesis.

2. For the significant SNPs, apply Lin and Zeng’s method to
obtain parameter estimates and confidence intervals.

By using our approach to test all the SNPs in the GWAS, the
hypothesis testing can be done quickly and efficiently since our
approach does not suffer from this issue of maximizing a flat
likelihood surface under the null hypothesis. By obtaining param-
eter estimates for only the significant SNPs with Lin and Zeng’s
method, one can make sure that the likelihood is properly max-
imized which is too computational exhaustive to apply to the
entire GWAS.
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FIGURE 2 | Log Likelihood surface specified by Lin and Zeng. The plot on
the left is the log Likelihood specified by Lin and Zeng for varying values of β0

and β1 with all other parameters fixed at their true values and for data
generated under the null hypothesis with γ1 = log(1.5) and the disease rate
equal 5%. The plot on the right is the log Likelihood specified by Lin and Zeng
for varying values of γ1 and γ2 with all other parameters fixed at their true

values and for data generated under the null hypothesis with γ1 = log(1.5)
and the disease rate equal 5%. The red dots on the plots represent the true
maximum. The surface for β0 and β1 has a clear maximum whereas the
surface for γ1 and γ0 is relatively flat, demonstrating the difficulty in
maximizing the likelihood surface defined by Lin and Zeng under the null
hypothesis.

There are potential limitations associated with this strategy of
combining two methodological approaches to reduce the compu-
tational burden while still being able to estimate the parameters
of interest. While the two approaches have comparable power, a
relatively small number of SNPs that are significant from the new
approach may not be significant in the Lin and Zeng’s method
and vice versa. Also both approaches may have issues if the case
control status is extremely correlated with the secondary phe-
notype. In this case, the secondary phenotype is not providing
new information compared to the case-control status and these
methods for testing secondary phenotypes in case-control genetic
association studies are not applicable.
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