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Editorial on the Research Topic

Advanced Control Methods in Marine Robotics Applications

1 INTRODUCTION

This article collection aims to provide a set of reports that could be used to better understand the state
of the art and trigger a wide-range discussion among researchers and practitioners active in marine
robotics and researchers active in robotics applications of control theory and engineering. This
research topic originated from the workshop “Hand-Shaking Advanced Control in Marine Robotics
Applications” held at IROS 2018. However, contributions have been collected through an open call.

As a result, we have a diverse set of contributions in which authors deal with current challenges in
marine robotics; in particular issues and solutions related to control problems for systems interacting
with the environment, advanced control of systems with uncertain dynamics working within
uncertain environments, classical control with prioritized tasks for object avoidance, cooperative
motion coordination, biomimetic approaches to formation control, etc. We did not receive
submissions on more research-oriented topics like “embodiment,” “morphological computation,”
“orchestration control,” “self-organization of behaviors in soft robots,” and “persistent autonomy,”
nor on “human–robot interaction”; this is an interesting fact by itself.

2 CONTRIBUTED ARTICLES

The contributed articles provide a reasonably accurate state of the art for control methods currently
used in marine robotics applications. Kelasidi et al. presents and integrates control for an underwater
snake robot (this shape has a number of advantages in inspection and maintenance, the main issue
being its control difficulty). Franchi et al. reports about the real-world experience and the
technologies exploited during the European Robotics League in 2017. It is interesting to notice
how “simple” the control techniques used in a real-world competition are with respect to other
control approaches reported in the literature, while at the same time the team performed
comparatively well. Garrido et al. shows (in simulation) the potential benefits of the fast
marching method for navigation also in the marine robotics domain. Reis et al. addresses the
cooperative moving path following (CMPF) control problem. It could be interesting to compare the
three-layered hybrid collision avoidance (COLAV) system for autonomous surface vehicles in
Eriksen et al. with that proposed in Kelasidi et al. Costanzi et al. reviews the interoperability issues in
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complexmaritime activities performed by teams of heterogeneous
robots. It is interesting here to compare with Berman et al., which
merges a secure sampling method for environmental
monitoring—based on distributed ledger technology—with a
swarm management methodology inspired by Reynold’s boids.
Could block-chain technologies help? Martinsen et al. reports
about a reinforcement learning-based (RL) control scheme to
optimize a model-based feedforward controller. De Palma et al.
deals with the formation reconstruction for a team of vehicles
based on the range distance between agents of a subset of the
participants. Another interesting comparison is about swarm
management in Berman et al. and cooperative control in Reis et al..

3 CONCLUSION

The diverse set of results published by a “real world–oriented”
community probably gives a reasonable idea of where we are with
robotics and AI at large.

Remarkably, a number of new tools are becoming available
and are being exploited by the community. These include
integrated guidance and control systems to ensure path
following for underwater snake robots, new navigation
methods, fast marching, new cooperative path following,
obstacle and collision avoidance methods, new control
approaches for range based navigation, reinforcement
learning, and block-chain technologies among others. In
particular, reinforcement learning seems a promising
technique to improve the way robots perform most
required tasks, while in general, deep learning is not widely
used by the authors of this article collection. Fast marching
holds promise for navigation tasks. Distributed ledger

technologies seem to be ready for real-world application, to
manage trustable and secure cooperation of heterogeneous
multi-robot networks or swarms for critical applications
(monitoring, but in general wherever security and trust are
important).

Also in this community, a transition to a reproducible
research practice is much needed, as only one contribution
(Berman et al.) shared most of the code and data sets. The
evaluation of the state of the art will certainly require further
effort. However, marine robotics research is making inroads in
this direction and increased progress can be expected in the
coming years. Even from the down-to-earth point of view of
marine robotics, we can expect quick and deep progress in the
coming years.
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The use of unmanned underwater vehicles is steadily increasing for a variety of

applications such as mapping, monitoring, inspection and intervention within several

research fields and industries, e.g., oceanography, marine biology, military, and oil and

gas. Particularly interesting types of unmanned underwater vehicles are bio-inspired

robots such as underwater snake robots (USRs). Due to their flexible and slender body,

these versatile robots are highly maneuverable and have better access capabilities than

more conventional remotely operated vehicles (ROVs). Moreover, the long and slender

body allows for energy-efficient transit over long distances similar to torpedo-shaped

autonomous underwater vehicles (AUVs). In addition, USRs are capable of performing

light intervention tasks, thereby providing intervention capabilities which exceed those

of AUVs and inspection class ROVs. USRs may also propel themselves using

energy-efficient motion patterns inspired by their biological counterparts. They can

thereby increase the propulsion efficiency during transit and maneuvering, which is

among the great challenges for autonomous underwater vehicles. In this paper, a control

system for path following, and algorithms for obstacle detection and avoidance, are

presented for a USR with thrusters attached at the tail module. The position of the

obstacles is detected using a single camera in the head module of the USR and a

developed computer vision algorithm. For the proposed control concept the robot joints

are used for directional control while the thrusters are used for forward propulsion. The

USR circumvents obstacles by following a circular path around them before converging

back to the main straight line path when this is safe. Experimental results that validate

the proposed methods are also presented.

Keywords: underwater snake robots, energy efficiency, thrusted USR, path following, obstacle detection and

avoidance

1. INTRODUCTION

Through millions of years of evolution, sea snakes, eels and fish have developed highly efficient
motion for propulsion and locomotion. These creatures are able to rapidly change direction
in a highly efficient manner (Lighthill, 1970, 1975). Many of them have superior acceleration
capabilities, while simultaneously being able to access confined spaces using their flexible bodies.
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Over the last decades, remotely operated vehicles (ROVs) have
been extensively used for subsea inspection, maintenance, and
repair operations in the oil and gas industry (Christ and Wernli,
2013). These vehicles rely on being operated by a highly trained
human in the loop. In order to make such operations safer
and more cost-efficient, there has been an increasing interest
in developing intervention AUVs (I-AUVs) (Ridao et al., 2014),
underwater snake robots (USRs) (Mclsaac and Ostrowski, 1999;
McIsaac and Ostrowski, 2002; Takayama and Hirose, 2002;
Wilbur et al., 2002; Crespi et al., 2005; Yamada et al., 2005;
Crespi and Ijspeert, 2006; Li et al., 2011; Stefanini et al., 2012;
Liljebäck et al., 2014; Kelasidi et al., 2016a,b) and underwater
snake robots with thrusters (Sverdrup-Thygeson et al., 2016a,b)
as a step toward improved autonomy, dexterity and precision for
underwater manipulation tasks. Detailed discussions on different
underwater robotic systems such as ROVs, AUVs and bio-
inspired robotic systems can be found in Kelasidi et al. (2016a)
and Kelasidi et al. (2017b).

Inspired by biological swimming creatures, a novel concept
for bio-inspired multi-articulated robotic systems has been
illustrated in Figure 1, which combines properties of aquatic
animals with state of the art solutions from marine technology.
Unlike conventional underwater robotic solutions, the USR
is a slender and highly redundant robot, which is able to
propel itself forward using body undulations combined with
caudal, dorsal and pectoral fins and/or with stern propellers
and tunnel thrusters along the body. This provides significant
flexibility and increases the maneuverability of the robot for
subsea applications, as illustrated in Figure 1 (Kelasidi et al.,
2015; Sverdrup-Thygeson et al., 2016b). The modular design of
the robot makes it suitable for different applications by simply
connecting various modules in different combinations to form
various types of vehicles. As illustrated in Figure 1, the robotic
system is a dexterous robotic arm which can operate tools and
carry out light intervention tasks. In addition, by using either foils
or thrusters, it can transit over long distances in a similar manner
as a survey AUV, while its flexible and slender body provides
the ability to access and operate in restricted areas of subsea
structures. The modular design of the robot makes it applicable
for different applications depending on the requirement of the
task. For instance, a purely bio-inspired solution without using
propellers can be considered for applications where limited
acoustic noise is required, whereas equipping the robot with
thrusters can provide improved maneuverability for inspection
and intervention tasks. The use of USRs for such subsea
operations introduces several interesting research challenges.
Figure 2 presents the first USR equipped with thrusters at the
tail module, developed at the Norwegian University of Science
and Technology (NTNU) (Liljebäck et al., 2014; Kelasidi et al.,
2016b). This robotic platform using thrusters only at the tail
module can be considered a special case of the general concept
shown in Figure 1, and is a step toward developing the next
generation of USRs with additional effectors. The modular snake
robot Mamba (Liljebäck et al., 2014) can be equipped with
thrusters when operated underwater (Kelasidi et al., 2016b).
Mamba with thrusters is a new type of snake-like robot which
combines biologically inspired undulatory locomotion with the

use of thrusters, and is the test platform considered for all the
experimental results presented in this paper.

Obstacle avoidance is a crucial task for numerous robotic
systems. For fixed base systems, the robot must avoid self-
collisions as well as any objects that might be within its
workspace. For floating base robots, such as a USR or a
surface ship, the main task is to avoid stationary and dynamic
obstacles such as islands/pipelines/other structures and other
ships or floating base systems. There exist several path planning
algorithms for computing a safe path to avoid obstacles, such
as A⋆, RRT and HBug (Hernandez et al., 2015). However, these
global path planning methods are not suitable for unknown
and dynamic environments, and must be complemented by a
local guidance system that is able to make the mobile robotic
system avoid small, unforeseen, and dynamic obstacles while
following the global path. A variety of such local approaches have
been proposed, both for the general and maritime case, such as
potential fields (Khatib, 1985), dynamic window (Fox et al., 1997;
Loe, 2008), velocity obstacles van den Berg et al. (2011), Kuwata
et al. (2014), and Tangent/WedgeBug Laubach and Burdick
(1999). However, these approaches have several drawbacks.
Potential fields may suffer from oscillating behavior and
convergence to local minima (Koren and Borenstein, 1991), and
the dynamic window approach can be computationally heavy.
The velocity obstacle (VO) approach has good mathematical
qualities and is computationally simple, but is not straight-
forward to implement. However, the main drawback of these
methods is the fact that it is not obvious how to combine
these collision avoidance methods with existing, commonly
used guidance methods for path following such as line-of-sight
(LOS) (Fossen, 2011). The Wedgebug algorithm is applied to
Mars Rovers and assumes that the rover is modeled as a point
robot in a 2D binary environment (i.e., every point in the
environment is either contained within an impassable obstacle,
or lies in freespace) and that obstacle boundaries block sensing
as well as motion. In the approach proposed in this paper, the
obstacle boundaries have the possibility to be virtual, which
prevents passage into identified unsafe areas without physical
obstacles in the way.

In nautical navigation there exists several obstacle avoidance
methods which all require some information about the
obstacle itself, i.e., position, size and/or velocity. To detect
underwater obstacles, one may use sensors such as sonars and
cameras (Nicholson and Healey, 2008; Ridao et al., 2014; Mallios
et al., 2016). Due to the properties of light propagation under
water, acoustics-based navigations methods are often applied.
Vision systems decrease the range, but also decrease space and
cost and increase the resolution (Bonin-Font et al., 2008). Often,
vision systems are based on two cameras, i.e., stereo vision. With
such a setup, one can use matching and geometric triangulation
to calculate the 3D-position of detected features (Goldberg et al.,
2002). The USR Mamba is equipped with a single camera at
the head module. However, obstacle avoidance still requires
sensing of depth, i.e., the distance between the vision sensor
and the obstacle. To achieve this using monocular vision, one
must rely on assumptions concerning the scene geometry and
vehicle motion (Bhatti, 2008; Lei et al., 2013). In this paper, we
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FIGURE 1 | Underwater snake robots are highly flexible, capable of rapid directional changes and can access small and confined spaces. They can perform

intervention tasks and efficient transportation for longer range missions. When combined with additional effectors such as thrusters or tail fins, these robots are highly

versatile and may be applied for a variety of underwater operations. (A) Concept sketches bio-inspired underwater snake robots with additional effectors. (B) Next

generation of inspection and intervention vehicles for underwater applications.

FIGURE 2 | Different configurations of the underwater snake robot Mamba.

have developed a computer vision algorithm to detect potential
obstacles along the path of the USR by using a single camera
attached at the head module of the robot and reflective markers
on the obstacles. The area of the markers is a priori knowledge
and can be used to calculate the 3D distance based on the
corresponding area in the image similar to Bousaid et al. (2016).
Different geometric shapes (i.e., triangle, square and circle). This
can be used to classify different types of obstacles. The shape is
determined by analyzing the curvature of the shape and counting
the number of peaks.

In this paper, we perform experiments to investigate both the
path following and obstacle avoidance control problem using the
USR Mamba with thrusters (Kelasidi et al., 2016b). The goal of
the experiments is to detect potential obstacles along the path and
design the USR motion to ensure that the robot can converge

to and follow a predefined reference path while avoiding the
detected obstacles.

In Kelasidi et al. (2016b), it is suggested that in order to
ensure efficient transportation, a USR with thrusters at the
tail module should mainly use the thrusters for locomotion,
while the multi-articulated body should be used for directional
control. Motivated by these results, we propose a motion
control strategy for thrusted USRs with an overall goal of
investigating its ability to follow a given reference path. Several
previous works consider control schemes for locomotion of
USRs without thrusters. A comparison of these approaches is
presented in Kelasidi et al. (2017b) and Kelasidi et al. (2016a). In
addition, a docking approach for thrusted USRs using the joint
angles to control the direction of the robot has been presented
in Sans-Muntadas et al. (2017).
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This paper presents a path following control strategy that
is able to make the thrusted USR follow the desired reference
path. Furthermore, the developed obstacle detection scheme was
successfully applied and combined with a set-based collision
avoidance method (Moe and Pettersen, 2016; Kohl et al., 2017).
This approach ensures obstacle avoidance when necessary and
path following otherwise.

The path following control concept and obstacle avoidance
for USRs without thrusters has been investigated in Kohl et al.
(2017). Here, both the direction and propulsion are achieved
through the undulatory motion of the joints. In this paper, these
methods are adapted to USRs with thrusters. In addition, an
obstacle detection strategy is presented and combined with the
path following and obstacle avoidance methods. The proposed
guidance and control strategy and obstacle detection and obstacle
avoidance strategy are experimentally validated for USRs with
thrusters. To the authors’ best knowledge experimental results
regarding obstacle detection and avoidance have not been
presented in previous literature for thrusted USRs.

This paper is organized as follows: Section 2 presents the
experimental setup as well as the guidance and control methods
for path following and obstacle avoidance and the obstacle
detection algorithm. In section 3, the experimental results are
presented and discussed. Conclusions are given in section 4.

2. SETUP AND CONTROL SYSTEM

In this section, we give a brief description of the thrusted USR
Mamba and the experimental setup. Furthermore, we discuss and
present how the guidance and control approach proposed earlier
for USRs without thrusters are adapted for the experiments with
the thrusted Mamba. Finally, the obstacle detection technique
adopted in this paper and the set-based obstacle avoidance
approach proposed for the thrusted USRs are presented.

2.1. Experimental Setup
The underwater snake robot with thrusters at the tail module
namedMamba (Figure 2) is basically a self-propelled robotic arm
with a slender and flexible body able to access and carry out
inspection tasks in confined spaces not accessible by conventional
underwater vehicles. Mamba has a modular design and can
operate at shallow water depths. For more information about the
robot, see Kelasidi et al. (2016a,b). Note that for the thrusted
robot it is important to know the amplitude of the applied
thruster forces as a function of the particular control input. Initial
experiments were performed to obtain the necessary mapping
from the thruster inputs uc to thruster forces Ft for the USR,
and the results prove that the relationship is quite linear (Kelasidi
et al., 2016b). Another purely bio-inspired configuration of
the underwater snake robot Mamba with a passive caudal fin
attached at the tail module of the robot (Figure 2) can be
advantageous compared to the configuration with thrusters, since
it does not produce significant acoustic noise. Moreover, a fin
configuration will not perturb the surroundings as much as
the thrusters, which is highly relevant for applications such
as archaeological investigation of shipwrecks and non-invasive
monitoring of marine life. A comparative study of the robot with

and without a caudal fin was presented in Kelasidi et al. (2017a).
In particular, it was shown that by attaching a passive caudal fin it
is possible to double the forward velocity. This significant velocity
increase requires a relatively low increase in power consumption,
and is achieved with a minimum increase in the complexity of the
mechanical design.

The robot considered in the current study consists of
18 joints mounted with a relative orientation of 90 degrees
in an alternating fashion to achieve both yaw and pitch
motion (Liljebäck et al., 2014). An external skin was used during
the experiments in order to achieve an additional water barrier,
in addition to making the robot’s outer surface more smooth. The
experimental setup is illustrated in Figure 3.

The experiments carried out in a basin at the Marine
cybernetics laboratory (MC-lab), Trondheim, Norway (MCl,
2018). The basin is 1.5 m deep with a surface area of 40 m ×

6.45 m. Six underwater cameras fromQualisys (QUA, 2018) were
used to track and log the position and orientation θ of the robot,
using a structure with reflective markers attached at the head or
tail module. The center of mass (CM) px, py is then calculated
using the kinematic equations of the robot (Kelasidi et al., 2016a).
As illustrated in Figure 3, the obtained measurements were
used to investigate different control challenges for the thrusted
underwater snake robot Mamba. During these experiments the
joint angles responsible for the vertical (pitch) motion were set
to zero degrees to achieve purely horizontal motion. All the
algorithms were implemented in an external computer using
Labview, and the necessary signals were sent/received to/from the
robot through a CAN bus connection through a tether. Figure 3
illustrates three different case studies for USRs with thrusters:
(1) Locomotion efficiency studies Kelasidi et al. (2016b), (2)
Path following of USR with thrusters, and (3) Switching strategy
between path following, and obstacle detection and obstacle
avoidance modes developed and experimentally validated in this
paper. In the following sections, each part of the case studies
illustrated in Figure 3 will be discussed in more detail.

2.2. Guidance and Control
The guidance and control system of the USR is illustrated in
Figure 3 and the definition of the mathematical symbols are
described in Table 1. The guidance system provides a reference
θref for the orientation of the USR, which the controller attempts
to follow by controlling the USR joints. The thrusters are
controlled by the input uc and each joint follows the output from
the heading controller φ0 according to (2). The proposed control
strategy assumes that the robot joints are used for directional
control, while the propulsion of the robot is given only by the
thrusters. It is a decoupled system where the values of the control
input uc is responsible for controlling the forward velocity of
the robot, while the heading controller (2) is responsible for the
turning motion of the robot.

Obstacle avoidance is by its very nature a safety feature which
should be activated when necessary and otherwise not affect
the behavior of the system. In this paper, the default mode of
operation is straight line path following, although this objective
may easily be replaced by another mode of operation to be
combined with the proposed obstacle avoidance method. For
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FIGURE 3 | Experimental setup to investigate path following control and obstacle detection and obstacle avoidance using the underwater snake robot Mamba.

more details, see section 2.3 and Moe and Pettersen (2016). To
achieve a guidance system with a path following and an obstacle
avoidance mode, we employ a guidance law from Kohl et al.
(2017) which is suitable both for straight line and circular path
following. The latter is applied for obstacle avoidance to encircle
obstacles on the way.

Obstacles are avoided by ensuring that the USR always
maintains a certain safe distance between itself and the obstacle.
Thus, in our obstacle avoidance guidance system we propose to
encircle an obstacle, whose center position is defined as po =

[pox, poy]
T , with a virtual circle of radius Rs. The circle center

is anchored in the obstacle center, and the radius is chosen
sufficiently large so that if the USR is outside or on Rs, a collision
will not occur. Therefore, Rs is referred to as the safe radius, and
the formalized control objective of the obstacle avoidance is to
ensure that the USR is always outside or on Rs.

A variety of different path following control approaches
for USRs without thrusters have been studied in previous
literature (McIsaac and Ostrowski, 2003; Lapierre and Jouvencel,
2005; Alamir et al., 2007; Kelasidi et al., 2016a, 2017b).
An introductory discussion comparing the different control
approaches studied for underwater swimming robots can be

found in (Kelasidi et al., 2016a, 2017b). In this paper, we present
experimental results for the underwater snake robot Mamba with
thrusters at the tail module, using the path following control
approach described below.

The control approach consists of a path following guidance
law responsible for producing the reference orientation θref,pf, the
heading controller responsible for making the actual orientation
θ track the reference orientation, and the control input uc
to the thrusters responsible to propel the robot forward. The
reference orientation θref,pf of the robot is calculated using
the guidance law presented in (1), which for the straight line
path following reduces to the well-known LOS guidance law.
The LOS approach is based on a term guiding the vehicle in
question along the desired path and another toward the path.
The latter is reduced to zero when the vehicle is on the desired
path and is commonly used both for marine vehicles (Børhaug
and Pettersen, 2006; Breivik and Fossen, 2008) and USRs
(Kelasidi et al., 2016a, 2017b).

In this paper, the reference path is aligned with the world x-
axis. Therefore, the y-position of the USR py is defined as the
path cross-track error for path following. The orientation of the
robot was measured using the underwater camera positioning
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TABLE 1 | Definition of mathematical terms.

Symbol Description

uc Thruster inputs

θ Orientation of the robot

θref Reference orientation of the robot

(x, y) Vector of global coordinates of the CM of links

(px ,py ) Global coordinates of the CM of the robot

α Amplitude of sinusoidal motion pattern

ω Frequency of sinusoidal motion pattern

δ Phase shift between the joints with a sinusoidal motion pattern

φo Joint offset coordinate used for directional control

φ Vector of joint angles φi

φ∗ Vector of reference joint angles φ∗
i

1 Look-ahead distance

po Coordinates of the CM of the obstacle

θref,pf Orientation of the robot during path following mode

θref,oa Orientation of the robot during obstacle avoidance mode

system as shown in Figure 3 by attaching reflective markers at
the tail module of the robot. The heading controller (3) is used to
generate the joint angle offset, φ0, which is sent to the robot via
the CAN.

There are multiple possible definitions of the orientation of an
USR (Kelasidi et al., 2016a; Kohl et al., 2016). In this paper, the
orientation θ of the robot is defined as the orientation of the head
angle θ : = θN . In the experimental setup, the USR position and
orientation is measured using the underwater positioning system
in the lab (see Figure 3). The reference orientation is defined by
the following guidance law (Kohl et al., 2017):

θref = arctan(
µy

µx
),

µ(p) = −
dhTp

‖dhp‖2

(

ktranh(p)
)

+ ν

[

0 1
1 0

]

dhTp
kalong

‖dhp‖
, (1)

ν =

{

−1, circle counterclockwise

+1, circle clockwise

Here, h(p) is a cost function that implicitly defines the reference
path, dhTp = ∇h(p) is a vector that is normal to the level sets of h,
ktran is the transversal gain, and kalong the along-path gain. This
reference angle is referred to as θref,pf and is utilized as a reference
for path following (see Figure 3).

Since dhTp = ∇h(p) is perpendicular to the level sets of h(·),
the control law (1) can be intuitively described as follows. The
reference velocityµ(p) is composed of two components: The first
component is perpendicular to the level sets of h(·) and decreases
the distance of the center of mass to the curve γ = h−1(0). The
second component is tangent to the level sets of h(·) and regulates
the velocity of the center of mass on the curve γ = h−1(0). The
choice of ν enables us to choose the direction which the robot
should follow around the obstacle.

Analogously, the angle θref,oa obtained from (1) by using
hoa(p) = (px − pox)

2 + (py − poy)
2 − R2s is used as a reference

for obstacle avoidance. In this case, the parameter ν controls
the USR direction of motion, and is chosen such that the USR
circumvents an obstacle by deviating as little as possible from the
reference straight line path. Note that for this guidance scheme
it is sufficient to know the position of the obstacles relative to
the USR. However, in this paper we have calculated the obstacle
world position because the obstacles are detected relative to
the camera frame (attached to the USR head link), whereas the
position of the USR is given as the CM.

When applied to a straight line, the guidance law (1) ensures
that the USR converges to the reference path. However, for
a circular path, the guidance law (1) ensures that the robot
approaches the path and thereafter remains close to it with a
constant offset outside the radius Rs.

Remark 1. Note that the offset can be made small by increasing
ktran or eliminated completely by adding integral action to the
guidance law. However, in this paper we deliberately choose to
employ a rather small ktran and thus always keep the USR safely
outside the circle, rather than ensure that it converges closer to the
safe radius Rs and possibly overshoots.

The final part of the guidance system is an algorithm which
determines if path following or obstacle avoidance is the active
mode. This is described in more detail in section 2.3.

In Sans-Muntadas et al. (2017) it is proposed to set the
reference for each joint as

φ∗
i (t) = φ0, (2)

i.e., to make each joint have the same value, providing an even
curvature along the whole robot. This is different from Kohl
et al. (2017) where undulations are used for propulsion, and
the joint references include an additional sinusoidal term with
a phase shift between the joints. Instead (2) ensures that the
joints are used only for directional control, while the thrusters are
used to propel the robot forward. In particular, Sans-Muntadas
et al. (2017) has shown that by using (2) the robot managed to
converge nicely toward and move along the desired path. Hence,
in order to steer the thrusted USR to the reference orientation,
the parameter φ0 is used to control the direction of the robot.
To steer the orientation θ according to the guidance law (1),
the following PD controller is used to define the joint angle
offset (Kohl et al., 2017):

φ0 = kp (θref − θ) + kd
(

θ̇ref − θ̇
)

(3)

In the above equation, the control gains kp and kd are constant
and positive. In addition, to ensure that the joint angle φi

tracks the reference signal φ∗
i = φ0, a low level P-controller

is implemented in the microcontrollers inside each module of
Mamba. Similarly, to assign a rotational speed to the thrusters, a
corresponding low level controller is implemented to ensure that
the two tail thrusters track the reference uc.

2.3. Set-Based Obstacle Avoidance
It is clear that tasks such as path following and obstacle avoidance
are not necessarily compatible. If an obstacle is somewhere along
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the path, the USR either has to deviate from the path or collide.
We therefore propose a switched control system with a path
following and an obstacle avoidance mode. The default mode of

FIGURE 4 | Obstacle avoidance parameters: the set-based task σ is defined

as the distance between the obstacle center and the USR. Outside the mode

change radius Rm, the system is always in path following mode. The desired

straight line path lies along the x-axis. The desired heading for path following is

defined as θref,pf and indicated by the black arrows for several USR positions

and orientations. Inside Rm, the system is in path following mode if it will lead

to an increase in σ , i.e., when the angle between θref,pf and θo is smaller than

or equal to π/2. Otherwise, obstacle avoidance mode is active, in which case

the desired heading is defined by θref,oa and the USR should converge the and

track the safe radius Rs.

operation, which is active as long as it will not lead to a collision,
is path following. When the USR is close to an obstacle and path
following will further decrease that distance, the system switches
to collision avoidance mode.

The switched guidance system is based on recent results
in set-based control (Moe et al., 2016). Here, a widely used
kinematic control framework is extended to handle set-based

tasks, which have a valid interval of values rather than en exact

desired state. Obstacle avoidance may be described as such
a task, where the distance between the USR and an obstacle

should be kept within a certain interval. In particular, the valid
interval is given by all positive numbers above the lower bound
Rs. However, the approach proposed in Moe et al. (2016) is

applicable to redundant systems to fulfill several, compatible
tasks simultaneously. Since the two control objectives, i.e.,

path following and obstacle avoidance, are not compatible, we

therefore alter the approach according to Moe and Pettersen
(2016) and Kohl et al. (2017) to switch between the two
tasks, i.e., the two guidance laws θref,pf and θref,oa described in
section 2.2.

For the switched system we introduce an additional circle,
which is also anchored in the obstacle center po, with a radius

Rm > Rs. The radius Rm is referred to as the mode change

radius. Outside the mode change radius, the guidance system
is always in path following mode. Inside Rm, either mode may

be active. If path following mode will not lead to the distance

between the USR and the obstacle decreasing further, it is active.
Otherwise, obstacle avoidance is activated, and the USR should

converge toward the safe radius Rs. The mode change radius
must be chosen sufficiently large so that in case of a switch to
obstacle avoidance mode, the USR converges to the safe radius
without overshoot. This is partly achieved by tuning the obstacle
avoidance guidance law such that the USR converges to an offset
outside Rs rather than to the actual safe radius as described in the
previous section. The desired switching behavior is captured by

FIGURE 5 | The robot Mamba with thrusters and the reflective markers representing obstacles.
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FIGURE 6 | The 3D-position of a marker relative to the camera coordinate system pco = [xr, yr, zr]
T can be calculated using the focal length f of the camera, the area of

the marker in the image AP and reality Ar and the position of the marker in the image coordinate system (xp, yp). In this paper, the USR is moving in the plane, so the

vertical component yr can be ignored. (A) Convert input image to black and white. (B) Find closed boundaries, smoothen them, calculate curvature and count number

of peaks to classify geometric shape. (C) Find the position (xp, yp) and the area of the shape Ap in the image coordinate system. (D) Use the pinhole camera model,

camera focal length f and the actual area of the shape Ar to calculate the 3D-position of the detected shape relative to the camera coordinate frame. (E) The calculated

position is referred to as pco = [xr, yr, zr]. (F) Use the USR camera position and orientation to calculate the detected position in the world coordinate frame po.
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Algorithm 1, which is based on set-based theory described inMoe
et al. (2016), Moe and Pettersen (2016), and Kohl et al. (2017).

Remark 2. Note that a similar approach is applied in Kohl et al.
(2017) for obstacle avoidance of snake robots without thrusters that
is able to propel forward only by using undulatory gaits. Due to the
oscillatory behavior of the swimming snake robots, the set-based
approach must be more conservative to ensure that no part of the
robot collides with the obstacle. For thrusted USRs in this paper, we
exploit the fact that the thrusters ensure forward propulsion and
the joints control the direction of motion by letting the robot safely
curve around the obstacle.

Algorithm 1: The set-based switched guidance algorithm.

Input: σ , θref,pf, θo
if σ ≥ Rm then

θref = θref,pf

else if |θref,pf − θo| ≤
π
2 then

θref = θref,pf

else
θref = θref,oa

end

For the obstacle avoidance scenario described above, the
obstacle avoidance task σ is defined as the distance between the
USR CM and an obstacle. It has a valid interval D = [Rs,∞),
and the input parameters are illustrated in Figure 4, where θref,pf
is the desired heading for path following and θo is the angular
coordinate of the obstacle. Thus, as illustrated in Figure 4, path
following will result in the distance between the USR and the
obstacle increasing when the angle between θref,pf and θo is
less than π/2. In this case, path following is active also within
the radius Rm. Note that by using the CM of the USR when
calculating σ , part of the USR is actually allowed within the safe
radius Rs. This must be accounted for by choosing a sufficiently
large Rs. Furthermore, the switching strategy in Algorithm 1 is
completely general, and may be applied for any combination
of guidance laws to achieve alternative desired behaviors such
as target tracking, trajectory tracking or other path following
schemes.

Remark 3. Note that this method is valid for multiple obstacles
given that said obstacles are not overlapping or moving. In these
experiments, only one stationary obstacle was used due to the
limited size of the test basin. Handling overlapping and moving
obstacles is a topic for future work.

2.4. Obstacle Detection
In this paper, we assume that the USR is to operate in some
structured environment which we are free to influence, e.g.,
an underwater oil and gas structure. Hence, we presume that
potential obstacles are marked with some sort of geometric
shape that may be detected using a camera on the USR head

TABLE 2 | The average forward velocity and power consumption for the path

following case studies using the underwater snake robot mamba with thrusters.

uc Ft [N] 1 [m] kp θ (0) [deg] py (0) [m] ῡ [m/s] Pavg [W]

Path 1 60 2.4362 1 0.18 -82.70 0.8905 0.2468 63.8400

Path 2 60 2.4362 1 0.09 -26.20 0.9544 0.2265 53.3855

Path 3 60 2.4362 1 0.09 21.4 1.7991 0.2167 58.4885

Path 4 60 2.4362 1 0.13 -2.70 1.1570 0.2240 45.8850

and computer vision. Thus, obstacles of different sizes may be
marked with different shapes. For unforeseen events such as
debris another detection scheme must be applied. However, note
that a set-based approach is still applicable for avoidance given
estimation of obstacle position and velocity.

For these experiments, we used the pinhole camera
model (Medioni and Kang, 2004) to derive the equations applied
in the implemented detection algorithm. Three geometric shapes
with a known area Ar have been constructed using reflective tape,
and these represent the obstacles in the experiments: a circle,
a triangle and a square (see Figure 5). To avoid an obstacle by
circumventing it as described in sections 2.2 and 2.3, the obstacle
position in the world coordinate frame po must be known.
Hence, the goal of the obstacle detection algorithm is to calculate
this position.

The obstacle detection algorithm is based on four main steps,
which are illustrated in Figure 6: (1) Recognize and classify
an obstacle marker as a triangle, square or circle, (2) find the
position and area of the marker in the image xp, yp and Ap,
(3) compare Ap to the actual area of the marker Ar and use the
camera focal length f and the marker position in the image to
calculate the 3D obstacle position relative to the camera pco, and
(4) find the obstacle position relative to the world coordinate
frame po by rotating and translating about the camera frame
orientation and position. The detailed implementation can be
found in Algorithm 2.

Remark 4. Note that the equations in Figure 6D are based on
the assumption that the obstacle marker is oriented parallel to
the camera coordinate system xy-plane, i.e., that all the corners
of the triangle have the same z-coordinate. This assumption is
not satisfied if the camera is looking at a marker at an angle.
However, due to the relatively small size of the markers, the
potential difference in the z-coordinate of the corners is limited and
small compared to the distance at which it is necessary to observe
them to successfully avoid the obstacle. Thus, this assumption is
a valid approximation and will result in a limited error in the
calculated position.

3. EXPERIMENTAL RESULTS

In this section, we discuss the obtained experimental results for
the proposed path following control strategy (section 3.1) and
the obstacle detection and avoidance concept (sections 3.2–3.3)
described in previous section using the thrusted USR Mamba.
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FIGURE 7 | Experimental results path following. (A) Center of mass position for uc = 60, kp = 1, kd = 0, 1 = 180cm and θ = −82.7o. (B) Center of mass position

for uc = 60, kp = 1, kd = 0, 1 = 90cm and θ = −26.2o. (C) Center of mass position for uc = 60, kp = 1, kd = 0, 1 = 90cm and θ = 21.4o. (D) Center of mass

position for uc = 60, kp = 1, kd = 0, 1 = 130cm and θ = 2.7o. (E) The orientation of the robot for case (A). (F) The orientation of the robot for case (B). (G) The

orientation of the robot for case (C). (H) The orientation of the robot for case (D). (I) The motion of the underwater snake robot Mamba with thrusters during the path

following for the experimental results presented in (C,G), where the red line indicates the reference path.

3.1. Straight Line Path Following
In all experiments the joint angles of the robot were set to zero,
whereas the initial orientation, θ(0), the position of the CM of the
robot along the y axis, py, the proportional control gain, kp, the
look-ahead distance, 1, and the control input to the thrusters,
uc, are displayed in Table 2 for each trial. The average power
consumption is calculated by using the following expression

Pavg = VIavg, (4)

where V = 35 [V] and Iavg [A] is the average current that
is measured using the high performance industrial logging
multimeter FLUKE 289. In addition, the average forward velocity
for each experimental trial was calculated as

ῡ =

(

√

(pstop,x − pstart,x)2 + (pstop,y − pstart,y)2
)

/(tstop − tstart),

(5)
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FIGURE 8 | The obstacle detection algorithm described in Figure 6 was run three times for different USR positions and orientation shown as magenta, blue and red,

respectively. For the two latter cases, the algorithm also detects the distorted surface reflection of the markers and classifies it as a square and a triangle, respectively.

For a true underwater applications this phenomena will not occur, and these fake detections are easily disregarded by observing that their y-coordinate is negative,

i.e., they are above the surface. (A) The average detected position ♦ was 7 cm from the actual obstacle position ©. (B) The detected obstacle position relative to the

camera pco corresponding to magenta in (A). (C) The detected obstacle position relative to the camera pco corresponding to blue in (A). (D) The detected obstacle

position relative to the camera pco corresponding to red in (A).

where pstart and pstop represent the initial and the final points
of the distance traveled in the time interval tstop − tstart. The
control gain kd was set to zero for the experimental results
presented for the straight line path following control approach.
In addition, the joint offset φ0 has been saturated at ±20◦ to
ensure that the physical limitation of the robot joint angles is
not exceeded.

Previous experimental results for path following of
underwater snake robots using the body undulation for
both propulsion and directional control, showed that the
robot was able to reach and follow the path using the LOS
guidance law (Kelasidi et al., 2016a, 2017b). However, the use
of an oscillatory gait pattern causes steady state oscillations
about zero for the cross-track error and the orientation,
which is expected since it is difficult to achieve a purely
non-oscillating motion for the CM and the orientation of
underwater swimming snake robots (Kelasidi et al., 2016a,
2017b). These oscillations can be restrictive for several

applications in subsea environment, such as for instance
docking (Sans-Muntadas et al., 2017).

Experimental results for four different path following trials
of Mamba with thrusters are presented in Figure 7, see also
the Supplementary Videos. As Figure 7 illustrates, the robot
manages to converge to and follow the desired path for all
the investigated cases. Furthermore, the reference orientation
is tracked without oscillations. The overshoot and the initial
rapid change on the orientation shown in Figure 7 as the snake
robot converges to the path is a result of the tuning, and in
particular the choice of the look-ahead distance 1. The larger
the choice of 1 is, the smaller the overshoot will be, and the
slower the convergence rate will be. The choice of 1 is thus a
trade-off between convergence and the overshoot (Kelasidi et al.,
2017b). The small steady state error in cross-track error may
be a result of several factors, such as the possible misalignment
of the two thrusters used at the tail module of the robot,
measurement errors from the different sensors used during
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FIGURE 9 | Experimental results for path following with detected obstacle position and obstacle avoidance. (A) The obstacle detection algorithm described in

Figure 6 was run three times for different USR positions and orientation. The average detected position ♦ was approximately 0.07 m from the actual obstacle position

©. (B) The path of the USR as it follows the path (blue), switches to obstacle avoidance and circumvents the detected obstacle (green) and finally switches back to

path following (blue). (C) The actual and desired orientation of the robot. The control system switches from path following to obstacle avoidance at ≈ t = 13 s and

back again at ≈ t = 37 s. (D) The motion of the underwater snake Mamba with thrusters during the obstacle detection and avoidance experiments. Corresponding

positions are indicated in (B).
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the experiments, and the forces on the robot due to the use
of the tether. In the future, more advanced heading control
approaches can be investigated to remove this small error, for
instance by including integral action (Caharija et al., 2012). In
addition to the convergence to the straight line path, we obtained
results regarding the achieved forward velocity and the power
consumption for all the investigated trials, and these are shown
in Table 2. The achieved velocity is very similar in all trials, which
is expected since the same control input value for the thrusters
was used for all the investigated cases. However, the average
power consumption varies for the different investigated path
following case studies as shown in Table 2. This is reasonable
since the power consumption is related not only to the trusters,
but also to the joint modules. The actuation of the directional
control and thereby the joint motion for each trial depends on
the initial heading and distance from the path, which varies in
the different trials.

3.2. Obstacle Detection
For the experiments presented in this paper, the obstacle
detection algorithm was run off-line and the detected position
was added manually to the switched guidance and control
system described in section 2.3. However, the algorithm also
has the potential to be fully autonomous as part of the online
control system; the detection algorithm is sufficiently fast that
runtime will not be a concern in an online implementation.
The implementation of the necessary communication and
control structure required to achieve this is a topic of future
work. However, in the presented results the obstacle detection
algorithm was run and the detected position added to the control
system in one operation without removing the robot from the
pool or turning it off.

To detect the obstacle position, the detection algorithm
described in Figure 6 was run three times for different camera
positions and orientations, see Figures 8, 9A. Note that when
testing the obstacle detection scheme, the available USR positions
and orientations where the obstacle marker was in the camera
frame were limited by the pool size and the Qualisys tracking
system. The average of the three detected positions po was then
inserted into the control system and used for the remainder of the
experiments. To quantify the accuracy of the algorithm, the actual
position of the obstacle was measured using the Qualisys tracking
system, and the final detected position po was approximately
0.07 m from the actual obstacle position, which corresponds to
7% of the safe radius Rs = 1 m and 3.9% of the total length of
the robot. This result is sufficiently accurate to safely use for the
obstacle avoidance scheme, thereby confirming that the proposed
detection approach is highly applicable. Note that to achieve
a sufficiently good visual to detect and classify the reflective
markers and to simulate a subsea environment as closely as
possible, all lights were turned off during the experiments with
the exception of the lights on the camera of the USR and the
Qualisys tracking system.

3.3. Obstacle Avoidance
The experimental setup for path following and obstacle
avoidance is identical to the one described in the previous

Algorithm 2: Obstacle detection algorithm.

Input: Camera image, USR position and orientation px, py
and θ

Convert image to black and white, search for closed
boundaries of a certain size;
for each closed boundary do

Smoothen boundary, calculate curvature, count number
of peaks in curvature;
if number of peaks = 0 then

shape = circle;
Ar = area_circle_marker;

else if number of peaks = 3 then
shape = triangle;
Ar = area_triangle_marker;

else if number of peaks = 4 then
shape = square;
Ar = area_square_marker;

Find area and position in image Ap, xp and yp;
Calculate position of shape relative to camera
pco = [xr, zr]

T :

zr =
√

Ap

Ar
f

xr =
zr
f
xp

Calculate position of shape in world frame po by
translation and rotation of the USR camera position
and orientation:

po =

[

pcx
pcy

]

+

[

cos(θc) − sin(θc)
sin(θc) cos(θc)

] [

zr
−xr

]

end

section, and experimental results are shown in Figures 9B–D.
A recording of the experiment can be seen in the
Supplementary Videos. The USR initial position is on the
reference path, and the initial mode is path following. Once
the USR enters the mode change radius Rm = 3 m, it is
evident that continued path following will result in the USR
getting closer to the obstacle. Hence, obstacle avoidance is
activated, and the robot circumvents the obstacle by turning and
attempting to stay outside the safe radius Rs = 1 m. According
to the theory described in section 2.2, the USR converges
to a constant offset of the safe radius, which could be made
smaller by a different choice of control gains. However, for
this application it is crucial to avoid overshoot into Rs, and
thus a larger offset is preferable. Furthermore, the position
of the USR is defined by the CM, which also requires a more
conservative approach since part of the USR will in fact be
allowed to enter the safe radius Rs and must be able to do so
safely. Finally, the physical obstacle in the pool partly blocked the
camera tracking system, making it infeasible with the available
experimental setup to attempt less conservative approaches
which would exploit the flexibility of the USR better. Note that
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the robot circumvents the obstacle by choosing the direction
along the circle that ensures the shortest path as discussed
in section 2.2.

As the USR circumvents the obstacle, path following will
once again ensure that the robot moves away from the obstacle.
Path following is then reactivated and the robot converges
back to the path. This can be seen in Figure 9B. Figure 9C
displays the reference orientation provided by the switched
guidance system and the actual orientation of the USR. The
implemented PD-controller ensures that the reference is tracked
in a sufficiently accuratemanner. Note that the switched guidance
system described in Algorithm 1 results in abrupt changes in
the reference orientation when the system switches between path
following and obstacle avoidance. To provide the control system
with a feasible reference signal, a hyperbolic smoothing function
is implemented to ensure a continuous reference signal after a
switch (Kohl et al., 2017). In addition, the commanded joint
offset, φ0, is filtered with a first-order low-pass filter before it
enters the low-level controller.

Figure 9D displays images from the experiment. The USR
clearly circumvents the obstacle on a circular path before
converging back to the reference path. The chosen control
parameters for the implementation are as follows:

1. Path following guidance law θref,pf: ktran = 0.1, kalong = 0.15
(corresponding to a look-ahead distance 1 = 1.5 m)

2. Obstacle avoidance guidance law θref,oa: ktran = 0.02,
kalong = 0.15

3. Controller φo: kp = 0.42, kd = 0.03
4. Smoothing function:

α(t, tlast switch) =
1

2

(

tanh(α1(t − tlast switch − α2)+ 1)
)

,

α1 = 1.2,α2 = 1.6

4. CONCLUSIONS

USRs have a multitude of essential qualities for autonomous
underwater operations, such as efficient locomotion, flexible
bodies and the possibility to perform intervention tasks. These

highly versatile robots may be equipped with different modules
such as thrusters or fins, and are applicable for a variety of tasks
within several fields of research.

In this paper, we present a guidance and control system
to ensure path following and obstacle avoidance of a USR
with thrusters, in addition to a computer vision algorithm to
detect and calculate the position of potential obstacles. Based
on preliminary results to ensure energy efficient motion and
high velocity, the USR motion relies on thrusters for forward
propulsion, whereas directional control is achieved through the
joints of the body. The proposed methods are all experimentally
verified for the first time, using the thrusted USR Mamba for
the first time. Future work includes extending the proposed
guidance and control approach to 3D in order to be able to
investigate path following and obstacle avoidance of USR with
thrusters in 3D.
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Vehicles
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Department of Electrical and Computer Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

This paper presents results on recent developments pertaining to the coordinated motion

control of a fleet of marine robotic vehicles. Specifically, we address the Cooperative

Moving Path Following (CMPF) motion control problem, that consists of steering the

robotic vehicles along a priori specified geometric paths that jointly move according to

a target frame, while achieving a pre-defined coordination objective. To this end, each

vehicle will need to communicate with their neighbors in order to cooperatively solve

the CMPF task. Two distinct robust Moving Path Following motion control strategies

for achieving robustness on the moving path following tasks are proposed. Experimental

results demonstrating the application of CMPF to marine vehicles in the context of source

localization and tracking of underwater targets are presented backed with stability and

convergence guarantees.

Keywords: marine robotics, underactuated robotics, path following, robust control, cooperative control

1. INTRODUCTION

The motion control problem for underactuated robotic vehicles is a relatively mature area of
research, with important works addressing trajectory tracking and path following schemes. In the
path following (PF) problem, the vehicle is tasked to follow a fixed geometric path without the
need of satisfying explicit time constraints, in contrast to trajectory tracking. A series of results
addressing the PF motion control problem were published, starting with the pioneering work in
Samson (1992), Micaelli and Samson (1993), and Aguiar and Pascoal (2007) for the case of wheeled
mobile robots, Encarnação et al. (2000), Belleter et al. (2016) and references therein for marine
vehicles and Cichella et al. (2011), Xargay et al. (2013) for UAVs.

A generalization of the path following problem is termed the Moving Path Following (MPF)
motion control problem, which consists of steering the robotic vehicle along an a priori specified
geometric path expressed with respect to a moving target frame. This problem finds applications
in source seeking, convoy protection, target tracking, surveillance and monitoring and also
autonomous landing. For example, in target tracking applications in the maritime environment,
it is desirable for the vehicles to perform different types of maneuvers. These maneuvers can
be framed as specific paths to be followed around the tracked target, and often allow the
vehicle to have the necessary flexibility to operate in a highly complex environment, which
is constantly inducing disturbances into its body due to the presence of maritime currents,
waves and hydrodynamic effects. Further, it is observed that the MPF problem retains the
advantages of the classical path following schemes (Aguiar et al., 2005) such as faster convergence
of the robot to the moving path, while allowing the target reference frame to move freely.
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The works in Oliveira and Encarnação (2013) and Oliveira et al.
(2016) introduced the MPF control problem for tracking of
ground targets using Unmanned Aerial Vehicles (UAVs) and
later on, Oliveira et al. (2017) extended the solution to the 3D
case. The proposed approach was suitable for robotic vehicles
requiring a minimum positive forward speed, such as certain
types of AUVs. In Jain et al. (2018b), a Lyapunov-based MPF
control approach was presented for robotic vehicles without
this restriction. Other control methods such as vector field
method (Kapitanyuk et al., 2017) and nonlinear model predictive
control (Jain et al., 2018c) have been proposed to solve the MPF
problem. In contrast to the contributions of this paper, the salient
features of the above reviewed literature are that they do not
consider the external disturbances that depend on the operational
environment, such as maritime currents, wind or rough terrain,
that can affect the performance of the MPF controller. Further,
they assume that the velocity of the target frame is known.

In path following literature, the problem of robustness has
been addressed for example, in Dagci et al. (2003), where
a cascade sliding mode controller for both kinematics and
dynamics of a robotic vehicle was designed. In Aguiar and
Pascoal (2002), a disturbance observer for constant unknown
ocean currents was designed to solve the problem of dynamic
positioning and way-point tracking of an underactuated AUV.
Later on, the problem of robustness against parametric
uncertainty in trajectory tracking and path following was also
addressed in Aguiar and Hespanha (2007). More recently, in
Zhang et al. (2014), a sliding mode technique combined with
a predictive control strategy was developed to compensate
for the impact of the hydrodynamic damping coupling on
a 3D path following task for an Autonomous Underwater
Vehicle (AUV). In Wang et al. (2016), a H∞ robust controller
for ground vehicles is proposed to achieve path following
in the presence of disturbances caused by delays and data
packet dropouts. All of the above schemes consider robustness
for the path following problem. From the best of the
authors knowledge, the only work concerning the problem
of robustness in MPF literature is Reis et al. (2019), where
sliding mode based controllers and a disturbance observer were
designed to compensate external disturbances acting on the
robotic vehicle.

A further extension of the MPF framework for multi-robot
applications and formation control is the Cooperative Moving
Path Following (CMPF) control problem, which consists in
steering N vehicles along N paths defined with respect to a
moving target while achieving some coordination objective.
A special case of CMPF control, where the paths are fixed
with respect to a given reference frame is the framework
of Cooperative Path Following (CPF). As a recent example,
the robustness problem in CPF literature was addressed in
Gu et al. (2019), where two cooperative path following
controllers using an Extended State Observer to estimate and
compensate external disturbances in the kinetic level were
proposed and validated experimentally using Autonomous
Surface Vehicles (ASVs). In (Jain et al., 2018a), an event-
based controller was explicitly designed to reduce the frequency
of communication between the robotic vehicles. The control

strategy effectively decomposes the control structure into
two distinct layers. The first is responsible for the motion
control of each individual vehicle, termed the PF controller.
The second, termed the cooperative controller, is responsible
for achieving coordination between the robots by using a
consensus law. However, (Jain et al., 2018a) does not consider
uncertainties and disturbances acting on the robotic vehicles.
By decoupling the motion control layer from the cooperative
control layer, one could use robust MPF controllers in the
first layer to deal with the presence of certain types of
disturbances acting on the vehicles, without affecting the
formation control.

This paper extends the results obtained for the MPF
controllers proposed by Reis et al. (2019) to the Cooperative
MPF framework. Two MPF control strategies are proposed for
the motion control layer, both using a known target pose and
estimates of the target velocities. The first strategy employs a
First Order Sliding Mode (FOSM) term to achieve robustness
against bounded disturbances. The second strategy seeks to
directly compensate the disturbance by computing an estimate
of the disturbance using a disturbance observer. The cooperative
layer consists of the consensus law proposed by Aguiar (2017).
The stability of the proposed control laws is analyzed and
it is shown that the origin of the path error is stable and
converges to a small neighborhood around zero, even in the
presence of bounded estimation errors on the target velocities
and environmental disturbances. The design and theoretical
results for the two variants of the proposed robust controllers are
experimentally validated in a CMPF scenario using Autonomous
Underwater Vehicles.

2. PROBLEM FORMULATION

2.1. Kinematic Model for an Underactuated
Vehicle
Consider an inertial frame of reference {I} andN robotic vehicles,
each with its body frame {Bi} attached to its center ofmass. Define
the set of N robotic vehicles as I = {1, 2, ...,N}. The kinematic
model of the i-th vehicle moving in R

n with n = 2, 3 can be
expressed by

ṗi(t) = Ri(t) vi + dv,i (1)

Ṙi(t) = Ri(t) S(ωi + dω,i)

where pi ∈ R
n denotes the position of the i-th robot with respect

to the frame {I}, Ri ∈ SO(n) denotes the rotationmatrix from the
frame {Bi} to an inertial frame {I}, vi ∈ R

n andωi ∈ R
n(n−1)/2 are

the linear and angular velocities of the i-th vehicle with respect to
its own body frame, S(ωi) ∈ so(n) is the skew-symmetric matrix
associated to the angular velocity ωi.

Finally, dv,i ∈ R
n and dω,i ∈ R

n(n−1)/2 are kinematic
disturbances acting on each robot. Many different factors can
be the source of these disturbances, depending on the type
of vehicle and the operational environment. Marine vehicles
such as AUVs are affected by unknown sea conditions that can
induce unwanted external velocities due to maritime currents,
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waves and wind. In the case of aerial vehicles, wind and
internal dynamics can induce some unwanted disturbances in
the kinematic model. In this work, we consider the problem of
controlling an underactuated vehicle at the kinematic level, with
the control signal defined as

ui =

[

vf ,i
ωi

]

(2)

where the body linear velocity vi is defined as vi = [ vf ,i 0 ]T

(n = 2) or vi = [ vf ,i 0 0 ]T (n = 3). This is the case for
vehicles where only the longitudinal velocity vf ,i ∈ R and the

body angular velocity ωi ∈ R
n(n−1)/2 can be controlled, such as

some types of AUVs. We assume that the vehicle has an inner-
loop autopilot controller that is responsible to track the linear and
angular velocity commands generated by the controller based on
the kinematic model of the robotic vehicle. Imperfect tracking by
the inner-loop autopilot controller can further contribute to the
velocity disturbances acting on the vehicle, that can be lumped
into the terms dv,i and dω,i.

2.2. Cooperative Moving Path Following
Problem
In the CMPF control problem, the vehicles must follow a priori
specified paths expressed with respect to a moving target whose
position can be accurately estimated, while also maintaining
some coordination objective. Define the target frame {T} with its
origin attached to the target center of mass. Then, the cooperative
MPF problem can be divided in the following two sub-problems.

2.2.1. Moving Path Following Problem
Let pt(t) ∈ R

n denote the position of the target with respect to
the frame {I}, and pt

d,i
(γi) ∈ R

n be the desired path for vehicle i,
specified with respect to the frame {T} and parameterized by the
path variable γi ∈ R. As illustrated by Figure 1, for a given γi and
time t, pd,i(γi, t) and ṗd,i(γi, t) denote the position and velocity
of the virtual reference point that must be followed by the i-th
vehicle, with respect to the inertial frame {I}:

pd,i(γi, t) = pt + Rt p
t
d,i (3)

ṗd,i(γi, t) = vt + Rt

(

∇ptd,i γ̇i + S(ωt) p
t
d,i

)

(4)

where Rt(t) ∈ SO(n) is the rotation matrix of frame {T} with
respect to {I}, vt(t) ∈ R

n, ωt(t) ∈ R
n(n−1)/2 are the linear and

angular target velocities and ∇ ≡ ∂/∂γi is the derivative with
respect to γi.

Assumption 2.1. The geometric path pt
d,i
(γi) is a

differentiable function.

Note that Assumption 2.1 is already needed in order to compute
(4) from (3). Suppose we wish to control the position of the nose
of the i-th vehicle, or more generically, a point p̄i = pi + Ri ǫ
placed at a constant position ǫ = [ ǫ1 ǫ2 ]

T (n = 2) or ǫ =

FIGURE 1 | Coordinate frames and vector notation for N = 3 vehicles.

[ ǫ1 ǫ2 ǫ3 ]
T (n = 3) from the origin of {Bi}. Then, define the

MPF error associated to the i-th vehicle as the vector

ei = RT
i (p̄i − pd,i) , i ∈ I (5)

The objective of the MPF control problem is to design a control
law ui such that the origin ei ≡ 0 is stable and ei → 0 as
t → ∞, ∀i ∈ I. That is, it is desired to steer the vehicles
toward their moving geometric paths, such that p̄i stabilizes
around pd,i(γi, t), ∀i ∈ I.

In order to control the progression of the virtual points
pd,i(t, γi) along the moving paths, the dynamics of the path
variable γ̇i should be explicitly controlled. This can be achieved
by imposing the dynamics for γi as

γ̇i = vd + ϑi , i ∈ I (6)

where the scalar vd is the desired nominal speed of the path
variable and ϑi is a bounded control signal, designed to achieve
CMPF objectives such as: (i) consensus over the path variables
of the robotic vehicles to achieve a desired formation along the
moving path and (ii) faster convergence to the moving path. To
move along the geometric paths with the desired velocity, the
vehicles must satisfy the desired speed assignments |γ̇i− vd| → 0
as t → ∞, ∀i ∈ I.

2.2.2. Cooperative Motion Control Problem
Assume that the i-th vehicle communicates with a fixed setNi ⊂

N of neighbor vehicles. Given the path variables γi (i ∈ I)
for the N vehicles and a given undirected, fixed communication
topology among them, the objective of the cooperative motion
control problem is to design a decentralized control law vr,i(t)
such that the positions of the virtual points are synchronized,
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that is, |γi − γj| converges to zero ∀i, j ∈ I as t → ∞.
To simultaneously achieve the speed assignment, coordination
objective and also two other secondary objectives, function ϑi in
(6) is decomposed as

ϑi = vr,i(t)+ ge,i(t)+ gω,i(t) (7)

where vr,i(t) is the cooperative control signal (to be designed) that
is responsible for achieving consensus between the vehicles, while
ge,i(t) and gω,i(t) represent secondary objectives, where ge,i(t) is
an error correction term, responsible for delaying the evolution
of the path variable in case of momentary vehicle failure, and
gω,i(t) is a rotation correction term, responsible for canceling the
rotational motion induced on the path by the rotation of the
target. These functions are to be properly defined in section 3.3.

3. ROBUST COOPERATIVE MOVING PATH
FOLLOWING CONTROL

3.1. Robust MPF Controller Design
In this section, we consider the kinematic controller proposed
in Jain et al. (2018a) with a modification designed to ensure
robustness against disturbances. For the i-th vehicle, the error
dynamics is given by

ėi = ṘTi (p̄i − pd,i)+ RTi (
¯̇pi − ṗd,i) .

Using model (1) with control signal (2) and MPF error (5), the
error dynamics can be rewritten as

ėi = −S(ωi + dω,i) ei + 1ui + di − RT
i vt

−RT
i Rt

(

∇ptd,i γ̇i + S(ωt) p
t
d,i(γi)

)

(8)

where1 is a constant matrix that can take the forms

1 =

[

1 −ǫ2
0 ǫ1

]

or 1 =





1 0 ǫ3 −ǫ2
0 −ǫ3 0 ǫ1
0 ǫ2 −ǫ1 0





for the planar (n = 2) and 3D (n = 3) cases, respectively. Note
that it is always possible to choose ǫ such that 1 is full rank.
Vector di ∈ Rn is the total external disturbance acting on the
vehicle. In the planar case, it is given by

di =
[

RT
i sǫ

]

[

dv,i
dω,i

]

sǫ =
[

−ǫ2 ǫ1
]T

(9)

Remark 3.1. Notice that, by the triangle inequality, the total
external disturbance di is bounded by ‖di‖ ≤ ‖dv,i‖ + ‖dω,i‖ ‖ǫ‖.

Assumption 3.1. The total external disturbances di are bounded
vector quantities.

Theorem 1 (Robust MPF). Consider an underactuated robotic
vehicle described by (1) with control signal given by (2). Let the
MPF error kinematics be described by (8), and consider that the
pose of the i-th vehicle {pi,Ri} ∈ R

n × SO(n) and of the target
frame {pt ,Rt} ∈ R

n × SO(n) are known. Under Assumptions 2.1
and 3.1, the control law

ui = 1†
(

−Kp,i ei + RT
i

(

v̂t + Rt S(ω̂t) p
t
d,i

)

+RT
i Rt∇ptd,iγ̇i − wi

)

(10)

wi =

{

ρi
ei
‖ei‖

, ‖ei‖ ≥ ǫw

ρi
ei
ǫw
, ‖ei‖ < ǫw

(11)

ensures that all trajectories of the MPF error are globally uniformly
ultimately bounded and converge to a ball around the origin ei = 0
that can be made arbitrarily small. In (10), the matrix 1† is the
Moore-Penrose pseudo-inverse of 1, Kp ∈ Rn×n is a positive-

definite gain matrix and v̂t ∈ R
n, ω̂t ∈ R

n(n−1)/2 are estimates
of the target velocities. In (11), ρi is a scalar such that

ρi ≥ ‖dv,i‖ + ‖dω,i‖‖ǫ‖ + ‖̃vt‖ + ‖ω̃t × ptd,i(γi)‖ (12)

where ṽt = vt − v̂t , ω̃t = ωt − ω̂t are bounded estimation errors
on the target velocities.

Proof: Define the Lyapunov candidate V(ei) = 1
2 e

T
i ei. Using

the error dynamics in (8), its time derivative along the system
trajectories is

V̇(ei) = eT
i

(

1ui + di − RT
i vt − RT

i Rt

(

∇ptd,i γ̇i + S(ωt) p
t
d,i

) )

(13)

where we have used the fact that eT
i S(ωi + dω,i) ei = 0, since

S(ωi + dω,i) is skew-symmetric. Substituting control law (10) in
(13) yields

V̇(ei) = −eT
i Kp ei + eT

i (Di − wi) , (14)

where Di = di − RT
i

(

ṽt + Rt S(ω̃t) p
t
d,i

)

. Since Kp > 0, the

first term is negative definite and bounded by −λmin(Kp)‖ei‖
2.

Next, we consider the two cases of (11), when ‖ei‖ ≥ ǫw or
‖ei‖ < ǫw.

• For ‖ei‖ ≥ ǫw in (14), we have

V̇(ei) ≤ −λmin(Kp)‖ei‖
2 + eT

i Di − ρi
eT
i ei

‖ei‖

≤ −λmin(Kp)‖ei‖
2 + ‖ei‖ (‖Di‖−ρi)

where the Cauchy-Schwarz inequality was employed on term
eT
i Di. By Assumption 3.1, it is always possible to design ρi
such that (12) is satisfied. Therefore, by Remark 3.1, choosing
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ρi ≥ ‖Di‖ renders the second term on the right-hand side
negative definite, which estabilishes that the trajectory ei(t)
of the closed-loop system reaches the ball B(ǫw) : = {ei ∈

R
n
:‖ei‖ ≤ ǫw} in finite time.

• When the trajectories are inside B(ǫw), we have ‖ei‖ < ǫw, and
(14) gets

V̇(ei) ≤ −λmin(Kp)‖ei‖
2 + eT

i Di − ρi
eT
i ei

ǫw

≤ −(1− θ)λmin(Kp)‖ei‖
2

−

(

θλmin(Kp)+
ρi

ǫw

)

‖ei‖
2 + ‖ei‖‖Di‖

where 0 < θ < 1. Then, using the inequality above, one can
write:

V̇(ei) ≤ −(1− θ)λmin(Kp)‖ei‖
2 < 0 ∀‖ei‖ ≥ µi ,

µi =
‖Di‖ǫw

λmin(Kp) θ ǫw + ρi

Note that µi ≤ ǫw for all 0 < θ < 1, which means that the
trajectory of the closed-loop system ei(t) again reaches the ball
B(µi) ⊆ B(ǫw) in finite time.

This establishes that the trajectories are globally ultimately
uniformly bounded, since V = 1

2‖ei‖
2 is radially unbounded

(Khalil, 2002). Moreover, ei(t) converges to the ball B(µi) ⊆

B(ǫw), which can be made arbitrarily small when ǫw → 0.

3.2. Robust MPF Controller Design With
Disturbance Observer
In the presence of large amplitude disturbances, it may be difficult
to tune the parameters ρi and ǫw so as to satisfy (12). In these
situations, an observer can be designed to provide an estimate of
the disturbance. Furthermore, this estimate can be used in the
control law to compensate the real disturbance directly.

Without loss of generality, consider the planar problem.
Consider that the vehicle pose {pi,Ri} ∈ R

2 × SO(2) is known
and that the vehicle orientation is parameterized by the planar
angle ψi ∈ R, such that Ri = Ri(ψi) ∈ SO(2).

Then, the disturbance observer for the translational
disturbance is defined as

{

˙̂pi = Ri vi + d̂v,i + K1 p̃i
˙̂
dv,i = K2 p̃i ,

(15)

where the estimation errors are defined as p̃i = pi− p̂i and
˜dv,i =

dv,i − d̂v,i, and the positions pi, i ∈ I are accurately measured.
For positive-definite matricesK1,K2 ∈ R

2×2, the dynamics of the
estimation errors p̃i,

˜di can be proven to be Input-to-State Stable
(ISS) with respect to the first time-derivative of dv,i (Aguiar and
Pascoal, 2002).

Similarly, observers for the rotational disturbances dω,i ∈ R

can be designed as:

{

˙̂
ψi = ωi + d̂ω,i + kω1˜ψi

˙̂
dω,i = kω2˜ψi ,

(16)

where the estimation errors are defined as ˜ψi = ψi − ψ̂i and
˜dω,i = dω,i − d̂ω,i, and the planar angles ψi are measured.
Again, for positive scalars kω1 , kω2 ∈ R>0, the dynamics of the
estimation errors ˜ψi,˜dω,i can be proven to be ISS with respect to
the first time-derivative of dω,i (Aguiar and Pascoal, 2002).

Theorem 2 (Robust MPF with Disturbance Observer).

Consider an underactuated robotic vehicle described by
(1) and control signal given by (2). Let the MPF error
kinematics be described by (8), and consider that the pose of
the vehicle {pi,Ri} ∈ R

n × SO(n) and of the target frame
{pt ,Rt} ∈ R

n × SO(n) are known. Under Assumptions 2.1 and
3.1, the control law

ui = 1†
(

−Kp,i ei + RT
i

(

v̂t + Rt S(ω̂t) p
t
d,i

)

+RT
i Rt∇ptd,iγ̇i − wi −̂di

)

(17)

ensures that all trajectories of the MPF error are globally uniformly
ultimately bounded and converge to a ball around the origin
ei = 0 that can be made arbitrarily small. In (17), matrix
1† is the Moore-Penrose pseudo-inverse of 1, Kp ∈ R

n×n is

a positive-definite gain matrix, v̂t ∈ R
n and ω̂t ∈ R

n(n−1)/2

are estimates of the target velocities and ̂di is the total estimated
external disturbance, which is a function of the states of the
disturbance observers

̂di =
[

RT
i sǫ

]

[

̂dv,i
̂dω,i

]

(18)

The term wi is defined by (11), with scalars ρi satisfying

ρi ≥ ‖˜dv,i‖ + |˜dω,i|‖ǫ‖ + ‖̃vt‖ + ‖ω̃t × ptd,i(γi)‖ (19)

Proof: The proof is very similar to Theorem 1, and can be
performed by proposing the same Lyapunov candidate V =
1
2 e

T
i ei. Differentiating it in time and applying the error dynamics

(8) with control law (10) yields

V̇(ei) = −eT
i Kp ei + eT

i

(

˜Di − wi

)

(20)

where ˜Di = ˜di − RT
i

(

ṽt + Rt S(ω̃t) p
t
d,i

)

and ˜di is the total

estimation error defined by˜di = di − d̂i.
Note that (20) is similar to (14), but with disturbance ˜Di

instead of Di. Therefore, using the same arguments for the
proof of Theorem 1 with Assumption 3.1 and condition (19),
one can conclude that the trajectories of the MPF error are
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globally uniformly ultimately bounded and ei(t) converges to
the ball B(µ̄i) ⊆ B(ǫw), which can be made arbitrarily small
when ǫw → 0.

Remark 3.2. Comparing conditions (12) and (19) for the choice
of ρi, in (19) the gain ρi must overcome only the norm of
the disturbance estimation errors instead of the norm of the
disturbance. Therefore, if the disturbance observer is properly
designed, this method can reduce the necessary amount of control
effort when compared to the previous method.

Remark 3.3. Both proposed control laws (10, 17) employ estimates
of the target velocities. Since the velocity estimation errors ṽt and
ω̃t appear as additional disturbances in Di and ˜Di, they can be
properly compensated by the proposed controllers as long as ρi
satisfies (12) or (19). In this case, the velocity estimation errors
are implicitly assumed to be bounded. Furthermore, notice that in
the case where no velocity estimators are employed (̂vt = 0 and
ω̂t = 0), the velocity estimation errors are simply ṽt = vt and ω̃t =

ωt , which are also bounded. These observations imply that velocity
estimators are not necessarily required for the implementation of
the proposed control laws. However, large velocity estimation errors
would increase the lower bounds for the design of ρi, increasing the
amount of control effort, which could lead to loss of performance.

3.3. Cooperative Moving Path Following
This section provides a proper design for function ϑi in (7). First,
the design of the error correction term ge,i(t) and of the rotation
correction term gω,i(t) are discussed, and finally we make use of
the results from Olfati-Saber et al. (2007) to design a cooperative
control law vr,i(t).

3.3.1. Error Correction Term
The term ge,i(t) is a bounded error correction term that acts as an
external input to the path dynamics, enabling faster convergence
of the robotic vehicle to the moving path. It can be designed to
delay or to stop the motion of the virtual point if the vehicle is too
far away from the path. This can be done by defining the gradient
with respect to the path variable of the MPF error norm squared:

ηe,i = ∇

(

1

2
eT
i ei

)

= −eT
i R

T
i Rt ∇ptd,i(γi) (21)

and then choosing a gradient descent law ge,i = −ke,i sat(ηe,i)
with ke,i > 0. The saturation function guarantees the
boundedness for the correction term. Its effect is to effectively
delay the evolution of the virtual point along the path by explicitly
avoiding the evolution of γi if the MPF error norm is too large.

3.3.2. Path Rotation Correction Term
The term gω,i(t) is designed to delay the evolution of the virtual
point pd,i in a such a way that minimizes the effect of the target
rotational motion, which is evident from the term S(ωt) p

t
d,i
(γi)

in (4). This effect is important since, for large target angular
velocities ωt , the virtual point could move faster than the i-th
vehicle could reach. Therefore, substituting (7) into the error
dynamics (8), we seek to design a scalar gω,i such that

gω,i(t) = argmin
gi∈R

‖∇ptd,i(γi) gi + S(ωt) p
t
d,i(γi)‖ . (22)

If the target angular velocity is known, the minimum can be
achieved by the least squares solution

gω,i(ωt , γi) = −
∇Tpt

d,i
S(ωt) p

t
d,i

‖∇pt
d,i
‖2

, (23)

with minimum given by

min
gi∈R

‖∇ptd,i(γi) gi + S(ωt) p
t
d,i(γi)‖ =

(∇pt
d,i
)Tpt

d,i

‖∇pt
d,i
‖2

S(ωt)∇ptd,i .

Remark 3.4. Note that the minimum is identically null regardless
the rotational motion of the target only if and only if: (i) the path is
perpendicular to its gradient everywhere, i.e., (∇pt

d,i
)Tpt

d,i
= 0 ∀γi,

i ∈ I or (ii) the angular velocity of the target is collinear to the path
gradient everywhere, i.e., ωt = c∇pt

d,i
= 0 ∀γi, i ∈ I for some

constant c ∈ R. Clearly, condition (ii) never holds in the planar
case (n = 2).

Assumption 3.2. The path gradients are non-vanishing
everywhere, i.e., ∇pt

d,i
(γi) 6= 0 ,∀γi , i ∈ I.

From (23) and Assumption 3.2, the error correction term is
bounded by.

|gω,i(t)| ≤
maxγi‖p

t
d,i
(γi)‖

minγi‖∇pt
d,i
(γi)‖

‖ωt‖ .

3.3.3. Cooperative Controller
Consider the distributed consensus law (Aguiar, 2017):

vr,i = −kc,i
∑

j∈Ni

(γi − γ̂
i
j ) , ∀i ∈ I (24)

where kc,i > 0 are consensus gains and γ̂ i
j are estimates of the

path variables of the neighbor vehicles (γj , j ∈ Ni) running
inside the i-th vehicle computer. Assuming that the frequency
of communication is low, its reasonable to assume that γ̂ i

j 6=

γj ,∀t > 0. Therefore, one can write γ̂ i
j = γj − γ̃ i

j , where γ̃
i
j is

a path variable estimation error.

Assumption 3.3. Given a fixed, undirected communication
topology between the vehicles, the i-th vehicle updates its
path variable γi to its j ∈ Ni neighbors in a fixed frequency.
Additionally, assume that no data package is lost during
communication. Consequently, the path variable estimation errors
γ̃ i
j ,∀i, j ∈ I are always bounded.

Define the vectors γ =
[

γ1 γ2 · · · γN
]T
, ge =

[

ge,1 ge,2 · · · ge,N
]T
, gω =

[

gω,1 gω,2 · · · gω,N
]T

and 1N =
[

1 1 · · · 1
]T

∈ R
N . Using (24) in (7) and stacking the dynamic

equations, one can write

γ̇ = vd1N − KcLγ − Kcγ̃ + ge + gω , (25)
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FIGURE 2 | (A) Autonomous underwater vehicles used on the experiments. (B) The Neptus console.

where Kc = diag(kc,1, kc,2, . . . , kc,N) is a positive definite
matrix of consensus gains, L = D − A ∈ R

N×N is the
Laplacian of the network connection graph, defined by D =

diag(|N1|, |N2|, . . . , |NN |) and the adjacency matrix A = [aij],
with aij = 1 if j ∈ Ni and aij = 0 otherwise. Vector γ̃ is defined

as [γ̃ ]i =
∑

j∈Ni
γ̃ i
j , i.e., its i-th element is the sum of all path

variable estimation errors for the i-th vehicle.

Theorem 3 (Cooperative Controller). Consider a fleet of N
underactuated robotic vehicles with dynamics described by (1) and
control signal given by (2). Then, control laws (10) or (17) with
robustness term (11) guarantee that the origin of the MPF error
ei ≡ 0 is stable under the same conditions and assumptions of
Theorems 1 and 2, respectively.

Furthermore, under Assumption 3.3, the cooperative control
law given by (24) ensures that |γi − γj|, ∀i, j ∈ I are Input-
to-State Stable (ISS)1 with respect to the path variable estimation
errors [γ̃ ]i, error correction terms ge,i and rotation correction terms
gω,i, ∀ i ∈ I.

Proof: The first part of the Theorem was already proved in
Theorems 1 and 2. The part related to the cooperative control
follows the same core ideas from (Jain et al., 2018a). First, define
the disagreement vector (Olfati-Saber et al., 2007) as δ : = γ −

α1N , with α = (1/N)1T
Nγ .

Note that the consensus condition |γi − γj| = 0, ∀i, j ∈ I is
achieved if and only if δ = 0. Additionally, the following two
properties hold: (i) Lγ = Lδ and (ii) 1T

N δ = 0.

1Khalil (2002) A nonlinear system δ̇ = f (t, δ, ǫ) is said to be Input-to-State Stable

(ISS) if there exist a classKL function β and a classK function γ such that for any

initial state δ(t0) and any bounded input ǫ(t), the solution δ(t) exists for all t ≥ t0
and satisfies

‖δ(t)‖ ≤ β(‖δ(t0)‖, t − t0)+ γ

(

sup
t0≤τ≤t

‖ǫ(τ )‖

)

.

Next, define the ISS Lyapunov function candidate

Vcc(δ) = δTLδ ≥ 0

Taking its time-derivative and using (25), yields

V̇cc = −zTKcz − zTKcγ̃ + zTge + zTgω (26)

with z = Lδ, where we used the properties (i) and (ii) introduced
before. Using the Cauchy-Schwartz inequality, yields

V̇cc ≤ −λmin(Kc)‖z‖
2 + λmax(Kc)‖z‖‖γ̃ ‖ + ‖z‖‖ge‖ + ‖z‖‖gω‖

(27)

Applying Young’s inequality to the last three terms in (27),
we have

V̇cc ≤ −

(

λmin(Kc)−
λmax(Kc)

2c
−

1

2c
−

1

2c

)

‖z‖2

+
cλmax(Kc)

2
‖γ̃ ‖2 +

c

2
‖ge‖

2 +
c

2
‖gω‖

2

with a scalar c ∈ R>0. Choosing any c >
λmax(Kc)
2λmin(Kc)

+λ−1
min(Kc) > 0

leaves the first term of the right-hand side strictly negative, which
by Assumption 3.3 and by the boundedness of ge,i, gω,i establishes
that the disagreement vector δ is ISS with respect to the bounded
disturbances [γ̃ ]i, ge,i and gω,i, for all i ∈ I.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup
The experiments were performed on Porto de Leixões (Porto,
Portugal) using three Light Autonomous Underwater Vehicles
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(LAUVs) from the Underwater Systems and Technology
Laboratory (LSTS) at the Faculty of Engineering of the University
of Porto (FEUP) (Figure 2A). LAUVs are lightweight, portable
vehicles that can be easily launched, operated and recovered with
a minimal operational setup.

The vehicles operate under the DUNE/Neptus environments,
which are part of a software toolchain (Pinto et al., 2013)
developed and maintained by LSTS. DUNE is the on-board
software running on the vehicles, comprising all the software
needed for communications, navigation, control, maneuvering,
plan execution and supervision of multiple types of robotic
vehicles. The control algorithms were implemented on C++,
using the available DUNE libraries. Neptus is a software used
for command, control and monitoring, comprising many typical
functions needed for a typical mission, such as planning,
execution and post-mission analysis (Figure 2B).

A target vehicle was simulated and continuously sends
its position and orientation (computed from GPS/IMU
measurements using an extended Kalman filter (Braga et al.,
2012) to the three follower vehicles through static UDP
connections with a maximum frequency of 1Hz. The control
algorithm for the target vehicle is a vector field method (Nelson
et al., 2007) that is responsible to steer the vehicle along a
circumference with radius equal to 60m in the clockwise
direction at 0.5m/s. The desired moving paths for the follower
AUVs are planar circumference centered at the target vehicle
with phase difference of 2π/3 between them:

ptd,i(γi) = R

[

cos(γi/R+ φi)
sin(γi/R+ φi)

]

, (28)

where R = 25m, φ1 = 0 rad, φ2 = 2π/3 rad and φ3 =

−2π/3 rad. Each vehicle sends its path variable to the neighbor
vehicles with a frequency of 1Hz to maintain coordination,
according to the consensus law (24) and Assumption 3.3. The
consensus gains are kc,i = 0.1 , ∀i ∈ I.

For the construction of the MPF errors ei, the value

ǫ =
[

1 0
]T

was used. The controller gain matrices and
error correction gains were chosen as Kp,i = diag(0.2, 0.2)
and ke,i = 2 ,∀i ∈ I. The reference for the path variable
velocity is vd = 1m/s.

Remark 4.1. We point out the fact that this particular kind of
vehicles cannot generate reliable negative forward velocities due to
its propeller design. Given the fact that control laws (10), (17) can
generate negative forward velocities if the virtual point is behind
the line-of-sight of the vehicle, a substitute controller was designed
to override the original controller in case this happens.

Therefore, while the forward velocity generated by (10) or (17)
is negative (vf ,i < 0), the applied control signal will be

ui =

[

vC
−sgn([ei]y − ǫ2)ωC

]

instead, until (10), (17) generate a positive vf ,i again. Constants
vC, ωC ∈ R are strictly positive. That means that the vehicle

performs a “turning” maneuver with constant velocities until the
virtual point is once again inside its line-of-sight. The direction of
the turn is clockwise if the virtual point is to the right of the vehicle
and counterclockwise if the virtual point is to the left of the vehicle.
This strategy allows arbitrary initial configurations of the vehicles
with respect to the initial position of the virtual point, and also
allows the vehicles to recover from practical dead lock situations
where their line-of-sight is kept facing away from the virtual point,
which could happen, for example, in case of communication losses.
In this case, vC = 1.7m/s and ωC = 1 rad/s, approximately the
upper saturation limits for the actuators.

4.2. Experimental Results
4.2.1. CMPF With Velocity Compensation
The first experiment shows the results of the CMPF controller
with velocity compensation, ρi = 0 and no disturbance

compensation (d̂v,i = 0 and d̂ω,i = 0). Figure 3 shows
the trajectories of the vehicles. The trajectory of the target
is represented as the dashed black circle, in the clockwise
direction. The small colored circles represent the beginning
of the trajectory, while the colored asterisks represent
its end. Noticeably, the three vehicles try to follow their
respective paths (shown in dashed lines) around the
rotating target, while maintaining their phase difference.
Figure 4 shows the obtained results. The initial position of the
vehicles was distant from the network router (located closer
to the northeast part of Figure 3), which affected the wireless
communications for a while. However, the initially large path
variable errors rapidly decrease and remain bounded to less
than 4m (Figure 4B). Because of the communication losses and
possibly the presence of ocean currents, the secondary controller

FIGURE 3 | Vehicle trajectories for the CMPF controller with

velocity compensation.
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FIGURE 4 | Experimental results for the CMPF controller with velocity compensation.

described in Remark 4.1 had to recover some vehicles during
the transient, resulting in some of the turning maneuvers we
see in the beginning of the trajectories (Figure 3). After that
transient, the norm of the MPF errors converge to a small region
of less than 3m while the control signal remains inside its linear
region (Figures 4C,D). Note how the consensus law acts precisely
when the path variable errors are high (Figure 4E), how the
error correction terms acts when the MPF error norm is high (to
prevent the evolution of the path variables), and how the rotation
correction terms is fixed to a small value (≈ 0.18m/s) during the
whole experiment. This is due to the fact that the target moves
with constant angular velocity and the paths are circles to all three
vehicles (see 23).

4.2.2. Robust CMPF With Sliding Mode Term
The second experiment shows the results of the robust CMPF
controller with velocity compensation and Sliding Mode term,
with MPF control law given by (10) with ρi = 0.2 for
the three vehicles and ǫw = 0.5m. The consensus law for
cooperation among the vehicles is given by (24), as before.

Figure 5 shows the vehicle trajectories around the target, starting
and ending in the southwest and southeast corners, respectively.
Once more, due to communication losses and the presence
of ocean currents in the southwest location, the secondary
controller described in Remark 4.1 was activated for some of
vehicles during the transient. However, the proposed controller
was able to stabilize the error faster than the nominal controller.
Besides, from Figure 6A, it is possible to notice the practical
sliding mode phenomena around the origin ei ≡ 0. That means
that the controller is able to achieve better performance than
the previous one, given that ǫw can be designed to be arbitrarily
small. However, from (11), small values of ǫw can result in higher
gains for wi, which can potentially saturate the control inputs.
In fact, sometimes the control saturation limits are reached after
the transient, as shown in Figures 6C,D, and practical sliding
mode is momentarily lost. The reason is the limited velocity
range allowed by the actuators, combined with our particular
value choice for ǫw, and moments of occasional increase in the
target velocity. Even so, performance is slightly better than in the
previous case, and the amount of control chattering is acceptable.
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FIGURE 5 | Vehicle trajectories for the robust CMPF controller.

FIGURE 6 | Results for the robust CMPF controller.

The consensus law, error correction signals and rotation
correction signals are omitted, but are similar to those observed
in Figure 4.

4.2.3. Robust CMPF With Sliding Mode Term and

Disturbance Compensation
The third and last experiment shows the results of the robust
CMPF controller with velocity compensation, SlidingMode term
and direct disturbance compensation using a linear observer. The
control law is given by (17) with ρi = 0.2 and ǫw = 0.5m,
as before. Again, the consensus law for cooperation among the
vehicles is given by (24).

FIGURE 7 | Vehicle trajectories for the robust CMPF controller with

disturbance observer.

As seen from Figure 7, only the vehicles Noptilus 1 and 3
were used on this experiment, since the battery on Noptilus 2 was
depleted. However, the results obtained by Noptilus 1 and 3 can
still be compared to the previous results obtained for the same
two vehicles. The chosen paths are the same circles defined in
(28), but this timewith φ1 = 0 and φ3 = π rad. Thismodification
was used to guarantee that the two vehicles stay as far as
possible from each another. Once again, in Figure 8A, notice the
practical sliding mode phenomena around the origin ei ≡ 0,
except during the instants where the control inputs are saturated
(Figures 8C,D). However, in this case, the control chattering
is significantly smaller than the one observed in Figures 6C,D,
under the same experimental conditions. We explain this fact
by the presence of the disturbance estimator. Since part of the
disturbance is compensated, the sliding mode term can spend
less effort compensating the remaining total disturbance, a result
compatible with the theoretical insight of Remark 3.2. The path
variable errors remain bounded by 4m, as shown in Figure 8B.
The estimated disturbances are shown in Figure 9. The linear
velocity disturbances remained bounded by < 0.3ms after the
transient, while the angular velocity disturbances showed higher
variation, but remained bounded to< 0.5rad s after the transient.

5. CONCLUSIONS

This work addressed the robust cooperative MPF problem
for marine vehicles. We demonstrated that the origin of the
MPF errors associated to the vehicles are stable with the two
proposed robust CMPF control schemes in the presence of
bounded disturbances acting on the vehicles. Furthermore, it was
theoretically demonstrated that the cooperative control scheme
is ISS with respect to the path variable estimation errors and
to two other bounded, auxiliary input variables, named error
correction term and rotation correction terms. The proposed
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FIGURE 8 | Results for the robust CMPF controller with disturbance observer.

FIGURE 9 | Results obtained with the disturbance estimator.

robust controllers (10, 17) guarantee that the MPF error is
globally uniformly bounded to a small neighborhood of the
origin while maintaining acceptable control chattering. The
narrow linear region of the actuators imposes limits on how small
ǫw can be designed in practice. Lastly, we conclude that control
law (17) actually improved the control chattering in practice,
corroborating the theoretical insight of Remark 3.2.

Some of the future works are: (i) to investigate how to extend
the proposed controllers to the case of unknown bounds for the
disturbances (ii) to take the existence of actuator saturation limits
in the control design and (iii) to incorporate obstacle avoidance
techniques into the cooperative MPF approach to prevent vehicle
collision during the cooperation tasks.
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Marine Applications of the Fast
Marching Method
Santiago Garrido*, David Alvarez* and Luis E. Moreno

Robotics Lab, Department of Systems and Automation Engineering, Universidad Carlos III de Madrid, Madrid, Spain

Path planning is general problem of mobile robots, which has special characteristics

when applied to marine applications. In addition to avoid colliding with obstacles, in

marine scenarios, environment conditions such as water currents or wind need to be

taken into account in the path planning process. In this paper, several solutions based on

the Fast Marching Method are proposed. The basic method focus on collision avoidance

and optimal planning and, later on, using the same underlying method, the influence of

marine currents in the optimal path planning is detailed. Finally, the application of these

methods to consider marine robot formations is presented.

Keywords: fast marching, path planning, formations, vector field fast marching, trajectory planning

1. INTRODUCTION

Motion planning has been a very important field of research for many years. In the area of
autonomous marine vehicles, both surface and underwater vehicles, some important aspects that
are commonly optimized are travel time and safety conditions. This means that the path should
avoid known obstacles and hazardous areas while reaching the goal pose as fast as possible.

An example of an approach using these concepts can be found in Bellingham andWillcox (1996),
in which an underwater mission planning is proposed for optimizing energy consumption while
guaranteeing spatio-temporal coverage. Following a similar goal, in Hert et al. (1996) the problem
is formulated as a shortest path problem in order to guarantee the coverage of the terrain using a
sonar system.

Besides, in marine environments, uncertainties due to the wind and water currents are complex
and have a large impact on the path planning, as shown in Song et al. (2015). In order to deal
with the environmental influence, a level set method based on the Fast Marching Method was
proposed by Agarwal and Lermusiaux (2011). In Petres et al. (2005), an Anisotropic version of the
Fast Marching Method (AFM) is used for submarine vehicles. This method provides collision free
paths and their convergence is guaranteed, however, the water current model used does not take
into account the power of the motor of the vehicle. Song et al. (2017) proposed an improvement of
the AFM by using a multi-layered fast marching, which combines different environmental factors,
such as currents and wind with attractive/repulsive maps. The proposed strategies deliver very
interesting results, but do not guarantee the avoidance of local minima in the path planning due
to the manner used to create the velocity maps.

The FastMarchingMethod (FMM) and its evolution, known as the FastMarching Square (FM2),
have proven their value for path planning applications and robot motion because of their plasticity
and ease of use. They have been applied to many different path planning related problems such as:
indoors and outdoors (Garrido et al., 2017) robot motion, path learning (Gomez et al., 2017) or
unmanned aerial (Álvarez et al., 2015) and marine vehicles (Petres et al., 2005; Song et al., 2017).
However, all these methods are based on a scalar model of the environment. If vector fields are
present in the model, then the Fast Marching Method subjected to a Vector Field (FMVF) is a
better choice to perform the path planning.
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In the next sections of this article, an overview of how the
Fast Marching Method (FMM) works, as well as several path
planning versions based on the FMM are explained. Besides, their
basic characteristics and their use in marine-like environments
are shown.

2. THE EIKONAL EQUATION AND THE
FAST MARCHING METHOD

The speed of light traversing different materials is defined as v =
c/n, where v is the velocity in the specific medium, c = 300,000
m/s is the speed of light in vacuum and n is the refractive index
which depends on the material that is traversed. For example,
in water n = 1.33, while in glass n = 1.5, this difference
provokes that when a ray of light passes from water to glass the
ray changes its direction following the corresponding fastest path
in each material. In cases in which there is a continuous change
of refractive index, the path bends continuously, as in Figure 1.
As it happens in a mirage in a hot road, the layers of air closest to
the road are hotter than those that are further away. This creates
a gradient of refractive indices that causes the rays coming from
the sun to bend, therefore the driver has the optical illusion of
seeing a kind of puddle of water on the road.

In general, the path that a ray of light follows (along any
media) is the minimum in travel time. Therefore, the refractive
index works as a viscosity or speed index that slows down the
expansion of the light wave. Therefore, the path of a single
ray of light among the wave expansion can be represented by
its gradient.

One way to characterize the position of a front in expansion
is to compute the arrival time, T, in which the front reaches each
point of the space. For one dimension, the time of arrival value
can be obtained simply considering that the traveled distance, x,
is the product of the speed, F, and the time, T.

x = F · T (1)

Then, the one dimensional spatial derivative of this function is:

dT(x)

dx
=

1

F(x)
(2)

FIGURE 1 | The resulting path of the light when the refractive index changes

continuously.

and therefore, the magnitude of the derivative of the arrival
function T(x) is inversely proportional to the speed.

When considering multiple dimensions, the same concept is
valid and the solution is found by substituting the derivative by
the gradient, since the gradient is orthogonal to the level sets
of the arrival time function T(x). In this way, the movement of
the front of the wave can be characterized as the solution of a
boundary condition problem. If the propagation speed depends
only on the position, then equation 2 can be reformulated as the
Eikonal equation:

∣

∣∇T(x)
∣

∣ F(x) = 1. (3)

The Fast Marching Method (FMM) proposes a solution of the
Eikonal equation for a grid map in which the velocity values at
each point represent the refractive index. This artificial refractive
index represents the cost function for the wave expansion. This
method was originally proposed for a rectangular orthogonal
mesh in Sethian (1996). As demonstrated in Yatziv et al. (2005),
the FMM is an O(n) algorithm where n is the total number of
grid points. The algorithm relies on an upwind finite difference
approximation to the gradient as a first order solution of the
differential equation.

The FMM is used for problems in which the speed function
never changes of sign, which means that the wave front always
moves forwards (no reflections are admitted). This characteristic
allows to use a stationary formulation, because the wave front
crosses each grid point only once. The wave propagation given
by the FMM represents a distance function that corresponds to
the Geodesic distance measured with the metric defined by the
refraction matrix. This matrix indicates the speed of the wave
front at each point of the grid.

2.1. Algorithm Implementation on an
Orthogonal Mesh
In general, the FMM can model any phenomena which evolves
as a wave front that propagates along its normal direction. Let Tij

be the time at which the wave front crosses the point (i, j) of a 2-
dimensional map, satisfying |∇T|F = 1, the Eikonal equation. F
represents the speed function and, therefore, F = Fij represents
the speed at each point of the map. As shown in Gómez et al.
(2019), themost common first-order discretization of the Eikonal
equation is given in Osher and Sethian (1988), which uses an
upwind-difference scheme to approximate partial derivatives of
T(x) (D±xij represents the one-sided partial difference operator in

direction±x):

Tx(x) ≈ D±xij T =
Ti±1,j−Tij
±1x

Ty(x) ≈ D
±y
ij T =

Ti,j±1−Tij
±1y

(4)

A simple solution to Equation (4) is proposed in Sethian (1999):

{

max(D−xij T,−D+xij T, 0)2+

max(D
−y
ij T,−D

+y
ij T, 0)2

}

=
1

F2ij
(5)
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in which1x and1y are the grid spacing in the x and y directions.
Substituting (4) in (5) and letting

T = Ti,j

Tx = min(Ti−1,j,Ti+1,j)
Ty = min(Ti,j−1,Ti,j+1)

(6)

Then, for a discrete 2D space as, the Eikonal Equation can be
written as:

max

(

T − Tx

1x
, 0

)2

+max

(

T − Ty

1y
, 0

)2

=
1

F2ij
(7)

Since the speed of the front is assumed to be positive (F > 0),
T must be greater than Tx and Ty whenever the front wave has
not already passed over the coordinates (i, j). Therefore, (7) can
be simplified as:

(

T − Tx

1x

)2

+

(

T − Ty

1y

)2

=
1

F2ij
(8)

Equation (8) is a regular quadratic equation of the form aT2 +

bT + c = 0, where:

a = 12
x +12

y

b = −2(12
yTx +12

xTy)

c = 12
yT

2
x +12

xT
2
y −

12
x1

2
y

F2ij

(9)

where, in order to simplify the notation, we assume that the grid
is composed of unit square cells, that is, 1x = 1y = 1.

The full procedure to compute the solution of FMM is detailed
in Algorithm 1. The algorithm classifies the points of themap into
three sets: frozen, open and unvisited. Frozen points are those for
which the arrival time cannot change anymore. Unvisited points
are those that have not been processed yet. Finally, open points
are those which can be considered as an interface between frozen
and unvisited regions of the map, belonging to the propagating
wave front.

In the first step of the algorithm, the initialization, all the cells
in the map are initialized with an infinite value (or the maximum
value in the computing architecture) and set as unvisited, except
for the starting point (the goal point in a path planning problem)
which is set with an arrival time of 0 and considered as the first
open point.

At each iteration, the open point with the smallest value of
T(x) is set as frozen. Then, the arrival time of its von-Neumann
neighbors is analyzed (if they are not labeled as frozen) by solving
Equation (8). The value of a cell is updated if the computed arrival
time is smaller than the actual one (UPDATE in Algorithm 1).
This procedure continues until all points are set as frozen or the
starting point of a path planning problem is reached.

Figure 2 shows the first steps of the algorithm, in which
different colors are used to identify the different level sets. In
the center, the dark blue point is the source of the wave. The
gray points near the corners represent open points which will

Algorithm 1: Fast Marching Method

1: procedure FMM(X, x0)
Require: A grid map X of sizem× n, source point x0.

Initialization.
2: for all x ∈ X do

3: T(x)←∞;
4: end for

5: T(x0)← 0;
6: frozen← x0;
7: open← N (x0); ⊲ Neighbors of x0.
8: open← X\(frozen ∪ open);

Iteration.
9: while frozen 6= X do

10: x1 ← argmin
x∈open

d(x);

11: for all xi = N (x1) ∈ T∩ /∈ frozen do

12: UPDATE(xi);
13: open← open ∪ {xi};
14: end for

15: open← open\{x1}; ⊲ Updating sets.
16: frozen← frozen ∪ {x1};
17: end while

18: end procedure

be solved in the next iterations, Finally, the white circles are
unvisited areas. The computed arrival time function starts at the
minimum value (T = 0) and grows toward larger values of T,
forming a level-set solution with a unique global minimum. If
the solution is shown using the time of arrival as the third axis, a
funnel potential is formed, as it is appreciated in the right image
of Figure 2.

Finally, since the time of arrival function has a funnel-like
shape, a vehicle’s path toward its goal point can be extracted
using the gradient descent method. Figure 3A shows an example
of a path computed with FMM. Note that, although the path
is optimal in time, it traverses the environment too close to
the obstacles and, besides, forces the vehicle to perform abrupt
turns. In Figure 3B, the resulting expansion of the wave based
on the FMM can be appreciated. The different colors in the
image indicate different arrival time sets, being the dark blue the
smallest values while the red area corresponds to larger arrival
time points. Note that, while the computed path is the shortest
is distance and time of arrival, it is not a feasible path since the
autonomous ship would need to travel too close to the coast, with
a great danger of collision or run aground.

2.2. The Fast Marching Square Method
The Fast Marching Square Method (FM2) was introduced by
Garrido et al. (2008) and consists on applying the basic FMM
twice. Using this method, paths with an adequate smoothness and
sufficient safety distances to the obstacles can be computed. The
following procedure describes how the FM2 computes paths:

1. The environment is modeled in the same way as when
using the FMM, a binary grid map (see Figure 3). The cells
belonging to obstacles are labeled in black (a 0 value) and
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FIGURE 2 | (Left) Wave propagation using the FMM. Different colors represent different arrival times. In gray, the points of the next iteration. In white, unvisited points.

(Right) The final result represented using the time as a third axis.

FIGURE 3 | Fast Marching Method based path planning example. (A) The binary map used in the path planning and the path computed with FMM from start to end

point. (B) The time of arrival map computed with FMM. (C) The resulting path using the FM2 method. (D) The time of arrival map obtained with FM2.

the cells corresponding to free space are labeled in white (a
1 value).

2. The first time the FMM is applied over the binary map, each
cell labeled as an obstacle is used as wave source, expanding
several waves at the same time. The resulting value of each
cell in the map indicates the time the wave needs to reach the
closest obstacle, therefore, it is proportional to the distance
from obstacles since the wave moves at a constant speed
in the whole map. Reversing the meaning of these values,
they can be interpreted as the speed of the vehicle (and the
speed of the wave expansion). This way, the resulting map is
understood as the maximum admissible speed at each point
of the environment, so that if the autonomous ship is near
to obstacles, the admissible speed is lower than when is away
from the obstacles. Finally, the speed values are rescaled to fix
a maximum cell value of 1.

3. Then, the FMM is applied again over the environment. This
time, the robot’s goal point is used as wave source (a unique
wave source to ensure one global minimum). The wave is
expanded over the map until the initial point of the vehicle
is reached. At each cell in the environment, the speed at which
the wave expands is taken from the map computed in the

previous step. It is important to keep in mind that this speed
is lower the closer the vehicle (wave) is to obstacles. Figure 3D
shows the time of arrival map resulting of this process.

4. Finally, gradient descent is applied over the time of arrival map

from the starting point of the ship, and moving toward its goal
point (the global minimum of the resulting map), obtaining

the optimal path in terms of time of arrival, smoothness and
safety, as shown in Figure 3C.

It is important to note that, when using this method in a real
autonomous vehicle, the user must be aware of two critical
aspects. First, the resolution used to model the environment

where the robot moves. Since FMM is a grid based method, the
higher resolution used, the better model of the environment and

movement of the vehicle, at the cost of computational time, as
shown in Gómez et al. (2019). Second, the user should consider
the cells of value equal to 1 in the speed map as the maximum
speed the vehicle is able to use (or the user wants to consider).

Next, some interesting modifications of the speed map,
which allow to achieve different behaviors of the wave
expansion (and therefore the computed paths) are going to
be explained.
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FIGURE 4 | Different speed maps and paths obtained by modifying α- and β-values. In (A), the original map is shown with the path computed using the basic FMM

method. In (B–D), the velocity maps computed with β = 1 for all images, and α = 1, α = 1.2, α = 0.4, respectively.

FIGURE 5 | Fast marching expansion wave with a rectangular obstacle in the

middle. The upper part of the environment is subjected to a unitary vector field

pointing to the right. In the lower part, the field points to the left.

2.2.1. The Flexibility of the Speed Map in FM2

Although the paths generated by the FM2 are good in terms of
safety and smoothness, those paths can often be improved in
terms of the traversed distance. For this reason, an adjustment
parameter, α, that modifies the speed map to improve the
planned path is proposed.

To perform the adjustment, each cell of the speed map, Fij, is
raised to the power indicated by this parameter as in:

newFij = Fα
ij (10)

When the value of α is lower than 1, the values in the speed map
increase causing a lightening of the cells, which allows the wave
expansion to use larger speeds. This causes the path to traverse
the map closer to the obstacles. On the contrary, if the value is
larger than 1, the cells are darkened causing paths stay further
away from the obstacles.

Besides, it is commonly interesting to saturate the values in
the speed map. For this reason, a value β is defined in the range

of 0 and 1. The saturation is performed as follows: every cell in
the speed map, Fij, with a greater value than β is set to one. Since
the speed map is a distance function, this means that the wave
moves at the maximum speed in all the cells in the map whose
distance to the closest obstacle is greater than β . Therefore, the
value of this parameter depends on the deceleration capabilities
of the vehicles in use.

Figure 4 illustrates the effect of modifying α and β values. In
Figure 4A, the original map is shown with the path computed
using the basic FMM method, the start and end points are
marked with a red and purple point, respectively. Figures 4B–D
show the velocity map computed with β = 1 for all images,
and α = 1, α = 1.2, α = 0.4, respectively. The resulting
path is shown as a blue line. It is possible to appreciate that a
value of α larger than 1 makes the velocity map to have greater
values (darker in the image) which provoke the path to move
farther from obstacles. On the other hand, when α is lower
than 1, velocity values increase, allowing higher velocities around
obstacles. Besides, for all cases, a second path is drawn using a
dashed green line. This is the result of applying values β = 0.7,
β = 0.8, β = 0.5, respectively. In all cases, the saturation value
allows the path to move closer to obstacles, thus, reducing the
path length at the cost of increasing the risk.

3. FAST MARCHING METHOD SUBJECTED
TO A VECTOR FIELD (FMVF)

The methodologies explained in the previous sections share
a common key characteristic, in all cases the expansion of
the wave deals with scalar speed values. However, there are
situations in which a vector speed function may better reflect
the environmental conditions in the path planning process. For
example, in Garrido et al. (2016), a vector field is used to model
outdoors characteristics interesting in mobile robotics, such as
slopes or landslides.

In order to represent the movement of a ship in the water it
is necessary to, not only take into account its direction, but also
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FIGURE 6 | Comparison of the trajectories for different upwards and downwards tides. (A) Represents the function used to model the effect of tides in the estuary,

which point toward the ocean. (B,C) Show different paths obtained with FMFV when tides point upwards, and downwards, respectively.

FIGURE 7 | FM2 trajectory followed by the model of a USV.

the effect of several vector variables such as wind flow or water
currents. Mathematically, this can be done by computing a new
cost function as in:

Fij = Fscal_ij + Fvect_ij (11)

where Fscal_ij represents the influence of the scalar cost map and
Fvect_ij represents the external vector fields. Fvect_ij is computed as
the sum of external vector fields that affect the process. In the case
of a ship, wind, tides and marine currents.

In Figure 5, the effect of an external vector field on a wave
propagation calculated by the FastMarchingMethod subjected to
a Vector Field (FMVF) is shown. Note that there is a rectangular
obstacle in the middle shown, in black color, where the wave
collapses. It is easy to appreciate how the wave propagates faster
in the area where the vector field points in the same direction as
the expansion of the wave (upper part of the image).

It is important to note that the authors in Petres et al. (2005)
and Petres et al. (2007) treated this subject previously. In these
works, a normalization of the magnitude of the external vector
field is performed without taking into account the magnitude
of the scalar cost function. This makes a vector field with an
intensity of 1 to have the same effect on the final path than
one with an intensity of 10, minimizing the real influence of
the external field. However, in this work, the function that is
normalized is the total cost function:

f̃ = fdif + fvect (12)

where fdif is the cost function due to the distance to the obstacles
in the environment converted into a vector field by:

fdif = 1− Fij (13)

This way, the influence of the vector field over the velocity of
the vehicle depends on their magnitude as well as on the angle
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between them, i.e., it depends on scalar product, and therefore
the fvect can be defined as:

fvect(i, j) = 1−
〈

∇Ti,j · EFi,j
〉

(14)

Physically, this is equivalent to say that a force favors the ship
when both external vector field and vehicle are pointing to the
same direction.

It is very important to remind that the new cost function
defined in Equation (12) must always be positive, because in the
methods based on FMM the wave-front cannot move backwards.
More details on the algorithm can be consulted in Petres et al.
(2005, 2007).

The next set of tests have been performed over a map of the
Tagus River estuary, in the so-called Mar da Palha, in the city
of Lisbon, Figure 6. In image A, the resultant wave expansion
as a function of arrival time can be seen. Colors vary from dark
blue for smaller to yellow for larger arrival time. This function
is used to model the effect of tides in the estuary, which point
toward the ocean (toward the dark blue area), inverting the
sign makes the tides point in the opposite direction. In images
B and C, different paths obtained with FMFV are shown. In
Figure 6B the tides point upwards, while in Figure 6C tides point
downwards, tides in both cases are identical in magnitude but
in opposite direction. An example computed for a case in which
the current is very close to zero, that is, the surface of the water
is almost stationary, is shown in blue, which is used to analyze
the influence of the introduction of a vector field of external
forces. The magnitude of the currents is increased by a 5% from
the yellow to the red test. It is clear that when the tide pushes
either upwards or downwards, the calculated trajectories move
away in comparison to the base trajectory (the blue one), since
the vehicle undergoes a force that tends to take it away from the
base path.

4. PATH FOLLOWING AND OBSTACLE
AVOIDANCE USING FAST MARCHING
BASED METHODS

In order to prove the smoothness of the paths computed with
FMM basedmethods, amodel of a real ship has been used to track
them using a pure-pursuit method. The model uses a real-time
control method for unmanned surface vehicles (USVs) based on
Chaos et al. (2009).

Figure 7 shows the trajectory of a ship in the Atazar reservoir.
Once the trajectory is computed with FM2, the path is followed
by the model using the pure-pursuit method. The control loop
uses the orientation error to compute the rudder angle that
best follows the path, then, pure-pursuit is used to calculate
the velocity of the ship taking into account the speed function
of FM2. As shown in Figure 7, the calculated trajectory drawn
in red, coincides with the poses of the ship reached using the
simulated model.

In addition, it is commonly interesting for robots to be able
to avoid obstacles while tracking their paths. Let us suppose
that a mobile object is detected by the sensors in a ship (e.g.,

a LIDAR sensor) covering the path computed with FM2. Also,
let us define a region of influence (roi) around the ship covering
the path. This area indicates the space in which any obstacle can
cause a collision. Using this information, the method uses a cyclic
execution described in Algorithm 2. First, a path from the start
to the end point is obtained using FM2. Then, pure pursuit is
used to follow the path toward the next intermediate goal point.
Next, if the end point is not reached, the roi is checked looking
for mobile obstacles. When no mobile obstacle is detected, the
path following continues with the original plan. However, when
a mobile object is detected in this area, the previously computed
path is no longer valid. In order to modify it, the velocity
map is updated including the mobile object as a new obstacle,
following the method explained in Garrido et al. (2013). The
base of this update is to include a mobile obstacle location as an
area with zero velocity (black in the velocity definition) which
forces the wave expansion to avoid it. Since the velocity map is
updated, a new path is computed (Second Potential). Therefore,
the resulting new path avoids the mobile obstacle considering it
as a static one during one control cycle.

Algorithm 2: Path Following and Obstacle Avoidance

1: procedure FOLLOW_PATH(X, xg , xa, xobs, roi)
Require: A grid binary map X of sizem× n, goal point xg , robot

actual position xa, location of obstacles at every iterations
xobs, region of interest around the ship roi.
First Potential.

2: vel = obtain_velocity_function(X)
Second Potential.

3: T = compute_FM2(xg , vel)
4: path = compute_path(x0,T)

Path Following.
5: rudder_angle = compute_angle(x0, path)
6: xa = pure_pursuit(xa, rudder_angle, vel)
7: while xa 6= xg do

8: if xobs_a+1 ⊂ roi ∧ xobs_a+1 6= xobs_a then

9: vel = update_velocity_function(vel, xobs_a+1)
10: goto Second Potential
11: else

12: goto Path Following
13:

Figure 8 shows a sequence (top to bottom) of how a ship
avoids another ship that acts as a mobile obstacle interfering its
trajectory. The different columns show the process using different
maps. In column A, a satellite image of the Atazar reservoir is
used to draw the ships and the path at each moment. In column
B, the inclusion of the obstacle in the speed map is shown. The
point where the obstacle is detected is modeled as an obstacle
(dark blue in the example) and the allowed speed around this
obstacle increases slowly, as happens around every static obstacle
in the map. In column C, on the right, the ship which follows
the computed path and its area of influence (a green circle)
are shown.
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FIGURE 8 | FM2 trajectory and path followed by the model of the ship avoiding the smaller ship moving from the left-upper corner. In (A1–A3) the sequence is shown

on a satellite image of the reservoir. In (B1–B3) the mobile obstacle is included in the speed map as a circle. In (C1–C3) the ship following the path, its area of

influence and the mobile obstacles are shown.

In the first row of Figure 8, the original computed path taking
into account only static obstacles is shown, together with the
area of influence of the ship at the starting position. In the
second row, the mobile obstacle is detected on the left side of
the ship and, therefore, included as a new obstacle. Because of
this change, the updated path avoids this area turning to the
right. Finally, in the third row, although the obstacle is still in

the area of influence, the ship can follow its path toward the
goal safely.

5. ROBOT FORMATIONS

The algorithm described next is an extension of previous works.
Firstly, in Garrido et al. (2013), the use of FM2 to control a
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robot formation in 2D environments was presented. Then, its
usage with unmanned aerial vehicles (UAVs) was treated in
Alvarez et al. (2014). In this section, its adaptation to marine-like
environments will be explained.

The algorithm for controlling the robot formation is based on
a leader-followers scheme. The leader can be a robot or even a
virtual leader. Using the leader as a reference, the poses for the
follower robots are defined by geometric equations to form the
shape of the formation. Therefore, the goal poses of each follower
along the path are a function of the leader’s pose.

In the proposed solution, the path of the leader is computed
without taking into account the other robots in the formation.
This may cause the followers to move too close to obstacles
or even collide with them. In order to avoid these situations,
a shape deformation scheme based on the two-level artificial
potential of FM2 can be used to calculate goal references to
the followers during leader’s navigation, as in reactive following.
The main idea is to integrate an attracting potential toward the
references of the formation (using the arrival time function)
and a repelling potential from obstacles and other robots
(the velocity/distances map).

Figure 9 shows an example of the use of the algorithm
on a triangle-shaped robot formation. A 2D shape is used
because it is easier to understand the behavior of the followers
to avoid colliding with obstacles and among themselves. In
Figure 9A, the main components of the robot formation are
defined. In Figure 9B, the geometric definition of a triangle-
shaped formation is presented, note that the tangential and
perpendicular vectors of the leader’s path are used as a reference.
In Figure 9C, the goals of the followers adapt to the path of
the leader’s orientation. In Figure 9D, the use of the repelling
potential to change the follower’s partial goal and avoid obstacles
in the environment is shown.

Algorithm 3 explains the integration of the control of
the shape of the formation while covering the path. In the
initialization (lines 2 to 7), the path for the leader is computed
using FM2. Then, the formation covers the path in a control loop
in which: first, the leader tracks its path (lines 9 and 10), then, new
goal poses for all the followers are computed based on formation
geometry (line 12) and closeness to obstacles (line 13). Finally,
paths for the followers are calculated and tracked (lines 14 to 17).
The control loop ends when the leader reaches its goal.

Figure 10 shows the use of this method in marine-like
environments. The formation uses a pyramid shape with a
squared base, the followers are located in the corners of the
square. The leader and the followers are submarines. The
numbers in the axis are related to the voxelization of the
environment. In the default shape, the formation is oriented
so that two submarines are located in the same vertical line
(up and down) and the other two are located in the same
horizontal line (right and left). The deformation function used
allows each corner of the shape to shrink the base toward its
center proportionally to the closeness to obstacles (as indicated
in the velocity map). The maximum allowed deformation is
a 70% of the total distance, to avoid collisions within the
formation. The part of the path the leader has already covered
is shown in red, while the part that is yet to be covered is

Algorithm 3: Robot Formation Control based on FMM

1: procedure ROBOT_FORMATION_CONTROL(X, xg , xla, xobs)
Require: A grid binary map X of size m × n, goal point xlg for

the leader of the formation, leader actual position xla.
First Potential.

2: vell = obtain_velocity_function(X)
Second Potential.

3: Tl = compute_FM2(xg , vell)
4: pathl = compute_path(xla,Tl)
5: for all k followers in formation do

6: xpg_k = formation_geometry(xla, velk)
7: end for

8: while xla 6= xlg do

9: rudder_angle_l = compute_angle(xla, pathl)
10: xla = pure_pursuit(xla, rudder_angle, vel)
11: for all k followers in formation do

12: xpg_k = formation_geometry(xla, velk)
13: xpg_k = update_partial_goal(velk, xpg_k)

14: Tk = compute_FM2(xpg_k, velk)
15: pathk = compute_path(xka,Tk)
16: rudder_angle_k = compute_angle(xka, pathk)
17: xka = pure_pursuit(xka, rudder_anglek, velk)
18: end for

19: end while

shown in blue. The geometry of the formation is shown in
green. The past poses of the follower robots are shown as
small dots.

The path of the leader traverses the environment over the
valley formed by two peaks. Figure 10A shows the formation in
the firsts steps of the movement. Note that the follower moving
close to the bottom of the sea shrinks its position correcting its
height. In Figures 10B,C, when the formation approaches and
traverses the area around the peaks, all the followers except the
upper one need to shrink toward the center. These deformations
are provoked because the velocity map in the areas the followers
traverse have velocity values close to zero, indicating that an
obstacle is near. Therefore, the square based in shrunk to
increase the security of the path. In Figure 10D, the followers
are farther from obstacles and therefore enlarge the base of
the pyramid.

Figure 11 shows the distance of the leader and the followers
to the closest obstacle in the environment at every step of the
algorithm. The distance is measured in voxels, so the real distance
depends on the discretization used. Note how the distances are
smaller in the central part of the path, in which the robots
move between the peaks. Besides, the average deformation of the
followers (also measured in voxels) is shown as a dashed line.
Note that the deformation is larger when the distance to the
obstacles is smaller.

6. CONCLUSIONS

In this paper, the use of the Fast Marching Method for
marine-like environments is presented. Based on FMM, different
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FIGURE 9 | (A) Main components of the robot formation algorithm. (B) Reference geometric definition of a simple, triangle-shaped robot formation, note that the

definition is based on vectors u and v (tangential and perpendicular to the path, respectively). (C) Behavior of the partial goals depending on the leader’s pose. (D)

Behavior of the partial goals depending on the obstacles in the environment.

FIGURE 10 | Example of a formation of submarines with a pyramid shape. (A) Shows the formation in the first steps of the movement. (B,C) Show the iterations

when the formation traverses the area around the peaks. (D) Shows the formation approaching the goal point.
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FIGURE 11 | Distance of the leader and the followers to the closest obstacle in the environment at every step of the algorithm. Besides, the average deformation of

the followers is shown as a dashed line.

versions of the wave expansion and path planning solutions are
introduced, explaining the specific characteristics of eachmethod
and solutions, whichmay help a user to decide which FMMbased
method fits a particular application.

Besides, the usage of FMM based methods on real-time
path following, obstacle avoidance and formation control
are presented. On every section, simulated paths over
digital environments are shown in order to appreciate
the differences introduced by the proposed changes on
the basic FMM. It is important to note that any of the
explained FMM-like methods may be used to implement
these applications. However, formation control has not yet
been tested with the FMFV method, which is one the main
future works.

Besides, future work will also focus on improving the models
of the mobiles obstacles by using directional models and on
extracting numerical results the safety provided by FMM-like
path planning algorithms and the usage of robot formations in
marine-like environments. Also, the implementation of these
algorithms in a real autonomous marine vehicle is an important
future work.
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Underwater robots are nowadays employed for many different applications; during the

last decades, a wide variety of robotic vehicles have been developed by both companies

and research institutes, different in shape, size, navigation system, and payload. While

the market needs to constitute the real benchmark for commercial vehicles, novel

approaches developed during research projects represent the standard for academia

and research bodies. An interesting opportunity for the performance comparison of

autonomous vehicles lies in robotics competitions, which serve as an useful testbed for

state-of-the-art underwater technologies and a chance for the constructive evaluation

of strengths and weaknesses of the participating platforms. In this framework, over the

last few years, the Department of Industrial Engineering of the University of Florence

participated in multiple robotics competitions, employing different vehicles. In particular,

in September 2017 the team from the University of Florence took part in the European

Robotics League Emergency Robots competition held in Piombino (Italy) using FeelHippo

AUV, a compact and lightweight Autonomous Underwater Vehicle (AUV). Despite its size,

FeelHippo AUV possesses a complete navigation system, able to offer good navigation

accuracy, and diverse payload acquisition and analysis capabilities. This paper reports

the main field results obtained by the team during the competition, with the aim of

showing how it is possible to achieve satisfying performance (in terms of both navigation

precision and payload data acquisition and processing) even with small-size vehicles

such as FeelHippo AUV.

Keywords: underwater robots, autonomous underwater vehicle, robotics competitions, autonomous navigation,

acoustic mosaicing

1. INTRODUCTION

Unmanned underwater vehicles, both teleoperated and autonomous, are nowadays employed for
many applications, effectively helping human operators performing a wide variety of tasks (or
even replacing them during their execution) (CADDY, Mišković et al., 2016). Underwater vehicles
come in different shapes and sizes: from those with a length of several meters and a weight of
hundreds of kilograms (e.g., Rigaud, 2007; Furlong et al., 2012; Kaiser et al., 2016) to the more
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compact and lightweight (for instance Hiller et al., 2012; Crowell,
2013; McCarter et al., 2014). While bigger vehicles naturally
allow the use of more complex instrumentation and possess the
ability to store heavy payload, smaller vehicles are commonly
associated with lower performance and limited payload carrying
capabilities. Hence, one of the current challenges that designers
of small vehicles need to face consists in the optimization of the
available space on board.

In this framework, the Mechatronics and Dynamic Modeling
Laboratory (MDM Lab) of the Department of Industrial
Engineering of the University of Florence (UNIFI DIEF) has
been active in the field of underwater robotics since 2011,
participating in different robotics-related research projects and
developing and building several AUVs since then. Furthermore,
throughout the years, UNIFI DIEF took part in multiple student
and non-student robotics competitions. A team from UNIFI
DIEF (UNIFI Team) took part in the Student Autonomous
Underwater Vehicles Challenge - Europe (SAUC-E) Ferri
et al. (2015) competition in 2012, 2013, and 2016, while in
2015 the team participated in euRathlon (Ferri et al., 2016);
finally, it took part in the European Robotics Leaugue (ERL)
Emergency Robots competition in September 2017 (Ferri et al.,
2017).

This paper reports the field experience of the UNIFI Team
at ERL Emergency Robots 2017, held in Piombino (Italy), from
the 15th to the 23rd of September. During the nine competition
days, the robots of the participating teams competed in a set of
tasks in the land, air, and sea domains. This paper focuses on
the results obtained in the sea domain with FeelHippo AUV:
in particular, it will be shown how such vehicle, despite its
small size, possesses a complete navigation system capable of
offering satisfying accuracy while autonomously navigating; at
the same time, it will be demonstrated how the diverse payload
the vehicle is equipped with can be exploited for different
purposes. In other words, the mechatronics design has been
conceived to be a suitable trade-off between portability and
high performance.

Other AUVs used in student robotics competitions can be
found for example in Fietz et al. (2014) and Carreras et al.
(2018) (the winner of ERL Emergency Robots 2017). The
remainder of the paper is organized as follows: section 2 and
section 3 are dedicated to the description of FeelHippo AUV;
while the former focuses on the mechanical design of the
vehicle and on the onboard devices, the latter describes its
software architecture, giving an overview of its navigation system
and describing some of its payload analysis and processing
capabilities. Section 4 reports the most significant results
obtained during the competition, and section 5 concludes
the paper.

2. FEELHIPPO AUV: DESCRIPTION

FeelHippo AUV has been designed and developed specifically for
the participation in student robotics competitions; it has been
used by a team of UNIFI DIEF during SAUC-E 2013, euRathlon
2015, and ERL Emergency Robots in 2017.

In addition to student competitions, FeelHippo AUV has
been used for short navigation missions, mainly in shallow
waters, from 2015 onward. Thanks to the sensors added
for the competition, the level of performance achieved was
satisfying; hence, it was decided to incorporate such devices
within the standard equipment of the vehicle. From early to
mid 2017, FeelHippo AUV underwent a major overhaul, in
terms of both mechanical components (identifying those parts
and subsystems that could be redesigned to increase overall
functionality) and navigation sensors (permanent integration of
new instrumentation required indeed a general revision of the
electronics of the vehicle, in order to optimize the occupied
volume). In particular, the old oil-filled thrusters were replaced
in favor of thrusters manufactured by BlueRobotics and tailored
to underwater applications. In addition to this, a new DVL by
Nortek has been placed under the center of gravity of the vehicle.
Formerly, it was positioned in the stern. As a consequence, the
stability of the vehicle is increased. More information concerning
the payload can be found in the following. In its current version
(as of end 2017, Figure 1), FeelHippo AUV can be efficiently used
as a small survey and inspection AUV, suitable for use in present
and future research projects or, generally speaking, autonomous
sea operations.

The main characteristics of the vehicle are reported in
Table 1; the reduced dimensions and weight, together
with the convenient handles visible in Figure 1, allow
for easy transportation and deployment (no more than
two people are required, and even deployment from shore
is possible).

FIGURE 1 | FeelHippo AUV, 2017 version.

TABLE 1 | FeelHippo AUV physical data and performance.

FeelHippo AUV main characteristics

Dimensions [mm] ∼600×640×500

Mass [kg] 35

Max longitudinal speed [m/s] (kn) ∼1 (2)

Max depth [m] 35

Autonomy [h] 2–3
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The central body of FeelHippo AUV is composed of a
Plexiglass R© hull with an internal diameter of 200 and 5 mm
thickness, which houses all the non-watertight hardware and
electronics. Two metal flanges constitute the connection between
the central body and the Plexiglass R© domes at each end of
the main hull, and two O-rings ensure a watertight connection
between the former and the domes.

Four thrusters in vectored configuration (two on the stern
and two on both lateral sides tilted of 45◦), used to control
translational motion and yaw (limited roll and pitch are
guaranteed by hydrostatic stability), are connected with the
central frame by 3-D printed custom-made plastic parts.
Concerning the internal electronics, all the components are
mounted on two parallel Plexiglass R© planes, placed on linear
guides which facilitate assembly and maintenance operations
(allowing to easily extract internal components from within the
central body of the vehicle). An Intel i-7 Mobile CPU is used
for onboard processing, while the sensor set FeelHippo AUV is
equipped with includes:

• U-blox 7P precision Global Positioning System (GPS);
• Xsens MTi-300 AHRS, composed of triaxial accelerometers,

gyroscopes and magnetometers;
• Nortek DVL1000 Doppler Velocity Log (DVL), measuring

linear velocity and also acting as Depth Sensor (DS). The
device has been placed under the central body of the AUV;
indeed, being such component quite heavy (∼2.7 kg in air),
this choice increases stability in water;

• KVH DSP 1760 single-axis high precision Fiber Optic
Gyroscope (FOG) for a precise measurement of the
vehicle heading.

For what concerns communication, in addition to a WiFi
access point and a radio modem, an EvoLogics S2CR 18/34
acoustic modem is used underwater; in addition, a custom-made
antenna houses four rows of RGB LEDs, used for easy optical

communication of the state of the vehicle (e.g., low battery,
acquisition of the GPS fix, mission start) while the former is on
surface. Regarding payload, the following devices are currently
mounted on the vehicle:

• One Microsoft Lifecam Cinema forward-looking camera,
which also allows teleoperated guide;

• One bottom-looking ELP 720p MINI IP camera;
• Two lateral ELP 1080p MINI IP cameras, used for

stereo vision;
• One Teledyne BlueView M900 2D Forward-Looking

SONAR (FLS).

A scheme of the connections (logical and physical) among
the components of the vehicle is reported in Figure 2. Despite
its reduced size, FeelHippo AUV is able to equip diverse
payload, both optical and acoustical. Furthermore, thanks to
its particular structure, additional small devices (such as, e.g.,
supplementary cameras or LED illuminators) can be added to
the main body of the vehicle with ease. More information about
FeelHippo AUV versions from 2013 to 2017 can be found in
Fanelli (2019), whereas more recent versions are described in
Franchi et al. (2019). A comparison (in terms of dimensions and
weight) with other competitors is reported in Table 2.

TABLE 2 | FeelHippo AUV compared with other AUVs present on the market.

AUV model Dimensions (mm), weight (kg)

FeelHippo AUV 600 × 640 × 500, 35

Remus 100 (Kongsberg) 1,700 × 190, 37

Sparus II (IQUA Robotics) 1,600 × 230, 52

LAUV (OceanScan-Marine

Systems Technology)

150 × 2,300, 35

The competitors are torpedo-shape vehicle and the dimensions are diameter×length.

FIGURE 2 | FeelHippo AUV connections scheme.
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With the aim of highlighting the compactness of FeelHippo
AUV, its physical data are compared with other AUVs present on
the market.

3. FEELHIPPO AUV: SOFTWARE
ARCHITECTURE

The software architecture is modular with independent processes
that share information through an adapted TCP/IP protocol
called Transmission Control Protocol for Robot Operating
System (TCPROS) (Amaran et al., 2015; ROS). In section 3.1 a
quick overview of the Guidance, Navigation, and Control (GNC)
system is depicted, whereas in section 3.2 how tomanage acoustic
payload is described.

3.1. FeelHippo AUV: Guidance, Navigation,
and Control System
Thanks to the available navigation sensors on board, introduced
in section 2, FeelHippo AUV is capable of successfully
performing autonomous navigation missions for the full extent
of its battery charge without the need to resurface: thanks to a
careful mechanical design, the vehicle is able to house position,
depth, inertial, magnetic field, and velocity sensors inside its main
body, thus disposing of a complete navigation system used to
compute the pose of the AUV in real-time. Additionally, thanks
to the presence of an acoustic modem, the vehicle is able to
receive acoustic position fixes sent by dedicated instrumentation
(e.g., Long, Short, or Ultra-Short BaseLine systems), which can
be integrated within its GNC system and exploited to correct
the pose estimated on board while underwater (or in any GPS-
denied scenario).

The navigation filter of FeelHippo AUV is the same as the
one of the others AUVs of the MDM Lab, exploiting all the
features developed at the University of Florence during past and
present research projects; hence, this section only briefly reviews
the core concepts.

The navigation system is used to determine an accurate
estimate of the pose of the vehicle with respect to a local Earth-
fixed reference frame whose axes point, respectively, North,
East, and Down (NED frame). Resorting to the classic notation
exploited to describe the motion of underwater vehicles (Fossen
et al., 1994), such quantity is denoted with η =

[

η1 η2
]′
, where

η1 indicates the position of the AUV, and η2 its orientation
(exploiting a triplet of Euler angles; roll, pitch, and yaw are used
in this context). Additionally, let us denote with ν = [ν1 ν2]

′ the
velocity (linear and angular) of the vehicle with respect to a body-
fixed reference frame, and with τ ∈ R

6 the vector of forces and
moments acting on the AUV.

A parallel structure has been chosen (refer to Figure 3):
attitude is independently estimated using IMU, compass, and
FOG data, and constitutes an input that is fed to the position
estimation filter. In particular, the attitude estimation filter is
based on the nonlinear observer proposed in Mahony et al.
(2008), whose principle is to integrate angular rate changes
measured by gyroscopes and correcting the obtained values
exploiting accelerometers and magnetometers. The structure of

FIGURE 3 | FeelHippo AUV navigation filter block scheme.

the original filter proposed in Mahony et al. (2008) has then been
suitably modified in order to better adapt it to the underwater
field of application (Allotta et al., 2015; Costanzi et al., 2016);
in particular, a real-time strategy to detect external magnetic
disturbances (which would detrimentally affect the yaw estimate)
has been developed in order to maintain the accuracy of the
computed estimate in a wide variety of possible environmental
conditions, promptly discarding corrupted compass reading, and
relying on the high precision single-axis FOG.

For what concerns position estimation, in addition to being
able to navigate in dead reckoning (which has proven to be
satisfyingly reliable despite its straightforward philosophy if the
adopted sensors are sufficiently accurate), the vehicle can resort
to an Unscented Kalman Filter (UKF)-based estimator. Such
filter makes use of a mixed kinematic/dynamic vehicle model (so
as to capture more information about the evolution of the system
with respect to a purely kinematic model, but at the same time
offering a reduced burden on the processing unit of the vehicle
with respect to a complete dynamic model), taking into account
longitudinal dynamics only (the majority of torpedo-shape AUV
motion takes place on the direction of forward motion, since it
usually constitutes the direction of minimal resistance).

The reader can refer to Allotta et al. (2016), Caiti et al. (2018),
and Costanzi et al. (2018) for more details.

3.2. Payload Acquisition and Processing
Object detection and mapping is a typical problem in the
underwater domain. Research on this topic is crucial for both
AUVs and Remotely Operated Vehicles (ROVs), permitting them
to understand their surroundings. Unfortunately, different and a
priori unknown scenarios, which affect the robot-environment
interaction, need to be faced. Poor visibility conditions in murky
and turbid waters can compromise the operations of optical
devices. To overcome the above-mentioned issues, FeelHippo
AUV presents, as stated in section 2, a FLS. In the first part of
the section, an acoustic-based buoy detection algorithm with a
reinforcement that exploits the known geometric dimensions of
a static target is proposed.
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3.2.1. FLS-Based Buoy Detection
The main concepts behind the algorithm are outlined:

• The acoustic video is acquired by one Teledyne BlueView
M900 2D FLS and then it is real-time separated into a sequence
of 8-bit grayscale images;

• Each frame is blurred with a Gaussian filter, leading to a
smoother image.

• In order to detect high-reflection areas, which are likely to
belong to a target object rather than to reverberation caused
by the clutter, a direct binary threshold is applied to all the
acoustic images. Let us define the source image as src, the
destination image (namely the one after the binary threshold
application) as dst and the threshold value threshold ∈ [0, 255].
Note that the interval limits depend on the depth of the image.
As mentioned above, 8-bit grayscale images are considered;

• Each frame is modified by means of morphological dilations.
Because of the environmental disturbances, some speckle
areas, which do not belong to any buoy, can take place.
Morphological operationsmake these areas to coalesce, so they
can be easily ignored, avoiding false-positive detections. The
situation is clearly visible in Figure 4 where high-reflection
areas are due to the bubbles in front of the vehicle.

• At this point, several white colored bounded sets are
present. Geometric boolean requirements need to be met
to distinguish buoy-like objects from the background. The
main assumption behind the proposed method lies in the
knowledge (even rough) of the shape and dimension of the
target to detect. On the one hand, our technique exploits
simple geometric conditions; on the other hand, targets
that resemble elementary geometric shapes are meant to be
identified (circles, ellipses, rectangles). Commonly, typical
buoys fall inside the scope of applicability of the proposed
algorithm, which appears as a good trade-off. Four geometric
properties that lead to four boolean conditions are considered
and it is worth highlighting that all the requirements need to

be met. First of all, the area of all the bounded sets is checked.
If it is between a minimum (amin) and a maximum (AMAX)
value, the condition is verified. The goal is trivial: ignore too
small or too big regions. Second of all, the circularity, which
is defined below, is investigated. If it is between a minimum
and amaximum value, the condition is confirmed. Its meaning
lies in understanding how much the bounded sets resemble
a circle. Obviously, ellipticity is taken into account when
circularity is different from one.

Circularity =
4πA

P2
, (1)

where A is the area of the bounded set and P its perimeter.
Afterwards, the convexity, defined as the ratio between the
area of the set and the area of its convex hull (the smallest
convex set that contains the original set), is checked. Another
go/no go condition is applied.

Convexity =
A

Ach
, (2)

where A is the area of the bounded set and Ach is the area of
the convex hull. It is easy to understand that convexity ∈ (0, 1].

Lastly, the inertia ratio, which is defined in Equation (3)
is verified. The goal is trivial: detect whether the object is
elongated along a particular direction. Note that the moments
of inertia are calculated with respect to the center of mass of
the set.

IR =
Imax

Imin
, (3)

where Imax and Imin are respectively the maximum and the
minimummoment of inertia (the inertia along the principal axes)
and IR ∈ R

+.

FIGURE 4 | The image acquired by the FLS on top (note the bubbles in front of the vehicle that create a strong acoustic echo, see the white area). The binary threshold

down on the left, whereas the latter is morphological dilated on the right. The red circles are the speckle areas and the green ones the subsequent aggregation.
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Unfortunately, as stated by Hurtós et al. (2015), FLS imagery
are affected by low Signal-to-Noise Ratio (SNR), poor resolution
and intensity modifications that depends upon viewpoint
variations, so some false positive detections might arise anyway.

Assuming a static target (very often a buoy falls inside this
class), a position-based clustering algorithm with the aim of
removing false positives, can be exploited. If several detections
are accumulated around a small region, then what is insonified by
the FLS has high probability to be the buoy. In other words, the
presence of spurious noise and mobile objects (e.g., fish) can be
managed by the proposed technique, leading to a robust solution.
The key idea exploits the solution proposed in Ester et al.
(1996) where, basically, elements with many nearby neighbors
are grouped together, whereas points that lie too far from their
closest neighbors are classified as outliers.

To locate the exact position of the detected targets, starting
from the known position of the vehicle, an imaging geometry
model needs to be defined and the reader can refer to Franchi
et al. (2018) for more information. In few words, exploiting
the work of Johannsson et al. (2010), Ferreira et al. (2014),
Hurtós et al. (2015), and Walter (2008), a simplified linear
model, where the FLS can be treated as an orthographic camera,
is adopted.

4. ERL EMERGENCY ROBOTS 2017
EXPERIMENTAL RESULTS

This section reports some of the results obtained during the
robotics competition ERL Emergency Robots 2017, held in
Piombino (Italy) in September 2017. In particular, the data
shown here refer to multiple autonomous missions performed
by FeelHippo AUV during the sea domain trials throughout the
competition [refer to Ferri et al. (2017) for more details about the
challenge]. Robots were asked to act in the following (recreated)
catastrophic scenario: after an earthquake and a tsunami hit
the shoreline area where a nuclear plant is located, evacuation
procedures are issued; however, several people working at the
plant are missing. Additionally, the premises have suffered
damages of relevant intensity, with their lower sections flooded;
furthermore, several pipes of the plant (both on land an
underwater) are leaking radioactive material. Concerning the
sea domain, the area of interest was constituted by a rectangular
arena∼50× 50 m wide. Beyond a starting gate, composed of two
submerged buoys, lied the area of interest where an underwater
plastic pipe assembly represented the (flooded) lower section of
the plant. Obviously, no substance was actually leaking; a set
of five numbered underwater buoys was used to represent the
leaking fluid plume (leading to a particular component of the
pipe assembly, where a specificmarker represented the breakage).
In addition, several objects anchored on the seabed (e.g., tables
and chairs) indicated a debris area where it was likely to find the
body (i.e., a mannequin dressed in easy visible orange) of one of
the missing workers. See Figure 5 for a graphical representation
of the arena and of the objects of interest (note that the picture
is not to scale, and the positions of the depicted objects are not
meant to represent actual shapes or dimensions).

FIGURE 5 | ERL Emergency Robots 2017 sea domain arena.

Each participating team was allotted an exclusive time slot in
the arena; from the starting point, the vehicle had to submerge,
pass through the gate (without touching it, and providing optical
or acoustical images of the gate itself), and it was then required to
perform different tasks without resurfacing. Among the different
tasks (but not limited to those mentioned here), each AUV was
asked to inspect and map the area and the objects of interest (e.g.,
the plume, the gate, the underwater pipe assembly, the debris
area) and to identify in real-time the mission targets, such as the
leaking pipe and themissing worker. A specific score based on the
degree of completeness and on the quality of the provided data
(navigation and/or payload data, used to guarantee the veracity
of team’s claims on each submission) was assigned to each task.
Hence, each AUV had to (a) precisely navigate through the arena,
closely following the planned path in order to (b) efficiently
make use of its own payload and payload processing algorithms,
mapping the arena and identifying the objects of interest during
navigation so as to score as much points as possible. In light
of the above-mentioned considerations, this section is divided
into two parts: at first, the focus will be given to the navigation
performance of the vehicle, showing how FeelHippo AUV is
able to follow a desired trajectory without incurring in an
unacceptable position estimation error growth over time; then,
it will be shown how the payload the vehicle is equipped with
can be suitably used to accomplish the goals of the competition.
Despite of the reduced size, its optimized mechatronics design,
indeed leads to a compact but high-functional vehicle.

4.1. Navigation Results
The results reported in this section refer to the mission
performed by FeelHippo AUV during the final trial of the
competition; hence, the path executed by the vehicle was planned
according to the estimated positions of the objects of interest,
evaluated from the in-water runs executed during the previous
days. In particular, after passing through the gate, the vehicle
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FIGURE 6 | On the left, FeelHippo AUV estimated path, whereas on the right focus on the resurfacing position.

FIGURE 7 | The starting gate, the red circles on the target buoys state the

detection.

autonomously performed a lawnmower path with West-East
aligned transects, to cover as much as possible of the area of
interest. Then, a second lawnmower path, perpendicular to the
first, was executed in the northern part of the arena, where
the plume buoys were supposed to be. Two final waypoints
were included in the direction of the debris area in order to
try to identify the objects composing the area itself or even the
mannequin representing the worker.

Figure 6 shows the position estimate computed by FeelHippo
AUV during the execution of the autonomous mission. The
first waypoint (the starting point of Figure 5) was located at
42.954164◦ N, 10.6018952◦ E; the task was executed at the desired
depth of 1 m (except for the last two waypoints, located at the
depth of 3.5 m), with a desired longitudinal speed of 0.5 m/s and
a covered path of about 240 m. The discontinuity visible in the
lower-right corner of Figure 6 is due to the error between the
path estimated onboard the vehicle while navigating underwater
and the GPS fix acquired after resurfacing. Indeed, such error is
<1 m after about 21 min of navigation (or, equivalently, <1% of
the total length of the path), highlighting the satisfying accuracy
of the navigation system of the vehicle: it is worth remembering
that FeelHippo AUV performed the whole underwater mission
autonomously, without resurfacing; communication from the

FIGURE 8 | The acoustic detection of the starting gate with the aid of the

clustering algorithm.

ground control station to the vehicle (exceptionmade for mission
starts and possible emergency aborts) was specifically forbidden
by the competition rules.

4.2. Payload Processing Results
FeelHippo AUV was asked to autonomously (and possibly real-
time) find the seven buoys located in the sea domain arena, see
Figure 5. Their physical characteristics in terms of color (orange),
shape (approximately spherical) and dimensions (radius around
0.3 m) were a priori known.

While FeelHippo AUV was performing the path described in
section 4.1, the buoys detection took place. The starting gate,
composed of two buoys, is visible in Figure 7, whereas the result
of the proposed solution is depicted in Figure 8. In the former,
the rubber boat where the judges monitored the course of the
competition can be noticed on the top-right corner. In the latter,
due to the presence of the rubber boat, false positive detections
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take place (note the red circle). On the other hand, given their
scattered nature, the clustering algorithm is able to handle the
situation. In particular, before applying the clustering algorithm
82 detections take place, where 67 are true positives and 15 false
positives. It is worth highlighting that the detection operation,
as well as the target geolocalization, were conducted in real-time
and any geometric constraints has been exploited for target
detection (for example, the known geometric distance between
the buoys that compose the starting gate).

After the end of the competition, a 2D mosaic of the area
around the structure (see Figures 5, 9), namely an underwater
plastic pipe assembly with the aim of representing the (flooded)
lower section of the plant, was performed. For a detailed
description of the acoustic mosaic formation process, the
interested reader can refer to Franchi et al. (2018). The proposed

FIGURE 9 | The structure placed on the sea bottom (Ferri et al., 2017).

solutions make use of the OpenCV library (OpenCV). To this
end, a new mission, where the FLS was mounted with a small
tilt angle (∼20◦ with respect to the water surface), was executed.
The collected dataset was composed of 72 FLS images recorded
along a 20-meter transect. The maximum FLS range was set
to 10 meters and the FOV of the device was 130◦ (uneditable
by the user). A few FLS frames and the final composite are
reported in Figure 10. In the latter, the covered area is ∼500 m2.
Furthermore, the real dimensions of the underwater structure
(which were a priori known) are in accordance with the size that
can be obtained from Figure 10. Indeed, structure dimensions
are about 2.20 × 3.20 × 1.20 m, whereas the obtained ones are
2.20×3.46 m. More information concerning the conversion from
pixels to meters is presented by the authors in Franchi et al.
(2018).

5. CONCLUSION

The paper shows how FeelHippo AUV, despite its small size,
represents a compact and complete underwater platform, which
can be employed in different application scenarios.

In particular, a reliable and versatile navigation system, able to
perform satisfying accuracies, is shown in section 3.1; indeed, two
navigation approaches (the vehicle can exploit a dead reckoning
strategy as well as a UKF-based solution) that present a relative
error <1% after about 21 min of autonomous navigation are
proposed.

For what concerns the payload acquisition and processing, an
acoustic-based object detection algorithm (in our case, applied to
underwater buoys) is treated in section 3.2.1, where substantial
improvements through clustering techniques (usable in presence
of static targets) are presented (Figure 8). Good performance in
terms of detection even with limited visibility ranges are shown
and, in addition, the real-time implementation is proposed.

FIGURE 10 | The 2D mosaic of the underwater structure. On the right, the dimension of the underwater structure (retrieved by means of the mosaic) is reported.
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Lastly, an underwater acoustic mosaic is presented in section
4.2. The presented solution is shown to perform satisfying
2D underwater reconstruction of the order of hundreds of
square meters. Future works will involve machine learning-based
detection techniques and a mixed detection approach that resorts
to a FLS and an optical camera.

The UNIFI Team has been awarded Second-in-Class in “Pipe
inspection and search for search for missing workers (Sea+Air)”
during ERL Emergency Robots 2017.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

MF: algorithm development, experiments, results validation, and
writing. FF: experiments and results validation. MB: experiments
and writing. AR: results validation, writing, and activities
supervision. BA: writing and activities supervision.

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of Mr.
Nicola Palma and Mr. Tommaso Merciai in the development
of the clustering algorithm and the acoustic mosaicing (section
4.2). Moreover, a special thank is addressed to the whole
UNIFI Team.

REFERENCES

Allotta, B., Caiti, A., Costanzi, R., Fanelli, F., Fenucci, D., Meli, E., et al. (2016). A

new auv navigation system exploiting unscented kalman filter. Ocean Eng. 113,

121–132. doi: 10.1016/j.oceaneng.2015.12.058

Allotta, B., Costanzi, R., Fanelli, F., Monni, N., and Ridolfi, A. (2015). Single axis

fog aided attitude estimation algorithm for mobile robots. Mechatronics 30,

158–173. doi: 10.1016/j.mechatronics.2015.06.012

Amaran, M. H., Noh, N. A. M., Rohmad, M. S., and Hashim, H. (2015).

A comparison of lightweight communication protocols in robotic

applications. Proc. Comp. Sci. 76, 400–405. doi: 10.1016/j.procs.2015.

12.318

CADDY (2019). Official Website of the CADDY Project. Available online at: http://

www.caddy-fp7.eu (accessed January 2020).

Caiti, A., Costanzi, R., Fenucci, D., Allotta, B., Fanelli, F., Monni, N., et al. (2018).

“Marine robots in environmental surveys: current developments at isme—

localisation and navigation,” in Marine Robotics and Applications (Springer),

69–86.

Carreras, M., Candela, C., Ribas, D., Palomeras, N., Magií, L., Mallios, A., et al.

(2018). Testing sparus ii auv, an open platform for industrial, scientific and

academic applications. arXiv preprint arXiv:1811.03494.

Costanzi, R., Fanelli, F., Meli, E., Ridolfi, A., Caiti, A., and Allotta, B. (2018).

Ukf-based navigation system for auvs: online experimental validation. IEEE J.

Ocean. Eng. 44, 633–641. doi: 10.1109/JOE.2018.2843654

Costanzi, R., Fanelli, F., Monni, N., Ridolfi, A., and Allotta, B. (2016). An attitude

estimation algorithm formobile robots under unknownmagnetic disturbances.

IEEE/ASME Trans. Mech. 21, 1900–1911.

Crowell, J. (2013). “Design challenges of a next generation small auv,” in Oceans-

San Diego, 2013 (San Diego, CA: IEEE), 1–5.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). “A density-based algorithm

for discovering clusters in large spatial databases with noise,” in KDD’96:

Proceedings of the Second International Conference on Knowledge Discovery and

Data Mining, eds E. Simoudis, J. Han, and U. M. Fayyad (Portland, OR: AAAI

Press), 226–231.

Fanelli, F. (2019). Development and Testing of Navigation Algorithms for

Autonomous Underwater Vehicles. Springer.

Ferreira, F., Djapic, V., Micheli, M., and Caccia, M. (2014). Improving automatic

target recognition with forward looking sonar mosaics. IFAC Proc. Vol. 47,

3382–3387. doi: 10.3182/20140824-6-ZA-1003.01485

Ferri, G., Ferreira, F., and Djapic, V. (2015). “Boosting the talent of new

generations of marine engineers through robotics competitions in realistic

environments: the sauc-e and eurathlon experience,” in OCEANS 2015-Genova

(Genoa: IEEE), 1–6.

Ferri, G., Ferreira, F., and Djapic, V. (2017). “Multi-domain robotics

competitions: the cmre experience from sauc-e to the european robotics

league emergency robots,” in OCEANS 2017-Aberdeen (Aberdeen, UK:

IEEE), 1–7.

Ferri, G., Ferreira, F., Djapic, V., Petillot, Y., Franco, M. P., andWinfield, A. (2016).

The eurathlon 2015 grand challenge: The first outdoor multi-domain search

and rescue robotics competition—a marine perspective.Mar. Techn. Soc. J. 50,

81–97. doi: 10.4031/MTSJ.50.4.9

Fietz, D., Hagedorn, D., Jähne, M., Kaschube, A., Noack, S., Rothenbeck, M.,

et al. (2014). Robbe 131: The Autonomous Underwater Vehicle of the auv Team

Tomkyle. Available online at: https://auv-team-tomkyle.de/?page_id=411

Fossen, T. I. et al. (1994).Guidance and Control of Ocean Vehicles. Chichester; New

York, NY: Wiley New York.

Franchi, M., Ridolfi, A., and Zacchini, L. (2018). “A forward-looking sonar-based

system for underwater mosaicing and acoustic odometry,” in Autonomous

Underwater Vehicles (AUV), 2018 IEEE/OES (Porto: IEEE).

Franchi, M., Ridolfi, A., Zacchini, L., and Benedetto, A. (2019). “Experimental

evaluation of a Forward-Looking SONAR-based system for acoustic odometry,”

in Proceedings of OCEANS’19 MTS/IEEE MARSEILLE, Marseille (FR) (IEEE).

Furlong, M. E., Paxton, D., Stevenson, P., Pebody, M., McPhail, S. D., and Perrett,

J. (2012). “Autosub long range: a long range deep diving auv for ocean

monitoring,” in Autonomous Underwater Vehicles (AUV), 2012 IEEE/OES

(Southampton, UK: IEEE), 1–7.

Hiller, T., Steingrimsson, A., and Melvin, R. (2012). “Expanding the small auv

mission envelope; longer, deeper &more accurate,” in Autonomous Underwater

Vehicles (AUV), 2012 IEEE/OES (Southampton, UK: IEEE), 1–4.

Hurtós, N., Ribas, D., Cufí, X., Petillot, Y., and Salvi, J. (2015). Fourier-

based registration for robust forward-looking sonar mosaicing in low-

visibility underwater environments. J. Field Robot. 32, 123–151. doi: 10.1002/ro

b.21516

Johannsson, H., Kaess, M., Englot, B., Hover, F., and Leonard, J. (2010). “Imaging

sonar-aided navigation for autonomous underwater harbor surveillance,” in

2010 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS) (Taipei: IEEE), 4396–4403.

Kaiser, C. L., Yoerger, D. R., Kinsey, J. C., Kelley, S., Billings, A., Fujii, J., et al.

(2016). “The design and 200 day per year operation of the autonomous

underwater vehicle sentry,” in Autonomous Underwater Vehicles (AUV), 2016

IEEE/OES (Tokyo: IEEE), 251–260.

Mahony, R., Hamel, T., and Pflimlin, J.-M. (2008). Nonlinear complementary

filters on the special orthogonal group. IEEE Trans. Automat. Control 53,

1203–1218. doi: 10.1109/TAC.2008.923738

McCarter, B., Portner, S., Neu, W. L., Stilwell, D. J., Malley, D., and

Minis, J. (2014). “Design elements of a small auv for bathymetric

surveys,” in Autonomous Underwater Vehicles (AUV), 2014 IEEE/OES

(Oxford, MS: IEEE), 1–5.
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Hybrid Collision Avoidance for ASVs
Compliant With COLREGs Rules 8
and 13–17
Bjørn-Olav H. Eriksen*, Glenn Bitar, Morten Breivik and Anastasios M. Lekkas

Department of Engineering Cybernetics, Centre for Autonomous Marine Operations and Systems, Norwegian University of

Science and Technology, Trondheim, Norway

This paper presents a three-layered hybrid collision avoidance (COLAV) system

for autonomous surface vehicles, compliant with rules 8 and 13–17 of the

International Regulations for Preventing Collisions at Sea (COLREGs). The COLAV

system consists of a high-level planner producing an energy-optimized trajectory,

a model-predictive-control-based mid-level COLAV algorithm considering moving

obstacles and the COLREGs, and the branching-course model predictive control

algorithm for short-term COLAV handling emergency situations in accordance with the

COLREGs. Previously developed algorithms by the authors are used for the high-level

planner and short-term COLAV, while we in this paper further develop the mid-level

algorithm to make it comply with COLREGs rules 13–17. This includes developing a

state machine for classifying obstacle vessels using a combination of the geometrical

situation, the distance and time to the closest point of approach (CPA) and a newCPA-like

measure. The performance of the hybrid COLAV system is tested through numerical

simulations for three scenarios representing a range of different challenges, including

multi-obstacle situations with multiple simultaneously active COLREGs rules, and also

obstacles ignoring the COLREGs. The COLAV system avoids collision in all the scenarios,

and follows the energy-optimized trajectory when the obstacles do not interfere with it.

Keywords: hybrid collision avoidance, autonomous surface vehicle (ASV), COLREGs, COLREGs compliant, model

predictive control (MPC), energy-optimized control

1. INTRODUCTION

Motivated by the potential for reduced costs and increased safety, the maritime industry is rapidly
moving toward autonomous operations. Following groundbreaking advances in the automotive
industry, many sectors within the maritime industry are considering the benefits of autonomy,
which includes more environmentally friendly operations. For instance, the agricultural chemical
company Yara together with the maritime technology supplier Kongsberg Maritime are developing
the electrical autonomous container vessel Yara Birkeland, which aims to replace 40,000 yearly
truck journeys in urban eastern Norway1. Another example is the world’s first autonomous car
ferry, Falco, developed by Rolls-Royce (recently bought by Kongsberg Maritime) and Finferries. In

1https://www.wsj.com/articles/norway-takes-lead-in-race-to-build-autonomous-cargo-ships-1500721202 (accessed May

22, 2019).
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2018, Falco navigated autonomously between two ports in
Finland2. Reports state that in excess of 75% of maritime
accidents are due to human errors (Chauvin, 2011; Levander,
2017), indicating that there is also a potential for increased safety
in addition to the economical and environmental benefits.

An obvious prerequisite for autonomous ship operations is
the development of robust andwell-functioning COLAV systems.
In addition to generating collision-free maneuvers, a COLAV
system must adhere to the “rules of the road” of the oceans,
i.e., the COLREGs (Cockcroft and Lameijer, 2004). These rules
are written for human ship operators and include qualitative
requirements on how to perform safe and readily observable
maneuvers. Part B of the COLREGs concern steering and sailing,
and includes the following rules that are the most relevant to a
motion control system:

Rule 8 Requiresmaneuvers to be readily observable and
to be done in ample time.

Rules 13–15 Describe the maneuvers to perform in cases
of overtaking, head-on and crossing situations.
Participants in crossing situations are defined by
the terms give-way and stand-on vessels.

Rule 16 Requires that a give-way vessel must take early
and substantial action to keep clear of the stand-
on vessel.

Rule 17 Consists of two main parts. The first part
requires a stand-on vessel to maintain its
course and speed, while the second part
allows/requires3 a stand-on vessel to take action
to avoid collision if the give-way vessel is not
taking action.

Since the rules are written for humans, with few quantitative
figures, a challenge for autonomous operation is to quantify
them into behaviors that can be executed algorithmically. The
focus of the work in this paper is to do that, and to design
a hybrid COLAV system that performs motion planning and
generates maneuvers in compliance to rules 8 and 13–17 of
the COLREGs.

A number of COLAV approaches considering the COLREGs
have been proposed in the past. This includes algorithms using
simulation-based model predictive control (Hagen et al., 2018),
velocity obstacles (Kuwata et al., 2014), rule-based repairing A*
(Campbell et al., 2014), and interval programming (Benjamin
et al., 2006). All these approaches are single-layer approaches,
where one algorithm solves the complete COLAV problem.

Another approach to the COLAV problem is to use a hybrid
architecture, where the task of planning an obstacle-free path
or trajectory, complying with the COLREGs and ultimately

2https://www.marinemec.com/news/view,rollsroyce-and-finferries-demonstrate-

worlds-first-fully-autonomous-ferry_56102.htm (accessed April 11, 2019).
3Rule 17 allows the stand-on vessel to maneuver when it becomes apparent that

the give-way vessel does maneuver to avoid collision. If the vessels are so close that

the give-way vessel cannot avoid collision by itself, Rule 17 requires the stand-on

vessel to maneuver.

FIGURE 1 | Hybrid architecture with three COLAV layers, where the

highlighted functions mark the areas of interest in this article. The COLAV

system consists of a high-level planner, a mid-level COLAV algorithm and a

short-term COLAV algorithm. The COLAV system is supported by data from

electronic nautical charts, represented in a suitable manner for the algorithms,

as well as situational awareness functions that track and predict obstacles,

interpret the COLREGs and perform risk assessment.

performing safe maneuvers is divided into layers in a control
hierarchy. The idea of hybrid architectures is to divide the
subtasks of the COLAV problem into multiple algorithms,
exploiting their complementary strengths. This also has the side
effect of making it easier for human operators or supervisors to
understand the system. Most single-layer algorithms use sample-
based approaches that consider a finite number of discrete
control inputs, as opposed to conventional gradient-based search
algorithms. The reason for this is that many gradient-based
algorithms are not sufficiently numerically robust, not allowing
a COLAV system to solely rely on such an algorithm. This
issue can be handled in hybrid architectures, constrained by
the bottom-level algorithm being numerically robust and able
to handle extraordinary situations where the other algorithms
fail. Hence, hybrid architectures also allows using gradient-
based algorithms, which are able to solve problems with large
search spaces more efficiently than sample-based algorithms.
The works by Loe (2008) and Švec et al. (2013) are examples
of two-layered hybrid COLAV architectures. The top layers
perform trajectory planning among static obstacles, while the
bottom layers perform moving obstacle avoidance in compliance
with COLREGs rules 13–16. Casalino et al. (2009) presents
a three-layered hybrid COLAV system where the top layer
also performs trajectory planning amongst static obstacles. The
middle layer avoids moving obstacles, while the bottom layer
implements safety functions for handling cases where the two
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other layers fail. This approach does, however, not consider
the COLREGs.

Figure 1 shows a three-layered hybrid COLAV system for an
autonomous surface vehicle (ASV). The authors have previously
worked extensively on different components of this architecture.
Examples include high-level COLAV algorithms (Bitar et al.,
2018, 2019b), a mid-level algorithm (Eriksen and Breivik, 2017b;
Bitar et al., 2019a), short-term algorithms (Eriksen et al., 2018,
2019; Eriksen and Breivik, 2019) and the development of high-
performance vessel controllers (Eriksen and Breivik, 2017a,
2018).

In this paper, we demonstrate the three-layered hybrid
COLAV shown in Figure 1 by combining and extending
the COLAV algorithms developed in Eriksen and Breivik
(2017b, 2019), Bitar et al. (2019a,b), Eriksen et al. (2019).
The high-level planner has a long temporal horizon, and
finds an energy-optimized nominal trajectory from an initial
to a goal position. It considers static obstacles, which may
include bathymetric constraints. Since the high-level planner
only considers static information, it is intended to be run
offline, but it can also be run online, for instance if new
static obstacles are detected. The mid-level algorithm attempts
to follow the nominal trajectory, while performing COLAV
of static and moving obstacles in compliance with COLREGs
rules 8, 13–16, and the first part of Rule 17. The mid-
level algorithm is run periodically with a shorter temporal
horizon than the high-level algorithm, and produces a modified
trajectory which is passed to the short-term layer. Both
the high-level and mid-level algorithms use gradient-based
optimization. The short-term algorithm attempts to follow the
modified trajectory, while it in compliance with the second
part of Rule 17 handles situations where obstacles ignore
the COLREGs. This algorithm also handles other emergency
situations, and uses sample-based optimization to achieve a high
level of robustness, ensuring safe operation if the mid-level
algorithm fails to find a solution. The following list summarizes
our contributions:

• The high-level planner from Bitar et al. (2019b) is modified
to include the mathematical model of the Telemetron ASV in
Bitar et al. (2019a), including ocean currents.

• The development of a state-machine-based COLREGs
interpretation scheme.

• The mid-level COLAV from Bitar et al. (2019a) is modified to
include rules 13–16 and the first part of Rule 17.

• The branching-course model predictive control (BC-MPC)
algorithm for short-term COLAV is modified to reduce
oscillatory behavior in turns.

• The three-layered COLAV system is verified in simulations
and shown to be compliant with rules 8 and 13–17.

The rest of the paper has the following structure: The
mathematical model of the ASV Telemetron is described
in section 2. The high-level planner, mid-level and short-
term COLAV algorithms are described in sections 3–5,
respectively. In section 6 we present and discuss the
simulation scenarios and results, and we conclude the paper
in section 7.

FIGURE 2 | The Telemetron ASV, designed for both manned and unmanned

operations. Courtesy of Maritime Robotics.

2. ASV MODELING

The vessel of interest in this article is the Telemetron ASV, which
is owned and operated by the Norwegian company Maritime
Robotics and shown in Figure 2. The Telemetron ASV is a high-
speed dual-use vessel propelled by a steerable outboard engine,
capable of speeds up to 18 m/s.

Eriksen and Breivik (2017a) presents a model of the
Telemetron ASV, which is extended to include ocean currents in
Bitar et al. (2019a). The model has the form

η̇ = R(ψ)xr +
[

V⊤
c 0

]⊤

M(xr)ẋr + σ (xr) = τ ,
(1)

where η = [x, y,ψ]⊤ ∈ R
2 × S is the vessel pose and Vc =

[Vx,Vy]
⊤ describes the ocean current, both in the Earth-fixed

North-East-Down frame {n}. The vector xr = [ur , r]
⊤ ∈ Xr ⊂

R
2 is the vessel velocity under the assumption of zero relative

sway motion (Bitar et al., 2019a), where the set Xr describes
the vessel-feasible steady-state velocities where (1) is valid. The
transformation matrix R(ψ) is given by the heading ψ ∈ S as

R(ψ) =





cosψ 0
sinψ 0
0 1



 , (2)

while r ∈ R describes the vessel yaw-rate. The matrix M(xr) is a
state-dependent inertia matrix, while σ (xr) and τ = [τm, τδ]

⊤ ∈

U ⊂ R
2 describe the vessel damping and control input,

respectively. The set U describes the control inputs where (1)
is valid.

In this work, we assume that the ocean current Vc is constant
and known. For practical applications, the ocean current can
be measured via appropriate instrumentation, estimated via
sensor fusion methods, or predicted based on e.g., tide tables or
sensor networks, such as the European marine observation and
data network4.

4http://www.emodnet.eu/ (accessed December 11, 2019).
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3. HIGH-LEVEL PLANNER

To plan the ASV’s nominal trajectory, we use a high-level
trajectory planner developed in Bitar et al. (2019b). This
trajectory planner uses the ASV model described in section 2
to generate an energy-optimized trajectory between the start
and goal positions. The planning algorithm combines an A⋆

implementation and an optimal control problem (OCP) solver
to generate a feasible and optimized trajectory.

The high-level planning algorithm consists of three steps: First
the A⋆ implementation finds the shortest piecewise linear path
between the start and goal position. Secondly, artificial temporal
information is added to the path, converting it to a trajectory
of states and inputs. Finally, the trajectory is used as an initial
guess for an OCP solver, which finds a locally energy-optimized
trajectory near the shortest path. All steps account for static
obstacles in the form of elliptical boundaries.

3.1. Static Obstacles
The elliptical boundaries are described with the inequality:

(

x− xc

xa

)2

+

(

y− yc

ya

)2

≥ 1 , (3)

where xc and yc is the ellipsis center, and xa, ya > 0 are the
ellipsis major and minor axes, respectively. To allow for angled
obstacles, the ellipses are rotated clockwise by an angle α. We add
a small constant ǫ > 0 to each side of the inequality, and take the
logarithm to arrive at the following obstacle representation:

ho(x, y, xc, yc, xa, ya,α) = − log

[ (

(x− xc) cosα + (y− yc) sinα

xa

)2

+

(

−(x− xc) sinα + (y− yc) cosα

ya

)2

+ ǫ

]

+ log(1+ ǫ) ≤ 0 . (4)

The logarithm operation is applied to reduce the numerical range
of the inequality, which helps with numerical stability of the
subsequently described solver, and the constant ǫ is included to
avoid singularities when (4) is evaluated for (x, y) → (xc, yc)
(Bitar et al., 2019a).

Modeling static obstacles as ellipses poses a challenge for
handling obstacles of various shapes, from e.g., electronic
nautical charts (ENCs). Generic obstacle shapes can be
approximated as a set of elliptical obstacles (Wu, 2019), although
this may require a large number of constraints for complex
environments. Alternatively, the obstacle modeling can be
modified to allow for generic shapes. Zhang et al. (2018) present
an interesting solution to handle polygon-shaped obstacles by
introducing a signed distance function in the optimization
problem. Unfortunately, this approach introduces a large number
of slack variables and constraints, limiting feasibility for more
than a few static obstacles.

3.2. Trajectory Generation and
Optimization
From a scenario consisting of static obstacles, as mentioned
in section 3.1, we find the piecewise linear shortest path by

performing an A⋆ search on a uniformly decomposed grid.
The resulting path is converted to a time-parameterized full-
state trajectory by assuming a constant forward velocity, and
connecting the shortest path with straight segments and circle
arcs. The constant forward velocity is

unom =
Lpath

tmax
, (5)

where Lpath is the length of the connected path, and tmax is the
maximum allowed time to complete the trajectory. This full-state
trajectory is then used as an initial guess to solve the OCP that
gives the energy-optimized trajectory:

min
z(·),τ (·)

∫ tmax

0
Fhi(z(t), τ (t))dt (6a)

subject to

ż(t) = f (z(t), τ (t)) ∀t ∈ [0, tmax] (6b)

hhi(z(t), τ (t)) ≤ 0 ∀t ∈ [0, tmax] (6c)

ehi(z(0), z(tmax)) = 0 . (6d)

The solution of this OCP is a trajectory of states z(·) and inputs
τ (·) that minimizes the cost functional in (6a). The ASV model
from section 2 is rewritten as ż = f (z, τ ), where z = [η⊤, x⊤r ]

⊤

and f (z, τ ) represents (1).
The cost functional (6a) is chosen to minimize energy. The

cost-to-go function is

Fhi(z, τ ) = KeFe(z, τ )+ Kδτ
2
δ , (7)

with tuning parameters Ke,Kδ > 0. The first term consists of a
function that is proportional to mechanical work performed by
the ASV:

Fe(z, τ ) = |n(τm)
2 · cos δ(τδ)

︸ ︷︷ ︸

∝ surge force

·ur| + |n(τm)
2 · sin δ(τδ) · Lm

︸ ︷︷ ︸

∝ yaw moment

·r| .

(8)
The function n :R+ → R

+ maps the control input τm to
propeller angular velocity. The function δ :R → S maps the
control input τδ to outboard motor angle. The second term in (8)
is a quadratic cost to yaw control, included to avoid issues with
singularity when solving the OCP.

The inequality constraints (6c) observe state boundaries as
well as the static obstacles as represented in section 3.1. The
boundary conditions (6d) denote initial and final constraints, i.e.,
start and end states.

A detailed description of the transcription of the OCP (6) to
a non-linear program (NLP) using multiple shooting with Nhi

shooting intervals is found in Bitar et al. (2019b).

4. MID-LEVEL COLAV

The mid-level algorithm, initially presented in Eriksen and
Breivik (2017b) and further developed in Bitar et al. (2019a),
is a model predictive control (MPC)-based algorithm intended
for long-term COLAV. The algorithm utilizes gradient-based
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optimization, and takes both static and moving obstacles into
account while attempting to follow an energy-optimized nominal
trajectory from the high-level planner. The algorithm produces
maneuvers complying with Rule 8 of the COLREGs, which
requires maneuvers to be made in ample time and be readily
observable for other vessels. The optimization problem is
formulated as a NLP, which gives flexibility in designing the
optimization problem.

In this section, the algorithm is extended to also consider
COLREGs rules 13–16 and the first part of Rule 17.

4.1. The International Regulations for
Preventing Collisions at Sea (COLREGs)
The COLREGs consists of a total of 37 rules and is divided into
five parts (Cockcroft and Lameijer, 2004), where part B (rules 4–
19) contains relevant rules on the conduct of vessels in proximity
of each other. The most relevant rules for designing COLAV
systems in part B are rules 8 and 13–17:

Rule 8 Action to avoid collision. This rule states that
actions taken to avoid collision should be large
enough to be readily observable of other ships,
implying that series of small alternations in speed
and/or course should not be applied. The rule
also recommends that course changes should be
prioritized over speed changes if there is enough free
space available, and that maneuvers must be made in
ample time.

Rule 13 Overtaking. This rule states that a vessel is
overtaking another if it approaches the other vessel
with a course more than 22.5° abaft her beam. The
overtaking vessel has to stay clear of the overtaken
vessel, but there is no statements on which side of the
vessel one should pass.

Rule 14 Head on. When two power-driven vessels approach
each other on reciprocal, or nearly reciprocal,
courses, they are in a head-on situation. In such a
situation, both vessels should change their course to
starboard, passing each other port-to-port, as shown
in Figure 3A. This rule states no explicit definition
on what should be considered to be reciprocal,
or nearly reciprocal, courses, but court decisions
indicate head-on situations exist for opposing
courses ±6°. Notice that the rule does not include
sailing vessels, which are covered by Rule 12.

Rule 15 Crossing. When two vessels approach each other
such that the situation is not a head on or an
overtaking, it is a crossing situation. The vessel with
the other one to her starboard side is deemed the
give-way vessel, while the other vessel is deemed the
stand-on vessel. As shown in Figure 3B, the give-way
vessel should maneuver to avoid collision, preferably
by passing behind the stand-on vessel, while the
stand-on vessel should keep her speed and course.

A

B

FIGURE 3 | Illustration of head-on (A) and crossing (B) situations, and how

they should be resolved.

Rule 16 Action by the give-way vessel. Every vessel which
is required to keep out of the way of another vessel
should take early and large enough action to safely
avoid collision.

Rule 17 Action by the stand-on vessel.This rule requires that
a stand-on vessel should keep its current speed and
course. The stand-on vessel may, however, maneuver
to avoid collision if it becomes apparent that the give-
way vessel is not taking appropriate actions to avoid
collision. Furthermore, if the stand-on vessel finds
itself so close to the obstacle that collision can not
be avoided by the give-way vessel alone, the stand-
on vessel should take such action which best aids
to avoid collision. In a crossing situation, the stand-
on vessel should avoid maneuvering to port, since
this could lead to a collision if the give-way vessel
maneuvers to starboard.

In the hybrid architecture illustrated in Figure 1, the mid-level
algorithm is given the task of strictly enforcing COLREGs rules
13–16 and the stand-on requirement of Rule 17, while also
complying with Rule 8.

In addition, we want the mid-level algorithm to comply with
the first part of Rule 17, by not maneuvering to avoid collision
in crossing situations if the ownship is the stand-on vessel.
The hybrid COLAV system is inherently capable of adhering
to the remaining requirement of Rule 17, where the stand-on
vessel is allowed or required to maneuver, by having different
prediction horizons and safety margins in the mid-level and
short-term layers. The BC-MPC algorithm does not have any
limitations of not maneuvering in stand-on situations, and will
hence maneuver in stand-on situations if we come sufficiently
close to the obstacle.

The mid-level algorithm as presented in Bitar et al. (2019a)
only complies with Rule 8. Further in this section, we therefore
present improvements to the mid-level algorithm to make it
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comply with rules 13–16 and the stand-on requirement of
Rule 17.

4.2. COLREGs Interpretation
A commonly used concept for interpreting obstacles in COLAV
algorithms is to assign a spatial region to obstacles, which
the ownship should not enter. This approach is commonly
referred to as a domain-based approach. Specially designed ship
domains are commonly used for interpreting the COLREGs in
COLAV algorithms, where the required clearance to an obstacle
is significantly larger if the maneuver violates the COLREGs
(Szlapczynski and Szlapczynska, 2017; Eriksen et al., 2019). This
approach is attractive since it continuously captures multiple
COLREGs rules, and does not require logic or discrete decisions.
However, such an approach does not strictly enforce the
COLREGs rules, since it will allow maneuvers violating the rules
if they are large enough. In addition, a ship-domain approach will
not be able to strictly enforce the stand-on requirement of Rule
17, since a domain-based approach will avoid collision with all
obstacles. One could ignore obstacles with give-way obligations,
but this would require an explicit COLREGs interpretation which
conflicts with domain-based approaches’ core idea of implicit
COLREGs interpretation. Therefore, we pursue an alternative
approach to handling the COLREGs in the mid-level algorithm.

To simplify the COLREGs interpretation task, we look at the
situation from a static perspective, assuming that the current
COLREGs situations are valid throughout the entire prediction
horizon of the mid-level algorithm. In reality, the COLREGs
situations may, however, change during the prediction horizon
depending on both the ownship’s and obstacles future trajectory.
For instance, an obstacle approaching from head on, but far
enough away to not be considered as a danger may be put in a
safe state. Hence, the mid-level algorithm will (for the current
iteration) act like no COLREGs rule applies to this vessel for
the entire prediction horizon, while the obstacle may get close
enough during the prediction horizon to be considered as a head-
on situation. An MPC scheme of only implementing a small part
of the prediction horizon will reduce the implications of this,
since the situation is reassessed each time mid-level algorithm is
run, which justifies the assumption of considering the COLREGs
from a static perspective. Investigating the possibilities for
dynamically predicted future COLREGs situations as part of the
MPC prediction will be considered as future work.

4.2.1. State Machine
We propose to utilize a state machine in order to decide which
COLREGs rule is active with respect to each obstacle in the
vicinity of the ownship. The state machine contains the states:

SF Safe state. This implies that the COLREGs do not enforce
any rule with respect to this obstacle.

OT Overtaking state. This implies that COLREGs Rule
13 applies with respect to this obstacle. The state
machine does not discriminate on whether the ownship
is overtaking another vessel or is being overtaken, but
this can be done by looking at which vessel has the higher
speed (Tam and Bucknall, 2010).

FIGURE 4 | COLREGs state machine. The abbreviations “GSF,” “GSO,” “GOT,”

“GGW,” and “GHO” denote geometrical situations, while “entryxx” and “exitxx”

denote additional state-dependent entry and exit criterias.

HO Head-on state. This implies that COLREGs Rule 14
applies with respect to this obstacle.

GW Give-way state. This implies that COLREGs Rule 15
applies with respect to this obstacle, and the ownship has
to give way.

SO Stand-on state. This implies that COLREGs Rule 15
applies with respect to this obstacle, and the ownship has
to stand on.

EM Emergency state. This implies that the obstacle is so
close and/or behaves unpredictably, such that special
considerations must be made.

As shown in Figure 4, all transitions have to go either from or to
the safe state.

This implies that when the state machine decides that a
COLREGs (or emergency) situation exists with respect to an
obstacle, it will not allow switching to another state without the
situation being considered as safe first. One could argue that
it should be able to transition between specific states, like e.g.,
from head-on, give-way and overtaking to emergency. This is an
interesting topic, which should receive attention in the future. To
control the transitions between the different states, we combine
the time to and distance at the CPA, a CPA-like measure of the
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time until a critical point and a geometrical interpretation of
the situation.

4.2.2. Entry and Exit Criteria
CPA is a common concept in maritime risk assessment. Given
the current speed and course of the ownship and an obstacle,
CPA describes the time to the point where the two vessels are the
closest, and the distance to the obstacle at this point. Given the
position and velocity vector of the ownship p, v and an obstacle
po, vo, the time to CPA is calculated as (Kufoalor et al., 2018)

tCPA =

{

0 if ‖v − v0‖2 ≤ ǫ
(p−po)·(v−vo)

‖v−vo‖
2
2

else,
(9)

where ǫ > 0 is a small constant in order to avoid division by zero
in the case where the relative velocity between the ownship and
obstacle is zero. Given tCPA, we calculate the distance between the
vessels at CPA as

dCPA = ‖(p+ tCPAv)− (po + tCPAvo)‖2. (10)

While the CPA is the point where the distance to an obstacle
is at its minimum, the critical point is where the distance to an
obstacle crosses underneath a critical distance dcrit. This critical
distance describes a minimum obstacle distance that the mid-
level algorithm is designed for. The time to the critical point tcrit
can be calculated by solving the equation

‖(p+ tcritv)− (po + tcritvo)‖2 = dcrit . (11)

In the cases where the distance between the ships does not fall
below dcrit, tcrit is undefined. Otherwise, there are generally two
solutions. The interesting solution is the one with the lowest tcrit
value, as this is when the obstacle enters the dcrit boundary.

The state-machine entry criteria in Figure 4 are defined as

entryi =

{

true if dCPA < d
i,enter

CPA ∧ tCPA ∈ [ti,enterCPA , t
i,enter
CPA ],

false otherwise

∀i ∈ {SO,OT,GW,HO}

entryEM =

{

true if tcrit < t
EM,enter
crit ∧ tCPA > 0

false otherwise,

(12)

where d
i,enter

CPA , ti,enterCPA , and t
i,enter
CPA for i ∈ {SO,OT,GW,HO} are

tuning parameters denoting thresholds on dCPA and tCPA in order
to satisfy the entry criteria for the stand-on, overtaking, give-

way and head-on states. The tuning parameter t
EM,enter
crit denotes

an upper limit on tcrit in order to enter the emergency state.
The idea behind the stand-on, overtaking, give-way and head-on
entry criterias are that in order for the obstacle to represent a risk,
both tCPA and dCPA need to be within some tunable thresholds.
Situations with a very low dCPA, but with a high tCPA, will not
trigger the entry criteria, since the situations will not occur in the
near future. Similarly, if tCPA is within the thresholds, but dCPA is
large, this indicates a safe passing where risk of collision does not
exist. The lower bound on tCPA will typically be selected as zero,

and is useful to distinguish between obstacles moving toward
of away from the ownship. For the emergency state, the entry
criteria is based on the critical point, at which we are so close that
the mid-level algorithm may struggle with providing meaningful

maneuvers. In addition to tcrit being under the threshold t
EM,enter
crit ,

we require that tCPA is positive, indicating that we are getting
closer to the obstacle. Currently, we only allow entering the
emergency state if the situation is a geometrical give-way or head-
on, since an overtaking situation represents a smaller danger and
has less requirement for special consideration.

The state-machine exit criterias in Figure 4 are defined as

exiti =

{

true if dCPA ≥ di,exitCPA ∨ tCPA /∈ [ti,exitCPA , t
i,exit
CPA ],

false otherwise

∀i ∈ {SO,OT,GW,HO}

exitEM =

{

true if tcrit ≥ tEM,exit
crit ∨ tCPA ≤ 0

false otherwise,

(13)

where di,exitCPA , t
i,exit
CPA , and t

i,exit
CPA for i ∈ {SO,OT,GW,HO} are tuning

parameters denoting thresholds on dCPA and tCPA in order to
satisfy the exit criteria for the stand-on, overtaking, give-way
and head-on states. The exit criteria for the emergency state is

satisfied if tcrit is larger than the tuning parameter t
EM,enter
exit , or

tCPA is negative, implying that the obstacle is moving further
away from the ownship. Note that the exit criterias are obtained
by negating the entry criterias, but with other thresholds in order
to implement hysteresis to avoid shattering. In general, we allow
for different tuning parameters for the different states, but in our
simulations we see that selecting the same tuning parameters for
all states provides good results. Therefore, we define:

d
i,enter

CPA = d
enter

CPA

ti,enterCPA = tenterCPA

t
i,enter
CPA = t

enter
CPA ,

(14)

and

di,exitCPA = dexitCPA

ti,exitCPA = texitCPA

t
i,exit
CPA = t

exit
CPA

(15)

for all i ∈ {SO,OT,GW,HO}.

4.2.3. Geometrical Situation Interpretation
Tam and Bucknall (2010) present a geometrical interpretation
scheme for deciding COLREGs situations based on the relative
position, bearing and course of the obstacle with respect to the
ownship. We base our geometrical interpretation on a slightly
modified version of this scheme, where we include the sign
of tCPA to distinguish between situations where the obstacle
moves closer toward or farther away from the ownship. The
geometrical interpretation is shown in Figure 5, where the
geometrical situation is obtained by finding which region the
obstacle position and course resides in.

Notice that the head-on region is larger than the threshold of
±6° as described by the COLREGs. The reason for this is that
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FIGURE 5 | Illustration of the geometrical COLREGs interpretation, where the ownship course is denoted as χ and θ1, θ2, θ3 denote symmetrical regions given as

[22.5, 90, 112.5°] offset from ahead. The circles illustrate obstacles in different relative bearing regions, and have a fixed orientation with respect to the ownship. The

geometrical situations are color-coded and denoted as Gi , i ∈ {SF, SO, OT, GW, HO} for safe, stand-on, overtaking, give-way and head-on situations, respectively.

When two situations are given, like e.g., GSF/SO, we use the former (SF) if tCPA < 0 and the latter (SO) if tCPA ≥ 0, analogous to the obstacle moving away or toward the

ownship. To decide the geometrical situation, we first find which relative bearing region the obstacle resides in, before finding which obstacle region the obstacle’s

course resides in. The figure is inspired by Tam and Bucknall (2010).

Tam and Bucknall recommend using a larger region of 22.5° in
order to increase the robustness of the geometrical COLREGs
interpretation scheme.

4.3. Interface to the High-Level Planner
The high-level planner produces an energy-optimized nominal
trajectory for the ownship to follow. However, since the high-
level planner does not consider moving obstacles, the speed
is the only time-relevant factor of the desired trajectory. In
a case where the ownship for some reason, e.g., avoiding
moving obstacles, lag behind the nominal trajectory, following
the nominal trajectory in absolute time would cause a speed
increase in order to catch up with it. Therefore, the mid-
level algorithm performs relative trajectory tracking, where it
tracks the nominal trajectory with a time offset tb ∈ R.
This results in a relative nominal trajectory for the mid-level

algorithm:

p̄d(t) = pd(t + tb), (16)

where pd = [Nd(t),Ed(t)]
⊤ is the nominal trajectory from

the high-level planner. The time offset tb is calculated each
time the mid-level algorithm is run by solving a separate
optimization problem, and is selected such that p̄d(t0) is
the point on the nominal trajectory closest to the ownship.
See Bitar et al. (2019a) for a detailed description of this
concept.

4.4. Optimization Problem Formulation
The mid-level algorithm is formalized as an OCP:

min
η(·),xr(·)

φ(η(·), xr(·)) (17a)

Frontiers in Robotics and AI | www.frontiersin.org 8 February 2020 | Volume 7 | Article 1163

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Eriksen et al. Hybrid COLAV for ASVs

subject to

η̇(t) = R(ψ(t))xr(t)+

[

Vc

0

]

∀t ∈ [t0, t0 + Th] (17b)

hmid(η(t), xr(t), t) ≤ 0 ∀t ∈ [t0, t0 + Th] (17c)

emid(η(t0)) = 0 , (17d)

where Th > 0 is the prediction horizon, φ(·, ·) is the
objective functional, (17b) contains a kinematic vessel model,
(17c) contains inequality constraints and (17d) contains
boundary constraints.

Analytical solutions of OCPs are in general not possible to
find. A more common approach is to transcribe the OCP to an
NLP, and solve that using a gradient optimization scheme. In
our case, we transcribe (17) into an NLP with Np samples using
multiple shooting, where the vessel model is discretized using 4th
order Runge Kutta and the cost functional is discretized using
forward Euler. The resulting NLP is given as

min
w,ω,µ,ξ

φp(w,ω,µ)+ φc(w)+ φCOLREGs(w)+ φξ (ξ )

subject to

g(w, η(t0)) = 0

h(w, ξ ) ≤ 0

h̄k(ηk,ωk,µk, p̄d,k) ≤ 0 ∀k ∈ {1, . . . ,Np}

ξ ≥ 0 ,

(18)

where w = [η⊤0 , x
⊤
r,0, . . . , η

⊤
Np−1, x

⊤
r,Np−1, η

⊤
Np
]⊤ ∈ R

5Np+3

is a vector of 5Np + 3 decision variables and p̄d,1 :Np
=

[p̄d,1, p̄d,2, . . . , p̄d,Np
] is a sequence of desired positions. The

vectors ω ∈ R
2Np , µ ∈ R

2Np and ξ ∈ R
MNp contain slack

variables, where M is the number of moving obstacles to be
included in the constraints.

The vector g(w, η(t0)) ∈ R
3Np+3 contains shooting and

boundary constraints, while h(w) ∈ R
(M+D+4)Np , where D is

the number of static obstacles, contain inequality constraints
ensuring COLAV and steady-state vessel velocity feasibility. The
vectors h̄k(ηk,ωk,µk, p̄d,k) ∈ R

6, k ∈ {1,Np} contain constraints
on the slack variables ω and µ.

In the following subsections, we describe the terms in (18) in
more detail.

4.4.1. Objective Function
The objective function contains four functions, where φp(w,ω,µ)
introduces cost on deviating from the relative nominal trajectory
p̄d(t), φc(w) introduces cost on using control input, φCOLREGs(w)
is a COLREGs-specific function and φξ (ξ ) introduces slack
variable cost.

To avoid that the NLP changes behavior when moving away
from the nominal trajectory, we wish to have linear growth
in the position error function φp(w,ω,µ). This is achieved by
instead of using quadratic terms in the position error function,
we use the Huber loss function which is quadratic around the

origin and resembles the absolute value function above a given
threshold σ > 0:

H(ρ) =

{

1
2ρ

2 |ρ| ≤ σ

σ (|ρ| − 1
2σ ) |ρ| > σ .

(19)

The Huber loss function has a discontinuous gradient, making
it slightly complicated to implement in gradient-based
optimization problems. It can, however, be implemented in
a continuous fashion by utilizing lifting, where slack variables are
introduced to create a problem of a higher dimensionality which
is easier to solve. Using this technique, φ̄p(w,ω,µ) is defined as

φ̄p(w,ω,µ) = Kp

Np
∑

k = 1

σ1⊤ωk +
1

2
µ⊤
k µk, (20)

where Kp > 0 is a tuning parameter, and ωk ∈ R
2 and µk ∈ R

2

are slack variables constrained by

h̄k(w,ω,µ, p̄d,k) =





vk + µk + pk − p̄d,k
vk + µk − (pk − p̄d,k)

−ωk



 ≤ 0

∀k ∈ {1, . . . ,Np}, (21)

where pk is the predicted vessel position at time step k, i.e., ηk =

[p⊤
k
,ψk]

⊤. See Bitar et al. (2019a) for more details.
Rule 8 of the COLREGs requires that maneuvers are readily

observable for other vessels, implying that speed and course
changes should have a sufficiently large magnitude, and not be
performed as a sequence of small changes. In order to enforce
this in the optimization problem, the control cost function φc(w)
introduces a non-linear cost on the change in speed and course,
which makes the algorithm favor readily observable maneuvers.
The function is defined as

φc(w) =

Np−1
∑

k = 0

KU̇qU̇(U̇k)+ Kχ̇qχ̇ (χ̇k), (22)

where KU̇ ,Kχ̇ > 0 are tuning parameters, while qU̇(U̇k) and
qχ̇ (χ̇k) are the non-linear cost functions. Notice that neither
the speed over ground (SOG) U nor the course χ are elements
of the search space, but they can be computed as U =√
u2 + v2 and χ = ψ + arcsin v

U . Their derivatives are
then calculated by finite differencing. See Eriksen and Breivik
(2017a) and Bitar et al. (2019a) for more details on the control
cost function.

The φCOLREGs(w) function introduces a COLREGs-specific
cost with respect to obstacles based on the rule currently
applicable as defined by the state machine. We hence tailor the
NLP to the current situation. The function is defined as

φCOLREGs(w) =

Np
∑

k=1





∑

i∈OHO

KHOVHO,i,k(pk)+
∑

i∈OGW

KGWVGW,i,k(pk)

+
∑

i∈OSO

KSOVSO,k(w)+
∑

i∈OEM

KEMVEM,k(w)



 , (23)
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where OHO,OGW,OSO, and OEM contain obstacles which are
in the head-on, give-way, stand-on and emergency states,
respectively, and KHO,KGW,KSO,KEM > 0 are tuning
parameters. The functions VHO,i,k(pk),VGW,i,k(pk),VSO,k(w), and
VEM,k(w) describe functions capturing head-on, give-way,
stand-on and emergency behavior with respect to obstacle i,
respectively. Notice that the head-on and give-way functions vary
with both the obstacle number and time step number, which is
due to the functions depending on the given obstacles position
and course at time step k.

For head-on situations, we define a potential function with
a positive value on the obstacle’s starboard side, and a negative
value on its port side. When used in the objective function,
this will favor trajectories passing a head-on obstacle on its
port side, in compliance with Rule 14 of the COLREGs.
In addition, the potential function has an attenuation term,
reducing the impact of the function when far away from
an obstacle:

VHO,i,k(p) =
tanh

(

αx,HO(x0,HO − x{i,k})
)

2
tanh(αy,HOy

{i,k}) ∈ (−1, 1),

(24)

where αx,HO,αy,HO > 0 are tuning parameters controlling the
steepness of the head-on potential function and x̄0,HO > 0 is
a tuning parameter controlling the influence of the attenuating
potential. The coordinate (x{i,k}, y{i,k}) is p given in obstacles i’s
course-fixed frame (in which the x-axis points along the obstacle’s
course) at time step k, computed as

[

x{i,k}

y{i,k}

]

= R(χi,k)
⊤

(

p− po,k,i
)

, (25)

where po,k,i and χi,k are the position and course of obstacle i
at time step k. The head-on potential function with parameters
αx,HO = 1/500,αy,HO = 1/400 and x0,HO = 1, 000 m is shown in
Figure 6A.

For give-way situations, we define a similar potential function,
but rotated such that the function is positive in front of an
obstacle and negative behind it. This will favor trajectories
passing behind an obstacle, as desirable with respect to Rule
15 when a give-way obligation is active. The give-way potential
function is defined as

VGW,i,k(p) =
tanh

(

αy,GW(y{i,k} − y0,GW)
)

2
tanh(αx,GWx{i,k}) ∈ (−1, 1),

(26)

where αx,GW,αy,GW > 0 control the steepness of the give-way
potential function and ȳ0,GW < 0 control the attenuation on the
port side of an obstacle. The give-way potential function with
parameters αx,GW = 1/400,αy,GW = 1/500 and y0,GW = −500 m
is shown in Figure 6B.

In stand-on situations, we want the mid-level algorithm to
disregard the obstacle and keep the current speed and course

A

B

FIGURE 6 | Potential functions ensuring passing on the correct side in

head-on and give-way situations. Yellow indicates a positive value, blue

indicates a negative value, while the yellow patch and axis cross show the

obstacle location and course-fixed coordinate system. Used in a minimization

scheme, this will favor starboard maneuvers in head-on situations, and

passing behind obstacles in give-way situations. Note that the obstacle here

has zero sideslip, resulting in the heading and course pointing in the same

direction. (A) Head-on potential function. (B) Give-way potential function.

in order to comply with the first part of Rule 17. One could
simply constrain the algorithm to not maneuver, but this would
be perilous in situations where the ownship simultaneously finds
itself in a head-on or give-way situation. In such a situation
it would be of extra importance to choose readily observable
maneuvers, and we therefore design the stand-on cost with the
same terms as used in the control cost (22) to amplify the effect:

VSO,k(w) = KU̇qU̇(U̇k)+ Kχ̇qχ̇ (χ̇k). (27)

If an obstacle is in an emergency state, the obstacle is disregarded
in the mid-level algorithm and left for the short-term algorithm
to handle. In such a situation, it is important that the mid-level
algorithm behaves predictable, andwe therefore use the same cost
function as for stand-on situations:

VEM,k(w) = VSO,k(w). (28)
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The slack variable ξ is used in a homotopy scheme, which
we introduce to avoid getting trapped in local minima around
moving obstacles. The homotopy scheme is described in further
detail in section 4.5. The homotopy cost function φξ (ξ )
introduces slack cost on ξ :

φξ (ξ ) = Kξ1
⊤ξ , (29)

where Kξ > 0 is iteratively increased as part of the
homotopy scheme.

4.5. Obstacle Handling and Steady-State
Feasibility
The inequality constraint h(w, ξ ) ≤ 0 ensures COLAV and
steady-state feasibility with respect to actuator limitations.

Static obstacles are handled similarly as in the high-level
algorithm, with (4) representing an elliptical obstacle with center
(xc, yc), angle α andmajor and minor axes xa and ya, respectively.
The constraint (4) needs to be enforced at each time step. Hence,
for the i-th static obstacle, we define the constraint

hsi (w) =











ho(x1, y1, xc,i, yc,i, xa,i, ya,i,αi)
ho(x2, y2, xc,i, yc,i, xa,i, ya,i,αi)

...
ho(xNp , yNp , xc,i, yc,i, xa,i, ya,i,αi)











≤ 0. (30)

Moving obstacles are handled in a similar fashion, but letting
the ellipsis center position and angle be time varying. Obstacles
in stand-on situations should, however, not be included in the
constraints, since the mid-level algorithm is supposed to stand
on in such situations. Moreover, if an obstacle has entered
an emergency state, the obstacle is so close and behaving
unpredictably that the mid-level algorithm should disregard it
and leave it for the short-term layer. Hence, for the i-th moving
obstacle not in a stand-on or an emergency situation, we define
the constraint

hmi (w) =







ho(x1, y1, xc,i,1, yc,i,1, xa,i, ya,i,αi,1)
...

ho(xNp , yNp , xc,i,Np , yc,i,Np , xa,i, ya,i,αi,Np )






≤ 0, (31)

where xc,i,k, yc,i,k, and αi,k denote the position and course of the
i-th moving obstacle at time step k.

Given D static obstacles and M obstacles not in stand-on or
emergency situations, we define the constraint

ho(w, ξ ) =





















hs1 (w)
...

hsD (w)
hm1 (w)

...
hmM (w)





















+

[

0

ξ

]

, (32)

where we include slack variables ξ ≥ 0 on the moving obstacle
constraints as part of a homotopy scheme. The reason for using

homotopy is that NLP solvers in general only finds local minima,
and can have issues with moving an initial guess “through”
obstacles. Normally, this is not an issue, but for the mid-level
algorithm the optimal solution can change drastically from one
iteration to another. This can for instance happen if an obstacle
enters a head-on or give-way state, where the solution can be
trapped on the wrong side of an obstacle. In general, homotopy
describes introducing an extra parameter which is iteratively
adjusted in order to iteratively move a local solution toward
a global solution (Deuflhard, 2011). In our homotopy scheme,
we introduce slack variables on the moving obstacle constraints,
which will allow solutions to travel through obstacles at the cost
of a homotopy cost (29) scaled by the homotopy parameter Kξ .
Initially, this is selected as a low value to have a high amount
of slack on the moving obstacles, while it is iteratively increased
toward Kξ → ∞, which results in ξ = 0 and hence no slack on
moving obstacles. Currently, we only introduce slack on moving
obstacles, but slack should also be introduced to static obstacles if
they are small enough for the algorithm to be able to pass on both
sides, like e.g., rocks, navigational marks, etc.

Similarly as in Eriksen and Breivik (2017b) and Bitar et al.
(2019a), we ensure steady-state feasible trajectories at each time
step through a constraint hxr,k (xr,k) ≤ 0 ∈ R

4, which captures
the state constraint xr ∈ Xr at time step k. To ensure stead-
state feasibility for the entire prediction horizon, we define
the constraint

hxr (w) =











hxr,k (xr,0)

hxr,k (xr,1)
...

hxr,k (xr,Np−1)











≤ 0. (33)

Finally, the inequality constraints are combined as.

h(w, ξ ) =

[

ho(w, ξ )
hxr (w)

]

∈ R
(M+D+4)Np . (34)

5. SHORT-TERM COLAV

For the short-term layer, the branching-course model predictive
control (BC-MPC) algorithm is used, which is a sample-based
MPC algorithm intended for short-term ASV COLAV. The
BC-MPC algorithm was initially developed in Eriksen et al.
(2019), extended to also consider static obstacles in Eriksen and
Breivik (2019) and is experimentally validated in several full-
scale experiments using a radar-based system for detecting and
tracking obstacles. The algorithm complies with COLREGs rules
8, 13, and the second part of Rule 17, while favoring maneuvers
complying with the maneuvering aspects of rules 14 and 15.
Notice that Rule 17 allows a ship to ignore the maneuvering
aspects of rules 14 and 15 in situations where the give-way
vessel does not maneuver. The obstacle clearance will be larger
if the algorithm ignores the maneuvering aspects of rules 14
and 15, like e.g., passing in front of an obstacle in a crossing
situation where the ownship is the give-way vessel. Moving
obstacles are in general handled by the mid-level algorithm,
making this applicable only in emergency situations and for
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obstacles detected so late that the mid-level algorithm is unable
to avoid them.

The algorithm constructs a search space consisting of a
finite number of trajectories, which each contain a sequence of
maneuvers. The maneuvers are constructed using a dynamic
model of the ownship and a set of accelerationmotion primitives,
resulting in feasible trajectories being specified to the vessel
controller. For each maneuver, a discrete set of SOG and course
accelerations are created as

U̇samples =
{

U̇1, U̇2, . . . , U̇NU

}

χ̈ samples =
{

χ̈1, χ̈2, . . . , χ̈Nχ
}

,
(35)

where U̇i, i ∈ [1,NU] and χ̈i, i ∈ [1,Nχ ] denote NU ∈ N

and Nχ ∈ N vessel-feasible speed and course accelerations.
Given the acceleration samples (35) and motion primitives for
each maneuver in a trajectory, we create a set of desired SOG
and course trajectories Ud. These trajectories have continuous
acceleration, and is designed in an open-loop fashion by
using the current reference tracked by the vessel controller for
initialization, rather than the current vessel SOG and course.
The reason for this is that the reference to the vessel controller
should be continuous in order to avoid jumps in the actuator
commands. To include feedback in the trajectory prediction, a set
of feedback-corrected SOG and course trajectories Ūd is predicted
using a simplified error model of the vessel and vessel controller.
Finally, the feedback-corrected SOG and course trajectories are
used to compute a set of feedback-corrected pose trajectories:

H̄ =
{

η̄(·)
∣

∣(Ū(·), χ̄(·)) ∈ Ū
}

, (36)

where η̄(·) denotes a kinematic simulation procedure that given
SOG and course trajectories, Ū(·) and χ̄(·), in Ūd computes the
vessel pose. See Eriksen and Breivik (2019) and Eriksen et al.
(2019) for more details on the trajectory generation procedure.

In order to converge toward the trajectory specified by the
mid-level algorithm, a desired acceleration is computed based on
a line-of-sight guidance scheme. In Eriksen and Breivik (2019)
and Eriksen et al. (2019), the samples closest to the desired
acceleration in (35) are replaced with the desired acceleration,
given that this is vessel-feasible. A problem with this, is that
when operating at high speeds, the possible acceleration may not
be symmetric, resulting in that zero acceleration (hence keeping
a constant speed and course), may not be part of the search
space. This can cause undesirable behavior, since the BC-MPC
algorithm will be unable to keep the speed and course constant,
which can cause oscillatory behavior. In this paper, we therefore
propose to move the acceleration samples closest to zero, and
adding the desired acceleration as a separate sample, given that
it is vessel feasible. This will make sure that keeping a constant
speed and course, as well as a trajectory converging toward the
desired trajectory is included in the search space.

Given the predicted trajectories, the algorithm finds the
optimal desired SOG and course trajectory for the vessel
controller u∗

d
(·) = [Ud(·)

∗,χd(·)
∗] as

u∗d(·) = argmin

(η̄k(·),ud,k(·))∈(H̄,Ud)

G(η̄k(·), ud,k(·); p
mid
d (·)), (37)

where the objective function is given as

G(η̄(·), ud(·); p
mid
d (·)) = walalign(η̄(·); p

mid
d (·))

+ wav,mavoidm(η̄(·))+ wav,savoids(η̄(·))

+ wt,U tranU(ud(·))+ wt,χ tranχ (ud(·)).

(38)

The variables wal,wav,m,wav,s,wt,U ,wt,χ > 0 are tuning

parameters, while align(η̄(·); pmid
d

(·)) measures the alignment
between a candidate trajectory η̄(·) and the desired trajectory
from the mid-level algorithm pmid

d
(·). The function avoidm(η̄(·))

ensures COLAV of moving obstacles by penalizing trajectories
close to obstacles, using a non-symmetric obstacle ship domain
designed with the COLREGs in mind. The function avoids(η̄(·))
ensures COLAV of static obstacles by introducing an occupancy
grid, while tranU(ud(·)) and tranχ (ud(·)) introduces transitional
costs to avoid shattering. The transitional terms penalize
deviations from the planned trajectory of the previous iteration,
unless changing to the trajectory corresponding by the desired
acceleration. See Eriksen and Breivik (2019) and Eriksen et al.
(2019) for more details and descriptions of the terms.

6. SIMULATION RESULTS

The hybrid COLAV system is verified through simulations,
which are present in this section. The simulations include ocean
current and both static andmoving obstacles.We includemoving
obstacles both acting in compliance with the COLREGs, and
violating the COLREGs.

6.1. Simulation Setup
The simulations are performed in MATLAB on a computer with
an 2.8 GHz Intel Core i7 processor running macOS Mojave,
using CasADi (Andersson et al., 2019) and IPOPT (Wächter
and Biegler, 2005) for implementing the high-level and mid-level
algorithms. The simulator is built upon the mathematical model
of the Telemetron ASV described in section 2, and the model-
based speed and course controller in Eriksen and Breivik (2018)
is used as the vessel controller.

The parameters of the high-level algorithm are listed in
Table 1. The number of prediction steps Nhi is chosen to achieve
a time step length h = tmax/Nhi < 1.5 s, which seems to be a good
compromise between capturing the relevant system dynamics
and having a feasible computational requirement.

The mid-level algorithm is implemented using the parameters
in Table 2.

The slack variable cost Kξ has five elements, implying that
we use five steps in our homotopy scheme. The mid-level NLP
is initially warm started with the solution from the previous
iteration, while each step in the homotopy scheme is warm
started with the solution from the previous step of the homotopy
scheme, converging toward the solution without slack on the
constraints. To reduce the computational load and increase the
predictability of the mid-level algorithm, we utilize six steps of
each planned mid-level trajectory, only running the mid-level
algorithm every 60 s. This implies that six steps of the predicted
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TABLE 1 | Tuning parameters for the high-level algorithm.

Param. Value Comment

tmax Maximum trajectory time

Scenario 1 1420 s

Scenario 2 1420 s

Scenario 3 725 s

Nhi 1000 Number of prediction steps

Ke 1.0 s3/m Energy penalty gain

Kδ 1.0 Quadratic yaw control penalty gain

Lm 4.0 m Length between control origin and outboard motor

TABLE 2 | Tuning parameters for the mid-level algorithm.

Param. Value Comment

d
enter
CPA 900 m State machine dCPA entry criteria

dexit
CPA 2000 m State machine dCPA exit criteria

[tenter
CPA , t

enter
CPA ] [0, 270] s State machine tCPA entry criteria

[texit
CPA , t

exit
CPA ] [-20, 290] s State machine tCPA exit criteria

t
EM,enter
crit 20 s Emergency state tcrit entry criteria

t
EM,exit
crit 25 s Emergency state tcrit exit criteria

h 10 s Step size

Np 36 Number of prediction steps

Kp 0.02 Position error scaling

σ 1 Huber loss function threshold

KU̇ 0.3 SOG-derivative penalty term scaling

Kχ̇ 2.5 Course-derivative penalty term scaling

KHO 40 Head-on potential function scaling

[αx,HO,αy,HO] [1/500, 1/400] Head-on potential function steepness

parameters

x0,HO 1000 m Head-on potential function attenuation

parameter

KGW 40 Give-way potential function scaling

[αx,GW,αy,GW] [1/400, 1/500] Give-way potential function steepness

parameters

y0,GW −500 m Give-way potential function attenuation

parameter

KSO 3 Stand-on function scaling

KEM 3 Emergency function scaling

Kξ [0.1, 1, 10, 100,∞] Iterative slack variable cost

xa 600 m Moving obstacle ellipsis major axis size

ya 225 m Moving obstacle ellipsis minor axis size

solution will be implemented before computing a new solution,
which further implies that the state machine is also only run
every 60 s. If the mid-level algorithm fails in finding a feasible
solution, the algorithm will re-use the solution from the last
iteration. This may for instance happen if the algorithm tries
to compute a solution while being inside a moving obstacle
ellipse, which sometimes can be the case when an obstacle is
exiting an emergency or stand-on state. The BC-MPC algorithm
is run every 5 s, with parameters as described in Eriksen and

Breivik (2019). An update rate of 5 s is considered sufficient due
the typically large maneuvering margins at sea. It is also worth
noting that the detection and tracking system can represent a
significant time delay, especially for radar-based systems (Eriksen
et al., 2019). For confined and congested areas the BC-MPC
algorithm may need to be run at a higher rate, which also
imposes requirements for high-bandwidth obstacle estimates.
Static obstacles are padded with a safety margin of 150 m for
the high-level and mid-level algorithms, while the BC-MPC
algorithm uses a safety margin of 100 m for static obstacles.
The reason for having a smaller static obstacle safety margin
for the BC-MPC algorithm is that it tends to struggle with
following trajectories on the static obstacle boundaries. The BC-
MPC algorithm would hence not be able to follow the nominal
trajectory if the static obstacle safety margin was the same as for
the mid-level and high-level algorithms.

The simulations are performed without any noise on
the obstacle estimates, providing the algorithms with exact
information about the obstacles position, course, and speed.
The BC-MPC algorithm has previously been shown to perform
well with noisy and uncertain obstacle estimates in full-
scale experiments using radar-based detection and tracking of
obstacles (Eriksen and Breivik, 2019; Eriksen et al., 2019). The
mid-level algorithm is likely to have a larger requirement to low
noise levels on the obstacle estimates, since the state machine in
the mid-level algorithm depends on logic and discrete switching.
However, the algorithm is also run less frequently, reducing the
required bandwidth of the obstacle estimates, possibly allowing
using smoothing or tracking filters with a lower process noise
if necessary. It may also be feasible to make the mid-level
algorithm depend on data from the automatic identification
system, which typically have much lower noise levels than radar-
based tracking systems, while being subject to robustness issues
(Harati-Mokhtari et al., 2007).

We present three scenarios, which demonstrate different
important properties of the hybrid COLAV system:

Scenario 1 This scenario contains two static obstacles, and
four moving obstacles of which all comply with
the COLREGs. Themoving obstacles demonstrate
stand-on, give-way and head-on situations.

Scenario 2 This scenario contains one static and five moving
obstacles. The moving obstacles demonstrate
stand-on with an obstacle ignoring the COLREGs,
an overtaking and a simultaneous head-on,
give-way and stand-on situation with obstacles
complying with the COLREGs.

Scenario 3 This scenario contains two moving obstacles,
which suddenly perform dangerous maneuvers
close to the ownship, displaying the use of the
emergency state.

6.2. Scenario 1
Scenario 1 contains two static obstacles, four moving obstacles,
an ocean current of [−2, 0]⊤ m/s and is shown in Figure 7.
The high-level planner plans a nominal trajectory between the
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A

B

FIGURE 7 | Scenario 1: trajectory and COLREGs interpretation. The text

marks denote the time steps [150, 600, 1100] s. (A) Trajectory plot. The initial

position of the ownship and obstacles are shown with circles, with the blue

ellipses illustrating the moving obstacle ellipse size. The vessel patches, which

are overexaggerated for visualization, mark the ownship and obstacle poses at

given time stamps. The static obstacles are shown in yellow, with the BC-MPC

and mid-level safety margins enclosed around. The black arrow indicates the

ocean current direction. (B) Output from the state machine for each obstacle.

The asterisks mark time stamps, and the colors correspond to the obstacle

patch colors in the trajectory plot.

initial and goal positions at [7000, 200]⊤ m and [0, 7900]⊤ m,
respectively. The first obstacle is in a stand-on situation, where
it is required to maneuver in order to avoid collision with the
ownship, which is required to stand on. As shown in Figure 7B,
the first obstacle is quickly considered as a stand-on situation,
at which the mid-level algorithm disregards the obstacle and
continues with the current speed and course. Following this,
the obstacle maneuvers in accordance to the COLREGs, and we
avoid collision. After the first static obstacle, we encounter two
crossing vessels where the ownship is deemed the give-way vessel.
In accordance with the COLREGs, we maneuver to starboard in
order to pass behind both obstacles. Notice that the second give-
way obstacle is detected as a give-way situation later than the
first, since the entry criteria in the state machine includes the
time to CPA, which is higher for the second give-way obstacle.

A

B

FIGURE 8 | Scenario 1: speed and angular trajectories. The asterisks mark

the same time samples as in Figure 7. (A) Speed trajectories. (B) Angular

trajectories.

After avoiding the two give-way obstacles, we converge toward
the nominal trajectory and encounter a head-on situation. This
is correctly identified by the state machine as head on, and we
maneuver to starboard in order to avoid collision. Notice that
even though the obstacle maneuvers, we keep the obstacle in the
head-on state until we have passed it.

Figure 8 shows the speed and angular trajectories during
Scenario 1, where the desired speed is calculated as the nominal
speed at the closest point on the nominal trajectory given the
ownship position. From this, we see that the mid-level and BC-
MPC algorithms manage to track the desired nominal speed
before and after the first static obstacle, where no obstacles
require maneuvering away from the nominal trajectory. Notice
that when encountering the two crossing obstacles, the mid-level
algorithm chooses to slowly change the course, which is due to
the attenuation of the give-way potential function and the large
distance between the vessels. It would be better to make a clear
course change, which is a subject of tuning. After passing the two
crossing obstacles, the mid-level algorithm increases the speed in
order to get back to the nominal trajectory, which is due to the
algorithm attempting to keep the speed projected on the nominal
trajectory equal as the desired nominal speed. Furthermore,
notice that the mid-level algorithm actively controls the relative
surge speed in order achieve the desired SOG, which is clearly
seen when passing the first static obstacle.

6.3. Scenario 2
Scenario 2, shown in Figure 9, is more complex than Scenario 1,
with a total of five moving obstacles, and has an ocean current of
[−1, 1]⊤ m/s. The high-level planner plans a nominal trajectory
between the initial and goal positions at [200, 200]⊤ m and
[5500, 7000]⊤ m, respectively. The first obstacle is a crossing
vessel, which similarly as in Scenario 1 is deemed to give way for
the ownship, which should keep the current speed and course.
However, in this scenario, the obstacle violates the COLREGs by
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A

B

FIGURE 9 | Scenario 2: trajectory and COLREGs interpretation. The text

marks denote the time steps [140, 550, 900] s. (A) Trajectory plot. The initial

position of the ownship and obstacles are shown with circles, with the blue

ellipses illustrating the moving obstacle ellipse size. The vessel patches, which

are overexaggerated for visualization, mark the ownship and obstacle poses at

given time stamps. The static obstacles are shown in yellow, with the BC-MPC

and mid-level safety margins enclosed around. The black arrow indicates the

ocean current direction. (B) Output from the state machine for each obstacle.

The asterisks mark time stamps, and the colors correspond to the obstacle

patch colors in the trajectory plot.

not maneuvering in order to avoid collision. Therefore, the BC-
MPC algorithm maneuvers to avoid collision when the obstacle
gets so close that the safety margins of the BC-MPC algorithms is
violated. The BC-MPC algorithm maneuvers to port, as advised
by COLREGs Rule 17 for crossing situations where the stand-
on vessel has to maneuver, and safely avoid the first obstacle.
The second obstacle is overtaken by the ownship, and correctly
considered as an overtaking situation by the state machine. For
such an situation, there is no requirement on how the ownship
should maneuver, except keeping clear from the overtaken vessel.
After passing the second obstacle, we encounter a complex
situation with simultaneous head-on, give-way and stand-on
obligations. In this situation, each vessel, including the ownship,
finds itself in a situation where a head-on and a give-way situation
require starboard maneuvers, while a stand-on situation requires
the vessel to keep the current speed and course. However, head-
on and give-way obligations should be prioritized higher than
stand-on situations, and the situation is quite easily solved by
each vessel maneuvering to starboard and passing behind the

A

B

FIGURE 10 | Scenario 2: speed and angular trajectories. The asterisks mark

the same time samples as in Figure 9. (A) Speed trajectories. (B) Angular

trajectories.

vessel crossing from starboard. The mid-level algorithm solves
this situation with the desirable behavior, and converges toward
the nominal trajectory after the situation is resolved. As shown in
Figure 9B, the state machine interprets the situations correctly.

From the speed trajectory in Figure 10 it is clear that the
mid-level algorithm follows the desired nominal speed also when
overtaking the second obstacle.

6.4. Scenario 3
Scenario 3, shown in Figure 11, contains two moving obstacles
on parallel courses with the ownship, and has an ocean current of
[−1, 1]⊤ m/s. The high-level planner plans a nominal trajectory
between the initial and goal positions at [500, 500]⊤ m and
[3328, 5399]⊤ m, respectively, which results in a straight line
trajectory with a course angle of 60°. The first obstacle travels at
a higher speed than the ownship, while the second one travels
at a lower speed and will be overtaken by the ownship. Since
the obstacles are on parallel paths with the obstacle, the time
to CPA is sufficiently high such that the obstacles are in the
safe state, even though the vessels are quite close. However,
both obstacles make sudden maneuvers to port dangerously
close to the ownship and enters on a crossing course with
the ownship. With respect to the COLREGs, the ownship is
required to give way to both obstacles since they are crossing
from the ownship’s starboard side. One can, however, argue that
the maneuvers displayed by the obstacles are dangerous and
displays poor seamanship, such that the ownship should not be
held accountable if a collision occurred. Nevertheless, the hybrid
COLAV system manages to avoid both obstacles. As seen in
Figure 11B, the first obstacle is sufficiently far away from the
ownship to be considered as a give-way situation when the state
machine interprets the situation, and the mid-level algorithm
plans a trajectory passing behind the first obstacle. The second
obstacle maneuvers to port even closer to the ownship, resulting
in the distance to the critical point being within the threshold
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A

B

FIGURE 11 | Scenario 3: trajectory and COLREGs interpretation. The text

marks denote the time steps [170, 480] s. (A) Trajectory plot. The initial

position of the ownship and obstacles are shown with circles, with the blue

ellipses illustrating the moving obstacle ellipse size. The vessel patches, which

are overexaggerated for visualization, mark the ownship and obstacle poses at

given time stamps. The static obstacles are shown in yellow, with the BC-MPC

and mid-level safety margins enclosed around. The black arrow indicates the

ocean current direction. (B) Output from the state machine for each obstacle.

The asterisks mark time stamps, and the colors correspond to the obstacle

patch colors in the trajectory plot.

for entering the emergency situation when the state machine
interprets the situation. In this situation, the mid-level algorithm
disregards the obstacle and leaves it to the BC-MPC algorithm to
avoid collision.

As seen in Figure 12, the mid-level algorithm both reduces
the speed and changes the course to avoid the first obstacle.
When approaching the second obstacle, the BC-MPC algorithm
initiates a speed reduction, and after some time also maneuver
to starboard in order to pass behind the obstacle and resolve
the situation.

6.5. Simulation Summary
The simulation results show that the hybrid COLAV system is
able to handle a wide range of situations, while also behaving in
an energy-optimal way whenmoving obstacles are not interfering
with the ownship trajectory. Table 3 shows the minimum
distance to static and moving obstacles for the scenarios.

A

B

FIGURE 12 | Scenario 3: speed and angular trajectories. The asterisks mark

the same time samples as in Figure 11. (A) Speed trajectories. (B) Angular

trajectories.

TABLE 3 | Minimum distance to static and moving obstacles for the

simulation scenarios.

Scenario
Minimum distance to

static obstacles (m)

Minimum distance to moving

obstacle number (m)

1 2 3 4 5

Scenario 1 93.7 634.3 596.3 522.7 726.8 –

Scenario 2 118.2 185.5 228.3 1,097.2 575.6 842.3

Scenario 3 1123.8 326.4 106.6 – – –

The minimum distance to static obstacles is in Scenario 1
below the safety region size of the BC-MPC algorithm, which
is intentional and caused by the algorithm using a smooth
penalty function for interpreting static obstacles. The penalty
function value increases linearly when moving further into the
safety region, see Eriksen and Breivik (2019) for more details.
The minimum distance to moving obstacles is a bit difficult
to interpret, since the obstacle ship domains are non-circular,
implying that the required clearance depends on relative position
of the ownship with respect to the moving obstacles. However,
we see that we have a larger clearance in head-on, give-way
and stand-on situations where the obstacles comply with the
COLREGs, and do not perform dangerous maneuvers (as in
Scenario 3), compared to overtaking situations. The reason for
this is that when overtaking (obstacle 2 in Scenario 2), we pass
the obstacle on a parallel course, resulting in the minor axis of
the moving obstacle ellipsis indicating the required clearance.
Furthermore, we see that obstacle 1 in Scenario 2, which ignores
its give-way obligation, comes significantly closer than other
crossing obstacles except for those in Scenario 3. The reason for
this is that the BC-MPC algorithm, which handles this situation,
has a lower clearance requirement than the mid-level algorithm,
which still should be considered as safe. In Scenario 3, the
two obstacles display poor seamanship, and behave dangerously.
Obstacle 1 is handled by the mid-level algorithm and passed
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with a clearance lower than the major axis of the mid-level
algorithm, which is caused by the BC-MPC algorithm “cutting
the corner.” The clearance should still be considered safe since
we are behind the obstacle, and the clearance requirements of
the BC-MPC algorithm is enforced. Obstacle 2, which is placed
in the emergency state and handled by the BC-MPC algorithm,
is passed with a clearance of only 106.6 m. This is lower than
the clearance to Obstacle 1 in Scenario 2 (which violated its
stand-on requirement), and is due to the BC-MPC algorithm
having a non-symmetric obstacle ship domain function allowing
for a smaller clearance when passing behind an obstacle than
in front.

For the three scenarios, the high-level planner used an average
of 67 s with a maximum of 93 s to compute the solution.
Since the high-level planner is intended to be run off-line,
this is well within reasonable limits. The mid-level algorithm
used 0.60 s on average, and a maximum of 2.1 s, which we
consider to be computationally feasible since the mid-level
algorithm only is run every 60 s. The BC-MPC algorithm
used 0.29 s on average, and a maximum of 0.63 s, which
we also consider to be real-time feasible when the BC-MPC
algorithm is run every 5 s. The BC-MPC algorithm is highly
parallelizable, which could reduce the BC-MPC runtime by a
large magnitude if required. The mid- and high-level algorithms
may not return solutions as they are non-convex optimization
problems, but the BC-MPC algorithm makes the hybrid COLAV
system real-time feasible since it always will find a (potentially
sub-optimal) solution.

7. CONCLUSION

In this paper, we have presented a three-layered hybrid COLAV
system, compliant with COLREGs rules 8 and 13–17. As part
of this, we have further developed the MPC-based mid-level
COLAV algorithm in Eriksen and Breivik (2017b) and Bitar
et al. (2019a) to comply with COLREGs rules 13–16 and parts
of Rule 17, which includes developing a state machine for
COLREGs interpretation. The hybrid COLAV system has a well-
defined division of labor, including an inherent understanding of
COLREGs Rule 17, where the mid-level algorithm obeys stand-
on situations, while the BC-MPC algorithm handles situations
where give-way vessels do not maneuver.

The hybrid COLAV system is verified through simulations,
where we in three scenarios challenge the system with a number
of different situations. The scenarios include multi-obstacle
situations with multiple simultaneously active COLREGs rules,
and situations where obstacles violate the COLREGs. Collision
is avoided in all the scenarios, and we show that the

ownship follows an energy-optimized trajectory generated by the
high-level planner when moving obstacles do not interfere with
this trajectory.

For further work, we suggest to:

• Investigate if using situation-dependent entry and exit criteria
parameters in the state machine improves the performance.

• Expand the state machine with the possibility of transitioning
from head-on, give-way and overtaking states to the
emergency state for situations where obstacles behave
dangerously or hostile.

• Develop a methodology for deciding tuning parameters.
• Perform simulations with noisy obstacle estimates to

investigate how the state machine and mid-level algorithm
respond to this.

• Explore the possibilities for integrating the COLREGs
interpretation in the mid-level NLP, relaxing the assumption
of the current COLREGs situation being valid for the entire
prediction horizon.

• Investigate the possibility of including static obstacles from
e.g., ENCs in the high- and mid-level algorithms.

• Simulate scenarios where multiple vessels running the hybrid
COLAV system interact with each other.

• Validate the hybrid COLAV system in full-scale experiments.
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We present a reinforcement learning-based (RL) control scheme for trajectory tracking of

fully-actuated surface vessels. The proposed method learns online both a model-based

feedforward controller, as well an optimizing feedback policy in order to follow a

desired trajectory under the influence of environmental forces. The method’s efficiency is

evaluated via simulations and sea trials, with the unmanned surface vehicle (USV) ReVolt

performing three different tracking tasks: The four corner DP test, straight-path tracking

and curved-path tracking. The results demonstrate the method’s ability to accomplish

the control objectives and a good agreement between the performance achieved in the

Revolt Digital Twin and the sea trials. Finally, we include an section with considerations

about assurance for RL-based methods and where our approach stands in terms of the

main challenges.

Keywords: reinforcement learning, trajectory tracking, optimal control, model-based adaptive control,

approximate dynamic programming (ADP), dynamic positioning (DP), autonomous ships, system identification

1. INTRODUCTION

Control of marine vehicles is a challenging problem, mostly due to the unpredictable nature
of the sea and the difficulty in developing accurate mathematical models to represent the
varying marine vehicle dynamics. As a result, considerable research effort has been dedicated to
the topic since the early 90’s (Fossen, 1994), resulting in a vast literature utilizing ideas from
virtually every branch of control engineering: Linear, non-linear, adaptive, intelligent, optimal,
fuzzy, and stochastic control approaches, to name a few, have been developed and tested over
the years, and many of their properties are well-understood (Hasegawa et al., 1989; Pettersen
and Egeland, 1996; Katebi et al., 1997; Fossen, 2000; McGookin et al., 2000; Soetanto et al.,
2003; Wang et al., 2015; Do, 2016). Due to the fact that the hydrodynamic coefficients, and
consequently the behavior, of a marine vehicle can vary significantly in different speed regimes,
a common approach has been to design controllers for specific motion control scenarios. This
approach simplifies the vessel modeling process and has led to dynamic positioning (DP) and
station keeping controllers for speeds close to zero, and trajectory tracking or path following
(depending on whether temporal constraints are considered) controllers when a vessel is in
transit mode. Naturally, the main drawback is that, when moving from one speed regime to
another, controllers and/or models with different properties are needed. Two well-researched
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ways to achieve such performance diversity with conventional
methods are to design numerous controllers and switch among
them when needed, or to use adaptive approaches. To this
end, research effort has been dedicated to developing flexible
methods for updating the model parameters by, for instance,
using system identification methods or parameter estimation
via neural networks (Källström and Åström, 1981; Kallstrom,
1982; Fossen et al., 1996; Sutton et al., 1997; Mišković et al.,
2011; Dai et al., 2012; Wang et al., 2017). In the majority of
the aforementioned works, model-based approaches exploiting
human knowledge on hydrodynamics and the laws of motion
were considered.

Reinforcement learning (RL), also known as neuro-dynamic
programming or approximate dynamic programming, is a
field of research developed by the Artificial Intelligence (AI)
community for achieving optimal sequential decision making
under system and environment uncertainty. The roots of RL
can be traced back to the 60’s and a thorough overview of
its evolution can be found in Sutton and Barto (2018) and
Bertsekas (2019). Contrary to optimal control theory, RL is based
on evaluative, rather than instructive, feedback and comes in
different forms, which may or may not include partial knowledge
of the environment or the system. The process typically involves
hand-engineering a reward function, which assigns a reward,
or penalty, to the actions that induce desired, or undesired,
outcomes, respectively. An RL algorithm is then assigned to
find a policy (or controller, in control engineering terminology)
that solves the control objective optimally, given the problem
constraints and uncertainties. To sum up, RL algorithms use
the reward function as a guide, and through trial and error,
learn to model the system and its environment, which then
leads to a policy that provides an optimal solution to the
assigned problem.

Despite a number of successes for RL on simple problems,
including algorithms, such as Q-learning and REINFORCE,
the field has seen limited interest. In recent years there has
however been a resurgence of interest due to the development of
Deep Reinforcement Learning (DRL), starting with Deep Mind
developing the Deep Q-Network (DQN) algorithm that achieved
superhuman performance in several Atari games (Mnih et al.,
2013), followed by Deep Mind’s AlphaGo algorithm becoming
the first computer program to beat a human champion in the
game of Go (Silver et al., 2016). Since then, DRL has been
successful in surpassing all previous computer programs in chess
and learning how to accomplish complex robotic tasks (Silver
et al., 2017; Andrychowicz et al., 2018). Given DRL’s ability
to tackle problems with high uncertainty, implementations to
motion control scenarios involving marine vessels have been
presented recently (Shen and Guo, 2016; Zhang et al., 2016;
Pham Tuyen et al., 2017; Yu et al., 2017; Cheng and Zhang,
2018; Martinsen and Lekkas, 2018a,b). In most of these works
the authors implemented algorithms pertaining to the class
of actor-critic RL methods, which involves two parts (Konda
and Tsitsiklis, 2000): The actor, where the gradient of the
performance is estimated and the policy parameters are directly
updated in a direction of improvement. The main drawbacks
of the actor are that it is prone to variance and the new

gradient is estimated independently of past estimates. The
critic, learns an approximation of the value function, leading
to an approximate solution to the Bellman or Hamilton-
Jacobi-Bellman equation, which then is expected to prescribe
a near-optimal policy. The critic’s main drawback is that it
lacks reliable guarantees in terms of near-optimality of the
resulting policy. The actor-critic approach involves the actor
improving the policy parameters’ estimation based on the
approximations learned by the critic. In the case of DRL,
one main novelty was the use of two DNNs as function
approximators of the policy and the value function, which
resulted in considerably improved performance compared to
previous approaches. However, DNNs have drawbacks, with
some of the most important being lack of transparency and
interpretability, lack of robustness, and inability to generalize to
situations beyond their past experiences.

In this paper, we follow and extend the work by Kamalapurkar
et al. (2018) and Walters et al. (2018) in order to build a
trajectory tracking control system for a fully-actuated unmanned
surface vehicle (USV). Conceptually, the approach is quite
similar to dynamic positioning (DP) (Sørensen, 2011), but
extends to higher velocity operational domains, while also
trying to optimize tracking performance and compensate for
environmental forces (Lekkas and Fossen, 2014). The method
combines elements from reinforcement learning, Lyapunov
stability theory and system identification: We assume the
structure of the vessel model is known but all of its
parameters are unknown and have to be estimated online, as
well as updated accordingly when the operational conditions
change. Then we derive the tracking error dynamics for
a generic reference trajectory and a stabilizing parametric
control law (the actor), whose parameters are estimated
during operation.

In order to validate the control scheme, the proposed method
was tested in both in simulations, and on a physical model of
DNV GL’s ReVolt platform.

2. REINFORCEMENT LEARNING-BASED
TRAJECTORY TRACKING

In this section we will derive a trajectory tracking control
system for fully-actuated USVs. Since the approach is a model
based reinforcement learning approach, we will start by looking
at how ASVs can be modeled, and how the models can be
approximated online using system identification. We will derive
a feedforward control law for tracking the desired trajectory,
and a feedback control law based on reinforcement learning, for
controlling the drift of the vessel in a way that minimizes a given
cost function.

2.1. Vessel Model
The mathematical model used to describe the system can then
be kept reasonably simple by limiting it to the planar position
and orientation of the vessel. The motion of a surface vessel can
be represented by the pose vector η = [x, y,ψ]⊤ ∈ R

2 × S,
and velocity vector ν = [u, v, r]⊤ ∈ R

3. Here, (x, y) describe
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the Cartesian position in the earth-fixed reference frame, ψ
is yaw angle, (u, v) is the body fixed linear velocities, and r
is the yaw rate, an illustration is given in Figure 1. Using the
notation in Fossen (2011) we can describe a 3-DOF vessel model
as follows

η̇ = J(η)ν,

Mν̇ + D(ν)ν + C(ν)ν = τThrust + τEnvironment
(1)

where M ∈ R
3×3, D(ν) ∈ R

3×3, C(ν) ∈ R
3×3,

τThrust, τEnvironment ∈ R
3 and J(η) ∈ SO(3) are the inertia

matrix, damping matrix, coriolis matrix, control input vector,
environmental forces, and rotation matrix, respectively. The
rotational matrix J(η) ∈ SO(3) is given by

J(η) =





cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1



 (2)

and is the rotation from the body frame to the earth-fixed North
East Down (NED) reference frame.

D(ν) =





−Xu − X|u|u · |u| 0 0
0 −Yv − Y|v|v · |v| − Y|r|v · |r| −Yr − Y|v|r · |v| − Y|r|r · |r|
0 −Nv − N|v|v · |v| − N|r|v · |r| −Nr − N|v|r · |v| − N|r|r · |r|



 (5)

2.2. Model Approximation
While the structure of a vessel model, as given above, is well-
known, the model parameters are often difficult to find. For
our approach we wish to make as few assumptions on the
parameters of the vessel model as possible, and use online system
identification in order to model the vessel based on gathered
data. For this we assume that we know the model structure
as given in (1), but that the model parameters are unknown.
Splitting the model into a known and unknown part, we get
the following:

ẋ = fθ (x)+ f1(x)+ g(x)u (3)

FIGURE 1 | 3-DOF vessel centered at (x, y), with surge velocity u, sway

velocity v, heading ψ in a North-East-Down (NED) reference frame.

where f1(x) and g(x) are known, and fθ (x) is unknown. For the
vessel model in (1), with the state vector x = [η, ν]⊤ and the
control vector u = τThrust. We have the following:

fθ (x) =

[

03×1
−M−1

(

D(ν)ν + C(ν)ν − τEnvironment

)

]

f1(x) =

[

J(η)ν
03×1

]

g(x) =

[

03×3
M−1

]

hence we assume the mass matrix is known, but the
damping and coriolis matrix are unknown. For the
damping and coriolis matrices we assume the vessel has
port starboard symmetry, from Fossen (2011) this gives the
following structure.

C(ν) =





0 0 Yv̇ · v+ Yṙ · r
0 0 −Xu̇ · u

−Yv̇ · v+ Yṙ · r Xu̇ · u 0



 (4)

For the damping matrix D(ν), both linear and non-linear
terms are included. The linear terms are important for low
speed maneuvering and station keeping, while ensuring the
velocity converges exponentially to zero. The non-linear terms
are required as they dominate at higher velocities. This ensures
that the model is able to handle a large range of velocities, i.e.,
it can be used for both high speed trajectory tracking and low
speed station keeping and dynamic positioning. For the coriolis
matrix, we use only the added mass terms. Since the structure of
the rigid body, and addedmass is the same for the coriolis matrix,
the coriolis matrix given above will be able to capture both the
added mass and rigid body dynamics.

In addition to learning the vessel dynamics, we also wanted to
be able to compensate for environmental forces. In order to allow
for the environmental forces to be learned, they aremodeled as an
additional unknown pressure vector pNEDenv = [pNorth, pEast, 0]

⊤

assumed constant in the NED frame. The resulting force in the
body frame is then assumed to be proportional to the cross
sectional area of the vessel times the pressure in the body frame,
giving the following relationship.

τ
body
Environment = diag([w, l, 0])J⊤(ν)pNEDEnvironment (6)

where w and l are the width and length of the vessel, respectively,
note that for better accuracy calculated pressure coefficients
based on the design of the hull may be used instead of the width
and length. The unknown parameters are

θ = [Xu̇,Yv̇,Yṙ ,Xu,Yv,Yr ,Nv,Nr ,X|u|u,Y|v|v,Y|v|r ,Y|r|v,Y|r|r ,

N|v|v,N|v|r ,N|r|v,N|r|r , pNorth, pEast]
⊤ (7)
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and the function fθ (x) can be written as a linear function in θ :

fθ (x) = Y(x)θ (8)

where Y(x) is:

Y(x) =

[

03×3
−M−1

]





0 v · r r2 −u 0 0 0 0 −|u|u 0 0 0 0 0 0 0 0 w cosψ w sinψ

−u · r 0 0 0 −v −r 0 0 0 −|v|v −|v|r −|r|v −|r|r 0 0 0 0 −l sinψ l cosψ

u · v −v · u −r · u 0 0 0 −v −r 0 0 0 0 0 −|v|v −|v|r −|r|v −|r|r 0 0



 (9)

We therefore obtain the following parametric model:

ẋ = Y(x)θ + f1(x)+ g(x)u, (10)

which is linear in the parameters θ .

2.2.1. Model Assumptions
• The vessel is port starboard symmetric, with a structure as

given as in (Figure 1).
• The vessel dampening is linear and quadratic with respect to

the linear and angular velocity.
• Environmental forces are constant in the NED frame, and

proportional to vessel cross section.
• The vessel is fully actuated.

2.3. Trajectory Tracking
In this section we will develop an adaptive feedforward control
law which given a time-varying trajectory, finds the control
inputs required to follow the trajectory, given the model
approximation found in the previous section.

When the control objective is to track a bounded continuously
differentiable signal xd, the dynamics of the tracking error e =
x− xd can be written as

ė = f (x)+ g(x)u− ẋd (11)

Assuming g(x) is bounded and has full column rank for
all x (Kamalapurkar et al., 2018), then the system is
controllable, which in this case holds as the vessel is fully
actuated. This gives the feedforward control for the reference
trajectory as :

ud(xd, ẋd) = g+(xd)(ẋd − f (xd)) (12)

where g+ is the left Moore–Penrose pseudo-inverse, given as
g+ = (g⊤g)−1g⊤. Using a reference model ẋd = hd(xd),
the feedforward control for the reference trajectory can be
written as:

ud(xd) = g+(xd)(hd(xd)− f (xd)) (13)

We can then formulate the tracking problem as the following
time-invariant optimal control problem.

[

ė

ẋd

]

︸︷︷︸

ζ̇

=

[

f (e+ xd)+ g(e+ xd)ud(xd)
hd(xd)

]

︸ ︷︷ ︸

F(ζ )

+

[

g(e+ xd)
0

]

︸ ︷︷ ︸

G(ζ )

π (14)

Where π is an input correction for the drift dynamics, which
we will define in the next section. Given the parametric model
in (10), the parametric version of the tracking problem is
given as:

[

ė

ẋd

]

︸︷︷︸

ζ̇

=

[

Y(e+ xd)θ + f1(e+ xd)+ g(e+ xd)ud(xd; θ)
hd(xd)

]

︸ ︷︷ ︸

F(ζ ;θ)

+

[

g(e+ xd)
0

]

︸ ︷︷ ︸

G(ζ )

π (15)

where the parametric feedforward control for the reference
trajectory ud(xd; θ) is given as:

ud(xd; θ) = g+(xd)(hd(xd)− Y(xd)θ − f1(xd)) (16)

Given the formulation above, with the feedforward control
for the reference trajectory ud(xd), and the optimal model
parameters θ∗, the exact feedforward control for the reference
trajectory is possible to compute. The dynamics above guarantee
trajectory tracking when ė = 0, i.e., when the tracking error
is zero. When the tracking error is not zero however, we need
to control the drift dynamics in order to ensure convergence
to the desired trajectory by designing the feedback control π(t)
such that limt→∞ e(t) = 0. The objective of the optimal control
problem is to design the feedback control law π(t) such that it
minimizes a given cost function.

2.4. Approximate Optimal Control of Drift
Dynamics
In the previous section we developed a feedforward control law
ud(xd; θ) for tracking a desired trajectory. Due to inaccuracies
in model approximation and disturbances, using only the
feedforward control law, the vessel will experience drift. In order
to compensate for the inevitable drift, we will in this section
develop a feedback control law π(·), which controls the drift
dynamics in a way that optimizes a given cost function. We will
additionally show how the parameters of the feedback control law
can be learned by using reinforcement learning.

The optimal control problem we wish to solve is that of
minimizing the cost function:

J(ζ ,π) =

∫ ∞

t0

r(ζ (τ ),π(τ ))dτ (17)

Where r(·) is scalar function defining the local cost, and should
not be confused with the yaw rate. The cost function is defined as:

r(ζ ,π) = Q(ζ )+ π⊤Rπ (18)
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where R ≻ 0 is a positive definite symmetric matrix. And Q(ζ ) is
a positive definite function. Assuming that a minimizing control
policy π(·) exists, the optimal value function is given as:

V∗(ζ ) = min
π(τ ), τ∈[t0 ,∞)

∫ ∞

t0

r(ζ (τ ),π(τ ))dτ (19)

We can now note that for a small time step 1t, the above
expression can be formulated as:

V∗(ζ (t)) = min
π(τ ), τ∈[t,t+1t)

∫ t+1t

t
r(ζ (τ ),π(τ ))dτ+V∗(ζ (t+1t))

Taking the limit of this as1t→ 0, for the optimal value function
under the optimal policy, we get (Doya, 2000):

V∗(ζ (t)) = min
π(t)

r(ζ (t),π(t))+ V∗(ζ (t))+ V̇∗(ζ (t))

Simplifying this we get the Hamilton-Jacobi-Bellman (HJB)
equation for the optimal control problem as follows:

H∗ = V̇∗(ζ )+ r(ζ ,π∗(ζ ))

= ∇ζV
∗(ζ )⊤ζ̇ + r(ζ ,π∗(ζ ))

= ∇ζV
∗(ζ )⊤

(

F(ζ )+ G(ζ )π∗(ζ )
)

+ r(ζ ,π∗(ζ )) = 0

(20)

Where H∗, π∗ and V∗ is the optimal hamiltonian, policy
and value function, respectively. From calculus of variation
(Liberzon, 2011) we have the Hamiltonian minimization
condition, which states that a value function V is the optimal
Value function if and only if there exists a controller π(·) and
trajectory ζ (·) under π(·) satisfy the equation:

∇ζV(ζ )
⊤

(

F(ζ )+ G(ζ )π(ζ )
)

+ r(ζ ,π(ζ ))

= min
π̂∈U
{∇ζV(ζ )

⊤
(

F(ζ )+ G(ζ )π̂(ζ )
)

+ r(ζ , π̂(ζ ))} (21)

The necessary conditions for this to hold are:

∇π

(

∇ζV(ζ )
⊤

(

F(ζ )+ G(ζ )π(ζ )
)

+ r(ζ ,π(ζ ))
)

= 0 (22)

which gives the closed form solution of the optimal controller as:

G⊤(ζ )
(

∇ζV(ζ )
)

+ ∇π r(ζ ,π) = 0⇔

2Rπ = −G⊤(ζ )
(

∇ζV(ζ )
)

⇔

π∗(ζ ) = −
1

2
R−1G⊤(ζ )

(

∇ζV(ζ )
)

(23)

Hence assuming that an optimal controller exists, the closed form
solution given by the HJB equation is given by (23). Note that the
value function is assumed time independent, and hence we are
looking for a stationary solution of the HJB equation. This holds
true, as the reformulation into a trajectory tracking problem (15)
gives a time independent system.

The Universal Approximation theorem (Kamalapurkar et al.,
2018, Property 2.3) states that a single layer neural network can

simultaneously approximate a function and its derivative given
a sufficiently large number of basis functions. Using this, we can
approximate any continuous function as:

V(x) =W⊤σ (x)+ ǫ(x) (24)

where W is the weighting matrix, σ (x) is the vector of basis
functions, and ǫ(x) is the approximation error, which can
be made arbitrarily small by increasing the number of basis
functions. Note that the basis functions can here be chosen
to be any parameterization, such as Radial-Basis functions,
polynomials or even a Fourier series. Using this we can represent
the value function as a neural network which is linear in the
parameters, giving the optimal value function:

V∗(ζ ) =W⊤σ (ζ )+ ǫ(ζ ) (25)

and the optimal policy as a feedback control law on the form:

π∗(ζ ) = −
1

2
R−1G⊤(ζ )

(

∇ζσ (ζ )
⊤W + ∇ζ ǫ

⊤(ζ )
)

(26)

By making the parameterizations sufficiently rich, we
make the approximation error small. We can then use the
approximations given below, for the value function and control
policy, respectively.

V̂(ζ ; Ŵc) = Ŵ
⊤

c σ (ζ ) (27)

π̂(ζ ; Ŵa) = −
1

2
R−1G⊤(ζ )∇ζσ (ζ )

⊤Ŵa (28)

In order to find the parameters Ŵc and Ŵa, we will in the next
section find update laws, based on reinforcement learning, to be
able to optimize performance online.

Unfortunately, policy (28) does not account for the saturating
constraints, such as the maximum force the actuators of the
physical vessel can produce. In order to account for the actuator
limitations, we propose a different control policy which uses a
saturating function (Doya, 2000) in order to avoid this problem.
Using the following cost function:

r(ζ ,π) = Q(ζ )+ 2

m
∑

i=1

ri

∫ πi

0
tanh−1(ξ )dξ (29)

where ri is the ith entry of the diagonal of R, i.e.,
R = diag([r1, r2 . . . rm]). Figure 2 shows a comparison of
the saturating input cost, and a pure quadratic cost. Performing
the same analysis as for the quadratic penalty, we can get the
following saturating control law:

π∗(ζ ) = − tanh

(

1

2
R−1G⊤(ζ )

(

∇ζV(ζ )
)

)

(30)

Since tanh(·) saturates at±1, this means that the feedback control
law π will saturate at ±1, the outputs can then be easily scaled
to fit other bounds. It can be shown that since tanh(·) is a
monotonically increasing continuously differentiable function,
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FIGURE 2 | Comparison between saturating cost (29) and quadratic cost (18).

Here the quadratic cost is scaled by ln(4).

the control law satisfies the first order necessary conditions,
and the second order sufficient conditions of the Hamiltonian
minimization condition. This means that if an optimal controller
exists the closed form solution is given by (30). Using an
approximation we get the following approximate optimal policy

π̂(ζ ; Ŵa) = − tanh

(

1

2
R−1G⊤(ζ )∇ζσ (ζ )

⊤Ŵa

)

(31)

It should be noted, that while the policy in (31) uses a value
function approximation in order to approximate the optimal
policy, the parameters Ŵa are not the same as the parameters
Ŵc in the value function approximation in (27). In this way we
can separate the learning of the policy and value function, this
is known as an actor critic method, where the value function is
known as the critic, and the policy is known as an actor. The
intuitive reason for doing this, is that it allows the critic to learn
the value function resulting from the behavior of the policy, and
in this way it ca critique the policy. Similarly, the policy or actor,
can learn to improve its performance based on the criticism of
the critic. How the learning is performed is further discussed in
the next section.

2.5. Update Laws
Now that we have expressed the control laws ud(xd; θ̂), π̂(ζ ; Ŵa)
and value function V̂(ζ ; Ŵc), the challenge becomes finding

update laws for the parameters of the system identification θ̂ ,

the critic Ŵc and the actor Ŵa. For the model parameters θ̂ , we
will use methods from system identification and adaptive control,
to try to optimize the fit between the parameterized model, and
the observed vessel states. For the actor and critic parameters
Ŵa and Ŵc, we will use model based reinforcement learning to
find the parameters that gives the optimal value function, and
consequently the optimal feedback control policy.

For the system identification parameters θ̂ , the goal is to
find the parameters for which the model behaves as similarly as
possible to the observed behavior. Running our physical system,
and collecting observations (ẋi, xi, ui) i ∈ 1, 2, . . . ,N, we can
formulate a least squares optimization problem for finding the
parameters that minimize the difference between the observed
state derivative ẋi and the parametric model (3) as follows.

θ∗ = argmin
θ̂

N
∑

i=1

1

2
||ẋi − Y(xi)θ̂ − f1(xi)− g(xi)ui||

2
2

︸ ︷︷ ︸

L(θ̂)

This is a linear least squares optimization problem for which
there exists a closed form solution, however we can also solve
the problem by performing stochastic gradient decent on the

parameters θ̂ , as follows:

θ̂ ← θ̂ − ∇
θ̂
L(θ̂)

The gradient decent law above, works in discrete iteration,
however we can reformulate it as a an ordinary differential
equation (ODE). Doing some further changes motivated by the
stability analysis of the convergence of the parameter estimates,
we get the concurrent learning based approach proposed in
Chowdhary and Johnson (2011b) as:

˙̂
θ(t) = ŴθY

⊤(x(t))x̃(t)+
kθ

N
Ŵθ

N
∑

i=1

Y⊤(xi)
(

ẋi − f1(xi)

−g(xi)ui − Y(xi)θ̂
)

(32)

where Ŵθ is a parameter weight matrix, and kθ is a scalar weight
factor. Assuming that the prerecorded data is sufficiently rich
such that the matrix

∑N
i=1 Y

⊤(xi)Y(xi) is full rank, the parameter
error can be shown to converge. As the convergence rate of the
system identifier is proportional to the minimum singular value
of

∑N
i=1 Y

⊤(xi)Y(xi), replacing data in the data stack can be done
by using a singular value maximizing algorithm (Chowdhary and
Johnson, 2011a) in order to get faster convergence. Note, that
since we are assuming a sufficiently rich prerecorded data set,
we no longer need persistence of excitation (PE), in order to
guarantee parameter convergence.

In order to find the update laws for the critic or value function
parameters Ŵc, we need a way of evaluating the optimality of
the value function given the current parameters. For this we look
back at the HJB Equation (20) given as:

0 = r(ζ ,π∗(ζ ))+ ∇ζV
∗(ζ )⊤

(

F(ζ )+ G(ζ )π∗(ζ )
)

Substituting the estimates V̂ and π̂ for the optimal value function
V∗ and optimal policy π , we can formulate the Bellman error as
the error in the HJB equation as follows:

δ(ζ ; θ̂ , Ŵc, Ŵa) = Q(ζ )+ π̂
⊤(ζ ; Ŵa)Rπ̂(ζ ; Ŵa)

︸ ︷︷ ︸

r(ζ ,π̂(ζ ;Ŵa))

+ ∇ζ V̂(ζ ; Ŵc)
⊤

(

F(ζ ; θ̂)+ G(ζ )π̂(ζ ; Ŵa)
)

(33)
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The Bellman error can intuitively be thought of as the error
between the optimal value function under the policy, and the
estimates. Since the goal for the value function or critic is
to find the parameters Wc that best approximates the value
function, a natural choice becomes to find the parameters that
minimize the bellman error. With reinforcement learning we
can use a data stack of prerecorded state transitions ζ i(t) =
[xi − xd,i, xd,i]

⊤ i ∈ 1, 2, . . .N, to formulate the following
optimization problem:

min
Ŵc

N
∑

i=1

1

2
δ(ζ i; θ̂ , Ŵc, Ŵa)

2

This is a non-linear optimization problem, but we may again
use a methods like gradient decent in order to iteratively learn
parameters that improve the optimization problem given above.
Writing the gradient decent in terms of an ODE, and making
some changes motivated by a stability analysis (Kamalapurkar
et al., 2018). A least-squares update law with forgetting factor
(Ioannou and Sun, 2012) can be formulated for the critic
as follows:

˙̂
Wc(t) = −kc,1Ŵ(t)

ω(ζ (t), t)

ρ(ζ (t), t)
δ̂(ζ (t), t)−

kc,2

N
Ŵ(t)

N
∑

i=1

ω(ζ i(t), t)

ρi(ζ i(t), t)
δ̂(ζ i(t), t) (34)

Ŵ̇(t) =

{

βŴ(t)− kc,1Ŵ(t)
ω(ζ (t),t)ω⊤(ζ (t),t)

ρ2(ζ (t),t)
Ŵ(t) If ||Ŵ|| ≤ Ŵ̄

0 Otherwise

(35)
In critic update law above kc,1 and kc,2 are scalar learning rates,
while Ŵ is an adaptive weight matrix, and β is a scalar forgetting
factor, which controls how previous data samples are discounted.
For brevity of notation we used the functions ω(·), ρ(·), and δ̂(·)
defined as:

ω(ζ , t) = ∇ζσ (ζ )
(

F(ζ ; θ̂(t))+ G(ζ )π̂(ζ ; Ŵa(t))
)

ρ(ζ , t) = 1+ ω⊤(ζ , t)Ŵ(t)ω(ζ , t)

δ̂(ζ , t) = δ(ζ ; θ̂(t), Ŵc(t), Ŵa(t))

Here, ω can be considered a regressor vector, while ρ is a
normalization factor, and δ̂ the Bellman error.

The actor update law (36) is chosen such that it learns from
the critic, while at the same time trying to stay close to the initial
control law.

˙̂
Wa(t) = proj

(

−ka,1

(

Ŵa(t)− Ŵc(t)
)

− ka,2

(

Ŵa(t)−W0

))

(36)
In the actor update law above, the first term will make the actor
parameters follow the critic parameters, while the second term
will try to keep the actor parameters close to the initial parameters
W0. ka,1 and ka,2 are scalar learning rates for the two terms.
A smooth projection (Ioannou and Sun, 2012) is added such

that the actor weights are within a predefined region, for which
the control law is stable. Any smooth projection can be chosen,
however we chose a projection ensuring the actor weights were
bounded within a region of the initial weightsW0.

2.6. Stability Analysis
For the system identification parameters θ , we consider the
candidate Lyapunov function:

Vp(x) = θ̃
⊤
Ŵ−1

θ
θ̃ , (37)

where θ̃ = θ̂ − θ∗ is the difference between the predicted
and optimal model parameters. Assuming the system is time
invariant (including time invariant environmental forces in the
NED frame), and given a positive definite weighting matrix Ŵθ .
The time derivative of the candidate Lyapunov function is:

V̇P(x) = 2θ̃
⊤
Ŵ−1

θ
θ̇

= 2θ̃
⊤
Ŵ−1

θ
ŴθY(x)

⊤x̃+
2kθ

N
θ̃
⊤
Ŵ−1

θ
Ŵθ

N
∑

i=1

Y⊤(xi)x̃i
.

(38)
Using the fact that: x̃ = ẋ− f1(x)− Y(x)θ̂ − g(x)τ = −Y(x)θ̃ we
get:

V̇P(x) = −2x̃
⊤x̃−

2kθ

N
θ̃
⊤

N
∑

i=1

(

Y⊤(xi)Y(xi)
)

θ̃ ≤ 0, (39)

hence the model error x̃ and parameter error θ̃ converge
exponentially to zero as t → ∞. We can also note that the rate
of the parameter convergence is given by the singular values of
∑N

i=1

(

Y⊤(xi)Y(xi)
)

.
For the RL update laws in (34)–(36), it can be shown that

under a number of strict assumptions, a system on the form given
in (15), with an unconstrained policy, is uniformly ultimately
bounded in terms of the error dynamics e, as well as the weights
and parameters Wa, Wc, and θ . The stability analysis can be
found in Kamalapurkar et al. (2018). For our purposes, we further
constrain the parameters Wa of the feedback control law by
projecting them into a region close to a known stable initial
parameterization. Closed loop stability is important for assurance
of the control system, this is further discussed in section 4.

2.7. Reference Model
When generating a reference path, we must ensure that it is
sufficiently smooth in order to be able to say something about
the convergence to the path. In practice however, we may have
a signal which is discrete, defining the desired pose only at
certain times. In order to smooth the trajectory we therefor
use a reference model, which tracks the discrete reference pose,
and generates a continuous reference trajectory pose ηd =

[xd, yd,ψd]
⊤ and velocity vector νd = [ud, vd, rd]

⊤. For the pose
we can make a reference model on the following form:





η̇d
η̈d...
ηd



 =





0 I 0
0 0 I

−�3 −(21+ I)�2 −(21+ I)�









ηd
η̇d
η̈d
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FIGURE 3 | Block diagram of the proposed control scheme, solid lines represent state and control signals, while dashed lines represent adaption signals. Note that

the underlying vessel dynamics considered are unknown, and includes thrust allocation and state estimation.

+





0
0

�3



 ηref (40)

Where � = diag([ω1, . . . ,ωn]) and 1 = diag([δ1, . . . , δn]).
Choosing 1 = I ensures the reference model is critically
damped, while � controls the rate of convergence of the states.
We must also generate the velocity vector, however based on the
pose, the velocity can be calculated as:

νd = J⊤(ηd)η̇d

ν̇d = −S([0, 0, rd]
⊤)J⊤(ηd)η̇d + J⊤(ηd)η̈d

(41)

where −S([0, 0, rd]
⊤)J⊤(ηd) = J̇

⊤
(ηd), and S(ω) is the skew

symmetric matrix:

S([ω1,ω2,ω3]
⊤) =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0





The reason we here use a third order filter for the reference
model, is to ensure a smooth pose, velocity, and acceleration,
even when a step in the reference is observed. This ensures that
the feedforward control for the reference trajectory (16) can track
the reference.

A block diagram of the final control structure is given in
Figure 3. The diagram shows how the controller is split into a
feedback control law π , and a feedforward control law ud. Where
the Reference filter is used to generate the pose and velocity
reference xd, and the data stack collected from observing vessel
transitions, is used to update the parameters of the control laws.

3. EXPERIMENTS

In this section we present the results form simulations, and sea
trials on the ReVolt test platform (see Figure 4), when using

the control scheme proposed in the previous section. We will
first present the implementation details for the for the control
algorithm. After that we will briefly present the experimental
platform, before finally presenting the simulation, and sea trial
results for varying operational conditions. The experiments
include both low speed dynamic positioning, and high speed
trajectory tracking.

3.1. Implementation Details
For the implementation the parameter update laws (32), (36),
(35), and (34) were implemented with a 4th order Runge-Kutta
integration scheme, with a timestep of 0.1 s. Additionally the
reference model in (40) and (41) were implemented, also using a
4th order Runge-Kutta scheme, in order to generate the reference
trajectory xd = [ηd, νd]

⊤ and its derivative ẋd = hd = [η̇d, ν̇d]
⊤.

For the parameterization of the system identifier, the θ and
Y(x) were chosen as in (7) and (9), while for the actor and critic,
the parameterization σ (ζ ) was chosen as the vector of all the
second order cross terms of the position and velocity error in the

body frame ebody = [η̃body, ν̃] where η̃body = J⊤(η)η̃, giving the
following expression:

Wσ (ζ ) =
∑

xi∈ebody

∑

xj∈ebody

wi,jxixj (42)

The reason that we use the error in the body frame, is the
assumption that the cost is invariant to rotations when in the
body frame, as this is the same frame the dynamics of the
system are given in. The initial conditions for the actor and
critic weights were chosen such that theymatched the continuous
time algebraic Riccati equation for a simplified linear model of
the vessel.

For the control law, the constrained closed form controller
(30) was used. And the output was scaled to fit the max thrust
and torque τ̄ = 1√

3
[50.0, 20.0, 32.0]⊤ the vessel is able to
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FIGURE 4 | ReVolt test platform courtesy of DNV GL.

produce. While [50.0, 20.0, 32.0]⊤ is the max force the vessel is
able to produce in each direction individually, due to the coupling
between thrusters, we assume the maximum thrust in any given
coupled direction can be approximated by the an ellipse with
axis lengths 50.0, 20.0, and 32.0. Since the proposed method only
allows us to constrain thrust in each individual direction, we
use the largest inner approximation of the ellipse as our thrust
bound, giving the max thrust and torque as τ̄ given above. It
should be noted, that while this constrains the thrust, we can
still not guarantee that the vessel is able to produce the desired
amount of thrust as τ̄ is only an inner approximation of the
elliptic approximation, whereas the true thrust bound may be
much more complex. It should also be noted that using the inner
approximation τ̄ as a bound, means we are not able to fully
utilize the full thrust that the vessel has to offer. One way of
solving these issues would be to include the thrust allocation
as part of the problem formulation, however this is beyond the
scope of this paper. It should also be noted that the desired
thrust vector includes both the path tracking control law and drift

correction τThrust = ud(xd; θ̂) + π̂(ζ ; Ŵa) where the saturation
is only considered in the drift controller and not the path tracking
control law. This means the desired path should be generated in
a way that satisfies the thrust constraints.

For the state cost function Q(ζ ) a quadratic cost on the form

Q(ζ ) = [η̃body, ν̃]⊤Q[η̃body, ν̃] was chosen, where Q is a positive
definite weight matrix. Given as:

Q =

















1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 1.0 0.0 0.0 0.0
0.0 1.0 10.0 0.0 0.0 0.0
0.0 0.0 0.0 10.0 0.0 0.0
0.0 0.0 0.0 0.0 10.0 0.0
0.0 0.0 0.0 0.0 0.0 10.0

















The weight matrix is given as a mostly diagonal matrix, with a
small cross term between the position error in sway direction,
and heading error. The cross term is added in order to encourage
the vessel to travel in the surge direction when there is a large
position error, as this is the most efficient direction of travel.

The data stack that was used consisted of 100 samples, and a
singular value maximization scheme was implemented in order
to increase the convergence rate. Using a purely singular value
maximization based data selection scheme, while giving good
performance on a stationary system, does not work for time

TABLE 1 | ReVolt hardware and software specifications.

Onboard computer: Tank-720

Sensors: Xsens MTI-G-710 IMU

Vector VS330 GNSS Receiver

Software: Linux Ubuntu LTS 16.04

ROS Kinetic Kame

varying system, and hence does not allow for estimating the
slowly varying environmental forces. In order to account for
this, weighting of the singular value maximization, and data
sample age was used in order to save recent samples with high
singular values.

3.2. Experimental Platform
The ReVolt, shown in Figure 4, is a 1:20 scale model of
a autonomous concept vessel developed by DNV GL in
collaboration with NTNU. The model is 3 m long, 0.72 m wide,
and weighs 257 kg. ReVolt has a top speed of 2 knots (∼1
m/s) with a total combined engine power of 360 W. The thrust
configuration is given as in Figure 1, with two identical stern
thrusters, and one slightly less powerful bow thruster, all of which
are fully rotatable azimuth thrusters, and are controlled by an
optimization based thrust allocation (TA) algorithm. The vessel
state is estimated using a non-linear observer consisting of an
Extended Kalman Filter (EKF), and combines measurements
from a Global Navigation Satellite System (GNSS) with Real-
Time Kinematic (RTK) correction data, on board accelerometer,
gyroscope, and compass. This provides accurate heading and
position down to ±0.2◦ and ±1 cm. A description of the ReVolt
hardware and software is given in Table 1.

While the physical vessel was used for the sea trials, a high
fidelity Digital Twin of ReVolt, developed by DNV GL, was used
for simulation. The Digital Twin is based on a full 6DOF model,
with parameters identified through tow-tank experiments, as well
as frequency domain analysis of a 3D model of the vessel hull.
The Digital Twin allowed for rapidly testing how the proposed
control scheme performed under ideal conditions, as well as
under different sea states, ocean currents and wind conditions.

3.3. Simulations and Sea Trials
In order to test the proposed control scheme, a number of
experiments were devised. As the control scheme was build to
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FIGURE 5 | Four corner DP test, for testing trajectory tracking in individual,

and coupled degrees of freedom.

be able to handle both high speed and low speed maneuvering,
we wanted to test both, by doing low speed Dynamic Positioning
(DP), as well as higher speed path tracking.

3.3.1. Dynamic Positioning (DP)
In order to test the dynamic positioning capabilities of the control
method, the four corner test seen in Figures 5, 6 is used. The four
corner DP test is used, as it shows the tracking capabilities of the
vessel for individual degrees of freedom, as well as the coupled
motion of all degrees of freedom, it is also worth noting that
the vessel returns to the initial pose, meaning the test can easily
be repeated. The four corner test starts with the vessel pointing
north 0◦, then performs the following commands:

1. Change position l meters due north, and come to a complete
stop. This tests the surge motion of the vessel.

2. Change position l meters due east, and come to a complete
stop. This tests the sway motion of the vessel.

3. Change heading 45◦, and come to a complete stop. This tests
the yaw motion of the vessel.

4. Change position l meters due south, and come to a complete
stop. This tests the coupled surge and sway motion of
the vessel.

5. Change position l meters due west, and heading to 0◦ and
come to a complete stop. This tests coupled motion of all
degrees of freedom.

For the box test we chose the box side length l to be 5 m, and the
reference path was generated by linearly interpolating the pose
between the commands, with 55 s to execute each command and
a 5 s pause between commands in order for the reference filter to
catch up to the reference, and ensure that the vessel comes to a

FIGURE 6 | Time-lapse drone photo of four corner DP test. It should be noted

that the time-lapse above is of an early test, where errors in the navigation

system resulted in poor performance.

TABLE 2 | Reference pose for four corner DP test, note that the reference that

was used was a linear interpolation of the poses in the table.

Time [s] 0 55 60 115 120 175 180 235 240 295 300

xr [m] 0 5 5 5 5 5 5 0 0 0 0

yr [m] 0 0 0 5 5 5 5 5 5 0 0

ψr [deg] 0 0 0 0 0 45 45 45 45 0 0

stop. The reference poses used for the experiments are given in
Table 2.

In order to evaluate the performance of the dynamic
positioning, The Integral Absolute Error (IAE) given in (43)
was used.

IAE(t) =

∫ t

0

√

(η̄ − η̄d)
⊤(η̄ − η̄d)dt (43)

Where η̄ and η̄d are the normalized pose vectors, normalized
between±5 m in north and east direction, and±50◦ in heading,
giving the following.

η̄ =

[

x

5
,
y

5
,
ψ

50

]⊤

, η̄d =

[

xd

5
,
yd

5
,
ψd

50

]⊤

Running the proposed control scheme in simulations on the
Digital Twin of the ReVolt vessel, we got the trajectory and errors
seen in Figure 7. For the same test performed on the physical
vessel during the sea trials, we got the trajectory and errors seen
in Figure 8. The IAE for the tests are shown in Figure 9.

3.3.2. Path Tracking
For both straight line path tracking and curved path tracking,
the way-points in Table 3 were used to generate a linearly, and
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FIGURE 7 | Simulation results for four corner DP tests.

FIGURE 8 | Sea trial results for four corner DP tests.

quadratically interpolated path, respectively. For the heading, the
path direction was used to generate the desired heading, giving
the following reference heading.

ψr = atan2(ẏr , ẋr) (44)

In order to encourage the vessel to converge to path in the surge
direction, a small cross term was added in the state cost function
Q(ζ ) between the heading error, and the position error in the
surge direction of the body frame. The key insight here, is that
the for large errors in surge, this term will encourage the vessel
to turn the bow toward the desired position, meaning the vessel
is encouraged to travel in the surge direction, which is the most
efficient direction of travel, due to the design of the hull. For our
implementation, where pose error is given in the body frame of
the vessel, and the state penalty is given as a quadratic function
Q(ζ ) = ζ⊤Qζ , this penalty is added by simply adding a term to

the off-diagonals of Q corresponding to the cross terms between
position error in the y direction, and the heading error.

Running the straight line path tracking on the Digital Twin of
the ReVolt vessel we got the results seen in Figure 10. Running
the same tests on the physical vessel, we got the results seen in
Figure 11. As we can see, the proposed control scheme is able to
follow the path quite well.

3.4. Results
Based on the results, the proposed method seems to work
very well, in both simulations and the physical platform. While
the simulator has been designed to perform as closely as
possible to the physical platform, there are slight discrepancies
that may explain the performance drop. The main factors
of the performance drop is however most likely due to the
measurement and observation noise that is present on the
physical vessel. While the RTK GNSS is able to give a good
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measurement for the pose of the vessel, the estimated vessel
velocities that the algorithm is dependent on become very
inaccurate, especially at low speeds when the signal to noise
ration becomes small. Another error source is likely the thruster
dynamics. While the algorithm above assumes the desired thrust
is produced immediately, in reality producing the desired thrust
vector takes time, as the thrust allocation involves rotating
the thrusters to a given angle, as well as spinning up to a
desired motor RPM. An additional source of error may also
have been a vertical stabilizer, which had recently been added
to the vessel between the two rear thrusters, but had not
been taken into account in the thrust allocation algorithm.
Overall, the results are quite good, especially considering
the size of the vessel, the relatively low thrust capability,
and the precision to which the maneuvers are performed,
even under the uncertainty created by the sensor noise, and
environmental forces.

4. ASSURANCE OF RL-BASED
CONTROLLERS

Assurance is the structured collection of evidence supporting
claims and arguments that a system is safe or fit for its intended
purpose. Assurance is required to develop trustworthy systems
and solutions for use in real-world applications. Principles
of assurance can be found in any certification or verification
framework, where claims and arguments most often can be
considered requirements of verification, while evidence is the
result from this verification. Two types of verification are used:
(1) Product verification, which performs direct verification of the
developed product or system and produces primary evidence;
(2) process verification, which performs verification of some
part of the development process and produces circumstantial
evidence. Using established verification frameworks applied to
conventional marine control systems, experience has shown
what requirements and evidence are most important when
verifying these conventional control systems. With novel
technology, such as data-driven methods, the verification
requirements and evidence that is needed for assurance are still
unknown, as they pose a new set of challenges when assuring
the system.

Data-driven approaches are not new, but with increasing
computational power and abundance of data there has been
an increasing interest in these methods. Within control theory,
the field of system identification has been a key part of control
engineering for many years (Åström et al., 1965; Ho and Kálmán,
1966), and data-driven modeling for control purposes has been
practiced since. Such models are typically based on the physical
properties that govern the system, and hence the parameters
estimated by such methods may reflect measurable properties
of the system, thus providing benchmarks for verification.
However, most models represent the physical system only within
certain operational limits, e.g., weather or sea states, or for
certain vessel speed ranges, which restricts the validity of the
models accordingly.

FIGURE 9 | Integral absolute error (IAE) for the dynamic positioning task, the

gray and white bands mark the different commands/phases of the four

corner test.

TABLE 3 | Reference pose for the straight line path and curved path, note that the

reference that was used was for straight line path tracking was a linear

interpolation of the poses, and the reference pose for the curved path, was a

quadratic interpolation of the poses.

Time [s] 0 100 200 300

xr [m] 0 50 100 150

yr [m] 0 0 50 50

Contrary to the more static nature of classical data-driven
approaches, where tuning the control parameters relies on offline
estimation of the model parameters, in this paper the key
difference is that model based-RL is used for online tuning of
both the vessel model (including an estimation of unknown
disturbances) and the control policy parameters. The vessel
model and the control policy are based on proven methods used
in the maritime industry for vessel station keeping and guidance,
but there are still some key issues that must be considered.
For instance, the control policy is highly dependent on an
instantaneously valid vessel model, which in turn means the
behavior of the vessel is highly dependant on the validity of the
learned model. Both the vessel model and the control policy
parameters are all continuously learned, but it is critical that all
allowed parameter combinations give a sufficiently safe behavior.
The proposed control scheme in this paper continuously learns
and updates the parameters in order to optimize the tracking
behavior. In terms of safety, the main concern is whether the
learnedmodel and policy parameters lead to a safe and acceptable
behavior. Verifying this in a setting where the parameters are
learned online is still an open problem.
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FIGURE 10 | Simulation results for straight line and curved path tracking.

Amodei et al. (2016) discusses five basic concrete problem
areas related to RL and safety, which must be taken into account
for any application of RL.

1. Avoiding reward hacking: the first problem, is that of hacking
or gaming the cost function. For the tracking problem in
this paper, a positive definite quadratic penalty on the error
dynamics is used. From control theory these methods are
known to converge to the origin, i.e., where the error is zero.
This means the intended behavior is guaranteed when the
policy converges to the optimal policy.

2. Avoiding negative side effects: the second problem of avoiding
negative side effects, is similar to the first, but addresses the
issue of choosing the cost function such that the optimal
policy does not give bad or unintended behavior. For the
method proposed in this paper, making such guarantees is
quite difficult, as tuning the parameters of the quadratic cost
function will still have an effect on the vessel behavior when
converging to the origin. One example of this is that we
typically want the vessel to approach the path head on if we

have a large deviation between the position we are at, and the
desired position. Tuning the parameters of cost function in
order to get this behavior is not trivial.

3. Scalable oversight: this pertains to how we can ensure that the
RL agent respects aspects of the objective that are encountered
infrequently. In terms of the trajectory tracking problem,
the environment is quite limited, and the objective is clearly
defined, hence the problem of scalable oversight is of limited
relevance to the work presented in this paper.

4. Safe exploration: exploration is necessary in order to improve

performance, but bears risk, and thus performing exploration
in a safe manner is not trivial. Safe exploration also

encompasses the evaluation of the quality of the training data

that is gathered. For a real world application, this means
accounting for faulty hardware, and noisy measurements,
which may lead to problematic training data. For the
method proposed in this paper, where the system is learning
continuously online, the problem of safe exploration and
learning is highly relevant. Some measures are taken, such
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FIGURE 11 | Sea trial results for straight line and curved path tracking.

as using batches of training data and restricting the values
that the policy parameterization may take. However, these
measures only serve to mitigate potential problems, hence safe
exploration and learning is still an open problem.

5. Robustness to distributional shift: this refers to how we

can ensure the agent is robust to changes in the operating
environment. For the proposed method, this is mostly solved

by continuously learning online, which ensures that the
agent learns the distributional shift when the environment

changes. However, as discussed in the fourth problem of
safe exploration, learning online complicates the matter of
ensuring data quality.

In order to produce the evidence needed for verification
of data driven methods, there are two main approaches,

namely scenario based verification, and theoretical verification.

Scenario based verification would be to conduct extensive testing
in representative scenarios, which in practice would mean
simulation-based testing as this would be the only feasible
online solution. More limited real testing should also be used,

but targeted toward validating the simulation accuracy. Many
RL solutions are in practice not viable without simulation-
based training or development and this would mean the same
tool can be utilized both for testing, and offline training. The
challenge in this case would be to induce a representative set
of scenarios to prove the safety or validity of the solution, and
such scenario selection is an open question for testing AI or
systems operating in complex environments in general. The
second approach theoretical verification, would be to impose
constraints on the RL algorithm in order to avoid unwanted
behavior. This would entail combining methods from control
theory, a physical or mathematical understanding of the system,
and experience or insights of the control scheme, in order to
express and implement various constraints on the learnable
model and policy parameters. Thismay not conceptually be a new
approach since similar methods already exist, but this approach
is difficult to use in practice, as finding parameter constraints that
ensure safe operations is non-trivial.

In conclusion, an assurance framework for technologies, such
as the one presented in this paper is an open research question.
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However, one can with confidence state that it should include
both process and product verification, i.e., considering not only
what is developed, but also how it is developed. This would
mean that adequate development and assurance processes should
be developed, including verification methods that can produce
the required evidence both for efficient development, as well
as assurance. In addition, novel data-driven methods should be
combined with prior knowledge, verified solutions and proven
physical or mathematical relations (Eldevik, 2018). This, in order
to be able to explain the behavior, and in turn guarantee that the
methods are safe and fit for the intended purpose.

5. CONCLUSION

The proposed method performed very well in all three tested
tracking scenarios both in simulations and in sea trials. The
method is also versatile, as using it on different vessels only
requires knowledge of the inertia matrix, with the update laws
providing a tool for learning the other model parameters, and a
control policy. For future work, it may be interesting to improve
and update the thrust allocation algorithm to get a smaller
error between produced and desired thrust, and investigate
whether this results in better accuracy. Alternatively, feedback
from the thrusters can be used to get better estimates of the
thrust vector for use in the data stack, and model estimation.

For the value function, polynomial basis functions were used,
and the estimator was linear in the parameters, which leads to
a limited estimation capability. Deep learning methods could
lead to more accurate value function approximation, albeit at
the expense of transparency and interpretability. Procedures for
implementing online assurance would add great value to current
research practices. One possible way to do this is by using a new
parameterization of the control law once it has been verified,
either by simulation, or by constraining the parameterization to
a set of parameters that is known to be safe.
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The article describes a highly trustable environmental monitoring system employing a

small scalable swarm of small-sized marine vessels equipped with compact sensors

and intended for the monitoring of water resources and infrastructures. The technological

foundation of the process which guarantees that any third party can not alter the samples

taken by the robot swarm is based on the Robonomics platform. This platform provides

encrypted decentralized technologies based on distributed ledger tools, and market

mechanisms for organizing the work of heterogeneous multi-vendor cyber-physical

systems when automated economical transactions are needed. A small swarm of robots

follows the autonomous ship, which is in charge of maintaining the secure transactions.

The swarm implements a version of Reynolds’ Boids model based on the Belief Space

Planning approach. The main contributions of our work consist of: (1) the deployment

of a secure sample certification and logging platform based on the blockchain with a

small-sized swarm of autonomous vessels performing maneuvers to measure chemical

parameters of water in automatic mode; (2) the coordination of a leader-follower

framework for the small platoon of robots by means of a Reynolds’ Boids model based

on a Belief Space Planning approach. In addition, the article describes the process of

measuring the chemical parameters of water by using sensors located on the vessels.

Both technology testing on experimental vessel and environmental measurements

are detailed. The results have been obtained through real world experiments of an

autonomous vessel, which was integrated as the “leader” into a mixed reality simulation

of a swarm of simulated smaller vessels.The design of the experimental vessel physically

deployed in the Volga river to demonstrate the practical viability of the proposed methods

is shortly described.

Keywords: unmanned surface vessel, robonomics, environmental monitoring, belief space planning, boids model,

blockchain, mobile sensors, water quality
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1. INTRODUCTION

Water resources are crucial for the maintenance of human life.
Natural water is an exhaustible, partially renewable resource.
Fresh water is used both for drinking water supply and in
industry, agriculture, transport—in almost all human activities.
Depending on the desired usage, the requirements for water
chemical composition and physical properties may be different.

Worldwide water consumption has been increasing at about
1% per year since the 1980s (World Water Assessment
Programme, 2019), and it is due to the growing demand for water
in developing countries, where population is still increasing, to
the acceleration of socio-economic development and to the fact
that consumption patterns began to evolve (Alharsha et al., 2018;
World Water Assessment Programme, 2019) in a similar way
to those of old and new industrialization countries. Agriculture
(irrigation, livestock, and aquaculture) is the largest consumer
of water, it accounts for 69% of the world’s annual water
withdrawal. The next places are occupied by industry (19%) and
household (12%) (World Water Assessment Programme, 2019).
It is estimated that the global demand for water will continue to
grow at the same pace until 2050, which will lead to an increase
of 20–30% above the current level of water usage due to the
development of the industrial and domestic sectors (Burek et al.,
2016) of the emerging countries. Thus, the impact of human
activities on the world state of water resources will further grow.

The problem of water pollution will become more and more
important, turning it into one of the largest potential disasters
for humanity in the coming century1. The irresponsible and ill-
conceived approach to industry, urbanization, agriculture and
environmental management, which humankind has adhered to
in the recent past, the lack of adequate measures to prevent and
eliminate polluting factors, as well as the lack and weakness of the
mechanisms for bringing to justice the violators of environmental
pollution, have led to the fact that water resources began to
decline rapidly.

The UN General Assembly announced (Food and Agriculture
Organization of the United Nations, 2011) that more than 1
billion (according to other estimates such as World Water
Assessment Programme, 2019, more than 2 billions) people in the
world suffer from a lack of safe water for drinking and household
needs. Although the global average water deficit is only 11%, in
31 countries the water deficit ranges from 25% (the minimum
threshold for water deficit) to 70%, and in 22 countries it exceeds
70% (United Nations Publications, 2018).

The main issues affecting the quality of natural waters (World
Health Organization, 2017) include many different points:

• Infection with pathogens is an important factor in high
morbidity and mortality from gastrointestinal diseases
(Soprani et al., 2017). It is directly dependent on the
population density and the level of its socio-economic
development. Pollution by pathogens is not fully controlled
even in developed countries.

1Woodford, C. (2019). Water Pollution: An Introduction. Available

online at: https://www.explainthatstuff.com/waterpollution.html (accessed

October 15, 2019).

• Contamination with organics (Cai et al., 2019), which enter the
water in a dissolved or suspended form, mainly with sewage
drains or unregulated household drains. Due to the oxygen
dissolved in water coming from the atmosphere because of
the turbulent nature of the flow, the rivers have a significant
self-purification ability. However, when the supply of organics
begins to exceed self-purification capability, water pollution
progressively increases. Nowadays about 80% of polluted
water resources are dumped back into oceans, rivers, and
lakes2. In addition, the oxygen content in water is inversely
proportional to its temperature; therefore, climatic conditions
also play an unfavorable role in reducing the self-purification
capability of rivers.

• Acidification is an anthropogenic natural process due to the
increasing acidic reaction of the environment (Shi et al.,
2016). It is accepted that natural waters are in a state of
acidification if the pH is equal to or less than 5.0. Acidification
is a consequence of dry and wet acidic deposition, the main
components of which are aerosols consisting of sulfur and
nitrogen oxides and ammonia, which, when interacting with
water, form acids. This leads to a reduction or disappearance
of crustacean, fish, insect, algae and zooplankton populations.
The reproductive functions of aquatic organisms are also
slowing down.

• Eutrophication enhances the biological productivity of water
bodies due to the accumulation of biogenic elements in
the water (Leaf, 2018). Excessive intake of nitrogen and
phosphorus compounds (the main source of which is
agriculture and household wastewater) leads to enhanced
growth of aquatic plants, especially microscopic algae, which
then result in the removal of large amounts of oxygen dissolved
in water. This leads to negative consequences: reduction of
fish populations, blocking of water intakes and spillways,
deterioration of water quality.

• Agricultural fertilizers lead to an increase in the concentration
of nitrates (Bouraoui and Grizzetti, 2014). Up to 15% of the
initial mass of fertilizers goes into water bodies, mainly in
groundwater. Excessive nitrate levels in drinking water can
cause health problems, especially blood disorders in children
and the risk of cancer in adults.

• Heavy metal pollution (Akpor et al., 2014): small but
hazardous concentrations enter the global water supply from
wastewater or from industrial waste landfills. Many heavy
elements, such as lead, mercury, zinc, chromium, cobalt are
toxic to both natural flora and fauna, and to humans.

As a consequence of the increasing risks and issues briefly
described above, global water resources need careful control and
monitoring. Preventing microbial and chemical contamination
of a water source is the first stage of protection against
contaminated drinking water and other public health concerns.
For governmental and public environmental monitoring

2Denchak, M. (2018). Water Pollution: Everything You Need to Know. https://

www.nrdc.org/stories/water-pollution-everything-you-need-know. [accessed

October 15, 2019]
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services, this task involves significant costs, the state-of-
the-art hardware and software, and the work of highly
qualified personnel who regularly maintain environmental
monitoring tools.

Modern monitoring systems for water bodies consist of
ground-based (stationary observations at hydrological and
expeditionary posts) and remote (aviation and satellite)
observation methods (World Health Organization, 2017; Sachse
et al., 2018). They are also divided into contactless and contact
observation methods; at the place of measurement—on portable,
transportable, and laboratory; on data processing technology—
on manual, automated and automatic procedures. In most cases,
the information received from them is presented in a different
format, even in terms of use within a single environmental
organization, and is not integrated into a single information
system (Hajdari, 2015).

Rapidity of data collection is of particular importance,
especially for quick response to environmental changes in case
of technical accidents and natural disasters whether they are
or not of human origin (Wang et al., 2015). For example, oil
can originate pollution episodes at all stages of production,
transportation, processing until the final stages of consumption
and disposal of related products. Tens of petroleum spills over 7
tons occur annually3, a lot of oil gets into the water due to leakage
from pipelines, railways, oil-tankers, storage facilities.

Quick and cost effective ways of registering and logging
pollution data are also needed, because in many cases it is
necessary to determine the liabilities of the parties legally
responsible for pollution episodes (Shimshack, 2014). For
example, in most cases of noxious and unlawful waste disposal
into waters produced by industrial enterprises or other entities,
the analysis of water characteristics is performed manually by
experts, often after complaints from citizens (Sebastian et al.,
2018). The relative cost and lacking effectiveness of monitoring
activities impair the processes ofmitigation and control of human
originated pollution.

One more example: the problem of eutrophication is often
aggravated, among other things, by the unsatisfactory conditions
of municipal and industrial wastewater treatment plants; in
particular, this is especially true for reservoirs (Assemany
et al., 2019). In order to monitor and control the purification
infrastructures, it is necessary to monitor the content of nutrients
causing abnormal coloration of waters, therefore an effective and
reliable way to audit the infrastructure is required.

Another important issue is citizens’ confidence in the
monitoring systems of state and public environmental
organizations (Alkhelaiwi and Grigoras, 2015). Official data,
especially in developing countries, are often either insufficient or
of dubious quality. Environmental experts point out that this is
due to the obsolescence of the instrumental measurement base,
the low financing of the environmental monitoring activities,
political motives, and lobbying of the interests of polluting
companies. The presence of a transparent system of monitoring
the ecological state of water resources, in which the data obtained

3https://www.statista.com/statistics/268553/number-of-oil-spills-by-oil-tankers-

since-1970/

are verified and available for verification by every citizen, will
raise the level of civil society engagement in the environmental
conservation and contribute to reduce the skepticism about the
need to finance this area and prevent the spread of environmental
misconceptions (Arias et al., 2016).

As a consequence, an ideal system for monitoring the state of
water resources should:

• Be cost-effective;
• Be small;
• Collect as much environmental data as possible;
• Have a high level of automation to minimize human influence;
• Be easily deployable, flexible, and scalable.

Today compact sensory systems are commercially available (for
example, from companies like Libelium, Vaisala, Bosh) and are
capable of measuring many physical and chemical indicators.
They are able to provide researchers with quick results on
environmental measurements, and such results are automatically
sent to a secure data repository.

The work described in this paper explores the usage
of a swarm of mobile platforms for the monitoring of the
quality of water resources, capable of performing water
quality measurements in automatic mode with minimal
human participation (Shafi et al., 2018; Wang et al., 2018a,b).
Autonomous water platforms, the so-called Unmanned
Surface Vessels or Vehicles (USV), are nowadays hugely
exploited, and many of them are commercially available, such
as the PowerDolphin4, Texys Marine5, and CAT-Surveyor6

projects. These systems are small-sized, can be non-volatile
and incomparably cheaper than the previous generation
of equipment.

In this article, we describe the principles of certified collection
of environmental samples using a small vessel equipped with
sensors and connected to distributed registry for storing the
collected data; such vessel leads a group of smaller USVs taking
samples of the environment. We have performed our tests of the
“leader” vessel at field, while the follower swarm behavior has
been assessed by means of mixed reality simulation.

Robotics swarming, consisting in cooperative multi-agent
autonomous systems, has a great potential inmany field domains,
and is especially suitable for marine environment monitoring,
lending more flexibility and scalability to the overall system,
as well as resulting in a greater effectiveness. Actual robotics
swarming is not yet so widespread and exploited, due to many
technical challenges that have to be addressed and solved, as
very recently surveyed in Arnold et al. (2019)—even if such
work is more focused on aerial vehicles, many concepts can
be easily extended to other robotics application fields. This
work highlights a set of features that a swarm must own,
among which the ability to move, cooperate and/or react
to occurring events. Another very recent work describes the
deployment and exploitation of a heterogeneous robotic swarm
for marine monitoring Lončar et al. (2019); however, authors

4https://www.powervision.me/en/product/powerdolphin
5https://www.texysmarine.com/
6https://www.subsea-tech.com/cat-surveyor/
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present a multi-agent system with many different robots that
have very limited motion capabilities: they adopt the concept
of distributed communicating sensor networks, rather than
implementing a robotic swarm as defined above (robots are
mainly still in the neighborhood of their deployment points
and do not cooperate to gather information). The topic of
marine environmental monitoring by means of a robotics swarm
is addressed also in Duarte et al. (2016), where the issue of
scalability is faced through large-scale simulation. Finally, the
issue of aggregation is addressed in a less recent work (Soysal and
Sahin, 2005), proposing probabilistic aggregation strategies to
obtain cooperative global behavior for the swarm, by combining
basic individual behaviors. This approach traces back to the
classical Reynolds flocking model described in Reynolds (1987),
and here integrated in a Belief Space Planning strategy.

The core idea of the technological solution we propose is to
merge a distributed ledger secure storage of the data with an
effective sensor swarm. The goal is to have a shared control
network system integrating a bio-inspired swarm management
into a secure distributed ledger. Previously some authors have
proposed either pure blockchain solutions (Kapitonov et al.,
2019) or swarm solutions (Strobel et al., 2018) where each
node is a blockchain node (something that makes the swarm
operation slow).

We propose a hierarchical approach which is novel and puts
together the benefits of both. The application of distributed
ledger technologies in robotics applications is an emerging field,
Castelló Ferrer (2018). A number of workshops have been
organized in the latest few years, see footnotes7,8, and new
publications are planned by the people working in this promising
area, see footnote9. This work is related to two specific problems:
the applications of blockchain technologies in swarm robotics
and the application of blockchain technologies to networks
robotics. In Strobel et al. (2018) the distributed ledger technology
is used with the objective of guaranteeing the security of the
swarm: the distributed secure ledger of the B-C ensure that “alien
robots” do not join the network. This approach on the one hand
allows to exploit the adaptivity of swarm intelligence and its
capability to manage large numbers of robots, on the other hand
applying blockchain algorithms to all the nodes in a swarm is
at present difficult to put in practice for practical performance
reasons. In Kapitonov et al. (2019) blockchain technologies are
proposed as a tool to manage general ranging from Smart Cities
to Citizen Science in multi vendor heterogeneous environments.
However, the network robotics approach does not allow to
efficiently and effectively manage a very large number of robots
or intelligent devices and sensors.

In this work we do some steps to bridge the two approaches.
Our platform shares the security features of distributed ledger
technologies with the adaptivity and scalability of the swarm
robotics approach. There are several benefits coming from the

7International Workshop on Blockchain Technologies for Robotic Systems

(BCT4ROS’2019), https://researchers.pagesperso-orange.fr/bct4ros2019/.
8Proceedings of the First Symposium on Blockchain and Robotics, 2018, Ledger

Journal, http://ledgerjournal.org/.
9Decentralized AI and Robotics Using Blockchain Technology, Frontiers Research

Topic, https://www.frontiersin.org/research-topics/10378/decentralized-ai-and-

robotics-using-blockchain-technology.

exploitation of a robotics swarm in a formation around the
leader vessel:

• Many different measurements (of the same physical
parameters) along the chosen path in only one mission.
Having a cluster of measures around one point rather than
just one is helpful in building up a measurement map more
complete and reliable;

• Having more than one vehicle carrying sensors guarantees
more robustness to the mission completion in terms of
possible failures either of the vehicle or of the sensor;

• The follower USVs can be heterogeneous, i.e., equipped with
sensors measuring different physical parameters in the current
considered point along the chosen path.

Summarizing, a swarm operating in formation around the leader
can provide more measurements (both in terms of quantity
and in terms of different types), in a more reliable way, being
equal the required mission time. The swarm approach provides
higher levels of adaptivity and scalability with respect to other
network robotics approaches with a limited pre programming
and computational effort. Implementing it by means of an
inherently stochastic planning motion method like BSP makes
the solution comparatively robust. Moreover, in the foreseen
overall system, the leader is the only one (having Internet access)
in charge of storing themeasures on the trustable platform; hence
the vehicles around can share with it their gathered data, to be
then integrated and aggregated by the leader to build up a map of
the surveyed area.

This paper is organized as follows. Section 2 presents the
idea of certified sampling based on distributed ledger technology
and the related implementation based on the Robonomics
platform. In section 3 the architecture and processes of such
platform are detailed. Section 4 describes the “leader” vessel:
its design, equipment, sensors, software, and the algorithms
governing it. In section 5, the experimental results of water
quality measurements obtained by the vessel are presented and
analyzed. In section 6, we describe our Belief Space Planning
implementation of Reynolds’ Boids Model. Section 7 presents the
results of the experimental tests of swarm behaviors in mixed
reality simulation. Conclusions and discussion on future work
are drawn in the last section.

2. CERTIFIED SAMPLING

The term “certified sampling” refers to the quality control of
a biological or chemical sample for compliance with certain
official criteria (Schreiber et al., 2006). The criteria, as a rule, are
established by authorized legal entities or public authorities in
the form of standards, regulations and sometimes laws, and the
verification procedure itself is carried out by accredited specialists
according to established rules and complying with established
procedures. In theory, precisely this rigor of the sampling
activities and the authority of the bodies performing them should
foster public confidence in the obtained data. However, due
to the high bureaucratization, the high cost of carrying out
inspections and the concentration of control over them in the
hands of legal bodies that are not always transparent, the public
confidence in environmental data is decreasing (Jacques, 2016).

Frontiers in Robotics and AI | www.frontiersin.org 4 May 2020 | Volume 7 | Article 7093

https://researchers.pagesperso-orange.fr/bct4ros2019/
http://ledgerjournal.org/
https://www.frontiersin.org/research-topics/10378/decentralized-ai-and-robotics-using-blockchain-technology
https://www.frontiersin.org/research-topics/10378/decentralized-ai-and-robotics-using-blockchain-technology
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Berman et al. Trustable Environmental Monitoring

In addition, the disclosure of serious corporate frauds (such as
diesel emissions scandal10) have contributed to impair citizen
trust in the “official” data.

The main requirements of certified sampling are standardized
and registered execution procedures (on which all participants in
the process agree) and confidence in the data received. The result
of the audit is a formal certificate, whose format and content are
legally defined, so that the change or forgery of the sample is
often prosecuted as a crime. We propose a solution to reduce and
mitigate the issues coming from bureaucracy, complexity and
cost of inspections, as well as corruption.

The practical usage of mobile and stationary cyber-physical
systems (CPS) that take environmental samples in automatic
mode is growing (Mois et al., 2016). However, until recently,
a general and reliable mechanism for automatically logging the
actions of these devices was not proposed. Such a mechanism
should not only save data, that device receives and sends. It
should also guarantee their immutability and prevent collected
data forgery. To this aim, we need to protect both the device
executable code and their datasets (Bijani and Robertson, 2014).

In our setting the leader vessel acts as the centralization hub of
the swarms samples and take care of the secure logging of the
data by interacting with the Ethereum blockchain. The swarm
collective behaviors are governed by our implementation of the
BSP based flocking model. This allows to have at the same
time a secure and certified log of the samples and an efficient
management of the robot swarm, see 6. In this section we focus
on the secure certification processes.

The foundations for the development of a distributed
certification mechanisms have been actively studied by
researchers and developers over the past decade: the blockchain
technology. A blockchain provides a sequential chain of blocks
built according to certain rules, and protected by cryptographic
algorithms (Xu et al., 2016; Castelló Ferrer, 2018). The technology
allows to create a peer-to-peer decentralized network of many
nodes that exchange secure transactions. The main point of
the technology is that it prevents data from being changed in
transactions, but at the same time preserves the publicity of
relations among the nodes in the network. Such a network of
nodes will be protected from incorrect or malicious changes
caused by a faulty data source, being this last either one of the
nodes or an external attacker. Moreover, the blockchain allows to
implement smart contracts—generated by a software program,
placed on the blockchain with a guarantee of its implementation
(Christidis and Devetsikiotis, 2016). Thanks to smart contracts,
the operation of autonomous devices can be organized so that the
program logic is executed only under the particular conditions
specified in the transactions, and the data can be stored in an
practically immutable registry.

The Ethereum blockchain (Dannen, 2017) smart contracts
have been used to create the secure Robonomics platform11 and
for the interaction of various autonomous devices.

10Schiermeier, Q. (2015). The science behind the Volkswagen emissions

scandal. Available online at: https://www.nature.com/news/the-science-behind-

the-volkswagen-emissions-scandal-1.18426
11Lonshakov, S., Krupenkin A., Kapitonov, A., Radchenkoet, E., Khassanov, A.,

and Starostin, A. (2018). The Robonomics Platform Has Been Designed for the

Integration of Cyber Physical Systems into Human Economy. Available online at:

The central idea of the Robonomics platform is to organize
the relationship between nodes in the form of offer and
demand requests and to negotiate between them by using an
internal currency.

The platform is based on a number of pillars:

• The Robot Operating System (ROS) (Koubaa, 2018). Due
to the heterogeneity in term of system architectures and
middleware of robotic systems and Internet of Things devices
system interfaces and software, we used ROS to facilitate their
interoperability and coordination. ROS makes it easier, in our
case, to integrate new types of devices into a common network
system architecture.

• The InterPlanetary File System (IPFS)12. We integrated IPFS
into the platform to store the large amount of information that
devices collect during their operations.

• Liability Market. This is the part of the platform in charge of
matching Offer and Demand among the nodes of the system.
The Liability Market transactions are organized through
IPFS messages.

• Liability Contracts. They are Ethereum smart contracts
made by cyber-physical systems (robots, intelligent agents,
IoT devices and other artificial agents) with each other or
with humans.

• Tokens. Since the interaction among the agents is based on
market mechanisms, we need a “currency” in the network, and
this is provided by “Tokens.”

The advantages of this approach for trustable measurements by
USV are:

• This approach ensures that the data is collected and sent by
specific USV.

• Once the data has been collected and sent to the network, it
cannot be changed.

• The data remains open for verification by third party.
• There is an exact reference to the time when the digital

signature of the data was sent to the distributed registry.
• Easy scaling of system. Thanks to integration with ROS, it’s

quite simple to add additional agents to the system, no matter
what structure and mechanism of measurements.

• The unity of machine-to-machine and human-to-machine
interaction in the context of ordering measurements.

These advantages enable the creation of a trusted communication
environment which could potentially grow into a united
ecological information systemwith a high level of trust. However,
we should indicate the limitations of this approach:

• The need for internet access. IPFS and Ethereum require that
the device always has access to these networks. The fourth
generation mobile access network is sufficient for the stable
operation of the system.

• Sending information to the blockchain requires monetary
funds (since blockchain miners and some nodes of
Robonomics network require a fee for their work).

https://robonomics.network/robonomics_white_paper_en.pdf (accessed October

15, 2019).
12https://ipfs.io/
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It should also be noted that at the measurement stage, it is
possible to physically intervene in the process. This problem can
be solved by developing the proper USV design. For example,
USV can record its activity in a photo or video and similarly save
this information into Robonomics network.

In previous work of some of the authors, successful operation
of several unmanned aerial vehicles on the Robonomics
platform was demonstrated (Kapitonov et al., 2019); in
the current research we are extending the approach to
monitor the state of the environment, in particular of water
quality. In this article we describe the operation of a small
swarm of marine surface autonomous vehicles equipped with
sensors in charge of performing water quality measuring,
guided by a “leader” autonomous marine vessel managing a
distributed secure registry of the samples by means of the
Robonomics platform.

3. THE ROBONOMICS PLATFORM

The platform is based on a middleware software called AIRA
(Autonomous Intelligent Robot Agent)13 which enables the
connection of ROS-based systems and devices with Ethereum
and IPFS.

In general, following entities are required in the Robonomics
network to complete a task:

• The Promisee, a node that assigns a task. This can be either a
human or an artificial agent.

• The Promisor, a node that performs a task. It can be associated
with physical or software tasks.

• The Liability Market, as mentioned above, is a platform for
offer and demand messages published via IPFS.

• The Provider, a node that monitors the messages of the
Liability Market and matches an offer and a demand for a
small fee. The Providers of a “message channel” are managed
by the “Lighthouse”—a special smart contract, which performs
a transaction when the Provider establishes a market match
between the Promisor and the Promisee.

• New liabilities in the form of smart contracts are concluded in
the Ethereum network only via the Provider.

• The AIRA client is required for the Promisor to have access to
the Liability Market and to get information about the task.

• The Validator (not shown), an optional node which may be
specified in the demand message. If it is specified, only the
Validator node (for a fee) can finalize liability contracts after
checking them.

The task performing process is organized in three stages,
as depicted in Figure 1. At the first stage (Negotiation), the
Promisee sends a demand message to the Liability Market in
IPFS. In the following, the mainmessage fields are reported (refer
to Table 1).

• The “model” field—it uniquely identifies the
cyber-physical system.

13https://github.com/airalab/aira

• The “objective” field—it contains dynamic parameters specific
for the operation to be performed (as arguments for functions
in programming languages). This is an IPFS hash indicating
the rosbag file. Such rosbag file contains ROS-topics and
their details.

• The “token” field—the token used to pay for the service of the
cyber-physical system.

• The “cost” field—the cost in tokens from previous
“token” field.

• The “lighthouse” field—the name of the Lighthouse which
manages the desired Providers.

• The “validator” field—the address of the Validator.
• The “validatorFee” field—validator fee for its work.
• The “deadline” field—block number until which the demand

is valid.
• The “sender” and the “signature” fields—they are

automatically filled and identify the Promisee.

The demand goes to the Provider, and then to the agent that is
able to perform the task. CPS can accept the offer or submit a
counter offer, in the same way, the Promisee can send counter-
demand. This stage ends when offer/demand messages are equal
in the model, objective, token, cost, and lighthouse fields. In this
case, a new smart contract is created in the Ethereum Blockchain
by the Provider.

When the Ethereum smart contract is created the requested
task enters the Execution stage, during which the AIRA software
waits for a message confirming the liability creation and passes
the fields with the information to the agent. The CPS subscribes
to the indicated ROS topics to obtain the necessary information;
after this, the task execution begins.

In the last stage (Finalization), the CPS notifies the
AIRA software of the completion of the requested task,
and AIRA collects all the operation logs into the Result
message. This message is then sent to the IPFS. If a Validator
has been specified, it first checks the Result message and
validate it. At the end the Provider sees the notification
in the Result message and register the final transaction
to Ethereum.

4. DESCRIPTION OF THE AUTONOMOUS
MARINE VESSELS

The vessels are solar-powered water surface catamaran, with
two hulls and a MPPT (Maximum Power Point Tracker) energy
harvesting system with a lithium-ion battery.

Each vessel is equipped with:

• Two Bluerobotics T200 thrusters14;
• A waterproof case for electronics;
• A battery pack: LiFePO4 300 W·h, ∼2,000 charge cycles;
• Photovoltaic panels: 200 W max, 30-60 W while

cloudy weather.

The vessel main characteristics are listed in the following.
Figure 2 illustrates its design.

14https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster/
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FIGURE 1 | Nodes interaction in Robonomics network. Offer and demand messages between different nodes may vary in format (JSON in IPFS, ROS messages in

AIRA client), but the information they provide remains the same.

• Max velocity: 5–7 km/h.
• Cruise velocity: 2–3 km/h.
• Dimensions: 1,200× 1,200× 500 mm.
• Weight: up to 38 kg (depending on the number of sensors).

Photovoltaic panels provide enough energy for daytime
operations on cruise velocity, as well as 3–5 h of operations
without light. The navigation and motion control system

is based on Pixhawk and PX4 autopilot15. The choice
of this controller is due to the fact that Pixhawk and
PX4 are among the most popular tools for the navigation
controller that natively supported operations with two motors
without a steering device. The on-board computational unit

15https://pixhawk.org/
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TABLE 1 | An example of a typical “Demand” message (without a Validator).

Field Type Description Example

model ipfs_common/Multihash CPS behavioral model identifier QmYb81uDNDHCnu9EZtYV 4eoBDKRBAwJeNy1LT3p5Zb c357

objective ipfs_common/Multihash CPS behavioral model parameters in rosbag file Qmea8XkcSXmvLDKES7D88 6pfimsWh9Vjh1ZJsoHm9MW G4C

token ethereum_common/Address Operational token address 0xC02aaA39b223FE8D0A0e5 C4F27eAD9083C756Cc2

cost ethereum_common/UInt256 CPS behavioral model implementation cost 0,1 WETH

lighthouse ethereum_common/Address Lighthouse address 0xa1b60ED40E5A68184b3ce4 f7bEf31521A57eD2dB1

validator ethereum_common/Address Validator address 0x000000000000000000000 0000000000000000000 (No)

validatorFee ethereum_common/UInt256 Validator commission 0

deadline ethereum_common/UInt256 Deadline block number 6393332

sender ethereum_common/Address Message sender address 0xB819d9BC2E665962BCa62 Cd859059875BABB134c

signature std_msgs/UInt8[] Sender’s digital signature —

The offer message looks similar. Part of the fields is an IPFS hash on which significant information about the mission is located, another part refers to the node addresses in Ethereum

network. Promisee exchanges such messages with Promisor until matching is reached between them. Between the layers, the messages change in the format (in IPFS it is JSON, in

the AIRA client — ROS message), but the information remains the same.

FIGURE 2 | Top (A), front (B), and side (C) views of the main vessel.

is an Intel NUC; the water surface vessel has 2 slots for
installing Libelium Waspmote Smart Water and Smart Water
Ions platforms16.

Sensors are immersed with a winch. Such system is able
to measure:

• pH
• Dissolved oxygen (DO), %
• Oxidation-reduction potential (ORP), mV
• Conductivity, µS/cm
• Temperature, ◦C
• Turbidity

16Libelium (2018). Drones, Sensors and Blockchain for Water Quality Control in

the Volga River to Promote Trustworthy Data and Transparency. Available online

at: http://www.libelium.com/drones-sensors-and-blockchain-for-water-quality-

control-in-the-volga-river-to-promote-trustworthy-data-and-transparency/

(accessed October 15, 2019).

Moreover, it is possible to detect ions presence, in particular:
ammonium (NH4+), bromide (Br−), calcium (Ca2+),
chloride (Cl−), cupric (Cu2+), fluoride (F−), iodide (I−),
lithium (Li+), magnesium (Mg2+), nitrate (NO3−), nitrite
(NO2−), perchlorate (CIO4−), potassium (K+), silver (Ag+),
sodium (Na+).

In actual swarm configurations it is possible to integrate
smaller and cheaper (sometimes expendable vessels) equipped
with different and cheaper sensors.

4.1. Leader Vessel Hardware/Software
Architecture
As told above, we plan to sample the environmental data by
means of a small fleet of autonomousmarine vessels. The “leader”
vessel is in charge of the secure logging of the samples and
leads the small swarm of vehicles performing the samples. In the
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following, we describe the “leader” vehicle on-board software.
That software is based on the AIRA cyber-physical distribution
kit running on Intel NUC. AIRA allows developers to implement
“robotic tasks as a service” and allows the specification of a
number of user parameters to customize the service itself. In
the case of the vessel, the required “services” are the measuring
and sampling missions. The user parameters of the mission
are, in our case, the waypoints defining the vessel path and a
list of sensors that should perform measurements during the
robot motion along the requested path. The sensor samples are
published via the IPFS network and are accessible by hash. This
guarantees that the sampled data cannot be tampered and that
they can be accessed by authorized persons (in our views the
citizens, but in general different data accessibility schemes are
possible).

The system software includes:

• General purpose Robonomics communication stack—
standard set of components needed for connecting a CPS to
the Robonomics platform:

– Ethereum ROS API—vessel connection with the blockchain
via ROS.

– IPFS ROS API—vessel connection with IPFS via ROS.
– Liability listener/Message signer—auxiliary services for

liability: subscription to the Liability Markets, confirmation
of the finalization of the liability.

• Application specific components:

– Sensor data reader—reading and sending data from
Libelium sensors.

A B

FIGURE 3 | Measurement results. (A) Vessel traveled route: planned path in white, real path in black. (B) Example of temperature measurements: the colored cells

show the averaged measurements of the temperature.
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FIGURE 4 | Direct Transcription is a special kind of Non-linear Programming Optimization method. The control variables are discretized as piecewise-constant

trajectories while the state variables are represented by linear segments. The optimization is performed by considering the discrete values of the variables representing

the control and the state at each segment endpoint.
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– Navigation package—motion control based on
PX4 autopilot.

– Trader node—the node that is responsible for possible
“economic” behaviors (accept the request for measurements
or not on the basis of an agreed price of the service).
In our tests, the vessel accepts any orders, as we are
exploiting the Ethereum distributed ledger as a secure
ledger. In general, it is possible to describe any economic
behavior (for example, in real world settings, there might
be more vessel fleets offering the same service; agents
may have to choose which are the most advantageous
offers, etc.)

The measurement algorithm works as follows:

1. The user sends the demand for the execution of the
measurement mission. The “model” field determines the
type of service requested, while the parameters for its
execution are transferred in the “objective” field. These
parameters are added to the “objective” rosbag-file directly
or in a string message containing an IPFS hash link. In
our case, the waypoint file with a description of the path
and stopping time at each of the points is transmitted in
the ROS-topic “/waypoints” by a hash reference. The
“/sensors” topic contains a line with a list of sensors,
whose readings should be transmitted according to the
result of the mission. The boolean topic “/virtual”
contains the permission to perform the measurement mission
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FIGURE 5 | Overall path followed by the vehicle swarm in nominal conditions with (A) n = 4 companion robots, (B) n = 8 companion robots.
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virtually—to load the sensor readings as a result of the
mission, measured previously at the points described in the
“/waypoints” path. The “expiration” topic (Duration
type) contains the expiration date ofmeasurements for use in a
virtual mission.

2. The demand is broadcast over the Robonomics
network, AIRA software checks the parameters and
sends an offer with the same parameters for order
acceptance: model, objective, payment token, price
and validator.

3. Both messages fall into the network and remain in the queues
of providers of Robonomics. Matching offer and demand
allows one of the providers to create a liability contract based

on a delayed transaction mechanism17. The appearance of a
contract in the blockchain, under which the vessel undertakes
to execute a model with parameters from the “objective”
field, confirms the appearance of an economically significant
transaction (reservation of the customer’s funds). This is a
signal for the vessel to start working.

4. The vessel executes the contract: it loads the model and the
objective from IPFS and starts the extraction of data from
the “objective.” The navigation and motion planning system

17Krupenkin, A. (2018). Delayed Transactions for Solidity [Russian]. Available

online at: https://github.com/akru/blog/blob/master/posts/2018-02-09-delayed-

transaction.markdown (accessed October 15, 2019).
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receives waypoints and stop time intervals for measuring data
on each points. The measuring system receives a signal about
which sensors should be turned on. During the work, the data
is written to a file on the vessel’s on-board computer.

5. When the last waypoint is reached and the measurement is
taken, the measurement mission is completed. The archive
with readings of water quality sensors and geodata are added
to IPFS. IPFS hashes are written to the result file in the rosbag
format. Its IPFS hash is sent in a transaction to a liability
contract with a digital signature.

The distributed ledger implementation protects the monitoring
data from counterfeiting or from the hiding the fact itself of

having performed the measurements. The location of the hash of
the measurement file signed by the private key of the robot in the
automatically guaranteed repository (the blockchain) makes the
verification of data authenticity simple: we just need to check the
IPFS hash of the file and verify it with that recorded in the “result”
field of the liability contract. If these hashes do not coincide, it is
obvious that the robot received another counterfeited file.

The code of the vessel with Robonomics part is available here,
in the footnote.18

18Water Drone with Robonomics, GitHub repository, URL: https://github.com/

Fingerling42/frontiers-vessel-code.
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The “follower” robots will implement the BSP algorithms in
order to be able to follow the leader and to keep the formation.

5. EXPERIMENTS AND ANALYSIS OF
VESSEL SAMPLES

In the field experiments, the marine vessel measured dissolved
oxygen (%), temperature (◦C), pH level, and electrical
conductivity (µS/cm) in the surface water layer of the coastal
part of the Volga river in Kuibyshev reservoir near the storm
drains of Avtozavodsky district, Togliatti, Samara region, Russia.
Sensor immersion depth: 1.5–2 m.

Date and time (local time — GMT+4):

• Beginning — 4/25/2019, 7:12:52 PM.
• Ending — 4/25/2019, 9:46:30 PM.
• Total: 154 min.

The route was set in the Ardupilot GUI19, which formed a file
with waypoints. The planned and real routes are presented in
Figure 3A.

As a result of measurements, the vessel sent data in the form
of GPS and sensors data with Unix-timestamp. The Python
programming language was chosen for working with data due

19http://ardupilot.org/
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FIGURE 8 | Overall path followed by the vehicle swarm with injected additional noise with w = 0.5 and (A) n = 4 companion robots, (B) n = 8 companion robots.

Frontiers in Robotics and AI | www.frontiersin.org 13 May 2020 | Volume 7 | Article 70102

http://ardupilot.org/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Berman et al. Trustable Environmental Monitoring

to its ease of use, good performance and the presence of a
wide range of libraries for file management, and data processing
and visualization.

Measurements took place over long periods of time; they,
together with GPS coordinates, were recorded discretely.
Therefore, it was necessary to reduce such data into one structure,
choosing from GPS only those coordinates that corresponded to
the logs. The reconciliation was done using Unix timestamps.
After extracting the data on the concentration of oxygen in
water, it became clear that the representation of oxygen as a
percentage is not enough for an adequate analysis of water
quality, since in most cases it is necessary to translate the
oxygen concentration in mg/l. Such a translation is non-trivial

because it requires knowledge of the water temperature, normal
oxygen concentration at normal atmospheric pressure at a
given temperature, and atmospheric pressure in a given area.
For that purpose, a dedicated software was developed. The
data were visualized using the Folium Python library20, as
in Figure 3B.

All obtained data and an interactive map with the
measurement results is available in the footnote link21. Also the
raw data that was sent to IPFS is available at the following links:

20https://python-visualization.github.io/folium/
21Marine vessel data processing, GitHub repository, URL: https://github.com/

Fingerling42/frontiers-vessel-data-processing
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FIGURE 9 | Overall path followed by the vehicle swarm with injected additional noise with w = 0.5 and (A) n = 4 companion robots, (B) n = 8 companion robots.

Only selected time instants are depicted.
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• Geodata: https://gateway.ipfs.io/ipfs/QmPvULEGfDE2Roscy4
zGpKpBE8s3sBwjiXJVQNS3sBxWDC

• Measurement data from sensors: https://gateway.ipfs.io/ipfs/
QmWRjFcQi4Xcisqi8FP3AbGS3PB3gNHgtnfzbcpodKKCBP.

5.1. Analysis of Environmental Data
In this subsection, we provide a short summary of the
investigated reservoir collected data.

5.1.1. pH Value
The concentration of hydrogen ions is of great importance for
chemical and biological processes occurring in natural waters.
In accordance with the requirements for the composition of
water bodies in recreation areas and fishery reservoirs, the pH
should not go beyond the range of 6.5–8.5. Based on the obtained
data, the territory of the reservoir in terms of pH is more

related to neutral and slightly alkaline waters and only a few
segments are characterized by a high pH (alkaline waters with
pH= 8.5 . . . 9.5).

5.1.2. Electrical Conductivity
According to the electrical conductivity level of natural water,
we can evaluate the mineralization of water. The conductivity
in the studied area does not exceed the standards: the average
value of the conductivity is 338.9 µS/cm, which corresponds to
169.45 mg/dm3 mineralization level. The studied water area can
be attributed to the ultra fresh water category. It should be noted
that electrical conductivity increases with distance from the coast.
The conductivity results correspond to the regular dependence
of electrical conductivity and temperature, with a correlation
coefficient r = 0.77 at p = 0.05, which characterizes a strong
positive coherence.
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FIGURE 10 | Insight of the formation at selected instants of the path followed by the vehicle swarm with injected additional noise with w = 0.5 and (A) n = 4

companion robots, (B) with n = 8 companion robots. Note the rhomboid and double rhomboid formations kept by the swarm in the two different cases.
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5.1.3. Oxygen
For dissolved oxygen, World Health Organization does not offer
any value for indications of its effect on health. However, a sharp
decrease in the oxygen content in water indicates its chemical
and/or biological pollution. In the obtained data, the amount of
dissolved oxygen varies from 0 to 12.9 mg/dm3. During statistical
processing, the data were divided into two groups: in the intervals
[0; 1.7] and [8.5; 13.6] with an average value of 6.759 mg/dm3.
The obtained intervals characterize the level of water pollution in
the studied reservoir as dirty waters (interval [0; 1.7]) and clean
waters (interval [8.5; 13.6]).

Since the content of oxygen dissolved in water depends on the
temperature of the water and its mineralization, a pair correlation
analysis was performed to determine the relationships: with a
sample size of n = 1194, the critical value of the Pearson
correlation coefficient rxy = 0.06 at p = 0.05.

Accordingly, the values of the concentrations of oxygen
dissolved in water have very weak dependence on temperature
(correlation coefficient −0.091), a weak positive dependence
on pH (correlation coefficient 0.156), and no dependence
on conductivity.

6. REYNOLDS’ BOIDS SWARM
IMPLEMENTATION BY MEANS OF A
BELIEF SPACE PLANNING APPROACH

Swarm behaviors were developed by following the approach
proposed by some of the authors in Bonsignorio et al. (2019).
Such work extended and applied the approach proposed in Platt
et al. (2010) to robotic swarm control. Older work on BSP
(Belief Space Planning) by those authors dealt with the trajectory
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FIGURE 11 | Overall path followed by the vehicle swarm with injected additional noise with w = 0.9 and (A) n = 4 companion robots, (B) n = 8 companion robots.
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planning and control of a robotic 3D-printed manipulator
with deliberately poor joint accuracy and actuation with no
joint feedback (Zereik et al., 2015), as well as in the motion
planning of a marine companion robot for diver assistance and
support (Zereik et al., 2014). Belief Space Planning methods
allow to concurrently reduce the uncertainty (expressed by the
state estimate measure covariance) and reach the desired state.
Those features make them very suitable to perform tasks in
unstructured environments characterized by significant measure
noise. A trajectory in the “Belief Space” for a vehicle moves it
from its current state (for example a given position/orientation),
represented as a Gaussian PDF (Probability Density Function),
to a goal state PDF with the desired mean value and lower

covariance. The system state is modeled as the sum of a signal
component and a Gaussian noise part.

The trajectory planned in the belief space for the vehicle is
linearly approximated by a series of segments in the belief space.
The initial and end points of each segment are determined by
Direct Transcription. Such discretization method is depicted in
Figure 4; for further details refer to (Platt et al., 2010) and (Betts,
2010).

The algorithm moves on the Belief Space trajectory piece-
wise, segment by segment. The needed control actions to move
from one segment extreme to the beginning of the following
one are computed through a Linear Quadratic Regulator (LQR).
The procedure is iterated on the segments of the linearized
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FIGURE 12 | Overall path followed by the vehicle swarm with injected additional noise with w = 0.9 and (A) n = 4 companion robots, (B) n = 8 companion robots.

Only selected time instants are depicted.
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trajectory until the vehicle reaches its final goal in the belief
space, represented by a vector of Gaussian PDFs with desired
mean values for the end point and orientation, as well as

a reduced covariance of the point and orientation expected
measures. When a single vehicle follows a requested path, at
each step, the current reference trajectory point is sent to
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FIGURE 13 | Insight of the formation at selected instants of the path followed by the vehicle swarm with injected additional noise with w = 0.9 and (A) n = 4

companion robots, (B) n = 8 companion robots (note the rhomboid and double rhomboid formations kept by the swarm in the two different cases). (C) Zoom of the

fourth swarm formation (in the path order) of the previous (B), highlighting that vehicles in the double rhomboid formation do not collide.
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the vehicle controller that drives the robot in the requested
intermediate position. The final goal in the belief space is
reached by iterating this process. At each step, the algorithm
verifies if the current calculated intermediate end point of the
computed segment of the plan is good enough to approach
the final position and, if not, re–plans intermediate point.
In our case, all companion autonomous vessels follow the
trajectory of the leader vessel—the one managing the measure
certification functions—by maintaining a predefined distance
(some of them in terms of the cross-track error, some in terms
of distance along the path). In this way, the whole robotics
swarm system maintains a rhomboid formation while following
the required trajectory. All the swarm vessels follow the leader,
which is in charge of managing the certification of the samples

by means of the distributed ledger processes provided by the
blockchain platform.

Since all actions in the belief space actually weigh the objective
to move the robot in the desired position with the objective of
reducing the observation covariance in the mid waypoints and at
the end point, they can be seen as information gathering actions
(as they reduce the uncertainties on the vehicle position). The
planning occurs in a state space which is inherently non-linear
and has a higher number of dimensions than the physical state
space; as a consequence the resulting dynamic is significantly
underactuated (as the number of control input affecting the
physical system is lower than the dimensions of the belief
space). The problem can be simplified by the assumption of
maximum likelihood of observations, as in the present paper,
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in our previous work and in Platt et al. (2010). This maximum
likelihood assumption asserts that the current system state is
the most likely state according to the past observations and
the performed actions; this means that the performed actions
achieve their intended purpose, leading the system to the desired
state. Our simulations (in various application contexts) confirm
that this assumption is usually correct. In Platt et al. (2010),
a formal proof is provided about its optimality under linear
Gaussian process assumptions. Here, the observations zt ∈ Z

of the distance between the goal and the vehicle position are
modeled as a non-linear stochastic function of the vector xt ∈ X,
representing the (not directly observed) state of the system and
of the environment

zt = g (xt)+ ξ (1)

where g is a deterministic function of the measurement and ξ is a
zero mean Gaussian noise with covarianceWt , dependent on the
state. The deterministic function f links the new state to the older
one under the control action ut

xt+1 = f (xt , ut) (2)

where f and g are assumed to be differentiable functions of xt
and ut . The controller is assumed to know the state through
a probabilistic density function P(x). The parameters of such a

distribution are the “belief state” bt =
[

mT
t sTt

]T
, where mt is

the mean of the belief state and s =
[

sT1 , · · · , s
T
d

]T
is a vector

composed by the d columns of the covariancematrix6. If a linear
Gaussian dynamics is assumed, the belief state can be updated by
rules of the form

xt+1 = At (xt −mt)+ f (mt , ut) (3a)

zt = Ct (xt −mt)+ g
(

f (mt , ut)
)

+ ξ (3b)

where At and Ct are the Jacobian matrices At =
δf
δx (mt , ut),

Ct =
δg
δx (mt). The Gaussian distribution is given by:

6t : P (x) = N
(

x
/

mt ,6t

)

(4)

In these hypotheses, and assuming maximum likelihood of the
observations, it can be proved that it is possible to derive by
iteration a series of segments with an associated set of control
actions by minimizing the cost function J

J
(

bτ :T , uτ :T

)

=

k
∑

i=1

wi

(

n̂Ti 6tn̂i

)2
+

T−1
∑

t=τ

m̃T
t Qm̂t+ũTt Rũt (5)

where bτ :T is the subset of the state space, uτ :T are the
corresponding actions for a given state space trajectory, Q and
R are weight matrices, and the ni are the versors of belief
space along which the optimization is performed. Finally, 6T

is the covariance matrix at the end of the segment, and mT
t

the value of the mean of the Gaussian of the measures. The
function J is minimized by a standard SQP (Sequential Quadratic

Algorithm 1 : BSP Algorithm

Input : b0, bgoal
Output: u1 : s

1 initBSP ();
2 for i = 1 to N do

3 (m̄1 : s, ū1 : s) = CreatePlan(m0,mgoal);

4 for j = 1 to s− k do
5 k = r + j;
6 ut = LQR(ūt , m̄t ,mt);
7 zt = g(xt)+ ξ ;
8 mt+1 = EKF(mt , ut , zt);
9 if ‖m̄t −mt‖ < thr1 then

10 while et > thr2 do
11 ηt = DriveVehicle (mt);

12 else

13 r = r + j− 1;

Programming) algorithm; after this, a linear quadratic regulator
is applied to move along the segments.

The procedure is summarized in Algorithm 1. The BSP
strategy needs to know the initial belief state and final goal b0
and bgoal, and returns the sequence u1 : s of the control actions.
As a preliminary step all the variables of the algorithm are
initialized to proper values via the function InitBSP (line 1 of
Algorithm 1). The procedure is then executed for a predefined
number of steps N. At each step, a plan is calculated via the
CreatePlan function (line 3), obtaining the two sequences
(m̄1 : s, ū1 : s). This plan is executed for s steps; in case the planned
steps do not converge to the final goal, variable k and counter
r (line 13) are in charge of managing the eventual re–planning.
In this phase, three values are calculated (lines 6–8): ut is
returned by the LQR control, while zt is the noisy perceived
position measurement (see Equation 1); finally the value mt+1

is propagated through an Extended Kalman Filter (EKF). If the
resulting error between the mean of the current reference belief
state m̄t and the mean of the current belief state mt is under a
given threshold thr1 (line 9), the algorithm sends the commands
to the underlying vehicle low-level control system. The algorithm
drives the robot, via the function DriveVehicle, toward the
desired intermediate point in the trajectory (line 11), allowing
the Cartesian error et to converge under a given threshold thr2
(line 10). The function DriveVehicle returns as output the
necessary vehicle trajectories ηt . Finally, if the error ‖m̄t − mt‖

is greater than thr1, the counter r is updated in order to proceed
with a necessary re–planning step (line 13).

The adoption of LQR standard control improves the efficiency
of BSP planning: the evaluation of the optimal control action
for the system leads to the stabilization of the trajectory
in spite of the non-linear dynamics of the system. Indeed,
LQR control is able to handle small divergences from the
planned motion, and thus minimizes the number of re–planning
steps the system must calculate, improving in this way the
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computational efficiency. Previous experimental tests within a
different application described in Zereik et al. (2015) showed that
the statistical LQR calculation produces a decrease in computing
time of about 70%. Hence, it is clear that the use of LQR in the
algorithm leads to a smoother, and hence more efficient, motion
of the robots.

The BSP approach is here integrated with the classical
Reynolds flockingmodel. Reynolds has shown in Reynolds (1987)
that flocking behaviors can be implemented by imposing to the
individual agents a surprisingly simple set of rules:

1. Separation—Avoid crowding neighbors (short
range repulsion).

2. Alignment—Steer toward average heading of neighbors.
3. Cohesion—Steer toward average position of neighbors (long

range attraction).

In our system, agents target the school of (robot) fishes center
(rules 2, 3) and keep distance among themselves (rule 1).

7. BSP-BASED SWARM MIXED REALITY
SIMULATION

Using the BSP-based swarm approach described above, a swarm
of vehicles has been simulated, with a different number n of
companions, namely n = 4 and n = 8. The boat in charge of
the sample collection and certification has been considered as
the “leader” and the other vehicles have been requested to keep a
rhomboid formation with the boat at the center, while following
the master path. Note that the boat position at each instant is
assumed to be known by the vehicle swarm. This is reasonable in
a real application: indeed, the swarm and the boat move together
along the reference path, so that the boat can easily communicate
its current position to the vessel swarm, e.g., through a long-
range WiFi or radio connection. Furthermore, each vehicle has
its own GPS+IMU localization system on-board, in such a way to
be able to determine its own relative position with respect to the
main boat.

The tests of the swarm have been performed in a mixed
reality simulation setting as the trajectory of the leader has
been obtained by field tests of the vessel described above.
We assume zero latency in the sample transmission from the
follower vessels to the leader one. This assumption is realistic
in comparison to the sampling rate and Ethereum typical
transaction rate. The BSP swarm strategy is simple but very
effective, since (as already stated) it allows each vehicle to follow
the requested path while keeping the desired formation and,
in the meantime, reducing uncertainty due to both inaccurate
measurement and environmental disturbance. To this aim,
in order to test robustness of the approach, beside the first
simulation in nominal conditions, an additional Gaussian-
distributed noise has been injected in the system, to stress
the algorithm. In particular, the noise has been generated as
a normal distribution with zero mean and covariance equal
to wWi, where w is a tunable scalar coefficient and Wi is the
corresponding diagonal component (x, y or ψ) of the covariance
matrix W ∈ R

3×3 (each noise component is assumed to be

independent and uncoupled from the other). For the angular
component ψ , there is a further scale factor (equal to 0.1)
to adjust noise values with respect to radians. Each diagonal

element of matrix W is equal to

√

∑

i

(

ξi − ξ
∗
i

)2
(where ξi

is the single component of the Cartesian error and ξ∗i is the
related goal value for that component) if the Cartesian error
is below a given threshold, or equal to a larger constant value
rg otherwise.

For each formation type (n = 4 or n = 8 companion vehicles),
two different values of w have been tested, namely w = 0.5 and
w = 0.9; 10 simulation runs for each category were successfully
executed, thus resulting in a total of 40 successful experiments.

Figure 5 shows the path followed by the vehicle swarm
in nominal conditions (no additional noise injected in the
system), while Figure 6 depicts only selected time instants of the
path following execution, highlighting the rhomboid formation
maintained by the swarm. Figure 7 provides a zoomed insight of
a part of the simulation, showing the formation at some of the
previous selected time instants.

The same organization is kept for the next figures: again,
Figure 8 depicts the overall path followed by each vehicle when
an additional noise with w = 0.5 is injected in the system, while
Figure 9 shows only selected time instants of the path following
execution, highlighting the rhomboid formation maintained by
the swarm. Figure 10 provides a zoomed insight of a part of
the simulation, showing the formation at some of the previous
selected time instants.

Finally, relatively to the case with additional noise with
w = 0.9, Figure 11 depicts the overall paths followed by the
vehicle swarm. Figure 12 shows only selected time instants of the
path following execution, highlighting the rhomboid formation
maintained by the swarm. Figures 13A,B provide a zoomed
insight of a part of the simulation, showing the formation at some
of the previous selected time instants. Figure 13C highlights a
particular time instant of the simulation, in order to show that
vehicles are not colliding.

An assessment of good performance can be obtained by
analyzing Figure 14. The evolution of mean norm of error
posterior variance and of mean norm of the state covariance
matrix 6t , computed on-line by the BSP algorithm, can be
compared from Figures 14A,B in both noisy cases. From this
analysis, it is clear that the BSP strategy strongly reduces the
covariance matrix on the system state and keeps it low during
the whole simulation run, even if the Cartesian error is large. A
zoom of the initial part of the graph is provided for both cases,
for which the very fast reduction of the covariance matrix mean
norm is clear. Boxplots of Figures 14C–F show the mean angular
and linear error norm of all vehicles throughout all experiments.
The related dataset can be found here: https://github.com/cyber-
chicca/Swarm-BSP.

8. CONCLUSIONS AND FUTURE WORK

We have developed a system that allows certified and trustable
environmental sampling and logging by joining a sample
certification scheme based on blockchain technologies and
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swarm behaviors based on a BSP implementation of Reynolds’
Boids. Our experiments at field, integrated by extended mixed
reality simulation, show the viability of the approach.

This article describes a new platform for trustable
environmental monitoring based on citizen-led certification
of the samples by means of distributed ledger technologies.
This constitutes a further step in “Citizen Science.” The idea
of citizen science, see Hippel (1991); Gura (2013); Hand
(2010) is usually implemented by sharing with the public
experimental data collected by one or more public or private
organizations. In our case the citizens, thanks to intelligent
robotics technologies integrated within a distributed ledger
framework, have under their control the collection of the data
themselves. This is particularly important for sensitive issues
related to environmental quality, but can be relevant in many
other societal relevant issues, for example the geographical
distribution of infected people during a pandemic. We have
shown that this conceptual approach can be implemented on top
of the Ethereum blockchain network in a robust way and scalable
way. Our platform allows to merge the benefits of distributed
certification of the samples, made possible by the blockchain
technology, with the adaptivity and scalability of swarm
architecture. It separates the processes related to the sample
certification, managed by the leader vessel, from the processes
related to the optimization of sample collection performed
by means of a potentially heterogeneous swarm of smaller
vessels dedicated to the physical execution of the sampling
activities. We have shown how mixed reality simulation can be a
valuable tool for the design of specific system architectures for
specific applications. Simulation technologies cannot substitute
field experiments. However, they allow a greater and more
systematic set of test runs than usually possible in the field. The
experiments that we have performed in the field, where we have
equipped the leader vessel with the set of sensors that in future
implementations will be spread among the smaller vehicles, have
shown the trustability of the certification of the samples. The
purpose of the swarm simulation was to show that it is possible

to implement the swarming behaviors that we have devised and
provide guidance for future developments of the platform and
its deployment in the field.

In the future, we will develop and perform two-ways mixed
reality simulation in order to refine the system design and we will
then proceed to the implementation of real world swarms at field.

Our approach is scalable since we can manage more
swarms with different leader vessels. We will also consider the
implementation of the BSP swarming approach to a fleet of leader
vessels and other approaches based on Gaussian Processes and
information gain. We will also consider the possible benefits of
Deep Reinforcement Learning methodologies for the platform
described in this paper.
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Complex maritime missions, both above and below the surface, have traditionally been

carried out by manned surface ships and submarines equipped with advanced sensor

systems. Unmanned Maritime Vehicles (UMVs) are increasingly demonstrating their

potential for improving existing naval capabilities due to their rapid deployability, easy

scalability, and high reconfigurability, offering a reduction in both operational time and

cost. In addition, they mitigate the risk to personnel by leaving the man far-from-the-risk

but in-the-loop of decision making. In the long-term, a clear interoperability framework

between unmanned systems, human operators, and legacy platforms will be crucial

for effective joint operations planning and execution. However, the present multi-vendor

multi-protocol solutions in multi-domain UMVs activities are hard to interoperate without

common mission control interfaces and communication protocol schemes. Furthermore,

the underwater domain presents significant challenges that cannot be satisfied with the

solutions developed for terrestrial networks. In this paper, the interoperability topic is

discussed blending a review of the technological growth from 2000 onwards with recent

authors’ in-field experience; finally, important research directions for the future are given.

Within the broad framework of interoperability in general, the paper focuses on the aspect

of interoperability among UMVs not neglecting the role of the human operator in the

loop. The picture emerging from the review demonstrates that interoperability is currently

receiving a high level of attention with a great and diverse deal of effort. Besides, the

manuscript describes the experience from a sea trial exercise, where interoperability has

been demonstrated by integrating heterogeneous autonomous UMVs into the NATO

Centre for Maritime Research and Experimentation (CMRE) network, using different

robotic middlewares and acoustic modem technologies to implement a multistatic active

sonar system. A perspective for the interoperability in marine robotics missions emerges

in the paper, through a discussion of current capabilities, in-field experience and future

advanced technologies unique to UMVs. Nonetheless, their application spread is slowed
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down by the lack of human confidence. In fact, an interoperable system-of-systems of

autonomous UMVs will require operators involved only at a supervisory level. As trust

develops, endorsed by stable and mature interoperability, human monitoring will be

diminished to exploit the tremendous potential of fully autonomous UMVs.

Keywords: autonomous underwater vehicle, marine robotics, NATO experimentation, robotic middleware,

unmanned vehicles interoperability, Unmanned Maritime Vehicles

1. INTRODUCTION

Unmanned Maritime Vehicles (UMVs) technology is
increasingly demonstrating its potential to enhance existing
naval capabilities, relying heavily on aircraft, helicopters, surface
ships, and submarines to perform complex tasks. The integration
with easily deployable, scalable systems of multiple UMVs
offers an improvement in operation time, reduction of cost and
mitigation of risk to personnel by leaving the man far-from-the-
risk but in-the-loop of decision making. The achievement of
the full potential of unmanned and autonomous systems must
take into account the necessity of multi-national, multi-domain
operations with multi-vendor, multi-protocol systems. The
design of a clear framework for the interoperability of systems,
both among them and with human operators, is essential toward
effective planning and success of joint operations. On the other
hand, UMVs in complex operational experimentations are hard
to operate as an organic system-of-systems due to the expansion
of non-standard solutions for mission control interface of the
UMVs. In addition, the underwater domain poses significant
communication challenges, such as multipath arrival structure,
channel spread, and low data exchange rates.

In this complex framework, the definition of Interoperability
is a tricky task per se. In order to share a common understanding,
the National Institute of Standards and Technology definition
is taken as a benchmark (Huang, 2004); the Interoperability is
the ability of software or hardware systems to operate together
successfully with minimal effort by the end-users, and it can
be categorized into levels, types, or degrees of interoperability.
It is pointed out that full interoperability would be facilitated
by common or standard interfaces that are missing nowadays.
section 2 and references therein provide an overview of the
state-of-the-art of interoperability among UMVs, not neglecting
the role of the human operator in the loop within the specific
maritime domain, setting up a fundamental background for
the reader.

The interoperability issue was approached in the Anti-
Submarine Warfare—Operational Deployment of Concepts
2017 (ASW-ODC17) sea trial exercise, conducted in October
2017 off the coast of La Spezia (Italy). The sea trials were
organized in the context of the Centre for Maritime Research
and Experimentation (CMRE) of the NATO project Maritime
Unmanned Systems (MUS) for ASW, involving NATO Naval
Units and the Italian SEALab consortium. The SEALab is a
joint laboratory between the Naval Support and Experimentation
Center of the Italian Navy and the Italian Interuniversity Center
of Integrated Systems for the Marine Environment (Terracciano
et al., 2019). The goal of the MUS project is the development and

verification at sea of a heterogeneous autonomous ASW network
based on UMVs implementing a multistatic active sonar system.
From the Italian point of view, the goal was to demonstrate
the interoperability of a national Autonomous Underwater
Vehicle [AUV Folaga WAVE, Fenucci et al. (2016)] within the
CMRE robotic network for ASW (LePage et al., 2015) during
a NATO operational exercise with assets of different NATO
Navies. In-depth descriptions of the experimentation, high-level
systems architectures and related software, and the specific
interoperability experimental results are given in section 3.

Section 4 discusses the future challenges of interoperability,
defining the current critical problems in marine robotics.
Section 5 draws conclusions about interoperability among
UMVs, merging the research advancement made over the past
20 years with the expertise of the authors and relevant guidelines
for the future.

2. INTEROPERABILITY BACKGROUND
AND RELEVANT LITERATURE

Sensors, platforms, software, and vehicle technologies are rapidly
evolving, as well as processing and algorithm development, often
outpacing the operational community capability to apply these
new concepts in the field. In order to provide a broad view of the
state of the art of interoperability, summaries—to be deepened
with the cited bibliographical references—are provided below for
the following topics:

• Adaptive Autonomous Communications and Networking;
• Command and Control System (C2S) and UMVs

system-of-systems;
• Verification, Validation and Accreditation (VV&A) along with

Modeling and Simulation (M&S);
• Interoperability Standardization;
• Robotics Middlewares.

It is necessary to stress the fact that these topics are all
interconnected: only a synergic development of all of them
enables a high level of interoperability.

Nowadays, research on acoustic networking is very engaged
in supporting cooperative multi-vehicle missions which
are increasingly dependent on the vehicles ability to inter-
communicate. This must be accomplished exploiting and
fusing the well-characterized Radio-Frequency (RF) channel
with the time and space varying acoustic one. Ensuring the
correct reception of a low bandwidth underwater acoustic
signal affected by heavy delays and multipath interference is
very challenging and error-prone, and it may result in limited
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interoperability among UMVs (Stojanovic, 2006). Recently,
Caiti et al. (2012) provided a remarkable illustration of a
persistent acoustic communication network with heterogeneous
platform and sensors, both fixed and mobile; Been et al. (2010)
presented collaborative distributed ASW operations performed
by a scalable and autonomous networking system from a
comprehensive scientific and end-user point of view.

Communications are necessary to address the present
knowledge representation that is still embryonic and is intended
for basic single platform and single domain applications.
This limits the possibility of multiple coordinated mission
between UMVs, i.e., they essentially collect data from sensors.
In addition, the data collected during the mission are then
typically processed offline. However, greater autonomy requires
distributed service-oriented agents that need access to higher
data representation levels. To our knowledge, the work reported
in Miguelañez et al. (2011) was the first example of online
underwater mission adaption thanks to a goal-based planning
using semantic representation. A semantic-based framework was
presented in this paper, which provides the central architecture
for the representation of information in embedded autonomous
agents. A pool of hierarchical ontologies to represent the
information derived from the sensor data is used in the
proposed architecture. The key benefit is that service-oriented
agents can have access to various types of knowledge and can
also contribute to its advancement in an interoperable way.
For example, if the required information is not accessible to
an agent due to poor communication in case of unfavorable
underwater acoustic channel, the architecture provides the
facility to request that the information be produced by other
agents with the appropriate capabilities. The framework was
also validated and assessed in a Mine Counter Measure
(MCM) scenario, where ontological information representation,
model-based diagnostics and adaptive mission techniques
are integrated.

From the point of view of reconfigurable and adaptive
communication networks, it is important to recall the SUNRISE
(Sensing, monitoring and actuating on the UNderwater world
through a federated Research InfraStructure Extending the
Future Internet, http://fp7-sunrise.eu) European project (Braga
et al., 2016). The SUNRISE consortium has, in particular,
established an abstraction layer which enables the interaction
between networking and communication components and
the control software of different UMVs. Any networking or
control program may use this interface mechanism, defined
as Software-to-Software Communication (SSC), and an XML
document (eXtended Markup Language) is used to define
command structure and semantics. This method aims to
combine control software with underwater communication and
networking elements such that underwater networks can be
more dynamic, versatile and efficient. The SSC protocol was
fully tested and assessed in lab for all the robotics middlewares
mentioned in section 2. In 2014 and 2015, sea experiments
have also been performed in Porto, the Atlantic Ocean and the
Mediterranean Sea. The SUNRISE redeployable testing facility
was robust, simple to use and highly adaptable to different
requirements, and a network of up to eight heterogeneous

nodes were deployed during those sea trials. The SUNRISE
open architecture allows additional hardware [e.g., sensor(s),
battery pack(s), modem(s), external disk(s)], requested by the
mission, to be quickly fitted on every node of the testbed.
SUNRISE was one of the biggest demonstrations of the
capabilities provided by the forthcoming Underwater Software-
Defined Open-Architecture Modem (SDOAM) framework. The
current state of these developments mainly involves academic
and industrial R&D prototypes, while most of the commercial
modems currently available are not “open” for reconfiguration
and user programming (Dol et al., 2014), i.e., their physical-layer
algorithms are hardcoded in the modem firmware. Since 2011,
the CMRE has been promoting the introduction of SDOAMs and
recently published a study outlining SDOAM development and
deployment activities, as well as future directions (Potter et al.,
2014). Part of the CMRE activities was made in the SUNRISE
project. The CMRE SDOAM concept includes a policy engine
that handles several protocols for all layers of the OSI stack.
This, in effect, was a starting point for the evolution of cognitive
architectures. In fact, the CMRE communication stack is evolving
in a fully cognitive communications architecture (CCA) that
uses intelligent, adaptive and secure underwater networking
techniques (Petroccia et al., 2018).

A further element in interoperability studies is the design
of C2S to support autonomous collaborative tasks. In the area
of adaptive control of heterogeneous UMVs to find suitable
solutions for their interoperability, the Massachusetts Institute
of Technology (MIT) research team has developed a uniform
approach (the Generic Ocean Array Technology Sonar—GOATS
program Bovio et al., 2001) to command all the assets through a
hierarchical structure capable of ensuring the data propagation
in the entire network (Benjamin et al., 2010; Schneider
and Schmidt, 2010). Alongside the advances in underwater
acoustics communications, both in-field and analytical works on
UMVs swarms cooperation have made significant progress with
several initiatives supported by the European Union, e.g., the
“Cooperative Cognitive Control for Autonomous Underwater
Vehicles” (Co3AUVs) project (Birk et al., 2011).

EU projects such as GREX (Kalwa, 2010) present this
kind of approach for hydrographic mapping where the vehicle
surveys the seabed or water column utilizing sonars and
other sensors. However, there are certain shortcomings in
such unmanned surveys, including the rate of acquisition
and the limited swath width of the high-resolution sensors
while working near the bottom. In order to maximize the
spatial range of the sensors, GREX set up a team of
vehicles that moves in formation and thereby broadens the
operational swath width of the system, demanding synchronized
motion control, decentralized decision-making, and inter-
vehicle coordination. However, owing to the lack of advanced
autonomy of the vehicles employed in the project, the
pre-planned navigation configuration was restricted to more
or less flat regions, although geologically or biologically
significant areas typically present a wide variety of relief. The
prevailing operational methodology to address this problem
is the participation of human operators in the loop utilizing
tethered vehicles.
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The European project MORPH proposes a significant move
forward on this issue (Kalwa et al., 2016). The concept is that
a group of heterogeneous cooperative vehicles or self-propelled
sensors carry out a multimodal survey of underwater structures.
Spatial disparity provides the multiple points of view needed for
both high-resolution surveys and the detection and prevention of
obstacles. The separation between nodes enables various sensing
systems to work according to their specific optimum range, e.g.,
Sonar nodes are farther away from targets than camera nodes.
The diversity of vehicles even allows for a better combination of
navigation and localization data, e.g., nodes adequately separated
from interference structures may provide an external navigation
guide to nodes near to these structures. More specifically,
this decentralized and physically separated configuration of the
system allows for morphing, i.e., the fleet will rapidly respond in
real-time to perceived variations in the real world that can not
be accounted for by a priori. MORPH explores and tests a range
of interdisciplinary problems relating to fleet navigation and
control, secure and efficient morphing, feedback and information
affecting morphing, fleet design and knowledge sharing, C2S for
useful mission management.

A successful interoperable C2S initiative was initiated
in 2005 (Dias et al., 2005) by the Porto University—
Underwater Systems and Technology Laboratory (LSTS). The
NEPTUS architecture goal is to enable integrated operations
of heterogeneous UMVs teams, operating sea, ground and
air vehicles and individuals. People also play a key role
in autonomous vehicles, where a mixed-initiative process is
necessary. The operating situations for these teams are primarily
environmental protection operations, but they may also include
environmental disasters, rescue missions, etc. The distributed
architecture of Neptus is a service-oriented architecture that
enables high degrees of interoperability (between applications),
scalability (number of nodes), and reconfiguration (number
and kind of nodes). NEPTUS has been used in many at-
sea tests such as the Rapid Environmental Picture Atlantic
exercise 2014 (de Sousa et al., 2015). This experiment, involving
more than 10 military and civil organizations, emphasized
multi-domain missions in order to foster interoperability and
cooperation between UMVs and aerial vehicles. The NEPTUS
toolchain supplied an unified C2S that allowed the integration
of numerous vehicle systems, enabling wireless and underwater
interoperable communications and destructive delay-tolerant
networking (DTN) capabilities.

More recently, the Widely scalable Mobile Underwater Sonar
Technology (WiMUST) H2020 project (Abreu et al., 2016;
Indiveri et al., 2016) validates at-sea a system of cooperative
UMVs for geotechnical measurement and geophysical mapping.
The new core innovation of the WiMUST framework is
the use of a team of collaborative autonomous underwater
robots, functioning as intelligent sensing and communication
reconfigurable mobile acoustic network. The project brings
together a community of academic organizations, geophysical
survey firms and SMEs with an established track record
in autonomous adaptive technologies, networked cooperative
control and navigation, and marine robot architecture and
manufacturing. Bottom surveys are nowadays collected from

side-scan or multi-beam sonars, which are towed from ships
or embarked on autonomous vehicles. The WiMUST concept
offered a technological breakthrough in the development of
robotic distributed sonar system with autonomous mobile
nodes, making operation at sea much easier given the fact
that no physical connection exists between the surface ship
and the acquisition equipment. The final demonstration in
the Atlantic Ocean involved ten heterogeneous vehicles but all
the technologies designed during the project were conceived
and implemented with a specific long term vision: underwater
missions performed by a large number of autonomous
cooperating robots.

Moreover, the system presented in Robb et al. (2018) dealt
with the difficulty of monitoring multi-objective, multi-vehicle
operations, while at the same time resolving the ambiguity
about the actual status and the protection of distant, high-value
platforms. In order to increase the reliability and efficacy of UMV
C2S, the authors suggested a hybrid of an interactive, natural
language operator interface coupled with communications using
multi-domain channels to transmit data through various devices
and delivery modes, enhancing C2 of coordinated and ultimately
autonomous missions. The Multimodal Intelligent inteRactIon
for Autonomous systeMs (MIRIAM) natural language interface
enables operators to straightforwardly update an autonomous
network about the progress of the mission goals and the
state of the AUVs assigned to it (Hastie et al., 2017).
MIRIAM has the capacity of connecting to commercial C2 and
applications, collects continuously updated task and vehicle data,
acknowledges user requests, supply outputs, and produces its
own messages of significant issues in natural language. They
have successfully demonstrated their interoperable systems at sea
using the OceanServer IVER-3 AUV as the vehicle to be operated
and tracked, the EvoLogics Sonobot USV as the communication
gateway and the Seebyte Seetrack-Neptune C2 program with the
MIRIAM natural language interface in the on-shore C2S.

Last but not least, all the models, hardware and software
composing a system-of-systems must pass a VV&A
process (Hodicky, 2014). The article underline how the analysis
of potential integrations of an Autonomous System (AS) into
the operational field must be a priori tested to keep costs low,
i.e., through M&S systems for experimentation in synthetic
distributed environments. These environments are based on
cooperating entities using data interchange mechanisms such
as the High Level Architecture (HLA) (Möller et al., 2008). It
is a suitable candidate due to its maturity and broad adoption
(e.g., it is the only distributed simulation framework accepted as
a NATO standard—STANAG 4603). Its most recent and major
improvement is the Federation Object Model (FOM), which
acts as a shared vocabulary for communication between M&S
systems. The creation of an AS common vocabulary in M&S
can even increase the potential of the synthetic experimental
framework to ensure the easiest and most effective way to
implement AS in the operational field. Although there are
also tight industry standards for networked system, there are
no exhaustive methods to lead the researchers through the
VV&A cycle for the evolution of autonomous interoperable
systems. In order to ensure coherent outcomes in all network
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simulation configuration, new practices are necessary because
of the nature of the system-of-systems relationships in a
decentralized environment which simulates exchanges between
autonomous assets (Hodicky, 2018). For VV&A of modular
network of systems, (Tremori et al., 2018) introduces an agile
M&S architecture which enables better knowledge of the whole
system by testing together all its component (i.e., hardware and
software) in virtual-reality environments that are operationally
meaningful. The functional architecture suggested adheres to
the most recent Institute of Electrical and Electronic Engineers
(IEEE) recommended practice for VV&A (IEEE, 2007) and
NATO guidelines in the sector (Ruiz et al., 2016).

Finally, it is worth to mention that the CMRE started
a multi-year project in 2014 entitled Persistent Autonomous
Reconfigurable Capability (PARC) aimed at assisting NATO in
preparing the future in this domain and addressing common
technological shortfalls, cost aspects and challenges related to the
transition of this type of technology. The objectives of PARC
include increasing maritime unmanned systems’ persistence,
interoperability, scalability while addressing standardization,
information assurance, and cost aspects. Two examples of
remarkable results can be found in Carrera et al. (2016) and
Petroccia et al. (2018). In the first, an HLA connection between
simulated assets and an autonomous system using the Robot
Operating System (ROS) middleware is provided, enabling both
M&S and robotics researchers to develop more complicated and
accurate simulations of operationally relevant environments. The
latter reference is a description of the AutoLARS (Launch And
Recovery System) system which allows AUV docking, wireless
battery charging and high data-rate download of collected data
with the ultimate aim of improving the persistence of these
systems far beyond their batteries limits.

Besides PARC, CMRE is constantly involved in
promoting Standardization Agreement (STANAG) also about
interoperability. Among NATO members, a STANAG establishes
methods, requirements and constraints for operations and
systems. The aim is to provide joint procedures and logistics
so that the military of one Member State can interoperate
easily with the others. STANAGs are also the foundation
for interoperability between a different Information and
Communication Technology (ICT) systems, which is crucial for
NATO and allied missions. Two of them are very important and
worth mentioning in this paper: 4586 and 4748.

First, the STANAG 4586 (Marques, 2012) is the current
standard for Unmanned Aerial Vehicles (UAV) (Platts et al.,
2007; Frazzetta and Pacino, 2013) and it is in place a study
group on Multi-Domain Control Station (MDCS) which aims at
going toward a “joint” standard, i.e., one that will cover air, land
and maritime unmanned systems. The MDCS working group
“a mixed industrial and government representatives group”
will likely turn its ideas into a STANAG (i.e., an updated
version of the STANAG 4586) in the future. Secondly, CMRE,
together with academia and industry, created an underwater
communications protocol known as JANUS (Potter et al., 2014),
recently advertised as NATO STANAG 4748 (NSO, 2017). It is
the first globally accepted and openly accessible communications
standard for all the communities of the underwater domain

(http://www.januswiki.com). It is built on the binary frequency
change with tunable center frequency and bandwidth. The
subsequent bit rate is 80 bps if the default channel is selected
(9.4 − −13.6 kHz band). Automatic Identification System (AIS),
meteorological and oceanografical data transfer to submarines,
other than assistance in distressed submarine operations, are
distinctive functions of JANUS (Alves et al., 2016; Petroccia et al.,
2016, 2017). Thanks to the use of a standardized approach, it will
be possible to raise the level of Maritime Situational Awareness
(MSA) as well as to enhance security and water-space governance
employing heterogeneous and hybrid systems, both manned
and unmanned, including collaborative UMVs networks. In
conclusion, JANUS is the first comprehensive solution that
makes it possible to standardize communication protocols at
the physical level between multi-vendor devices, acting as a
fundamental glue between the existing proprietary protocols.

Another very active player in the interoperability field is
the European Defense Agency (EDA) since its 2008 Unmanned
Maritime Systems (UMS) programme (EDA, 2011; Dahlmann
et al., 2015), which established a list of key-technologies needed
for the appropriate functioning of the UMVs irrespective of
naval application. The whole programme aims at coordinating
efforts from individual member states to foster interoperability,
safety and more broadly the use of UMS. A specific UMS-project
has been launched (called STANDIN: Standards and Interfaces
for more interoperable European UMS) to take into account
information on standards/interfaces from UMS-projects. The
STANDIN project aim is to provide a relevant recommendation,
identifying issues that may hinder the eventual achievement
of the UMS-programme objectives. The endorsement of the
recommendation of the STANDIN project should enhance
innovation (use of common interfaces/standards to enable
industries to produce components to be easily integrated and
tested on UMS), upgradability of UMS and plug & play. However,
the recommendation is not expected to be translated into new
regulated standards but instead it will depend on the will of
governments and industry to enforce the recommendation, i.e.,
adopting it as a “de-facto standard” for European UMS.

The last but fundamental element of interoperability is the
adoption of a specific robotics middleware. These intermediate
software level is the fulcrum of interoperability between UMVs.
A robotics middleware can essentially be thought as a software
layer, composed of several modular packages, which has the task
of collecting and harmonizing the information coming from
the on-board sensors, making them available to the various
processing nodes. These nodes must in turn process these data
according to their specific function (tracking, communications,
etc.) and pass the outputs to other nodes or directly to sensors
and/or actuators of the robotic system. At the end of the various
elaborations, the middleware will be the responsible for the
passage of the system in another state, e.g., the execution of a
specific action.

The current de facto standard middlewares for UMVs
include MOOS [11] and ROS [12]. They are both publish-
and-subscribe systems, which provide the communication of
arbitrary data throughout a network. However, in order to
complete mission objectives, a robotic system also requires a
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deliberative component in addition to its reactive aspects (e.g.,
avoiding obstacles) (DeMarco et al., 2011). This is the goal
of the MOOS process IvP-Helm, which act as an autonomous
decision-making engine that executes in the backseat of the
robotic platform (Benjamin et al., 2010). In fact, the MOOS-
IvP is a combination of two components, IvP Helm and MOOS.
While MOOS is the actual robotics middleware, abstracting a
TCP/IP based inter-process communication (IPC) protocol, IvP
is a multi-objective optimization framework for constructing
complex autonomous behaviors from a collection of more simple
routines. The whole environment is composed of several other
processes, which communicate using the MOOSDB database as
a broker. The rate of interactions across information channels,
called topics, is controlled tightly by the MOOSDB, occurring
synchronously at a predefined rate. The exchange of information
occurs between TCP ports, which may or may not exist on
the same physical machine. Therefore, MOOSDB is relatively
rigid, and each topic is bound to a startup-defined data type,
with induced additive latencies because of the travel path of
information (node-database-node).

On the other hand, ROS does not impose any architectural
constraints, i.e., processes (called nodes) communicate directly
with each other, with no central broker. A central node
(called master) exists, but only to manage node startup and
shutdown. This is the main differences between MOOS and
ROS: while all data within a MOOS system are transmitted
through the MOOSDB, in ROS data are transferred using
peer-to-peer communications. The basic unit of interaction
in ROS is a message, which is typically exchanged on a
topic: from a node’s perspective, messages are published
synchronously and read from a subscription asynchronously.
Furthermore, a single topic can contain multiple instances
of a message. In ROS, there are two extensions to the
typical publish/subscribe mechanism: services and actions.
A service simply takes an input and returns an output,
as a typical service does in computer science literature.
An action keeps an internal state on a longer time scale
because it is called with a goal, emits feedback during the
action, and finally returns a single result at the end of the
action. An important advantage of ROS over MOOS is its
capability of handling very large datasets, e.g., live high-
resolution video and multi-dimensional point clouds from
LIDAR-like devices.

The development of MOOS-IvP in the research community
is continuous and ongoing, while its usage in the industry
is very limited. This may be a consequence of the lack of
insurance on backward compatibility that is based on community
agreement, not on enforced standard (even if newer versions are
generally backward compatible). While MOOS has historically
been popular within the underwater robotics community, ROS
is now by far more pervasive in a multi-domain context
(ground, sea, air). The main reasons for such success are the
reconfigurability and ease of use of ROS. There are bindings
for both C++ and Python, and it is regularly updated (at least
yearly). There are no rigid standards guiding development, but it
is so widely used that there is extreme prejudice against breaking
backward compatibility.

Another popular middleware in the marine robotics
community is DUNE (DUNE: Uniform Navigation
Environment) mainly due to its usage in autonomous vehicles
designed by the LSTS Group at the University of Porto (Pinto
et al., 2013). DUNE offers a C++ programming framework
for robust and flexible real-time reactive operations, and also
uses the publish/subscribe method. DUNE modules, named
tasks, publish and subscribe messages without requiring any
specific knowledge of the other tasks. For most instances, basic
interface modifications are sufficient to implement new features.
Communication between tasks is carried out solely through a
message-oriented Inter-Module Communication (IMC) protocol
for UMVs and sensor networks (Martins et al., 2009).

Through an industrial point of view, the Common Object
Request Broker Architecture (CORBA) is worth considering
as a middleware standard (https://www.corba.org/). It was
launched in 1991, supported by the Object Management Group
(OMG) and commonly adopted by major organizations such
as Thales, Raytheon, and BAE. The current edition dates back
to the end of 2012. Several implementations are accessible,
such as omniORB, PrismTech, and RT-CORBA, which share
the primary strength of CORBA: framework and applications
are separate, enabling vendors to interoperate based on the
interface description language (IDL) specification (Henning,
2008). The successor to CORBA is the Data Distribution
Service (DDS), an IPC standard specification initiated in 2004
by the OMG standardization committee (a description of the
DDS standards can be found at https://www.omg.org/spec/
category/data-distribution-service/). There are several industrial
implementations relevant to companies involved in autonomous
vehicles or ground control networks. The DDS is a language-
agnostic IPC standard, and it does not recommend a specific
implementation of any sort neither a device communication
framework. DDS is a standard that is preserved and strengthened
by OMG, an agency that carries a great deal of weight in the
industry. However, as a successor to CORBA, the development
of industrial migration to the newer standard is not obvious.
Additionally, although the specification is fully available, most of
the implementations are private, with no outstanding candidates
in the open-licensed domain.

Finally, the Joint Architecture for Unmanned Systems (JAUS)
is worth noting as a concrete middleware standardization
initiative. JAUS is a specification directed at unmanned systems,
introduced by the US DoD to provide a basis for interoperability
between unmanned systems (Whitsitt and Sprinkle, 2011). In
order to guarantee that the device design is valid to the whole
domain of existing and future unmanned systems, the JAUS
Reference Architecture (RA) was focused on five principles:
vehicle platform independence, task autonomy, computer
hardware independence, technology independence and operator
independence. This design has passed from the JAUS Working
group, which consisted of individuals from government, industry
and academics, to the Society of Automotive Engineers
(SAE). The Technical Committee of the SAE Unmanned
Systems now retains and promotes the collection of standards.
Most specifications have been transferred from the JAUS
Reference Architecture to a services-based system including
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FIGURE 1 | Map of the area off Cinque Terre, La Spezia, Italy, requested for ASW-ODC17 sea trials (snapshot from Google Earth) in the period 12–17 OCT 2017.

for example AS5669 (JAUS Transport Standard) and AS5710
(JAUS Core Service Set). In particular, the AS5669 (https://
www.sae.org/standards/content/as5669a/) specifies the transport
layer between processes (header compression, source/destination
address, TCP, UDP, or serial link) but does not identify
lower-layer (data link-physical) operations and is therefore
independent of the medium from which the messages are sent.
This characteristic improves interoperability between distributed
networks and inter-node (or vehicle) communications. Before
the “official” SAE JAUS version, the JAUS RA was developed to
provide first-time developers with an open implementation that
would be comparable to the norm. However, when the first pay-
for edition of SAE JAUS was released, there was considerably less
open-source support. Several of the initial free implementations
compliant with JAUS RA have been scrapped, and others have
vanished behind new proprietary licenses and other pay-as-
you-go systems. To sum up, the JAUS standard claims to be
well-written, but it has not been broadly implemented in the
underwater scientific field because the standard and several of
its applications are proprietary, raising obstacles to entry and
reducing visibility for research groups.

3. AT-SEA EXPERIENCE: THE ASW
OPERATIONAL DEPLOYMENT OF
CONCEPTS ’17

This section briefly summarizes the work presented in Costanzi
et al. (2018): besides describing how the interoperability issue
was approached during an experimental campaign held in
October 2017, it provides more information on the overall

network and the deployed components to emphasize the
complexity of the scenario and to underline the high level of
interoperability reached.

The ASW-ODC17 experimentation aims, among other
objectives, to demonstrate interoperability of different legacy and
modern systems, like the Folaga WAVE glider-AUV, within the
CMRE network. This kind of operational experimentation is
vital to receive UMVs requirements from the end-users and to
demonstrate to them the potential capabilities and challenges
of integrating unmanned systems with legacy maritime assets.
Although CMRE has always worked with other naval units on
the margins of other operational exercises on a non-interfering
basis, this is the first time that it has been allotted a dedicated
period to conduct trials with the NATO standing forces. The
ASW-ODC17 experimentation area was defined by the three
boxes shown in Figure 1. Almost 20 nodes were involved during
the experimentation, including static and mobile assets, both
manned and unmanned. The remarkable extension of this
network poses an actual interoperability challenge.

The backbone of the experimentation was the Network
Enabled Modem Operator (NEMO): the CMRE software
framework designed with MOOS-IvP to support experiments in
mixed media (air and underwater) (Vermeij et al., 2015) using
underwater communications in data exchanges between mobile
and potentially autonomous nodes (unmanned to unmanned)
and C2. NEMO represents a move in the direction of a more
versatile marine communication infrastructure which will leave
behind pAcommsHandler’s heritage, that was the first IvP process
operating the vehicle’s acoustic modem (Freitag et al., 2005).
NEMO provides a workspace where efforts such as JANUS,
SDOAM, clock synchronization or routing can be deployed,
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FIGURE 2 | A descriptive outline of the multistatic network for ASW of the

CMRE with the integration of the Folaga-WAVE. In this ASW architecture,

multiple active sonars are located on ships and buoys, and cooperate with

multiple receivers, i.e., towed arrays installed on OEX AUVs and other manned

assets. The communications between all the platforms, underwater and above

the water surface, are ensured by the WaveGliders, acting as mobile gateways,

together with the moored gateway buoys. The CMRE OEX AUVs, called

Groucho and Harpo, are the mobile sonar receivers. The NRV Alliance is the

network C2 centre and is also part of the network, towing both a source and

an array. For the specific experimentation, the Folaga WAVE was equipped

with a CTD probe, the data of which were made available for periodic updates

of the environmental map in the area and for insertion into the acoustic engine,

in which the onboard processed sound speed can be a valuable information.

tested and implemented. The NEMO is the current marine
communication stack for CMRE research, which still prefers
MOOS-IvP mainly because of the IvP part. It allows the vehicle
to work autonomously toward a goal, while it operates within
mission requirements, operating an efficient de-conflicting of the
tasks. Anyway, due to their many similarities, there is almost
a one-to-one correspondence between ROS and MOOS system
calls, and the path forward for the Centre is the integration of
the two middlewares. The next step will be the development of a
cognitive communications architecture (CCA) that allows other
channel access outside TDMA (Time Division Multiple Access),
utilizing intelligent, adaptive and secure submarine networking
strategies (Petroccia et al., 2018).

The physical cores of the CMRE’s multistatic hybrid network
for ASW were the active sonars (i.e., acoustic transmitters
installed on a buoy and towed by NATO Research Vessel
Alliance) and a typical scenario can be seen in Figure 2. In
particular, the new triplet SLIm Cardioid Towed Array (SLICTA)
array (Canepa et al., 2017) was towed from NRV Alliance along
with the ATLAS Source and receiver array.When the transmitted
pings are scattered by objects, receiving hydrophone arrays
can collect those echoes from different positions, including the
arrays towed by autonomous platforms (in particular two Ocean
Explorer—OEX—AUVs). The two OEX AUVs owned by CMRE
have been fitted with acoustic modems and they can tow an
array developed and fitted for purpose, i.e., the SLICTA. CMRE
has successfully tested—during ASW-ODC17—a paradigm for

the allocation of robotic assets to ASW tasks, a problem called
the Multi Robot Task Allocation (MRTA) (Ferri et al., 2017).
In the underwater field, centralized network monitoring, which
can enable tasks distribution optimization, is not feasible for
the outlined problems and peculiarities of the channel, and
this is why interoperability is so crucial. The suggested scheme
of assignment operates in a fully federated manner and two
simultaneous auctioning nodes handle the actual tasks. The
CMRE MRTA utilizes adjacent node agreement and only needs
local exchange of underwater data.

Also WaveGliders, UMVs that use wave motion to
navigate (Willcox et al., 2009), were employed in the
experimentation along with a set of deployed moored buoys
to create a communications network that allows feedback,
localization and exchange of control and information between
manned and unmanned platforms (Munafò and Ferri, 2017). The
Alliance has the role of C2S to allow the users to communicate in
real-time with the network through multi-hop communications,
via undersea or RF connections. This allows the Alliance to
remain far from the patrolled area with the possibility to
undertake additional operations. The main benefit of using
various assets, active and passive, is the expansion of the network
range employing the specificmultistatic geometry to augment the
probability of sonar identification with sonar signal processing.

During the experiment, the Italian Navy agreed to supply
the Leonardo Coastal Research Vessel (CRV) equipped with
a towed echo repeater to emulate an acoustic scatterer by
retransmitting the sonar signal recorded from the source
according to user-specified parameters (e.g., delay, attenuation,
etc.) (Grimmett, 2009).

Finally, the WAVE vehicle—capable of navigating using wave
motion and recharging with solar energy (Caiti et al., 2018)—was
added to the network to stress interoperability and add significant
data to the ASW network. The WAVE Mission Control System
(WMCS) combines the modules specifically developed for the
project with those already existing in the AUV and ensures a high
level of abstraction for the user set-up of an autonomous mission
(the conceptual scheme of the WMCS is illustrated in Figure 3).
The term “high level” refers to the user not having direct control
of the hardware (sensors and actuators) that are installed on the
vehicle but interacting with them via the implemented WMCS
request-response ROS-based mechanism.

In order to be effective, efficient and reliable, the WMCS has
been designed and implemented foregrounding requirements
such as modularity, scalability, reconfigurability, user-
friendliness, and robustness. These requirements were set in the
WAVE project to meet future interoperability need, as shown in
section 4. The WMCS consists mainly of two subsystems:

• The Folaga Mission Control System (FMCS) onboard the
vehicle, responsible for the management of mission payloads
and interaction with the low-level control system of the
Folaga vehicle;

• The WAVE C2S on the base station (positioned ashore
or on a support vessel), which provides essentially a
mission-managing level and a graphical user interface with all
the tools to carry out mission supervision and control.
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FIGURE 3 | Conceptual scheme of the WAVE Mission Control System (WMCS). The modularity of the WMCS allows both to displace nodes on different platforms in

different domains (above, on, and under the surface) and to easily add new mission payloads simply by maintaining the interface and message architecture defined at

system level. In fact, the [Acoustic Modem] and part of the [Base] ROS modules have been installed on the gateway buoy during the experimentation along with the

ROS-MOOS bridge. Figure from Costanzi et al. (2018).

FIGURE 4 | Screenshots of real data during the experiments. On the left, the sound speed received acoustically in real time during the Folaga WAVE profiling. On the

right, the CMRE C2S with the AUVs’ positions displayed. Figure from Costanzi et al. (2018).
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FIGURE 5 | The performed interoperability test mission in NED coordinates. The vehicle was moving in gliding mode for about 250 m in the first path between the

starting point (red diamond) and the first dive point (orange asterisk). Then, it started doing four profiling tasks to characterize the water column down to 12 m depth

on a rectangular area of 5, 000 square meters. Recall that the vehicle simply dives vertically using the ballast and the internal moving mass for profiling the water

column. Only the vertical jet-pumps are used for finely trimming the pitch angle to 0 degrees, i.e., it is free to drift during these kinds of missions. As it can be seen, it

was present a strong sea current toward North-East so that the vehicle resurfaced about 30−−40 m away from each diving points. Finally, the first path from the

red-diamond to the dive point no. 1 was done in surface navigation in this specific plot. Figure from Costanzi et al. (2018).

Then, the WMCS implemented a distributed architecture:
software modules were split between the WAVE C2S, the
moored gateway buoy and the vehicle itself. While these
systems have a physical separation, they merge acoustic
communications (modems were installed on both the gateway
buoy and the vehicle) with RF communications (between C2S
and the gateway buoy, but in case also between C2S and
the vehicle). This allows the user to send commands to the
vehicle and receive required notifications and data. Indeed, the
interoperability of the WAVE vehicle into the aforementioned
CMRE heterogeneous network was demonstrated by exchanging
both commands and data. In particular, the WAVE vehicle
was equipped with a Conductivity, Temperature, Depth (CTD)
sensor to obtain representative operational information that
was communicated to CMRE Environmental Knowledge and
Operational Effectiveness (EKOE) team (Grasso et al., 2016).
Furthermore, CTD data has been distributed for periodic updates
of the environmental map in the area and for injection into
the MultiStatic Tactical Planning Aid (MSTPA) decision support
tool (Strode et al., 2012), to which the sound speed measured

by the vehicle can be relevant. Interaction with the EKOE
team in particular enabled the view of the positions of all

the underwater assets (CMRE OEX AUVs, WAVE, and CMRE

Wavegliders) at the EKOE C2S. In addition, the position of the
WAVE vehicle was made readily accessible on board the Flag-

Ship of the NATO partners and at the command and control

stations of NATO Allied Maritime Command (MARCOM).
Figure 4 shows the information as they were seen on board

NRV Alliance.
As it is now clear, one of the main challenge lays

in the different robotics middleware of the Folaga WAVE
vehicle and the CMRE network which uses ROS and MOOS

respectively. Therefore, a ROS-MOOS bridge software was
installed on a moored buoy acting as a gateway between
underwater and surface assets. Due to the characteristics
of the different AUVs participating in the experimentation
in addition to the WAVE vehicle, the gateway was fitted
with acoustic modems working on different frequencies.
This way, all the interoperability tests rely on a double
channel communication: acoustic between the gateway buoy
and the vehicle, RF between the Alliance C2S and the
gateway buoy.

The complete mission done for all the considered experiments
is shown in Figure 5. It is important to recall that all the tasks
implemented on the AUV for the specificmission could be added,
started, halted or terminated via acoustic modem or Wi-Fi. The
integration of WAVE Folaga within the CMRE network, aimed
at enhancing the interoperability in a multi-vehicle operation,
was the best demonstration of the effectiveness of the system
developed in the project in an operational context.

4. FUTURE TRENDS OF
INTEROPERABILITY

System modularity and interoperability (between heterogeneous
systems) are two keywords of the current world of marine
robotics as an unprecedented growth of sensors, communication
architectures and protocols, manned and unmanned platforms,
and software at various levels is ongoing. One of the main
reasons for their relevance in modern engineering developments
is that modularity and interoperability ensure the reduction of
the costs of a system—albeit large—along its entire life cycle, both
from a maintenance point of view and from the possibility of
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adaptation and evolution based on the growing applications and
new technologies available in the future.

Today, several factors limit the interoperability of systems,
not just UMVs. Among them, the main ones are certainly the
proliferation of proprietary interfaces, often followed by a non-
standard physical communication architecture characterized by
non-shared waveforms, frequencies and settings. Besides, much
of the engineering effort is now focused on standardizing
the type of data, metadata and related encoding exchanged
between systems.

The development of specific main techniques and
technologies can tackle these changing requirements while
mitigating the effect on the platform itself:

• Multiformat aggregated data processing: the capacity to
concurrently communicate with, manage and elaborate
different data formats. If it were possible to know beforehand
the data type and information formatting exchanged
(including metadata and labels), as well as being able to
implement processing algorithms capable of handling
different data formats agnostically, platforms can be then
more synergistically updated in relation with emerging
operational needs.

• Federated Distributed computing: the capacity to quickly
change modules (“plug and play” manner), while barely
physical requirements have to be addressed. Once a new
payload has been physically installed in compliance with
the requirements of modularity and interoperability, it is
necessary to test, analyze and certify the behavior of the whole
autonomous system with a high impact in terms of costs and
development times. Federating the computing capabilities of
the system up to the payload level or even to the remote control
station could be an important lever to facilitate the rapid and
effective integration of new technologies.

• Open Standards, Architectures and Equipment will improve
Interoperability: the vision currently shared in the industrial
world of UMVs is that only by developing new platforms,
systems, payloads, software according to common standards
make it possible to allow full interoperability of the
various unmanned autonomous systems. At the same
time, this will enable the interchangeability of the various
modules of a platform respecting today’s budget constraints.
Once standards have been established, the massive use of
Commercial-Off-The-Shelf (COTS) components will allow the
sharing of various functional subsystems between different
vehicles, such as payloads, navigation systems, power supply
systems, communication systems, sensors, and launch and
recovery systems. Hand in hand with the hardware, the
software must also comply with a standard architecture
that can facilitate changes to the configuration of a system
when replacements or additions of entire vehicles or specific
payloads are needed. This sharing of standards at each level
between heterogeneous vehicles will have positive effects
from the platform’s acquisition until its disposal without loss
of interoperability between systems. The larger and more
expensive the UMV, the more customized and proprietary
interfaces will be prohibitively expensive to develop and

maintain, and therefore the greater the advantage associated
with the use of open standards, architectures and equipment.

• Collaborative, Opportunistic, Advanced Communications: the
communication required in modern applications is no
longer merely a point-to-point communication. Today, we
have flexible and adaptive networks working in a multi-
channel environment that lays challenging constraints on
the performances obtainable. In particular, one of the major
limitations of the underwater acoustic channel is the low
bandwidth, which requires a high level of discrimination
in the exchange of information (necessity, extension, etc.),
favoring cooperative strategies between UMVs to take
advantage of their autonomous capabilities even in the case
of data loss. Moreover, these peculiarities of the underwater
acoustic channel impede the use of classic collaboration
algorithms used in terrestrial and air domains based on
the consensus theory (Ren et al., 2005). In fact, these
algorithms require an information exchange overload for
network management directly proportional to the network
size. An alternative solution under maturity is the use of
non-acoustic communication (mainly Light Emitting Diode
systems and laser) at range below tens of meters, especially
for transmitting high-speed data between close UMVs and
between UMVs and node acting as gateway between the
underwater and non-underwater environment (for example
surface vehicles or buoys with satellite connections, Doniec
et al., 2010); a remarkable example of such concept is the
dual acoustic/optical modem of WHOI able to adaptively
operate according to the relative distance between UMVs (Farr
et al., 2010). WHOI was also a pioneer in the flexible use
of the limited acoustic channel through the introduction of
the Compact Control Language (CCL). CCL is a series of
messages that contain UMV commands and data messages
for standard sensors (Stokey et al., 2005). CCL commands
include basic procedures such as “Abort Now” and “Abort
to Mission Start” but also sophisticated commands such as
a side-scan sonar redirection over the operational area. The
open design of the specification enables vehicles produced
by various academic organizations or commercial firms to
work together using standard data formats. New signals can
be introduced by users if required for new operations, both
military and civilian. In addition to pure communication
between UMVs, it is necessary to determine the position of
nodes within a network, and this can be done with the same
autonomous cooperative approach between UMVs: simulative
and experimental results have been presented for example
in Allotta et al. (2014), Ridolfi et al. (2018), and Masmitja
et al. (2018). These recent works focused on underwater
Multi-Target Tracking (MTT), evaluating the potential to
use surface vehicles as mobile markers to locate and map
a set of underwater vehicles. This collaborative solution
minimizes the main downside to multi-target cooperation,
which is the uncertainty in underwater positioning due to the
environmental uncertainty. In the mentioned studies, various
network levels of sensors, nodes, and vehicles operate together,
opening new possibilities for detecting and understanding
the complex dynamics of ocean phenomena and creating
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new applications. In the civil sector, for example, there is
an immediate and worldwide need for a technology that
can allow environmental response teams to quickly identify
the nature and magnitude of unintended leaks of toxic
products to have an appropriate response. A cooperative
robotic system, consisting of two heterogeneous UMVs, for
environmental control is introduced in Vasilijević et al.
(2017). The described hybrid surface-underwater architecture
enables the operator to interpret the product concentration
data in real-time, using the system’s modeling and decision-
making abilities, and to adjust the task on the move. The
system is an application of the Human-on-the-loop (HOTL)
concept (Cummings et al., 2012), which allows a minimal
team of operators to manage a network of robotic agents
working in complex, time-consuming environments. The
tests demonstrated enhanced process efficiency for a network
of autonomous vehicles in search, track, and neutralization
missions. The HOTL principle is compared vs. the human-
in-the-loop principle in Valavanis and Vachtsevanos (2015),
highlighting the unique technological challenges and degrees
of autonomy needed by autonomous vehicles to carry out a
task without substantial human involvement. HOTL supports
decision-making and helps the operator to conduct the most
suitable task in an evolving scenario, i.e., to enable on-the-fly
mission adjustment.

• Interoperable, realistic integrated Modeling and Simulation
environment: approaches consisting purely of in-field
experimentation in the marine robotics domain are
prohibitively expensive; thus, the interoperability of UMVs
and heterogeneous integrated platforms and systems
will probably be critically assessed using modeling and
simulation. The future trend of M&S may be focused
on the design of a scalable architecture for interoperable
simulation based on a system of systems approach, providing
a V&V (Verification and Validation) capability to explore
systems reliability in complex conditions and to analyze
autonomous behaviors in cost effective and safe virtual
environments (Hodicky, 2016). The paper sets out the
importance of exploiting Augmented Reality and haptic
feedback to deliver immersive simulation in a natural way
to the human operator who is working with autonomous
systems. Such simulations would make it possible to address
the human factor, i.e., to create a condition similar to that
faced in real operations. The modeling of human factors,
such as stress, will therefore represent a future challenge
for M&S systems. To sustain the UMVs development, M&S
systems must be designed according to the IEEE Distributed
Simulation Engineering and Execution Process (SISO, 2010),
and the more recent Scenario Development Guideline of the
Simulation Interoperability Standard Organization (SISO,
2016). Future M&S will consists of a network of simulators
working together with C2 stations in the loop and with special
emphasis on implementing autonomous behavior of UMVs
and their messages transfer using standard procedures, e.g.,
the C2-Simulation Interoperability (C2SimI) language (Tolk
and Boulet, 2007). In Biagini et al. (2018), the authors

describe an M&S federation of simulators communicating
with operational C2S. The simulator federation is based
on the HLA Run-Time Infrastructure (RTI) working with
several technologies such as ad-hoc Artificial Intelligence (AI)
modules for robotic behavior and C2SimI for interaction
between simulators and C2S. The paper illustrates how
M&S will help evaluate potential scenarios concerning an
Autonomous System of Systems, promoting the development
cycle not just for new platforms, but also for performance
assessment methodologies and operative procedures.

5. CONCLUSIONS

In this paper, a comprehensive view of interoperability among
UMVs is provided. Interoperability is a fundamental feature for
the success of UMVs missions and its development is a long-
term goal for both civil and military communities. The current
plethora of UMVs is characterized by poor interoperability
among them and with external systems, including legacy
ones, essentially because of the urgent needs in operational
theaters—for the military world—and the parallel growth of
the UMV market—for the industrial and civil world. However,
interoperability remains the key to increase the capacity of an
operational system of systems to share information quickly,
improving the MSA and therefore the efficiency in using the
available resources.

The critical analysis in section 2 of the various studies and
projects focusing on the concept of interoperability among
UMVs, not neglecting the role of human operators in the
loop, demonstrates that interoperability is currently receiving
a high level of attention with a large amount and diversity
of efforts. This can be explained by the fact that the current
missions of the UMVs are finding increasingly blurred lines
of operational space while the requirement to standardize
and re-utilize sensors, algorithms, information, systems and
vehicles, is urgent but still very difficult. From the analysis
of state of the art presented, it is noted that currently there
are no comprehensive standards on interoperability, but the
groundwork effort is underway (e.g., STANAG 4586). The real
challenge, following the promulgation of such a standard, will be
to convince UMVs and sensors suppliers to fully adopt it due to
proprietary interests.

Moving to the field, interoperability tests between the
innovative Folaga WAVE AUV, equipped with oceanographic
sensors, and the CMRE network C2S onboard NRV Alliance,
using a gateway buoy as a ROS-MOOS bridge, are presented
in section 3. Their integration has been evaluated and validated
through at-sea operational experiments off the La Spezia coast
(Italy). This successful interoperability experimentation between
different autonomous systems, with their own acoustic modems
and middleware, is an important step to improve MSA with
respect to underwater assets during a joint NATO exercise.
The Folaga WAVE software modularity makes it possible to
incorporate a new AUV in the existing CMRE network, which in
turn demonstrated its flexibility to integrate newly available assets
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thanks to its decentralized architecture. According to the authors’
knowledge, this was the first Italian interoperable approach to be
thoroughly tested and demonstrated in an operational exercise
involving NATO manned and unmanned assets.

A common view arises in this paper from the theoretical
and experimental evaluation of missions peculiar to UMVs: they
must be fully interoperable in order to enhance their efficiency,
reliability, and survivability while lowering the human burden
keeping reduced cost. For future unmanned systems, modularity,
interoperability and the use of advanced technology must
meet more sophisticated operational requirements (section 4),
while solutions developed for terrestrial networks could not
effectively be extended to marine scenarios. Future challenging
scenarios will require UMVs to interoperate with other manned
and unmanned components of the whole system-of-systems to
enhance the capability to gather information, make decisions,
and execute actions, thus reducing reaction time. The authors’
proposed challenge on interoperability is to find a transparent
way to transfer control of a given UMV’s payload from one
“control station” to another controlling entity (human or robotic)
while keeping the rest of the UMV controlled by the original one.

Finally, current operational culture poses a brake on
the interoperability among UMVs. Even if out of the
field, human operators are still very involved in the non-
autonomous unmanned systems missions, i.e., a point-to-point
communication and command line is needed and typically
established. An Interoperable system-of-systems of autonomous
UMVs will request the human being involved at a supervisory
level only and on limited time windows. The acceptance of
this concept of operations will be achieved with a progressive
approach, reducing the human supervision step-by-step
after establishing trust in the system’s performance (in a
very broad sense). The extent of human monitoring will be

reduced as reliability increases, supported by stable and mature
interoperability, enabling Autonomous UMVs to attain their
maximum capacity.
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This paper tackles the problem of formation reconstruction for a team of vehicles based

on the knowledge of the range between agents of a subset of the participants. One main

peculiarity of the proposed approach is that the relative velocity between agents, which is

a fundamental data to solve the problem, is not assumed to be known in advance neither

directly communicated. For the purpose of estimating this quantity, a collaborative control

protocol is designed in order to mount the velocity data in the motion of each vehicle as

a parameter through a dedicated control protocol, so that it can be inferred from the

motion of the neighbor agents. Moreover, some suitable geometrical constraints related

to the agents’ relative positions are built and explicitly taken into account in the estimation

framework providing a more accurate estimate. The issue of the presence of delays in

the transmitted signals is also studied and two possible solutions are provided explaining

how it is possible to get a reasonable range data exchange to get the solution both

in a centralized fashion and in a decentralized one. Numerical examples are presented

corroborating the validity of the proposed approach.

Keywords: autonomous underwater vehicles, multi-agent system, relative localization, active estimation, range-

based navigation

1. INTRODUCTION

Localization is one of the most important basic abilities for an autonomous vehicle to perform
autonomously a wide number of tasks (Ferri et al., 2017; Simetti et al., 2017; Antonelli et al., 2018),
so that an accurate and reliable localization algorithm is a key practical tool for the success of
mission in many applications of underwater robotics.

In essence, the localization problem is often addressed exploiting geometrical relations between
the pose of the vehicle and the sensors, so that the issue of solving the localization problem
may be strongly related to the environment of the given application. Sensor technology strongly
depends on the environment, e.g., the Global Navigation Satellite System (GNSS), AttitudeHeading
Reference Systems (AHRS), radar-based tracking systems, accelerometers, gyros, and compass
devices. This makes the issue of the underwater localization problem more challenging, and it
has been considerably studied in the past years. Underwater acoustic-based trilateration solutions
as long base line (LBL) systems have been studied as well, but they require complex deployment
operations (Scherbatyuk, 1995).

Localization is a long-time debated research area in robotics and beyond, and different aspects
have been studied over time. In this paper, we consider the relative localization problem for a team
of agents, that is, the formation reconstruction problem in a multi-vehicle framework. This is a
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peculiar problem in the research area of localization, which
has been recently considered by several authors for its
importance in various applications. In the paper by Soares
et al. (2013), the authors propose a formation keeping under
severe communication and localization constraints, which is
a typical condition of the underwater environment. In Sarras
et al. (2017), the authors adopt an observer-based approach to
treat the problem ofmulti-vehicle collaborative localization using
time-varying range and relative velocity measurements, while in
Halsted and Schwager (2017) a method of estimating the shape of
an indoor environment using the echos of acoustic pulses among
the robots is studied. Indeed, when an underwater mission is
performed by a team of robots, it is often fundamental to know
the relative positions and orientations in order to be able to
correctly merge the data of the environment (e.g., merging pieces
of map) collected by each individual robot (see, e.g., Roumeliotis
and Bekey, 2000).

From a theoretic standpoint, the range-based estimation
problems have been recently considered also in a single vehicle
framework (Bayat et al., 2016). The challenges of dealing with
single range measurements come from the fact that they are
a non-linear algebraic map of the vehicles’ positions hence the
observability analysis requires the tools of local and weakly local
observability (Hermann and Krener, 1977), but this approach
suffers from several difficulties (Gadre and Stilwell, 2004; Ross
and Jouffroy, 2005; Jouffroy and Reger, 2006). However, an
alternative approach has been recently investigated recurring to
a reformulation of the problem, which requires the observability
of a linear time varying system (see, e.g., Batista et al., 2011;
De Palma et al., 2017) so that a number of useless drawbacks of
the local approach are avoided.

In this paper, we afford the relative positions reconstruction
problem for a team of collaborative robots using local data.
Collaborative navigation based on single-range data has been
studied in the underwater environment (Fallon et al., 2010; Soares
et al., 2013; Webster et al., 2013) as well as in more general
settings (Cao et al., 2011). Indeed, since the milestone paper
by Sanderson (1997), the area of cooperative navigation and
localization has been significantly explored. One first significant
attempt to the decentralized collective localization problem is
explained in Roumeliotis and Bekey (2002); to achieve this goal,
data processed during each collective localization session are
propagated among all the robots in the group. This approach
is further investigated in Mourikis and Roumeliotis (2006),
where the Relative Position Measurement Graph (RPMG),
i.e., the weighted directed graph representing the network of
robot-to-robot exteroceptive measurements, is introduced and
used as a key tool for the analysis of cooperative localization.
The distributed acoustic navigation problem for Autonomous
Underwater Vehicles (AUVs) is explored in Bahr et al. (2009),
where the authors use acoustic ranging and data exchange based
on dead-reckoning and range-only measurements provided by
acoustic modems that are mounted on each vehicle to achieve
cooperative positioning. In the paper by Allotta et al. (2014),
the use of AUVs with low-cost instrumentation is explored
(namely, each of them is equipped with a low-cost IMU, a
compass and depth sensor, but only one of them, the master,
has a high accuracy navigation sensor such as the DVL), and

acoustic modems for communication are used as sensors of
relative distance to achieve an innovative cooperative localization
algorithm. In Soares et al. (2017), the authors optimize the non-
convex maximum-likelihood estimator in the presence of range
measurements contaminated with Gaussian noise, and obtain
a convergent, accurate, and distributed positioning algorithm
that outperforms the extended Kalman filter. However, this topic
has been largely explored by several authors, and the interested
reader may refer to Arai et al. (2002) (section V).

The research activity reported in this paper stems from the
above considerations and is strongly inspired by the experience
gained within a European project (Antonelli et al., 2018). The
goal is to extend the preliminary results achieved by the same
authors in De Palma et al. (2015) and De Palma et al. (2019) as
follows. One of the main novelties with respect to De Palma et al.
(2015) is relative to the following fact. Based on the consideration
that communications networks in the underwater environment
do not perform well, we want to avoid the direct communication
between vehicles of the relative velocity by setting a suitable
agreed control protocol in which it is possible to encapsulate the
data which one vehicle wishes to communicate as a parameter
that can be easily estimated using the relative motion by any
of its neighbors. As opposed to the approach in Mourikis and
Roumeliotis (2006), in this paper the solution proposed relies on
intra-vehicle ranges only rather than relative positions of vehicles.
As a further peculiar feature of the approach proposed by the
authors of this paper, we further use topology-based relations
among the unknown variables as an additional constraint and
this results in reduction of the overall estimate uncertainty.
Further, in this paper we explicitly account for delays in range
measurements acquisition. Indeed, the technology underneath
underwater networks is typically acoustic and communication
delays may be significant and their impact may not be neglected.
The solution provided in this paper exploits the intuitive idea
of a neat time-division protocol to prevent any delay-related
issue in the localization solution provided that an upper bound
is available.

The paper is structured as follows: after a brief summary of
notation and terminology in section 2, we provide the general
problem statement in section 3, where section 4 is dedicated
to the localization-oriented control protocol. In section 5, the
observer design is performed, and section 5.1 is fully dedicated
to the projection approach, which allows to improve the estimate
precision. In section 6, the issue of delays in measurements is
faced, and in section 7, two possible communication protocols are
provided both in the case of a single “leader” agent performing
the elaboration (thus only one agent collecting all the estimates)
or any agent of the network. In section 8, a wide simulation
activity is reported and discussed, showing the effectiveness of the
proposed approach. Section 9 closes the paper summarizing the
results achieved in the paper.

2. NOTATION AND GRAPH THEORY
TERMINOLOGY

In the following, we introduce the notation adopted in the paper
and some tools from graph theory (Godsil and Royle, 2001),
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which are useful for a mathematical treatment of the problem.
We use the symbol ⊗ to denote the Kronecker product between
two matrices, which is defined as follows. For a pair of matrices
A ∈ R

n×m and B ∈ R
p×q:

A⊗ B =







a11B · · · a1mB
...

. . .
...

an1B · · · anmB






. (1)

We use diag(A1, . . . ,An) to denote a block-diagonal matrix with
matrix diagonal entries Ai. A graph G is the collection of a set
V = {1, . . . , n} called set of nodes and another set E ⊆ V × V ,
which is called the set of edges. For a given i ∈ V , the set Ni =

{j ∈ V :(j, i) ∈ E} is called the set of its neighbors. A path P

between node i and node j is a collection of nodes and edges of G
connecting i and j; a graph G = (V , E) is connected if there exists
a path connecting each h, g ∈ V . A cycle is analogously defined
with the additional condition that i = j. A cycle C̄ is linearly
independent from a preassigned set of cycles if at least one edge
in C̄ is not present in the union of the edge sets of the cycles.

3. PROBLEM FORMULATION

Let xi ∈ R
3 for i = 1, 2, . . . , n denote the position of n agents and

vi ∈ R
3 their velocity. Each agent is able to know its own velocity

with reference to the common frame I so that, unless specified,
we assume that the velocity is expressed in this common frame
I . We assume that if two agents are able to measure the range
between themselves, they are connected, so that it is possible
to define a connection graph. Inspired by the work of Mourikis
and Roumeliotis (2006), we refer to it as to an RPMG, which we
assume to be a simple graph G with node set V = {1, . . . , n} and
the edges set E . We further assume that if two agents are able
to measure the range between themselves, they can establish a
communication link to exchange data, so that it is possible to
consider G also a communication graph.

The evolution of the agents can be computed using simple
kinematic equations:

ẋi(t) = vi(t) : i ∈ V (2)

zij(t) : = xi(t)− xj(t) : (i, j) ∈ E (3)

vij(t) : = vi(t)− vj(t) : (i, j) ∈ E (4)

so that

żij(t) = vij(t) : (i, j) ∈ E (5)

yij(t) = ‖zij(t)‖
2

: (i, j) ∈ E , (6)

where zij in Equation (3) denotes the relative positions among
those agents able to exchange information. All agents are
assumed to be able to acquire measurements of their relative
Euclidean distance yij in Equation (6), with the goal of estimating
zij performing an elaboration of the relative range measurements
yij and local data. A fundamental difference between this problem
statement and the one afforded in the paper by De Palma et al.
(2015) is that here we do not assume to exchange the velocity data

through a dedicated underwater network, but we encapsulate this
information as parameters of an agreed control protocol and infer
the velocity value using a range-based Kalman filter as detailed in
the following. We consider this choice of the problem statement
a significant step forward for all those applications where only
range information exchange is possible.

From now on we work under the assumption that the
communication graph is time invariant. This choice is
instrumental to keep the problem simple and the associated
solution clear. The authors believe that it is a mild assumption
considering that the resulting localization procedure requires a
bounded amount of time. It is equivalent to assume that nodes
that are neighbors at the initial time t̄ keep this communication
alive during the whole time span, while other nodes that may
fall in the communication range after t̄ are not included in
the elaboration. Furthermore, from a practical point of view, it
should be emphasized that acoustic underwater communications
degrades drastically after certain threshold distances. If a group
of underwater vehicles keeps its formation during a mission
within such a threshold distance (most common case), the
quality of the communications can be assumed to remain good
and the communication links can be considered constant.
Finally, even if a communication link (i,j) was lost, the proposed
strategy could still be adopted by deleting the corresponding
state variable zij.

We now describe a strategy to improve the estimation when
cycles are present in the communication graph. Indeed, the
relative positions may be not independent, but they can be
subject to geometric constraints if they belong to the same
cycle. Based on the consideration that the sum of all the vectors
representing the relative positions of agents belonging to a
cycle must necessarily be zero, each set of independent cycles
corresponds to a set of independent geometric constraints on the
relative positions. Considering a connected graph with n nodes
andm edges, any cycle basis can be mapped into a set ofm−n+1
additional relations. A team of n = 4 agents withm = 5 links is
depicted in Figure 1. It is possible to setm−n+1 = 2 additional
relations, namely

z12 + z23 + z31 = 03×1 (7)

−z23 + z24 + z43 = 03×1 (8)

FIGURE 1 | Example of Relative Position Measurement Graph (RPMG) with 4

agents and 5 links.
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that can be rewritten as Dz∗ = 03×1 with

D =

[

I3×3 03×3 03×3 I3×3 03×3
03×3 I3×3 I3×3 03×3 −I3×3

]

∈ R
6×15 (9)

z∗ = (z⊤12 z⊤24 z⊤43 z⊤31 z⊤23)
⊤ ∈ R

15 (10)

The above example can be easily generalized, and it is possible
to write a general setting as follows. For a team of n nodes and
RPMG edge set E , the additional relations can be expressed as:

D z∗ = 03(m−n+1)×1 (11)

being

z∗ = (· · · z⊤ij · · · )
⊤ ∈ R

3m with (i, j) ∈ E , (12)

D = A⊗ I3×3, (13)

A = (alk) (l = 1, . . . ,m− n+ 1; k = 1, . . . ,m) (14)

where D ∈ R
3(m−n+1)×3m,A ∈ R

(m−n+1)×m and A is a
signed structured (0, 1) matrix, namely alk ∈ {−1, 0,+1}. Each
geometrical relation associated with (11) can be encapsulated
in the state estimation procedure in order to improve the
estimation quality.

4. LOCALIZATION-ORIENTED CONTROL
LAW

In this section, a motion control scheme for range-based relative
localization is proposed. Using this strategy, it is possible to infer
the relative velocity of agents from the motion measurements.
Consider the following control law for each vehicle:

vi(t) =
∑

j∈Ni

K (xi(t)− xj(t)) : K > 0, i ∈ V (15)

where K ∈ R is a positive constant. According to such schema,
themotion of each vehicle i depends only on the relative positions
with its neighbors, namely zij with j ∈ Ni.

It is worth noting that in our framework Equation (15) cannot
be directly implemented (as the actual relative positions zij are
not known to vehicle i), but we replace the estimated relative
positions ẑij instead:

vi(t) = K
∑

j∈Ni

ẑij(t), i ∈ V , (16)

leading to the following relative velocities:

vij(t) = K





∑

h∈Ni

ẑih(t)−
∑

ρ∈Nj

ẑjρ(t)



 : (i, j) ∈ E (17)

Details about the specific computation of the estimated relative
positions ẑij to be used in (16) are provided in the next section.

When agents adopt this control law, the system (5–
6) becomes:

żij(t) = K





∑

h∈Ni

ẑih(t)−
∑

ρ∈Nj

ẑjρ(t)



 , (i, j) ∈ E (18)

yij(t) = ‖zij(t)‖
2. (19)

As a final remark, it is interesting to note that the control
law in Equation (15) has the same structure of a consensus
protocol as those described in Olfati-Saber and Murray (2004)
and Ren and Beard (2007). Control strategies based on such kind
of protocols have been widely studied for the coordination or
formation control of a team of agents (Leonard et al., 2007; Ren
and Cao, 2010). In this paper, we do not seek control objectives
but we rather use Equation (16) as a localization-oriented control
protocol that each vehicle must follow at each t = kTs, being Ts

a fixed time interval. Therefore, within each interval the agents
keep their velocity constant. Indeed, in this paper such control
law is adopted to make the motion informative of each agent’s
position and velocity, and hence make the range-based relative
localization of a networked group of underwater vehicles solvable
in finite time so that it can be executed as a routine inside a
mission when localization is needed. This is useful when, during
a cooperative mission, the relative localization accuracy of the
agents decreases; in this case, the proposed localization-oriented
control law can be activated so as to improve the accuracy of the
relative localization.

The advantage of such solution with respect to the work
presented in De Palma et al. (2015) is that by adopting the motion
control scheme for range-based relative localization in (16), there
is no need for the agents to share their velocity information in
the communication channel. Indeed, an agent is able to derive
the velocity of the other agents from the knowledge of the
adopted control law and the estimated relative positions. This
result in a significant reduction of the communication load over
the network. The results achieved in this paper are particularly
relevant in underwater applications where the bandwidth is often
limited due to the acoustic communications.

5. OBSERVER DESIGN

The estimation of the relative positions zij(t) in Equations (18),
(19) is tackled resorting to themethods presented in Indiveri et al.
(2016). Let us integrate Equation (18)

zij(t) = zij(t0)+

∫ t

t0

K





∑

h∈Ni

ẑih(τ )−
∑

ρ∈Nj

ẑjρ(τ )



 dτ

= zij(t0)+ dij(t), (20)

with dij(t) defined as

dij(t) : =

∫ t

t0

K





∑

h∈Ni

ẑih(τ )−
∑

ρ∈Nj

ẑjρ(τ )



 dτ ∈ R
3×1. (21)
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Equation (20) allows to compute

z⊤ij (t0) zij(t0) = yij(t0) = (22)

= yij(t)+ ‖dij(t)‖
2 − 2d⊤ij (t)zij(t)

yielding

ȳij(t) : =
1

2
[yij(t)− yij(t0)+ ‖dij(t)‖

2] (23)

ȳij(t) = d⊤ij (t)zij(t). (24)

The term ȳij(t) defined in Equation (23) as well as the term
dij(t) defined in (21) are both known quantities, so that the
new linear output equation in Equation (24) can be considered.
Consequently, the original non-linear model (Equations 5 and 6)
can be expressed as a Linear Time-Varying (LTV) model

żij(t) = K





∑

h∈Ni

ẑih(t)−
∑

ρ∈Nj

ẑjρ(t)



 (25)

ȳij(t) = d⊤ij (t)zij(t). (26)

Thus, the estimation of zij(t) in (25, 26) can be addressed
exploiting the standard linear system theory. It should be noticed
that the output matrix d⊤ij (t) of the LTV model depends on the
control input, hence the observability depends on the agents’
relative velocity vij. It can be proven that a sufficient condition
for the observability of the original system (5–6) on [t0, t] is the
invertibility of the observability Gramian of the LTV system (25,
26) defined as:

G(t0, t) =

∫ t

t0

dij(τ ) d
⊤
ij (τ ) dτ . (27)

The reader should refer to Indiveri et al. (2016) for a detailed
analysis of the observability properties of such a system. Let
us consider the discrete time formulation of the LTV system
given by:

zij(k+ 1) = zij(k)+ K





∑

h∈Ni

ẑih(k)−
∑

ρ∈Nj

ẑjρ(k)



Ts + ω(k)

(28)

ȳij(k) = d⊤ij (k− 1)zij(k)+ ǫ(k) (29)

with

ȳij(k) =
1

2

[

yij(k)− yij(0)+ ‖dij(k− 1)‖2
]

, (30)

dij(k− 1) =

k−1
∑

l=0

K





∑

h∈Ni

ẑih(l)−
∑

ρ∈Nj

ẑjρ(l)



Ts, (31)

where ω(k) and ǫ(k) are assumed to be zero mean, Gaussian,
white, and uncorrelated process and measurements noises with
covariances Q(k) and R(k), respectively, and Ts represents

the sampling time. A standard Kalman filter can be applied
to the model in Equations (28) and (29), leading to the
following equations:

ẑij(k+ 1|k) = ẑij(k|k)+ K





∑

h∈Ni

ẑih(k)−
∑

ρ∈Nj

ẑjρ(k)



Ts

(32)

Pij(k+ 1|k) = Pij(k|k)+ Q(k) (33)

K = (P−1ij (k+ 1|k)

+dij(k)R(k+ 1)−1d⊤ij (k))
−1dij(k)R(k+ 1)−1 (34)

ẑij(k+ 1|k+ 1) = ẑij(k+ 1|k)+ K(ȳ(k+ 1) (35)

−d⊤ij (k)zij(k+ 1|k))

Pij(k+ 1|k+ 1) = (P−1ij (k+ 1|k)

+dij(k)R(k+ 1)−1d⊤ij (k))
−1. (36)

In the considered scenario, thanks to the intra-vehicles acoustic
communications, each agent is able to know the estimations ẑij
and their covariances Pij. Therefore, each agent can improve
the estimation accuracy exploiting the additional geometric
constraints (11). To this aim, we can benefit from the projection
approach described in the following subsection.

5.1. Constraint Exploitation for the
Estimate Improvement
Assuming to know them Kalman filter estimates ẑij, it is possible
to incorporate the constraint (11) in the estimation framework
resorting to the approach described in Simon (2006). Let us
define the Kalman filter estimate ẑ∗ as

ẑ∗(k) = (· · · ẑ⊤ij (k) · · · )
⊤ ∈ R

3m
: (i, j) ∈ E , (37)

and its posterior covariance as

P∗(k) = diag(· · · Pij(k) · · · ) ∈ R
3m×3m

: (i, j) ∈ E . (38)

An estimate ẑ∗p satisfying the constraint (11) can be derived
projecting the Kalman filter estimate onto the constraint surface;
this would lead to the following solution:

ẑ∗p(k) = U ẑ∗(k) (39)

where U is the projection operator

U : = I3m×3m −

[

W−1D⊤
(

DW−1D⊤
)−1

]

D (40)

such that U2 = U , DU = 03(m−n+1)×3m, and W ∈ R
3m×3m is

any positive definite weighting matrix. As proven in Simon and
Chia (2002), if the weight matrix W in Equation (40) is chosen
asW = P∗−1, then the estimate ẑ∗p in Equation (39) is minimum
variance, namely

P∗p ≤ P∗ (41)
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being P∗p the error covariance of ẑ∗p ; however, if the weight
matrix W is chosen as W = I, then the constrained estimate
ẑ∗p in Equation (39) is always closer to the true state than the
unconstrained estimate, namely

||ẑ∗ − ẑ∗p|| ≤ ||ẑ
∗
− ẑ∗||. (42)

Choosing the weight matrix W = P∗−1(k), the estimate ẑ∗p(k)
becomes:

ẑ∗p(k) = ẑ∗(k)−

[

P∗(k)D⊤
(

DP∗(k)D⊤
)−1

]

D ẑ∗(k), (43)

and resulting posterior covariance is given by

P∗p(k) = P∗(k)− P∗(k)D⊤(DP∗(k)D⊤)
−1

DP∗(k). (44)

From the ẑ∗p resulting from (39), it is possible to extract the single

ẑij that appears in the control and estimation equations (16, 17,
18, 20, 21, 28, 25, 31, 32). Hence, the minimum variance estimate
ẑ∗p is actually used by each agent to set its velocity according to
the control law (Equation 16). Therefore, we assume that this
velocity is kept constant for the fixed time interval Ts, namely it
does not change until a new estimation is available.

5.2. Remark
It is worth noting that the output ȳij(t) defined in Equation
(23) depends on the first measurement yij(t0). This dependency
may affect the robustness of the solution as a single erroneous
measurement (e.g., an outlier or a fault signal) at t = t0 would
jeopardize the output. This issue can be overcome by periodically
resetting the measurement y(t0) with y(t). This would also
prevent possible uncertainties in the knowledge of vij(t) from
causing an unbounded bias in the displacement dij(t) in Equation
(21) used to compute ȳij(t). In the discrete time case, this would
correspond to periodically mapping yij(0) → yij(k

∗) as if the
measurement had started at step k∗ while the state estimate ẑij(k+
1|k + 1) follows its update dynamics. The results presented in
the following section refer to the discrete time case with periodic
mapping of the initial measurement yij(0) with yij(k − 1) (i.e.,
k∗ = k − 1). Consequently, the displacement in Equation (31)

becomes dij(k− 1) =
∑k−1

l=k∗ vij(l)Ts = vij(k− 1)Ts.

6. DELAYS IN RANGE MEASUREMENTS
ACQUISITION

One key point to have in mind when dealing with underwater
networks is that acoustic communications may be subject to
relatively large delays. In particular, communication latency is
due to the physics of the communication channel as well as to the
specific networking protocol employed. This latter component
of the delay may be eventually reduced accepting higher packet
loss probabilities. While details about the assessment of the
communication latency are not addressed in this work, it should
be noted that delays may be significant for larger distances and
should be accounted for in the estimation framework. Indeed,

this is the case within the approach described in this work where
the delay needs to be known.

In this framework, the range measurements available during
each step of the estimation process will be yij(t − τij), rather than
yij(t), having denoted with τij the time delay in the measurement
acquisition due to the acoustic communication network. This
arises the problem of how it is possible to obtain the actual
range yij(t) from the knowledge of the delayed measurement
yij(t − τij), and the time delay τij, in order to properly perform
the observer for the relative position estimation zij. Let consider
the intra-vehicle range yij(t):

yij(t) = zij(t)
⊤zij(t) (45)

and its time derivative:

ẏij(t) = 2 ż(t)⊤ij zij(t) = 2 vij(t)
⊤ zij(t) (46)

Equation (46) allows computing yij(t) from the knowledge of
yij(t − τij) and τij as:

yij(t) = yij(t − τij)+

∫ t

t−τij

2 vij(τ )
⊤ zij(τ ) dτ (47)

Exploiting Equation (47), time delays in the measurements
are taken into account mitigating their effects on the estimation
process. It is worth highlighting that the sampling time Ts of the
Kalman filter should be properly chosen.

As a final remark, it is worth noting that it is not possible
to implement Equation (47) as it is because the actual relative
positions zij are not known, and we use the current estimations
ẑij instead:

yij(t) = yij(t − τij)+

∫ t

t−τij

2 vij(τ )
⊤ ẑij(τ ) dτ . (48)

The numerical integration of Equation (48) leads to the following
discrete-time equation:

yij(k) ≈ yij(kTs − τij)

+

(τij/dT)
∑

l=0

2 vij(kTs − τij + l dT)⊤ ẑij(kTs − τij + l dT) dT.

(49)

where dT denotes the integration time. Notice that in spite of
the lack of an analytical proof of convergence of Equation (49)
to the true measurement yij, all the numerical results confirm the
effectiveness of this approach.

The overall control and estimation procedure is illustrated in
Algorithm 1. Summarizing, at each time step the last available
constrained estimates of zij are used by the control law of each
vehicle using Equation (16). Then, the measurements yij are
acquired: in case of delays, the current yij is estimated through
Equation (49). Finally, the observer updates the estimates of the
variables zij using the constrained Kalman filter solution.
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Algorithm 1 Control and estimation algorithm

Require: ẑij(k|k),Pij(k|k), ẑpij(k|k),Q(k),R(k), yij(0),
yij((k+ 1)Ts − τij), τij :(i, j) ∈ E

Ensure: ẑij(k+1|k+1),Pij(k+1|k+1), ẑp(k+1|k+1),Ppij(k+
1|k+ 1)

1: vi(k)← K
∑

h∈Ni
ẑpih(k|k)

2: vij(k)← K
(

∑

h∈Ni
ẑpih(k|k)−

∑

ρ∈Nj
ẑpjρ(k|k)

)

3: dij(k)←
∑k

l=0 vij(l)Ts

4: if τij 6= 0
5: compute yij(k+ 1) from (49)
6: end

7: ȳij(k+ 1)← 1
2

[

yij(k+ 1)− yij(0)+ ‖dij(k)‖
2
]

8: compute the KF estimation using (32-36):
ẑij(k+ 1|k+ 1),Pij(k+ 1|k+ 1) :(i, j) ∈ E

9: identify independent geometric constraints in terms of D
10: project KF estimation on constraint equations using (43-44)
11: return ẑij(k+1|k+1),Pij(k+1|k+1), ẑp(k+1|k+1),Ppij(k+

1|k+ 1) :(i, j) ∈ E

7. COMMUNICATION PROTOCOLS

In this section, we describe the communication policy that we
adopted to perform the range data exchange among the agents
during the intersampling period. This step is instrumental to
make the computation of Equations (32), (36) possible at each
sampling time, and in turn the projection (Equations 43, 44).

Several approaches are possible; we propose two alternative
solutions, which we refer to as centralized approach and
decentralized approach. In the centralized approach, only one
agent, a leader agent, is expected to perform the computation of
Equations (32)–(36) and (43), (44) so that the communication
policy is organized in order to make the data flow to the leader
for the twofold task of reconstructing the topology of the RPMG
established and collecting a complete set of range measurement
to perform the estimation of Equations (32)–(36). If necessary
or useful, the leader agent sends back the resulting estimated
positions among the agents using the same scheme reversed.
In the decentralized approach, all agents have the capability of
performing the computation of (32)–(36) and (43), (44) and
hence the communication policy is oriented to spread the range
data among agents to distribute them to all, so that each agent
performs the computation of the positions estimation. It is worth
noting that the term centralized/decentralized is related to the
computation of Equations (32)–(36), and hence to the fact that
the “holder” of the estimated value is only one agent or any one
of the network.

Regardless of the strategy adopted, an issue to consider
is that the RPMG cannot be known in advance, and the
topology identification of it is instrumental to the computation of
Equations (32)–(36). In this respect, we assume that the number
of the vehicles n and a preassigned labeling of the agents is known
in advance, while the connection topology is unknown to any
vehicle and it must be reconstructed as well using any approach.

We assume that all agents involved are equipped with
synchronized clocks so as to use One-Way Travel Time
(OWTT) range measurement schemas. Then, a Time-Division
Multiple Access (TDMA) scheme can be employed to access
the communication channel. Under this hypothesis, the
communication among agents is unidirectional; this choice is
conservative in order to avoid the chance of packet collisions
and the management of the resulting loss of data. It should
be noted that the duration of the time slots depends on the
available bit rate and on the specific communication protocol.
Examples of acoustic sensors commonly used in underwater
environment are the middle frequency (MF) modems (18–34
kHz) by Evologics (Kebkal et al., 2017). They have been recently
used for underwater positioning purposes during geotechnical
survey experiments performed within a European project (Abreu
et al., 2016). Such modems are characterized by a nominal bit
rate in the range 3.10–3.85 kbps, hence compatible with the
application at hand.

It is now worth mentioning that the amount of time needed
for two agents to communicate using acoustic signals may be
significant for large distances and in this paper it is accounted
for as described in section 6. Indeed, sound speed underwater is
approximately 1500 m/s, namely about six orders of magnitude
lower than the speed of electromagnetic signals in air.

According to all the previous considerations, we established
our communication policy under the following assumptions. We
refer to Figure 2 as to a description of the idea in the case of
n = 4 and RPMG as in Figure 3. The two strategies are put in
a pseudo-algorithm form (in the form of a flowchart) depicted
in Figures 4, 5.

We assume that vehicles are organized to send packets one by
one. The agents are labeled from the beginning and they follow
their labeling in order to send broadcast packets according to the
agreed protocol (which depends on the type of approach, this is
detailed in the following). Each packet is received only by the
neighboring agents and it takes a non-zero travel time to reach
the receiver, so we set equal to δt themaximum travel time (which
depends on the sensor range and environmental parameters). All
agent are aware of the starting time of the estimation procedure,
say t̄. Agent i sends its packet at time t̄ + (i − 1) · δt and
this packet reaches the agent j, j ∈ Ni within the time span
(t̄ + (i − 1) · δt, t̄ + i · δt). This is periodically repeated at each
t̄ + κTs.

In the centralized approach, the range data that are needed
to run the filter can be distributed in the team of n members
as illustrated in Figure 4: agents sequentially (one in each time
slot) broadcast a data packet containing their identifying label, a
time stamp, all the edges it is aware of, and all the corresponding
range data and measurements delays. After all agents but one
(i.e., after n − 1 time slots) execute the protocol, the leader
agent collects knowledge about the whole connection topology.
Hence, the leader agent knows all the information, i.e., relative
distances (6), required to solve the estimation problem taking
into account the additional geometric constraints (11) associated
with the connection topology. Once computed the estimates ẑ∗p
of the m relative positions using the collected information, the
leader agent broadcasts to all agents a data packet containing
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FIGURE 2 | Example of acoustic interrogation schema for acquiring range measurements and identify the connection topology for Relative Position Measurement

Graph (RPMG) in Figure 3.

FIGURE 3 | Example of Relative Position Measurement Graph (RPMG) with 4

nodes and 4 edges.

such estimates. Overall, 2n − 2 time slots are required to
complete one estimation step. This kind of scaling appears to be
most likely acceptable for most applications involving a limited
number of vehicles.

In the decentralized approach, considering that the
communication graph is unknown to the agents, the
communication policy is implemented with the aim of
retrieving the graph topology and spreading the range data
to all agents. Each agent during its time slot broadcasts a data
packet containing its label, a time stamp, the set of links already
identified, and the corresponding range data and measurements

delays. All agents receiving the ping, decode the data packet, and
identify the link between itself and the transmitter agent. This
is repeated until all agents collect knowledge about the whole
connection topology. In the worst case, 2n − 2 communications
slots are required to ensure that all agents have identified the
connection topology. At this point, each agent can perform the
estimation ẑ∗p of the relative positions.

The main differences between the two approaches can be
deduced by the schemes in Figures 4, 5, and we briefly comment
them in the following. In the centralized approach, only one agent
perform the elaboration, and it can be useful when the team
is heterogeneous and some agents have higher computational
capacity than others. However, the centralized approach requires
a larger amount of communicated data when the estimated state
is transmitted to all agents.

8. SIMULATIONS

The proposed range-based mutual localization for a team of
underwater vehicles is here tested on the RPMG in Figure 3

relative to a group of n = 4 agents and m = 4 communication
links. The corresponding geometric constraints are as follows:

Dz∗ =
[

I3×3 I3×3 I3×3 −I3×3
]









z12
z24
z43
z13









= 03×1. (50)
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FIGURE 4 | Flow chart of centralized approach for range measurements

acquisition and relative positions estimation.

The velocity inputs of each agent are assigned according to the
localization-oriented control law in Equation (16) with K = 0.1:

v1(k) = −K(z12(k)+ z31(k));
v2(k) = −K(z12(k)+ z24(k));
v3(k) = −K(z31(k)+ z43(k));
v4(k) = −K(z24(k)+ z43(k)).

The agents are located in the following initial positions: x1(0) =
(0, 0, 1)⊤m; x2(0) = (10, 0, 2)⊤m; x3(0) = (0, 10, 3)⊤m;
x4(0) = (10, 10, 4)⊤m. Without loss of generality, the range
measurements are assumed to be acquired with different time
delays τij, namely τ12 = 0.1 s, τ24 = 0.2 s, τ31 = 0.3 s, andτ43 =
0.4 s, whereas a sampling time Ts = 0.4 s has been considered.
At each sampling time Ts, the actual range yij(t) is derived
from the knowledge of the delayed measurement yij(t − τij),
and the time delay τij according to Equation (49). The resulting
trajectories are shown in Figure 6. It is worth remarking that
the proposed agents velocities vi guarantee the observability of
the system (Equations 25 and 26). Indeed, it can be verified,
by direct calculation, that the motion generated by the control

FIGURE 5 | Flow chart of decentralized approach for range measurements

acquisition and relative positions estimation.

FIGURE 6 | Trajectories of the agents for the simulation based on Relative

Position Measurement Graph (RPMG) in Figure 3.

law (16) verifies the full rank condition on the observability
Gramian (27) of the system, i.e., rank(G) = 3m = 12. Figure 7
shows the rank of the Gramian along the trajectory, and a few
range acquisitions are needed to get a full rank Gramian matrix.
Therefore, given the observability of the system, the states zij
can be estimated using the Kalman observer in Equations (32)–
(36), with covariance Q = 0.9 10−5 · diag(1, 1, 1)m2, covariance
R = 0.25m2, and initial condition given by

ẑij(0) ∼ N (zij(0),Pij(0)), Pij(0) = 4 · diag(1, 1, 1)m2. (51)
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The estimate ẑ∗ = (ẑ⊤12 ẑ⊤24 ẑ⊤43 ẑ⊤13)
⊤ ∈ R

12

obtained using the Kalman filter is reported in Figure 8A. This
estimate violates the equality constraint (50). A constrained

FIGURE 7 | Rank of the observability Gramian for the simulation based on

Relative Position Measurement Graph (RPMG) in Figure 3.

state estimate can be obtained projecting the standard Kalman
filter estimate ẑ∗ onto the constraint surface through Equations
(43), (44). This leads to the projected estimation illustrated in
Figure 8B. Figure 9 reports the norm of the equality constraints,

FIGURE 9 | Equality constraint ‖Dẑ
∗
‖

‖z∗‖ = 0.
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FIGURE 8 | (A) Estimation of the relative motions in 3D (top) and 2D (bottom). (B) Constrained estimation of the relative motions in 3D (top) and 2D (bottom).
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‖Dẑ∗‖
‖z∗‖ . It is worth noting that the unconstrained Kalman

estimate (red line) does not satisfy exactly the constraint,
whereas the constrained Kalman estimate (blue line) satisfies

the equality constraint, namely ‖Dẑ
∗
‖

‖z∗‖ = 0. Moreover, as

expected, the constrained estimate is also characterized by a
reduced covariance, i.e., P∗p − P∗ < 0. Indeed, the maximum
eigenvalue of the matrix P∗p − P∗, shown in Figure 10, is
always negative (not positive), confirming the improvement
obtained by exploiting the additional information provided by
the geometric constraints.

Note that regarding the norm of the estimation error, even if
the weightW is chosen asW = P∗−1(k) rather thanW = I, the

FIGURE 10 | Maximum eigenvalue of the matrix P∗p(k)− P∗(k) (Top) and norm

of the estimation errors (Bottom).

FIGURE 11 | Estimation errors and uncertainty regions for the relative

positions estimations z∗.

projected estimates still provide better results with respect to the
corresponding unconstrained Kalman estimates. The norm of the
estimation error for both estimates is reported in Figure 10.

The benefits of including the geometric constraints into the
estimation framework are more evident in Figure 11, where the
estimation error and the corresponding uncertainty region of
each component of the state z∗ ∈ R

12 are shown for both
estimates, unconstrained and constrained. The estimation errors
and the uncertainty region for the first component of the state
z∗ ∈ R

12 are also depicted in Figure 12. It is interesting to
note that, as already highlighted, the uncertainty region of the
constrained estimates is smaller than the one related to the
standard Kalman estimate. As a final remark, it is worth noting
that the estimates in Figures 8, 11, 12, as well as the equality
constraint in Figure 9, have sharp leaps whenever a range update
is processed, i.e., every Ts seconds. Moreover, the management of
the delays in range measurements as described in section 6 allows
to correctly process the measurements without compromise the
convergence of the estimations.

A further simulation is undertaken on the more complex
RPMG illustrated in Figure 13 relative to a group of n = 4 agents

FIGURE 12 | Estimation errors and uncertainty regions for the relative

positions estimations of the first component of z∗.

FIGURE 13 | RPMG with n = 4 agents and m = 5 communication links.
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FIGURE 14 | Trajectories of the agents for the simulation based on Relative

Position Measurement Graph (RPMG) in Figure 13.

FIGURE 15 | Rank of the observability Gramian for the simulation based on

Relative Position Measurement Graph (RPMG) in Figure 13.

and m = 5 communication links. The velocity inputs of each
agent are assigned according to the localization-oriented control
law in Equation (16) with K = 0.1:

v1(k) = −K(z12(k)+ z31(k));
v2(k) = −K(z12(k)+ z24(k)+ z32(k));
v3(k) = −K(z31(k)+ z43(k)+ z32(k));
v4(k) = −K(z24(k)+ z43(k)).

The initial positions of the agents are x1(0) = (0, 0, 2)⊤m;
x2(0) = (5,−10, 4)⊤m; x3(0) = (5, 10, 1)⊤m; x4(0) =
(10, 0, 2)⊤m. The range measurements are assumed to be
acquired with different time delays τij, namely τ12 = 0.1 s, τ24 =

0.2 s, τ31 = 0.3 s, τ23 = 0.3 s, τ43 = 0.4 s, whereas a sampling
time Ts = 0.4 s has been considered. The resulting trajectories
are shown in Figure 14. Notice that the observability Gramian
(27) of the system is full rank along the trajectory of the vehicles,
indeed rank(G) = 3m = 15 as shown in Figure 15. Therefore,
given the observability of the system, the states zij can be
estimated using the Kalman observer in Equations (32)–(36). The
covariances of the state zij and the output ȳ employed in the
Kalman filter areQ = 0.9 10−5 ·diag(1, 1, 1)m2 and R = 0.25m2,
respectively. The initial Kalman filter state estimate is given by

ẑij(0) ∼ N (zij(0),Pij(0)), Pij(0) = 9 · diag(1, 1, 1)m2, (52)

namely, zij(0) is the initial true state and the initial condition
ẑij(0) of the filter is assigned randomly with covariance Pij(0).

Regardless of the specific approach adopted for the
acoustic communications among agents, i.e., centralized
or decentralized, the estimation of the relative positions
z∗ = (z⊤12 z⊤24 z⊤43 z⊤13; z

⊤
23)
⊤ ∈ R

15 is based on the Algorithm 1.
Figure 16 reports the ultimate constrained Kalman filter estimate
ẑ∗p of the relative motions. It is worth remarking that, given the
global observability of the motion, even if the estimations are
initialized with a value far from the real one (see Equation 52),
the resulting ẑpij converge to zij. This is an interesting feature
because the proposed localization-oriented control law can
actually be activated when the relative localization accuracy of
agents is poor. Indeed, adopting such control strategy the whole
agents network improves significantly its formation accuracy.

FIGURE 16 | Constrained Kalman filter estimation of the relative motions: (A) 3D and (B) 2D.
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9. CONCLUSIONS

In this paper, the relative localization estimation problem for
a team of vehicles is studied based on the knowledge of the
range between agents of a subset of the participants. One
main peculiarity of the proposed approach is that the relative
velocity between agents, which is a fundamental data to solve
the problem, is not assumed to be known in advance neither
directly communicated. For this reason, a collaborative control
protocol is designed in order to encapsulate the velocity data in
the motion of each vehicle as a parameter through a dedicated
control protocol, so that it can be inferred from the motion
of the neighbor agents. Moreover, some suitable geometrical
constraints associated with the agents’ (unknown) positions are
built and explicitly accounted for in the estimation schema
providing a more accurate estimate. The issue of possible delays
in the transmitted signals is also studied and two possible
solutions are provided explaining how it is possible to get a
reasonable range data exchange to get the solution both in
a centralized fashion and in a decentralized one. Finally, the

validity of the proposed approach is shown through numerical
simulations.
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