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of Library, Information and Media Studies, University of Tsukuba, Tsukuba, Japan, 3 Faculty of Library, Information and Media
Science, University of Tsukuba, Tsukuba, Japan, 4 Faculty of Engineering, Information and Systems, University of Tsukuba,
Tsukuba, Japan

In the human visual system, different attributes of an object are processed separately
and are thought to be then temporarily bound by attention into an integrated
representation to produce a specific response. However, if such representations existed
in the brain for arbitrary multi-attribute objects, a combinatorial explosion problem would
be unavoidable. Here, we show that attention may bind features of different attributes
only in pairs and that bound feature pairs, rather than integrated object representations,
are associated with responses for unfamiliar objects. We found that in a mapping
task from three-attribute stimuli to responses, presenting three attributes in pairs (two
attributes in each window) did not significantly complicate feature integration and
response selection when the stimuli were not very familiar. We also found that repeated
presentation of the same triple conjunctions significantly improved performance on
the stimulus-response task when the correct responses were determined by the
combination of three attributes, but this familiarity effect was not observed when the
response could be determined by two attributes. These findings indicate that integration
of three or more attributes is a distinct process from that of two, requiring long-term
learning or some serial process. This suggests that integrated object representations
are not formed or are formed only for a limited number of very familiar objects, which
resolves the computational difficulty of the binding problem.

Keywords: feature integration, binding problem, stimulus-response mapping, visual attention, object
representation

INTRODUCTION

The human visual system is considered to process different visual attributes, such as shape, color,
motion, and texture separately in different modules (Livingstone and Hubel, 1987). The integration
of these distinct attributes to produce a unified percept and specific response is known as the
binding problem (von der Malsburg, 1981; Treisman, 1996), one of the most important open
problems in cognitive psychology and neuroscience. One main reason for the difficulty of this
problem is the explosion of feature combinations, that is, the fact that the number of possible
combinations of features of all attributes is extremely large. This problem is critical not only for
the “cardinal cell” concept, which hypothesizes that all attributes are integrated via converging
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hard-wired connections into an integrated representation, but
also for the concept of binding via synchronous firing of neurons
(von der Malsburg, 1981; Singer and Gray, 1995), because this
requires as many synchrony detectors as the number of feature
combinations (Shadlen and Movshon, 1999).

Psychological studies (Luck and Vogel, 1997; Treisman, 1999;
Wolfe and Cave, 1999) show that there exists a mechanism that
integrates arbitrary combinations of features. According to the
standard theory of feature integration (Treisman and Gelade,
1980), when attention is focused on an object, all attributes of
the object are rapidly bound into a unified representation for
higher cognitive processing (Treisman, 1988; Kahneman et al.,
1992), which we refer to as the all-attribute model. However, no
neural mechanisms have been found for such binding that are free
from the combinatorial explosion problem. A clue to resolving
this conflict may be that psychological evidence supporting the
existence of feature binding does not require the existence of
unified representations of all attributes. In fact, most studies
of attentional binding have used two-attribute stimuli, and no
studies have confirmed that three or more attributes are directly
bound into unified representations. Furthermore, Hommel
(1998) reported that only two-way interactions between feature-
repetition effects were observed in a prime-probe stimulus-
response (SR) task, suggesting that temporary binding may be
binary, and that an object representation may comprise a loosely
connected, distributed network of pairwise bindings rather than
a unitary structure (Hommel and Colzato, 2004).

Accordingly, we hypothesized that attention can bind only
pairs of attributes and that unified representations of three or
more attributes are not formed (the “no-triplet hypothesis”),
except perhaps in the case of a limited number of familiar
objects. Based on this hypothesis, Morita et al. (Morita
et al., 2010) developed a paired-attribute model, in which
cognitive processes are based on multiple representations of
paired attributes and their interactions, and discovered a new
illusion arising from erroneous integration of attribute pairs,
consistently with the model’s prediction. Moreover, Ishizaki
et al. (2015) showed that learning and performance for SR
tasks were more difficult when three attributes of the stimulus
determined the correct response (Triple condition) than when
two attributes did (Double condition), suggesting that bound
feature pairs, rather than object representations, are associated
with responses.

The results of the study by Ishizaki et al. support not only
the paired-attribute model but also the no-triplet hypothesis,
because the task was designed such that integration of multiple
attributes was necessary. It seems unlikely that integrated
representations of three attributes existed but were not used
for such a task. To explain this in more detail, let us assign
S1 and S2 as shape features, C1 and C2 as color features, and
SiCj as the conjunction of Si and Cj. If stimuli S1C1 and
S1C2 are mapped to response R1, and stimuli S2C1 and S2C2
to response R2, SR mapping is easily achieved by associating
S1 with R1 and S2 with R2. It is impossible, however, to
associate stimuli S1C1 and S2C2 with response R1 and stimuli
S2C1 and S1C2 with response R2, without integrating shape
and color. Similarly, we can design a mapping between triple

conjunctions and responses so that integration of three attributes
is required.

In contrast, ordinary object recognition, visual search, or
short-term memory tasks do not in principle require integration
of attributes, because the tasks can be solved by comparing
features for each attribute and integrating the comparison
results; thus, experiments using such tasks cannot provide
compelling evidence against the existence of integrated object
representations. Accordingly, investigating the mapping process
of multi-attribute stimuli to responses is critical to elucidate the
representation underlying not only decision making, but also
other various cognitive processes.

In the present study, we extended the previous study by
Ishizaki et al. to obtain additional convincing evidence for the no-
triplet hypothesis. Specifically, we performed the following two
experiments using SR mapping tasks.

In Experiment 1, we tested a prediction derived from
the paired-attribute model. In the previous study, spatially
separated presentations of two or three attributes considerably
complicated the SR task, although they did not markedly
affect the target detection task, which does not require feature
integration and response selection (Ishizaki et al., 2015).
This indicates that feature integration and response selection
became more difficult because separately presented features
were not automatically bound by attention. The all-attribute
model predicts that the same will occur if three attributes
are presented separately in pairs (paired presentation), i.e., the
SR task will be more complicated than the target detection
task. However, according to the paired-attribute model, a
three-attribute stimulus, say a red lattice-patterned circle, is
represented by three attribute pairs—red circle, lattice-patterned
circle, and red lattice pattern—which are separately associated
with a response. This association process would be the same
when three two-attribute stimuli are presented, and thus paired
presentation will not affect feature integration and response
selection. Accordingly, the paired-attribute model predicts that
the paired presentation will not complicate the SR task more than
the target detection task.

In Experiment 2, we examined the effect of stimulus familiarity
on the SR mapping task. The no-triplet hypothesis does not
exclude the integrated object representations for a limited
number of familiar objects, implying that repeated presentation
of the same feature combinations may promote their integration.
The all-attribute model predicts that the familiarity effect will not
appear or will appear independently of the number of attributes
that need to be integrated if all attributes are presented as a single
stimulus; the effect may more clearly appear when attributes
are presented individually or in pairs so that the attributes
cannot be bound by attention. In contrast, the paired-attribute
model predicts that the familiarity effect will not appear strongly
with the Double condition because even unfamiliar feature
pairs can be quickly bound by attention but may appear more
clearly with the Triple condition because integration of three
attributes would require long-term learning. Thus, we compared
familiar and unfamiliar stimuli with participants performing
a familiarization task on the first day and a SR task on the
following day.
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MATERIALS AND METHODS

Ethics Statement
This study was approved by the Ethical Committee of the
Faculty of Library, Information and Media Science, University of
Tsukuba, Japan, and was conducted in accordance with the Code
of Ethics and Conduct of the Japanese Psychological Association.
Written informed consent was obtained from all participants.

Experiment 1
The participants included 17 (7 male and 10 female) students
with normal or corrected-to-normal vision. They were all paid
volunteers who were uninformed of the experimental purpose.
Participants viewed a CRT display from a distance of 114.5 cm in
a dark room and responded by pressing a numerical keypad and
performed SR trials and target detection trials (Figure 1A).

The display screen was gray (9.0 cd/m2), subtending 7.1 × 5.7◦

of visual angle, and had two large (1.9◦) and four small
(1.2◦) square windows filled in black (Figure 1B). Stimuli were
generated by combining two shapes (circle and diamond), two
colors (red and green) with equal luminance (6.4 cd/m2), and
two textures (lattice and random hashed lines) with equal average
luminance (3.7 cd/m2) (Figure 1C). These features were common
to all participants, but the mapping from feature combinations to
response keys varied (counterbalanced across participants).

In each SR trial, after a blank screen showing only the
presentation windows, one of the eight feature combinations was
presented in the windows. Participants were instructed to select
one of the four arrow keys and press it as quickly and accurately
as possible. If the response was correct, the stimulus disappeared,
and the next trial started with a 1000 ms blank screen; however, if
the response was incorrect or no key was pressed within 2000 ms,
a 400 Hz (incorrect) or 900 Hz (timeout) buzzer sounded for
150 ms and an arrow indicating the correct key was presented
for 800 ms, after which the next trial started with a 200 ms
blank screen.

In target detection trials, one of the eight feature combinations
was designated as the target. Participants were requested to press
a response key as quickly and accurately as possible when the
target was presented in any presentation manner. If participants
responded incorrectly to a non-target stimulus, a 400 Hz buzzer
sounded, and if participants did not respond to the target within
1000 ms, a 900 Hz buzzer sounded. Simultaneously, with a correct
response or a buzzer sound, the stimulus disappeared and the
next trial started immediately.

There were three conditions: “Unified,” “Paired,” and
“Separate.” In the Unified condition, two three-attribute stimuli
were presented in two large windows (Figure 1B, left panel).
These two stimuli were identical in most cases (10/11), and
participants were requested to press one of the response keys
as quickly and accurately as possible. Occasionally (1/11),
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FIGURE 1 | Experimental paradigm for Experiment 1. (A) Schematic procedure for stimulus-response (SR) and target detection trials. (B) Stimulus display. In the
Unified, Paired, and Separate conditions, six features were presented in two, four, or six windows, respectively. Participants were instructed to respond as quickly
and accurately as possible to the stimulus presented. (C) Correspondence between stimuli and responses in SR trials. The two stimuli comprising sets SC, ST, or CT
differed only in texture, color, or shape, respectively, and corresponded to the same response key, whereas those in set SCT differed in all attributes.
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however, the two objects were different in shape, in which case
the participants were instructed not to press any key, indicating
the need to attend to both windows. In the Paired condition,
shape-color and shape-texture stimuli were presented inside the
two large windows, and a color-texture stimulus was presented
to fill the upper or lower (randomly selected) middle window
(Figure 1B, middle panel). The participants were requested to
press a key according to the combination of three attributes,
except on occasional trials (1/11) when the shapes in the two
large windows were different. In the Separate condition, the
shape was presented inside the two large windows, the color
was presented to fill the upper middle and the lower left small
windows, and the texture was presented to fill the upper right
and the lower middle small windows (Figure 1B, right panel).
The participants were requested to press a key in the same way as
in the Paired condition.

The mapping from the feature combinations to response keys
is illustrated in Figure 1C, where the combination of shape
Si, color Cj, and texture Tk is denoted as SiCjTk (i, j, k = 1
or 2). In set SC, for example, the combination presented was
S1C1T1 or S1C1T2, and these were mapped to R1. Thus, the
correct response was determined by shape and color but did
not depend on texture. Similarly, the correct response did not
depend on color and shape in sets ST and CT, respectively. In
contrast, the three attributes were all critical in set SCT. One of
the stimuli in sets SC, ST, and CT was presented as the “Double”
condition, and either stimulus in set SCT was presented as the
“Triple” condition. Combining these two conditions with three
presentation conditions created six cases, which are denoted as
Double-Unified, Triple-Paired, etc.

In each SR trial, one of the eight feature combinations
and one of three presentation manners were pseudo-randomly
selected, the stimulus display was presented, and the participant
responded to it. The participants first performed 24 practice
trials and 10 blocks of experimental trials for the SR task. Each
block comprised 240 (8 × 3 × 10) SR trials, in which each
feature combination appeared in each presentation manner 10
times, and 24 “catch” trials in which the shapes presented in the
two large windows were different. The pseudo-random order of
the stimuli was predetermined, which was constrained by two
different stimuli in the same set (corresponding to the same
response key) that were never presented in consecutive trials so
that participants could not easily comprehend the mapping to a
specific response.

Next, the participants performed 24 practice trials and one
block of experimental trials for the target-detection task, in which
one block comprised 240 (8 × 3 × 10) target-response trials and
24 catch trials, with the target appearing 30 times.

Experiment 2
The participants were 18 students (5 male and 13 female)
with normal or corrected-to-normal vision. They were all paid
volunteers, who were uninformed of the experimental purpose
and did not participate in Experiment 1. They performed a
familiarization task on the first day and a SR task on the
following day. The experimental environment was the same as
that in Experiment 1.

In the familiarization task, the participants performed 42
blocks of target detection trials. For each block, one of the
six stimuli shown in Figure 2A (fixed for all participants) was
specified as the target, and the participants were instructed
to press any key within 500 ms, only when the target was
presented. Six three-attribute stimuli that differed from the
target in only one attribute (shape, color, or texture) and
would not be used in the SR task, were used as non-targets.
If participants responded incorrectly to a non-target stimulus,
a 400 Hz buzzer sounded, and if participants did not respond
to the target within 500 ms, a 900 Hz buzzer sounded. The
stimulus disappeared simultaneously with a correct response
or a buzzer sound, and the next trial started immediately.
Each block comprised 130 trials, in which the target appeared
100 times and non-targets appeared 30 (6 × 5) times in a
random order.

After finishing one block, the participants proceeded to the
next block, in which another stimulus was specified as the target.
Six blocks, for six target stimuli, composed one cycle. Participants
repeated seven cycles and viewed each of the six stimuli 700 times,
which were used as the familiar stimuli in the SR task performed
on the next day.

This task was similar to that in Experiment 1, except that the
Triple and Double conditions and three presentation manners
were not mixed in the same session. We also decreased the time
limit when the average PCR in the previous block was over 90%,
to create higher time pressure.

The experiment was performed under four conditions:
Triple-Unified, Triple-Paired, Triple-Separate, and Double-
Unified. The Triple-conditions (Unified, Paired, and Separate)
were always performed in the order Separate–Paired–Unified
to avoid the influence of viewing unfamiliar triple feature
conjunctions on subsequent conditions. The Double-Unified
condition was given first for half of the participants and
last for the other half. Participants were requested to press
the correct response key as quickly as possible within a
time limit.

In the Triple-Unified condition, eight stimuli were mapped
to four response keys, as shown in Figure 2B. The correct
response was always determined by three attributes, and each
response key corresponded to one familiar and one unfamiliar
stimulus. Each trial started with a blank screen, which was
gray (9.0 cd/m2), subtending 5.7 × 5.7◦ of visual angle, and
had a single square window (1.9◦) filled in black, after which
one of the eight stimuli shown in Figure 2B was presented.
If the response was correct, the stimulus disappeared, and the
next trial started with a 1000 ms blank screen; however, if
the response was incorrect or no key was pressed within the
time limit, a 400 Hz (incorrect) or 900 Hz (timeout) buzzer
sounded for 150 ms after the disappearance of the stimulus,
and an arrow indicating the correct key was presented for
600 ms, after which the next trial started with a 400 ms
blank screen.

The Triple-Paired and Triple-Separate conditions differed
from the Triple-Unified condition only in that the blank screen
had two (Paired) or one (Separate) large (1.9◦) and one or two
small (1.2◦) square windows, and three attributes of the stimuli
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FIGURE 2 | Experimental paradigm for Experiment 2. (A) Familiar stimuli. The six stimuli were each presented 700 times in the familiarization task, and then used as
familiar stimuli or feature combinations in the SR task. (B) SR mapping for the Triple-conditions (Unified, Paired, and Separate). Stimuli surrounded by red lines were
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Separate). (D) SR mapping for the Double-Unified condition. Stimuli surrounded by orange lines were unfamiliar but contained a familiar feature pair by which the
correct response could be determined.

in Figure 2B were presented in pairs or separately in these
windows (Figure 2C). The same combination was mapped to
different keys among these three Triple conditions (e.g., S1C1R1
was mapped to R1, R2, and R3 in the Triple-Unified, -Paired,
and -Separate conditions, respectively), and the participants
performed the task in the order of separate, paired, and unified
presentations, so that unfamiliar feature combinations would not
become familiar.

The Double-Unified condition was the same as the Triple-
Unified condition in the manner of stimulus presentation, but
a different stimulus set (Figure 2D) was used. These eight
stimuli were common to all participants, but three kinds of
mapping were each applied to one third of the participants.
That is, in addition to the mapping shown in Figure 2D,
which consists of sets SC (the response is determined by shape
and color) and CT (the response is determined by color and
texture), mappings consisting of sets SC and ST (the response
is determined by shape and texture) and consisting of sets CT
and ST were used. In Figure 2D, the two stimuli surrounded
by red lines were familiar triple conjunctions (Familiar case)

and the others were unfamiliar triple conjunctions (Unfamiliar
case), but each unfamiliar stimulus contained one familiar feature
pair. We dealt with each case, in which the familiar feature
pair was critical for determining the response (case Familiar
feature pair, surrounded by orange lines), separately from the
Unfamiliar case.

Participants first performed four blocks of practice trials
in the Triple-Unified condition with a novel stimulus set,
whose components were completely different from those for
experimental trials, and performed 10 blocks of experimental
trials in each condition. Each block comprised 80 (8 × 10)
trials, in which each stimulus or feature combination appeared
10 times in a pseudo-random order, with the constraint that two
different stimuli corresponding to the same response key were
never presented in consecutive trials. The time limit was fixed
to 2000 ms during the first five blocks, but it was thereafter
controlled according to the average PCR in the previous block.
Specifically, if the average PCR for all stimuli was over 90%, the
time limit in the next block was shortened such that 90% of
correct RTs were within it.
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RESULTS

Experiment 1
We analyzed data for 17 participants. For each participant and
condition, the percentage of correct responses (PCR) of the SR
trials for each block was calculated. Response times in “correct”
trials were log-transformed and averaged within each block to
calculate the mean response time (RT). In the same way, the mean
target detection times (TDTs) were calculated from the response
times in the target detection trials.

Figures 3A,B show the time course, over the 10 blocks of PCR
and RT, averaged over the 17 participants. We see that in any
condition, the PCR increased and the RT decreased during the
first five blocks, but were nearly constant thereafter. Therefore, to
obtain stable responses, we analyzed only the data for the last half
of the blocks (6 to 10).

The average PCR was analyzed using two-way repeated-
measures ANOVA, with the number of critical attributes
(conditions Double vs Triple) and the manner of presentation
(conditions Unified vs Paired vs Separate) as factors. The main
effect of attribute number was significant [F(1,16) = 31.0,
P < 0.001], indicating that the mean PCR was significantly
lower for the Triple conditions than for the Double conditions
(Figure 3C). The main effect of the presentation manner

was marginal [F(2,32) = 2.77, P = 0.078], likely because the
correspondence between feature combinations and responses
was common to all presentation manners. Also, the interaction
[F(2,32) = 0.19, P = 0.83] was not found. Post-hoc multiple
comparisons with Bonferroni correction were performed using
two-tailed paired t-tests, and no significant differences were
found between the Unified and Paired conditions (P = 0.20),
between Unified and Separate (P = 0.24), and between Paired and
Separate (P > 0.999).

The same analysis was applied to the average RT.
The main effects of attribute number [F(1,16) = 32.1,
P < 0.001] and presentation manner [F(2,32) = 54.7,
P < 0.001] were significant, but their interaction was not
[F(2,32) = 0.613, P = 0.55]. Post-hoc multiple comparisons
with Bonferroni correction were performed using two-tailed
paired t-tests, and significant differences were found between
the Unified and Paired conditions (P < 0.001), between
Unified and Separate (P < 0.001), and between Paired and
Separate“(P < 0.001).

TDTs were tested using repeated-measures ANOVA with three
levels (Unified, Paired, and Separate), and a significant main
effect was found [F(2,32) = 14.3, P < 0.001]. Post hoc multiple
comparisons with Bonferroni correction were performed using
two-tailed paired t-tests. Significant differences were found
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between the Unified and Paired conditions (P = 0.005) and
between Unified and Separate (P = 0.001), but not between Paired
and Separate (P > 0.999) (Figure 3D).

The differences in RT between presentation manners include
the differences in the time required for perceiving features
and the difference in TDT is considered to mainly reflect
the difference in information acquisition time. Accordingly,
we examined RT minus TDT (RT – TDT; Figure 3E). This
value was calculated in each case (TDT is independent of
the attribute number) for each participant and analyzed in
the same way as PCR. We found that the main effects of
attribute number [F(1,16) = 32.1, P < 0.001] and presentation
manner [F(2,32) = 6.77, P = 0.004] were significant, but
their interaction was not [F(2,32) = 0.613, P = 0.55]. Post-
hoc multiple comparisons with Bonferroni correction (two-
tailed paired t-test) were then performed, without distinction
between the Double and Triple conditions because no significant
interaction was found. The differences between the Unified and
Separate conditions (P = 0.01) and between Paired and Separate
(P = 0.004) were significant, but not between Unified and Paired
(P > 0.999). Finally, we directly tested RT – TDT between the
Triple-Unified and Triple-Paired cases and between the Double-
Unified and Double-Paired cases, using two-tailed paired t-tests
without Bonferroni correction, to confirm that no significant
differences were found [t(16) = 0.908, P = 0.38 and t(16) = 0.431,
P = 0.67, respectively].

The above results are summarized as follows: (1) The PCR
was significantly smaller and the RT was significantly larger
when triple conjunctions of attributes determined the response
than when double conjunctions did. (2) The difference in RT
between the Paired and Unified conditions was not significantly
different from that in TDT, whereas the difference in RT between
the Separate condition and the Unified or Paired condition was
significantly larger than that in TDT.

Experiment 2
We analyzed data from 14 participants whose PCR increased to
more than 50% in all conditions. Data from four participants who
failed to reach this criterion were excluded. For each participant
and condition, PCRs for familiar and unfamiliar stimuli (also for
familiar feature pairs in the Double-Unified condition) for each
block were calculated. Similarly, RTs in correct trials were log-
transformed and averaged to calculate RTs for familiar stimuli
(and feature pairs) and unfamiliar stimuli.

Figure 4A shows the time courses of the mean PCR and
mean RT, with the mean time limit, for the 14 analyzed
participants. The curves for the familiar and unfamiliar cases
almost overlapped, except the PCR curves in the last two blocks
of the Triple-Unified condition.

The average PCR for the last half of the blocks (6 to
10) was tested (Figure 4B) using a two-tailed paired t-test
for the Triple-conditions (Unified, Paired, and Separate).
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The differences between the Familiar and Unfamiliar
cases were significant in the Triple-Unified condition
[t(13) = 3.49, P = 0.004], but insignificant in the Triple-
Paired [t(13) = −0.183, P = 0.86] and Triple-Separate
[t(13) = 1.08, P = 0.30] conditions. A repeated-measures
ANOVA with three levels (familiar stimuli, familiar feature
pairs, and unfamiliar stimuli) was applied to the Double-
Unified condition, and no significant main effect was found
[F(2,26) = 0.755, P = 0.48]. We also analyzed RT in the same
way, but did not find any significant differences (P > 0.46 for
all comparisons).

In summary, the effect of stimulus familiarity was observed
only when integration of three attributes was necessary and the
stimuli were presented in a unified manner.

DISCUSSION

Conceivable models to explain how automatic binding by
attention contributes to the SR mapping objects are as follows:

(A) Single-attribute model: Individual features are mapped to
the response through learning, and attentional binding does
not contribute to this process.

(B) All-attribute model: All (three) features of the object are
automatically bound into a unitary representation, which
is mapped to the response through learning.

(C) Paired-attribute model: Attention binds pairs of features,
and multiple feature-pair representations are mapped to
response through learning.

Our no triplet hypothesis, which states that attentional
binding of arbitrary features occurs only between pairs of
attributes and that triplets of attributes of an unfamiliar object
are not directly integrated into a unified object representation,
accords with the paired-attribute model for unfamiliar objects
and conflicts with the all-attribute model for familiar and
unfamiliar objects. Thus, let us examine these three models by
comparing the experimental results.

First, the single-attribute model is not in accordance with
the result of Experiment 1 in that RT – TDT was significantly
longer for the separate presentation than for the paired or unified
presentations, as the difference seems inexplicable without
considering the contribution of attentional binding. For the
same reason, the model appears inconsistent with the result of
Experiment 2 in that the familiarity effect was observed only in
the Triple-Unified condition.

Second, the all-attribute model is not in accordance with the
results of Experiment 1 in that the PCR was lower and the RT was
longer for the Triple condition than for the Double condition,
because according to this model, any stimulus is mapped to the
response via the object representation integrating three attributes
in the Double and Triple conditions.

Additionally, the model appears inconsistent with the results
in that separate presentation of stimuli increased RT – TDT
compared to unified presentation but paired presentation did
not. Although RT – TDT does not necessarily denote the

time required for feature integration and response selection—
as the response time is not a simple linear sum of time
for detection, feature integration, and response selection—no
significant difference in this value indicates that the difference in
RT can be explained by the difference in information acquisition
time. It may be natural that RT – TDT did not differ between
unified and paired presentation for the Double condition, in
which the correct response was determined by a feature pair;
however, paired presentation did not increase it in the Triple
condition either. This fact suggests that presenting two attributes
at the same location contributes to feature integration and
response selection, but presenting three attributes does not
contribute more than that.

In addition, the all-attribute model is not in accordance with
the result of Experiment 2 in that the effect of stimulus familiarity
was observed in the Triple-Unified condition but not in the
Double-Unified condition. Furthermore, the familiarity effect
observed in the Triple-Unified condition disappeared in the
Triple-Paired condition, implying that for familiar stimuli, paired
presentation compared with unified presentation complicates
feature integration and response selection in the Triple condition,
whereas it does not for unfamiliar stimuli as indicated in
Experiment 1. This is also difficult to explain with the all-
attribute model.

In contrast, the above experimental results for unfamiliar
stimuli are all as predicted or well explained by the paired-
attribute model, which can also explain the result for the familiar
stimuli. We therefore conclude that our results support the no-
triplet hypothesis, indicating that bound feature pairs, rather than
integrated object representations, are associated with responses
for unfamiliar objects.

The no-triplet hypothesis allows that integrated
representations of three or more attributes may exist for
very familiar objects. However, this was not demonstrated by
Experiment 2, because the familiarity effect was not observed
during initial learning and because the task was obviously
more difficult in the Triple condition than in the Double
condition, even for familiar stimuli (although we cannot
directly compare different conditions, the time limit for block
8 in the Triple-Unified condition and block 7 in the Double-
Unified condition, for example, differed by more than 700 ms).
If integrated representations of three attributes had been
completely formed after the familiarization task, learning of
the familiar stimuli would have been easier from the start,
compared to learning of the unfamiliar stimuli, and performance
would not have differed as much between the Triple and
Double conditions.

The question, then, is how familiarity affected the feature
integration process. According to the paired-attribute model,
attributes at the same locations are integrated in pairs by
attentional binding, and bound feature pairs are then associated
with responses, with familiarity facilitating only the latter process.
This model, however, is not in accordance with the result from
Experiment 2 in that the familiarity effect was not observed
in the paired presentation condition. Thus, a model with an
additional path from individual features to responses, or a
hybrid of the paired- and single-attribute models, would be
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more plausible. It should be noted that a distinct mechanism
of feature integration using converging hardwired connections
from lower-level modules for individual attributes is considered
to exist independently of attentional binding (Hommel and
Colzato, 2009; Vanrullen, 2009).

According to this two-path model, the results of our
experiments can be explained as follows. If the stimulus is
unfamiliar, only the first path—involving attentional binding—
is available, and mapping to responses is easy in the Double
condition. In the Triple condition, however, mapping from
feature pairs to responses is complicated and not easily
learned, so that “thinking,” or some serial process, would
be involved in response selection. On the other hand,
the second path is formed and available for very familiar
stimuli, and is faster than the first path. This path does not
necessarily make use of unified object representations, but
may make use of types of integrated representations that
do not completely correspond to individual objects. In the
above experiment, complete object representations were not
formed, presumably because the number of presentations
was insufficient, or one day of familiarization was too short,
or the familiarization task used did not require feature
integration. In any case, if the component feature pairs are
familiar but the stimulus is unfamiliar, or if the combination
of three features is familiar but they are not presented
in a unified manner, the second path would be available
only partly, and the familiarity effect would disappear.
However, this explanation is rather speculative, and further
experiments (particularly with a longer period of familiarization)
will be needed.

CONCLUSION

In conclusion, the results of the present study indicate that
in the mapping of multi-attribute visual stimuli to responses,
feature integration of two attributes and of three attributes are
distinct processes, in that the former is easy and automatic,
and is not affected by the familiarity of feature conjunctions,

whereas the latter is more difficult and is facilitated by repeated
presentation of triple feature conjunctions. The results also
provide additional evidence supporting the no-triplet hypothesis,
which greatly facilitates solving the binding problem by avoiding
the combinatory explosion problem, as previously discussed
(Ishizaki et al., 2015). However, more evidence would be
necessary to establish this hypothesis, because the possibility
is not ruled out that attentional binding of three or more
attributes may be used in some other cognitive process. It is
also unclear how attention binds arbitrary features between pairs
of attributes. Although answering this question requires further
studies, we note that feature binding between pairs of attributes
is computationally much easier than binding all attributes, and
several biologically feasible mechanisms may be responsible, such
as mutual modulation between neuronal populations encoding
different attributes (Morita et al., 2010).
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Stabilization of the CIP (Cart Inverted Pendulum) is an analogy to stick balancing on

a finger and is an example of unstable tasks that humans face in everyday life. The

difficulty of the task grows exponentially with the decrease of the length of the stick and

a stick length of 32 cm is considered as a human limit even for well-trained subjects.

Moreover, there is a cybernetic limit related to the delay of the multimodal sensory

feedback (about 230ms) that supports a feedback stabilization strategy. We previously

demonstrated that an intermittent-feedback control paradigm, originally developed for

modeling the stabilization of upright standing, can be applied with success also to the

CIP system, but with values of the critical parameters far from the limiting ones (stick

length 50 cm and feedback delay 100ms). The intermittent control paradigm is based

on the alternation of on-phases, driven by a proportional/derivative delayed feedback

controller, and off-phases, where the feedback is switched off and the motion evolves

according to the intrinsic dynamics of the CIP. In its standard formulation, the switching

mechanism consists of a simple threshold operator: the feedback control is switched off

if the current (delayed) state vector is closer to the stable than to the unstable manifold of

the off-phase and is switched on in the opposite case. Although this simple formulation

is effective for explaining upright standing as well as CIP balancing, it fails in the most

challenging configuration of the CIP. In this work we propose a modification of the

standard intermittent control policy that focuses on the explicit selection of switching

times and is based on the phase reset of the estimated state vector at each switching

time and on the simulation of an approximated internal model of CIP dynamics. We

demonstrate, by simulating the modified intermittent control policy, that it can match

the limits of human performance, while operating near the edge of instability.

Keywords: Cart Inverted Pendulum, saddle-like instability, intermittent feedback control, phase reset, internal

model simulation

INTRODUCTION

The manual stabilization of an inverted pendulum hinged on a cart, allowed to shift in a
forward/backward manner (shortly CIP: Cart Inverted Pendulum), is an example of the many
unstable tasks that humans must face in everyday life. It is indeed a standardized implementation
of the well-known stick balancing task, where human subjects enjoy the challenge of stabilizing
a rigid stick on their fingertips in the vertically inverted position. Other challenging tasks that
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share a similar dynamics, although quite different in many
respects, are tightrope walking or walking on stilts. Apparently, a
different ballgame is the task of upright standing that any healthy
adult is capable to manage in an effortless manner, without
considering it “challenging” in any sense. However, although
this “trivial” skill shares with the other “challenging” tasks the
same inverted pendulum biomechanics, it differs in a specific
but relevant aspect related to the control strategy, namely the
availability of muscle stiffness (more specifically ankle stiffness)
as a stabilizing mechanism, a feature which is not physically
possible in stick balancing or walking on stilts.

Although the different balancing paradigms mentioned above
involve a number of degrees of freedom it is always possible, at
least as a first approximation, to focus on a simplified inverted
pendulum paradigm (IP) with a single degree of freedom: the
ankle joint, in the case of upright standing, or the virtual joint
that characterizes the relative motion of the stick on the finger-
tip in the stick balancing task. In the former case the neural
controller can combine two stabilizing mechanisms, namely co-
activation of ankle muscles in order to modulate ankle stiffness,
and active generation of ankle torque, on the basis of a feedback
control loop driven by sensory feedback of the body sway.
In the case of stick balancing, in contrast, the stiffness of the
virtual joint is null by definition and the only available control
strategy is feedback based. As a matter of fact, the simplicity
and availability of a stiffness mechanism has been suggested by
some researcher (Winter et al., 1998), supporting the hypothesis
that ankle stiffness strategy is sufficient for the stabilization of
upright standing, without any need of an additional control loop
that is complicated by the significant delay of sensory feedback.
Unfortunately, direct measurements of ankle stiffness (Loram
and Lakie, 2002; Casadio et al., 2005) as well as the detailed
analysis of spindle feedback (van Soest et al., 2003) ruled out the
chances of stabilizing upright stance with a pure stiffness strategy.
However, stiffness does contribute to stabilization in such
paradigm, relieving delayed feedback control of a significant part
of the effort. The remaining part, however, must struggle with
the curse of instability due to delayed sensory feedback, on top
of the intrinsic instability of the inverted pendulum mechanics,
exactly as the apparently different IP paradigms mentioned
above. The subjective impression of a marked difference, in terms
of psychophysical challenge, between upright standing and CIP
balancing, may be due to the fact that evolutionary adaptation
to bipedal standing in humans had the chance to optimally tune
the parameters that allow the apparently seamless integration
of “passive” stiffness with “active” delayed feedback control thus
making upright standing an apparently trivial action.

Apart from the presence or absence of a stiffness component
of the control action, the different IP paradigms differ as regards
two other important features: (1) the employed sensory channels
(visual, proprioceptive, and vestibular), and (2) the relation
between the CoM (the projection of the Center of Mass of the
IP on the support base) and the CoP (Center of Pressure, i.e.,
the centroid of the contact forces exchanged between the IP and
the support base). In all cases, the horizontal acceleration of the
CoM, with reference to an unstable equilibrium position typical
of any IP system, is approximately proportional to the difference
between the position of the CoM and the position of the CoP;

moreover, the two variables (CoM and CoP position) can switch
their role in the control framework, as controlled variable vs.
control variable, while maintaining the goal of the control action,
namely to avoid falling, which means to keep the CoM position
within a limited interval around the equilibrium position.

In standard bipedal upright standing, the CoP is the control
variable and its motion is proportional to the variation of the
ankle torque related to the activation of the ankle muscles. In stilt
standing, which has been studied mainly as regards energetics
(Vaida et al., 1981) the position of the CoP is constrained by
the environment and cannot be controlled. The same situation
characterizes as well-upright standing in reduced/constrained
support conditions, such as standing on a narrow bar or on a
tight rope: in such case oscillations in the medio-lateral direction
are compensated by spreading the control action to a number
of joints of the lower and higher limbs in order to restrain as
much as possible the overall sway of the CoM around the fixed
CoP. Moreover, the period of such oscillations can be lengthened,
thus simplifying the control action, by grasping a long balancing
bar. In the CIP or the stick balancing task the relative position of
the stick CoM with respect to the CoP is the controlled variable:
vestibular information does not help in this case whereas vision
becomes dominant. In any case, the feedback component of
the stabilization process relies on sensory feedback information
about the state of the controlled object and the neural controller
must overcome multiple sources of instability, in addition to
the gravitational toppling action, namely feedback time delays,
sensory and motor noise (Milton et al., 2008).

There is ample evidence suggesting the discontinuous nature
of the feedback control action, irrespective of the different
experimental conditions and different body segments. Consider,
for example, the analysis of posturographic patterns (Collins
and De Luca, 1993; Morasso and Schieppati, 1999; Morasso
and Sanguineti, 2002), EMG signals (Gatev et al., 1999; Loram
and Lakie, 2002; Nomura et al., 2013), and the non-uniform
character of sway path (Jacono et al., 2004). Several types of
neural control have been proposed in recent years: time-delayed
feedback with multiplicative noise (Cabrera and Milton, 2002),
model predictive controllers with a sensory uncertainty (Mehta
and Schaal, 2002; Gawthrop et al., 2011; Loram et al., 2011,
2016; Insperger and Milton, 2014), time-delayed proportional-
derivative-acceleration feedback control (Insperger et al., 2012).

Another promising alternative, that was investigated in
previous studies specifically for upright standing, is the
intermittent time-delayed feedback control policy (referred to
as the intermittent-feedback controller or the intermittent-
feedback-control strategy in this article), whereby the human
body is modeled as a single or a double inverted pendulum
(Bottaro et al., 2005, 2008; Asai et al., 2009, 2013; Suzuki et al.,
2012). The power of this strategy stems from its ability to take
advantage of an “affordance” of the intrinsic dynamics of an
inverted pendulum, namely the fact that the upright equilibrium
posture with no active feedback is characterized by a saddle-
type instability accompanied by a hyperbolic vector field with
stable and unstable manifolds in its phase space: when the
driving action is switched off, the state vector is attracted to the
equilibrium configuration, if the vector is closer to the stable
than to the unstable manifold, whereas it is repulsed away in the
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opposite case. This “affordance” suggests to adopt an alternation
paradigm between an “off-phase,” in the former case, and an
“on-phase,” based on a simple proportional-derivative feedback
of the delayed state vector, in the latter case. Surprisingly,
the alternation between the off- and on-phases (although both
characterized by unstable dynamics) can lead to overall bounded
stability in a robust manner (Bottaro et al., 2008; Asai et al.,
2009, 2013; Suzuki et al., 2012). In a recent paper (Yoshikawa
et al., 2016) showed that this control policy can be applied
with success also to the CIP system providing a robust dynamic
stabilization of the inverted stick as well. Moreover, that study
demonstrated that such control policy, based on the alternation
of on-phases and off-phases, can reproduce features of the stick
oscillations that are known to characterize the performance of
expert CIP users: (1) the temporal fluctuations of the velocity
increments of the stick, which are not Gaussian but exhibit a
truncated Lévy distribution (Cabrera andMilton, 2004; Cluff and
Balasubramaniam, 2009); (2) the corrective fingertip movements,
which alternate between phases with extremely low movement
amplitudes and those with highmovement amplitudes, according
to a power-law distributions of the inter-corrective movement
intervals (Cabrera and Milton, 2002).

It is important to note that for the intermittent control policy
the feedback control action operating in the on-phase is not
intended to push the state toward the ideal equilibrium position,
i.e., the origin of the phase space, but to drive the orbit as close
as possible to the stable manifold in order to turn off the control
action when and if such condition is reached, in such a way to
exploit the “affordance” provided by the intrinsic dynamics of
the system during the subsequent off-phase. Since this strategy
can stabilize upright standing even if the dynamics of the on-
phase is unstable when applied continuously, it greatly expands
the size of the stability area in the space of control parameters, in
comparison with a conventional continuous control paradigm.
However the application of this control policy to the CIP
task (Yoshikawa et al., 2016) can be successful, in its standard
formulation, only if the task is not too challenging: a stick length
longer than 50 cm and a feedback delay shorter than 100ms. In
contrast, expert CIP users can perform well also in much more
challenging situations, with a pendulum length as short as 32 cm
and an overall sensory delay as long as 230ms (Milton et al.,
2016). Should we conclude that the intermittent control policy
is not appropriate to reach the human performance limits but is
only adequate for less challenging unstable tasks? The main goal
of this paper was indeed to falsify this hypothesis, by outlining
a plausible extension of the standard intermittent control policy
of the CIP task while maintaining the simplicity of the approach.
In order to achieve that goal we will first analyze the reasons of
the inability of the standard intermittent control policy to match
the human limits and will focus, in particular, on the switching
rule that supervises the alternation paradigm: in the standard
version of the intermittent controller it is a simple threshold
mechanism in the state space of the stick, based on delayed
sensory information, and the design/learning problem is reduced
to the identification of an optimal tuning of the proportional-
derivative control parameters that could limit the oscillations
around a limit-cycle. If the CIP task is not too challenging, it

is indeed possible to identify a region in parameter space that
supports bounded stability and thus allows optimal parameter
tuning. However, with an increase of the task difficulty the size of
that region decreases and ultimately vanishes when approaching
the human performance limits. In other words, the problem is
that the standard intermittent strategy is functional if the task
is not too unstable and ultimately it fails when the delay of
the sensory feedback is significantly larger than the intrinsic
falling time constant of the inverted pendulum. An additional
reason of failure, in a challenging configuration of the task,
is the interaction between cart dynamics and stick dynamics
during the on-phase: this interaction, together with the short time
constant due to a short stick length, contributes to determine
the inappropriate termination of the on-phase by the standard
switching mechanism and thus the initiation of the off-phase
with a state vector of the stick that is far away from the stable
manifold and thus is not appropriate for taking advantage of
the affordance provided by the saddle dynamics of the inverted
stick. The alternative that is proposed in this study is indeed
to substitute the statically tuned threshold mechanism of the
standard intermittent controller with a dynamic mechanism that
focuses directly on the sequence of switching times, by phase-
resetting the estimated state vector at each switching time, using a
short-term sensorimotor memory for compensating the intrinsic
feedback delay, and running a simplified internal model of the
CIP dynamics for terminating each on-phase with a state vector
as close as possible to the stable manifold.

Generally speaking, phase-resetting is a phenomenon of
synchronization of self-sustained oscillatory activity that may
characterize populations of neurons (Tass, 2007) or macroscopic
behaviors driven by Central Pattern Generators as in the case of
locomotion (Yamasaki et al., 2003). In particular, it is well-known
that the rhythmic walking pattern can have adaptive sudden
phase shifts in response to external perturbations, as the heel
strike event. In the case of the CIP model, the underlying
self-sustained oscillatory activity is the alternation of off-phases
and on-phases intrinsic in the intermittent control paradigm.
Moreover, we suggest that the crucial event that may allow
the on-going oscillation to maintain bounded stability is the
switch time that marks the termination of the on-phase and the
initiation of the off-phase; the idea is to phase shift the estimated
value of the state vector of the pendulum at that switch time
by tapping the short-term memory of delayed estimates. This
phase shift is made possible by a second “affordance” related
to the off-phase of the intermittent control strategy, namely
the possibility to predict the timing and the geometry of the
off-phase trajectory. In conclusion, the new intermittent control
policy includes a predictive element, intended to defeat the
destabilizing effect of the sensory feedback delay, in contrast with
the standard policy that does not use any prediction. However,
such prediction is not continuous in time but discontinuous as
the underlying control action.

THE MODEL

The CIP model is a dynamical system with 2 Degrees of Freedom
(DoFs): the cart position x and the pendulum angle θ (Figure 1).
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FIGURE 1 | Schematic representation of the CIP model. θ and x are the two

DoFs; f (the control variable) is the force applied by the user to the cart. The

stick is a thin uniform rod. The hinge is frictionless as well as the virtual rail that

allows the motion of the cart. The x-axis is aligned with the antero-posterior

direction of the subject’s body.

It is an under-actuated system because the human user has
a single control variable, namely the force f (t) applied to the
cart, and thus it is impossible for the user to realize arbitrary
trajectories of the two state variables. However, the task of the
trained subject is (apparently) simpler: to control f (t) in order to
avoid “fall” over a suitably long interval of time. This means to
keep the tilt angle smaller than a given value (in the simulations
we used |θ(t)| < π/4) while maintaining the position of the
cart inside a “reachable interval” (|x(t)| < 1x) that depends
on the fact that the subject is sitting or standing or other
physical arrangements.

The CIP system is feedback controlled, i.e., the Central
Nervous System generates the output motor variable f (t)
by relying on sensory feedback about the state of the cart
[θ , θ̇ , x, ẋ]: this sensory information is multi-modal (vision +
proprioception), delayed (delay δ) and noisy. Both elements,
namely delay and noise, tend to set limitations to the
performance of human subjects, reducing their capability to
avoid the fall of the pendulum. In the simulations carried out for
this study the feedback delay is set to 230ms, taking into account
the experimental evaluations of Milton et al. (2016). The sensory
feedback uncertainties aremodeled as an additive Gaussian noise,
as in Yoshikawa et al. (2016), which is added to the control force
f (t): fn (t) = σ ξ (t), where ξ (t) represents a Gaussian white noise
with zero mean and unit variance and σ is the noise intensity
(standard deviation of the noise).

The CIP system parameters are the pendulum length L, the
pendulum mass m, and the cart mass M. From the point of view
of task difficulty L is the critical parameter. As reported byMilton
et al. (2016) a length of 32 cm is the limit for human subjects.
We chose this value for the simulations. As regards the other two
parameters we adopted the same values used by Yoshikawa et al.
(2016):m = 0.125 kg,M = 2 · m = 0.25 kg.

The dynamics of the CIP system is governed by the following
non-linear dynamic equations (see the Supplementary Material

for details):
[

θ̈

ẍ

]

=
[

A11(θ) A12(θ)
A21(θ) A22(θ)

] [

sinϑ

f

]

(1)

where thematrix elements are functions of the pendulum angular
tilt (g is the gravity acceleration):























A11 = 1.5
L(M+m(1−0.75 cos2 θ))

((M +m)g − 0.5mLθ̇2 cos θ)

A12 = −1.5 cos θ
L(M+m(1−0.75 cos2 θ))

A21 = 1
M+m(1−0.75 cos2 θ)

(0.5mLθ̇2 − 0.75mg cos θ)

A22 = 1
M+m(1−0.75 cos2 θ)

(2)

Although the simulations considered in the results section use the
non-linear model above, for stability analysis and for managing
the alternation between on- and off-phases a linearized model
is used, in the neighborhood of the origin, described by the
following equations:

[

θ̈

ẍ

]

=
[

A11 A12

A21 A22

] [

ϑ

f

]

(3)

with the following constant matrix elements:























A11 = 1.5(M+m)
(M+0.25m)

g
L

A12 = − 1.5
(M+0.25m)L

A21 = − 0.75mg
M+0.25m

A22 = 1
M+0.25m

(4)

By looking at Equations 1 or 3 it is immediate to observe that,
in the absence of control action, the motion of the pendulum
is independent of the motion of the cart. Moreover, in the case
of the linearized model, such motion is characterized, in the
phase plane of the pendulum (θ vs θ̇), by an instability of the
saddle type, with two real eigenvalues of opposite signs (λ =
±
√
A11). The corresponding eigenvectors identify, respectively,

a stable manifold (θ̇ = −
√
A11θ), namely a line whose half-

line trajectories converge to the origin, and an unstable manifold
(θ̇ = +

√
A11θ), namely a line whose half-line trajectories diverge

from the origin: the unstable manifold spans the first and third
quadrants of the phase plane and the unstable manifold spans the
second and fourth quadrants.

The Standard Intermittent Control Policy of
the CIP Model Based on Optimal Tuning of
the Feedback Control Parameters
The intermittent stabilization strategy was originally developed
for modeling the stabilization of upright standing, when
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representing the standing body as a single DoF inverted
pendulum (Bottaro et al., 2005, 2008; Asai et al., 2009, 2013;
Suzuki et al., 2012). In that case the control variable is the
ankle torque τ , whereas in the CIP system it is the force
f applied to the cart. In both cases, however, there is an
alternation of on-phases, where the control action is provided
by a simple Proportional/Derivative (PD) delayed feedback error
mechanism, and off-phases, where the control action is switched
off. The error signals, for the CIP system, are the differences of
the two DoFs (θ , x) from the corresponding reference values
(θref = 0; xref = 0) and the control action is characterized by two
proportional parameters: (Pθ , Px ) and two derivative parameters
(Dω , Dv ). In short, the standard version of the intermittent
control policy is summarized by the script of Box 1:

Box 1 | Standard version of the Intermittent control policy

On-phase

Activating condition: θ (t− δ)[θ̇ (t− δ)− a θ (t− δ)] < 0

Control Action: f (t) = Pθ θ (t− δ)+Dω θ̇ (t− δ)+Px x(t− δ)+Dv ẋ(t− δ)

Off-phase

Dis-activating condition: θ (t− δ) [θ̇ (t− δ)− aθ (t− δ)] ≥ 0

Control Action: f (t) = 0

This control policy should be compared with the corresponding
continuous control model characterized by the following
equation, active all the time:

f (t) = P̂θ θ(t − δ)+ D̂ω θ̇(t − δ)+ P̂x x(t − δ)+ D̂v ẋ(t − δ) (5)

The stability analysis of this control policy, carried out by
Yoshikawa et al. (2016), demonstrated that asymptotic stability
can be achieved provided that the feedback delay satisfies the
following condition:

δ <

√

L

g
(6)

In particular, for L = 32 cm we have δ < 180 ms and this means
that the continuous control policy has no chance of stabilizing
the CIP system with such stick length and a feedback delay
beyond 200ms. But also the standard intermittent control policy
could fail in such conditions for the reasons that we explain in
the following.

In the standard intermittent control policy the switching rule
between the two phases is formulated in the phase space of the
pendulum (θ vs θ̇) and divides the plane into two areas, namely
the on-area and the off-area. The off-area includes the second and
fourth quadrants plus/minus an angular slice, whose amplitude is
a function of the parameter a, whereas the on-area includes the
first and third quadrants minus/plus the same angular slice. In
the following we assume for simplicity that a = 0 and thus the
angular slice disappears.

During an off-phase, initiated at t = toff either in the second
or the fourth quadrant of the phase space, the orbit of the state
vector will follow a hyperbolic trajectory that initially approaches
the origin arriving at a minimum distance (at t = tc) when the
trajectory intersects one of the two coordinate axes, thus entering
one of the other two quadrants influenced by the unstable
manifold: thereafter the trajectory will diverge while approaching
the unstablemanifold. The initial part of the hyperbolic trajectory
(up to t = tc) is the “affordance” provided by the intrinsic
dynamics of the inverted pendulum: during that time there is no
need to force the system with active control because mechanics
itself carries out the job of fighting the danger of falling. On
the other hand, the switching rule is not applied to the current
state vector

[

θ (t) , θ̇(t)
]

but to the corresponding delayed sample
[

θ (t − δ) , θ̇(t − δ)
]

, thus the off-phase will be terminated not at
the time of crossing the border between the stable and unstable
area but δ milliseconds later: ton = tc + δ.

The problem, as exemplified in Figure 2, is that the timing
of the hyperbolic trajectories, as well as the relative position
of the state vector at ton with respect to the position at toff ,
strongly depend on the initial distance of the state vector from

FIGURE 2 | Off-phase trajectories of the CIP model with the same initial angular tilt (−2 deg) but different distance from the stable manifold: the green line (the red line

is the corresponding unstable manifold). The blue part of each trajectory runs from the initial position (at t = toff ) until the intersection with one of the two coordinate

axes (at t = tc: the duration of such segment is determined by Equation 9); the second part is red-colored and has a fixed duration, equal to the sensory feedback

delay δ (ton = tc + δ). (A) Refers to a CIP model with the following parameters: L = 50 cm; δ = 100 ms). (B) Refers to a CIP model with much more challenging

parameters: L = 32 cm; δ = 230 ms. In both cases the cart mass is 250 g and the stick mass is 125 g.
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the stable manifold and on the main parameters of the CIP
system, namely stick length L and feedback delay δ. In Figure 2 all
the hyperbolic trajectories initiate with the same angular tilt but
with different distances from the stable manifold: the initial blue
segment terminates when it intersects one of the two coordinate
axes and the following red segment terminates after a fixed time
interval equal to the sensory feedback delay δ, namely when
the activation condition turns on. Figure 2A refers to the CIP
model investigated by Yoshikawa et al. (2016) with the following
parameters: L = 50 cm and δ = 100 ms. Figure 2B refers
to a much more challenging CIP model, with L = 32 cm and
δ = 230ms. These graphs clarify that for the same initial angular
tilt of the pendulum the final position of the state vector will
end up further and further away from the origin, as the initial
distance from the stable manifold increases, and this potentially
diverging pattern emerges clearly in the second configuration of
the CIP model that, as observed above, represents the upper limit
of human performance.

In the standard intermittent control policy the on-phase is
initiated δ seconds after the state vector of the stick has entered
the unstable area, at time t = ton. Thereafter, the orbit of the
state vector will follow an expanding spiral or nodal course, as a
function of the PD parameters of the stick (Pθ , Dω), if the PD
parameters of the cart (Px, Dv) are null; moreover, such unstable
behavior of the inverted stick is further amplified by including
the cart component in the control action. The purpose of this
component is indeed to restrain the range of oscillation of the
cart to a small feasible value but from the point of view of stick
balancing it is an additional source of instability. In any case, the
forced orbit of the state vector will ultimately cross a coordinate
axis at t = tc1, leaving the on-area, and will be terminated, thus
initiating the next off-phase, at t = toff = tc1 + δ. In short
terms, the evolution of the state vector of the stick will be shaped
as an alternation of segments of hyperbolic orbits in the off-
condition and segments of expanding spiral or nodal orbits in
the on-condition with the following timing:

toff → tc → ton = tc + δ → tc1 → toff = tc1 + δ → . . . (7)

The orbits of the off-phases only depend on the CIP parameters
(L, M, and m) whereas the orbits of the on-phases also depend
on the control parameters and the motion of the cart, due to
the feedback of the control policy. The chance of success of the
standard intermittent control policy is determined by the choice
of the PD parameters and, in particular, by the fact that such
tuning may induce a distribution of state vectors at t = toff
centered as much as possible on the stable manifold and with a
very narrow standard deviation. In order to clarify this point, let
us use the following parameter for measuring the distance of the
state vector from the stable manifold at t = toff :

γoff =
∣

∣

∣

∣

∣

θ̇(toff )

θ(toff )
√
A11

∣

∣

∣

∣

∣

(8)

γoff = 1 means that the state vector is “on” the stable manifold,
i.e., the distance is null; γoff > 1 means that the state vector is
above the stable manifold and γoff < 1 that it is below it. The

average value of this parameter should be as close as possible
to 1, with a suitably small standard deviation. The target of the
intermittent control policy indeed is not the equilibrium point,
i.e., the origin, but the whole stable manifold at the end of the
on-phases. If the PD parameters are optimally tuned the value of
γoff on average will be sufficiently close to 1 to induce hyperbolic
segments with contracting properties, i.e., with a distance from
the origin at t = ton smaller than the distance at t = toff .
Such contracting properties of the off-phases may compensate,
on average, the expanding properties of the spiral/nodal segments
during the on-phases, supporting the emergence of limit-cycle
oscillations. As a matter of fact, the study by Yoshikawa et al.
(2016) demonstrated that this kind of bounded stability can
be achieved with a stick length of 1m and a sensory delay of
100ms. On the other hand, this is not possible in the human limit
conditions (stick length of 32 cm and sensory delay of 230ms).
In order to better understand the reasons of this failure of the
standard intermittent control policy let us focus our attention
on the kinematics of the stick during the off-phases. In the
Supplementary Material we demonstrate that during the off-
phase, initiated at t = toff , the time required by the hyperbolic
trajectory of the state vector to cross the pertinent coordinate
axis, at t = tc, is well-approximated by the following equation,
which is derived from the linearized CIP model of Equation 3:

1tcross = tc − toff = 1

2
√
A11

ln

(

1+ γoff

|1− γoff |

)

(9)

The time interval computed by this formula does not depend on
the initial tilt angle per se but on the “distance” from the stable
manifold, measured by the value of γoff : it strongly increases
as the distance of the starting point from the stable manifold
decreases, ultimately diverging when it becomes zero. The reason
is that, in such case, the starting point is exactly on the stable
manifold and the hyperbolic trajectory degenerates to the line
of the corresponding manifold; moreover, the crossing points
coincides with the origin and is reached asymptotically following
an exponential descent.

The graph of Figure 3A plots the variation of the time to cross
described by Equation 9, computed for the most critical value of
the sensory delay time (δ = 230 ms) and for different values of
the stick length. It clearly shows that, with decreasing values of
the stick length, the interval of values of γoff that are compatible
with a contracting pattern of the off-phase strongly decreases.We
should consider indeed that the total duration of the hyperbolic
trajectory for a given off-phase, with the switching rule of the
standard intermittent policy, is as follows:

Duration of the off-phase: 1tcross + δ (10)

Moreover, since the hyperbolic trajectories of the off-phase
are approximately symmetric with respect to the intersected
coordinated axis, the condition that the off-phase orbit is not
expanding (a sufficient condition for stability) is as follows:

1tcross > δ ⇒ tc − toff > ton − tc (11)
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FIGURE 3 | Characteristic timing of the hyperbolic trajectories in the off-phases. 1tcross is the time taken by an hyperbolic trajectory to cross the border, between the

off-area and the on-area, as a function of the distance of the starting point
[

θ0, θ̇0
]

from the stable manifold ( ˙
θ = −

√

A11 θ ). Such distance is measured by the

parameter γoff =
∣

∣

∣

∣

θ̇off

θoff
√
A11

∣

∣

∣

∣

. γoff = 1 means that the starting point of an off-phase is exactly on top of the manifold and in this case the crossing time diverges,

whereas it quickly decreases with the increase of
∣

∣γoff − 1
∣

∣. (A) Displays 1tcross as a function of γoff for different values of the stick length and feedback delay

δ =230ms. Since the stability condition of the off-phase for the standard intermittent control policy is 1tcross > δ, the graph clearly shows that the interval of values of

γoff that support such condition strongly decreases with the shortening of the stick length. (B) Focuses on the most challenging configuration of the CIP balancing

task (L = 32 cm, δ = 230 ms) and compares the range of values of γoff that support stability in the standard and in the new intermittent control policy (1tcross > δ vs.

1tcross > δ/ (1+ ρ), respectively). ρ = 0.8 is the “contraction factor”.

The graph of Figure 3A shows that for a stick length of 100 cm
the condition above requires that the initial distance of the state
vector from the stable manifold

∣

∣γoff − 1
∣

∣ is about ±0.3; for a
stick length of 50 cm the distance should be < ±0.1 and for the
limit case of the 32 cm stick the distance should be even smaller
(±0.05). We also emphasize that, even with an optimal tuning of
the feedback parameters, the distance from the stable manifold
at the end of the on-phase will be spread in a range strongly
growing with the decrease of the stick length, as a consequence
of the sensory noise and the disturbing effect of the cart motion.
For this reason the simple switching mechanism of the standard
intermittent control policy is doomed to fail at some level of
difficulty of the task and this may suggest to the trained subject
a modification of the intermittent control policy, focusing on
the optimal tuning of the switching times rather than the PD
control parameters.

The Supplementary Material, in addition to Equation 9,
provides also the derivation of the following equation, which
describes the full course of the stick trajectory in the off-phase,
and, in particular, can be used in order to predict the state of the
stick at the time of termination, i.e., at t = ton:







θ(t) = θ̇off+θoff
√
A11

2
√
A11

e
√
A11(t−toff ) + −θ̇off+θoff

√
A11

2
√
A11

e−
√
A11(t−toff )

θ̇(t) = θ̇off+θoff
√
A11

2 e
√
A11(t−toff ) − −θ̇off+θoff

√
A11

2 e−
√
A11(t−toff )

(12)

Moreover, let us consider the disturbing effect of the cart
motion on the dynamics of the pendulum, i.e., the cross-coupling
between the cart and the pendulum dynamics during the on-
phase. Suppose indeed that the PD pendulum parameters were
optimally tuned, in such a way to drive the pendulum state vector,

in the absence of cart control, on top of the stable manifold at
t = toff , which is the ideal situation for exploiting the stabilizing
effects of the off-phase dynamics. However, even in this case,
a minimum amount of drive of the cart motion, just sufficient
to maintain the cart position in a feasible range, will induce a
variability of the initial state vector (θ(toff ), θ̇(toff ) that, given
the strong non-linearity of Equation 9, will inevitably trigger a
transition to instability: the larger the error (i.e., the distance of
γoff from the target value of 1) the quicker will be the descent
of the undriven hyperbolic trajectory with the danger of over-
penetrating the on-region and thus enlarging more and more the
composite orbit away from equilibrium.

The New Intermittent Control Policy of the
CIP Model Based on On-Line Selection of
the Switching Times
In the standard intermittent control strategy, the sequence
(ton, toff , ton, toff , ...) of switching times for activation/dis-
activation of the delayed feedback control is an indirect effect
of the choice of control parameters and thus there is no
guarantee that when active control is switched off the state
vector is close enough to the stable manifold, in such a way
to produce a sequence of hyperbolic-spiral-hyperbolic-spiral-. . . .
oscillatory segments of the inverted stick approaching a limit-
cycle of the unstable equilibrium point. However, if the stick is
sufficient long (e.g., 0.5m) it is possible to identify a range of
control parameters that indirectly produce a bounded stability,
as demonstrated by Yoshikawa et al. (2016). As a matter of
fact, falling is what happens frequently to naïve subjects who
typically need a long training exercise for a CIP configuration
near the limit conditions defined above. We suggest that this
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achievement can be obtained by building an internal model of
on-line adaptation that complements, for the more challenging
configurations of the system, the static parametric optimization
of the standard intermittent control policy. The crucial step,
in our opinion, is to focus the attention of such “cybernetic
supervisor” on the explicit selection of switching times in
relation with the corresponding sequence of on-phase and
off-phase trajectories.

There are indeed two crucial events in the sequence that need
to be optimized in order to avoid the spiraling away of the CIP
oscillatory patterns:

• The termination of the hyperbolic trajectories of the off-
phases, i.e., the explicit selection of ton, in order to avoid
“over-penetration” of the state vector in the potentially
dangerous area;

• The termination of the unstable spiral-like trajectories of the
on-phases, i.e., the explicit selection of toff , in order to switch
off the control action when the state vector is as close as
possible to the stable manifold. The critical importance of
minimizing the distance of the state vector from the stable
manifold at toff is that the overall speed of the hyperbolic
trajectories in the off-phase strongly increases with such
distance (as shown in Figure 3) and thus the rationale of
the intermittent control policy, namely exploiting the self-
stabilizing affordance of the off-phases, is ruled out unless the
speed of the hyperbolic trajectories is appropriately limited.

In summary, the script of the standard version of the intermittent
control policy is substituted by the following one (Box 2),
taking into account that the explicit selection mechanisms
of ton and toff , respectively, that will be examined in the
following sections:

Box 2 | New version of the Intermittent control policy

On-phase ton < t < toff

Termination: explicit selection of toff via internal simulation of time-reset

internal model

Control Action: f (t) = Pθ θ (t− δ)+ Dω θ̇ (t− δ)+ Pxx(t− δ)+ Dv ẋ(t− δ)

Off-phase toff < t < ton

Termination: explicit selection of ton via evaluation of γoff and 1tcross

Control Action: f (t) = 0

Terminating the Hyperbolic Trajectory of the

Off-Phase by an Explicit Selection of ton
At the termination of the on-phase, i.e., when the time stamp
t = toff is instantiated, the hyperbolic trajectory is started but
the actual position in the phase space of the state vector of the
stick σoff =

[

θ(toff ), θ̇(toff )
]

is unknown because the control
system has direct access only to the delayed state which may be
markedly different from the real one. The knowledge of σoff is
not relevant for the neural control of the hyperbolic off-phase
trajectory, which is fully determined by the physics of the CIP
system, but it is crucial for the explicit selection of ton and for the

prediction of the corresponding initial state of the on-phase:

σon = [θ(ton), θ̇(ton)].

A key idea of the new intermittent control policy is that σoff can
be recovered in a natural way not at t = toff but at t = toff + δ by
assuming that the neural controller has access to the short-term
sensory-motor memory of the trajectory of the stick: the initially
unknown position will indeed become available δ seconds later
by directly tapping the delayed sensorimotor information:

θoff = θ[(toff − δ)+ δ]; θ̇off = θ̇[(toff − δ)+ δ].

With this geometric information it is then possible to estimate
1tcross, that characterizes the descending part of the hyperbolic
trajectory, up to 1t = tc, by using Equations 8 and 9, without
any interference of the concurrent cart motion. Moreover, with
such timing information it is possible to choose the appropriate
termination time of the off-phase by setting up a timer at a future
time instant t = ton, thus concluding the explicit selection of
the off-phase temporal sequence: toff → tc → ton. More
specifically, the terminal time should be selected in such a way
to induce a contracting effect of the off-phase trajectory, i.e.,
|σon| <

∣

∣σoff
∣

∣ and this effect can be easily achieved with the
following choice:

ton = tc + 1tcross · ρ (13)

where ρ is the “contraction factor” (in the simulations we used
a value of 0.8 but the specific value is not critical for stability,
provided that it is <1). In summary, the computational process
for exploiting in the best way the self-balancing properties of the
off-phase can be described by the following script (Box 3):

Box 3 | Explicit selection of ton in the new version of the Intermittent

control policy

• After turning-off the active control at t = toff , wait a time interval δ and

tap σoff = [θ (toff ), θ̇ (toff )] out of the short-term sensorimotor memory at

t = toff + δ;

• From σoff evaluate 1tcross by using Equations 8 and 9;

• Setup up a timer at a future time instant t = ton, selected according to

Equation 13;

• Anticipate the predicted state vector at t = ton, σ̂ (ton), by

using Equations 12.

It is important to highlight that the first step of the script plays
the role of phase-resetting the time course of the measured stick
angular oscillation, compensating at least locally the intrinsic
feedback delay. However, the contracting pattern of the off-phase
trajectory, namely that |σon| <

∣

∣σoff
∣

∣, can occur if and only if the
following condition is met:

ton − toff > δ (14)

This is also equivalent to the following condition on the time
to cross of the hyperbolic trajectories and, ultimately, on the
corresponding initial distance of the state vector from the
stable manifold:
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1tcross >
δ

1+ ρ
(15)

Such stability condition of the new intermittent control policy
should be compared with the corresponding condition of the
standard policy:

1tcross > δ (16)

We may conclude (see also Figure 3B) that the new intermittent
control policy is much more robust than the standard policy
as regards the regulation of the off-phase in order to guarantee
that |σon| <

∣

∣σoff
∣

∣ because it can tolerate a much larger range
of values γoff , i.e., a greater inaccuracy in the termination of the
on-phase in terms of distance of σoff from the stable manifold.

Terminating the On-Phase by Running an Internal

Model of the Forced Dynamics for the Explicit

Selection of toff
After activation of the feedback control signal at t = ton, the
orbit of the pendulum state vector will spiral away from the
unstable manifold intersecting first the x-axis and then the stable
manifold. The latter event is the crucial piece of information
for terminating the activation phase in the optimal way, i.e.,
for allowing to exploit in the best possible way the stabilization
affordance of saddle dynamics (θ̇ = −

√
A11 θ). The problem is

that detecting this event is far from trivial: while the evolution
of the hyperbolic trajectory in the off-phase is fully predictable
and can be computed by taking advantage of an explicit equation,
no such formula is available in the on-phase mainly for the
disturbing effect of the cart dynamics on the dynamics of
the pendulum. On the other hand, attempting to detect the
intersection directly bymeans of the delayed sensory information
is likely to be very imprecise for the high falling speed of the
32 cm stick. The proposed solution is to run a simulation of
a simplified internal model of the forced CIP dynamics, for
t > ton, using Equations 3: the simulation is initialized with
the predicted value of the pendulum state vector at t = ton, i.e.,
σ̂ (ton), made available by the phase reset of the stick oscillation
pattern explained in the previous section. Such simulation will
generate an approximated but un-delayed version θ̂(t) of the
real trajectory of the stick that can be used for terminating the
off-phase. Summing up, the explicit selection of toff in the new
version of the intermittent control policy is characterized by the
following script (Box 4):

Box 4 | Explicit selection of toff in the new version of the Intermittent

control policy

• At t = ton initialize the internal simulation model with σ̂ (ton);

• For t> ton carry out the internal simulation by integrating the linearized

dynamical model of Equation 3, producing an un-delayed but

approximated trajectory of the stick θ̂ = θ̂ (t);

• Stop the simulation at a time instant ts when θ̂ (ts) crosses the stable

manifold

• Select that instant as toff .

Simulation of the New Intermittent Control Policy
The simulations were carried out with Matlab© (MathWorks),
using the forward Euler method with a time step of 1ms. The
control force f (t) includes an additive noise term: a Gaussian
white noise with zero mean and standard deviation equal to
0.015N. Such noise intensity is similar to the average noise
intensity used by Yoshikawa et al. (2016) for the standard
intermittent control model.

Another source of uncertainty is related to the estimate of
the slope of the stable manifold, which is required by the
new intermittent control policy for terminating the on-phase.
We modeled such uncertainty with a zero mean Gaussian
white noise in order to induce a 20–30% variability of the
slope value. In this manner the intersection of the internal
model simulation with the stable manifold will be randomized,
triggering off-phase trajectories with different values of γoff . This
uncertainty incorporates also the influence of the inaccuracy of
the simplified internal model of CIP dynamics because both
sources of uncertainty (the one related to the slope and the other
to the internal model) only matter as long as they co-influence
the misselection of the switching time from the on-phase to
the off-phase.

As regards the PD parameters of the stick (Pθ , Dω) we
identified rough initial estimates by considering the linearized
model equations of Equation 3, while ignoring the influence of
the cart on the stick dynamics:

θ̈ = A11θ + A12 f ≈ A11θ + A12(Pθ θ(t − δ)+ Dω θ̇(t − δ))

(17)

The delayed state vector was approximated with the first order
Taylor’s expansion1:

{

θ(t − δ) ∼ θ(t)− θ̇(t)δ

θ̇(t − δ) ∼ θ̇(t)− θ̈(t)δ
(18)

This provides the following approximated, linearized equation of
the on-phase

θ̈(1+ A12Dωδ)+ θ̇(A12Pθ δ − A12Dω)+ (−A11 − A12Pθ ) = 0

(19)

The requirements for asymptotic stability of such model are then
as follows:











Dω <
(M+0.25m)L

1.5δ

Dω > Pθδ

Pθ > (M +m)g

(20)

1Although the Taylor series expansion of delayed terms in differential equations

is not a well-defined mathematical procedure, it is a simple heuristic technique

for obtaining order of magnitude evaluations whose plausibility can be checked by

means of experiments or simulations.
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Moreover, we can obtain an estimate of the limit critical value of
the time delay for achieving such asymptotic stability:

δcrit =
√

(M + 0.25m)L

1.5(M +m)g
(21)

With the model parameters used in this study the critical value
of the time delay is 128ms and thus, with the considered delay
of 230ms, it will be impossible to satisfy all the three conditions
above at the same time, in particular the first and the second one.
However, by choosing the two PD parameters in such a way to
satisfy the first and the third conditions we will be confident that
the trajectories of the on-phase will be characterized either by an
unstable node or spiral:

{

Dω < 0.261 Ns/rad

Pθ > 3.678 N/rad
(22)

In particular, in the simulations we used the value Dω =
0.1686 Ns/rad for the former parameter and we varied, the latter,
in the following range: Pθ = 4 ↔ 20 N/rad.

The choice for the PD parameters of the cart (Px, Dv) was
guided by two conflicting requirements:

• To choose values as small as possible in order to minimize the
disturbing effects on the stick stabilization due to the dynamics
of the cart;

• To limit the range of the cart motion to a physiological level.

In particular Dv = 0.1 Ns/m is in the range of values validated
by Yoshikawa et al. (2016); Px = 0.01 N/m satisfied the two
requirements above, although its modification around that value
was not critical.

RESULTS

The simulations of themodified intermittent control policy of the
extreme-CIPmodel were labeled successful if the controller could
prevent the stick from falling (

∣

∣θ(t)
∣

∣ < π/4), while keeping the
cart in the prescribed range (

∣

∣x(t)
∣

∣ < 0.8m), for a time interval of
2min (plus an initial transient of 1min). A given control model
was supposed to generate at least 70% successful repetitions in
order to be labeled stable.

The simulation experiments used the following set
of parameters:

Parameters for the simulation of the CIP model

L M m δ Pθ Dω Px Dv σnoise σslope

Stick length
[m]

Cart mass
[kg]

Stick mass
[kg]

Sensory
delay [s]

Stick P
control
parameter
[N/rad]

Stick D
control
parameter
[Ns/rad]

Cart P
control
parameter
[N/m]

Cart D
control
parameter
[Ns/m]

Control
additive
noise [N]

Manifold
Slope
uncertainty

0.32 0.25 0.125 0.23 4–20 0.1686 0.01 0.1 0.015 0.2

On the basis of the experience previously gained from the
standard intermittent control policy of upright standing, we
focused our attention on the Pθ control parameter in order
to test the plausibility of the heuristic indication coming from
Equation 22. We found indeed that if Pθ < 4 the intermittent
controller failed in 100% of the simulation runs. However, a small
of increase of Pθ was sufficient to stabilize the CIP in most of the
cases. Figures 4, 5 show the result of a representative simulation
performed with Pθ = 5.

Figure 4 displays the concurrent oscillations of the stick angle
and the cart position, as well as the power spectral density (PSD)
of the stick angle, characterized by a peak around 0.7Hz, coherent
with the experimental data of Yoshikawa et al. (2016) and (Milton
et al., 2016). Figure 5 is a representative phase portrait of the
stick oscillation, generated by the concatenation of hyperbolic
off-phases and spiraling on-phases, disturbed more or less by the
concurrent motion of the cart. Figure 6A shows the histogram
of γoff values that identify the distances of the state vector from
the stable manifold, at the initial instant of each off-phase. The
ideal value, in order to maximize the self-balancing action of
the saddle-like instability, would be γoff = 1; the histogram
shows that the distribution of this indicator over a simulation
trial is indeed centered around the target value. The other two
panels of Figure 6 display the histogram of the duration of the
on-phases and the corresponding histogram of the off-phases,
respectively. The on-phases have generally a longer duration and
are spread on a much larger range of values also as a consequence
of the disturbing effect of the cart motion. In contrast, the off-
phases are generally shorter and tend to cluster around a value a
little bit higher than the sensory delay δ as a consequence of the
phase-reset mechanism of the new intermittent control policy.

In order to evaluate the robustness of the new intermittent
control policy we performed 100 simulations while changing
the Pθ control parameter from 4 to 20. Sample tests were also
performed for evaluating the sensitivity to variations of the
other parameters without exhibiting any critical tuning problem.
Figure 7 provides some evidence about the performance of the
new control policy. Panel A shows that the probability of falling
is 1 for Pθ <4 but this value is quickly decreased to <0.2 around
a value of 5 where failure rate is minimal. For higher values of
Pθ the failure rate progressively increases up to a value close to
100%. The other two panels show the standard deviation of the
stick oscillations (panel B) and cart positions (panel C) averaged
over the successful trials of the 100 repetitions. Remarkably, in
spite of the increasing failure rate with greater values of Pθ , the
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FIGURE 4 | (A) Time series of the stick angle θ (t) during a 2min balancing

exercise. (B) Corresponding PSD. (C) time series of the cart displacement

during the same time interval. CIP parameters: stick length L = 32 cm; cart

mass M = 0.25 kg; Stick mass m = 0.125 kg; feedback delay δ = 230 ms.

Controller parameters: Pθ = 5 N/rad; Dω = 0.1826 Ns/rad; Px = 0.01 N/m;

Dv = 0.1 Ns/m.

range of the stick oscillation of the successful trials remains
approximately stable. In contrast, there is a steady and significant
increase of the amplitude of cart motion that is probably one
of the reasons for the increasing failure rate. In summary, the

reported experiments support the conclusion that the key control
parameter should be tuned at the lowest possible value, just
before the full-fledged establishment of uncontrolled instability.

We also evaluated the role of the uncertainty of the manifold
slope, i.e., σslope. With σslope = 0.2, namely a 20% uncertainly
about the real value of the slope, the new control policy can
indeed succeed to stabilize the CIP for the limit human case
of a stick length of 32 cm. However, we also found that with
such uncertainty level the control policy can indeed perform
in a super-human manner, achieving successful stabilization for
stick lengths as short as 26 cm. In order to clarify the point we
performed simulations with σslope varying between 0.2 and 0.3
and found that al the highest uncertainty level (σslope = 0.3)
the control policy fails in 100% of the simulations with a stick
length of 32 cm. We also found that the human performance
limit (90% success rate with a stick length of 32 cm) can be
achieved with σslope ∼ 0.25, i.e., with a 25% uncertainty of
the slope of the unstable manifold. As previously remarked,
this uncertainty incorporates also the inaccuracy of the internal
simulation model as regards the selection of the termination time
of the on-phase.

DISCUSSION

The simulation experiments performed in this study demonstrate
that the basic rationale of the intermittent control policy,
namely the exploitation of the intrinsic “affordance” of saddle-
like dynamics during off-phases, is still plausible also for the
extreme configuration of the CIP stabilization task, matching the
human performance limit, with a modification that keeps the
core computational outline based on an alternation of on-phases
and off-phases. The additional computational process is a phase
reset mechanism that provides a prediction capability, not in real-
time and in a continuous manner (with a frequency band of the
order of the kHz) but in specific time instants, at a rate of the
order of 1 Hz.

In addition to the capability of matching the human
performance limit in CIP balancing with a rather minor increase
of the computational complexity of the standard intermittent
control model, the new control policy is consistent with the
experimental evidence (Milton et al., 2016) that the best
performance in terms of successful CIP balancing trials is
achieved by tuning the main control parameter near the edge
of instability. Although this characteristic feature has been
interpreted as evidence of a minimization of energetic costs, we
doubt that the energetic issue is relevant in the specific case
of CIP balancing with a very light apparatus like the one used
by Yoshikawa et al. (2016) and the CIP model of this study.
We evaluated indeed that the mechanical power required for
balancing the model in the successful trials is quite small, of the
order of 0.1 mW, on average, with brief power peaks, typically
one or two per minute, never exceeding a fraction of a Watt.
In alternative to such explanation, we suggest that tuning the
proportional feedback parameter to the lowest possible value,
before triggering uncontrolled unstable oscillations, is consistent
with the general strategy of minimizing “stiffness” (in the most
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FIGURE 5 | Phase portrait of a 2min CIP balancing exercise with the modified intermittent control policy. CIP parameters: stick length L = 32 cm; cart mass

M = 0.25 kg; stick mass m = 0.125 kg; feedback delay δ = 230 ms. Controller parameters: Pθ = 5 N/rad; Dω = 0.1826 Ns/rad; Px = 0.01 N/m; Dv = 0.1 Ns/m.

The green and red lines correspond to the stable and unstable manifolds, respectively. Measurement units: deg vs. deg/s.

general sense) during the acquisition of a new skill, in the
framework of a challenging learning process.

We need to stress that the new intermittent control model
is not intended to substitute the standard version based on
a threshold switching mechanism but should be considered
as an extension made necessary for the human user when
the challenge of the task is stretched to the limit of human
performance. Without this motivation the simpler version of
the control policy is the default choice: in that case, for the
human user it is only necessary to tune a few control parameters
and then freeze them during performance of the balancing task.
We may speculate that when this strategy starts failing for the
increased difficulty of the task the naïve user may attempt to
extend it rather than substituting it with a completely different
one. The logical key element that may attract the attention
of the user is a more precise determination of the switching
times, to be adapted at each oscillatory cycle, while inheriting
all the dynamic features of the standard strategy that depend
on the alternation of on-phases and off-phases. As already
remarked, this additional computation, although somehow more
complex than a simple threshold, has a limited bandwidth,
related to the fine trimming of the sequence of transition times
(ton, toff , ton, . . .), namely a few transitions per second. In
particular, we suggested that this objective may be obtained by
learning an internal model of the CIP dynamics paired with a
phase-reset of the stick-state.

The limitations of the new control policy as well as the
limitations of human performance are determined by the degree
of uncertainty of the internal model components together with
the noise of the feedback information about the state of the
system. Ultimately, such sources of uncertainty are not important
per se but for their effect on the inaccurate selection of toff : as a
matter of fact, when the decision is taken to turn off the active
control action, the state vector of the stick, whose real value has
been approximated by the simulation of the internal model, may
end up far away from its ideal target, namely the stable manifold
of the CIP, whose slope is known with some uncertainty in any
case. Therefore, what matters is not the precision per se of the
state vector prediction generated by the simulation model or the
accuracy per se of the estimate of the stable manifold slope but
the overall inaccuracy of the relative position at toff of the state
vector with respect to the stable manifold, that we characterized
with the γoff indicator.

From the simulations we could also evaluate that the limits
of human performance, namely the inability to balance a stick
shorter than 32 cm, can be expressed as a 25% uncertainty about
such relative position. A smaller level of uncertainty, say 20%,
would allow a super-human performance limit, i.e., the ability to
stabilize a CIP with a stick length as short as 26 cm; a higher level
of uncertainty, say 30%, would a induce a degraded sub-human
performance level. In any case, the acquisition of the relevant
internal models (the geometric model of the stable manifold
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FIGURE 6 | (A) Histogram of γoff , i.e., of the distance from the stable manifold

of the state vector at t = toff . (B) Histogram of the duration of the on-phase.

(C) Histogram of the duration of the off-phase.

FIGURE 7 | (A) Probability of falling over 100 repetitions; (B) Standard

deviation of the stick oscillations; (C) Standard deviation of the cart motion,

computed for the successful trials. The control parameter Pθ is varied

between 4 and 20.
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slope, the short-term sensorimotor memory for phase reset of
the CIP state at toff , and the dynamic model for the on-phase
simulation) imply a rather long learning process based on the
acquisition and elaboration of a large number of unsuccessful
trials: this well-reflects the fact that human subjects require
indeed a large effort and long training, in order to become
skilled performers at this level of challenge, whereas they almost
immediately succeed to control the system in a less challenging
situation, say a stick length of 1m or more. Moreover, there
are some subjects that persistently fail whatever the amount
of training in the most challenging situation. Characterizing
and modeling a learning process of this kind is clearly outside
the purpose of this work, although we may investigate it in
the near future: in any case, some suggestion may come from
a preliminary study that focused on the use of reinforcement
learning in relation with the emergence of intermittent-feedback
control (Michimoto et al., 2016).
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Previous studies have shown that the auditory cortex can enhance the perception of

behaviorally important sounds in the presence of background noise, but the mechanisms

by which it does this are not yet elucidated. Rapid plasticity of spectrotemporal receptive

fields (STRFs) in the primary (A1) cortical neurons is observed during behavioral tasks that

require discrimination of particular sounds. This rapid task-related change is believed to

be one of the processing strategies utilized by the auditory cortex to selectively attend

to one stream of sound in the presence of mixed sounds. However, the mechanism

by which the brain evokes this rapid plasticity in the auditory cortex remains unclear.

This paper uses a neural network model to investigate how synaptic transmission within

the cortical neuron network can change the receptive fields of individual neurons. A

sound signal was used as input to a model of the cochlea and auditory periphery,

which activated or inhibited integrate-and-fire neuron models to represent networks

in the primary auditory cortex. Each neuron in the network was tuned to a different

frequency. All neurons were interconnected with excitatory or inhibitory synapses of

varying strengths. Action potentials in one of the model neurons were used to calculate

the receptive field using reverse correlation. The results were directly compared to

previously recorded electrophysiological data from ferrets performing behavioral tasks

that require discrimination of particular sounds. The neural network model could

reproduce complex STRFs observed experimentally through optimizing the synaptic

weights in the model. The model predicts that altering synaptic drive between cortical

neurons and/or bottom-up synaptic drive from the cochlear model to the cortical neurons

can account for rapid task-related changes observed experimentally in A1 neurons. By

identifying changes in the synaptic drive during behavioral tasks, the model provides

insights into the neural mechanisms utilized by the auditory cortex to enhance the

perception of behaviorally salient sounds.

Keywords: mathematical modeling, neural networks, auditory cortex, spectrotemporal receptive fields (STRFs),

genetic algorithm
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INTRODUCTION

The auditory cortex utilizes a variety of processing strategies to
enhance the perception of behaviorally-meaningful sounds in the
presence of background noise. Rapid plasticity of receptive fields
in primary (A1) cortical neurons is observed during behavioral
tasks that require discrimination of particular sounds (Fritz et al.,
2003, 2005a,b; Elhilali et al., 2004, 2007). This rapid, task-related
change may enhance the ability to selectively attend to one
acoustic feature or to one stream of sound in the presence of
mixed sounds.

An essential property of acoustic signals is their temporal
dynamics. Electrophysiological studies have shown that A1
neurons can encode the temporal structure of acoustic stimuli
(Elhilali et al., 2004). A traditional view of auditory processing
describes how a temporal sequence of sounds is distributed in the
frequency domain along the auditory pathway from the basilar
membrane to the cortex. Therefore, it is important to consider a
sound’s spectral and temporal features together.

The spectrotemporal receptive field (STRF) is a description an
auditory neuron’s input-to-output transformation encompassing
both the spectral and temporal features. The STRFs of A1
neurons exhibit complex patterns that can undergo rapid, task-
related changes (Fritz et al., 2003, 2005b; Elhilali et al., 2007).
Complex patterns are observed, such as an increase in firing
rate in response to increases in power at a certain frequency
while decreasing firing rate in response to increases in power
at an adjacent frequency (Fritz et al., 2005b). Rapid changes
in the STRF are observed in A1 during task performance of
ferrets trained to attend to a tone of any frequency (Fritz et al.,
2003). Attending to a target tone consistently induced facilitative
changes in the STRF at the location of the target tone for a
conditioned avoidance Go-NoGo task, while in contrast, rapidly
induce suppressive STRF changes at the target tone frequency in
positive reinforcement Go-NoGo (David et al., 2012). However,
the neural mechanisms by which cortical neurons dynamically
change their STRFs in a matter of seconds remains unknown.

There have been several previous attempts to model the
auditory cortex to investigate the role it plays in the perception
of important sounds. For example, it has been shown that
changes in STRFs can enhance discrimination between different
sounds using mathematical filters (Mesgarani et al., 2010).
However, using filters or similar macro mathematical processes
(for example, Wrigley and Brown, 2004; Loebel et al., 2007;
Grossberg and Kazerounian, 2011), neglects the fine temporal
information that is encoded in the precise timing of action
potential firing of neurons in the cortex (Elhilali et al., 2004).
Other models that do contain fine temporal information (for
example, Bendor, 2015) have not addressed the challenge of
global auditory perception. Extending previousmodels to include
fine temporal information has the potential to overcome the
limitations of previous studies and allows for an investigation of
the role of timing in the adaptive neural mechanisms utilized by
the brain.

This study develops a neural network model that can produce
realistic STRFs in response to a sound signal. The model
consists of a cochlea model and a neural network model

FIGURE 1 | Schematic diagram of the general model structure. A sound

signal was played into a model of the cochlea. There were 15 models in the

cochlea, each with a different center frequency (CF) evenly spread along the

logarithmic tonotopic axis. Integrate-and-fire neuron models were used to

represent the neural networks in the A1 cortex. The output of the cochlear

model excited or inhibited a single integrate-and-fire neuron model. All neurons

were interconnected (indicated by the green arrows) with excitatory or

inhibitory synapses of varying strengths. The action potentials from one

cortical neuron model were used to calculate the STRF.

representing the A1 cortex. Action potentials in the neural
network model were used to calculate the STRF. Mechanisms by
which cortical neurons can change their STRF were investigated
and directly compared to electrophysiological recordings. This
model can reproduce complex STRFs observed experimentally.
The model shows that synaptic drive between cortical neurons
and/or synaptic drive from the cochlear model to the cortical
neurons can account for rapid task-related changes exhibited by
A1 neurons.

METHODS

A phenomenological neural network model was developed to
investigate mechanisms by which cortical neurons can change
their spatiotemporal receptive fields. Figure 1 shows an overview
of the model structure. A sound signal was sent into a model of
the cochlea. The output of the cochlearmodel excited or inhibited
integrate-and-fire neuron models to represent networks in the
primary auditory cortex (A1). Each neuron in the network was
tuned to a different frequency. All neurons were interconnected
with excitatory or inhibitory synapses of varying strengths.
Action potentials in one of the cortical neuron models was
used to calculate the STRF using reverse correlation, which
could be directly compared to electrophysiological recordings
of real world, experimentally derived STRFs in ferrets (Fritz
et al., 2003). The cortical neuron, from which the STRF was
calculated, was chosen according to best frequency (defined as
the frequency which produced largest spiking response at a given
sound intensity) in the experimentally recorded STRF. A genetic
algorithm was used to optimize the synaptic drive between
neurons to produce STRFs and the behavioral changes in STRFs
that matched experimentally recorded data.

The Model
Sound Signals
Computer-generated sound signals were used to activate the
mathematical model of the cochlea. The sound signals consisted
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of temporally orthogonal ripple combinations (Klein et al., 2000),
called TORCs. The TORCs were synthesized from the general
expression (Klein et al., 2000):

S (t, x) =
∑N

i=1
2aki ,li cos

{

2π
(

ωki t + εlix
)

+ ϕkili

}

, (1)

where N is the number of distinct moving ripples, t is the time
course of the stimuli, x is the bandwidth of the stimuli, ak,l
describes the amplitude, ωk describes ripple velocity, εl describes
the ripple frequency, and ϕk,l describes the phase of the stimulus
components. The particular ripples chosen are parameterized by
the list of indices k =

[

k1, k2, . . . , kN
]

∈ (−∞,∞) and l =
[

l1, l2, . . . , lN
]

∈ (0,∞ ).
To generate a STRF, a set of 30 TORCs were used. The set

of TORCs had identical properties to TORCs used as acoustic
stimuli in electrophysiological recordings. The TORCs had
durations ranging over 1–2 s. Each TORC had a spectral profile
that was the superposition of the envelopes of six ripples. Each
ripple had a sinusoidal spectral profile with peaks spaced between
0 and 1.4 peaks per octave (εl in Equation 1) and the envelope
drifted temporally along the logarithmic tonotopic frequency
axis at a constant velocity ranging from 2–24 to 4–48Hz (ωk in
Equation 1).

Cochlear Model
A model of the cochlea was used to convert the acoustic signal
into neural activity. Fifteen auditory nerve fibers were simulated,
with center frequencies evenly distributed along the logarithmic
axis between 0.5 and 16 kHz. For each nerve, the auditory nerve
model of Carney and colleagues was used (Tan and Carney, 2003;
Zilany et al., 2009, 2014), so it will only be summarized here.
There are two modes of basilar membrane excitation to the inner
hair cell. The two modes are generated by two parallel filters. The
first is a narrow-band chirp filter, which is responsible for low
and moderate level responses. The second is linear, static, and
broadly tuned, which is critical for producing transition regions
and high-level effects. The responses from the two modes of the
basilar membrane excitation are then added and passed through
the inner hair cell low-pass filter followed by the inner hair
cell-auditory nerve synapse model and discharge generator. The
model responses are consistent with a wide range of physiological
data from both normal and impaired ears for stimuli presented at
levels spanning the dynamic range of hearing.

Version 5.2 of the auditory periphery model was used (Zilany
et al., 2009) with modifications and updated simulation options
(Zilany et al., 2014). Cat was used as the species option to
produce good responses in the 12–16 kHz range, whereas the
human option would show a decline in output above 12 kHz.
A medium level of spontaneous activity and a variable noise
type were chosen as these produced more robust responses when
stimulating with TORCs. A normal setting for both inner and
outer hair cell function was used.

Cortical Neuron Model
A standard integrate-and-fire neuron was used of the form,

τm
dv (t)

dt
= (vrest − v (t)) + Isyn (t) ∗Rm∗

(

v (t) − vEI
)

, (2)

TABLE 1 | Numerical values used in the cortical neuron model.

Parameter Value

τm 10 ms

vrest −70 mV

Rm 4 M�

vEI −30mV (excitatory)

−90mV (inhibitory)

vEK −90 mV

gm 2 µ�

τs 2 ms

Sampling rate 0.25 ms

This table shows the numerical values used in the integrate-and-fire neuron model. These
parameters appear in Equations (2, 3).

where v is the membrane potential, vrest is the resting membrane
potential or equilibrium potential of the membrane leak, τm is
the membrane time constant of the neuron, Rm is the membrane
resistance, Isyn is the current resulting from the synaptic input
into the neuron, and vEI is the driving force (or equilibrium
potential) of the synaptic current.

Synaptic input from the Carney model and synaptic input
from other cortical neurons (Figure 1) was modeled by an
injected synaptic current with an alpha time course,

Isyn (t) = h (t) ∗gm
t

τs
e
−t
τs , (3)

where h (t) =
{

0 if t ≤ 0
1 if 0 < t

where t is the time since the synaptic event, gm is the maximum
conductance, and τs is the time constant of the synapse.

The parameters values for Equations (2, 3) are given
in Table 1.

Reverse Autocorrelation of the STRF
The STRF is a description of the auditory system’s input-to-
output transformation. It has the general form,

r (t) =
∫∫

FSTRF (τ , x) ∗S (t − τ , x) dτdx, (4)

where r is a neuron response as a firing rate, FSTRF is the STRF
functional, and S is the stimulus’s dynamic spectrum.

The spectrotemporal reverse-correlation function C, is
obtained by cross-correlating the dynamic spectrum of the
stimulus with the measured response,

C (τ , x) = 1

T

∫ T

0
S (t − τ , x) ∗r (t), (5)

where x is the frequency bands (and denotes the number
of octaves above the lowest frequency). By inserting the
STRF functional (Equation 4) directly into (Equation 5) and
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rearranging the terms, one obtains the spectrotemporal cross-
correlation function,

C (τ , x) =
∫∫

FSTRF
(

τ ′, x′
)∗

8
(

τ − τ ′, x, x′
)

dτ ′dx′ + ε (τ , x), (6)

where ε is the portion of the measure response due to non-linear
and random aspects of the system transformation not described
by the STRF and 8 is given by

8
(

τ − τ ′, x′, x
)

,

∫

S
(

t − τ ′, x′
)

S (t − τ , x) dt. (7)

Here, 8 is a function that, in discrete channel interpretation,
describes the cross-correlation between two channels x and x′

of the stimuli’s dynamic spectrum. Thus, a single channel x of
C is produced by the sum of the convolutions of every channel
x′ of the STRF with the cross-correlation between the channels
x′ and x of the stimulus. However, for both an ideal white noise
dynamic spectrum and for a TORC, this expression reduces to a
relatively simple two-dimensional convolution between the STRF
and a spectrotemporal filter 8(τ , x). For these two special cases,
8 depends only on the channel difference, x - x′, and is given by
the autocorrelation of S.

Optimization Algorithm
A genetic algorithm was used to optimize the synaptic drive
between neurons to produce STRFs and the behavior-induced
changes in STRF that matched experimentally recorded data.
The neural network model contained 15 neurons, so the genetic
algorithm optimized 255 parameters representing 225 synaptic
connections between all 15 neurons, and 30 variables (2 per
neuron) for the input from the cochlear model (15 for the
strength of the input and 15 for the delay in transmission).
All parameters were limited to a range of −5 to 5 and only
integer values were used to reduce the probability of overfitting. A
positive value for the synaptic drive resulted in an excitatory post-
synaptic potential, whereas a negative value for the synaptic drive
resulted in an inhibitory post-synaptic potential. The positive or
negative values of the parameters for the delay in transmission
were added to a baseline value to produce a transmission delay in
the range of 0–50 ms.

The genetic algorithm followed a typical methodology. All
parameters were assigned at random for the initial population of
1,000. The best 40 responses were classified as elite and passed
directly to the next generation. The best 100 responses were used
as parents for the next generation, where 480 were created from
crossing-over parameters from parents and 480 were created
from mutation of individual parents.

To determine the best responses, the STRF estimated from the
action potentials in the cortical neuron network were compared
with an experimentally recorded STRF by the cost function,

c =
∑Nf

i

∑Nt

j

∣

∣

(

MSTRF

(

i, j
)

− ESTRF
(

i, j
))

∣

∣∗sig
(

ESTRF
(

i, j
))

, (8)

where Nf is the number of points along the frequency axis of
the STRF, Nt is the number of points along the time axis of the
STRF,MSTRF is the STRF calculated in the cortical neuron model,

ESTRF is the experimentally recorded STRF, and sig is a function
used to focus the genetic algorithm on the regions of the STRF
that are significantly different from the remainder of the STRF. A
point in the STRF was determined to be significantly different if it
exceeded 3 standard deviations from themean of the whole STRF,

sig(x) =
{

1 if x ≥ 3s.d.from mean(x)
0.1 if x < 3s.d.from mean(x)

(9)

where s.d. is the standard deviation.

Sensitivity Analysis
The genetic algorithmwas used to optimize the 255 parameters in
the mathematical model to reproduce the electrophysiologically
recorded STRF in the model. This was performed for STRFs
electrophysiologically recorded in the passive state and the
behavioral states, where the ferret was actively listening for
the target tone. A comparison between the model parameters
optimized for the passive and behavioral states was performed
by doing a sensitivity analysis on each parameter. The sensitivity
analysis involved sequentially increasing and decreasing each
parameter by one value from the optimal solution and
determining the amount of change to the cost function (see
Equation 8) and normalized over all 255 parameters. This
sensitivity analysis quantified the effect of each parameter change
upon the STRF for a given solution. The optimization by the
genetic algorithm and sensitivity analysis was repeated five times
for the same electrophysiologically recorded STRF.

To understand the changes occurring between the passive and
behavioral states, a network diagram was generated containing
the important parameters highlighted by the sensitivity analysis.
A parameter was determined to be important if it was in the top
two parameters of the sensitivity analysis for either the passive
or behavioral states. Additional parameters were included to view
the flow of information from the sound signal to the neuron from
which the STRF was calculated to understand how the important
parameters would be influencing the STRFs. The additional
parameters included input from the cochlear model to neurons
involved in the important parameters and synaptic connections
between the neurons involved in the important parameters and
the neuron from which the STRF was calculated from. Input
from the cochlear model to the neuron from which the STRF was
calculated was also included.

Experimental Procedures
All experimental procedures were approved by the University
of Maryland Institutional Animal Care and Use Committee
(IACUC). Electrophysiological recordings from the A1 cortex
of adult ferrets were performed with a behavioral paradigm
requiring the ferrets to actively listen for a particular tone. This
experimental procedure has been described in detail elsewhere
(Fritz et al., 2003, 2005a,b), so will only be summarized here.

A stainless-steel head post was surgically implanted onto the
skull and mounted with dental cement to stabilize the head for
neurophysiological recordings. Craniotomies were made over
auditory cortex, allowing microelectrodes to be inserted into A1.
Location was based on stereotaxic coordinates and distinctive A1
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FIGURE 2 | Output at different stages of the model. Examples of the signals

and activity patterns for different components in the model. (A) An example of

one cycle of a TORC sound signal sent into the model of the cochlea. (B) The

mean activity rate in the model of the cochlea with a center frequency of 3 kHz.

(C) Synaptic events that occur in the hair cell-auditory nerve synapse model

and subsequent discharge generator in response to the mean activity rate in

(Continued)

FIGURE 2 | (B). (D) Membrane potential trace from the cortical neuron model

receiving the synaptic events from (C) with a 5ms delay to represent

transmission from the auditory nerve to the cortex. (E) Membrane potential

trace from the cortical neuron model receiving the synaptic events from (C)

with a delay in transmission. This panel differs from (D) because the cortical

neuron model has a small constant drive to produce tonic firing.

neurophysiological characteristics such as latency, receptive field
tuning, and position relative to the cortical tonotopic map.

Experiments were conducted in a sound attenuation chamber.
Ferrets were trained on a tone detection task using a Go-NoGo
conditional avoidance procedure (Klump, 1995; Fritz et al., 2003).
In the passive state, the ferrets were awake and quiescent when
the TORC stimuli were presented. In the behavioral state, ferrets
licked water from a spout while listening to reference stimuli
until they heard a target tone, whereupon the ferret learned to
stop licking for a short period of time (400ms) to avoid a mild
shock. The same sets of TORCs and the same procedures for
calculating the STRF from electrophysiologically recorded spikes
were used in the animal experiments and themathematical model
described above.

RESULTS

A neural network model was developed to reproduce
experimentally observed changes in STRFs of neurons in
the A1 cortex. A sound signal was sent into a model of the
cochlea, which provided input into integrate-and-fire neuron
models to represent neural networks in the A1 cortex (Figure 1).
The action potentials in one of the neuron models was used
to calculate an STRF using reverse correlation, which could be
directly compared to electrophysiological recording in vivo.

Producing Anticipated STRFs
To ensure the overall model structure was producing expected
results, the cortical neural network model was reduced in
complexity by removing synaptic connections between cortical
neurons. Playing a simple chirp as the input sound signal
produced activity in the cochlear model and cortical neuron
model at the expected times (data not shown). Figure 2 shows
an example TORC sound signal for one repetition (Figure 2A)
and the resulting activity in the different stages of the model. The
mean activity in the cochlear model (determined by the inner
hair cell potential) fluctuated with the intensity of the sound
signal (Figure 2B) and the resulting output from the discharge
generator in the cochlear model was dependent on the mean
activity (Figure 2C). Events in the discharge generator resulted in
synaptic potentials in the cortical neuron model that were offset
with a time delay corresponding to the delay in transmission from
the cochlear model to the cortical neuron model (Figure 2D).
When the events in the discharge generator were close enough
together in time, summation of the synaptic potentials in
the cortical neuron model could result in action potentials
(Figure 2D). When investigating complex neural networks, more
robust responses were observed with cortical neurons that had
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tonic firing of action potentials. Figure 2E shows a cortical
neuron with tonic firing that received the exact same inputs as
the cortical neuron in Figure 2D. The cortical neuron with tonic
firing showed an increase in the action potential firing rate at
times corresponding to the times of high activity in the discharge
generator, as expected (Figure 2E). Therefore, when a TORC
is played into the model, action potentials are observed in the
cortical neurons as expected.

With a sound signal producing expected activity in the
cochlear model and cortical neuron model, an STRF calculated
from the action potentials in the cortical neuron model
also produce expected results. When there were no synaptic
connections between cortical neurons, each neuron produced
a simple STRF with a simple excitatory region (Figure 3A).
Altering the center frequency of tuning in the cochlear model
(from 5 kHz in Figure 3A to 2.5 kHz in Figure 3B) moved the
simple excitatory region to the expected frequency. Furthermore,
switching the connection to inhibitory from the cochlear model
to the cortical neuron model produced an inhibitory region
(Figure 3C). Increasing the delay of transmission from the
cochlear model to the cortical neuron model produced a
time shift in the appearance of the excitatory region in the
STRF (Figure 3D). These results demonstrate that the model is
producing STRFs that accurately represent the model structure
between the cochlear model and the cortical neuron model.

To ensure the cortical neuron network was also influencing
STRF as expected, the cortical neuron network model was
extended to include one synaptic connection from a cortical
neuron receiving input from cochlear model tuned to a different
frequency. This resulted in a second excitatory region (Figure 3F)
or an inhibitory region (Figure 3E) depending on the type of
synaptic connection. The transmission time from one cortical
neuron to another caused a delay in the appearance of the second
region in the STRF (Figures 3E,F). This delay is proportional to
the difference in frequency of tuning in the cochlear model to
represent the tonotopic organization observed in the A1 cortex.

In Figure 3, alternating regions of excitation and inhibition
can be observed in the STRFs. Usually these regions are quite
weak, but sometimes the regions can be strong (for example,
the excitatory region at 3 kHz and 45ms in Figure 3E). These
alternating regions of excitation and inhibition are produced as
a combination of the intrinsic properties of the neuron model
(in particular resetting of the membrane potential after an action
potential and the presence of an after-hyperpolarising potential,
data not shown) and the properties of the TORCs. Reducing
the noise within the model increases the appearance of these
alternating regions, so they are obvious in Figure 3 where the
model was simplified to ensure it was working properly.

Reproducing Experimentally
Observed STRFs
The excitatory and inhibitory regions in the STRFs calculated
from this model of the auditory system can be manipulated
by synaptic connections from other cortical neurons, synaptic
drive from the cochlear model, and delay in transmission from
the cochlear model to the cortical neuron model. Complex

STRFs can be generated using different combinations of
these manipulations. To test if this model can reproduce
experimentally recorded STRFs, a genetic algorithm was used to
optimize the STRF generated from the mathematical model with
an experimentally recorded STRF.

Figure 4 displays the experimentally recorded STRFs and
the STRFs generated from the computer model. We note that
in physiological experiments, under both passive listening and
active behavioral conditions, the same acoustic stimuli (i.e.,
broadband rippled noise combinations or TORCs, and target
tones) were presented in identical order. To focus the genetic
algorithm on important regions of the STRFs, points in the
STRF more than three standard deviations from the mean value
of all points in the STRF were emphasized (see Equations 8
and 9) and these physiologically recorded targets (Figures 4A,E)
were closely matched by the model (Figures 4B,F). Furthermore,
the STRFs electrophysiologically recorded and those generated
from the mathematical model closely matched both the passive
(Figures 4C,D) and the behavioral states (Figures 4G,H). This
demonstrates that the optimization method and parameter
space of the mathematical model enable the mathematical
model to reproduce experimental observations. Repeating the
optimization method with a different seed for the random
number generator produce a different solution, which also closely
matched the experimental observations. For each experimental
observation, repeating the optimization five times produced
five unique solutions (Figure S1), but often similar values of
the cost function were produced over 100 generations of the
genetic algorithm.

The optimal solutions found by the genetic algorithm for
the passive and behavioral states were compared to investigate
the changes that are likely to occur from top-down attentional
control. Since the genetic algorithm was optimizing 255
parameters, a sensitivity analysis was performed to highlight the
parameters that were important in determining the behavior
of the model in relation to the cost function. To account for
the parameters highlighted by the sensitivity analysis due to
chance in the complex multi-dimensional space, the genetic
algorithm and sensitivity analysis were performed five times and
the results averaged (Figure 5). The averaged sensitivity analysis
indicated that three parameters were important in determining
the network structure in the passive state (Figure 5A): (1)
the input strength to the neuron from which the STRF was
recorded, (2) the delay from the cochlea model to the neuron
from which the STRF was recorded, and (3) the strength of
the synaptic connection from the neuron tuned to the same
frequency as the target tone to the neuron from which the
STRF was recorded. Intuitively, these parameters correspond to
the simplest network to generate the excitatory and inhibitory
regions that are significantly different to the remaining parts
of the STRF (Figure 4A). For the behavioral state, the average
sensitivity analysis indicated that only one parameter was
important in determining the network structure (Figure 5B),
corresponding to the input strength to the neuron from which
the STRF is recorded. Therefore, the sensitivity analysis allows
a comparison of the average numerical values between the
passive and behavioral states (Figures 5C,D). In this example,
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FIGURE 3 | Simple STRF manipulations. Examples of the STRFs calculated from action potentials in the cortical neuron model for simple model structures to

demonstrate the model is behaving as expected. (A) The cortical neuron received a simple excitatory connection from the cochlear model tuned with a center

frequency of 5 kHz. (B) The cortical neuron received a simple excitatory connection from the cochlear model tuned with a center frequency of 2.5 kHz. (C) The cortical

neuron received a simple inhibitory connection from the cochlear model tuned with a center frequency of 5 kHz. (D) The cortical neuron received a simple excitatory

connection from the cochlear model tuned with a center frequency of 5 kHz, but the delay in transmission from the cochlea to the cortical neuron was increased from

5 to 55ms. (E) The cortical neuron model contained two neurons, one that received input from the cochlear model tuned to 8 kHz and the second received input

tuned to 3 kHz. The second neuron provided an inhibitory input into the first neuron. The STRF was calculated from the first neuron. (F) The cortical neuron model

contained two neurons, one that received input from the cochlear model tuned to 8 kHz and the second received input tuned to 1.5 kHz. The second neuron provided

an excitatory input into the first neuron. The STRF was calculated from the first neuron.

it can be seen that the behaviorally induced reduction in
the STRF at ∼8 kHz (Figures 4A,D) was reproduced in the
mathematical model by reducing the strength of the inhibitory
synaptic connection from neuron 13 (CF 10 kHz) to neuron 14
(CF 12 kHz) and by reducing the strength of input from the
cochlea model to neuron 13 (CF 10 kHz). The network structures
identified in Figure 5 do display a large amount of variation.
Increasing the number of repetitions from 5 to 10 (see Figure S3)
decreases the variation for some parameters, but increases the
variation for other parameters. This indicates the variation is
due to the genetic algorithm finding unique combinations of
parameters to fit the physiological data.

Reproducing More Experimentally
Observed Changes in STRFs
The same protocol (see section Reproducing Experimentally
Observed STRFs) was used to predict the changes in network
structure for a further nine single cell recordings from the A1
cortex of ferrets. The STRFs, significant components of the
STRFs, sensitivity analyses, and important network parameters
for the passive and behavioral states are provided for all
10 cells in the Supplementary Material (Figure S2). For each
cell recording, the genetic algorithm was able to reproduce a

close match to the experimentally recorded STRF for both the
passive and behavioral states. Running the genetic algorithm
five times for both the passive and behavioral states allowed
sensitivity analyses to highlight important network parameters
that were able to provide an explanation for the changes
observed in the STRFs between passive and behavioral states
(Figure 6 and Figure S2). Figure 6 provides a summary of
four single unit recordings. For the first cell (Figure 6A),
there was a reduction in the inhibitory region at ∼8 kHz
in the behavioral state compared to the passive state. This
was reproduced in the network model by increasing the
excitatory input from the neuron tuned to 12 kHz, which was
producing the excitatory region in the STRF at this location
(Figure 6A). For the second cell (Figure 6B), the inhibitory
region at and below the target tone was converted to an
excitatory region at the target tone during behavior. The
network model reproduced this switch by changing the input
to the neuron at the target tone from inhibitory input to
excitatory input and removing the inhibitory input to the neuron
tuned to a lower frequency (Figure 6B). The third example
(Figure 6C) displayed a complex pattern of inhibitory regions
above and below an excitatory region; during behavior the
lower inhibitory region was abolished. The sensitivity analysis
indicated the important network parameters were determining
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FIGURE 4 | Reproducing experimentally observed STRFs. All the panels on the left-hand side are electrophysiological recordings from the A1 cortex of ferrets. All the

panels on the right-hand side are output from the mathematical model. Identical sound signals were played to the ferrets and into the mathematical model. The

mathematical model contained a network of neurons to represent the A1 cortex. All neurons were interconnected and the synaptic drive between them was optimized

using a genetic algorithm to match the STRF recorded experimentally. (A–D) The passive state where the ferret was not actively listening for a tone. (A,B) Regions of

the STRF that were significantly different (>3 standard deviations) from the mean value of the STRF. The passive target (A) from the physiological recordings was used

in the cost function for the optimization. The passive fit (B) is the result of the genetic algorithm trying to reproduce (A). (C) The STRF electrophysiologically recorded

from a ferret. (D) The STRF calculated from the mathematical model. (E–H) The behavioral state where the ferret was actively detecting a tone. (E,F) Regions of the

STRF that are significantly different (>3 standard deviations) from the mean value of the STRF. The behavioral target (E) was used in the cost function for the

optimization. The behavioral fit (F) is the result of the genetic algorithm trying to reproduce (E). (G) The STRF electrophysiologically recorded from a ferret. (H) The

STRF calculated from the mathematical model.

the excitatory region and the higher frequency inhibitory
region, so these network parameters were maintained between
the passive and behavioral states (Figure 6C). Intuitively, this
makes sense because the excitatory and higher inhibitory
regions are larger than the lower inhibitory region, so they
would have a larger influence on the cost function. In the
fourth example (Figure 6D), the inhibitory region at ∼1.5 kHz
was abolished in the behavioral state. The network model
reproduced this removal of the inhibitory region by increasing
the strength of the excitatory region (Figure 6D), which reduces
themagnitude and significance of the inhibitory connection from
the lower frequency.

DISCUSSION

Temporal dynamics are a key component of acoustic signals
and neurons in the primary auditory cortex can detect the
temporal structure of acoustic signals (Elhilali et al., 2004).
The cochlea and auditory pathway distribute sounds in the
frequency domain from the cochlear basilar membrane to
the auditory cortex. Therefore, it is important to consider a
sound’s spectral and temporal features together. Spectrotemporal
receptive fields (STRFs) combine both the spectral and temporal
features of the auditory system. Previous studies have shown
that the STRFs of A1 neurons display rapid plasticity during
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FIGURE 5 | Changes in the network structure to reproduce experimental observations. The mathematical model can reproduce physiological recordings from the

passive and behavioral states (Figure 4). To understand the changes in the network structure, the optimization was repeated five times and a sensitivity analysis was

performed for each solution. (A,B) The average sensitivity analysis of the five solutions for both the passive (A) and behavioral (B) states. Both (A,B) contain two

matrices, one 15-by-15 matrix and one 2-by-15 matrix. The 15-by-15 matrix represents the synaptic connections between all 15 neurons, with the y-axis representing

the neuron number providing the synaptic output and the x-axis representing the neuron number receiving the synaptic. The 2-by-15 matrix represents the input from

the cochlea model to the cortical neuron network, where Istr is the strength of the synaptic input and Itm is the length of the time delay for the synaptic input. The

frequency axis on the far right hand side indicates the center frequency tuning for each neuron number. For clarity, if the sensitivity analyses were not in the top two

values for either the passive or behavioral state, the value is not shown. (C,D) The network schematic diagram indicating the average values of the network

parameters for the passive (C) and behavioral (D) states. Solid lines indicate that parameter had a high sensitivity (the two most sensitive parameters over five

repetitions of the optimization) for that state, whereas dashed lines indicate the parameter was sensitive for the other state or were required to follow the network path

from the sound signal to the neuron from which the STRF was calculated. Red lines indicate excitatory synaptic connections, blue lines indicate inhibitory synaptic

connections, and the thicknesses of the lines indicate the strength of the synaptic connections. The numerical values presented for each line indicate the mean ±
standard deviation for the five repetitions of the optimization.

behavioral tasks requiring discrimination of particular sounds
(Fritz et al., 2003, 2005b; Elhilali et al., 2007). However, the
neural mechanisms underlying changes in a neuron’s STRFs are
yet to be elucidated. In this study, a neural network model was
developed to investigate mechanisms by which cortical neurons
can change their receptive fields. This model can reproduce
complex STRFs observed experimentally and demonstrates that
altering the synaptic drive between cortical neurons and/or
synaptic drive from the cochlear model to cortical neurons
can account for the rapid-task related changes displayed by
A1 neurons.

The mathematical model presented here comprised a cochlear
model and a cortical neuron network. A sound signal was sent
into a model of the cochlea. The cochlear model consisted
of 15 auditory nerve fiber models, previously developed and
published by Carney and colleagues (Tan and Carney, 2003;
Zilany et al., 2009, 2014). Each of the auditory nerve models had a
different center frequency evenly distributed along a logarithmic-
tonotopic axis. The synaptic output from the cochlear model
excited or inhibited one integrate-and-fire neuron model. There
were 15 integrate-and-fire neuron models to represent networks
in the A1 cortex. All neurons were interconnected with excitatory
or inhibitory synapses of varying strengths. Action potentials
of one of the cortical neuron models was used to calculate

the STRF using reverse correlation, which could be directly
compared to electrophysiological recordings of the STRF a ferret
(Fritz et al., 2003). A genetic algorithm was used to optimize
the synaptic drive between neurons to produce STRFs and
the behavioral changes in STRFs that matched experimentally
recorded data.

The results demonstrate that this simple phenomenological
model can produce complex STRFs similar to those observed
experimentally. The genetic algorithm was able to optimize
the synaptic drive in the cortical neural network to ensure a
close match between an electrophysiologically recorded STRF
and the STRF calculated in the mathematical model. A genetic
algorithm was used because there were a large number of
variables, the cost function relating the fitting the STRFs to
experimental data was not a smooth function and as a method
of avoid local optimal solutions in a neural network with a large
number of possible synaptic pathways. This optimization worked
for both the passive and behavioral states, thereby allowing a
comparison between network parameters for both states. Since
the genetic algorithm was optimizing 255 parameters and the
network behavior could be highly influenced by combinations
of multiple parameters, the genetic algorithm optimization and
sensitivity analyses were repeated five times and averaged.
For each repetition, the optimization algorithm produced a
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FIGURE 6 | STRF and changes in the network structure for a further 4 single unit recordings. Physiological recordings were used to optimize the synaptic drive in a

neural network model and sensitivity analyses of network structures were performed to highlight important parameters of four single unit recordings (A–D). Within

each panel, the first two columns display the regions of the STRF that were significantly different (>3 standard deviations) from the mean value of the STRF. The first

column is for the passive state; the second column is the behavioral state. The first row of STRFs is electrophysiological recordings, while the second row is the

outputs from the model. The third column displays the important network parameters for the passive and behavioral states. In the network schematic diagrams, solid

lines indicate that parameters have a high sensitivity, whereas dashed lines indicate the parameter was not sensitive but is provided for comparison between the two

network structures or to follow the pathway from sound signal to the neuron from which the STRF is calculated. Red lines indicate excitatory synaptic connections,

blue lines indicate inhibitory synaptic connections, and the thicknesses of the lines indicate the strengths of the synaptic connections. The numerical values presented

for each line indicate the mean ± standard deviation for the five repetitions of the optimization.

unique set of parameters that produced an STRF similar to
those observed experimentally. While the network parameters
displayed variations between repetitions, the sensitivity analysis
highlighted network parameters whose influence over the
network behavior was preserved multiple times. The sensitivity
analysis was also important for comparisons of parameter values

between the passive and behavioral states where the numerical
value showed little change. Traditional statistical methods would
deem that no change has occurred, suggesting the parameter is
not important in the switch from passive to behavioral states.
However, the sensitivity analysis could show that a parameter
was indeed important in determining the properties of the neural
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network for one or both states, even if there was no change
in that parameter. Therefore, this process is able to predict the
important network parameters and their changes, or no change,
in the passive and behavioral states.

This work has demonstrated that changes observed in STRF
of neurons in the A1 cortex for behavioral tasks can be
accounted for by changes in the synaptic drive between cortical
neurons and/or synaptic drive from the cochlear model to the
cortical neurons. The changes in the STRF between passive and
behavioral states can occur with seconds to minutes (Fritz et al.,
2003; Lu et al., 2017) and can dissipate rapidly or remain stable for
a long time (Fritz et al., 2003). There are several mechanisms that
can potentially change the synaptic drive between two neurons
with a very rapid time course (such as synaptic potentials,
spike-timing dependent plasticity (STDP), changes in dendritic
spine shape as well as activity dependent depression) or in a
manner that remains stable for an extended period of time
(such as synaptogenesis, or long-term changes mediated by
intracellular second messenger systems). A major advantage of
producing a spiking neuron model to reproduce experimentally
observed changes in the STRF is that these mechanisms for
rapid changes or longer stability can be readily investigated by
evoking the appropriate mechanisms within a single neuron.
These investigations will require further challenging studies, such
as intracellular recordings from individual A1 neurons in a
behaving animal.

In this study, the experimental paradigm produced a
positive change in the STRF at the target tone, which has
been previously reported (Fritz et al., 2003, 2005a,b; Elhilali
et al., 2004, 2007). In individual examples reproduced in
this mathematical model, the model predicted the increased
excitation in the behavioral STRF at the target tone could arise
from reduced inhibitory output from the neuron at the target
tone, increased excitatory synaptic drive from a region different
to the target tone (which can reduce the influence of inhibition
from the target tone; e.g., cell 10, Figure S2), or by reduced
synaptic drive from the cochlear model to the neuron at the
target tone. These different mechanisms could potentially be
distinguished by further experimental studies. For example,
distinguishing between increased excitatory drive and decreased
inhibitory drive could be accomplished by pharmacological
intervention or by directly recording neuronal membrane
potential. Similarly, a bottom-up change in synaptic drive from
the cochlear model to the cortical neurons could be distinguished
from cortical neuron to cortical neuron interactions through
localized pharmacological agonists or blockers for relevant
neurotransmitters or neuromodulators. Such experiments
require technical advances for pharmacological, optogenetic
manipulations, and intracellular or patch-clamp recordings
from A1 neurons in animal engaged in behavioral tasks such
as the ones used in this study. The increased synaptic drive
from the cochlear model could be measured experimentally by
examining whether there was enhanced thalamic input to A1
neurons. Increase in thalamic drive to auditory cortex could
arise from a variety of mechanisms, including increased thalamic
firing or disinhibition of inhibitory circuits in A1 (for example,
Letzkus et al., 2011).

The current model predicts that rapid task-related changes
in A1 STRFs occur at the synaptic level by changing the
weights of task-relevant synaptic inputs to A1 neurons;
however, the mechanisms for this plasticity are not yet known.
Neuroanatomical studies have shown the existence of diffuse
and widespread cholinergic projections (that modify synaptic
behavior) from the Nucleus Basalis to A1 that are likely to play
an important role in neuroplasticity (Goard and Dan, 2009;
Leach et al., 2013; Pinto et al., 2013; Bajo et al., 2014; Zhang
et al., 2014, 2016). This projection pattern would suggest that
cholinergic modulation during attentional tasks should produce
uniform changes across the entire A1 cortex. However, our
experimental results demonstrate highly selective attentional
effects, and in our model, the pattern of network changes
between passive and behavioral states was variable and complex,
involving increases, no change, and/or decreases in synaptic
drive at different synapses. The solutions generated by the model
predict that the effect of top-down control from higher executive
brain regions via cholinergic activation from Nucleus Basalis can
influence the synaptic drive in A1 cortex in a specific fashion,
perhaps by selectively modulating A1 synapses and neurons
“tagged” by recent “target stimulus” activation. A previous model
of cholinergic modulation of A1 suggests differential effects on
the receptive fields of cortical neurons, depending on cholinergic
receptors and site of action (thalamocortical or intracortical)
(Soto et al., 2006). Another possibility is that there is focal
top-down control from higher brain regions that target the
task-relevant subset of synaptic sites in A1 cortex. Our spiking
neuron network model of the auditory receptive fields provides
a platform to test these and other possible mechanisms of top-
down control during behavioral tasks (Zhang et al., 2014, 2016).

In addition to using the Carney and colleagues model for
the auditory nerve fibers (Tan and Carney, 2003; Zilany et al.,
2009, 2014), we also tested the early auditory processing model of
Shamma and colleagues (Chi et al., 2005) and gamma-tone filter
banks (Johannesma, 1972). All three types of models produced
qualitatively similar results. This indicates that the important
process performed by the cochlea model in this work is band-
pass filtering to break up the sound signal into the frequency
components. Such band-pass filtering is present in the three
cochlear models tested here. Other features present in some of
these cochlear models and not others (for example, synaptic
adaptation in the Carney model or lateral inhibition in the
Shammamodel) do not have a significant effect on the qualitative
results observed in the model presented in this study. The
model of Carney and colleagues had the advantage of better
responses in the higher frequency ranges (12–16 kHz) used in
this mathematical model. The better responses observed in these
ranges may have been due to the high frequency range of
the cat, whereas other cochlear models based on humans have
responses that start to drop off at frequencies above 12 kHz,
as did the model of Carney and colleagues when using the
human parameters. The model of Carney and colleagues also
had the advantage of providing a discrete synaptic drive into
the integrate-and-fire neuron model compared to a continuous
output provided by other cochlear models. A discrete synaptic
drive is a more realistic response, but does create an additional
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source of noise in the system because the amplitudes are driving a
Poisson process.

The model presented here is missing many steps from the
cochlear model to the neural network model in the A1 cortex. As
stated in the previous paragraph, qualitatively similar results can
be observed using the cochlear model of Shamma and colleagues
(Chi et al., 2005), which incorporates a limited amount of early
processing such as lateral inhibition. However, obviously, given
the multiple neuroanatomical stages for auditory information
processing between cochlea and cortex (including cochlear
nucleus, laminar lemniscus, inferior colliculus, thalamus), our
model is oversimplified. Nevertheless, these results indicate that
it is not critical to include early processing strategies to reproduce
the electrophysiologically recorded STRFs. However, this model
was tested against neurons that showed a change in their STRF
during behavioral tasks and ∼70% of neurons show a change in
their STRF during behavioral tasks (Fritz et al., 2003). It is also
possible that initializing an A1 cortical neuron network where
all neurons are interconnected allows the optimization to include
early auditory processing as well as A1 cortical processing. Our
results indicate that it is not necessary to incorporate early
auditory processing to reproduce the experimental observations
in the model presented here.

Furthermore, our model included two variables for each
neuron to describe the strength and timing of the connections
from the cochlear to the auditory cortex. These variables
were included in the optimization and the sensitivity analyses
indicated these connections from the cochlear to the auditory
cortex are significant at times. Therefore, bottom-up information
from band-pass filtering can be important in this model of
STRFs, but the inclusion of exclusion of early processing
strategies does not have a significant effect in this model
of STRFs.

In conclusion, this study has produced a mathematical
model that can replicate complex STRFs observed in
response to the same sound signals. The model demonstrates
that synaptic drive between cortical neurons can account
for rapid task-related changes exhibited by A1 neurons.

These results lay a foundation for future extensions and
elaborations of this model to include top-down control from
higher brain regions, and a more detailed investigation
into the multiple cellular mechanisms and neuronal
receptive field plasticity utilized by the brain during sound
discrimination tasks.
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Trait and State-Dependent Risk
Attitude of Monkeys Measured in
a Single-Option Response Task
Atsushi Fujimoto*† and Takafumi Minamimoto*

Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba, Japan

Humans and animals show diverse preferences for risks (“trait-like” risk attitude) and
shift their preference depending on the state or current needs (“state-dependent” risk
attitude). For a better understanding of the neural mechanisms underlying risk-sensitive
decisions, useful animal models have been required. Here we examined the risk attitude
of three male monkeys in a single-option response task, in which an instrumental lever-
release was required to obtain a chance of reward. In each trial, reward condition,
either deterministic (100% of 1, 2, 3, and 4 drops of juice) or probabilistic (25, 50,
75, and 100% of 4-drop juice) was randomly selected and assigned by a unique visual
cue, allowing the monkeys to evaluate the forthcoming reward. The subjective value
of the reward was inferred from their performance. Model-based analysis incorporating
known economic models revealed non-linear probability distortion in monkeys; unlike
previous studies, they showed a simple convex or concave probability distortion curve.
The direction of risk preference was consistent between early and late phases of the
testing period, suggesting that our observation reflected the trait-like risk attitude of
monkeys, at least under the current experimental setting. Regardless of the baseline
risk preference, all monkeys showed an enhancement of risk preference in a session
according to the satiation level (i.e., state-dependent risk attitude). Our results suggest
that, without choice or cognitive demand, monkeys show naturalistic risk attitude –
diverse and flexible like humans. Our novel approach may provide a useful animal
model of risk-sensitive decisions, facilitating the investigation of the neural mechanisms
of decision-making under risk.

Keywords: risk attitude, subjective value, decision-making, monkeys, economic models

INTRODUCTION

In an uncertain environment, one’s preference toward risk biases one’s decisions. Imagine that your
friend encouraged you to buy an unlisted stock of a business venture. If you are a conservative
person, you may pass on the opportunity to avoid the risk (i.e., risk-averse). However, if you are an
adventurous person, you may buy the stock regardless of the risk (i.e., risk-prone). As such, inherent
individual risk preference is diverse and determines the basic tendency to take (or not to take) a
risky option (“trait-like” risk attitude) (Weber et al., 2002; Huettel et al., 2006; Tobler et al., 2008).
In addition, the risk attitude is changeable depending on internal contexts; if you need to make
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money right away, you may buy the risky stock irrespective of
your character (“state-dependent” risk attitude) (Caraco et al.,
1980; Stephens and Krebs, 1986; McNamara and Houston, 1992).

Past studies measured the risk preference of human subjects
in economic tasks, in which subjects repeatedly made choices
between a risky option and a safe option, and mathematical
models have been proposed to capture the choice decisions of
subjects. The most influential model, prospect theory, assumes
a distortion of probabilities and provides better explanation
of the non-normative choice pattern of human subjects than
the expected utility theory does (Kahneman, 1979; Tversky
and Kahneman, 1992; Prelec, 1998; Gonzalez and Wu, 1999).
Calculation of the subjective value based on distorted probability
is conceptually analogous to the assumption of the finance theory
that calculates the subjective value with the mean–variance
model (Markowitz, 1952; Levy and Markowitz, 1979; Tobler
et al., 2009). These studies revealed various risk preferences
of human subjects, and further facilitated research to find the
neural correlates of trait-like risk attitude by coupling with brain
imaging techniques (Tom et al., 2007; Takahashi et al., 2010;
Gilaie-Dotan et al., 2014). Such an economic approach has also
been applied to some animal studies using a liquid reward as an
alternative of a monetary reward, and they consistently reported
non-linear probability distortion of monkeys just like humans
(Stauffer et al., 2015; Chen and Stuphorn, 2018).

Although economic approaches began to elucidate the
mechanisms of risk-sensitive decisions across species, direct
application of economic tasks to animals may pose limitations;
for example, the cognitive capacity (e.g., working memory) of
animals is not comparable to that of humans, but is largely
limited to adaptation to their ecological niche (Krebs et al.,
1977; Stevens et al., 2005; Elmore et al., 2011). Such disparity
may enforce extra task-demands on animals even in physically
identical task settings (Pearson et al., 2010; Blanchard et al.,
2013). Another problem is that making repeated choices among
available options is an unfamiliar setting for animals considering
their feeding ecology, in which they typically make a cost–
benefit decision on a single prey (i.e., non-choice decisions)
(Krebs et al., 1977; Kacelnik et al., 2011; Hayden and Walton,
2014). As recently suggested, such non-choice decisions recruit
distinct brain circuits to that for two-option choices (Kolling
et al., 2012; Shenhav et al., 2016). Moreover, some studies
using human subjects emphasized that humans showed distorted
risk preference in the task without choice (Tobler et al., 2008;
Levy et al., 2011). Hence, from an ethological perspective, it is
worthwhile to test the risk preference of monkeys in a non-choice
decision paradigm.

In this study, we aimed to assess the naturalistic risk attitude of
monkeys by minimizing undesirable task demands. We adopted
a non-choice, instrumental lever-release task, in which a visual
cue revealed the size and probability of forthcoming reward
condition as being either deterministic or probabilistic. The basic
setting of this task was shown to be useful for inferring monkeys’
evaluation of a certain reward value (e.g., reward size) based
on their performance (Minamimoto et al., 2009). The inference
has been formulated and applied in many studies (Bouret
and Richmond, 2015; Eldridge et al., 2016; Nagai et al., 2016;

Fujimoto et al., 2019), and can be extended to temporal
discounting and workload discounting using the same basic task
structure (Minamimoto et al., 2009, 2012). Here, we implemented
well-known economic models to assess the trait-like and state-
dependent risk attitude of monkeys in a quantitative manner
(Stauffer et al., 2015; Chen and Stuphorn, 2018). Our results may
fill the gap between human and monkey studies using economic
tasks, thus providing a useful animal model to investigate the
neural basis of risk-sensitive decision-making.

MATERIALS AND METHODS

Subjects
Three male macaque monkeys (Macaca mulatta, monkeys ST and
KY, 5.3 kg and 6.8 kg; Macaca fuscata, monkey HI, 7.6 kg) were
used. All experimental procedures were approved by the Animal
Care and Use Committee of the National Institutes for Quantum
and Radiological Science and Technology and were in accordance
with the guidelines published in the NIH Guide for the Care and
Use of Laboratory Animals.

Behavioral Task
The monkeys squatted on a primate chair inside a dark, sound-
attenuated, and electrically shielded room. A touch-sensitive
lever was mounted on the chair. Visual stimuli were displayed
on a computer video monitor in front of the animal. Behavioral
control and data acquisition were performed using a real-time
experimentation system (REX) (Hays et al., 1982). Presentation
software was used to display visual stimuli (Neurobehavioral
Systems Inc., Berkeley, CA, United States).

The monkeys performed the single-option response task
(Figure 1A). In each trial, the monkey had the same requirement
to obtain liquid rewards. A trial began when a monkey gripped
a lever. A visual cue and a red spot appeared sequentially, with
a 0.4 s interval, at the center of the monitor. After a variable
interval (0.5–1.5 s), the central spot turned to green (“go” signal),
and the monkey had to release the lever within the reaction
time (RT) window (0.2–1.0 s). If the monkey released the lever
correctly, the spot turned to blue (0.2–0.4 s), and then a reward
was delivered in accordance with the visual cue. The next trial
began following an inter-trial interval (ITI, 1.5 s). When trials
were performed incorrectly, they were terminated immediately
(all visual stimuli disappeared), and the next trial began with the
same reward condition following the ITI. There were two types of
errors: premature lever releases (lever releases before or no later
than 0.2 s after the appearance of the go signal, named “early
errors”) and failures to release the lever within 1.0 s after the
appearance of the go signal (named “late errors”).

The combination of reward size and its probability was
informed by the visual cue (grayscale images) at the beginning
of each trial; four cues were used for the deterministic trials and
the other four for the probabilistic trials (Figure 1B). In the
deterministic trials, the size of the reward (1, 2, 3, or 4 drops)
was chosen randomly, and the reward probability was fixed at
100%. In the probabilistic trials, the size of the reward was fixed
at 4 drops and the probability of the reward (25, 50, 75, or 100%)
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FIGURE 1 | Single-option response task. (A) Sequence of a trial. (B) Cue sets. Left: cue stimuli that predict deterministic reward delivery (deterministic trials). Right:
cue stimuli that predict probabilistic reward delivery (probabilistic trials). (C) An example of trial series. Deterministic and probabilistic trials were intermingled in a
session.

was chosen randomly. Thus, the expected value was matched
across the two conditions. The training schedule was as follows.
Prior to the experiment with the single-option response task,
all monkeys had been trained to perform color discrimination
trials in a cued multi-trial reward schedule task for >1 month.
Next, the monkeys were trained in the deterministic trials for
3 weeks, and subsequently in the probabilistic trials for 3 weeks,
respectively (“separate” phase). Finally, the monkeys were tested
under the condition in which deterministic and probabilistic
trials were intermingled, and the test ran for >6 weeks (“mixed”
phase; Figure 1C). The data obtained during the mixed phase
(43, 53, and 41 sessions for monkeys ST, KY, and HI, respectively)
were analyzed in the current study. The number of trials in a
session was 1,338 ± 79 trials for monkey ST, 1,206 ± 300 trials
for monkey KY, and 1,384 ± 109 trials for monkey HI, and the
amount of reward intake in a session was 325± 20 ml for monkey
ST, 286 ± 75 ml for monkey KY, and 327 ± 38 ml for monkey
HI (mean± SD).

Experimental Design and Statistical
Analysis
All statistical analyses and model fitting were performed using
R statistical software. We analyzed the error rate and RT. The
error rate was calculated by dividing the total number of errors
(the sum of early and later errors) by the total number of trials
in a session. We reported the average error rate across sessions
and the standard error of the mean (SEM). RT was defined as the
duration from a “go” signal to the time point of lever release in
a correct trial.

As previously shown, the error rate in the same paradigm with
deterministic reward has an inverse relationship to the subjective
value (inverse function, Minamimoto et al., 2009). To infer the

subjective reward value in each monkey, we used a modified
version of the inverse function:

E =
c

V + b
(1)

where E and V represented the error rate and the subjective value,
while c and b were free parameters that represented the reward
sensitivity of monkeys. We confirmed that this model fitted well
with the error rates in deterministic trials of the training session,
where (V) corresponded to the reward size (1, 2, 3, and 4 drops;
R2 > 0.86). We extended this model to infer the subjective reward
value of probabilistic trials using three models: GW, Prelec, and
mean–variance models (see below). For each monkey, parameters
c and b were first determined using the best-fit of the inverse
function (Eq. 1) to the error rate in the deterministic trials. These
parameters were then applied to Eq. (1), which integrated one of
the three subjective value models as V and then was fitted to the
error rates in the probabilistic trials.

GW Model
According to Gonzalez and Wu (1999), probability weighting
function, w(p), was formulated as below:

w(p) =
δpγ

δpγ + (1− p)γ
(2)

where p represents the probability of winning a reward (25, 50,
75, and 100%), and γ and δ are free parameters that control
the curvature and elevation of the function, respectively. This
model yields non-linear probability weighting function, although
it allows monotonic increase/decrease of probability weighting
when γ = 1. Subjective value V was then calculated by multiplying
the reward magnitude m (4 drops) and subjective probability
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w(p) in accordance with the prospect theory (Kahneman, 1979;
Tversky and Kahneman, 1992).

V = m× w(p) (3)

Prelec Model
According to Prelec (1998), the probability weighting function
was formulated as below:

w(p) = e(−β(− ln(p))α) (4)

where α and β are free parameters that control the curvature
and elevation of the function, respectively. For the one-parameter
Prelec model, β is fixed at 1; this function yields an inverted
S-shape in α > 1, while it yields S-shape in α < 1, with inflection
point (p = w(p)) around p = 1/e. We defined the subjective values
with Eqs (3) and (4).

Mean–Variance Model
According to financial theory, the subjective value is determined
by combining the expected value (EV) and variance risk (Var)
(Markowitz, 1952; Levy and Markowitz, 1979). First, EV and Var
are calculated as follows:

EV = m× p (5)

Var = ((m− EV)× p)2 + ((0− EV)× (1− p))2 (6)

Then, the subjective value is defined as:

V = EV+ Var× ε (7)

where ε is a free parameter that describes a bonus by
the variance risk.

The model fittings were performed using the “optim”
function implemented in R software. Standard error of estimated
parameter was calculated by means of the Hessian matrix at the
function. The goodness of fit was assessed with the R2 value
and Akaike Information Criteria (AIC) (Akaike, 1973), which is
calculated as follows:

AIC = −2 log L+ 2k (8)

where L is the maximum likelihood of the model and k is the
number of free parameters in the model. Smaller AIC values
indicated a better model fit to the data. A likelihood ratio test was
used to compare GW models. The p-value was obtained by the
parametric bootstrapping method (n = 10,000).

The effect of the satiation level on risk attitude was assessed
using a measure of accumulated reward level (Minamimoto et al.,
2009). Satiation level (S) was defined as the normalized liquid
intake that is the ratio between the amount of total reward
delivered up to time t, Rcum(t), and the total amount of reward
delivered in the entire session, RcumMax:

S =
Rcum(t)

RcumMax
(9)

The effect of the history of previous reward was also assessed
by logistic regression analysis:

P = β1R+ β2S+ β3PR+ e (10)

where P is the performance (i.e., correct or error), R is the reward
size, S is the satiation level, PR is the reward size in the previous
trial, β are the regression coefficients, and e is a constant.

RESULTS

Risk Preference in Three Monkeys
The error rate and RT were the two main behavioral measures
of the monkeys’ valuation of the current task; the more reward
value is expected, the less the subjects make errors and the
faster they respond (Minamimoto et al., 2009; Nagai et al.,
2016; Fujimoto et al., 2019). We first compared the overall
error rate and RT between deterministic (1, 2, or 3 drops) and
probabilistic trials (25, 50, or 75%) in each session separately.
For this analysis, we excluded the trials of which the expected
value was 4 drops (and the probability was 100%) to focus
on the effect of risk. Although expected values were equivalent
between the two trial types, motivation of monkey ST appeared
to be higher in probabilistic trials; the overall error rate in
the deterministic trials was significantly higher than that in the
probabilistic trials (n = 43, p < 0.01, rank-sum test; Figure 2A,
left), and RT in the deterministic trials was significantly longer
than in the probabilistic trials (n = 43, p < 0.01, rank-sum test,
Figure 2B, left). These results indicated a risk-prone tendency of
this monkey, which was consistent across sessions. Monkey KY
also showed a risk-prone tendency; the error rate and RT were
significantly larger and longer in the deterministic trials (error
rate, n = 53, p = 0.049; RT, n = 53, p < 0.01; Figures 2A,B,
middle column). Monkey HI, on the other hand, displayed the
opposite pattern; the error rate and RT tended to be larger and
longer in the probabilistic trials (error rate, n = 41, p = 0.54; RT,
n = 41, p < 0.01; Figures 2A,B, right column), indicating a risk-
averse tendency of this monkey. These results demonstrate that
our task allowed us to characterize the individual risk preference
of monkeys as a consistent behavioral bias across sessions, which
was not uniform across the monkeys examined.

As we reported previously, the error rate in the deterministic
trials varied depending on the reward size, with higher error rates
for smaller reward (Figure 3, plots in red), the relation of which
was well explained by an inverse function (Eq. 1, R2 > 0.80)
(Minamimoto et al., 2009; Nagai et al., 2016). The error rate
in the probabilistic trials also reflected the expected value of
reward; however, they were lower (monkeys ST and KY) or
higher (monkey HI) than those in deterministic trials for the
corresponding expected value (Figure 3, plots in blue). Three-
way ANOVA (expected value: 1, 2, 3, and 4 drops × trial type:
deterministic or probabilistic × Monkey) revealed a significant
main effect of the expected value [F(1,1088) = 39.6, p < 0.01]
and a significant interaction of the trial type and monkey
[F(1,1088) = 4.9, p = 0.027], suggesting the effects of reward
expectation and individual risk preference on the subjective
valuation of probabilistic rewards.

Simulations With Parsimonious Models
To describe the relationship between error rate and reward
probability, we used a modified version of the inverse function
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FIGURE 2 | Risk-induced behavioral bias. (A) Error rate of each session. Error rates in probabilistic trials (abscissa) and in deterministic trials (ordinate) in each
session are plotted for monkeys ST (left), KY (center), and HI (right). The plots in the blue shaded areas indicate risk-prone sessions. Histograms on the right shoulder
of panels show the distribution of the distance between each plot and the identity line. Red lines indicate the average of the distance. Asterisks indicate significant
difference from zero (∗∗p < 0.01, ∗p < 0.05, rank-sum test). (B) Reaction time (RT) of each session. Schemas of the figures are the same as in A.

with the subjective value of probabilistic reward (i.e., subjective-
value model). To estimate the subjective valuation of monkeys,
we employed the probability-weighting function developed by

FIGURE 3 | Change of error rate by reward-expected value and risk. Error
rates (mean ± SEM) in deterministic (red) and probabilistic trials (blue) are
plotted as a function of expected values for monkey ST (left), KY (center), and
HI (right). The best-fit inverse function (red) is superimposed on the plots (ST:
c = 7.3, b = –1.8; KY: c = 26.9, b = 2.3, HI: c = 41.9, b = 5.6) with the
goodness of fit (R2) on each panel.

Gonzalez and Wu (1999) (“GW model,” Eq. 2), a prospect-
theory model that is widely used to describe non-linear
probability distortion measured in economic tasks. Because both
probabilistic and deterministic trials were tested in the same
sessions, we used the same monkey-specific parameters c and b in
the inverse functions to explain the error rates in two trial types
(see the section “Materials and Methods”).

The GW model implements two free parameters: γ and δ,
control curvature and elevation of function, respectively. First,
we simulated how each parameter modifies the probability-
weighting function and the error rate by using parsimonious
models (“partial GW models”), which incorporate one free
parameter. When γ in the GW model was fixed [GW (δ| γ = 1)],
the probability-weighting function became concave when δ > 1,
while it became convex when δ < 1 (Figure 4A). The error rate
in the probabilistic trials then simply rose or fell compared to
that in the deterministic trials (Figure 4B). When δ in the GW
model was fixed [GW (γ| δ = 1)], on the other hand, the function
became S-shaped when γ > 1, while it became inverted S-shaped
when γ < 1 (Figure 4C). Under this condition, the error rates in
the two trial types crossed each other; when γ < 1, for instance,
the error rate in 25% trials was lower than in 1-drop trials and
that in 75% trials was higher than in 3-drop trials (Figure 4D).
Because the data demonstrated simple reduction (monkeys ST
and KY) or elevation (monkey HI) of error rate by imposing
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FIGURE 4 | Simulation of error rates in probabilistic trials. (A) Simulated probability-weighting function with partial GW model with fixed γ. Colors indicate the value of
parameter δ used for the simulation. (B) Simulated error rate in the probabilistic trials with partial GW model (γ = 1) for monkey ST (left), KY (center), and HI (right). As
a reference, a best-fit inverse function to error rate in deterministic trials (dashed gray curve) is shown for each monkey. (C,D) Simulated probability-weighting
function (C) and error rate in the probabilistic trials (D) with partial GW model with fixed δ (δ = 1). Colors indicate the value of parameter γ used for the simulation.
Schemas of the figures are the same as in A and B.

risk (Figure 3), the simulation suggests that the partial GW
model with fixed γ [GW (δ| γ = 1)] may explain the probability
distortion of monkeys.

Modeling Individual Risk Preference
Reflecting Trait-Like Risk Attitude
The subjective-value model implementing the GW model [GW
(γ, δ)] well explained the error rate in the probabilistic trials
for all monkeys (R2 > 0.75, Figure 5A). As predicted in
the simulation, the best-fit probability-weighting function with
the GW model showed a simple convex or concave pattern
(Figure 5B), demonstrating overweighting of reward probability
(monkeys ST and KY) and underweighting of reward probability
(monkey HI) in subjective valuation of the probabilistic reward.
This result suggests risk-prone tendency of monkeys ST and
KY and risk-averse tendency of monkey HI, as demonstrated in
Figure 2. Then, to validate the parsimonious model, we tested
whether the partial GW model with fixed γ [GW (δ| γ = 1),
Figure 4A] also fits the data. As expected, the subjective-value
model implementing the partial GW model with fixed γ well
described the error rate in the probabilistic trials for all monkeys

(R2 > 0.74, Figure 5C). The best-fit probability-weighting
function and estimated parameter δ (Figure 5D) was comparable
to those estimated by the full GW model. In contrast, the partial
GW model with fixed δ or the simple GW model with fixed γ and
δ did not provide good fits to the error rate in the probabilistic
trials [GW (γ| δ = 1) and GW (γ = 1, δ = 1), Table 1]. The partial
GW model, GW (δ| γ = 1), explained the data significantly better
than the simple GW model in all monkeys (p < 0.05, likelihood
ratio test), suggesting that unfixed parameter δ is essential and
sufficient for explaining the individual risk preference of monkeys
measured in the single-option response task. We also tested
whether the subjective-value model (the inverse function fusing
the partial GW model with fixed γ), which incorporated three free
parameters c, b, and δ, fits the error rate in both trial types. The
model again fitted well with the data for all monkeys (R2 > 0.81),
suggesting the robustness of the modified inverse function in
the current task.

As shown in Figure 2, the risk in reward outcome biased
error rate and RT in the same direction, and the direction of
bias was roughly consistent during the testing period. Given
that what we modeled reflected the trait-like risk attitude of
monkeys, the direction of risk preference (i.e., risk-prone or
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FIGURE 5 | Validation of the full and partial GW models. (A,C) Error rate and best-fit function of subjective-value models in the deterministic trials (red) and in the
probabilistic trials (blue) for monkeys ST (left), KY (center), and HI (right). Red curve shows the best-fit inverse function for each monkey. Blue curve shows the best-fit
function of the subjective-value model with the GW model [GW (δ, γ)] (A) or with the partial GW model with fixed γ [GW (δ | γ = 1)] (C). (B,D) Best-fit
probability-weighting function for each monkey. Probability-weighting function is calculated in the GW model (B) or in the partial GW model with fixed γ (D), and
value of estimated parameter δ is shown in each panel. Dashed line indicates the identity line where subjective probability and reward probability are indifferent.

risk-averse), in other words, a convex or concave probability
weighting pattern, should be stable over a longer time period. To
confirm the stability of individual risk preference, we separately
calculated δ in the partial GW model for the early (e.g., #1–20
sessions) and late testing sessions (e.g., #21–40 sessions) for each
monkey. As expected, risk preference was consistent over the

TABLE 1 | Comparison of GW models.

Model Estimated parameters AIC

Monkey Monkey

ST KY HI ST KY HI

GW (γ, δ) 1.3, 3.4 0.89, 2.5 1.7, 0.33 −2.5∗ 12.4 12.4

GW (δ | γ = 1) 2.5 2.7 0.37 0.98∗ 10.5∗ 11.8∗

GW (γ | δ = 1) 0.36 0.49 2.69 16.3 16.6 13.8

GW (γ = 1, δ = 1) 19.9 16.2 13.4

∗The significant better fits than GW (γ = 1, δ = 1) (p < 0.05; likelihood ratio test).

sessions; monkeys ST and KY showed high δ (>1) either in early
or late sessions (ST early: 2.8 ± 1.0, ST late: 2.3 ± 0.6; KY early:
1.3 ± 0.8, KY late: 3.2 ± 0.9, mean ± SEM), while monkey HI
consistently showed low δ (<1) between the two periods (early:
0.25 ± 0.43, late: 0.51 ± 0.14). These results suggested that we
modeled the trait-like risk attitude of the monkeys.

Convex/Concave Probability Distortion
Was Not Model-Specific
The error rate was also well explained by other subjective-
value models that incorporated the Prelec model (Eq. 4,
R2 > 0.77, Figure 6A) or mean–variance model (Eq. 7,
R2 > 0.71, Figure 6C), which also assume non-linear probability
distortion (Markowitz, 1952; Levy and Markowitz, 1979; Prelec,
1998). The best-fit probability-weighting function calculated
by the Prelec model (Figure 6B) or mean–variance model
(Figure 6D) showed the convex or concave pattern that was
comparable to that calculated by the full or partial GW model
(Figures 5B,D). Thus, the individual risk preference assessed in
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FIGURE 6 | Validation of Prelec model and mean–variance models. (A,C) Error rate and best-fit functions of subjective-value models for each monkey. Blue curve
shows best-fit function of the subjective-value model implementing the Prelec model (A) or the mean–variance model (C) (blue), respectively. Schemas of the figures
are the same as in Figures 5A,C. (B,D) Best-fit probability-weighting function calculated by the Prelec model (B) or by the mean–variance model (D). Schemas of
the figures are the same as in Figures 5B,D.

the single-option response task can be modeled reasonably well
by the economic models with a free parameter focusing on the
elevation. The goodness of fit (AIC) and parameters estimated are
summarized in Table 2.

Assessing State-Dependent Risk
Attitude Within a Session
In addition to trait-like risk attitude, physiological drive state
can influence risk attitudes; for example, thirsty monkeys became

TABLE 2 | Summary of goodness of fit and estimated parameters.

Model Estimated parameters AIC

Monkey Monkey

ST KY HI ST KY HI

GW (δ | γ = 1) 2.5 2.7 0.37 0.98 10.5 11.8

Prelec (β, α) 1.6, 0.47 1.1, 0.51 1.4, 2.3 −2.1 12.1 12.1

Mean variance (ε) 0.26 0.26 −0.26 −3.1 11.1 10.8

more risk averse (Yamada et al., 2013). To examine the effect of
satiation on risk attitude, we analyzed the error rate in the sub-
parts of a session according to reward accumulation (satiation
level: 0–0.5, 0.25–0.75, 0.5–1.0; see the section “Materials and
Methods”). We found that the difference in error rate between
deterministic and probabilistic trials varied depending on the
satiation level [one-way repeated measures ANOVAs, main effect
of satiation level, F(1,409) = 5.9, p = 0.015, Figures 7A–C]. The
satiation level also affected RT; the difference in RTs between the
two conditions increased according to satiation [main effect of
satiation level, F(1,409) = 17, p< 0.01].

The satiation effect on risk attitude was further assessed by
the modeling approach; we fitted the subjective-value model
implementing the partial GW model with fixed γ to the error
rate in the probabilistic trials and extracted the best-fit parameter
δ from the probability-weighting function for each sub-session
(Figures 7D–F). We found that parameter δ tended to increase
in the latter sub-sessions for all monkeys; the risk-proneness
of monkeys ST and KY was evident in the early period and
was enhanced thereafter, while monkey HI exhibited weaker
risk-averseness as the session progressed and became nearly
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FIGURE 7 | Satiation effect on risk attitude. (A–C) Difference in error rate by trial type. The error rate in the probabilistic trials was subtracted from that in the
deterministic trials for each sub-session (early, middle, late). Panels are for monkeys ST (A), KY (B), and HI (C). (D–F) Shifts of probability-weighting functions (Eq. 2)
according to satiation for each monkey. The best-fit function for the data of each sub-session (left: 0–0.5, center: 0.25–0.75, right: 0.5–1.0, satiation level) is
displayed. (G–I) Parameter δ is plotted for each sub-session and for each monkey. Colors are the same as in D–F.

risk-neutral in the last sub-session (Figures 7G–I). In contrast,
the direction of risk attitude was unchanged over a session; δ was
always >1 in monkeys ST and KY, whereas it was always <1 in
monkey HI. These results demonstrated a state-dependent risk
attitude in monkeys; that is, the risk preference gets stronger
according to satiation.

Partial Effects of Reward History on
Performance
In our task design, the subjective value of probabilistic reward was
associated with the cue but was independent from trial sequence

or history. However, monkeys could take local contextual reward
information into account for the reward expectation that may
influence the performance (i.e., correct or error). In other words,
the differences in error rate between the deterministic and
probabilistic trials could arise from the effect of reward history.
If so, the effect should be parallel with the risk preferences of
the three monkeys. To address this possibility, we performed
logistic regression analysis with three regressors: expected value
(1, 2, 3, or 4 drops), satiation level (0–1), and previous reward
(0, 1, 2, 3, or 4 drops). Expected value and satiation level
significantly contributed to the performance for all monkeys
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FIGURE 8 | Effect of expected value, satiation, and reward history on performance. Results of logistic regression for monkey ST (left), KY (center), and HI (right). Bars
indicate the correlation coefficient (normalized beta) of expected value (white), satiation level (gray), and previous reward (black), respectively. Asterisks indicate
statistically significant difference from zero (∗∗p < 0.05, ∗p < 0.10 with Bonferroni correction).

(p < 0.05 with Bonferroni correction; Figure 8). The previous
reward, on the other hand, affected only the performance of
monkey KY (p < 0.01), but not the other two (p > 0.10,
Figure 8). This pattern of individual differences was unrelated
to that of risk preference or state-dependent change among the
three monkeys. Thus, the effect of reward history was apparently
limited and did not correlate with individual risk attitude in our
experimental condition.

DISCUSSION

In the present study, monkeys’ risk attitude was assessed by a
single-option response task, in which the subjective value of a
probabilistic reward was inferred from their performance. To
the best of our knowledge, this is the first study to examine risk
preference of monkeys in a non-choice paradigm. Model-based
analysis revealed non-linear probability distortion and diverse
risk preference among three monkeys. The subjective probability
weighting of monkeys was well explained by economic models
and showed a simple convex/concave pattern over testing
sessions. Regardless of baseline risk preference, all monkeys
showed an increase in risk preference as satiation increased
in a session. The current results thus highlighted the trait-
like and state-dependent risk attitude of monkeys in non-
choice decisions.

Past studies demonstrated that monkeys show non-linear
probability distortion using economic tasks (Stauffer et al.,
2015; Chen and Stuphorn, 2018). The present study replicated
this in the single-option response task that imposed no
choice demand. The basic structure of the current task was
shown to be useful to infer the valuation of monkeys when
reward size or cost was varied (Minamimoto et al., 2009,
2012; Bouret and Richmond, 2015; Eldridge et al., 2016;
Nagai et al., 2016; Fujimoto et al., 2019). By implementing
known economic models, the present study extended this basic

model to infer the subjective reward value of probabilistic
reward. Our monkeys demonstrated a diverse preference for
the risk; two monkeys showed risk-prone, and one showed
risk-averse. This seems to reflect the trait-like risk attitude of
monkeys because their risk preferences were consistent across
sessions. Their performance in probabilistic trials was well
demonstrated by a subjective-value model incorporating a non-
linear probability weighting function (Markowitz, 1952; Levy
and Markowitz, 1979; Prelec, 1998; Gonzalez and Wu, 1999),
and thus the results were largely consistent with the above
literature despite differences in task structures and measures of
subjective valuations. Our results also suggest that economic
models are generalizable for describing the probability distortion
in non-choice, ecological decisions (Hayden and Walton, 2014;
Pearson et al., 2014).

Unlike the previous studies, our monkeys showed a simple
convex or concave probability distortion, and that pattern
was well explained by a parsimonious GW model in which
one free parameter concerning the elevation of function was
adopted. On the above studies using economic tasks, all monkeys
tested showed inverted S-shaped probability distortion (i.e., risk-
seeking for low probability and risk-aversion for high probability)
and was well-explained by Prelec’s function with α < 1, while
the same model failed to explain the monkeys’ performance
in the current study. Such a stereotypical pattern observed in
the previous studies may arise from excessive task demand in
economic tasks; the cognitive load due to choice demand could
diminish sensitivity to the difference in the reward probability
and result in the inverted S-shape probability distortion. Indeed,
recent studies showed that manipulation in task structure (e.g.,
trial sequence) of economic tasks affected monkeys’ inverted
S-shape probability distortion, potentially due to contamination
of reward history (Farashahi et al., 2018; Ferrari-Toniolo et al.,
2019). Importantly, the effect of reward history was limited in
our paradigm, and hence did not account for the observed
individual risk preference. Therefore, the discrepancy could be
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attributed solely to the task design concerning the ecological
decision situation.

As a genetic kinship, humans and monkeys share a large
number of cognitive traits. However, because monkeys learn the
option value through their experience, a task structure per se
would largely influence their task performance and therefore
hamper a straightforward interpretation by investigators (Real,
1991). For example, Blanchard et al. (2013) demonstrated that
monkeys did not care about the length of the delay period
after reward delivery, and that had led to misunderstanding by
preceding researchers about the temporal-discounting ability of
monkeys. Similarly, economic tasks could contain undesirable
confoundings, such as working memory, inhibitory control, and
value comparison, which may affect decision strategy and obscure
natural behavioral traits (Stephens and Krebs, 1986; Elmore et al.,
2011; Blanchard et al., 2014; Hayden and Walton, 2014). The
current study eliminated such undesirable confounding effects by
adopting a non-choice decision in the task. In fact, our monkeys
quickly learned to perform the single-option response task
(<1 month), while it usually takes several months for monkeys to
learn to perform two-option choices. Unlike using choice tasks,
diverse individual differences in trait-like risk attitudes were seen
in our monkeys, as observed in human studies (Tom et al.,
2007; Tobler et al., 2008; Takahashi et al., 2010; Gilaie-Dotan
et al., 2014), and therefore the current task may provide a better
opportunity to assess the naturalistic risk attitude of monkeys.

Adapting risk attitude based on current needs is vital for
maximizing fitness in an uncertain environment (Stephens and
Krebs, 1986). Human studies showed that subjects flexibly
modulate risk attitude based on required points or “wealth
level” even during a single experimental session (Symmonds
et al., 2011; Kolling et al., 2014; Fujimoto and Takahashi,
2016; Juechems et al., 2017). Yamada et al. (2013) directly
demonstrated the relationship between risk preference and
satiety by monitoring the blood osmolality level within a session
in macaque monkeys, which is a physiological form of “wealth
level.” Consistently, our monkeys showed enhancement of risk-
prone tendency (ST and KY) or suppression of risk-aversion (HI)
according to reward accumulation, and our model-based analysis
successfully described the satiation effect. Of note, the increase of
risk preference reflects state-dependent risk attitude, because it
occurred irrespective of baseline risk preference. This change of
risk preference within a session is not attributable to the reward
history effect, which was limited in the monkeys. Importantly,
human studies suggested that state-dependent modulation of risk
attitude was not accounted for by change of the physiological
state itself either (Symmonds et al., 2011; Kolling et al., 2014;
Fujimoto and Takahashi, 2016). Hence, the current approach
successfully quantified the trait-like and state-dependent risk
attitude of monkeys within one task, suggesting a useful model
of risk-sensitive decision for translational research.

What causes the inconsistent risk preference across animals
still remains unclear. Probably the most well-known factors that
lead to differences in risk attitude in humans are gender and age
(Walker et al., 2017). However, they are unlikely to have a role
in the current study because we solely used adult male monkeys.
Another possible cause is social rank (Davis et al., 2009), but

the contribution of this factor is unknown because we have
not tested the social relationship of our monkeys. Future study
should validate the exact cause of individual risk preference by
employing a larger cohort of animals.

Past studies reported that the trait risk attitude correlated
with individual differences in monoamine systems (Berridge and
Waterhouse, 2003; Roiser et al., 2009; Takahashi et al., 2010),
brain structures (Gilaie-Dotan et al., 2014; Leong et al., 2016),
and activity patterns (Kuhnen and Knutson, 2005; Huettel et al.,
2006; Preuschoff et al., 2008; Levy et al., 2010) of human subjects.
However, the neural substrates of individual risk preference in
monkeys are largely unknown. Our behavioral assessment, which
successfully demonstrated diverse risk attitude in monkeys with
single free parameter (δ), may provide an excellent opportunity
to explore the neural basis of individual risk preference, as the
animal model allows us to measure neural activities directly, and
to use neural modulation techniques (cf., Nagai et al., 2016). One
of the potential applications is the study of gambling disorder
(GD), which is considered to be a dysfunction of risk-sensitive
decision (Hodgins et al., 2011; American Psychiatric Association
[APA], 2013). Indeed, we recently showed that GD patients
had deficits not only in trait-like risk attitude but also in state-
dependent risk attitude (Fujimoto et al., 2017). Therefore, future
study should identify the neural substrates of both trait-like and
state-dependent risk attitude in monkeys, providing therapeutic
targets for GD patients.

One of the limitations of the current study was the small
sample size. We thus could not address the mechanism behind
individual differences in risk attitude. Another limitation was that
we used only one reward size for probabilistic trials (4 drops);
modifying the range of reward size may influence monkeys’
risk attitude. Further validation with a larger cohort and/or
broader reward environments will be needed to generalize
our findings and identify other factors that influence the risk
attitude of monkeys.

In conclusion, our approach based on economics and
behavioral ecology illustrates the trait-like and state-dependent
risk attitude of monkeys. Because our model-based analysis
employed well-known functions from past human studies, the
current animal model may accelerate translational research
to determine neural mechanisms underlying risk-sensitive
decision-making.
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According to a widely held view, the decision-making process can be conceptualized as
a two-step process: “object choice,” which does not include physical actions, followed
by “movement choice,” in which action is executed to obtain the object. Accumulating
evidence in the field of decision neuroscience suggests that the cortico-basal ganglia
circuits play a crucial role in decision-making. However, the underlying mechanisms
of the object and movement choices remain poorly understood, mainly because the
two processes occur simultaneously in most experiments. In this study, to uncover the
neuronal basis of object choice in the striatum, the main input site of the basal ganglia,
we designed a behavioral task in which the processes of object and movement choice
were temporally separated, and recorded the single-unit activity of phasically active
neurons (PANs) (n = 375) in the striatum of two monkeys. We focused our study mainly
on neuronal representation during the object choice period, before movement choice,
using a mutual information analysis. Population striatal activities significantly represented
the information of the chosen object during the object choice period, which indicated
that the monkeys actually made the object choice during the task. For the activity of
each individual neuron during the object choice period, we identified offered object-
and chosen object-type neurons, corresponding to pre- and post-decision signals,
respectively. We also found the movement-type neurons during the movement period
after the object choice. Most offered object- or chosen object-type neurons were not
overlapped with movement-type neurons. The presence of object choice-related signals
independent of movement signal in the striatum indicated that the striatum was part of
the site where object choice was made within a cortico-basal ganglia circuit.

Keywords: decision-making, object choice, striatum, monkey, electrophysiology, mutual information analysis

INTRODUCTION

We often make decisions among abstract outcomes without undertaking physical actions. For
example, imagine that you are in a kaitenzushi restaurant (also known as conveyor-belt sushi or
sushi train). You can decide on the sushi topping before reaching your hand toward the sushi on
the dish carried by conveyor belt. In this case, the first step, which does not include the physical
action (reaching your hand), could be regarded as the “object choice”; it is followed by the second
step, the “movement choice,” in which an action is executed to obtain the object when the object
is conveyed in front of you. Recently, several neuroscientists have discussed the concept and
neuronal mechanism of the consecutive two-step decision processes (Samejima and Doya, 2007;
Padoa-Schioppa, 2011; Cisek, 2012; Chen and Stuphorn, 2015).
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The striatum, the main entry nucleus of the basal ganglia, is
thought to play major roles in decision-making. Anatomically,
the striatum has inputs from various cerebral cortical areas,
including the prefrontal, higher-order motor, and primary
motor cortex, and it returns these inputs to the cortical
areas largely in parallel via the thalamus (Yeterian and Van
Hoesen, 1978; Selemon and Goldman-Rakic, 1985; Alexander
et al., 1986; Flaherty and Graybiel, 1993; Haber and Knutson,
2010). Clinically, patients with Parkinson’s disease, Huntington’s
disease, or obsessive–compulsive disorders, all of which are
considered disorders of the basal ganglia, exhibit cognitive
dysfunction in action choice as well as motor behaviors (Graybiel
and Rauch, 2000; Mink, 2003; Frank et al., 2004; Beste et al.,
2008). Several lines of evidence from primate and rodent
electrophysiological and optogenetic studies have shown that the
striatum plays important roles in decision-making by predicting
future goals, taking action, and monitoring performance and
outcome in order to improve future behavior (Lauwereyns
et al., 2002; Takikawa et al., 2002; Cromwell and Schultz, 2003;
Samejima et al., 2005; Yamada et al., 2007; Lau and Glimcher,
2008; Cai et al., 2011; Tai et al., 2012; Nonomura et al., 2018).

Note that although there is considerable evidence for the
neural basis of decision-making in the striatum, it remains
unknown whether and how this region of the brain is involved
in the consecutive two-step choice process, i.e., object and
movement choice. Because most studies in primates and rodents
adopted behavioral tasks in which the alternatives for choice
included both motor and non-motor factors simultaneously,
e.g., alternatives predicting different reward values (non-motor
factor) and the direction of a moving joystick (motor factor)
(Samejima et al., 2005), neuronal activity in relation to the
object and movement choices could not be clearly dissociated.
Several studies have reported that an object signal unrelated
to movement direction to guide the choice was represented
in the orbitofrontal cortex (OFC), the supplementary eye field
(SEF), and the amygdala (Padoa-Schioppa and Assad, 2006; So
and Stuphorn, 2010; Grabenhorst et al., 2012; Cai and Padoa-
Schioppa, 2014; Chen and Stuphorn, 2015). However, few studies
have investigated the neuronal representation related to object
choice in the striatum.

In this study, to investigate the neuronal representation
of object choice in the striatum, we designed a choice
task, in which consecutive two-step choice processes were
temporally decomposed, recorded single-unit activity in the
striatum of macaques performing the task, and performed
a mutual information analysis. This is the first study to
provide an evidentiary neuronal representation of the striatum
for object choice.

MATERIALS AND METHODS

Animals and Surgery
All experiments were approved by the Animal Research
Ethics Committee of Tamagawa University (animal experiment
protocol H21/27-14) and were carried out in accordance with
the Fundamental Guidelines for Proper Conduct of Animal

Experiments and Related Activities in Academic Research
Institutions (Ministry of Education, Culture, Sports, Science
and Technology of Japan) and the Guidelines for Animal
Experimentation in Neuroscience (Japan Neuroscience Society).
All surgical procedures were performed under appropriate
anesthesia, and all efforts were made to minimize suffering
(see below). Our procedures for primate animal experiments
were established in previous studies at Tamagawa University
(Nakayama et al., 2008; Yamagata et al., 2009; Hashimoto et al.,
2010; Saga et al., 2011; Arimura et al., 2013).

We used two monkeys (Macaca fuscata): monkey 1 (8.5 kg)
and monkey 2 (8.0 kg). During the experimental sessions, each
monkey sat in a chair with its head and both arms restrained
and its right wrist left free to enable it to push a button with
its hand; the button was installed in front of the chair at waist
level. A 19-inch video monitor screen equipped with a speaker to
provide sound stimulation was placed in front of the monkey. Eye
positions were monitored at 240 Hz with an infrared eye-tracking
system (resolution, 0.25◦ in visual angle; EYETRAC6000, Applied
Science Laboratories). The distance between the screen and the
monkey’s eyes was 340 mm. A tube was located near the monkey’s
mouth to give a reward of apple juice. The amount of reward was
controlled by opening and closing an electromagnetic valve via
a control signal from a TEMPO system (Reflective Computing,
Olympia, WA, United States), which was also used to control the
behavioral task, visual stimulus presentation by the liquid crystal
display, and the sound stimulus predicting the amount of reward.
The order of presentation of the visual stimuli was controlled by
custom MATLAB code (Math Works).

Behavioral Task
Two tasks were designed, a free-choice task and an instruction
task. While seated in the chair, the monkey performed the task by
operating a push-button with its right hand according to a visual
stimulus presenting the alternatives for choice. If the monkey
successfully performed the task, an apple juice reward following
the reinforcement sound was given. Four different amounts of
reward were used (reward 1, 0.095 ml; reward 2, 0.190 ml; reward
3, 0.284 ml; and reward 4, 0.376 ml). A reinforcement sound
corresponding to the amount of reward was repeated before
actual delivery of the reward (one to four repetitions of a short,
high tone, corresponding to one to four units of reward).

In the free-choice task (Figure 1A), the monkey had to choose
one of two objects presented on the screen. Pushing the button
located near the monkey’s hand started the task, after which a
fixation point (4.5 × 4.5 mm white square dot) appeared in
the center of the screen. If the monkey maintained its gaze on
the fixation point under 1 degree for 0.8 s, a choice cue was
presented in a 40 × 40 mm square area (under 6.7 degrees) for
0.8 s. The choice cue consisted of two types of objects located
at four corners (upper left and right, lower right and left). Each
object was 20 mm in diameter. The choice cues were randomly
picked from 16 objects (four colors × four shapes). After a delay
period (0.8–1.2 s), two objects were individually presented again
in random order as the first and second target. The monkey had
to choose one of the two targets by releasing the button during
presentation of the target. If the monkey released the button
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FIGURE 1 | Behavioral task in which the processes of the object and movement choices are temporally dissociated. (A) Free-choice task. Two objects associated
with different amounts of reward, without movement factors, were presented as the choice cue for release of the button at a later time. (B) Instruction task. An object
was presented as an instruction cue instead of the choice cue in the free-choice task. (C) Object–reward association schedule. The association between four
different amounts of reward and object of four different colors and shapes was randomly changed in each block.

during the first presentation of the target (0.8 s), it received a
reward of a size corresponding to the first target after a 1.2-s first-
release delay period and a 0.5-s reinforcement sound. Conversely,
if the monkey kept holding the button throughout the first target
presentation (0.8 s), the second target was presented following
a delay period of 0.4 s. If the monkey released the button
during presentation of the second target (0.8 s), it received a
reward of a size corresponding to the second target after a 0.5-
s reinforcement sound. Trials were separated by an interval of
3–5 s. A trial was aborted if the monkey failed to maintain fixation
of its gaze (over 1 degree) throughout presentation of the fixation
point (0.8 s). When an aborted trial was detected, all presented

objects were immediately extinguished, neither the reinforcement
sound nor the reward was delivered, and the trial began again.

In the instruction task (Figure 1B), the monkey had to choose
only one instructed object presented on the screen. The task
sequence was the same as in the choice task, except that in this
case, the choice cue was the instruction cue (only one type object).

According to the reward schedule (Figure 1C), the task was
run in a block of 144 trials consisting of the first through
the fourth subblocks. Each subblock included 12 trials of the
instruction task and 24 trials of the free-choice task. Four
different amounts of juice reward were associated with four colors
or shapes in a block of trials. The association of color with reward
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and shape with reward was altered block by block. The amount
of reward associated with each shape or color in a block was
randomly changed across every block.

Electrophysiological Recording
After completing the behavioral training, the monkeys
underwent aseptic surgery performed under pentobarbital
sodium anesthesia (20–25 mg/kg, i.v.) with atropine sulfate.
Antibiotics and analgesics were used to prevent postsurgical
infection and pain. Polycarbonate screws were implanted in
the skull, and two plastic pipes, rigidly attached with acrylic
resin, were used to securely fix the head during the daily
recording sessions. Part of the skull was removed over the
anterior part of the striatum, and a recording chamber was
implanted, tilted laterally by 35◦. To confirm that the chamber
was located appropriately to approach the target brain area,
magnetic resonance images were recorded. Neuronal activity was
recorded with glass-insulated tungsten electrodes (1.0–2 M� at
1 kHz; Alpha Omega Engineering) advanced by an oil-driven
micromanipulator (MO-97-S; Narishige). The recording sites
were determined using a grid system, which allowed us to
record at intervals of 1 mm between penetrations. The electrode
was introduced into the brain through a stainless steel guide
tube, which was inserted into one of the grid holes and then
into the brain through the dura mater. Detection of electrical
signals from the electrode and online sorting were performed
by a Multichannel Acquisition Processor (MAP/16, Plexon).
The signal was amplified by a head-stage (HST/8o50-G20) and
pre-amp with a band-pass filter (PBX2/16wb-G50, Plexon; final
gain, 500; band-pass filter 0.1–8 kHz) and collected at 1 kHz.
The behavioral task was controlled by a TEMPO system and
MATLAB. The signals controlling the behavioral task from
the TEMPO system were recorded in the MAP system with
the neuronal signals. Offline sorting of action potentials was
performed with an Offline Sorter (ver3, Plexon). The sorted
action potentials and behavioral data were analyzed by MATLAB.

The recording site was the striatum of the left hemisphere
(A: 21–30 mm and L: 18–27 mm for monkey 1; A: 22–30 mm and
L: 18–28 mm for monkey 2). The dorsal border of the striatum
was easily identified from changes in the background firing rate
as the electrode was introduced through the cortex, white matter,
and striatum. We classified striatum neurons as phasically active
neurons (PANs) or tonically active neurons based on differences
in spontaneous activity and spike waveform (Hikosaka et al.,
1989; Aosaki et al., 1994). If we judged a PAN to be responsive
to any task event by observing a phasic response during a trial,
we started recording. All neurons in the database were recorded
across at least two blocks of trials, including one shape-reward
and one color-reward block.

Data Analysis
To determine whether the monkey actually made an object
choice during the choice cue or delay period, we adopted
the latter half of the trials in the block (third and fourth
subblocks) for analysis to eliminate the effect of learning about
the association between reward and objects. Unless otherwise
noted, we analyzed the neuronal data in the free-choice task

not including the instruction task. To investigate the neuronal
representation related to object choice, we performed mutual
information analysis for each recorded neuron (Optican and
Richmond, 1987). Mutual information for each neuron was
calculated based on the difference between a priori information
of a task condition and information of the task condition given
the firing rate in the trial. The following equation was used:

I(S;R) = H(S)−H(S | R)

=

∑
s
−p(s) log p(s)−

〈∑
s
−p(s | r) log p(s | r)

〉
r

where S is the set of task conditions {S1, S2 . . .}, R is the set of
observed neuronal activities ri: the firing rate in the i–th trial,
H(S) is a prior information entropy of the task condition S, H(S|
R) is the information entropy of task condition S given neuronal
activity R in the trial, and 〈 〉r is the mean information entropy
across all task conditions s given neuronal activity r. Here two
task conditions S (S1 and S2) were used. The first task condition,
S1, was six combinations of the choice cue (referred to as
“offered object”), including six color or shape combinations
(S1color = {red/blue, red/yellow, red/green, blue/yellow,
blue/green, and yellow/green} and S1shape = {circle/triangle,
circle/square, circle/cross, triangle/square, triangle/cross, and
square/cross}). Under the first task condition, S1, p(s) was
calculated using the probability of 1/6, and p(s| r) was calculated
using the probability that trials s exhibit higher firing rates than
the median firing rate across all trials. The second task condition,
S2, was four colors or shapes of the chosen object (S2color = {red,
blue, yellow, and green} and S2shape = {circle, triangle, square, and
cross}). Under the second task condition, S2, p(s) was calculated
using the probability of 1/4, and p(s| r) was calculated using the
probability that trials s exhibit higher firing rates than the median
firing rate across all trials.

To find evidence that the monkeys actually made an
object choice before a movement choice, we calculated mutual
information of the chosen object during the period from onset
of choice cue to onset of the first target. Because there was
the potential that mutual information of the chosen object
had a spurious correlation with that of the offered object, we
checked whether the mutual information of the chosen object was
significantly larger than that of the information expected from
the offered object. To do this, we adopted the bootstrap method
for the hypothesis test and calculated the surrogate mutual
information of the chosen object in which the information of
the chosen object was randomized but the information of the
offered object was kept. For example, to calculate the surrogate
mutual information of the chosen shape for every recorded
neuron, we generated trial-shuffled data in which the chosen
shapes were shuffled randomly in every trial group in which
the same shape combination of the offered object was presented
(irrespective of their colors). We used the trial-shuffled data and
calculated the surrogate mutual information of the chosen shape
for every recorded neuron. Then, we calculated the summation
of surrogate mutual information of the chosen shape from
all recorded neurons. We performed this procedure repeatedly
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(10,000 shuffles) and generated the surrogate distribution of the
mutual information of chosen shape. The significance level was
determined at the top 5% of the surrogate distribution. If the
summation of real mutual information of the chosen shape was
more than the significance level in the surrogate distribution,
we considered that the real information of the chosen shape
was significantly larger than that of the information expected
from the offered shape at the population level (p < 0.05). In
the case of information of the chosen color, we performed the
same analysis using color information instead of shape. The
dynamics of the summation of real information (Figure 3B)
was calculated in 0.2-s sliding windows with 0.05 steps. The
bootstrap method was performed for eight consecutive 0.2-s
windows starting from onset of choice cue 0–0.2-s, 0.2–0.4-s,
0.4–0.6-s, 0.6–0.8-s, 0.8–1.0-s, 1.0–1.2-s, 1.2–1.4-s, and 1.4–1.6-
s, corresponding to the upper triangles in Figure 3B. As with
the chosen object, the significance of mutual information of the
offered object was tested (p < 0.05) (Figure 3C). The statistical
test was the same as for the chosen object except that the surrogate
mutual information of the offered object was calculated by trial-
shuffled data in which the offered objects were shuffled randomly
in every trial group in which the same object was chosen, e.g.,
when the chosen object was red, the offered objects (red/blue,
red/yellow, and red/green) were randomized.

To compare two surrogate distributions in Figure 4
by receiver operating characteristic (ROC) analysis for the
classification of chosen (or offered) object and value, we re-
calculated the two surrogate distributions and the area under the
curve (AUC) ten times, and compared the AUCs with 0.5 by
Mann–Whitney U-test.

We also checked the significance of mutual information of the
chosen object and the offered object at the single-neuron level
(Figure 5). In this case, we compiled the surrogate distribution
of mutual information (100 shuffles) in four consecutive 0.4-s
windows from choice cue onset for an individual neuron, and
then checked whether its real mutual information was larger than
the significance level (top 5% of the distribution of surrogate
mutual information, p < 0.05). Furthermore, we performed one-
way analysis of variance (ANOVA) with factors of chosen object
(color and shape) or offered object (color and shape) for four
consecutive 0.4-s windows (p < 0.05). If both statistical tests
were passed in the same window, we defined the neuron as the
offered object-type (color or shape) or the chosen object type
(color or shape).

In addition to the chosen and offered object, we calculated
another mutual information using the task condition of “chosen
movement” (first or second release) (Figure 6B). To find
movement-type neurons in Figures 6A,C,D, we performed one-
way ANOVA with factor of chosen movement in the 0.8-s
window from onset of the first target (p < 0.05).

RESULTS

Behavioral Task Performance
The point of the behavioral task in this study was that object
choice with a greater amount of reward during the choice

cue or delay period could be made in a manner that was
temporally dissociated from movement choice (Figure 1A; see
section “Materials and Methods” for details). First, we confirmed
that the monkeys could learn the association between a visual
feature of the object (color or shape) and four levels of reward
in every block of trials, and then choose the better target by
releasing the button using the data recorded on neuronal activity
(monkey 1, 119 days; monkey 2, 86 days) (Figure 2). The
transition of the mean optimal choice ratio (the choice ratio
of the target associated with the greater amount of reward)
in the choice task across blocks indicated that the optimal
choice ratio in both color-reward and shape-reward blocks
increased after block change, whereas the optimal choice ratio
corresponding to the previous block decreased in both monkeys
(Figure 2A left). The reaction time (RT) from the onset of
the first target to button release was faster when the monkey
made an optimal choice with a larger reward than when it
made an optimal choice with a smaller one, and the RTs
for the larger reward became faster as the trials progressed
following the block change (Figure 2A right). The monkeys
could also make an optimal choice for any combination of
first and second targets, predicting different amounts of reward
(Figure 2B). In a quantitative analysis of the two monkeys,
the choice probability of the first target and the mean RT
for choosing the first target against the difference in reward
amount between the first and second targets were calculated and
showed consistent results with Figures 2A,B (Figures 2C,D).
The choice probability of the first target against the difference
exhibited a significant effect, and these choice behaviors did
not differ significantly between the two monkeys (Figure 2C):
two-way ANOVA, F(5,2) = 280.39, p < 0.001 for the difference
in reward amount; F(1,6) = 0.94, p = 0.38 for monkey).
RT was also significantly affected by the difference in reward
amount (Figure 2D): one-way ANOVA, monkey 1, F(5,9.99),
p < 0.001; monkey 2, F(1,9.16), p < 0.001. In both monkeys,
RT was significantly slower when the difference in reward
amount was 1 than when it was 2 or 3 (Wilcoxon rank sum
test with Bonferroni correction: monkey 1, p < 0.001 for
reward 1 vs. reward 2, p < 0.001 for reward 1 vs. reward 3,
p = 0.0052 for reward 2 vs. reward 3; monkey 2, p < 0.001 for
reward 1 vs. reward 2, p < 0.001 for reward 1 vs. reward 3,
p < 0.001 for reward 2 vs. reward 3). These behavioral results
meant that the two monkeys learned the association between a
visual feature of the object (color or shape) and four different
amounts of reward and chose the target associated with the
greater amount of reward by releasing the button according to
the block change.

Next in this task, we aimed to specifically check whether
monkeys made an object choice or not (Figures 2E,F). If
monkeys could choose any one of two objects during choice
cue or delay period in the choice task, the subsequent process
would be the same as the instruction task, in which they
simply chose the decided or instructed object by release
the button during target presenting period. Subsequently, we
compared the RT of the choice task and the instruction task
(Figures 2E,F). RT in the instruction task was found to be
faster than that in the choice task (Figure 2E, Wilcoxon
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FIGURE 2 | Behavioral performance (monkeys 1 and 2: 119 days, 178 blocks; monkey 2: 86 days, 129 blocks). (A) Left: Transition of mean optimal choice ratio in
the free-choice task after the block change with monkeys 1 and 2. Red and cyan indicate the optimal choice ratio in the current shape and color block, respectively.
Blue and green indicate the optimal choice ratios in the previous shape and color blocks, respectively. Right: Mean reaction time (RT) and s.e.m. of the optimal
choice trial vs. progress of subblocks (1st, 2nd, 3rd, and 4th) with monkeys 1 and 2. Cyan, red and green indicate RT when the chosen amount of reward was 4, 3,
and 2, respectively. (B) Mean probability of choosing the first target vs. the difference in the amount of reward with monkeys 1 and 2. (C) Mean probability of
choosing the first target vs. the difference in reward amount (1st minus 2nd target) and s.e.m. for monkey 1 and monkey 2. (D) Mean RT and s.e.m. when the first
target was chosen vs. the difference in the amount of reward (1st minus 2nd target) for monkeys 1 and 2. (E) Mean RT and s.e.m. of the choice task and the
instruction task for monkey 1 and 2. (F) Mean RT and s.e.m. of the choice task and the instruction task for the four level of reward amount. Statistical test was
performed by Wilcoxon rank sum test with Bonferroni correction. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

rank sum test: monkey1, p < 0.001; monkey2, p < 0.001).
No significant effect was seen for RT in the instruction task
for the four levels of reward, whereas RT in the choice
task showed a significant effect (Figure 2F, one-way ANOVA,
monkey1, F(3,1.95), p = 0.118 for the instruction task,
F(3,11.4), p < 0.001 for the choice task; monkey2, F(3,0.79),
p = 0.502 for the instruction task, F(3,12.1), p < 0.001 for the
choice task). These results showing different RT between the
choice and the instruction tasks indicated that the behavioral

analysis was unable to support the evidence that the monkeys
made object choice.

Population Neuronal Activity Evidence
for Object Choice During the Choice Cue
and Delay Periods
Again, the salient feature of the behavioral task used in this
study was that choice of object’s visual feature, object choice, with
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greater amount of reward could be made during the choice cue
or delay period, temporally dissociated from movement choice.
However, we were unable to confirm this claim by behavioral
analysis (Figures 2E,F). It is possible that the monkeys did not
always need to use a strategy to choose one of two objects
during the choice cue or delay period since they could choose
both object and movement at the onset of the first target by
remembering the two objects without making any object choice
before. In the first step of our neuronal analysis, we aimed to
examine whether the monkeys actually made an object choice
during the choice cue or delay period by analyzing neuronal
activities of all recorded neurons (monkey 1, n = 201; monkey
2, n = 174, Figure 3A). To this end, we searched the neuronal
representation of “chosen object” during the choice cue or
delay period by mutual information analysis and the bootstrap
method. Because there was a possibility that mutual information
of the chosen object had a spurious correlation with that of the
choice cue (hereafter called the “offered objects”), we tried to
identify whether the mutual information of the chosen object
was significantly larger than the surrogate mutual information
of the chosen object in which the information of the chosen
object was randomized but the information of the offered object
was kept (see section “Materials and Methods” for details). We
calculated the summation of mutual information of chosen shape
(or color) from all recorded neurons (n = 375) (Figure 3B)
and performed the statistical test in each eight successive 0.2-s
windows from the onset of choice cue (threshold for significance:
p < 0.05). We found significantly larger information of the
chosen shape in the latter five windows and color in the second,
third, and fourth windows than the surrogate information of
chosen shape and color, respectively (Figure 3B and Table 1). We
also checked whether there was mutual information of the offered
object in distinction from surrogate mutual information of the
offered object in which the information of the offered object was
randomized but the information of the chosen object was kept.
We found significantly larger information of the offered shape in
the second to sixth windows and color in the third window than
the surrogate information of offered shape and color, respectively
(Figure 3C and Table 1). The significant representation of the
chosen and offered object by population neuronal activities
(summation of mutual information from all recorded neurons)
suggested the presence of post- and pre-decision signals in the
striatum along with evidence that the monkeys actually made an
object choice during the choice cue or delay period prior to the
movement choice.

Many previous studies reported that the striatum represents
value signals. In the present task, the association between a
visual feature of the object (shape or color) and four levels of
reward was changed across blocks (Figure 1C), which might
enable us to discriminate the “object-visual feature” from the
“reward value” associated with the object. However, there was
a possibility that the change of association across blocks was
not enough to discriminate them, because we recorded neuronal
activity across only two or three blocks (two or three times change
of the association). Then, to check whether the information of
the object-visual feature and the reward value could be regarded
as different or not, we compared two surrogate distributions of

the summation of mutual information for all recorded neurons
(n = 375) (Figure 4). One was the surrogate distribution of the
information of chosen (or offered) reward value, in which the
information of the chosen (or offered) object was randomized
but the information of the chosen (or offered) reward value was
kept; the other was the distribution of information of the chosen
(or offered) object, in which the information of the chosen (or
offered) reward value was randomized but the information of
the chosen (or offered) object was kept. Comparing the two
distributions by ROC analysis for the classification of chosen
object and chosen reward value in 0.2-s windows showing the
significance in Figure 3B, the AUC for chosen shape was 0.74,
0.76, 0.69, 0.66, and 0.61 (Figure 4A upper, p < 0.001 for
all five windows, Mann–Whitney U-test for difference between
the distribution of AUCs and 0.5; see section “Materials and
Methods” for statistics) and AUC for chosen color was 0.69, 0.85,
and 0.78 (Figure 4A lower, p < 0.001 for all three windows,
Mann–Whitney U-test). For the classification of offered object
and reward value, the AUC for offered shape was 0.81, 0.71,
0.59, and 0.66 (Figure 4B upper, p < 0.001 for all four
windows, Mann–Whitney U-test), and for offered color it was
0.50 (Figure 4B lower, p = 0.115, Mann–Whitney U-test). These
results indicated that the information of chosen shape, chosen
color and offered shape were larger than that of value, whereas
offered color and value were not discriminated well in the
present task and data.

Neuronal Representation in Relation to
Object Choice at the Single-Neuron
Level
As population neuronal activities indicating that the monkeys
actually made object choices were confirmed (Figures 3B,C), we
investigated the neuronal representations of offered object and
chosen object during the choice cue or delay period at the single-
neuron level. Perievent time histogram (PETH) of an example
of averaged activity of a single neuron aligned at the onset of
choice cue in a choice task (Figure 5A left) revealed differential
activity according to the shape combination of the offered object
in the 0–0.4-s window from the onset of choice cue (one-way
ANOVA, p = 0.0073). The mutual information of offered shape
of this neuron in the same window was significantly larger than
that of surrogate information, in which the information of offered
shape was randomized and the information of chosen shape was
kept (bootstrap method, p = 0.02; see section “Materials and
Methods” for statistics). Here, we defined this type of neuron as
an “offered shape-type neuron.” This offered shape-type neuron
did not show differential activity according to the offered shape
in the instruction task (p = 0.35) (Figure 5A right). To confirm
the distribution of offered object (shape or color)-type neurons
in choice task, instruction task, or both tasks, we calculated
the proportion of offered object-type neurons for the choice
task and the instruction task separately. For both offered shape-
and color-type neurons, the proportion for both tasks exceeded
the chance level that was expected from the proportion for
choice and instruction task each [x2(1) = 11.945, p < 0.001
for offered color, x2(1) = 6.316, p = 0.012 for offered shape,

Frontiers in Neuroscience | www.frontiersin.org 7 November 2019 | Volume 13 | Article 128361

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01283 November 26, 2019 Time: 18:19 # 8

Nonomura and Samejima Neuronal Signals for Object Choice

FIGURE 3 | Population neuronal activity evidence for object choice during the choice cue and delay periods. (A) Normalized firing rate of monkeys 1 and 2. The firing
rate was normalized for each neuron with the maximum firing rate in a 0.05-s window. (B) Time course of mutual information of chosen object of shape (left) and
color (right) for all recorded neurons (n = 375) aligned at onset of choice cue. Vertical black lines indicate the surrogate distribution of the mutual information of
chosen shape (nshuffles = 10,000) in successive eight 0.2-s windows from onset of choice cue. First and second gray shadows indicate the cue presentation period
(0.4 s) and onset of the first target following variable cue delay period, respectively. Upper black and white triangles indicate significant differences between real
mutual information and surrogate information and non-significant differences between them, respectively. (C) Same as (B) but for the information of offered object.
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TABLE 1 | P-values for the information of chosen and offered objects related to Figure 3.

Object Type Time from onset of choice cue (s)

0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0 1.0–1.2 1.2–1.4 1.4–1.6

Chosen Shape 0.486 0.058 0.090 0.006 0 0 0.002 0

Color 0.282 0.039 0.0013 0 0.418 0.244 0.382 0.147

Offered Shape 0.256 0 0.003 0 0.036 0.965 0.332 0.128

Color 0.100 0.233 0.018 0.351 0.168 0.054 0.260 0.853

Chi-squared test, Figure 5B]. An example of another neuron
(Figure 5C left) showed differential activity according to the
shape of the chosen object in the 1.2–1.6-s window from onset
of choice cue in the choice task (one-way ANOVA, p = 0.0068).
The mutual information of chosen shape of this neuron in
the same window was significantly larger than the surrogate
information, in which the information of chosen shape was
randomized and the information of offered shape was kept
(p = 0.01). We defined this type of neuron as a “chosen shape-
type neuron.” This chosen shape-type neuron did not show
differential activity according to chosen shape in the instruction
task (p = 0.56) (Figure 5C right). Similar to the offered object-
type neurons, we calculated the proportion of chosen object-
type neurons for the choice and instruction tasks separately.
For chosen shape-type neurons, the proportion for both tasks
exceeded the chance level that was expected from the proportion
for only choice and instruction tasks, whereas the proportion for
chosen color-type neurons did not [x2(1) = 10.133, p = 0.015
for chosen shape, x2(1) = 2.293, p = 0.13 for chosen color, Chi-
squared test, Figure 5D]. These results indicated the presence
of offered and chosen object signals at the single-neuron level
during the choice cue or delay period, and these signals were
represented by all three types of neurons (choice, instruction,
and both tasks).

In the present task, following object choice the monkey needed
to release the button during the first or second target-presenting
period (Figure 1). PETH of an example of averaged activity
of a single neuron aligned at onset of choice cue (Figure 6A)
revealed differential activity according to first or second release
in the 0.8-s window after onset of the first target (one-way
ANOVA, p = 2.2 × 10−36). We defined this type of neuron as
a “movement-type neuron.” Mutual information analysis using
task condition of movement (1st and 2nd release) revealed that
the information was not evident during the choice cue and delay
period, but it was strongly represented after onset of the first
target (Figure 6B). We checked the overlap between offered
object-type or chosen object-type neurons with movement-type
neurons (Figures 6C,D). For both offered shape- and color-
type neurons, the proportion overlapping with movement-type
neurons was around or below the chance level [x2(1) = 19.189,
p < 0.001 for offered shape, x2(1) = 0.354, p = 0.552 for offered
color, Chi-squared test, Figure 6C]. For chosen shape- or color-
type neurons, similar to the offered type neurons, the proportion
of overlap with movement-type neurons was around or below
the chance level [x2(1) = 1.132, p = 0.843 for chosen shape,
x2(1) = 4.772, p = 0.0289 for chosen color, Chi-squared test,

Figure 6D]. These results indicated that the object and movement
signals were represented by separate neurons.

DISCUSSION

To study neuronal representation in relation to object choice,
which does not include physical action, in the striatum, we
designed a behavioral task, in which object choice could be
temporally dissociated from movement choice, and trained two
monkeys in the task (Figures 1, 2). We recorded 375 striatal
PANs of the two monkeys (Figure 3A). We calculated the mutual
information using the task condition of the chosen object for
all recorded neurons and performed statistical tests using the
bootstrap method, and found that population striatal activities
represented the information of the chosen object in distinction
from the offered object during the choice cue and delay period,
which indicated that the monkeys actually made an object choice
during the task (Figure 3B and Table 1). We also found the
neuronal representation of offered object in distinction from
chosen object during the period (Figure 3C and Table 1).
For the activity of individual neurons, we investigated the
neuronal representations of the offered object and chosen object
and identified offered object- and chosen object-type neurons
(Figure 5). Furthermore, we also identified that the movement-
type neurons discriminated between the first and second release
during the first target-presenting period (Figures 6A,B). Most
offered object- or chosen object-type neurons did not overlap
with movement-type neurons (Figures 6C,D). These findings
suggested that the presence of object choice-related signals in
the striatum and their signals were represented by other neurons
related to movement.

Previous studies investigated the involvement of the striatum
in action choice using behavioral tasks, in which the alternatives
for choice included both motor and non-motor factors
simultaneously, e.g., alternatives predicting reward values and
motor direction (Takikawa et al., 2002; Samejima et al., 2005;
Lau and Glimcher, 2008; Tai et al., 2012). Although some studies
have examined the neuronal activity of the striatum in relation to
reward expectation without the motor aspect (Lauwereyns et al.,
2002; Cromwell and Schultz, 2003), these behavioral tasks did
not include choices of alternatives. A unique feature of this study
is that object choice (choice for visual feature) could be made
during the choice cue or the delay periods, which was temporally
dissociated from movement choice. Furthermore, in this task,
because two objects were presented in 2 × 2 form spatially in
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FIGURE 4 | Receiver operating characteristic (ROC) analysis for classification of object-visual feature and object-reward value. (A) Surrogate distribution of chosen
object-visual feature and object-reward value. Upper: Surrogate distribution of chosen shape (blue) and value (red) generated from shuffling of chosen value and
shape, respectively (10,000 shuffles) in 0.2-s window showing significance in Figure 3B left. Inset indicates the ROC curve for classification of chosen shape.
Horizontal and vertical lines indicate the false positive and true positive rates, respectively. AUC is the area under the curve. The statistical test for the AUC was
performed by Mann–Whitney U-test (see section “Materials and Methods” for details). Lower: Surrogate distribution of chosen color (blue) and value (red) generated
from shuffled chosen value and shape, respectively (10,000 shuffles) in 0.2-s window showing significance in Figure 3B right. (B) Same as (A) but for offered object
(shape and color) and value. ∗∗∗p < 0.001.

Frontiers in Neuroscience | www.frontiersin.org 10 November 2019 | Volume 13 | Article 128364

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01283 November 26, 2019 Time: 18:19 # 11

Nonomura and Samejima Neuronal Signals for Object Choice

FIGURE 5 | Neuronal representation in relation to object choice at the single-neuron level. (A) Left: Example of time course of averaged single neuronal activity
representing the offered shape, defined as an offered shape-type neuron (0–0.4-s window from onset of choice cue; one-way ANOVA, p = 0.0073; bootstrap,
p = 0.02). First and second gray shadows indicate cue presentation period (0.4 s) and onset of the first target following a variable cue delay period (0.8–1.2 s),
respectively. Right: Firing rate, in the same neuron, sorted by offered and chosen shape in instruction task (one-way ANOVA, p = 0.35). (B) Left and right pie charts
show the proportion of offered shape- and color-type neurons among all recorded neurons (n = 375). Green, orange, and blue indicate significant differences
(p < 0.05) in both choice and instruction task, choice task only, and instruction task only, respectively. (C) Left: Example of average time course of single neuronal
activity representing the chosen shape, defined as a chosen shape-type neuron (1.2–1.6-s window from onset of choice cue; one-way ANOVA, p = 3.3 × 10−5;
bootstrap, p = 0.01). First and second gray shadows indicate cue presentation period (0.4 s) and onset of the first target following a variable cue delay period
(0.8–1.2 s), respectively. Right: Firing rate, in the same neuron, sorted by offered and chosen shape in instruction task (one-way ANOVA, p = 0.56). (D) Same as (A)
but for chosen object type neurons.

four corners, spatial information of the two objects was hashed,
which means that the object choice could not be made for spatial-
specific position. This is the first study to reveal the neuronal
representations in the striatum in relation to object choice by
designing and adopting a behavioral task, in which the period
used to make an object choice is explicitly extracted.

We were unable to confirm the evidence that monkeys actually
made object choice through behavioral analysis (Figures 2E,F).
However, in neuronal analysis, we found that the neuronal
representation of chosen object was distinct from offered object
during choice cue and delay period (Figure 3B), which indicated
that object choice was made. We also found the neuronal
representation of offered object during the period (Figure 3C).
These representations of chosen and offered object were regarded
as post- and pre-decision signals without physical action,
respectively. In fact, chosen shape and offered shape in Figure 3
showed a dynamically significant representation in the order of
the decision process (from pre- to post-decision signals). For
the color representation, we were unable to explain the temporal
dynamics like shape information. Further research is required to
reveal the mechanisms of different signals such as shape, color,

and offered and chosen information were temporally represented
and related each other.

In the present study, we found the neuronal representations
of the object-visual feature (chosen shape, color, and offered
shape) rather than that of the reward value (Figure 4). Although
this seems like a paradoxical result in comparison with previous
studies reporting value-related signals in the striatum, some
previous studies (Samejima et al., 2005; Lau and Glimcher, 2008)
have reported that there are lots of non-value neurons that show
a differential response according to movement direction when
animals make a decision, as well as value type neurons. Although
there is a discrepancy between present and previous tasks
regarding whether the alternatives for choice include physical
action or not, the non-value neurons in previous and present
studies could be interpreted as the same type of neurons that
represent the option signal without value. Therefore, the results
of neuronal representation for object-visual feature in this study
are consistent with those of previous studies.

Anatomically, the striatum has inputs from various cerebral
cortical areas, including the prefrontal, higher-order motor, and
primary motor cortex, and it returns these inputs via the thalamus
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FIGURE 6 | Neuronal representation in relation to movement choice.
(A) Example of time course of averaged single neuronal activity representing
movement choice (0–0.8-s window from onset of the first target; one-way
ANOVA, p = 2.2 × 10−36). First and second gray shadows indicate cue
presentation period (0.4 s) and onset of the first target following a variable cue
delay period (0.8–1.2 s), respectively. (B) Time course of mutual information of
movement for all recorded neurons (n = 375) aligned at onset of choice cue.
(C) Overlap offered shape- (left) and color- (right) type neurons with
movement-type neurons among all recorded neurons (n = 375). Green,
orange, and blue indicate significant differences (p < 0.05) in both offered
shape (or color) and movement, offered shape (or color) only, and movement
only, respectively. (D) Same as (C) but for chosen object type neurons.

largely in parallel (Alexander et al., 1986). A conceptual model
has been proposed, in which the prefrontal and motor loops are
involved in object and movement choice, respectively (Samejima
and Doya, 2007). In addition, afferent nerves from different
functional cortical regions on the striatum partially converge
(Yeterian and Van Hoesen, 1978; Selemon and Goldman-
Rakic, 1985), and it is proposed that this convergence plays
a role in integrating information across reward, cognitive,
and motor functions (Haber, 2016). Several studies of primate
electrophysiology have suggested that the OFC and the SEF play
an important role in reward-based action choice without the
motor aspect (Padoa-Schioppa and Assad, 2006; Padoa-Schioppa,
2009; So and Stuphorn, 2010; Cai and Padoa-Schioppa, 2014;
Chen and Stuphorn, 2015). Non-spatial visual information about

color or shape is represented in the prefrontal cortex (Divac
et al., 1967; Levy et al., 1997; Sakagami and Tsutsui, 1999;
Lauwereyns et al., 2001). The anterior caudate receives input
mainly from the prefrontal cortex, including the dorsolateral
prefrontal cortex, the OFC, the anterior cingulate cortex, and the
SEF (Yeterian and Van Hoesen, 1978; Selemon and Goldman-
Rakic, 1985; Alexander et al., 1986; Haber, 2016). Considering
the anatomical connections from the prefrontal cortex to the
anterior caudate and its neuronal representation, including
the present results, object choice could be made through
the prefrontal loop including the anterior caudate and the
prefrontal cortex by using information about its non-spatial value
and attributes of object. However, human functional magnetic
resonance imaging (fMRI) studies have reported the presence
of object choice signals in the ventromedial prefrontal cortex
(Wunderlich et al., 2010; Hare et al., 2011), projecting mainly
to the ventral striatum. The neuronal representations for the
object choice in each striatal subarea need to be investigated.
On the other hand, for movement choice, several studies have
suggested that the premotor cortex plays an important role
(Schieber, 2000; Lauwereyns et al., 2002; Nakayama et al.,
2008; Thura and Cisek, 2014). The present study revealed the
presence of movement-related signals (Figure 6). Considering
the anatomical connections, their movement-related signals
might be processed within the premotor loop. It will be
necessary to classify the distribution of neuronal representation
in relation to object choice and movement choice based on the
striatal subregion.

Taken together, the investigation of object choice has so far
concentrated on the cortex. Our results reveal the neuronal
representation in relation to object choice in the striatum
and show the importance of cortico-basal ganglia circuits in
decision-making.

DATA AVAILABILITY STATEMENT

All data that support the findings of this study are available
from the Lead Contact (satoshi.nonomura@gmail.com) upon
reasonable request.

ETHICS STATEMENT

All experiments were approved by the Animal Research
Ethics Committee of Tamagawa University (animal experiment
protocol H21/27-14) and were carried out in accordance with
the Fundamental Guidelines for Proper Conduct of Animal
Experiments and Related Activities in Academic Research
Institutions [Ministry of Education, Culture, Sports, Science and
Technology (MEXT) of Japan] and the Guidelines for Animal
Experimentation in Neuroscience (Japan Neuroscience Society).
All surgical procedures were performed under appropriate
anesthesia, and all efforts were made to minimize suffering. Our
procedures for primate animal experiments were established in
previous studies at Tamagawa University (Nakayama et al., 2008;
Yamagata et al., 2009; Hashimoto et al., 2010; Saga et al., 2011;
Arimura et al., 2013).

Frontiers in Neuroscience | www.frontiersin.org 12 November 2019 | Volume 13 | Article 128366

mailto:satoshi.nonomura@gmail.com
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01283 November 26, 2019 Time: 18:19 # 13

Nonomura and Samejima Neuronal Signals for Object Choice

AUTHOR CONTRIBUTIONS

SN and KS designed and performed the research, analyzed the
data, and wrote the manuscript.

FUNDING

This work was supported by JSPS KAKENHI Grant
Number JP12J56654 and MEXT KAKENHI Grant Numbers

JP20680020, JP22120514, JP24120716, JP16H01725, JP19K16300,
and JP19H04988.

ACKNOWLEDGMENTS

We thank E. Hoshi, J. Tanji, K. Doya, and members of the
Samejima and Hoshi laboratories for general discussion and
technical support; Y. Sakai and K. Mitani for help with statistical
analysis; and K. Hamatani for administrative support.

REFERENCES
Alexander, G. E., DeLong, M. R., and Strick, P. L. (1986). Parallel organization

of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev.
Neurosci. 9, 357–381. doi: 10.1146/annurev.ne.09.030186.002041

Aosaki, T., Tsubokawa, H., Ishida, A., Watanabe, K., Graybiel, A. M.,
and Kimura, M. (1994). Responses of tonically active neurons in the
primate’s striatum undergo systematic changes during behavioral sensorimotor
conditioning. J. Neurosci. 14, 3969–3984. doi: 10.1523/JNEUROSCI.14-06-
03969.1994

Arimura, N., Nakayama, Y., Yamagata, T., Tanji, J., and Hoshi, E. (2013).
Involvement of the globus pallidus in behavioral goal determination and action
specification. J. Neurosci. 33, 13639–13653. doi: 10.1523/JNEUROSCI.1620-13.
2013

Beste, C., Saft, C., Andrich, J., Gold, R., and Falkenstein, M. (2008). Stimulus-
response compatibility in Huntington’s disease: a cognitive-neurophysiological
analysis. J. Neurophysiol. 99, 1213–1223. doi: 10.1152/jn.01152.2007

Cai, X., Kim, S., and Lee, D. (2011). Heterogeneous coding of temporally
discounted values in the dorsal and ventral striatum during intertemporal
choice. Neuron 69, 170–182. doi: 10.1016/j.neuron.2010.11.041

Cai, X., and Padoa-Schioppa, C. (2014). Contributions of orbitofrontal and lateral
prefrontal cortices to economic choice and the good-to-action transformation.
Neuron 81, 1140–1151. doi: 10.1016/j.neuron.2014.01.008

Chen, X., and Stuphorn, V. (2015). Sequential selection of economic good and
action in medial frontal cortex of macaques during value-based decisions. eLife
4:e09418. doi: 10.7554/eLife.09418

Cisek, P. (2012). Making decisions through a distributed consensus. Curr. Opin.
Neurobiol. 22, 927–936. doi: 10.1016/j.conb.2012.05.007

Cromwell, H. C., and Schultz, W. (2003). Effects of expectations for different
reward magnitudes on neuronal activity in primate striatum. J. Neurophysiol.
89, 2823–2838. doi: 10.1152/jn.01014.2002

Divac, I., Rosvold, H. E., and Szwarcbart, M. K. (1967). Behavioral effects of
selective ablation of the caudate nucleus. J. Comp. Physiol. Psychol. 63, 184–190.
doi: 10.1037/h0024348

Flaherty, A. W., and Graybiel, A. M. (1993). Two input systems for body
representations in the primate striatal matrix: experimental evidence in the
squirrel monkey. J. Neurosci. 13, 1120–1137. doi: 10.1523/jneurosci.13-03-
01120.1993

Frank, M. J., Seeberger, L. C., and O’Reilly, R. C. (2004). By carrot or by stick:
cognitive reinforcement learning in parkinsonism. Science 306, 1940–1943. doi:
10.1126/science.1102941

Grabenhorst, F., Hernadi, I., and Schultz, W. (2012). Prediction of economic choice
by primate amygdala neurons. Proc. Natl. Acad. Sci. U.S.A. 109, 18950–18955.
doi: 10.1073/pnas.1212706109

Graybiel, A. M., and Rauch, S. L. (2000). Toward a neurobiology of obsessive-
compulsive disorder. Neuron 28, 343–347. doi: 10.1016/s0896-6273(00)
00113-6

Haber, S. N. (2016). Corticostriatal circuitry. Dialogues Clin. Neurosci. 18, 7–21.
Haber, S. N., and Knutson, B. (2010). The reward circuit: linking primate anatomy

and human imaging. Neuropsychopharmacology 35, 4–26. doi: 10.1038/npp.
2009.129

Hare, T. A., Schultz, W., Camerer, C. F., O’Doherty, J. P., and Rangel, A. (2011).
Transformation of stimulus value signals into motor commands during simple

choice. Proc. Natl. Acad. Sci. U.S.A. 108, 18120–18125. doi: 10.1073/pnas.
1109322108

Hashimoto, M., Takahara, D., Hirata, Y., Inoue, K., Miyachi, S., Nambu, A.,
et al. (2010). Motor and non-motor projections from the cerebellum to
rostrocaudally distinct sectors of the dorsal premotor cortex in macaques. Eur.
J. Neurosci. 31, 1402–1413. doi: 10.1111/j.1460-9568.2010.07151.x

Hikosaka, O., Sakamoto, M., and Usui, S. (1989). Functional properties of monkey
caudate neurons. I. activities related to saccadic eye movements. J. Neurophysiol.
61, 780–798. doi: 10.1152/jn.1989.61.4.780

Lau, B., and Glimcher, P. W. (2008). Value representations in the
primate striatum during matching behavior. Neuron 58, 451–463. doi:
10.1016/j.neuron.2008.02.021

Lauwereyns, J., Sakagami, M., Tsutsui, K., Kobayashi, S., Koizumi, M., and
Hikosaka, O. (2001). Responses to task-irrelevant visual features by primate
prefrontal neurons. J. Neurophysiol. 86, 2001–2010. doi: 10.1152/jn.2001.86.4.
2001

Lauwereyns, J., Takikawa, Y., Kawagoe, R., Kobayashi, S., Koizumi, M., Coe, B.,
et al. (2002). Feature-based anticipation of cues that predict reward in monkey
caudate nucleus. Neuron 33, 463–473. doi: 10.1016/s0896-6273(02)00571-8

Levy, R., Friedman, H. R., Davachi, L., and Goldman-Rakic, P. S. (1997).
Differential activation of the caudate nucleus in primates performing spatial
and nonspatial working memory tasks. J. Neurosci. 17, 3870–3882. doi: 10.1523/
jneurosci.17-10-03870.1997

Mink, J. W. (2003). The basal ganglia and involuntary movements: impaired
inhibition of competing motor patterns. Arch. Neurol. 60, 1365–1368. doi:
10.1001/archneur.60.10.1365

Nakayama, Y., Yamagata, T., Tanji, J., and Hoshi, E. (2008). Transformation of a
virtual action plan into a motor plan in the premotor cortex. J. Neurosci. 28,
10287–10297. doi: 10.1523/JNEUROSCI.2372-08.2008

Nonomura, S., Nishizawa, K., Sakai, Y., Kawaguchi, Y., Kato, S., Uchigashima, M.,
et al. (2018). Monitoring and updating of action selection for goal-directed
behavior through the striatal direct and indirect pathways. Neuron 99, 1302.
e5–1314.e5. doi: 10.1016/j.neuron.2018.08.002

Optican, L. M., and Richmond, B. J. (1987). Temporal encoding of two-
dimensional patterns by single units in primate inferior temporal cortex. III.
Information theoretic analysis. J. Neurophysiol. 57, 162–178. doi: 10.1152/jn.
1987.57.1.162

Padoa-Schioppa, C. (2009). Range-adapting representation of economic value
in the orbitofrontal cortex. J. Neurosci. 29, 14004–14014. doi: 10.1523/
JNEUROSCI.3751-09.2009

Padoa-Schioppa, C. (2011). Neurobiology of economic choice: a good-based
model. Annu. Rev. Neurosci. 34, 333–359. doi: 10.1146/annurev-neuro-061010-
113648

Padoa-Schioppa, C., and Assad, J. A. (2006). Neurons in the orbitofrontal
cortex encode economic value. Nature 441, 223–226. doi: 10.1038/nature
04676

Saga, Y., Hirata, Y., Takahara, D., Inoue, K., Miyachi, S., Nambu, A., et al. (2011).
Origins of multisynaptic projections from the basal ganglia to rostrocaudally
distinct sectors of the dorsal premotor area in macaques. Eur. J. Neurosci. 33,
285–297. doi: 10.1111/j.1460-9568.2010.07492.x

Sakagami, M., and Tsutsui, K. (1999). The hierarchical organization of decision
making in the primate prefrontal cortex. Neurosci. Res. 34, 79–89. doi: 10.1016/
s0168-0102(99)00038-3

Frontiers in Neuroscience | www.frontiersin.org 13 November 2019 | Volume 13 | Article 128367

https://doi.org/10.1146/annurev.ne.09.030186.002041
https://doi.org/10.1523/JNEUROSCI.14-06-03969.1994
https://doi.org/10.1523/JNEUROSCI.14-06-03969.1994
https://doi.org/10.1523/JNEUROSCI.1620-13.2013
https://doi.org/10.1523/JNEUROSCI.1620-13.2013
https://doi.org/10.1152/jn.01152.2007
https://doi.org/10.1016/j.neuron.2010.11.041
https://doi.org/10.1016/j.neuron.2014.01.008
https://doi.org/10.7554/eLife.09418
https://doi.org/10.1016/j.conb.2012.05.007
https://doi.org/10.1152/jn.01014.2002
https://doi.org/10.1037/h0024348
https://doi.org/10.1523/jneurosci.13-03-01120.1993
https://doi.org/10.1523/jneurosci.13-03-01120.1993
https://doi.org/10.1126/science.1102941
https://doi.org/10.1126/science.1102941
https://doi.org/10.1073/pnas.1212706109
https://doi.org/10.1016/s0896-6273(00)00113-6
https://doi.org/10.1016/s0896-6273(00)00113-6
https://doi.org/10.1038/npp.2009.129
https://doi.org/10.1038/npp.2009.129
https://doi.org/10.1073/pnas.1109322108
https://doi.org/10.1073/pnas.1109322108
https://doi.org/10.1111/j.1460-9568.2010.07151.x
https://doi.org/10.1152/jn.1989.61.4.780
https://doi.org/10.1016/j.neuron.2008.02.021
https://doi.org/10.1016/j.neuron.2008.02.021
https://doi.org/10.1152/jn.2001.86.4.2001
https://doi.org/10.1152/jn.2001.86.4.2001
https://doi.org/10.1016/s0896-6273(02)00571-8
https://doi.org/10.1523/jneurosci.17-10-03870.1997
https://doi.org/10.1523/jneurosci.17-10-03870.1997
https://doi.org/10.1001/archneur.60.10.1365
https://doi.org/10.1001/archneur.60.10.1365
https://doi.org/10.1523/JNEUROSCI.2372-08.2008
https://doi.org/10.1016/j.neuron.2018.08.002
https://doi.org/10.1152/jn.1987.57.1.162
https://doi.org/10.1152/jn.1987.57.1.162
https://doi.org/10.1523/JNEUROSCI.3751-09.2009
https://doi.org/10.1523/JNEUROSCI.3751-09.2009
https://doi.org/10.1146/annurev-neuro-061010-113648
https://doi.org/10.1146/annurev-neuro-061010-113648
https://doi.org/10.1038/nature04676
https://doi.org/10.1038/nature04676
https://doi.org/10.1111/j.1460-9568.2010.07492.x
https://doi.org/10.1016/s0168-0102(99)00038-3
https://doi.org/10.1016/s0168-0102(99)00038-3
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01283 November 26, 2019 Time: 18:19 # 14

Nonomura and Samejima Neuronal Signals for Object Choice

Samejima, K., and Doya, K. (2007). Multiple representations of belief states and
action values in corticobasal ganglia loops. Ann. N. Y. Acad. Sci. 1104, 213–228.
doi: 10.1196/annals.1390.024

Samejima, K., Ueda, Y., Doya, K., and Kimura, M. (2005). Representation of action-
specific reward values in the striatum. Science 310, 1337–1340. doi: 10.1126/
science.1115270

Schieber, M. H. (2000). Inactivation of the ventral premotor cortex biases the
laterality of motoric choices. Exp. Brain Res. 130, 497–507. doi: 10.1007/
s002219900270

Selemon, L. D., and Goldman-Rakic, P. S. (1985). Longitudinal topography and
interdigitation of corticostriatal projections in the rhesus monkey. J. Neurosci.
5, 776–794. doi: 10.1523/jneurosci.05-03-00776.1985

So, N. Y., and Stuphorn, V. (2010). Supplementary eye field encodes option and
action value for saccades with variable reward. J. Neurophysiol. 104, 2634–2653.
doi: 10.1152/jn.00430.2010

Tai, L. H., Lee, A. M., Benavidez, N., Bonci, A., and Wilbrecht, L. (2012). Transient
stimulation of distinct subpopulations of striatal neurons mimics changes in
action value. Nat. Neurosci. 15, 1281–1289. doi: 10.1038/nn.3188

Takikawa, Y., Kawagoe, R., Itoh, H., Nakahara, H., and Hikosaka, O. (2002).
Modulation of saccadic eye movements by predicted reward outcome. Exp.
Brain Res. 142, 284–291. doi: 10.1007/s00221-001-0928-1

Thura, D., and Cisek, P. (2014). Deliberation and commitment in the premotor and
primary motor cortex during dynamic decision making. Neuron 81, 1401–1416.
doi: 10.1016/j.neuron.2014.01.031

Wunderlich, K., Rangel, A., and O’Doherty, J. P. (2010). Economic choices can be
made using only stimulus values. Proc. Natl. Acad. Sci. U.S.A. 107, 15005–15010.
doi: 10.1073/pnas.1002258107

Yamada, H., Matsumoto, N., and Kimura, M. (2007). History- and current
instruction-based coding of forthcoming behavioral outcomes in the striatum.
J. Neurophysiol. 98, 3557–3567. doi: 10.1152/jn.00779.2007

Yamagata, T., Nakayama, Y., Tanji, J., and Hoshi, E. (2009). Processing of
visual signals for direct specification of motor targets and for conceptual
representation of action targets in the dorsal and ventral premotor cortex.
J. Neurophysiol. 102, 3280–3294. doi: 10.1152/jn.00452.2009

Yeterian, E. H., and Van Hoesen, G. W. (1978). Cortico-striate projections in the
rhesus monkey: the organization of certain cortico-caudate connections. Brain
Res. 139, 43–63. doi: 10.1016/0006-8993(78)90059-8

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Nonomura and Samejima. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 14 November 2019 | Volume 13 | Article 128368

https://doi.org/10.1196/annals.1390.024
https://doi.org/10.1126/science.1115270
https://doi.org/10.1126/science.1115270
https://doi.org/10.1007/s002219900270
https://doi.org/10.1007/s002219900270
https://doi.org/10.1523/jneurosci.05-03-00776.1985
https://doi.org/10.1152/jn.00430.2010
https://doi.org/10.1038/nn.3188
https://doi.org/10.1007/s00221-001-0928-1
https://doi.org/10.1016/j.neuron.2014.01.031
https://doi.org/10.1073/pnas.1002258107
https://doi.org/10.1152/jn.00779.2007
https://doi.org/10.1152/jn.00452.2009
https://doi.org/10.1016/0006-8993(78)90059-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


ORIGINAL RESEARCH
published: 29 November 2019
doi: 10.3389/fnins.2019.01288

Frontiers in Neuroscience | www.frontiersin.org 1 November 2019 | Volume 13 | Article 1288

Edited by:

Kenway Louie,

New York University, United States

Reviewed by:

Maria Knikou,

The City University of New York

(CUNY), United States

Winfried Mayr,

Medical University of Vienna, Austria

*Correspondence:

Soichiro Fujiki

fujiki@dokkyomed.ac.jp

Specialty section:

This article was submitted to

Decision Neuroscience,

a section of the journal

Frontiers in Neuroscience

Received: 28 June 2019

Accepted: 14 November 2019

Published: 29 November 2019

Citation:

Fujiki S, Aoi S, Tsuchiya K, Danner SM,

Rybak IA and Yanagihara D (2019)

Phase-Dependent Response to

Afferent Stimulation During Fictive

Locomotion: A Computational

Modeling Study.

Front. Neurosci. 13:1288.

doi: 10.3389/fnins.2019.01288

Phase-Dependent Response to
Afferent Stimulation During Fictive
Locomotion: A Computational
Modeling Study

Soichiro Fujiki 1*, Shinya Aoi 2, Kazuo Tsuchiya 2, Simon M. Danner 3, Ilya A. Rybak 3 and

Dai Yanagihara 4

1Department of Physiology and Biological Information, Dokkyo Medical University School of Medicine, Mibu, Japan,
2Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan,
3Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States,
4Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan

Central pattern generators (CPGs) in the spinal cord generate rhythmic neural activity

and control locomotion in vertebrates. These CPGs operate under the control of sensory

feedback that affects the generated locomotor pattern and adapt it to the animal’s

biomechanics and environment. Studies of the effects of afferent stimulation on fictive

locomotion in immobilized cats have shown that brief stimulation of peripheral nerves

can reset the ongoing locomotor rhythm. Depending on the phase of stimulation and

the stimulated nerve, the applied stimulation can either shorten or prolong the current

locomotor phase and the locomotor cycle. Here, we used a mathematical model of a

half-center CPG to investigate the phase-dependent effects of brief stimulation applied

to CPG on the CPG-generated locomotor oscillations. The CPG in the model consisted

of two half-centers mutually inhibiting each other. The rhythmic activity in each half-center

was based on a slowly inactivating, persistent sodium current. Brief stimulation was

applied to CPG half-centers in different phases of the locomotor cycle to produce

phase-dependent changes in CPG activity. The model reproduced several results from

experiments on the effect of afferent stimulation of fictive locomotion in cats. The

mechanisms of locomotor rhythm resetting under different conditions were analyzed

using dynamic systems theory methods.

Keywords: central pattern generator, half-center CPG, afferent control of CPG, phase-dependent response,

dynamic structure

INTRODUCTION

The mammalian spinal cord contains neuronal circuitry that can generate a basic locomotor
rhythm and produce the alternating flexor and extensor motoneuron activities underlying
locomotion. Although this locomotor central pattern generator (CPG) can operate in the absence
of sensory feedback (reviewed by Grillner, 1981; Rossignol, 1996; Orlovsky et al., 1999; Rossignol
et al., 2006), afferent feedback plays a crucial role in adjusting the locomotor pattern to the motor
task, the environment, and the biomechanical characteristics of the limbs and body (e.g., Pearson,
2004; Rossignol et al., 2006). Continuous electrical stimulation of the midbrain locomotor region
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in an immobilized decerebrate cat produces “fictive locomotion”
consisting of rhythmic alternating activation of flexor and
extensor motoneurons similar to that occurring during normal
locomotion in an intact animal (see Rossignol, 1996). To
investigate the effects of afferent inputs on the locomotor pattern
generated by the CPG and step cycle timing, researchers often
use the fictive locomotor preparations while applying stimulation
to flexor or extensor sensory afferents (e.g., Guertin et al., 1995;
Perreault et al., 1995; McCrea, 2001; Stecina et al., 2005). These
studies revealed that inmany cases, afferent stimulation can delay
or accelerate the phase transition within the ongoing step cycle
with or without changing the timing of the subsequent step cycles
(Rybak et al., 2006b; McCrea and Rybak, 2007).

Although the anatomical structure of the CPG circuit remains
unclear, the use of relatively simple mathematical models
of CPGs allows the study of the general effects of afferent
stimulation on CPG operation from a dynamic viewpoint. In
particular, half-center type CPG models were previously used to
reproduce some effects of sensory afferent stimulation on fictive
locomotor pattern in cats (Rybak et al., 2006b).

The goal of the present study was to further investigate the
mechanism for the phase-dependent response of the locomotor
pattern during fictive locomotion using a simplified half-center
CPG model. Specifically, we applied stimulation to the CPG
model in different phases of the locomotor cycle and examined
how the temporal activity of the CPG changed. The use of a
relatively simple CPG model allowed us to apply the dynamic
system methods and perform mathematical analysis to fully
characterize the phase-dependent responses of the CPG to
applied stimulation.

METHODS

Model
It has been suggested that the rhythmic pattern of the CPG
activity is determined in the rhythm generator (RG) network of
the CPG (Rybak et al., 2006a,b). In the present study, the model
(Figure 1) consisted of two neuron populations representing RG
centers (flexor RG-F and extensor RG-E) and two populations of
inhibitory interneurons (In-F, In-E), providing mutual inhibition
between the flexor and extensor centers. Each population was
described as an activity-based (non-spiking) neuron model
(Ermentrout, 1994; Markin et al., 2010; Molkov et al., 2015;
Danner et al., 2016, 2017). The state of each neuron was
characterized by the membrane potential Vi (i = F, E, IF, IE),
where the indexes F and E are used for the RG-F and RG-E
neurons, respectively, and the indexes IF and IE are used for
the In-F and In-E neurons, respectively. The RG-F and RG-E
neurons incorporated a persistent (slowly inactivating) sodium
current that defined intrinsic rhythmogenic properties of these
neurons. The intrinsic oscillation in each RG neuron depended
on the variable hi (i = F, E) that defined slow inactivation of
the persistent sodium channels. Each RG center could produce
rhythmic activities; however, if uncoupled, the extensor center
was in the tonic regime due to a supraspinal drive and produced
sustained activity. Rhythmic oscillations of the RG were defined
by the flexor centers, which provided rhythmic inhibition of

the extensor center through In-F. The supraspinal drive to
the flexor center determined the oscillation frequency. Synaptic
interactions between all neurons in the model are shown in
Figure 1. For the state variable of this model, we used V =
[VF,VE,VIF,VIE]

T and h =
[

hF, hE
]T
.

The dynamics of the membrane potential Vi of the RG
neurons (i = F, E) and the interneurons (i = IF, IE) is
described as

CV̇i =
{

−INaP
(

Vi, hi
)

− ILeak (Vi) − IiSynE (V) − IiSynI (V) i = E, F

−ILeak (Vi) − IiSynE (V) − IiSynI (V) i = IF , IE
(1)

where C is the membrane capacitance, INaP is the persistent
sodium current, ILeak is the leak current, and IiSynE and IiSynI
are the currents by excitatory synapses and inhibitory synapses,
respectively. The ionic current INaP and leak current ILeak are
described as

INap
(

Vi, hi
)

= ĝNapmNap (Vi) hi {Vi − ENa} i = F, E

ILeak (Vi) =
{

ĝRG
Leak

{

Vi − ERG
Leak

}

i = F, E

ĝInRG
Leak

{

Vi − EInRG
Leak

}

i = IF, IE
(2)

where ĝNap, ĝ
RG
Leak

, and ĝInRG
Leak

are the maximum conductances of

the corresponding current, and ENa, E
RG
Leak

, and EInRG
Leak

are the
reversal potentials of the corresponding current. In addition,
mNap is the activation of the sodium channel of the RG neurons
and is described as

mNap(Vi) = 1

1+exp
(

− Vi+40.0
6.0

) i = F, E (3)

The dynamics of the inactivation of the sodium channel hi of the
RG neurons (i = F, E) is given by

τ (Vi) ḣi = h∞ (Vi) − hi i = F, E (4)

where

h∞ (Vi) = 1

1+ exp
(

Vi+45.0
4.0

) (5)

τ (Vi) = 320+ 320

cosh
(

Vi+35.0
15.0

) ms i = F, E

The currents generated by the synapses IiSynE and IiSynI are

given by

IiSynE (V) = ĝSynE
{

Vi − ESynE
}







∑

j={F,E,IF,IE}
aijf

(

Vj

)

+ cid + wisi







IiSynI (V) = ĝSynI
{

Vi − ESynI
}







∑

j={F,E,IF,IE}
bijf

(

Vj

)







i = F, E, IE, IF (6)

where ĝSynE and ĝSynI are the maximum conductances of the
corresponding current, ESynE and ESynI are the reversal potentials
of the corresponding current, d is the tonic drive from the
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Extensor RG neuron (RG-E) 

Interneuron for RG-F (In-F)
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FIGURE 1 | Model schematic of the rhythm generator (RG) network and afferent inputs. The RG network is composed of flexor (RG-F) and extensor (RG-E) centers

inhibiting each other via inhibitory interneurons In-F and In-E, respectively. The supraspinal drive provides excitation to the RG-F and RG-E neurons defining the

frequency of oscillations. Sensory afferents can synaptically excite both RG neurons and inhibitory interneurons.

supraspinal region, si (i = F, E, IF, IE) is the feedback input from
sensory fibers, and aij, bij, ci, and wi (i, j = F, E, IF, IE) are the
weight coefficients. Moreover, the output function f translates V
into the integrated population activity and is given by

f (Vi) =







0 Vi < Vth

Vi − Vth Vmax > Vi ≥ Vth

1 Vi ≥ Vmax

i = F, E, IF, IE (7)

where Vth and Vmax are the lower and upper threshold potentials,
respectively. The differential equations of Equations (1), (2), and
(4) were solved numerically using the fourth-order Runge-Kutta
method with a step size of 0.01ms. The parameter values are
shown in Appendix A.

Modeling the Effects of Phase-Dependent
Afferent Stimulation
The CPG model produced rhythmic activity and exhibited stable
oscillations, as shown in Figure 2. The active phase for each
neuron was defined as the time interval during which the
neuron’s potential was higher than Vth and the silent phase as
the time interval when the potential was lower than Vth. The
cycle period T was defined as the time interval between two
consecutive onsets of the active phase. The phase of oscillation
was defined as φ = 2πt/T ∈ [0, 2π).

The CPG also received external (“sensory”) signals (Figure 1).
Based on a previous study (Demir et al., 1997), which investigated
the response of a single neuron model to stimulations, we used
depolarizing stimuli applied at different phases of oscillatory
activity. Specifically, after oscillation stabilized, we applied a
200ms stimulus to the flexor (RG-F and In-F) or extensor (RG-
E and In-E) neurons. The intensity of stimulation was sF = sIF
= 0.2 and sE = sIE = 0.0 for the flexor side and sF = sIF = 0.0
and sE = sIE = 0.2 for the extensor side in Equation (6). Suppose
that the neuron activity is perturbed by the stimulation at phase
φs ∈ [0, 2π) and the period changes from T to α (φs), as shown

in Figure 2. To show the phase shift of the neuron activity in
response to the stimulation, we define

1(φs) = 2π
α (φs) − T

T
(8)

Calculation of Nullcline
The nullcline is a set of points at which the derivative of a
differential equation is equal to zero. It reflects the structure
of the solution of the differential equation. To investigate the
mechanism of the phase-dependent response of the CPG model,
we used a nullcline-based method. The state variable of the CPG
model is given by (V , h). The nullclines for the RG neurons are
given by

NV
i =

{

(V , h) | V̇i = 0
}

Nh
i =

{

(V , h) | ḣi = 0
}

i = F, E (9)

To clarify the dynamics of each RG neuron, we focused on theVi-
hi space (i = F, E) for the nullclines by assuming that the other
variables Vj (j = F, E, IF, IE, j 6= i) and hk (k = F, E k 6= i) are on
the stable oscillation with phase φ. Therefore, we modify NV

i and

Nh
i in Equation (9) as

N̂V
i (φ) =

{(

Vi, hi
)

| V̇i = 0, Vj = Vj (φ) , hk = hk(φ)
}

N̂h
i (φ) =

{

(

Vi, hi
)

| ḣi = 0, Vj = Vj (φ) , hk = hk(φ)
}

(10)

i = F, E j = F, E, IF, IE j 6= i k = F, E k 6= i

For N̂V
i (φ) and N̂h

i (φ), we can write hi = hi(Vi;φ), as explained
in Appendix B.

RESULTS

Phase-Dependent Response
Figure 3A shows the phase shift 1 of the RG-F neuron activity
after stimulation of sensory inputs on the flexor side at φs. When
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FIGURE 2 | Changes of membrane potential of RG-F (top panel) and RG-E (bottom panel) neurons (A) without any stimulation, (B) with stimulation applied to the

flexor side during flexor phase, and (C) with stimulation applied to the flexor side during extensor phase. The red bars indicate the application of stimulation. Gray

regions indicate active phases. The applied stimulation increased the duration of the current flexor phase and cycle period in (B) and initiated the flexor phase and

decreased the cycle period in (C). Both stimulations produced phase shifts.

stimulation was applied during the silent phase of RG-F (2.51
≤ φs < 2π), it caused the transition to the active phase to occur
earlier and this advanced start decreased with φs. In contrast,
almost no phase shift occurred when stimulation was applied
at the beginning of the active phase of RG-F (0 ≤ φs < 1.00).
However, the neuron activity was delayed by the stimulation

during the middle and end of the active phase (1.00 ≤ φs <

2.51). These trends were similar to those observed during fictive
locomotion in cats (Schomburg et al., 1998; Frigon et al., 2010),
as shown in Figure 3B. Figure 3C shows 1 of the RG-F neuron
activity by the stimulating sensory fibers of the extensor side. The
active and silent phase of the RG-F neuron corresponds to the
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FIGURE 3 | (A) Phase-dependent response of the RG-F neuron by stimulating

sensory fibers of the flexor side. (B) Response against flexor muscle

stimulation during fictive locomotion in cats (adapted from Schomburg et al.,

1998). The flexion (extension) phase corresponds to the active (silent) phase of

the RG-F neuron of the CPG model. (C) Phase-dependent response of the

RG-F neuron by stimulating sensory inputs on the extensor side.

silent and active phase, respectively, of the RG-E neuron. The
neuron activity was advanced at the middle of the silent phase of
the RG-E neuron and was delayed at the end of the active phase of
the RG-E neuron. The response of the stimulation of the extensor
side was qualitatively similar to that of the flexor side. Moreover,
these trends were similar to those seen in animal experiments
(Schomburg et al., 1998; Frigon et al., 2010). The effects of the
stimulation duration and intensity are further investigated in
Figure S1 in Appendix C.

Analysis on Nullclines
Even though the oscillatory behavior of the RG-E neuron was
similar to that of the RG-F neuron as shown in Figure 2, the
oscillating mechanism was different due to different nullclines
as suggested in previous studies (Spardy et al., 2011a,b; Molkov
et al., 2015). To understand this mechanism, we briefly explain
the roles of nullclines in our neuron model. Figure 4A shows
the nullclines N̂V

F , N̂
V
E , N̂

h
F, and N̂h

E with the vector field for the

case without synaptic connections from other neurons. While N̂h
F

and N̂h
E are identical and have a sigmoid shape, N̂V

F and N̂V
E have

different cubic curves. In particular, while N̂V
F has two distinct

inflection points and the sign of the slope changes at the inflection
points, N̂V

E changes monotonically. Because two eigenvalues at

the intersection of N̂V
F and N̂h

F are positive and negative, the
intersection is a saddle, which induces a limit cycle (orange
orbit) due to the following three characteristics; (1) the trajectory
approaches N̂V

F , especially its branches with positive slope due
to the difference of the time constants between the dynamics
of V and h, (2) the trajectory close to the positive branches
moves along them until reaching the inflection points, and (3) the
trajectory jumps to the opposite positive branch at the inflection
points. In contrast to the case for the RG-F neuron, the two
eigenvalues at the intersection of N̂V

E and N̂h
E are both negative

and the intersection is stable node. The trajectory is attracted to
this node and stays there as long as the node exists. Therefore, the
RG-E neuron does not show any oscillatory behavior.

The synaptic connections from other neurons change N̂V
F and

N̂V
E as shown schematically in Figure 4B, so that both RG-F

and RG-E neurons show oscillatory behavior. On the one hand,
although the intersection of N̂V

F and N̂h
F temporarily forms a

stable node, it remains close to the saddle point (burst mode),
which produces an oscillatory behavior. On the other hand, while
the intersection of N̂V

E and N̂h
E remains stable, N̂V

E transitions
between two positions due to an inhibitory signal from the
contralateral side, one of which has a high V at the intersection
(tonic mode) and the other of which has a low V (silence mode).
These transitions produce an oscillatory behavior. Figure 4C
shows the details of our model at φ = 0, 0.89, 1.78, 2.68, 3.88, and
5.08 rad to show how the nullclines changed during one cycle.

Shortening of Activity Duration During
Silent Phase
Next, we investigated the mechanism for the phase-dependent
response during the silent phase. Figure 5 shows the responses
on the VF-hF plane by the stimulation of the flexor side at
φs = 3.77, 5.03, and 5.53 rad. The disturbed trajectories took a
shortcut to the limit cycle at different positions depending on φs,
which decreased the activity duration and advanced the neural
activity. As shown in Equations (1), (4), and (6), while stimulation
directly influences the membrane potential Vi (i = F,E), it does
not influence the inactivation of the sodium channel hi (i =
F,E). Therefore, a shortcut was produced in the direction of Vi.
Moreover, for the same reason, as φs occurs earlier, the shortcut
has a larger truncated trajectory and the neural activity is more
advanced. Although the intersection of N̂h

F and N̂V
F before the

stimulation was in silence or burst mode, it suddenly changed to
tonic mode after the stimulation, which attracted the trajectory
toward the intersection and shortened the neuron activity.

Figure 6A shows the response on the VE-hE plane by the
stimulation of the extensor side at φs = 1.13 rad. While N̂V

E

moved to the right and the intersection of N̂h
E and N̂V

E changed
from the silence to tonic mode just after the stimulation, the
movement of N̂V

E was smaller than that of N̂V
F when the flexor

side was stimulated (Figure 5). After the stimulation, although
the disturbed trajectory moved to the right, it did not completely
enter the limit cycle (① in Figure 6A). However, N̂V

E gradually

moved to the right and the intersection of N̂h
E and N̂

V
E also further
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moved to the right. As a result, the trajectory eventually took
a shortcut to the limit cycle (② in Figure 6A). Although the
shortcut was induced by the change of the intersection of N̂h

E

and N̂V
E from the silence to tonic mode in the same way as that

of the stimulation of the flexor side (Figure 5), it was delayed
due to an inhibitory signal from the flexor side just after the
stimulation. More specifically, Figure 6B shows the time profiles
of the neurons after the onset of the stimulation. Just after the
stimulation, the membrane potentials (VE and VIE) of the RG-E
and In-E neurons increased immediately and crossed over Vth

(① in Figure 6B), which changed the effect on the connected
neurons described by Equation (7). The immediate change of
the In-E neuron changed the activities of the other neurons.
Especially, the membrane potentials (VF and VIF) of the RG-F
and In-F neurons decreased due to the inhibitory signal from the
In-E neuron and crossed over Vth. The decrease of the inhibitory
signal from the flexor side increased VE (② in Figure 6B), which
induced the shortcut.

Prolongation of Activity Duration During
Active Phase
At the end of the active phase, the neural activity was delayed as
shown in Figure 3. In the case without stimulation (VF, hF), of
the RG-F neuron swooped down to the right inflection point of
N̂V
F at the end of the active phase, as shown in the panel for φs =

1.78 rad of Figure 4. However, the stimulation at the end of the
active phase moved N̂V

F to the right and changed the intersection

of N̂h
F and N̂V

F from burst to tonic mode, as shown in Figure 7A.

Furthermore, N̂V
F showed almost no change for a while. These

inhibited the deactivation of the RG-F neuron and prolonged
the activity duration. In addition, the intersection of N̂V

E and N̂h
E

changed from the burst to the silence mode and stayed in the

silence mode for a while, which also delayed the neural activity.
Figure 7B shows the case of the stimulation of the extensor side
at the end of the active phase of the RG-E neuron. The RG-E
neuron maintained the tonic mode due to the stimulation and
this prolonged the activity duration. This response was similar to
the case of flexor stimulation (Figure 7A).

DISCUSSION

In the present study, we investigated the underlying mechanism
of the phase-dependent response of a half-center CPG model
by applying a brief stimulation to it. The simulation results
showed trends in the phase-dependent responses similar to those
observed during fictive locomotion in cats (Schomburg et al.,
1998; Frigon et al., 2010; Figures 3A,B).

It has been reported that the locomotor rhythm is reset to
start a new flexion phase by an electrical stimulation to the flexor
nerve in animals (Schomburg et al., 1998). Our simulation results
suggest that, while the locomotor rhythm is reset to start a new
flexion phase by stimulation during the silent phase, its start
phase depends on the stimulation phase. The phase shifts of the
RG-F neuron during the active phase (silent phase of the RG-E
neuron) were also induced by stimulation of the extensor side
(Figure 3C). However, in contrast to stimulation of the flexor
side, the change in the intersection of the nullclines was smaller
and formation of trajectory shortcut did not occur just after the
stimulation of the extensor side (Figure 6). Instead, the In-E
neuron was activated by the stimulation (we can estimate this
using Equation S7 in Appendix D), which deactivated the RG-
F and In-F neurons due to the inhibitory signal from the In-E
neuron. As a result, the RG-E neuron was activated because of
the deactivation of the neurons in the flexor side. These processes
delayed the shortcut after the stimulation of the extensor side.

Frontiers in Neuroscience | www.frontiersin.org 7 November 2019 | Volume 13 | Article 128875

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fujiki et al. Phase-Dependent Response to Afferent Stimulation

RG-F

RG-E

In-E

Limit cycle without stimulation

N  just after stimulation
^

E

V

N
^

E

h

N  just before stimulation
^

E

V

Response after stimulation

B

Vth

 0

 0.2

 0.4

 0.6

 0.8

 1

-80 -60 -40 -20  0

VE [mV]

hE

φ s=1.13

A

silence

1

tonic N  80 ms after stimulation
^

E

V

onset 80 ms

2

tonic

1

2

-70

-60

-50

-40

-30

-20

-10

 0

 0  50  100  150  200  250

V
 [

m
V

]

Time [ms]

In-F

FIGURE 6 | (A) Response of RG-E neuron on the VE-hE plane by stimulating the extensor side at φs = 1.13 rad. The black line shows the limit cycle without
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the limit cycle (①). N̂V
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E at 80ms after the stimulation) and the trajectory was finally cut short to the limit

cycle (②). (B) Time profiles of four neurons from the onset of the stimulation to the end of the shortcut. The vertical lines show the onset and 80ms after the

stimulation. The horizontal line shows Vth. After the stimulation, the membrane potentials of the RG-E and In-E neurons rapidly changed and crossed over Vth (①).

After that, while the membrane potentials of the RG-F and In-F neurons decreased due to the inhibitory signal from the In-E neuron and crossed over Vth, the

membrane potential of the RG-E neuron gradually increased. As a result, the decrease of the inhibitory signal from the flexor side increased the activity of the RG-E,

which induced the shortcut (②).

Although the shortcut was delayed by the stimulation of the
extensor side, the RG-E neuron had the potential to produce
an immediate shortcut by stimulation, as in Figure 5, due
to the nullcline intersection changing to a tonic mode when
the stimulation intensity was larger as illustrated in Figure S2

in Appendix C.
At the end of the active phase, the neural activity was delayed

by the stimulation. When the flexor side was stimulated, the
intersection of the nullclines of the RG-F neuron changed from
burst to tonic mode (Figure 7A). Similarly, the stimulation of
the extensor side at the end of the active phase of the RG-E
neuron prolonged the active phase by maintaining the tonic
mode (Figure 7B). Even though the parameters of synaptic
connection were different between the flexor and extensor
sides, the mechanism of the active phase prolongation was the
same (Figures 7A,B). As Figure S2 in Appendix C shows, the
stimulation contributed to the nullcline intersection changing to
a tonic mode irrespective of φS. From our simulation results,

the phase-dependency was caused by these acceleration and
prolongationmechanisms, which were commonly induced by the
change of the nullcline intersection to a tonic mode.

Contribution of Different Afferent Types
Schomburg et al. (1998) demonstrated the resetting of the
locomotor cycle in response to various flexor nerve stimulation
during fictive locomotion. They employed both shorter
stimulation trains (around 60ms) at stimulation intensities
activating joint and cutaneous afferents and longer stimulation
trains (over 200ms) at intensities activating only group I and
II afferents. Other studies investigating the effects of sensory
afferents on locomotor modulation also used relatively longer
stimulation (for example, Ia and II afferents of extensor and
flexor were stimulated for over 125ms in Frigon et al., 2010; Ia
or Ib afferents of extensor were stimulated for over 500ms in
Whelan et al., 1995; and II afferents of flexor were stimulated for
over 200ms in Perreault et al., 1995). Based on the conditions
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of these experiments, we used a stimulation lasting 200ms.
In addition, the effect of the stimulation intensity was also
investigated in those experiments. Therefore, we examined the
effect of the stimulation duration and intensity (Figures S1, S2
in Appendix C).

Functional roles of muscle spindles (Ia and II), Golgi tendon
organs (Ib), and cutaneous afferent inputs during locomotion
have been investigated in previous studies. During the stance
phase, feedback from muscle spindles and Golgi tendon organs
of extensor muscles prolong the duration of extensor activity
(Guertin et al., 1995; Whelan et al., 1995) and muscle spindles
in hip flexors contributed to initiation of the swing phase
(Hiebert et al., 1996). At the beginning of the swing phase,
stimulation of cutaneous nerves prolonged this phase (Duysens,
1977). As indicated above, the different responses depended on
the locomotor phase. Yet, it remains unclear how the neural
circuit of the CPG interacts with different types if sensory fibers
and which neural circuits contributed to the generation of a
phase-dependent response. In our present model, we did not
identify the relative contributions of different afferent types
to the CPG (Figure 1). Nevertheless, our model reproduced a
phase-dependent response (Figure 3). Further experimental and
computational studies are necessary to delineate anatomically
and functionally plausible interactions between the CPG and the
sensory afferents.

Functional Roles of the Different Layers in
CPGs
Although the anatomical structure of the CPG remains unclear, it
has been suggested from modeling studies (Rybak et al., 2006a,b)
that the CPG consists of a RG layer and a pattern formation (PF)
layer. The PF layer is thought to determine the spatial motor
pattern depending on the phase generated in the RG neurons;
that is, it determines the distribution of the co-activated α-
motoneurons over time. The muscle synergy hypothesis is one
candidate for the determination of the distribution (Ivanenko
et al., 2004, 2006) and modeling studies have shown that a
motor control system based on this hypothesis could generate
locomotion using musculoskeletal models (Aoi et al., 2010, 2013,
2019; Fujiki et al., 2018). In those models, the amplitudes of the
α-motoneuron activities were determined in the PF layer. Based
on this, it is suggested that the neurons in the PF layer modulate
their amplitudes, which would be related to the phase-dependent
response in terms of amplitude of the electromyography of
Hoffmann-reflex during locomotion (Capaday and Stein, 1986;
Yang and Stein, 1990). However, the neurons in the RG layer
control the temporal aspect of the phase-dependent response
as shown in the present study. As physiological experiments
have shown, the feedback from muscle spindles contributed to
the modulation of the muscle activity strength (Mayer et al.,
2018) and the timing of the stance-to-swing and swing-to-stance
transitions (Grillner and Rossignol, 1978; Hiebert et al., 1996;
Akay et al., 2014). Therefore, the different layers of the CPG may
explain the two different types of phase-dependency.

Limitations of Model
In our study, we used the activity-based neuron model
(Ermentrout, 1994; Markin et al., 2010; Molkov et al., 2015;

Danner et al., 2016, 2017). This neuron model does not
show spiking because it omits the potassium and fast-type
sodium currents. Instead, this used a persistent sodium current,
which enables the neuron model to generate bursting. Ausborn
et al. (2018) showed that an activity-based neuron model
preserved the principal dynamic features of neural activities as
a half-center CPG. Even though our model did not include
potassium and fast-type sodium currents, it reproduced the
phase-dependent response and contributed to analysis of its
dynamic structure.

Interaction Between Body and Neural
System During Adaptive Walking
In the present study, we focused on the phase-dependent
response of the CPG activity during fictive locomotion. When
animals walk, motor commands are sent to the leg muscles from
the spinal CPG, and the CPG receives sensory signals from the
leg nerves. While fictive locomotion is generated in an open-
loop system, actual locomotion is generated in a closed-loop
system. In addition to the analysis of fictive locomotion, in the
future, we would like to investigate the entrainment mechanism
through the dynamics of the CPG circuit, the body mechanical
system, and the sensory system. Moreover, it has been suggested
that the CPG consists of the RG and PF layers. While the RG
layer determines the rhythm pattern of motor commands, the
PF layer determines the spatial pattern (Rybak et al., 2006a). In
the future, we would like to introduce the PF layer to our model
to clarify further neural mechanisms of sensorimotor integration
for adaptive locomotion.
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Understanding how individuals utilize social information while making perceptual

decisions and how it affects their decision confidence is crucial in a society. To date, very

little has been known about perceptual decision-making in humans and the associated

neural mediators under social influence. The present study provides empirical evidence

of how individuals are manipulated by others’ decisions while performing a face/car

identification task. Subjects were significantly influenced by what they perceived as the

decisions of other subjects, while the cues, in reality, were manipulated independently

from the stimulus. Subjects, in general, tend to increase their decision confidence when

their individual decision and the cues coincide, while their confidence decreases when

cues conflict with their individual judgments, often leading to reversal of decision. Using

a novel statistical model, it was possible to rank subjects based on their propensity to be

influenced by cues. This was subsequently corroborated by an analysis of their neural

data. Neural time series analysis revealed no significant difference in decision-making

using social cues in the early stages, unlike neural expectation studies with predictive

cues. Multivariate pattern analysis of neural data alludes to a potential role of the frontal

cortex in the later stages of visual processing, which appeared to code the effect of cues

on perceptual decision-making. Specifically, the medial frontal cortex seems to play a

role in facilitating perceptual decision preceded by conflicting cues.

Keywords: perceptual decision making, social influence, computational modeling, gamma mixture model,

multivariate pattern classification

1. INTRODUCTION

In today’s information-satiated society, perceptual decision and subsequent action are greatly
influenced by social information. Modern human society is increasingly organized around
collective opinions, as reflected in people’s increased use of web ratings for daily choices about
consumer products, lodging, food, and entertainment (Jayles et al., 2017). Opinions and choice can
easily propagate through social networks (Jansen et al., 2009; Gonçalves and Perra, 2015) in this
digitized world, and even political opinions can be manipulated using social transmission (Bond
et al., 2012). The human tendency to conform to social influence has been explored systematically
in classic studies by Solomon Asch (Asch and Guetzkow, 1951; Asch, 1955) and others (Berns et al.,
2004, 2010; Behrens et al., 2008; Klucharev et al., 2008, 2009, 2011; Campbell-Meiklejohn et al.,
2010; Biele et al., 2011; Izuma and Adolphs, 2013 and see Tajfel, 1982; Cialdini and Goldstein, 2004;
Izuma, 2013 for reviews). Reliance on other’s opinion is not unique to humans. Different species
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https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.01371
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.01371&domain=pdf&date_stamp=2020-01-14
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:koel.das@iiserkol.ac.in
https://doi.org/10.3389/fnins.2019.01371
https://www.frontiersin.org/articles/10.3389/fnins.2019.01371/full
http://loop.frontiersin.org/people/666009/overview
http://loop.frontiersin.org/people/666012/overview
http://loop.frontiersin.org/people/666027/overview
http://loop.frontiersin.org/people/665866/overview
http://loop.frontiersin.org/people/665838/overview


Saha Roy et al. Altering Perception Using Social Decision

of animals depend on collective opinion to decide on life-
critical perceptual tasks like foraging for food, placement of
nests and navigation (Simons, 2004; Conradt and List, 2009;
Couzin, 2009) and evolve optimal decision-making strategies
accordingly. Consideration of the beneficial effect of group
decision can be traced back as early as 1907, when Francis
Galton analyzed the opinions of 787 people about the weight
of an ox and found that combining their numerical assessments
resulted in a median estimate that was remarkably close to the
true weight of the ox (Galton, 1907). In recent times, this idea
has been popularly referred to as the “wisdom of the crowds”
(Surowiecki, 2005). However, the effect of social cues in the form
of collective decision on individual percept and the underlying
neural mechanism remains largely unexplored (Klucharev et al.,
2009; Izuma, 2013).

Neural expectation studies over the last decade have
demonstrated that predictive cues typically lead to changes in
early sensory processing (Carlsson et al., 2000; Kok et al., 2012a,b,
2013, 2014, 2016, 2017; Jiang et al., 2013; John-Saaltink et al.,
2015; Todorovic et al., 2015; Sherman et al., 2016), but recent
research has contradicted this claim (Bang and Rahnev, 2017;
Rungratsameetaweemana et al., 2018). We sought to examine
whether social information produces similar early top-down
changes in the sensory cortex. We propose to manipulate the
individual choice and decision confidence of humans performing
a perceptual task by presenting visual cues that the subjects
presume to be the collective opinion of other well-performing
participants. The cues can be concurring, conflicting or neutral
to the individual perceptual decision of the subjects. Using a
novel statistical model, we studied the effect of the three types
of cues on individual choice. We also analyzed the neural signals
to explore the neural mediators producing the change in their
individual choice upon being presented with social information.
Finally, we performed a source reconstruction of the neural
signals to elucidate the role played by specific spatio-temporal
areas under the influence of cues. Specifically, we explored the
following questions:

Can we manipulate individual perceptual decisions upon
presenting potential social information cues when the cues differ
from the individual choice? Does this reversal of opinion depend
upon how confident the subject was in his/her choice without any
influence from cues?

Can individual decision confidence be augmented when the
cues concur with the individual choice?

Can we identify flip-floppers based on computational
modeling of their behavioral data and corroborate using
neural data?

Can we explore the neural mediators that contribute to the
change in individual percept post-cue display?

Using a face/car discrimination task, we show that it is possible
to manipulate individual choice post-presentation of cues in the
guise of the decision of others. Although the cues were randomly
generated and independent from the stimulus, it was possible
to alter the individual percept, as subjects presumed the cues
as concurring, conflicting, or neutral. Irrespective of the order
in which they viewed the images with or without cues, most
subjects were affected by the cues in a systematic manner. The

distribution of the decision confidence under such a set up was
found to be bimodal and skewed, with one mode guided by
social information and the other influenced by the individual’s
own decision. The tendency to adhere to their own decision
depends on the confidence level of the subject and is reflected
in the skewness of the data distribution. Hence, using a Gaussian
model to explore the data, which is the usual practice (Park et al.,
2017), might not capture the complexities of data completely.
We propose a novel model using a mixture of shifted gamma
and negative gamma distributions that successfully captures the
effect of social cues on individual choice. To the best of our
knowledge, this is the first study using a mixture of variants
of gamma distributions, which captures the bimodal nature as
well as the skewness (whether high or low) of this kind of
data. We compare our proposed model with the mixture of
two Gaussian distributions and demonstrate the superiority of
our model convincingly. Based on the behavioral model, it was
possible to objectively identify subjects most prone to change
their decisions upon being presented with the opinion of others.
Subsequent multivariate pattern analysis (MVPA) of neural data
substantiated the above finding. Neural analysis also elucidated
the existence of a late component that seems to code the effect
of this social information on individual perceptual decision.
Source analysis of neural data revealed a role for the frontal
cortex in coding perceptual decision using social information.
Our analysis alludes to the role of the medial frontal cortex
in coding information when conflicting social decisions are
provided as cues.

2. MATERIALS AND METHODS

2.1. Stimuli and Display
The data set consisted of 290 × 290 pixel 8-bit gray-scale images
of 12 cars and 12 faces with an equal number of frontal views and
side views. Face images were taken from theMax Planck Institute
for Biological Cybernetics face database (Troje and Bülthoff,
1996). All stimuli were filtered to attain a common frequency
power spectrum. Noise was generated by filtering white Gaussian
noise (std of 3.53 cd/m2) by the average power spectrum. Noise
was added to the base stimuli to generate a set of 250 images (125
face, 125 car). The contrast energy of all 250 images was matched
at 0.3367 deg2. The participants were at a distance of 125 cm from
a display with a mean luminance of 25 cd/m2. Images subtended
a visual angle of 4.57◦.

2.2. Participants and Experiment
Twenty naïve participants (ages: 22–28, mean: 25.85, std: 2.39)
participated in the study, which consisted of 1,000 trials split
into 40 successive sessions. Three subjects were not considered
in the analysis due to the high degree of noise present in
the neural data. All participants had normal or corrected-to-
normal vision and disclosed no history of neurological problems.
The participants performed a face/car discrimination task and
reported their decision using a 10-point confidence rating.
Participants perceptually categorized briefly (50 ms) presented
images of cars (C) and faces (F) embedded in filtered noise. The
participants began by fixating on a central cross and clicking
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anywhere on the screen. After a delay of 50 ms, a cue was
presented for 100 ms followed by a variable delay of 500–800 ms.
The stimulus was presented for 50 ms followed by a delay of 700
ms, after which the response screen appeared. The participants
reported their decision using the confidence rating, with a rating
of 1 indicating complete confidence that the stimuli was a face
and a rating of 10 indicating complete confidence that it was a
car. The participants reported their confidence rating on a gray-
scaled colorwheel in the response screen to avoid any motor bias
(Figure 1A). There were four types of cues, FF, CC, FC, and
CF, representing decisions of two independent well-performing
participants who had previously completed the study. Cues were
systematically manipulated such that an equal number of images
(250 per condition) had FF cues, FC/CF cues, and CC cues.
There were also an additional 250 images without cues. Thus,
each participant saw one stimulus four times preceded by an
FF cue, FC/CF cue, CC cue, and no cue in the course of the
experiment in random order, and the responses were recorded.
Participants were naïve to the purpose of the study and, in
subsequent questionnaire after the study, failed to realize that
the cues were not decision cues but were, in fact, synthetic cues
generated randomly.

EEG activity was recorded using 64-channel active shielded
electrodes mounted in an EEG cap following the international
10/20 system. EEG signals were recorded using two linkedNexus-
32 bioamplifiers at a sampling rate of 512 Hz, band-pass filtered
(0.01–40 Hz.) and then referenced using average referencing.
Trials with ocular artifacts (blinks and eye movements)
were detected using bipolar electro-occulograms (EOG) with
amplitude exceeding±100 mV or visual inspection and were not
included in the analysis.

2.3. Behavioral Model
We propose a statistical model to explore the effect of the
presented cues on perceptual decisionmaking. In the experiment,

for every face/car stimulus, subject responses corresponding to
the three types of cues (FF, FC/CF, and CC) along with a response
to the same stimuli with no cues were recorded. The response
to the no-cue image was taken as the individual decision on the
subject, k1 ∈ {1, 2, . . . 10}, for that image. Further, we define a
social cue variable k2 as

k2 =











1 if cue shown was ‘FF’,

5 if cue shown was ‘FC/CF’,

10 if cue shown was ‘CC’.

All the images in which the individual decision of the subject
was k1 were considered, and the distribution of the decisions
on the same images under the influence of each type of cue was
studied. Hence, the data comprised the decisions of a particular
subject for every (k1,k2) pair. In most cases, the data distributions
were bimodal in nature, having positive and/or negative skew, as
seen in Figure 1B. Hence a two-component mixture model based
on variants of the gamma distribution was proposed to explain
the decisions taken by the subject under the influence of a cue.
The data were made continuous by using jittering (addition of
uniform random noise, Chanialidis, 2015) to provide flexibility
in modeling.

Let Xi(k1, k2) contain the decisions taken by the ith subject
on all images, where his/her individual decision was k1 and the
cue shown was k2. We consider the elements of Xi(k1, k2) as
i.i.d. observations from a distribution. To propose the statistical
model depending on the choices of (k1, k2), we first introduce
some terminology and notation. The probability densities of
shifted gamma and negative gamma distributions are given,
respectively, as

g(x) = βα

Ŵ(α)
(x− 1)α−1e−β(x−1), x ≥ 1, α ≥ 1, β > 0 (1)

FIGURE 1 | Experimental protocol and behavioral response. (A) Experimental Paradigm. (B) Histogram of the observed data and fitted density of the proposed model

(red) and Gaussian mixture model (black) for a subject for different combinations of k1, k2 (denoted above each case, e.g., (1,10) implies subject data and fitted model

for the images when individual choice was 1, denoting face with highest confidence, and cue shown was CC). Here, the x-axis denotes the confidence scale, and the

y-axis denotes the relative frequencies of the subject’s choices for a particular combination of k1, k2.
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ng(x) = βα

Ŵ(α)
(L− x)α−1e−β(L−x), x ≤ L, α ≥ 1, β > 0, (2)

where α and β are the shape and scale parameters, respectively,
and L is a known constant.

Based on Equations (1) and (2), the following models
are proposed depending on the choices of (k1, k2). If k1 ∈
{1, 2, . . . , 5} and k2 ∈ {1, 5}, we take our model as

f (x) = p gα1 ,β1 (x)+ (1− p) gα2 ,β2 (x), (3)

a mixture of two shifted gamma distributions. When k1 ∈
{6, 7 . . . , 10} and k2 = 10, the proposed model is

f (x) = p ngα1 ,β1 (x)+ (1− p) ngα2 ,β2 (x), (4)

a mixture of two negative gamma distributions. Finally if either
k1 ∈ {1, 2, . . . , 5} and k2 = 10 or k1 ∈ {6, 7 . . . , 10} and
k2 ∈ {1, 5}, our suggested model is

f (x) = p gα1 ,β1 (x)+ (1− p) ngα2 ,β2 (x), (5)

a mixture of a shifted gamma and a negative gamma distribution,
where 0 ≤ p ≤ 1 is the mixing parameter.

2.3.1. Parameter Space of the Model
We have taken the restricted parameter space for the shape
parameter (α) in both the distributions (Equations 1 and 2) so
that the modes of the distributions are defined and are either
more than or equal to 1 (for the shifted gamma case) or less
than or equal to L (for the negative gamma case). In our case,
we consider L to be 11. In particular, for both shifted-gamma and
negative-gamma distributions,

• the shape parameter α ∈ [1,∞) and
• the scale parameter β ∈ (0,∞).

2.3.2. Estimation of the Model Parameters
Next, for the purposes of estimation of the parameters of our
proposed model and further inference, only those data are
considered that have more than 10 observations. Note that the
parameter estimates depend on i as well as (k1, k2); that is to
say, for every individual i, the parameter estimates may vary
for different choices of (k1, k2). Similarly, for a given (k1, k2),
parameter estimates of the proposed model may vary from
individual to individual. We estimate the model parameters by a
maximum likelihood estimation procedure (Casella and Berger,
2002). Since the proposed models are mixture densities, to
calculate themaximum likelihood estimates (MLE) we invoke the
EM algorithm technique (Casella and Berger, 2002). However,
since closed-form solutions for estimates of shape parameters do
not exist, we apply the Newton Raphson numerical technique
(Atkinson, 1978) within each M-step of the EM algorithm (see
Supplementary Information for detailed calculation).

2.3.3. Goodness of Fit
To understand how well our model fits the observed data,
the Kolmogorov-Smirnov (KS) test statistic (Gibbons and
Chakraborti, 2011), based on the maximum absolute differences

between the hypothesized cumulative distribution function (cdf)
and empirical cumulative distribution function (ecdf), was
used. For each subject i, there were Ni models to be tested
simultaneously, and the case of multiple testing therefore arose.
To control the family-wise error rate arising due to multiple
hypothesis tests per subject, we used the Holm-Bonferroni
method (Westfall et al., 1993) with a family-wise error rate
(FWER) of 0.05.

2.3.4. Model Prediction
We use a 10-fold cross-validation procedure to study the
predictive performance of the proposed model. Since our data
were bimodal in nature, it would not have been meaningful to
judge this performance on the basis of a single predictive interval.
To address this issue, we applied the following concept of a
highest probability density region (HPDR) (Hyndman, 1996),
which broadly computes the smallest region that contains most
of the probability.
Definition: Let f (x) be the probability density function of a
random variable X. The 100(1 − α)% HPDR is then defined as
the subset R(fα) of real numbers, R, such that

R(fα) = {x : f (x) ≥ fα},

where fα is the largest constant with P(X ∈ R(fα)) ≥ 1− α.
In each fold, the model was trained on the training set, and the

95%HPDRwas computed. It was checked whether the validation
set fell within the estimated HPDR, and the process was repeated
for each cross-validation fold.

2.3.5. Model Comparison
We compared the performance of our proposed model with the
two-component Gaussian mixture model using a likelihood ratio
test (Casella and Berger, 2002). Data were divided into 10 test sets
using 10-fold cross-validation and, for each set, the likelihoodwas
estimated with each of the twomodels. Finally, themedians of the
likelihood ratios across the folds were computed for each of the
models for the purpose of comparison.

2.4. Behavioral Data Processing
Guided by the proposed model, the behavior of the individuals
were analyzed based on the following measures.

2.4.1. Distance Metric Computation Using the Model
To quantify the overall shift in decisions from the subjects’
individual choice, the following distance was used

Di(k1, k2) =
{

√

x′ixi if k1 = k2,
√

x′i6
−1xi otherwise,

(6)

where xi = (k1 − m1(i), k1 − m2(i))
′, m1 and m2 being

the vectors containing the two modes of the N(k1 ,k2) subjects
and i = 1, 2, . . . ,N(k1 ,k2). Here, N(k1,k2) denotes the number
of subjects available corresponding to (k1, k2), and 6 is the
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estimated variance covariance matrix of estimates of the modes
for a particular choice of (k1, k2), given by

6 =
[

Var(m1) Cov(m1,m2)
Cov(m1,m2) Var(m2)

]

.

2.4.2. Social Bias Score
Using the cumulative distribution functions of shifted-
gamma and negative-gamma distributions (as calculated in
Supplementary Information) and Equations (3)–(5), the
proportion of decisions between k1 and k2 in the presence of
social cues was estimated. The average proportion of decisions
(pi) per subject across the (k1, k2) pairs, which are reported in
Tables S5–S8, was considered. We ranked the subjects based on
social bias score, defined as

Wi =
pi − 0.5

σ/
√
n

,

for i ∈ {1, 2, . . . , 17} \ {2, 3}, with σ denoting the sample
standard deviation of the proportions pi. Only those subjects
were considered for further analysis whose Wi exceeded 1.96,
indicating that the corresponding proportions are significantly
more than accounted for by chance.

2.5. Neural Data Processing
The preprocessed EEG signals were time-locked to stimulus
onset and included a 200 ms pre-stimulus baseline and 500 ms
post-stimulus interval.

2.5.1. Multivariate Pattern Analysis of EEG
Univariate EEG analysis had traditionally been used to explore
the relationship between behavioral performance and neural
activity in specific cognitive tasks. However, the univariate
analysis techniques fail to fully utilize the spatio-temporal
nature of multivariate neural data. Multivariate pattern analysis
techniques provide a way to integrate the spatial and temporal
information present in the data by fusing the neural information
into a single decision variable that can be used in single-trial
analysis. A comparison between univariate and multivariate
analyses using a similar cognitive task has been shown in Das
et al. (2010). Successful use of MVPA has been demonstrated in
numerous studies using EEG and fMRI (Haynes and Rees, 2005;
Kamitani and Tong, 2005; Philiastides et al., 2006). In the current
study, MVPA was used to extract meaningful information from
the multi-dimensional EEG data. Since the neural data is high
dimensional and suffers from the small sample size problem (Das
and Nenadic, 2009), a recently proposed principal component
analysis (PCA)-based non-linear feature extraction technique–
“Classwise Principal Component Analysis” (CPCA) (Das and
Nenadic, 2009)–is used. CPCA has been used previously to
efficiently reduce the dimensionality of the EEG signals and
extract informative features (Das et al., 2009, 2010; Do et al., 2011,
2013;Wang et al., 2012; King et al., 2013). Themain goal of CPCA
is to identify and discard non-informative subspace in data by
applying principal component-based analysis to each class. The
classification is then carried out in the residual space, in which
small sample size conditions and the curse of dimensionality

no longer hold. A Linear Bayesian Classifier was then used for
computing the choice probability for single-trial EEG data for
each subject. Pattern analysis was performed using 10-fold cross-
validation. The original data were partitioned into 10 equally
sized subsamples. Of the 10 subsamples, a single subsample was
retained as the test data, and the remaining nine subsamples were
used in training the classifier. The performance of the classifier is
captured by the receiver operating characteristics (ROC) curve,
which plots the true positive rate vs. false positive rate at different
classification thresholds. The area beneath this ROC curve (AUC)
is often used as a measure to determine the overall accuracy
of the classifier (Duda et al., 2012). We utilize the well-known
approach of calculating the area under the ROC by finding the
Mann Whitney U-statistic for the two-sample problem (Mason
and Graham, 2002). All classification analyses were carried out
for individual participants, and the average AUC performance
was reported in the results.

2.5.2. Source Reconstruction
To identify underlying neuronal sources responsible for
generating differences in the ERPs corresponding to the face
and car trials under the influence of cues, source reconstruction
was performed using sLORETA software (Pascual-Marqui, 2002,
http://www.uzh.ch/keyinst/loreta). sLORETA (standardized
low-resolution brain electromagnetic tomography) is based on
standardization of the minimum norm inverse solution, which
considers the variation of actual sources and the variation due to
noisy measurement (if any) as well (Pascual-Marqui, 2002). As a
result, it does not have any localization bias, even in the presence
of measurement and biological noise. The head model for the
inverse solution uses the electric potential lead field calculated
using the boundary element method (Fuchs et al., 2002) on
the MNI152 template (Mazziotta et al., 2001). The cortical gray
matter is partitioned into 6,239 voxels at 5-mm spatial resolution.
sLORETA images represent the standardized electric activity at
each voxel in Montreal Neurological Institute (MNI) space as the
exact magnitude of the estimated current density. Anatomical
labels are reported using an appropriate correction from MNI
to Talairach space (Talairach and Tournoux, 1988) using
Talairach Daemon (Lancaster et al., 2000). For further details
on sLORETA, refer to http://www.uzh.ch/keyinst/NewLORETA/
Methods/MethodsSloreta. The source activity was estimated
from the face-car difference wave post-stimulus onset.

2.5.3. Statistical Analysis of Sources
Differences in the distribution of the sources between concurring
and conflicting trials were calculated using statistical non-
parametric mapping (SnPM) (Nichols and Holmes, 2002). This
method relies on the randomization of the absolute maximum
statistic over all channels. The randomization provides an
estimator for the empirical distribution under the null hypothesis
(“no difference between the sources of concurring and conflicting
trials”). The advantage of this method is that it does not
depend on any distributional form, in particular Gaussianity,
and simultaneously takes care of multiple comparisons. A total
of 5,000 random samples were generated while implementing
the SnPM technique. Differences between the two conditions
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(concurring and conflicting) were assessed at the global level,
and the brain areas showing the largest differences have
been reported.

3. RESULTS

3.1. Behavioral Results
The decisions taken by the subjects under the influence of a cue
were modeled as a two-component mixture model based on the
shifted-gamma and negative-gamma distributions (see Equations
3–5). To verify that the proposed model fits the observed
behavior data well, the Kolmogorov-Smirnov (KS) test (Gibbons
and Chakraborti, 2011) was used. The proposed model captured
the data correctly in most cases (see Table S1). Figure 1B depicts
histograms of the decisions corresponding to all (k1, k2) pairings
and the fitted density of our model for one subject. Table S1
contains the p-values corresponding to the cases where the model
was rejected. In over 96% of the cases, the hypothesized model
was accepted, thus proving efficacy of the model.

Tomeasure the predictive performance of the proposedmodel
and prevent possible over-fitting, after computing the highest
probability density region (HPDR) of the fitted model based
on the training data, it was checked whether the test data fell

within the calculated HPDR. Table S2 showing mean prediction
error rates across subjects, demonstrates that the cross-validation
error rate never exceeded 5% for any fold, thus validating the
excellent performance of the model in terms of prediction and
nullifying the chance of over-fitting. Figure 2A shows a fitted
density function and the corresponding HPDR calculated from
the training data of a particular validation fold of one subject.
The test data, as seen from the figure, falls convincingly inside
the indicated HPDR.

Gaussian distribution has been previously used to model
behavioral data successfully (Park et al., 2017). Hence, the
proposed model was compared with the mixture of two
component Gaussian distributions. The median of the likelihood
ratios across subjects for a given (k1, k2) in all but two cases (out
of 30) clearly indicates that the proposed model outperformed
the Gaussian mixture model in terms of explaining the data
(refer to Table S3).

3.1.1. Effect of Cues on Individual Choice
The effect of cues on individual decision was studied using a
distance metric between k1 and the estimated modes of the fitted
model (see Equation 6). Using a bootstrap resampling technique
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FIGURE 2 | Behavioral Data Analysis. (A) Estimated probability density function based on the training data set shown for one subject when k1 = 3 and k2 = 10. Bold

lines on x-axis represent the 95% HPDR, and red stars represent the test observations for a subject. The test observations fall within the HPDR. (B) Increase in

average proportions of decisions around the individual decision when viewing concurring cues vs. viewing neutral cues. The left part of the figure considers cases

when the individual decision was a face, while the right part considers cases when it was a car. The bold dots depict the average across the individuals. (C) Mean

proportion of decisions toward conflicting cues across individuals. Figure shows that crossover happens for all cases of individual confidence and is most prominent

when individual decision confidence is low (5,6). Error bars denote ± SD. (D) Social bias ranking of subjects, indicating their tendency to be influenced by the cue

shown. Larger and darker dots indicate subjects that are more socially influenced. The dotted line parallel to the x-axis depicts the significance level.
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on mean distance per (k1, k2) pair, it can be observed that post-
cue, there was a significant shift in ratings when decisions from all
subjects were pooled together (Table S4). Furthermore, to check
whether this was also true for individual decisions, an additional
analysis was carried out. If the proposed model predicted a mode
in the direction of the social cue, the proportion of decisions
between k1 and k2 was calculated by integrating the estimated
density within the said interval. A significant proportion of
decisions, as assessed by our model, was observed to lie between
k1 and k2 (refer to Tables S5–S8), clearly suggesting that, in
general, subjects tend to be influenced by the social choice,
irrespective of whether it conforms to his/her individual bias.

3.1.2. Effect of Concurring Cues
In order to check whether the decision confidence increased
when the subject was given a cue concurring with his/her own
judgment, the area under the fitted density given the concurring
cue (“FF,” “CC”) was compared with that of a neutral cue
(“FC”/“CF”) (see Tables S9, S10). These areas were assumed to
be indicative of the proportion of decisions of the subjects around
the individual decision. As compared to the neutral cue, for most
of the subjects, the average proportion of decisions in the region
[1, 6] was greater when individual choice was a face and the social
cue was also a face. Similarly, this proportion in the region [7, 11]
was greater when the individual and social choices were both
a car. Thus, it can be concluded (refer to Figure 2B) that the
decision confidence of most subjects increased when provided
with concurring social information (FF/CC).

3.1.3. Effect of Conflicting Cues
Further analysis was carried out to check whether there was a
significant reversal in the decisions when the subject faced a
cue contradictory to his/her individual decision. We say that
there is a cross-over if there exists a mode on the opposite side
of the decision boundary. Cross-over under the influence of
concurring cues was found to be insignificant (in terms of area)
compared to with conflicting cues (see Table S14) and was hence
ignored. For every k1, it was examined whether cross-over exists
given a mismatch between social cue and the individual choice.
Using bootstrapping, it was shown that the proportion of cross-
over was significant among the individuals. This is evident from
the approximate achieved significance level (ASL) (Efron and
Tibshirani, 1994) contained in Table S11. Figure 2C distinctly
reveals that the mean cross-over proportion increased with a
decrease in individual confidence, implying that, in general,
subjects tend to be influenced more by contradictory cues on
images where their individual confidence was low. Refer to
Tables S12, S13 for a detailed list of the cross-over proportions
per subject.

3.1.4. Cue-Based Ranking of Subjects
Individuals differ in the manner in which social information
influences their perceptual decision. Using the proposed
behavioral model, it is possible to rank the subjects based on
the level of influence social information had on their percept.
Figure 2D shows the ranking of subjects based on a measure,
called social bias score, that captures their tendency to be

influenced by social information. Based on the analysis, eight1

subjects were selected as those most affected by cues and are
referred as chosen subjects in the EEG analysis.

3.2. Neural Results
3.2.1. ERP Analysis
ERP analysis was performed on average referenced and baseline-
subtracted EEG signals for each condition. Epochs of a particular
channel weremarked noisy if their respective absolute differences
from the median exceeded five times the interquartile range.
Such noisy epochs were not considered for further ERP
analysis. It is well-known that parieto-occipital electrodes show
differential activity when perceiving faces and cars (Rossion
et al., 2003). Several studies have hypothesized the role of the
frontal cortex in choice manipulation under the influence of
social information (Mason and Graham, 2002; Berns et al.,
2010; Klucharev et al., 2011; Izuma and Adolphs, 2013). To
explore the effect of the decision of others on face/car percepts,
ERP analysis was carried out with parieto-occipital and fronto-
central electrodes separately. To elucidate whether different types
of comments induce different neural processing mechanisms,
the grand average difference waves were plotted (refer to
Figure 3) for correctly guessed face and car trials. A difference
in face and car ERPs was visible across both fronto-central and
parieto-occipital electrodes around 200 ms post-stimulus onset,
closely following the N170 (Bentin et al., 1996) component
known to be enhanced more in face than non-face ERPs.
The difference between concurring and conflicting conditions,
however, seemed more prominent around 250–300 ms post-
stimulus condition in both parieto occipital and fronto central
electrodes. Further analysis was carried out using single-trial
multivariate analysis.

3.2.2. Single-Trial Multivariate Analysis
A pattern classifier was used to analyze single-trial EEG signals
corresponding to the different types of cues. To quantify the
predictive accuracy of the classifier, the posterior probabilities
obtained from 10-fold cross-validation were used to calculate
the area under the ROC curve (AUC). The AUCs were averaged
across the subjects.

Multivariate analysis was performed using the entire post-
stimulus dataset using all channels and all time points, and
AUCs corresponding to the different conditions were plotted
(Figure 4A). The classification accuracy appeared to be greater
when the subject was provided with a cue that concurred with
his/her individual guess than when he/she was provided with a
conflicting cue (p = 0.0213, df = 14, t = 2.2314). An overall
increase in difference was noted between the conditions (p =
0.0038, df = 7, t = 3.7147, corresponding to the null hypothesis
of no difference in the classification rates between the two
conditions) when an average over chosen subjects was considered
(Figure 4A). The pattern analysis was executed separately using
EEG data for all electrodes across different time windows, each

1Out of the 17 subjects, two had only high-confidence trials and hence were not

considered. Out of the 15 remaining, eight were found to be significantly more

affected by the cues than the rest.
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FIGURE 3 | (A,B) Show the grand average of difference ERPs (Face − Car) over parieto occiptial and fronto central electrodes, respectively, across the three types of

conditions—Concurring, Conflicting, and Neutral. A sharp peak in the difference waveforms is observed post-200 ms across all conditions. Difference between

conflicting and concurring cues seems more prominent around 250–300 ms.

FIGURE 4 | Neural data analysis. (A) Figure shows average AUC predicting choice probability with single-trial EEG analysis and using multivariate pattern analysis.

Average AUC increases under the influence of concurring cues and decreases under the influence of conflicting cues as compared to that for neutral cues in all

subjects. The effect is more prominent in case of the chosen subjects. Error Bars indicate ± SEM. (B) Plot of average AUC across all subjects at different time points.

The increase in AUC is most pronounced in the 200–300 ms post-stimulus interval. The difference between the AUCs of concurring and conflicting trials is most

significant (p = 0.054, FDR corrected) in the 200–250 ms window (marked using *). (C) Topoplot of one subject showing per electrode per time window single trial

classification under different cue conditions. Average AUCs of the all channels for successive time windows are shown. There appears to be a significant involvement

of the frontal and occipital electrodes 200–350 ms post-stimulus onset. Color bar depicts the value of AUC.

having a length of 50 ms. AUCs corresponding to the late sensory
period (200–450 ms after stimulus onset) were found to be
significantly more than chance (p-value < 0.05, false discovery
rate (FDR) corrected) for concurring trials.

Further analysis showed that the difference between AUCs
of concurring and conflicting cues was statistically significant

only in the time window 200–250 ms [p-value (without multiple
correction) = 0.01, t = 2.585, df = 14, FDR corrected
p-value= 0.054, multiple hypothesis test performed across time
points where the classification rates corresponding to concurring
trials are more than chance]. On performing similar time-
window analysis on the chosen subjects, it was seen that
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the difference stood out as statistically significant [p-value
(without multiple correction) = 2.40 × 10−5, t = 8.8377, df
= 7, FDR corrected p-value << 0.05] in the 200–250 ms
time window.

Figure 4B clearly depicts that around 200–250 ms after
stimulus onset, there was a sharp increase in the AUC value
and the peak was more pronounced for concurring cues.
Notably, prominent activity in fronto-central and occipito-
temporal electrodes in a similar time window was also observed
during ERP analysis.

Additional classifier analysis was carried out using data
for each electrode separately for each of the time windows
(Figure 4C), and the plot of scalp topography on the basis
of the classifier performances (see Figure 4C) for individual
electrodes seems to be consistent with the temporal findings
(Figure 4B). Around 200–300 ms post-stimulus onset, we
observe increased classification accuracy in the parieto-
occipital regions and fronto-central regions across all
conditions (concurring, conflicting, and neutral). In these
regions, the magnitude of the AUCs were greater in case
of concurring trials than in conflicting and neutral trials
(see Figure 4C). The classifier results demonstrate that
social decisions have an effect on individual perceptual
decision and that it is most prominent around 200–300 ms
post stimulus onset.

3.2.3. Source Reconstruction Results
Single-trial multivariate data analysis and ERP analysis revealed
prominent discriminatory activity 200 ms post-stimulus onset.
Source estimates identified more frontal activity under the
influence of conflicting cues than with concurring cues (refer
to Figure 5). Frontal sources seem to be primarily responsible
for generating differences in the ERP waveforms of face and
car trials across the whole neural timeline for conflicting trials,
while a prominent fronto-parietal interplay was noticed in case
of concurring and neutral trials. Particularly, the medial frontal
gyrus seems to have contributed significantly in the presence of
conflicting cues, in line with previous studies that also highlight
the role of the medial frontal cortex during social conformity
and cognitive dissonance (Klucharev et al., 2009; Berns et al.,
2010; Izuma and Adolphs, 2013). The neural sources of the
difference in the current density power between the concurring
and conflicting conditions were analyzed using sLORETA with a
one-tailed F-ratio test (concurring < conflicting) on paired data
separately for the 200–250 and 250–300 ms time windows. Based
on the results of the exceedance proportion test (Friston et al.,
1990, 1991) which showed a threshold of 2.38 for a p-value of
0.058 for the 200–250 ms window and a threshold of −2.169 for
a p-value of 0.059 for the 250–300 ms window, differences were
localized mostly to the frontal areas (refer to Tables S16, S17

for the complete list). We found the maximal differences in the

FIGURE 5 | Source Reconstruction. (A,B) Show sources estimated at 230 and 275 ms using sLORETA software for trials with concurring cues. (C,D) Show sources

estimated at 230 and 275 ms using sLORETA software for trials with conflicting cues. The color bar depicts the squared magnitude of the current density

[µA2/(mm4.Hz)]. (E,F) Are maps of non-parametric statistics comparing concurring and conflicting trials during the 200–250 and 250–300 ms time windows.

Non-parametric analysis was performed using one-tailed F-ratio test (concurring < conflicting) on paired data. Color bar represents value of log F-ratio for each voxel.
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medial frontal gyrus (BA 10,MNI coordinates: x= 40, y= 55, z=
0) in both the cases (refer to Figures 5E,F and Tables S16, S17).

3.2.4. Neural Analysis of Cue Data
We did an additional analysis based on the neural signals when
the cue was displayed. We extracted the EEG signals locked
to the cue onset. The 500-ms post-cue onset data were used
to perform multivariate pattern analysis to explore the effects
of expectation on early sensory processing. If the participants’
responses were driven by the cues, then we would expect a
higher classification rate for images selected as faces post-cue
onset when preceded by an “FF” cue and vice versa for “CC”
cues. However, pattern analysis of cue-data revealed no such
trends (refer to Figure 6) and resulted in chance performance
for all conditions (p > 0.05). Two-way ANOVA was performed
to find the statistically significant difference between the four
different cue conditions, taking into account face and car trials
separately, along with interactions. The differences were all
insignificant (see Table S15), pointing to the fact that there was
no significant difference in the classification accuracy across all
the cue conditions, including the condition where no cue was
shown. It is interesting to note that similar chance performance
was also observed in pre-stimulus and early post-stimulus (<200
ms) neural classification. Thus, based on the cue analysis, it seems
unlikely that the participants’ decision was influenced by cue-
based expectation bias in the post-cue onset and early visual
processing stage following the stimulus display.

4. DISCUSSION

How social decision affects individual decision-making has been
explored in social psychology since the 1940s, starting with
the research on social conformity by Solomon Asch (Asch and
Guetzkow, 1951; Asch, 1955; Tajfel, 1982). With the advent
of social media, there has been a renewed interest in social
cues influencing our decisions (Jansen et al., 2009; Bond et al.,

2012; Gonçalves and Perra, 2015; Jayles et al., 2017). In the
current study, how people respond to social information when
performing a perceptual decision-making task was explored
systematically. The neural mechanism of the decision-making
process was studied while the subjects used cues in the form of
the decision of two other well-performing subjects to perceive
noisy images of faces and cars. Although the cues shown to
the subject were non-informative, with an equal number of
FF, neutral, and CC cues per stimulus displayed in a random
order, they were found to be successful in manipulating percept.
Most of the studies on social influence require participants to
make a decision with and without social cues sequentially, but
we demonstrate that, irrespective of the order in which the
stimulus/cue was presented, cues always have a similar effect
on individual decision-making. We conclude that the perceptual
decision of the subject under the influence of the cue depends
on two factors—his/her individual perception of the image,
as reflected in his/her confidence ratings on the same images
without any cue, and the social information presented to him/her.
It is observed that the distribution of confidence ratings under
the influence of a cue is bimodal in nature, with one mode
corresponding to individual decision and other to social cue
(Figure 1B), with a significant proportion in the direction of
the cue. We can thus safely infer that although there was a
general tendency to adhere to one’s individual decision, subjects’
decision confidence could be altered by social influence. This shift
in decision confidence varied between the subjects, as reported
in previous studies (Jayles et al., 2017). Using the proposed
computational model, the heterogeneity of the influence of
cues on the subjects’ decision was quantified successfully. The
subjects were ranked based on the influence the cues elicited,
and the findings used in subsequent neural analysis produced
encouraging results.

Although social influence on perceptual decisions remains a
highly researched topic, the neural mediators of themanipulation
of perceptual decisions by social influence remain largely

FIGURE 6 | Percentage of correctly classified face and car decisions for the four kinds of comments shown on screen on the basis of their neural signals after cue

exposure. This clearly shows that subject choice did not arise from cue-related expectation bias.
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unexplored (Mason and Graham, 2002; Berns et al., 2010;
Klucharev et al., 2011; Izuma and Adolphs, 2013). The difference
in performance under the influence of concurring and conflicting
cues is most prominent in the 200–300 ms interval. Similar
differences between conflict and no-conflict trials have been
reported in recent papers (Shestakova et al., 2012; Zubarev et al.,
2017). This time interval can potentially reflect an interaction
between the social cues provided and the sensory information.
It is interesting to note that the time window corresponds
with the timing of feedback-related negativity (FRN) (Holroyd
and Coles, 2002) and task difficulty (Philiastides et al., 2006).
The mean AUC value peaks around 200–300 ms in trials with
concurring cues. This implies that the classifier could identify the
class-specific discriminatory activity and predict the participants’
decision more accurately when the cue received matched with
his/her individual perception. This corroborates our claim that
the subjects were more sure about their decisions when the
stimulus was preceded by a concurring cue. The effect is more
well-defined in case of car trials, probably arising out of heavier
mental load for car images than faces. Humans are adept at
face perception (Leopold and Rhodes, 2010), and the stimuli
displayed had uniform noise for both faces and cars, thereby
making the car-detection task comparatively difficult. Figure 2B
shows this effect for concurring cues, where the increase in
decision confidence was more prominent for CC cues than for FF
cues. A similar trend is noticed for conflicting cues (Figure 2C),
where significant reversal of decision in the direction of the
social information was noticed and the proportion of crossover
was more for trials originally detected as cars. Almost all the
existing neuroimaging studies using social cues suggest the role
of the posterior medial frontal cortex (pMFC) and, to some
extent, the ventral striatum (Klucharev et al., 2009; Berns et al.,
2010; Izuma and Adolphs, 2013) in social conformity, but the
neural mechanism remains poorly understood. Current research
shows that activation in the pMFC is modulated by the difference
between individual choice and group preference. The role of
the pMFC in social conformity is further strengthened by a
TMS study (Klucharev et al., 2011) where participants showed
reduced social conformity when the pMFC was disrupted. One
plausible interpretation of the involvement of the pFMC could
be that conforming to social opinions triggers similar circuitry
as does reinforcement learning (Klucharev et al., 2009). Neural
activity in the pMFCmight mirror activity similar to a prediction
error signal, which can then subsequently be used to modify or
strengthen the perceptual decision. In the current study, source
analysis of ERP signals using conflicting cues also shows activity
in the medial frontal cortex (MFC), starting around 200 ms
post-stimulus onset. Neural signals following conflicting cues
displayed comparatively greater frontal activity than concurring
cues (Figure 5), possibly suggesting greater top-down processing
of information when cues mismatch perceptual choice. It is
particularly interesting to note that the MFC is active in the
time interval immediately following the well-established N170
component, which is known to account for the difference
between faces and cars (Daniel and Bentin, 2012). Possibly, the
mismatch between the top-down expectation produced by the
cue and the bottom-up sensory information triggered activity

in the MFC, which has been reported to play a role in social
conformity (Klucharev et al., 2009; Izuma, 2013). The medial
frontal cortex perhaps generates a signal that encodes the
difference between individual percept based on the stimulus
and the group decision given by the cues. The absence of
frontal activity in concurrent cues in the same time interval
further supports our claim. The strength of MFC activity has
been shown to regulate the level of subsequent adjustment of
individual choice (Berns et al., 2010). Hence the MFC activation
was more pronounced for chosen subjects. Our results seem
to suggest that, irrespective of stimulus order, neural circuitry
similar to existing social conformity studies was active in making
perceptual decisions under the influence of social cues.

There has been extensive research on face and object
perception in the last few decades that has revealed significant
involvement of various occipito-parietal regions in the
early stages of visual processing (<200 ms) (Rossion et al.,
2003). Additionally, there a significant body of work finding
that stimulus expectation leads to changes in early sensory
processing (Carlsson et al., 2000; Kok et al., 2012a,b, 2013, 2014,
2016, 2017; Jiang et al., 2013; John-Saaltink et al., 2015; Todorovic
et al., 2015; Sherman et al., 2016). It has been demonstrated in
numerous studies that expectation about stimulus in the form of
predicting cues leads to a stimulus bias. Top-down expectation
effects can be seen in the form of improvement in stimulus
representation (Kok et al., 2012a), generation of a stimulus
template in striate and extrastriate regions (Puri et al., 2009;
Kok et al., 2014), and even reduction in amplitude in neural
signals leading to “expectation suppression” effect (Todorovic
and de Lange, 2012). On the whole, top-down expectations
in the form of predictive cues have been shown to bias neural
activity in the pre-stimulus and early sensory processing stage,
thereby orienting the bottom-up sensory information toward
one perceptual decision. On the other hand, recent studies
have questioned the role of neural expectation in the sensory
cortex (Bang and Rahnev, 2017; Rungratsameetaweemana
et al., 2018). In our study, however, probing into the neural
time series unveiled no significant differences in perception
under the influence of different social cues during early stages.
We systematically analyzed the effect of social decision and
found no significant effect of the cues before stimulus onset,
post-cue onset, and immediately following stimulus onset. We
extracted the neural data locked to cue presentation and used
a multivariate pattern classifier on the cue data alone to show
that the cue data were not indicative of any early top-down
expectation based effect on the stimuli (see Figure 6). Our
results seem to suggest, unlike studies involving predictive
cues (Summerfield and De Lange, 2014), that expectation by
virtue of social influence does not affect early sensory processing.
It is worthwhile to note here that our cues were essentially
social decisions of others instead of cues predictive about the
stimulus itself (Summerfield and Koechlin, 2008; Summerfield
and De Lange, 2014), which could possibly explain the lack of
top-down expectation signals seen in the early sensory cortex in
previous studies (Summerfield and De Lange, 2014). Our results
seem to suggest the role of downstream processing in using the
social information from the cue provided, similar to the concepts
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of Bayesian Decision Theory (Maloney and Mamassian, 2009)
and Signal Detection Theory (Green and Swets, 1988; Macmillan
and Creelman, 2004).

Overall, we conclude that perceptual decision and confidence
are influenced by social information and that it is possible
to compute the extent of influence using statistical modeling.
Neural data analysis alludes to a role for the medial frontal
cortex in perceptual decision under social influence. We found
no expectation-related bias in early sensory processing using
social information cues. Future studies could possibly focus on
experiments using actual social groups to validate the neural
results found in the current research.
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Changing gait is crucial for adaptive and smooth animal locomotion. Although it

remains unclear what makes animals decide on a specific gait, energy efficiency is

an important factor. It has been reported that the relationship of oxygen consumption

with speed is U-shaped for each horse gait and that different gaits have different

speeds at which oxygen consumption is minimized. This allows the horse to produce

energy-efficient locomotion in a wide speed range by changing gait. However, the

underlying mechanisms causing oxygen consumption to be U-shaped and the speeds

for the minimum consumption to be different between different gaits are unclear. In

the present study, we used a neuromusculoskeletal model of the rat to examine the

mechanism from a dynamic viewpoint. Specifically, we constructed the musculoskeletal

part of themodel based on empirical anatomical data on rats and themotor control model

based on the physiological concepts of the spinal central pattern generator and muscle

synergy. We also incorporated the posture and speed regulation models at the levels of

the brainstem and cerebellum. Our model achieved walking through forward dynamic

simulation, and the simulated joint kinematics and muscle activities were compared with

animal data. Our model also achieved trotting by changing only the phase difference

of the muscle-synergy-based motor commands between the forelimb and hindlimb.

Furthermore, the speed of each gait varied by changing only the extension phase duration

and amplitude of the muscle synergy-based motor commands and the reference values

for the regulation models. The relationship between cost of transport (CoT) and speed

was U-shaped for both the generated walking and trotting, and the speeds for the

minimum CoT were different for the two gaits, as observed in the oxygen consumption

of horses. We found that the resonance property and the posture and speed regulations

contributed to the CoT shape and difference in speeds for the minimum CoT. We further

discussed the energy efficiency of gait based on the simulation results.

Keywords: rat, walk, trot, energy efficiency, central pattern generator, muscle synergy,

neuromusculoskeletal model
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1. INTRODUCTION

Animals can generate adaptive and smooth locomotion in
various conditions. One important strategy for such locomotion
is the use of different gaits. For example, quadruped animals
walk, amble, trot, pace, canter, and gallop. Although gait is the
motor outcome of a complicated and redundant musculoskeletal
system controlled by the central nervous system, it is largely
unclear what makes animals decide on a gait. One important
factor for deciding gait is the energy efficiency of locomotion;
that is, animals want to minimize the cost of transport (CoT).
In particular, it has been reported that the relation between
oxygen consumption and speed is U-shaped for each horse gait
and that different gaits have different speeds at which oxygen
consumption is minimized (Figure 1) (Hoyt and Taylor, 1981).
Walking, trotting, and galloping are energy-efficient at low,
middle, and high speeds, respectively. Walking and trotting share
a common speed range, as do trotting and galloping. Therefore,
horses can produce energy-efficient locomotion over a wide
speed range by changing their gait. However, the underlying
mechanisms making the oxygen consumption U-shaped and
the speeds for minimum consumption different between gaits
remain unclear.

Locomotion is generated through interactions between
the central nervous system, musculoskeletal system, and
environment. It is difficult to fully analyze the locomotor
mechanism with animal data alone. Recently, modeling studies
have attracted attention because physiological findings and
hypotheses can be used to develop reasonably realistic motor
control models, and biomechanical and anatomical findings can
be used to construct detailed musculoskeletal models (Ivashko
et al., 2003; Yakovenko et al., 2004; Ekeberg and Pearson, 2005;
Nishii, 2006; Aoi et al., 2013a; Fukuoka et al., 2015; Hunt et al.,
2015; Aoi and Funato, 2016; Markin et al., 2016; Fujiki et al.,
2018). Motor control and musculoskeletal models are integrated
to produce locomotion through forward dynamics simulation.
This allows the locomotor mechanism to be examined from a
dynamic viewpoint.

In this study, we investigated the energy efficiency of gait using
a rat neuromusculoskeletal model. Specifically, we constructed
a musculoskeletal model composed of the trunk, forelimbs,
and hindlimbs based on anatomical data. This model is an
improvement on our previous rat hindlimb model (Aoi et al.,

FIGURE 1 | Oxygen consumption of horses in walking, trotting, and galloping.

2013a). We also improved our previous motor control model
to control the rat four-limb model. The motor control model
was developed based on the hypothetical two-layer central
pattern generator (CPG) model at the spinal cord level (Burke
et al., 2001; Rybak et al., 2006) and the muscle synergy
hypothesis (Tresch et al., 1999; Todorov and Jordan, 2002;
d’Avella et al., 2003; Ting and Macpherson, 2005; Ivanenko
et al., 2006; Drew et al., 2008; Takei et al., 2017), which
describes a simple control strategy for redundant motor systems.
Furthermore, we incorporated movement regulation models at
the levels of the brainstem and cerebellum through brainstem
descending pathways. We simulated the walking of our model
and compared the simulation results with animal data. In
addition, we simulated trotting and changed the speed of each
gait using simple motor control strategies. We calculated the
CoT of walking and trotting for the generated speeds and, in
this paper, we discuss the energy efficiency of gait based on the
simulation results.

2. METHOD

2.1. Musculoskeletal Model
We developed a rat musculoskeletal model based on our
previous model, which focused on the hindlimbs without
incorporating the forelimbs (Aoi et al., 2013a). The skeletal
part of the model consists of eleven rigid links representing
the trunk (including the head), forelimbs (two links), and
hindlimbs (three links), as shown in Figure 2. This model
is two-dimensional, and the walking behavior is constrained
to the sagittal plane. When the brachium and antebrachium
are in a straight line and perpendicular to the trunk, the
shoulder angle is 120◦ and the elbow angle is 180◦. When the
thigh, shank, and foot are in a straight line and perpendicular
to the trunk, the hip angle is 120◦ and the knee and
ankle angles are both 180◦. The joint angles increase as the
joints extend. We modeled the contact between the limb tips
and the ground using viscoelastic elements. We derived the
equations of motion using Lagrangian equations and solved
them using the fourth-order Runge-Kutta method with a time
step of 0.02 ms.

For the muscle part of the model, we used six principal
muscles for each forelimb: four uniarticular, namely shoulder
extension (supraspinatus, SSP), shoulder flexion (spinoltoideus,
SPD), elbow flexion (brachioradialis, BR), and elbow extension
(triceps lateral head, TRIL), and two biarticular, namely shoulder
extension and elbow flexion (biceps, BIC) and shoulder flexion
and elbow extension (triceps, TRI), as shown in Figure 2.
We used seven principal muscles for each hindlimb: five
uniarticular, namely hip flexion (iliopsoas, IP), hip extension
(gluteus maximus, GM), knee extension (vastus lateralis, VL),
ankle flexion (tibialis anterior, TA), and ankle extension (soleus,
SO), and two biarticular, namely hip extension and knee flexion
(biceps femoris, BF) and knee flexion and ankle extension
(gastrocnemius, GA). The moment arms of the muscles around
the joints are constant, regardless of joint angles. Each muscle
generates muscle tension Fm (m = SSP, SPD, BR, TRIL, BIC, TRI,
IP, GM, VL, TA, SO, BF, and GA) through contractile and passive
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FIGURE 2 | Musculoskeletal model.

elements, which is given based on Aoi et al. (2013a) by

Fm = Fmax
m (amF

l
mF

v
m + Fp

m) (1)

where Fmax
m is the maximum muscle tension, am is the muscle

activation (0 ≤ am ≤ 1), Fl
m is the force-length relationship, Fv

m is
the force-velocity relationship, and F

p
m is the passive component.

The muscle lengths were normalized by lmax
m , which was set so

that all uniarticular muscles had a length of 85% of lmax
m and all

biarticular muscles had a length of 75% of lmax
m at a neutral posture

with the shoulder at 60◦, the elbow at 85◦, the hip at 70◦, the
knee at 90◦, and the ankle at 100◦. In addition, 2◦ of joint motion
corresponded to 1% of muscle length change, except for BIC and
GA (4.5◦ at the shoulder for BIC, 1.5◦ at the ankle or 4.5◦ at the
knee for GA). The muscle contractile velocities were normalized
by 1.8lmax

m .
The muscle activation am is determined through

τactȧm +
{

τact

τdeact
+

(

1− τact

τdeact

)

um

}

am = um (2)

where τact and τdeact are respectively, activation and deactivation
time constants (11 and 18 ms, respectively) and um is the motor
command determined in the motor control model.

2.2. Motor Control Model
We developed a motor control model based on our previous
work (Aoi et al., 2013a). It consists of the following two
components: 1. a movement generator, which produces motor
commands in a feedforward fashion at the spinal cord level to
create periodic limb movements based on the muscle synergy
hypothesis and 2. a movement regulator, which creates motor
commands to regulate locomotor behavior in a feedback fashion
at the brainstem and cerebellar levels based on proprioceptive
and somatosensory information. The motor command um is
the summation of the two components from the movement
generator and the movement regulator, namely u

Syn
m and

u
Reg
m , respectively.

um = u
Syn
m + u

Reg
m (3)

2.2.1. Movement Generator
The movement generator is based on the hypothetical two-
layer CPG model composed of a rhythm generator (RG)
network, which produces rhythm and phase information for
motor commands, and a pattern formation (PF) network, which
produces spatiotemporal patterns of motor commands (Burke
et al., 2001; Rybak et al., 2006).

For the RG model, we used four simple phase oscillators, each
of which produces a basic rhythm and phase information for the

corresponding limb.We used φ
j
i (i = left, right, j = fore, hind) for

the oscillator phase (0 ≤ φ
j
i < 2π), which follows the dynamics

given by

φ̇fore
left = 2π

T
− K1 sin(φ

fore
left − φfore

right − π)− K2 sin(φ
fore
left − φhind

left + 1)

φ̇fore
right =

2π

T
− K1 sin(φ

fore
right − φfore

left − π)− K2 sin(φ
fore
right − φhind

right + 1)

φ̇hind
left = 2π

T
− K1 sin(φ

hind
left − φhind

right − π)− K2 sin(φ
hind
left − φfore

left − 1)

φ̇hind
right =

2π

T
− K1 sin(φ

hind
right − φhind

left − π)− K2 sin(φ
hind
right − φfore

right − 1)

(4)

where T is the gait cycle duration and K1 and K2 are gain
parameters. The second term on the right-hand side ensures that
the left and right limbs move in antiphase to maintain interlimb
coordination. The third term on the right-hand side ensures that
the ipsilateral limbs move in relative phase of 1 to maintain
interlimb coordination.

For the PF model, we determined the motor commands
necessary to produce periodic limb movements in accordance
with the corresponding oscillator phase based on the muscle
synergy hypothesis, which suggests that the linear combination
of only a small number of basic signals produces a large portion
of motor commands in animal locomotion (Ivanenko et al.,
2006; Dominici et al., 2011; Markin et al., 2012; Catavitello
et al., 2015; Rigosa et al., 2015). Specifically, we used four
rectangular pulses pi (i = 1, . . . , 4) for each limb, which
are given by

pi(φ) =
{

1 8i ≤ φ < 9i

0 otherwise
i = 1, . . . , 4 (5)
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FIGURE 3 | Movement generator. (A) Motor commands as linear combinations of four rectangular pulses in each forelimb and hindlimb. Gray regions indicate

extension phases, and others indicate flexion phases. (B) Activated muscles at each pulse.

where 8i and 9i (i = 1, . . . , 4) are the onset and end phases of
the pulse, respectively, and we omitted the suffix of φ. p1, p2, p3,
and p4 contribute to early extension, late extension, early flexion,
and late flexion, respectively, as shown in Figure 3 [extension and
flexion phases start at 81 (= 0 rad) and 83, respectively]. We
used the same values of 8i and 9i for the four limbs irrespective
of whether they were forelimb or hindlimb. Themotor command

u
Syn
m of the movement generator is given by

u
Syn
m =

4
∑

i=1

wm,ipi(φ) (6)

where wm,i (i = 1, . . . , 4) is the weighting coefficient.

2.2.2. Movement Regulator
At the levels of the brainstem and cerebellum, locomotor
behavior is regulated based on proprioceptive and somatosensory

information (Takakusaki, 2017). For the rat, it is crucial to
maintain body height and forward speed during locomotion
(Figure 4). For simplicity, we focused on these two factors.

For the body height, we used simple feedback control for
the standing limb. For the forelimbs, we used the BR and TRIL
muscles to maintain the shoulder height. The motor command

p
height
m (m = BR and TRIL) is given by

p
height
m

=
{

−K
height
m (hShoulder − hShoulder0 )− D

height
m ḣShoulder in stance phase

0 otherwise

(7)

where hShoulder and ḣShoulder are the shoulder height and its rate,

respectively, hShoulder0 is the reference height, and K
height
m and D

height
m

are gain parameters. For the hindlimbs, we used the VL, TA, and
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SO muscles to maintain the hip height. The motor command

p
height
m (m = VL, TA, and SO) is given by

p
height
m =

{

−K
height
m (hHip − h

Hip

0 )− D
height
m ḣHip in stance phase

0 otherwise
(8)

where hHip and ḣHip are the hip height and its rate, respectively,
and h

Hip

0 is the reference height.
For the forward speed, we used simple feedback control for

the standing limb. We used the SSP, SPD, IP, GM, TA, and SO

muscles to maintain speed. The motor command p
speed
m (m = SSP,

SPD, IP, GM, TA, and SO) is given by

pspeedm =
{

−K
speed
m (v− v0) in stance phase

0 otherwise
(9)

FIGURE 4 | Movement regulator based on shoulder height, hip height, and

forward speed. BR and TRIL muscles are used for shoulder height, VL, TA,

and SO muscles are used for hip height, and SSP, SPD, IP, GM, TA, and SO

muscles are used for speed.

where v is the forward speed, v0 is its desired value, and K
speed
m is a

gain parameter.
The summation of these elements produces the motor

command of the movement regulator. Because regulation is
managed at the brainstem and cerebellar levels, the command
signals are delayed and the motor command u

Reg
m of the

movement regulator is given by

u
Reg
m (t) = u

height
m (t)+ uspeed

m (t) (10)

where

u
height
m (t) = p

height
m (t − τDelay)

uspeed
m (t) = pspeedm (t − τDelay) (11)

and τDelay (= 15 ms) is the delay between receiving the
transmission of proprioceptive and somatosensory information
at the brainstem and cerebellar levels and sending the motor
command to the spinal cord level.

2.3. Changing Gait and Speed
In this study, we focused on two gaits, namely walking and
trotting. They are mainly classified by the footfall sequence.
Specifically, four limbs move out of phase in walking, and
diagonal limbs are paired in trotting (Figure 5). Right and
left limbs move in antiphase in both walking and trotting.
The major difference between the gaits is the relative phase
between the ipsilateral limbs. To change the relative phase of the
limb movements, we changed the relative phase of the muscle-

synergy-based motor command u
Syn
m between the ipsilateral limbs

by changing1 in (4). In particular, we used1 = π/2 for walking
and 1 = π for trotting.

Animals change the gait cycle duration to vary speed,
where the duration of the flexion phase for swinging the limb

FIGURE 5 | Schematic diagram of footfall sequence for walking and trotting. Color bars indicate stance phase. Right and left limbs move in antiphase. Relative phase

between forelimb and hindlimb is π/2 for walking and π for trotting (LF, left fore; LH, left hind; RF, right fore; RH, right hind).
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FIGURE 6 | Regulation of muscle-synergy-based motor command (A) to change speed by changing extension phase duration Tex (= βT ) while keeping flexion phase

duration Tfl unchanged, where weighting coefficient wm,i/ŵm,i (B), reference shoulder height hShoulder0 (C), reference hip height h
Hip
0 (D), and reference speed v0 (E)

depend on β.

remains almost unchanged and the duration of the extension
phase for supporting the body and producing the propulsive
forces is changed substantially (Goslow et al., 1973; Heglund
and Taylor, 1998; Clarke and Still, 1999; Górska et al., 1999;
Yakovenko et al., 2005). In this study, we changed the speed
by changing the duration of the extension phase Tex (= βT)
using β while keeping the duration of the flexion phase Tfl

unchanged (T = Tex + Tfl = Tfl/(1 − β)), as shown in
Figure 6A. For the nominal speed, which we determined from
animal data as explained below, we used β̂ , T̂ex, 8̂i, 9̂i, ŵm,i

(i = 1, . . . , 4), ĥShoulder0 , ĥ
Hip

0 , and v̂0 for motor control parameters

β , Tex, 8i, 9i, wm,i (i = 1, . . . , 4), hShoulder0 , h
Hip

0 , and v0,
respectively. The onset phase 8i and end phase 9i (i = 1, . . . , 4)

of each pulse are given by

8i =















β

β̂
8̂i i = 1, 2

1− β

1− β̂
8̂i +

2π(β − β̂)

1− β̂
i = 3, 4

9i =















β

β̂
9̂i i = 1, 2

1− β

1− β̂
9̂i +

2π(β − β̂)

1− β̂
i = 3, 4

(12)

We decreased (increased) the extension phase duration to
increase (decrease) the speed, which decreased (increased) the
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duration of pulses of the extension phase. To prevent the
model from decreasing (increasing) the speed, we increased
(decreased) the weighting coefficients wm,i (i = 1, 2) of
the muscle-synergy-based rectangular pulses for the extension
phase (Figure 6B) as

wm,i =
1− β

1− β̂
ŵm,i i = 1, 2 (13)

As we changed the locomotion speed, we also changed the
reference height (shoulder, hip) and speed for the movement
regulator (Figures 6C–E) as

hShoulder0 = ĥShoulder0 + αShoulder(β − β̂)

h
Hip

0 = ĥ
Hip

0 + αHip(β − β̂)

v0 = v̂0 + αSpeed(β − β̂) (14)

where αShoulder, αHip, and αSpeed are coefficients.

2.4. Model Parameters
2.4.1. Parameters for the Musculoskeletal Model
To determine the physical parameters of the musculoskeletal
model, we used seven adult male Wistar rats (body weight:
125 ± 10 g). The rats were deeply anesthetized, and their
musculoskeletal features were measured. The experiments were
approved by the Ethical Committee for Animal Experiments
at the University of Tokyo and carried out in accordance with
the Guidelines for Research with Experimental Animals of the
University of Tokyo and the Guide for the Care and Use of
Laboratory Animals (NIH Guide).

For the skeletal model, we measured several physical
parameters of the rats, such as masses, joint positions, and
distances between joints, and determined the model parameters
from these measurements, as shown in Table 1. For the muscle
model, we first electrically stimulated individual muscles and
determined which joint movements were needed to verify our
musculoskeletal model. We measured the attachment, direction,
and physiological cross-sectional area (PCSA) for each muscle
and determined the model parameters from these measurements,
as shown in Table 2, where the maximum muscle tension Fmax

m

was determined based on the measured PCSA and the moment
arms were determined from the center of the range of joint
movement during locomotion.

2.4.2. Parameters for the Motor Control Model
Based on measured data for rats walking on a treadmill at a speed
of 0.4 m/s (Aoi et al., 2013a), we set the durations of the flexion
and extension phases for the nominal speed as Tfl = 0.10 s and
T̂ex = 0.16 s, respectively (β̂ = 0.62). We determined the motor
control parameters for the nominal speed as follows so that our
model achieved steady walking based on our previous results of
the hindlimb model (Aoi et al., 2013a): 8̂1 = 0, 8̂2 = 0.40π ,
8̂3 = 1.24π , 8̂4 = 1.42π , 9̂1 = 0.33π , 9̂2 = 0.89π , 9̂i =
1.42π , 9̂i = 1.71π , ŵSSP,1 = 0.24, ŵSSP,4 = 0.20, ŵSPD,2 = 0.27,
ŵSPD,3 = 0.08, ŵBR,3 = 0.09, ŵTRIL,1 = 0.47, ŵTRIL,2 = 0.57,
ŵBIC,3 = 0.17, ŵBIC,4 = 0.08, ŵTRI,1 = 0.27, ŵTRI,2 = 0.56,

TABLE 1 | Physical parameters of skeletal model.

Parameter Trunk Brachium Antebrachium Thigh Shank Foot

Mass (g) 99.8 1.6 1.6 5.2 2.8 1.5

Length (mm) 93.0 16.1 19.0 18.5 27.2 17.7

MOI (×102 gmm2) 1410 0.57 0.53 5.73 2.62 0.75

MOI, moment of inertia around center of mass.

TABLE 2 | Physical parameters of muscle model.

Parameter SSP SPD BR TRIL BIC TRI

Fmax
m (N) 11.1 9.8 5.1 11.5 7.7 23.2

MA (mm) 3.6 5.3 3.6 5.9 2.4 (s) 5.7 (s)

4.0 (e) 5.9 (e)

Parameter IP GM VL TA SO BF GA

Fmax
m (N) 15.7 23.3 24.0 4.1 3.5 3.1 4.5

MA (mm) 4.5 2.3 3.2 5.1 6.0 2.5 (h) 4.2 (k)

12.5 (k) 6.0 (a)

MA, moment arm of muscle around joint; s, shoulder; e, elbow; h, hip; k, knee; and a,

ankle.

ŵIP,3 = 0.32, ŵIP,4 = 0.32, ŵGM,1 = 0.61, ŵGM,2 = 0.25, ŵVL,1 =
0.19, ŵVL,2 = 0.22, ŵTA,3 = 0.45, ŵTA,4 = 0.06, ŵSO,1 = 0.58,
ŵSO,2 = 0.14, ŵBF,1 = 0.22, ŵBF,2 = 0.12, ŵBF,3 = 0.09,
ŵGA,1 = 0.47, ŵGA,2 = 0.10, ŵm,i = 0 for the other values of

m and i, ĥShoulder0 = 0.033 m, ĥ
Hip

0 = 0.054 m, v̂0 = 0.4 m/s,

K
height
BR = −2.07, K

height

TRIL = 2.07, K
height
VL = 12.4, K

height

TA = −12.4,

K
height

SO = 12.4, D
height
BR = −0.001, D

height

TRIL = 0.001, D
height
VL =

0.006, D
height

TA = −0.006, D
height

SO = 0.006, K
speed
SSP = −0.007,

K
speed
SPD = 0.007, K

speed
IP = −0.052, K

speed
GM = 0.052, K

speed
TA = −0.026,

K
speed
SO = 0.026, K1 = 20, and K2 = 10. In addition, we set the

coefficients for the regulation of the references in the movement
regulator to change the speed as αShoulder = 0.01m, αHip = 0.01m,
and αSpeed = −4.7 m/s.

2.5. Comparison With Animal Data
To evaluate our neuromusculoskeletal model, we compared the
simulation results for walking with animal data.We used the joint
angles of the hindlimbs measured in Aoi et al. (2013a), where rats
walked on a treadmill at a speed of 0.4 m/s, and the joint angles
of the forelimbs measured in Aoki et al. (2013), where intact rats
walked at the average speed of 0.36m/s in a custom-made runway
box (length: 140 cm; width: 14 cm).

We used the electromyographic (EMG) data measured from
the muscles of the hindlimbs in Aoi et al. (2013a) and the EMG
data measured from two muscles (BIC and TRI) of the forelimbs
in Aoki et al. (2013). Because we could not find EMG data for
four muscles (SSP, SPD, BR, and TRIL) of the forelimbs of rats,
we used EMG data for these muscles in cats, whose gait and
joint movements are similar to those of rats, given in Drew
et al. (2008), where cats walked on a treadmill at a speed of
0.35–0.45 m/s. In the comparison with the simulation results,
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we showed the EMG data so that their magnitudes are similar
to those of simulated muscle activities.

2.6. Evaluation of Cost of Transport
The energetic cost of locomotion for our simulation results for
walking and trotting was estimated based on the mechanical
energy exerted by muscles. Based on previous work (Ogihara
et al., 2011), we calculated the CoT ε as

ε = W

D
(15)

where

W = η+ + η−

η+ =
∫

T

∑

m

Fm[vm]
+dt

η− = 1

4

∫

T

∑

m

Fm[−vm]
+dt

vm is the contracting velocity of the muscle (positive for
contraction), and [x]+ is x if x ≥ 0 and 0 if x < 0. η+ and η−
are the positive and negative mechanical work done by muscles,
respectively, for one gait cycle duration. The negative mechanical
work was divided by four based on Margaria et al. (1963), Elmer
and LaStayo (2014). D is the moving distance of the model for
one gait cycle duration, which corresponds to the stride length.

In this study, the motor command um is generated by three

elements: rectangular pulses u
Syn
m in the movement generator and

motor commands u
height
m and u

speed
m to regulate the posture and

speed, respectively, in the movement regulator (um = u
Syn
m +

u
height
m + u

speed
m ). Because they determined the muscle activation

am in (2), we calculated a
Syn
m , a

height
m , and a

speed
m from u

Syn
m , u

height
m ,

and u
speed
m , respectively. Using these values, we calculated the

CoTs εSyn, εheight, and εspeed from the three elements to investigate
their contributions.

3. RESULTS

3.1. Simulation of Walking
First, we conducted a computer simulation of our
neuromusculoskeletal model for the nominal speed of walking
using β = β̂ and 1 = π/2 (see Supplementary Movie S1). The
generated average speed was 0.2 m/s. Figures 7A,B show the
joint angle and muscle activity, respectively, from the simulation
compared with animal data. The simulation results show activity
patterns similar to those of animals in terms of kinematics and
muscle activity levels. However, our model was limited in its
ability to accurately reproduce the locomotor behavior observed
in animals. In particular, the elbow and knee joints were more
extended than those of animals, which resulted in a shorter stride
and slower speed than desired. The more extended elbow joint
partly occurred because we did not incorporate the hand and
wrist in the forelimb, and the forward speed was reduced by large
ground reaction forces at the tips of the forelimbs. Similarly, the
more extended knee joint partly occurred because we did not

incorporate the phalangeal part in the hindlimb. The absence
of flexibility of the spine in the trunk is another factor causing
the extended posture. In addition, the activity of the SSP muscle
appeared in a phase different from that of measured data. The
SSP muscle in animals was activated in the same phase as that of
the antagonistic SPD muscle so that the shoulder joint stiffness
increased. In contrast, the SSP muscle in our model was activated
in the same phase as that of the ipsilateral BR and BIC muscles.

3.2. Changing Gait and Speed
By changing 1 from π/2 to π , our model achieved steady
trotting (see Supplementary Movie S2). Although this gait had
activity patterns almost identical to those of walking in terms of
joint kinematics and muscle activations (Figure 7), the footfall
pattern was different, as shown in Figure 8. The difference of the
footfall pattern caused the difference in the trunk movement. In
particular, while walking has a slight pitching movement of the
trunk, trotting has almost no pitching movement, as shown in
Figure 8 (see Supplementary Movies S1, S2).

To change the speed of each gait, we slowly increased
or decreased β from β̂ while changing the duration of the
extension phase, the amplitude of the muscle-synergy-based
motor commands, and the reference values for the movement
regulator based on β , as in (12–14). Figure 9 shows the speed of
the simulated walking and trotting. Ourmodel achieved speeds of
0.15–0.2 m/s for walking and 0.18–0.22 m/s for trotting. Trotting
was faster than walking in each β .

3.3. Cost of Transport
Figure 10A shows the CoT ε of walking and trotting for the
generated speeds in the simulation. Both CoT curves are U-
shaped. The speeds for the minimum CoT for walking and
trotting are very different. Walking had lower (higher) CoTs than
trotting at slow (fast) speed. The CoT was obtained by dividing
the mechanical work W for one gait cycle duration by the stride
length D, as in (15). Figures 10B,C show the mechanical work
and stride length, respectively, with speed. The mechanical work
slightly but monotonically increased in walking and decreased
in trotting. In contrast, the stride length shows a single-peaked
shape for speed in both walking and trotting. The speeds for the
minimumCoT andmaximum stride length were almost identical
in both walking and trotting.

Figures 10D,E, respectively, show the contributions of the
muscle synergy-based pulses and posture and speed regulators
to the CoT (εSyn, and εheight and εspeed, respectively). The CoT
contribution of the muscle synergy-based pulses was U-shaped
in both walking and trotting and was the largest among the
three elements. The CoT contributions of the posture and speed
regulators were small. While the contribution of the posture
regulator remained constant with speed in walking, it decreased
in trotting. The contribution of the speed regulator increased in
both walking and trotting.

4. DISCUSSION

In this study, we improved our previous musculoskeletal model
of rat hindlimbs (Aoi et al., 2013a) to construct a whole-body rat

Frontiers in Neuroscience | www.frontiersin.org 8 January 2020 | Volume 13 | Article 1337101

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Toeda et al. Gait Energy Efficiency on Rat Model

FIGURE 7 | Simulated joint kinematics (A) and muscle activations (B) in walking compared with measured animal data. Gray regions indicate stance phases.

musculoskeletal model, which consists of the trunk, forelimbs,
and hindlimbs. We also improved our motor control model (Aoi
et al., 2013a) based on the muscle synergy hypothesis to control
the whole-body rat model. Although the motor control model
had a large number of motor control parameters, the rat
model could be made to walk or trot by changing only the
phase difference of the muscle-synergy-based motor commands
between the forelimb and hindlimb (Figures 7, 8). Furthermore,
the speed of each gait could be varied by changing only the
duration of the extension phase, the amplitude of the muscle-
synergy-based motor commands, and the reference values for

the movement regulator (Figure 9). The relation between speed
and CoT was U-shaped for both the walking and trotting
generated, and the speeds for the minimum CoT were different
for the two gaits, as observed in the oxygen consumption of
animals (Figure 10).

4.1. Characteristics of Cost of Transport
For our simulation, the CoT vs. speed curves were U-shaped
for both walking and trotting (Figure 10A). Walking had lower
(higher) CoTs than trotting at slow (fast) speed. The CoTs were
the same at a certain middle speed. These results indicate that
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FIGURE 8 | Footfall pattern and stick diagram of simulated walking (A) and trotting (B). Stick diagram shows simulated locomotor behavior between two successive

foot contacts of right hindlimb, where bold lines indicate right limbs. See Supplementary Movies S1, S2 for simulated walking and trotting, respectively.

FIGURE 9 | Generated speed during walking and trotting.

walking and trotting are energy-efficient at slow and fast speeds,
respectively. These trends are similar to those observed for
animals (Figure 1).

The CoT was calculated by dividing the mechanical work of
one gait cycle duration by the stride length, as shown in (15).
The stride length showed a single-peaked shape against speed
(Figure 10C). The speeds for the minimum CoT and maximum
stride length were almost identical. We decreased the extension
phase duration to increase the speed, which decreased the gait
cycle duration. Because we increased the muscle-synergy-based
motor commands during the extension phase as in (13), the
stride length increased. However, this increase of the stride
length was limited due to the increase of the gait frequency
(decrease of the gait cycle duration). The stride length decreased
over a critical frequency, which suggests a resonance property
of the musculoskeletal dynamics and motor control input.
Although these trends were similar between walking and trotting,
the maximum stride length differed. These characteristics
contributed majorly to the different energy efficiencies of gait. It

has been reported that when the locomotor frequency increased,
the stretch receptor of the hip prevented the hindlimbs from
extending further (Mayer et al., 2018; Santuz et al., 2019). In
the future, we would like to incorporate this sensory regulation
model to control the stride length to investigate the mechanism
of energy-efficient locomotion further.

In our model, the CoT had contributions from three elements,
namely muscle synergy-based pulses and posture and speed
regulators (ε ≃ εSyn + εheight + εspeed). The muscle synergy-based
pulses had the largest contribution and determined the basic U-
shaped characteristics (Figure 10D). Although the posture and
speed regulators had small contributions (Figure 10E), they had
specific characteristics. In particular, while the posture regulator
for walking remains almost constant with speed, that for trotting
decreased, which moved the speed for the minimum CoT to the
right (with respect to that for the muscle synergy-based pulses)
and increased the difference in speed for the minimum CoT
between walking and trotting. This allowed the model to achieve
energy-efficient locomotion in a wider speed range. In contrast,
the speed regulator increased with speed in both walking and
trotting and had a similar shape against speed for walking and
trotting, which had a small contribution to the difference in speed
for the minimum CoT.

4.2. Gait Generation Based on Muscle
Synergy
A large portion of motor commands in our model was generated
by a linear combination of four rectangular pulses for each limb,
where we used the same onset and end phases for the pulses
between the four limbs. We changed the relative phase of the
pulses between the forelimb and hindlimb to make the gait
generation simple. However, a muscle synergy analysis of dogs
showed that although a large portion of the muscle activity can
be reproduced by a linear combination of four basic patterns for
both forelimbs and hindlimbs in walking and trotting, as done
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FIGURE 10 | Cost of transport for speed of simulated walking and trotting. (A) Total CoT, (B) mechanical work, (C) stride length, (D) CoT contribution of muscle

synergy-based pulses, and (E) CoT contributions of posture and speed regulators.

for our model, the basic patterns had some differences, especially
in the activation timings between forelimbs and hindlimbs and
between walking and trotting (Deban et al., 2012; Catavitello
et al., 2015). In particular, the basic patterns for the late extension
and early and late flexion of the hindlimbs were earlier than those
of the forelimbs in walking. The basic pattern for the early flexion
of the hindlimbs was earlier than that of the forelimbs in trotting.
The control of the activation timings of the muscle synergy
patterns could contribute to the gait change (Cappellini et al.,
2006; Aoi et al., 2019). In future studies, we would like to measure
the trotting of rats and incorporate motor control differences
between forelimbs and hindlimbs and between walking and
trotting to clarify the gait-generation mechanism further.

4.3. Limitations of Our Model and Future
Work
Although our simulation results showed features similar to
those of animals (Figure 7), our model has limitations that
prevent it from accurately reproducing animal locomotion. In
particular, we did not incorporate the hand, phalangeal part of the

hindlimbs, or flexibility of the spine in the trunk (Schilling and
Hackert, 2006). These elements might improve the gait speed and
energy efficiency. Furthermore, we confined our musculoskeletal
model to two dimensions, which neglected instability in the
lateral direction. More contribution of the posture regulator
would be required for a three-dimensional model to maintain
a stable posture during locomotion. In addition, although head
movements are important and specific for gait (Zsoldos et al.,
2010), we did not incorporate the neck. We would like to
incorporate these features to clarify adaptive motor control
mechanisms in animal locomotion further.

Not only the metabolic cost of locomotion but also other
factors, such as musculoskeletal forces (Farley and Taylor, 1991),
gait stability (Schöner et al., 1990; Diedrich and Warren, 1995;
Aoi et al., 2013b), terrain and ground surface conditions (Prost
and Sussman, 1969; Gustås et al., 2006; Goldenberg et al.,
2008; Chateau et al., 2013), and genetic mutation (Andersson
et al., 2012), influence the gait decision of animals. Furthermore,
although animals change their gait smoothly when triggered by
these factors, the gait transition mechanism also remains unclear.

Frontiers in Neuroscience | www.frontiersin.org 11 January 2020 | Volume 13 | Article 1337104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Toeda et al. Gait Energy Efficiency on Rat Model

Our neuromusculoskeletal model will be useful for investigating
these mechanisms in the future.
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Humans walk adaptively in varying environments by manipulating their complicated and

redundant musculoskeletal system. Although the central pattern generators in the spinal

cord are largely responsible for adaptive walking through sensory-motor coordination,

it remains unclear what neural mechanisms determine walking adaptability. It has been

reported that locomotor rhythm and phase are regulated by the production of phase

shift and rhythm resetting (phase resetting) for periodic motor commands in response

to sensory feedback and perturbation. While the phase resetting has been suggested

to make a large contribution to adaptive walking, it has only been investigated based

on fictive locomotion in decerebrate cats, and thus it remains unclear if human motor

control has such a rhythm regulation mechanism during walking. In our previous work, we

incorporated a phase resetting mechanism into a motor control model and demonstrated

that it improves the stability and robustness of walking through forward dynamic

simulations of a human musculoskeletal model. However, this did not necessarily verify

that phase resetting plays a role in human motor control. In our other previous work,

we used kinematic measurements of human walking to identify the phase response

curve (PRC), which explains phase-dependent responses of a limit cycle oscillator to a

perturbation. This revealed how human walking rhythm is regulated by perturbations. In

this study, we integrated these two approaches using a physical model and identification

of the PRC to examine the hypothesis that phase resetting plays a role in the control

of walking rhythm in humans. More specifically, we calculated the PRC using our

neuromusculoskeletal model in the same way as our previous human experiment. In

particular, we compared the PRCs calculated from two different models with and without

phase resetting while referring to the PRC for humans. As a result, although the PRC for
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the model without phase resetting did not show any characteristic shape, the PRC for

the model with phase resetting showed a characteristic phase-dependent shape with

trends similar to those of the PRC for humans. These results support our hypothesis and

will improve our understanding of adaptive rhythm control in human walking.

Keywords: human walking, phase resetting, phase response curve, central pattern generator, muscle synergy,

neuromusculoskeletal model

1. INTRODUCTION

Humans walk adaptively in varying environments by the skillful
control of their complicated and redundant musculoskeletal
system. Although many studies have investigated the underlying
mechanism for adaptive walking, it remains largely unclear what
neural mechanisms determine the walking adaptability.

Because human walking is rhythmic, elucidating the rhythm
control strategy is crucial. The central pattern generators (CPGs)
in the spinal cord are largely responsible for adaptive rhythm
control through sensory-motor coordination (Orlovsky et al.,
1999). In particular, it has been reported that locomotor rhythm
and phase are regulated by producing phase shift and rhythm
resetting (phase resetting) for periodic motor commands in
response to sensory feedback and perturbation (Duysens, 1977;
Conway et al., 1987; Guertin et al., 1995; Schomburg et al.,
1998; Lafreniere-Roula and McCrea, 2005; Rybak et al., 2006a;
Frigon and Gossard, 2010). However, such phase resetting
behavior has been investigated only with electromyographic and
electroneurographic data measured during fictive locomotion
in decerebrate cats, and thus it is unclear if human motor
control has such a rhythm regulationmechanism during walking.
From a modeling approach on the basis of the hypothesis that
phase resetting works for the control of walking rhythm in
humans, the phase resetting mechanism has been introduced in
motor control models of human walking. Although the models
demonstrated that it improves stability and robustness of walking
through forward dynamic simulations of humanmusculoskeletal
models (Yamasaki et al., 2003a,b; Nomura et al., 2009; Aoi et al.,
2010; Aoi and Funato, 2016), they did not necessarily verify
whether the hypothesis is true.

To investigate rhythm regulation mechanisms in biological
and natural phenomena, researchers have applied the phase
response curve (PRC) in the phase reduction theory, which
explains how the phase of a limit cycle oscillator shifts by a
perturbation at an arbitrary phase (Kuramoto, 1984; Winfree,
2001). In our previous work (Funato et al., 2016), we assumed
human walking as a limit cycle oscillator and identified the PRC
from kinematic measurements by changing the belt speed of a
treadmill during human walking, which clarified how human
walking rhythm is regulated by perturbations. In this study, to
examine the hypothesis, we integrated two previous different
approaches that used a physical model and identification of
the PRC. More specifically, we performed forward dynamic
simulations with our previous neuromusculoskeletal model (Aoi
et al., 2010) to walk on a treadmill and disturbed the belt speed
at arbitrary phases in the same way as our previous experiments
with humans (Funato et al., 2016). In particular, we obtained

the PRC for two different cases with and without phase resetting
in our motor control model and compared the results with the
measured PRC in humans. Based on these results, we discuss
the contribution of phase resetting to adaptive rhythm control
in human walking.

2. METHODS

2.1. Model
In this study, we used the same neuromusculoskeletal model that
we developed in our previous work (Aoi et al., 2010). We briefly
explain the model below.

2.1.1. Musculoskeletal Model

Our musculoskeletal model is two-dimensional (Figure 1A), and
the physical parameters were determined from data obtained
from measurement of human walking (Davy and Audu, 1987;
Winter, 2004). The skeletal part of our model has seven rigid
links: trunk (head, arms, and torso) and thigh, shank, and foot
of each leg, and has nine degrees of freedom: hip, knee, and ankle
joint angles of each leg and horizontal and vertical translations
and rotation of the trunk. Each joint has a linear viscous element,
and the knee and ankle joints are subject to large linear elastic
and damping torques when these joint angles exceed their limits.
We used four contact points on each sole to receive reaction
forces from the treadmill belt (toe, heel, and 4.0 cm inside
from the toe and from the heel). The reaction force is modeled
by a linear spring and damper system for each horizontal and
vertical direction. Our model contains nine principal muscles to
achieve the necessary motions in each leg. Six muscles produce
uniarticular motion: hip flexion [iliopsoas (IL)], hip extension
[gluteus maximus (GM)], knee extension [vastus (VA)], knee
flexion [biceps femoris short head (BFS)], ankle flexion [tibialis
anterior (TA)], and ankle extension [soleus (SO)]. Three muscles
produce biarticular motion: hip flexion and knee extension
[rectus femoris (RF)], hip extension and knee flexion [biceps
femoris long head (BFL)], and knee flexion and ankle extension
[gastrocnemius (GC)]. The muscle model consists of contractile
and passive elements. The contractile part depends on force-
length and force-velocity relationships and the muscle activation,
which is determined through a low-pass filtering of the motor
command um (m = IL, GM, VA, BFS, TA, SO, RF, BFL, and
GC) from the motor control model. The equations of motion in
this model were derived using Lagrangian mechanics and solved
using the fourth-order Runge-Kutta method with time steps of
2× 10−7 s for the forward dynamic simulation.
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FIGURE 1 | Neuromusculoskeletal model: (A) musculoskeletal model walking on a treadmill and (B) motor command composed of the linear combination of five

rectangular pulses based on the muscle synergy hypothesis, and identification of the muscles activated by each pulse. Each sole has four contact points (two for the

toe part and the others for the heel part) to receive reaction forces from the treadmill belt through linear spring and damper systems for each point.

2.1.2. Motor Control Model

Our motor control model consists of a hypothetical two-layered
CPG model at the spinal cord level, which incorporates phase
resetting, and a movement regulation model at the brainstem
and cerebellum levels. The CPGs in the spinal cord have been
suggested to consist of hierarchical networks that include rhythm
generator (RG) and pattern formation (PF) networks (Burke
et al., 2001; Lafreniere-Roula and McCrea, 2005; Rybak et al.,
2006a,b). The RG network generates the basic rhythm and alters
it by producing phase shifts and rhythm resetting in response to
sensory feedback, while the PF network shapes the rhythm into
spatiotemporal patterns of motoneuron activities. For the RG
model, we used two simple oscillators whose phase is φi (0 ≤
φi < 2π , i = right, left) to produce the basic rhythm of the
corresponding leg and incorporated phase resetting as explained
below. For the PF model, we determined motor commands
necessary to produce periodic leg movements in accordance with
the oscillator phase based on the muscle synergy hypothesis,
which suggests that the linear combination of five basic signals
produces a large portion of the motor commands for human
locomotion (Ivanenko et al., 2006).More specifically, we used five
rectangular pulses pi(φ) (i = 1, . . . , 5) for each leg (Figure 1B),
which are given by:

pi(φ) =
{

1 8i < φ ≤ 8i +18i

0 otherwise
i = 1, . . . , 5 (1)

where 8i and 18i (i = 1, . . . , 5) are the onset phase and
duration, respectively, of the rectangular pulses, and we omitted

the suffix of φ. We determined the muscle synergy-based motor

command u
Syn
m by:

u
Syn
m =

5
∑

i=1

wm,i3ipi(φ) (2)

where wm,i (i = 1, . . . , 5) is the weighting coefficient of five
rectangular pulses (wm,i ≥ 0) and 3i (i = 1, . . . , 5) is the tuning
parameter of the amplitude of the rectangular pulses for different
belt speeds.

To emulate the phase shift and rhythm resetting behavior, we
incorporated the phase resetting mechanism in the RG model.
More specifically, we reset the oscillator phase to a nominal
value based on foot contact information by using the following
phase dynamics:

φ̇i = ω − Kφ sin(1φi − π)− (φi − φFC)δ(t − tFCi − τ FC) (3)

where,

1φi =
{

φright − φleft i = right
φleft − φright i = left

ω is the basic frequency, Kφ is the gain parameter, tFCi is the
foot-contact time, τ FC (= 50 ms) is the transmission delay in
receiving the foot-contact information, φFC is the phase value to
be reset at the foot contact, and δ(·) is the Dirac delta function.
The second term on the right-hand side maintains interlimb
coordination so that the legs move in antiphase. The third term
of the right-hand side corresponds to phase resetting, which
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resets the oscillator phase φi to φ
FC to modulate the timing of

the muscle synergy-based motor command based on the foot
contact information. The second and third terms regulate the gait
frequency and contribute to the generation of stable limit cycle
for walking.

In addition to the CPGmodel at the spinal cord level, we used
a movement regulation model at the brainstem and cerebellum
levels based on somatosensory information, where only two
crucial factors were incorporated for simplicity: maintenance
of an upright posture and the desired forward speed. For the
maintenance of an upright posture, a simple feedback control
regulates the balance of the trunk pitch to prevent it from falling
over using antagonistic uniarticular muscles in the hip of the
standing leg.

pTrunkm =
{

−κm(θ − θ̂)− σmθ̇ in stance phase
0 otherwise

(4)

where θ is the trunk pitch angle, θ̇ is the angular rate, θ̂ is the
reference angle, and κm and σm are the gain parameters (κm =
σm = 0 when m 6= IL or GM). For maintenance of the speed,
a simple feedback control is used to increase the ankle push-off
when the speed is lower than desired and suppress the pushing
force in the opposite case by antagonistic uniarticular muscles in
the ankle of the standing leg.

pSpeedm =
{

−λm(v− v̂) in stance phase
0 otherwise

(5)

where v is the forward speed, v̂ is the target forward speed, and
λm is the gain parameter (λm = 0 whenm 6= TA or SO). Because
these regulations operate at the brainstem and cerebellar levels,
the command signals are delayed and the motor command u

Reg
m is

given by:

u
Reg
m (t) = pTrunkm (t − τ Reg)+ pSpeedm (t − τ Reg) (6)

where τ Reg (= 80 ms) is the delay in receiving transmissions of
somatosensory information at the brainstem and cerebellar levels
and sending the motor command to the spinal cord level.

The motor command um is given by the summation of

the muscle synergy-based motor command u
Syn
m and the motor

command by the movement regulation u
Reg
m .

um = u
Syn
m + u

Reg
m (7)

2.1.3. Model Parameters

While the model in our previous work (Aoi et al., 2010) walked
over the ground, the model in this study walked on a treadmill,
as explained below. Therefore, we slightly modified the values of
the motor control parameters so that the model achieved steady
walking on the treadmill whose belt speed was 1.3 m/s as follows:
the onset phase and duration of rectangular pulses were 81 =
6.12 rad, 82 = 1.48 rad, 83 = 2.56 rad, 84 = 3.51 rad, 85 =
5.38 rad, 181 = 0.70 rad, 182 = 0.90 rad, 183 = 0.90 rad,

FIGURE 2 | Limit cycle orbit C and isochron. Point P on C and point Q close

to C converge to the same point on C for t → ∞ and are included in the same

isochron. Poincaré section S, which determines the cycles, generally

mismatches with any of the isochrons.

184 = 1.07 rad, and 185 = 0.96 rad, where we set φ = 0 rad
at foot contact; the amplitudes and weighting coefficients of the
rectangular pulses were 3i = 1.0 (i = 1, . . . , 5), wVA,1 = 0.42,
wTA,1 = 0.35, wSO,2 = 1.26, wGC,2 = 0.87, wIL,3 = 1.02,
wBFS,3 = 1.09, wRF,3 = 0.10, wVA,4 = 0.17, wTA,4 = 0.21,
wGM,5 = 0.61, wBFS,5 = 0.20, wBFL,5 = 0.20, and the other wm,i =
0; the parameters for the oscillator phase dynamics were ω =
2π/1.0 rad/s, Kφ = 1.7, and φFC = 0.36 rad; and the parameters
for the movement regulation were κIL = −1.0, κGM = 2.0, σIL =
−0.20, σGM = 0.40, λTA = −0.20, λSO = 0.12, θ̂ = −0.012 rad,
and v̂ = 0.1 m/s.

For different belt speeds, we changed82, ω,3i (i = 1, . . . , 5),
and φFC in a similar way to Aoi et al. (2019) as follows: 82 =
1.46 rad, ω = 2π/0.9 rad/s, 31 = 1.04, 32 = 1.14, 33 = 1.10,
34 = 1.03, 35 = 1.18, and φFC = 0.48 rad when the belt speed
was increased by 0.02 m/s, and82 = 1.50 rad, ω = 2π/1.1 rad/s,
31 = 0.96, 32 = 0.90, 33 = 0.90, 34 = 0.98, 35 =
0.82, and φFC = 0.04 rad when the belt speed was decreased
by 0.02 m/s.

2.2. Phase Response Curve
In the phase reduction theory (Kuramoto, 1984; Winfree, 2001),
for a limit cycle oscillator whose period is τ and closed orbit is
C on the phase space (Figure 2), we can define ψ on C, which
follows the dynamics:

ψ̇ = 2π

τ
(8)

To apply the phase dynamics to the neighborhood of the limit
cycle, we assume that the point P on C and the point Q close to C
have the same phase when they converge to the same point on C
for t → ∞. The surface (curve) with the same phase (ψ = ψ0 =
const.) is called an isochron.
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When a perturbation I(t) is added to the limit cycle oscillator,
ψ follows the dynamics:

ψ̇ = 2π

τ
+ Z(ψ)I(t) (9)

where Z(ψ) is the PRC and explains the phase-dependent rhythm
change due to the perturbation. We determine cycles using
Poincaré section S, as shown in Figure 2. We assume that the
trajectory converges to C before I(t) is added. We define t = 0
for the time at the last intersection of C with S before I(t) is added
and ψ(0) = 0. We also define t = tn (n = 1, 2, . . . ) for the time
at the nth intersection of the disturbed trajectory with S after I(t)
is added. The integration of (9) from 0 to tn gives:

∫ tn

0

(

ψ̇ − 2π

τ

)

dt =
∫ tn

0
Z(ψ)I(t)dt (10)

The Poincaré section S generally mismatches with the isochron
of ψ = 0, as shown in Figure 2, which induces the difference
of ψ between the Poincaré section and isochron and thus
∫ tn
0 ψ̇dt 6= 2nπ (Imai and Aoyagi, 2016). However, because the

disturbed trajectory approaches C as t → ∞,
∫ tn
0 ψ̇dt = 2nπ

approximately for sufficiently large n. This gives:

∫ tn

0
Z(ψ)I(t)dt = 2π

nτ − tn

τ
(11)

The right-hand side can be obtained from the phase shift
by the perturbation, as shown in Figure 3. For an impulsive
perturbation at t = s (0 ≤ s < τ ), which is given by I(t) =
µδ(t − s) when µ is constant, (11) becomes:

µ

∫ tn

0
Z(ψ)δ(t − s)dt = 2π

nτ − tn

τ
(12)

This gives,

Z(ψ(s)) = 2π

µ

nτ − tn

τ
(13)

In this study, we calculated the PRC from (13) using our
neuromusculoskeletal model, where we used the foot contact
condition of the right leg (any of four contact points of the
right foot is below the treadmill belt) for the Poincaré section S.
In particular, our previous work (Funato et al., 2016) obtained
the PRCs from human walking measurements by accelerating
or decelerating the belt speed of a treadmill independently. To
compare the simulation results with the human measurements,
our model also walked on a treadmill and we obtained the
PRCs for the acceleration and deceleration perturbations in the
belt speed separately. More specifically, after the model achieved
steady walking on a treadmill, we increased or decreased the belt
speed by 0.1 m/s for 0.001 s once per trial (µ = 2π ±0.1·0.001

ντ
),

where ν is the belt speed, and n = 50 so that the model achieved
steady walking after being disturbed. We performed 100 trials by
changing the perturbation phase to obtain the PRC. Furthermore,
we used themodels with andwithout phase resetting in themotor
control model and compared the PRCs calculated from these
models by referring to the PRCs obtained from measurements
of human walking.

3. RESULTS

By modifying the motor control parameters from those in our
previous work (Aoi et al., 2010), both the models with and
without phase resetting achieved steady walking on a treadmill
whose belt speed was 1.3 m/s. The locomotor behavior, especially
the joint kinematics and muscle activities, were almost identical
to those in our previous work (Aoi et al., 2010) except for the
difference between walking over ground and on a treadmill.
Figures 4A,B show representative responses of the forward speed
for the models without and with phase resetting, respectively,
after the models were disturbed. For both models, the forward
speed fluctuated after the perturbation and then recovered to
steady periodic behavior. Although the model without phase
resetting had no shift of the locomotion phase after the recovery,
the model with phase resetting had a phase shift.

From 100 trials with different perturbation phases, we
obtained the PRCs. Figures 5A–C show the PRCs calculated
by acceleration and deceleration perturbations for the model
without phase resetting, the model with phase resetting,
and kinematic measurements of human walking, respectively.
Although the PRCs for the model without phase resetting were
zero irrespective of the perturbation phase for both types of
perturbation, the PRCs for the model with phase resetting
showed characteristic phase-dependent shapes. In particular, they
intersected with the horizontal axis around the foot-contact
timings and mid-stance phases. They had steep positive slopes
around the foot contact and positive peaks in the double-stance
phase. They also had gentle negative slopes after the double-
stance phase and negative peaks before the next foot contact.
Furthermore, the PRCs for the acceleration and deceleration
perturbations were almost identical. These trends are similar
to those in the PRCs obtained from the measurement of
human walking.

To investigate the robustness of the obtained results, we
examined how the PRC changes for different belt speeds and
different motor control parameters, such as the gait frequency.
Figures 6A,B show the PRCs for the model with phase resetting
when the steady belt speed was increased and decreased by
0.02 m/s, respectively. Although there are some differences, the
characteristic properties mentioned above remain unchanged.

4. DISCUSSION

4.1. Contribution of Phase Resetting Based
on Foot Contact
Our motor control model incorporated phase resetting induced
by foot-contact information based on physiological evidence.
In particular, cutaneous feedback was observed to contribute to
phase shift and rhythm resetting behaviors in fictive locomotion
of decerebrate cats (Duysens, 1977; Schomburg et al., 1998).
Furthermore, spinal cats walking on a treadmill changed their
gait, such as walking, trotting, and galloping, in accordance
with the belt speed (Forssberg and Grillner, 1973; Orlovsky
et al., 1999), which suggests that the tactile sensory information
obtained by their feet from the belt influenced the locomotion
phase and rhythm generated by the CPG (Duysens et al., 2000).
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FIGURE 3 | Phase shift by perturbation of a limit cycle oscillator at t = s. In this case, a positive peak condition is used for the Poincaré section.

FIGURE 4 | Responses of forward speed for the model (A) without phase resetting and the model (B) with phase resetting.

In human walking, the timing of basic muscle activation patterns
was also strictly linked to the foot-contact event (Ivanenko et al.,
2006). Our model integrated the phase resetting mechanism
with the muscle synergy hypothesis that suggested that a
large portion of motor commands for walking is generated
by the linear combination of five basic signals to solve the
redundancy problem in motor control (Ivanenko et al., 2006).
More specifically, phase resetting in our model just controlled
the timing of the basic signals to determine the motor command

using the foot-contact information, which is a very simple
strategy. Despite the simple strategy, this timing regulation of
the basic signals has been reported to produce various locomotor
functions, such as the walk-run transition (Cappellini et al., 2006;
Aoi et al., 2019), stepping over an obstacle (Ivanenko et al., 2005;
Aoi et al., 2013), and split-belt treadmill walking (MacLellan et al.,
2014; Fujiki et al., 2018). Hodgkin-Huxley style neuron model
showed that the phase of the neurons’ activity rapidly changed
by external signals (Rybak et al., 2006a,b), which suggests that
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FIGURE 5 | PRCs calculated for acceleration and deceleration perturbations for (A) the model without phase resetting, (B) the model with phase resetting, and

(C) kinematic measurements of human walking. (C) is modified from Funato et al. (2016). 0 and 100% of the gait cycle represent right foot contact, and gray regions

indicate the double-stance phase.

the neural system has a mechanism to quickly move the phase
of neurons’ activity. We would like to incorporate a more
biologically detailed neuron model to further investigate the
contribution of phase resetting in the future.

Electrical stimulation to the swing legs in cats (Forssberg
et al., 1975; Forssberg, 1979) and humans (Belanger and Patla,
1984; Duysens et al., 1990) and mechanical stimulation in
humans (Schillings et al., 1996, 2000) showed phase-dependent
responses. In particular, stimulation early in the swing phase
enhanced flexor muscle activities and extended the swing phase
(elevating strategy), while stimulation late in the swing phase
enhanced extensor muscle activities and advanced the foot-
contact timing (lowering strategy) (Eng et al., 1994). From the
intersection of the obtained PRCs with zero (Figure 5C), our
previous work (Funato et al., 2016) showed that the mid-single
stance phase extended in response to acceleration perturbations
and the foot-contact timing advanced in response to deceleration
perturbations, which correspond to the elevating and lowering
strategies, respectively. In this study, we incorporated the
phase resetting mechanism that modulates the timing of the

motor command based on the foot-contact information. This
mechanism is related to the lowering strategy. Despite not
incorporating the elevating strategy, our model had a PRC shape
similar to that for humans not only for deceleration perturbations
but also for acceleration perturbations (Figures 5B,C). That is,
application of only one of these two strategies allowed the
model to reproduce the PRCs for acceleration and deceleration
perturbations in humans. In the future, we would like to
incorporate the elevating strategy in our motor control model
to further clarify the adaptive rhythm control mechanism in
human walking.

4.2. Calculation of PRC
To calculate the PRC from kinematic measurements, mainly
two methods have been proposed. One is the impulse method
that uses single-impulse perturbation, and the other is the
weighted spike-triggered average (WSTA) method, which uses
sequential pulse perturbation with zero mean and no temporal
correlation (Ota et al., 2009). Our previous work (Funato et al.,
2016) used both of these methods to calculate the PRCs for
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FIGURE 6 | PRCs for acceleration and deceleration perturbations for the model with phase resetting when the steady belt speed was (A) increased and

(B) decreased by 0.02 m/s. 0 and 100% of the gait cycle represent right foot contact, and gray regions indicate the double-stance phase.

human walking. Because the impulse method required many
trials that exhausted the subjects, the obtained PRCs had large
deviations and low temporal resolution and could not show
characteristic properties. The WSTA method improved the
PRCs, and clear phase-dependent shapes could be resolved
(Figure 5C). However, it still has limitations with regard to
obtaining precise PRCs. For example, two positive peak timings
of the PRC for the deceleration perturbation differed. In addition,
the acceleration and deceleration perturbations showed some
differences in the PRC, and it was difficult to determine
whether they were actually different or due to limitations of
the method. In particular, although the PRC was analytically
derived under the assumption that the perturbation is sufficiently
small, the perturbation must be large to reduce the influence
of measurement noise in human experiments. In this study,
we used a mathematical model to obtain the PRCs for human
walking. Because of the high reproducibility of the simulation
results, we obtained accurate PRCs for themodel using arbitrarily
small and short perturbations by the impulse method. Our model
showed identical PRCs for the acceleration and deceleration
perturbations. The modeling approach using the PRC has an
advantage for improving our understanding of the underlying
rhythm control mechanism.

4.3. Limitations of Our Model and Future
Work
The PRC for the model with phase resetting had a similar
shape to that of the PRC for humans, and it supports the
hypothesis that phase resetting contributes to adaptive rhythm

control in human walking in comparison with the PRC for
the model without phase resetting. However, our model has
limitations for accurately reproducing the PRC for human
walking. For example, the PRC for the model with phase
resetting had much steeper positive peaks in the double-stance
phases compared to the PRC for humans (Figures 5B,C). This
is possibly because four discrete points on each sole were
used for the foot-contact model. Due to the discrete points,
perturbations in double-stance phases induced sudden changes
in locomotor behavior and caused the steep positive peaks in
the PRC. In addition, our model showed short double-stance
phases compared to actual humanwalking (Figures 5B,C), which
is mainly due to no phalangeal joint in our foot model. However,
the PRCs for the model and humans had similar characteristics
in the double-stance phase, such as steep positive slopes around
the foot contact and positive peaks located in the double-
stance phase.

Although we incorporated the phase resetting mechanism
in the motor control model, other sensory-motor coordination
mechanisms also play a role in human walking. For example,
although we focused on the swing-to-stance phase transition
using the foot-contact information, the stance-to-swing phase
transition has been suggested to include important sensory-
motor coordination mechanisms (Ekeberg and Pearson,
2005; Pearson et al., 2006; Dzeladini et al., 2014; Song and
Geyer, 2015), such as the unloading rule that uses force-
sensitive afferents in the ankle extensor muscles (Duysens
and Pearson, 1980; Whelan et al., 1995) and the hip
extension rule that uses position-sensitive afferents from
the hip (Grillner and Rossignol, 1978; Hiebert et al., 1996).
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In addition, although this study changed the belt speed of a
treadmill to disturb human locomotor behavior, other types
of perturbations, such as pulling on the swing leg, have been
used (Kobayashi et al., 2000; Nessler et al., 2016). Because
the PRC depends on the perturbation, we would like to
incorporate other sensory-motor coordination mechanisms
and perturbations to further clarify adaptive rhythm control in
human walking.
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Recently DCNN (Deep Convolutional Neural Network) has been advocated as a

general and promising modeling approach for neural object representation in primate

inferotemporal cortex. In this work, we show that some inherent non-uniqueness

problem exists in the DCNN-based modeling of image object representations. This

non-uniqueness phenomenon reveals to some extent the theoretical limitation of this

general modeling approach, and invites due attention to be taken in practice.

Keywords: deep convolutional neural network, neural object representation, inferotemporal cortex, non-

uniqueness, image object representation

1. INTRODUCTION

Object recognition is a fundamental task of a biological vision system. It is widely believed that the
primate inferotemporal (IT) cortex is the final neural site for visual object representation. Due to
viewpoint change, illumination variation and other factors, how visual objects are represented in
IT cortex, which manifests sufficient invariance to such identity-orthogonal factors, is still largely
an open issue in neuroscience.

There are many different natural and manmade object categories, and each category in turn
contains various different members. Currently, a number of works in neuroscience advocate the
DCNN (Deep Convolutional Neural Network) as a new framework for modeling vision and brain
information processing (Cadieu et al., 2014; Khaligh and Kriegeskorte , 2014; Kriegeskorte , 2015).
In Yamins et al. (2014), Yamins and DiCarlo (2016), DCNN is regarded as a promising general
modeling approach for understanding sensory cortex, called “the goal-driven approach.”

The basic idea of the goal-driven approach for IT cortex modeling can be summarized as: a
multi-layered DCNN is trained by ONLY optimizing the object categorization performance with a
large set of visual category-labeled objects. Once a high categorization performance is achieved, the
outputs of the penultimate layer neurons of the trained DCNN, which are regarded as the object
representation, can reliably predict the IT neuron spikes for other visual stimuli in rapid object
recognition1. In addition, the outputs of the upstream layer neurons can also predict the V4 neuron
spikes. The goal-driven approach is conceptually eloquent and has been successfully used to model
IT cortex in rapid object recognition and predict category-orthogonal properties (Hong et al.,
2016).

1The goal-driven approach is for modeling IT neuron representation in rapid object vision, which is assumed largely a feed

forward process, hence could be modeled by DCNNs which are also feed forward networks.
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2. DOES THE GOAL-DRIVEN APPROACH
SATISFY THE UNIQUENESS
REQUIREMENT IN MODELING IT
CORTEX?

2.1. Motivation
Although some experimental results have demonstrated the
success of the goal-driven approach in modeling IT cortex
to some extent as mentioned above, the following uniqueness
problem on the fundamental premise of the goal-driven approach
is still unclear: does there exist a unique pattern of activations of
the neurons (units) in the penultimate layer of a DCNN to a given
set of image stimuli by only optimizing the object categorization
performance? This uniqueness problem on object representation
via a DCNN has a great influence on the theoretical foundation
and generality of the goal-driven approach in particular, and the
DCNN as a new framework for vision modeling in general.

In this work, we aim to provide a theoretical analysis on this
problem as well as some supporting experimental results. Note
that our current work is to clarify the non-uniqueness problem
in object representation modeling with DCNNs under the goal-
driven approach, it does not mean DCNNs could account for IT
diverse specifications, as revealed in numerous works (Elston ,
2002, 2007; Jacobs and Scheibel , 2002; Spruston , 2008; Elston
and Fujita , 2014; Luebke , 2017).

In order to analyse this problem more clearly, we firstly
introduce the definition of DCNN layer’s object representation
as used for predicting the neuron responses of primate IT cortex
in the aforementioned goal-driven approach:

Definition 1. For a layer of a DCNN for object recognition, the
activations of the neurons in this layer to an input object image is
defined as its object representation.

Following the convention in the computational neuroscience, the
following representation equivalence is introduced to evaluate
whether the object representations learnt from two DCNNs are
the same or not:

Definition 2. Given a set of object image stimuli, if the two
object representations of two DCNNs on these stimuli can
be related by a linear transformation, they are considered
equivalent, or the same representations. Otherwise, they are
different representations.

In the deep learning community, a recent active research topic
is called “convergent learning” (Li et al., 2016), referring whether
different DCNNs can learn the same representation at the level
of neurons or groups of neurons. A generally reached conclusion
is that different DCNNs with the same network architecture but
trained only with different random initializations, have largely
different representations at the level of neurons or groups of
neurons, although their image categorization performances are
similar. Note that although Li et al.’s work and the goal-driven
approach focus on the representation from different points of
view, the representations in the two works are closely related.
Hence, the results in Li et al. (2016) could also re-highlight the
aforementioned uniqueness problem in object representation via
a DCNN to some extent.

Addressing this uniqueness problem, we show in the
following section that, in theory, by only optimizing the image
categorization accuracy, different DCNNs can give different
object representations though they have exactly the same
categorization accuracy. In other words, the obtained object
representations by DCNNs under the goal-driven approach
could be inherently non-unique, at least in theory.

2.2. Theoretical Analysis and Experimental
Results
Proposition 1. If the “Softmax” function is used as the final
classifier for image categorization in modeling N categories of
objects via a DCNN, and the object category with the largest
probability is chosen as the final categorization, and if x =
(x1, x2, · · · , xN)T ∈ RN is the final output of this DCNN
for an input image object I, f (·) is a univariate non-linear
monotonically increasing function, y , (y1, y2, · · · , yN)T =
F(x) = (f (x1), f (x2), · · · , f (xN))T , then x and y give exactly the
same categorization result.

Proof: For x and y, their corresponding probability vectors by
Softmax are respectively:

Cx =
(

ex1
∑N

i=1 e
xi
,

ex2
∑N

i=1 e
xi
, · · · , exN

∑N
i=1 e

xi

)T

(1)

Cy =
(

ey1
∑N

i=1 e
yi
,

ey2
∑N

i=1 e
yi
, · · · , eyN

∑N
i=1 e

yi

)T

(2)

Since yi = f (xi) (i = 1, 2, · · · ,N) and f (·) is a monotonically
increasing function, the magnitude order of elements for x and y
does not change. Then themagnitude order of the two probability
vectors Cx and Cy does not change. Since the object category
with the largest probability is chosen as the final categorization,
both the indices of the largest elements in Cx and Cy are the
same, hence the same categorization results are obtained for
x and y. �

Remark 1: Since f (·) is a non-linear function, x and y cannot
be related by a linear transformation. In addition, in the deep
learning community, the Softmax function is commonly used to
convert the output vector of the network into a probability vector,
and the category with the largest probability value is chosen as the
final category.

Remark 2: In theory, f (·) could be different for different
input image I. More generally, even the demand of monotonicity
for f (·) is unnecessary, we need only the index of the largest
value in y is the same to that in x because only the largest
value determines the correct categorization. For the Top-K
categorization accuracy, we need the index set of the K largest
values in y keep the same to that in x, and the rest elements
are not required. Hereinafter, for the notational convenience in
discussion and practicality of implementation, we always assume
f (·) is a univariate non-linear monotonically increasing function.

Proposition 2. As shown in Figure 1, assume that DCNN1 is
a multi-layered network, concatenating a sub-network DCNNP

1
whose output is x, and a fully connected layer with weight matrix
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FIGURE 1 | DCNN1 and DCNN2 give the different object representations x and y for the same input image object I, however their object categorization performances

are exactly the same if y′ = f (x′), where f (·) is an element-wise non-linear monotonically increasing function.

W1 ∈ RN×M and bias b1 ∈ RN×1 ({M,N} are the numbers
of neurons at the penultimate layer and last layer of DCNN1,
respectively, with M > N), with x′ = W1x + b1. And assume
that DCNN2 is a multi-layered network, concatenating a sub-
network DCNNP

2 whose output is y, and a fully connected layer
with weight matrix W2 ∈ RN×M and bias b2 ∈ RN×1, with
y′ = W2y+b2. If y

′ = f (x′) in element-wise mapping where f (·) is
a monotonically increasing function, then the object representation
x under DCNN1 cannot be related by a linear transformation to the
object representation y under DCNN2, or x and y are two different
object representations under the goal-driven approach.

Proof: Since y′ = f (x′) in element-wise mapping where f (·)
is a monotonically increasing function, according to Proposition
1, DCNN1 and DCNN2 have the identical image object
categorization performance.

Since x′ = W1x + b1, then x = (WT
1 W1)

+WT
1 (x

′ − b1),
where A+ denotes the pseudo-inverse of matrix A. Similarly,
y = (WT

2 W2)
+WT

2 (y
′ − b2). By Proposition 1, x′ and y′ is related

by a non-linear function, then x and y cannot be related by a
linear transformation either. In other words, x and y are two
different object representations under the goal-driven approach.

�

Remark 3: Since {W1,W2} ∈ RN×M and M > N in
Proposition 2, the pseudo-inverse operator is used in the above
proof. Here are a few words on the pseudo-inverse: Since M >

N, which is the usual case in most existing DCNNs for object
categorization (Krizhevsky et al., 2012; Simonyan and Zisserman,
2014; Szegedy et al., 2015), the inverse (WT

i Wi)
+(i = 1, 2) is not

unique, but the equalities in x = (WT
1 W1)

+WT
1 (x

′ − b1) and
y = (WT

2 W2)
+WT

2 (y
′ − b2) can be strictly met.

Proposition 2 indicates that given DCNN1 with output
x′, if there exists another multi-layered network DCNN2 to
output y′ = f (x′), their representations x and y would be
different but with identical categorization performance. This
means that the aforementioned non-uniqueness problem in

object representation modeling under the goal-driven approach
would arise regardless of how many training images are used,
and how many exemplar images in each category are included.
In other words, the non-uniqueness problem is an inherent
problem in DCNN modeling under the goal-driven approach,
and it cannot be completely removed by usingmore training data,
at least in theory.

In the above, an implicitly assumption is that given a DCNN1

with the output x′i, there always exists a DCNN2 with the output
y′i = f (x′i). Does such a DCNN2 really always exist? This issue can
be separately addressed for the following two cases. The first one
is that DCNN1 and DCNN2 could be of different architectures,
and the second one is that they are of the same architecture, but
merely initialized differently during training.

2.2.1. The Different Architecture Case

Proposition 3. There always exists a multi-layered network to
map Ii to yi for the given input-output pairs {(Ii ↔ yi), i =
1, 2, · · · , n} in Proposition 2.

Proof: As shown in Proposition 2 and Figure 1, since
DCNN1 exists, it maps I to x. Denote this mapping function
as x = S1(I) = DCNNP

1 (I). Since x′ = W1x + b1, y
′ =

F(x′) = ((f (x′1), f (x
′
2), · · · , f (x′n)), y′ = W2y + b2, and y =

(WT
2 W2)

+WT
2 (y

′ − b2), we have:

y = (WT
2 W2)

+WT
2 (y

′ − b2)

= (WT
2 W2)

+WT
2 (F(W1S1(I)+ b1)− b2) (3)

This is just the required mapping function. According to the
Universal Approximation Theorem in Csáji (2001), it could be
straightforwardly inferred that there always exists a DCNN with
an arbitrary number k + 1(k > 1) of hidden layers, denoted as
DCNN2, whose sub-network DCNNP

2 with k hidden layers is able
to approximate this function. �

Proposition 3 indicates that given a DCNN1, there always
exists a DCNN2 whose architecture may be different from
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DCNN1, so that the object representations of the two DCNNs
are different but with the same categorization performance. A
training procedure is described in the Appendix, to show how
to train such a pair of DCNN1 and DCNN2.

Remark 4: In the proof, the only requirement for DCNN2

is that it should have sufficient capacity to represent the input
object set, but it does not necessarily have a similar network
architecture to DCNN1. Note that the sufficient representational
capacity is an implicit necessary requirement for any DCNN-
based applications.

Remark 5: In the proof, the number of input images is
assumed to be unknown. However, for the finite-input case,
Theorem 1 in Tian (2017) guarantees that there exists a two-
layered neural network with ReLU activation and (2n + d)
weights, which could represent any mapping function from
input to output on sample of size n in d dimensions. Of
course, such a constructed network could be of a memorized
neural network, i.e., it can ensure the given finite inputs to be
mapped to the required outputs, but it cannot guarantee that
the constructed network could possess sufficient generalization
ability for new samples.

2.2.2. The Same Architecture Case

When DCNN1 and DCNN2 are obtained with the same
network architecture but only trained under different random
initializations, clearly a theoretical proof is impossible. However,
based on the reported results in the “convergent learning”
literatures as well as our simulated experimental results, it seems
they still largely have non-equivalent object representations
although they have similar categorization performances.

(1) Non-uniqueness results from “convergent learning”

literatures

Using AlexNet (Krizhevsky et al., 2012) as a benchmark, Li
et al. (2016) showed that by keeping the architecture unchanged
but only trained with different random initializations, the
obtained 4DCNNs have similar categorization performances, but
their object representations are largely different in terms of one-
to-one, one-to-many, and many-to-many linear representation
mapping. Note that themany-to-manymapping in Li et al. (2016)
is closely related to the equivalence representation in Definition
2. Hence, the four representations are largely non-equivalent and
this non-equivalence becomes more prevalent with increasing
convolutional layers.

By introducing the concepts of “ǫ-simple match set” and
“ǫ-maximum match set,” Wang et al. (2018) showed that for
the 2 representative DCNNs, VGG (Simonyan and Zisserman,
2014), and ResNet (He et al., 2016), the size of maximum match
set between the activation vectors of individual neurons at the
same layer of the two DCNNs, which are also obtained with
only different initializations as did in Li et al. (2016), is tiny
compared with the number of the neurons at that layer. It
was further found that only the outputs of neurons in the ǫ-
maximum match set can be approximated within ǫ-error bound
by a linear transformation, which indicates that for majority of
the neurons at the same layer, their outputs cannot be reasonably
approximated by a linear transformation, or the corresponding
object representations are largely not equivalent.

(2) Non-uniqueness results from our experiments

Definition 3. If two DCNNs, DCNN1 and DCNN2, have similar
image categorization performances with the same network
architecture but different parameter configurations, they are
called the similar performing pair of DCNNs.

Generally speaking, our results further confirm the non-
uniqueness phenomenon of object representation under the
goal-driven approach. We systematically investigated the
representation differences between a similar performing pair
of DCNNs on the two public object image datasets, CIFAR-10
that contains 60,000 images belonging to 10 categories of objects
and CIFAR-100 that contains 60,000 images belonging to 100
categories of objects (Krizhevsky , 2009). In our experiments,
5,000 images per category in CIFAR-10 (also 500 images per
category in CIFAR-100) were randomly selected for network
training, and the rest for testing. Six network architectures with
different configurations (denoted as {D1, D2, D3, D4, D5, D6})
were employed for evaluations, where {D1, D2, D3, D5, D6}were
for CIFAR-10 and {D3, D4, D6} were for CIFAR-100 as shown
in Table 1.

The traditionally used measure, “explained variance” (EV),
was employed to access the degree of linearity between the learnt
object representations from a similar performing pair of DCNNs,
and we trained similar performing pairs of DCNNs under the
following two schemes:

• Scheme-1: Both DCNN1 and DCNN2 were trained with
random initializations.

• Scheme-2: Similar to the training procedure in the DCNN1

was firstly trained with the Softmax loss, and then DCNN2 was
trained by combining the Softmax loss on the neuron outputs
of the last layer and the Euclidean loss on the differences
between the neuron outputs of the penultimate layer in
DCNN2 and the corresponding terms calculated according to
Equation (3) (In our experiments, f (x) = |x|√x).

Here are some main results from our experiments:
(i) Explained variance on standard data

The results using the training Scheme-1 are shown in
Figure 2. Figures 2A,C show the categorization accuracies of
similar performing pairs of DCNNs under different network
architectures with two random initializations on CIFAR-10 and
CIFAR-100, respectively. The blue bars of Figures 2B,D show
the corresponding mean EVs on CIFAR-10 and CIFAR-100,
respectively. As seen from Figures 2B,D, the mean EVs by {D1,
D2, D3, D5, D6} are around 63.4–87.5% on CIFAR-10, while the
mean EVs by {D3, D4, D6} are around 53.6–65.9% on CIFAR-
100. iIn addition, the mean EV of the network D1 under the
training Scheme-2 is 51.2% on CIFAR-10.

Two points are revealed from these results:

• Given a similar performing pair of DCNNs, although the
representations of the two DCNNs cannot in theory be related
by a linear transformation, the explained variance between the
two representations is relatively large.

• A similar performing pair of DCNNs with a deeper
architecture, or having more layers, will generally have a
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TABLE 1 | Network configurations (shown in columns).

ConvNet configuration

D1 D2 D3 D4 D5 D6

5 Layers 8 Layers 8 Layers 8 Layers 15 Layers 9 Layers

Input (32*32 RGB Image)

Conv5-32 Conv3-bn-32 Conv3-bn-64 Conv3-bn-128 Conv3-bn-32 Conv3-bn-64

Conv3-bn-32 Conv3-bn-64 Conv3-bn-128 Conv3-bn-32

Conv3-bn-32

Conv3-bn-32

Max-pool

Conv5-32 Conv3-bn-64 Conv3-bn-128 Conv3-bn-256 Conv3-bn-64 Conv3-bn-128

Conv3-bn-64 Conv3-bn-128 Conv3-bn-256 Conv3-bn-64

Conv3-bn-64

Conv3-bn-64

Max-pool

Conv5-64 Conv3-bn-128 Conv3-bn-256 Conv3-bn-512 Conv3-bn-128 Conv3-bn-256

Conv3-bn-128 Conv3-bn-256 Conv3-bn-512 Conv3-bn-128 Conv3-bn-256

Conv3-bn-128

Conv3-bn-128

Max-pool

Fc-64 Conv3-bn-256 Conv3-bn-512 Conv3-bn-1024 Conv3-bn-256 Conv3-bn-512

Conv3-bn-256 Conv3-bn-512

Max-pool

Conv3-bn-512

Conv3-bn-512

Max-pool

Fc-10 Fc-10 Fc-10(100) Fc-100 Fc-10 Fc-10(100)

The convolutional layer parameters are denoted as “Conv〈receptive field size〉-bn-〈number of channels〉.” The Fully connected layer parameters are denoted as “Fc-〈number of units〉”.

larger explained variance between the two representations.
The underlying reason seems that since a DCNNwith a deeper
architecture will generally have a larger representational
capacity and since a fixed task has a fixed representation
demand, a DCNN with a larger capacity will give a more
linear representation.

In addition, for a similar performing pair, although their
categorization performances are similar, it does not mean that
the two DCNNs have the identical categorization label for
each input sample, either correct or wrong. We have manually
checked the categorization results for CIFAR-10 and CIFAR-
100. The orange bars of Figures 2B,D show the computed mean
EVs for only those inputs correctly categorized. As seen from
Figure 2, the discrepancy of the explained variances between the
representations of only the correctly categorized inputs and those
of the whole inputs is insignificant and negligible in most cases,
and it is perhaps due to the already high categorization rate of
the two DCNNs such that the incorrectly categorized inputs only
take a small fraction of a relatively large test set.

(ii) Explained variance on noisy data

In Szegedy et al. (2014), it is reported that DCNNs are sometimes
sensitive to adversarial images, that is, images slightly corrupted
with random noise, which do not pose any significant problem

for human perception, but dramatically alter the categorization

performance of DCNNs. Here, we assessed the noise effects on
the representation equivalence on CIFAR-10. The input images

are normalized to the range [0, 1], and Gaussian noise with mean
0 and standard variance σ = {0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.1}
are added into these images, respectively. Figure 3A shows the

corresponding categorization accuracies of similar performing

pairs of DCNNs under different architectures, while Figure 3B

shows the corresponding mean EVs. We find that even under
the noise level σ = 0.1, the explained variance does not change

much, although the categorization accuracy decreases notably.

(iii) Variations of explained variance by changing

stimuli size

In the neuroscience, the number of stimuli could not be too

large. However, for image categorization by DCNNs, the size
of the test set could be very large. Does the size of stimuli set

play a role on the explained variance? To address this issue,

we assessed the explained variance as the dataset size increases
by resampling subsets from the original test set of images in

CIFAR-10. Here, image subset sizes of [1000, 2000, · · · , 10000]
are evaluated. Figures 4A,B show the results on the resampled
subsets from the whole set of test data and the set of only those
images which are correctly categorized, respectively. Our results
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FIGURE 2 | (A) Categorization accuracies of {D1, D2, D3, D5, D6} with two random initializations on CIFAR-10 (Net1 and Net2 indicate a same network with two

initializations, similarly hereinafter). (B) Mean EVs on CIFAR-10 for all the inputs (blue bars)/only the correctly categorized inputs (orange bars). (C) Categorization

accuracies of {D3, D4, D6} with two initializations on CIFAR-100. (D) Mean EVs on CIFAR-100 for all the inputs (blue bars)/only the correctly categorized inputs

(orange bars).

FIGURE 3 | Categorization accuracies and mean EVs under different levels of noise: (A) Categorization accuracies of similar performing pairs of DCNNs. (B) Mean

EVs of similar performing pairs of DCNNs.

show that if the size of the stimuli set reaches a modestly large
number (around 3000), the explained variance stabilized. That is
to say, we do not need a too large number of stimuli for reliably

estimating explained variance. In other words, stimuli in the
order of thousands could already reveal the essence, and a further
increase of stimuli could not alter much the estimation.
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FIGURE 4 | Mean EVs with different image samples: (A) Samples are randomly selected from the whole test image set. (B) Samples are randomly selected from the

set of only those correctly categorized images.

(iv) Explained variance vs. neuron selectivity

Clearly, some DCNN neurons are more selective than others
(Dong et al., 2017, 2018). Using the kurtosis (Lehky et al.,
2011) of the neuron’s response distribution to image stimuli,
we investigated whether neuron selectivity has some correlation
with the explained variance.We chose top {10%, 20%, · · · , 100%}
most selective neurons from each DCNN in a similar performing
pair, respectively, then computed the explained variance between
the two chosen subsets, and the results are shown in Figure 5.
As seen from Figure 5, with the increase of the percentage of
selective neurons, the explained variance increases accordingly.
This indicates that for the object representations of a similar
performing pair of DCNNs, neuron selectivity is also an
influential factor on their explained variance. The explained
variance between the subsets of more selective neurons is smaller,
and this result seems to be in concert with the conclusion in
Morcos et al. (2018) where it is shown that neuron selectivity does
not imply the importance in object generalization ability.

(v) A good representation does not necessarily needs IT-like

In the literature (Khaligh and Kriegeskorte , 2014), it is shown
that if an object representation is IT-like, it can give a good object
recognition performance. This work shows that the inverse is
not necessarily true, at least theoretically speaking. That is, as
shown in the above experiments and discussions, many different
representations can give the same or quite similar recognition
results with/without noise.
Remark 6: In this work, we assume the final classifier is
a Softmax classifier. For other linear classifiers, the general
concluding remark of non-equivalence can be similarly derived.
Of course, if the used classifier is a non-linear one, or the output
of the penultimate layer is further processed by a non-linear
operator before inputting it to a linear classifier, as done in
Chang Tsao (2017), where a 3-order polynomial is used as a
preprocessing step for the final classification, our results will no
longer hold. But as shown in Majaj et al. (2015), monkey IT
neuron responses can be reliably decoded by a linear classifier,
we thought using Softmax as the final classifier for DCNN-based

FIGURE 5 | Mean EVs with different percentages of selective neurons.

IT cortex modeling could not constitute a major problem for
our results.

3. CONCLUSION

Here, we would say that we are not against using DCNNs to
model sensory cortex. In fact, its potential and usefulness have
been demonstrated in Yamins et al. (2014) and Yamins and
DiCarlo (2016). Here, we only provide a theoretical reminder
on the possible non-uniqueness phenomenon of the learnt object
representations by DCNNs, in particular, by the goal-driven
approach proposed in Yamins and DiCarlo (2016). As shown
in the convergent-learning literatures, such a non-uniqueness
phenomenon is prevalent in deep learning, hence when DCNNs
are used for modeling sensory cortex as a general framework,
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people should be aware of this potential and inherent non-
uniqueness problem, and appropriate network architectures in
DCNN learning should be carefully considered.
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APPENDIX

Procedure to train DCNN1 and DCNN2:

Input: A set of n image objects: D = {Ii, i = 1, 2, · · · , n} with
known categorization labels.

Output: DCNN1 and DCNN2 whose object
representations are different but with the same (or similar)
categorization performance;

1 Using D = {Ii, i = 1, 2, · · · , n} to train a DCNN by optimizing
the categorization performance. This training can be done
similarly as reported in numerous image categorization
literatures. Denote the trained DCNN as DCNN1. The output
of the penultimate layer in DCNN1 for D is denoted as X =
{xi, i = 1, 2, · · · , n}, xi is the output for input image Ii. Denote
the output of the final layer in DCNN1 for D as: X′ = {xi′, i =
1, 2, · · · , n}, the weighting matrix at the final layer in DCNN1

isW1 and the bias vector is b1, that is xi
′ = W1xi + b1;

2 Choose a non-linear monotonically increasing function f (·),
and compute Y ′ = {yi′, i = 1, 2, · · · , n}, where y′i = f (xi

′) in
element-wise mapping;

3 Choose a weighting matrix W2 for the second DCNN,
sayW2 = W1;

4 Compute Y = {yi, i = 1, 2, · · · , n} by yi =
(WT

2 W2)
+WT

2 (yi
′ − b2);

5 Using training pair {(Ii ↔ yi), i = 1, 2, · · · , n} to train the
second DCNN to minimize the Euclidean loss between the
DCNN’s output ỹi and yi.

6 The trained DCNN in step (5) is our required DCNN2. The

object representation xi of DCNN1 and yi of DCNN2 are
different representations by Definition 2, because for the same

object Ii, xi and yi can give the same categorization results in

theory without noise, or similar results with noise in practice,
but they cannot be transformed by a linear transformation as

shown in Proposition 2.
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