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Inception Modules Enhance Brain
Tumor Segmentation

Daniel E. Cahall’, Ghulam Rasool ™, Nidhal C. Bouaynaya' and
Hassan M. Fathallah-Shaykh?

" Department of Electrical and Computer Engineering, Rowan University, Glassboro, NJ, United States, ? Departments of
Neurology and Mathematics, University of Alabama at Birmingham, Birmingham, AL, United States

Magnetic resonance images of brain tumors are routinely used in neuro-oncology clinics
for diagnosis, treatment planning, and post-treatment tumor surveillance. Currently,
physicians spend considerable time manually delineating different structures of the
brain. Spatial and structural variations, as well as intensity inhomogeneity across
images, make the problem of computer-assisted segmentation very challenging. We
propose a new image segmentation framework for tumor delineation that benefits from
two state-of-the-art machine learning architectures in computer vision, i.e., Inception
modules and U-Net image segmentation architecture. Furthermore, our framework
includes two learning regimes, i.e., learning to segment intra-tumoral structures (necrotic
and non-enhancing tumor core, peritumoral edema, and enhancing tumor) or learning
to segment glioma sub-regions (whole tumor, tumor core, and enhancing tumor). These
learning regimes are incorporated into a newly proposed loss function which is based
on the Dice similarity coefficient (DSC). In our experiments, we quantified the impact
of introducing the Inception modules in the U-Net architecture, as well as, changing the
objective function for the learning algorithm from segmenting the intra-tumoral structures
to glioma sub-regions. We found that incorporating Inception modules significantly
improved the segmentation performance (o < 0.001) for all glioma sub-regions.
Moreover, in architectures with Inception modules, the models trained with the learning
objective of segmenting the intra-tumoral structures outperformed the models trained
with the objective of segmenting the glioma sub-regions for the whole tumor (p < 0.001).
The improved performance is linked to multiscale features extracted by newly introduced
Inception module and the modified loss function based on the DSC.

Keywords: gliomas, brain tumor segmentation, fully convolutional neural network, inception, U-net

1. INTRODUCTION

In recent years, there has been a proliferation of machine and especially deep learning techniques
in the medical imaging field (Litjens et al., 2017). Deep learning algorithms also referred to as deep
neural networks, are built using large stacks of individual artificial neurons, each of which performs
primitive mathematical operations of multiplication, summation, and thresholding. One of the key
reasons for the success of these modern deep neural networks is the idea of representation learning;
the process of learning useful features automatically from the data as opposite to manual selection
by expert humans (LeCun et al., 2015). Specifically, a convolutional neural network (CNN) is
designed to extract features from two-dimensional grid data, e.g., images, through a series of
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learned filters and non-linear activation functions. The set of
features learned through this process can then be used to
perform various downstream tasks such as image classification,
object detection, and semantic or instance segmentation
(LeCun et al., 2015).

Recently, U-Net (Ronneberger et al., 2015) which is an end-
to-end fully convolutional network (FCN) (Long et al., 2015)
was proposed for semantic segmentation of various structures in
medical images. U-Net architecture is built using a contracting
path, which captures high-resolution, contextual features while
downsampling at each layer, and an expanding path, which
increases the resolution of the output through upsampling at
each layer (Ronneberger et al, 2015). The features from the
contracting path are combined with features from the expanding
path through skip connections (Drozdzal et al., 2016), ensuring
localization of the extracted contextual features. Originally the
U-Net was developed and applied to cell tracking, more recently
the model has been applied to other medical segmentation tasks,
such as, brain vessel segmentation (Livne et al, 2019), brain
tumor segmentation (Dong et al., 2017), and retinal segmentation
(Girard et al., 2019). Architectural variations and extensions of
the U-Net algorithm, such as 3D U-Net (Kamnitsas et al., 2017;
Sandur et al., 2018), H-DenseUNet (Li et al., 2018), RIC-UNet
(Zeng et al., 2019), and Bayesian U-Net (Orlando et al., 2019)
have been developed to tackle different segmentation problems
in the medical imaging community.

Accurate semantic segmentation depends on the extraction
of local structural as well as global contextual information from
medical images during the learning process (training). Therefore,
various multi-path architectures have been proposed in the
medical image segmentation literature which extract information
from given data at multiple scales (Havaei et al., 2017; Kamnitsas
et al., 2017; Salehi et al., 2017). The concept of extracting and
aggregating features at various scales has also been accomplished
by Inception modules (Szegedy et al, 2015). However, the
mechanism of feature extraction is different compared to multi-
path architectures (Havaei et al., 2017; Kamnitsas et al., 2017;
Salehi et al., 2017). Each Inception module applies filters of
various sizes at each layer and concatenates resulting feature
maps (Szegedy et al, 2015). The dilated residual Inception
(DRI) block introduced in Shankaranarayana et al. (2019) was
designed to accomplish multi-scale feature extraction in an
end-to-end, fully convolutional retinal depth estimation model.
The MultiResUNet recently proposed in Ibtehaz and Rahman
(2019) combined a U-Net with residual Inception modules for
multi-scale feature extraction; authors applied their architecture
to several multimodal medical imaging datasets. Integrating
Inception modules in a U-Net architecture has also been
evaluated in the context of left atrial segmentation (Wang et al.,
2019). An architecture proposed in Li and Tso (2018) for liver
and tumor segmentation also incorporated inception modules,
along with dilated Inception modules, in a U-Net. Concurrently
and independently of this work, inception modules within U-Net
have also been recently proposed for brain tumor segmentation
in Lietal. (2019). However, authors used a cascade approach, i.e.,
first learn the whole tumor, then learn the tumor core, and finally
learn the enhancing tumor, which requires three different models.

Our proposed architecture is an end-to-end implementation with
respect to all tumor subtypes.

The Multimodal Brain Tumor Image Segmentation (BRATS)
challenge, started in 2012, has enabled practitioners and machine
learning experts to develop and evaluate approaches on a
continuously growing multi-class brain tumor segmentation
benchmark (Menze et al., 2014). Based on the annotation
protocol, deep learning architectures designed for the problem
typically derive the segmentation using a pixel-wise softmax
function on the output feature map (Isensee et al., 2018a). The
softmax function enforces mutual exclusivity, i.e., a pixel can only
belong to one of the intra-tumoral structures. The individual
output segments are then combined to create the glioma sub-
regions. Learning the glioma sub-regions directly using a pixel-
wise sigmoid function on the output feature map has been
discussed in Isensee et al. (2018b), as well as in Wang et al. (2018)
using a cascaded approach.

In this work, we introduce an end-to-end brain tumor
segmentation framework which utilizes a modified U-Net
architecture with Inception modules to accomplish multi-scale
feature extraction. Moreover, we evaluate the impact of training
various models to segment the glioma sub-regions directly rather
than the intra-tumoral structures. Both learning regimes were
incorporated into a new loss function based on the Dice similarity
Coeflicient (DSC).

2. METHODS

2.1. Data and Preprocessing

All experiments were conducted on the BRATS 2018 dataset
(Menze et al., 2014; Bakas et al., 2017a,b,c, 2018), which consists
of magnetic resonance imaging (MRI) data of 210 high-grade
glioma (HGG) and 75 low-grade glioma (LGG) patients. Each
patient’s MRI data contained four MRI sequences: T2-weighted
(T2), T1, T1 with gadolinium enhancing contrast (T1C),
and Fluid-Attenuated Inversion Recovery (FLAIR) images.
Furthermore, pixel-level manual segmentation markings are
provided in the BRAT'S dataset for three intra-tumoral structures:
necrotic and non-enhancing tumor core (label = 1), peritumoral
edema (label = 2), and enhancing tumor (label = 4). For the
intra-tumoral structures, following glioma sub-regions (Menze
etal., 2014) were defined: whole tumor (WT) which encompasses
all three intra-tumoral structures (i.e., label = 1 U 2 U 4), tumor
core (TC) that contains all but the peritumoral edema (i.e., label
= 1 U 4), and enhancing tumor (ET) (label = 4). Different
sequences provide complementary information for identifying
the intra-tumoral structures: FLAIR highlights the peritumoral
edema, T1C distinguishes the ET, and T2 highlights the necrotic
and non-enhancing tumor core. Converting from the intra-
tumoral structures to the glioma sub-regions is a linear, reversible
transformation; the glioma sub-regions are generated from the
intra-tumoral structures, and provided the glioma sub-regions,
the original intra-tumoral structures can be recovered.

The BRATS dataset is provided in a preprocessed format,
i.e., all the images are skull-stripped, resampled to an isotropic
1 mm?® resolution, and all four modalities of each patient
are co-registered. We performed additional preprocessing that
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included (in order): (1) obtaining the bounding box of the
brain in each image, and extracting the selected portion of the
image, effectively zooming in on the brain and disregarding
excess background pixels, (2) re-sizing the cropped image
to 128 x 128 pixels, (3) removing images which contained
no tumor regions in the ground truth segmentation, (4)
applying an intensity windowing function to each image such
that the lowest 1% and highest 99% pixels were mapped to
0 and 255, respectively, and (5) normalizing all images by
subtracting the mean and dividing by the standard deviation of
the dataset.

2.2. Segmentation Model Architecture
We propose a new architecture based on the 2D U-Net and
factorized convolution Inception module (Ronneberger et al.,

2015; Szegedy et al, 2016). Each convolutional layer in the
original U-Net was replaced with an Inception module that
included multiple sets of 3 x 3 convolutions, 1 x 1 convolutions,
3 X 3 max pooling, and cascaded 3 x 3 convolutions. A cartoon
of the proposed network architecture with an expanded view
of the Inception module is presented in Figure 1. We note that
at each layer on the contracting path, the height and width
of the feature maps are halved and the depth is doubled until
reaching the bottleneck i.e., the center of the "U." Conversely,
on the expanding path, the height and width of the feature
maps are doubled and the depth is halved at each layer until
reaching the output (i.e., segmentation mask for the given input
image). Furthermore, each set of feature maps generated on
the contracting path are concatenated to the corresponding
feature maps on the expanding path. We used rectified linear
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FIGURE 1 | Cartoon of the proposed segmentation architecture. The set of numbers shown below each Inception module indicate total number of filters used, and
height, width, and depth of the input feature map. The number of filters at each layer double on the encoder side, and the size of the output feature map (height and
width) halve. The multiplication by 4 for each depth value is due to the 4 filter variations in the Inception module, which generates 4 sets of equally sized feature maps
that are concatenated. The feature maps are then downsampled using max pooling, which halves their height and width. This process is repeated until reaching the
bottleneck i.e., the "center" of the U. Upsampling is then performed which doubles the height and width of each feature map, and the feature maps from the
corresponding stage on the contracting path are concatenated to the upsampled feature maps (shown by blue lines). The concatenation of the feature maps from the
contracting path doubles the depth of the output feature map on the expanding path, hence the multiplication by 8. At the last layer on the expanding path, the output
height and width are equivalent to the height and width of the original input images. A set of 1 x 1 convolutions is then applied to reduce the depth of the last feature
map to equal the number of classes (tumor regions). A pixel-wise activation function is then applied to then convert the reduced feature map to binary segmentation
images. Right Bottom: Internal architecture of one Inception module with multiple convolutional filters and max pooling filters is presented. The numbers in each block
represent convolution filter size. We used two 3 x 3 filters in series to get an equivalent receptive field of a 5 x 5 convolutional filter.
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unit (ReLU) as the activation function for each layer, and
performed batch normalization (Ioffe and Szegedy, 2015) in each
Inception module.

The input to our model isan N x M x D pixel image and the
output of the model is an N x M x K tensor. In out settings, N =
M = 128 pixels, D = 4 which represents all four MRI modalities,
and K = 3 which represents total number of segmentation
classes, i.e., intra-tumoral structures or the glioma sub-regions.
Each slice of K is a binary image representing the predicted
segments for the ith class where 0 < i < K—1. The binary images
are generated by pixel-wise activation functions, i.e., sigmoid for
glioma sub-regions and softmax for intra-tumoral structures.

2.3. Evaluation Metric and Objective (Loss)

Function

Dice Similarity Coeflicient (DSC) is extensively used for the
evaluation of segmentation algorithms in medical imaging
applications (Bakas et al., 2017a). The DSC between a predicted
binary image P and a ground truth binary image G, both of size
N x M is given by:

ZNIZ PUGU
Yo' Yt P+ Xk Xk Gi

where i and j represent pixel indices for the height N and width
M. The range of DSC is [0,1], and a higher value of DSC
corresponds to a better match between the predicted image P and
the ground truth image G.

DSC(P,G) =2 , (D)

Our objective function (or the loss function) for the proposed
learning algorithm consisted of a modified version of DSC
(Equation 1). Specifically, following modification were made:
(1) we changed the sign of the DSC coefficient to formulate a
standard deep learning optimization (minimization) problem,
(2) introduced log function, and (3) introduced a new parameter
y to cater for extremely large values of the loss function. For
example, if a ground truth segment had very few white pixels
Yine Yt
Z Z —0 P,] = 0 resulting in an extremely large loss
functlon In our preliminary experiments, we found empirically
that y = 100 provided the best segmentation performance. The
resulting expression for the loss function is given as:

G,] ~ 0, the model may predict no white pixels

Z ZMIPGIJ+V
S i P+ o

Lpsc(P,G) = —10g|: = +y:|'
ij
(2)

The loss function presented in Equation (2) is able to handle
binary cases only (e.g., tumor and not tumor). The same can be
extended for the multi-class cases as:

K—-1
Z DSC(P;, G; )} (3)

Lpsc(P,G) = —log [
i=0

where K is the total number of classes.
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FIGURE 2 | Box plot displaying the results for each model variation. The x-axis is the glioma sub-region, and the y-axis is the DSC. The median value is denoted by
the horizontal orange line, and the mean is denoted by the green triangle. Abbreviations used are: WT, Whole Tumor; TC, Tumor Core; and ET, Enhancing Tumor.
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2.4. Experimental Setup and Model Training
We performed an ablation study to quantify the effects of
introducing Inception modules in the U-Net architecture as
well as the impact of different segmentation objectives, i.e.,
learning to segment intra-tumoral structures or glioma sub-
regions. Specifically, we trained four different models, i.e.,
two variations of the U-Net architecture (with intra-tumoral
structures and glioma sub-regions) and two variations of the

U-Net with Inception module (intra-tumoral structures and
glioma sub-regions).

We trained all four models under same conditions to ensure
consistency and a fair comparison. All four models were trained
using k-fold cross-validation. The dataset was randomly split into
k mutually exclusive subsets of equal or near equal size. Each
algorithm was run k times subsequently, each time taking one
of the k splits as the validation set and the rest as the training

A

Pred ED

-l

B

GTWT

Pred WT

intra-tumoral structures

glioma sub-regions

FIGURE 3 | Qualitative results from the same patient are presented in sub-figure (A) (top, intra-tumoral structures) and (B) (bottom, glioma sub-regions). All four MR
modalities (FLAIR, T2, T1, and T1C) are shown on the left in both sub-figures for easy visual analysis. (A) On the right top row, the ground truth (GT) segments for
each intra-tumoral structure are presented (abbreviations used are: ED, peritumoral edema; NET, necrotic and non-enhancing tumor core; ET, enhancing tumor). On
the right bottom row, the predicted (Pred) segments for each intra-tumoral structure are shown. The last image in each row is the combined segments i.e., ED, NET,
and ET all in one image, distinguished by different gray-level pixel values. (B) On the right top row, the ground truth (GT) segments for each glioma sub-region are
presented (abbreviations used are: WT, whole tumor; TC, tumor core; ET, enhancing tumor). On the right bottom row, the predicted (Pred) segments for each glioma
sub-region are shown. The last image in each row is the combined segments i.e., WT, TC, and ET all in one image, distinguished by different gray-level pixel values.

GT NET GTET

GT Combined

Pred NET Pred ET Pred Combined

GTTC GTET GT Combined
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set. In our experiments, we set k = 10, which means that each
model was trained 10 times using a different set of 90% of the
data and validated on the remaining 10% data. In total, our
experimental setup generated 40 models, i.e., 10 variations per
model. Later, mean and standard deviation (SD) were calculated
and are reported for each model in the Results section.

We used stochastic gradient descent with an adaptive moment
estimator (Adam) for training all models and their variations
(Kingma and Ba, 2014). The initial learning rate was set to 1074
which was exponentially decayed every 10 epochs. The batch
size was set to 64 and each model was trained for 100 epochs.
All learnable parameters, i.e., weights and biases of the models
were initialized based on the He initialization method (He et al.,
2015). The Keras (Chollet et al., 2015) application programming
interface (API) with TensorFlow (Abadi et al., 2016) backend was
used for implementation of all models. All models were trained
on a Google Cloud Compute instance with 4 NVIDIA TESLA
P100 graphical processing units (GPUs).

2.5. Model Testing and Statistical Analysis

of Results

After training, each model was tested on the entire BRATS
2018 dataset. For the models which learned to segment the
intra-tumoral structures, the predicted intra-tumoral structure
segments were combined to produce the glioma sub-regions,
and DSC for each glioma sub-region was computed. For models
which learned to segment the glioma sub-regions directly, DSC
values were readily computed. The process was repeated for each
image, and after evaluating all images, the average DSC score
was calculated for each glioma sub-region. Overall, the process
resulted in 4 sets of 10 DSC scores, one for each glioma sub-
region. All four models were compared for statistical significance
using a two-tailed Student’s ¢-test with equal variance and with
the probability of Type-I error set to o« = 0.05.

3. RESULTS

We present cross-validation DSC for all four models that were
trained and tested on the BRATS 2018 dataset. In Figure 2,
we provide a box plot for each model variation. The glioma
sub-region is on the x-axis and the DSC is on the y-axis
for each plot. We note that for intra-tumoral structures,
adding Inception modules to the U-Net resulted in statistically
significant improvements in WT (DSC improved from 0.903 to
0.925, p < 0.001), TC (0.938 t0 0.952, p < 0.001), and ET (0.937
t0 0.948, p < 0.001). Similarly, for the glioma sub-regions, adding
Inception modules to the U-Net also resulted in statistically
significant improvements in WT (0.898 to 0.918, p < 0.001), TC
(0.942 t0 0.951, p = 0.001), and ET (0.942 to 0.948, p = 0.002).
Changing the objective from learning the intra-tumoral
structures to learning the glioma sub-regions in the U-Net
resulted in no difference in performance for WT (0.903 to 0.898,
p = 0.307), TC (0.938 to 0.942, p = 0.284), and ET (0.937
to 0.942, p = 0.098). However, U-Net with Inception modules
which learned the intra-tumoral structures outperformed U-Net
with Inception modules which learned the glioma sub-regions in

TABLE 1 | Results of statistical comparison, i.e., p-values from two-tailed t-tests
comparing the models in the first column with the models in the second columns.

Model 1 Model 2 p-values
WT TC ET

U-Net U-Net 0.307 0.284 0.098
intra-tumoral structures  glioma sub-regions

U-Net Inception <0.001 <0.001 <0.001

intra-tumoral structures
U-Net Inception U-Net <0.001  0.001 0.002
glioma sub-regions glioma sub-regions

U-Net Inception 0.007 0.597 0.402

intra-tumoral structures

Statistically significant p-values are present in bold font.

WT (0.918 to 0.925, p = 0.007), but there was no performance
difference for TC (0.952 to 0.951, p = 0.597) and ET (0.948 to
0.948, p = 0.402). Qualitative results on the same patient from a
U-Net with Inception modules which learned the intra-tumoral
structures and U-Net with Inception modules which learned the
glioma sub-regions are presented in Figures 3A,B, respectively.
In Table 1, we provide a summary of statistical comparisons, i.e.,
p-values from Student’s t-test performed to compare different
models. Statistically significant p-values are in shown bold font.

4. DISCUSSION AND CONCLUSIONS

We set out to tackle the challenging problem of pixel-level
segmentation of brain tumors using MRI data and deep learning
models. We introduced a new framework building on well-
known U-Net architecture and Inception modules. We explored
two different learning objectives: (1) learning to segment glioma
sub-regions (WT, TC, and ET), and (2) learning to segment
intra-tumoral structures (necrotic and non-enhancing tumor
core, peritumoral edema, and enhancing tumor). Both learning
objectives were incorporated into the newly proposed DSC based
loss function. Our framework resulted into four different model
variations, i.e., (1) a U-Net with learning objective of intra-
tumoral structures, (2) U-Net with glioma sub-regions, (3) U-
Net with Inception module and intra-tumoral structures, and
finally (4) U-Net with Inception module and learning objective
of glioma sub-regions.

We found that integrating Inception modules in the U-Net
architecture resulted in statistically significant improvement in
tumor segmentation performance that was quantified using k-
fold cross-validation (p < 0.05 for all three glioma sub-regions).
We consider that the observed improvement in the validation
accuracy is linked to multiple convolutional filters of different
sizes employed in each Inception module. These filters are able
to capture and retain contextual information at multiple scales
during the learning process, both in the contracting as well
as expanding paths. We also consider that the improvement
in the tumor segmentation accuracy is linked to the new loss
function based on the modified DSC (i.e., Equation 3). In our
proposed framework, we evaluate our models using DSC and
the learning objective or the loss function (Equation 3) used
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for training these algorithms is also based on DSC. This is in
contrast with conventional deep learning paradigms being used
in natural image segmentation, such as, Mask R-CNN, where
the loss function is based on multi-class cross-entropy and the
evaluation metric is based on Intersection-over-Union (IoU) or
DSC score (He et al., 2017). Furthermore, our DSC scores for
each glioma sub-region on the BRATS 2018 training dataset
are comparable or exceed the results of other recent published
architectures such as the No New-Net, which achieved second
place in the BRATS 2018 competition (Isensee et al., 2018b), and
the ensemble approach proposed in Kao et al. (2018).

Our results also demonstrate that changing the learning
objective from intra-tumoral structures to glioma sub-regions in
the architectures with Inception modules produced a statistically
significant positive impact only on WT, while not affecting
TC and ET. Since the only difference between TC and WT is
the peritumoral edema, these results suggest that learning to
segment the peritumoral edema independently is more effective
than learning in context of other two intra-tumoral structures.
We hypothesize that learning to segment WT directly may be
difficult for the model because it requires extracting information
from multiple modalities (T1, T1C, T2, and FLAIR); however,
the segmentation of peritumoral edema alone can primarily
be learned from FLAIR data. Therefore, for the proposed
framework, we recommend using intra-tumoral structures for
learning with U-Net Inception architecture.
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This study compared the predictive power and robustness of texture, topological, and
convolutional neural network (CNN) based image features for measuring tumors in
MRI. These features were used to predict 1p/19qg codeletion in the MICCAI BRATS
2017 challenge dataset. Topological data analysis (TDA) based on persistent homology
had predictive performance as good as or better than texture-based features and
was also less susceptible to image-based perturbations. Features from a pre-trained
convolutional neural network had similar predictive performances and robustness as
TDA, but also performed better using an alternative classification algorithm, k-top scoring
pairs. Feature robustness can be used as a filtering technique without greatly impacting
model performance and can also be used to evaluate model stability.

Keywords: multiparametric MRI, image perturbation, radiomic features, glioma, persistent homology, 1p/19q
codeletion

BACKGROUND

1p/19q codeletion, is a genetic loss event that is somewhat rare in gliomas (Fuller and Perry, 2005;
Eckel-Passow et al., 2015). It involves the complete deletion of the short arm of chromosome 1
alongside the deletion of the long arm of chromosome 19. Patients with this genetic loss event have
been shown to have markedly improved prognosis and overall survival as compared to patients
without 1p/19q codeletion (Boots-Sprenger et al., 2013; Cairncross et al., 2013; Van M den et al,,
2013). The ability to identify patients from radiologic imaging would help to tailor treatment for
this subtype of brain cancer.

Radiomics is the study of tumor imaging data, and the use of the imaging features to predict
prognosis or genetic markers of these tumors. Radiological studies are standard of care for most
cancer patients, but genetic profiling is available only for a subset of cancer patients (Gillies et al.,
2015). Thus, understanding the relationship between tumor appearance on magnetic resonance
imaging (MRI) and the genetic profile of a tumor could help to predict prognosis or to subtype
tumors and thereby deliver more precise care to larger patient populations.

A number of publicly available datasets and toolkits exist for measuring texture-based features
on tumors (Clark et al., 2013; van Griethuysen et al., 2017). However, while there has been progress
in measuring these features, there is some concern about the robustness and generalizability of
radiomic features. Other studies on CT scans have shown that some texture-based features are
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not stable under perturbation in test-retest comparisons
(Bogowicz et al., 2016; van Timmeren et al.,, 2016). In order
further to assess the degree of instability, this study has
investigated the effect of image perturbations on additional
feature types beyond texture, and their eventual effect on
classification power in MRI scans.

METHODS

A set of brain MRI data were drawn from the MICCAI
BRATS 2017 challenge dataset (Menze et al., 2015; Bakas et al.,
2017a,2018). The multimodal Brain Tumor Image Segmentation
Benchmark (BRATS) 2017 dataset was originally designed
for the brain tumor segmentation challenge and comprises
pathologically confirmed LGG (n = 65) and HGG (n 102)
cases from The Cancer Imaging Archive (TCIA) (Bakas et al,
2017b,c). The dataset contains pre-operative multimodal MRI
sequences, namely T1, T1-post, T2, and FLAIR, and was acquired
with differing imaging/clinical protocols and scanners from
19 different institutions. All tumor volumes in the imaging
dataset had been segmented manually by one to four different
experienced neuroradiologists.

Genetic markers for this TCIA dataset were gathered from
The Cancer Genomics Archive (TCGA). The patients were first
retrospectively identified with histologically confirmed WHO
grade II-IV gliomas (n 1,122) and their corresponding
1p/19q chromosome codeletion statuses (after surgical biopsy).
In addition, the patients’ age, gender, Karnofsky Performance
Score (KPS) were collected as clinical variables.

These four sequences were co-registered to the T1 post-
sequence as it had the highest spatial resolution. They were then
resampled to 1 x 1 x 1 mm isotropically in an axial orientation
by using a linear interpolation algorithm. Then, all images were
skull-stripped to anonymize the patient information and remove
extraneous regions of the scan (Bauer et al,, 2012).

The scans were prepared by performing N4 bias correction,
normalizing intensity values by interquartile range, and cropping
and reshaping to the volume of interest. Normalization of the
intensity was performed based on the interquartile range for a
particular modality of the non-tumor brain volume. The slices
were resampled to a 142 x 142 image size that was cropped to
the tumor area of interest. This methodology is similar to that
used by Chang et al. (2018a) in order to provide the type of input
that the neural network anticipated.

The breakdown of the dataset for 1p/19q codeletion vs. non-
codeleted cases was heavily skewed toward the non-codeleted
cases, with 13 cases with codeletion and 130 without codeletion.
As such, the codeleted cases were heavily oversampled in slice
selection at a 20:3 ratio to achieve a closer balance of class
ratio. The largest 20 image patch slices for each codeleted scan
was taken. For the non-codeleted scans the 50, 75, and 100th
percentile slices (based on size) were taken.

The dataset was split patient-by-patient into sets of 80% for
training and 20% for testing. This preserved the class ratio in the
training and testing sets, as the number of positive cases was so
low. This process was repeated 10 times independently for a total

of 10 independent splits. Each of these independent splits had
the entire analytic process performed to assess the robustness of
the results. The training set was used in 5-fold cross-validation
for each of the models, where patients were kept together in the
cross-validation folds.

The three types of features measured in these scans were
texture-based features, persistent homology topological features,
and features based on a pre-trained convolutional neural network
(Figure 1). The texture features were extracted slice-by-slice
using the Pyradiomics package (van Griethuysen et al., 2017).
The types of features were based on the tumor region of
interest on each of the modalities. The texture features that were
extracted included: first-order intensity features, shape features,
gray-level co-occurrence matrix features (GLCM), gray-level run
length matrix features (GLRLM), gray level size zone matrix
features (GLSZM), and neighboring gray-tone difference matrix
features (NGTDM).

It is well-known that MRI studies suffer from a variety
of noise sources, so the underlying integrity of the image
data carries some uncertainty. A topological approach was
evaluated to see if the features generated were less susceptible
to this uncertainty than traditional texture-based approaches.
These topological features were based on persistent homology
and how the topology changes with shifts in the image
intensity threshold. Barcodes describe when a connected
component or tunnel was created and destroyed by this shifting
threshold (Figure 2; Adcock et al., 2014). These barcodes were
collected with the GUDHI python package (Maria, 2015).

Multimodal MRI
FLAIR/T1/T2/T1-post

!

N4 Correction/
Normalization

v Y v
) Topological Data Convolutional Neural
Texture Analysis Analysis Network Features

| | IR
J;...«‘L.u.lr...A.A_.._"::i':::_;L':::.j;'::::::::::E """ ]

Recursive Feature Principal Component H !
Elimination Analysis | |

v v lH v v v

Random Forest

Logistic Regression K-TSP

FIGURE 1 | Analysis pipeline: images are normalized, then the three types of
features were collected. These features are filtered with RFE and PCA, then
used to build a random forest model or logistic regression model. Image
perturbations are used as an additional filter by including only relatively robust
features. The kTSP algorithm used the same feature set to build its predictions.
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These barcodes were characterized by their polynomial features,
along with statistical features about their birth and death
intensities, bar lengths, and death intensity distribution. These
features were based on work in Adcock et al. (2013) and
Giansiracusa et al. (2017).

A pre-trained convolutional neural network (CNN) was used
to calculate deep learning-based features, from Chang’s work on
IDH1 mutation (Chang et al., 2018a). Chang’s model was useful
for this investigation as it focused on gliomas and featured the
same MRI modalities as were present in this study (T1, T2,
FLAIR, and T1-post). The second to last layer of the network was
used to extract features rather than to feed into a softmax layer
to predict IDH1 mutation. We expected the network to produce
some features that are relevant to this 1p/19q dataset because the
current work was of the same fundamental nature as the problem
in Chang’s work.

Two versions of feature reduction/selection were evaluated in
the training set of this study: recursive feature elimination (RFE)
and principal component analysis (PCA). RFE was performed
with 10-fold cross-validation, to determine the optimal number
of features (k), then the k best features were selected. PCA was
performed and a cutoff of 95% cumulative variance was used to
cull the insignificant components in PCA reduction.

Each of the feature sets—texture, topology, and CNN—had
feature selection performed, and then those features were fed
into a random forest model and a logistic regression model.
The models were tuned using 5-fold cross-validation with folds
that kept patients within the same fold. The random forest
models were optimized over a number of hyperparameters
including: tree counts of 200-2000, maximum depths of 10—
100, the minimum sample split, and minimum leaf size. The
logistic regression models had normalization hyperparameters

of L1 vs. L2 normalization, and regularization strength from
1077 to 10°.

The models were evaluated primarily on the held-out 20%
testing set, where area under the receiver operator curve
(AUROC), accuracy, sensitivity, and specificity were measured.
Additionally, combined models, which used features from

TABLE 1 | Test set statistics across 10 independent spilits.

AUROC STD of Sensitivity Specificity Accuracy

FIGURE 2 | Examples of five types of image perturbation on a slice of the tumor (rotation, noise addition, translation, volume alteration, and contour alteration).

AUROC
Texture only RF RFE 0.660 0.120 0.782 0.558 0.669
Texture only LR RFE 0.566 0.139 0.775 0.479 0.629
Texture only RF PCA 0.527 0.071 0.543 0.644 0.581
Texture only LRPCA  0.502 0.093 0.573 0.610 0.583
TDA only RF RFE 0.698 0.085 0.653 0.738 0.682
TDA only LR RFE 0.710 0.094 0.723 0.675 0.692
TDA only RF PCA 0.626 0.132 0.647 0.648 0.638
TDA only LR PCA 0.691 0.135 0.677 0.694 0.676
CNN only RF RFE 0.708 0.139 0.905 0.546 0.727
CNN only LR RFE 0.644 0.110 0.775 0.565 0.669
CNN only RF PCA 0.672 0.133 0.627 0.750 0.675
CNN only LR PCA 0.673 0.081 0.823 0.546 0.686
Combined RF RFE 0.689 0.150 0.877 0.552 0.714
Combined LR RFE 0.685 0.135 0.770 0.638 0.700
Combined RF PCA 0.612 0.148 0.655 0.637 0.638
Combined LR PCA 0.675 0.121 0.865 0.525 0.698
Clinical per patient RF | 0.713 0.106 0.667 0.854 0.800
Clinical per patient LR~ 0.577 0.097 0.467 0.819 0.759
Darker blue indicates improved AUROC.

— Added

— Subtracted
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texture, topology, and CNN, were also tested using the
same approach. The clinical patient characteristics (age, sex,
and Karnofsky performance score) were tested independently
to gauge their performance in comparison to the imaging-
based features.

Robustness of Features

Each of the image slices was perturbed using image processing
techniques to produce relatively small changes to the image
following the approach of Zwanenburg et al. (2019). Five classes
of perturbation were performed on the images: image rotation
(R), image translation (T), image Gaussian white noise addition
(N), mask volume alteration (V), and contour randomization
(C). Images and masks were rotated around the mask center of
mass to approximate changes in head position in the scanner.
Image translations involved subpixel shifts which resampled
the images on new slightly modified coordinate systems. Image
noise addition added randomized Gaussian noise based on the
noise levels of the original slice. Volume alteration grew or
shrank the mask based on the Euclidean distance transform
and the percentage of volume added or subtracted. Lastly,
contour randomization combined superpixel segmentation of
the underlying image with a probabilistic selection of those
superpixels based on their overlap with the mask to produce
altered contours (Figure 2).

Each of the altered images then had its texture and topological
features evaluated for the range of individual perturbations. For
each category of perturbation and each feature, the intraclass
correlation coeflicient (ICC) was calculated to determine the
variability or robustness of that feature to the perturbation in

question. After calculating the ICC, any feature that had an ICC
of <0.75 for any of the perturbations was excluded from this
round of modeling. With that filter in place, the same modeling
procedure was followed to evaluate the predictive power of
texture and topological features across the 10 instances.

Classification With K-top Scoring Pairs

As an additional analysis, the same texture, topological, and CNN
features were used to train a model using the k-top scoring
pairs algorithm (KTSP). The kTSP algorithm classifies samples by
identifying k-pairs of features whose relative expressions/values
are inverted between the categories, i.e., it tries to find pairs
of genes A and B whose relative rankings are inverted in most
samples of the two cases. This gives an easy to interpret decision
rule and makes the classifier robust to data normalization
procedures. Given that different measurement technologies have
different dynamic ranges, classifiers based on relative rankings of
features rather than their absolute values are highly valuable for
integrating and comparing across multiple sources of data.

TABLE 2 | Test set statistics for KTSP algorithm.

AUROC STD of AUROC
Texture only KTSP 0.659 0.099
TDA only kTSP 0.686 0.083
CNN only kTSP 0.718 0.111

Darker blue indicates improved AUROC.
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The extracted CNN, textural, and topological features were
used to train a kTSP classifier for predicting patient 1p/19q
codeletion status using the switchbox R package (Afsari et al.,
2015). Since kTSP is a greedy algorithm, we retained only features
that were measured to be significantly differential between the
two classes (Wilcox test p < 0.1 after BH correction). We
then split the data into training and test sets (70:30 split)
and estimated classifier performance by measuring training and
test set roc values. Since the codeletion cases were heavily
resampled, we grouped features from the same patient together
while doing the train/test split so as to ensure that training
and testing cases are really independent. By repeating this
procedure for a total of 5,000 times and building classifiers
with k allowed to range between 3 and 15 pairs of features,
we estimated the 95% highest posterior density intervals for
train and test AUC values for classifiers built from the
three datasets.

RESULTS

Texture features were evaluated across the 10 independent
train/test splits to measure their predictive power (Table 1;
Figure 3). PCA-based feature reduction on texture features did
very poorly on the test set with an average AUROC across
the 10 train/test splits of 0.502 with linear regression (LR)
and 0.527 for random forest (RF). RFE achieved test set
AUROC values of 0.660 and 0.566 for LR and the RF models,
respectively. However, the standard deviation of AUROC across

the different splits was quite high (0.120, 0.139), suggesting
that with a small dataset, the models’ performance can be
somewhat unstable.

Features from topological data analysis were also evaluated
across the 10-independent training/testing splits (Table 1). In
this case, most of the analyses performed relatively similarly
in terms of AUROC, ranging from 0.626 to 0.710 for these
different models with topological features. Again, the standard
deviation of AUROC across the different training/testing
splits was relatively broad (0.085-0.135), though slightly lower
than that of the texture features. Texture and TDA features
overall had relatively similar performance, with a slight
edge to TDA features, though well-within the variability of
these statistics.

When modeled using random forests or logistic regression,
the CNN feature set had similar predictive performance to
topological features (Table 1). The AUROC: of these models fell
between 0.644 and 0.708. It also performed similarly with the
k-top scoring pairs (KTSP, Table 2) approach when compared to
the random forest (RF) or logistic regression (LR) with an average
AUROC of 0.718. Combining the three feature types neither
improved or decreased performance, suggesting that they were
not measuring vastly different types of information.

Overall, RFE somewhat outperformed PCA as a feature
selection tool, although the scale of the difference depended
on the feature set. Logistic regression had similar results to
random forest classification in most cases, although there were
some exceptions.

CVINR CVINR CVINR

CVINR

FLAIR Texture Feature ICC

T1 Texture Feature ICC

T2 Texture Feature ICC

Tlpost Texture Feature ICC

FIGURE 4 | Mean ICC of Texture features (R, Rotation; N, Noise addition; T, Translation; V, Volume alteration; C, Contour alteration). Volume based perturbations had
the largest effect on the robustness of texture features, followed by contour alteration. There was a range of ICC values for the different features.
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FIGURE 6 | Mean ICC of CNN features (R, Rotation; N, Noise addition; T, Translation; V, Volume alteration; C, Contour alteration). CNN based features were broadly

In terms of feature robustness, topological features had much
better ICC after perturbation than did the texture-based features.
Of the 356 texture features, an average of ~117 features (32.8%)
had an ICC of <0.75 on the perturbations and were excluded
from this round of modeling (Figure 4). Of the 120 topological
features, an average of ~10 (8.1%) had an ICC of <0.75, as such
most of the features were included in the next round of modeling
(Figure 5). Only an average of ~3 of the CNN features (0.15%)
were excluded at the 0.75 ICC cutoff (Figure 6).

The perturbation types which had the lowest average ICC
were volume perturbation and contour alteration. Noise addition
and translation had little impact on the ICC values for texture
and TDA features. Volume alteration, and contour alteration
both affect the segmentation mask of the tumor without an
impact on the underlying image. This does, however, affect the
region investigated by topological and texture features. Notably,
when looking at stability in texture features by the class of
feature, shape-based features performed poorly under volume-
based alterations and were affected by rotation more than the
other classes (Figure 4). Overall, GLCM-based measures were
the most stable of the texture features as a class under these
perturbations (Figure 7). Among the TDA features, polynomial
features 3 and 4 were the least robust to perturbation, suggesting
higher order polynomial features are less stable than lower order
features (Figure 5).

Features that had a low ICC were excluded and the models
were retrained on the reduced feature set. Then the predictive
power of these models was measured on the testing set.
Opverall, when excluding non-robust features from modeling, the
performance of the models dropped slightly in terms of AUROC,
although most had relatively similar power (Table 3; Figure 8).

Increasing the ICC cutoff would increase the number of
features excluded from the analysis. Thus, this effect was
further studied for each type of image perturbation (Figure 9).
Texture features are broadly susceptible to contour and volume
alterations. A subset of texture features was susceptible to
rotation effects as well, although very few features were affected
by the noise or translation perturbations. CNN features had
a relatively narrow range of ICC values, and TDA features
were broadly stable, though a subset of TDA features were
less robust.

DISCUSSION

In this study, topological data features performed as well as
or better than texture features in predicting 1p/19q codeletion
status. However, model performance varied across the different

training and testing splits of the data, as evidenced by the
standard deviation of model performance. CNN-based features
also had similar performance to topological features with random
forest and logistic regression, but they performed notably better
with kTSP as the modeling algorithm.

One concern, however, is the relatively small sample size
of 143 patients, of whom only 13 had the 1p/19q codeletion.
This may be a large factor in the uncertainty in the prediction
estimates. Oversampling the 1p/19q codeletion alleviates the class
imbalance somewhat, but raises some concerns about overfitting,
especially in models like random forest. Finding additional MRI
studies with confirmed 1p/19q codeletion would improve the
generalizability of any models derived from this data.

The kTSP algorithm is more often used in gene expression
array data but can be applied just as easily to other large-scale
datasets. By finding pairs of features that have different relative
orderings in the two sets, KTSP is less dependent on the absolute
magnitude of change than are the other methods. It also benefits
from having a large number of features to search that have
positive and negative associations with the target classification.
As the CNN features are not human-designed features, and
there is a larger set of CNN features with more variability in
direction, KTSP seems to take better advantage of these features
than features like TDA or texture.

Traditional radiomics features based on gray levels, such as
GLCMs can be dependent on the number and boundaries of
gray level bins. Volume and contour-based alterations affect the
set of pixels under investigation, which could heavily influence
the resulting texture matrices. Topological barcodes have been
found to be mostly stable under image-based perturbations
of the data, as have the CNN-based features from this pre-
trained model.

While other groups have also used radiomic features or
neural networks to predict 1p/19q codeletion, this paper seeks
to compare multiple potential approaches (Han et al., 2018;
Lu et al.,, 2018; Zhou et al., 2019). Other papers have trained
neural networks to predict 1p/19q codeletion, whereas this
study only used a pre-trained neural network on the dataset
(Akkus et al., 2017; Chang et al., 2018b). One weakness of
this approach was that the testing AUROCs of the models
in this study were not as high as some that have been
reported in other studies. However, this study was also able
to evaluate the robustness of these features through image
perturbation. Additionally, the models in this study incorporated
topological features based on persistent homology, which had
better performance than radiomic features and were more stable
to perturbation.
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TABLE 3 | Test set statistics, after exclusion of unstable features.

AUROC STD of Sensitivity Specificity Accuracy
AUROC

Texture only RF RFE 0.637 0.084 0.758 0.569 0.661
Texture only LR RFE 0.563 0.120 0.775 0.512 0.644
Texture only RF PCA 0.505 0.097 0.552 0.625 0.577
Texture only LR PCA 0.501 0.062 0.532 0.625 0.568

TDA only RF RFE 0.660 0.090 0.685 0.635 0.652
TDA only LR RFE 0.659 0.126 0.635 0.712 0.662
TDA only RF PCA 0.614 0.090 0.767 0.569 0.649
TDA only LR PCA 0.649 0.140 0.655 0.613 0.627
CNN only RF RFE 0.691 0.146 0.870 0.567 0.721
CNN only LR RFE 0.668 0.118 0.867 0.510 0.692
CNN only RF PCA 0.681 0.121 0.725 0.644 0.679
CNN only LR PCA 0.674 0.081 0.847 0.531 0.691
Combined RF RFE 0.681 0.146 0.860 0.552 0.707

Combined LR RFE 0.660 0.117 0.830 0.540 0.687
Combined RF PCA 0.650 0.163 0.760 0.619 0.686
Combined LR PCA 0.684 0.111 0.835 0.569 0.703

Darker blue indicates improved AUROC.

Clinical value is more difficult to assess than statistical
significance, as it is dependent on the prognostic value
of the biomarker, the current standard of care, and the
predictive power of the model. 1p/19q codeletion is typically
evaluated through genetic testing of a tissue sample, whereas
the benefit of a radiogenomic approach is to evaluate the
imaging markers of a tumor without biopsy or resection.
However, as many glioma patients receive a biopsy for
diagnostic purposes, a radiogenomic model would have to
be exceptionally predictive to warrant replacement of this
procedure. This study aims more to understand the types
of features radiogenomic approaches are detecting, and how
robust they are in different conditions rather than to replace
the test.

FUTURE DIRECTIONS

While this study used the image perturbation parameter space
of the Zwanenberg paper, it would be worthwhile to tune
the tested space of parameters further. The level of noise is
based on wavelet estimation, but by visual inspection is not
apparent until the noise level is increased by 1-2 orders of
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FIGURE 8 | Filtered features test set mean AUROC.
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magnitude. Additional levels of noise could be investigated,
as could the types of noise, such as changing the noise to
a Rician distribution or adding the noise to k-space rather
than the image domain. However, as these perturbations
take each measurement and multiply it out by orders of
magnitude, the computational demands can add up quickly.
Thus, there is a tradeoff between perturbation complexity, the
size of the parameter space, and the certainty of the resulting
robustness measure.

Further investigation of the robustness of these measures
could be done by simulating scans from the underlying
physics, using a Bloch equation simulator (Ford et al., 2018).
This would allow for measuring the effect of variable image

collection parameters such as TE, TR, and field strength.
Understanding these effects would help to account for concerns
about variability in the underlying MRI protocols. Unfortunately,
these simulations are primarily of normal brain images, so may
not fully reflect the interaction between tumor tissue alteration
and image feature robustness.
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Automatic segmentation of brain tumors from medical images is important for clinical
assessment and treatment planning of brain tumors. Recent years have seen an
increasing use of convolutional neural networks (CNNs) for this task, but most of
them use either 2D networks with relatively low memory requirement while ignoring 3D
context, or 3D networks exploiting 3D features while with large memory consumption.
In addition, existing methods rarely provide uncertainty information associated with
the segmentation result. We propose a cascade of CNNs to segment brain tumors
with hierarchical subregions from multi-modal Magnetic Resonance images (MRI), and
introduce a 2.5D network that is a trade-off between memory consumption, model
complexity and receptive field. In addition, we employ test-time augmentation to achieve
improved segmentation accuracy, which also provides voxel-wise and structure-wise
uncertainty information of the segmentation result. Experiments with BraTS 2017 dataset
showed that our cascaded framework with 2.5D CNNs was one of the top performing
methods (second-rank) for the BraTS challenge. We also validated our method with
BraTS 2018 dataset and found that test-time augmentation improves brain tumor
segmentation accuracy and that the resulting uncertainty information can indicate
potential mis-segmentations and help to improve segmentation accuracy.

Keywords: brain tumor segmentation, deep learning, uncertainty, data augmentation, convolutional neural
network

1. INTRODUCTION

In adults, gliomas are the most common primary brain tumors. They begin in the brain’s glial
cells and are typically categorized into different grades: High-Grade Gliomas (HGG) grow rapidly
and are more malignant, while Low-Grade Gliomas (LGG) are slower growing tumors with a better
patient prognosis (Louis et al., 2016). Magnetic Resonance Imaging (MRI) of brain tumors is critical
for progression evaluation, treatment planning and assessment of this disease. Different sequences
of MRI can be used for brain tumor imaging, such as T1-weighted, T2-weighted, contrast enhanced
T1-weighted (T1ce), and Fluid Attenuation Inversion Recovery (FLAIR) images. T2 and FLAIR
images mostly highlight the whole tumor region (including infiltrative edema), and T1 and T1lce
images give a better contrast for the tumor core region (not including infiltrative edema) (Menze
et al., 2015). Therefore, these different sequences providing complementary information can be
combined for the analysis of different subregions of brain tumors.
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Segmenting brain tumors and subregions automatically from
multi-modal MRI is important for reproducible and accurate
measurement of the tumors, and this can assist better diagnosis,
treatment planning and evaluation (Menze et al.,, 2015; Bakas
et al., 2017b). However, it remains difficult for automatic
methods to accurately segment brain tumors from multi-modal
MRI. This is due to the fact that the images often have
ambiguous boundaries between normal tissues and brain tumors.
In addition, though prior information of shape and position
has been used for segmentation of anatomical structures such
as the liver (Wang et al, 2015) and the heart (Grosgeorge
et al., 2013), the shape, size and position of brain tumors
have considerable variations across different patients. This
makes it difficult to use a prior shape and position for robust
segmentation of brain tumors. Recently, deep learning methods
with Convolutional Neural Networks (CNNs) have become the
state-of-the-art approaches for brain tumor segmentation (Bakas
et al, 2018). Compared with traditional supervised learning
methods such as decision trees (Zikic et al., 2012) and support
vector machines (Lee et al., 2005), CNNs can learn the most
useful features automatically, without the need for manual design
and selection of features.

A key problem for CNN-based segmentation is to design a
suitable network structure and training strategy. Using a 2D
CNN in a slice-by-slice manner has a relatively low memory
requirement (Havaei et al., 2016), but the network ignores
3D information, which will ultimately limit the performance
of the segmentation. Using 3D CNNs can better exploit 3D
features, but requires a large amount of memory, which may
limit the input patch size, depth or feature numbers of the
CNNs (Kamnitsas et al., 2017b). As a trade-off, 2.5D CNNs
can take advantage of inter-slice features compared with 2D
CNNs and have a lower memory requirement than their
3D counterparts. In addition, whole tumor, tumor core and
enhancing tumor core follow a hierarchical structure. Using
the segmentation of whole tumor (tumor core) to guide the
segmentation of tumor core (enhancing tumor core) can help
to reduce false positives. Therefore, in this work, we propose a
framework consisting of a cascade of 2.5D networks for brain
tumor segmentation from multi-modal 3D MRI that achieves a
trade-off between memory consumption, model complexity and
receptive field.

For medical images, uncertainty information of segmentation
results is important for clinical decisions as it can help to
understand the reliability of the segmentations (Shi et al,
2011) and identify challenging cases necessitating expert
review (Jungo et al, 2018). For example, for brain tumor
images, the low contrast between surrounding tissues and the
segmentation target leads voxels around the boundary to be
labeled with less confidence. The uncertainty information of
these voxels can indicate regions that have potentially been mis-
segmented, and therefore can be employed to guide interactions
of human to refine the segmentation results (Wang et al,
2018b). In addition, compared with datasets for natural image
recognition (Russakovsky et al, 2015), datasets for CNN-
based medical image segmentation methods are relatively small,
which tends to result in more uncertain predictions in the

segmentation outputs, and can lead to structure-wise uncertainty
for downstream tasks, such as measuring the volume of tumor
regions. Therefore, this work also aims at providing voxel-
wise and structure-wise uncertainty information for CNN-
based brain tumor segmentation. Unlike model-based (epistemic)
uncertainty obtained by test-time dropout (Gal and Ghahramani,
2016; Jungo et al, 2017, 2018), we investigate image-based
(aleatoric) uncertainty obtained by test-time augmentation that
has previously been mainly used for improving segmentation
accuracy (Matsunaga et al., 2017; Radosavovic et al., 2018).

This paper is a combination and an extension of our
previous works on brain tumor segmentation (Wang et al,
2017, 2018a), where we proposed a cascade of CNNs for
sequential segmentation of brain tumor and the subregions
from multi-modal MRI, which decomposes the complex
task of multi-class segmentation into three simpler binary
segmentation tasks. We also proposed 2.5D network structures
with anisotropic convolution for the segmentation task as
a result of trade-off between memory consumption, model
complexity and receptive field. In this paper, we extend
them in two aspects. First, we use test-time augmentation
to obtain uncertainty estimation of the segmentation results,
and additionally propose an uncertainty-aware conditional
random field (CRF) for post-processing. The results show that
uncertainty estimation not only helps to identify potential mis-
segmentations but also can be used to improve segmentation
performance. Both voxel-level and structure-level uncertainty
are analyzed in this paper. Second, we implement more
ablation studies to demonstrate the effectiveness of our
segmentation pipeline.

2. RELATED WORKS

2.1. Brain Tumor Segmentation From MRI
Existing brain tumor segmentation methods include generative
and discriminative approaches. By incorporating domain-
specific prior knowledge, generative approaches usually
have good generalization to unseen images, as they directly
model probabilistic distributions of anatomical structures and
textural appearances of healthy tissues and the tumor (Menze
et al, 2010). However, it is challenging to precisely model
probabilistic distributions of brain tumors. In contrast,
discriminative approaches extract features from images and
associate the features with the tissue classes using discriminative
classifiers. They often require a supervised learning set-
up where images and voxel-wise class labels are needed
for training. Classical methods of this category include
decision trees (Zikic et al., 2012) and support vector machines
(Lee et al., 2005).

Recently, CNNs as a type of discriminative approach
have achieved promising results on multi-modal brain tumor
segmentation tasks. Havaei et al. (2016) combined local and
global 2D features extracted by a CNN for brain tumor
segmentation. Although it outperformed the conventional
discriminative methods, the 2D CNN only uses 2D features
without considering the volumetric context. To incorporate 3D
features, applying the 2D networks in axial, sagittal and coronal
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views and fusing their results has been proposed (McKinley et al.,
2016; Li and Shen, 2017; Hu et al., 2018). However, the features
employed by such a method are from cross-planes rather than
entire 3D space.

DeepMedic (Kamnitsas et al.,, 2017b) used a 3D CNN to
exploit multi-scale volumetric features and further encoded
spatial information with a fully connected Conditional Random
Field (CREF). It achieved better segmentation performance than
using 2D CNNs but has a relatively low inference efficiency
due to the multi-scale image patch-based analysis. Isensee
et al. (2018) applied 3D U-Net to brain tumor segmentation
with a carefully designed training process. Myronenko (2018)
used an encoder-decoder architecture for 3D brain tumor
segmentation and the network contained an additional branch
of variational auto-encoder to reconstruct the input image
for regularization. To obtain robust brain tumor segmentation
resutls, Kamnitsas et al. (2017a) proposed an ensemble of
multiple CNNs including 3D Fully Convolutional Networks
(FCN) (Long et al., 2015), DeepMedic (Kamnitsas et al., 2017b),
and 3D U-Net (Ronneberger et al., 2015; Abdulkadir et al., 2016).
The ensemble model is relatively robust to the choice of hyper-
parameters of each individual CNN and reduces the risk of
overfitting. However, it is computationally intensive to run a set
of models for both training and inference (Malmi et al., 2015;
Pereira et al., 2017; Xu et al., 2018).

2.2. Uncertainty Estimation for CNNs

Uncertainty information can come from either the CNN
models or the input images. For model-based (epistemic)
uncertainty, exact Bayesian modeling is mathematically
grounded but often computationally expensive and hard to
implement. Alternatively, Gal and Ghahramani (2016) cast
test-time dropout as a Bayesian approximation to estimate a
CNN’s model uncertainty. Zhu and Zabaras (2018) estimated
uncertainty of a CNN’s parameters using approximated
Bayesian inference via stochastic variational gradient descent.
Other approximation methods include Monte Carlo batch
normalization (Teye et al., 2018), Markov chain Monte
Carlo (Neal, 2012) and variational Bayesian (Louizos and
Welling, 2016). Lakshminarayanan et al. (2017) proposed
a simple and scalable method using ensembles of models
for uncertainty estimation. For test image-based (aleatoric)
uncertainty, Ayhan and Berens (2018) found that test-time
augmentation was an effective and efficient method for
exploring the locality of a test sample in aleatoric uncertainty
estimation, but its application to medical image segmentation
has not been investigated. Kendall and Gal (2017) proposed
a unified Bayesian framework that combines aleatoric and
epistemic uncertainty estimations for deep learning models.
In the context of brain tumor segmentation, Eaton-Rosen
et al. (2018) and Jungo et al. (2018) used test-time dropout
to estimate the uncertainty. Wang et al. (2019a) analyzed
a combination of epistemic and aleatoric uncertainties for
whole tumor segmentation, but the uncertainty information of
other structures (tumor core and enhancing tumor core) was
not investigated.

3. METHODS

3.1. Segmentation Pipeline and Network

Structure

3.1.1. Triple Cascaded Framework

Malmi et al. (2015) and Pereira et al. (2017) used a cascade
of two stages to segment brain tumors where the whole tumor
was segmented in the first stage and then all substructures
were segmented in the second stage. To better take advantage
of the hierarchical property of brain tumor structures, in our
preliminary study (Wang et al., 2017), we proposed a cascade of
three CNNs to hierarchically and sequentially segment the whole
brain tumor, tumor core and enhancing tumor core, which is
followed by some more recent works (Ma and Yang, 2018; Xu
etal., 2018). As shown in Figure 1, we use three networks (WNet,
TNet, and ENet) to segment these structures, respectively. First,
the whole tumor is segmented by WNet. Then the input multi-
modal image is cropped according to the bounding box of the
segmented whole tumor. Second, TNet segments the tumor core
from the cropped image region, and the input image is further
cropped based on the bounding box of the segmented tumor core.
Finally, the enhancing tumor core is segmented by ENet from the
second cropped region. We use the segmentation result of whole
tumor (tumor core) as a crisp mask for the result of tumor core
(enhancing tumor core), which leads to anatomical constraints
for the final segmentation.

3.1.2. Anisotropic Convolutional Neural Networks

To achieve a trade-off between memory consumption, model
complexity and receptive field for 3D brain tumor segmentation,
we propose anisotropic 2.5D CNNs with a large intra-slice
receptive field and a relatively small inter-slice receptive field.
These CNNs take a stack of slices as input. The receptive field
of WNet and TNet is 217 x 217 x 9, and that of ENet is 113
x 113 x 9. Figure 2 shows structures of these proposed CNNs.
Note that in previous works (McKinley et al., 2016; Li and Shen,
2017), fusing 2D networks in three orthogonal views was referred
to as a 2.5D network, where each of the single-view networks
only captures 2D features. In our method, we also use multi-
view fusion, but the network in each view is a 2.5D network that
captures anisotropic 3D features.

The anisotropic receptive field of our CNNs is achieved by
decomposing a typical 3D 3 x 3 x 3 convolution kernel into
an intra-slice convolution kernel and an inter-slice convolution
kernel, with kernel size of 3 x 3 x 1 and 1 x 1 x 3,
respectively. We use four inter-slice convolution layers and 20
intra-slice convolution layers in the backbone of our CNNs,
and set the output channel number of these convolution layers
to a fixed number Cy. To facilitate the training process, batch
normalization is used after each convolution, as shown in
green and blue blocks in Figure2. He et al. (2015) found
that Parametric Rectified Linear Units (PReLU) outperforms
traditional rectified units, therefore we use PReLU as our
activation function. Two 2D downsampling layers are used to
reduce the resolution of feature maps of WNet and TNet while
avoiding large loss of segmentation details. ENet shares the same
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Input multi-modal Segmentation of Segmentation of Segmentation of
volumes whole tumor tumor core enhancing tumor core

FIGURE 1 | Our proposed framework with triple cascaded CNNs for multi-modal brain tumor segmentation. We use three CNNs to hierarchically and sequentially
segment whole tumor, tumor core and enhancing tumor core, and the CNNs are referred to as WNet, TNet, and ENet, respectively.

1 1 1 1 1 2 3 3 2 1
Input Output
le lx4 lx4
(a) Structure of WNet and TNet Multi-scale prediction
1 1 1 1 1 2 3 3 2 1
Input Output
le le
(b) Structure of ENet Multi-scale prediction
d
3x3x1 convolution Batch
output channel C, * Norm. + PReLU Residual block with dilation d Concatenate
1x1x3 convolution Batch 3x3x1 convolution i i
|:| ouput channel €, * Norm. + PRelU I output channel G, l 2D down-sampling I 2D up-sampling

FIGURE 2 | The proposed anisotropic CNNs with residual connection, dilated convolution, and multi-scale prediction. Only one downsampling layer is used in ENet
as its input size is smaller.

structure with WNet and TNet except that it uses only one  3x3x1 convolution is used to obtain the final score map from

downsampling layer, as the input size of ENet is smaller. the concatenated intermediate predictions. The output channel
As shown in Figure 2, intra-slice convolution layers are = number of these prediction layers is denoted as Cj, and is set to 2
grouped into 10 blocks, and each block includes two intra-  in this paper.

slice convolution layers. To speed the convergence of training,

we use residual connections (He et al., 2016) by adding the  3.1.3. Multi-view Fusion

output of each block directly to its input. We also employ  The above anisotropic CNNs have a small through-plane
dilated convolution to increase the intra-slice receptive field. The  receptive field, and therefore have a limited ability to make use
dilation parameter is shown on the top of each residual block in  of 3D contextual information. To overcome this problem, we use
Figure 2. In addition, each CNN uses multi-scale prediction for =~ multi-view fusion where all WNet, TNet, and ENet are trained in
deep supervision. To get multiple intermediate predictions, three  three orthogonal (axial, sagittal, and coronal) views, respectively.
prediction layers with 3x3x1 convolution are used at different At test time, for each network structure, we use the corresponding
depths of the CNNG, as depicted by red boxes in Figure 2. These  versions of trained models to obtain the segmentation results in
intermediate predictions are upsampled to the resolution of the  these three views, respectively, and average their softmax outputs
input and concatenated. An additional prediction layer with  to obtain a single fused result.
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3.2. Augmentation for Training and Testing
Considering the image acquisition process, one underlying
anatomy can be observed with different conditions, such as
various spatial transformations and intensity noise. Therefore,
an acquired image can be seen as only one of many possible
observations of the target. Directly applying CNNs to the single
observed image may lead the result to be biased toward the
specific transformation and noise in the given observation. To
address this problem, we predict the segmentation result by
considering different spatial transformations and intensity noise
for a test image.

Let B denote spatial transformation parameters and e
represent intensity noise, respectively. Though all images in the
BraTS datasets are aligned to a standard orientation, we use
rotation, flipping and scaling to augment the variation of local
features. Therefore, we represent 8 as a composition of 7, fj and s,
where r denotes the rotation angle along each spatial axis in 3D, f]
is a random binary value representing flipping along each 3D axis
or not, and s denotes a scaling factor. We consider some prior
distributions of these parameters: r ~ U(0,2x), f; ~ Bern(0.5),
and s ~ U(0.8,1.2). In addition, we assume that the intensity
noise follows a prior distribution of e ~ N(0,0.05) according
to Wang et al. (2019a).

To obtain augmented images, we use Monte Carlo simulation
to randomly sample 8 and e from the above prior distributions
N times, and each time we use the sampled parameters to
generate a transformed image. The augmentation process is used
at both training and testing stage for a given network. For
test-time augmentation, the Monte Carlo simulation leads to
N transformed versions of the same input image, and they are
fed into the CNN for inference. We combine the N predicted
results via majority voting to obtain the final prediction of
each structure.

3.3. Uncertainty Estimation of

Segmentation Results

3.3.1. Voxel-Wise Uncertainty

In our method, the use of test-time augmentation provides
multiple prediction results of the same input image with
different spatial transformations and intensity changes. The
disagreement between these predictions naturally gives an
uncertainty estimation of the segmentation. Therefore, we use
test-time augmentation to obtain not only segmentation results
but also the associated image-based (aleatoric) uncertainty.
Differently from Wang et al. (2019a), we provide uncertainty
estimation not only for the whole tumor, but also for the
substructures (tumor core and enhancing tumor core).

To obtain voxel-wise uncertainty estimation, we measure the
diversity of the N different predictions for a given voxel in the
test image. Let X and Y represent the input image and the output
segmentation, respectively, and let Y’ represent the i-th voxel’s
predicted label. Typically, the uncertainty of Y’ can be estimated
by the entropy and variance of the distribution of Y’, rather
than averaged probability map resulting from N Monte Carlo
samples that cannot reflect the diversity information. For multi-
class segmentation of BraTS, the variance of discrete class label

for a voxel is not sufficiently representative. Therefore, we use
entropy of Y’ to estimate the voxel-wise uncertainty, which is
desired for image segmentation tasks. Assume a set of N discrete
values (i.e., labels) for Y* is denoted as ' = {y}, 3, . .., ¥y}, then
we can approximate the entropy of the distribution of Y’ by:

M
H(Y'|X) ~ = ) pl, In(p},) (1)
m=1

where pi, is the frequency of the m-th unique value in ).
When )' is obtained by test-time augmentation with Monte
Carlo simulation described in section 3.2, Equation (1) represents
voxel-wise aleatoric uncertainty.

3.3.2. Structure-Wise Uncertainty

The above Monte Carlo simulation obtains N segmentation
results for a given structure in a test image. For the i-th
simulation, let v; denote the volume of the segmented structure,
then the set of volumes of the N segmentations is denoted
as V {(vi,v2,...,vn}. Assume that the mean value and
standard deviation of V is uy and oy, respectively. Then the
structure-wise uncertainty is estimated as the volume variation
coeflicient (VVCQ):

vve=2Y

122%

2

In this paper, V is obtained by test-time augmentation, leading
Equation (2) to represent structure-wise aleatoric uncertainty.

4. EXPERIMENTS AND RESULTS

4.1. Data and Implementation Details
We validated our methods with the BraTS 2017' and BraT$
20182 (Menze et al., 2015; Bakas et al., 2017a,b) datasets. The
two datasets share the same set of training images from 285
patients, including 75 cases of LGG and 210 cases of HGG. The
validation sets of BraTS 2017 and BraTS 2018 contain images
from 46 and 66 patients with brain tumors respectively. The
testing sets of BraTS 2017 and BraT$S 2018 contain images from
146 and 191 patients with brain tumors, respectively. The grades
of brain tumors in the validation and testing sets are unknown.
Each patient was scanned with FLAIR, Tlce, T1, and T2. The
original images were acquired across different views and the
resolution was anisotropic. All the images had been re-sampled
to an isotropic 1.0 mm x 1.0 mm x 1.0 mm resolution and skull-
striped by the organizers. In addition, the four modalities of the
same patient had been co-registered. As the BraTS organizers
provided ground truth only for the training set, we randomly
selected 20% from the training set as our local validation set
during training.

Our 2.5D CNNs were implemented in Tensorflow® (Abadi
et al,, 2016) using NiftyNet45 (Gibson et al., 2018). We used

Uhttp://www.med.upenn.edu/sbia/brats2017.html
Zhttp://www.med.upenn.edu/sbia/brats2018.html
*https://www.tensorflow.org

“http://niftynet.io
Shttps://github.com/NifTK/NiftyNet/tree/dev/demos/BRATS17
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an NVIDIA TITAN X GPU with 12 GB memory, Adaptive
Moment Estimation (Adam) (Kingma and Ba, 2014) and Dice
loss function (Milletari et al., 2016; Fidon et al., 2017a) for
training, with batch size 5, weight decay 1077, initial learning
rate 1073, and iteration number 30k. The training patch size
was 144 x 144 x 19 for WNet, and 96 x 96 x 19 and 64
x 64 x 19 for TNet and ENet, respectively. We normalized
each image by the intensity mean and standard deviation, and
set the channel number C, of intermediate convolution layers
to 32 and class number C; to 2. We trained all WNet, TNet
and ENet for axial, sagittal and coronal views separately as our
networks had a relatively small number of parameters. Therefore,
each network had three different sets of parameters. At test time,
the predictions in these three views were averaged. We applied
training-time and test-time augmentation to BraTS 2018 dataset
according to 3.2, and the Monte Carlo simulation number N was
set to 20. We uploaded our segmentation results of the validation
and testing datasets to the publicly available evaluation server of
BraTS 2017 and BraTS 2018, and the server gave quantitative
evaluation results in terms of Dice score and Hausdorff distance.

4.1.1. Results of BraTS 2017 Dataset

4.1.1.1. Qualitative results

We first validated our proposed segmentation framework with
BraTS 2017 dataset, and test-time augmentation was not used
for this experiment. We compared our proposed cascade of
anisotropic networks with multi-view fusion with two variants:
(1) cascade of 3D isotropic networks that captures 3D features
directly, where we remove all 1x1x3 convolutions in WNet,
TNet and ENet, and replace 3x3x1 convolutions and 2D
down-sampling (up-sampling) with 3x3x3 convolutions and
3D donw-sampling (up-sampling), respectively, and this variant
is referred to as isotropic 3D networks; (2) cascade of our
anisotropic networks but without multi-view fusion, where the
networks are only implemented in axial view, and this variant is
referred to as anisotropic 2.5D networks.

Figure3 shows two examples for HGG and LGG
segmentation from our local validation set that is a subset
of BraTS 2017/2018 training set. We only show the FLAIR
images in the inputs of CNNs for simplicity of visualization.
Edema, non-enhancing tumor core and enhancing tumor core
are visualized in green, red and yellow, respectively. The results
of isotropic 3D networks and anisotropic 2.5D networks are
shown in the second and third rows, respectively. In the case of
HGG shown in Figure 3A, isotropic 3D networks obtain some
mis-segmentations of the edema, and anisotropic 2.5D networks
result in some noise in the edema and enhancing tumor core
regions. In contrast, the proposed method leads to more accurate
segmentation results. Figure 3B shows a case of LGG that does
not contain enhancing tumor core. The segmentation results
of whole tumor are similar for the three methods. However,
the proposed method outperforms isotropic 3D networks and
anisotropic 2.5D networks in the tumor core region.

4.1.1.2. Quantitative evaluation
Quantitative evaluation results with the BraTS 2017 validation
set are shown in Table 1. The average Dice scores achieved by

our method for enhancing tumor core, whole tumor and tumor
core are 0.786, 0.905 and 0.838, respectively, which outperforms
isotropic 3D networks and anisotropic 2.5D networks. We also
compared our method with Kamnitsas et al. (2017a) that uses an
ensemble of multiple CNNs for segmentation, and Isensee et al.
(2017) that combines 3D U-Net with residual connection and
deep supervision. Table 1 shows that our method outperforms
the others on the BraTS 2017 validation set. The quantitative
evaluation results of our method on BraTS 2017 testing set are
shown in Table 2. According to the BraT$ 2017 organizers®, our
method won the second place of the BraT$S 2017 segmentation
task, while Kamnitsas et al. (2017a) and Isensee et al. (2017)
ranked in the first and third place, respectively.

4.1.2. Results of BraTS 2018 Dataset

We then applied our proposed segmentation framework
to BraTS 2018 dataset. To validate the effect of test-time
augmentation (T'TA), we compared three network configurations
as underpinning CNNs: (1) 3D UNet (Abdulkadir et al., 2016)
reimplemented by NiftyNet, (2) our cascaded networks where
the whole tumor, tumor core and enhancing tumor core were
segmented by WNet, TNet, and ENet, respectively, and (3)
adapting WNet for multi-class segmentation without using a
cascade of binary predictions, where we changed the output
channel number for prediction layers to 4. We refer to this variant
as multi-class WNet and also use multi-view fusion for it. The 3D
U-Net and multi-class WNet were trained in the same way as our
cascaded networks.

4.1.2.1. Qualitative results

Figure 4 shows two examples from the BraTS 2018 validation set.
In each subfigure, the input images (FLAIR, T1, T1ce, and T2) are
shown in the first row and the segmentation results of different
networks with and without TTA are presented in the second
row. In Figure 4A, the result of 3D UNet without TTA contains
some false positives in the edema and non-enhancing tumor core
regions. In contrast, the result of 3D UNet + TTA is more spatially
consistent. The result obtained by multi-class WNet without
TTA also contains some noise for the segmented non-enhancing
tumor core, and multi-class WNet + TTA obtains a smoother
segmentation. It can also be observed that our cascaded CNNs
+ TTA performs better on the tumor core than the counterpart
without TTA. In Figure 4B, 3D UNet seems to obtain an under-
segmentation in the central part of the tumor core, and 3D
UNet + TTA overcomes this under-segmentation. Multi-class
WNet without TTA seems to have an over segmentation for
the non-enhancing tumor core region, and the counterpart with
TTA achieves a higher accuracy in contrast. For our cascaded
CNNs, TTA also helps to improve the spatial consistency of the
segmentation result in this case.

4.1.2.2. Quantitative evaluation

Table 3 shows the quantitative evaluation results of different
approaches on the validation set of BraTS 2018. Dice scores
achieved by 3D UNet without TTA for enhancing tumor core,

Ohttps://www.med.upenn.edu/sbia/brats2017/rankings.html
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FLAIR image

Isotropic 3D
networks

Anisotropic
2.5D networks

Anisotropic

Ground
truth

Axial Sagittal Coronal i Sagittal Coronal

Segmentation results of an HGG brain tumor Segmentation results of an LGG brain tumor

FIGURE 3 | Segmentation results of an HGG brain tumor (A) and an LGG brain tumor (B) from our local validation set, which is part of BraTS 2017/2018 training set.
Edema, non-enhancing tumor core and enhancing tumor core are visualized in green, red, and yellow, respectively. White arrows highlight some mis-segmentations.

TABLE 1 | Dice and Hausdorff distance of our method on validation set of BraTS 2017 (mean = std).

Dice Hausdorff (mm)
ET WT TC ET WT TC
Isotropic 3D networks 0.772 + 0.268 0.885 + 0.105 0.805 + 0.196 3.78 £ 5.32 6.73 £9.19 7.75 £ 9.98
Anisotropic 2.5D networks 0.741 + 0.264 0.890 + 0.076 0.826 + 0.157 5.32 £7.20 12.46 +21.47 9.66 + 14.21
Our method 0.786 + 0.233 0.905 + 0.066 0.838 + 0.158 3.28 + 3.88 3.89 + 2.79 6.48 + 8.26
Kamnitsas et al., 2017a 0.738 0.901 0.797 4.50 4.23 6.56
Isensee et al., 2017 0.732 0.896 0.797 4.55 6.97 9.48

MVF, multi-view fusion; ET, enhancing tumor core; WT, whole tumor; TC, tumor core. Our method: cascaded framework with anisotropic 2.56D CNNs and MVF. Bold value shows the
best performance.

whole tumor and tumor core are 0.734, 0.864 and 0.766, to multi-class WNet and the cascaded networks also leads to
respectively. Combining TTA with 3D UNet achieved a better ~ an improvement of segmentation accuracy. We also compared
performance, leading to Dice scores of 0.754, 0.873,and 0.783 for ~ our method with Myronenko (2018) and Isensee et al. (2018)
these structures, respectively. Applying test-time augmentation  that ranked the first and second of BraTS 2018 segmentation
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TABLE 2 | Dice and Hausdorff distance of our method on testing set of BraTS 2017 (mean =+ std).

Dice Hausdorff (mm)
ET WT TC ET WT TC
Our method 0.783 + 0.222 0.874 +0.132 0.775 4+ 0.270 15.90 + 67.86 6.55 + 10.69 27.05 + 84.43
Kamnitsas et al., 2017a 0.729 0.886 0.785 36.0 5.01 23.10
Isensee et al., 2017 0.647 4+ 0.326 0.858 + 0.161 0.775 + 0.269 - - -

ET, enhancing tumor core; WT, whole tumor; TC, tumor core. Bold value shows the best performance.

3D Unet + TTA Multi-class WNet Multi-class WNet + TTA Cascaded CNNs Cascaded CNNs + TTA

FIGURE 4 | Examples of test-time augmentation (TTA) combined with different CNNs for brain tumor segmentation. The images are from BraTS 2018 validation set,
of which ground truth are not provided by the organizer. In each subfigure, the first row shows the input image of the same patient in four modalities, and the second
row shows segmentation results. Edema, non-enhancing tumor core and enhancing tumor core are visualized in green, red, and yellow, respectively. (A,B) Show
images of two different patients.

challenge, respectively’. Myronenko (2018) used an ensemble  that of model ensemble reported by Myronenko (2018). Isensee
of 10 models, and we list the result of a single model and et al. (2018) trained a 3D U-Net with additional datasets for the

segmentation task. It can be observed that our method performs
Thttps://www.med.upenn.edu/sbia/brats2018/rankings html closely to these two compared methods on BraTS$ 2018 validation
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TABLE 3 | Dice and Hausdorff distance of different methods on validation set of BraTS 2018 (mean =+ std).

Dice Hausdorff (mm)

ET WT TC ET WT TC
3D UNet 0.734 + 0.284 0.864 + 0.146 0.766 + 0.230 9.37 £ 22.95 12.00 + 21.22 10.37 £ 13.47
3D UNet + TTA 0.754 + 0.263 0.873 +£0.125 0.783 + 0.168 4.53 £+ 9.60 5.90 + 6.80 8.03 £+ 10.31
Multi-class WNet 0.757 + 0.257 0.890 + 0.089 0.725 + 0.245 4.24 £7.97 4.99 + 6.53 12.13 £ 13.41
Multi-class WNet + TTA 0.771 £ 0.242 0.896 + 0.071 0.730 + 0.255 4.44 +8.20 4.92 +6.42 11.13 £ 13.46
Cascaded networks 0.792 + 0.233 0.908 + 0.057 0.854 + 0.142 3.34 +£4.15 5.38 4+ 9.31 6.61 £ 8.55
Cascaded networks + TTA 0.797 + 0.229 0.902 + 0.056 0.858 + 0.139 3.13+3.78 6.18 + 9.53 6.37 £8.19
Cascaded networks + TTA + CRFO 0.803 + 0.228 0.905 + 0.056 0.862 + 0.136 3.09 +3.75 597 £8.22 6.25 +£7.87
Cascaded networks + TTA + CRF1 0.807 + 0.225 0.908 + 0.054 0.869 + 0.126 3.01 +3.69 5.86 + 8.16 6.09 + 7.74
Myronenko, 2018 (single model) 0.815 0.904 0.860 3.80 4.48 8.28
Myronenko, 2018 (ensemble) 0.823 0.910 0.867 3.93 4.52 6.85
Isensee et al., 2018 0.810 0.908 0.854 2.54 4.97 7.04

ET, enhancing tumor core; WT, whole tumor; TC, tumor core; TTA, test-time augmentation. CRFO: naive conditional random field for post-processing. CRF1: our uncertainty-aware
conditional random field. Bold value shows the best performance.

TABLE 4 | Dice and Hausdorff evaluation of our cascaded CNNs with test-time augmentation (TTA) on testing set of BraTS 2018 (mean = std).

Dice Hausdorff (mm)
ET WT TC ET WT TC
Cascaded networks + TTA 0.747 4+ 0.259 0.878 £ 0.119 0.796 + 0.250 4.16 4+ 7.07 5.97 + 8.56 6.71 £10.27
Myronenko, 2018 0.766 + 0.256 0.884 +0.118 0.815 + 0.250 3.77 4+ 8.61 5.90 + 10.01 4.814+7.52
Isensee et al., 2018 0.779 4+ 0.239 0.878 £ 0.129 0.806 + 0.250 2.90 4+ 3.85 6.03 +£9.98 5.08 + 8.09

ET, enhancing tumor core; WT, whole tumor; TC, tumor core. Myronenko (2018) used an ensemble of 10 models for the segmentation.

set. Quantitative evaluation results of our cascaded CNNs with
TTA on BraTS 2018 testing set is presented in Table 4. The results
are compared with those of Myronenko (2018) and Isensee et al.
(2018). Note that Myronenko (2018) requires a large amount
of GPU memory (32 GB) for training, and Isensee et al. (2018)
trained the model with additional datasets. Table 4 shows that the
segmentation accuracy of our proposed framework is comparable
with that of the other two counterparts.

CRF that is applied to the probability output of CNNs
directly. Figures 5E,F show that the uncertainty-aware CRF
outperforms the naive CRF for post-processing. Table 3 shows a
quantitative comparison between these post-processing methods
using and not using uncertainty information on validation set of
BraTS§ 2018.

We also measured structure-wise uncertainty based on VVC
defined in Equation (2) for BraTS$ 2018 validation set. Figure 6
shows the relationship between structure-wise segmentation
error in terms of 1-Dice and uncertainty in terms of VVC.
The figure shows that for all the three structures of enhancing
tumor core, whole tumor and tumor core, a higher VVC
value tends to be linked with a higher segmentation error.
This demonstrates that the structure-wise uncertainty based on
our test-time augmentation is informative and it can indicate
potential mis-segmentations.

4.1.2.3. Uncertainty estimation

Figure 5 presents a case from our local validation set of
BraTS 2018, where Figures 5C,D show the results of our
cascaded CNNs and the corresponding voxel-wise uncertainty
obtained by TTA, respectively. It can be observed that most
uncertain results concentrate on the border of the tumor’s
substructures and some regions that are potentially mis-
segmented. The white arrow in Figure 5C highlights a region
that has been mis-segmented by CNNs, and the corresponding
region has high uncertainty values in Figure 5D. To investigate
the usefulness of the uncertainty information for improving
segmentation accuracy, we reset the foreground and background
probability of voxels with uncertainty higher than a threshold
value (i.e., 0.2) to 0.5, and then use a conditional random
field (CRF) for post-processing. This method is referred to
as uncertainty-aware CRE and it is compared with a naive

5. DISCUSSION AND CONCLUSION

The proposed cascaded system is well-suited for hierarchical
tumor region segmentation. Compared with using a single
network for multi-class segmentation, its main advantages are:
(1) The use of three binary segmentation networks decomposes
the complex task of multi-class segmentation and allows for
a simpler network for each sub-task. They reduce the risk
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(G) Ground truth.

FIGURE 5 | An example of brain tumor segmentation result and the associated voxel-wise uncertainty estimation based on our cascaded CNNs with test-time
augmentation (TTA). Taking the uncertainty information for post-processing by conditional random field (CRF) helps to correct the mis-segmented region, as shown in
(F). (A) FLAIR, (B) T1ce, (C) Initial segmentation, (D) Voxel-wise uncertainty, (E) Post-process with CRF, (F) Post-process with uncertainty-aware CRF, and

1 - Dice
1 - Dice

T T 0.0+~ T T
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set. (A) Enhancing core, (B) Whole tumor, and (C) Tumor core.

FIGURE 6 | Relationship between segmentation error (1-Dice) and structure-wise uncertainty in terms of volume variation coefficient (VWWC) for BraTS 2018 validation

04 0.6 0.8 0.0 0.5 1.0
vvC

of over-fitting and are easier to train. (2) The cascade can
effectively reduce the number of false positives because a
subsequent network (e.g., TNet) only works on the image
region selected by its precedent network (e.g., WNet). (3) The
decomposition of the segmentation task also imposes strong
spatial constraints which follows the anatomical structures of
the brain tumor. It is also possible to model the hierarchical

nature of the labels by adopting task-specific loss functions
(e.g., Fidon et al., 2017a). However, Fidon et al. (2017a)
did not use the hierarchical structural information as spatial
constraints. Unlike most works that optimize the segmentation
based on mutually exclusive edema, necrotic, and enhancing
tumor core, our method optimizes the hierarchical whole tumor,
tumor core and enhancing tumor core. This leads to the idea
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of training networks on such loss criteria to simultaneously
obtain these hierarchical structures in a single forward pass, as
demonstrated by Myronenko (2018). For some clinical cases
where the tumor does not have edema component, i.e., the
region of whole tumor is the same as that of tumor core, our
model may encounter some difficulties (e.g., false positives of
edema) as all the training data in our experiments include
edema region. However, as our WNet segments the edema
region and tumor core region as a whole, the tumor core
region in such cases will not be missed in the output of WNet.
It is of interest to validate the proposed method on such
cases in the future. In addition, in our cascaded segmentation
framework, segmentation of whole tumor (tumor core) was
used as a crisp mask for tumor core (enhancing tumor core),
this may lead mis-segmentations in an early stage to cause
mis-segmentations in a later stage. It would be of interest to
investigate a better solution to combine the results obtained in
different stages.

Compared with the single multi-class network approach using
similar network structures, the training and inference of our
proposed cascade require a longer time. In practice, we found that
it is not a critical issue for automatic brain tumor segmentation.
In fact, the inference of our method is more efficient than many
competitive approaches such as DeepMedic (Kamnitsas et al.,
2017b) and ScaleNet (Fidon et al., 2017b).

The multi-view fusion is an important component of the
proposed system (as demonstrated in Figure 3). It is designed
to combine the outputs from the lightweight and anisotropic
networks applied in different views so that the 3D contextual
information is fully utilized. To further incorporate different
imaging resolutions in the multi-view fusion, it might be helpful
to consider a weighted combination of the orthogonal views
rather than a simple arithmetic mean (Mortazi et al., 2017).

From Table3 we find that the improvement obtained by
TTA varies for different networks. For 3D UNet (Abdulkadir
et al, 2016), the performance improvement is considerable,
especially for the Hausdorft distance. For our cascaded networks,
the improvement is relatively smaller but TTA is also effective
to reduce the distance errors for enhancing tumor and tumor
core. Table3 also shows that TTA reduces the standard
deviation (improves the robustness) of the networks in most
cases, especially for 3D UNet. For our cascaded networks,
the standard deviations for enhancing tumor and tumor core
are also smaller when TTA is used. Therefore, TTA can be
seen as a robustness booster. In the proposed system, data
augmentation only includes adding random intensity noise and
spatial transformations such as rotation, flipping and scaling. It
is also possible to adopt more complex transformations such as
elastic deformations (Abdulkadir et al., 2016).

We have investigated the test image-based (aleatoric)
uncertainty for brain tumor segmentation using test-time
augmentation. We additionally show that the uncertainty
information can be leveraged to improve the segmentation
accuracy, as demonstrated in Table 3 and Figure 5. The obtained
uncertainty could be useful for downstream analysis such as
uncertainty-aware volume measurement (Eaton-Rosen et al.,
2018) and guiding user interactions (Wang etal., 2018b).

Combining epistemic uncertainty based on test-time dropout
or CNN ensembles (Kamnitsas et al., 2017a; Myronenko, 2018)
and aleatoric uncertainty based on test-time augmentation
is also an interesting future direction. It should be noticed
that current methods for BraTS challenge heavily rely
on voxel-wise annotations, which is difficult and time-
consuming to collect for large datasets. In the future, it
is of interest to learn from weakly or partially annotated
brain tumor images in a larger dataset and improve
generalizability of the CNNs. Some of the automatically
segmented results can also be interactively refined to
improve the robustness of brain tumor segmentation for
clinic use (Wang et al., 2019b).

In conclusion, we have developed a novel system consisting
of a cascade of 2.5D CNNs for brain tumor segmentation
from multi-modal MRI, which decomposes the multi-class
segmentation task into three sequential binary segmentation
tasks. The 2.5D CNNs consider the balance between memory
consumption, model complexity and recpetive field, and are
combined with multi-view fusion for robust segmentation. We
also studied the effect of combining test-time augmentatiofn with
CNNs in the segmentation task and investigated the resulting
aleatoric uncertainty estimation for the segmentation results.
Experimental results based on BraTS 2017 dataset showed
that our method was one of the top-performing methods.
Experiments also showed that test-time augmentation led to
an improvement of segmentation accuracy for different CNN
structures and effectively obtained voxel-wise and structure-wise
uncertainty estimation of the segmentation results that helps to
improve segmentation accuracy.
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Gliomas are the most common primary brain malignancies. Accurate and robust tumor
segmentation and prediction of patients’ overall survival are important for diagnosis,
treatment planning and risk factor identification. Here we present a deep learning-based
framework for brain tumor segmentation and survival prediction in glioma, using
multimodal MRI scans. For tumor segmentation, we use ensembles of three different
3D CNN architectures for robust performance through a majority rule. This approach
can effectively reduce model bias and boost performance. For survival prediction, we
extract 4,524 radiomic features from segmented tumor regions, then, a decision tree
and cross validation are used to select potent features. Finally, a random forest model
is trained to predict the overall survival of patients. The 2018 MICCAI Multimodal
Brain Tumor Segmentation Challenge (BraTS), ranks our method at 2nd and 5th
place out of 60+ participating teams for survival prediction tasks and segmentation
tasks respectively, achieving a promising 61.0% accuracy on the classification of
short-survivors, mid-survivors and long-survivors.

Keywords: survival prediction, brain tumor segmentation, 3D CNN, multimodal MRI, deep learning

1. INTRODUCTION

A brain tumor is a cancerous or noncancerous mass or growth of abnormal cells in the
brain. Originating in the glial cells, gliomas are the most common brain tumor (Ferlay et al.,
2010). Depending on the pathological evaluation of the tumor, gliomas can be categorized
into glioblastoma (GBM/HGG), and lower grade glioma (LGG). Glioblastoma is one of
the most aggressive and fatal human brain tumors (Bleeker et al, 2012). Gliomas contain
various heterogeneous histological sub-regions, including peritumoral edema, a necrotic core, an
enhancing and a non-enhancing tumor core. Magnetic resonance imaging (MRI) is commonly used
in radiology to portray the phenotype and intrinsic heterogeneity of gliomas, since multimodal
MRI scans, such as T1-weighted, contrast enhanced T1-weighted (T1Gd), T2-weighted, and Fluid
Attenuation Inversion Recovery (FLAIR) images, provide complementary profiles for different sub-
regions of gliomas. For example, the enhancing tumor sub-region is described by areas that show
hyper-intensity in a T1Gd scan when compared to a T1 scan.

Accurate and robust predictions of overall survival, using automated algorithms, for patients
diagnosed with gliomas can provide valuable guidance for diagnosis, treatment planning, and
outcome prediction (Liu et al., 2018). However, it is difficult to select reliable and potent prognostic
features. Medical imaging (e.g., MRI, CT) can provide radiographic phenotype of tumor, and it has
been exploited to extract and analyze quantitative imaging features (Gillies et al., 2016). Clinical
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data, including patient age and resection status, can also provide
important information about patients’ outcome.

Segmentation of gliomas in pre-operative MRI scans,
conventionally done by expert board-certified neuroradiologists,
can provide quantitative morphological characterization and
measurement of glioma sub-regions. It is also a pre-requisite for
survival prediction since most potent features are derived from
the tumor region. This quantitative analysis has great potential
for diagnosis and research, as it can be used for grade assessment
of gliomas and planning of treatment strategies. But this task is
challenging due to the high variance in appearance and shape,
ambiguous boundaries and imaging artifacts, while automatic
segmentation has the advantage of fast speed, consistency in
accuracy and immunity to fatigue (Sharma and Aggarwal, 2010).
Until now, the automatic segmentation of brain tumors in
multimodal MRI scans is still one of the most difficult tasks
in medical image analysis. In recent years, deep convolutional
neural networks (CNNs) have achieved great success in the field
of computer vision. Inspired by the biological structure of visual
cortex (Fukushima, 1980), CNNs are artificial neural networks
with multiple hidden convolutional layers between the input and
output layers. They have non-linear properties and are capable of
extracting higher level representative features (Gu et al., 2018).
Deep learning methods with CNN have shown excellent results
on a wide variety of other medical imaging tasks, including
diabetic retinopathy detection (Gulshan et al., 2016), skin cancer
classification (Esteva et al., 2017), and brain tumor segmentation
(Cigek et al, 2016; Isensee et al., 2017; Wang et al., 2017;
Sun et al., 2018).

In this paper, we present a novel deep learning-based
framework for segmentation of a brain tumor and its subregions
from multimodal MRI scans, and survival prediction based on
radiomic features extracted from segmented tumor sub-regions
as well as clinical features. The proposed framework for brain
tumor segmentation and survival prediction using multimodal
MRI scans consists of the following steps, as illustrated in
Figure 1. First, tumor subregions are segmented using an
ensemble model comprising three different convolutional neural
network architectures for robust performance through voting
(majority rule). Then radiomic features are extracted from
tumor sub-regions and total tumor volume. Next, decision tree
regression model with gradient boosting is used to fit the training
data and rank the importance of features based on variance
reduction. Cross validation is used to select the optimal number
of top-ranking features to use. Finally, a random forest regression
model is used to fit the training data and predict the overall
survival of patients.

2. MATERIALS AND METHODS

2.1. Dataset

We utilized the BraTS 2018 dataset (Menze et al., 2015;
Bakas et al., 2017a,b,c, 2018) to evaluate the performance of
our methods. The training set contained images from 285
patients, including 210 HGG and 75 LGG. The validation set
contained MRI scans from 66 patients with brain tumors of
an unknown grade. It was a predefined set constructed by

BraTS$ challenge organizers. The test set contained images from
191 patients with a brain tumor, in which 77 patients had
a resection state of Gross Total Resection (GTR) and were
evaluated for survival prediction. Each patient was scanned
with four sequences: T1, T1Gd, T2, and FLAIR. All the
images were skull-striped and re-sampled to an isotropic 1mm?>
resolution, and the four sequences of the same patient had
been co-registered. The ground truth of segmentation mask
was obtained by manual segmentation results given by experts.
The evaluation of the model performance on the validation
and testing set is performed on CBICAs Image Processing
Portal ipp.cbica.upenn.edu. Segmentation annotations comprise
of the following tumor subtypes: Necrotic/non-enhancing tumor
(NCR), peritumoral edema (ED), and Gd-enhancing tumor (ET).
Resection status and patient age are also provided. The overall
survival (OS) data, defined in days, is also included in the training
set. The distribution of patients’ age is shown in Figure 2.

2.2. Data Preprocessing

Since the intensity value of MRI is dependent on the imaging
protocol and scanner used, we applied intensity normalization
to reduce the bias in imaging. More specifically, the intensity
value of each MRI is subtracted by the mean and divided by
the standard deviation of the brain region. In order to reduce
overfitting, we applied random flipping and random gaussian
noise to augment the training set.

2.3. Network Architecture

In order to perform accurate and robust brain tumor
segmentation, we use an ensemble model comprising of
three different convolutional neural network architectures. A
variety of models have been proposed for tumor segmentation.
Generally, they differ in model depth, filter number, connection
way and others. Different model architectures can lead to
different model performance and behavior. By training different
kinds of models separately and by merging the results, the model
variance can be decreased, and the overall performance can be
improved (Polikar, 2006; Kamnitsas et al., 2017). We used three
different CNN models and fused the result by voting (majority
rule). The detailed description of each model will be discussed in
the following sections.

2.3.1. CA-CNN

The first network we employed was Cascaded Anisotropic
Convolutional Neural Network (CA-CNN) proposed by Wang
et al. (2017). The cascade is used to convert multi-class
segmentation problem into a sequence of three hierarchical
binary segmentation problems. The network is illustrated
in Figure 3.

This architecture also employs anisotropic and dilated
convolution filters, which are combined with multi-view fusions
to reduce false positives. It also employs residual connections (He
et al., 2016), batch normalization (Ioffe and Szegedy, 2015) and
multi-scale prediction to boost the performance of segmentation.
For implementation, we trained the CA-CNN model using
Adam optimizer (Kingma and Ba, 2014) and set Dice coefficient
(Milletari et al., 2016) as the loss function. We set the initial
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FIGURE 2 | Overall survival distribution of patients across the training, validation, and testing sets.

learning rate to 1 x 1073, weight decay 1 x 1077, batch size 5,  the multi-class Dice loss function (Isensee et al., 2017):

and maximal iteration 30k.
__2 D Uitk Vick) )
2.3.2. DFKZ Net Kl 2oait 20t
The second network we employed was DFKZ Net, which was  \here ; denotes output possibility, v denotes one-hot encoding
proposed by Isensee et al. (2017) from the German Cancer  of ground truth, k denotes the class, K denotes the total number
Research Center (DFKZ). Inspired by U-Net, DFKZ Net employs  of clagses and i(k) denotes the number of voxels for class k in
a context encoding pathway that extracts increasingly abstract patch. We set initial learning rate 5 x 10~% and used instance
representations of the input, and a decoding pathway used  pormalization (Ulyanov et al., 2016a). We trained the model
to recombine these representations with shallower features ¢, gq epochs.
to precisely segment the structure of interest. The context
encoding pathway consists of three content modules, each has  2.3.3. 3D U-Net
two 3 x 3 x 3 convolutional layers and a dropout layer with ~ U-Net (Ronneberger et al, 2015; Cicek et al, 2016) is a
residual connection. The decoding pathway consists of three  classical network for biomedical image segmentation. It consists
localization modules, each containing 3 x 3 x 3 convolutional — of a contracting path to capture context and a symmetric
layers followed by a 1 x 1 x 1 convolutional layer. For the  expanding path that enables precise localization with extension.
decoding pathway, the output of layers of different depths are ~ Each pathway has three convolutional layers with dropout
integrated by elementwise summation, thus the supervision can  and pooling. The contracting pathway and expanding pathway
be injected deep in the network. The network is illustrated  are linked by skip-connections. Each layer contains 3 x 3 x
in Figure 4. 3 convolutional kernels. The first convolutional layer has 32
For implementation, we trained the network using the Adam filters, while deeper layers contains twice filters than previous
optimizer. To address the problem of class imbalance, we utilized  shallower layer.
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For implementation, we used Adam optimizer (Kingma and
Ba, 2015), and instance normalization (Ulyanov et al., 2016b). In
addition, we utilized cross entropy as the loss function. The initial
learning rate was 0.001, and the model is trained for 4 epochs.

2.3.4. Ensemble of Models

In order to enhance segmentation performance and to reduce
model variance, we used the voting strategy (majority rule) to
build an ensemble model without using a weighted scheme.
During the training process, different models were trained
independently. The selection of the number of iterations in the
training process was based on the model’s performance in the

validation set. In the testing stage, each model independently
predicts the class for each voxel, the final class is determined by
the majority rule.

2.4. Feature Extraction

Quantitative phenotypic features from MRI scans can reveal
the characteristics of brain tumors. Based on the segmentation
result, we extract radiomics features from edema, non-enhancing
solid core and necrotic/cystic core and the whole tumor region
respectively using Pyradiomics toolbox (Van Griethuysen et al.,
2017). Hlustration of feature extraction is shown in Figure 5.
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The modality used for feature extraction is dependent on the
intrinsic properties of the tumor subregion. For example, edema
features are extracted from FLAIR modality, since it is typically
depicted by hyper-intense signal in FLAIR. Non-enhancing solid
core features are extracted from T1Gd modality, since the
appearance of the necrotic (NCR) and the non-enhancing (NET)
tumor core is typically hypo-intense in T1Gd when compared to
T1. Necrotic/cystic core tumor features are extracted from T1Gd
modality, since it is described by areas that show hyper-intensity
in T1Gd when compared to T1.

The features we extracted can be grouped into three
categories. The first category is the first order statistics, which
includes maximum intensity, minimum intensity, mean, median,
10th percentile, 90th percentile, standard deviation, variance
of intensity value, energy, entropy, and others. These features
characterize the gray level intensity of the tumor region.

The second category is shape features, which include volume,
surface area, surface area to volume ratio, maximum 3D diameter,
maximum 2D diameter for axial, coronal and sagittal plane
respectively, major axis length, minor axis length and least axis
length, sphericity, elongation, and other features. These features
characterize the shape of the tumor region.

The third category is texture features, which include 22
gray level co-occurrence matrix (GLCM) features, 16 gray level
run length matrix (GLRLM) features, 16 Gray level size zone
matrix (GLSZM) features, five neighboring gray tone difference
matrix (NGTDM) features and 14 gray level dependence matrix

(GLDM) Features. These features characterize the texture of the
tumor region.

Not only do we extract features from original images, but
we also extract features from Laplacian of Gaussian (LoG)
filtered images and images generated by wavelet decomposition.
Because LoG filtering can enhance the edge of images, possibly
enhance the boundary of the tumor, and wavelet decomposition
can separate images into multiple levels of detail components
(finer or coarser). More specifically, from each region, 1131
features are extracted, including 99 features extracted from
the original image, and 344 features extracted from Laplacian
of Gaussian filtered images, since we used four filters with
sigma values 2.0, 3.0, 4.0, 5.0, respectively, and 688 features
extracted from eight wavelet decomposed images (all possible
combinations of applying either a High or a Low pass filter
in each of the three dimensions). In total, for each patient, we
extracted 1131 x 4 = 4524 radiomic features, these features are
combined with clinical data (age and resection state) for survival
prediction. The values of these features except for resection
state are normalized by subtracting the mean and scaling it to
unit variance.

2.5. Feature Selection

A portion of the features we extracted were redundant
or irrelevant to survival prediction. In order to enhance
performance and reduce overfitting, we applied feature selection
to select a subset of features that have the most predictive power.
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Feature selection is divided into two steps: importance ranking  training data, then the importance of features can be determined
and cross validation. We ranked the importance of features by by how effectively the feature can reduce intra-node standard
fitting a decision tree regressor with gradient boosting using  deviation in leaf nodes. The second step is to select the optimal

TABLE 1 | Selected most predicative features (WT, edema; TC, tumor core; ET, enhancing tumor; FULL, full tumor volume comprised of edema, tumor core, and
enhancing tumor; N/A, not applicable).

Extracted from Name Subregion Score
clinical age N/A 0.037375134
wavelet-LHL glem_ClusterShade WT 0.036912293
log-sigma-4.0mm-3D glem_Correlation TC 0.035558309
log-sigma-2.0mm-3D gldm_LargeDependenceHighGraylLevelEmphasis TC 0.026591038
wavelet-LHL glem_Informational Measure of Correlation ET 0.022911978
wavelet-HLL firstorder_Maximum ET 0.020121927
wavelet-LHL firstorder_Skewness ET 0.019402119
original image glem_Autocorrelation ET 0.014204463
wavelet-HHH gldm_LargeDependencelLowGraylLevelEmphasis FULL 0.014085406
log-sigma-4.0mm-3D firstorder_Mwtian WT 0.013031814
wavelet-HLH glem_JointEntropy WT 0.013023534
wavelet-LHH glem_ClusterShade TC 0.012335471
wavelet-HLL glszm_LargeAreaHighGrayLevelEmphasis FULL 0.011980896
original image firstorder_10Percentile WT 0.011803132
TABLE 2 | Evaluation result of ensemble model and individual models.
Stage Metric Enhancing tumor Whole tumor Tumor core
Mean Dice 0.77682 0.90282 0.85392
Mean Hausdorff95(mm) 3.3303 5.41478 6.56793
CA-CNN
Sensitivity 0.81258 0.93045 0.85305
Specificity 0.99807 0.99336 0.99786
Mean Dice 0.76759 0.89306 0.82459
Mean Hausdorffd5(mm) 5.90781 5.60224 6.91403
DFKZ Net
Sensitivity 0.80419 0.89128 0.81196
Specificity 0.99833 0.99588 0.99849
Mean Dice 0.78088 0.88762 0.82567
3D U-Net Mean Hausdorffo5(mm) 7.73567 12.63285 13.33634
-Ne
Sensitivity 0.84281 0.90188 0.81913
Specificity 0.99743 0.99416 0.9981
Mean Dice 0.80522 0.90944 0.84943
Mean Hausdorff95(mm) 2.77719 6.32753 6.37318
Ensemble model
Sensitivity 0.83064 0.90688 0.83156
Specificity 0.99815 0.99549 0.99863
The bold values indicate the best performance.
TABLE 3 | Evaluation result of ensemble model for segmentation.
Stage Metric Enhancing tumor Whole tumor Tumor core
L Mean Dice 0.8052 0.9044 0.8494
Validation
Mean Hausdorffa5(mm) 27772 6.3275 6.3732
) Mean Dice 0.7171 0.8762 0.7977
Testing
Mean Hausdorffa5(mm) 4.9782 7.2009 6.4735
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number of best features for prediction by cross validation. In
the end, we selected 14 features and their importance are listed
in Table 1. The detailed feature definition can be found at
(https://pyradiomics.readthedocs.io/en/latest/features.html), last
accessed on 30 June 2018.

Unsurprisingly, age had the most predictive power among
all of the features. The rest of the features selected came
from both original images and derived images. We also found
that most features selected came from images generated by
wavelet decomposition.

2.6. Survival Prediction

Based on the 14 features selected, we trained a random forest
regression model (Ho, 1995) for final survival prediction.
The random forest regressor is a meta regressor of 100 base
decision tree regressors. Each base regressor is trained on a
bootstrapped sub-dataset into order to introduce randomness
and diversity. Finally, the prediction from base regressors
are averaged to improve prediction accuracy, robustness and
suppress overfitting. Mean squared error is used as loss function
when constructing individual regression model.

8 TCIA04 343 1 f
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8 TCIA04 343 1 flair S
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P
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FIGURE 6 | Examples of segmentation result compared with ground truth. Image ID: TCIAO4_343_1, Green:edema, Yellow:non-enhancing solid core,
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TABLE 4 | Evaluation result of survival prediction.

Stage Classification accuracy Median error
Validation 46.4% 217.92
Test 61.0% 181.37

3.1. Result of Tumor Segmentation

We trained the model using the 2018 MICCAI BraTS training
set using the methods described above. We then applied the
trained model for prediction on the validation and test set.
We compared the segmentation result of the ensemble model
with the individual model on the validation set. The evaluation
result of our approach is shown in Table 2. For other teams’
performance, please see the BraTS summarizing paper (Bakas
et al., 2018). The result demonstrates that the ensemble model
performs better than individual models in enhancing tumor and
whole tumor, while CA-CNN performs marginally better on the
tumor core.

The predicted segmentation labels are uploaded to the
CBICAs Image Processing Portal (IPP) for evaluation. BraTS
Challenge uses two schemes for evaluation: Dice score and
the Hausdorft distance (95th percentile). Dice score is a
widely used overlap measure for pairwise comparison of
segmentation mask S and G. It can be expressed in terms of
set operations:

218N G|

Dice = ——
[S| + |G|

(2)
HausdorfT distance is the maximum distance of a set to the
nearest point in the other set, defined as:

du(X,Y) = max{ sup inf d(x, y), sup inf d(x, y) } (3)
)/GY }/EY xeX

xeX

where sup represents the supremum and inf the infimum. In
order to have more robust results and to avoid issues with noisy
segmentation, the evaluation scheme uses the 95th percentile.

In the test phase, our result ranked 5th out of 60+
teams. The evaluation result of the segmentation on the
validation and test set are listed in Table 3. Examples of the
segmentation result compared with ground truth are shown
in Figure 6.

3.2. Result of Survival Prediction

Based on the segmentation result of brain tumor subregions,
we extracted features from brain tumor sub-regions segmented
from MRI scans and trained the survival prediction model as
described above. We then used the model to predict patients
overall survival on the validation and test set. The predicted
overall survival was uploaded to the IPP for evaluation. We
used two schemes for evaluation: classification of subjects as

long-survivors (> 15 months), short-survivors (< 10 months),
and mid-survivors (between 10 and 15 months) and median error
(in days). In the test phase, we ranked second out of 60+ teams.
The evaluation results of our method are listed in Table 4. For
other teams’ performance, please see the BraTS summarizing
paper (Bakas et al., 2018).

4. DISCUSSION

In this paper, we present an automatic framework for the
prediction of survival in glioma using multimodal MRI scans and
clinical features. First, a deep convolutional neural network is
used to segment a tumor region from MRI scans, then radiomics
features are extracted and combined with clinical features to
predict overall survival. For tumor segmentation, we used
ensembles of three different 3D CNN architectures for robust
performance through voting (majority rule). The evaluation
results show that the ensemble model performs better than
individual models, which indicates that the ensemble approach
can effectively reduce model bias and boost performance.
Although the Dice score for segmentation is promising, we
noticed that the specificity of the model is much higher than
the sensitivity, indicating an under-segmentation of the model.
For survival prediction, we extracted shape features, first order
statistics, and texture features from segmented tumor sub-region,
then used a decision tree and cross validation to select features.
Finally, a random forest model was trained to predict the overall
survival of patients. The accuracy for three-class classification
is 61.0%, which still leaves room for improvement. Part of the
reason is that we only had a very limited number of samples
(285 patients) to train the regression model. In addition, imaging
and limited clinical features may only explain patients’ survival
outcome partially, too. In the future, we will explore different
network architectures and training strategies to further improve
our result. We will also design new features and optimize our
feature selection methods for survival prediction.
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A Multi-parametric MRI-Based
Radiomics Signature and a Practical
ML Model for Stratifying
Glioblastoma Patients Based on
Survival Toward Precision Oncology

Alexander F. I. Osman*

Department of Medical Physics, Al-Neelain University, Khartoum, Sudan

Purpose: Predicting patients’ survival outcomes is recognized of key importance to
clinicians in oncology toward determining an ideal course of treatment and patient
management. This study applies radiomics analysis on pre-operative multi-parametric
MRI of patients with glioblastoma from multiple institutions to identify a signature
and a practical machine learning model for stratifying patients into groups based on
overall survival.

Methods: This study included 163 patients’ data with glioblastoma, collected by
BRATS 2018 Challenge from multiple institutions. In this proposed method, a set of
147 radiomics image features were extracted locally from three tumor sub-regions
on standardized pre-operative multi-parametric MR images. LASSO regression was
applied for identifying an informative subset of chosen features whereas a Cox model
used to obtain the coefficients of those selected features. Then, a radiomics signature
model of 9 features was constructed on the discovery set and it performance was
evaluated for patients stratification into short- (<10 months), medium- (10-15 months),
and long-survivors (>15 months) groups. Eight ML classification models, trained and
then cross-validated, were tested to assess a range of survival prediction performance
as a function of the choice of features.

Results: The proposed mpMRI radiomics signature model had a statistically
significant association with survival (P < 0.001) in the training set, but was
not confirmed (P = 0.110) in the validation cohort. Its performance in the
validation set had a sensitivity of 0.476 (short-), 0.231 (medium-), and 0.600
(long-survivors), and specificity of 0.667 (short-), 0.732 (medium-), and 0.794
(long-survivors). Among the tested ML classifiers, the ensemble learning model’s
results showed superior performance in predicting the survival classes, with an overall
accuracy of 57.8% and AUC of 0.81 for short-, 0.47 for medium-, and 0.72 for
long-survivors using the LASSO selected features combined with clinical factors.
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Conclusion: A derived GLCM feature, representing intra-tumoral inhomogeneity, was
found to have a high association with survival. Clinical factors, when added to the
radiomics image features, boosted the performance of the ML classification model
in predicting individual glioblastoma patient’s survival prognosis, which can improve
prognostic quality a further step toward precision oncology.

Keywords: glioblastoma multiforme, MRI, radiomics analysis, patient’s survival prediction, machine learning,

precision oncology

INTRODUCTION AND RELATED WORKS

Introduction

Glioblastoma multiforme (GBM) is the most aggressive and
highly invasive high-grade glioma tumors with poor prognosis
(Holland, 2001). The median survival rate of GBM patients is
about 2 years or less, and it needs immediate treatment (Ohgaki
and Kleihues, 2005; Louis et al., 2007). Surgical resection followed
by chemo-radiotherapy is the current standard treatment of the
glioblastoma multiforme tumors (Van Meir et al., 2010; Aum
etal,, 2014). Predicting a patient’s survival outcome is recognized
as key importance to clinicians in oncology toward determining
an ideal course of treatment and patient management. In which,
the treating physician (oncologist) may decide if more aggressive
or additional treatment has to be considered for treating patients
with poor survival prognosis (Zhang et al., 2017).

Multi-parametric magnetic resonance imaging (mpMRI)
sequences commonly provide more clinical information to
characterize glioblastoma multiforme tumors than other imaging
modalities. Here, “multi-parametric” is refereed to multiple
image standardization parameters. This imaging information
could be quantitatively extracted as features and linking these
tumor phenotype features to clinical variables of interest (e.g.,
survival time, recurrence, adverse events, or late complications).
The mentioned concept is referred to as radiomics. The
idea of radiomics has recently emerged from the field of
oncology. Radiomics has the potential for enabling improved
clinical decision-making (Gillies et al., 2016). This approach has
advantages of being non-invasive, fast and low in cost. Radiomics
has been used in oncology for tumors diagnosis, treatment
planning/execution, treatment response and prognosis, and
underlying genomic patterns in various forms of cancer (Liu
etal., 2018a). In which, individual patients could be stratified into
subtypes based on radiomics biomarkers that hold information
about cancer traits that reflect the patient’s prognosis. As a
result, radiomics could have an effective application in precision
oncology by predicting individual patients” treatment outcome.

The definition of precision medicine, according to the
National Institute of Health (NIH), is “an emerging approach
for disease treatment and prevention that takes into account
individual variability in genes, environment, and lifestyle for each
person” (Subramaniam, 2017). This concept will let clinicians
and researchers provide predictions with higher accuracy for
which treatment and prevention plans for a particular disease
will suit in which groups of people (Subramaniam, 2017). The
newly introduced idea of precision medicine is in contrast to

the existing practical therapy paradigm of a “one-size-fits-all”
attitude, in which disease treatment and prevention plans are
developed for the “average” patient, with less consideration for
the differences between individuals (Subramaniam, 2017). There
are some limitations in fully implementing precision medicine
for radiomics e.g., reproducibility and quantitative information,
standardization in image acquisition, and structured reporting.

The Related Works

Many studies have been conducted identifying tumor
phenotypical radiomics signature or/and developing practical
machine learning (ML) models for glioblastoma patients
stratification based on survival on pre-operative multi-
parametric MRI sequences from single or multiple institutions.
Recognizing patients who would/wouldn’t benefit from standard
treatment as well as identifying patients who need more
aggressive treatment at the time of diagnosis is essential toward
management of glioblastoma through personalized medicine. In
this section, the author included some works of the most relevant
ones recently published in this field. Macyszyn et al. (2016) used
image analysis and ML models to establish imaging patterns that
are predictive of overall survival (OS) and molecular subtype
using preoperative mpMRIs sequences of patients with GBM.
The developed system achieved an overall accuracy of 80%
in stratifying patients into long-, medium-, and short-term
survivors in the prospective cohort from a single institution.
Prasanna et al. (2017) studied texture features analysis to
assess the efficacy of peritumoral brain zone features from
pre-operative MRI in predicting GBM patient survival into long-
(>18 months) vs. short-term (<7 months). The study findings
identified a subset of 10 features proven to be predictive of long-
vs. short-term survival as compared to known clinical factors.
Ingrisch et al. (2017) investigated whether radiomics analysis
with random survival forests can predict overall survival from
MRI scans of newly diagnosed glioblastoma patients. Their
results demonstrated that low predicted individual mortality
proven to be a favorable prognostic factor for OS, it also indicated
that the MRI contains prognostic information, which can be
accessed by radiomics analysis.

Most recently, Chaddad et al. (2018) proposed multiscale
texture features for predicting GBM patients’ progression-free
survival and overall survival on T1 and T2-FLAIR MRIs using
the random forest. The study results showed that the identified
seven-feature set, when combined with clinical factors, improved
the model performance yielding an AUC value of 85.54% for
OS predictions. Kickingereder et al. (2018) investigated the
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impact of mpMRI radiomics features for predicting patients’
survival in newly diagnosed GBM patients before treatment. The
study results revealed that a constructed eight-feature radiomics
signature increased the prediction accuracy for OS further than
the alternative approaches. Sanghani et al. (2018) studied survival
prediction of glioblastoma patients for two-class (short- vs. long-
term) and three-class (short-, medium-, and long-term) survival
groups using Support Vector Machines (SVMs). The results
showed a prediction accuracy of 98.7 and 88.95% for two-class
and three-class OS group, respectively. Chen et al. (2019) studied
developing a post-T1-weighted MRI-based prognostic radiomics
classification system in GBM patients to assess if it could allow
stratifying patients into a low- or high-risk group. Their results
showed that the developed system classified patients’ survival
with improved performance with AUC of 0.851 for 12-month
survival, compared to conventional risk models.

The majority of those studies have performed on single-
institution data, and also survival grouping was designed for two-
class rather than three-class approach. Besides, implementing
a particular feature selection method and testing various
machine learning classification models allow greater flexibility
for exploring distinct methods. The purpose of this work is to
quantitatively study the radiomics features from pre-operative
multi-parametric MRI of the de novo glioblastoma tumor on
multi-institutional datasets. Then, to apply radiomics analysis
on mpMRI to identify a signature and a practical machine
learning model to stratify patients into short-, medium, and long-
survivors groups. For machine learning, different models were
tested to assess a range of performance as a function of the choice
of features.

MATERIALS AND METHODS

Patients Data Sets

The study involved a cohort of 163 patients diagnosed with
primary de novo GBM and pathologically confirmed. The
patients’ imaging data sets and clinical information data were
collected from multiple (n = 5) institutions and provided as
“training data set” for Multimodal Brain Tumor Segmentation
(BRATS) 2018 Challenge (Menze et al., 2015; Bakas et al,
2017a,b,c). For each patient, the imaging data set consisted
of four sequences of pre-operative multi-parametric MRIs
along with the patients clinical information. The imaging
data sets were acquired during regular clinical routine using
various scanners, and different scanning protocols. An individual
patient’s imaging data set included TI1-weighted (T1), T1-
weighted with post-contrast/gadolinium (T1-Gd), T2-weighted
(T2), and T2-weighted fluid-attenuated inversion recovery (T2-
FLAIR) MRI sequences. Besides, “ground truth’ segmentation
masks of three tumor sub-structures provided as follow: the
complete tumor extent also referred to as the “whole tumor”
(WT), tumor core (TC), and the active tumor (AT) and the non-
enhancing/necrotic tumor region (Figure 1). The clinical data
were composed of the patients age, patient’s overall survival,
and tumor’s resection status information. The demographic
and clinical characteristics data of the glioblastoma patients in

the discovery, validation, and in the combined cohorts, were
presented in Table 1.

The patient data sets were categorized into discovery/training
and validation cohorts. In which, the survival data were sorted in
order hence after every two consecutive values the third one was
chosen for validation and added to the validation data set while
the remained ones were considered as the discovery data set.
This distribution of overall survival data across the discovery and
validation data sets ensure a balanced appearance of the whole OS
values range (from short, through a medium, to long-survivors)
in both cohorts. The patients’ survival data were categorized into
long- (>15 months), medium- (between 10 and 15 months),
and short-term survivors (<10 months) groups. The reason
behind choosing these thresholds can be found with a detailed
explanation by referring to this BRATS paper (Bakas et al., 2019).

Annotation of Tumor Structures

The extracted radiomics features may suffer from the
robustness due to variations in the delineated tumor
structures. Consequently, a decision was made to use
the provided “ground truth” segmentation masks which
were manually generated by experts, rather than using the
author’s developed automated segmentation system (Osman,
2018) which was still under further improving. The tumor
sub-structures delineation was performed by experts (one
to four raters) using the multi-parametric MR images
following a specific given annotation protocol. The experts’
annotations were further revised by an experienced board-
certified neuroradiologist to minimize inter- and intra-raters
variations (Menze et al., 2015; Bakas et al, 2019). Three
tumor sub-structures were delineated on the imaging data
namely; the complete tumor extent also referred to as the
“whole tumor;” the tumor core, and the active tumor and the
non-enhancing/necrotic tumor region structures (illustrated
in Figure1). The protocol used for annotating the tumor
structures was described in detail in those two BRATS papers
(Menze et al., 2015; Bakas et al., 2019).

Image Preprocessing

The multi-parametric MR images were provided with initial
preprocessing. The four mpMRI sequences of each patient
were co-registered using T1-Gd image sequence as a reference.
The images were also smoothed, interpolated to the same
resolution of 1 mm? and skull-stripped. Each imaging
sequence was had 240 x 240 pixels and 155 slices acquisition
matrices and converted into grayscale. Further preprocessing
were performed to standardize the image intensity before
performing features extraction. The most commonly used MRI
normalization scheme of p £ 30 with 256 intensity bins
(Collewet et al., 2004) was applied. MRI intensity rescaling
(Figure 2) on the global brain image volume was employed
to convert MRI signal intensity values into a standardized
intensity range, thus avoiding bias due to heterogeneity. Image
intensities were standardized between u 4 30 where u was
the mean value of the gray levels inside the region of interest
(brain) and o the standard deviation. The gray level values
outside the [u — 30, @ + 30] range were truncated to
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FIGURE 1 | Glioblastoma multiforme sub-regions segmentation masks generated by experts annotated in the different MRI sequences. (A) the whole tumor (yellow)
visible in T2-FLAIR, (B) the tumor core (light blue) visible in T2, and (C) the active tumor structures (purple) visible in T1-Gd. Combination of three segmentation labels
overlaid on T2-FLAIR MRI producing (D) the final labels of the tumor sub-structures: peritumoral edema [ED] (yellow), non-enhancing solid core tumor [NET] (light
blue), necrosis [NCR], and enhancing tumor core (purple).

TABLE 1 | Demographic and clinical characteristics data of GBM patients in discovery, validation, and combined sets.

Characteristic Discovery Validation Combined

Patients demographic
No. of patients

Patient distribution 109 (67 %) 54 (33%) 163

- CBICA UPenn - - 85 (52%)
- TCIA - - 76 (47%)
- MGH, HU, DU, and BU - - 2 (1%)
Imaging data

- Data set of T1, T1-Gd, T2, and T2-FLAIR MRI sequences with tumor sub-structures “ground truth” segmentation labels - - 163
Clinical information

Age (years) (P = 0.368)’

- Range 18.97-84.84 33.88-85.76 18.97-85.76
- Mean 59.73 61.55 60.33
- Median 60.94 62.36 61.17
- 1 Standard deviation 12.23 11.81 12.03
Overall survival (days) (P = 0.934)"

- Range 5-1767 22-1731 5-1767
- Mean 421.37 426.18 422.96
- Median 362.00 364.50 362.00
- 1 Standard deviation 350.00 352.31 349.67
- Short-term survivors [<10 months] 44 21 65 (40%)
- Medium-term survivors [10-15 months] 28 14 42 (26%)
- Long-term survivors [>15 months] 37 19 56 (34%)
Resection status (P = 0.474)T

- Gross total resection 36 23 59 (36%)
- Subtotal resection 19 5 24 (15%)
- Missing information 54 26 80 (49%)

CBICA UPenn, Center for Biomedical Image Computing and Analytics at the University of Pennsylvania; TCIA, The Cancer Imaging Archive; BU, Bern University; DU, Debrecen University;
HU, Heidelberg University; MGH, Massachusetts General Hospital.
Data in parentheses are P-value.

the upper or lower limit value. The given range was then  multiplicative change in the image intensity. In contrast, the
quantized into 8 bits [0, 255]. This standardization method relative difference between two gray levels is not maintained
eliminates the dependency on the shift of the mean value and  (Collewet et al., 2004).
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FIGURE 2 | Multi-parametric MRI sequences before and after intensity normalization with 256 scale (8-bit depth). All normalized images have the same scale.

Feature Extraction and Selection

Feature Extraction

For each patient, various features were extracted locally from
the “whole tumor”, tumor core, and active tumor areas on the
T1-Gd, T2, and T2-FLAIR MRI sequences to capture different
phenotypic characteristics of the tumor. The features were
divided into the following groups:

e Geometry/shape features: which describe the two-dimensional
(2D) and 3D shape characteristics of the tumor.

e Intensity features: which describe the first-order statistical
distribution of the voxel intensities obtained from a
histogram characterizing heterogeneity without giving
spatial information within a tumor.

e Gray-Level Co-occurrence Matrix (GLCM) Texture features:
which describe the high-order statistical spatial distributions
of the voxel intensities characterizing heterogeneity with
spatial information within a tumor or region of interest
(Haralick et al., 1973; Haralick and Shapiro, 1992).

e Histogram of Oriented Gradients (HOGs) features: which
capture local shape information from regions or point
locations within an image (Dalal and Triggs, 2005).

e Local Binary Pattern (LBP) features: which encode local
texture information that can be used for tasks such as detection
and recognition (Ojala et al., 2002).

The normalized volumetric MRI data were used for 2D and
3D features extraction. The 2D features were extracted from
a region of interest on a pre-selected image slice. This slice
was chosen to correspond to the largest tumor surface area
in axial, sagittal, and coronal planes. Then the transverse slice
was picked out for extracting the information. Based on the
segmentation results [WT on (T2-FLAIR), TC on (T2), or AT
on (T1-Gd)], the region enclosing each tumor sub-structure
was cropped down on the image. The obtained image was used
to extract feature information. A total of 147 multi-parametric
MRI radiomics features were extracted/derived for each patient
from the segmented tumor sub-structures on the three mpMRI

sequences for their capability to characterize the glioblastoma
tumor phenotypes. For every sub-region, a set of 48 radiomics
features was obtained, resulting in a total of 144 features for
the three regions plus 3 additional ones calculated as a joint
of the three regions. The features included 14 geometry/shape
(plus 3 mixed) features, 14 statistical intensity features, 14 texture
(GLCM) features, and 6 local features representing 3 HOG
features and 3 LBP features (listed in Table 2). All features were
derived using MATLAB 2016b Toolbox (Mathworks, Natick,
MA, USA) with Image Processing and Computer Vision Tools.

Feature Selection

Following the feature extraction, a feature selection method
is required to lessen the number of features to consider
only the significant ones. Feature selection refers to reduction
of the number of parameters to avoid overfitting dilemma
while improving the generalizability and interpretability of the
training-based model. Accordingly, a two-step method was
applied to choose the most important features and throughout
the less associated ones. Initially, the median absolute deviations
(MAD) was calculated for the 147 extracted features. None
of the features with MAD equal to zero, which considered
as non-informative, was observed in the total set to be
discarded. After this step, the number of features remained
the same. Then, least absolute shrinkage and selection operator
(LASSO) generalized linear regression (Tibshirani, 1996) was
employed for finding a subset of the most relevant features
from the initial set. Basically, LASSO executes a penalty on
the log partial likelihood (sum of squares) that is equal to
the absolute sum of regression coefficients. Cross-validation
the deviance is then used to determine the LASSO tuning
parameter X (Hastie et al, 2009). LASSO minimizes the
regression coefficients down toward zero while it makes the
coefficients exactly zero for irrelevant features (Collewet et al.,
2004). The LASSO method has been used extensively in high-
dimensional feature selection when the number of variables
exceeds the sample size (Heinze et al, 2018) as a case in
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TABLE 2 | A summary of radiomics features extracted from the tumor sub-regions (WT, TC, and AT) in multi-parametric MR images (T1-Gd, T2, and T2-FLAIR).

Feature classes Feature names

Sub-regions (n = 3)
Shape features (n = 14 + 3%)

Whole tumor (WT), tumor core (TC), and active tumor (AT).
Volume [tumor, brain], volume ratio [tumor/brain, AT/WT*, TC/WT*, AT/TC*], surface area [tumor convex area, tumor filled area, tumor

area, brain area], surface area ratio [tumor to brain], eccentricity, orientation, equivalent diameter, solidity, extent, perimeter.

Intensity features (0 = 14)

Minimum value, maximum value, median value, mean value, range, variance, moment 2nd-order, moment 3rd-order, entropy,

kurtosis, root mean square (RMS), skewness, standard deviation, mean absolute deviation (MAD).

Texture features: GLCM (n = 14)

Contrast, correlation, energy, homogeneity, (sum) variance, (sum) average, (mean) variance, (mean) autocorrelation, entropy, (sum)

entropy?2, (difference) entropy2, (sum) variance2, (difference) variance2, range of all GLCM features.

HOG features (n = 3)

LBP features (n = 3) Sum LBP, mean LBP, standard deviation LBP.

Sum HOG, median HOG, standard deviation HOG.

All features were extracted from a 2D image except those indicated as volumetric features (3D).

Unless noted with a strike (*), each feature was individually extracted from the “whole tumor” area on T2-FLAIR MRI, tumor core area on T2 MRI, and active tumor area on T1-Gd MRI.
*These features were calculated as combined features from joint of WT, TC, and AT sub-structures.

Features indicated with (2) were derived from GLCM calculated horizontally (0-degree) and 45-degree rotations.

this study where the number of extracted imaging features
(n = 147) is higher than the number of patients (n =
109) in the discovery set. When the LASSO regression model
was applied here, nine features with non-zero coefficients
retained from all features’ set. To search for an optimal X\,
cross-validation with 10-fold was applied, where the final X
value yielded minimum error in cross-validation (Figure 4).
The selected subset was considered as the final one of the
chosen features which will be used to construct the multi-
parametric MRI radiomics signature model on the discovery data
set (n = 109).

Constructing and Validating a Radiomics

Signature

Using the LASSO regression selected imaging features, a
multivariate LASSO Cox regression (Cox and Oakes, 1984)
was then applied to obtain the coefficients of those chosen
features rather than using the LASSO’s coefficients. The reason
for using LASSO Cox regression, because it enables getting the
p-value, and interferes with the coefficients (Tibshirani, 1997).
Cox regression is a semiparametric method for fitting survival
rate estimates to eliminate the effect of confounding features, and
to quantify the effect of predictor features. It has been reported
that the LASSO Cox regression model is reliable for prediction of
patients’ survival in glioma (Chaddad et al., 2019a). The selected
image features with their corresponding coefficients were used
to construct a mpMRI radiomics signature model. At first, a
radiomics risk score for each patient was determined by linearly
combining these selected features weighed by their respective
fitting coefficients (8) (Liu et al., 2018a) as follows:

n
Risk score = E - Bi . feature;.
=

Then, the risk scores obtained for patients in the discovery set
were stratified into low-(long-), medium-(medium-), and high-
risk (short-survivors), with fixed cutoff points as thresholds.
The steps which the author implemented to find these cutoffs
were as following: first, the radiomics risk score was calculated
for all patients in the discovery set. Their values ranged

between (+)4.118 to (-)1.497 for the short-survivors group
(high risk), (4)0.945 to (-)2.619 for the medium-survivors
group (medium risk), and (4)1.603 to (-)3.211 for the long-
survivors group (low risk). Then, the corresponding median
(50 percentile) values for each survivor group were determined
to be (+)0.245, (-)0.810, and (-)1.009, respectively. Finally,
since there was an overlap between the three regions, the
author calculated the 25 percentile values (approximated as
the half median values) of the high-risk (+0.122) and low-
risk (—0.505). Accordingly, these values were used as fixed
thresholds for stratifying patient into low-risk (Rad-score <-
0.505) for long-survivors (> 15 months) group, medium-risk
(Rad-score between —0.505 and 0.122) for medium-survivors
(10-15 months) group, and high-risk (Rad-score > 0.122) for
short-survivors (<10 months) group.

The mpMRI radiomics signature model was constructed
on the discovery data set. Its statistical performance with
survival association was assessed in the discovery and validation
sets using the t-test. True positive rate (sensitivity) and
the false positive rate (1—specificity) metrics were used
to evaluate the signature model’s classification performance
in both data sets. The association between the LASSO
selected radiomics features and survival in the discovery
and validation data sets was illustrated via a heat map, in
which the selected radiomics features were rescaled by the
z-score transformation.

Training and Validating a ML Classifier
Several machine learning classification algorithms were assessed
in this study for patients’ stratification based on survival. The
classifiers were trained, and the top-ranked ones reported.
Eight various models were included here, and they are
listed below:

(A) Support Vector Machine classifiers (Vapnik, 1982):

1) Linear SVM: makes a basic linear separation of classes;

2) Medium Gaussian SVM: creates moderate distinctions
between classes, with a kernel scale set to the square root
of (P) where P is the number of features/predictors;
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3) Coarse Gaussian SVM: creates coarse distinctions between
classes, with kernel scale set to the square root of (P) x 4,

(B) K-Nearest Neighbors (KNN) classifiers (Patrick and Fischer,
1970):

4) Coarse KNN: creates rough distinctions between classes
with the number of neighbors set to 100;

5) Cosine KNN: creates moderate distinctions between classes
using a cosine distance metric with the number of neighbors
set to 10;

6) Medium KNN: creates moderate distinctions between
classes with the number of neighbors set to 10,

(C) Discriminant Analysis (McLachlan, 2004):

7) Linear  Discriminant:  creates linear  boundaries

between classes, and
(D) Ensemble Learning: (Ho, 1998; McLachlan, 2004):

8) Subspace Discriminant: Subspace, with Discriminant
Analysis, has medium flexibility and good for many
predictors with a few hundred learners. Learning rate set to
0.1 is a popular choice for shrinkage.

All classifiers were trained on the combined data set (n = 163).
They were trained using various feature combinations: (a) the
all radiomics (n = 147) features, (b) the LASSO selected (n
= 9) features, (c) and (d) both features combined with the
clinical factors (predictors), respectively. The target response
for each model was the patients’ OS grouped into three classes
representing short- (<10 months), medium- (10-15 months),
and long-survivors (> 15 months).

A cross-validation scheme with 5-fold (to avoid overfitting)
was employed to examine the predictive accuracy of the trained
ML classification models and help in determining the best model.
The method is commonly recommended for a small data set,
as in the case of this study (163 observations). The receiving
operating characteristics (ROC) curve was used to check model

5
15 %10 . . , ,
10 T 1
P A+1STD
3z It
> i
[ |
a .
5r Optimal Lambda, % 1
oL, . A . \‘ nE
1072 1071 10° 10’ 102
Lambda
FIGURE 4 | The optimal i selection by cross-validated deviance of LASSO fit.
The partial likelihood deviance plotted vs. i. The green dotted vertical line was
plotted at the optimal X (36.50) and the blue dotted at » + 1 STD (84.33) as
shown in the plot.

performance after training each classifier. ROC plot, illustrating
the performance of the classifier, displays values of the true-
positive and false-positive rates for the model under study.
The area under the ROC curve (AUC) was used to measure
the performance of individual survival group predicted by a
classier, and the accuracy metric to evaluate the overall classifier
performance in predicting the three groups. Also, the individual
classifier’s performance as a function of feature choice was
assessed to examine its impact on accuracy.

The Proposed Method

The flowchart of the proposed model/method presented in this
study for survival prognosis for patients with glioblastoma is
demonstrated in Figure 3. It composed of four blocks. Block one
for image acquisition, segmentation, and preprocessing, block
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two for features extraction and selection, block three for signature
construction and ML models, and finally block four for patient
stratification and survival analysis.

The overall procedure could be summarized as follows: At
first, pre-operative multi-parametric MRI (T1, T1-Gd, T2, and
T2-FLAIR) sequences are acquired for patients with glioblastoma
multiforme (Figure 1). Tumor sub-structures (“whole tumor”,
tumor core, and active tumor) are delineated on the acquired
images after registering the images with its corresponding
reference one. Then the mpMRI intensities are rescaled with
a standardized normalization scheme of w £ 30 with 256
intensity bins (Figure 2). Secondly, features extraction and
selection take place here. Geometry/shape, intensity, HOG,
LPB, and GLCM features (Table2) are derived from the
standardized intensity MRIs. Important features with the
most relevance to patient survival are selected with LASSO
(Table 3 and Figure 4). Thirdly, multivariate LASSO Cox is
applied to the selected features to extract the corresponding
coefficients. These coefficients are linearly combined to construct
aradiomics signature model via risk score. Then, fixed thresholds
determined during the signature construction, are used for
stratifying patients into a low-risk (Rad-score < —0.505) for
long-survivors (>15 months) group, a medium-risk (Rad-
score between —0.505 and 0.122) for medium-survivors (10-
15 months) group, and a high-risk (Rad-score > 0.122) for
short-survivors (<10 months) group. A multivariate ensemble
(subspace Discriminant) machine learning model, trained and
cross-validated, is used as a more practical model for survival
class prediction. And fourthly, using the signature and ML
models, glioblastoma individual patients are stratified into short-,
medium-, or long-survivors.

Statistical Analysis

All of the statistical data analysis and modeling in this study were
performed with MATLAB 2016b software with implemented
Statistics and Machine Learning Toolbox (MathWorks, Natick,
MA, USA). The differences in patient age, tumor resection status,
and OS between the discovery and the validation data sets were
evaluated using an independent sample ¢-test (two-sample ¢-test).

RESULTS

Clinical Characteristics

The median and mean of overall survival were 362 days and 421
days for the discovery/training data set. For the validation data
set, the values were 364 days and 426 days, respectively. The
median and mean of age were 60 years and 61 years, respectively,
for the discovery data set, and the values for both, median and
mean, were 62 years for the validation data set. There was no
indication of significant difference in clinical and follow-up data
between the discovery and validation data sets (P = 0.368 for age
test, P = 0.474 for tumor resection status test, and P = 0.934 for
OS test).

The Radiomics Signature Results

The nine features, selected by the LASSO with non-zero
coeflicients, formed of 2 from T2-FLAIR, 1 from T1-Gd, and 6
from T2 MRI. These imaging features, plus the clinical factors,

are provided in Table 3, arranged in order from high to low
importance (P-value), with their median, P-values, and LASSO
Cox regression model coefficients. Each feature was named as
Modality_Region_FeatureName_FeatureNumber. For instance,
T2_TC_SumHOG_F139 indicated that this feature is the sum of
HOG extracted from the tumor core region on T2 MRI sequence
and was the feature number 139 in the full list. The optimal
) obtained during the cross-validation of features selection in
LASSO regression model was 36.50 with . + 1 standard deviation
(STD) of 84.33 (66.67% confidence level), as shown in Figure 4.
As a result, this optimized value, obtained through the cross-
validation, has selected nine features with non-zero coeffcients.
Usually, as the lambda value increases, the number of non-zero
components of predictor coeflicients decreases.

Features indicated strong association with survival (P < 0.05)
from most to least, according to their P-value as shown in Table 3
are: GLCM difference variance2 (difference variance calculated
at 0 degree and 45 degree rotations) in the WT [T2-FLAIR],
tumor to brain volume ratio in TC [T2], minimum intensity in
the tumor in TC [T2], intensity range within the tumor in TC
[T2], sum of HOG in TC [T2], sum of entropy2 (sum entropy
calculated at 0 degree and 45 degree rotations) in WT [T2-
FLAIR], GLCM energy in the AT [T1-GD], median HOG in the
WT [T2-FLAIR], and momentum 3rd order in the TC [T2].

The linear combination of those LASSO selected nine
features enables constructing the radiomics signature. Hence, the
signature score (risk score) can be calculated as follows:

Radiomics_

signature_score = T2 — FLAIR_WT_DifferenceVariance2_F41
0.0000018
T2_TC_TumorToBrainVolumeRatio_F79
27.0110

T2_TC_MinimumIntensity_F111 x (—0.0066)
T2_TC_Range_F115 x 0.0063
T2_TC_SumHOG_F139 x 0.0025

T2 — FLAIR_WT_SumEntropy2_F38 x (—1.4337)
T1 — GD_AT_Energy_F79 x (—3.1019)

T2 — FLAIR_WT_MedianHOG_F44 x 17.1896
T2_TC_Moment3rd_F121 x 0.0000058

+ + + + + F+ X+ ox

When the radiomics score value has been determined through
the above-given signature model, the glioblastoma patient can
be stratified accordingly into one of the survival groups. The
thresholds, established with the ideal cutoff points on the
discovery set, were low-risk (Rad-score < —0.505) for long-
survivors (>15 months) group, medium-risk (Rad-score between
—0.505 and 0.122) for medium-survivors (10-15 months) group,
and high-risk (Rad-score > 0.122) for short-survivors (<10
months) group.

The signature model performance in both, discovery and
validation, data sets stratified the patients according to the pre-
determined fixed criteria/cutoff points were shown in Figure 5.
A significant association (P < 0.001) of the radiomics signature
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TABLE 3 | The subset of nine imaging features selected by the LASSO model and the clinical factors with their median, non-zero coefficients determined with Cox
regression, and P-value for constructing the mpMRI radiomics signature in the discovery data set.

Characteristics Median Coefficients P-value
Imaging features (LASSO Futures)

T2-FLAIR_WT _DifferenceVariance2_F41 132670 1.8000e-06 9.7500e-04
T2_TC_TumorToBrainVolumeRation_F79 0.0057 27.0110 0.0028
T2_TC_MinimumTumorintensity_F111 123.9908 —0.0066 0.0030
T2_TC_Range_F115 121.5823 0.0063 0.0030
T2_TC_SumHOG _F139 244.4848 0.0025 0.0040
T2-FLAIR_WT_ SumEntropy2_F38 1.9066 —1.4337 0.0152
T1-GD_AT_Energy_F_79 0.2027 -3.1019 0.0175
T2-FLAIR_WT_MedianHOG _F44 0.1107 17.1896 0.0185
T2_TC_Moment3rd_F121 —5324.8 5.8300e-06 0.0203
Clinical factors

Age (years) 61.17 - 3.3700e-04
Resection status (GTR, STR, NA) - - 0.9720

They were ordered by their association with survival (P-value).
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FIGURE 5 | The survival stratification created using the constructed radiomics signature. The signature performance in stratifying the survival into short-, medium-,
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with OS was shown in the discovery data set, but non-significant
correlation (P = 0.110) was observed in the validation data set.

On discovery cohort, the radiomics signature stratified
the GBM patients based on survival grouping with the
true positive rate or sensitivity metric as following: short-
(0.774), medium- (0.208), and long-survivors (0.500). The false
positive rate (1—specificity) measure was 0.256, 0.271, and
0.182 for short-, medium-, and long-survivors, respectively
(Figure 5A). In contrast, the reported values on the validation
set were 0.476 (short-), 0.231 (medium-), and 0.600 (long-
survivors) for true positive rate or sensitivity; and 0.333
(short-), 0.268 (medium-), and 0.206 (long-survivors) for false
positive rate (1—specificity) (Figure 5B). For example, a false
positive rate of 0.256 demonstrates that the signature model
on the discovery data set assigns 26.8% of the long-survivors
predictions falsely to the positive class. On the other hand,
a true positive rate of 0.600 points out that the signature
model classifies 60% of the predictions correctly to the
positive class.

The heat map of the 9 LASSO selected features used for
building the signature is shown in Figure 6. It shows the features
association with OS between the discovery and validation data
sets. From the heat map plot, it can be noticed that there
is a consistency of radiomics feature z-score between the
discovery/training and the validation data sets.

ML Model Results

Eight machine learning classification models were examined for
survival prediction, and their performances were presented in
Table 4. The AUC for predicting an individual survival class from
the other classes, and the overall accuracy results, are reported for
each model. The overall best model with feature combination for
classifying OS into three groups was identified.

The best overall performance classifier was achieved by an
ensemble learning model with AUC of 0.81, 0.47, and 0.72
for short-, medium-, and long-survivors (Table 4), respectively.
The corresponding overall accuracy was 57.8% in predicting
the patient’s survival into short-, medium-, and long-survivors
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FIGURE 6 | The heat map of the LASSO selected radiomics features that used to discover the signature. The rows demonstrate the subset of nine selected features,
while the columns indicate the patients (both discovery and validation data sets). The color map shows the z-score difference of each radiomics feature.
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TABLE 4 | AUC and overall accuracy of several trained ML models’ performance in classifying GBM patients survival into three groups as a function of choice of features.

Classifiers and features

AUC Overall accuracy (%)

Short-survivors

Medium-survivors Long-survivors

SVM (Medium Gaussian)

* Imaging features 0.67 (0.69)
* Imaging features + clinical factors 0.74

* Imaging features (LASSO) 0.72 (0.74)
* Imaging features (LASSO) + clinical factors 0.80 (0.81)
K-Nearest Neighbors (Coarse KNN)

* Imaging features 0.64

* Imaging features + clinical factors 0.68

¢ Imaging (LASSO) features 0.73(0.72)
¢ Imaging (LASSO) features + clinical factors 0.79(0.78)
Discriminant analysis (Linear)

* |maging features 0.67

® imaging features + clinical factors 0.72

* Imaging (LASSO) features 0.74

* Imaging (LASSO) features + clinical factors 0.79
Ensemble (Random subspace discriminant)

* Imaging (LASSO) features 0.75

* Imaging (LASSO) features + clinical factors 0.81

0.52 (0.60) 0.61(0.59) 47.2 (50.3)*
0.51 0.67 53.4
0.31(0.37) 0.68 (0.73) 50.9 (56.4)™
0.51 (0.53) 0.68 (0.73) 54.0 (55.2)*
0.48 0.60 46.0

0.46 0.67 50.1
0.47 (0.45) 0.72 (0.67) 47.2 (650.3)"
0.44 (0.55) 0.70 (0.66) 47.9(50.9)7

0.52 0.61 47.2

0.48 0.67 49.1

0.45 0.72 56.4

0.49 0.71 53.4

0.42 0.71 57.1

0.47 0.72 57.8

*Values in brackets are the performance of SVM Linear classifier.

**Values in brackets are the performance of SVM Coarse Gaussian classifier.
T\alues in brackets are the performance of KNN Cosine classifier.

\alues in brackets are the performance of KNN Medium classifier.

The overall best classification results are listed in bold.

group. Combining the LASSO selected imaging features with
the clinical predictors yielded in improved prediction accuracy
results over the other alternatives in estimating glioblastoma
patients’ survival.

The AUC plots of the three classification models, including the
ensemble model (the superior one among the other alternative
models), were shown in Figure 7. Ideally, the perfect AUC plot
is a right angle to the top left of the plot (with no misclassified
points). The AUC value measures/quantifies the overall quality

of the classification model. The larger AUC value demonstrates
better model performance. Figure7 shows the AUC values
for each survival class/group individually. In other words, it
quantifies how the model under study is capable to classify a
specific group of survivors from the other classes correctly.

Results Comparison
A comparison of this study results with other published works
was presented in Table 5. The proposed model performance, the
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(Subspace Discriminant) in classifying OS into three classes using the best feature combination.

signature plus the ML model, was judged amongst other works in
various manners.

DISCUSSION

Radiomics analysis is the concept of extracting features
quantitatively from the images/medical images using a variety of
computational approaches. Then, the obtained imaging features
may be used to provide clinicians with diagnosis, prognosis (e.g.,
survival), or treatment response. This study was aimed to identify
aradiomics-based imaging signature on pre-operative mpMRI to
stratify patients with de novo glioblastoma multiforme into short-
, medium-, and long-survivors group using data from multiple
institutions. Also, establishing a practical ML model for the same
purpose through testing a wide range of various classification
models and different features combination. Statistics, Computer
Vision, and Machine Learning tools were used implementing the
proposed model of radiomics analysis of patient stratification
based survival grouping, which may offer unique clinical insights
to support decision-making toward precision oncology.

Various image features (n = 147), representing tumor’s shape,
intensity, GLCM, HOG, and LBP (Table 2), were extracted and

derived via different approaches on multi-parametric MRI (T1-
Gd, T2, and T2-FLAIR) sequences characterizing the tumor
structures [AT, TC, and WT (Figure 1)]. When a two-step feature
selection method was employed, MAD followed by LASSO
regression (Figure 4), a final set of 9 features retained (Table 3).
LASSO turns all none relevant features/variables coeflicients to
zero during the optimization and tunes the regression model via
a user-specified k-fold cross-validation. It performs both feature
selection and regularization to improve the prediction accuracy
and the interpretability of the statistical model it produces. The
selected features indicated a high association with OS (P <
0.05) as shown in Table 3. Among those features, a gray-level
co-occurrence matrix derived texture feature has shown the
highest association with GBM survival stratification (Table 3).
This finding agrees with that reported in the literature (Chaddad
et al., 2015, 2016a). Image entropy and energy selected features
have also shown a good correlation with survival (Chaddad et al.,
2016b, 2019b; McGarry et al., 2016). Those features, typically
calculated within a region of interest, indicate that intra-tumoral
heterogeneity has a high impact on the survival stratification.
The quantitative nature of radiomics features and the qualitative
nature of radiologists to interpret the MRI sequences could
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TABLE 5 | The comparison of this study’s findings with similarly published works for GBM patients stratification based on survival with radiomics analysis.

Method MRI sequences Feature selection Survival stratification Overall AUC Signature model
and classification accuracy association with OS
models

Yang et al. (2015) T1 and T2-FLAIR Ensemble (random 12-months survival - 0.67 -
forest) learning

Macyszyn et al. T1, T1-Gd, T2, SVMs Short- (<6 months), 80.0% - -

(2016) T2-FLAIR, DTI, and DSC medium- (6-18 months),

and long-term (>18
months)
This work T1, T1-Gd, T2, and LASSO and Cox Short- (<10 months), 57.8% 0.81, 0.47, Discovery (P < 0.001),
T2-FLAIR regression, medium- (10-15 months), 0.72 validation (P = 0.110)
ensemble (subspace and long-term (>15
discriminant) months)
learning
Sanghani et al. T1, T1-Gd, T2, and SVMs Short- (<10 months), 88.95% - -
(2018) T2-FLAIR medium- (10-15 months),
and long-term (>15
months)
Liu et al. (2018b) T1, T1-Gd, T2, and SVMs Short- (<12 months) vs. 80.7% 0.79 -
T2-FLAIR long-term (=12 months)

Chen et al. (2019) T1-Gd LASSO Cox Short- (<12 months) vs. 85.1% 0.81 Discovery (P < 0.001),
regression long-term (>12 months) validation (P < 0.001)

Chaddad et al. T1-Gd and T2-FLAIR Random forest Short- (<12 months) vs. - 0.78 -

(2019b) long-term (>12 months)

Zong et al. (2019) T1, T1-Gd, T2, and CNNs Short- (<6 months), 64.3%, - -

Rathore et al.
(2019)

T2-FLAIR

T1, T1-Gd, T2,
T2-FLAIR, DSC-MRI,
and DTI

K-means clustering,
Cox regression

medium- (6-18 months),
and long-term (>18
months)

Worst (MS = 6 months), - -

Validation (P < 0.001)

intermediate (MS = 12

months), and longest

survival (MS = 19 months)

DTI, Diffusion Tensor Imaging; DSC, Dynamic Susceptibility Contrast-Enhanced; CNNs, Convolutional Neural Networks, MS, Median Survival.

complementary improve the GBM patient survival prognosis
quality toward precision oncology.

A multi-parametric MRI radiomics signature of 9 features was
constructed on the discovery cohort for glioblastoma patients
stratification based on overall survival. LASSO Cox regression
model was used to extract the selected features coefficients
(Table 3) for developing a signature model. The author discussed
the reason for applying this approach in the method section.
Also, it has been reported that regression coefficients estimated
by the LASSO are biased by intention, but can have smaller
mean squared error than conventional estimates (Heinze et al.,
2018). The radiomics signature model, trained and validated, had
a good performance (P < 0.001) with survival association in
the discovery set (n = 109), but this results not confirmed (P
= 0.110) in the validation set (n = 54) (Figure 5). The possible
reasons for non-significant results obtained in the validation
set could be due to signature model overfitting during the
training. It has been reported that over-fitting is possible when
the number of features is greater than the number of data
samples or if there are too many unique values for a discrete
feature (Meinshausen and Bithlmann, 2006). The poor results
obtained show the lack of generalizability of the signature model
on the new unseen data set. From the statistical perspective,
non-significant relationship with survival does not necessarily

mean less importance (Lao et al., 2017). A second reason could
be due to high contribution (almost a half, 49% as shown in
Table 1) of patient data with missing resection status information
in the combined, discovery/training and validation, cohort. These
data with unknown resection information could significantly
affect the overall or/and individual, training or validation, results.
And, a third reason could be due to possible sub-optimal
determination the cutoff points’ values or thresholding in which
some possibly valid assumptions had applied.

The machine learning results of several studied classifiers
indicated the superiority of ensemble (Subspace Discriminant)
learning over the other methods achieving the best performance
accuracy of 57.8% (Table4 and Figure7) in categorizing
the survival into short-, medium-, and long-survivors. This
result is not sufficiently encouraging and more tuning is
needed for improved prediction accuracy. The LASSO selected
imaging features, combined with clinical factors, provided better
prediction results among the other options. According to the
survival data distributions used in this study (Table1), the
best survival grouping achieved for predicting short-survivors
(representing 40% of the total OS data distribution) with an
AUC of 0.81. Then it followed by long-survivors (representing
36% of the total OS data distribution) with an AUC of 0.72.
Finally, medium-survivors (representing 26% of the total OS

Frontiers in Computational Neuroscience | www.frontiersin.org

57

August 2019 | Volume 13 | Article 58


https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Osman

A MP-MRI-Based Radiomics Signature

data distribution) were lasted with an AUC of 0.47. Lower
performance in predicting an individual class correlated with a
decreased class data distribution in the study sample. Strengths
and limitations of the ML classifiers used in this study could
be summarized here. Based on prediction speed, all reported
models were relatively fast. In contrast, Linear models (SVM and
Discriminant Analysis) are easy to interpret, SMV (with Gaussian
kernels, Medium, and Coarse), KNN (Coarse, Cosine, Medium),
and Ensemble (Subspace Discriminant) are hardly interpretable.

The results comparison of the proposed method (signature
model and the practical ML model) with most relevant published
studies are presented in Table 5. While the proposed method’s
results, the signature model and the ML model, was not
impressive compared to most recently reported works (Macyszyn
et al, 2016; Liu et al, 2018b; Sanghani et al, 2018; Chen
et al, 2019), it was comparable or even better with respect
to others studies for example that reported by Yang et al.
(2015) (AUC = 0.67 for 12 months survival prediction) and
Chaddad et al. (2019b) (AUC = 0.78 for short- vs. long-term
OS prediction). Also, this study results are relatively comparable
with that obtained by Zong et al. (2019) on multi-institutional
data (accuracy of 64.3% for three-class OS prediction) using
Convolutional Neural Networks, where CNN based methods
are commonly expected to provide much-improved performance
compared to traditional methods. The works by Macyszyn et al.
(2016), and Rathore et al. (2019), reported good performance
results in predicting GBM patient’s survival group. However,
these studies were conducted on a single institution’s data,
where the data is more homogeneous/consistent and more
likely to obtain improved accuracy than the one used multiple
institutions as a case in this study. Consequently, the model
trained in local data is likely to suffer in generalizing its
performance to unseen data from other institutions. On the
other hand, a model trained on multi-institution data may
gain generalizability but less prediction accuracy due to the
heterogeneity of the data.

Finally, this study establishes that multi-parametric
MR images in patients with glioblastoma hold prognostic
information, which can be called up by radiomics analysis via
Statistics and Machine Learning/Computer Vision methods.
The proposed method in this study still has some limitations
and weaknesses, which may have influenced its reported
results. This work represents a retrospective study from
multiple institutions with a relatively small sample patient
data set used on discovery (n 109) with an independent
validation data set (n = 54) for signature model construction
and evaluation. Also, almost half (49%) of the clinical data
information/predictors were with no given tumor resection
status (GTR or STR) information (Table 1). By making available
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Glioblastoma is recognized as World Health Organization (WHO) grade IV glioma with
an aggressive growth pattern. The current clinical practice in diagnosis and prognosis of
Glioblastoma using MRI involves multiple steps including manual tumor sizing. Accurate
identification and segmentation of multiple abnormal tissues within tumor volume in
MRI is essential for precise survival prediction. Manual tumor and abnormal tissue
detection and sizing are tedious, and subject to inter-observer variability. Consequently,
this work proposes a fully automated MRI-based glioblastoma and abnormal tissue
segmentation, and survival prediction framework. The framework includes radiomics
feature-guided deep neural network methods for tumor tissue segmentation; followed
by survival regression and classification using these abnormal tumor tissue segments
and other relevant clinical features. The proposed multiple abnormal tumor tissue
segmentation step effectively fuses feature-based and feature-guided deep radiomics
information in structural MRI. The survival prediction step includes two representative
survival prediction pipelines that combine different feature selection and regression
approaches. The framework is evaluated using two recent widely used benchmark
datasets from Brain Tumor Segmentation (BraTS) global challenges in 2017 and 2018.
The best overall survival pipeline in the proposed framework achieves leave-one-out
cross-validation (LOOCV) accuracy of 0.73 for training datasets and 0.68 for validation
datasets, respectively. These training and validation accuracies for tumor patient survival
prediction are among the highest reported in literature. Finally, a critical analysis of
radiomics features and efficacy of these features in segmentation and survival prediction
performance is presented as lessons learned.

Keywords: glioblastoma, segmentation, neural network, radiomics, survival prediction

INTRODUCTION

The World Health Organization (WHO) identifies Glioblastoma as a highly aggressive grade IV
glioma. Glioblastoma is known for the presence of anaplastic glial cells along with high mitotic
activity and dense cellularity, as well as the increase in microvascular proliferation (Ohgaki,
2005; Louis et al., 2007; Bleeker et al., 2012). The aggressive and infiltrative growth pattern of
Glioblastoma makes curative treatment impossible, which reduces the median survival rate to less
than 2-years for most patients (Johnson et al., 2013). Recently, the interest has shifted toward
replacing invasive methods for tumor subtyping that predict clinical outcome with non-invasive
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methods (Brown et al., 2008; Itakura et al., 2015; Yang et al,
2015). Different studies (Vartanian et al., 2014; Hu et al., 2015;
Liu et al, 2017) discussed Glioblastoma heterogeneity and its
implication on the clinical outcome. Glioblastoma heterogeneity
can be examined through radiology images such as Magnetic
Resonance Imaging (MRI) (Yang et al, 2002, 2015; Emblem
et al., 2008). Quantitative radiomic imaging features (henceforth,
radiomics) computed from MRI can be utilized for clinical
outcome prediction (Lacroix et al., 2001; Lao et al, 2017;
Shboul et al., 2017) and molecular classifications (Gutman et al.,
2013; Jain et al., 2013). An accurate detection and segmentation
of different abnormal tumor tissues is essential in planning
treatment therapy, diagnosis, grading, and survival prediction.

Few works (Pope et al., 2005; Gutman et al., 2013; Aerts
et al., 2014) have proposed different methods for predicting the
survivability of patients with brain tumors. Pope et al. (2005)
use different subtype tumor volumes, the extent of resection,
location, size and other imaging features in order to evaluate
the capability of these features to predict survival. Gutman
et al. (2013) use a comprehensive visual feature set known
as Visually AcceSAble Rembrandt Images (VASARI) in order
to predict survival, and correlate these features for genetic
alterations and molecular subtypes. Aerts et al. (2014) predict
survival by quantifying a large number of radiomic image features
including shape and texture in computed tomography images of
lung and head-and-neck cancer patients. Several of the survival
prediction studies utilize regression survival (Guinney et al.,
2017; Passamonti et al., 2017) models such as the proportional
hazard method while a few others utilize machine learning
methods to predict survival (Macyszyn et al., 2015; Shouval et al.,
2017; Kirienko et al., 2018).

Among many different feature-based and feature-learned
deep neural network-based abnormal tumor tissue segmentation
(Havaei et al., 2017; Mlynarski et al., 2018; Shah et al., 2018;
Cheplygina et al., 2019) and survival prediction methods (Islam
et al, 2013; Reza and Iftekharuddin, 2014; Vidyaratne et al,
2018) with varying performances as discussed above, there is a
need to understand the effect of feature-guided deep radiomics
for both tumor segmentation and patient survival prediction.
A feature-guided deep radiomics approach is expected to
benefit from known radiomics features that are already proven
effective to guide discovery of unknown features using deep
learning methods. Consequently, this work proposes a fully
automated two-step survival prediction framework for patients
with glioblastoma: radiomics feature-guided deep neural network
methods for automated tumor tissue segmentation; and overall
survival regression classification using these tumor segments
and other relevant features using raw structural MRI data
(Reza and Iftekharuddin, 2014; Shboul et al., 2017). The
known radiomics are multiresolution fractal texture features
that have shown efficacy in brain tumor segmentation (BraTS)
in prior studies (Iftekharuddin et al, 2003; Islam et al,
2008; Ahmed et al., 2009; Reza and Iftekharuddin, 2014;
Vidyaratne et al., 2018). The proposed framework is evaluated
using two recent widely used benchmark datasets from BraTS$
global challenges in 2017 and 2018, respectively. Our results
suggest that the proposed framework achieves better tumor

segmentation and survival prediction performance compared to
the state-of-the-art methods.

MATERIALS AND METHODS

The overall pipeline with each processing block used for tumor
segmentation and survival prediction is shown in Figure 1.
This fully automated method proposes a two-step survival
prediction framework: radiomics feature-guided deep neural
network methods for automated tumor tissue segmentation;
and overall survival regression classification using these tumor
segments and other relevant features. The proposed multiple
abnormal tumor tissue segmentation step effectively captures
both local and global feature-guided deep radiomics information
in structural MRI. The survival prediction step includes two
representative survival prediction pipelines that experiment with
different feature selection and regression approaches.

Tumor Segmentation
The tumor segmentation methods are summarized below.

Feature-Based Brain Tumor Segmentation

This method (Figure 2A) utilizes several of our prior robust
feature extraction algorithms to include piecewise triangular
prism surface area (PTPSA) (Iftekharuddin et al., 2003), and
multi-fractional Brownian motion (mBm) (Islam et al., 2008).
These methods capture the non-local intensity and spatially
varying texture observed in abnormal tumor tissues. In addition,
several other generic features such as Texton, and raw intensity
are used as input to a random forest (RF) based classifier to obtain
the multi-class abnormal tumor tissue segmentation (Ahmed
et al., 2009; Reza and Iftekharuddin, 2014).

Feature-Learned Brain Tumor Segmentation Using
Deep CNN

This method essentially transforms the segmentation problem
into an intensity-based image classification task. Localized 2D
patches surrounding each pixel subjected to classification are
extracted from MRI and are used as input to deep CNN
architecture. We set the size of the input patch as 33 x 33 for
tumor segmentation (Vidyaratne et al., 2018). The detailed CNN
design for this method is shown in Figure 2B.

Feature-Learned Brain Tumor Segmentation Using
Deep U-Net

This method utilizes a CNN based U-Net model (Ronneberger
et al, 2015; Dong et al, 2017) to obtain brain tumor
segmentation. U-Net model is known for end-to-end data
processing. Unlike patch based CNN segmentation pipeline
where the model only sees a localized region of the brain, the
U-Net in this work captures global information from different
regions of the brain, which is essential to achieve robust
segmentation performance. The U-Net architecture utilized in
this work is implemented following the work in Dong et al.
(2017). More specifically, the architecture consists of a down-
sampling (encoding) and an up-sampling (decoding) stage.
The down-sampling stage has five convolutional blocks each
consisting of two convolutional layers with a filter size of 3 x 3
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and stride of 1 followed by maxpooling with stride 2 x 2. The
upsampling stage consists of deconvolution layer with a filter
size of 3 x 3 and stride of 2 x 2 which doubles the size of
the feature maps. Rather than using regular cross-entropy based
loss function, we utilize a soft dice metric based loss function
to train the U-Net model (Milletari et al., 2016). The soft dice
is a differentiable form of the original dice similarity coefficient
(DSC) which is the most widely used metric to evaluate tumor
segmentation performance. The model is trained using mini-
batch gradient descent (GD) technique which minimizes the soft
dice cost function. Figure 2C shows the detailed architecture of
the U-Net model to perform the BraTSs task.

Feature-Learned Brain Tumor Segmentation Using
Fully Convolutional Networks

Fully convolutional networks (FCNs) have been successfully used
for many image processing and computer vision tasks (Long
et al., 2015; Zhao et al., 2016). FCNs build FCNs that take
an input of arbitrary size and produce a correspondingly sized
output of relevant characteristics with efficient inference and
learning. Accordingly, FCN contains only convolutional layers.
It removes any redundancy when computing classification maps
on large inputs. The architecture also features an encode (down-
sampling) and a decode (up-sampling) stage. The encode stage
of the proposed architecture has five convolutional blocks. Each
block is composed of two convolutional layers with a filter size of
3 x 3 and stride of 1 followed by maxpooling with stride 2 x 2.
The decode stage consists of deconvolution layers with a filter
size of 3 x 3 and stride of 2 x 2 which doubles the size of the
feature maps. The framework of the proposed method is shown in
Figure 2D, which uses VGG-11 (Simonyan and Zisserman, 2014)
as a pre-trained model.

Semantic Label Fusion of Feature-Based and
Feature-Learned Deep Radiomics for Improved
Tumor Segmentation

The different deep radiomics-based models discussed above are
first independently implemented and trained for multi-class
abnormal tumor tissue segmentation. In order to complement
both feature-based and feature-learned radiomics methods, we
implement a label fusion method (Figure 2E) for improved
tumor segmentation. The label fusion is then performed to obtain
the fused output F; for volume v as follows:

F=ulJc: (1)

iev

WhereU;, and C; denote the U-Net and FCN outputs given
MRI volume v, respectively.

The outputs of U-Net and FCN architectures offer excellent
specificity, albeit with varying sensitivity performance. The union
operation in equation (1) essentially preserves the specificity
while improving the sensitivity by combining the within-class
regions from each output. Similarly, this method is used for
label fusion between the patch-wise CNN based segmentation
algorithm and the hand-crafted feature-based algorithm for
better segmentation performance.

Survival Prediction

The survival prediction model includes prediction of survival
risk classification (short, medium, and long-term survival).
Subsequently, an overall survival regression is performed based
on the survival risk class label. Both classification and regression
models are trained on quantitative- radiomics features obtained
from the segmented tumor. Recursive feature selection (RES)
method is used to select the features that are used in the
classification model. Finally, Cox regression is used as a feature
selection method in the overall survival regression model. Three
overall regression models are trained: long-regression model,
mid-regression model, and short regression model.

Feature Extraction

Feature extraction is the first step of the overall survival
prediction task. Different quantitative imaging features
(of around 31,000) are extracted from the different types of
segmented abnormal tissues (edema, enhancing tumor, and
tumor core) obtained in the previous step. These features include
texture, volumetric and area-related features, histogram-graph
features, and Euler characteristics (vertices, edges, and faces). The
heterogeneity in Glioblastoma may be quantified using texture
and histogram-graph features; while the shape of the tumor may
be effectively captured using volumetric and Euler characteristic
features (Pope et al., 2005; Aerts et al., 2014; Rathore et al., 2016).

A detailed breakdown of the extracted features is as follows: a
total of 1107 texture features (Vallieres et al., 2015) are computed
from raw MRI sequences, and the features are extracted from
eight texture representations of the tumor volume [Texton filters
(Leung and Malik, 2001); texture-fractal characterization using
both our PTPSA (Iftekharuddin et al., 2003) modeling and
multi-resolution mBm (Islam et al., 2008) modeling; and the
characterization Holder Exponent (Ayache and Véhel, 2004)
modeling of the tumor region]. Furthermore, six histogram-
based statistics (mean, variance, skewness, kurtosis, energy, and
entropy) features are extracted from the edema, enhancing
tumor, and necrosis tissues.

Moreover, 13 volume-related features are considered: the
volume of the whole tumor, the volume of the whole tumor
with respect to the brain, the volume of sub-regions (edema,
enhancing tumor, and necrosis) divided by the whole tumor, the
volume of sub-regions (edema, enhancing tumor, and necrosis)
divided by the brain, the volumes of the enhancing tumor
and necrosis divided by the edema, the summation of the
volume of the edema and enhancing tumor, the volume of the
edema divided by the summation of the volume of enhancing
tumor and necrosis, and the volume of the necrosis divided
by the summation of the volume of the edema and enhancing
tumor. The tumor locations and the spread of the tumor in
the brain are computed. Another nine area-related properties
(area, centroid, perimeter, major axis length, minor axis length,
eccentricity, orientation, solidity, and extent) are computed from
three viewpoints (x, y, and z-axes) of the whole tumor.

Furthermore, a total of 832 features are extracted from the
histogram graph of the different modalities of the whole tumor,
edema, enhancing and necrosis regions. These features represent
the frequency at different intensity bins (of 11,15, and 23) and
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the bins of the max frequency. Finally, we compute the Euler
characteristic (Turner et al., 2014) of the whole tumor, edema,
enhancing and necrosis, for each slice. The Euler characteristic
features are computed on the tumor curve, at 100 points, and
at 72 different angles. Then, the Euler characteristic features
are integrated over all the slices. As a result, each patient is
represented by 4 (whole tumor, edema, enhancing, and necrosis)
Euler characteristic feature vectors. Each vector has a size of 7200
(100 points x 72 angles).

Survival Prediction Models
Two different survival prediction models are proposed for
survival prediction. The first model is a tree-based method for
overall-survival regression prediction using RF regression model.
We have employed RF due to its efficiency, robustness and
the flexibility in utilization for both multi-class classification
and regression tasks (Breiman, 2001). Additionally, RF does not
require extensive hyper-parameter tuning, and is resilient to
overfitting. These traits make RF preferable over more common
models such as artificial neural networks especially when the
training data is limited. The complete pipeline for the survival
regression using RF is illustrated in Figure 3A. This model uses
significant, predictive and important features selected from the
above-mentioned texture, histogram-graph, and volumetric and
area-related features. A three-step feature selection method is
utilized as follows. A univariate cox regression is fitted on every
extracted feature, and features with p-value less than 0.05 are
considered as significant. A second univariate cox regression is
fitted on the quantitative copy of the significant features. The
quantitative copy is obtained by thresholding the significant
feature around its median value. The last step is performed
to ensure that each significant feature is also able to split the
data set into long vs. short survival. Then, RF regression model
with tenfold cross validation is used to evaluate the model
at each iteration.

The model in Figure 3A is used as a baseline to obtain
a second more comprehensive survival prediction pipeline
as shown in Figure 3B. We incorporate additional features
such as Euler characteristics. The features for the updated
model are then selected using RFS method as follows. First,
we perform RFS1 on the Euler features alone. Next, another
RFS2 on the remaining features (texture, volumetric, histogram-
graph based) is performed. In addition, the overall-survival
regression model uses Cox regression to select significant features
with p-value < 0.05. Moreover, we introduce a state-of-the-
art Extreme Gradient Boosting (XGBoost) (Chen and Guestrin,
2016) based regression technique for stepwise survival risk
classification and overall-survival regression prediction using
the selected features. The XGBoost based regression model
is applied to each of the three groups (short, medium, and
long) to obtain survival duration in the number of days,
respectively. One of the major advantages of XGBoost its
utilization of L1 and L2 regularization. L1 regularization
handles sparsity, whereas L2 regularization reduces overfitting
(Chen and Guestrin, 2016).

It is worth noting that we have not utilized any neural network
model for the survival prediction because the sample size in this

study is not large enough to ensure good training in a neural
network setting.

RESULTS

Dataset

This study uses BraTS18 training, validation and testing dataset
(Menze et al,, 2015; Bakas et al., 2017a,b), and BraTS17 training,
validation, and testing datasets for patient survival prediction
analysis. Both BraTS17 and BraTS18 datasets contain a total of
163 Glioblastoma [high grade glioma (HGG)] cases for training,
with an overall survival, defined in days, and the age of patient
at diagnosis, defined in years. The training dataset provides four
modalities [T1, post-contrast T1-weighted (T1Gd), T2-weighted
(T2), and T2 Fluid Attenuated Inversion Recovery (FLAIR)]
along with the ground truth segmentation of multiple abnormal
tissues (enhancing, edema, necrosis, and non-enhancing) in the
tumor. Overall survival risk is classified into three survival
groups: long (greater than 15 months), medium (between 10 and
15 months), and short (less than 10 months). In addition, for
validation purposes, we use the validation datasets of BraTS17
and BraTS18. BraTS17 validation dataset consists of 33 cases
while that for BraTS18 consists of 28 cases for overall survival
prediction purposes. BraTS17 testing dataset consists of 95 cases
while that for BraTS18 offers 77 cases for testing the overall
survival prediction performance.

Overall Survival Prediction Framework

Evaluation

As discussed in the Methods section, the proposed framework
consists of several feature-based and feature-guided deep
radiomics-based automated BraTS methods and two distinct
deep radiomics based automated survival prediction pipelines.
Accordingly, we obtain extensive performance evaluation using
two pipelines: the first one combines CNN-based patch-wise
segmentation algorithm, radiomics feature-based segmentation
algorithm, and RF based survival prediction method (henceforth
SP1), while the second combines U-Net and FCN based
segmentation methods with the XGBoost based survival
prediction algorithm (henceforth SP2). We first participated
in the BraTS 2017 challenge and the specific combination of
machine learning methods with RF survival prediction model
(known as SP1) offered the best overall performance in this
Challenge. We subsequently participated in the BraTS 2018
challenge and the augmented model (known as SP2) offered the
best performance using the validation dataset. The mean dice
segmentation performance (of enhancing tumor, whole tumor,
and tumor core) for SP1 and SP2 is illustrated in Table 1. The
mean dice segmentation metrics for different sub-tissues are
evaluated using the online evaluation platform of the BraTS
challenge (CBICA IPP at'). A detailed performance analysis of
U-Net, FCN and their sematic-label fusion results are illustrated
in Table 2. Figure 4 shows an example of segmentation outcomes
using U-Net, FCN and semantic-label fusion of U-Net and FCN.

'https://ipp.cbica.upenn.edu
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FIGURE 3 | Survival prediction pipelines proposed in the methods. (A) The first survival prediction model (SP1) pipeline using RF regression classifier, and (B) the
second survival prediction model (SP2) pipeline using XGBoost.

For SP1 the survival prediction features are the age and of the tumor, 9 features extracted from the Holder exponent
40 texture and volumetric features. The distribution of the representations of the tumor, 6 features represent the histogram
40 features is as follows: 12 features extracted from Texton ofthe abnormal tissues, 5 from the raw MR modality of the tumor
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TABLE 1 | Performance of SP1, SP2, and modified-SP2 methods with BratS17
and BraTS18 datasets.

Survival prediction Segmentation

performance performance

Model/dataset Accuracy MSE Dice Dice Dice

enhanced whole tumor

tumor tumor core

SP1/BraTS17 0.67 78,929 - - -
training
SP1/BraTs17 0.667 2,09,908 0.746 0.815 0.698
validation
SP1/BraTS17 test 0.579 2,45,780 0.733 0.832 0.725
SP2/BraTS18 0.73 91,585 - - -
training
SP2/BraTS18 0.679 1,53,466 0.765 0.876 0.761
validation
SP2/BraTS18 test 0.519 3,67,240 0.705 0.857 0.767
RF-SP1/BraTS18 0.464 1,70,737 - - -
validation
XGBoost- 0.636 2,18,097 - - -
SP2/BraTS17
validation
Modified- 0.718 99,358 - - -
SP2/BraTS18
training
Modified- 0.679 1,27,697 - - -
SP2/BraTS18
validation

The evaluation of validation is performed using the online evaluation platform of
CBICA IPP (https://ipp.cbica.upenn.edu).

TABLE 2 | Performance of U-Net, FCN and their Semantic-label fusion using
BraTS18 validation dataset.

Model Dice enhanced Dice whole Dice tumor
tumor tumor core
FCN 0.706 0.850 0.727
U-Net 0.697 0.835 0.719
Semantic-label fusion 0.714 0.861 0.740

and sub-regions, 4 describe the volume of the tumor and the sub-
regions, and 4 features are extracted from the tumor area and
major axis length.

In comparison, as discussed above and shown in Figure 3B
for SP2, all relevant features are extracted from the ground truth
cases available with BraTS18 training dataset. The subsequent
RFS for Euler features (28,000) alone generates 39 features.
The distribution of the 39 Euler features includes: 16 features
computed around the contour of ET, 16 features computed
around that of WT, and 7 features computed around that of
edema, respectively. The application of RFS on the remaining
features produces additional 23 texture features, 4 histogram
graph features, and 8 area features of the edema, ET, and WT,
respectively. The XGBoost with leave-one-out cross-validation
(LOOCV) is employed on the selected 74 features and the
age to predict three corresponding survival classes (short,
medium, and long). This yields a classification accuracy of 0.73

[95% confidence intervals (CI): 0.655-0.797] for the BraTS18
training dataset.

First, we establish the performance of both SP1 and SP2
methods using the BraTS17 and BraTS18 training, and validation
datasets. The training dataset performance is obtained through
LOOCYV analysis. The performance evaluation of methods using
BraT$ validation datasets is restricted to the online evaluation
platform of the organizer of the BraTS challenge and must be
performed during a specific time period during the challenge.
Note that the second pipeline (SP2) is developed after the BraT$
2017 challenge is concluded, and hence 2017 validation portal is
no longer available for evaluation. However, a fair comparison
between the pipelines can still be obtained through the training
data evaluations and the validation evaluations of respective
challenge years. The results are summarized in Tables 1, 3.

The results in Table 1 for training and validation illustrate
that SP2 model offers better performance in accuracy over
that of SP1 model. SP2 model also obtains improvement over
SP1 in validation MSE. This performance improvement may
be attributed to improved abnormal tumor tissue segmentation
as well as the use of additional features obtained using better
feature selection and regression methods. Note that SP1 model
has been ranked the first in the BraTS 2017 challenge for
survival prediction category among 17 teams globally. The
overall high MSE for survival prediction is particularly due to
the wide range within long term survival category resulting in
large prediction errors. Further, note that the MSE of SP2 for
the BraTS18 training is the sum of the three MSE (Table 4)
values obtained for the short-, medium-, and long-regression
models shown in Table 4. Finally, the test results for both SP1
for BraTS17 and SP2 for BraTS18 in Table 1 show that SP1
performed better in patient-survival prediction than that for
SP2. This performance difference for SP1 and SP2 models is
further analyzed below.

Comparative Evaluation of Survival
Prediction Performance With SP1

and SP2

Table 3 shows the confusion matrix of both SP1 and SP2 and
relevant statistics for each class in the classification training
model for survival risk prediction. The sensitivity and balanced
accuracy of the medium survival group in SP2 is the lowest when
compared to the other two survival groups.

The top four important features as ranked by XGBoost are:
tumor extent in z-axis, the width of the enhance tumor computed
from x-axis point of view, contour around the edema contour and
enhance tumor. The mean value of each of these four features is
able to significantly (p-value < 0.05) stratify the 163 cases into
two risk groups (low-risk and high-risk) as illustrated in Figure 5.

The second step in the survival prediction is to obtain
individual regression training models corresponding to the short,
medium, and long survival classes. These short-, medium-, and
long-regression models use features selected distinctly for each
survival class using Cox regression (with p-value < 0.05). The
number of significant features selected for the short-, medium-,
and long-regression models are 83, 51, and 148, respectively.
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FIGURE 4 | Example input slices from BraTS18 training dataset and segmentation outcomes: (A) Flair sequence; (B) the ground truth; (C) the segmentation
outcome of U-Net; (D) the segmentation outcome of FCN; and (E) semantic label fused segmentation.

TABLE 3 | Confusion matrix of SP1, SP2, and modified-SP2, and some statistics derived from the confusion matrix based on each survival label in the training model.

SP1 2017 SP2 2018 Modified-SP2 2018
Reference Reference Reference
Long Med Low Long Med Low Long Med Low
Predictions
Long 32 7 10 43 13 4 44 11 4
Med 24 34 12 5 18 7 18
Low 0 1 43 8 ih 58 5 13 55
Total number of cases 56 42 65 56 42 65 56 42 65
Statistics
Sensitivity 0.571 0.810 0.662 0.768 0.429 0.892 0.786 0.429 0.846
Specificity 0.841 0.702 0.990 0.841 0.934 0.806 0.860 0.886 0.816
Balanced accuracy (Sen + Spec)/2 0.706 0.756 0.826 0.804 0.681 0.849 0.823 0.657 0.831
Positive prediction value (PPV) 0.653 0.486 0.977 0.717 0.692 0.753 0.745 0.581 0.753
Negative prediction value (NPV) 0.789 0.914 0.815 0.874 0.825 0.919 0.885 0.817 0.889
TABLE 4 | Performance of LOOCV of the three regression models in SP2 and modified-SP2 in the XGBoost overall survival model.
SP2 Modified-SP2
Root mean square MSE Mean absolute Root mean square MSE Mean absolute
error (RMSE) error (MAE) error (RMSE) error (MAE)
Long-regression model 294177 86,540 217.714 302.069 91,246 209.253
Medium-regression model 35.629 1,269 28.190 40.702 1,657 34.971
Short-regression model 61.449 3,776 50.402 80.340 6,455 65.094

Table 4 illustrates the performance of LOOCV with XGBoost
for the selected features using specified survival risk cases in
BraTS18 training cases.

Note that the wide range of the overall survival of the long-
survival group (greater than 15 months) may cause the RMSE of

the long-regression model to have the highest RMSE (Table 4).
This also may cause the high mean square error when using the
validation dataset (Table 1). The range of the overall survival
of the short-survival group is 10 months, whereas the medium-
survival group is 5 months.
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Critical Analysis of Features and
Performance of the Survival
Prediction Pipelines

This section provides a critical analysis of the features and their
effect on the survival prediction performance. As mentioned
in the previous sections, the features that are derived from
different abnormal tissue types of the segmented tumor region
significantly contribute to the survival prediction performance
(the abnormal tissue segmentation dice performance of SP1
and SP2 are illustrated in Table 1). Accordingly, we visualize
the features extracted from different abnormal tissue types
of the segmented tumor. The visualization is performed
using one of the most widely used high-dimensional data
visualization techniques known as t-Distributed Stochastic

Neighbor Embedding (Maaten and Hinton, 2008) (t-SNE). First,
t-SNE is used to explore the features obtained from different
abnormal tissue types from the segmented tumor region and
analyze the effect of these features on the performance of
the survival prediction task using BRAST 2017 and BRAST
2018 dataset.

For the SP1 pipeline, we extract a total of 40 features from
the sub-tissue types of the segmented tumor region. The features
extracted in SP1 are as follows: 36 features for whole tumor,
2 features for enhanced tumor, and 2 features for edema.
Figures 6A-C shows a visualization of these features across
different abnormal tissue types for BraTS17 training, validation
and testing data, respectively. These figures demonstrate that
the extracted features for segmentation offer clear discrimination
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selected features of SP1 clustered based on their tissue types using BraTS17

(A) training; (B) validation; and (C) testing. Note that features are clustered
based on their origin (subtissue type).

among different abnormal tissue types in the tumor. This
demonstrates the effectiveness of the segmentation pipeline in
SP1. Next, we visualize the feature clusters for patient survival
categories: long, medium and short term. In this case we consider
all 40 features obtained from the 163 BraTS17 training data as
mentioned above and explore the grouping against the tumor
risk labels using the t-SNE technique. Figure 7 shows the
visualization of the corresponding features for long, medium
and short risk labels. Note that all the visualization outcomes
shown are obtained after extensive hyper-parameter tuning of
t-SNE to produce the best possible results. Figure 7 demonstrates
that though there is some separation of corresponding features
between the long and short categories, the medium category is
mixed with both long and short categories. This suggests that it
is still difficult to visualize a clear separation of extracted features
for survival prediction task with the available patient dataset for
this study. The corresponding survival prediction performance of
SP1 pipeline using testing dataset is as shown in Tables 1, 3. As
mentioned above, though the SP1 pipeline was ranked the first
place in BraTS$ 2017 challenge, the feature distribution in Figure 7
suggests inherent challenge in extracting representative features
for survival prediction task.

Next, we explore the features and their effect on the
performance of our SP2 pipeline using the BraST18 dataset. We
extract a total of 74 features and the age for the SP2 pipeline.
The features extracted in SP2 are as follows: 43 features for
whole tumor, 22 features for enhanced tumor, and 8 features
for edema, and 1 feature for necrosis. Figures 8A-C shows
a visualization of these features across different tissue types
for BraTS18 training, validation and testing data, respectively.
Figure 8 demonstrates that these features also offer a clear
separation for different abnormal tissue types in the tumor.
Therefore, this further demonstrates the effectiveness of our
segmentation pipeline in SP2 and verifies that the extracted
features are highly representative of the different abnormal tissue
regions (the abnormal tissue segmentation dice performance of
SP2 is illustrated in Table 1). Subsequently, Figure 9 shows the
visualization of the 74 features in terms of long, medium and
short risk labels using the 163 sample BraTS18 training data.
Our analysis suggests that the tSNE technique again fail to group
the features in long, medium and short categories. Though there
is some separation between the corresponding features for long
and short categories, the features for medium category mixes
with both short and long categories for multiple subjects, quite
similarly to the visualization of SP1. This poor separation may
still be due to the lack of sufficient representative strength of
the features for categorizing different risk labels. Consequently,
Table 1 shows that our proposed SP2 pipeline achieves 0.73,
0.679, and 0.519 accuracy on the BraTS18 training, validation
and testing data.

Additionally, we validate our RF survival prediction in SP1
(RF-SP1) using BraTS18 validation set. We also validate XGBoost
survival prediction in SP2 (XGBoost-SP2) using BraTS17
validation dataset. The results are summarized in Table 1.
Using BraTS17 validation dataset, RF-SP1 model achieves 67.7%
accuracy, whereas XGBoost-SP2 model achieves 63.6%. Using
BraTS18 validation dataset, RF-SP1 model achieves 46.4%
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accuracy, whereas XGBoost-SP2 model achieves 67.9% accuracy.
These results indicate that the XGBoost-SP2 combination
performs considerably better than that of RF-SP1 with BraTS18

dataset and reasonably well with BraTS17 dataset, respectively.
Note that the ground truth of BraTS17 and BraTS18 validation
dataset are not provided. As a result, we have segmented BraTS17
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and BraTS18 validation dataset using the semantic label fusion
model of CNN and RF (Vidyaratne et al., 2018) and the semantic
label fusion of U-Net and FCN, respectively.

Comparison of Survival Prediction With
State-of-the-Art Works

Comparison of the proposed survival prediction pipelines
SP1 and SP2 with few state-of-the-art methods in literature
is discussed next. Table 5 summarizes the performances
of these state-of-the-art models and presents a comparison
with our proposed framework (SP2). Chato et al. (2018)
propose using histogram features extracted from denoised
MR images (by using 2 level Daubechies wavelet transform)
in a support vector machine to predict overall survival
Their method achieves a 10-fold cross validation accuracy
of 0.667 using BraTS17 training dataset. Kao et al. (2018)
extract volumetric, spatial, morphological, and tractographic
features from MR images. Feature normalization and selection
is performed, and the selected features are trained in a
support vector machine model. Their proposed model achieves
an accuracy of 0.7 using BraTS18 training dataset and an
accuracy of 0.5 using BraTS18 validation dataset. Soltaninejad
et al. (2017) utilize volumetric features along with RF to
predict overall survival. Their method achieves five-fold cross
validation accuracy of 0.638 using BraTS17 training dataset.
The results demonstrate that our proposed framework achieves
a higher accuracy in overall survival prediction compared
to the current-state-of-the-art models applied to the same
datasets. Note that, unlike our proposed SP1 and SP2 pipelines,
the reported performance for all these other methods in
Table 5 are obtained by the authors themselves. In addition,
a comparison between the performance of our segmentation
model and state-of-the-art models is illustrated in Table 6.
Though the abnormal brain tumor tissue segmentation results
for other methods in the 2018 Challenge (as shown in
Table 6) are better than our semantic-label fusion method,
our segmentation results are useful to offer the best survival
prediction performance in the 2018 BraTS Challenge as shown
in Table 1.

Modified-SP2

In order to reduce the high dimensionality of the features
in SP2 classification and regression steps, we modify SP2
in Figure 3B as follows: (1) calculate and rank the feature
importance for each classification and regression model;
(2) select features that have a relative scaled importance
greater than 50%; and (3) train the modified selected
features in a new classification and regression training models
utilizing XGBoost.

The resulting 30 significant features are applied in the
classification step of the modified-SP2. The distribution of these
features is as follows: 13 features represent Euler characteristics,
7 features represent volumetric and area-related properties,
4 histogram-graph based features, 5 texture features, and one
feature with Age information.

The number of significant features used in the short-,
medium-, and long-regression models of the modified-SP2
is 11, 9, and 11, respectively. The distribution of the features
in the modified short-regression model are as follows: 2
volumetric and area-related features, 1 histogram-graph
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based features, 7 texture features, and one feature with Age
information. The features employed in the modified med-
regression model are 5 volumetric and area-related features,
3 texture features, and Age. Whereas the features of the
modified long-regression model are 2 volumetric and area-
related features, 8 texture features, and one feature with
Age information.

The modified-SP2 achieves cross-validated accuracy of 0.718
as illustrated in Table 1. Table 3 illustrates the statistics
of its confusion matrix in the classification training model.
Table 4 illustrates the performance of the modified regression
training models. Additionally, the modified-SP2 is validated
using BraTS18 validation set and its performance is illustrated
in Table 1. Note that the different performances of SP2 and
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TABLE 5 | Comparison of our proposed survival prediction pipeline with state-of-the-art methods in literature.

References Algorithm

Validation method Performance Dataset

Chato et al., 2018
Kao et al., 2018

Histogram features along with SVM
Volumetric, spatial, morphological, and
tractographic features along with SVM
Soltaninejad et al., 2017
XGBOOST overall survival
prediction model (SP2)

Volumetric features along with Random Forest

Texture, volumetric, histogram-graph, and
Euler features Along with XGBoost

10-fold cross validation accuracy of 0.667 BraTS17 training dataset

5-fold cross-validation Accuracy of 0.7 BraTS18 training dataset

5-fold cross validation Accuracy of 0.638 BraTS17 training dataset

LOOCV Accuracy of 0.73 and BraTS18 training dataset
MSE of 91585.51

Validation dataset Accuracy of 0.679 and BraTS18 validation dataset
MSE of 153466.3

modified-SP2 are almost similar when using the BraTS18 training
and validation dataset statistics of each class in SP2 and the
modified-SP2 are almost similar. This can be explained by the fact
that XGBoost provides L1 and L2 regularization.

Additionally, the modified-SP2 is validated using BraTS18
validation set and its performance is illustrated in Table 1.

DISCUSSION AND FUTURE WORKS

This work proposes a novel framework for fully automated
deep radiomics-based Glioblastoma segmentation and survival
prediction. The overall framework is designed as two-step
process where automated tumor segmentation is carried out
in the first step, and the segmentation outcome is then
used for survival prediction in the second step. The accurate
segmentation of abnormal tissue tumor types such as necrosis,
edema, and enhancing tissue is critical to ensure robust
survival prediction performance. Consequently, several deep
learning- and radiomic-feature based segmentation algorithms,
and a semantic label fusion are introduced to obtain sufficient
segmentation performance. The framework also includes two
survival prediction algorithms SP1 and SP2 in step two,
represented by the use of feature types, feature selection,
regression and classification methods.

The primary survival pipeline (SP1) combines patch-wise
CNN based algorithm and radiomics based algorithm using
label fusion for segmentation, and applies the RF based survival
prediction algorithm to obtain the final output. The second
pipeline (SP2) combines U-Net and FCN segmentation with
an XGBoost based survival prediction algorithm. As shown in
Figure 1, the features used in both SP2 and SP1 offers an excellent
segmentation of different abnormal tissue type. The functionality
of SP2 is further enhanced by using additional features extracted

TABLE 6 | Comparison to our proposed with state-of-art models that have used
BraTS18 testing dataset.

Dice enhanced Dice whole Dice tumor

References tumor tumor core
Semantic-label fusion method (SP2) 0.705 0.857 0.767
Myronenko, 2018 0.766 0.884 0.815
Isensee et al., 2018 0.779 0.878 0.806
Zhou et al., 2018 0.778 0.884 0.796

from the subtissues (edema, enhance tumor, and necrosis) and a
two-step classification and regression method. Different studies
(Pierallini et al., 1998; Lacroix et al., 2001; Maldaun et al.,
2004; Jain et al., 2014) correlate between survival prediction in
glioblastoma and different subtissues. SP2 shows improvements
over our primary survival prediction model (SP1) (Shboul et al,,
2017) with LOOCV accuracy increase to 0.73 from 0.67 for
training datasets. Whereas the modified-SP2 achieves cross-
validation accuracy of 0.718 using the training dataset.

There are a few limitations of the proposed work. First,
even though the total number of cases for survival training
dataset is 163, both BraT$S 2017 and BraTS$ 2018 required that
the data must be divided into three separate survival-group
regression models. Consequently, the number of training cases
are divided among three models as follows: 65 cases for short-,
42 cases for medium- and 56 cases for long-regression models,
respectively. A larger dataset may be required when training
each regression model to improve the performance. Second, this
study may benefit from additional clinical data such as Gender
and Karnofsky Status to strengthen the reliability of the different
survival regression and classification models. Finally, the overall
survival risk classification performance of the state-of-the-art
methods in literature, including the pipelines proposed in this
work, may be improved further. The visualization of survival
features suggests the difficulty in separating the high dimensional
data into the three distinctive risk classes. This suggests the need
for further research in novel feature engineering for survival
prediction. Following the efficacy of deep radiomics features
in the tumor segmentation step, a possible future direction to
further improve the risk classification performance may involve
use of deep learning methods to learn all possible features in the
survival pipeline.
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It is a general assumption in deep learning that more training data leads to better
performance, and that models will learn to generalize well across heterogeneous
input data as long as that variety is represented in the training set. Segmentation of
brain tumors is a well-investigated topic in medical image computing, owing primarily
to the availability of a large publicly-available dataset arising from the long-running
yearly Multimodal Brain Tumor Segmentation (BraTS) challenge. Research efforts and
publications addressing this dataset focus predominantly on technical improvements of
model architectures and less on properties of the underlying data. Using the dataset and
the method ranked third in the BraTS 2018 challenge, we performed experiments to
examine the impact of tumor type on segmentation performance. We propose to stratify
the training dataset into high-grade glioma (HGG) and low-grade glioma (LGG) subjects
and train two separate models. Although we observed only minor gains in overall mean
dice scores by this stratification, examining case-wise rankings of individual subjects
revealed statistically significant improvements. Compared to a baseline model trained on
both HGG and LGG cases, two separately trained models led to better performance
in 64.9% of cases (p < 0.0001) for the tumor core. An analysis of subjects which did
not profit from stratified training revealed that cases were missegmented which had
poor image quality, or which presented clinically particularly challenging cases (e.g.,
underrepresented subtypes such as IDH1-mutant tumors), underlining the importance
of such latent variables in the context of tumor segmentation. In summary, we found
that segmentation models trained on the BraTS 2018 dataset, stratified according to
tumor type, lead to a significant increase in segmentation performance. Furthermore, we
demonstrated that this gain in segmentation performance is evident in the case-wise
ranking of individual subjects but not in summary statistics. We conclude that it may
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be useful to consider the segmentation of brain tumors of different types or grades as
separate tasks, rather than developing one tool to segment them all. Consequently,
making this information available for the test data should be considered, potentially
leading to a more clinically relevant BraTS competition.

Keywords: magnetic resonance imaging, brain tumors, automatic segmentation, deep learning, training strategy,

data stratification

1. INTRODUCTION

Gliomas are primary brain tumors which arise from glial
cells. According to the World Health Organization (WHO)
classification of tumors of the central nervous system
(CNS) (Louis et al., 2016), they can be grouped into different
tumor grades based on the underlying histology and molecular
characteristics. Increasing tumor grade indicates the increasing
malignancy of the tumor. Glioma are managed depending
on grade, with treatment strategies ranging from tumor
resection followed by combined radio- and chemotherapy to
a “watch and wait” approach (Stupp et al., 2005; Grier, 2006).
Glioblastoma are the most aggressive type of glioma (WHO
grade IV) and make up 45% of all gliomas (Ostrom et al,
2014). The prime imaging technique in brain tumor diagnostics
is Magnetic Resonance Imaging (MRI) (Essig et al, 2012).
Standard acquisition protocols used to perform initial diagnosis
and treatment monitoring include T1-weighted, T1-weighted
gadolinium-enhanced, T2-weighted, and T2-weighted with
fluid attenuated inversion recovery (FLAIR) sequences (Wen
et al, 2010; Ellingson et al, 2015). The typical radiological
appearance of a glioblastoma features a disrupted blood-brain
barrier causing ring-enhancing lesions with central necrosis and
peritumoral edema. In contrast, low-grade astrocytic tumors
exhibit typically no contrast enhancement and are missing
central necrosis (Pierallini et al., 1997).

In the case of glioblastoma, recent studies led to the discovery
of a profound genetic heterogeneity among, and even within,
tumors (Verhaak et al., 2010; Sottoriva et al., 2013). It has been
shown that the underlying genetic and molecular heterogeneity
can be associated with variations in imaging phenotype such
as changes in tumor compartment volumes (Lai et al., 2013;
Grossmann et al., 2016), contrast enhancement (Carrillo et al.,
2012; Treiber et al., 2018), radiomic signatures (Gevaert et al.,
2014), and tumor location (Carrillo et al., 2012; Ellingson et al.,
2012). The imaging appearance of glioblastoma can further be
altered by treatment causing radiation necrosis (Mullins et al.,
2005) and pseudoprogression and -response (Hygino da Cruz
et al., 2011), respectively. As a consequence, a machine learning
segmentation algorithm needs to be capable of generalizing
across this heterogeneity of glioblastoma imaging phenotypes.

Brain tumor segmentation is a well-investigated topic with a
vast amount of available methods and yearly organized MICCALI
Brain Tumor Segmentation (BraTS) Challenges since the year
2012 (Menze et al., 2015; Bakas et al., 2017c), serving as a
public platform for algorithm comparison. With the rise of
deep learning, brain tumor segmentation methods experienced
significant gains in performance (Bakas et al., 2018). One of the

central promises of deep learning methods is that they can be
fed with raw data and are capable of automatically uncovering
the underlying representation relevant for the task at hand
(e.g., segmentation) from that data (LeCun et al, 2015). As
a consequence, the time-consuming and error-prone manual
engineering of features traditionally used in machine learning
has been rendered obsolete. Recently, it was shown for vision
tasks that model performance increases logarithmically based
on volume of training data (Sun et al., 2017). This aligns with
the general notion that more training data leads to a better
generalization of a machine learning algorithm. Within the
context of BraTS Challenges, deep learning methods are usually
trained ad hoc on all of the available data, disregarding underlying
latent factors such as genetic characteristics or even tumor
grades. Although the tumor type is available to the challenge
participants for the training data, this information is withheld
for the validation and test data. Since part of the BraTS dataset
is coming from The Cancer Imaging Archive (TCIA) (Bakas
et al., 2017a,b,c), additional relevant information such as e.g.,
patient’s gender, mutation subtypes [Isocitrate dehydrogenase
(IDH), 1p19q co-deletion] and methylation status of MGMT-
promotor could potentially be added as well.

The metric of choice for algorithm comparison in biomedical
image segmentation challenges is the Dice coefficient, which was
used in 92% of the 383 segmentation tasks reported in Maier-
Hein et al. (2018). Predominantly, the Dice coeflicient is reported
in terms of summary statistics (mean/median) over patient
cases and model comparison is performed on the basis of
such summary statistics (metric-based ranking). Recently, the
BraT$S Challenge adopted a case-based ranking scheme. While
metric-based rankings lead to more robust rankings than case-
based rankings (Maier-Hein et al., 2018), it can be argued that
distinct performance differences for individual patients may
be obfuscated.

We hypothesize that deep learning methods for brain tumor
segmentation can be significantly improved by taking into
account latent factors along with tumor image appearance during
model training. The purpose of this study is to demonstrate
the impact of including prior knowledge of a particular latent
factor (tumor grade) on the performance of a recently published,
top-ranked deep learning method (McKinley et al, 2019a).
Furthermore, the impact is studied employing both a metric-
based and case-based rank analysis.

The idea of leveraging prior information about tumor grades
to improve segmentation has been presented as an extended
abstract to the International Conference on Medical Imaging with
Deep Learning (MIDL) along with preliminary results (Meier
et al., 2019).
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2. MATERIALS AND METHODS

2.1. Study Data

The study is based on publicly-available data of the BraTS 2018
Challenge (Menze et al., 2015; Bakas et al., 2017¢). In particular,
the training dataset was used, which includes 75 patients with
low-grade glioma (LGG) and 210 patients with high-grade
glioma (HGG). The imaging data encompasses four MR image
sequences (T1-weighted, T1-weighted with contrast agent, T2-
weighted, and T2-weighted FLAIR sequences), which are part of
the consensus recommendations for a standardized brain tumor
imaging protocol in clinical trials (Ellingson et al., 2015). The
imaging data stem from 19 different institutions, which relied
on different MR scanners and acquisition protocols. Manual
segmentations of three tumor compartments were available:
contrast-enhancing tumor, non-enhancing/necrosis combined,
and edema. The regions which were considered for evaluation in
the BraTS 2018 challenge as well as in the study at hand were:
contrast-enhancing tumor, tumor core (all compartments except
edema), and whole tumor (all compartments). More details on
the preprocessing and the evolution of the BraTS dataset can be
found in Bakas et al. (2017¢).

2.2. Automatic Segmentation
The network architecture used for the automatic segmentation
is equivalent to the model ranked third in the BraTS 2018
challenge (McKinley et al., 2019a). In brief, it is a U-net-style
structure with densely connected blocks of dilated convolutions.
The segmentation is performed slice-wise where the input data
includes the two neighboring slices from below and above from
all four image modalities (i.e., input dimension is batch x 4 x 5 x
192 x 192). The final segmentation is the result of ensembling the
predictions from all three directions (sagittal, axial, and coronal).

In a pre-processing step, the data are first normalized to
zero mean and unit variance. Data augmentation consists of a
combination of randomly flipping the images along the midline
and random rotations [angle U(—15,+15)] around all
principal axis. Additionally, the standardized voxel intensities are
randomly shifted [amount ~ N(0,0.5)] and scaled [factor ~
N(1,0.2)].

The networks were trained with a focal loss function, RMSprop
as optimizer with a cosine-annealing learning rate schedule, and
a batch-size of two.

2.3. Stratified Model Training

Three different models were trained independently, each with
a five-fold cross-validation: A baseline model with all available
training data (number of samples N = 285), an HGG-only
model (N = 210), and an LGG-only model (N = 75). Network
architecture and hyperparameters were the same for all models
which were trained on a Nvidia GeForce GTX 1080 Ti GPU with
11GB memory over 80 epochs. Qualitatively, the performance on
the validation-set was saturating with no observable overfitting
(see Figure S1).

~

2.4. Statistical Analysis
The statistical analysis was performed using R with the stats
package version 3.5.1 (R Core Team, 2018). For comparison of

spatial overlap of estimated tumor segmentations with manual
ground truth data, the Dice coefficient was used. Segmentation
performance in terms of Dice coefficient of the different
deep learning models was summarized by descriptive statistics
(median, interquartile range). Case-based rank analysis included
computation of percentage of improved patient cases for given
pairing of deep learning models. The stratified models were
compared to the baseline by means of paired difference tests:
differences between the cross-validated classifiers were examined
on HGG cases only, on LGG cases only, and on the whole dataset
(using the combined results of the stratified LGG and HGG
classifiers). Non-parametric tests were employed due to the rank-
based form of the data. The significance level of the analysis was
set to @=0.05.

3. RESULTS

3.1. Quantitative Analysis

Summary statistics for the segmentation performance in terms
of Dice coeflicient are shown in Figure 1. The baseline model
reached a median Dice of 0.841 (1.5 x IQR = 0.465-1.000) for
the contrast enhancing compartment, 0.899 (0.554-1.000) for the
core, and 0.920 (0.786-1.000) for the whole tumor. Comparable,
the combined results from the separately trained HGG/LGG
models were 0.838 (0.415-1.000) for contrast enhancing, 0.902
(0.584-1.000) for core, and 0.916 (0.800-1.000) for tumor.

The combined results of the two separately trained models
showed an improvement for the segmentation of the tumor
core in 64.9% (p < 0.0001) of the subjects compared to the
baseline model (Table 1). No statistically significant changes
were observed for the other compartments. This performance
gain originates primarily from the HGG cases where 70.3% of
the subjects showed an improved segmentation for the tumor
core and 58.5% of the subjects also for the contrast enhancing
compartment. From the 183 subjects that showed an improved
segmentation of the core, 26 increased by a Dice of 0.1 or more.
Conversely, from the 99 subjects with a declined performance, 21
decreased by a Dice of —0.1 or more (Figure 2).

3.2. Qualitative Analysis of Selected Cases

From Table 1 it is evident that, especially for high-grade glioma,
stratified training leads to improved segmentation performance.
In order to further investigate this aspect, a visual review
of selected cases was performed. To identify cases mostly
affected by the stratified training, Dice coefficients between
the segmentations of the two models (baseline vs. HGG) were
calculated. Cases with a Dice agreement < 0.8 of the tumor
core between the baseline and stratified models were selected
for a qualitative manual inspection followed by a review with
a board-certified neuroradiologist with more than 8 years of
experience in brain tumor diagnostics. In order to render the
visual review more systematic, we define three categories of
causes for variability in tumor segmentation performance: 1.
The input data generated by the imaging process, which is
affected by the idiosyncrasies of the MR scanner, potential
image artifacts and patient motion, and image preprocessing.
2. The manual ground truth segmentation. 3. The tumor
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FIGURE 1 | Summary statistics for the segmentation of the three compartments by means of a Tukey boxplot. p-values indicate statistically significant (o < 0.05)
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phenotype (e.g., IDH-mutant tumor, presence of intratumoral
hemorrhage, or cystic components) which causes distinctively
different image appearances.

In Figure3 the obtained Dice coeflicients between the
segmentation results of the HGG model for the tumor core
and the ground truth were plotted against the Dice coefficients
between the results of the HGG model and the segmentation of
the baseline model, which was trained on all available data. We
can broadly define four different territories in the scatterplot: The
upper right corner which contains cases for which both models
achieved high segmentation performance. If we move to the
upper left corner, we encounter cases for which the HGG model
achieved high segmentation performance with discrepancies
when compared to the results of the baseline model. If we
move from the upper right corner to the lower right corner,
we encounter cases for which the HGG model agreed with the
segmentation result of the baseline model but did not agree with
the ground truth result. Finally, the lower left corner contains
cases for which the segmentation results of the HGG model did
neither agree with the ground truth nor with the segmentation
of the baseline model. The corresponding scatterplots for the
other two compartments can be found in Figures S2, S3. The
identified outlier cases are listed in Table 2 with the segmentation
performance of the two models and an assessment category.
Below we present the observations based on a visual review
for a selection of the identified outliers. Visualizations for the
remaining outliers can be found in Figures S4-S14.

Brats18_2013_21_1 (Figure 4). The baseline model provided
superior performance for segmenting the tumor core in this
HGG example. The lesion exhibits a large non-enhancing tumor
mass (typically seen in LGG) and we speculate that the presence

TABLE 1 | Ratio in % of better performing subjects compared to baseline.

CE Core Tumor
% Subjects p % Subjects P % Subjects p
LGG vs. Baseline 41.7 0.877 49.3 0.454 54.7 0.208
HGG vs. Baseline 58.4 0.005 70.3 5.659e-09 46.7 0.877
HGG/LGG vs. 54.6 0.127 64.9 1.441e-05 48.8 0.725
Baseline

Statistical significance is determined by a one-sided Wilcoxon signed rank test. Bold
numbers indicate statistically significant (o < 0.05) results. CE: contrast enhancing.

of LGG cases in the baseline model led to the improved
tumor core segmentation performance when compared to the
HGG model’s result. The appearance of the tumor is further
complicated by the presence of cystic components, which exhibit
a homogeneous signal that is strongly hypointense in T1-
weighted and hyperintense in T2-weighted images.

Brats18 2013_25_1 (Figure5). Both models failed to
segment the tumor core for this HGG case. The tumor core
contains strongly hypointense areas in the T2-weighted and
FLAIR images with corresponding heterogeneous signal
intensity in the T1-weighted image. When considering the
T1/T1c-weighted images, one can observe the presence of
recruited blood vessels. This image appearance may indicate the
presence of an intratumoral hemorrhage.

Brats18_CBICA_AX]J_1 (Figure 6). The segmentation of the
core from the HGG model is closer to ground truth. The
tumor was indicated to be an HGG. However, the provided
ground truth segmentation seems to be missing part of the
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tumor mass in the frontal lobe. Furthermore, we argue that
a large part of the lesion corresponds to non-enhancing
tumor rather than edema. We base this assumption on the
heterogeneous appearance in the T2-weighted images and more
importantly the strong cortical space-occupying effect together

with a distortion of the gray/white matter junction. In contrast,
edema would preserve the gray/white matter junction as well
as the cortical ribbon and propagate along the white matter
fiber tracts. A possible alternative for ground truth is shown
in Figure 6.
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TABLE 2 | Performance of selected cases for the two models.

Subject Assessment Dice Baseline-model Dice HGG-model
CE Core Tumor CE Core Tumor

Brats18_2013_11_1 1 0.14 0.45 0.90 0.17 0.61 0.89
Brats18_2013_21_1 3 0.80 0.83 0.94 0.76 0.68 0.94
Brats18_2013_25_1 3 0.18 0.10 0.90 0.25 0.06 0.90
Brats18_CBICA_ABN_1 2 0.84 0.41 0.82 0.79 0.84 0.83
Brats18_CBICA_ATF_1 3 0.69 0.73 0.69 0.65 0.51 0.63
Brats18_CBICA_AXJ_1 2 0.79 0.35 0.90 0.79 0.58 0.90
Brats18_CBICA_BHB_1 2 0.00 0.00 0.15 0.00 0.00 0.24
Brats18_CBICA_BHK_1 2 0.01 0.00 0.05 0.25 0.05 0.24
Brats18_TCIAO1_221_1 2 0.76 0.88 0.95 0.48 0.82 0.95
Brats18_TCIA01_411_1 1 0.07 0.24 0.71 0.23 0.48 0.64
Brats18_TCIA01_425_1 - 0.26 0.58 0.75 0.68 0.76 0.78
Brats18_TCIA02_171_1 2 0.89 0.47 0.95 0.89 0.90 0.95
Brats18_TCIA04_343_1 2 0.69 0.73 0.74 0.59 0.61 0.66
Brats18_TCIA05_277_1 3 0.42 0.37 0.85 0.56 0.55 0.90
Brats18_TCIA05_444 1 3 0.39 0.96 0.94 0.54 0.30 0.89
Brats18_TCIA06_409_1 - 0.52 0.53 0.89 0.50 0.53 0.86
Brats18_TCIA08_113_1 1 0.91 0.36 0.97 0.79 0.52 0.92
Brats18_TCIA08_406_1 1 0.65 0.63 0.88 0.68 0.77 0.90

Assessment after a qualitative review with a neuroradiologist. Assessment 1: Issue with input image quality, 2: Possible problem with ground truth, 3: Special phenotype, GT: ground

truth, CE: contrast enhancing.

Brats18_CBICA_BHB_1 (Figure7). Both models failed
completely to segment the lesion for this HGG case.
However, the provided ground truth segmentation seems
to overestimate the presence of edema. While we agree on
the whole tumor segmentation, we argue that the present
T2-weighted hyperintensity indicates the presence of non-
enhancing tumor rather than edema. Similarly to case
Brats18_CBICA_AXJ_1 the gray/white matter junction is
distorted. This is especially evident when considering the
unaffected contralateral hemisphere. The poor segmentation
performance of both models might be the result of an under-
representation of training samples with such a subtle tumor
core which is potentially ambiguously labeled in other cases
as well.

Brats18_TCIAO01_221_1 (Figure8). The baseline model
provided the better tumor core segmentation for this HGG case.
However, when comparing the segmentation of the contrast-
enhancing tumor of the HGG model, we argue that the ground
truth segmentation slightly undersegments it. This is clearly
visible for the enhancing rim next to the midline.

Brats18_TCIA01_425_1 (Figure9). The baseline model
underestimated the subtle contrast-enhancement of this HGG
case. We can speculate that in the situation of subtle
enhancements the baseline model was biased more toward
segmenting a tumor core with small enhancing foci, whereas the
HGG model was capable of delineating the full extent of the
contrast-enhancement.

Brats18_TCIA05_444 1 (Figure 10). The baseline model
provided a better segmentation than the HGG model for this
case. The tumor was indicated to be an HGG. The location

of the tumor in the frontal lobe and its appearance exhibiting
focal contrast enhancements and a large non-enhancing tumor
mass are suspicious of a potential IDH-mutant glioblastoma.
This would imply that it initially emerged from an LGG (called
secondary glioblastoma). Applying the LGG model to the case
significantly outperforms the HGG model (Figure 10), which
would support the hypothesis of a mutated LGG.

While the previous analysis of cases was to some extent
speculation, we can nevertheless condense three main, factual
observations from it: First, individual segmentation results
are strongly affected by the composition of the segmentation
model’s training data. Second, depending on the underlying
factors that caused a given image appearance and segmentation
ground truth, a given subset of the training data can actually
improve the segmentation result compared to a baseline trained
on all data. Third, disagreement (or joint failure) among
segmentation models trained on different subsets of training
data (Figure3) may actually help in the identification of
these underlying factors. Among the manually reviewed 18
cases with a large deviation between the two models, we
observed issues with the input images (4 cases), potentially
arguable ground truth (7 cases), and special imaging phenotypes
(5 cases). Arguable ground truth is often attributed to
edema that could be labeled as tumor core instead. Edema
typically propagates along white matter and spares cortical
ribbons as well as deep gray matter structures (Pope et al,
2005), while non-enhancing tumor leads to a distortion of
the gray/white matter junction [cf. BRATS18_CBICA_BHB_1
(Figure 7) FLAIR with the case presented in Figure 3
of Lasocki and Gaillard, 2019].
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4. DISCUSSION

The title of the manuscript contains the phrase “Divide and
Conquer,” where “Divide” refers to the stratification of training
data. Data stratification and subsequent model training was
employed as a simple, straightforward technique to include prior
knowledge. We have proposed two ways of how to use data
stratification to “conquer” brain tumor segmentation: First, the
targeted application of a specialized model (HGG model) to
the respective data (HGG test case). Second, the utilization of

disagreement among specialized models’ outputs and ground
truth segmentations to identify outliers and possible latent factors
hampering generalization.

Implicitly adding prior information to the models by
stratifying the data by tumor type (HGG and LGG) seems to
be beneficial for the segmentation of the tumor core for high-
grade glioma. Yet, the LGG-only model, which was trained
with fewer samples (N = 75) compared to the baseline model
(N = 285), showed no statistically significant deterioration
of the segmentation performance. A statistically significant
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improvement in 64.9% of the subjects for the tumor core is  better-ranked subjects) for the whole tumor. It has been shown
accompanied by a non-significant improvement of 54.6% for  in multiple studies (Asari et al., 1994; Wiestler et al.,, 2016;
contrast enhancing and non-significant decrease (only 48.8%  Hsich et al., 2017) that HGG and LGG tend to exhibit different
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qualitative and quantitative imaging features in structural
MR, involving heterogeneity of contrast enhancement, cystic
components, intratumoral hemorrhage, and necrosis, which in
context of tumor segmentation affect the definition of the tumor
core greatly. Therefore, the stratification of the training data
into HGG and LGG yields subsets with more homogeneous
and consistent definitions of the tumor core. However, we
presented also exceptions [e.g., BRATS18_2013_21_1 (Figure 4)
in section 3.2] which actually profit from training data of opposite
tumor grade.

In addition to improving segmentation performance, deep
learning models trained on stratified data can be used to drive
exploration of the training data. In section 3.2 we demonstrated
that the disagreement between such models in relation to the
ground truth data can assist in the identification of latent
factors (e.g., imaging phenotypes) which may pose significant
challenges in a deep learning model’s capability to generalize
across the complete problem domain. We argue that especially
in a pathology as complex as brain cancer, the identification of
such latent factors and their proper treatment in a deep learning
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model is of utmost importance to guarantee robust segmentation
performance that satisfies clinical needs. In section 4.1 we provide
propositions on how latent factors such as the tumor type could
be treated in deep learning segmentation models beyond simple
data stratification.

Our results demonstrated the potential of summary statistics
(e.g., mean or median) to obfuscate significant differences
between distributions of segmentation performance measures
(e.g., Dice coefficient). These significant differences can be
revealed through the calculation of a case-based ranking.
Furthermore, case-based ranking enables the straightforward
application of nonparametric statistics to detect significant
differences with the advantage of more limited assumptions
regarding the distribution of the data when compared to
parametric statistics, and robustness to outliers. Case-based
ranking also follows the narrative of precision medicine in
which the identification of subpopulations of patients, who
benefit from a medical intervention, based on experimental
observations is central. It enables a more fine-grained analysis on
the level of the patient and potentially an identification of patient
subpopulations relevant for the task at hand.

Previously, Pereira et al. (2016) trained on data stratified into
HGG and LGG. They employed two different Convolutional
Neural Network architectures for patch-wise segmentation of
HGG and LGG. In contrast, we hypothesized and demonstrated
that a mere stratification of the training data into HGG and LGG
without any changes to architectures or hyperparameters can
lead to improved segmentation performance. Furthermore, their
focus was on an ablation study of methodological components
with respect to their two grade-specific architectures and their

results were based on the BraTS 2013 Leaderboard dataset (21
HGG, 4 LGG cases) and BraTS 2013 Challenge dataset (10
HGG cases).

4.1. Outlook

With the rise of precision medicine and tailored therapies,
the consideration of patient-specific information (e.g., genetics)
becomes ubiquitous (Giardino et al., 2017). Leveraging data from
multiple sources remains a challenge for the next generation
imaging technologies (Kim et al., 2016), potentially requiring to
rethink the one size fits all concept. For automatic brain tumor
segmentation, various architectural and conceptual changes are
imaginable beyond simple data stratification strategies.

By completely separating the data, each of the individual
models has fewer data available for training, although with
the benefit of a less heterogeneous domain (only one tumor
type). Instead of implicitly adding the prior information of
the tumor to the data by stratification, an alternative approach
could be to explicitly add this information as input to the
network. Particularly the first layers of the network might be
less susceptible to the tumor type as filters for representation
learning could share commonalities between both domains. By
adding the information directly to the input layer or injecting
it into the latent feature space might allow the network to
intrinsically adapt the segmentation output according to the
given tumor type.

A different approach would be to regard the problem
of segmenting high-grade and low-grade glioma as a
multiple-source adaptation problem. In this setting, the
goal is to effectively combine base learners trained on
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multiple source domains in order to perform a prediction
on a target domain, which can be any mixture of the
source domains. In our case, the source domains would be
subclasses of gliomas: either high-grade and low-grade data,
or potentially a more fine-grained subdivision (e.g., WHO
grade or classification). The target domain constitutes of a
mix of different glioma cases. Recently, a number of theoretic
and algorithmic contributions were made in the area of
multiple-source adaptation (Hoffman et al., 2018; Zhao et al,
2018), which could be applied in the scenario of learning
from multiple disease entities such as brain tumor types
or grades.

The clinical importance of brain tumor segmentation for
quantitative image analysis will only grow in the near future.
Recently, various segmentation methods have been proposed
which are capable of accurately delineating brain tumor
compartments longitudinally (Weizman et al., 2014; Meier et al.,
2016), perform assessment of treatment response (Huber et al.,
2017; Kickingereder et al., 2019), are used for the purpose
of radiomic analysis (Bakas et al.,, 2017c), and for performing
planning of radiation therapy (Sharp et al., 2014; Herrmann et al.,
2018; Agn et al, 2019; Lipkova et al, 2019). It is, therefore,
necessary to provide automatic segmentation methods which
are capable of robustly generalizing across different types or
grades of brain tumors. Our methodology of training deep
learning models on stratified training data is a straightforward
approach to potentially improve the segmentation performance
of already existing learning-based methods with regards to
different tumor types.

In the light of our results and the trend toward precision
medicine, we encourage challenge organizers to make
information on the tumor type or grade available as additional
input data, allowing teams to incorporate such prior information
into their models.

4.2. Limitations
The evaluation is based solely on the BraTS$ training dataset
(using cross-validation). Results for the official validation set
are unknown since the required tumor type is not available
for these data. Indeed we acknowledge that the tumor grade
is usually not yet available on the first admission. However,
we think automatic segmentation models will probably be
employed first for retrospective studies, to assess the extent of
resection in patients undergoing surgery (Meier et al, 2017),
or to assess tumor progression postoperatively (Kickingereder
et al., 2019) where tumor grades are usually known. First
attempts have been made to classify tumor grades from
MRI (Decuyper and Van Holen, 2019), which would
allow identification of the correct model from imaging
only. Alternatively, one might run such a segmentation
algorithm twice: first for a rough identification of the tumor
compartments and based on the result (e.g., presence of
CE, ratio of compartment volumes, or manual review of the
intermediate results by an expert) apply the specific model to get
a refined segmentation.

The benefit of stratifying the training data has been
shown with the model ranked third in the BraTS 2018

challenge (McKinley et al., 2019a). This particular model was
chosen, as it was a top-ranked method in the most recent BraT$
challenge (2018) that achieved its results using only a standard
GPU and data from the BRATS challenge. The method ranked
first (Myronenko, 2019) depended on a GPU with 32 GB of
memory (to which most research groups do not have access),
while the second-ranked method (Isensee et al., 2018) was co-
trained with additional data (not including information about
tumor grades). To what extent the proposed approach generalizes
to other architectures remains an open question. Other models
might suffer more from the reduction of training samples due
to the stratification. The proposed architecture is known to be
robust to fewer training samples (McKinley et al., 2019b).

5. CONCLUSION

Implicitly adding prior knowledge by dividing data into
distinct domains can improve the performance of deep
learning-based segmentation methods and compensate
for the smaller number of samples available for training
a model. The tumor grade has shown to be an important
latent factor in the segmentation of gliomas. Comparing
the performance of models by case-based ranking statistics
may reveal significant differences that are otherwise
concealed summary statistics such as the mean
Dice coefficient.
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Robustness of Radiomics for Survival
Prediction of Brain Tumor Patients
Depending on Resection Status

Leon Weninger*, Christoph Haarburger and Dorit Merhof

Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany

Prediction of overall survival based on multimodal MRI of brain tumor patients is a
difficult problem. Although survival also depends on factors that cannot be assessed via
preoperative MRI such as surgical outcome, encouraging results for MRI-based survival
analysis have been published for different datasets. We assess if and how established
radiomic approaches as well as novel methods can predict overall survival of brain
tumor patients on the BraTS challenge dataset. This dataset consists of multimodal
preoperative images of 211 glioblastoma patients from several institutions with reported
resection status and known survival. In the official challenge setting, only patients with
a reported gross total resection (GTR) are taken into account. We therefore evaluated
previously published methods as well as different machine learning approaches on the
BraTS dataset. For different types of resection status, these approaches are compared
to a baseline, a linear regression on patient age only. This naive approach won the 3rd
place out of 26 participants in the BraTS survival prediction challenge 2018. Previously
published radiomic signatures show significant correlations and predictiveness to patient
survival for patients with a reported subtotal resection. However, for patients with
reported GTR, none of the evaluated approaches was able to outperform the age-only
baseline in a cross-validation setting, explaining the poor performance of approaches
based on radiomics in the BraTS challenge 2018.

Keywords: BraTS 2018, survival prediction, radiomics, brain tumor, machine learning, feature selection

1. INTRODUCTION

The high-grade glioma, a subtype of brain tumors, is one of the most aggressive and dangerous
diseases worldwide. For the US, a 5-year survival rate of glioblastoma patients of only 5.6% was
reported for 2000-2015 (Ostrom et al., 2018). Automatic analysis of these tumors is challenging,
as their shape, location and extent can differ substantially. Since 2012, the BraT§ challenge (Menze
etal., 2015) is held annually to allow an unbiased comparison of different segmentation algorithms.
Since 2017, an overall survival (OS) prediction task is included to assess whether quantitative image
features based on these segmentations can provide further clinical insight. In the OS task, patients
need to be classified in long-survivors (OS>15 months), short-survivors (OS <10 months), and mid-
survivors (10 months <OS <15 months). While data is provided for patients with different resection
status, the official evaluation is carried out only on patients with a reported gross total resection
(GTR). A total of 41 teams took part in this survival prediction task in 2017 and 2018.
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Using the age as sole feature with a linear regressor, we
achieved an accuracy of 0.56 (n = 77) on the test set in the
BraTS$ challenge 2018. In comparison, the first placed approaches
of 2017 (Shboul et al, 2018) and 2018 (Feng et al, 2019)
achieved accuracies of around 0.58 and 0.62, respectively (Bakas
et al, 2018b). Shboul et al. relied on automatic radiomic
feature extraction combined with a Random Forest Regressor
(RFR), while Feng et al. used geometric features in combination
with a linear model. The developers of other top performing
algorithms chose similar strategies of combining either hand-
selected or automated radiomic features with a supervised
machine learning algorithm: Radiomic feature extraction was
used in combination with an RFR (Sun et al, 2019) or a
Multilayer Perceptron (MLP) (Baid et al, 2019). Geometric
features only were used with an MLP (Jungo et al., 2018), and
finally atlas locations together with relative tumor sizes and an
RFR were also employed (Puybareau et al., 2019). These teams
achieved accuracies between 0.55 and 0.6. Further submitted
approaches ranged from deep learning algorithms to radiomic
feature analysis to handcrafted feature engineering, that achieved
accuracies between 0.15 and 0.55. As three classes were equally
subdivided, a random choice would result in an accuracy of 0.33.

On other brain tumor datasets, encouraging results for OS
prediction have been published. A successful radiomic-based
brain tumor patient OS and progression-free survival prediction
on a private dataset comprising 119 patients was described
by Kickingereder et al. (2016). Positive findings with data-mining
algorithms have also been reported when including Diffusion-
MRI and relative cerebral blood volume data (Zacharaki et al.,
2012) or Perfusion-MRI data (Jain et al., 2014) next to the MR-
sequences used in the BraTS dataset. Deep learning based OS
prediction has been successfully used on another, smaller (n =
93) private dataset (Nie et al., 2019). However, as the BraTS
summary (Bakas etal., 2018b) indicates, deep learning techniques
performed rather poorly on the open-access data. Quantitatively
comparing deep learning to classical regression on radiomic
features for OS on the BraTS$ data was also carried out by Suter
et al. (2019). They concluded that radiomic feature are better
suited, as features extracted from deep learning networks seemed
to be unstable for this task.

Radiomic feature extraction describes the process of
automatically computing a variety of quantitative image
features. By quantifying lesions, radiomics can not only be
used for prognosis, but can also help increase precision in
diagnosis. For example, radiomics has been successfully used
to distinguish between high- and low-grade glioma (Cho et al.,
2018) on the BraT$S dataset. An overview of radiomics and its
applications is given by Rizzo et al. (2018). For brain tumor
analysis in particular, a review of radiomics-based techniques for
quantitative imaging is given by Zhou et al. (2018).

Radiomic features combined with a machine learning model
is thus a natural choice for OS prediction. We initially evaluated
different radiomics-based machine learning techniques for the
BraTS challenge, too. However, when thoroughly validating the
results, all considered approaches could not outperform a linear
regressor based on the patients age only. We thus decided to
submit an age-only linear regressor (Weninger et al., 2019), and
won the third place in the BraTS challenge 2018.

In this paper, we analyze different radiomic-based approaches
to survival prediction on the BraTS$ data. To be independent of
segmentation inaccuracies, we only use the BraT$ training data
for all experiments. For this data, groundtruth segmentations are
publicly available, approved by experts and reviewed by a single
board-certified neuro-radiologist (Bakas et al., 2017c). The data
can be subdivided by resection status into patients with reported
GTR, subtotal resection (STR) and patients with unavailable
resection status (NA). The official evaluation was carried out only
on the GTR subset. First, we re-evaluate previously published
radiomic signatures on the different resection status subsets.
We show that these methods are predictive for OS on the STR
subset. Second, different machine learning tools are evaluated
on the radiomic feature set. Third, as the number of extracted
radiomic features is very large and important features could
remain undetected, two different feature reduction methods
are assessed.

For the patients with GTR, neither previously published
methods, nor different machine learning models, nor
unsupervised feature reduction techniques could establish a
robust signature for patient survival prediction. Finally, the
importance of thoroughly assessing the robustness of radiomic
markers is discussed, and ideas on how to improve survival
prediction based on MRI images even after tumor resection
are provided.

2. MATERIALS
2.1. Dataset

In our evaluation, we discard the BraTS$ test- and validation
datasets, as no groundtruth segmentations and no OS
information are available, and use only the training dataset.
All subjects of the BraTS 2018 dataset are included in the BraTS$
2019 dataset; thus, the analysis is focused on the larger BraTS$
2019 dataset. The BraTS survival data training dataset consists of
data from 211 brain tumor patients from different institutions.
For each patient, the following data is available:

e 4 MRI acquisitions: T1, T1 post contrast agent (T1CE), T2
and T2-FLAIR. All are resampled to an isotropic resolution of
1 x 1 x 1mm?, co-registered and skull stripped.

e Segmentation map: Edema (ED), enhancing tumor (ET), and
non-enhancing / necrotic tumor core (NEC).

e The age of the patient.

e Resection status.

The resection status is either reported as GTR, subtotal resection
(STR), or unknown (NA). For a few subjects (n = 21), the
resection status was given as STR in the BraT$S 2018 dataset, but
omitted for the 2019 dataset. These statuses were re-entered into
the dataset. Next, two patients were reported as still alive. Their
overall survival in the database was set to the maximum survival
time in the dataset, 1,767 days.

2.2. Cohort Study

Most data are provided either by the Center for Biomedical
Image Computing and Analytics from University of Pennsylvania
(CBICA, n = 128) or by The Cancer Imaging Archive (TCIA, n =
76) (Bakas et al., 2017a,b). A small amount of the data (n = 7)
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originates from other sources. All subjects have a pathologically
confirmed diagnosis of primary de novo glioblastoma (Bakas
et al, 2018b). Nevertheless, as population or differences in
treatment could influence clinical outcome, an overview over
differences and similarities of the different provenances is given.

For all TCIA subjects, the resection status is unknown. In
contrast, 94 of the 101 subjects with GTR as well as all subjects
with STR originate from one institution, CBICA. In the dataset,
there are no statistically significant differences between age or
survival for the different data provenances or the different types
of resection status (ANOVA: p >0.05). However, the relative brain
tumor volume, as determined as tumor volume divided by brain
volume, is significantly smaller in the TCIA data than in the
CBICA data (p <0.0001). Between the resection status STR and
GTR, in contrast, there is no significant relative brain tumor
volume difference (Figure 1).

3. METHODS

Our OS prediction pipeline can be divided into the following
substeps: (1) Image preprocessing, (2) extraction of radiomic
features, (3) unsupervised feature reduction, and (4) statistical
inference and out-of-sample prediction. These major substeps
of the pipeline are visualized in Figure2. For the BraTS$
challenge, only out-of-sample prediction is necessary. In order
to determine whether radiologic features are appropriate for the
given problem, we supplement out-of-sample prediction with
classical hypothesis testing.

3.1. Image Preprocessing

The data was acquired with various MRI scanners and
different clinical protocols. In consequence, absolute image
intensities, and, subsequently, radiomic features, can be strongly
influenced. This was counteracted with a bias-filed correction
and subsequent normalization of the images. First, the ANTs
N3 (Tustison et al., 2010) bias-field correction was applied
to all images, removing local differences in image intensities.
Second, in order to harmonize the MRI acquisitions from
different institutions, all images were normalized with z-score
normalization to zero mean and unit variance.

Histogram equalization was considered as alternative
normalization technique, but discarded as it did not improve
the results. This could be due to the properties of tumor tissue
in MRI images: Parts of the brain tumor are often the brightest
or darkest area in the acquisitions, while occupying only a small
proportion of the brain. The contrast-enhancing part is especially
bright in T1CE acquisitions while covering just a small single-
digit percentage of the brain volume. Histogram equalization
or other nonlinear brightness adaptation techniques will thus
shrink the contrast for these outlier points, actually leading to
less contrast in the examined regions. For a comparison of the
results using histogram equalization, all evaluations relying not
only on tumor shape and/or age were repeated with histogram
equalization instead of z-score normalization. The results can be
found in the Supplementary Materials.

3.2. Feature Extraction

Using the package PyRadiomics (van Griethuysen et al., 2017),
shape features were extracted from the provided segmentation
masks, and image intensity and texture features were extracted
from the four different image modalities for each segmentation
mask. Image intensity and texture features were calculated for the
original image and on wavelet decomposed images. In total, the
following features were extracted:

Shape features comprise volume, surface area, sphericity,
maximum diameter, elongation, axis lengths and flatness.
These were extracted for the different tumor classes, resulting
in 42 features.

Gray-level features include gray-level co-occurrence (glcm),
gray-level run length (glrlm), gray-level dependence matrix
(gldm), gray-level size zone, and neighboring gray tone
difference features. As these were extracted for the original and
wavelet transformed images and four image modalities, this
resulted in 7,884 features.

Image intensity statistics consists of features such as
minimum, maximum, mean, median, percentiles, standard
deviation, skewness, kurtosis, and uniformity. In combination
with different modalities and filters, 1,944 features resulted
from this category.

Combined with the age, a total of 9871 features were obtained. In
contrast, the total number of observations was 211—the number
of variables p is much bigger than the number of samples n.
Such a setting is actually common for pattern-learning methods
in neuroscience (Bzdok, 2017), and is referred as wide data, in
contrast to long data where the number of samples is bigger
than the number of variables. Using such wide data directly for
inference often leads to non-robust results and to overfitting
on the training set. Consequently, before inference the number
of features needs to be reduced as much as possible while
maintaining the characteristics of the data.

3.3. Preselection of Features

Radiomic features are typically redundant (Rizzo et al., 2018),
i.e.,, they are multicollinear. Different techniques exist to reduce
the number of features and thus the multicollinearity. For the
present problem, a subset of features should be kept after feature
reduction. In contrast to synthetic features obtained by a PCA,
a feature selection method offers more interpretable results.
Further, in order to use the complete BraTS§ training dataset, the
method should be unsupervised. With an unsupervised method,
the complete BraTS OS training data (n = 211) can be used
for feature selection, as features of preoperative images should
be independent of resection status. In contrast, for this study, a
supervised method could only be done on the specific resection
status subset (GTR: n = 101). As splitting into train- and test set
would further be necessary, an even smaller number of examples
could be employed for feature selection.

Thus, a method relying on correlation matrix clustering
and Variance-Inflation-Feature (VIF) iterative reduction (James
et al., 2014) was chosen as the most appropriate. As a first
step to reduce multicollinearity, single redundant features
were discarded. For this purpose, each feature was linearly
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regressed against every other single feature, thus obtaining the
coefficient of determination * and creating an r? correlation
matrix. This matrix was then reordered using a hierarchical
clustering algorithm. For this, we relied on the Voor Hees
Algorithm (Voorhees, 1986) implemented in SciPy (Jones et al.,
2001) for linkage, and Euclidian distances between rows or
columns of the correlation matrix. A visual impression of the
obtained clustered correlation matrix is given in Figure 3.

As proposed by Gillies et al. (2016), representative features
can be chosen from each cluster to reduce redundant elements.
For this, areas of high correlation (R > 0.95) were reduced
to the element with the highest inter-patient variability. Using
this method, only features having a pairwise collinear correlation
can be identified and omitted. Multicollinearity, i.e., highly
related associations between more than two features, is not taken
into account.

Multicollinear features were excluded in a second step. Those
features can be identified by checking the VIF. Iteratively, by
removing the feature with the highest VIF, the multicollinearity
can be reduced until a predefined threshold is obtained. A
maximum VIF of 10 is chosen, as thresholds of either 5 or
10 are recommended for this method (James et al., 2014). The
number of features retained with a threshold of 10 should not
pose problems to the machine learning models, so we did not
consider lower thresholds.

Next to the VIF-based feature preselection method, we
evaluated a principal component analysis (PCA) based feature
reduction pipeline. One PCA feature reduction was carried
out independently for the shape features, gray-level features
and image intensity features of the original image. A fourth
PCA was performed on all features of wavelet decomposed
images. For each analysis, the minimum number of principal
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FIGURE 3 | Reordered correlation matrix and obtained dendrogram of the
radiomic features obtained from the normalized MRI images. Green designates
strongly correlated features while red indicates an r? close to zero.

components explaining 95% of variance in the data were
kept. The obtained features are finally concatenated, and the
predictiveness for survival prediction can be evaluated via
machine learning models.

3.4. Statistical Hypothesis Testing on
Single Features

Null hypothesis testing with false discovery rate correction on
the original dataset is not beneficial, as there are too many
correlated features. The subset selected by the VIF feature
selection (section 3.3), however, is much smaller and hypothesis
tests can now reveal if single features are actually predictive for
OS. As multiple radiomic features remained, a false discovery rate
correction still needs to be used. We relied on the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995), that
controls the false discovery rate at a specific level @ = 0.05.

3.5. Multivariate Prediction

The statistical hypothesis testing can only reveal if single features
are significantly predictive for OS. Nonlinear relationships
of single predictors to the target variable as well as feature
interactions cannot be detected. Different machine learning
models that are able to surpass this limitation are available,
ranging in complexity from basic linear regressors to complex
neural networks.

We evaluated different machine learning models: linear, lasso
and ridge regressors, k-nearest neighbors (kNN), random forests
regressors (RFR), support vector regressors (SVR), and support
vector classifiers (SVC). Furthermore, the Boruta (Kursa and
Rudnicki, 2010) feature selection algorithm in combination with

one random forest classifier (RFC) as estimator and one for
the final prediction was evaluated. The regression models were
directly fitted to the survival days, while the classifier can only
predict the classes. As classes, the three classes as proposed by
the BraTS challenge (long-survivors (OS >15 months), short-
survivors (OS <10 months), and mid-survivors (10 months <OS
<15 months) were used.

Different radiomic features are represented by absolute values
at very different scales. Furthermore, outliers of single features
may strongly influence the results. Consequently, the radiomic
features were first normalized: The feature median is subtracted,
and the features were scaled by the interquartile range, i.e., the
range between the 25th quantile and the 75th quantile.

The different machine learning models were first employed on
the complete feature set for the different resection status. The
same methods were then also tested on the VIF-based feature
subset as well as on the PCA reduced feature set, in order to
evaluate whether these models could improve robustness on
GTR patients.

All machine learning models were implemented with scikit-
learn v0.21.2 (Pedregosa et al., 2011) or scikit-learn-contrib using
default settings. Next to the methodology presented in this paper,
we further evaluated the linear regressor on the age only as
submitted during the BraTS$ challenge 2018, as well as a linear
regression on age and the features remaining significant after
Benjamini-Hochberg correction.

3.6. Evaluation of Previously Published
Methods

Previously reported relationships between radiomic signatures
and survival time were evaluated on the BraT§$ dataset. Gutman
et al. (2013) reported that the length of the lesion’s major axis
and the proportion of contrast-enhanced tumor were negatively
correlated with survival on the TCGA glioblastoma dataset.
It should be noted that this dataset is included in the BraT$S
dataset with the resection status NA. It has also been shown that
volumetric features of enhancing tumor, non-enhancing tumor
core and necrosis, and edema normalized to brain volume are
associated with shorter survival time on different independent
datasets (Zhang et al., 2014; Macyszyn et al., 2015).

Kickingereder et al. (2016) proposed a supervised principal
component analysis of radiomic features for glioblastoma
patients. In this study, a set of MRI acquisitions also comprising
diffusion and susceptibility-weighted MR imaging was used.
Thus, compared to our analysis, the study relied on a different
set of radiomic features. Nevertheless, their statistical analysis
pipeline with z-score feature normalization and supervised
principal component analysis is directly applicable to the features
described in section 3.2.

4. RESULTS
First, the predictiveness of state-of-the art methods
and machine learning model using radiomic features

is evaluated for the different types of resection status in
sections 4.1 and 4.2.
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FIGURE 4 | Age-only regression for the different types of resection status on
BraTS 2019 training dataset. The obtained regression line is plotted together
with the 95% confidence interval. This model is used as baseline against
radiomics based approaches.

These sections show that a predictive radiomic signature can
be extracted for STR patients. For these patients, radiomics
based approaches to survival prediction outperform the age-
only approach that can be seen in Figure 4. However, on the
patients that underwent total resection of the tumor, the findings
are different: The established radiomic features as well as all
considered machine learning models fail to improve the survival
prediction. Regression on age-only, however, is significantly
correlated with shorter survival for GTR patients (Figure 4).

Then, as the results of different models show a high variability,
it is assessed in section 4.3 whether models based on a
selected subset of features can lead to more robust results for
GTR patients.

4.1. Repeatability of Previous Methods on

Dataset

As a first step, previously reported relationships between
radiomic signatures and survival time (section 3.6) were
evaluated on the BraTS$ dataset. For evaluation, the dataset was
first divided by the three different reported types of resection
status. The published radiomic signatures were evaluated on each
subset individually.

The two features proposed by Gutman et al. (2013) and
the volumetric features of ET and NEC normalized to brain
volume proposed by Zhang et al. (2014), Macyszyn et al. (2015)
can be seen in Figure 5. These findings can be reproduced on
the STR, and the same trends can also be seen on the NA
subset (Pearson’s r: p <0.05). Especially the ET volume and the
lesions’ major axis achieve a high significance (p &~ 0.003) on the
STR subset. Of the reported features, the only non-significant
relationships are ED volume, that shows a negative, but non-
significant (p >0.05) correlation on both subsets, and the ET
tumor proportion, that shows a significant negative correlation
on the STR subset, but only a non-significant negative correlation
on the NA subset. However, on the subset with reported GTR, no
correlation can be identified for any feature.

Next, the statistical analysis pipeline for radiomic features of
glioblastoma patients proposed by Kickingereder et al. (2016)
was applied to the different resection status subsets. In the
original publication, MRI acquisitions that are not available in the
BraT§ data (e.g., diffusion MRI) and slightly different radiomic
features were used. Nevertheless, the proposed z-score feature
normalization and supervised principal component analysis is
directly applicable to the present dataset, and can give a good
baseline model. Using the proposed model parameters, the
analysis was repeated on the radiomic features described in
section 3.2 in a leave-one-out cross-validation. The results are
compared to the age-only baseline approach for the different
resections status in Table 1. It can be seen that the proposed
supervised PCA approach achieves a higher accuracy and better
mean square error than the age-only approach. In contrast, even
as the age is included in the feature set, this approach fails on the
GTR subset.

4.2. Multivariate Prediction
All methods were cross-validated in a leave-one-out setting, e.g.,
100 samples were used to infer the 101th sample for the GTR
dataset. From the 101 obtained results, the major test statistics
as used in the BraTS$ challenge were computed: Accuracy (based
on the three different time intervals described in section 1),
mean squared error (MSE), median error, and Spearman rank
correlation. For classifiers, all metrics are computed with respect
to the class value (long-survivors: 824 days, mid-survivors: 379
days, short-survivors: 150 days). For the accuracy, we also
assessed the statistical significance of the result with a binomial
test and provide the p-value. All results can be seen in Table 2.
On the GTR subset, no model achieved better results than the
age-only baseline. However, on the STR subset, most models were
more predictive of survival than the age-only approach.

4.3. Feature Reduction Approaches

Several publications have shown the predictiveness of radiomics
for survival prediction on different datasets (see section 1). On
top, the re-implemented methods could reveal predictiveness of
radiomic features for survival on patients with subtotal resection.
However, these methods, as well as different machine learning
models presented in this paper and as well as the majority of
radiomic approaches submitted in the BraTS challenge 2018
failed on patients that underwent GTR. Thus, in this subsection,
we focus on the GTR patients.

Even as all presented models performed worse than the age-
only regressor, it can also be observed that the results of different
machine models achieve strongly varying results. This could
be due to the high number of radiomic features. Thus, it is
evaluated whether the two proposed feature reduction techniques
can produce more robust outcomes on the GTR dataset.

The presented unsupervised feature subset selection has two
subsequent steps: First, the correlation matrix clustering, which
suppresses pairwise correlated features, reduced the number of
radiomic features from 9,870 to 5,338. Then, the VIF-based
feature reduction, that checks also for multicollinearity, further
reduced the number of features to 94. Combined with the age,
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TABLE 1 | Age-only linear regression compared to the supervised PCA (sPCA)
model for the different types of resection status.

Model Accuracy p (Binomial) MSE Median err. SpearmanR
GTR

Age-only 0.48 0.00 109966 159 0.47
sPCA 0.27 0.20 148421 208 —0.41
STR

Age-only 0.23 0.40 186772 194 —0.64
sPCA 0.46 0.21 148028 205 0.31

NA

Age-only 0.37 0.49 136866 196 0.29
sPCA 0.26 0.20 159227 231 —0.03

The metrics are explained in section 4.2.

95 features were obtained, which is slightly less than the number
of examples.

On this reduced feature set, hypothesis testing is feasible.
Without any correction for false positives, 5 of the 95 features
would have been considered significant (p <0.05). However, after
Benjamini-Hochberg correction, only the age of the patient
(p = 58 x 107°) and one radiomic feature, the Wavelet LHH
Imagelntensity Kurtosis on the necrotic part in the T2 acquisition
remained significant. All statistically significant features can be
seen in Table 3.

Next, the unsupervised feature selection method based
on PCA is considered. After applying PCA as explained in
section 3.3, 15 principal components representing tumor shape
were kept, 38 for the image intensity statistics features, 55 for the
gray level features, and 98 for the wavelet features. The extracted
features were concatenated together with the age in order to be
used for multivariate prediction.

These features, as well as the features selected by the VIF-
analysis, were separately employed for survival prediction (see
Table 4). Consistent to 4.2, all features were normalized with
a robust scaler, subtracting the median and scaling by the by
the interquartile range, and the same machine learning models
were utilized.

5. DISCUSSION

Previous findings, especially those using volumetric features,
could be reproduced for patients with subtotal resection.
Furthermore, different considered machine learning models also
showed predictiveness of survival. Thus, even as the sample size
was limited, and different machine learning models show varying
results, radiomic features seem to be correlated to patient survival
for patients with subtotal resection.

However, when applying these methods to patients that
underwent GTR, no significant relationship between radiomic
features and overall survival could be identified. In effect, for
this subgroup, the considered previously published and newly
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TABLE 2 | Performance comparison of different machine learning models for the
different types of resection status.

TABLE 4 | Performance comparison of different feature selection methods and
machine learning models for GTR patients.

Model Accuracy p (Binomial) MSE Median err. SpearmanR Model Accuracy p (Binomial) MSE Median err. SpearmanR
GTR VIF-BASED FEATURE SUBSET
Regression 0.43 0.04 1778965427 394 0.11 Regression  0.47 0.01 28154236838 1,112 0.18
Lasso 0.44 0.03 3070271 272 0.24 Regr. BH 0.46 0.07 109618 148 0.46
Ridge 0.42 0.07 1765220107 394 0.11 Lasso 0.36 0.60 2293591760 5567 0.05
kNN 0.29 0.40 159451 248 —0.04 Ridge 0.33 1.0 16655918658 672 —0.02
RFR 0.36 0.46 154447 190 0.14 kNN 0.30 0.58 159553 223 —0.08
SVR 0.27 0.20 140088 189 -0.77 RFR 0.35 0.75 149299 207 0.15
SVC 0.41 0.11 175014 229 0.12 SVR 0.27 0.20 140181 189 -0.77
Boruta+RFC 0.45 0.02 133497 229 0.36 SVC 0.40 0.17 194331 445 0.06
STR FEATURES EXTRACTED by PCA
Regression 0.54 0.08 13748742 271 0.32 Regression  0.39 0.17 672193 478 0.038
Lasso 0.46 0.20 415488 228 0.18 Lasso 0.36 0.59 688037 559 0.04
Ridge 0.54 0.03 13754344 272 0.32 Ridge 0.38 0.25 558488 457 0.02
KNN 0.50 0.09 173798 211 0.21 KNN 0.34 0.92 149014 194 0.07
RFR 0.58 0.01 144744 125 0.43 RFR 0.34 0.92 163826 218 0.02
SVR 0.23 0.40 175720 157 —0.65 SVR 0.27 0.20 140298 189 -0.79
SVC 0.31 0.99 221768 229 —0.43 SVC 0.40 0.17 198655 445 0.05
Boruta+RFC 0.50 0.09 92744 229 0.45 ) o o

Regr. BH, Regression on all features that were significant after Benjamini-Hochberg
NA multiple test correction.
Regression 0.32 0.91 1434873 412 -0.02
L 0.39 0.25 533963 282 0.11 . . . L

asso Imagelntensity Kurtosis T2 NEC, was statistically significant

Ridge 0.32 0.91 1435941 412 —-0.02 L . .

after Benjamini-Hochberg correction. However, after leveraging
kNN 0.25 0.13 166072 254 —0.18 . . . s .

this finding in a predictive regression model, no clear benefit
RFR 0-83 100 146459 247 0.20 could be observed. Why radiomic features were not predictive
SVR 0.25 0.13 105827 225 —078 on GTR patients remains unclear. It can only be hypothesized
Sve 0.40 0.16 169944 229 0.00 that survival for STR patients depends on the malignancy of
Boruta+RF 0.30 0.56 162734 229 —0.13

All features as described in section 3.5 including the age were used as input. For the
age-only approach as comparison, see Table 1.

TABLE 3 | Correlation analysis of VIF—selected features with OS for GTR patients.

Feature Correlation with OS p-value
Age —0.46 0.000001
Wavelet LHH Imagelntensity Kurtosis T2 NEC 0.39 0.00002
Wavelet LLL ngtdm Complexity T2 ET 0.22 0.03
Wavelet LHL Imagelntensity Kurtosis T1CE nec 0.22 0.03
Wavelet LLL Imagelntensity Minimum T1 ET —0.20 0.05

developed radiomic models could not identify any connection
between image based features and survival that went beyond
the predictiveness of patient age. In previously published
findings, the resection status is often not known or not clearly
stated (Gutman et al., 2013; Macyszyn et al., 2015; Kickingereder
et al, 2016; Lao et al., 2017; Li et al., 2017), or radiomic features
are not assessed dependent on resection status (Zhang et al.,
2014; Nie et al,, 2019). Patient age, a clinical marker that is not
strongly predictive of survival for patient without total tumor
resection (cf. Figure 4) seems to be the strongest predictor of
patient survival after GTR. One single feature, the Wavelet LHH

the primary subtotally resected tumor, while survival for GTR
patients relates to possible metastases that are not directly
dependent on image features of the original tumor.

It can nevertheless be concluded that OS of brain tumor
patients given radiomic images is strongly dependent not only
on the preoperative images themselves. Given a high number
of features and strong influences that cannot be assessed with
preoperative MRI images, survival prediction is an ill-posed
problem on a limited dataset. Researchers need to pay attention
to the problems that arise when using radiomics or other big data
methods on wide data, i.e., datasets with much more features
than observations. Specifically, challenge participants and other
researchers in clinical data analysis need to be fully aware of
overfitting pitfalls, not only on the training set, but even on the
validation dataset.

In radiomics, a very high number of features are extracted.
In our case, a total of 9,871 features were initially considered.
Combined with a limited dataset, as is often the case for medical
applications, problems arise due to the curse of dimensionality.
One problem encountered is the robustness of significance:
The features that are significant on the whole dataset are not
necessarily significant on the training subset, and vice versa,
features identified as significant on a small dataset do not need
to be significant on larger datasets. Although it is impossible to
test all possible combinations of different radiomic features and
machine learning models, we think that our evaluation shows the
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limitations of radiomic analysis on glioblastoma patients with
GTR. To be as robust as possible against such subset biases, we
used extensive cross-validation and determined an orthogonal
subset of features.

Next to the difficulties encountered when applying radiomics
to patients that underwent GTR, we believe one main limitation
in the BraTS$ challenge 2018 was the small training dataset in
combination with overfitted approaches. In the BraTS setting,
a predefined validation set was released by the organizers,
and could be used by all contributors to evaluate their
algorithms during development. Thus, if contributors test
different algorithms or hyperparameter settings on this left-
out validation set, it has to be taken into account that one
may accidentally overfit on this validation set. Such “result-
peeking” invalidates accuracy scores on this left-out dataset,
i.e. the developed approaches may generalize poorly to other
samples. In fact, it seemed that this actually happened during
the BraTS challenge. As can be seen on the official BraTS
challenge online leaderboard (Bakas et al., 2018a), a total of nine
different teams obtained accuracy scores at least as good as ours
on the validation dataset. However, on the test set, our naive
algorithm scored the 3rd place out of 26 participants. On this
dataset, segmentation and OS results could not be evaluated by
participants, making this part of the data impossible to overfit.
In contrast to private datasets, algorithm developers cannot—be
it deliberately or accidentally—invalidate the obtained results by
result-peeking in such a setting.

Thus, challenges such as the BraTS challenge are important for
unbiased algorithm comparison and to assess whether findings
from research are robust and can be applied to translational
medicine. Here, it was assessed whether findings in radiomics
of glioblastoma patients can be transferred to patients that
underwent GTR. In this case, classical radiomic features seem not
to be suited for robust results in survival prediction. In contrast,
positive findings, with previously reported approaches as well as
with different machine learning techniques can be reported for
patients with subtotal resection.

Nevertheless, the approaches presented in this paper are not
exhaustive. We do not want to present the new “best” survival
prediction algorithm. Default parameter settings were utilized for
all machine learning techniques, as exhaustive hyperparameter
tuning—as employed by most winning approaches in machine
learning challenges—on a small dataset would invalidate the
results. The approaches presented in this manuscript, especially
those relying on orthogonal feature subset selection, were utilized
to analyze the robustness of radiomic features. They may not
be the “best” algorithms for survival prediction. Thus, C-index,
hazard ratio, or KM analysis were not regarded, as the focus of
this analysis lies on robustness of radiomic features, and not on a
single survival prediction algorithm.

6. CONCLUSION

The BraTSs survival prediction challenge focuses on glioblastoma
patients that underwent GTR. This paper shows that adding

information from radiomic features to the age of the patient
does not necessarily improve accuracy for this task. To show
this, we evaluated different published techniques as well as a
sophisticated radiomic feature extraction combined with modern
machine learning techniques. However, no helpful information
could be extracted, and our baseline—a linear regression on the
age of the patient—could not be consistently outperformed on
this limited dataset. In contrast, on patients with a different
resection status—either where the resection status was not
available or the tumor was subtotally resected—previously
published findings could be reproduced, and different machine
learning techniques could extract information predictive for
overall survival.

In order to move from fundamental research to translational
medicine, future research in brain tumor radiomics should
focus on finding novel radiomic features that are applicable
if the patient undergoes surgery. A possible set of features
that was not assessed in this study are location based features.
Location based features are not as established as shape
or texture features in radiomics. However, they could be
more promising for survival prediction even for patients that
underwent GTR, as the position of the tumor in the brain could
influence prognosis.
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Data augmentation is a popular technique which helps improve generalization capabilities
of deep neural networks, and can be perceived as implicit regularization. It plays a pivotal
role in scenarios in which the amount of high-quality ground-truth data is limited, and
acquiring new examples is costly and time-consuming. This is a very common problem in
medical image analysis, especially tumor delineation. In this paper, we review the current
advances in data-augmentation techniques applied to magnetic resonance images
of brain tumors. To better understand the practical aspects of such algorithms, we
investigate the papers submitted to the Multimodal Brain Tumor Segmentation Challenge
(BraTS 2018 edition), as the BraTS dataset became a standard benchmark for validating
existent and emerging brain-tumor detection and segmentation techniques. We verify
which data augmentation approaches were exploited and what was their impact on
the abilities of underlying supervised learners. Finally, we highlight the most promising
research directions to follow in order to synthesize high-quality artificial brain-tumor
examples which can boost the generalization abilities of deep models.

Keywords: MRI, image segmentation, data augmentation, deep learning, deep neural network

1. INTRODUCTION

Deep learning has established the state of the art in many sub-areas of computer vision and
pattern recognition (Krizhevsky et al, 2017), including medical imaging and medical image
analysis (Litjens et al., 2017). Such techniques automatically discover the underlying data
representation to build high-quality models. Although it is possible to utilize generic priors and
exploit domain-specific knowledge to help improve representations, deep features can capture
very discriminative characteristics and explanatory factors of the data which could have been
omitted and/or unknown for human practitioners during the process of manual feature engineering
(Bengio et al., 2013).

In order to successfully build well-generalizing deep models, we need huge amount of
ground-truth data to avoid overfitting of such large-capacity learners, and “memorizing” training
sets (LeCun et al., 2016). It has become a significant obstacle which makes deep neural networks
quite challenging to apply in the medical image analysis field where acquiring high-quality ground-
truth data is time-consuming, expensive, and very human-dependent, especially in the context of
brain-tumor delineation from magnetic resonance imaging (MRI) (Isin et al., 2016; Angulakshmi
and Lakshmi Priya, 2017; Marcinkiewicz et al., 2018; Zhao et al., 2019). Additionally, the majority
of manually-annotated image sets are imbalanced—examples belonging to some specific classes
are often under-represented. To combat the problem of limited medical training sets, data
augmentation techniques, which generate synthetic training examples, are being actively developed
in the literature (Hussain et al., 2017; Gibson et al., 2018; Park et al., 2019).
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In this review paper, we analyze the brain-tumor segmentation
approaches available in the literature, and thoroughly investigate
which techniques have been utilized by the participants of the
Multimodal Brain Tumor Segmentation Challenge (BraT$ 2018).
To the best of our knowledge, the dataset used for the BraTS
challenge is currently the largest and the most comprehensive
brain-tumor dataset utilized for validating existent and emerging
algorithms for detecting and segmenting brain tumors. Also, it is
heterogeneous in the sense that it includes both low- and high-
grade lesions, and the included MRI scans have been acquired
at different institutions (using different MR scanners). We
discuss the brain-tumor data augmentation techniques already
available in the literature, and divide them into several groups
depending on their underlying concepts (section 2). Such MRI
data augmentation approaches have been applied to augment
other datasets as well, also acquired for different organs (Amit
et al,, 2017; Nguyen et al., 2019; Oksuz et al., 2019).

In the BraTS$ challenge, the participants are given multi-
modal MRI data of brain-tumor patients (as already mentioned,
both low- and high-grade gliomas), alongside the corresponding
ground-truth multi-class segmentation (section 3). In this
dataset, different sequences are co-registered to the same
anatomical template and interpolated to the same resolution
of 1 mm?®. The task is to build a supervised learner which is
able to generalize well over the unseen data which is released
during the testing phase. In section 4, we summarize the
augmentation methods reported in 20 papers published in the
BraTS 2018 proceedings. Here, we focused on those papers
which explicitly mentioned that the data augmentation had been
utilized, and clearly stated what kind of data augmentation had
been applied. Although such augmentations are single-modal—
meaning that they operate over the MRI from a single sequence—
they can be easily applied to co-registered series, hence to
augment multi-modal tumor examples. Finally, the paper is
concluded in section 5, where we summarize the advantages
and disadvantages of the reviewed augmentation techniques, and
highlight the promising research directions which emerge from
(not only) BraTS.

2. DATA AUGMENTATION FOR
BRAIN-TUMOR SEGMENTATION

Data augmentation algorithms for brain-tumor segmentation
from MRI can be divided into the following main categories
(which we render in a taxonomy presented in Figure 1): the
algorithms exploiting various transformations of the original
data, including affine image transformations (section 2.1),
elastic transformations (section 2.2), pixel-level transformations
(section 2.3), and various approaches for generating artificial
data (section 2.4). In the following subsections, we review
the approaches belonging to all groups of such augmentation
methods in more detail.

Traditionally, data augmentation approaches have been
applied to increase the size of training sets, in order to allow
large-capacity learners benefit from more representative training
data (Wong et al., 2016). There is, however, a new trend in the

deep learning literature, in which examples are augmented on
the fly (i.e., during the inference), in the test-time' augmentation
process. In Figure 2, we present a flowchart in which both
training- and test-time data augmentation is shown. Test-time
data augmentation can help increase the robustness of a trained
model by simulating the creation of a homogeneous ensemble,
where (n + 1) models (of the same type, and trained over
the same training data) vote for the final class label of an
incoming test example, and #n denotes the number of artificially-
generated samples, elaborated for the test example which is being
classified. The robustness of a deep model is often defined as
its ability to correctly classify previously unseen examples—such
incoming examples are commonly “noisy” or slightly “perturbed”
when confronted with the original data, therefore they are more
challenging to classify and/or segment (Rozsa et al., 2016). Test-
time data augmentation can be exploited for estimating the
level of uncertainty of deep networks during the inference—it
brings new exciting possibilities in the context of medical image
analysis, where quantifying the robustness and deep-network
reliability are crucial practical issues (Wang et al., 2019). This type
of data augmentation can utilize those methods which modify
an incoming example, e.g., by applying affine, pixel-level or
elastic transformations in the case of brain-tumor segmentation
from MRL

2.1. Data Augmentation Using Affine Image

Transformations

In the affine approaches, existent image data undergo
different operations (rotation, zooming, cropping, flipping,
or translations) to increase the number of training
examples (Pereira et al, 2016; Liu et al., 2017). Shin et al
pointed out that such traditional data augmentation techniques
fundamentally produce very correlated images (Shin et al,
2018), therefore can offer very little improvements for the
deep-network training process and future generalization over the
unseen test data (such examples do not regularize the problem
sufficiently). Additionally, they can also generate anatomically
incorrect examples, e.g., using rotation. Nevertheless, affine
image transformations are trivial to implement (in both 2D and
3D), they are fairly flexible (due to their hyper-parameters), and
are widely applied in the literature. In an example presented in
Figure 3, we can see that applying simple data augmentation
techniques can lead to a significant increase in the number of
training samples.

2.1.1. Flip and Rotation

Random flipping creates a mirror reflection of an original image
along one (or more) selected axis. Usually, natural images can
be flipped along the horizontal axis, which is not the case for
the vertical one because up and down parts of an image are
not always “interchangeable.” A similar property holds for MRI
brain images—in the axial plane a brain has two hemispheres,
and the brain (in most cases) can be considered anatomically
symmetrical. Flipping along the horizontal axis swaps the left

! Test-time augmentation is also referred to as the inference-time and the online
data augmentation in the literature.
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Data augmentation for brain-tumor segmentation

Transformation of original data
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FIGURE 1 | Data augmentation for brain-tumor segmentation—a taxonomy.

Generation of artificial data
(Section 2.4)

Learned
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FIGURE 2 | Flowchart presenting training- and test-time data augmentation. In the training-time data augmentation approach, we generate synthetic data to increase
the representativeness of a training set (and ultimately build better models), whereas in test-time augmentation, we benefit from the ensemble-like technique, in which
multiple homogeneous classifiers vote for the final class label for an incoming example by classifying this sample and a number of its augmented versions.

Rotation

Input

Flip

Image —

Image
with —
mask K

Trans.

Shear  Scaling Noise Brightness

FIGURE 3 | Applying affine and pixel-level (discussed in more detail in section 2.3) transformations can help significantly increase the size (and potentially
representativeness) of training sets. In this example, we generate seven new images based on the original MRI (coupled with its ground truth in the bottom row).

hemisphere with the right one, and vice versa. This operation
can help various deep classifiers, especially those benefitting
from the contextual tumor information, be invariant with respect
to their position within the brain which would be otherwise
difficult for not representative training sets (e.g., containing
brain tumors located only in the left or right hemisphere).
Similarly, rotating an image by an angle « around the center
pixel can be exploited in this context. This operation is followed
by appropriate interpolation to fit the original image size. The
rotation operation denoted as R is often coupled with zero-
padding applied to the missing pixels:

cosa —sina
= ( . ) (1)
sina  cos«

2.1.2. Translation

The translation operation shifts the entire image by a given
number of pixels in a chosen direction, while applying padding
accordingly. It allows the network to not become focused on
features present mainly in one particular spatial region, but it
forces the model to learn spatially-invariant features instead. As
in the case of rotation—since the MRI scans of different patients
available in training sets are often not co-registered—translation
of an image by a given number of pixels along a selected axis
(or axes) can create useful and viable images. However, this
procedure may not be “useful” for all deep architectures—
convolutional neural networks exploit convolutions and
pooling operations, which are intrinsically spatially-invariant
(Asif et al., 2018).
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2.1.3. Scaling and Cropping

Introducing scaled versions of the original images into the
training set can help the deep network learn valuable deep
features independently of their original scale. This operation
S can be performed independently in different directions (for
brevity, we have only two dimensions here):

(i)
5y

and the scaling factors are given as s, and s, for the x and y
directions, respectively. As tumors vary in size, scaling can indeed
bring viable augmented images into a training set. Since various
deep architectures require images of the constant size, scaling
is commonly paired with cropping to maintain the original
image dimensions. Such augmented brain-tumor examples may
manifest tumoral features at different scales. Also, cropping can

limit the field of view only to those parts of the image which are
important (Menze et al., 2015).

2.1.4. Shearing

The shear transformation (H) displaces each point in an image
in a selected direction. This displacement is proportional to its
distance from the line which goes through the origin and is

parallel to this direction:
1 h
=, ). ®
4

where h, and hy, denote the shear coefficient in the x and
y directions, respectively (as previously, we consider two
dimensions for readability). Although this operation can deform
shapes, it is rarely used to augment medical image data
because we often want to preserve original shape characteristics
(Frid-Adar et al., 2018).

2.2. Data Augmentation Using Elastic

Image Transformations

Data augmentation algorithms based on unconstrained elastic
transformations of training examples can introduce shape
variations. They can bring lots of noise and damage into the
training set if the deformation field is seriously varied—see an
example by Mok and Chung (2018) in which a widely-used
elastic transform produced a totally unrealistic synthetic MRI
scan of a human brain. If the simulated tumors were placed
in “unrealistic” positions, it would likely force the segmentation
engine to become invariant to contextual information and rather
focus on the lesion’s appearance features (Dvornik et al., 2018).
Although there are works which indicate that such aggressive
augmentation may deteriorate the performance of the models
in brain-tumor delineation (Lorenzo et al., 2019), it is still an
open issue. Chaitanya et al. (2019) showed that visually non-
realistic synthetic examples can improve the segmentation of
cardiac MRI and noted that it is slightly counter-intuitive—it may
have occurred due to the inherent structural and deformation-
related characteristics of the cardiovascular system. Finally,
elastic transformations often benefit from B-splines (Huang

and Cohen, 1996; Gu et al.,
(Castro et al., 2018).

Diffeomophic mappings play an important role in brain
imaging, as they are able to preserve topology and generate
biologically plausible deformations. In such transformations, the
diffeomorphism ¢ (also referred to as a diffeomorphic mapping) is
given in the spatial domain €2 of a source image I, and transforms
I to the target image J: I o ¢~!(x, 1). The mapping is the solution
of the differential equation:

2014) or random deformations

dp(x,t)
LD~y (ptn.1), @)
where ¢(x,0) = x, v is a time-dependent smooth velocity

field, v:Q x t — RY, ¢(x,t) is a geodesic path (d denotes
the dimensionality of the spatial domain ), and ¢(x,1): Q2 x
t — . In Nalepa et al. (2019a), we exploited the directly
manipulated free-form deformation, in which the velocity vector
fields are regularized using B-splines (Tustison et al., 2009). The
d-dimensional update field 8v; . ;, is

%OﬁnameC)

c=1

""" la = Nqo d r+1 r+1 ’
(Z HBZ(XC)) (Z »> HBZ(x )

e=1j=1 k=1 kg=1j=1

®)

and B(-) are the B-spline basis functions, Ng denotes the
number of pixels in the domain of the reference image, r is the
spline order (in all dimensions), and 3—5‘ is the gradient of the
spatial similarity metric at a pixel ¢. The B-spline functions act
as regularizers of the solution for each parametric dimension
(Tustison and Avants, 2013).

Examples of brain-tumor images generated using
difftomorphic registration are given in Figure4—such
artificially-generated data significantly improved the abilities
of deep learners, especially when combined with affine
transformations, as we showed in Nalepa et al. (2019a).
The generated (I') images preserve topological information of
the original image data (I) with subtle changes to the tissue.
Diffeomorphic registration may be applied not only to images
exposing anatomical structures (Tward and Miller, 2017).
In Figure5, we present examples of simple shapes which
underwent this transformation—the topological information is
clearly maintained in the generated images as well.

2.3. Data Augmentation Using Pixel-Level

Image Transformations

There exist augmentation techniques which do not alter
geometrical shape of an image (therefore, all geometrical features
remain unchanged during the augmentation process), but affect
the pixel intensity values (either locally, or across the entire
image). Such operations can be especially useful in medical
image analysis, where different training images are acquired
in different locations and using different scanners, hence can
be intrinsically heterogeneous in the pixel intensities, intensity
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I?
0
FIGURE 4 | Diffeomorphic image registration applied to example brain images allowed for obtaining visually-plausible generated images. For source (/), target (J), and

artificially generated (/') images, we also present tumor masks overlayed over the corresponding original images (in yellow; rows with the o subscript), alongside a
zoomed part of a tumor (rows with the z superscript).
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A
]/

FIGURE 5 | Diffeomorphic image registration applied to basic shapes which underwent simple affine registration (translation) before diffeomorphic mapping. Source

images (/) transformed to match the corresponding targets (J) still clearly expose their spatial characteristics (/').
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FIGURE 6 | Generative adversarial networks are aimed at generating fake data (by a generator; potentially using some available data characteristics) which is
indistinguishable from the original data by the discriminator. Therefore, the generator and discriminator compete with one another.

Discriminator Real / Fake

gradients or “saturation”. During the pixel-level augmentation,
the pixel intensities are commonly perturbed using either random
or zero-mean Gaussian noise (with the standard deviation
corresponding to the appropriate data dimension), with a
given probability (the former operation is referred to as the
random intensity variation). Other pixel-level operations include
shifting and scaling of pixel-intensity values (and modifying the
image brightness), applying gamma correction and its multiple
variants (Agarwal and Mahajan, 2017; Sahnoun et al., 2018),
sharpening, blurring, and more (Galdran et al., 2017). This kind
of data augmentation is often exploited for high-dimensional
data, as it can be conveniently applied to selected dimensions
(Nalepa et al., 2019b).

2.4. Data Augmentation by Generating
Artificial Data

To alleviate the problems related to the basic data augmentation
approaches (including the problem of generating correlated data
samples), various approaches toward generating artificial data
(GAD) have been proposed. Generative adversarial networks
(GANs), originally introduced in Goodfellow et al. (2014), are
being exploited to augment medical datasets (Han et al., 2019;
Shorten and Khoshgoftaar, 2019). The main objective of a GAN
(Figure 6) is to generate a new data example (by a generator)
which will be indistinguishable from the real data by the

>These variations can be however alleviated by appropriate data standardization.

discriminator (the generator competes with the discriminator,
and the overall optimization mimics the min-max game). Mok
and Chung proposed a new GAN architecture which utilizes a
coarse-to-fine generator whose aim is to capture the manifold
of the training data and generate augmented examples (Mok
and Chung, 2018). Adversarial networks have been also used
for semantic segmentation of brain tumors (Rezaei et al,
2017), brain-tumor detection (Varghese et al., 2017), and image
synthesis of different modalities (Yu et al., 2018). Although
GANs allow us to introduce invariance and robustness of deep
models with respect to not only affine transforms (e.g., rotation,
scaling, or flipping) but also to some shape and appearance
variations, convergence of the adversarial training and existence
of its equilibrium point remain the open issues. Finally, there
exist scenarios in which the generator renders multiple very
similar examples which cannot improve the generalization
of the system—it is known as the mode collapse problem
(Wang et al., 2017).

An interesting approach for generating phantom image data
was exploited in Gholami et al. (2018), where the authors utilized
a multi-species partial differential equations (PDE) growth model
of a tumor to generate synthetic lesions. However, such data
does not necessarily follow the correct intensity distribution
of a real MRI, hence it should be treated as a separate
modality, because using the artificial data which is sampled from
a very different distribution may adversely affect the overall
segmentation performance by “tricking” the underlying deep
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model (Wei et al, 2018). The tumoral growth model itself
captured the time evolution of enhancing and necrotic tumor
concentrations together with the edema induced by a tumor.
Additionally, the deformation of a lesion was simulated by
incorporating the linear elasticity equations into the model. To
deal with the different data distributions, the authors applied
CycleGAN (Zhu et al., 2017) for performing domain adaptation
(from the generated phantom data to the real BraTS MRI scans).
The experimental results showed that the domain adaptation was
able to generate images which were practically indistinguishable
from the real data, therefore could be safely included in the
training set.

A promising approach of combining training samples using
their linear combinations (referred to as mixup) was proposed
by Zhang et al. (2017), and further enhanced for medical
image segmentation by Eaton-Rosen et al. in their mixmatch
algorithm (Eaton-Rosen et al, 2019), which additionally
introduced a technique of selecting training samples that
undergo linear combination. Since the medical image datasets
are often imbalanced (with the tumorous examples constituting
the minority class), training patches with highest “foreground
amounts” (i.e., the number of pixels annotated as tumorous)
are combined with those with the lowest concentration of
foreground. The authors showed that their approach can increase
performance in medical-image segmentation tasks, and related
its success to the mini-batch training. It is especially relevant in
the medical-image analysis, because the sizes of input scans are
usually large, hence the batches are small to keep the training
memory requirements feasible in practice. Such data-driven
augmentation techniques can also benefit from growing ground-
truth datasets (e.g., BraTS) which manifest large variability
of brain tumors, to generate even more synthetic examples.
Also, they could be potentially applied at test time to build an
ensemble-like model, if a training patch/image which matches
the test image being classified was efficiently selected from the
training set.

3. DATA

In this work, we analyzed the approaches which were exploited
by the BraTS 2018 participants to segment brain tumors from
MRI (45 methods have been published, Crimi et al, 2019),
and verified which augmentation scenarios were exploited in
these algorithms. All of those techniques have been trained over
the BraTS 2018 dataset consisting of MRI-DCE data of 285
patients with diagnosed gliomas: 210 patients with high-grade
glioblastomas (HGG), and 75 patients with low-grade gliomas
(LGG), and validated using the validation set of 66 previously
unseen patients (both LGG and HGG, however the grade has not
been revealed) (Menze et al., 2015; Bakas et al., 2017a,b,c). Each
study was manually annotated by one to four expert readers. The
data comes in four co-registered modalities: native pre-contrast
(T1), post-contrast T1-weighted (T1c), T2-weighted (T2), and T2
Fluid Attenuated Inversion Recovery (FLAIR). All the pixels have
one of four labels attached: healthy tissue, Gd-enhancing tumor
(ET), peritumoral edema (ED), the necrotic and non-enhancing

tumor core (NCR/NET). The scans were skull-stripped and
interpolated to the same shape (155, 240, 240 with the voxel size
of 1 mm?).

Importantly, this dataset manifests very heterogeneous image
quality, as the studies were acquired across different institutions,
and using different scanners. On the other hand, the delineation
procedure was clearly defined which allowed for obtaining
similar ground-truth annotations across various readers. To this
end, the BraTS dataset—as the largest, most heterogeneous,
and carefully annotated set—has been established as a standard
brain-tumor dataset for quantifying the performance of existent
and emerging detection and segmentation approaches. This
heterogeneity is pivotal, as it captures a wide range of tumor
characteristics, and the models trained over BraTS are easily
applicable for segmenting other MRI scans (Nalepa et al., 2019).

To show this desirable feature of the BraTS set
experimentally, we trained our U-Net-based ensemble
architecture (Marcinkiewicz et al., 2018) using (a) BraT$S
2019 training set (exclusively FLAIR sequences) and (b) our set
of 41 LGG (WHO II) brain-tumor patients who underwent the
MR imaging with a MAGNETOM Prisma 3T system (Siemens,
Erlangen, Germany) equipped with a maximum field gradient
strength of 80 mT/m, and using a 20-channel quadrature head
coil. The MRI sequences were acquired in the axial plane with
a field of view of 230 x 190 mm, matrix size 256 x 256 and 1
mm slice thickness with no slice gap. In particular, we exploited
exclusively FLAIR series with TE = 386 ms, TR = 5,000 ms, and
inversion time of 1,800 ms for segmentation of brain tumors.
These scans underwent the same pre-processing as applied in the
case of BraTS, however they were not segmented following
the same delineation protocol, hence the characteristics of the
manual segmentation likely differ across (a) and (b). The
4-fold cross-validation showed that although the deep models
trained over (a) and (b) gave the statistically different results
at p < 0.001, according to the two-tailed Wilcoxon test®, the
ensemble of models trained over (a) correctly detected 71.4%
(5/7 cases) of brain tumors in the WHO 1I test dataset, which
included seven patients kept aside while building an ensemble,
with the average whole-tumor DICE of 0.80, where DICE is
given as:

2-]ANB|

DICE(A,B) = ———,
|Al + [B]

(6)
where A and B are two segmentations, i.e., manual and
automated, 0 < DICE < 1, and DICE = 1 means the perfect
segmentation score. On the other hand, a deep model trained
over the WHO II training set and used for segmenting the test
WHO 1I cases detected 85.7% tumors (6/7 patients) with the
average whole-tumor DICE = 0.84. This tiny experiment shows
that the segmentation engines trained over BraTS can capture
tumor characteristics which are manifested in MRI data acquired
and analyzed using different protocols, and allow us to obtain
high-quality segmentation. Interestingly, if we train our ensemble
over the combined BraTS 2019 and WHO II training sets, we

3We tested the null hypothesis saying that applying the models trained exclusively
over the BraTS$ or our WHO II datasets leads to the same-quality segmentation.
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T1 Tle T2 FLAIR

Examples of low-grade glioma patients

Examples of high-grade glioma patients

FIGURE 7 | Two example low- and high-grade glioma patients from the BraTS 2018 dataset: red—GD-enhancing tumor (ET), green— peritumoral edema (ED), and
blue —necrotic and non-enhancing tumor core (NCR/NET); (A-D) show original images, whereas (A’-D’) present overlaid ground-truth masks.
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TABLE 1 | Data augmentation techniques applied in the approaches validated within the BraTS 2018 challenge framework.

References Model Flip Rot.

Trans. Scale Shear Elastic GAD Pixel-wise

Albiol et al., 2019
Benson et al., 2018"
Carver et al., 2018
Chandra et al., 2018
Dai et al., 2018
Feng et al., 2018
Gholami et al., 2018"

VGG, Inception, Dense

CNN (encoder-decoder) Yes
U-Net Yes
V-Net, ResNet-18, FC-CRF  Yes
Domain-adapted U-Net
U-Net
U-Net

Kao et al., 2018

DeepMedic, 3D U-Net

Kermi et al., 2018 U-Net Yes
Lachinov et al., 2018" Cascaded U-Net Yes
Ma and Yang, 2018 3D CNN Yes

Mehta and Arbel, 2018 U-Net

Nuechterlein and Mehta, 2018 3D-ESPNet

3D affine transformations

Puybareau et al., 2018 VGG-16
Rezaei et al., 2018t Voxel-GAN
Sun et al., 2018 CNN, DFKZ, 3D CNN Yes
Wang et al., 2018t CNN Yes
Number of methods utilizing this augmentation—15 8 2 9 1 2 1 8
Percentage (%) of methods utilizing this augmentation—75 40 10 45 5 10 5 40

The top-performing techniques (over the unseen test set) are annotated with green.

*The authors verified the impact of data augmentation of the generalization abilities of their deep models.

TThe authors used both training- and test-time data augmentation.

will end up having the correct detection of 85.7% tumors (6/7
cases) with the average whole-tumor DICE of 0.76. We can
appreciate the fact that we were able to improve the detection,
but the segmentation quality slightly dropped, showing that the
detected case was challenging to segment. Finally, it is worth
mentioning that this experiment sheds only some light on the
effectiveness of applying the deep models (or other data-driven
techniques) trained over BraTS for analyzing different MRI
brain images. The manual delineation protocols were different,
and the lack of inter-rater agreement may play pivotal role
in quantifying automated segmentation algorithms over such
differently acquired and analyzed image sets—it is unclear if
the differences result from the inter-rater disagreement of the
incorrect segmentation (Hollingworth et al., 2006; Fyllingen
et al., 2016; Visser et al., 2019).

3.1. Example BraTS Images

Example BraTS 2018 images are rendered in Figure?7 (two
low-grade and two high-grade glioma patients), alongside the
corresponding multi-class ground-truth annotations. We can
appreciate that different parts of the tumors are manifested in
different modalities—e.g., necrotic and non-enhancing tumor
core is typically hypo-intense in T1-Gd when compared to
T1 (Bakas et al., 2018). Therefore, multi-modal analysis appears
crucial to fully benefit from the available image information.

4. BRAIN-TUMOR DATA AUGMENTATION
IN PRACTICE

4.1. BraTS 2018 Challenge

The BraTS challenge is aimed at evaluating the state-of-
the-art approaches toward accurate multi-class brain-tumor
segmentation from MRI. In this work, we review all published
methods which were evaluated within the framework of
the BraTS 2018 challenge—although 61 teams participated
in the testing phase (Bakas et al., 2018), only 45 methods
were finally described and published in the post-conference
proceedings (Crimi et al., 2019). We verify which augmentation
techniques were exploited to help boost generalization abilities
of the proposed supervised learners. We exclusively focus on 20
papers (44% of all manuscripts) in which the authors explicitly
stated that the augmentation had been used and report the type
of the applied augmentation.

In Tablel, we summarize all investigated brain-tumor
segmentation algorithms, and report the deep models utilized in
the corresponding works alongside the augmentation techniques.
In most of the cases, the authors followed the cross-validation
scenario, and divided the training set into multiple non-
overlapping folds. Then, separate models were trained over
such folds, and the authors finally formed an ensemble of
heterogeneous classifiers (trained over different training data) to
segment previously unseen test brain-tumor images. Also, there
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FIGURE 8 | The DICE values: (A) whote-tumor (WT), (B) tumor core (TC), and (C) enhancing tumor (ET), obtained using the investigated techniques over the BraTS
2018 validation set.
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TABLE 2 | The impact of applying data augmentation on the average DICE scores.

Without augmentation

With augmentation Change (in %)

References WT TC ET WT TC ET AWT ATC AET
Benson et al., 2018 0.82 0.64 0.59 0.82 0.61 0.56 0 -5 -5
Gholami et al., 2018 0.89 0.80 0.74 0.91 0.82 0.79 +2 +3 +7
Lachinov et al., 2018" 0.91 0.84 0.77 0.91 0.84 0.78 0 0 +1
Wang et al., 2018 0.90 0.85 0.79 0.90 0.86 0.80 0 +1 +1
For the methods reported by Lachinov et al. (2018) and Wang et al. (2018), we analyzed the best-performing models.
*The authors verified the impact of data augmentation over the training set.
TABLE 3 | The impact of applying data augmentation on the average Hausdorff distance values (in mm).

Without augmentation With augmentation Change (in %)
References WT TC ET WT TC ET AWT ATC AET
Benson et al., 2018 94.28 130.70 18.12 13.57 17.95 14.29 —86 —86 —21
Wang et al., 2018 5.38 6.61 3.34 6.18 6.37 3.13 +26 —4 —6

For the method reported by Wang et al. (2018), we analyzed the best-performing models. Note that Gholami et al. (2018) and Lachinov et al. (2018) did not present the Hausdorff

distances obtained using their approaches.

TABLE 4 | The fully convolutional neural networks proposed in Lorenzo et al. (2019) have been trained using a number of datasets with different preprocessing

and augmentations.

Setup— AN B, B’ C,C D, D’ E,FE F F G, G’ H, H’ I, P J,J K, K’ L L M, \’ N, N’ 0,0
Feature centering No Yes Yes Yes Yes No Yes Yes Yes Yes No Yes Yes Yes Yes
Vertical flip No No Yes No Yes No No Yes No Yes No No Yes No Yes
Horizontal flip No No No Yes Yes No No No Yes Yes No No No Yes Yes
Max. rotation (£ max) 0 0 0 0 0 45 45 45 45 45 90 90 90 90 90
Augmentation factor 1,2 1,2 2,4 2,4 4,8 2,4 2,4 4,8 4,8 8,16 2,4 2,4 4,8 4,8 8,16

In the prime versions, we applied elastic deformations. This table comes from our previous paper (Lorenzo et al., 2019).

are approaches, e.g., by Albiol et al. (2019), Chandra et al. (2018),
or Sun et al. (2018), in which a variety of deep neural architectures
were used.

In the majority of investigated brain-tumor segmentation
techniques, the authors applied relatively simple training-time
data augmentation strategies—the combination of training- and
test-time augmentation was used only in two methods (Rezaei
etal., 2018; Wang et al., 2018). In 75% of the analyzed approaches,
random flipping was executed to increase the training set
size and provide anatomically correct brain images®*. Similarly,
rotating and scaling MRI images was applied in 40% and
45% of techniques, respectively. Since modern deep network
architectures are commonly translation-invariant, this type of
affine augmentation was used only in two works. Although
other augmentation strategies were not as popular as easy-
to-implement affine transformations, it is worth noting that
the pixel-wise operations were utilized in all of the top-
performing techniques (the algorithms by Myronenko (2018),

#Note that we do not count the algorithm proposed by Albiol et al. (2019), because
the authors were not very specific about their augmentation strategies.

Isensee et al. (2018), and McKinley et al. (2018) achieved the
first, second, and third place across all segmentation algorithms>,
respectively). Additionally, Isensee et al. (2018) exploited elastic
transformations in their aggressive data augmentation procedure
which significantly increased the size and representativeness of
their training sets, and ultimately allowed for outperforming
a number of other learners. Interestingly, the authors showed
that the state-of-the-art U-Net architecture can be extremely
competitive with other (much deeper and complex) models
if the data is appropriately curated. It, in turn, manifests the
importance of data representativeness and quality in the context
of robust medical image analysis.

In Figure 8, we visualize the DICE scores obtained using
almost all investigated methods (Puybareau et al., 2018; Rezaei
etal., 2018 did not report the results over the unseen BraTS$ 2018
validation set, therefore these methods are not included in the
figure). It is worth mentioning that the trend is fairly coherent for
all classes (whole tumor, tumor core, and enhancing tumor), and
the best-performing methods by Isensee et al. (2018), McKinley

5For more detail on the validation and scoring procedures, see Bakas et al. (2018).
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et al. (2018), and Myronenko (2018) consistently outperform
the other techniques in all cases. Although the success of these
approaches obviously lies not only in the applied augmentation
techniques, it is notable that the authors extensively benefit from
generating additional synthetic data.

Albeit data augmentation is introduced in order to improve
the generalization capabilities of supervised learners, this impact
was verified only in four BraTS 2018 papers (Benson et al,
2018; Gholami et al., 2018; Lachinov et al., 2018; Wang et al.,
2018). Gholami et al. (2018) showed that their PDE-based
augmentation delivers very significant improvement in the DICE
scores obtained for segmenting all parts of the tumors in the
multi-class classification. The same performance boost (in the
DICE values obtained for each class) was reported by Lachinov

In Table2, we gathered the DICE scores obtained with
and without the corresponding data augmentation, alongside
the change in DICE (reported in %; the larger the DICE
score becomes, the better segmentation has been obtained).
Interestingly, training-time data augmentation appeared to be
adversely affecting the performance of the algorithm presented
by Benson et al. (2018). On the other hand, the authors showed
that the Hausdorft distance, being the maximum distance of

TABLE 5 | Five best-performing configurations of our fully convolutional neural
network according to the Friedman’s test (at p < 0.05) taking into account the
results elaborated for the WHO |l validation set (Lorenzo et al., 2019).

etal. (2018). Finally, Wang et al. (2018) showed that the proposed  variant— 1 E (o} E’ J
test-time data augmentation led to improving the performance of
their convolutional neural networks. Rank 4.75 5.50 6.00 7.25 7.75
Original
version

Horizontal flip

may be included in a training set. This figure is inspired by Lorenzo et al. (2019).

FIGURE 9 | Exploiting various augmentations and coupling them into an augmentation tree allow us to generate multiple versions of an original patch (or image) which
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all points from the segmented lesion to the corresponding
nearest point of the ground-truth segmentation (Sauwen
et al, 2017), significantly dropped, hence the maximum
segmentation error quantified by this metric was notably
reduced (the smaller the Hausdorff distance becomes, the
better segmentation has been elaborated; Table 3). Test-time
data augmentation exploited by Wang et al. (2018) not only
decreased DICE for the whole-tumor segmentation, but also
caused the increase of the correspoding Hausdorff distance.

TABLE 6 | The results, both (a) average, and (b) median DICE over our clinical
MRI data of low-grade glioma (WHO ll) patients in the whole-tumor segmentation
task, for different augmentation scenarios.

Augmentation Training Validation Test
Without 0.823 0.743 0.763
@ Flip 0.836 0.790 0.785
a)
DIR 0.858 0.777 0.773
DIR + Flip 0.865 0.808 0.800
Without 0.823 0.779 0.785
) Flip 0.838 0.808 0.797
DIR 0.859 0.802 0.792
DIR + Flip 0.867 0.816 0.809

The results come from our paper (Nalepa et al., 2019a). The best results are boldfaced.

Therefore, applying it in the WT segmentation scenario led
to decreasing the abilities of the underlying models. Overall,
the vast majority of methods neither report nor analyze
the real impact of the incorporated augmentation techniques
on the classification performance and/or inference time of
their deep models. Although we believe the authors did
investigate the advantages (and disadvantages) of their data
generation strategies (either experimentally or theoretically),
data augmentation is often used a standard tool which is
applied to any difficult data (e.g., imbalanced, with highly
under-represented classes).

4.2. Beyond the BraTS Challenge

Although practically all brain-tumor segmentation algorithms
which emerge in the recent literature have been tested over
the BraTS datasets, we equipped our U-Nets with a battery of
augmentation techniques (summarized in Table 4) and verified
their impact over our clinical MRI data in Lorenzo et al.
(2019). In this experiment, we have focused on the whole-
tumor segmentation, as it was an intermediate step in the
automated dynamic contrast-enhanced MRI analysis, in which
perfusion parameters have been extracted for the entire tumor
volume. Additionally, this dataset was manually delineated by a
reader (8 years of experience) who highlighted the whole-tumor
areas only.

p DICE = 0.97

E DICE = 0.8

FIGURE 10 | Examples from our clinical dataset segmented using our deep network trained in the DIR+Flip setting: (A=C) are original images, (D-F) are
corresponding segmentations. Green color represents true positives, blue—false negatives, and red—false positives.

F DICE = 0.46
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We executed multi-step augmentation by applying both affine
and elastic deformations of tumor examples, and increased the
cardinality of our training sets up to 16x. In Figure 9, we can
observe how executing simple affine transformations leads to
new synthetic image patches. Since various augmentation
approaches may be utilized at different depths of this
augmentation tree, the number of artificial examples can
be significantly increased. The multi-fold cross-validation
experiments showed that introducing rotated training examples
was pivotal to boost the generalization abilities of underlying
deep models. To verify the statistical importance of the results,
we executed the Friedman’s ranking tests which revealed that
the horizontal flip with additional rotation is crucial to build
well-generalizing deep learners in the patch-based segmentation
scenario (Table 5).

Similarly, we applied diffeomorphic image registration
(DIR) coupled with a recommendation algorithm® to select
training image pairs for registration in the data augmentation
process (Nalepa et al., 2019a). The proposed augmentation was
compared with random horizontal flipping, and the experiments
indicated that the combined approach leads to statistically
significant (Wilcoxon test at p < 0.01) improvements in DICE
(Table 6). In Figure 10, we have gathered example segmentations
obtained using our DIR+Flip deep model, alongside the
corresponding DICE values. Although the original network,
trained over the original training set would correctly detect and
segment large tumors (Figures 10A,B), it failed for relatively
small lesions which were under-represented in the training set
(Figure 10C). Similarly, synthesizing artificial training examples
helped improving the performance of our models in the case
of brain tumors located in the brain areas which have not
been originally included in the dataset (by applying rotation
and flipping).

5. CONCLUSION

In this paper, we reviewed the state-of-the-art data augmentation
methods applied in the context of segmenting brain tumors
from MRI. We carefully investigated all BraTS 2018 papers
and analyzed data augmentation techniques utilized in
these methods. Our investigation revealed that the affine
transformations are still the most widely-used in practice, since
they are trivial to implement and can elaborate anatomically-
correct brain-tumor examples. There are, however, augmentation
methods which combine various approaches, also including
elastic transformations. A very interesting research direction
encompasses algorithms which can generate artificial images
(e.g., based on the tumoral growth models) that not necessarily
follow real-life data distribution, but can be followed by
other techniques to ensure correctness of such phantoms.

®We used a recommendation algorithm for selecting source-target image pairs
that undergo registration. Such pairs should contain the training images which
capture lesions positioned in the same or close part of the brain, as the totally
different images can easily render unrealistic brain-tumor examples. A potential
drawback of this recommendation technique is its time complexity which amounts
to O(||T||?), where ||T|| is the cardinality of the original training set.

The results showed that data augmentation was pivotal in the
best-performing BraT$S algorithms, and Isensee et al. (2018)
experimentally proved that well-known and widely-used fully-
convolutional neural networks can outperform other (perhaps
much more deeper and complex) learners, if the training
data is appropriately cleansed and curated. It clearly indicates
the importance of introducing effective data augmentation
methods for medical image data, which benefit from affine
transformations (in 2D and 3D), pixel-wise modifications
and elastic transform to deal with the problem of limited
ground-truth data. In Table 7, we gather the advantages and
disadvantages of all groups of brain-tumor data augmentation
techniques analyzed in this review. Finally, these approaches
can be easily applied in both single- and multi-modal scans,

TABLE 7 | The pros and cons of state-of-the-art brain-tumor data
augmentation algorithms.

Transformation of original data

Advantages Disadvantages

Affine transformations

e Easy to implement and
understand

e Produce correlated images

e Operate in real-time due to low
time complexity

e Easily generate anatomically
incorrect examples (*)

* Applicable in training- and
test-time

e Deliver invariance with respect
to the lesion position, scale, and
rotation

Elastic transformations

e Can be applicable in training-
and test-time

¢ Not trivial to implement

e Can introduce variations in
shape

¢ Often have high time complexity

e Easily generate anatomically
incorrect examples (*)

Pixel-wise transformations

e Easy to implement and
understand

e Cannot introduce changes in
shape

e Operate in real-time due to low

time complexity

* Applicable in training- and

test-time

e Can simulate different

acquisition scenarios

Generation of artificial data

e Can synthesize realistic
examples

e (Very) high time complexity

e (Potentially) applicable in
test-time

e GANs applicable in
training-time only

® Can introduce invariance with
respect to affine transformations
and appearance variations

e Can easily render multiple
similar examples (mode collapse
problem)

*The real impact of incorporating unrealistic examples into training sets still
needs investigation.
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FIGURE 11 | Anatomically incorrect brain images may still manifest valid tumor features—the impact of including such examples (which may be easily rendered by
various data-generation augmentation techniques) into training sets for brain-tumor detection and segmentation tasks is yet to be revealed.

usually by synthesizing artificial examples separately for each
image modality.

Although data augmentation became a pivotal part of virtually
all deep learning-powered methods for segmenting brain lesions
(due to the lack of very large, sufficiently heterogeneous
and representative ground-truth sets, with BraTS being an
exception), there are still promising and unexplored research
pathways in the literature. We believe that hybridizing techniques
from various algorithmic groups, introducing more data-driven
augmentations, and applying them at training- and test-time
can further boost the performance of large-capacity learners.
Also, investigating the impact of including not necessarily
anatomically correct brain-tumor scans into training sets
remains an open issue (see the examples of anatomically incorrect
brain images which still manifest valid tumor characteristics
in Figure 11).
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United States

Glioblastoma, the most frequent primary malignant brain neoplasm, is genetically
diverse and classified into four transcriptomic subtypes, i. €., classical, mesenchymal,
proneural, and neural. Currently, detection of transcriptomic subtype is based on
ex vivo analysis of tissue that does not capture the spatial tumor heterogeneity. In
view of accumulative evidence of in vivo imaging signatures summarizing molecular
features of cancer, this study seeks robust non-invasive radiographic markers
of transcriptomic classification of glioblastoma, based solely on routine clinically-
acquired imaging sequences. A pre-operative retrospective cohort of 112 pathology-
proven de novo glioblastoma patients, having multi-parametric MRI (T1, T1-Gd,
T2, T2-FLAIR), collected from the Hospital of the University of Pennsylvania were
included. Following tumor segmentation into distinct radiographic sub-regions, diverse
imaging features were extracted and support vector machines were employed
to multivariately integrate these features and derive an imaging signature of
transcriptomic subtype. Extracted features included intensity distributions, volume,
morphology, statistics, tumors’ anatomical location, and texture descriptors for each
tumor sub-region. The derived signature was evaluated against the transcriptomic
subtype of surgically-resected tissue specimens, using a 5-fold cross-validation
method and a receiver-operating-characteristics analysis. The proposed model was
71% accurate in distinguishing among the four transcriptomic subtypes. The
accuracy (sensitivity/specificity) for distinguishing each subtype (classical, mesenchymal,
proneural, neural) from the rest was equal to 88.4% (71.4/92.3), 75.9% (83.9/72.8),
82.1% (73.1/84.9), and 75.9% (79.4/74.4), respectively. The findings were also replicated
in The Cancer Genomic Atlas glioblastoma dataset. The obtained imaging signature
for the classical subtype was dominated by associations with features related to edge
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sharpness, whereas for the mesenchymal subtype had more pronounced presence
of higher T2 and T2-FLAIR signal in edema, and higher volume of enhancing tumor
and edema. The proneural and neural subtypes were characterized by the lower
T1-Gd signal in enhancing tumor and higher T2-FLAIR signal in edema, respectively.
Our results indicate that quantitative multivariate analysis of features extracted from
clinically-acquired MRI may provide a radiographic biomarker of the transcriptomic profile
of glioblastoma. Importantly our findings can be influential in surgical decision-making,
treatment planning, and assessment of inoperable tumors.

Keywords: transcriptomic classification, glioblastoma, multivariate analysis, brain tumors classification,

biomarkers

INTRODUCTION

Glioblastoma is the most frequent primary malignant brain
tumor with grim prognosis, despite aggressive combination
of therapies (Stupp et al, 2017), and is characterized by
inter- and intra-patient heterogeneity at radiographic, histologic,
and molecular fronts, thereby providing opportunities for
sub-classification, prognostication, and adoption of targeted
therapeutic approaches (Aum et al., 2014; Lemée et al., 2015).

There is mounting evidence that different glioblastoma
patients show different levels of sensitivity to therapeutic
approaches depending on their distinct genetic characterization.
It has been suggested earlier that glioblastoma should not be
considered a single disease, but rather should be categorized
into four transcriptomic subtypes, i.e., classical, mesenchymal,
proneural, and neural (Verhaak et al., 2010). These subtypes
present very distinct molecular biomarkers such as collective
loss in chromosome 10 and amplification of chromosome 7
in classical subtype, largest occurrence of focal hemizygous
deletions of a region at 17ql1.2, encompassing NFI gene, in
mesenchymal subtype, aberrations in PDGFRA and mutations
in IDHI in proneural subtype, and presence of GABRAI, SYT1I,
NEFL, and SLC12A5 in neural subtype (Verhaak et al., 2010). In a
recent study by Park et al. it has been shown that subtype-specific
genetic aberrations have potential to serve as predictive markers
and therapeutic targets (Park et al., 2019).

The determination of the molecular profile of the tumors leads
to personalized diagnosis and treatment, as different treatment
options may be considered depending on the characteristics of
each subtype (Phillips et al., 2006; Verhaak et al., 2010; Bhat
et al., 2011). Up until now, the assessment of transcriptomic
subtypes was done via molecular profiling of surgical or biopsy
tissue. However, such assessment has inherent limitations of:
(i) tissue sampling error that sometimes leads to missing the
tumor mutation, and (ii) inability to acquire multiple specimens
over the course of the disease due to invasiveness of the
tissue collection procedure, thereby leading to the failure in
determining molecular subtype of the tumor over the course of
the treatment.

Analysis of multi-parametric magnetic resonance imaging
(mpMRI) data via advanced pattern analytics methods has
been progressively shown to provide rich -classifications
of glioblastoma and its surrounding brain tissue, and has

helped identifying relationships between MRI biomarkers and
transcriptomic subtypes in gliomas (Gutman et al., 2013; Naeini
et al., 2013; Gevaert et al., 2014; Pisapia et al., 2015; Macyszyn
et al., 2016; Khened et al., 2019). For instance, the proneural
subtype has shown lower levels of contrast enhancement;
the mesenchymal subtype has presented lower levels of non-
enhanced tumors and intensity in peritumoral edema region
(Gutman et al., 2013); the classical subtype has associated
necrosis and sharped edges of the edema region (Gevaert et al,,
2014). A model to predict the mesenchymal subtype was also
proposed (Naeini et al., 2013).

However, this classification scheme has been difficult to
translate into clinical practice due to several complicating factors.
First, existing literature has found associations between imaging
features and individual subtypes (Naeini et al., 2013). Second,
most studies to date have used basic imaging sequences only
or have used very few hand-crafted imaging features, failing to
leverage the power of computationally extracting and selecting
imaging features (recently called radiomics), and analyzing
them through advanced pattern analysis methods to build a
more powerful predictive model (Gutman et al., 2013; Gevaert
et al,, 2014; Macyszyn et al., 2016). As literature increasingly
acknowledges the tumor spatial and temporal heterogeneity,
there is a parallel focus on extracting extensive features of the
tumor and its surrounding peritumoral region toward providing
a better characterization of patients. Furthermore, analysis of
advanced mpMRI data can provide more details, which might not
be available in conventional imaging.

This study aims to determine the transcriptomic subtypes
of de novo glioblastoma patients by multivariately assessing
imaging features from routine clinically-acquired scans,
reflecting tumor biological properties such as angiogenesis,
proliferation, cellularity, and peritumoral infiltration. Identifying
these transcriptomic subtypes may allow enrollment of patients
into targeted clinical trials, longitudinal profiling of the tumor,
and assessment of treatment response.

MATERIALS AND METHODS

Study Setting and Data Source

This study evaluates a group of 112 primary glioblastoma
patients, diagnosed between 2006 and 2013 at the Hospital of the
University of Pennsylvania (HUP), having pre-operative mpMRI
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(T1, T2, T1-Gd, T2-FLAIR). A subset of these patients (n =
89) had additional diffusion tensor imaging (DTI) and dynamic
susceptibility contrast-enhanced (DSC) MRI imaging available.
The proposed classification models were developed on n =112
patients using conventional imaging only (T1, T2, T1-Gd, T2-
FLAIR), whereas the subset of the patients (n = 89) was used to
further analyze the imaging properties of different subtypes. The
overall analysis was carried out on HUP dataset, and the findings
were then replicated independently in The Cancer Genomic
Atlas glioblastoma (TCGA-GBM) dataset (Clark et al., 2013;
Scarpace et al,, 2013) (n = 60), part of the International Brain
Tumor Segmentation (BraTS) challenge dataset (Menze et al.,
2015; Bakas et al., 2018), having the same set of pre-operative
mpMRI. Expert manual segmentations for this dataset were
downloaded from The Cancer Imaging Archive (TCIA) website
(Bakas et al., 2017a,b). The study population was uniformly
distributed and did not have any statistically significant difference
based on clinical and demographical factors. All experiments
were approved by the Institutional Review Board (IRB) of
the University of Pennsylvania (approval no: 706564) and
written informed consent was obtained from all patients. All
experiments were carried out in accordance with the guidelines
and regulations of the approved IRB.

Transcriptomic Subtyping

After pathologic confirmation of glioblastoma diagnosis, all
tumors underwent subtyping into one of the four transcriptomic
subtypes (classical = 21, mesenchymal = 31, proneural = 26,
neural = 34). For this subtyping, we used an isoform-level
assay classifier initially constructed using exon array data from
glioblastoma samples in TCIA (Verhaak et al., 2010). It was then
translated into a clinically applicable platform, where expression
of desired transcripts was measured using reverse transcriptase—
quantitative polymerase chain reaction (RT-qPCR) (Pal et al.,
2014). RNA was isolated from the tissue samples using Tri
Reagent (Sigma). A high-capacity complementary DNA reverse
transcriptase kit (Applied Biosystems) was used to reverse-
transcribe the RNA, and qPCR was then performed to designate
the subtype. The assay was based on the expression of 121
transcripts with four housekeeping genes as controls.

Pre-processing Applied on the Dataset

All MRI of each patient were pre-processed using a series
of image processing steps, including: (i) smoothing (ie.,
reducing high frequency noise variations while preserving
underlying anatomical structures) using Smallest Univalue
Segment Assimilating Nucleus (SUSAN) denoising (Smith et al.,
1997); (ii) correction for magnetic field inhomogeneity using
N3 bias correction (Tustison et al., 2010); (iii) co-registration
of all MRIs of each patient at 12-degrees of freedom for
examining anatomically aligned signals at the voxel level using
affine registration through the Linear Image Registration Tool
(Jenkinson and Smith, 2001); (iv) skull stripping using the Brain
Extraction Tool (Smith, 2002); and (v) matching of intensity
profiles (histogram matching) of all MRIs of all patients to the
corresponding MRIs of a reference patient.

Following the pre-processing, all tumors were segmented
in distinct radiographic sub-regions of peritumoral edema
region (ED), enhancing tumor (ET), and non-enhancing tumor
(NET) (Figure1) using a computational algorithm [namely
GLISTRboost (Gooya et al., 2011; Bakas et al, 2016)]. The
segmentations were assessed by two expert readers (H.A.,
G.S.) and revised before image analysis, when necessary. The
segmentations were transformed into a standard atlas space
to produce a standardized statistical distribution atlas for
quantifying the tumor spatial location.

Radiophenotypic Tumor Characterization
The radiophenotypic characteristics of each tumor were
quantified using a comprehensive and diverse set of imaging
features, extracted from all tumor sub-regions (i.e., ED, ET, NET)
and all MRI sequences using the Cancer Imaging Phenomics
Toolkit (CaPTk) (Davatzikos et al, 2018). The feature set
extracted to build the predictive model for this study comprised
of (i) volumetric measurements, (ii) morphology parameters,
(iii) location information, and (iv) statistical moments of the
intensity distributions. The volumetric, location, and intensity
statistics were calculated in 3D. The volumetric measurements
include volume and surface area measurements of ED, NET,
ET, tumor core (TC), which is the union of NET and ET, and
whole tumor (WT), which is the combination of TC with
ED. In addition, ratios of the volumes of the various tumor
sub-regions and their union over the brain volume, were
also calculated.

To capture the spatial distribution of each tumor, eight
spatial distribution atlases were constructed as introduced in
Akbari et al. (2018), two for each molecular subtype, i.e., pH)
and P for proneural and non-proneural tumors, respectively.
These distribution atlases were generated by superimposing the
TC (ET4+NET) segmentation labels of all patients according
to their transcriptomic subtype status, i.e., superimposing
the TC labels of proneural and non-proneural tumors. The
similarity of the distribution pattern of an unseen tumor is
then calculated by considering the intersection area between
the tumor and the spatial map (Figure S1). Maximum and
average frequency for each spatial distribution atlas in the
intersected area are estimated, and four discrete relative values
(L1, L2, L3, and L4) are used to evaluate any new unseen
patient, for each subtype, thereby leading to a total of 16
location features.

Ly = mean [P*] — mean[ P ],
L, = max [P+] — max [P_ ] ,

mean [P+]
Ls = mean [P* ]’

max [P+]
M= ]

Moreover, the distance of various tumor sub-regions, e.g.,
ED, TC, from the ventricles, and the proportions of TC in
each lobe of the brain have also been utilized as additional
location features. The proportion of TC in various brain regions,
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including temporal, frontal, parietal, occipital, basal ganglia,
cc fornix, insula, cerebellum, and brain stem, was calculated
by mapping each image to an atlas template via a deformable
registration method (Gooya et al., 2011) that not only accounts
for mass effect but also takes care of inter-individual anatomical
variations (Kwon et al., 2014).

Furthermore, we used first-order statistical moments of
intensity distributions to quantify the phenotypic characteristics
of each tumor sub-region, along with second-order statistics that
describe textural properties in tumor sub-regions. A gray-level
co-occurrence matrix was calculated by considering the voxels
within a radius of 1 and in the 13 main directions, and texture
features of contrast, correlation, energy, and homogeneity were
extracted. The intensity profiles of various sub-regions of tumor
were also quantified using histograms. These histograms are
reflective of the changes caused by the tumor both at functional
and anatomical levels, which in turn change the corresponding
imaging signals, and have shown strong association with various
outcome of interest (Macyszyn et al., 2016; Rathore et al., 2018).
Here, each intensity distribution is divided in to 5 bins and
percentage of voxels in each bin are calculated.

Morphology parameters, comprising area, perimeter, extent,
solidity, and length of major- and minor-axis, were extracted
from one 2D slice per tumor. In order to pick the 2D slice for
extraction of morphological features, we traversed the image in
the axial direction and found the slice that had largest area of
tumor core.

Feature Selection and Predictive Model

Development

Support Vector Machines (SVM) (Chang and Lin, 2011),
that has been extensively used in the past in medical image
classification/segmentation (Lao et al., 2008; Haller et al., 2013),
was used for predictive modeling in this study. We dealt
the problem of classification as 4 one-vs. -rest classification

problems. We trained a separate SVM to discriminate between
one transriptomic subtype and the rest of the subtypes, such as
classical vs. others, mesenchymal vs. others, neural vs. others, and
proneural vs. others. To confirm the robustness of the method
and to ensure that estimates of accuracy would be likely to
generalize to new patients, we evaluated all classifiers through
5-fold cross-validation. In each iteration of the cross-validation,
feature selection and classifier’s parameters optimization was
performed on the training folds and the resulting classification
model, developed solely on the training folds, was applied on
new/unseen test fold. Sequential forward feature selection was
employed at each iteration until convergence, i.e., there was no
improvement over a specific threshold. The final classification
performance was obtained by combining the predictions of
individual classifiers. For each classifier, the particular subtype
was considered positive class and the rest of the subtypes were
considered negative class. The distance of the sample from the
hyperplane was noted for each classifier and highest distance was
chosen as the final label of the sample. For example, if proneural,
neural, mesenchymal, and classical have 0.45, 3.54, —2.43, and
5.32, then the classical label was assigned to the sample.

The classification performance of the proposed models was
evaluated in terms of accuracy, balanced accuracy, sensitivity,
and specificity. Sensitivity and specificity refer to the percentage
of correctly classified samples of positive and negative classes,
respectively. Balanced accuracy is the average of the proportion
corrects of each class individually, whereas accuracy is the total
proportion corrects of the population.

Statistical Analysis

The statistical analysis was performed with R (version 3.3.2,
http://www.R-project.org), SPSS (version 25.0.0.0, IBM), and
MatLab (version R2014b, Mathworks). For evaluation of
statistically significant imaging features associated with each
subtype, we used Kruskal-Wallis test (Chan et al., 1997).
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TABLE 1 | Performance of the proposed transcriptomic subtype prediction model
in terms of various performance measures.

Classification Imaging subtypes (n)

performance
Proneural Neural Mesenchymal Classical Overall
(n=26) (n=34) (n=31) (n=21) (n=112)
Accuracy 82.14 75.89 75.89 88.39 71.00
Balanced 78.98 76.89 78.36 81.87 79.01
accuracy
Sensitivity 73.08 79.41 83.87 71.43 77.68
Specificity 84.88 74.36 72.84 92.31 79.75
AUC 0.82 0.78 0.81 0.84 -

First four rows show the result for binary classification wherein each subtype is classified
against the rest of subtypes. The last row shows the final 4-way classification accuracy
obtained by combining the predictions of individual classifiers.

RESULTS

Performance of the Transcriptomic
Subtype Prediction Model

The cross-validated accuracy and balanced accuracy [BA] of the
obtained classifiers for classical, mesenchymal, proneural, and
neural subtypes was 88.4% [BA: 81.9%], 75.9% [BA: 78.4%],
82.1% [BA: 78.9%], and 75.9% [BA: 76.9%], respectively. The
overall 4-way classification among the four transcriptomic
subtypes was 71% under 5-fold cross-validation experiment.
Performance of the proposed prediction model is given in
Table 1 where the first four columns show the result for binary
classification, wherein each transcriptomic subtype is classified
against the rest of the subtypes, and the last column shows the
final 4-way classification accuracy obtained by combining the
predictions of individual classifiers.

Receiver-operating-characteristic (ROC) analysis on the given
dataset yielded an area-under the-curve (AUC) of 0.82, 0.78,
0.81, and 0.84, for proneural, neural, mesenchymal, and classical
subtypes, respectively (Figure 2).

Important Phenotypic Characteristics of

Different Transcriptomic Subtypes

Along with evaluating the predictive performance of the model,
we assessed individual features with the most predictive value.
Our results have shown that specific subtypes have quite distinct
quantitative imaging features, which can be utilized (Table 2,
Figure 3). The main characteristics of the obtained imaging
signature show that the mesenchymal subtype (in comparison
with other subtypes) have lower T2 and T2-FLAIR signal in
peritumoral edematous/invaded region, ET of lower eccentricity,
NET of higher eccentricity, and higher volumes of ET, ED and
WT. The proneural subtype, compared with the other subtypes,
included signals of lower and uniform T1-Gd in ET. The neural
subtype showed signals of higher T2-FLAIR in ED and lower
eccentricity of NET, and the classical subtype showed smaller
surface area of ED and WT.

1 T T T : - r
0.9+
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0.6+
2
>
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7]
o
) 0.4-
0.3
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1-Specificity
FIGURE 2 | ROC curves of the predicted transriptomic subtypes are
compared with chance (the diagonal line). ROC curves correctly classify
proneural, neural, mesenchymal, and classical subtypes with 82.1%
(sensitivity: 73.1, specificity = 84.9), 75.9% (sensitivity: 79.4, specificity =
74.4), 75.9% (sensitivity: 83.9, specificity = 72.8), and 88.4% (sensitivity: 71.4,
specificity = 92.3) classification success rate, respectively.

TABLE 2 | Important imaging characteristics that distinguish each subtype from
the rest of the subtypes.

Imaging subtypes (n)

Proneural Neural Mesenchymal Classical
(n = 26) (n=34) (n=31) (n=21)
Lower Signal  Higher signal in ED Lower signal in ED (T2-FLAIR) Surface area
in ET (T1-Gd) (T2-FLAIR) (ED, WT)
Higher Lower eccentricity Lower signal in ED (T2)

uniformity in -~ (NET)

ET (T1-Gd)

Lower eccentricity (ET)
Higher eccentricity (NET)
Bigger volume (ED, ET, WT)

Replication of the Proposed Model in TCIA

Dataset

The predictive performance of the proposed model was also
evaluated in an independent replication dataset of pre-operative
glioblastoma patients, downloaded from TCIA (Bakas et al,
2017a), by applying the model trained on the discovery (i.e.,
HUP) dataset. The information about the molecular subtypes
of TCIA patients was acquired from existing studies (Verhaak
et al., 2010; Park et al., 2019). The four models, pertaining to
four different molecular subtypes, trained on HUP dataset were
applied to the patients in the replication (i.e., TCIA) cohort.
The final molecular status of each patient in the replication
dataset was obtained by combining the predictions of individual
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classifiers, as done in the discovery dataset, leading to 69%
classification success rate compared to 25% chance in 4-way
classification accuracy.

DISCUSSION

We identified an in vivo radiographic signature of transcriptomic
subtypes in glioblastoma by using quantitative multivariate
analysis of mpMRI in a non-invasive manner, and further
attempted to provide patho-physiological associations of the
most distinctive imaging features. An important existing study
has demonstrated the potential that deep learning techniques
can be used for identifying associations between brain imaging
phenotypes and genomic characteristics (Khened et al., 2019).
The hereby proposed method is different from existing literature
(Macyszyn et al., 2016; Khened et al, 2019) on the breadth
of extracted mpMRI-based features, leading to an extensive
radiographic signature. The proposed signature sheds light
into the anatomical and pathological characteristics of the
tumor, via macroscopic imaging features summarizing tumor
characteristics related to water concentration, blood-brain
barrier breakage, cell density, uniformity/heterogeneity, and
geometric variations. We have achieved these findings utilizing
routine mpMRI scans acquired under current clinical practice
for glioblastoma, without the need to utilize any molecular
imaging methods. We evaluated our model via a cross-validation
mechanism in the HUP dataset, and also performed a multi-
institutional validation to demonstrate generalizability. Potential
applications of this signature include facilitating the assessment
of transcriptomic status for patients with inadequate tissue. In
a recent study by Park et al., it has been shown that subtype-
specific genetic aberrations have potential to serve as predictive
markers and therapeutic targets (Park et al., 2019). Therefore, in
case of subtype-targeted clinical trials, it becomes very important
to distinguish one particular subtype from the rest. The automatic
distinction of these subtypes leads to personalized diagnosis and
treatment, as different options may be considered depending on
the histologic characteristics of different subtypes.

Biological Explanation of Quantitative

Features of Different Subtypes
Toward gaining an understanding about the biological
developments that induce different mutation status, we

analyzed in isolation each individual feature that we used to
develop our classification models. The analysis revealed that
each subtype had an accompanying distinct and comprehensive
set of radiographically relatable features (Table 2). The main
findings from comparing the features of different transcriptomic
subtypes, in ET, NET, and ED, are as follows:

1. Regions of lower and uniform T1-Gd signal in proneural
subtype, suggestive of less blood-brain barrier compromise;

2. Areas of lower water content in mesenchymal subtype,
reflected by T2-FLAIR and T2-weighted imaging, consistent
with the characteristics of dense tissue;

3. Larger surface area of ED and WT in mesenchymal subtype,
which points toward deep infiltration and migratory nature of
the tumor;

4. Smaller surface area of ED and WT in classical subtype,
supporting a radiographic phenotype of compact and less
migratory nature of the tumor;

5. Major to minor axes ratios, associated with NET in
neural subtype and ET/NET in mesenchymal subtype, were
different from other subtypes (Table 2). The major axis was
characterized by the longest possible 2D distance in a region;
minor axis is vertical to the major axis. This eccentricity
measure is suggestive of regular/spherical NET in neural
subtype and irregular NET in mesenchymal subtype.

6. Regions of relatively lower contrast of T1 imaging sequence in
ET in neural subtype, suggestive of more uniform T1 signal
(Table 2).

It is important to note that despite several discriminative
features, neither of these features is sufficient enough
to predict transcriptomic subtype on each patient basis.
However, synergistic integration of these features via
appropriate machine learning yielded reasonable sensitivity
and specificity in predicting subtype on an individual patient
basis, thereby underscoring the potential of multivariate
analysis methods.

Discriminative Power of Advanced MRI
(DTI and DSC-MRI) Modalities

Advanced MRI sequences were evaluated to probe their
discriminative power, compared to that of structural
(conventional) imaging, i.e., T1, T2, T2-Flair, and T1-Gd.
It is worth mentioning that these imaging sequences were not
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FIGURE 4 | Intensity histograms display the diffusion and perfusion measures of different transcriptomic subtypes as measured by the DTl and DSC-MRI signals. (A)
PH intensity in NET; (B) PH intensity in ET; (C) PSR intensity in ET; (D) ADC intensity in ET; (E) ADC intensity in NET; (F) ADC intensity in ED; (G) T2-Flair intensity in ET;
(H) T2-Flair intensity in NET; (I) T1 intensity in NET; (J) T2 intensity in NET. The measures displayed in the first two rows are for analysis only; these measures have not

been used for building the model.

utilized to develop the classification models, rather only to
analyze the diffusion and perfusion characteristics of a subset of
these patients. These additional sequences comprised derivatives
of DTI [i.e., fractional anisotropy (FA), apparent diffusion
coefficient (ADC), radial diffusivity (RAD), axial diffusivity
(AX)], as well as DSC-MRI derivatives, i.e., percentage signal
recovery (PSR), peak height (PH), and relative cerebral blood
volume (rCBV).

Imaging derivatives of DTT are reflective of the water diffusion
process, which is partially affected by the architecture and density
of tumor cells (Lu et al., 2003), in brain. The classical subtype
has larger regions of lower ADC determined by the histograms
(Figure 4) in NET (p = 2.27 x 107%) and ET (p = 1.97 x
10797 of the tumor, suggestive of less watery, and denser tumors.
Imaging derivatives of DSC-MRI enumerate microvasculature
and hemodynamics characteristics of the tumor (Wintermark
et al.,, 2005; Tykocinski et al., 2012). When volume of brain
tumors exceeds a certain critical limit, the consequential ischemia
activates the discharge of angiogenic factors, which in turn
endorses vascular proliferation and eventually leads to the
formation of leaky and torturous tumor vessels (Lev and
Hochberg, 1998; McDonald and Choyke, 2003; Bullitt et al.,
2005; Hicklin et al., 2005; Essock-Burns et al., 2011; Thompson
et al,, 2011; Swami, 2013; Jensen et al., 2014). These imaging
derivatives also steered toward some key findings. The classical
subtype showed imaging features in agreement with highly
vascular tumor, as shown by the PH in ET (p = 1.54 x
10~") and NET (p = 4.00 x 10799), revealing increased and
compromised micro-vascularity compared to other subtypes.

On the other hand, the proneural subtype had increased
PSR in ET, indicative of lower micro-vascularity compared to
other subtype.

Clinical Relevance and Impact

The assessment of transcriptomic subtype of glioblastoma via
analysis of tissue specimen can be limited due to sampling
error, and reluctance for longitudinal assessment of the status
due to invasive nature of surgery. Our proposed imaging
signature has potential to address both these limitations, since
mpMRI facilitates assessment and monitoring of the tumor in
its entirety in a repeatable manner. Further, the non-invasive
imaging signature captures the heterogeneity of the whole tumor
extent, instead of the analysis of one tissue specimen, therefore
provides a global perspective of the transcriptomic status of a
tumor. Our imaging signature is derivative of mpMRI that is
routinely acquired for glioblastoma patients, therefore, is ready
for immediate translation to the clinic. While the current method
focuses on non-invasive assessment of transcriptomic subtype
status, the same approach could also be used for molecular
assessment in general. Further, the proposed non-invasive
imaging signature can be applied to recurrent glioblastoma,
with the goal of determining transcriptomic subtype status
before, during, and after the treatment. This would help in
non-invasive monitoring of dynamic changes in transcriptomic
subtypes as response to targeted therapeutic approaches
and consequently would in turn allow for tailoring the
adopted therapies.
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CONCLUSION

We can quantify important imaging characteristics within
various sub-regions of the tumor and detect its transcriptomic
subtype only by examining mpMRI data using advanced
analytical methods and without the need of advanced genetic
testing. The present study extracts an extensive set of quantitative
imaging phenomic features from structural MRI sequences, and
employs these variables via machine learning techniques to non-
invasively distinguish transcriptomic glioblastoma subtypes. This
molecular classification, due to its distinct phenotypic pattern
derived from routine MRI, renders our imaging signature of
increased likelihood for effective and immediate translation into
clinical practice. The use of cross-validation within HUP dataset
and the replication of our findings on TCIA dataset provide
confidence in the generalizability of these subtypes and the
proposed method on other datasets.
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An important challenge in segmenting real-world biomedical imaging data is the
presence of multiple disease processes within individual subjects. Most adults above
age 60 exhibit a variable degree of small vessel ischemic disease, as well as chronic
infarcts, which will manifest as white matter hyperintensities (WMH) on brain MRIs.
Subjects diagnosed with gliomas will also typically exhibit some degree of abnormal
T2 signal due to WMH, rather than just due to tumor. We sought to develop a fully
automated algorithm to distinguish and quantify these distinct disease processes within
individual subjects’ brain MRIs. To address this multi-disease problem, we trained a
3D U-Net to distinguish between abnormal signal arising from tumors vs. WMH in
the 3D multi-parametric MRI (mpMRY, i.e., native T1-weighted, T1-post-contrast, T2,
T2-FLAIR) scans of the International Brain Tumor Segmentation (BraTS) 2018 dataset
(Ntraining = 285, Nvaiidation = 66). Our trained neuroradiologist manually annotated WMH
on the BraTsS training subjects, finding that 69% of subjects had WMH. Our 3D U-Net
model had a 4-channel 3D input patch (80 x 80 x 80) from mpMRI, four encoding and
decoding layers, and an output of either four [background, active tumor (AT), necrotic
core (NCR), peritumoral edematous/infiltrated tissue (ED)] or five classes (adding WMH
as the fifth class). For both the four- and five-class output models, the median Dice
for whole tumor (WT) extent (i.e., union of AT, ED, NCR) was 0.92 in both training
and validation sets. Notably, the five-class model achieved significantly (o = 0.002)
lower/better Hausdorff distances for WT extent in the training subjects. There was
strong positive correlation between manually segmented and predicted volumes for
WT (r = 0.96) and WMH (r = 0.89). Larger lesion volumes were positively correlated
with higher/better Dice scores for WT (r = 0.33), WMH (r = 0.34), and across all
lesions (- = 0.89) on a log(10) transformed scale. While the median Dice for WMH
was 0.42 across training subjects with WMH, the median Dice was 0.62 for those with
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at least 5 cm3 of WMH. We anticipate the development of computational algorithms
that are able to model multiple diseases within a single subject will be a critical step
toward translating and integrating artificial intelligence systems into the heterogeneous

real-world clinical workflow.

Keywords: segmentation, glioblastoma, convolutional neural network, white matter hyperintensities, deep
learning, radiology, multi-disease classification

INTRODUCTION

A significant challenge in the deployment of advanced
computational methods into typical clinical workflows is
the vast heterogeneity of disease processes, which are present
both between individuals (inter-subject heterogeneity) and
within individuals (intra-subject heterogeneity). Most adults
over the age of 60 have a variable degree of abnormal signal
on brain MRIs due to age-related changes manifesting as white
matter hyperintensities (WMH), which are typically secondary
to small vessel ischemic disease (SVID) and chronic infarcts that
can be found in subjects with vascular risk factors and clinical
histories of stroke and dementia (Wardlaw et al., 2015). These
lesions can confound automated detection and segmentation
of other disease processes, including brain tumors, which also
result in abnormal signal in T2-weighted (T2) and T2 Fluid-
attenuated inversion recovery (T2-FLAIR) MRI scans secondary
to neoplastic processes and associated edema/inflammation. We
sought to address this challenge of intra-individual heterogeneity
by leveraging (i) the dataset of the International Multimodal
Brain Tumor Segmentation (BraTS) 2018 challenge (Menze
et al,, 2015; Bakas et al., 2017b, 2019) (ii) expert radiologist
expertise, and (iii) three-dimensional (3D) convolutional neural
networks (CNNs).

Advances in the field of segmentation and radiomics within
neuro-oncology have been supported by data made available
through The Cancer Imaging Archive (TCIA; Clark et al., 2013).
Since 2012, the BraTS challenge has further curated TCIA
glioma multi-parametric MRI (mpMRI) scans, segmentation
of tumor sub-regions, and survival data in a public dataset
and sponsored a yearly challenge to improve performance of
automated segmentation and prognostication methods (Menze
et al., 2015; Bakas et al., 2017b, 2019). Similar to BraTS, there
have been large efforts for improving automatic segmentation
of WMH (Griffanti et al., 2016; Habes et al., 2016), which
include the MICCAI 2017 WMH competition (Li et al., 2018;
Kuijf et al., 2019), as well as stroke lesions, through the
Ischemic Stroke Lesion Segmentation Challenge (ISLES; Winzeck
et al, 2018). Deep learning (DL) approaches for biomedical
image segmentation are now established as superior to the
previous generation of atlas-based and hand-engineered feature
approaches (Fletcher-Heath et al., 2001; Gooya et al., 2012), as
demonstrated by their performance in recent image segmentation
challenges (Chang, 2017; Kamnitsas et al., 2017; Li et al., 2018;
Bakas et al., 2019; Myronenko, 2019).

Deep learning relies on hierarchically organized layers to
process increasingly complex intermediate feature maps and
utilizes the gradient of the error in predictions with regard to

the units of each layer to update model weights, known as “back-
propagation.” In visual tasks, this allows for the identification of
lower- and intermediate-level image information (feature maps)
to maximize classification performance based on annotated
datasets (LeCun et al., 2015; Chartrand et al., 2017; Hassabis
et al., 2017). Typically, CNNs, a class of feed-forward neural
networks, have been used for image-based problems, achieving
super-human performance in the ImageNet challenge (Deng
et al., 2009. Krizhevsky et al., 2012). The U-Net architecture
(Ronneberger et al., 2015; Cicek et al.,, 2016; Milletari et al.,
2016) describes a CNN with an encoding convolutional arm and
corresponding decoding [de]convolutional arm has been shown
to be particularly useful for 3D biomedical image segmentation
through its semantic- and voxel-wise approach, such as for
segmentation of abnormal T2-FLAIR signal across a range of
diseases (Duong et al., 2019).

Several prior machine learning approaches have been used to
model inter-subject disease heterogeneity, such as distinguishing
on an individual subject basis between primary CNS lymphoma
and glioblastoma (Wang et al., 2011), or between different types
of brain metastases (Kniep et al., 2018). There is evidence that
these approaches may be superior to human radiologists (Suh
etal., 2018), yet little work has been done to address intra-subject
lesion heterogeneity. Notably, one recent study used CNNs to
distinguish between WMH due to SVID versus stroke, finding
that training a CNN to explicitly distinguish between these
diseases allowed for improved correlation between SVID burden
and relevant clinical variables (Guerrero et al., 2018). Although
a large body of work has detailed methodological approaches
to improve segmentation methods for brain tumors, to the best
of our knowledge no prior studies have addressed intra-subject
disease heterogeneity in the BraTS dataset.

Although the task of distinguishing between different diseases
within an individual is typically performed subconsciously by
humans, distinguishing between different diseases could be
challenging for an automated system if it were not specifically
designed and trained to perform such a task. When provided
with enough labeled training data, image-based machine learning
methods have shown success in identifying patterns that are
imperceptible to humans. These include GBM subtypes related
to specific genetic mutations (i.e., radiogenomics; Bakas et al.,
2017a; Korfiatis et al., 2017; Akbari et al., 2018; Chang et al,,
2018; Rathore et al., 2018), or imaging subtypes that are
predictive of clinical outcomes (Rathore et al., 2018). Therefore,
we sought to train a 3D U-Net model to distinguish between
abnormal radiographic signals arising from brain glioma versus
WMH in individual subjects, in the mpMRI data of the BraTS
2018 challenge. We hypothesized that this would (1) allow

Frontiers in Computational Neuroscience | www.frontiersin.org

December 2019 | Volume 13 | Article 84


https://www.frontiersin.org/journals/computational-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

Rudie et al.

Multi-Disease Segmentation of BraTS

for automatic differentiation of different disease processes, and
(2) improve overall accuracy of segmentation of brain tumor
extent of disease, particularly in subjects with a large amount of
abnormal signal due to WMH.

MATERIALS AND METHODS

Data

We utilized the publicly available data of the BraTS 2018
challenge that describe a multi-institutional collection of pre-
operative mpMRI brain scans of 351 subjects (#itraining = 285,
and nygidation = 66) diagnosed with high-grade (glioblastoma)
and lower-grade gliomas. The mpMRI scans comprise native
T1-weighted (T1), post-contrast T1-weighted (T1PC), T2, and
T2-FLAIR scans. Pre-processing of the provided images included
re-orientation to LPS (left-posterior-superior) coordinate system,
co-registration to the same T1 anatomic template (Rohlfing
et al., 2010), resampling to isotropic 1 mm? voxel resolution and
skull-stripping as detailed in Bakas et al., 2019. Manual expert
segmentation of the BraTS dataset delineated three tumor sub-
regions: (1) Necrotic core (NCR), (2) active tumor (enhancing
tissue; AT), and (3) peritumoral edematous/infiltrated tissue
(ED). The whole tumor extent (WT) was considered the union
of all these three classes.

Manual Annotation of WMH

In order to define the new tissue class of abnormal signal relating
to WMH in the BraTS§ training subjects, a neuroradiologist (JR;
neuroradiology fellow with extensive segmentation experience)
defined manually segmentation masks of WMH using ITK-SNAP
(Yushkevich et al., 2006). WMH were considered to be abnormal
signal due to SVID, chronic infarcts, and/or any periventricular
abnormal signal contralateral to the tumor. Examples of these
new two class segmentations of the BraT$ 2018 dataset are shown
in Figure 1.

U-Net Architecture
We adapted the 3D U-Net architecture (Cicek et al., 2016;
Milletari et al, 2016) for voxelwise image segmentation.

Our encoder-decoder type fully convolutional deep neural
network consists of (1) an encoder limb (with successive
blocks of convolution and downsampling encoding progressively
deeper/higher-order spatial features), (2) a decoder limb (with
a set of blocks — symmetric to those of the encoder limb - of
upsampling and convolution, eventually mapping this encoded
feature set back onto the input space), and (3) an introduced
novel so-called skip connections (whereby outputs of encoding
layers are concatenated with inputs to corresponding decoding
layers) in order to improve spatial localization over previous
generations of fully convolutional networks (3D Res-U-Net;
Milletari et al., 2016).

Our adaptations from the prototypical U-Net architecture
included: 4 channel input data (T1, T1PC, T2, T2-FLAIR),
4 or 5 class output data (background = 0, NCR 1,
ED = 2, AT = 4, WMH = 3), with 3D convolutions, and
no voxelwise weighting of input label masks. Training patch
size was 80 x 80 x 80 voxels (mm), and inference was
conducted in the whole image. We zero padded the provided
images to increase its size from 240 x 240 x 155 voxels to
240 x 240 x 160 voxels, and hence being divisible by the
training input patch size (80 x 80 x 80). Training patch
centerpoints were randomly sampled from within the lesion
(90%) or from within the whole brain (10%). Train-time data
augmentation was performed with random left-right flipping,
and constrained affine warps (maximum rotation 45°, maximum
scale +25%, maximum shear +0.1). Core convolutional blocks
included two nodes each of 3D convolution (3 x 3 x 3 kernel,
stride = 1, zero padded), rectified linear unit activation, and
batch normalization. Four encoding/decoding levels were used,
with 32 convolutional filters (channels) in the base/outermost
level, and channel number increased by a factor of two at each
level (Figure 2).

The network was trained on an NVIDIA Titan Xp
GPU (12GB), using the Xavier initialization scheme, Adam
optimization algorithm (Kingma and Lei Ba, 2015; initial
learning rate le=*), and 2nd order polynomial learning rate
decay over 600 epochs. Training time was approximately
4.5 h. 10-fold internal cross validation on the training set was
used for hyperparameter optimization and intrinsic estimation

T2-FLAIR T1
weighted welghted weighted
Original
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FIGURE 1 | Revised BraTS 2018 training segmentations including annotations of WMH. (A) Sample revised segmentation of abnormal signal due to WT (red) and
WMH (green) on T2-FLAIR, T2, T1, and T1PC axial slices. (B) Three additional example revised segmentation maps for tumor and WMH overlaid on T2-FLAIR axial
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FIGURE 2 | Multiclass input and multiclass output U-Net schematic. Our U-Net has 4-channel input accepting 3D patches from mpMRI with four encoding and
decoding layers, and either a four-class output (b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>