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Magnetic resonance images of brain tumors are routinely used in neuro-oncology clinics

for diagnosis, treatment planning, and post-treatment tumor surveillance. Currently,

physicians spend considerable time manually delineating different structures of the

brain. Spatial and structural variations, as well as intensity inhomogeneity across

images, make the problem of computer-assisted segmentation very challenging. We

propose a new image segmentation framework for tumor delineation that benefits from

two state-of-the-art machine learning architectures in computer vision, i.e., Inception

modules and U-Net image segmentation architecture. Furthermore, our framework

includes two learning regimes, i.e., learning to segment intra-tumoral structures (necrotic

and non-enhancing tumor core, peritumoral edema, and enhancing tumor) or learning

to segment glioma sub-regions (whole tumor, tumor core, and enhancing tumor). These

learning regimes are incorporated into a newly proposed loss function which is based

on the Dice similarity coefficient (DSC). In our experiments, we quantified the impact

of introducing the Inception modules in the U-Net architecture, as well as, changing the

objective function for the learning algorithm from segmenting the intra-tumoral structures

to glioma sub-regions. We found that incorporating Inception modules significantly

improved the segmentation performance (p < 0.001) for all glioma sub-regions.

Moreover, in architectures with Inception modules, the models trained with the learning

objective of segmenting the intra-tumoral structures outperformed the models trained

with the objective of segmenting the glioma sub-regions for the whole tumor (p < 0.001).

The improved performance is linked to multiscale features extracted by newly introduced

Inception module and the modified loss function based on the DSC.

Keywords: gliomas, brain tumor segmentation, fully convolutional neural network, inception, U-net

1. INTRODUCTION

In recent years, there has been a proliferation of machine and especially deep learning techniques
in the medical imaging field (Litjens et al., 2017). Deep learning algorithms also referred to as deep
neural networks, are built using large stacks of individual artificial neurons, each of which performs
primitive mathematical operations of multiplication, summation, and thresholding. One of the key
reasons for the success of these modern deep neural networks is the idea of representation learning;
the process of learning useful features automatically from the data as opposite to manual selection
by expert humans (LeCun et al., 2015). Specifically, a convolutional neural network (CNN) is
designed to extract features from two-dimensional grid data, e.g., images, through a series of
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learned filters and non-linear activation functions. The set of
features learned through this process can then be used to
perform various downstream tasks such as image classification,
object detection, and semantic or instance segmentation
(LeCun et al., 2015).

Recently, U-Net (Ronneberger et al., 2015) which is an end-
to-end fully convolutional network (FCN) (Long et al., 2015)
was proposed for semantic segmentation of various structures in
medical images. U-Net architecture is built using a contracting
path, which captures high-resolution, contextual features while
downsampling at each layer, and an expanding path, which
increases the resolution of the output through upsampling at
each layer (Ronneberger et al., 2015). The features from the
contracting path are combined with features from the expanding
path through skip connections (Drozdzal et al., 2016), ensuring
localization of the extracted contextual features. Originally the
U-Net was developed and applied to cell tracking, more recently
the model has been applied to other medical segmentation tasks,
such as, brain vessel segmentation (Livne et al., 2019), brain
tumor segmentation (Dong et al., 2017), and retinal segmentation
(Girard et al., 2019). Architectural variations and extensions of
the U-Net algorithm, such as 3D U-Net (Kamnitsas et al., 2017;
Sandur et al., 2018), H-DenseUNet (Li et al., 2018), RIC-UNet
(Zeng et al., 2019), and Bayesian U-Net (Orlando et al., 2019)
have been developed to tackle different segmentation problems
in the medical imaging community.

Accurate semantic segmentation depends on the extraction
of local structural as well as global contextual information from
medical images during the learning process (training). Therefore,
various multi-path architectures have been proposed in the
medical image segmentation literature which extract information
from given data at multiple scales (Havaei et al., 2017; Kamnitsas
et al., 2017; Salehi et al., 2017). The concept of extracting and
aggregating features at various scales has also been accomplished
by Inception modules (Szegedy et al., 2015). However, the
mechanism of feature extraction is different compared to multi-
path architectures (Havaei et al., 2017; Kamnitsas et al., 2017;
Salehi et al., 2017). Each Inception module applies filters of
various sizes at each layer and concatenates resulting feature
maps (Szegedy et al., 2015). The dilated residual Inception
(DRI) block introduced in Shankaranarayana et al. (2019) was
designed to accomplish multi-scale feature extraction in an
end-to-end, fully convolutional retinal depth estimation model.
The MultiResUNet recently proposed in Ibtehaz and Rahman
(2019) combined a U-Net with residual Inception modules for
multi-scale feature extraction; authors applied their architecture
to several multimodal medical imaging datasets. Integrating
Inception modules in a U-Net architecture has also been
evaluated in the context of left atrial segmentation (Wang et al.,
2019). An architecture proposed in Li and Tso (2018) for liver
and tumor segmentation also incorporated inception modules,
along with dilated Inception modules, in a U-Net. Concurrently
and independently of this work, inception modules within U-Net
have also been recently proposed for brain tumor segmentation
in Li et al. (2019). However, authors used a cascade approach, i.e.,
first learn the whole tumor, then learn the tumor core, and finally
learn the enhancing tumor, which requires three differentmodels.

Our proposed architecture is an end-to-end implementation with
respect to all tumor subtypes.

The Multimodal Brain Tumor Image Segmentation (BRATS)
challenge, started in 2012, has enabled practitioners and machine
learning experts to develop and evaluate approaches on a
continuously growing multi-class brain tumor segmentation
benchmark (Menze et al., 2014). Based on the annotation
protocol, deep learning architectures designed for the problem
typically derive the segmentation using a pixel-wise softmax
function on the output feature map (Isensee et al., 2018a). The
softmax function enforces mutual exclusivity, i.e., a pixel can only
belong to one of the intra-tumoral structures. The individual
output segments are then combined to create the glioma sub-
regions. Learning the glioma sub-regions directly using a pixel-
wise sigmoid function on the output feature map has been
discussed in Isensee et al. (2018b), as well as inWang et al. (2018)
using a cascaded approach.

In this work, we introduce an end-to-end brain tumor
segmentation framework which utilizes a modified U-Net
architecture with Inception modules to accomplish multi-scale
feature extraction. Moreover, we evaluate the impact of training
various models to segment the glioma sub-regions directly rather
than the intra-tumoral structures. Both learning regimes were
incorporated into a new loss function based on the Dice similarity
Coefficient (DSC).

2. METHODS

2.1. Data and Preprocessing
All experiments were conducted on the BRATS 2018 dataset
(Menze et al., 2014; Bakas et al., 2017a,b,c, 2018), which consists
of magnetic resonance imaging (MRI) data of 210 high-grade
glioma (HGG) and 75 low-grade glioma (LGG) patients. Each
patient’s MRI data contained four MRI sequences: T2-weighted
(T2), T1, T1 with gadolinium enhancing contrast (T1C),
and Fluid-Attenuated Inversion Recovery (FLAIR) images.
Furthermore, pixel-level manual segmentation markings are
provided in the BRATS dataset for three intra-tumoral structures:
necrotic and non-enhancing tumor core (label= 1), peritumoral
edema (label = 2), and enhancing tumor (label = 4). For the
intra-tumoral structures, following glioma sub-regions (Menze
et al., 2014) were defined: whole tumor (WT) which encompasses
all three intra-tumoral structures (i.e., label = 1 ∪ 2 ∪ 4), tumor
core (TC) that contains all but the peritumoral edema (i.e., label
= 1 ∪ 4), and enhancing tumor (ET) (label = 4). Different
sequences provide complementary information for identifying
the intra-tumoral structures: FLAIR highlights the peritumoral
edema, T1C distinguishes the ET, and T2 highlights the necrotic
and non-enhancing tumor core. Converting from the intra-
tumoral structures to the glioma sub-regions is a linear, reversible
transformation; the glioma sub-regions are generated from the
intra-tumoral structures, and provided the glioma sub-regions,
the original intra-tumoral structures can be recovered.

The BRATS dataset is provided in a preprocessed format,
i.e., all the images are skull-stripped, resampled to an isotropic
1 mm3 resolution, and all four modalities of each patient
are co-registered. We performed additional preprocessing that
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included (in order): (1) obtaining the bounding box of the
brain in each image, and extracting the selected portion of the
image, effectively zooming in on the brain and disregarding
excess background pixels, (2) re-sizing the cropped image
to 128 x 128 pixels, (3) removing images which contained
no tumor regions in the ground truth segmentation, (4)
applying an intensity windowing function to each image such
that the lowest 1% and highest 99% pixels were mapped to
0 and 255, respectively, and (5) normalizing all images by
subtracting the mean and dividing by the standard deviation of
the dataset.

2.2. Segmentation Model Architecture
We propose a new architecture based on the 2D U-Net and
factorized convolution Inception module (Ronneberger et al.,

2015; Szegedy et al., 2016). Each convolutional layer in the
original U-Net was replaced with an Inception module that
included multiple sets of 3× 3 convolutions, 1× 1 convolutions,
3 × 3 max pooling, and cascaded 3 × 3 convolutions. A cartoon
of the proposed network architecture with an expanded view
of the Inception module is presented in Figure 1. We note that
at each layer on the contracting path, the height and width
of the feature maps are halved and the depth is doubled until
reaching the bottleneck i.e., the center of the "U." Conversely,
on the expanding path, the height and width of the feature
maps are doubled and the depth is halved at each layer until
reaching the output (i.e., segmentation mask for the given input
image). Furthermore, each set of feature maps generated on
the contracting path are concatenated to the corresponding
feature maps on the expanding path. We used rectified linear

FIGURE 1 | Cartoon of the proposed segmentation architecture. The set of numbers shown below each Inception module indicate total number of filters used, and

height, width, and depth of the input feature map. The number of filters at each layer double on the encoder side, and the size of the output feature map (height and

width) halve. The multiplication by 4 for each depth value is due to the 4 filter variations in the Inception module, which generates 4 sets of equally sized feature maps

that are concatenated. The feature maps are then downsampled using max pooling, which halves their height and width. This process is repeated until reaching the

bottleneck i.e., the "center" of the U. Upsampling is then performed which doubles the height and width of each feature map, and the feature maps from the

corresponding stage on the contracting path are concatenated to the upsampled feature maps (shown by blue lines). The concatenation of the feature maps from the

contracting path doubles the depth of the output feature map on the expanding path, hence the multiplication by 8. At the last layer on the expanding path, the output

height and width are equivalent to the height and width of the original input images. A set of 1 × 1 convolutions is then applied to reduce the depth of the last feature

map to equal the number of classes (tumor regions). A pixel-wise activation function is then applied to then convert the reduced feature map to binary segmentation

images. Right Bottom: Internal architecture of one Inception module with multiple convolutional filters and max pooling filters is presented. The numbers in each block

represent convolution filter size. We used two 3× 3 filters in series to get an equivalent receptive field of a 5× 5 convolutional filter.
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unit (ReLU) as the activation function for each layer, and
performed batch normalization (Ioffe and Szegedy, 2015) in each
Inception module.

The input to our model is an N ×M × D pixel image and the
output of the model is anN×M×K tensor. In out settings,N =

M = 128 pixels, D = 4 which represents all four MRI modalities,
and K = 3 which represents total number of segmentation
classes, i.e., intra-tumoral structures or the glioma sub-regions.
Each slice of K is a binary image representing the predicted
segments for the ith class where 0≤ i ≤ K−1. The binary images
are generated by pixel-wise activation functions, i.e., sigmoid for
glioma sub-regions and softmax for intra-tumoral structures.

2.3. Evaluation Metric and Objective (Loss)
Function
Dice Similarity Coefficient (DSC) is extensively used for the
evaluation of segmentation algorithms in medical imaging
applications (Bakas et al., 2017a). The DSC between a predicted
binary image P and a ground truth binary image G, both of size
N ×M is given by:

DSC(P,G) = 2

∑N−1
i=0

∑M−1
j=0 PijGij

∑N−1
i=0

∑M−1
j=0 Pij +

∑N−1
i=0

∑M−1
j=0 Gij

, (1)

where i and j represent pixel indices for the height N and width
M. The range of DSC is [0, 1], and a higher value of DSC
corresponds to a better match between the predicted image P and
the ground truth image G.

Our objective function (or the loss function) for the proposed
learning algorithm consisted of a modified version of DSC
(Equation 1). Specifically, following modification were made:
(1) we changed the sign of the DSC coefficient to formulate a
standard deep learning optimization (minimization) problem,
(2) introduced log function, and (3) introduced a new parameter
γ to cater for extremely large values of the loss function. For
example, if a ground truth segment had very few white pixels
∑N−1

i=0

∑M−1
j=0 Gij ≈ 0, the model may predict no white pixels

∑N−1
i=0

∑M−1
j=0 Pij = 0 resulting in an extremely large loss

function. In our preliminary experiments, we found empirically
that γ = 100 provided the best segmentation performance. The
resulting expression for the loss function is given as:

LDSC(P,G) = − log

[

2

∑N−1
i=0

∑M−1
j=0 PijGij + γ

∑N−1
i=0

∑M−1
j=0 Pij +

∑N−1
i=0

∑M−1
j=0 Gij + γ

]

.

(2)

The loss function presented in Equation (2) is able to handle
binary cases only (e.g., tumor and not tumor). The same can be
extended for the multi-class cases as:

LDSC(P,G) = − log

[

1

K

K−1
∑

i=0

DSC(Pi,Gi)

]

, (3)

where K is the total number of classes.

FIGURE 2 | Box plot displaying the results for each model variation. The x-axis is the glioma sub-region, and the y-axis is the DSC. The median value is denoted by

the horizontal orange line, and the mean is denoted by the green triangle. Abbreviations used are: WT, Whole Tumor; TC, Tumor Core; and ET, Enhancing Tumor.
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2.4. Experimental Setup and Model Training
We performed an ablation study to quantify the effects of
introducing Inception modules in the U-Net architecture as
well as the impact of different segmentation objectives, i.e.,
learning to segment intra-tumoral structures or glioma sub-
regions. Specifically, we trained four different models, i.e.,
two variations of the U-Net architecture (with intra-tumoral
structures and glioma sub-regions) and two variations of the

U-Net with Inception module (intra-tumoral structures and
glioma sub-regions).

We trained all four models under same conditions to ensure
consistency and a fair comparison. All four models were trained
using k-fold cross-validation. The dataset was randomly split into
k mutually exclusive subsets of equal or near equal size. Each
algorithm was run k times subsequently, each time taking one
of the k splits as the validation set and the rest as the training

FIGURE 3 | Qualitative results from the same patient are presented in sub-figure (A) (top, intra-tumoral structures) and (B) (bottom, glioma sub-regions). All four MR

modalities (FLAIR, T2, T1, and T1C) are shown on the left in both sub-figures for easy visual analysis. (A) On the right top row, the ground truth (GT) segments for

each intra-tumoral structure are presented (abbreviations used are: ED, peritumoral edema; NET, necrotic and non-enhancing tumor core; ET, enhancing tumor). On

the right bottom row, the predicted (Pred) segments for each intra-tumoral structure are shown. The last image in each row is the combined segments i.e., ED, NET,

and ET all in one image, distinguished by different gray-level pixel values. (B) On the right top row, the ground truth (GT) segments for each glioma sub-region are

presented (abbreviations used are: WT, whole tumor; TC, tumor core; ET, enhancing tumor). On the right bottom row, the predicted (Pred) segments for each glioma

sub-region are shown. The last image in each row is the combined segments i.e., WT, TC, and ET all in one image, distinguished by different gray-level pixel values.
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set. In our experiments, we set k = 10, which means that each
model was trained 10 times using a different set of 90% of the
data and validated on the remaining 10% data. In total, our
experimental setup generated 40 models, i.e., 10 variations per
model. Later, mean and standard deviation (SD) were calculated
and are reported for each model in the Results section.

We used stochastic gradient descent with an adaptive moment
estimator (Adam) for training all models and their variations
(Kingma and Ba, 2014). The initial learning rate was set to 10−4

which was exponentially decayed every 10 epochs. The batch
size was set to 64 and each model was trained for 100 epochs.
All learnable parameters, i.e., weights and biases of the models
were initialized based on the He initialization method (He et al.,
2015). The Keras (Chollet et al., 2015) application programming
interface (API) with TensorFlow (Abadi et al., 2016) backend was
used for implementation of all models. All models were trained
on a Google Cloud Compute instance with 4 NVIDIA TESLA
P100 graphical processing units (GPUs).

2.5. Model Testing and Statistical Analysis
of Results
After training, each model was tested on the entire BRATS
2018 dataset. For the models which learned to segment the
intra-tumoral structures, the predicted intra-tumoral structure
segments were combined to produce the glioma sub-regions,
and DSC for each glioma sub-region was computed. For models
which learned to segment the glioma sub-regions directly, DSC
values were readily computed. The process was repeated for each
image, and after evaluating all images, the average DSC score
was calculated for each glioma sub-region. Overall, the process
resulted in 4 sets of 10 DSC scores, one for each glioma sub-
region. All four models were compared for statistical significance
using a two-tailed Student’s t-test with equal variance and with
the probability of Type-I error set to α = 0.05.

3. RESULTS

We present cross-validation DSC for all four models that were
trained and tested on the BRATS 2018 dataset. In Figure 2,
we provide a box plot for each model variation. The glioma
sub-region is on the x-axis and the DSC is on the y-axis
for each plot. We note that for intra-tumoral structures,
adding Inception modules to the U-Net resulted in statistically
significant improvements in WT (DSC improved from 0.903 to
0.925, p < 0.001), TC (0.938 to 0.952, p < 0.001), and ET (0.937
to 0.948, p < 0.001). Similarly, for the glioma sub-regions, adding
Inception modules to the U-Net also resulted in statistically
significant improvements in WT (0.898 to 0.918, p < 0.001), TC
(0.942 to 0.951, p= 0.001), and ET (0.942 to 0.948, p= 0.002).

Changing the objective from learning the intra-tumoral
structures to learning the glioma sub-regions in the U-Net
resulted in no difference in performance for WT (0.903 to 0.898,
p = 0.307), TC (0.938 to 0.942, p = 0.284), and ET (0.937
to 0.942, p = 0.098). However, U-Net with Inception modules
which learned the intra-tumoral structures outperformed U-Net
with Inception modules which learned the glioma sub-regions in

TABLE 1 | Results of statistical comparison, i.e., p-values from two-tailed t-tests

comparing the models in the first column with the models in the second columns.

Model 1 Model 2 p-values

WT TC ET

U-Net

intra-tumoral structures

U-Net

glioma sub-regions

0.307 0.284 0.098

U-Net Inception

intra-tumoral structures

<0.001 <0.001 <0.001

U-Net Inception

glioma sub-regions

U-Net

glioma sub-regions

<0.001 0.001 0.002

U-Net Inception

intra-tumoral structures

0.007 0.597 0.402

Statistically significant p-values are present in bold font.

WT (0.918 to 0.925, p = 0.007), but there was no performance
difference for TC (0.952 to 0.951, p = 0.597) and ET (0.948 to
0.948, p = 0.402). Qualitative results on the same patient from a
U-Net with Inception modules which learned the intra-tumoral
structures and U-Net with Inception modules which learned the
glioma sub-regions are presented in Figures 3A,B, respectively.
In Table 1, we provide a summary of statistical comparisons, i.e.,
p-values from Student’s t-test performed to compare different
models. Statistically significant p-values are in shown bold font.

4. DISCUSSION AND CONCLUSIONS

We set out to tackle the challenging problem of pixel-level
segmentation of brain tumors using MRI data and deep learning
models. We introduced a new framework building on well-
known U-Net architecture and Inception modules. We explored
two different learning objectives: (1) learning to segment glioma
sub-regions (WT, TC, and ET), and (2) learning to segment
intra-tumoral structures (necrotic and non-enhancing tumor
core, peritumoral edema, and enhancing tumor). Both learning
objectives were incorporated into the newly proposed DSC based
loss function. Our framework resulted into four different model
variations, i.e., (1) a U-Net with learning objective of intra-
tumoral structures, (2) U-Net with glioma sub-regions, (3) U-
Net with Inception module and intra-tumoral structures, and
finally (4) U-Net with Inception module and learning objective
of glioma sub-regions.

We found that integrating Inception modules in the U-Net
architecture resulted in statistically significant improvement in
tumor segmentation performance that was quantified using k-
fold cross-validation (p < 0.05 for all three glioma sub-regions).
We consider that the observed improvement in the validation
accuracy is linked to multiple convolutional filters of different
sizes employed in each Inception module. These filters are able
to capture and retain contextual information at multiple scales
during the learning process, both in the contracting as well
as expanding paths. We also consider that the improvement
in the tumor segmentation accuracy is linked to the new loss
function based on the modified DSC (i.e., Equation 3). In our
proposed framework, we evaluate our models using DSC and
the learning objective or the loss function (Equation 3) used
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for training these algorithms is also based on DSC. This is in
contrast with conventional deep learning paradigms being used
in natural image segmentation, such as, Mask R-CNN, where
the loss function is based on multi-class cross-entropy and the
evaluation metric is based on Intersection-over-Union (IoU) or
DSC score (He et al., 2017). Furthermore, our DSC scores for
each glioma sub-region on the BRATS 2018 training dataset
are comparable or exceed the results of other recent published
architectures such as the No New-Net, which achieved second
place in the BRATS 2018 competition (Isensee et al., 2018b), and
the ensemble approach proposed in Kao et al. (2018).

Our results also demonstrate that changing the learning
objective from intra-tumoral structures to glioma sub-regions in
the architectures with Inception modules produced a statistically
significant positive impact only on WT, while not affecting
TC and ET. Since the only difference between TC and WT is
the peritumoral edema, these results suggest that learning to
segment the peritumoral edema independently is more effective
than learning in context of other two intra-tumoral structures.
We hypothesize that learning to segment WT directly may be
difficult for the model because it requires extracting information
from multiple modalities (T1, T1C, T2, and FLAIR); however,
the segmentation of peritumoral edema alone can primarily
be learned from FLAIR data. Therefore, for the proposed
framework, we recommend using intra-tumoral structures for
learning with U-Net Inception architecture.
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This study compared the predictive power and robustness of texture, topological, and

convolutional neural network (CNN) based image features for measuring tumors in

MRI. These features were used to predict 1p/19q codeletion in the MICCAI BRATS

2017 challenge dataset. Topological data analysis (TDA) based on persistent homology

had predictive performance as good as or better than texture-based features and

was also less susceptible to image-based perturbations. Features from a pre-trained

convolutional neural network had similar predictive performances and robustness as

TDA, but also performed better using an alternative classification algorithm, k-top scoring

pairs. Feature robustness can be used as a filtering technique without greatly impacting

model performance and can also be used to evaluate model stability.

Keywords: multiparametric MRI, image perturbation, radiomic features, glioma, persistent homology, 1p/19q

codeletion

BACKGROUND

1p/19q codeletion, is a genetic loss event that is somewhat rare in gliomas (Fuller and Perry, 2005;
Eckel-Passow et al., 2015). It involves the complete deletion of the short arm of chromosome 1
alongside the deletion of the long arm of chromosome 19. Patients with this genetic loss event have
been shown to have markedly improved prognosis and overall survival as compared to patients
without 1p/19q codeletion (Boots-Sprenger et al., 2013; Cairncross et al., 2013; Van M den et al.,
2013). The ability to identify patients from radiologic imaging would help to tailor treatment for
this subtype of brain cancer.

Radiomics is the study of tumor imaging data, and the use of the imaging features to predict
prognosis or genetic markers of these tumors. Radiological studies are standard of care for most
cancer patients, but genetic profiling is available only for a subset of cancer patients (Gillies et al.,
2015). Thus, understanding the relationship between tumor appearance on magnetic resonance
imaging (MRI) and the genetic profile of a tumor could help to predict prognosis or to subtype
tumors and thereby deliver more precise care to larger patient populations.

A number of publicly available datasets and toolkits exist for measuring texture-based features
on tumors (Clark et al., 2013; van Griethuysen et al., 2017). However, while there has been progress
in measuring these features, there is some concern about the robustness and generalizability of
radiomic features. Other studies on CT scans have shown that some texture-based features are
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not stable under perturbation in test-retest comparisons
(Bogowicz et al., 2016; van Timmeren et al., 2016). In order
further to assess the degree of instability, this study has
investigated the effect of image perturbations on additional
feature types beyond texture, and their eventual effect on
classification power in MRI scans.

METHODS

A set of brain MRI data were drawn from the MICCAI
BRATS 2017 challenge dataset (Menze et al., 2015; Bakas et al.,
2017a, 2018). The multimodal Brain Tumor Image Segmentation
Benchmark (BRATS) 2017 dataset was originally designed
for the brain tumor segmentation challenge and comprises
pathologically confirmed LGG (n = 65) and HGG (n = 102)
cases from The Cancer Imaging Archive (TCIA) (Bakas et al.,
2017b,c). The dataset contains pre-operative multimodal MRI
sequences, namely T1, T1-post, T2, and FLAIR, and was acquired
with differing imaging/clinical protocols and scanners from
19 different institutions. All tumor volumes in the imaging
dataset had been segmented manually by one to four different
experienced neuroradiologists.

Genetic markers for this TCIA dataset were gathered from
The Cancer Genomics Archive (TCGA). The patients were first
retrospectively identified with histologically confirmed WHO
grade II-IV gliomas (n = 1,122) and their corresponding
1p/19q chromosome codeletion statuses (after surgical biopsy).
In addition, the patients’ age, gender, Karnofsky Performance
Score (KPS) were collected as clinical variables.

These four sequences were co-registered to the T1 post-
sequence as it had the highest spatial resolution. They were then
resampled to 1 × 1 × 1mm isotropically in an axial orientation
by using a linear interpolation algorithm. Then, all images were
skull-stripped to anonymize the patient information and remove
extraneous regions of the scan (Bauer et al., 2012).

The scans were prepared by performing N4 bias correction,
normalizing intensity values by interquartile range, and cropping
and reshaping to the volume of interest. Normalization of the
intensity was performed based on the interquartile range for a
particular modality of the non-tumor brain volume. The slices
were resampled to a 142 × 142 image size that was cropped to
the tumor area of interest. This methodology is similar to that
used by Chang et al. (2018a) in order to provide the type of input
that the neural network anticipated.

The breakdown of the dataset for 1p/19q codeletion vs. non-
codeleted cases was heavily skewed toward the non-codeleted
cases, with 13 cases with codeletion and 130 without codeletion.
As such, the codeleted cases were heavily oversampled in slice
selection at a 20:3 ratio to achieve a closer balance of class
ratio. The largest 20 image patch slices for each codeleted scan
was taken. For the non-codeleted scans the 50, 75, and 100th
percentile slices (based on size) were taken.

The dataset was split patient-by-patient into sets of 80% for
training and 20% for testing. This preserved the class ratio in the
training and testing sets, as the number of positive cases was so
low. This process was repeated 10 times independently for a total

of 10 independent splits. Each of these independent splits had
the entire analytic process performed to assess the robustness of
the results. The training set was used in 5-fold cross-validation
for each of the models, where patients were kept together in the
cross-validation folds.

The three types of features measured in these scans were
texture-based features, persistent homology topological features,
and features based on a pre-trained convolutional neural network
(Figure 1). The texture features were extracted slice-by-slice
using the Pyradiomics package (van Griethuysen et al., 2017).
The types of features were based on the tumor region of
interest on each of the modalities. The texture features that were
extracted included: first-order intensity features, shape features,
gray-level co-occurrence matrix features (GLCM), gray-level run
length matrix features (GLRLM), gray level size zone matrix
features (GLSZM), and neighboring gray-tone difference matrix
features (NGTDM).

It is well-known that MRI studies suffer from a variety
of noise sources, so the underlying integrity of the image
data carries some uncertainty. A topological approach was
evaluated to see if the features generated were less susceptible
to this uncertainty than traditional texture-based approaches.
These topological features were based on persistent homology
and how the topology changes with shifts in the image
intensity threshold. Barcodes describe when a connected
component or tunnel was created and destroyed by this shifting
threshold (Figure 2; Adcock et al., 2014). These barcodes were
collected with the GUDHI python package (Maria, 2015).

FIGURE 1 | Analysis pipeline: images are normalized, then the three types of

features were collected. These features are filtered with RFE and PCA, then

used to build a random forest model or logistic regression model. Image

perturbations are used as an additional filter by including only relatively robust

features. The kTSP algorithm used the same feature set to build its predictions.
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These barcodes were characterized by their polynomial features,
along with statistical features about their birth and death
intensities, bar lengths, and death intensity distribution. These
features were based on work in Adcock et al. (2013) and
Giansiracusa et al. (2017).

A pre-trained convolutional neural network (CNN) was used
to calculate deep learning-based features, from Chang’s work on
IDH1 mutation (Chang et al., 2018a). Chang’s model was useful
for this investigation as it focused on gliomas and featured the
same MRI modalities as were present in this study (T1, T2,
FLAIR, and T1-post). The second to last layer of the network was
used to extract features rather than to feed into a softmax layer
to predict IDH1 mutation. We expected the network to produce
some features that are relevant to this 1p/19q dataset because the
current work was of the same fundamental nature as the problem
in Chang’s work.

Two versions of feature reduction/selection were evaluated in
the training set of this study: recursive feature elimination (RFE)
and principal component analysis (PCA). RFE was performed
with 10-fold cross-validation, to determine the optimal number
of features (k), then the k best features were selected. PCA was
performed and a cutoff of 95% cumulative variance was used to
cull the insignificant components in PCA reduction.

Each of the feature sets—texture, topology, and CNN—had
feature selection performed, and then those features were fed
into a random forest model and a logistic regression model.
The models were tuned using 5-fold cross-validation with folds
that kept patients within the same fold. The random forest
models were optimized over a number of hyperparameters
including: tree counts of 200–2000, maximum depths of 10–
100, the minimum sample split, and minimum leaf size. The
logistic regression models had normalization hyperparameters

of L1 vs. L2 normalization, and regularization strength from
10−3 to 105.

The models were evaluated primarily on the held-out 20%
testing set, where area under the receiver operator curve
(AUROC), accuracy, sensitivity, and specificity were measured.
Additionally, combined models, which used features from

TABLE 1 | Test set statistics across 10 independent splits.

AUROC STD of

AUROC

Sensitivity Specificity Accuracy

Texture only RF RFE 0.660 0.120 0.782 0.558 0.669

Texture only LR RFE 0.566 0.139 0.775 0.479 0.629

Texture only RF PCA 0.527 0.071 0.543 0.644 0.581

Texture only LR PCA 0.502 0.093 0.573 0.610 0.583

TDA only RF RFE 0.698 0.085 0.653 0.738 0.682

TDA only LR RFE 0.710 0.094 0.723 0.675 0.692

TDA only RF PCA 0.626 0.132 0.647 0.648 0.638

TDA only LR PCA 0.691 0.135 0.677 0.694 0.676

CNN only RF RFE 0.708 0.139 0.905 0.546 0.727

CNN only LR RFE 0.644 0.110 0.775 0.565 0.669

CNN only RF PCA 0.672 0.133 0.627 0.750 0.675

CNN only LR PCA 0.673 0.081 0.823 0.546 0.686

Combined RF RFE 0.689 0.150 0.877 0.552 0.714

Combined LR RFE 0.685 0.135 0.770 0.638 0.700

Combined RF PCA 0.612 0.148 0.655 0.637 0.638

Combined LR PCA 0.675 0.121 0.865 0.525 0.698

Clinical per patient RF 0.713 0.106 0.667 0.854 0.800

Clinical per patient LR 0.577 0.097 0.467 0.819 0.759

Darker blue indicates improved AUROC.

FIGURE 2 | Examples of five types of image perturbation on a slice of the tumor (rotation, noise addition, translation, volume alteration, and contour alteration).
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texture, topology, and CNN, were also tested using the
same approach. The clinical patient characteristics (age, sex,
and Karnofsky performance score) were tested independently
to gauge their performance in comparison to the imaging-
based features.

Robustness of Features
Each of the image slices was perturbed using image processing
techniques to produce relatively small changes to the image
following the approach of Zwanenburg et al. (2019). Five classes
of perturbation were performed on the images: image rotation
(R), image translation (T), image Gaussian white noise addition
(N), mask volume alteration (V), and contour randomization
(C). Images and masks were rotated around the mask center of
mass to approximate changes in head position in the scanner.
Image translations involved subpixel shifts which resampled
the images on new slightly modified coordinate systems. Image
noise addition added randomized Gaussian noise based on the
noise levels of the original slice. Volume alteration grew or
shrank the mask based on the Euclidean distance transform
and the percentage of volume added or subtracted. Lastly,
contour randomization combined superpixel segmentation of
the underlying image with a probabilistic selection of those
superpixels based on their overlap with the mask to produce
altered contours (Figure 2).

Each of the altered images then had its texture and topological
features evaluated for the range of individual perturbations. For
each category of perturbation and each feature, the intraclass
correlation coefficient (ICC) was calculated to determine the
variability or robustness of that feature to the perturbation in

question. After calculating the ICC, any feature that had an ICC
of <0.75 for any of the perturbations was excluded from this
round of modeling. With that filter in place, the same modeling
procedure was followed to evaluate the predictive power of
texture and topological features across the 10 instances.

Classification With K-top Scoring Pairs
As an additional analysis, the same texture, topological, and CNN
features were used to train a model using the k-top scoring
pairs algorithm (kTSP). The kTSP algorithm classifies samples by
identifying k-pairs of features whose relative expressions/values
are inverted between the categories, i.e., it tries to find pairs
of genes A and B whose relative rankings are inverted in most
samples of the two cases. This gives an easy to interpret decision
rule and makes the classifier robust to data normalization
procedures. Given that different measurement technologies have
different dynamic ranges, classifiers based on relative rankings of
features rather than their absolute values are highly valuable for
integrating and comparing across multiple sources of data.

TABLE 2 | Test set statistics for kTSP algorithm.

AUROC STD of AUROC

Texture only kTSP 0.659 0.099

TDA only kTSP 0.686 0.083

CNN only kTSP 0.718 0.111

Darker blue indicates improved AUROC.

FIGURE 3 | Test set mean AUROC by feature type.
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The extracted CNN, textural, and topological features were
used to train a kTSP classifier for predicting patient 1p/19q
codeletion status using the switchbox R package (Afsari et al.,
2015). Since kTSP is a greedy algorithm, we retained only features
that were measured to be significantly differential between the
two classes (Wilcox test p < 0.1 after BH correction). We
then split the data into training and test sets (70:30 split)
and estimated classifier performance by measuring training and
test set roc values. Since the codeletion cases were heavily
resampled, we grouped features from the same patient together
while doing the train/test split so as to ensure that training
and testing cases are really independent. By repeating this
procedure for a total of 5,000 times and building classifiers
with k allowed to range between 3 and 15 pairs of features,
we estimated the 95% highest posterior density intervals for
train and test AUC values for classifiers built from the
three datasets.

RESULTS

Texture features were evaluated across the 10 independent
train/test splits to measure their predictive power (Table 1;
Figure 3). PCA-based feature reduction on texture features did
very poorly on the test set with an average AUROC across
the 10 train/test splits of 0.502 with linear regression (LR)
and 0.527 for random forest (RF). RFE achieved test set
AUROC values of 0.660 and 0.566 for LR and the RF models,
respectively. However, the standard deviation of AUROC across

the different splits was quite high (0.120, 0.139), suggesting
that with a small dataset, the models’ performance can be
somewhat unstable.

Features from topological data analysis were also evaluated
across the 10-independent training/testing splits (Table 1). In
this case, most of the analyses performed relatively similarly
in terms of AUROC, ranging from 0.626 to 0.710 for these
different models with topological features. Again, the standard
deviation of AUROC across the different training/testing
splits was relatively broad (0.085–0.135), though slightly lower
than that of the texture features. Texture and TDA features
overall had relatively similar performance, with a slight
edge to TDA features, though well-within the variability of
these statistics.

When modeled using random forests or logistic regression,
the CNN feature set had similar predictive performance to
topological features (Table 1). The AUROCs of these models fell
between 0.644 and 0.708. It also performed similarly with the
k-top scoring pairs (kTSP, Table 2) approach when compared to
the random forest (RF) or logistic regression (LR) with an average
AUROC of 0.718. Combining the three feature types neither
improved or decreased performance, suggesting that they were
not measuring vastly different types of information.

Overall, RFE somewhat outperformed PCA as a feature
selection tool, although the scale of the difference depended
on the feature set. Logistic regression had similar results to
random forest classification in most cases, although there were
some exceptions.

FIGURE 4 | Mean ICC of Texture features (R, Rotation; N, Noise addition; T, Translation; V, Volume alteration; C, Contour alteration). Volume based perturbations had

the largest effect on the robustness of texture features, followed by contour alteration. There was a range of ICC values for the different features.

FIGURE 5 | Mean ICC of TDA features (R, Rotation; N, Noise addition; T, Translation; V, Volume alteration; C, Contour alteration). Volume based perturbations had the

largest effect on ICC for topological features. Polynomial features 3 and 4 were the least robust to perturbation, while other TDA features were relatively stable.
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FIGURE 6 | Mean ICC of CNN features (R, Rotation; N, Noise addition; T, Translation; V, Volume alteration; C, Contour alteration). CNN based features were broadly

stable to perturbations, though still most affected by volume changes.

In terms of feature robustness, topological features had much
better ICC after perturbation than did the texture-based features.
Of the 356 texture features, an average of ∼117 features (32.8%)
had an ICC of <0.75 on the perturbations and were excluded
from this round of modeling (Figure 4). Of the 120 topological
features, an average of ∼10 (8.1%) had an ICC of <0.75, as such
most of the features were included in the next round of modeling
(Figure 5). Only an average of ∼3 of the CNN features (0.15%)
were excluded at the 0.75 ICC cutoff (Figure 6).

The perturbation types which had the lowest average ICC
were volume perturbation and contour alteration. Noise addition
and translation had little impact on the ICC values for texture
and TDA features. Volume alteration, and contour alteration
both affect the segmentation mask of the tumor without an
impact on the underlying image. This does, however, affect the
region investigated by topological and texture features. Notably,
when looking at stability in texture features by the class of
feature, shape-based features performed poorly under volume-
based alterations and were affected by rotation more than the
other classes (Figure 4). Overall, GLCM-based measures were
the most stable of the texture features as a class under these
perturbations (Figure 7). Among the TDA features, polynomial
features 3 and 4 were the least robust to perturbation, suggesting
higher order polynomial features are less stable than lower order
features (Figure 5).

Features that had a low ICC were excluded and the models
were retrained on the reduced feature set. Then the predictive
power of these models was measured on the testing set.
Overall, when excluding non-robust features from modeling, the
performance of the models dropped slightly in terms of AUROC,
although most had relatively similar power (Table 3; Figure 8).

Increasing the ICC cutoff would increase the number of
features excluded from the analysis. Thus, this effect was
further studied for each type of image perturbation (Figure 9).
Texture features are broadly susceptible to contour and volume
alterations. A subset of texture features was susceptible to
rotation effects as well, although very few features were affected
by the noise or translation perturbations. CNN features had
a relatively narrow range of ICC values, and TDA features
were broadly stable, though a subset of TDA features were
less robust.

DISCUSSION

In this study, topological data features performed as well as
or better than texture features in predicting 1p/19q codeletion
status. However, model performance varied across the different

training and testing splits of the data, as evidenced by the
standard deviation of model performance. CNN-based features
also had similar performance to topological features with random
forest and logistic regression, but they performed notably better
with kTSP as the modeling algorithm.

One concern, however, is the relatively small sample size
of 143 patients, of whom only 13 had the 1p/19q codeletion.
This may be a large factor in the uncertainty in the prediction
estimates. Oversampling the 1p/19q codeletion alleviates the class
imbalance somewhat, but raises some concerns about overfitting,
especially in models like random forest. Finding additional MRI
studies with confirmed 1p/19q codeletion would improve the
generalizability of any models derived from this data.

The kTSP algorithm is more often used in gene expression
array data but can be applied just as easily to other large-scale
datasets. By finding pairs of features that have different relative
orderings in the two sets, kTSP is less dependent on the absolute
magnitude of change than are the other methods. It also benefits
from having a large number of features to search that have
positive and negative associations with the target classification.
As the CNN features are not human-designed features, and
there is a larger set of CNN features with more variability in
direction, kTSP seems to take better advantage of these features
than features like TDA or texture.

Traditional radiomics features based on gray levels, such as
GLCMs can be dependent on the number and boundaries of
gray level bins. Volume and contour-based alterations affect the
set of pixels under investigation, which could heavily influence
the resulting texture matrices. Topological barcodes have been
found to be mostly stable under image-based perturbations
of the data, as have the CNN-based features from this pre-
trained model.

While other groups have also used radiomic features or
neural networks to predict 1p/19q codeletion, this paper seeks
to compare multiple potential approaches (Han et al., 2018;
Lu et al., 2018; Zhou et al., 2019). Other papers have trained
neural networks to predict 1p/19q codeletion, whereas this
study only used a pre-trained neural network on the dataset
(Akkus et al., 2017; Chang et al., 2018b). One weakness of
this approach was that the testing AUROCs of the models
in this study were not as high as some that have been
reported in other studies. However, this study was also able
to evaluate the robustness of these features through image
perturbation. Additionally, the models in this study incorporated
topological features based on persistent homology, which had
better performance than radiomic features and were more stable
to perturbation.
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FIGURE 7 | Mean ICC of Texture features by feature class. (R, Rotation; N, Noise addition; T, Translation; V, Volume alteration; C, Contour alteration). Changes in

volume had the largest effect on the stability of radiomic features. The least stable class of features were the shape-based features, whereas GLCM and first-order

features were more stable.

TABLE 3 | Test set statistics, after exclusion of unstable features.

AUROC STD of

AUROC

Sensitivity Specificity Accuracy

Texture only RF RFE 0.637 0.084 0.758 0.569 0.661

Texture only LR RFE 0.563 0.120 0.775 0.512 0.644

Texture only RF PCA 0.505 0.097 0.552 0.625 0.577

Texture only LR PCA 0.501 0.062 0.532 0.625 0.568

TDA only RF RFE 0.660 0.090 0.685 0.635 0.652

TDA only LR RFE 0.659 0.126 0.635 0.712 0.662

TDA only RF PCA 0.614 0.090 0.767 0.569 0.649

TDA only LR PCA 0.649 0.140 0.655 0.613 0.627

CNN only RF RFE 0.691 0.146 0.870 0.567 0.721

CNN only LR RFE 0.668 0.118 0.867 0.510 0.692

CNN only RF PCA 0.681 0.121 0.725 0.644 0.679

CNN only LR PCA 0.674 0.081 0.847 0.531 0.691

Combined RF RFE 0.681 0.146 0.860 0.552 0.707

Combined LR RFE 0.660 0.117 0.830 0.540 0.687

Combined RF PCA 0.650 0.163 0.760 0.619 0.686

Combined LR PCA 0.684 0.111 0.835 0.569 0.703

Darker blue indicates improved AUROC.

Clinical value is more difficult to assess than statistical
significance, as it is dependent on the prognostic value
of the biomarker, the current standard of care, and the
predictive power of the model. 1p/19q codeletion is typically
evaluated through genetic testing of a tissue sample, whereas
the benefit of a radiogenomic approach is to evaluate the
imaging markers of a tumor without biopsy or resection.
However, as many glioma patients receive a biopsy for
diagnostic purposes, a radiogenomic model would have to
be exceptionally predictive to warrant replacement of this
procedure. This study aims more to understand the types
of features radiogenomic approaches are detecting, and how
robust they are in different conditions rather than to replace
the test.

FUTURE DIRECTIONS

While this study used the image perturbation parameter space
of the Zwanenberg paper, it would be worthwhile to tune
the tested space of parameters further. The level of noise is
based on wavelet estimation, but by visual inspection is not
apparent until the noise level is increased by 1–2 orders of
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FIGURE 8 | Filtered features test set mean AUROC.

FIGURE 9 | ICC Threshold effect by perturbation type. The ICC cutoff for features is varied from 0 to 1, and the percentage of features that survive each threshold is

recorded by perturbation type.

magnitude. Additional levels of noise could be investigated,
as could the types of noise, such as changing the noise to
a Rician distribution or adding the noise to k-space rather
than the image domain. However, as these perturbations
take each measurement and multiply it out by orders of
magnitude, the computational demands can add up quickly.
Thus, there is a tradeoff between perturbation complexity, the
size of the parameter space, and the certainty of the resulting
robustness measure.

Further investigation of the robustness of these measures
could be done by simulating scans from the underlying
physics, using a Bloch equation simulator (Ford et al., 2018).
This would allow for measuring the effect of variable image

collection parameters such as TE, TR, and field strength.
Understanding these effects would help to account for concerns
about variability in the underlyingMRI protocols. Unfortunately,
these simulations are primarily of normal brain images, so may
not fully reflect the interaction between tumor tissue alteration
and image feature robustness.
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Automatic segmentation of brain tumors from medical images is important for clinical

assessment and treatment planning of brain tumors. Recent years have seen an

increasing use of convolutional neural networks (CNNs) for this task, but most of

them use either 2D networks with relatively low memory requirement while ignoring 3D

context, or 3D networks exploiting 3D features while with large memory consumption.

In addition, existing methods rarely provide uncertainty information associated with

the segmentation result. We propose a cascade of CNNs to segment brain tumors

with hierarchical subregions from multi-modal Magnetic Resonance images (MRI), and

introduce a 2.5D network that is a trade-off between memory consumption, model

complexity and receptive field. In addition, we employ test-time augmentation to achieve

improved segmentation accuracy, which also provides voxel-wise and structure-wise

uncertainty information of the segmentation result. Experiments with BraTS 2017 dataset

showed that our cascaded framework with 2.5D CNNs was one of the top performing

methods (second-rank) for the BraTS challenge. We also validated our method with

BraTS 2018 dataset and found that test-time augmentation improves brain tumor

segmentation accuracy and that the resulting uncertainty information can indicate

potential mis-segmentations and help to improve segmentation accuracy.

Keywords: brain tumor segmentation, deep learning, uncertainty, data augmentation, convolutional neural

network

1. INTRODUCTION

In adults, gliomas are the most common primary brain tumors. They begin in the brain’s glial
cells and are typically categorized into different grades: High-Grade Gliomas (HGG) grow rapidly
and are more malignant, while Low-Grade Gliomas (LGG) are slower growing tumors with a better
patient prognosis (Louis et al., 2016).Magnetic Resonance Imaging (MRI) of brain tumors is critical
for progression evaluation, treatment planning and assessment of this disease. Different sequences
of MRI can be used for brain tumor imaging, such as T1-weighted, T2-weighted, contrast enhanced
T1-weighted (T1ce), and Fluid Attenuation Inversion Recovery (FLAIR) images. T2 and FLAIR
images mostly highlight the whole tumor region (including infiltrative edema), and T1 and T1ce
images give a better contrast for the tumor core region (not including infiltrative edema) (Menze
et al., 2015). Therefore, these different sequences providing complementary information can be
combined for the analysis of different subregions of brain tumors.
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Segmenting brain tumors and subregions automatically from
multi-modal MRI is important for reproducible and accurate
measurement of the tumors, and this can assist better diagnosis,
treatment planning and evaluation (Menze et al., 2015; Bakas
et al., 2017b). However, it remains difficult for automatic
methods to accurately segment brain tumors from multi-modal
MRI. This is due to the fact that the images often have
ambiguous boundaries between normal tissues and brain tumors.
In addition, though prior information of shape and position
has been used for segmentation of anatomical structures such
as the liver (Wang et al., 2015) and the heart (Grosgeorge
et al., 2013), the shape, size and position of brain tumors
have considerable variations across different patients. This
makes it difficult to use a prior shape and position for robust
segmentation of brain tumors. Recently, deep learning methods
with Convolutional Neural Networks (CNNs) have become the
state-of-the-art approaches for brain tumor segmentation (Bakas
et al., 2018). Compared with traditional supervised learning
methods such as decision trees (Zikic et al., 2012) and support
vector machines (Lee et al., 2005), CNNs can learn the most
useful features automatically, without the need for manual design
and selection of features.

A key problem for CNN-based segmentation is to design a
suitable network structure and training strategy. Using a 2D
CNN in a slice-by-slice manner has a relatively low memory
requirement (Havaei et al., 2016), but the network ignores
3D information, which will ultimately limit the performance
of the segmentation. Using 3D CNNs can better exploit 3D
features, but requires a large amount of memory, which may
limit the input patch size, depth or feature numbers of the
CNNs (Kamnitsas et al., 2017b). As a trade-off, 2.5D CNNs
can take advantage of inter-slice features compared with 2D
CNNs and have a lower memory requirement than their
3D counterparts. In addition, whole tumor, tumor core and
enhancing tumor core follow a hierarchical structure. Using
the segmentation of whole tumor (tumor core) to guide the
segmentation of tumor core (enhancing tumor core) can help
to reduce false positives. Therefore, in this work, we propose a
framework consisting of a cascade of 2.5D networks for brain
tumor segmentation from multi-modal 3D MRI that achieves a
trade-off between memory consumption, model complexity and
receptive field.

For medical images, uncertainty information of segmentation
results is important for clinical decisions as it can help to
understand the reliability of the segmentations (Shi et al.,
2011) and identify challenging cases necessitating expert
review (Jungo et al., 2018). For example, for brain tumor
images, the low contrast between surrounding tissues and the
segmentation target leads voxels around the boundary to be
labeled with less confidence. The uncertainty information of
these voxels can indicate regions that have potentially been mis-
segmented, and therefore can be employed to guide interactions
of human to refine the segmentation results (Wang et al.,
2018b). In addition, compared with datasets for natural image
recognition (Russakovsky et al., 2015), datasets for CNN-
based medical image segmentation methods are relatively small,
which tends to result in more uncertain predictions in the

segmentation outputs, and can lead to structure-wise uncertainty
for downstream tasks, such as measuring the volume of tumor
regions. Therefore, this work also aims at providing voxel-
wise and structure-wise uncertainty information for CNN-
based brain tumor segmentation. Unlikemodel-based (epistemic)
uncertainty obtained by test-time dropout (Gal and Ghahramani,
2016; Jungo et al., 2017, 2018), we investigate image-based
(aleatoric) uncertainty obtained by test-time augmentation that
has previously been mainly used for improving segmentation
accuracy (Matsunaga et al., 2017; Radosavovic et al., 2018).

This paper is a combination and an extension of our
previous works on brain tumor segmentation (Wang et al.,
2017, 2018a), where we proposed a cascade of CNNs for
sequential segmentation of brain tumor and the subregions
from multi-modal MRI, which decomposes the complex
task of multi-class segmentation into three simpler binary
segmentation tasks. We also proposed 2.5D network structures
with anisotropic convolution for the segmentation task as
a result of trade-off between memory consumption, model
complexity and receptive field. In this paper, we extend
them in two aspects. First, we use test-time augmentation
to obtain uncertainty estimation of the segmentation results,
and additionally propose an uncertainty-aware conditional
random field (CRF) for post-processing. The results show that
uncertainty estimation not only helps to identify potential mis-
segmentations but also can be used to improve segmentation
performance. Both voxel-level and structure-level uncertainty
are analyzed in this paper. Second, we implement more
ablation studies to demonstrate the effectiveness of our
segmentation pipeline.

2. RELATED WORKS

2.1. Brain Tumor Segmentation From MRI
Existing brain tumor segmentation methods include generative
and discriminative approaches. By incorporating domain-
specific prior knowledge, generative approaches usually
have good generalization to unseen images, as they directly
model probabilistic distributions of anatomical structures and
textural appearances of healthy tissues and the tumor (Menze
et al., 2010). However, it is challenging to precisely model
probabilistic distributions of brain tumors. In contrast,
discriminative approaches extract features from images and
associate the features with the tissue classes using discriminative
classifiers. They often require a supervised learning set-
up where images and voxel-wise class labels are needed
for training. Classical methods of this category include
decision trees (Zikic et al., 2012) and support vector machines
(Lee et al., 2005).

Recently, CNNs as a type of discriminative approach
have achieved promising results on multi-modal brain tumor
segmentation tasks. Havaei et al. (2016) combined local and
global 2D features extracted by a CNN for brain tumor
segmentation. Although it outperformed the conventional
discriminative methods, the 2D CNN only uses 2D features
without considering the volumetric context. To incorporate 3D
features, applying the 2D networks in axial, sagittal and coronal
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views and fusing their results has been proposed (McKinley et al.,
2016; Li and Shen, 2017; Hu et al., 2018). However, the features
employed by such a method are from cross-planes rather than
entire 3D space.

DeepMedic (Kamnitsas et al., 2017b) used a 3D CNN to
exploit multi-scale volumetric features and further encoded
spatial information with a fully connected Conditional Random
Field (CRF). It achieved better segmentation performance than
using 2D CNNs but has a relatively low inference efficiency
due to the multi-scale image patch-based analysis. Isensee
et al. (2018) applied 3D U-Net to brain tumor segmentation
with a carefully designed training process. Myronenko (2018)
used an encoder-decoder architecture for 3D brain tumor
segmentation and the network contained an additional branch
of variational auto-encoder to reconstruct the input image
for regularization. To obtain robust brain tumor segmentation
resutls, Kamnitsas et al. (2017a) proposed an ensemble of
multiple CNNs including 3D Fully Convolutional Networks
(FCN) (Long et al., 2015), DeepMedic (Kamnitsas et al., 2017b),
and 3D U-Net (Ronneberger et al., 2015; Abdulkadir et al., 2016).
The ensemble model is relatively robust to the choice of hyper-
parameters of each individual CNN and reduces the risk of
overfitting. However, it is computationally intensive to run a set
of models for both training and inference (Malmi et al., 2015;
Pereira et al., 2017; Xu et al., 2018).

2.2. Uncertainty Estimation for CNNs
Uncertainty information can come from either the CNN
models or the input images. For model-based (epistemic)
uncertainty, exact Bayesian modeling is mathematically
grounded but often computationally expensive and hard to
implement. Alternatively, Gal and Ghahramani (2016) cast
test-time dropout as a Bayesian approximation to estimate a
CNN’s model uncertainty. Zhu and Zabaras (2018) estimated
uncertainty of a CNN’s parameters using approximated
Bayesian inference via stochastic variational gradient descent.
Other approximation methods include Monte Carlo batch
normalization (Teye et al., 2018), Markov chain Monte
Carlo (Neal, 2012) and variational Bayesian (Louizos and
Welling, 2016). Lakshminarayanan et al. (2017) proposed
a simple and scalable method using ensembles of models
for uncertainty estimation. For test image-based (aleatoric)
uncertainty, Ayhan and Berens (2018) found that test-time
augmentation was an effective and efficient method for
exploring the locality of a test sample in aleatoric uncertainty
estimation, but its application to medical image segmentation
has not been investigated. Kendall and Gal (2017) proposed
a unified Bayesian framework that combines aleatoric and
epistemic uncertainty estimations for deep learning models.
In the context of brain tumor segmentation, Eaton-Rosen
et al. (2018) and Jungo et al. (2018) used test-time dropout
to estimate the uncertainty. Wang et al. (2019a) analyzed
a combination of epistemic and aleatoric uncertainties for
whole tumor segmentation, but the uncertainty information of
other structures (tumor core and enhancing tumor core) was
not investigated.

3. METHODS

3.1. Segmentation Pipeline and Network
Structure
3.1.1. Triple Cascaded Framework
Malmi et al. (2015) and Pereira et al. (2017) used a cascade
of two stages to segment brain tumors where the whole tumor
was segmented in the first stage and then all substructures
were segmented in the second stage. To better take advantage
of the hierarchical property of brain tumor structures, in our
preliminary study (Wang et al., 2017), we proposed a cascade of
three CNNs to hierarchically and sequentially segment the whole
brain tumor, tumor core and enhancing tumor core, which is
followed by some more recent works (Ma and Yang, 2018; Xu
et al., 2018). As shown in Figure 1, we use three networks (WNet,
TNet, and ENet) to segment these structures, respectively. First,
the whole tumor is segmented by WNet. Then the input multi-
modal image is cropped according to the bounding box of the
segmented whole tumor. Second, TNet segments the tumor core
from the cropped image region, and the input image is further
cropped based on the bounding box of the segmented tumor core.
Finally, the enhancing tumor core is segmented by ENet from the
second cropped region. We use the segmentation result of whole
tumor (tumor core) as a crisp mask for the result of tumor core
(enhancing tumor core), which leads to anatomical constraints
for the final segmentation.

3.1.2. Anisotropic Convolutional Neural Networks
To achieve a trade-off between memory consumption, model
complexity and receptive field for 3D brain tumor segmentation,
we propose anisotropic 2.5D CNNs with a large intra-slice
receptive field and a relatively small inter-slice receptive field.
These CNNs take a stack of slices as input. The receptive field
of WNet and TNet is 217 × 217 × 9, and that of ENet is 113
× 113 × 9. Figure 2 shows structures of these proposed CNNs.
Note that in previous works (McKinley et al., 2016; Li and Shen,
2017), fusing 2D networks in three orthogonal views was referred
to as a 2.5D network, where each of the single-view networks
only captures 2D features. In our method, we also use multi-
view fusion, but the network in each view is a 2.5D network that
captures anisotropic 3D features.

The anisotropic receptive field of our CNNs is achieved by
decomposing a typical 3D 3 × 3 × 3 convolution kernel into
an intra-slice convolution kernel and an inter-slice convolution
kernel, with kernel size of 3 × 3 × 1 and 1 × 1 × 3,
respectively. We use four inter-slice convolution layers and 20
intra-slice convolution layers in the backbone of our CNNs,
and set the output channel number of these convolution layers
to a fixed number C0. To facilitate the training process, batch
normalization is used after each convolution, as shown in
green and blue blocks in Figure 2. He et al. (2015) found
that Parametric Rectified Linear Units (PReLU) outperforms
traditional rectified units, therefore we use PReLU as our
activation function. Two 2D downsampling layers are used to
reduce the resolution of feature maps of WNet and TNet while
avoiding large loss of segmentation details. ENet shares the same
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FIGURE 1 | Our proposed framework with triple cascaded CNNs for multi-modal brain tumor segmentation. We use three CNNs to hierarchically and sequentially

segment whole tumor, tumor core and enhancing tumor core, and the CNNs are referred to as WNet, TNet, and ENet, respectively.

FIGURE 2 | The proposed anisotropic CNNs with residual connection, dilated convolution, and multi-scale prediction. Only one downsampling layer is used in ENet

as its input size is smaller.

structure with WNet and TNet except that it uses only one
downsampling layer, as the input size of ENet is smaller.

As shown in Figure 2, intra-slice convolution layers are
grouped into 10 blocks, and each block includes two intra-
slice convolution layers. To speed the convergence of training,
we use residual connections (He et al., 2016) by adding the
output of each block directly to its input. We also employ
dilated convolution to increase the intra-slice receptive field. The
dilation parameter is shown on the top of each residual block in
Figure 2. In addition, each CNN uses multi-scale prediction for
deep supervision. To get multiple intermediate predictions, three
prediction layers with 3×3×1 convolution are used at different
depths of the CNNs, as depicted by red boxes in Figure 2. These
intermediate predictions are upsampled to the resolution of the
input and concatenated. An additional prediction layer with

3×3×1 convolution is used to obtain the final score map from
the concatenated intermediate predictions. The output channel
number of these prediction layers is denoted as Cl, and is set to 2
in this paper.

3.1.3. Multi-view Fusion
The above anisotropic CNNs have a small through-plane
receptive field, and therefore have a limited ability to make use
of 3D contextual information. To overcome this problem, we use
multi-view fusion where all WNet, TNet, and ENet are trained in
three orthogonal (axial, sagittal, and coronal) views, respectively.
At test time, for each network structure, we use the corresponding
versions of trained models to obtain the segmentation results in
these three views, respectively, and average their softmax outputs
to obtain a single fused result.
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3.2. Augmentation for Training and Testing
Considering the image acquisition process, one underlying
anatomy can be observed with different conditions, such as
various spatial transformations and intensity noise. Therefore,
an acquired image can be seen as only one of many possible
observations of the target. Directly applying CNNs to the single
observed image may lead the result to be biased toward the
specific transformation and noise in the given observation. To
address this problem, we predict the segmentation result by
considering different spatial transformations and intensity noise
for a test image.

Let β denote spatial transformation parameters and e
represent intensity noise, respectively. Though all images in the
BraTS datasets are aligned to a standard orientation, we use
rotation, flipping and scaling to augment the variation of local
features. Therefore, we represent β as a composition of r, fl and s,
where r denotes the rotation angle along each spatial axis in 3D, fl
is a random binary value representing flipping along each 3D axis
or not, and s denotes a scaling factor. We consider some prior
distributions of these parameters: r ∼ U(0, 2π), fl ∼ Bern(0.5),
and s ∼ U(0.8, 1.2). In addition, we assume that the intensity
noise follows a prior distribution of e ∼ N(0, 0.05) according
to Wang et al. (2019a).

To obtain augmented images, we use Monte Carlo simulation
to randomly sample β and e from the above prior distributions
N times, and each time we use the sampled parameters to
generate a transformed image. The augmentation process is used
at both training and testing stage for a given network. For
test-time augmentation, the Monte Carlo simulation leads to
N transformed versions of the same input image, and they are
fed into the CNN for inference. We combine the N predicted
results via majority voting to obtain the final prediction of
each structure.

3.3. Uncertainty Estimation of
Segmentation Results
3.3.1. Voxel-Wise Uncertainty
In our method, the use of test-time augmentation provides
multiple prediction results of the same input image with
different spatial transformations and intensity changes. The
disagreement between these predictions naturally gives an
uncertainty estimation of the segmentation. Therefore, we use
test-time augmentation to obtain not only segmentation results
but also the associated image-based (aleatoric) uncertainty.
Differently from Wang et al. (2019a), we provide uncertainty
estimation not only for the whole tumor, but also for the
substructures (tumor core and enhancing tumor core).

To obtain voxel-wise uncertainty estimation, we measure the
diversity of the N different predictions for a given voxel in the
test image. Let X and Y represent the input image and the output
segmentation, respectively, and let Y i represent the i-th voxel’s
predicted label. Typically, the uncertainty of Y i can be estimated
by the entropy and variance of the distribution of Y i, rather
than averaged probability map resulting from N Monte Carlo
samples that cannot reflect the diversity information. For multi-
class segmentation of BraTS, the variance of discrete class label

for a voxel is not sufficiently representative. Therefore, we use
entropy of Y i to estimate the voxel-wise uncertainty, which is
desired for image segmentation tasks. Assume a set of N discrete
values (i.e., labels) for Y i is denoted as Y i = {yi1, y

i
2, . . . , y

i
N}, then

we can approximate the entropy of the distribution of Y i by:

H(Y i
|X) ≈ −

M
∑

m=1

p̂imln(p̂
i
m) (1)

where p̂im is the frequency of the m-th unique value in Y
i.

When Y
i is obtained by test-time augmentation with Monte

Carlo simulation described in section 3.2, Equation (1) represents
voxel-wise aleatoric uncertainty.

3.3.2. Structure-Wise Uncertainty
The above Monte Carlo simulation obtains N segmentation
results for a given structure in a test image. For the i-th
simulation, let vi denote the volume of the segmented structure,
then the set of volumes of the N segmentations is denoted
as V = {v1, v2, . . . , vN}. Assume that the mean value and
standard deviation of V is µV and σV , respectively. Then the
structure-wise uncertainty is estimated as the volume variation
coefficient (VVC):

VVC =
σV

µV

(2)

In this paper, V is obtained by test-time augmentation, leading
Equation (2) to represent structure-wise aleatoric uncertainty.

4. EXPERIMENTS AND RESULTS

4.1. Data and Implementation Details
We validated our methods with the BraTS 20171 and BraTS
20182 (Menze et al., 2015; Bakas et al., 2017a,b) datasets. The
two datasets share the same set of training images from 285
patients, including 75 cases of LGG and 210 cases of HGG. The
validation sets of BraTS 2017 and BraTS 2018 contain images
from 46 and 66 patients with brain tumors respectively. The
testing sets of BraTS 2017 and BraTS 2018 contain images from
146 and 191 patients with brain tumors, respectively. The grades
of brain tumors in the validation and testing sets are unknown.
Each patient was scanned with FLAIR, T1ce, T1, and T2. The
original images were acquired across different views and the
resolution was anisotropic. All the images had been re-sampled
to an isotropic 1.0 mm× 1.0 mm× 1.0 mm resolution and skull-
striped by the organizers. In addition, the four modalities of the
same patient had been co-registered. As the BraTS organizers
provided ground truth only for the training set, we randomly
selected 20% from the training set as our local validation set
during training.

Our 2.5D CNNs were implemented in Tensorflow3 (Abadi
et al., 2016) using NiftyNet45 (Gibson et al., 2018). We used

1http://www.med.upenn.edu/sbia/brats2017.html
2http://www.med.upenn.edu/sbia/brats2018.html
3https://www.tensorflow.org
4http://niftynet.io
5https://github.com/NifTK/NiftyNet/tree/dev/demos/BRATS17
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an NVIDIA TITAN X GPU with 12 GB memory, Adaptive
Moment Estimation (Adam) (Kingma and Ba, 2014) and Dice
loss function (Milletari et al., 2016; Fidon et al., 2017a) for
training, with batch size 5, weight decay 10−7, initial learning
rate 10−3, and iteration number 30k. The training patch size
was 144 × 144 × 19 for WNet, and 96 × 96 × 19 and 64
× 64 × 19 for TNet and ENet, respectively. We normalized
each image by the intensity mean and standard deviation, and
set the channel number Co of intermediate convolution layers
to 32 and class number Cl to 2. We trained all WNet, TNet
and ENet for axial, sagittal and coronal views separately as our
networks had a relatively small number of parameters. Therefore,
each network had three different sets of parameters. At test time,
the predictions in these three views were averaged. We applied
training-time and test-time augmentation to BraTS 2018 dataset
according to 3.2, and the Monte Carlo simulation number N was
set to 20. We uploaded our segmentation results of the validation
and testing datasets to the publicly available evaluation server of
BraTS 2017 and BraTS 2018, and the server gave quantitative
evaluation results in terms of Dice score and Hausdorff distance.

4.1.1. Results of BraTS 2017 Dataset

4.1.1.1. Qualitative results
We first validated our proposed segmentation framework with
BraTS 2017 dataset, and test-time augmentation was not used
for this experiment. We compared our proposed cascade of
anisotropic networks with multi-view fusion with two variants:
(1) cascade of 3D isotropic networks that captures 3D features
directly, where we remove all 1×1×3 convolutions in WNet,
TNet and ENet, and replace 3×3×1 convolutions and 2D
down-sampling (up-sampling) with 3×3×3 convolutions and
3D donw-sampling (up-sampling), respectively, and this variant
is referred to as isotropic 3D networks; (2) cascade of our
anisotropic networks but without multi-view fusion, where the
networks are only implemented in axial view, and this variant is
referred to as anisotropic 2.5D networks.

Figure 3 shows two examples for HGG and LGG
segmentation from our local validation set that is a subset
of BraTS 2017/2018 training set. We only show the FLAIR
images in the inputs of CNNs for simplicity of visualization.
Edema, non-enhancing tumor core and enhancing tumor core
are visualized in green, red and yellow, respectively. The results
of isotropic 3D networks and anisotropic 2.5D networks are
shown in the second and third rows, respectively. In the case of
HGG shown in Figure 3A, isotropic 3D networks obtain some
mis-segmentations of the edema, and anisotropic 2.5D networks
result in some noise in the edema and enhancing tumor core
regions. In contrast, the proposed method leads to more accurate
segmentation results. Figure 3B shows a case of LGG that does
not contain enhancing tumor core. The segmentation results
of whole tumor are similar for the three methods. However,
the proposed method outperforms isotropic 3D networks and
anisotropic 2.5D networks in the tumor core region.

4.1.1.2. Quantitative evaluation
Quantitative evaluation results with the BraTS 2017 validation
set are shown in Table 1. The average Dice scores achieved by

our method for enhancing tumor core, whole tumor and tumor
core are 0.786, 0.905 and 0.838, respectively, which outperforms
isotropic 3D networks and anisotropic 2.5D networks. We also
compared our method with Kamnitsas et al. (2017a) that uses an
ensemble of multiple CNNs for segmentation, and Isensee et al.
(2017) that combines 3D U-Net with residual connection and
deep supervision. Table 1 shows that our method outperforms
the others on the BraTS 2017 validation set. The quantitative
evaluation results of our method on BraTS 2017 testing set are
shown in Table 2. According to the BraTS 2017 organizers6, our
method won the second place of the BraTS 2017 segmentation
task, while Kamnitsas et al. (2017a) and Isensee et al. (2017)
ranked in the first and third place, respectively.

4.1.2. Results of BraTS 2018 Dataset
We then applied our proposed segmentation framework
to BraTS 2018 dataset. To validate the effect of test-time
augmentation (TTA), we compared three network configurations
as underpinning CNNs: (1) 3D UNet (Abdulkadir et al., 2016)
reimplemented by NiftyNet, (2) our cascaded networks where
the whole tumor, tumor core and enhancing tumor core were
segmented by WNet, TNet, and ENet, respectively, and (3)
adapting WNet for multi-class segmentation without using a
cascade of binary predictions, where we changed the output
channel number for prediction layers to 4.We refer to this variant
as multi-class WNet and also use multi-view fusion for it. The 3D
U-Net and multi-class WNet were trained in the same way as our
cascaded networks.

4.1.2.1. Qualitative results
Figure 4 shows two examples from the BraTS 2018 validation set.
In each subfigure, the input images (FLAIR, T1, T1ce, and T2) are
shown in the first row and the segmentation results of different
networks with and without TTA are presented in the second
row. In Figure 4A, the result of 3D UNet without TTA contains
some false positives in the edema and non-enhancing tumor core
regions. In contrast, the result of 3DUNet + TTA ismore spatially
consistent. The result obtained by multi-class WNet without
TTA also contains some noise for the segmented non-enhancing
tumor core, and multi-class WNet + TTA obtains a smoother
segmentation. It can also be observed that our cascaded CNNs
+ TTA performs better on the tumor core than the counterpart
without TTA. In Figure 4B, 3D UNet seems to obtain an under-
segmentation in the central part of the tumor core, and 3D
UNet + TTA overcomes this under-segmentation. Multi-class
WNet without TTA seems to have an over segmentation for
the non-enhancing tumor core region, and the counterpart with
TTA achieves a higher accuracy in contrast. For our cascaded
CNNs, TTA also helps to improve the spatial consistency of the
segmentation result in this case.

4.1.2.2. Quantitative evaluation
Table 3 shows the quantitative evaluation results of different
approaches on the validation set of BraTS 2018. Dice scores
achieved by 3D UNet without TTA for enhancing tumor core,

6https://www.med.upenn.edu/sbia/brats2017/rankings.html
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FIGURE 3 | Segmentation results of an HGG brain tumor (A) and an LGG brain tumor (B) from our local validation set, which is part of BraTS 2017/2018 training set.

Edema, non-enhancing tumor core and enhancing tumor core are visualized in green, red, and yellow, respectively. White arrows highlight some mis-segmentations.

TABLE 1 | Dice and Hausdorff distance of our method on validation set of BraTS 2017 (mean ± std).

Dice Hausdorff (mm)

ET WT TC ET WT TC

Isotropic 3D networks 0.772 ± 0.268 0.885 ± 0.105 0.805 ± 0.196 3.78 ± 5.32 6.73 ± 9.19 7.75 ± 9.98

Anisotropic 2.5D networks 0.741 ± 0.264 0.890 ± 0.076 0.826 ± 0.157 5.32 ± 7.20 12.46 ± 21.47 9.66 ± 14.21

Our method 0.786 ± 0.233 0.905 ± 0.066 0.838 ± 0.158 3.28 ± 3.88 3.89 ± 2.79 6.48 ± 8.26

Kamnitsas et al., 2017a 0.738 0.901 0.797 4.50 4.23 6.56

Isensee et al., 2017 0.732 0.896 0.797 4.55 6.97 9.48

MVF, multi-view fusion; ET, enhancing tumor core; WT, whole tumor; TC, tumor core. Our method: cascaded framework with anisotropic 2.5D CNNs and MVF. Bold value shows the

best performance.

whole tumor and tumor core are 0.734, 0.864 and 0.766,
respectively. Combining TTA with 3D UNet achieved a better
performance, leading to Dice scores of 0.754, 0.873, and 0.783 for
these structures, respectively. Applying test-time augmentation

to multi-class WNet and the cascaded networks also leads to
an improvement of segmentation accuracy. We also compared
our method with Myronenko (2018) and Isensee et al. (2018)
that ranked the first and second of BraTS 2018 segmentation
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TABLE 2 | Dice and Hausdorff distance of our method on testing set of BraTS 2017 (mean ± std).

Dice Hausdorff (mm)

ET WT TC ET WT TC

Our method 0.783 ± 0.222 0.874 ± 0.132 0.775 ± 0.270 15.90 ± 67.86 6.55 ± 10.69 27.05 ± 84.43

Kamnitsas et al., 2017a 0.729 0.886 0.785 36.0 5.01 23.10

Isensee et al., 2017 0.647 ± 0.326 0.858 ± 0.161 0.775 ± 0.269 – – –

ET, enhancing tumor core; WT, whole tumor; TC, tumor core. Bold value shows the best performance.

FIGURE 4 | Examples of test-time augmentation (TTA) combined with different CNNs for brain tumor segmentation. The images are from BraTS 2018 validation set,

of which ground truth are not provided by the organizer. In each subfigure, the first row shows the input image of the same patient in four modalities, and the second

row shows segmentation results. Edema, non-enhancing tumor core and enhancing tumor core are visualized in green, red, and yellow, respectively. (A,B) Show

images of two different patients.

challenge, respectively7. Myronenko (2018) used an ensemble
of 10 models, and we list the result of a single model and

7https://www.med.upenn.edu/sbia/brats2018/rankings.html

that of model ensemble reported by Myronenko (2018). Isensee

et al. (2018) trained a 3D U-Net with additional datasets for the

segmentation task. It can be observed that our method performs

closely to these two compared methods on BraTS 2018 validation
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TABLE 3 | Dice and Hausdorff distance of different methods on validation set of BraTS 2018 (mean ± std).

Dice Hausdorff (mm)

ET WT TC ET WT TC

3D UNet 0.734 ± 0.284 0.864 ± 0.146 0.766 ± 0.230 9.37 ± 22.95 12.00 ± 21.22 10.37 ± 13.47

3D UNet + TTA 0.754 ± 0.263 0.873 ± 0.125 0.783 ± 0.168 4.53 ± 9.60 5.90 ± 6.80 8.03 ± 10.31

Multi-class WNet 0.757 ± 0.257 0.890 ± 0.089 0.725 ± 0.245 4.24 ± 7.97 4.99 ± 6.53 12.13 ± 13.41

Multi-class WNet + TTA 0.771 ± 0.242 0.896 ± 0.071 0.730 ± 0.255 4.44 ± 8.20 4.92 ± 6.42 11.13 ± 13.46

Cascaded networks 0.792 ± 0.233 0.903 ± 0.057 0.854 ± 0.142 3.34 ± 4.15 5.38 ± 9.31 6.61 ± 8.55

Cascaded networks + TTA 0.797 ± 0.229 0.902 ± 0.056 0.858 ± 0.139 3.13 ± 3.78 6.18 ± 9.53 6.37 ± 8.19

Cascaded networks + TTA + CRF0 0.803 ± 0.228 0.905 ± 0.056 0.862 ± 0.136 3.09 ± 3.75 5.97 ± 8.22 6.25 ± 7.87

Cascaded networks + TTA + CRF1 0.807 ± 0.225 0.908 ± 0.054 0.869 ± 0.126 3.01 ± 3.69 5.86 ± 8.16 6.09 ± 7.74

Myronenko, 2018 (single model) 0.815 0.904 0.860 3.80 4.48 8.28

Myronenko, 2018 (ensemble) 0.823 0.910 0.867 3.93 4.52 6.85

Isensee et al., 2018 0.810 0.908 0.854 2.54 4.97 7.04

ET, enhancing tumor core; WT, whole tumor; TC, tumor core; TTA, test-time augmentation. CRF0: naive conditional random field for post-processing. CRF1: our uncertainty-aware

conditional random field. Bold value shows the best performance.

TABLE 4 | Dice and Hausdorff evaluation of our cascaded CNNs with test-time augmentation (TTA) on testing set of BraTS 2018 (mean ± std).

Dice Hausdorff (mm)

ET WT TC ET WT TC

Cascaded networks + TTA 0.747 ± 0.259 0.878 ± 0.119 0.796 ± 0.250 4.16 ± 7.07 5.97 ± 8.56 6.71 ± 10.27

Myronenko, 2018 0.766 ± 0.256 0.884 ± 0.118 0.815 ± 0.250 3.77 ± 8.61 5.90 ± 10.01 4.81 ± 7.52

Isensee et al., 2018 0.779 ± 0.239 0.878 ± 0.129 0.806 ± 0.250 2.90 ± 3.85 6.03 ± 9.98 5.08 ± 8.09

ET, enhancing tumor core; WT, whole tumor; TC, tumor core. Myronenko (2018) used an ensemble of 10 models for the segmentation.

set. Quantitative evaluation results of our cascaded CNNs with

TTA on BraTS 2018 testing set is presented inTable 4. The results
are compared with those of Myronenko (2018) and Isensee et al.
(2018). Note that Myronenko (2018) requires a large amount
of GPU memory (32 GB) for training, and Isensee et al. (2018)
trained themodel with additional datasets.Table 4 shows that the
segmentation accuracy of our proposed framework is comparable
with that of the other two counterparts.

4.1.2.3. Uncertainty estimation
Figure 5 presents a case from our local validation set of
BraTS 2018, where Figures 5C,D show the results of our
cascaded CNNs and the corresponding voxel-wise uncertainty
obtained by TTA, respectively. It can be observed that most
uncertain results concentrate on the border of the tumor’s
substructures and some regions that are potentially mis-
segmented. The white arrow in Figure 5C highlights a region
that has been mis-segmented by CNNs, and the corresponding
region has high uncertainty values in Figure 5D. To investigate
the usefulness of the uncertainty information for improving
segmentation accuracy, we reset the foreground and background
probability of voxels with uncertainty higher than a threshold
value (i.e., 0.2) to 0.5, and then use a conditional random
field (CRF) for post-processing. This method is referred to
as uncertainty-aware CRF, and it is compared with a naive

CRF that is applied to the probability output of CNNs
directly. Figures 5E,F show that the uncertainty-aware CRF
outperforms the naive CRF for post-processing. Table 3 shows a
quantitative comparison between these post-processing methods
using and not using uncertainty information on validation set of
BraTS 2018.

We also measured structure-wise uncertainty based on VVC
defined in Equation (2) for BraTS 2018 validation set. Figure 6
shows the relationship between structure-wise segmentation
error in terms of 1-Dice and uncertainty in terms of VVC.
The figure shows that for all the three structures of enhancing
tumor core, whole tumor and tumor core, a higher VVC
value tends to be linked with a higher segmentation error.
This demonstrates that the structure-wise uncertainty based on
our test-time augmentation is informative and it can indicate
potential mis-segmentations.

5. DISCUSSION AND CONCLUSION

The proposed cascaded system is well-suited for hierarchical
tumor region segmentation. Compared with using a single
network for multi-class segmentation, its main advantages are:
(1) The use of three binary segmentation networks decomposes
the complex task of multi-class segmentation and allows for
a simpler network for each sub-task. They reduce the risk
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FIGURE 5 | An example of brain tumor segmentation result and the associated voxel-wise uncertainty estimation based on our cascaded CNNs with test-time

augmentation (TTA). Taking the uncertainty information for post-processing by conditional random field (CRF) helps to correct the mis-segmented region, as shown in

(F). (A) FLAIR, (B) T1ce, (C) Initial segmentation, (D) Voxel-wise uncertainty, (E) Post-process with CRF, (F) Post-process with uncertainty-aware CRF, and

(G) Ground truth.

FIGURE 6 | Relationship between segmentation error (1-Dice) and structure-wise uncertainty in terms of volume variation coefficient (VVC) for BraTS 2018 validation

set. (A) Enhancing core, (B) Whole tumor, and (C) Tumor core.

of over-fitting and are easier to train. (2) The cascade can
effectively reduce the number of false positives because a
subsequent network (e.g., TNet) only works on the image
region selected by its precedent network (e.g., WNet). (3) The
decomposition of the segmentation task also imposes strong
spatial constraints which follows the anatomical structures of
the brain tumor. It is also possible to model the hierarchical

nature of the labels by adopting task-specific loss functions
(e.g., Fidon et al., 2017a). However, Fidon et al. (2017a)
did not use the hierarchical structural information as spatial
constraints. Unlike most works that optimize the segmentation
based on mutually exclusive edema, necrotic, and enhancing
tumor core, our method optimizes the hierarchical whole tumor,
tumor core and enhancing tumor core. This leads to the idea
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of training networks on such loss criteria to simultaneously
obtain these hierarchical structures in a single forward pass, as
demonstrated by Myronenko (2018). For some clinical cases
where the tumor does not have edema component, i.e., the
region of whole tumor is the same as that of tumor core, our
model may encounter some difficulties (e.g., false positives of
edema) as all the training data in our experiments include
edema region. However, as our WNet segments the edema
region and tumor core region as a whole, the tumor core
region in such cases will not be missed in the output of WNet.
It is of interest to validate the proposed method on such
cases in the future. In addition, in our cascaded segmentation
framework, segmentation of whole tumor (tumor core) was
used as a crisp mask for tumor core (enhancing tumor core),
this may lead mis-segmentations in an early stage to cause
mis-segmentations in a later stage. It would be of interest to
investigate a better solution to combine the results obtained in
different stages.

Compared with the single multi-class network approach using
similar network structures, the training and inference of our
proposed cascade require a longer time. In practice, we found that
it is not a critical issue for automatic brain tumor segmentation.
In fact, the inference of our method is more efficient than many
competitive approaches such as DeepMedic (Kamnitsas et al.,
2017b) and ScaleNet (Fidon et al., 2017b).

The multi-view fusion is an important component of the
proposed system (as demonstrated in Figure 3). It is designed
to combine the outputs from the lightweight and anisotropic
networks applied in different views so that the 3D contextual
information is fully utilized. To further incorporate different
imaging resolutions in the multi-view fusion, it might be helpful
to consider a weighted combination of the orthogonal views
rather than a simple arithmetic mean (Mortazi et al., 2017).

From Table 3 we find that the improvement obtained by
TTA varies for different networks. For 3D UNet (Abdulkadir
et al., 2016), the performance improvement is considerable,
especially for the Hausdorff distance. For our cascaded networks,
the improvement is relatively smaller but TTA is also effective
to reduce the distance errors for enhancing tumor and tumor
core. Table 3 also shows that TTA reduces the standard
deviation (improves the robustness) of the networks in most
cases, especially for 3D UNet. For our cascaded networks,
the standard deviations for enhancing tumor and tumor core
are also smaller when TTA is used. Therefore, TTA can be
seen as a robustness booster. In the proposed system, data
augmentation only includes adding random intensity noise and
spatial transformations such as rotation, flipping and scaling. It
is also possible to adopt more complex transformations such as
elastic deformations (Abdulkadir et al., 2016).

We have investigated the test image-based (aleatoric)
uncertainty for brain tumor segmentation using test-time
augmentation. We additionally show that the uncertainty
information can be leveraged to improve the segmentation
accuracy, as demonstrated in Table 3 and Figure 5. The obtained
uncertainty could be useful for downstream analysis such as
uncertainty-aware volume measurement (Eaton-Rosen et al.,
2018) and guiding user interactions (Wang et al., 2018b).

Combining epistemic uncertainty based on test-time dropout
or CNN ensembles (Kamnitsas et al., 2017a; Myronenko, 2018)
and aleatoric uncertainty based on test-time augmentation
is also an interesting future direction. It should be noticed
that current methods for BraTS challenge heavily rely
on voxel-wise annotations, which is difficult and time-
consuming to collect for large datasets. In the future, it
is of interest to learn from weakly or partially annotated
brain tumor images in a larger dataset and improve
generalizability of the CNNs. Some of the automatically
segmented results can also be interactively refined to
improve the robustness of brain tumor segmentation for
clinic use (Wang et al., 2019b).

In conclusion, we have developed a novel system consisting
of a cascade of 2.5D CNNs for brain tumor segmentation
from multi-modal MRI, which decomposes the multi-class
segmentation task into three sequential binary segmentation
tasks. The 2.5D CNNs consider the balance between memory
consumption, model complexity and recpetive field, and are
combined with multi-view fusion for robust segmentation. We
also studied the effect of combining test-time augmentatiofn with
CNNs in the segmentation task and investigated the resulting
aleatoric uncertainty estimation for the segmentation results.
Experimental results based on BraTS 2017 dataset showed
that our method was one of the top-performing methods.
Experiments also showed that test-time augmentation led to
an improvement of segmentation accuracy for different CNN
structures and effectively obtained voxel-wise and structure-wise
uncertainty estimation of the segmentation results that helps to
improve segmentation accuracy.
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Gliomas are the most common primary brain malignancies. Accurate and robust tumor

segmentation and prediction of patients’ overall survival are important for diagnosis,

treatment planning and risk factor identification. Here we present a deep learning-based

framework for brain tumor segmentation and survival prediction in glioma, using

multimodal MRI scans. For tumor segmentation, we use ensembles of three different

3D CNN architectures for robust performance through a majority rule. This approach

can effectively reduce model bias and boost performance. For survival prediction, we

extract 4,524 radiomic features from segmented tumor regions, then, a decision tree

and cross validation are used to select potent features. Finally, a random forest model

is trained to predict the overall survival of patients. The 2018 MICCAI Multimodal

Brain Tumor Segmentation Challenge (BraTS), ranks our method at 2nd and 5th

place out of 60+ participating teams for survival prediction tasks and segmentation

tasks respectively, achieving a promising 61.0% accuracy on the classification of

short-survivors, mid-survivors and long-survivors.

Keywords: survival prediction, brain tumor segmentation, 3D CNN, multimodal MRI, deep learning

1. INTRODUCTION

A brain tumor is a cancerous or noncancerous mass or growth of abnormal cells in the
brain. Originating in the glial cells, gliomas are the most common brain tumor (Ferlay et al.,
2010). Depending on the pathological evaluation of the tumor, gliomas can be categorized
into glioblastoma (GBM/HGG), and lower grade glioma (LGG). Glioblastoma is one of
the most aggressive and fatal human brain tumors (Bleeker et al., 2012). Gliomas contain
various heterogeneous histological sub-regions, including peritumoral edema, a necrotic core, an
enhancing and a non-enhancing tumor core.Magnetic resonance imaging (MRI) is commonly used
in radiology to portray the phenotype and intrinsic heterogeneity of gliomas, since multimodal
MRI scans, such as T1-weighted, contrast enhanced T1-weighted (T1Gd), T2-weighted, and Fluid
Attenuation Inversion Recovery (FLAIR) images, provide complementary profiles for different sub-
regions of gliomas. For example, the enhancing tumor sub-region is described by areas that show
hyper-intensity in a T1Gd scan when compared to a T1 scan.

Accurate and robust predictions of overall survival, using automated algorithms, for patients
diagnosed with gliomas can provide valuable guidance for diagnosis, treatment planning, and
outcome prediction (Liu et al., 2018). However, it is difficult to select reliable and potent prognostic
features. Medical imaging (e.g., MRI, CT) can provide radiographic phenotype of tumor, and it has
been exploited to extract and analyze quantitative imaging features (Gillies et al., 2016). Clinical
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data, including patient age and resection status, can also provide
important information about patients’ outcome.

Segmentation of gliomas in pre-operative MRI scans,
conventionally done by expert board-certified neuroradiologists,
can provide quantitative morphological characterization and
measurement of glioma sub-regions. It is also a pre-requisite for
survival prediction since most potent features are derived from
the tumor region. This quantitative analysis has great potential
for diagnosis and research, as it can be used for grade assessment
of gliomas and planning of treatment strategies. But this task is
challenging due to the high variance in appearance and shape,
ambiguous boundaries and imaging artifacts, while automatic
segmentation has the advantage of fast speed, consistency in
accuracy and immunity to fatigue (Sharma and Aggarwal, 2010).
Until now, the automatic segmentation of brain tumors in
multimodal MRI scans is still one of the most difficult tasks
in medical image analysis. In recent years, deep convolutional
neural networks (CNNs) have achieved great success in the field
of computer vision. Inspired by the biological structure of visual
cortex (Fukushima, 1980), CNNs are artificial neural networks
with multiple hidden convolutional layers between the input and
output layers. They have non-linear properties and are capable of
extracting higher level representative features (Gu et al., 2018).
Deep learning methods with CNN have shown excellent results
on a wide variety of other medical imaging tasks, including
diabetic retinopathy detection (Gulshan et al., 2016), skin cancer
classification (Esteva et al., 2017), and brain tumor segmentation
(Çiçek et al., 2016; Isensee et al., 2017; Wang et al., 2017;
Sun et al., 2018).

In this paper, we present a novel deep learning-based
framework for segmentation of a brain tumor and its subregions
from multimodal MRI scans, and survival prediction based on
radiomic features extracted from segmented tumor sub-regions
as well as clinical features. The proposed framework for brain
tumor segmentation and survival prediction using multimodal
MRI scans consists of the following steps, as illustrated in
Figure 1. First, tumor subregions are segmented using an
ensemble model comprising three different convolutional neural
network architectures for robust performance through voting
(majority rule). Then radiomic features are extracted from
tumor sub-regions and total tumor volume. Next, decision tree
regression model with gradient boosting is used to fit the training
data and rank the importance of features based on variance
reduction. Cross validation is used to select the optimal number
of top-ranking features to use. Finally, a random forest regression
model is used to fit the training data and predict the overall
survival of patients.

2. MATERIALS AND METHODS

2.1. Dataset
We utilized the BraTS 2018 dataset (Menze et al., 2015;
Bakas et al., 2017a,b,c, 2018) to evaluate the performance of
our methods. The training set contained images from 285
patients, including 210 HGG and 75 LGG. The validation set
contained MRI scans from 66 patients with brain tumors of
an unknown grade. It was a predefined set constructed by

BraTS challenge organizers. The test set contained images from
191 patients with a brain tumor, in which 77 patients had
a resection state of Gross Total Resection (GTR) and were
evaluated for survival prediction. Each patient was scanned
with four sequences: T1, T1Gd, T2, and FLAIR. All the
images were skull-striped and re-sampled to an isotropic 1mm3

resolution, and the four sequences of the same patient had
been co-registered. The ground truth of segmentation mask
was obtained by manual segmentation results given by experts.
The evaluation of the model performance on the validation
and testing set is performed on CBICA’s Image Processing
Portal ipp.cbica.upenn.edu. Segmentation annotations comprise
of the following tumor subtypes: Necrotic/non-enhancing tumor
(NCR), peritumoral edema (ED), and Gd-enhancing tumor (ET).
Resection status and patient age are also provided. The overall
survival (OS) data, defined in days, is also included in the training
set. The distribution of patients’ age is shown in Figure 2.

2.2. Data Preprocessing
Since the intensity value of MRI is dependent on the imaging
protocol and scanner used, we applied intensity normalization
to reduce the bias in imaging. More specifically, the intensity
value of each MRI is subtracted by the mean and divided by
the standard deviation of the brain region. In order to reduce
overfitting, we applied random flipping and random gaussian
noise to augment the training set.

2.3. Network Architecture
In order to perform accurate and robust brain tumor
segmentation, we use an ensemble model comprising of
three different convolutional neural network architectures. A
variety of models have been proposed for tumor segmentation.
Generally, they differ in model depth, filter number, connection
way and others. Different model architectures can lead to
different model performance and behavior. By training different
kinds of models separately and by merging the results, the model
variance can be decreased, and the overall performance can be
improved (Polikar, 2006; Kamnitsas et al., 2017). We used three
different CNN models and fused the result by voting (majority
rule). The detailed description of each model will be discussed in
the following sections.

2.3.1. CA-CNN

The first network we employed was Cascaded Anisotropic
Convolutional Neural Network (CA-CNN) proposed by Wang
et al. (2017). The cascade is used to convert multi-class
segmentation problem into a sequence of three hierarchical
binary segmentation problems. The network is illustrated
in Figure 3.

This architecture also employs anisotropic and dilated
convolution filters, which are combined with multi-view fusions
to reduce false positives. It also employs residual connections (He
et al., 2016), batch normalization (Ioffe and Szegedy, 2015) and
multi-scale prediction to boost the performance of segmentation.
For implementation, we trained the CA-CNN model using
Adam optimizer (Kingma and Ba, 2014) and set Dice coefficient
(Milletari et al., 2016) as the loss function. We set the initial

Frontiers in Neuroscience | www.frontiersin.org 2 August 2019 | Volume 13 | Article 81038

https://ipp.cbica.upenn.edu/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Sun et al. Brain Tumor Segmentation and Survival Prediction

FIGURE 1 | Framework overview.

FIGURE 2 | Overall survival distribution of patients across the training, validation, and testing sets.

learning rate to 1 × 10−3, weight decay 1 × 10−7, batch size 5,
and maximal iteration 30k.

2.3.2. DFKZ Net

The second network we employed was DFKZ Net, which was
proposed by Isensee et al. (2017) from the German Cancer
Research Center (DFKZ). Inspired by U-Net, DFKZ Net employs
a context encoding pathway that extracts increasingly abstract
representations of the input, and a decoding pathway used
to recombine these representations with shallower features
to precisely segment the structure of interest. The context
encoding pathway consists of three content modules, each has
two 3 × 3 × 3 convolutional layers and a dropout layer with
residual connection. The decoding pathway consists of three
localization modules, each containing 3 × 3 × 3 convolutional
layers followed by a 1 × 1 × 1 convolutional layer. For the
decoding pathway, the output of layers of different depths are
integrated by elementwise summation, thus the supervision can
be injected deep in the network. The network is illustrated
in Figure 4.

For implementation, we trained the network using the Adam
optimizer. To address the problem of class imbalance, we utilized

the multi-class Dice loss function (Isensee et al., 2017):

L = −
2

|K|

∑

k∈K

∑

i ui(k)vi(k)
∑

i ui(k) +
∑

i vi(k)
(1)

where u denotes output possibility, v denotes one-hot encoding
of ground truth, k denotes the class, K denotes the total number
of classes and i(k) denotes the number of voxels for class k in
patch. We set initial learning rate 5 × 10−4 and used instance
normalization (Ulyanov et al., 2016a). We trained the model
for 90 epochs.

2.3.3. 3D U-Net

U-Net (Ronneberger et al., 2015; Çiçek et al., 2016) is a
classical network for biomedical image segmentation. It consists
of a contracting path to capture context and a symmetric
expanding path that enables precise localization with extension.
Each pathway has three convolutional layers with dropout
and pooling. The contracting pathway and expanding pathway
are linked by skip-connections. Each layer contains 3 × 3 ×

3 convolutional kernels. The first convolutional layer has 32
filters, while deeper layers contains twice filters than previous
shallower layer.
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FIGURE 3 | Cascaded framework and architecture of CA-CNN.

For implementation, we used Adam optimizer (Kingma and
Ba, 2015), and instance normalization (Ulyanov et al., 2016b). In
addition, we utilized cross entropy as the loss function. The initial
learning rate was 0.001, and the model is trained for 4 epochs.

2.3.4. Ensemble of Models

In order to enhance segmentation performance and to reduce
model variance, we used the voting strategy (majority rule) to
build an ensemble model without using a weighted scheme.
During the training process, different models were trained
independently. The selection of the number of iterations in the
training process was based on the model’s performance in the

validation set. In the testing stage, each model independently
predicts the class for each voxel, the final class is determined by
the majority rule.

2.4. Feature Extraction
Quantitative phenotypic features from MRI scans can reveal
the characteristics of brain tumors. Based on the segmentation
result, we extract radiomics features from edema, non-enhancing
solid core and necrotic/cystic core and the whole tumor region
respectively using Pyradiomics toolbox (Van Griethuysen et al.,
2017). Illustration of feature extraction is shown in Figure 5.
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FIGURE 4 | Architecture of DFKZ Net.

FIGURE 5 | Illustration of feature extraction.

The modality used for feature extraction is dependent on the
intrinsic properties of the tumor subregion. For example, edema
features are extracted from FLAIR modality, since it is typically
depicted by hyper-intense signal in FLAIR. Non-enhancing solid
core features are extracted from T1Gd modality, since the
appearance of the necrotic (NCR) and the non-enhancing (NET)
tumor core is typically hypo-intense in T1Gd when compared to
T1. Necrotic/cystic core tumor features are extracted from T1Gd
modality, since it is described by areas that show hyper-intensity
in T1Gd when compared to T1.

The features we extracted can be grouped into three
categories. The first category is the first order statistics, which
includes maximum intensity, minimum intensity, mean, median,
10th percentile, 90th percentile, standard deviation, variance
of intensity value, energy, entropy, and others. These features
characterize the gray level intensity of the tumor region.

The second category is shape features, which include volume,
surface area, surface area to volume ratio, maximum3Ddiameter,
maximum 2D diameter for axial, coronal and sagittal plane
respectively, major axis length, minor axis length and least axis
length, sphericity, elongation, and other features. These features
characterize the shape of the tumor region.

The third category is texture features, which include 22
gray level co-occurrence matrix (GLCM) features, 16 gray level
run length matrix (GLRLM) features, 16 Gray level size zone
matrix (GLSZM) features, five neighboring gray tone difference
matrix (NGTDM) features and 14 gray level dependence matrix

(GLDM) Features. These features characterize the texture of the
tumor region.

Not only do we extract features from original images, but
we also extract features from Laplacian of Gaussian (LoG)
filtered images and images generated by wavelet decomposition.
Because LoG filtering can enhance the edge of images, possibly
enhance the boundary of the tumor, and wavelet decomposition
can separate images into multiple levels of detail components
(finer or coarser). More specifically, from each region, 1131
features are extracted, including 99 features extracted from
the original image, and 344 features extracted from Laplacian
of Gaussian filtered images, since we used four filters with
sigma values 2.0, 3.0, 4.0, 5.0, respectively, and 688 features
extracted from eight wavelet decomposed images (all possible
combinations of applying either a High or a Low pass filter
in each of the three dimensions). In total, for each patient, we
extracted 1131 × 4 = 4524 radiomic features, these features are
combined with clinical data (age and resection state) for survival
prediction. The values of these features except for resection
state are normalized by subtracting the mean and scaling it to
unit variance.

2.5. Feature Selection
A portion of the features we extracted were redundant
or irrelevant to survival prediction. In order to enhance
performance and reduce overfitting, we applied feature selection
to select a subset of features that have the most predictive power.
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Feature selection is divided into two steps: importance ranking
and cross validation. We ranked the importance of features by
fitting a decision tree regressor with gradient boosting using

training data, then the importance of features can be determined
by how effectively the feature can reduce intra-node standard
deviation in leaf nodes. The second step is to select the optimal

TABLE 1 | Selected most predicative features (WT, edema; TC, tumor core; ET, enhancing tumor; FULL, full tumor volume comprised of edema, tumor core, and

enhancing tumor; N/A, not applicable).

Extracted from Name Subregion Score

clinical age N/A 0.037375134

wavelet-LHL glcm_ClusterShade WT 0.036912293

log-sigma-4.0mm-3D glcm_Correlation TC 0.035558309

log-sigma-2.0mm-3D gldm_LargeDependenceHighGrayLevelEmphasis TC 0.026591038

wavelet-LHL glcm_Informational Measure of Correlation ET 0.022911978

wavelet-HLL firstorder_Maximum ET 0.020121927

wavelet-LHL firstorder_Skewness ET 0.019402119

original image glcm_Autocorrelation ET 0.014204463

wavelet-HHH gldm_LargeDependenceLowGrayLevelEmphasis FULL 0.014085406

log-sigma-4.0mm-3D firstorder_Mwtian WT 0.013031814

wavelet-HLH glcm_JointEntropy WT 0.013023534

wavelet-LHH glcm_ClusterShade TC 0.012335471

wavelet-HLL glszm_LargeAreaHighGrayLevelEmphasis FULL 0.011980896

original image firstorder_10Percentile WT 0.011803132

TABLE 2 | Evaluation result of ensemble model and individual models.

Stage Metric Enhancing tumor Whole tumor Tumor core

CA-CNN

Mean Dice 0.77682 0.90282 0.85392

Mean Hausdorff95(mm) 3.3303 5.41478 6.56793

Sensitivity 0.81258 0.93045 0.85305

Specificity 0.99807 0.99336 0.99786

DFKZ Net

Mean Dice 0.76759 0.89306 0.82459

Mean Hausdorff95(mm) 5.90781 5.60224 6.91403

Sensitivity 0.80419 0.89128 0.81196

Specificity 0.99833 0.99588 0.99849

3D U-Net

Mean Dice 0.78088 0.88762 0.82567

Mean Hausdorff95(mm) 7.73567 12.63285 13.33634

Sensitivity 0.84281 0.90188 0.81913

Specificity 0.99743 0.99416 0.9981

Ensemble model

Mean Dice 0.80522 0.90944 0.84943

Mean Hausdorff95(mm) 2.77719 6.32753 6.37318

Sensitivity 0.83064 0.90688 0.83156

Specificity 0.99815 0.99549 0.99863

The bold values indicate the best performance.

TABLE 3 | Evaluation result of ensemble model for segmentation.

Stage Metric Enhancing tumor Whole tumor Tumor core

Validation
Mean Dice 0.8052 0.9044 0.8494

Mean Hausdorff95(mm) 2.7772 6.3275 6.3732

Testing
Mean Dice 0.7171 0.8762 0.7977

Mean Hausdorff95(mm) 4.9782 7.2009 6.4735
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number of best features for prediction by cross validation. In
the end, we selected 14 features and their importance are listed
in Table 1. The detailed feature definition can be found at
(https://pyradiomics.readthedocs.io/en/latest/features.html), last
accessed on 30 June 2018.

Unsurprisingly, age had the most predictive power among
all of the features. The rest of the features selected came
from both original images and derived images. We also found
that most features selected came from images generated by
wavelet decomposition.

2.6. Survival Prediction
Based on the 14 features selected, we trained a random forest
regression model (Ho, 1995) for final survival prediction.
The random forest regressor is a meta regressor of 100 base
decision tree regressors. Each base regressor is trained on a
bootstrapped sub-dataset into order to introduce randomness
and diversity. Finally, the prediction from base regressors
are averaged to improve prediction accuracy, robustness and
suppress overfitting. Mean squared error is used as loss function
when constructing individual regression model.

FIGURE 6 | Examples of segmentation result compared with ground truth. Image ID: TCIA04_343_1, Green:edema, Yellow:non-enhancing solid core,

Red:enhancing core.
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TABLE 4 | Evaluation result of survival prediction.

Stage Classification accuracy Median error

Validation 46.4% 217.92

Test 61.0% 181.37

3. RESULTS

3.1. Result of Tumor Segmentation
We trained the model using the 2018 MICCAI BraTS training
set using the methods described above. We then applied the
trained model for prediction on the validation and test set.
We compared the segmentation result of the ensemble model
with the individual model on the validation set. The evaluation
result of our approach is shown in Table 2. For other teams’
performance, please see the BraTS summarizing paper (Bakas
et al., 2018). The result demonstrates that the ensemble model
performs better than individual models in enhancing tumor and
whole tumor, while CA-CNN performs marginally better on the
tumor core.

The predicted segmentation labels are uploaded to the
CBICA’s Image Processing Portal (IPP) for evaluation. BraTS
Challenge uses two schemes for evaluation: Dice score and
the Hausdorff distance (95th percentile). Dice score is a
widely used overlap measure for pairwise comparison of
segmentation mask S and G. It can be expressed in terms of
set operations:

Dice =
2|S ∩ G|

|S| + |G|
(2)

Hausdorff distance is the maximum distance of a set to the
nearest point in the other set, defined as:

dH(X,Y) = max{ sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y) } (3)

where sup represents the supremum and inf the infimum. In
order to have more robust results and to avoid issues with noisy
segmentation, the evaluation scheme uses the 95th percentile.

In the test phase, our result ranked 5th out of 60+
teams. The evaluation result of the segmentation on the
validation and test set are listed in Table 3. Examples of the
segmentation result compared with ground truth are shown
in Figure 6.

3.2. Result of Survival Prediction
Based on the segmentation result of brain tumor subregions,
we extracted features from brain tumor sub-regions segmented
from MRI scans and trained the survival prediction model as
described above. We then used the model to predict patient’s
overall survival on the validation and test set. The predicted
overall survival was uploaded to the IPP for evaluation. We
used two schemes for evaluation: classification of subjects as

long-survivors (> 15 months), short-survivors (< 10 months),
andmid-survivors (between 10 and 15months) andmedian error
(in days). In the test phase, we ranked second out of 60+ teams.
The evaluation results of our method are listed in Table 4. For
other teams’ performance, please see the BraTS summarizing
paper (Bakas et al., 2018).

4. DISCUSSION

In this paper, we present an automatic framework for the
prediction of survival in glioma using multimodal MRI scans and
clinical features. First, a deep convolutional neural network is
used to segment a tumor region from MRI scans, then radiomics
features are extracted and combined with clinical features to
predict overall survival. For tumor segmentation, we used
ensembles of three different 3D CNN architectures for robust
performance through voting (majority rule). The evaluation
results show that the ensemble model performs better than
individual models, which indicates that the ensemble approach
can effectively reduce model bias and boost performance.
Although the Dice score for segmentation is promising, we
noticed that the specificity of the model is much higher than
the sensitivity, indicating an under-segmentation of the model.
For survival prediction, we extracted shape features, first order
statistics, and texture features from segmented tumor sub-region,
then used a decision tree and cross validation to select features.
Finally, a random forest model was trained to predict the overall
survival of patients. The accuracy for three-class classification
is 61.0%, which still leaves room for improvement. Part of the
reason is that we only had a very limited number of samples
(285 patients) to train the regression model. In addition, imaging
and limited clinical features may only explain patients’ survival
outcome partially, too. In the future, we will explore different
network architectures and training strategies to further improve
our result. We will also design new features and optimize our
feature selection methods for survival prediction.
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Purpose: Predicting patients’ survival outcomes is recognized of key importance to

clinicians in oncology toward determining an ideal course of treatment and patient

management. This study applies radiomics analysis on pre-operative multi-parametric

MRI of patients with glioblastoma from multiple institutions to identify a signature

and a practical machine learning model for stratifying patients into groups based on

overall survival.

Methods: This study included 163 patients’ data with glioblastoma, collected by

BRATS 2018 Challenge from multiple institutions. In this proposed method, a set of

147 radiomics image features were extracted locally from three tumor sub-regions

on standardized pre-operative multi-parametric MR images. LASSO regression was

applied for identifying an informative subset of chosen features whereas a Cox model

used to obtain the coefficients of those selected features. Then, a radiomics signature

model of 9 features was constructed on the discovery set and it performance was

evaluated for patients stratification into short- (<10 months), medium- (10–15 months),

and long-survivors (>15 months) groups. Eight ML classification models, trained and

then cross-validated, were tested to assess a range of survival prediction performance

as a function of the choice of features.

Results: The proposed mpMRI radiomics signature model had a statistically

significant association with survival (P < 0.001) in the training set, but was

not confirmed (P = 0.110) in the validation cohort. Its performance in the

validation set had a sensitivity of 0.476 (short-), 0.231 (medium-), and 0.600

(long-survivors), and specificity of 0.667 (short-), 0.732 (medium-), and 0.794

(long-survivors). Among the tested ML classifiers, the ensemble learning model’s

results showed superior performance in predicting the survival classes, with an overall

accuracy of 57.8% and AUC of 0.81 for short-, 0.47 for medium-, and 0.72 for

long-survivors using the LASSO selected features combined with clinical factors.
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Conclusion: A derived GLCM feature, representing intra-tumoral inhomogeneity, was

found to have a high association with survival. Clinical factors, when added to the

radiomics image features, boosted the performance of the ML classification model

in predicting individual glioblastoma patient’s survival prognosis, which can improve

prognostic quality a further step toward precision oncology.

Keywords: glioblastoma multiforme, MRI, radiomics analysis, patient’s survival prediction, machine learning,

precision oncology

INTRODUCTION AND RELATED WORKS

Introduction
Glioblastoma multiforme (GBM) is the most aggressive and
highly invasive high-grade glioma tumors with poor prognosis
(Holland, 2001). The median survival rate of GBM patients is
about 2 years or less, and it needs immediate treatment (Ohgaki
and Kleihues, 2005; Louis et al., 2007). Surgical resection followed
by chemo-radiotherapy is the current standard treatment of the
glioblastoma multiforme tumors (Van Meir et al., 2010; Aum
et al., 2014). Predicting a patient’s survival outcome is recognized
as key importance to clinicians in oncology toward determining
an ideal course of treatment and patient management. In which,
the treating physician (oncologist) may decide if more aggressive
or additional treatment has to be considered for treating patients
with poor survival prognosis (Zhang et al., 2017).

Multi-parametric magnetic resonance imaging (mpMRI)
sequences commonly provide more clinical information to
characterize glioblastoma multiforme tumors than other imaging
modalities. Here, “multi-parametric” is refereed to multiple
image standardization parameters. This imaging information
could be quantitatively extracted as features and linking these
tumor phenotype features to clinical variables of interest (e.g.,
survival time, recurrence, adverse events, or late complications).
The mentioned concept is referred to as radiomics. The
idea of radiomics has recently emerged from the field of
oncology. Radiomics has the potential for enabling improved
clinical decision-making (Gillies et al., 2016). This approach has
advantages of being non-invasive, fast and low in cost. Radiomics
has been used in oncology for tumors’ diagnosis, treatment
planning/execution, treatment response and prognosis, and
underlying genomic patterns in various forms of cancer (Liu
et al., 2018a). In which, individual patients could be stratified into
subtypes based on radiomics biomarkers that hold information
about cancer traits that reflect the patient’s prognosis. As a
result, radiomics could have an effective application in precision
oncology by predicting individual patients’ treatment outcome.

The definition of precision medicine, according to the
National Institute of Health (NIH), is “an emerging approach
for disease treatment and prevention that takes into account
individual variability in genes, environment, and lifestyle for each
person” (Subramaniam, 2017). This concept will let clinicians

and researchers provide predictions with higher accuracy for
which treatment and prevention plans for a particular disease

will suit in which groups of people (Subramaniam, 2017). The
newly introduced idea of precision medicine is in contrast to

the existing practical therapy paradigm of a “one-size-fits-all”
attitude, in which disease treatment and prevention plans are
developed for the “average” patient, with less consideration for
the differences between individuals (Subramaniam, 2017). There
are some limitations in fully implementing precision medicine
for radiomics e.g., reproducibility and quantitative information,
standardization in image acquisition, and structured reporting.

The Related Works
Many studies have been conducted identifying tumor
phenotypical radiomics signature or/and developing practical
machine learning (ML) models for glioblastoma patients
stratification based on survival on pre-operative multi-
parametric MRI sequences from single or multiple institutions.
Recognizing patients who would/wouldn’t benefit from standard
treatment as well as identifying patients who need more
aggressive treatment at the time of diagnosis is essential toward
management of glioblastoma through personalized medicine. In
this section, the author included some works of the most relevant
ones recently published in this field. Macyszyn et al. (2016) used
image analysis and ML models to establish imaging patterns that
are predictive of overall survival (OS) and molecular subtype
using preoperative mpMRIs sequences of patients with GBM.
The developed system achieved an overall accuracy of 80%
in stratifying patients into long-, medium-, and short-term
survivors in the prospective cohort from a single institution.
Prasanna et al. (2017) studied texture features analysis to
assess the efficacy of peritumoral brain zone features from
pre-operative MRI in predicting GBM patient survival into long-
(>18 months) vs. short-term (<7 months). The study findings
identified a subset of 10 features proven to be predictive of long-
vs. short-term survival as compared to known clinical factors.
Ingrisch et al. (2017) investigated whether radiomics analysis
with random survival forests can predict overall survival from
MRI scans of newly diagnosed glioblastoma patients. Their
results demonstrated that low predicted individual mortality
proven to be a favorable prognostic factor for OS, it also indicated
that the MRI contains prognostic information, which can be
accessed by radiomics analysis.

Most recently, Chaddad et al. (2018) proposed multiscale
texture features for predicting GBM patients’ progression-free
survival and overall survival on T1 and T2-FLAIR MRIs using
the random forest. The study results showed that the identified
seven-feature set, when combined with clinical factors, improved
the model performance yielding an AUC value of 85.54% for
OS predictions. Kickingereder et al. (2018) investigated the
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impact of mpMRI radiomics features for predicting patients’
survival in newly diagnosed GBM patients before treatment. The
study results revealed that a constructed eight-feature radiomics
signature increased the prediction accuracy for OS further than
the alternative approaches. Sanghani et al. (2018) studied survival
prediction of glioblastoma patients for two-class (short- vs. long-
term) and three-class (short-, medium-, and long-term) survival
groups using Support Vector Machines (SVMs). The results
showed a prediction accuracy of 98.7 and 88.95% for two-class
and three-class OS group, respectively. Chen et al. (2019) studied
developing a post-T1-weighted MRI-based prognostic radiomics
classification system in GBM patients to assess if it could allow
stratifying patients into a low- or high-risk group. Their results
showed that the developed system classified patients’ survival
with improved performance with AUC of 0.851 for 12-month
survival, compared to conventional risk models.

The majority of those studies have performed on single-
institution data, and also survival grouping was designed for two-
class rather than three-class approach. Besides, implementing
a particular feature selection method and testing various
machine learning classification models allow greater flexibility
for exploring distinct methods. The purpose of this work is to
quantitatively study the radiomics features from pre-operative
multi-parametric MRI of the de novo glioblastoma tumor on
multi-institutional datasets. Then, to apply radiomics analysis
on mpMRI to identify a signature and a practical machine
learningmodel to stratify patients into short-, medium, and long-
survivors groups. For machine learning, different models were
tested to assess a range of performance as a function of the choice
of features.

MATERIALS AND METHODS

Patients Data Sets
The study involved a cohort of 163 patients diagnosed with
primary de novo GBM and pathologically confirmed. The
patients’ imaging data sets and clinical information data were
collected from multiple (n = 5) institutions and provided as
“training data set” for Multimodal Brain Tumor Segmentation
(BRATS) 2018 Challenge (Menze et al., 2015; Bakas et al.,
2017a,b,c). For each patient, the imaging data set consisted
of four sequences of pre-operative multi-parametric MRIs
along with the patient’s clinical information. The imaging
data sets were acquired during regular clinical routine using
various scanners, and different scanning protocols. An individual
patient’s imaging data set included T1-weighted (T1), T1-
weighted with post-contrast/gadolinium (T1-Gd), T2-weighted
(T2), and T2-weighted fluid-attenuated inversion recovery (T2-
FLAIR) MRI sequences. Besides, “ground truth” segmentation
masks of three tumor sub-structures provided as follow: the
complete tumor extent also referred to as the “whole tumor”
(WT), tumor core (TC), and the active tumor (AT) and the non-
enhancing/necrotic tumor region (Figure 1). The clinical data
were composed of the patient’s age, patient’s overall survival,
and tumor’s resection status information. The demographic
and clinical characteristics data of the glioblastoma patients in

the discovery, validation, and in the combined cohorts, were
presented in Table 1.

The patient data sets were categorized into discovery/training
and validation cohorts. In which, the survival data were sorted in
order hence after every two consecutive values the third one was
chosen for validation and added to the validation data set while
the remained ones were considered as the discovery data set.
This distribution of overall survival data across the discovery and
validation data sets ensure a balanced appearance of the whole OS
values range (from short, through a medium, to long-survivors)
in both cohorts. The patients’ survival data were categorized into
long- (>15 months), medium- (between 10 and 15 months),
and short-term survivors (<10 months) groups. The reason
behind choosing these thresholds can be found with a detailed
explanation by referring to this BRATS paper (Bakas et al., 2019).

Annotation of Tumor Structures
The extracted radiomics features may suffer from the
robustness due to variations in the delineated tumor
structures. Consequently, a decision was made to use
the provided “ground truth” segmentation masks which
were manually generated by experts, rather than using the
author’s developed automated segmentation system (Osman,
2018) which was still under further improving. The tumor
sub-structures delineation was performed by experts (one
to four raters) using the multi-parametric MR images
following a specific given annotation protocol. The experts’
annotations were further revised by an experienced board-
certified neuroradiologist to minimize inter- and intra-raters
variations (Menze et al., 2015; Bakas et al., 2019). Three
tumor sub-structures were delineated on the imaging data
namely; the complete tumor extent also referred to as the
“whole tumor,” the tumor core, and the active tumor and the
non-enhancing/necrotic tumor region structures (illustrated
in Figure 1). The protocol used for annotating the tumor
structures was described in detail in those two BRATS papers
(Menze et al., 2015; Bakas et al., 2019).

Image Preprocessing
The multi-parametric MR images were provided with initial
preprocessing. The four mpMRI sequences of each patient
were co-registered using T1-Gd image sequence as a reference.
The images were also smoothed, interpolated to the same
resolution of 1 mm3, and skull-stripped. Each imaging
sequence was had 240 × 240 pixels and 155 slices acquisition
matrices and converted into grayscale. Further preprocessing
were performed to standardize the image intensity before
performing features extraction. The most commonly used MRI
normalization scheme of µ ± 3σ with 256 intensity bins
(Collewet et al., 2004) was applied. MRI intensity rescaling
(Figure 2) on the global brain image volume was employed
to convert MRI signal intensity values into a standardized
intensity range, thus avoiding bias due to heterogeneity. Image
intensities were standardized between µ ± 3σ where µ was
the mean value of the gray levels inside the region of interest
(brain) and σ the standard deviation. The gray level values
outside the [µ − 3σ , µ + 3σ ] range were truncated to
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FIGURE 1 | Glioblastoma multiforme sub-regions segmentation masks generated by experts annotated in the different MRI sequences. (A) the whole tumor (yellow)

visible in T2-FLAIR, (B) the tumor core (light blue) visible in T2, and (C) the active tumor structures (purple) visible in T1-Gd. Combination of three segmentation labels

overlaid on T2-FLAIR MRI producing (D) the final labels of the tumor sub-structures: peritumoral edema [ED] (yellow), non-enhancing solid core tumor [NET] (light

blue), necrosis [NCR], and enhancing tumor core (purple).

TABLE 1 | Demographic and clinical characteristics data of GBM patients in discovery, validation, and combined sets.

Characteristic Discovery Validation Combined

Patients demographic

No. of patients

Patient distribution 109 (67%) 54 (33%) 163

- CBICA UPenn – – 85 (52%)

- TCIA – – 76 (47%)

- MGH, HU, DU, and BU – – 2 (1%)

Imaging data

- Data set of T1, T1-Gd, T2, and T2-FLAIR MRI sequences with tumor sub-structures “ground truth” segmentation labels – – 163

Clinical information

Age (years) (P = 0.368)
†

- Range 18.97–84.84 33.88–85.76 18.97–85.76

- Mean 59.73 61.55 60.33

- Median 60.94 62.36 61.17

- 1 Standard deviation 12.23 11.81 12.03

Overall survival (days) (P = 0.934)
†

- Range 5–1767 22–1731 5–1767

- Mean 421.37 426.18 422.96

- Median 362.00 364.50 362.00

- 1 Standard deviation 350.00 352.31 349.67

- Short-term survivors [<10 months] 44 21 65 (40%)

- Medium-term survivors [10–15 months] 28 14 42 (26%)

- Long-term survivors [>15 months] 37 19 56 (34%)

Resection status (P = 0.474)
†

- Gross total resection 36 23 59 (36%)

- Subtotal resection 19 5 24 (15%)

- Missing information 54 26 80 (49%)

CBICA UPenn, Center for Biomedical Image Computing and Analytics at the University of Pennsylvania; TCIA, The Cancer Imaging Archive; BU, Bern University; DU, Debrecen University;

HU, Heidelberg University; MGH, Massachusetts General Hospital.
†
Data in parentheses are P-value.

the upper or lower limit value. The given range was then
quantized into 8 bits [0, 255]. This standardization method
eliminates the dependency on the shift of the mean value and

multiplicative change in the image intensity. In contrast, the
relative difference between two gray levels is not maintained
(Collewet et al., 2004).
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FIGURE 2 | Multi-parametric MRI sequences before and after intensity normalization with 256 scale (8-bit depth). All normalized images have the same scale.

Feature Extraction and Selection
Feature Extraction

For each patient, various features were extracted locally from
the “whole tumor”, tumor core, and active tumor areas on the
T1-Gd, T2, and T2-FLAIR MRI sequences to capture different
phenotypic characteristics of the tumor. The features were
divided into the following groups:

• Geometry/shape features: which describe the two-dimensional
(2D) and 3D shape characteristics of the tumor.

• Intensity features: which describe the first-order statistical
distribution of the voxel intensities obtained from a
histogram characterizing heterogeneity without giving
spatial information within a tumor.

• Gray-Level Co-occurrence Matrix (GLCM) Texture features:
which describe the high-order statistical spatial distributions
of the voxel intensities characterizing heterogeneity with
spatial information within a tumor or region of interest
(Haralick et al., 1973; Haralick and Shapiro, 1992).

• Histogram of Oriented Gradients (HOGs) features: which
capture local shape information from regions or point
locations within an image (Dalal and Triggs, 2005).

• Local Binary Pattern (LBP) features: which encode local
texture information that can be used for tasks such as detection
and recognition (Ojala et al., 2002).

The normalized volumetric MRI data were used for 2D and
3D features extraction. The 2D features were extracted from
a region of interest on a pre-selected image slice. This slice
was chosen to correspond to the largest tumor surface area
in axial, sagittal, and coronal planes. Then the transverse slice
was picked out for extracting the information. Based on the
segmentation results [WT on (T2-FLAIR), TC on (T2), or AT
on (T1-Gd)], the region enclosing each tumor sub-structure
was cropped down on the image. The obtained image was used
to extract feature information. A total of 147 multi-parametric
MRI radiomics features were extracted/derived for each patient
from the segmented tumor sub-structures on the three mpMRI

sequences for their capability to characterize the glioblastoma
tumor phenotypes. For every sub-region, a set of 48 radiomics
features was obtained, resulting in a total of 144 features for
the three regions plus 3 additional ones calculated as a joint
of the three regions. The features included 14 geometry/shape
(plus 3 mixed) features, 14 statistical intensity features, 14 texture
(GLCM) features, and 6 local features representing 3 HOG
features and 3 LBP features (listed in Table 2). All features were
derived using MATLAB 2016b Toolbox (Mathworks, Natick,
MA, USA) with Image Processing and Computer Vision Tools.

Feature Selection

Following the feature extraction, a feature selection method
is required to lessen the number of features to consider
only the significant ones. Feature selection refers to reduction
of the number of parameters to avoid overfitting dilemma
while improving the generalizability and interpretability of the
training-based model. Accordingly, a two-step method was
applied to choose the most important features and throughout
the less associated ones. Initially, the median absolute deviations
(MAD) was calculated for the 147 extracted features. None
of the features with MAD equal to zero, which considered
as non-informative, was observed in the total set to be
discarded. After this step, the number of features remained
the same. Then, least absolute shrinkage and selection operator
(LASSO) generalized linear regression (Tibshirani, 1996) was
employed for finding a subset of the most relevant features
from the initial set. Basically, LASSO executes a penalty on
the log partial likelihood (sum of squares) that is equal to
the absolute sum of regression coefficients. Cross-validation
the deviance is then used to determine the LASSO tuning
parameter λ (Hastie et al., 2009). LASSO minimizes the
regression coefficients down toward zero while it makes the
coefficients exactly zero for irrelevant features (Collewet et al.,
2004). The LASSO method has been used extensively in high-
dimensional feature selection when the number of variables
exceeds the sample size (Heinze et al., 2018) as a case in
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TABLE 2 | A summary of radiomics features extracted from the tumor sub-regions (WT, TC, and AT) in multi-parametric MR images (T1-Gd, T2, and T2-FLAIR).

Feature classes Feature names

Sub-regions (n = 3) Whole tumor (WT), tumor core (TC), and active tumor (AT).

Shape features (n = 14 + 3*) Volume [tumor, brain], volume ratio [tumor/brain, AT/WT*, TC/WT*, AT/TC*], surface area [tumor convex area, tumor filled area, tumor

area, brain area], surface area ratio [tumor to brain], eccentricity, orientation, equivalent diameter, solidity, extent, perimeter.

Intensity features (n = 14) Minimum value, maximum value, median value, mean value, range, variance, moment 2nd-order, moment 3rd-order, entropy,

kurtosis, root mean square (RMS), skewness, standard deviation, mean absolute deviation (MAD).

Texture features: GLCM (n = 14) Contrast, correlation, energy, homogeneity, (sum) variance, (sum) average, (mean) variance, (mean) autocorrelation, entropy, (sum)

entropy2, (difference) entropy2, (sum) variance2, (difference) variance2, range of all GLCM features.

HOG features (n = 3) Sum HOG, median HOG, standard deviation HOG.

LBP features (n = 3) Sum LBP, mean LBP, standard deviation LBP.

All features were extracted from a 2D image except those indicated as volumetric features (3D).

Unless noted with a strike (*), each feature was individually extracted from the “whole tumor” area on T2-FLAIR MRI, tumor core area on T2 MRI, and active tumor area on T1-Gd MRI.

*These features were calculated as combined features from joint of WT, TC, and AT sub-structures.

Features indicated with (2) were derived from GLCM calculated horizontally (0-degree) and 45-degree rotations.

this study where the number of extracted imaging features
(n = 147) is higher than the number of patients (n =

109) in the discovery set. When the LASSO regression model
was applied here, nine features with non-zero coefficients
retained from all features’ set. To search for an optimal λ,
cross-validation with 10-fold was applied, where the final λ

value yielded minimum error in cross-validation (Figure 4).
The selected subset was considered as the final one of the
chosen features which will be used to construct the multi-
parametric MRI radiomics signature model on the discovery data
set (n= 109).

Constructing and Validating a Radiomics
Signature
Using the LASSO regression selected imaging features, a
multivariate LASSO Cox regression (Cox and Oakes, 1984)
was then applied to obtain the coefficients of those chosen
features rather than using the LASSO’s coefficients. The reason
for using LASSO Cox regression, because it enables getting the
p-value, and interferes with the coefficients (Tibshirani, 1997).
Cox regression is a semiparametric method for fitting survival
rate estimates to eliminate the effect of confounding features, and
to quantify the effect of predictor features. It has been reported
that the LASSO Cox regression model is reliable for prediction of
patients’ survival in glioma (Chaddad et al., 2019a). The selected
image features with their corresponding coefficients were used
to construct a mpMRI radiomics signature model. At first, a
radiomics risk score for each patient was determined by linearly
combining these selected features weighed by their respective
fitting coefficients (β) (Liu et al., 2018a) as follows:

Risk score =
∑n

i=1
βi . featurei.

Then, the risk scores obtained for patients in the discovery set
were stratified into low-(long-), medium-(medium-), and high-
risk (short-survivors), with fixed cutoff points as thresholds.
The steps which the author implemented to find these cutoffs
were as following: first, the radiomics risk score was calculated
for all patients in the discovery set. Their values ranged

between (+)4.118 to (–)1.497 for the short-survivors group
(high risk), (+)0.945 to (–)2.619 for the medium-survivors
group (medium risk), and (+)1.603 to (–)3.211 for the long-
survivors group (low risk). Then, the corresponding median
(50 percentile) values for each survivor group were determined
to be (+)0.245, (–)0.810, and (–)1.009, respectively. Finally,
since there was an overlap between the three regions, the
author calculated the 25 percentile values (approximated as
the half median values) of the high-risk (+0.122) and low-
risk (−0.505). Accordingly, these values were used as fixed
thresholds for stratifying patient into low-risk (Rad-score <–
0.505) for long-survivors (> 15 months) group, medium-risk
(Rad-score between −0.505 and 0.122) for medium-survivors
(10–15 months) group, and high-risk (Rad-score > 0.122) for
short-survivors (<10 months) group.

The mpMRI radiomics signature model was constructed
on the discovery data set. Its statistical performance with
survival association was assessed in the discovery and validation
sets using the t-test. True positive rate (sensitivity) and
the false positive rate (1—specificity) metrics were used
to evaluate the signature model’s classification performance
in both data sets. The association between the LASSO
selected radiomics features and survival in the discovery
and validation data sets was illustrated via a heat map, in
which the selected radiomics features were rescaled by the
z-score transformation.

Training and Validating a ML Classifier
Several machine learning classification algorithms were assessed
in this study for patients’ stratification based on survival. The
classifiers were trained, and the top-ranked ones reported.
Eight various models were included here, and they are
listed below:

(A) Support Vector Machine classifiers (Vapnik, 1982):

1) Linear SVM: makes a basic linear separation of classes;
2) Medium Gaussian SVM: creates moderate distinctions

between classes, with a kernel scale set to the square root
of (P) where P is the number of features/predictors;
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FIGURE 3 | The workflow of radiomics analysis used in this study. The overall procedure of identifying a mpMRI radiomics signature model and a practical ML model

for stratifying the GBM patient’s prognoses based on overall survival.

3) Coarse Gaussian SVM: creates coarse distinctions between
classes, with kernel scale set to the square root of (P)× 4,

(B) K-Nearest Neighbors (KNN) classifiers (Patrick and Fischer,
1970):

4) Coarse KNN: creates rough distinctions between classes
with the number of neighbors set to 100;

5) Cosine KNN: creates moderate distinctions between classes
using a cosine distancemetric with the number of neighbors
set to 10;

6) Medium KNN: creates moderate distinctions between
classes with the number of neighbors set to 10,

(C) Discriminant Analysis (McLachlan, 2004):

7) Linear Discriminant: creates linear boundaries
between classes, and

(D) Ensemble Learning: (Ho, 1998; McLachlan, 2004):

8) Subspace Discriminant: Subspace, with Discriminant
Analysis, has medium flexibility and good for many
predictors with a few hundred learners. Learning rate set to
0.1 is a popular choice for shrinkage.

All classifiers were trained on the combined data set (n = 163).
They were trained using various feature combinations: (a) the
all radiomics (n = 147) features, (b) the LASSO selected (n
= 9) features, (c) and (d) both features combined with the
clinical factors (predictors), respectively. The target response
for each model was the patients’ OS grouped into three classes
representing short- (<10 months), medium- (10–15 months),
and long-survivors (>15 months).

A cross-validation scheme with 5-fold (to avoid overfitting)
was employed to examine the predictive accuracy of the trained
ML classification models and help in determining the best model.
The method is commonly recommended for a small data set,
as in the case of this study (163 observations). The receiving
operating characteristics (ROC) curve was used to check model

FIGURE 4 | The optimal λ selection by cross-validated deviance of LASSO fit.

The partial likelihood deviance plotted vs. λ. The green dotted vertical line was

plotted at the optimal λ (36.50) and the blue dotted at λ + 1 STD (84.33) as

shown in the plot.

performance after training each classifier. ROC plot, illustrating
the performance of the classifier, displays values of the true-
positive and false-positive rates for the model under study.
The area under the ROC curve (AUC) was used to measure
the performance of individual survival group predicted by a
classier, and the accuracy metric to evaluate the overall classifier
performance in predicting the three groups. Also, the individual
classifier’s performance as a function of feature choice was
assessed to examine its impact on accuracy.

The Proposed Method
The flowchart of the proposed model/method presented in this
study for survival prognosis for patients with glioblastoma is
demonstrated in Figure 3. It composed of four blocks. Block one
for image acquisition, segmentation, and preprocessing, block
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two for features extraction and selection, block three for signature
construction and ML models, and finally block four for patient
stratification and survival analysis.

The overall procedure could be summarized as follows: At
first, pre-operative multi-parametric MRI (T1, T1-Gd, T2, and
T2-FLAIR) sequences are acquired for patients with glioblastoma
multiforme (Figure 1). Tumor sub-structures (“whole tumor”,
tumor core, and active tumor) are delineated on the acquired
images after registering the images with its corresponding
reference one. Then the mpMRI intensities are rescaled with
a standardized normalization scheme of µ ± 3σ with 256
intensity bins (Figure 2). Secondly, features extraction and
selection take place here. Geometry/shape, intensity, HOG,
LPB, and GLCM features (Table 2) are derived from the
standardized intensity MRIs. Important features with the
most relevance to patient survival are selected with LASSO
(Table 3 and Figure 4). Thirdly, multivariate LASSO Cox is
applied to the selected features to extract the corresponding
coefficients. These coefficients are linearly combined to construct
a radiomics signature model via risk score. Then, fixed thresholds
determined during the signature construction, are used for
stratifying patients into a low-risk (Rad-score < −0.505) for
long-survivors (>15 months) group, a medium-risk (Rad-
score between −0.505 and 0.122) for medium-survivors (10–
15 months) group, and a high-risk (Rad-score > 0.122) for
short-survivors (<10 months) group. A multivariate ensemble
(subspace Discriminant) machine learning model, trained and
cross-validated, is used as a more practical model for survival
class prediction. And fourthly, using the signature and ML
models, glioblastoma individual patients are stratified into short-,
medium-, or long-survivors.

Statistical Analysis
All of the statistical data analysis and modeling in this study were
performed with MATLAB 2016b software with implemented
Statistics and Machine Learning Toolbox (MathWorks, Natick,
MA, USA). The differences in patient age, tumor resection status,
and OS between the discovery and the validation data sets were
evaluated using an independent sample t-test (two-sample t-test).

RESULTS

Clinical Characteristics
The median and mean of overall survival were 362 days and 421
days for the discovery/training data set. For the validation data
set, the values were 364 days and 426 days, respectively. The
median and mean of age were 60 years and 61 years, respectively,
for the discovery data set, and the values for both, median and
mean, were 62 years for the validation data set. There was no
indication of significant difference in clinical and follow-up data
between the discovery and validation data sets (P = 0.368 for age
test, P = 0.474 for tumor resection status test, and P = 0.934 for
OS test).

The Radiomics Signature Results
The nine features, selected by the LASSO with non-zero
coefficients, formed of 2 from T2-FLAIR, 1 from T1-Gd, and 6
from T2 MRI. These imaging features, plus the clinical factors,

are provided in Table 3, arranged in order from high to low
importance (P-value), with their median, P-values, and LASSO
Cox regression model coefficients. Each feature was named as
Modality_Region_FeatureName_FeatureNumber. For instance,
T2_TC_SumHOG_F139 indicated that this feature is the sum of
HOG extracted from the tumor core region on T2 MRI sequence
and was the feature number 139 in the full list. The optimal
λ obtained during the cross-validation of features selection in
LASSO regressionmodel was 36.50 withλ+ 1 standard deviation
(STD) of 84.33 (66.67% confidence level), as shown in Figure 4.
As a result, this optimized value, obtained through the cross-
validation, has selected nine features with non-zero coeffcients.
Usually, as the lambda value increases, the number of non-zero
components of predictor coefficients decreases.

Features indicated strong association with survival (P < 0.05)
frommost to least, according to their P-value as shown in Table 3
are: GLCM difference variance2 (difference variance calculated
at 0 degree and 45 degree rotations) in the WT [T2-FLAIR],
tumor to brain volume ratio in TC [T2], minimum intensity in
the tumor in TC [T2], intensity range within the tumor in TC
[T2], sum of HOG in TC [T2], sum of entropy2 (sum entropy
calculated at 0 degree and 45 degree rotations) in WT [T2-
FLAIR], GLCM energy in the AT [T1-GD], median HOG in the
WT [T2-FLAIR], and momentum 3rd order in the TC [T2].

The linear combination of those LASSO selected nine
features enables constructing the radiomics signature. Hence, the
signature score (risk score) can be calculated as follows:

Radiomics_

signature_score = T2− FLAIR_WT_DifferenceVariance2_F41

× 0.0000018

+ T2_TC_TumorToBrainVolumeRatio_F79

× 27.0110

+ T2_TC_MinimumIntensity_F111× (−0.0066)

+ T2_TC_Range_F115× 0.0063

+ T2_TC_SumHOG_F139× 0.0025

+ T2− FLAIR_WT_SumEntropy2_F38× (−1.4337)

+ T1− GD_AT_Energy_F79× (−3.1019)

+ T2− FLAIR_WT_MedianHOG_F44× 17.1896

+ T2_TC_Moment3rd_F121 × 0.0000058

When the radiomics score value has been determined through
the above-given signature model, the glioblastoma patient can
be stratified accordingly into one of the survival groups. The
thresholds, established with the ideal cutoff points on the
discovery set, were low-risk (Rad-score < −0.505) for long-
survivors (>15months) group, medium-risk (Rad-score between
−0.505 and 0.122) for medium-survivors (10–15 months) group,
and high-risk (Rad-score > 0.122) for short-survivors (<10
months) group.

The signature model performance in both, discovery and
validation, data sets stratified the patients according to the pre-
determined fixed criteria/cutoff points were shown in Figure 5.
A significant association (P < 0.001) of the radiomics signature
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TABLE 3 | The subset of nine imaging features selected by the LASSO model and the clinical factors with their median, non-zero coefficients determined with Cox

regression, and P-value for constructing the mpMRI radiomics signature in the discovery data set.

Characteristics Median Coefficients P-value

Imaging features (LASSO Futures)

T2-FLAIR_WT_DifferenceVariance2_F41 132670 1.8000e-06 9.7500e-04

T2_TC_TumorToBrainVolumeRation_F79 0.0057 27.0110 0.0028

T2_TC_MinimumTumorIntensity_F111 123.9908 −0.0066 0.0030

T2_TC_Range_F115 121.5823 0.0063 0.0030

T2_TC_SumHOG _F139 244.4848 0.0025 0.0040

T2-FLAIR_WT_ SumEntropy2_F38 1.9066 −1.4337 0.0152

T1-GD_AT_Energy_F_79 0.2027 −3.1019 0.0175

T2-FLAIR_WT_MedianHOG _F44 0.1107 17.1896 0.0185

T2_TC_Moment3rd_F121 −5324.8 5.8300e-06 0.0203

Clinical factors

Age (years) 61.17 – 3.3700e-04

Resection status (GTR, STR, NA) – – 0.9720

They were ordered by their association with survival (P-value).

FIGURE 5 | The survival stratification created using the constructed radiomics signature. The signature performance in stratifying the survival into short-, medium-,

and long-survivors on the (A) discovery and (B) validation sets.

with OS was shown in the discovery data set, but non-significant
correlation (P = 0.110) was observed in the validation data set.

On discovery cohort, the radiomics signature stratified
the GBM patients based on survival grouping with the
true positive rate or sensitivity metric as following: short-
(0.774), medium- (0.208), and long-survivors (0.500). The false
positive rate (1—specificity) measure was 0.256, 0.271, and
0.182 for short-, medium-, and long-survivors, respectively
(Figure 5A). In contrast, the reported values on the validation
set were 0.476 (short-), 0.231 (medium-), and 0.600 (long-
survivors) for true positive rate or sensitivity; and 0.333
(short-), 0.268 (medium-), and 0.206 (long-survivors) for false
positive rate (1—specificity) (Figure 5B). For example, a false
positive rate of 0.256 demonstrates that the signature model
on the discovery data set assigns 26.8% of the long-survivors
predictions falsely to the positive class. On the other hand,
a true positive rate of 0.600 points out that the signature
model classifies 60% of the predictions correctly to the
positive class.

The heat map of the 9 LASSO selected features used for
building the signature is shown in Figure 6. It shows the features
association with OS between the discovery and validation data
sets. From the heat map plot, it can be noticed that there
is a consistency of radiomics feature z-score between the
discovery/training and the validation data sets.

ML Model Results
Eight machine learning classification models were examined for
survival prediction, and their performances were presented in
Table 4. The AUC for predicting an individual survival class from
the other classes, and the overall accuracy results, are reported for
each model. The overall best model with feature combination for
classifying OS into three groups was identified.

The best overall performance classifier was achieved by an
ensemble learning model with AUC of 0.81, 0.47, and 0.72
for short-, medium-, and long-survivors (Table 4), respectively.
The corresponding overall accuracy was 57.8% in predicting
the patient’s survival into short-, medium-, and long-survivors
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FIGURE 6 | The heat map of the LASSO selected radiomics features that used to discover the signature. The rows demonstrate the subset of nine selected features,

while the columns indicate the patients (both discovery and validation data sets). The color map shows the z-score difference of each radiomics feature.

TABLE 4 | AUC and overall accuracy of several trained ML models’ performance in classifying GBM patients survival into three groups as a function of choice of features.

Classifiers and features AUC Overall accuracy (%)

Short-survivors Medium-survivors Long-survivors

SVM (Medium Gaussian)

• Imaging features 0.67 (0.69) 0.52 (0.60) 0.61 (0.59) 47.2 (50.3)*

• Imaging features + clinical factors 0.74 0.51 0.67 53.4

• Imaging features (LASSO) 0.72 (0.74) 0.31 (0.37) 0.68 (0.73) 50.9 (56.4)**

• Imaging features (LASSO) + clinical factors 0.80 (0.81) 0.51 (0.53) 0.68 (0.73) 54.0 (55.2)**

K-Nearest Neighbors (Coarse KNN)

• Imaging features 0.64 0.48 0.60 46.0

• Imaging features + clinical factors 0.68 0.46 0.67 50.1

• Imaging (LASSO) features 0.73 (0.72) 0.47 (0.45) 0.72 (0.67) 47.2 (50.3)
†

• Imaging (LASSO) features + clinical factors 0.79 (0.78) 0.44 (0.55) 0.70 (0.66) 47.9 (50.9)
††

Discriminant analysis (Linear)

• Imaging features 0.67 0.52 0.61 47.2

• imaging features + clinical factors 0.72 0.48 0.67 49.1

• Imaging (LASSO) features 0.74 0.45 0.72 56.4

• Imaging (LASSO) features + clinical factors 0.79 0.49 0.71 53.4

Ensemble (Random subspace discriminant)

• Imaging (LASSO) features 0.75 0.42 0.71 57.1

• Imaging (LASSO) features + clinical factors 0.81 0.47 0.72 57.8

*Values in brackets are the performance of SVM Linear classifier.

**Values in brackets are the performance of SVM Coarse Gaussian classifier.
†
Values in brackets are the performance of KNN Cosine classifier.

††
Values in brackets are the performance of KNN Medium classifier.

The overall best classification results are listed in bold.

group. Combining the LASSO selected imaging features with
the clinical predictors yielded in improved prediction accuracy
results over the other alternatives in estimating glioblastoma
patients’ survival.

The AUC plots of the three classificationmodels, including the
ensemble model (the superior one among the other alternative
models), were shown in Figure 7. Ideally, the perfect AUC plot
is a right angle to the top left of the plot (with no misclassified
points). The AUC value measures/quantifies the overall quality

of the classification model. The larger AUC value demonstrates
better model performance. Figure 7 shows the AUC values
for each survival class/group individually. In other words, it
quantifies how the model under study is capable to classify a
specific group of survivors from the other classes correctly.

Results Comparison
A comparison of this study results with other published works
was presented in Table 5. The proposed model performance, the
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FIGURE 7 | The AUC plot of the three best overall ML classifier invariants in each machine learning category: SVM (Coarse Gaussian), KNN (Medium), and Ensemble

(Subspace Discriminant) in classifying OS into three classes using the best feature combination.

signature plus the MLmodel, was judged amongst other works in
various manners.

DISCUSSION

Radiomics analysis is the concept of extracting features
quantitatively from the images/medical images using a variety of
computational approaches. Then, the obtained imaging features
may be used to provide clinicians with diagnosis, prognosis (e.g.,
survival), or treatment response. This study was aimed to identify
a radiomics-based imaging signature on pre-operative mpMRI to
stratify patients with de novo glioblastomamultiforme into short-
, medium-, and long-survivors group using data from multiple
institutions. Also, establishing a practical ML model for the same
purpose through testing a wide range of various classification
models and different features combination. Statistics, Computer
Vision, and Machine Learning tools were used implementing the
proposed model of radiomics analysis of patient stratification
based survival grouping, which may offer unique clinical insights
to support decision-making toward precision oncology.

Various image features (n= 147), representing tumor’s shape,
intensity, GLCM, HOG, and LBP (Table 2), were extracted and

derived via different approaches on multi-parametric MRI (T1-
Gd, T2, and T2-FLAIR) sequences characterizing the tumor
structures [AT, TC, andWT (Figure 1)]. When a two-step feature
selection method was employed, MAD followed by LASSO
regression (Figure 4), a final set of 9 features retained (Table 3).
LASSO turns all none relevant features/variables coefficients to
zero during the optimization and tunes the regression model via
a user-specified k–fold cross-validation. It performs both feature
selection and regularization to improve the prediction accuracy
and the interpretability of the statistical model it produces. The
selected features indicated a high association with OS (P <

0.05) as shown in Table 3. Among those features, a gray-level
co-occurrence matrix derived texture feature has shown the
highest association with GBM survival stratification (Table 3).
This finding agrees with that reported in the literature (Chaddad
et al., 2015, 2016a). Image entropy and energy selected features
have also shown a good correlation with survival (Chaddad et al.,
2016b, 2019b; McGarry et al., 2016). Those features, typically
calculated within a region of interest, indicate that intra-tumoral
heterogeneity has a high impact on the survival stratification.
The quantitative nature of radiomics features and the qualitative

nature of radiologists to interpret the MRI sequences could
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TABLE 5 | The comparison of this study’s findings with similarly published works for GBM patients stratification based on survival with radiomics analysis.

Method MRI sequences Feature selection

and classification

models

Survival stratification Overall

accuracy

AUC Signature model

association with OS

Yang et al. (2015) T1 and T2-FLAIR Ensemble (random

forest) learning

12-months survival – 0.67 –

Macyszyn et al.

(2016)

T1, T1-Gd, T2,

T2-FLAIR, DTI, and DSC

SVMs Short- (<6 months),

medium- (6–18 months),

and long-term (>18

months)

80.0% – –

This work T1, T1-Gd, T2, and

T2-FLAIR

LASSO and Cox

regression,

ensemble (subspace

discriminant)

learning

Short- (<10 months),

medium- (10–15 months),

and long-term (>15

months)

57.8% 0.81, 0.47,

0.72

Discovery (P < 0.001),

validation (P = 0.110)

Sanghani et al.

(2018)

T1, T1-Gd, T2, and

T2-FLAIR

SVMs Short- (<10 months),

medium- (10–15 months),

and long-term (>15

months)

88.95% – –

Liu et al. (2018b) T1, T1-Gd, T2, and

T2-FLAIR

SVMs Short- (<12 months) vs.

long-term (≥12 months)

80.7% 0.79 –

Chen et al. (2019) T1-Gd LASSO Cox

regression

Short- (<12 months) vs.

long-term (≥12 months)

85.1% 0.81 Discovery (P < 0.001),

validation (P < 0.001)

Chaddad et al.

(2019b)

T1-Gd and T2-FLAIR Random forest Short- (<12 months) vs.

long-term (>12 months)

– 0.78 –

Zong et al. (2019) T1, T1-Gd, T2, and

T2-FLAIR

CNNs Short- (<6 months),

medium- (6–18 months),

and long-term (>18

months)

64.3%, – –

Rathore et al.

(2019)

T1, T1-Gd, T2,

T2-FLAIR, DSC-MRI,

and DTI

K-means clustering,

Cox regression

Worst (MS = 6 months),

intermediate (MS = 12

months), and longest

survival (MS = 19 months)

– – Validation (P < 0.001)

DTI, Diffusion Tensor Imaging; DSC, Dynamic Susceptibility Contrast-Enhanced; CNNs, Convolutional Neural Networks; MS, Median Survival.

complementary improve the GBM patient survival prognosis
quality toward precision oncology.

Amulti-parametric MRI radiomics signature of 9 features was
constructed on the discovery cohort for glioblastoma patients
stratification based on overall survival. LASSO Cox regression
model was used to extract the selected features’ coefficients
(Table 3) for developing a signature model. The author discussed
the reason for applying this approach in the method section.
Also, it has been reported that regression coefficients estimated
by the LASSO are biased by intention, but can have smaller
mean squared error than conventional estimates (Heinze et al.,
2018). The radiomics signature model, trained and validated, had
a good performance (P < 0.001) with survival association in
the discovery set (n = 109), but this results not confirmed (P
= 0.110) in the validation set (n = 54) (Figure 5). The possible
reasons for non-significant results obtained in the validation
set could be due to signature model overfitting during the
training. It has been reported that over-fitting is possible when
the number of features is greater than the number of data
samples or if there are too many unique values for a discrete
feature (Meinshausen and Bühlmann, 2006). The poor results
obtained show the lack of generalizability of the signature model
on the new unseen data set. From the statistical perspective,
non-significant relationship with survival does not necessarily

mean less importance (Lao et al., 2017). A second reason could
be due to high contribution (almost a half, 49% as shown in
Table 1) of patient data with missing resection status information
in the combined, discovery/training and validation, cohort. These
data with unknown resection information could significantly
affect the overall or/and individual, training or validation, results.
And, a third reason could be due to possible sub-optimal
determination the cutoff points’ values or thresholding in which
some possibly valid assumptions had applied.

The machine learning results of several studied classifiers
indicated the superiority of ensemble (Subspace Discriminant)
learning over the other methods achieving the best performance
accuracy of 57.8% (Table 4 and Figure 7) in categorizing
the survival into short-, medium-, and long-survivors. This
result is not sufficiently encouraging and more tuning is
needed for improved prediction accuracy. The LASSO selected
imaging features, combined with clinical factors, provided better
prediction results among the other options. According to the
survival data distributions used in this study (Table 1), the
best survival grouping achieved for predicting short-survivors
(representing 40% of the total OS data distribution) with an
AUC of 0.81. Then it followed by long-survivors (representing
36% of the total OS data distribution) with an AUC of 0.72.
Finally, medium-survivors (representing 26% of the total OS
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data distribution) were lasted with an AUC of 0.47. Lower
performance in predicting an individual class correlated with a
decreased class data distribution in the study sample. Strengths
and limitations of the ML classifiers used in this study could
be summarized here. Based on prediction speed, all reported
models were relatively fast. In contrast, Linear models (SVM and
Discriminant Analysis) are easy to interpret, SMV (with Gaussian
kernels, Medium, and Coarse), KNN (Coarse, Cosine, Medium),
and Ensemble (Subspace Discriminant) are hardly interpretable.

The results comparison of the proposed method (signature
model and the practical ML model) with most relevant published
studies are presented in Table 5. While the proposed method’s
results, the signature model and the ML model, was not
impressive compared to most recently reported works (Macyszyn
et al., 2016; Liu et al., 2018b; Sanghani et al., 2018; Chen
et al., 2019), it was comparable or even better with respect
to others studies for example that reported by Yang et al.
(2015) (AUC = 0.67 for 12 months survival prediction) and
Chaddad et al. (2019b) (AUC = 0.78 for short- vs. long-term
OS prediction). Also, this study results are relatively comparable
with that obtained by Zong et al. (2019) on multi-institutional
data (accuracy of 64.3% for three-class OS prediction) using
Convolutional Neural Networks, where CNN based methods
are commonly expected to provide much-improved performance
compared to traditional methods. The works by Macyszyn et al.
(2016), and Rathore et al. (2019), reported good performance
results in predicting GBM patient’s survival group. However,
these studies were conducted on a single institution’s data,
where the data is more homogeneous/consistent and more
likely to obtain improved accuracy than the one used multiple
institutions as a case in this study. Consequently, the model
trained in local data is likely to suffer in generalizing its
performance to unseen data from other institutions. On the
other hand, a model trained on multi-institution data may
gain generalizability but less prediction accuracy due to the
heterogeneity of the data.

Finally, this study establishes that multi-parametric
MR images in patients with glioblastoma hold prognostic
information, which can be called up by radiomics analysis via
Statistics and Machine Learning/Computer Vision methods.
The proposed method in this study still has some limitations
and weaknesses, which may have influenced its reported
results. This work represents a retrospective study from
multiple institutions with a relatively small sample patient
data set used on discovery (n = 109) with an independent
validation data set (n = 54) for signature model construction
and evaluation. Also, almost half (49%) of the clinical data
information/predictors were with no given tumor resection
status (GTR or STR) information (Table 1). By making available

a large standard multi-institution data set, it would enable
us to fully evaluate the generalizability, and thus improve the
performance of the radiomics signature model on the new
unseen data set.

CONCLUSIONS

Image features were extracted from pre-operative multi-
parametric MR images of patients with glioblastoma to
generate a radiomics signature model and a practical ML
model for stratifying patients into groups based on overall
survival. A derived gray-level co-occurrence matrix feature
was found to have a high association with survival, which
means that intra-tumoral heterogeneity has an essential role
in the survival stratification. The proposed radiomics signature
model had good performance in the discovery set and lower
performance in the validation cohort. Despite the limitations,
the offered signature model has the potential for improved
pre-operative care of glioblastoma patients. Ensemble learning
showed superior performance over the tested ML classifiers
for survival prediction as a function of the choice of features.
Clinical factors, when added to the radiomics imaging-based
features, boosted the performance of the machine learning
classification model in predicting individual glioblastoma
patient’s survival prognosis. These findings may help in
choosing an optimal treatment strategy and assist in making
personalized therapy decisions of glioblastoma patients which
improve prognostic quality and represent a step forward toward
precision oncology.
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Glioblastoma is recognized as World Health Organization (WHO) grade IV glioma with
an aggressive growth pattern. The current clinical practice in diagnosis and prognosis of
Glioblastoma using MRI involves multiple steps including manual tumor sizing. Accurate
identification and segmentation of multiple abnormal tissues within tumor volume in
MRI is essential for precise survival prediction. Manual tumor and abnormal tissue
detection and sizing are tedious, and subject to inter-observer variability. Consequently,
this work proposes a fully automated MRI-based glioblastoma and abnormal tissue
segmentation, and survival prediction framework. The framework includes radiomics
feature-guided deep neural network methods for tumor tissue segmentation; followed
by survival regression and classification using these abnormal tumor tissue segments
and other relevant clinical features. The proposed multiple abnormal tumor tissue
segmentation step effectively fuses feature-based and feature-guided deep radiomics
information in structural MRI. The survival prediction step includes two representative
survival prediction pipelines that combine different feature selection and regression
approaches. The framework is evaluated using two recent widely used benchmark
datasets from Brain Tumor Segmentation (BraTS) global challenges in 2017 and 2018.
The best overall survival pipeline in the proposed framework achieves leave-one-out
cross-validation (LOOCV) accuracy of 0.73 for training datasets and 0.68 for validation
datasets, respectively. These training and validation accuracies for tumor patient survival
prediction are among the highest reported in literature. Finally, a critical analysis of
radiomics features and efficacy of these features in segmentation and survival prediction
performance is presented as lessons learned.

Keywords: glioblastoma, segmentation, neural network, radiomics, survival prediction

INTRODUCTION

The World Health Organization (WHO) identifies Glioblastoma as a highly aggressive grade IV
glioma. Glioblastoma is known for the presence of anaplastic glial cells along with high mitotic
activity and dense cellularity, as well as the increase in microvascular proliferation (Ohgaki,
2005; Louis et al., 2007; Bleeker et al., 2012). The aggressive and infiltrative growth pattern of
Glioblastoma makes curative treatment impossible, which reduces the median survival rate to less
than 2-years for most patients (Johnson et al., 2013). Recently, the interest has shifted toward
replacing invasive methods for tumor subtyping that predict clinical outcome with non-invasive
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methods (Brown et al., 2008; Itakura et al., 2015; Yang et al.,
2015). Different studies (Vartanian et al., 2014; Hu et al., 2015;
Liu et al., 2017) discussed Glioblastoma heterogeneity and its
implication on the clinical outcome. Glioblastoma heterogeneity
can be examined through radiology images such as Magnetic
Resonance Imaging (MRI) (Yang et al., 2002, 2015; Emblem
et al., 2008). Quantitative radiomic imaging features (henceforth,
radiomics) computed from MRI can be utilized for clinical
outcome prediction (Lacroix et al., 2001; Lao et al., 2017;
Shboul et al., 2017) and molecular classifications (Gutman et al.,
2013; Jain et al., 2013). An accurate detection and segmentation
of different abnormal tumor tissues is essential in planning
treatment therapy, diagnosis, grading, and survival prediction.

Few works (Pope et al., 2005; Gutman et al., 2013; Aerts
et al., 2014) have proposed different methods for predicting the
survivability of patients with brain tumors. Pope et al. (2005)
use different subtype tumor volumes, the extent of resection,
location, size and other imaging features in order to evaluate
the capability of these features to predict survival. Gutman
et al. (2013) use a comprehensive visual feature set known
as Visually AcceSAble Rembrandt Images (VASARI) in order
to predict survival, and correlate these features for genetic
alterations and molecular subtypes. Aerts et al. (2014) predict
survival by quantifying a large number of radiomic image features
including shape and texture in computed tomography images of
lung and head-and-neck cancer patients. Several of the survival
prediction studies utilize regression survival (Guinney et al.,
2017; Passamonti et al., 2017) models such as the proportional
hazard method while a few others utilize machine learning
methods to predict survival (Macyszyn et al., 2015; Shouval et al.,
2017; Kirienko et al., 2018).

Among many different feature-based and feature-learned
deep neural network-based abnormal tumor tissue segmentation
(Havaei et al., 2017; Mlynarski et al., 2018; Shah et al., 2018;
Cheplygina et al., 2019) and survival prediction methods (Islam
et al., 2013; Reza and Iftekharuddin, 2014; Vidyaratne et al.,
2018) with varying performances as discussed above, there is a
need to understand the effect of feature-guided deep radiomics
for both tumor segmentation and patient survival prediction.
A feature-guided deep radiomics approach is expected to
benefit from known radiomics features that are already proven
effective to guide discovery of unknown features using deep
learning methods. Consequently, this work proposes a fully
automated two-step survival prediction framework for patients
with glioblastoma: radiomics feature-guided deep neural network
methods for automated tumor tissue segmentation; and overall
survival regression classification using these tumor segments
and other relevant features using raw structural MRI data
(Reza and Iftekharuddin, 2014; Shboul et al., 2017). The
known radiomics are multiresolution fractal texture features
that have shown efficacy in brain tumor segmentation (BraTS)
in prior studies (Iftekharuddin et al., 2003; Islam et al.,
2008; Ahmed et al., 2009; Reza and Iftekharuddin, 2014;
Vidyaratne et al., 2018). The proposed framework is evaluated
using two recent widely used benchmark datasets from BraTS
global challenges in 2017 and 2018, respectively. Our results
suggest that the proposed framework achieves better tumor

segmentation and survival prediction performance compared to
the state-of-the-art methods.

MATERIALS AND METHODS

The overall pipeline with each processing block used for tumor
segmentation and survival prediction is shown in Figure 1.
This fully automated method proposes a two-step survival
prediction framework: radiomics feature-guided deep neural
network methods for automated tumor tissue segmentation;
and overall survival regression classification using these tumor
segments and other relevant features. The proposed multiple
abnormal tumor tissue segmentation step effectively captures
both local and global feature-guided deep radiomics information
in structural MRI. The survival prediction step includes two
representative survival prediction pipelines that experiment with
different feature selection and regression approaches.

Tumor Segmentation
The tumor segmentation methods are summarized below.

Feature-Based Brain Tumor Segmentation
This method (Figure 2A) utilizes several of our prior robust
feature extraction algorithms to include piecewise triangular
prism surface area (PTPSA) (Iftekharuddin et al., 2003), and
multi-fractional Brownian motion (mBm) (Islam et al., 2008).
These methods capture the non-local intensity and spatially
varying texture observed in abnormal tumor tissues. In addition,
several other generic features such as Texton, and raw intensity
are used as input to a random forest (RF) based classifier to obtain
the multi-class abnormal tumor tissue segmentation (Ahmed
et al., 2009; Reza and Iftekharuddin, 2014).

Feature-Learned Brain Tumor Segmentation Using
Deep CNN
This method essentially transforms the segmentation problem
into an intensity-based image classification task. Localized 2D
patches surrounding each pixel subjected to classification are
extracted from MRI and are used as input to deep CNN
architecture. We set the size of the input patch as 33 × 33 for
tumor segmentation (Vidyaratne et al., 2018). The detailed CNN
design for this method is shown in Figure 2B.

Feature-Learned Brain Tumor Segmentation Using
Deep U-Net
This method utilizes a CNN based U-Net model (Ronneberger
et al., 2015; Dong et al., 2017) to obtain brain tumor
segmentation. U-Net model is known for end-to-end data
processing. Unlike patch based CNN segmentation pipeline
where the model only sees a localized region of the brain, the
U-Net in this work captures global information from different
regions of the brain, which is essential to achieve robust
segmentation performance. The U-Net architecture utilized in
this work is implemented following the work in Dong et al.
(2017). More specifically, the architecture consists of a down-
sampling (encoding) and an up-sampling (decoding) stage.
The down-sampling stage has five convolutional blocks each
consisting of two convolutional layers with a filter size of 3 × 3
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FIGURE 1 | Brain tumor segmentation pipelines (left) using: (A) feature-based high-grade tumor segmentation using RF; (B) feature-less segmentation using Deep
CNN, U-Net, and FCN; and (C) semantic label fusion using feature-less and feature-based. Survival prediction pipelines (right) are started with (D) feature extraction
and are trained using (E) tree-regression-based RF survival prediction, and (F) XGBoost-based survival prediction.
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FIGURE 2 | Overall segmentation pipelines used in the proposed methods. (A) Feature-based High-grade tumor segmentation using RF; (B) detailed architecture of
the CNN based high-grade tumor segmentation; (C) Low-grade tumor segmentation with U-Net (detailed architecture); (D) architecture of brain tumor segmentation
(BraTS) using FCN; and (E) general pipeline of BraTS fusion by feature-based and feature-learned model.
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and stride of 1 followed by maxpooling with stride 2 × 2. The
upsampling stage consists of deconvolution layer with a filter
size of 3 × 3 and stride of 2 × 2 which doubles the size of
the feature maps. Rather than using regular cross-entropy based
loss function, we utilize a soft dice metric based loss function
to train the U-Net model (Milletari et al., 2016). The soft dice
is a differentiable form of the original dice similarity coefficient
(DSC) which is the most widely used metric to evaluate tumor
segmentation performance. The model is trained using mini-
batch gradient descent (GD) technique which minimizes the soft
dice cost function. Figure 2C shows the detailed architecture of
the U-Net model to perform the BraTS task.

Feature-Learned Brain Tumor Segmentation Using
Fully Convolutional Networks
Fully convolutional networks (FCNs) have been successfully used
for many image processing and computer vision tasks (Long
et al., 2015; Zhao et al., 2016). FCNs build FCNs that take
an input of arbitrary size and produce a correspondingly sized
output of relevant characteristics with efficient inference and
learning. Accordingly, FCN contains only convolutional layers.
It removes any redundancy when computing classification maps
on large inputs. The architecture also features an encode (down-
sampling) and a decode (up-sampling) stage. The encode stage
of the proposed architecture has five convolutional blocks. Each
block is composed of two convolutional layers with a filter size of
3 × 3 and stride of 1 followed by maxpooling with stride 2 × 2.
The decode stage consists of deconvolution layers with a filter
size of 3 × 3 and stride of 2 × 2 which doubles the size of the
feature maps. The framework of the proposed method is shown in
Figure 2D, which uses VGG-11 (Simonyan and Zisserman, 2014)
as a pre-trained model.

Semantic Label Fusion of Feature-Based and
Feature-Learned Deep Radiomics for Improved
Tumor Segmentation
The different deep radiomics-based models discussed above are
first independently implemented and trained for multi-class
abnormal tumor tissue segmentation. In order to complement
both feature-based and feature-learned radiomics methods, we
implement a label fusion method (Figure 2E) for improved
tumor segmentation. The label fusion is then performed to obtain
the fused output Fv

i for volume v as follows:

Fv
i = Ui

⋃
i∈v

Ci; (1)

WhereUi, and Ci denote the U-Net and FCN outputs given
MRI volume v, respectively.

The outputs of U-Net and FCN architectures offer excellent
specificity, albeit with varying sensitivity performance. The union
operation in equation (1) essentially preserves the specificity
while improving the sensitivity by combining the within-class
regions from each output. Similarly, this method is used for
label fusion between the patch-wise CNN based segmentation
algorithm and the hand-crafted feature-based algorithm for
better segmentation performance.

Survival Prediction
The survival prediction model includes prediction of survival
risk classification (short, medium, and long-term survival).
Subsequently, an overall survival regression is performed based
on the survival risk class label. Both classification and regression
models are trained on quantitative- radiomics features obtained
from the segmented tumor. Recursive feature selection (RFS)
method is used to select the features that are used in the
classification model. Finally, Cox regression is used as a feature
selection method in the overall survival regression model. Three
overall regression models are trained: long-regression model,
mid-regression model, and short regression model.

Feature Extraction
Feature extraction is the first step of the overall survival
prediction task. Different quantitative imaging features
(of around 31,000) are extracted from the different types of
segmented abnormal tissues (edema, enhancing tumor, and
tumor core) obtained in the previous step. These features include
texture, volumetric and area-related features, histogram-graph
features, and Euler characteristics (vertices, edges, and faces). The
heterogeneity in Glioblastoma may be quantified using texture
and histogram-graph features; while the shape of the tumor may
be effectively captured using volumetric and Euler characteristic
features (Pope et al., 2005; Aerts et al., 2014; Rathore et al., 2016).

A detailed breakdown of the extracted features is as follows: a
total of 1107 texture features (Vallières et al., 2015) are computed
from raw MRI sequences, and the features are extracted from
eight texture representations of the tumor volume [Texton filters
(Leung and Malik, 2001); texture-fractal characterization using
both our PTPSA (Iftekharuddin et al., 2003) modeling and
multi-resolution mBm (Islam et al., 2008) modeling; and the
characterization Holder Exponent (Ayache and Véhel, 2004)
modeling of the tumor region]. Furthermore, six histogram-
based statistics (mean, variance, skewness, kurtosis, energy, and
entropy) features are extracted from the edema, enhancing
tumor, and necrosis tissues.

Moreover, 13 volume-related features are considered: the
volume of the whole tumor, the volume of the whole tumor
with respect to the brain, the volume of sub-regions (edema,
enhancing tumor, and necrosis) divided by the whole tumor, the
volume of sub-regions (edema, enhancing tumor, and necrosis)
divided by the brain, the volumes of the enhancing tumor
and necrosis divided by the edema, the summation of the
volume of the edema and enhancing tumor, the volume of the
edema divided by the summation of the volume of enhancing
tumor and necrosis, and the volume of the necrosis divided
by the summation of the volume of the edema and enhancing
tumor. The tumor locations and the spread of the tumor in
the brain are computed. Another nine area-related properties
(area, centroid, perimeter, major axis length, minor axis length,
eccentricity, orientation, solidity, and extent) are computed from
three viewpoints (x, y, and z-axes) of the whole tumor.

Furthermore, a total of 832 features are extracted from the
histogram graph of the different modalities of the whole tumor,
edema, enhancing and necrosis regions. These features represent
the frequency at different intensity bins (of 11,15, and 23) and
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the bins of the max frequency. Finally, we compute the Euler
characteristic (Turner et al., 2014) of the whole tumor, edema,
enhancing and necrosis, for each slice. The Euler characteristic
features are computed on the tumor curve, at 100 points, and
at 72 different angles. Then, the Euler characteristic features
are integrated over all the slices. As a result, each patient is
represented by 4 (whole tumor, edema, enhancing, and necrosis)
Euler characteristic feature vectors. Each vector has a size of 7200
(100 points× 72 angles).

Survival Prediction Models
Two different survival prediction models are proposed for
survival prediction. The first model is a tree-based method for
overall-survival regression prediction using RF regression model.
We have employed RF due to its efficiency, robustness and
the flexibility in utilization for both multi-class classification
and regression tasks (Breiman, 2001). Additionally, RF does not
require extensive hyper-parameter tuning, and is resilient to
overfitting. These traits make RF preferable over more common
models such as artificial neural networks especially when the
training data is limited. The complete pipeline for the survival
regression using RF is illustrated in Figure 3A. This model uses
significant, predictive and important features selected from the
above-mentioned texture, histogram-graph, and volumetric and
area-related features. A three-step feature selection method is
utilized as follows. A univariate cox regression is fitted on every
extracted feature, and features with p-value less than 0.05 are
considered as significant. A second univariate cox regression is
fitted on the quantitative copy of the significant features. The
quantitative copy is obtained by thresholding the significant
feature around its median value. The last step is performed
to ensure that each significant feature is also able to split the
data set into long vs. short survival. Then, RF regression model
with tenfold cross validation is used to evaluate the model
at each iteration.

The model in Figure 3A is used as a baseline to obtain
a second more comprehensive survival prediction pipeline
as shown in Figure 3B. We incorporate additional features
such as Euler characteristics. The features for the updated
model are then selected using RFS method as follows. First,
we perform RFS1 on the Euler features alone. Next, another
RFS2 on the remaining features (texture, volumetric, histogram-
graph based) is performed. In addition, the overall-survival
regression model uses Cox regression to select significant features
with p-value < 0.05. Moreover, we introduce a state-of-the-
art Extreme Gradient Boosting (XGBoost) (Chen and Guestrin,
2016) based regression technique for stepwise survival risk
classification and overall-survival regression prediction using
the selected features. The XGBoost based regression model
is applied to each of the three groups (short, medium, and
long) to obtain survival duration in the number of days,
respectively. One of the major advantages of XGBoost its
utilization of L1 and L2 regularization. L1 regularization
handles sparsity, whereas L2 regularization reduces overfitting
(Chen and Guestrin, 2016).

It is worth noting that we have not utilized any neural network
model for the survival prediction because the sample size in this

study is not large enough to ensure good training in a neural
network setting.

RESULTS

Dataset
This study uses BraTS18 training, validation and testing dataset
(Menze et al., 2015; Bakas et al., 2017a,b), and BraTS17 training,
validation, and testing datasets for patient survival prediction
analysis. Both BraTS17 and BraTS18 datasets contain a total of
163 Glioblastoma [high grade glioma (HGG)] cases for training,
with an overall survival, defined in days, and the age of patient
at diagnosis, defined in years. The training dataset provides four
modalities [T1, post-contrast T1-weighted (T1Gd), T2-weighted
(T2), and T2 Fluid Attenuated Inversion Recovery (FLAIR)]
along with the ground truth segmentation of multiple abnormal
tissues (enhancing, edema, necrosis, and non-enhancing) in the
tumor. Overall survival risk is classified into three survival
groups: long (greater than 15 months), medium (between 10 and
15 months), and short (less than 10 months). In addition, for
validation purposes, we use the validation datasets of BraTS17
and BraTS18. BraTS17 validation dataset consists of 33 cases
while that for BraTS18 consists of 28 cases for overall survival
prediction purposes. BraTS17 testing dataset consists of 95 cases
while that for BraTS18 offers 77 cases for testing the overall
survival prediction performance.

Overall Survival Prediction Framework
Evaluation
As discussed in the Methods section, the proposed framework
consists of several feature-based and feature-guided deep
radiomics-based automated BraTS methods and two distinct
deep radiomics based automated survival prediction pipelines.
Accordingly, we obtain extensive performance evaluation using
two pipelines: the first one combines CNN-based patch-wise
segmentation algorithm, radiomics feature-based segmentation
algorithm, and RF based survival prediction method (henceforth
SP1), while the second combines U-Net and FCN based
segmentation methods with the XGBoost based survival
prediction algorithm (henceforth SP2). We first participated
in the BraTS 2017 challenge and the specific combination of
machine learning methods with RF survival prediction model
(known as SP1) offered the best overall performance in this
Challenge. We subsequently participated in the BraTS 2018
challenge and the augmented model (known as SP2) offered the
best performance using the validation dataset. The mean dice
segmentation performance (of enhancing tumor, whole tumor,
and tumor core) for SP1 and SP2 is illustrated in Table 1. The
mean dice segmentation metrics for different sub-tissues are
evaluated using the online evaluation platform of the BraTS
challenge (CBICA IPP at1). A detailed performance analysis of
U-Net, FCN and their sematic-label fusion results are illustrated
in Table 2. Figure 4 shows an example of segmentation outcomes
using U-Net, FCN and semantic-label fusion of U-Net and FCN.

1https://ipp.cbica.upenn.edu
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FIGURE 3 | Survival prediction pipelines proposed in the methods. (A) The first survival prediction model (SP1) pipeline using RF regression classifier, and (B) the
second survival prediction model (SP2) pipeline using XGBoost.

For SP1 the survival prediction features are the age and
40 texture and volumetric features. The distribution of the
40 features is as follows: 12 features extracted from Texton

of the tumor, 9 features extracted from the Holder exponent
representations of the tumor, 6 features represent the histogram
of the abnormal tissues, 5 from the raw MR modality of the tumor
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TABLE 1 | Performance of SP1, SP2, and modified-SP2 methods with BratS17
and BraTS18 datasets.

Survival prediction Segmentation

performance performance

Model/dataset Accuracy MSE Dice
enhanced

tumor

Dice
whole
tumor

Dice
tumor
core

SP1/BraTS17
training

0.67 78,929 – – –

SP1/BraTS17
validation

0.667 2,09,908 0.746 0.815 0.698

SP1/BraTS17 test 0.579 2,45,780 0.733 0.832 0.725

SP2/BraTS18
training

0.73 91,585 – – –

SP2/BraTS18
validation

0.679 1,53,466 0.765 0.876 0.761

SP2/BraTS18 test 0.519 3,67,240 0.705 0.857 0.767

RF-SP1/BraTS18
validation

0.464 1,70,737 – – –

XGBoost-
SP2/BraTS17
validation

0.636 2,18,097 – – –

Modified-
SP2/BraTS18
training

0.718 99,358 – – –

Modified-
SP2/BraTS18
validation

0.679 1,27,697 – – –

The evaluation of validation is performed using the online evaluation platform of
CBICA IPP (https://ipp.cbica.upenn.edu).

TABLE 2 | Performance of U-Net, FCN and their Semantic-label fusion using
BraTS18 validation dataset.

Model Dice enhanced
tumor

Dice whole
tumor

Dice tumor
core

FCN 0.706 0.850 0.727

U-Net 0.697 0.835 0.719

Semantic-label fusion 0.714 0.861 0.740

and sub-regions, 4 describe the volume of the tumor and the sub-
regions, and 4 features are extracted from the tumor area and
major axis length.

In comparison, as discussed above and shown in Figure 3B
for SP2, all relevant features are extracted from the ground truth
cases available with BraTS18 training dataset. The subsequent
RFS for Euler features (28,000) alone generates 39 features.
The distribution of the 39 Euler features includes: 16 features
computed around the contour of ET, 16 features computed
around that of WT, and 7 features computed around that of
edema, respectively. The application of RFS on the remaining
features produces additional 23 texture features, 4 histogram
graph features, and 8 area features of the edema, ET, and WT,
respectively. The XGBoost with leave-one-out cross-validation
(LOOCV) is employed on the selected 74 features and the
age to predict three corresponding survival classes (short,
medium, and long). This yields a classification accuracy of 0.73

[95% confidence intervals (CI): 0.655–0.797] for the BraTS18
training dataset.

First, we establish the performance of both SP1 and SP2
methods using the BraTS17 and BraTS18 training, and validation
datasets. The training dataset performance is obtained through
LOOCV analysis. The performance evaluation of methods using
BraTS validation datasets is restricted to the online evaluation
platform of the organizer of the BraTS challenge and must be
performed during a specific time period during the challenge.
Note that the second pipeline (SP2) is developed after the BraTS
2017 challenge is concluded, and hence 2017 validation portal is
no longer available for evaluation. However, a fair comparison
between the pipelines can still be obtained through the training
data evaluations and the validation evaluations of respective
challenge years. The results are summarized in Tables 1, 3.

The results in Table 1 for training and validation illustrate
that SP2 model offers better performance in accuracy over
that of SP1 model. SP2 model also obtains improvement over
SP1 in validation MSE. This performance improvement may
be attributed to improved abnormal tumor tissue segmentation
as well as the use of additional features obtained using better
feature selection and regression methods. Note that SP1 model
has been ranked the first in the BraTS 2017 challenge for
survival prediction category among 17 teams globally. The
overall high MSE for survival prediction is particularly due to
the wide range within long term survival category resulting in
large prediction errors. Further, note that the MSE of SP2 for
the BraTS18 training is the sum of the three MSE (Table 4)
values obtained for the short-, medium-, and long-regression
models shown in Table 4. Finally, the test results for both SP1
for BraTS17 and SP2 for BraTS18 in Table 1 show that SP1
performed better in patient-survival prediction than that for
SP2. This performance difference for SP1 and SP2 models is
further analyzed below.

Comparative Evaluation of Survival
Prediction Performance With SP1
and SP2
Table 3 shows the confusion matrix of both SP1 and SP2 and
relevant statistics for each class in the classification training
model for survival risk prediction. The sensitivity and balanced
accuracy of the medium survival group in SP2 is the lowest when
compared to the other two survival groups.

The top four important features as ranked by XGBoost are:
tumor extent in z-axis, the width of the enhance tumor computed
from x-axis point of view, contour around the edema contour and
enhance tumor. The mean value of each of these four features is
able to significantly (p-value < 0.05) stratify the 163 cases into
two risk groups (low-risk and high-risk) as illustrated in Figure 5.

The second step in the survival prediction is to obtain
individual regression training models corresponding to the short,
medium, and long survival classes. These short-, medium-, and
long-regression models use features selected distinctly for each
survival class using Cox regression (with p-value < 0.05). The
number of significant features selected for the short-, medium-,
and long-regression models are 83, 51, and 148, respectively.
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FIGURE 4 | Example input slices from BraTS18 training dataset and segmentation outcomes: (A) Flair sequence; (B) the ground truth; (C) the segmentation
outcome of U-Net; (D) the segmentation outcome of FCN; and (E) semantic label fused segmentation.

TABLE 3 | Confusion matrix of SP1, SP2, and modified-SP2, and some statistics derived from the confusion matrix based on each survival label in the training model.

SP1 2017 SP2 2018 Modified-SP2 2018

Reference Reference Reference

Long Med Low Long Med Low Long Med Low

Predictions

Long 32 7 10 43 13 4 44 11 4

Med 24 34 12 5 18 3 7 18 6

Low 0 1 43 8 11 58 5 13 55

Total number of cases 56 42 65 56 42 65 56 42 65

Statistics

Sensitivity 0.571 0.810 0.662 0.768 0.429 0.892 0.786 0.429 0.846

Specificity 0.841 0.702 0.990 0.841 0.934 0.806 0.860 0.886 0.816

Balanced accuracy (Sen + Spec)/2 0.706 0.756 0.826 0.804 0.681 0.849 0.823 0.657 0.831

Positive prediction value (PPV) 0.653 0.486 0.977 0.717 0.692 0.753 0.745 0.581 0.753

Negative prediction value (NPV) 0.789 0.914 0.815 0.874 0.825 0.919 0.885 0.817 0.889

TABLE 4 | Performance of LOOCV of the three regression models in SP2 and modified-SP2 in the XGBoost overall survival model.

SP2 Modified-SP2

Root mean square
error (RMSE)

MSE Mean absolute
error (MAE)

Root mean square
error (RMSE)

MSE Mean absolute
error (MAE)

Long-regression model 294.177 86,540 217.714 302.069 91,246 209.253

Medium-regression model 35.629 1,269 28.190 40.702 1,657 34.971

Short-regression model 61.449 3,776 50.402 80.340 6,455 65.094

Table 4 illustrates the performance of LOOCV with XGBoost
for the selected features using specified survival risk cases in
BraTS18 training cases.

Note that the wide range of the overall survival of the long-
survival group (greater than 15 months) may cause the RMSE of

the long-regression model to have the highest RMSE (Table 4).
This also may cause the high mean square error when using the
validation dataset (Table 1). The range of the overall survival
of the short-survival group is 10 months, whereas the medium-
survival group is 5 months.
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FIGURE 5 | Kaplan Meier of the top four important features used in SP2. The features are thresholded around its mean value to stratify the 163 subjects into two
groups: high risk group (red line), and low risk group (blue line). The features are (A) tumor extent; (B) enhance tumor width; (C) contour around the edema; and (D)
contour around the enhance tumor. The shaded area indicates the 95% confidence interval.

Critical Analysis of Features and
Performance of the Survival
Prediction Pipelines
This section provides a critical analysis of the features and their
effect on the survival prediction performance. As mentioned
in the previous sections, the features that are derived from
different abnormal tissue types of the segmented tumor region
significantly contribute to the survival prediction performance
(the abnormal tissue segmentation dice performance of SP1
and SP2 are illustrated in Table 1). Accordingly, we visualize
the features extracted from different abnormal tissue types
of the segmented tumor. The visualization is performed
using one of the most widely used high-dimensional data
visualization techniques known as t-Distributed Stochastic

Neighbor Embedding (Maaten and Hinton, 2008) (t-SNE). First,
t-SNE is used to explore the features obtained from different
abnormal tissue types from the segmented tumor region and
analyze the effect of these features on the performance of
the survival prediction task using BRAST 2017 and BRAST
2018 dataset.

For the SP1 pipeline, we extract a total of 40 features from
the sub-tissue types of the segmented tumor region. The features
extracted in SP1 are as follows: 36 features for whole tumor,
2 features for enhanced tumor, and 2 features for edema.
Figures 6A–C shows a visualization of these features across
different abnormal tissue types for BraTS17 training, validation
and testing data, respectively. These figures demonstrate that
the extracted features for segmentation offer clear discrimination
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FIGURE 6 | The t-distributed stochastic neighbor embedding (t-SNE) of the
selected features of SP1 clustered based on their tissue types using BraTS17
(A) training; (B) validation; and (C) testing. Note that features are clustered
based on their origin (subtissue type).

among different abnormal tissue types in the tumor. This
demonstrates the effectiveness of the segmentation pipeline in
SP1. Next, we visualize the feature clusters for patient survival
categories: long, medium and short term. In this case we consider
all 40 features obtained from the 163 BraTS17 training data as
mentioned above and explore the grouping against the tumor
risk labels using the t-SNE technique. Figure 7 shows the
visualization of the corresponding features for long, medium
and short risk labels. Note that all the visualization outcomes
shown are obtained after extensive hyper-parameter tuning of
t-SNE to produce the best possible results. Figure 7 demonstrates
that though there is some separation of corresponding features
between the long and short categories, the medium category is
mixed with both long and short categories. This suggests that it
is still difficult to visualize a clear separation of extracted features
for survival prediction task with the available patient dataset for
this study. The corresponding survival prediction performance of
SP1 pipeline using testing dataset is as shown in Tables 1, 3. As
mentioned above, though the SP1 pipeline was ranked the first
place in BraTS 2017 challenge, the feature distribution in Figure 7
suggests inherent challenge in extracting representative features
for survival prediction task.

Next, we explore the features and their effect on the
performance of our SP2 pipeline using the BraST18 dataset. We
extract a total of 74 features and the age for the SP2 pipeline.
The features extracted in SP2 are as follows: 43 features for
whole tumor, 22 features for enhanced tumor, and 8 features
for edema, and 1 feature for necrosis. Figures 8A–C shows
a visualization of these features across different tissue types
for BraTS18 training, validation and testing data, respectively.
Figure 8 demonstrates that these features also offer a clear
separation for different abnormal tissue types in the tumor.
Therefore, this further demonstrates the effectiveness of our
segmentation pipeline in SP2 and verifies that the extracted
features are highly representative of the different abnormal tissue
regions (the abnormal tissue segmentation dice performance of
SP2 is illustrated in Table 1). Subsequently, Figure 9 shows the
visualization of the 74 features in terms of long, medium and
short risk labels using the 163 sample BraTS18 training data.
Our analysis suggests that the tSNE technique again fail to group
the features in long, medium and short categories. Though there
is some separation between the corresponding features for long
and short categories, the features for medium category mixes
with both short and long categories for multiple subjects, quite
similarly to the visualization of SP1. This poor separation may
still be due to the lack of sufficient representative strength of
the features for categorizing different risk labels. Consequently,
Table 1 shows that our proposed SP2 pipeline achieves 0.73,
0.679, and 0.519 accuracy on the BraTS18 training, validation
and testing data.

Additionally, we validate our RF survival prediction in SP1
(RF-SP1) using BraTS18 validation set. We also validate XGBoost
survival prediction in SP2 (XGBoost-SP2) using BraTS17
validation dataset. The results are summarized in Table 1.
Using BraTS17 validation dataset, RF-SP1 model achieves 67.7%
accuracy, whereas XGBoost-SP2 model achieves 63.6%. Using
BraTS18 validation dataset, RF-SP1 model achieves 46.4%
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FIGURE 7 | (A) The 3D; and (B) the 2D plot of t-distributed stochastic neighbor embedding (t-SNE) of the selected features of SP1 clustered based on the long,
medium and short risk labels using BraTS17 training dataset.

accuracy, whereas XGBoost-SP2 model achieves 67.9% accuracy.
These results indicate that the XGBoost-SP2 combination
performs considerably better than that of RF-SP1 with BraTS18

dataset and reasonably well with BraTS17 dataset, respectively.
Note that the ground truth of BraTS17 and BraTS18 validation
dataset are not provided. As a result, we have segmented BraTS17
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FIGURE 8 | The t-distributed stochastic neighbor embedding (t-SNE) of the
selected features of SP2 clustered based on their tissue types using BraTS18
(A) training; (B) validation; and (C) testing. Note that features are clustered
based on their origin (subtissue type).

and BraTS18 validation dataset using the semantic label fusion
model of CNN and RF (Vidyaratne et al., 2018) and the semantic
label fusion of U-Net and FCN, respectively.

Comparison of Survival Prediction With
State-of-the-Art Works
Comparison of the proposed survival prediction pipelines
SP1 and SP2 with few state-of-the-art methods in literature
is discussed next. Table 5 summarizes the performances
of these state-of-the-art models and presents a comparison
with our proposed framework (SP2). Chato et al. (2018)
propose using histogram features extracted from denoised
MR images (by using 2 level Daubechies wavelet transform)
in a support vector machine to predict overall survival.
Their method achieves a 10-fold cross validation accuracy
of 0.667 using BraTS17 training dataset. Kao et al. (2018)
extract volumetric, spatial, morphological, and tractographic
features from MR images. Feature normalization and selection
is performed, and the selected features are trained in a
support vector machine model. Their proposed model achieves
an accuracy of 0.7 using BraTS18 training dataset and an
accuracy of 0.5 using BraTS18 validation dataset. Soltaninejad
et al. (2017) utilize volumetric features along with RF to
predict overall survival. Their method achieves five-fold cross
validation accuracy of 0.638 using BraTS17 training dataset.
The results demonstrate that our proposed framework achieves
a higher accuracy in overall survival prediction compared
to the current-state-of-the-art models applied to the same
datasets. Note that, unlike our proposed SP1 and SP2 pipelines,
the reported performance for all these other methods in
Table 5 are obtained by the authors themselves. In addition,
a comparison between the performance of our segmentation
model and state-of-the-art models is illustrated in Table 6.
Though the abnormal brain tumor tissue segmentation results
for other methods in the 2018 Challenge (as shown in
Table 6) are better than our semantic-label fusion method,
our segmentation results are useful to offer the best survival
prediction performance in the 2018 BraTS Challenge as shown
in Table 1.

Modified-SP2
In order to reduce the high dimensionality of the features
in SP2 classification and regression steps, we modify SP2
in Figure 3B as follows: (1) calculate and rank the feature
importance for each classification and regression model;
(2) select features that have a relative scaled importance
greater than 50%; and (3) train the modified selected
features in a new classification and regression training models
utilizing XGBoost.

The resulting 30 significant features are applied in the
classification step of the modified-SP2. The distribution of these
features is as follows: 13 features represent Euler characteristics,
7 features represent volumetric and area-related properties,
4 histogram-graph based features, 5 texture features, and one
feature with Age information.

The number of significant features used in the short-,
medium-, and long-regression models of the modified-SP2
is 11, 9, and 11, respectively. The distribution of the features
in the modified short-regression model are as follows: 2
volumetric and area-related features, 1 histogram-graph
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FIGURE 9 | (A) The 3D plot of the t-distributed stochastic neighbor embedding (t-SNE) of the selected features of SP2 clustered based on the long, medium and
short risk labels using BraTS18 training dataset. (B) The 2D plot of the same training dataset.

based features, 7 texture features, and one feature with Age
information. The features employed in the modified med-
regression model are 5 volumetric and area-related features,
3 texture features, and Age. Whereas the features of the
modified long-regression model are 2 volumetric and area-
related features, 8 texture features, and one feature with
Age information.

The modified-SP2 achieves cross-validated accuracy of 0.718
as illustrated in Table 1. Table 3 illustrates the statistics
of its confusion matrix in the classification training model.
Table 4 illustrates the performance of the modified regression
training models. Additionally, the modified-SP2 is validated
using BraTS18 validation set and its performance is illustrated
in Table 1. Note that the different performances of SP2 and
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TABLE 5 | Comparison of our proposed survival prediction pipeline with state-of-the-art methods in literature.

References Algorithm Validation method Performance Dataset

Chato et al., 2018 Histogram features along with SVM 10-fold cross validation accuracy of 0.667 BraTS17 training dataset

Kao et al., 2018 Volumetric, spatial, morphological, and
tractographic features along with SVM

5-fold cross-validation Accuracy of 0.7 BraTS18 training dataset

Soltaninejad et al., 2017 Volumetric features along with Random Forest 5-fold cross validation Accuracy of 0.638 BraTS17 training dataset

XGBOOST overall survival
prediction model (SP2)

Texture, volumetric, histogram-graph, and
Euler features Along with XGBoost

LOOCV Accuracy of 0.73 and
MSE of 91585.51

BraTS18 training dataset

Validation dataset Accuracy of 0.679 and
MSE of 153466.3

BraTS18 validation dataset

modified-SP2 are almost similar when using the BraTS18 training
and validation dataset statistics of each class in SP2 and the
modified-SP2 are almost similar. This can be explained by the fact
that XGBoost provides L1 and L2 regularization.

Additionally, the modified-SP2 is validated using BraTS18
validation set and its performance is illustrated in Table 1.

DISCUSSION AND FUTURE WORKS

This work proposes a novel framework for fully automated
deep radiomics-based Glioblastoma segmentation and survival
prediction. The overall framework is designed as two-step
process where automated tumor segmentation is carried out
in the first step, and the segmentation outcome is then
used for survival prediction in the second step. The accurate
segmentation of abnormal tissue tumor types such as necrosis,
edema, and enhancing tissue is critical to ensure robust
survival prediction performance. Consequently, several deep
learning- and radiomic-feature based segmentation algorithms,
and a semantic label fusion are introduced to obtain sufficient
segmentation performance. The framework also includes two
survival prediction algorithms SP1 and SP2 in step two,
represented by the use of feature types, feature selection,
regression and classification methods.

The primary survival pipeline (SP1) combines patch-wise
CNN based algorithm and radiomics based algorithm using
label fusion for segmentation, and applies the RF based survival
prediction algorithm to obtain the final output. The second
pipeline (SP2) combines U-Net and FCN segmentation with
an XGBoost based survival prediction algorithm. As shown in
Figure 1, the features used in both SP2 and SP1 offers an excellent
segmentation of different abnormal tissue type. The functionality
of SP2 is further enhanced by using additional features extracted

TABLE 6 | Comparison to our proposed with state-of-art models that have used
BraTS18 testing dataset.

Dice enhanced Dice whole Dice tumor

References tumor tumor core

Semantic-label fusion method (SP2) 0.705 0.857 0.767

Myronenko, 2018 0.766 0.884 0.815

Isensee et al., 2018 0.779 0.878 0.806

Zhou et al., 2018 0.778 0.884 0.796

from the subtissues (edema, enhance tumor, and necrosis) and a
two-step classification and regression method. Different studies
(Pierallini et al., 1998; Lacroix et al., 2001; Maldaun et al.,
2004; Jain et al., 2014) correlate between survival prediction in
glioblastoma and different subtissues. SP2 shows improvements
over our primary survival prediction model (SP1) (Shboul et al.,
2017) with LOOCV accuracy increase to 0.73 from 0.67 for
training datasets. Whereas the modified-SP2 achieves cross-
validation accuracy of 0.718 using the training dataset.

There are a few limitations of the proposed work. First,
even though the total number of cases for survival training
dataset is 163, both BraTS 2017 and BraTS 2018 required that
the data must be divided into three separate survival-group
regression models. Consequently, the number of training cases
are divided among three models as follows: 65 cases for short-,
42 cases for medium- and 56 cases for long-regression models,
respectively. A larger dataset may be required when training
each regression model to improve the performance. Second, this
study may benefit from additional clinical data such as Gender
and Karnofsky Status to strengthen the reliability of the different
survival regression and classification models. Finally, the overall
survival risk classification performance of the state-of-the-art
methods in literature, including the pipelines proposed in this
work, may be improved further. The visualization of survival
features suggests the difficulty in separating the high dimensional
data into the three distinctive risk classes. This suggests the need
for further research in novel feature engineering for survival
prediction. Following the efficacy of deep radiomics features
in the tumor segmentation step, a possible future direction to
further improve the risk classification performance may involve
use of deep learning methods to learn all possible features in the
survival pipeline.
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It is a general assumption in deep learning that more training data leads to better

performance, and that models will learn to generalize well across heterogeneous

input data as long as that variety is represented in the training set. Segmentation of

brain tumors is a well-investigated topic in medical image computing, owing primarily

to the availability of a large publicly-available dataset arising from the long-running

yearly Multimodal Brain Tumor Segmentation (BraTS) challenge. Research efforts and

publications addressing this dataset focus predominantly on technical improvements of

model architectures and less on properties of the underlying data. Using the dataset and

the method ranked third in the BraTS 2018 challenge, we performed experiments to

examine the impact of tumor type on segmentation performance. We propose to stratify

the training dataset into high-grade glioma (HGG) and low-grade glioma (LGG) subjects

and train two separate models. Although we observed only minor gains in overall mean

dice scores by this stratification, examining case-wise rankings of individual subjects

revealed statistically significant improvements. Compared to a baseline model trained on

both HGG and LGG cases, two separately trained models led to better performance

in 64.9% of cases (p < 0.0001) for the tumor core. An analysis of subjects which did

not profit from stratified training revealed that cases were missegmented which had

poor image quality, or which presented clinically particularly challenging cases (e.g.,

underrepresented subtypes such as IDH1-mutant tumors), underlining the importance

of such latent variables in the context of tumor segmentation. In summary, we found

that segmentation models trained on the BraTS 2018 dataset, stratified according to

tumor type, lead to a significant increase in segmentation performance. Furthermore, we

demonstrated that this gain in segmentation performance is evident in the case-wise

ranking of individual subjects but not in summary statistics. We conclude that it may
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be useful to consider the segmentation of brain tumors of different types or grades as

separate tasks, rather than developing one tool to segment them all. Consequently,

making this information available for the test data should be considered, potentially

leading to a more clinically relevant BraTS competition.

Keywords: magnetic resonance imaging, brain tumors, automatic segmentation, deep learning, training strategy,

data stratification

1. INTRODUCTION

Gliomas are primary brain tumors which arise from glial
cells. According to the World Health Organization (WHO)
classification of tumors of the central nervous system
(CNS) (Louis et al., 2016), they can be grouped into different
tumor grades based on the underlying histology and molecular
characteristics. Increasing tumor grade indicates the increasing
malignancy of the tumor. Glioma are managed depending
on grade, with treatment strategies ranging from tumor
resection followed by combined radio- and chemotherapy to
a “watch and wait” approach (Stupp et al., 2005; Grier, 2006).
Glioblastoma are the most aggressive type of glioma (WHO
grade IV) and make up 45% of all gliomas (Ostrom et al.,
2014). The prime imaging technique in brain tumor diagnostics
is Magnetic Resonance Imaging (MRI) (Essig et al., 2012).
Standard acquisition protocols used to perform initial diagnosis
and treatment monitoring include T1-weighted, T1-weighted
gadolinium-enhanced, T2-weighted, and T2-weighted with
fluid attenuated inversion recovery (FLAIR) sequences (Wen
et al., 2010; Ellingson et al., 2015). The typical radiological
appearance of a glioblastoma features a disrupted blood-brain
barrier causing ring-enhancing lesions with central necrosis and
peritumoral edema. In contrast, low-grade astrocytic tumors
exhibit typically no contrast enhancement and are missing
central necrosis (Pierallini et al., 1997).

In the case of glioblastoma, recent studies led to the discovery
of a profound genetic heterogeneity among, and even within,
tumors (Verhaak et al., 2010; Sottoriva et al., 2013). It has been
shown that the underlying genetic and molecular heterogeneity
can be associated with variations in imaging phenotype such
as changes in tumor compartment volumes (Lai et al., 2013;
Grossmann et al., 2016), contrast enhancement (Carrillo et al.,
2012; Treiber et al., 2018), radiomic signatures (Gevaert et al.,
2014), and tumor location (Carrillo et al., 2012; Ellingson et al.,
2012). The imaging appearance of glioblastoma can further be
altered by treatment causing radiation necrosis (Mullins et al.,
2005) and pseudoprogression and -response (Hygino da Cruz
et al., 2011), respectively. As a consequence, a machine learning
segmentation algorithm needs to be capable of generalizing
across this heterogeneity of glioblastoma imaging phenotypes.

Brain tumor segmentation is a well-investigated topic with a
vast amount of available methods and yearly organized MICCAI
Brain Tumor Segmentation (BraTS) Challenges since the year
2012 (Menze et al., 2015; Bakas et al., 2017c), serving as a
public platform for algorithm comparison. With the rise of
deep learning, brain tumor segmentation methods experienced
significant gains in performance (Bakas et al., 2018). One of the

central promises of deep learning methods is that they can be
fed with raw data and are capable of automatically uncovering
the underlying representation relevant for the task at hand
(e.g., segmentation) from that data (LeCun et al., 2015). As
a consequence, the time-consuming and error-prone manual
engineering of features traditionally used in machine learning
has been rendered obsolete. Recently, it was shown for vision
tasks that model performance increases logarithmically based
on volume of training data (Sun et al., 2017). This aligns with
the general notion that more training data leads to a better
generalization of a machine learning algorithm. Within the
context of BraTS Challenges, deep learning methods are usually
trained ad hoc on all of the available data, disregarding underlying
latent factors such as genetic characteristics or even tumor
grades. Although the tumor type is available to the challenge
participants for the training data, this information is withheld
for the validation and test data. Since part of the BraTS dataset
is coming from The Cancer Imaging Archive (TCIA) (Bakas
et al., 2017a,b,c), additional relevant information such as e.g.,
patient’s gender, mutation subtypes [Isocitrate dehydrogenase
(IDH), 1p19q co-deletion] and methylation status of MGMT-
promotor could potentially be added as well.

The metric of choice for algorithm comparison in biomedical
image segmentation challenges is the Dice coefficient, which was
used in 92% of the 383 segmentation tasks reported in Maier-
Hein et al. (2018). Predominantly, the Dice coefficient is reported
in terms of summary statistics (mean/median) over patient
cases and model comparison is performed on the basis of
such summary statistics (metric-based ranking). Recently, the
BraTS Challenge adopted a case-based ranking scheme. While
metric-based rankings lead to more robust rankings than case-
based rankings (Maier-Hein et al., 2018), it can be argued that
distinct performance differences for individual patients may
be obfuscated.

We hypothesize that deep learning methods for brain tumor
segmentation can be significantly improved by taking into
account latent factors along with tumor image appearance during
model training. The purpose of this study is to demonstrate
the impact of including prior knowledge of a particular latent
factor (tumor grade) on the performance of a recently published,
top-ranked deep learning method (McKinley et al., 2019a).
Furthermore, the impact is studied employing both a metric-
based and case-based rank analysis.

The idea of leveraging prior information about tumor grades
to improve segmentation has been presented as an extended
abstract to the International Conference on Medical Imaging with
Deep Learning (MIDL) along with preliminary results (Meier
et al., 2019).
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2. MATERIALS AND METHODS

2.1. Study Data
The study is based on publicly-available data of the BraTS 2018
Challenge (Menze et al., 2015; Bakas et al., 2017c). In particular,
the training dataset was used, which includes 75 patients with
low-grade glioma (LGG) and 210 patients with high-grade
glioma (HGG). The imaging data encompasses four MR image
sequences (T1-weighted, T1-weighted with contrast agent, T2-
weighted, and T2-weighted FLAIR sequences), which are part of
the consensus recommendations for a standardized brain tumor
imaging protocol in clinical trials (Ellingson et al., 2015). The
imaging data stem from 19 different institutions, which relied
on different MR scanners and acquisition protocols. Manual
segmentations of three tumor compartments were available:
contrast-enhancing tumor, non-enhancing/necrosis combined,
and edema. The regions which were considered for evaluation in
the BraTS 2018 challenge as well as in the study at hand were:
contrast-enhancing tumor, tumor core (all compartments except
edema), and whole tumor (all compartments). More details on
the preprocessing and the evolution of the BraTS dataset can be
found in Bakas et al. (2017c).

2.2. Automatic Segmentation
The network architecture used for the automatic segmentation
is equivalent to the model ranked third in the BraTS 2018
challenge (McKinley et al., 2019a). In brief, it is a U-net-style
structure with densely connected blocks of dilated convolutions.
The segmentation is performed slice-wise where the input data
includes the two neighboring slices from below and above from
all four image modalities (i.e., input dimension is batch× 4× 5×
192×192). The final segmentation is the result of ensembling the
predictions from all three directions (sagittal, axial, and coronal).

In a pre-processing step, the data are first normalized to
zero mean and unit variance. Data augmentation consists of a
combination of randomly flipping the images along the midline
and random rotations [angle ∼ U(−15,+15)] around all
principal axis. Additionally, the standardized voxel intensities are
randomly shifted [amount ∼ N(0, 0.5)] and scaled [factor ∼

N(1, 0.2)].
The networks were trained with a focal loss function, RMSprop

as optimizer with a cosine-annealing learning rate schedule, and
a batch-size of two.

2.3. Stratified Model Training
Three different models were trained independently, each with
a five-fold cross-validation: A baseline model with all available
training data (number of samples N = 285), an HGG-only
model (N = 210), and an LGG-only model (N = 75). Network
architecture and hyperparameters were the same for all models
which were trained on a Nvidia GeForce GTX 1080 Ti GPU with
11GBmemory over 80 epochs. Qualitatively, the performance on
the validation-set was saturating with no observable overfitting
(see Figure S1).

2.4. Statistical Analysis
The statistical analysis was performed using R with the stats
package version 3.5.1 (R Core Team, 2018). For comparison of

spatial overlap of estimated tumor segmentations with manual
ground truth data, the Dice coefficient was used. Segmentation
performance in terms of Dice coefficient of the different
deep learning models was summarized by descriptive statistics
(median, interquartile range). Case-based rank analysis included
computation of percentage of improved patient cases for given
pairing of deep learning models. The stratified models were
compared to the baseline by means of paired difference tests:
differences between the cross-validated classifiers were examined
on HGG cases only, on LGG cases only, and on the whole dataset
(using the combined results of the stratified LGG and HGG
classifiers). Non-parametric tests were employed due to the rank-
based form of the data. The significance level of the analysis was
set to α=0.05.

3. RESULTS

3.1. Quantitative Analysis
Summary statistics for the segmentation performance in terms
of Dice coefficient are shown in Figure 1. The baseline model
reached a median Dice of 0.841 (1.5 × IQR = 0.465–1.000) for
the contrast enhancing compartment, 0.899 (0.554–1.000) for the
core, and 0.920 (0.786–1.000) for the whole tumor. Comparable,
the combined results from the separately trained HGG/LGG
models were 0.838 (0.415–1.000) for contrast enhancing, 0.902
(0.584–1.000) for core, and 0.916 (0.800–1.000) for tumor.

The combined results of the two separately trained models
showed an improvement for the segmentation of the tumor
core in 64.9% (p < 0.0001) of the subjects compared to the
baseline model (Table 1). No statistically significant changes
were observed for the other compartments. This performance
gain originates primarily from the HGG cases where 70.3% of
the subjects showed an improved segmentation for the tumor
core and 58.5% of the subjects also for the contrast enhancing
compartment. From the 183 subjects that showed an improved
segmentation of the core, 26 increased by a Dice of 0.1 or more.
Conversely, from the 99 subjects with a declined performance, 21
decreased by a Dice of−0.1 or more (Figure 2).

3.2. Qualitative Analysis of Selected Cases
From Table 1 it is evident that, especially for high-grade glioma,
stratified training leads to improved segmentation performance.
In order to further investigate this aspect, a visual review
of selected cases was performed. To identify cases mostly
affected by the stratified training, Dice coefficients between
the segmentations of the two models (baseline vs. HGG) were
calculated. Cases with a Dice agreement < 0.8 of the tumor
core between the baseline and stratified models were selected
for a qualitative manual inspection followed by a review with
a board-certified neuroradiologist with more than 8 years of
experience in brain tumor diagnostics. In order to render the
visual review more systematic, we define three categories of
causes for variability in tumor segmentation performance: 1.
The input data generated by the imaging process, which is
affected by the idiosyncrasies of the MR scanner, potential
image artifacts and patient motion, and image preprocessing.
2. The manual ground truth segmentation. 3. The tumor
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FIGURE 1 | Summary statistics for the segmentation of the three compartments by means of a Tukey boxplot. p-values indicate statistically significant (p < 0.05)

improvements determined by a one-sided Wilcoxon signed rank test.

phenotype (e.g., IDH-mutant tumor, presence of intratumoral
hemorrhage, or cystic components) which causes distinctively
different image appearances.

In Figure 3 the obtained Dice coefficients between the
segmentation results of the HGG model for the tumor core
and the ground truth were plotted against the Dice coefficients
between the results of the HGG model and the segmentation of
the baseline model, which was trained on all available data. We
can broadly define four different territories in the scatterplot: The
upper right corner which contains cases for which both models
achieved high segmentation performance. If we move to the
upper left corner, we encounter cases for which the HGG model
achieved high segmentation performance with discrepancies
when compared to the results of the baseline model. If we
move from the upper right corner to the lower right corner,
we encounter cases for which the HGG model agreed with the
segmentation result of the baseline model but did not agree with
the ground truth result. Finally, the lower left corner contains
cases for which the segmentation results of the HGG model did
neither agree with the ground truth nor with the segmentation
of the baseline model. The corresponding scatterplots for the
other two compartments can be found in Figures S2, S3. The
identified outlier cases are listed in Table 2with the segmentation
performance of the two models and an assessment category.
Below we present the observations based on a visual review
for a selection of the identified outliers. Visualizations for the
remaining outliers can be found in Figures S4–S14.

Brats18_2013_21_1 (Figure 4). The baseline model provided
superior performance for segmenting the tumor core in this
HGG example. The lesion exhibits a large non-enhancing tumor
mass (typically seen in LGG) and we speculate that the presence

TABLE 1 | Ratio in % of better performing subjects compared to baseline.

CE Core Tumor

% Subjects p % Subjects p % Subjects p

LGG vs. Baseline 41.7 0.877 49.3 0.454 54.7 0.208

HGG vs. Baseline 58.4 0.005 70.3 5.659e-09 46.7 0.877

HGG/LGG vs.

Baseline

54.6 0.127 64.9 1.441e-05 48.8 0.725

Statistical significance is determined by a one-sided Wilcoxon signed rank test. Bold

numbers indicate statistically significant (p < 0.05) results. CE: contrast enhancing.

of LGG cases in the baseline model led to the improved
tumor core segmentation performance when compared to the
HGG model’s result. The appearance of the tumor is further
complicated by the presence of cystic components, which exhibit
a homogeneous signal that is strongly hypointense in T1-
weighted and hyperintense in T2-weighted images.

Brats18_2013_25_1 (Figure 5). Both models failed to
segment the tumor core for this HGG case. The tumor core
contains strongly hypointense areas in the T2-weighted and
FLAIR images with corresponding heterogeneous signal
intensity in the T1-weighted image. When considering the
T1/T1c-weighted images, one can observe the presence of
recruited blood vessels. This image appearance may indicate the
presence of an intratumoral hemorrhage.

Brats18_CBICA_AXJ_1 (Figure 6). The segmentation of the
core from the HGG model is closer to ground truth. The
tumor was indicated to be an HGG. However, the provided
ground truth segmentation seems to be missing part of the
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Brats18_2013_11_1

Brats18_2013_21_1

Brats18_2013_25_1

Brats18_CBICA_ABN_1

Brats18_CBICA_ATF_1

Brats18_CBICA_AXJ_1

Brats18_CBICA_BHB_1Brats18_CBICA_BHK_1

Brats18_TCIA01_221_1

Brats18_TCIA01_411_1

Brats18_TCIA01_425_1

Brats18_TCIA02_171_1

Brats18_TCIA05_277_1

Brats18_TCIA05_444_1

Brats18_TCIA06_409_1

Brats18_TCIA08_113_1

Brats18_TCIA08_406_1

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Dice (HGG vs. Baseline)

D
ic

e
 (

H
G

G
 v

s
. 
G

T
)

FIGURE 3 | Performance of the HGG-only model for the tumor core (y-axis) and agreement with the baseline model (x-axis). Subjects with a label were visually

reviewed. Colors indicate the center (2013, CBICA, TCIA01-08).

tumor mass in the frontal lobe. Furthermore, we argue that
a large part of the lesion corresponds to non-enhancing
tumor rather than edema. We base this assumption on the
heterogeneous appearance in the T2-weighted images and more
importantly the strong cortical space-occupying effect together

with a distortion of the gray/white matter junction. In contrast,
edema would preserve the gray/white matter junction as well
as the cortical ribbon and propagate along the white matter
fiber tracts. A possible alternative for ground truth is shown
in Figure 6.

Frontiers in Neuroscience | www.frontiersin.org 5 November 2019 | Volume 13 | Article 118282

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Rebsamen et al. Divide and Conquer

TABLE 2 | Performance of selected cases for the two models.

Subject Assessment Dice Baseline-model Dice HGG-model

CE Core Tumor CE Core Tumor

Brats18_2013_11_1 1 0.14 0.45 0.90 0.17 0.61 0.89

Brats18_2013_21_1 3 0.80 0.83 0.94 0.76 0.68 0.94

Brats18_2013_25_1 3 0.18 0.10 0.90 0.25 0.06 0.90

Brats18_CBICA_ABN_1 2 0.84 0.41 0.82 0.79 0.84 0.83

Brats18_CBICA_ATF_1 3 0.69 0.73 0.69 0.65 0.51 0.63

Brats18_CBICA_AXJ_1 2 0.79 0.35 0.90 0.79 0.58 0.90

Brats18_CBICA_BHB_1 2 0.00 0.00 0.15 0.00 0.00 0.24

Brats18_CBICA_BHK_1 2 0.01 0.00 0.05 0.25 0.05 0.24

Brats18_TCIA01_221_1 2 0.76 0.88 0.95 0.48 0.82 0.95

Brats18_TCIA01_411_1 1 0.07 0.24 0.71 0.23 0.48 0.64

Brats18_TCIA01_425_1 – 0.26 0.58 0.75 0.68 0.76 0.78

Brats18_TCIA02_171_1 2 0.89 0.47 0.95 0.89 0.90 0.95

Brats18_TCIA04_343_1 2 0.69 0.73 0.74 0.59 0.61 0.66

Brats18_TCIA05_277_1 3 0.42 0.37 0.85 0.56 0.55 0.90

Brats18_TCIA05_444_1 3 0.39 0.96 0.94 0.54 0.30 0.89

Brats18_TCIA06_409_1 – 0.52 0.53 0.89 0.50 0.53 0.86

Brats18_TCIA08_113_1 1 0.91 0.36 0.97 0.79 0.52 0.92

Brats18_TCIA08_406_1 1 0.65 0.63 0.88 0.68 0.77 0.90

Assessment after a qualitative review with a neuroradiologist. Assessment 1: Issue with input image quality, 2: Possible problem with ground truth, 3: Special phenotype, GT: ground

truth, CE: contrast enhancing.

Brats18_CBICA_BHB_1 (Figure 7). Both models failed
completely to segment the lesion for this HGG case.
However, the provided ground truth segmentation seems
to overestimate the presence of edema. While we agree on
the whole tumor segmentation, we argue that the present
T2-weighted hyperintensity indicates the presence of non-
enhancing tumor rather than edema. Similarly to case
Brats18_CBICA_AXJ_1 the gray/white matter junction is
distorted. This is especially evident when considering the
unaffected contralateral hemisphere. The poor segmentation
performance of both models might be the result of an under-
representation of training samples with such a subtle tumor
core which is potentially ambiguously labeled in other cases
as well.

Brats18_TCIA01_221_1 (Figure 8). The baseline model
provided the better tumor core segmentation for this HGG case.
However, when comparing the segmentation of the contrast-
enhancing tumor of the HGG model, we argue that the ground
truth segmentation slightly undersegments it. This is clearly
visible for the enhancing rim next to the midline.

Brats18_TCIA01_425_1 (Figure 9). The baseline model
underestimated the subtle contrast-enhancement of this HGG
case. We can speculate that in the situation of subtle
enhancements the baseline model was biased more toward
segmenting a tumor core with small enhancing foci, whereas the
HGG model was capable of delineating the full extent of the
contrast-enhancement.

Brats18_TCIA05_444_1 (Figure 10). The baseline model
provided a better segmentation than the HGG model for this
case. The tumor was indicated to be an HGG. The location

of the tumor in the frontal lobe and its appearance exhibiting
focal contrast enhancements and a large non-enhancing tumor
mass are suspicious of a potential IDH-mutant glioblastoma.
This would imply that it initially emerged from an LGG (called
secondary glioblastoma). Applying the LGG model to the case
significantly outperforms the HGG model (Figure 10), which
would support the hypothesis of a mutated LGG.

While the previous analysis of cases was to some extent
speculation, we can nevertheless condense three main, factual
observations from it: First, individual segmentation results
are strongly affected by the composition of the segmentation
model’s training data. Second, depending on the underlying
factors that caused a given image appearance and segmentation
ground truth, a given subset of the training data can actually
improve the segmentation result compared to a baseline trained
on all data. Third, disagreement (or joint failure) among
segmentation models trained on different subsets of training
data (Figure 3) may actually help in the identification of
these underlying factors. Among the manually reviewed 18
cases with a large deviation between the two models, we
observed issues with the input images (4 cases), potentially
arguable ground truth (7 cases), and special imaging phenotypes
(5 cases). Arguable ground truth is often attributed to
edema that could be labeled as tumor core instead. Edema
typically propagates along white matter and spares cortical
ribbons as well as deep gray matter structures (Pope et al.,
2005), while non-enhancing tumor leads to a distortion of
the gray/white matter junction [cf. BRATS18_CBICA_BHB_1
(Figure 7) FLAIR with the case presented in Figure 3
of Lasocki and Gaillard, 2019].
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FIGURE 4 | Brats18_2013_21_1.

FIGURE 5 | Brats18_2013_25_1.

4. DISCUSSION

The title of the manuscript contains the phrase “Divide and
Conquer,” where “Divide” refers to the stratification of training
data. Data stratification and subsequent model training was
employed as a simple, straightforward technique to include prior
knowledge. We have proposed two ways of how to use data
stratification to “conquer” brain tumor segmentation: First, the
targeted application of a specialized model (HGG model) to
the respective data (HGG test case). Second, the utilization of

disagreement among specialized models’ outputs and ground
truth segmentations to identify outliers and possible latent factors
hampering generalization.

Implicitly adding prior information to the models by
stratifying the data by tumor type (HGG and LGG) seems to
be beneficial for the segmentation of the tumor core for high-
grade glioma. Yet, the LGG-only model, which was trained
with fewer samples (N = 75) compared to the baseline model
(N = 285), showed no statistically significant deterioration
of the segmentation performance. A statistically significant
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FIGURE 6 | Brats18_CBICA_AXJ_1.

FIGURE 7 | Brats18_CBICA_BHB_1.

improvement in 64.9% of the subjects for the tumor core is
accompanied by a non-significant improvement of 54.6% for
contrast enhancing and non-significant decrease (only 48.8%

better-ranked subjects) for the whole tumor. It has been shown
in multiple studies (Asari et al., 1994; Wiestler et al., 2016;
Hsieh et al., 2017) that HGG and LGG tend to exhibit different
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FIGURE 8 | Brats18_TCIA01_221_1.

FIGURE 9 | Brats18_TCIA01_425_1.

qualitative and quantitative imaging features in structural
MRI, involving heterogeneity of contrast enhancement, cystic
components, intratumoral hemorrhage, and necrosis, which in
context of tumor segmentation affect the definition of the tumor
core greatly. Therefore, the stratification of the training data
into HGG and LGG yields subsets with more homogeneous
and consistent definitions of the tumor core. However, we
presented also exceptions [e.g., BRATS18_2013_21_1 (Figure 4)
in section 3.2] which actually profit from training data of opposite
tumor grade.

In addition to improving segmentation performance, deep
learning models trained on stratified data can be used to drive
exploration of the training data. In section 3.2 we demonstrated
that the disagreement between such models in relation to the
ground truth data can assist in the identification of latent
factors (e.g., imaging phenotypes) which may pose significant
challenges in a deep learning model’s capability to generalize
across the complete problem domain. We argue that especially
in a pathology as complex as brain cancer, the identification of
such latent factors and their proper treatment in a deep learning
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FIGURE 10 | Brats18_TCIA05_444_1.

model is of utmost importance to guarantee robust segmentation
performance that satisfies clinical needs. In section 4.1 we provide
propositions on how latent factors such as the tumor type could
be treated in deep learning segmentation models beyond simple
data stratification.

Our results demonstrated the potential of summary statistics
(e.g., mean or median) to obfuscate significant differences
between distributions of segmentation performance measures
(e.g., Dice coefficient). These significant differences can be
revealed through the calculation of a case-based ranking.
Furthermore, case-based ranking enables the straightforward
application of nonparametric statistics to detect significant
differences with the advantage of more limited assumptions
regarding the distribution of the data when compared to
parametric statistics, and robustness to outliers. Case-based
ranking also follows the narrative of precision medicine in
which the identification of subpopulations of patients, who
benefit from a medical intervention, based on experimental
observations is central. It enables a more fine-grained analysis on
the level of the patient and potentially an identification of patient
subpopulations relevant for the task at hand.

Previously, Pereira et al. (2016) trained on data stratified into
HGG and LGG. They employed two different Convolutional
Neural Network architectures for patch-wise segmentation of
HGG and LGG. In contrast, we hypothesized and demonstrated
that a mere stratification of the training data into HGG and LGG
without any changes to architectures or hyperparameters can
lead to improved segmentation performance. Furthermore, their
focus was on an ablation study of methodological components
with respect to their two grade-specific architectures and their

results were based on the BraTS 2013 Leaderboard dataset (21
HGG, 4 LGG cases) and BraTS 2013 Challenge dataset (10
HGG cases).

4.1. Outlook
With the rise of precision medicine and tailored therapies,
the consideration of patient-specific information (e.g., genetics)
becomes ubiquitous (Giardino et al., 2017). Leveraging data from
multiple sources remains a challenge for the next generation
imaging technologies (Kim et al., 2016), potentially requiring to
rethink the one size fits all concept. For automatic brain tumor
segmentation, various architectural and conceptual changes are
imaginable beyond simple data stratification strategies.

By completely separating the data, each of the individual
models has fewer data available for training, although with
the benefit of a less heterogeneous domain (only one tumor
type). Instead of implicitly adding the prior information of
the tumor to the data by stratification, an alternative approach
could be to explicitly add this information as input to the
network. Particularly the first layers of the network might be
less susceptible to the tumor type as filters for representation
learning could share commonalities between both domains. By
adding the information directly to the input layer or injecting
it into the latent feature space might allow the network to
intrinsically adapt the segmentation output according to the
given tumor type.

A different approach would be to regard the problem
of segmenting high-grade and low-grade glioma as a
multiple-source adaptation problem. In this setting, the
goal is to effectively combine base learners trained on
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multiple source domains in order to perform a prediction
on a target domain, which can be any mixture of the
source domains. In our case, the source domains would be
subclasses of gliomas: either high-grade and low-grade data,
or potentially a more fine-grained subdivision (e.g., WHO
grade or classification). The target domain constitutes of a
mix of different glioma cases. Recently, a number of theoretic
and algorithmic contributions were made in the area of
multiple-source adaptation (Hoffman et al., 2018; Zhao et al.,
2018), which could be applied in the scenario of learning
from multiple disease entities such as brain tumor types
or grades.

The clinical importance of brain tumor segmentation for
quantitative image analysis will only grow in the near future.
Recently, various segmentation methods have been proposed
which are capable of accurately delineating brain tumor
compartments longitudinally (Weizman et al., 2014; Meier et al.,
2016), perform assessment of treatment response (Huber et al.,
2017; Kickingereder et al., 2019), are used for the purpose
of radiomic analysis (Bakas et al., 2017c), and for performing
planning of radiation therapy (Sharp et al., 2014; Herrmann et al.,
2018; Agn et al., 2019; Lipkova et al., 2019). It is, therefore,
necessary to provide automatic segmentation methods which
are capable of robustly generalizing across different types or
grades of brain tumors. Our methodology of training deep
learning models on stratified training data is a straightforward
approach to potentially improve the segmentation performance
of already existing learning-based methods with regards to
different tumor types.

In the light of our results and the trend toward precision
medicine, we encourage challenge organizers to make
information on the tumor type or grade available as additional
input data, allowing teams to incorporate such prior information
into their models.

4.2. Limitations
The evaluation is based solely on the BraTS training dataset
(using cross-validation). Results for the official validation set
are unknown since the required tumor type is not available
for these data. Indeed we acknowledge that the tumor grade
is usually not yet available on the first admission. However,
we think automatic segmentation models will probably be
employed first for retrospective studies, to assess the extent of
resection in patients undergoing surgery (Meier et al., 2017),
or to assess tumor progression postoperatively (Kickingereder
et al., 2019) where tumor grades are usually known. First
attempts have been made to classify tumor grades from
MRI (Decuyper and Van Holen, 2019), which would
allow identification of the correct model from imaging
only. Alternatively, one might run such a segmentation
algorithm twice: first for a rough identification of the tumor
compartments and based on the result (e.g., presence of
CE, ratio of compartment volumes, or manual review of the
intermediate results by an expert) apply the specific model to get
a refined segmentation.

The benefit of stratifying the training data has been
shown with the model ranked third in the BraTS 2018

challenge (McKinley et al., 2019a). This particular model was
chosen, as it was a top-ranked method in the most recent BraTS
challenge (2018) that achieved its results using only a standard
GPU and data from the BRATS challenge. The method ranked
first (Myronenko, 2019) depended on a GPU with 32 GB of
memory (to which most research groups do not have access),
while the second-ranked method (Isensee et al., 2018) was co-
trained with additional data (not including information about
tumor grades). To what extent the proposed approach generalizes
to other architectures remains an open question. Other models
might suffer more from the reduction of training samples due
to the stratification. The proposed architecture is known to be
robust to fewer training samples (McKinley et al., 2019b).

5. CONCLUSION

Implicitly adding prior knowledge by dividing data into
distinct domains can improve the performance of deep
learning-based segmentation methods and compensate
for the smaller number of samples available for training
a model. The tumor grade has shown to be an important
latent factor in the segmentation of gliomas. Comparing
the performance of models by case-based ranking statistics
may reveal significant differences that are otherwise
concealed in summary statistics such as the mean
Dice coefficient.
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Robustness of Radiomics for Survival
Prediction of Brain Tumor Patients
Depending on Resection Status
Leon Weninger*, Christoph Haarburger and Dorit Merhof

Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany

Prediction of overall survival based on multimodal MRI of brain tumor patients is a

difficult problem. Although survival also depends on factors that cannot be assessed via

preoperative MRI such as surgical outcome, encouraging results for MRI-based survival

analysis have been published for different datasets. We assess if and how established

radiomic approaches as well as novel methods can predict overall survival of brain

tumor patients on the BraTS challenge dataset. This dataset consists of multimodal

preoperative images of 211 glioblastoma patients from several institutions with reported

resection status and known survival. In the official challenge setting, only patients with

a reported gross total resection (GTR) are taken into account. We therefore evaluated

previously published methods as well as different machine learning approaches on the

BraTS dataset. For different types of resection status, these approaches are compared

to a baseline, a linear regression on patient age only. This naive approach won the 3rd

place out of 26 participants in the BraTS survival prediction challenge 2018. Previously

published radiomic signatures show significant correlations and predictiveness to patient

survival for patients with a reported subtotal resection. However, for patients with

reported GTR, none of the evaluated approaches was able to outperform the age-only

baseline in a cross-validation setting, explaining the poor performance of approaches

based on radiomics in the BraTS challenge 2018.

Keywords: BraTS 2018, survival prediction, radiomics, brain tumor, machine learning, feature selection

1. INTRODUCTION

The high-grade glioma, a subtype of brain tumors, is one of the most aggressive and dangerous
diseases worldwide. For the US, a 5-year survival rate of glioblastoma patients of only 5.6% was
reported for 2000–2015 (Ostrom et al., 2018). Automatic analysis of these tumors is challenging,
as their shape, location and extent can differ substantially. Since 2012, the BraTS challenge (Menze
et al., 2015) is held annually to allow an unbiased comparison of different segmentation algorithms.
Since 2017, an overall survival (OS) prediction task is included to assess whether quantitative image
features based on these segmentations can provide further clinical insight. In the OS task, patients
need to be classified in long-survivors (OS>15 months), short-survivors (OS <10 months), andmid-
survivors (10 months <OS <15 months). While data is provided for patients with different resection
status, the official evaluation is carried out only on patients with a reported gross total resection
(GTR). A total of 41 teams took part in this survival prediction task in 2017 and 2018.
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Using the age as sole feature with a linear regressor, we
achieved an accuracy of 0.56 (n = 77) on the test set in the
BraTS challenge 2018. In comparison, the first placed approaches
of 2017 (Shboul et al., 2018) and 2018 (Feng et al., 2019)
achieved accuracies of around 0.58 and 0.62, respectively (Bakas
et al., 2018b). Shboul et al. relied on automatic radiomic
feature extraction combined with a Random Forest Regressor
(RFR), while Feng et al. used geometric features in combination
with a linear model. The developers of other top performing
algorithms chose similar strategies of combining either hand-
selected or automated radiomic features with a supervised
machine learning algorithm: Radiomic feature extraction was
used in combination with an RFR (Sun et al., 2019) or a
Multilayer Perceptron (MLP) (Baid et al., 2019). Geometric
features only were used with an MLP (Jungo et al., 2018), and
finally atlas locations together with relative tumor sizes and an
RFR were also employed (Puybareau et al., 2019). These teams
achieved accuracies between 0.55 and 0.6. Further submitted
approaches ranged from deep learning algorithms to radiomic
feature analysis to handcrafted feature engineering, that achieved
accuracies between 0.15 and 0.55. As three classes were equally
subdivided, a random choice would result in an accuracy of 0.33.

On other brain tumor datasets, encouraging results for OS
prediction have been published. A successful radiomic-based
brain tumor patient OS and progression-free survival prediction
on a private dataset comprising 119 patients was described
by Kickingereder et al. (2016). Positive findings with data-mining
algorithms have also been reported when including Diffusion-
MRI and relative cerebral blood volume data (Zacharaki et al.,
2012) or Perfusion-MRI data (Jain et al., 2014) next to the MR-
sequences used in the BraTS dataset. Deep learning based OS
prediction has been successfully used on another, smaller (n =
93) private dataset (Nie et al., 2019). However, as the BraTS
summary (Bakas et al., 2018b) indicates, deep learning techniques
performed rather poorly on the open-access data. Quantitatively
comparing deep learning to classical regression on radiomic
features for OS on the BraTS data was also carried out by Suter
et al. (2019). They concluded that radiomic feature are better
suited, as features extracted from deep learning networks seemed
to be unstable for this task.

Radiomic feature extraction describes the process of
automatically computing a variety of quantitative image
features. By quantifying lesions, radiomics can not only be
used for prognosis, but can also help increase precision in
diagnosis. For example, radiomics has been successfully used
to distinguish between high- and low-grade glioma (Cho et al.,
2018) on the BraTS dataset. An overview of radiomics and its
applications is given by Rizzo et al. (2018). For brain tumor
analysis in particular, a review of radiomics-based techniques for
quantitative imaging is given by Zhou et al. (2018).

Radiomic features combined with a machine learning model
is thus a natural choice for OS prediction. We initially evaluated
different radiomics-based machine learning techniques for the
BraTS challenge, too. However, when thoroughly validating the
results, all considered approaches could not outperform a linear
regressor based on the patients age only. We thus decided to
submit an age-only linear regressor (Weninger et al., 2019), and
won the third place in the BraTS challenge 2018.

In this paper, we analyze different radiomic-based approaches
to survival prediction on the BraTS data. To be independent of
segmentation inaccuracies, we only use the BraTS training data
for all experiments. For this data, groundtruth segmentations are
publicly available, approved by experts and reviewed by a single
board-certified neuro-radiologist (Bakas et al., 2017c). The data
can be subdivided by resection status into patients with reported
GTR, subtotal resection (STR) and patients with unavailable
resection status (NA). The official evaluation was carried out only
on the GTR subset. First, we re-evaluate previously published
radiomic signatures on the different resection status subsets.
We show that these methods are predictive for OS on the STR
subset. Second, different machine learning tools are evaluated
on the radiomic feature set. Third, as the number of extracted
radiomic features is very large and important features could
remain undetected, two different feature reduction methods
are assessed.

For the patients with GTR, neither previously published
methods, nor different machine learning models, nor
unsupervised feature reduction techniques could establish a
robust signature for patient survival prediction. Finally, the
importance of thoroughly assessing the robustness of radiomic
markers is discussed, and ideas on how to improve survival
prediction based on MRI images even after tumor resection
are provided.

2. MATERIALS

2.1. Dataset
In our evaluation, we discard the BraTS test- and validation
datasets, as no groundtruth segmentations and no OS
information are available, and use only the training dataset.
All subjects of the BraTS 2018 dataset are included in the BraTS
2019 dataset; thus, the analysis is focused on the larger BraTS
2019 dataset. The BraTS survival data training dataset consists of
data from 211 brain tumor patients from different institutions.
For each patient, the following data is available:

• 4 MRI acquisitions: T1, T1 post contrast agent (T1CE), T2
and T2-FLAIR. All are resampled to an isotropic resolution of
1× 1× 1mm3, co-registered and skull stripped.

• Segmentation map: Edema (ED), enhancing tumor (ET), and
non-enhancing / necrotic tumor core (NEC).

• The age of the patient.
• Resection status.

The resection status is either reported as GTR, subtotal resection
(STR), or unknown (NA). For a few subjects (n = 21), the
resection status was given as STR in the BraTS 2018 dataset, but
omitted for the 2019 dataset. These statuses were re-entered into
the dataset. Next, two patients were reported as still alive. Their
overall survival in the database was set to the maximum survival
time in the dataset, 1,767 days.

2.2. Cohort Study
Most data are provided either by the Center for Biomedical
Image Computing andAnalytics fromUniversity of Pennsylvania
(CBICA, n = 128) or by The Cancer Imaging Archive (TCIA, n =
76) (Bakas et al., 2017a,b). A small amount of the data (n = 7)
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originates from other sources. All subjects have a pathologically
confirmed diagnosis of primary de novo glioblastoma (Bakas
et al., 2018b). Nevertheless, as population or differences in
treatment could influence clinical outcome, an overview over
differences and similarities of the different provenances is given.

For all TCIA subjects, the resection status is unknown. In
contrast, 94 of the 101 subjects with GTR as well as all subjects
with STR originate from one institution, CBICA. In the dataset,
there are no statistically significant differences between age or
survival for the different data provenances or the different types
of resection status (ANOVA: p >0.05). However, the relative brain
tumor volume, as determined as tumor volume divided by brain
volume, is significantly smaller in the TCIA data than in the
CBICA data (p <0.0001). Between the resection status STR and
GTR, in contrast, there is no significant relative brain tumor
volume difference (Figure 1).

3. METHODS

Our OS prediction pipeline can be divided into the following
substeps: (1) Image preprocessing, (2) extraction of radiomic
features, (3) unsupervised feature reduction, and (4) statistical
inference and out-of-sample prediction. These major substeps
of the pipeline are visualized in Figure 2. For the BraTS
challenge, only out-of-sample prediction is necessary. In order
to determine whether radiologic features are appropriate for the
given problem, we supplement out-of-sample prediction with
classical hypothesis testing.

3.1. Image Preprocessing
The data was acquired with various MRI scanners and
different clinical protocols. In consequence, absolute image
intensities, and, subsequently, radiomic features, can be strongly
influenced. This was counteracted with a bias-filed correction
and subsequent normalization of the images. First, the ANTs
N3 (Tustison et al., 2010) bias-field correction was applied
to all images, removing local differences in image intensities.
Second, in order to harmonize the MRI acquisitions from
different institutions, all images were normalized with z-score
normalization to zero mean and unit variance.

Histogram equalization was considered as alternative
normalization technique, but discarded as it did not improve
the results. This could be due to the properties of tumor tissue
in MRI images: Parts of the brain tumor are often the brightest
or darkest area in the acquisitions, while occupying only a small
proportion of the brain. The contrast-enhancing part is especially
bright in T1CE acquisitions while covering just a small single-
digit percentage of the brain volume. Histogram equalization
or other nonlinear brightness adaptation techniques will thus
shrink the contrast for these outlier points, actually leading to
less contrast in the examined regions. For a comparison of the
results using histogram equalization, all evaluations relying not
only on tumor shape and/or age were repeated with histogram
equalization instead of z-score normalization. The results can be
found in the Supplementary Materials.

3.2. Feature Extraction
Using the package PyRadiomics (van Griethuysen et al., 2017),
shape features were extracted from the provided segmentation
masks, and image intensity and texture features were extracted
from the four different image modalities for each segmentation
mask. Image intensity and texture features were calculated for the
original image and on wavelet decomposed images. In total, the
following features were extracted:

Shape features comprise volume, surface area, sphericity,
maximum diameter, elongation, axis lengths and flatness.
These were extracted for the different tumor classes, resulting
in 42 features.
Gray-level features include gray-level co-occurrence (glcm),
gray-level run length (glrlm), gray-level dependence matrix
(gldm), gray-level size zone, and neighboring gray tone
difference features. As these were extracted for the original and
wavelet transformed images and four image modalities, this
resulted in 7,884 features.
Image intensity statistics consists of features such as
minimum, maximum, mean, median, percentiles, standard
deviation, skewness, kurtosis, and uniformity. In combination
with different modalities and filters, 1,944 features resulted
from this category.

Combined with the age, a total of 9871 features were obtained. In
contrast, the total number of observations was 211—the number
of variables p is much bigger than the number of samples n.
Such a setting is actually common for pattern-learning methods
in neuroscience (Bzdok, 2017), and is referred as wide data, in
contrast to long data where the number of samples is bigger
than the number of variables. Using such wide data directly for
inference often leads to non-robust results and to overfitting
on the training set. Consequently, before inference the number
of features needs to be reduced as much as possible while
maintaining the characteristics of the data.

3.3. Preselection of Features
Radiomic features are typically redundant (Rizzo et al., 2018),
i.e., they are multicollinear. Different techniques exist to reduce
the number of features and thus the multicollinearity. For the
present problem, a subset of features should be kept after feature
reduction. In contrast to synthetic features obtained by a PCA,
a feature selection method offers more interpretable results.
Further, in order to use the complete BraTS training dataset, the
method should be unsupervised. With an unsupervised method,
the complete BraTS OS training data (n = 211) can be used
for feature selection, as features of preoperative images should
be independent of resection status. In contrast, for this study, a
supervised method could only be done on the specific resection
status subset (GTR: n = 101). As splitting into train- and test set
would further be necessary, an even smaller number of examples
could be employed for feature selection.

Thus, a method relying on correlation matrix clustering
and Variance-Inflation-Feature (VIF) iterative reduction (James
et al., 2014) was chosen as the most appropriate. As a first
step to reduce multicollinearity, single redundant features
were discarded. For this purpose, each feature was linearly

Frontiers in Computational Neuroscience | www.frontiersin.org 3 November 2019 | Volume 13 | Article 7393

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Weninger et al. Survival Prediction Depending on Resection

FIGURE 1 | Difference in age and tumor-to-brain volume by resection status, and survival by provenance.

FIGURE 2 | Methodology used to evaluate the predictiveness of radiomic features for OS with the available acquisitions and labels.

regressed against every other single feature, thus obtaining the
coefficient of determination r2 and creating an r2 correlation
matrix. This matrix was then reordered using a hierarchical
clustering algorithm. For this, we relied on the Voor Hees
Algorithm (Voorhees, 1986) implemented in SciPy (Jones et al.,
2001) for linkage, and Euclidian distances between rows or
columns of the correlation matrix. A visual impression of the
obtained clustered correlation matrix is given in Figure 3.

As proposed by Gillies et al. (2016), representative features
can be chosen from each cluster to reduce redundant elements.
For this, areas of high correlation (R2

> 0.95) were reduced
to the element with the highest inter-patient variability. Using
this method, only features having a pairwise collinear correlation
can be identified and omitted. Multicollinearity, i.e., highly
related associations between more than two features, is not taken
into account.

Multicollinear features were excluded in a second step. Those
features can be identified by checking the VIF. Iteratively, by
removing the feature with the highest VIF, the multicollinearity
can be reduced until a predefined threshold is obtained. A
maximum VIF of 10 is chosen, as thresholds of either 5 or
10 are recommended for this method (James et al., 2014). The
number of features retained with a threshold of 10 should not
pose problems to the machine learning models, so we did not
consider lower thresholds.

Next to the VIF-based feature preselection method, we
evaluated a principal component analysis (PCA) based feature
reduction pipeline. One PCA feature reduction was carried
out independently for the shape features, gray-level features
and image intensity features of the original image. A fourth
PCA was performed on all features of wavelet decomposed
images. For each analysis, the minimum number of principal
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FIGURE 3 | Reordered correlation matrix and obtained dendrogram of the

radiomic features obtained from the normalized MRI images. Green designates

strongly correlated features while red indicates an r2 close to zero.

components explaining 95% of variance in the data were
kept. The obtained features are finally concatenated, and the
predictiveness for survival prediction can be evaluated via
machine learning models.

3.4. Statistical Hypothesis Testing on
Single Features
Null hypothesis testing with false discovery rate correction on
the original dataset is not beneficial, as there are too many
correlated features. The subset selected by the VIF feature
selection (section 3.3), however, is much smaller and hypothesis
tests can now reveal if single features are actually predictive for
OS. Asmultiple radiomic features remained, a false discovery rate
correction still needs to be used. We relied on the Benjamini–
Hochberg procedure (Benjamini and Hochberg, 1995), that
controls the false discovery rate at a specific level α = 0.05.

3.5. Multivariate Prediction
The statistical hypothesis testing can only reveal if single features
are significantly predictive for OS. Nonlinear relationships
of single predictors to the target variable as well as feature
interactions cannot be detected. Different machine learning
models that are able to surpass this limitation are available,
ranging in complexity from basic linear regressors to complex
neural networks.

We evaluated different machine learning models: linear, lasso
and ridge regressors, k-nearest neighbors (kNN), random forests
regressors (RFR), support vector regressors (SVR), and support
vector classifiers (SVC). Furthermore, the Boruta (Kursa and
Rudnicki, 2010) feature selection algorithm in combination with

one random forest classifier (RFC) as estimator and one for
the final prediction was evaluated. The regression models were
directly fitted to the survival days, while the classifier can only
predict the classes. As classes, the three classes as proposed by
the BraTS challenge (long-survivors (OS >15 months), short-
survivors (OS <10 months), and mid-survivors (10 months <OS
<15 months) were used.

Different radiomic features are represented by absolute values
at very different scales. Furthermore, outliers of single features
may strongly influence the results. Consequently, the radiomic
features were first normalized: The feature median is subtracted,
and the features were scaled by the interquartile range, i.e., the
range between the 25th quantile and the 75th quantile.

The different machine learning models were first employed on
the complete feature set for the different resection status. The
same methods were then also tested on the VIF-based feature
subset as well as on the PCA reduced feature set, in order to
evaluate whether these models could improve robustness on
GTR patients.

All machine learning models were implemented with scikit-
learn v0.21.2 (Pedregosa et al., 2011) or scikit-learn-contrib using
default settings. Next to the methodology presented in this paper,
we further evaluated the linear regressor on the age only as
submitted during the BraTS challenge 2018, as well as a linear
regression on age and the features remaining significant after
Benjamini–Hochberg correction.

3.6. Evaluation of Previously Published
Methods
Previously reported relationships between radiomic signatures
and survival time were evaluated on the BraTS dataset. Gutman
et al. (2013) reported that the length of the lesion’s major axis
and the proportion of contrast-enhanced tumor were negatively
correlated with survival on the TCGA glioblastoma dataset.
It should be noted that this dataset is included in the BraTS
dataset with the resection status NA. It has also been shown that
volumetric features of enhancing tumor, non-enhancing tumor
core and necrosis, and edema normalized to brain volume are
associated with shorter survival time on different independent
datasets (Zhang et al., 2014; Macyszyn et al., 2015).

Kickingereder et al. (2016) proposed a supervised principal
component analysis of radiomic features for glioblastoma
patients. In this study, a set of MRI acquisitions also comprising
diffusion and susceptibility-weighted MR imaging was used.
Thus, compared to our analysis, the study relied on a different
set of radiomic features. Nevertheless, their statistical analysis
pipeline with z-score feature normalization and supervised
principal component analysis is directly applicable to the features
described in section 3.2.

4. RESULTS

First, the predictiveness of state-of-the art methods
and machine learning model using radiomic features
is evaluated for the different types of resection status in
sections 4.1 and 4.2.
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FIGURE 4 | Age-only regression for the different types of resection status on

BraTS 2019 training dataset. The obtained regression line is plotted together

with the 95% confidence interval. This model is used as baseline against

radiomics based approaches.

These sections show that a predictive radiomic signature can
be extracted for STR patients. For these patients, radiomics
based approaches to survival prediction outperform the age-
only approach that can be seen in Figure 4. However, on the
patients that underwent total resection of the tumor, the findings
are different: The established radiomic features as well as all
considered machine learning models fail to improve the survival
prediction. Regression on age-only, however, is significantly
correlated with shorter survival for GTR patients (Figure 4).

Then, as the results of different models show a high variability,
it is assessed in section 4.3 whether models based on a
selected subset of features can lead to more robust results for
GTR patients.

4.1. Repeatability of Previous Methods on
Dataset
As a first step, previously reported relationships between
radiomic signatures and survival time (section 3.6) were
evaluated on the BraTS dataset. For evaluation, the dataset was
first divided by the three different reported types of resection
status. The published radiomic signatures were evaluated on each
subset individually.

The two features proposed by Gutman et al. (2013) and
the volumetric features of ET and NEC normalized to brain
volume proposed by Zhang et al. (2014), Macyszyn et al. (2015)
can be seen in Figure 5. These findings can be reproduced on
the STR, and the same trends can also be seen on the NA
subset (Pearson’s r: p <0.05). Especially the ET volume and the
lesions’ major axis achieve a high significance (p ≈ 0.003) on the
STR subset. Of the reported features, the only non-significant
relationships are ED volume, that shows a negative, but non-
significant (p >0.05) correlation on both subsets, and the ET
tumor proportion, that shows a significant negative correlation
on the STR subset, but only a non-significant negative correlation
on the NA subset. However, on the subset with reported GTR, no
correlation can be identified for any feature.

Next, the statistical analysis pipeline for radiomic features of
glioblastoma patients proposed by Kickingereder et al. (2016)
was applied to the different resection status subsets. In the
original publication,MRI acquisitions that are not available in the
BraTS data (e.g., diffusion MRI) and slightly different radiomic
features were used. Nevertheless, the proposed z-score feature
normalization and supervised principal component analysis is
directly applicable to the present dataset, and can give a good
baseline model. Using the proposed model parameters, the
analysis was repeated on the radiomic features described in
section 3.2 in a leave-one-out cross-validation. The results are
compared to the age-only baseline approach for the different
resections status in Table 1. It can be seen that the proposed
supervised PCA approach achieves a higher accuracy and better
mean square error than the age-only approach. In contrast, even
as the age is included in the feature set, this approach fails on the
GTR subset.

4.2. Multivariate Prediction
All methods were cross-validated in a leave-one-out setting, e.g.,
100 samples were used to infer the 101th sample for the GTR
dataset. From the 101 obtained results, the major test statistics
as used in the BraTS challenge were computed: Accuracy (based
on the three different time intervals described in section 1),
mean squared error (MSE), median error, and Spearman rank
correlation. For classifiers, all metrics are computed with respect
to the class value (long-survivors: 824 days, mid-survivors: 379
days, short-survivors: 150 days). For the accuracy, we also
assessed the statistical significance of the result with a binomial
test and provide the p-value. All results can be seen in Table 2.

On the GTR subset, no model achieved better results than the
age-only baseline. However, on the STR subset, most models were
more predictive of survival than the age-only approach.

4.3. Feature Reduction Approaches
Several publications have shown the predictiveness of radiomics
for survival prediction on different datasets (see section 1). On
top, the re-implemented methods could reveal predictiveness of
radiomic features for survival on patients with subtotal resection.
However, these methods, as well as different machine learning
models presented in this paper and as well as the majority of
radiomic approaches submitted in the BraTS challenge 2018
failed on patients that underwent GTR. Thus, in this subsection,
we focus on the GTR patients.

Even as all presented models performed worse than the age-
only regressor, it can also be observed that the results of different
machine models achieve strongly varying results. This could
be due to the high number of radiomic features. Thus, it is
evaluated whether the two proposed feature reduction techniques
can produce more robust outcomes on the GTR dataset.

The presented unsupervised feature subset selection has two
subsequent steps: First, the correlation matrix clustering, which
suppresses pairwise correlated features, reduced the number of
radiomic features from 9,870 to 5,338. Then, the VIF-based
feature reduction, that checks also for multicollinearity, further
reduced the number of features to 94. Combined with the age,
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FIGURE 5 | Linear relationship between previously reported significant features and the different resection status.

TABLE 1 | Age-only linear regression compared to the supervised PCA (sPCA)

model for the different types of resection status.

Model Accuracy p (Binomial) MSE Median err. SpearmanR

GTR

Age-only 0.48 0.00 109966 159 0.47

sPCA 0.27 0.20 148421 208 −0.41

STR

Age-only 0.23 0.40 186772 194 −0.64

sPCA 0.46 0.21 148028 205 0.31

NA

Age-only 0.37 0.49 136866 196 0.29

sPCA 0.26 0.20 159227 231 −0.03

The metrics are explained in section 4.2.

95 features were obtained, which is slightly less than the number
of examples.

On this reduced feature set, hypothesis testing is feasible.
Without any correction for false positives, 5 of the 95 features
would have been considered significant (p <0.05). However, after
Benjamini–Hochberg correction, only the age of the patient
(p = 5.8 × 10−5) and one radiomic feature, the Wavelet LHH
ImageIntensity Kurtosis on the necrotic part in the T2 acquisition
remained significant. All statistically significant features can be
seen in Table 3.

Next, the unsupervised feature selection method based
on PCA is considered. After applying PCA as explained in
section 3.3, 15 principal components representing tumor shape
were kept, 38 for the image intensity statistics features, 55 for the
gray level features, and 98 for the wavelet features. The extracted
features were concatenated together with the age in order to be
used for multivariate prediction.

These features, as well as the features selected by the VIF-
analysis, were separately employed for survival prediction (see
Table 4). Consistent to 4.2, all features were normalized with
a robust scaler, subtracting the median and scaling by the by
the interquartile range, and the same machine learning models
were utilized.

5. DISCUSSION

Previous findings, especially those using volumetric features,
could be reproduced for patients with subtotal resection.
Furthermore, different considered machine learning models also
showed predictiveness of survival. Thus, even as the sample size
was limited, and different machine learning models show varying
results, radiomic features seem to be correlated to patient survival
for patients with subtotal resection.

However, when applying these methods to patients that
underwent GTR, no significant relationship between radiomic
features and overall survival could be identified. In effect, for
this subgroup, the considered previously published and newly
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TABLE 2 | Performance comparison of different machine learning models for the

different types of resection status.

Model Accuracy p (Binomial) MSE Median err. SpearmanR

GTR

Regression 0.43 0.04 1778965427 394 0.11

Lasso 0.44 0.03 3070271 272 0.24

Ridge 0.42 0.07 1765220107 394 0.11

kNN 0.29 0.40 159451 248 −0.04

RFR 0.36 0.46 154447 190 0.14

SVR 0.27 0.20 140088 189 −0.77

SVC 0.41 0.11 175014 229 0.12

Boruta+RFC 0.45 0.02 133497 229 0.36

STR

Regression 0.54 0.03 13748742 271 0.32

Lasso 0.46 0.20 415488 228 0.18

Ridge 0.54 0.03 13754344 272 0.32

kNN 0.50 0.09 173798 211 0.21

RFR 0.58 0.01 144744 125 0.43

SVR 0.23 0.40 175720 157 −0.65

SVC 0.31 0.99 221768 229 −0.43

Boruta+RFC 0.50 0.09 92744 229 0.45

NA

Regression 0.32 0.91 1434873 412 −0.02

Lasso 0.39 0.25 533963 282 0.11

Ridge 0.32 0.91 1435941 412 −0.02

kNN 0.25 0.13 166072 254 −0.18

RFR 0.33 1.00 146459 247 0.20

SVR 0.25 0.13 155827 225 −0.78

SVC 0.40 0.16 169944 229 0.00

Boruta+RF 0.30 0.56 162734 229 −0.13

All features as described in section 3.5 including the age were used as input. For the

age-only approach as comparison, see Table 1.

TABLE 3 | Correlation analysis of VIF—selected features with OS for GTR patients.

Feature Correlation with OS p-value

Age −0.46 0.000001

Wavelet LHH ImageIntensity Kurtosis T2 NEC 0.39 0.00002

Wavelet LLL ngtdm Complexity T2 ET 0.22 0.03

Wavelet LHL ImageIntensity Kurtosis T1CE nec 0.22 0.03

Wavelet LLL ImageIntensity Minimum T1 ET −0.20 0.05

developed radiomic models could not identify any connection
between image based features and survival that went beyond
the predictiveness of patient age. In previously published
findings, the resection status is often not known or not clearly
stated (Gutman et al., 2013; Macyszyn et al., 2015; Kickingereder
et al., 2016; Lao et al., 2017; Li et al., 2017), or radiomic features
are not assessed dependent on resection status (Zhang et al.,
2014; Nie et al., 2019). Patient age, a clinical marker that is not
strongly predictive of survival for patient without total tumor
resection (cf. Figure 4) seems to be the strongest predictor of
patient survival after GTR. One single feature, the Wavelet LHH

TABLE 4 | Performance comparison of different feature selection methods and

machine learning models for GTR patients.

Model Accuracy p (Binomial) MSE Median err. SpearmanR

VIF-BASED FEATURE SUBSET

Regression 0.47 0.01 28154236838 1,112 0.18

Regr. BH 0.46 0.07 109618 148 0.46

Lasso 0.36 0.60 2293591760 557 0.05

Ridge 0.33 1.0 16655918658 672 −0.02

kNN 0.30 0.53 159553 223 −0.08

RFR 0.35 0.75 149299 207 0.15

SVR 0.27 0.20 140181 189 −0.77

SVC 0.40 0.17 194331 445 0.06

FEATURES EXTRACTED by PCA

Regression 0.39 0.17 672193 478 0.03

Lasso 0.36 0.59 688037 559 0.04

Ridge 0.38 0.25 558488 457 0.02

kNN 0.34 0.92 149014 194 0.07

RFR 0.34 0.92 163826 218 0.02

SVR 0.27 0.20 140298 189 −0.79

SVC 0.40 0.17 198655 445 0.05

Regr. BH, Regression on all features that were significant after Benjamini–Hochberg

multiple test correction.

ImageIntensity Kurtosis T2 NEC, was statistically significant
after Benjamini–Hochberg correction. However, after leveraging
this finding in a predictive regression model, no clear benefit
could be observed. Why radiomic features were not predictive
on GTR patients remains unclear. It can only be hypothesized
that survival for STR patients depends on the malignancy of
the primary subtotally resected tumor, while survival for GTR
patients relates to possible metastases that are not directly
dependent on image features of the original tumor.

It can nevertheless be concluded that OS of brain tumor
patients given radiomic images is strongly dependent not only
on the preoperative images themselves. Given a high number
of features and strong influences that cannot be assessed with
preoperative MRI images, survival prediction is an ill-posed
problem on a limited dataset. Researchers need to pay attention
to the problems that arise when using radiomics or other big data
methods on wide data, i.e., datasets with much more features
than observations. Specifically, challenge participants and other
researchers in clinical data analysis need to be fully aware of
overfitting pitfalls, not only on the training set, but even on the
validation dataset.

In radiomics, a very high number of features are extracted.
In our case, a total of 9,871 features were initially considered.
Combined with a limited dataset, as is often the case for medical
applications, problems arise due to the curse of dimensionality.
One problem encountered is the robustness of significance:
The features that are significant on the whole dataset are not
necessarily significant on the training subset, and vice versa,
features identified as significant on a small dataset do not need
to be significant on larger datasets. Although it is impossible to
test all possible combinations of different radiomic features and
machine learning models, we think that our evaluation shows the
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limitations of radiomic analysis on glioblastoma patients with
GTR. To be as robust as possible against such subset biases, we
used extensive cross-validation and determined an orthogonal
subset of features.

Next to the difficulties encountered when applying radiomics
to patients that underwent GTR, we believe one main limitation
in the BraTS challenge 2018 was the small training dataset in
combination with overfitted approaches. In the BraTS setting,
a predefined validation set was released by the organizers,
and could be used by all contributors to evaluate their
algorithms during development. Thus, if contributors test
different algorithms or hyperparameter settings on this left-
out validation set, it has to be taken into account that one
may accidentally overfit on this validation set. Such “result-
peeking” invalidates accuracy scores on this left-out dataset,
i.e. the developed approaches may generalize poorly to other
samples. In fact, it seemed that this actually happened during
the BraTS challenge. As can be seen on the official BraTS
challenge online leaderboard (Bakas et al., 2018a), a total of nine
different teams obtained accuracy scores at least as good as ours
on the validation dataset. However, on the test set, our naïve
algorithm scored the 3rd place out of 26 participants. On this
dataset, segmentation and OS results could not be evaluated by
participants, making this part of the data impossible to overfit.
In contrast to private datasets, algorithm developers cannot—be
it deliberately or accidentally—invalidate the obtained results by
result-peeking in such a setting.

Thus, challenges such as the BraTS challenge are important for
unbiased algorithm comparison and to assess whether findings
from research are robust and can be applied to translational
medicine. Here, it was assessed whether findings in radiomics
of glioblastoma patients can be transferred to patients that
underwent GTR. In this case, classical radiomic features seem not
to be suited for robust results in survival prediction. In contrast,
positive findings, with previously reported approaches as well as
with different machine learning techniques can be reported for
patients with subtotal resection.

Nevertheless, the approaches presented in this paper are not
exhaustive. We do not want to present the new “best” survival
prediction algorithm. Default parameter settings were utilized for
all machine learning techniques, as exhaustive hyperparameter
tuning—as employed by most winning approaches in machine
learning challenges—on a small dataset would invalidate the
results. The approaches presented in this manuscript, especially
those relying on orthogonal feature subset selection, were utilized
to analyze the robustness of radiomic features. They may not
be the “best” algorithms for survival prediction. Thus, C-index,
hazard ratio, or KM analysis were not regarded, as the focus of
this analysis lies on robustness of radiomic features, and not on a
single survival prediction algorithm.

6. CONCLUSION

The BraTS survival prediction challenge focuses on glioblastoma
patients that underwent GTR. This paper shows that adding

information from radiomic features to the age of the patient
does not necessarily improve accuracy for this task. To show
this, we evaluated different published techniques as well as a
sophisticated radiomic feature extraction combined with modern
machine learning techniques. However, no helpful information
could be extracted, and our baseline—a linear regression on the
age of the patient—could not be consistently outperformed on
this limited dataset. In contrast, on patients with a different
resection status—either where the resection status was not
available or the tumor was subtotally resected—previously
published findings could be reproduced, and different machine
learning techniques could extract information predictive for
overall survival.

In order to move from fundamental research to translational
medicine, future research in brain tumor radiomics should
focus on finding novel radiomic features that are applicable
if the patient undergoes surgery. A possible set of features
that was not assessed in this study are location based features.
Location based features are not as established as shape
or texture features in radiomics. However, they could be
more promising for survival prediction even for patients that
underwent GTR, as the position of the tumor in the brain could
influence prognosis.
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Data augmentation is a popular technique which helps improve generalization capabilities

of deep neural networks, and can be perceived as implicit regularization. It plays a pivotal

role in scenarios in which the amount of high-quality ground-truth data is limited, and

acquiring new examples is costly and time-consuming. This is a very common problem in

medical image analysis, especially tumor delineation. In this paper, we review the current

advances in data-augmentation techniques applied to magnetic resonance images

of brain tumors. To better understand the practical aspects of such algorithms, we

investigate the papers submitted to the Multimodal Brain Tumor Segmentation Challenge

(BraTS 2018 edition), as the BraTS dataset became a standard benchmark for validating

existent and emerging brain-tumor detection and segmentation techniques. We verify

which data augmentation approaches were exploited and what was their impact on

the abilities of underlying supervised learners. Finally, we highlight the most promising

research directions to follow in order to synthesize high-quality artificial brain-tumor

examples which can boost the generalization abilities of deep models.

Keywords: MRI, image segmentation, data augmentation, deep learning, deep neural network

1. INTRODUCTION

Deep learning has established the state of the art in many sub-areas of computer vision and
pattern recognition (Krizhevsky et al., 2017), including medical imaging and medical image
analysis (Litjens et al., 2017). Such techniques automatically discover the underlying data
representation to build high-quality models. Although it is possible to utilize generic priors and
exploit domain-specific knowledge to help improve representations, deep features can capture
very discriminative characteristics and explanatory factors of the data which could have been
omitted and/or unknown for human practitioners during the process ofmanual feature engineering
(Bengio et al., 2013).

In order to successfully build well-generalizing deep models, we need huge amount of
ground-truth data to avoid overfitting of such large-capacity learners, and “memorizing” training
sets (LeCun et al., 2016). It has become a significant obstacle which makes deep neural networks
quite challenging to apply in the medical image analysis field where acquiring high-quality ground-
truth data is time-consuming, expensive, and very human-dependent, especially in the context of
brain-tumor delineation from magnetic resonance imaging (MRI) (Isin et al., 2016; Angulakshmi
and Lakshmi Priya, 2017; Marcinkiewicz et al., 2018; Zhao et al., 2019). Additionally, the majority
of manually-annotated image sets are imbalanced—examples belonging to some specific classes
are often under-represented. To combat the problem of limited medical training sets, data
augmentation techniques, which generate synthetic training examples, are being actively developed
in the literature (Hussain et al., 2017; Gibson et al., 2018; Park et al., 2019).
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In this review paper, we analyze the brain-tumor segmentation
approaches available in the literature, and thoroughly investigate
which techniques have been utilized by the participants of the
Multimodal Brain Tumor Segmentation Challenge (BraTS 2018).
To the best of our knowledge, the dataset used for the BraTS
challenge is currently the largest and the most comprehensive
brain-tumor dataset utilized for validating existent and emerging
algorithms for detecting and segmenting brain tumors. Also, it is
heterogeneous in the sense that it includes both low- and high-
grade lesions, and the included MRI scans have been acquired
at different institutions (using different MR scanners). We
discuss the brain-tumor data augmentation techniques already
available in the literature, and divide them into several groups
depending on their underlying concepts (section 2). Such MRI
data augmentation approaches have been applied to augment
other datasets as well, also acquired for different organs (Amit
et al., 2017; Nguyen et al., 2019; Oksuz et al., 2019).

In the BraTS challenge, the participants are given multi-
modal MRI data of brain-tumor patients (as already mentioned,
both low- and high-grade gliomas), alongside the corresponding
ground-truth multi-class segmentation (section 3). In this
dataset, different sequences are co-registered to the same
anatomical template and interpolated to the same resolution
of 1 mm3. The task is to build a supervised learner which is
able to generalize well over the unseen data which is released
during the testing phase. In section 4, we summarize the
augmentation methods reported in 20 papers published in the
BraTS 2018 proceedings. Here, we focused on those papers
which explicitly mentioned that the data augmentation had been
utilized, and clearly stated what kind of data augmentation had
been applied. Although such augmentations are single-modal—
meaning that they operate over theMRI from a single sequence—
they can be easily applied to co-registered series, hence to
augment multi-modal tumor examples. Finally, the paper is
concluded in section 5, where we summarize the advantages
and disadvantages of the reviewed augmentation techniques, and
highlight the promising research directions which emerge from
(not only) BraTS.

2. DATA AUGMENTATION FOR
BRAIN-TUMOR SEGMENTATION

Data augmentation algorithms for brain-tumor segmentation
from MRI can be divided into the following main categories
(which we render in a taxonomy presented in Figure 1): the
algorithms exploiting various transformations of the original
data, including affine image transformations (section 2.1),
elastic transformations (section 2.2), pixel-level transformations
(section 2.3), and various approaches for generating artificial
data (section 2.4). In the following subsections, we review
the approaches belonging to all groups of such augmentation
methods in more detail.

Traditionally, data augmentation approaches have been
applied to increase the size of training sets, in order to allow
large-capacity learners benefit from more representative training
data (Wong et al., 2016). There is, however, a new trend in the

deep learning literature, in which examples are augmented on
the fly (i.e., during the inference), in the test-time1 augmentation
process. In Figure 2, we present a flowchart in which both
training- and test-time data augmentation is shown. Test-time
data augmentation can help increase the robustness of a trained
model by simulating the creation of a homogeneous ensemble,
where (n + 1) models (of the same type, and trained over
the same training data) vote for the final class label of an
incoming test example, and n denotes the number of artificially-
generated samples, elaborated for the test example which is being
classified. The robustness of a deep model is often defined as
its ability to correctly classify previously unseen examples—such
incoming examples are commonly “noisy” or slightly “perturbed”
when confronted with the original data, therefore they are more
challenging to classify and/or segment (Rozsa et al., 2016). Test-
time data augmentation can be exploited for estimating the
level of uncertainty of deep networks during the inference—it
brings new exciting possibilities in the context of medical image
analysis, where quantifying the robustness and deep-network
reliability are crucial practical issues (Wang et al., 2019). This type
of data augmentation can utilize those methods which modify
an incoming example, e.g., by applying affine, pixel-level or
elastic transformations in the case of brain-tumor segmentation
fromMRI.

2.1. Data Augmentation Using Affine Image
Transformations
In the affine approaches, existent image data undergo
different operations (rotation, zooming, cropping, flipping,
or translations) to increase the number of training
examples (Pereira et al., 2016; Liu et al., 2017). Shin et al.
pointed out that such traditional data augmentation techniques
fundamentally produce very correlated images (Shin et al.,
2018), therefore can offer very little improvements for the
deep-network training process and future generalization over the
unseen test data (such examples do not regularize the problem
sufficiently). Additionally, they can also generate anatomically
incorrect examples, e.g., using rotation. Nevertheless, affine
image transformations are trivial to implement (in both 2D and
3D), they are fairly flexible (due to their hyper-parameters), and
are widely applied in the literature. In an example presented in
Figure 3, we can see that applying simple data augmentation
techniques can lead to a significant increase in the number of
training samples.

2.1.1. Flip and Rotation
Random flipping creates a mirror reflection of an original image
along one (or more) selected axis. Usually, natural images can
be flipped along the horizontal axis, which is not the case for
the vertical one because up and down parts of an image are
not always “interchangeable.” A similar property holds for MRI
brain images—in the axial plane a brain has two hemispheres,
and the brain (in most cases) can be considered anatomically
symmetrical. Flipping along the horizontal axis swaps the left

1Test-time augmentation is also referred to as the inference-time and the online

data augmentation in the literature.
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FIGURE 1 | Data augmentation for brain-tumor segmentation—a taxonomy.

FIGURE 2 | Flowchart presenting training- and test-time data augmentation. In the training-time data augmentation approach, we generate synthetic data to increase

the representativeness of a training set (and ultimately build better models), whereas in test-time augmentation, we benefit from the ensemble-like technique, in which

multiple homogeneous classifiers vote for the final class label for an incoming example by classifying this sample and a number of its augmented versions.

FIGURE 3 | Applying affine and pixel-level (discussed in more detail in section 2.3) transformations can help significantly increase the size (and potentially

representativeness) of training sets. In this example, we generate seven new images based on the original MRI (coupled with its ground truth in the bottom row).

hemisphere with the right one, and vice versa. This operation
can help various deep classifiers, especially those benefitting
from the contextual tumor information, be invariant with respect
to their position within the brain which would be otherwise
difficult for not representative training sets (e.g., containing
brain tumors located only in the left or right hemisphere).
Similarly, rotating an image by an angle α around the center
pixel can be exploited in this context. This operation is followed
by appropriate interpolation to fit the original image size. The
rotation operation denoted as R is often coupled with zero-
padding applied to the missing pixels:

R =

(

cosα − sinα

sinα cosα

)

. (1)

2.1.2. Translation
The translation operation shifts the entire image by a given
number of pixels in a chosen direction, while applying padding
accordingly. It allows the network to not become focused on
features present mainly in one particular spatial region, but it
forces the model to learn spatially-invariant features instead. As
in the case of rotation—since the MRI scans of different patients
available in training sets are often not co-registered—translation
of an image by a given number of pixels along a selected axis
(or axes) can create useful and viable images. However, this
procedure may not be “useful” for all deep architectures—
convolutional neural networks exploit convolutions and
pooling operations, which are intrinsically spatially-invariant
(Asif et al., 2018).
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2.1.3. Scaling and Cropping
Introducing scaled versions of the original images into the
training set can help the deep network learn valuable deep
features independently of their original scale. This operation
S can be performed independently in different directions (for
brevity, we have only two dimensions here):

S =

(

sx 0
0 sy

)

, (2)

and the scaling factors are given as sx and sy for the x and y
directions, respectively. As tumors vary in size, scaling can indeed
bring viable augmented images into a training set. Since various
deep architectures require images of the constant size, scaling
is commonly paired with cropping to maintain the original
image dimensions. Such augmented brain-tumor examples may
manifest tumoral features at different scales. Also, cropping can
limit the field of view only to those parts of the image which are
important (Menze et al., 2015).

2.1.4. Shearing
The shear transformation (H) displaces each point in an image
in a selected direction. This displacement is proportional to its
distance from the line which goes through the origin and is
parallel to this direction:

H =

(

1 hx
hy 1

)

, (3)

where hx and hy denote the shear coefficient in the x and
y directions, respectively (as previously, we consider two
dimensions for readability). Although this operation can deform
shapes, it is rarely used to augment medical image data
because we often want to preserve original shape characteristics
(Frid-Adar et al., 2018).

2.2. Data Augmentation Using Elastic
Image Transformations
Data augmentation algorithms based on unconstrained elastic
transformations of training examples can introduce shape
variations. They can bring lots of noise and damage into the
training set if the deformation field is seriously varied—see an
example by Mok and Chung (2018) in which a widely-used
elastic transform produced a totally unrealistic synthetic MRI
scan of a human brain. If the simulated tumors were placed
in “unrealistic” positions, it would likely force the segmentation
engine to become invariant to contextual information and rather
focus on the lesion’s appearance features (Dvornik et al., 2018).
Although there are works which indicate that such aggressive
augmentation may deteriorate the performance of the models
in brain-tumor delineation (Lorenzo et al., 2019), it is still an
open issue. Chaitanya et al. (2019) showed that visually non-
realistic synthetic examples can improve the segmentation of
cardiacMRI and noted that it is slightly counter-intuitive—itmay
have occurred due to the inherent structural and deformation-
related characteristics of the cardiovascular system. Finally,
elastic transformations often benefit from B-splines (Huang

and Cohen, 1996; Gu et al., 2014) or random deformations
(Castro et al., 2018).

Diffeomophic mappings play an important role in brain
imaging, as they are able to preserve topology and generate
biologically plausible deformations. In such transformations, the
diffeomorphism φ (also referred to as a diffeomorphic mapping) is
given in the spatial domain� of a source image I, and transforms
I to the target image J: I ◦ φ

−1(x, 1). The mapping is the solution
of the differential equation:

dφ(x, t)

dt
= v

(

φ(x, t), t
)

, (4)

where φ(x, 0) = x, v is a time-dependent smooth velocity
field, v :� × t → R

d, φ(x, t) is a geodesic path (d denotes
the dimensionality of the spatial domain �), and φ(x, t) :� ×

t → �. In Nalepa et al. (2019a), we exploited the directly
manipulated free-form deformation, in which the velocity vector
fields are regularized using B-splines (Tustison et al., 2009). The
d-dimensional update field δvi1 ,...,id is

δvi1 ,...,id =

N�
∑

c=1

(

∂ξ

∂x

)

c

d
∏

j=1
Bij (x

c
j )

d
∏

j=1
B2ij (x

c
j )

(

N�
∑

c=1

d
∏

j=1
B2ij (x

c
j )

)(

r+1
∑

k1=1

. . .

r+1
∑

kd=1

d
∏

j=1
B2
kj
(xcj )

) , (5)

and B(·) are the B-spline basis functions, N� denotes the
number of pixels in the domain of the reference image, r is the

spline order (in all dimensions), and ∂ξ

∂x is the gradient of the
spatial similarity metric at a pixel c. The B-spline functions act
as regularizers of the solution for each parametric dimension
(Tustison and Avants, 2013).

Examples of brain-tumor images generated using
diffeomorphic registration are given in Figure 4—such
artificially-generated data significantly improved the abilities
of deep learners, especially when combined with affine
transformations, as we showed in Nalepa et al. (2019a).
The generated (I′) images preserve topological information of
the original image data (I) with subtle changes to the tissue.
Diffeomorphic registration may be applied not only to images
exposing anatomical structures (Tward and Miller, 2017).
In Figure 5, we present examples of simple shapes which
underwent this transformation—the topological information is
clearly maintained in the generated images as well.

2.3. Data Augmentation Using Pixel-Level
Image Transformations
There exist augmentation techniques which do not alter
geometrical shape of an image (therefore, all geometrical features
remain unchanged during the augmentation process), but affect
the pixel intensity values (either locally, or across the entire
image). Such operations can be especially useful in medical
image analysis, where different training images are acquired
in different locations and using different scanners, hence can
be intrinsically heterogeneous in the pixel intensities, intensity
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FIGURE 4 | Diffeomorphic image registration applied to example brain images allowed for obtaining visually-plausible generated images. For source (I), target (J), and

artificially generated (I′) images, we also present tumor masks overlayed over the corresponding original images (in yellow; rows with the o subscript), alongside a

zoomed part of a tumor (rows with the z superscript).
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FIGURE 5 | Diffeomorphic image registration applied to basic shapes which underwent simple affine registration (translation) before diffeomorphic mapping. Source

images (I) transformed to match the corresponding targets (J) still clearly expose their spatial characteristics (I′).

FIGURE 6 | Generative adversarial networks are aimed at generating fake data (by a generator; potentially using some available data characteristics) which is

indistinguishable from the original data by the discriminator. Therefore, the generator and discriminator compete with one another.

gradients or “saturation”2. During the pixel-level augmentation,
the pixel intensities are commonly perturbed using either random
or zero-mean Gaussian noise (with the standard deviation
corresponding to the appropriate data dimension), with a
given probability (the former operation is referred to as the
random intensity variation). Other pixel-level operations include
shifting and scaling of pixel-intensity values (and modifying the
image brightness), applying gamma correction and its multiple
variants (Agarwal and Mahajan, 2017; Sahnoun et al., 2018),
sharpening, blurring, and more (Galdran et al., 2017). This kind
of data augmentation is often exploited for high-dimensional
data, as it can be conveniently applied to selected dimensions
(Nalepa et al., 2019b).

2.4. Data Augmentation by Generating
Artificial Data
To alleviate the problems related to the basic data augmentation
approaches (including the problem of generating correlated data
samples), various approaches toward generating artificial data
(GAD) have been proposed. Generative adversarial networks
(GANs), originally introduced in Goodfellow et al. (2014), are
being exploited to augment medical datasets (Han et al., 2019;
Shorten and Khoshgoftaar, 2019). The main objective of a GAN
(Figure 6) is to generate a new data example (by a generator)
which will be indistinguishable from the real data by the

2These variations can be however alleviated by appropriate data standardization.

discriminator (the generator competes with the discriminator,
and the overall optimization mimics the min-max game). Mok
and Chung proposed a new GAN architecture which utilizes a
coarse-to-fine generator whose aim is to capture the manifold
of the training data and generate augmented examples (Mok
and Chung, 2018). Adversarial networks have been also used
for semantic segmentation of brain tumors (Rezaei et al.,
2017), brain-tumor detection (Varghese et al., 2017), and image
synthesis of different modalities (Yu et al., 2018). Although
GANs allow us to introduce invariance and robustness of deep
models with respect to not only affine transforms (e.g., rotation,
scaling, or flipping) but also to some shape and appearance
variations, convergence of the adversarial training and existence
of its equilibrium point remain the open issues. Finally, there
exist scenarios in which the generator renders multiple very
similar examples which cannot improve the generalization
of the system—it is known as the mode collapse problem
(Wang et al., 2017).

An interesting approach for generating phantom image data
was exploited in Gholami et al. (2018), where the authors utilized
amulti-species partial differential equations (PDE) growthmodel
of a tumor to generate synthetic lesions. However, such data
does not necessarily follow the correct intensity distribution
of a real MRI, hence it should be treated as a separate
modality, because using the artificial data which is sampled from
a very different distribution may adversely affect the overall
segmentation performance by “tricking” the underlying deep
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model (Wei et al., 2018). The tumoral growth model itself
captured the time evolution of enhancing and necrotic tumor
concentrations together with the edema induced by a tumor.
Additionally, the deformation of a lesion was simulated by
incorporating the linear elasticity equations into the model. To
deal with the different data distributions, the authors applied
CycleGAN (Zhu et al., 2017) for performing domain adaptation
(from the generated phantom data to the real BraTS MRI scans).
The experimental results showed that the domain adaptation was
able to generate images which were practically indistinguishable
from the real data, therefore could be safely included in the
training set.

A promising approach of combining training samples using
their linear combinations (referred to as mixup) was proposed
by Zhang et al. (2017), and further enhanced for medical
image segmentation by Eaton-Rosen et al. in their mixmatch
algorithm (Eaton-Rosen et al., 2019), which additionally
introduced a technique of selecting training samples that
undergo linear combination. Since the medical image datasets
are often imbalanced (with the tumorous examples constituting
the minority class), training patches with highest “foreground
amounts” (i.e., the number of pixels annotated as tumorous)
are combined with those with the lowest concentration of
foreground. The authors showed that their approach can increase
performance in medical-image segmentation tasks, and related
its success to the mini-batch training. It is especially relevant in
the medical-image analysis, because the sizes of input scans are
usually large, hence the batches are small to keep the training
memory requirements feasible in practice. Such data-driven
augmentation techniques can also benefit from growing ground-
truth datasets (e.g., BraTS) which manifest large variability
of brain tumors, to generate even more synthetic examples.
Also, they could be potentially applied at test time to build an
ensemble-like model, if a training patch/image which matches
the test image being classified was efficiently selected from the
training set.

3. DATA

In this work, we analyzed the approaches which were exploited
by the BraTS 2018 participants to segment brain tumors from
MRI (45 methods have been published, Crimi et al., 2019),
and verified which augmentation scenarios were exploited in
these algorithms. All of those techniques have been trained over
the BraTS 2018 dataset consisting of MRI-DCE data of 285
patients with diagnosed gliomas: 210 patients with high-grade
glioblastomas (HGG), and 75 patients with low-grade gliomas
(LGG), and validated using the validation set of 66 previously
unseen patients (both LGG and HGG, however the grade has not
been revealed) (Menze et al., 2015; Bakas et al., 2017a,b,c). Each
study was manually annotated by one to four expert readers. The
data comes in four co-registered modalities: native pre-contrast
(T1), post-contrast T1-weighted (T1c), T2-weighted (T2), and T2
Fluid Attenuated Inversion Recovery (FLAIR). All the pixels have
one of four labels attached: healthy tissue, Gd-enhancing tumor
(ET), peritumoral edema (ED), the necrotic and non-enhancing

tumor core (NCR/NET). The scans were skull-stripped and
interpolated to the same shape (155, 240, 240 with the voxel size
of 1 mm3).

Importantly, this dataset manifests very heterogeneous image
quality, as the studies were acquired across different institutions,
and using different scanners. On the other hand, the delineation
procedure was clearly defined which allowed for obtaining
similar ground-truth annotations across various readers. To this
end, the BraTS dataset—as the largest, most heterogeneous,
and carefully annotated set—has been established as a standard
brain-tumor dataset for quantifying the performance of existent
and emerging detection and segmentation approaches. This
heterogeneity is pivotal, as it captures a wide range of tumor
characteristics, and the models trained over BraTS are easily
applicable for segmenting other MRI scans (Nalepa et al., 2019).

To show this desirable feature of the BraTS set
experimentally, we trained our U-Net-based ensemble
architecture (Marcinkiewicz et al., 2018) using (a) BraTS
2019 training set (exclusively FLAIR sequences) and (b) our set
of 41 LGG (WHO II) brain-tumor patients who underwent the
MR imaging with a MAGNETOM Prisma 3T system (Siemens,
Erlangen, Germany) equipped with a maximum field gradient
strength of 80 mT/m, and using a 20-channel quadrature head
coil. The MRI sequences were acquired in the axial plane with
a field of view of 230 × 190 mm, matrix size 256 × 256 and 1
mm slice thickness with no slice gap. In particular, we exploited
exclusively FLAIR series with TE = 386 ms, TR = 5,000 ms, and
inversion time of 1,800 ms for segmentation of brain tumors.
These scans underwent the same pre-processing as applied in the
case of BraTS, however they were not segmented following
the same delineation protocol, hence the characteristics of the
manual segmentation likely differ across (a) and (b). The
4-fold cross-validation showed that although the deep models
trained over (a) and (b) gave the statistically different results
at p < 0.001, according to the two-tailed Wilcoxon test3, the
ensemble of models trained over (a) correctly detected 71.4%
(5/7 cases) of brain tumors in the WHO II test dataset, which
included seven patients kept aside while building an ensemble,
with the average whole-tumor DICE of 0.80, where DICE is
given as:

DICE(A, B) =
2 · |A ∩ B|

|A| + |B|
, (6)

where A and B are two segmentations, i.e., manual and
automated, 0 ≤ DICE ≤ 1, and DICE = 1 means the perfect
segmentation score. On the other hand, a deep model trained
over the WHO II training set and used for segmenting the test
WHO II cases detected 85.7% tumors (6/7 patients) with the
average whole-tumor DICE = 0.84. This tiny experiment shows
that the segmentation engines trained over BraTS can capture
tumor characteristics which are manifested in MRI data acquired
and analyzed using different protocols, and allow us to obtain
high-quality segmentation. Interestingly, if we train our ensemble
over the combined BraTS 2019 and WHO II training sets, we

3We tested the null hypothesis saying that applying the models trained exclusively

over the BraTS or our WHO II datasets leads to the same-quality segmentation.
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FIGURE 7 | Two example low- and high-grade glioma patients from the BraTS 2018 dataset: red—GD-enhancing tumor (ET), green—peritumoral edema (ED), and

blue—necrotic and non-enhancing tumor core (NCR/NET); (A–D) show original images, whereas (A’–D’) present overlaid ground-truth masks.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 December 2019 | Volume 13 | Article 83109

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Nalepa et al. Data Augmentation for Brain-Tumor Segmentation: A Review

TABLE 1 | Data augmentation techniques applied in the approaches validated within the BraTS 2018 challenge framework.

References Model Flip Rot. Trans. Scale Shear Elastic GAD Pixel-wise

Albiol et al., 2019 VGG, Inception, Dense 3D affine transformations

Benson et al., 2018* CNN (encoder-decoder) Yes Random

Carver et al., 2018 U-Net Yes

Chandra et al., 2018 V-Net, ResNet-18, FC-CRF Yes Yes

Dai et al., 2018 Domain-adapted U-Net Yes

Feng et al., 2018 U-Net Yes

Gholami et al., 2018* U-Net PDE

Isensee et al., 2018 U-Net Yes Yes Yes Random Gamma

Kao et al., 2018 DeepMedic, 3D U-Net Yes

Kermi et al., 2018 U-Net Yes Yes Yes

Lachinov et al., 2018* Cascaded U-Net Yes B-spline Gaussian

Ma and Yang, 2018 3D CNN Yes Yes Yes

McKinley et al., 2018 Dense CNN Yes Yes Shift, scale

Mehta and Arbel, 2018 U-Net Yes Yes Yes Yes

Myronenko, 2018 CNN (encoder-decoder) Yes Yes Shift

Nuechterlein and Mehta, 20183D-ESPNet Yes Yes

Puybareau et al., 2018 VGG-16 Yes Yes

Rezaei et al., 2018† Voxel-GAN Yes Yes Gaussian

Sun et al., 2018 CNN, DFKZ, 3D CNN Yes Gaussian

Wang et al., 2018*† CNN Yes Yes Yes Random

Number of methods utilizing this augmentation→15 8 2 9 1 2 1 8

Percentage (%) of methods utilizing this augmentation→75 40 10 45 5 10 5 40

The top-performing techniques (over the unseen test set) are annotated with green.

*The authors verified the impact of data augmentation of the generalization abilities of their deep models.
†The authors used both training- and test-time data augmentation.

will end up having the correct detection of 85.7% tumors (6/7
cases) with the average whole-tumor DICE of 0.76. We can
appreciate the fact that we were able to improve the detection,
but the segmentation quality slightly dropped, showing that the
detected case was challenging to segment. Finally, it is worth
mentioning that this experiment sheds only some light on the
effectiveness of applying the deep models (or other data-driven
techniques) trained over BraTS for analyzing different MRI
brain images. The manual delineation protocols were different,
and the lack of inter-rater agreement may play pivotal role
in quantifying automated segmentation algorithms over such
differently acquired and analyzed image sets—it is unclear if
the differences result from the inter-rater disagreement of the
incorrect segmentation (Hollingworth et al., 2006; Fyllingen
et al., 2016; Visser et al., 2019).

3.1. Example BraTS Images
Example BraTS 2018 images are rendered in Figure 7 (two
low-grade and two high-grade glioma patients), alongside the
corresponding multi-class ground-truth annotations. We can
appreciate that different parts of the tumors are manifested in
different modalities—e.g., necrotic and non-enhancing tumor
core is typically hypo-intense in T1-Gd when compared to
T1 (Bakas et al., 2018). Therefore, multi-modal analysis appears
crucial to fully benefit from the available image information.

4. BRAIN-TUMOR DATA AUGMENTATION
IN PRACTICE

4.1. BraTS 2018 Challenge
The BraTS challenge is aimed at evaluating the state-of-
the-art approaches toward accurate multi-class brain-tumor
segmentation from MRI. In this work, we review all published
methods which were evaluated within the framework of
the BraTS 2018 challenge—although 61 teams participated
in the testing phase (Bakas et al., 2018), only 45 methods
were finally described and published in the post-conference
proceedings (Crimi et al., 2019). We verify which augmentation
techniques were exploited to help boost generalization abilities
of the proposed supervised learners. We exclusively focus on 20
papers (44% of all manuscripts) in which the authors explicitly
stated that the augmentation had been used and report the type
of the applied augmentation.

In Table 1, we summarize all investigated brain-tumor
segmentation algorithms, and report the deep models utilized in
the corresponding works alongside the augmentation techniques.
In most of the cases, the authors followed the cross-validation
scenario, and divided the training set into multiple non-
overlapping folds. Then, separate models were trained over
such folds, and the authors finally formed an ensemble of
heterogeneous classifiers (trained over different training data) to
segment previously unseen test brain-tumor images. Also, there
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FIGURE 8 | The DICE values: (A) whote-tumor (WT), (B) tumor core (TC), and (C) enhancing tumor (ET), obtained using the investigated techniques over the BraTS

2018 validation set.
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TABLE 2 | The impact of applying data augmentation on the average DICE scores.

Without augmentation With augmentation Change (in %)

References WT TC ET WT TC ET 1WT 1TC 1ET

Benson et al., 2018 0.82 0.64 0.59 0.82 0.61 0.56 0 −5 −5

Gholami et al., 2018 0.89 0.80 0.74 0.91 0.82 0.79 +2 +3 +7

Lachinov et al., 2018* 0.91 0.84 0.77 0.91 0.84 0.78 0 0 +1

Wang et al., 2018 0.90 0.85 0.79 0.90 0.86 0.80 0 +1 +1

For the methods reported by Lachinov et al. (2018) and Wang et al. (2018), we analyzed the best-performing models.

*The authors verified the impact of data augmentation over the training set.

TABLE 3 | The impact of applying data augmentation on the average Hausdorff distance values (in mm).

Without augmentation With augmentation Change (in %)

References WT TC ET WT TC ET 1WT 1TC 1ET

Benson et al., 2018 94.28 130.70 18.12 13.57 17.95 14.29 −86 −86 −21

Wang et al., 2018 5.38 6.61 3.34 6.18 6.37 3.13 +26 −4 −6

For the method reported by Wang et al. (2018), we analyzed the best-performing models. Note that Gholami et al. (2018) and Lachinov et al. (2018) did not present the Hausdorff

distances obtained using their approaches.

TABLE 4 | The fully convolutional neural networks proposed in Lorenzo et al. (2019) have been trained using a number of datasets with different preprocessing

and augmentations.

Setup→ A, A’ B, B’ C, C’ D, D’ E, E’ F, F’ G, G’ H, H’ I, I’ J, J’ K, K’ L, L’ M, M’ N, N’ O, O’

Feature centering No Yes Yes Yes Yes No Yes Yes Yes Yes No Yes Yes Yes Yes

Vertical flip No No Yes No Yes No No Yes No Yes No No Yes No Yes

Horizontal flip No No No Yes Yes No No No Yes Yes No No No Yes Yes

Max. rotation (∡max) 0 0 0 0 0 45 45 45 45 45 90 90 90 90 90

Augmentation factor 1, 2 1, 2 2, 4 2, 4 4, 8 2, 4 2, 4 4, 8 4, 8 8, 16 2, 4 2, 4 4, 8 4, 8 8, 16

In the prime versions, we applied elastic deformations. This table comes from our previous paper (Lorenzo et al., 2019).

are approaches, e.g., by Albiol et al. (2019), Chandra et al. (2018),
or Sun et al. (2018), in which a variety of deep neural architectures
were used.

In the majority of investigated brain-tumor segmentation
techniques, the authors applied relatively simple training-time
data augmentation strategies—the combination of training- and
test-time augmentation was used only in two methods (Rezaei
et al., 2018;Wang et al., 2018). In 75% of the analyzed approaches,
random flipping was executed to increase the training set
size and provide anatomically correct brain images4. Similarly,
rotating and scaling MRI images was applied in 40% and
45% of techniques, respectively. Since modern deep network
architectures are commonly translation-invariant, this type of
affine augmentation was used only in two works. Although
other augmentation strategies were not as popular as easy-
to-implement affine transformations, it is worth noting that
the pixel-wise operations were utilized in all of the top-
performing techniques (the algorithms by Myronenko (2018),

4Note that we do not count the algorithm proposed by Albiol et al. (2019), because

the authors were not very specific about their augmentation strategies.

Isensee et al. (2018), and McKinley et al. (2018) achieved the
first, second, and third place across all segmentation algorithms5,
respectively). Additionally, Isensee et al. (2018) exploited elastic
transformations in their aggressive data augmentation procedure
which significantly increased the size and representativeness of
their training sets, and ultimately allowed for outperforming
a number of other learners. Interestingly, the authors showed
that the state-of-the-art U-Net architecture can be extremely
competitive with other (much deeper and complex) models
if the data is appropriately curated. It, in turn, manifests the
importance of data representativeness and quality in the context
of robust medical image analysis.

In Figure 8, we visualize the DICE scores obtained using
almost all investigated methods (Puybareau et al., 2018; Rezaei
et al., 2018 did not report the results over the unseen BraTS 2018
validation set, therefore these methods are not included in the
figure). It is worth mentioning that the trend is fairly coherent for
all classes (whole tumor, tumor core, and enhancing tumor), and
the best-performing methods by Isensee et al. (2018), McKinley

5For more detail on the validation and scoring procedures, see Bakas et al. (2018).
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et al. (2018), and Myronenko (2018) consistently outperform
the other techniques in all cases. Although the success of these
approaches obviously lies not only in the applied augmentation
techniques, it is notable that the authors extensively benefit from
generating additional synthetic data.

Albeit data augmentation is introduced in order to improve
the generalization capabilities of supervised learners, this impact
was verified only in four BraTS 2018 papers (Benson et al.,
2018; Gholami et al., 2018; Lachinov et al., 2018; Wang et al.,
2018). Gholami et al. (2018) showed that their PDE-based
augmentation delivers very significant improvement in the DICE
scores obtained for segmenting all parts of the tumors in the
multi-class classification. The same performance boost (in the
DICE values obtained for each class) was reported by Lachinov
et al. (2018). Finally, Wang et al. (2018) showed that the proposed
test-time data augmentation led to improving the performance of
their convolutional neural networks.

In Table 2, we gathered the DICE scores obtained with
and without the corresponding data augmentation, alongside
the change in DICE (reported in %; the larger the DICE
score becomes, the better segmentation has been obtained).
Interestingly, training-time data augmentation appeared to be
adversely affecting the performance of the algorithm presented
by Benson et al. (2018). On the other hand, the authors showed
that the Hausdorff distance, being the maximum distance of

TABLE 5 | Five best-performing configurations of our fully convolutional neural

network according to the Friedman’s test (at p < 0.05) taking into account the

results elaborated for the WHO II validation set (Lorenzo et al., 2019).

Variant→ I E O E’ J’

Rank 4.75 5.50 6.00 7.25 7.75

FIGURE 9 | Exploiting various augmentations and coupling them into an augmentation tree allow us to generate multiple versions of an original patch (or image) which

may be included in a training set. This figure is inspired by Lorenzo et al. (2019).
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all points from the segmented lesion to the corresponding
nearest point of the ground-truth segmentation (Sauwen
et al., 2017), significantly dropped, hence the maximum
segmentation error quantified by this metric was notably
reduced (the smaller the Hausdorff distance becomes, the
better segmentation has been elaborated; Table 3). Test-time
data augmentation exploited by Wang et al. (2018) not only
decreased DICE for the whole-tumor segmentation, but also
caused the increase of the correspoding Hausdorff distance.

TABLE 6 | The results, both (a) average, and (b) median DICE over our clinical

MRI data of low-grade glioma (WHO II) patients in the whole-tumor segmentation

task, for different augmentation scenarios.

Augmentation Training Validation Test

(a)

Without 0.823 0.743 0.763

Flip 0.836 0.790 0.785

DIR 0.858 0.777 0.773

DIR + Flip 0.865 0.808 0.800

(b)

Without 0.823 0.779 0.785

Flip 0.838 0.808 0.797

DIR 0.859 0.802 0.792

DIR + Flip 0.867 0.816 0.809

The results come from our paper (Nalepa et al., 2019a). The best results are boldfaced.

Therefore, applying it in the WT segmentation scenario led
to decreasing the abilities of the underlying models. Overall,
the vast majority of methods neither report nor analyze
the real impact of the incorporated augmentation techniques
on the classification performance and/or inference time of
their deep models. Although we believe the authors did
investigate the advantages (and disadvantages) of their data
generation strategies (either experimentally or theoretically),
data augmentation is often used a standard tool which is
applied to any difficult data (e.g., imbalanced, with highly
under-represented classes).

4.2. Beyond the BraTS Challenge
Although practically all brain-tumor segmentation algorithms
which emerge in the recent literature have been tested over
the BraTS datasets, we equipped our U-Nets with a battery of
augmentation techniques (summarized in Table 4) and verified
their impact over our clinical MRI data in Lorenzo et al.
(2019). In this experiment, we have focused on the whole-
tumor segmentation, as it was an intermediate step in the
automated dynamic contrast-enhanced MRI analysis, in which
perfusion parameters have been extracted for the entire tumor
volume. Additionally, this dataset was manually delineated by a
reader (8 years of experience) who highlighted the whole-tumor
areas only.

FIGURE 10 | Examples from our clinical dataset segmented using our deep network trained in the DIR+Flip setting: (A–C) are original images, (D–F) are

corresponding segmentations. Green color represents true positives, blue—false negatives, and red—false positives.
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We executed multi-step augmentation by applying both affine
and elastic deformations of tumor examples, and increased the
cardinality of our training sets up to 16×. In Figure 9, we can
observe how executing simple affine transformations leads to
new synthetic image patches. Since various augmentation
approaches may be utilized at different depths of this
augmentation tree, the number of artificial examples can
be significantly increased. The multi-fold cross-validation
experiments showed that introducing rotated training examples
was pivotal to boost the generalization abilities of underlying
deep models. To verify the statistical importance of the results,
we executed the Friedman’s ranking tests which revealed that
the horizontal flip with additional rotation is crucial to build
well-generalizing deep learners in the patch-based segmentation
scenario (Table 5).

Similarly, we applied diffeomorphic image registration
(DIR) coupled with a recommendation algorithm6 to select
training image pairs for registration in the data augmentation
process (Nalepa et al., 2019a). The proposed augmentation was
compared with random horizontal flipping, and the experiments
indicated that the combined approach leads to statistically
significant (Wilcoxon test at p < 0.01) improvements in DICE
(Table 6). In Figure 10, we have gathered example segmentations
obtained using our DIR+Flip deep model, alongside the
corresponding DICE values. Although the original network,
trained over the original training set would correctly detect and
segment large tumors (Figures 10A,B), it failed for relatively
small lesions which were under-represented in the training set
(Figure 10C). Similarly, synthesizing artificial training examples
helped improving the performance of our models in the case
of brain tumors located in the brain areas which have not
been originally included in the dataset (by applying rotation
and flipping).

5. CONCLUSION

In this paper, we reviewed the state-of-the-art data augmentation
methods applied in the context of segmenting brain tumors
from MRI. We carefully investigated all BraTS 2018 papers
and analyzed data augmentation techniques utilized in
these methods. Our investigation revealed that the affine
transformations are still the most widely-used in practice, since
they are trivial to implement and can elaborate anatomically-
correct brain-tumor examples. There are, however, augmentation
methods which combine various approaches, also including
elastic transformations. A very interesting research direction
encompasses algorithms which can generate artificial images
(e.g., based on the tumoral growth models) that not necessarily
follow real-life data distribution, but can be followed by
other techniques to ensure correctness of such phantoms.

6We used a recommendation algorithm for selecting source-target image pairs

that undergo registration. Such pairs should contain the training images which

capture lesions positioned in the same or close part of the brain, as the totally

different images can easily render unrealistic brain-tumor examples. A potential

drawback of this recommendation technique is its time complexity which amounts

toO(||T||2), where ||T|| is the cardinality of the original training set.

The results showed that data augmentation was pivotal in the
best-performing BraTS algorithms, and Isensee et al. (2018)
experimentally proved that well-known and widely-used fully-
convolutional neural networks can outperform other (perhaps
much more deeper and complex) learners, if the training
data is appropriately cleansed and curated. It clearly indicates
the importance of introducing effective data augmentation
methods for medical image data, which benefit from affine
transformations (in 2D and 3D), pixel-wise modifications
and elastic transform to deal with the problem of limited
ground-truth data. In Table 7, we gather the advantages and
disadvantages of all groups of brain-tumor data augmentation
techniques analyzed in this review. Finally, these approaches
can be easily applied in both single- and multi-modal scans,

TABLE 7 | The pros and cons of state-of-the-art brain-tumor data

augmentation algorithms.

Transformation of original data

Advantages Disadvantages

Affine transformations

• Easy to implement and

understand

• Produce correlated images

• Operate in real-time due to low

time complexity

• Easily generate anatomically

incorrect examples (*)

• Applicable in training- and

test-time

• Deliver invariance with respect

to the lesion position, scale, and

rotation

Elastic transformations

• Can be applicable in training-

and test-time

• Not trivial to implement

• Can introduce variations in

shape

• Often have high time complexity

• Easily generate anatomically

incorrect examples (*)

Pixel-wise transformations

• Easy to implement and

understand

• Cannot introduce changes in

shape

• Operate in real-time due to low

time complexity

• Applicable in training- and

test-time

• Can simulate different

acquisition scenarios

Generation of artificial data

• Can synthesize realistic

examples

• (Very) high time complexity

• (Potentially) applicable in

test-time

• GANs applicable in

training-time only

• Can introduce invariance with

respect to affine transformations

and appearance variations

• Can easily render multiple

similar examples (mode collapse

problem)

*The real impact of incorporating unrealistic examples into training sets still

needs investigation.
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FIGURE 11 | Anatomically incorrect brain images may still manifest valid tumor features—the impact of including such examples (which may be easily rendered by

various data-generation augmentation techniques) into training sets for brain-tumor detection and segmentation tasks is yet to be revealed.

usually by synthesizing artificial examples separately for each
image modality.

Although data augmentation became a pivotal part of virtually
all deep learning-powered methods for segmenting brain lesions
(due to the lack of very large, sufficiently heterogeneous
and representative ground-truth sets, with BraTS being an
exception), there are still promising and unexplored research
pathways in the literature.We believe that hybridizing techniques
from various algorithmic groups, introducing more data-driven
augmentations, and applying them at training- and test-time
can further boost the performance of large-capacity learners.
Also, investigating the impact of including not necessarily
anatomically correct brain-tumor scans into training sets
remains an open issue (see the examples of anatomically incorrect
brain images which still manifest valid tumor characteristics
in Figure 11).
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Glioblastoma, the most frequent primary malignant brain neoplasm, is genetically

diverse and classified into four transcriptomic subtypes, i. e., classical, mesenchymal,

proneural, and neural. Currently, detection of transcriptomic subtype is based on

ex vivo analysis of tissue that does not capture the spatial tumor heterogeneity. In

view of accumulative evidence of in vivo imaging signatures summarizing molecular

features of cancer, this study seeks robust non-invasive radiographic markers

of transcriptomic classification of glioblastoma, based solely on routine clinically-

acquired imaging sequences. A pre-operative retrospective cohort of 112 pathology-

proven de novo glioblastoma patients, having multi-parametric MRI (T1, T1-Gd,

T2, T2-FLAIR), collected from the Hospital of the University of Pennsylvania were

included. Following tumor segmentation into distinct radiographic sub-regions, diverse

imaging features were extracted and support vector machines were employed

to multivariately integrate these features and derive an imaging signature of

transcriptomic subtype. Extracted features included intensity distributions, volume,

morphology, statistics, tumors’ anatomical location, and texture descriptors for each

tumor sub-region. The derived signature was evaluated against the transcriptomic

subtype of surgically-resected tissue specimens, using a 5-fold cross-validation

method and a receiver-operating-characteristics analysis. The proposed model was

71% accurate in distinguishing among the four transcriptomic subtypes. The

accuracy (sensitivity/specificity) for distinguishing each subtype (classical, mesenchymal,

proneural, neural) from the rest was equal to 88.4% (71.4/92.3), 75.9% (83.9/72.8),

82.1% (73.1/84.9), and 75.9% (79.4/74.4), respectively. The findings were also replicated

in The Cancer Genomic Atlas glioblastoma dataset. The obtained imaging signature

for the classical subtype was dominated by associations with features related to edge
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sharpness, whereas for the mesenchymal subtype had more pronounced presence

of higher T2 and T2-FLAIR signal in edema, and higher volume of enhancing tumor

and edema. The proneural and neural subtypes were characterized by the lower

T1-Gd signal in enhancing tumor and higher T2-FLAIR signal in edema, respectively.

Our results indicate that quantitative multivariate analysis of features extracted from

clinically-acquired MRI may provide a radiographic biomarker of the transcriptomic profile

of glioblastoma. Importantly our findings can be influential in surgical decision-making,

treatment planning, and assessment of inoperable tumors.

Keywords: transcriptomic classification, glioblastoma, multivariate analysis, brain tumors classification,

biomarkers

INTRODUCTION

Glioblastoma is the most frequent primary malignant brain
tumor with grim prognosis, despite aggressive combination
of therapies (Stupp et al., 2017), and is characterized by
inter- and intra-patient heterogeneity at radiographic, histologic,
and molecular fronts, thereby providing opportunities for
sub-classification, prognostication, and adoption of targeted
therapeutic approaches (Aum et al., 2014; Lemée et al., 2015).

There is mounting evidence that different glioblastoma
patients show different levels of sensitivity to therapeutic
approaches depending on their distinct genetic characterization.
It has been suggested earlier that glioblastoma should not be

considered a single disease, but rather should be categorized

into four transcriptomic subtypes, i.e., classical, mesenchymal,

proneural, and neural (Verhaak et al., 2010). These subtypes
present very distinct molecular biomarkers such as collective

loss in chromosome 10 and amplification of chromosome 7
in classical subtype, largest occurrence of focal hemizygous
deletions of a region at 17q11.2, encompassing NF1 gene, in
mesenchymal subtype, aberrations in PDGFRA and mutations
in IDH1 in proneural subtype, and presence of GABRA1, SYT1,
NEFL, and SLC12A5 in neural subtype (Verhaak et al., 2010). In a
recent study by Park et al. it has been shown that subtype-specific
genetic aberrations have potential to serve as predictive markers
and therapeutic targets (Park et al., 2019).

The determination of themolecular profile of the tumors leads
to personalized diagnosis and treatment, as different treatment
options may be considered depending on the characteristics of
each subtype (Phillips et al., 2006; Verhaak et al., 2010; Bhat
et al., 2011). Up until now, the assessment of transcriptomic
subtypes was done via molecular profiling of surgical or biopsy
tissue. However, such assessment has inherent limitations of:
(i) tissue sampling error that sometimes leads to missing the
tumor mutation, and (ii) inability to acquire multiple specimens
over the course of the disease due to invasiveness of the
tissue collection procedure, thereby leading to the failure in
determining molecular subtype of the tumor over the course of
the treatment.

Analysis of multi-parametric magnetic resonance imaging
(mpMRI) data via advanced pattern analytics methods has
been progressively shown to provide rich classifications
of glioblastoma and its surrounding brain tissue, and has

helped identifying relationships between MRI biomarkers and
transcriptomic subtypes in gliomas (Gutman et al., 2013; Naeini
et al., 2013; Gevaert et al., 2014; Pisapia et al., 2015; Macyszyn
et al., 2016; Khened et al., 2019). For instance, the proneural
subtype has shown lower levels of contrast enhancement;
the mesenchymal subtype has presented lower levels of non-
enhanced tumors and intensity in peritumoral edema region
(Gutman et al., 2013); the classical subtype has associated
necrosis and sharped edges of the edema region (Gevaert et al.,
2014). A model to predict the mesenchymal subtype was also
proposed (Naeini et al., 2013).

However, this classification scheme has been difficult to
translate into clinical practice due to several complicating factors.
First, existing literature has found associations between imaging
features and individual subtypes (Naeini et al., 2013). Second,
most studies to date have used basic imaging sequences only
or have used very few hand-crafted imaging features, failing to
leverage the power of computationally extracting and selecting
imaging features (recently called radiomics), and analyzing
them through advanced pattern analysis methods to build a
more powerful predictive model (Gutman et al., 2013; Gevaert
et al., 2014; Macyszyn et al., 2016). As literature increasingly
acknowledges the tumor spatial and temporal heterogeneity,
there is a parallel focus on extracting extensive features of the
tumor and its surrounding peritumoral region toward providing
a better characterization of patients. Furthermore, analysis of
advancedmpMRI data can providemore details, whichmight not
be available in conventional imaging.

This study aims to determine the transcriptomic subtypes
of de novo glioblastoma patients by multivariately assessing
imaging features from routine clinically-acquired scans,
reflecting tumor biological properties such as angiogenesis,
proliferation, cellularity, and peritumoral infiltration. Identifying
these transcriptomic subtypes may allow enrollment of patients
into targeted clinical trials, longitudinal profiling of the tumor,
and assessment of treatment response.

MATERIALS AND METHODS

Study Setting and Data Source
This study evaluates a group of 112 primary glioblastoma
patients, diagnosed between 2006 and 2013 at the Hospital of the
University of Pennsylvania (HUP), having pre-operative mpMRI
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(T1, T2, T1-Gd, T2-FLAIR). A subset of these patients (n =

89) had additional diffusion tensor imaging (DTI) and dynamic
susceptibility contrast-enhanced (DSC) MRI imaging available.
The proposed classification models were developed on n =112
patients using conventional imaging only (T1, T2, T1-Gd, T2-
FLAIR), whereas the subset of the patients (n = 89) was used to
further analyze the imaging properties of different subtypes. The
overall analysis was carried out on HUP dataset, and the findings
were then replicated independently in The Cancer Genomic
Atlas glioblastoma (TCGA-GBM) dataset (Clark et al., 2013;
Scarpace et al., 2013) (n = 60), part of the International Brain
Tumor Segmentation (BraTS) challenge dataset (Menze et al.,
2015; Bakas et al., 2018), having the same set of pre-operative
mpMRI. Expert manual segmentations for this dataset were
downloaded from The Cancer Imaging Archive (TCIA) website
(Bakas et al., 2017a,b). The study population was uniformly
distributed and did not have any statistically significant difference
based on clinical and demographical factors. All experiments
were approved by the Institutional Review Board (IRB) of
the University of Pennsylvania (approval no: 706564) and
written informed consent was obtained from all patients. All
experiments were carried out in accordance with the guidelines
and regulations of the approved IRB.

Transcriptomic Subtyping
After pathologic confirmation of glioblastoma diagnosis, all
tumors underwent subtyping into one of the four transcriptomic
subtypes (classical = 21, mesenchymal = 31, proneural = 26,
neural = 34). For this subtyping, we used an isoform-level
assay classifier initially constructed using exon array data from
glioblastoma samples in TCIA (Verhaak et al., 2010). It was then
translated into a clinically applicable platform, where expression
of desired transcripts was measured using reverse transcriptase–
quantitative polymerase chain reaction (RT-qPCR) (Pal et al.,
2014). RNA was isolated from the tissue samples using Tri
Reagent (Sigma). A high-capacity complementary DNA reverse
transcriptase kit (Applied Biosystems) was used to reverse-
transcribe the RNA, and qPCR was then performed to designate
the subtype. The assay was based on the expression of 121
transcripts with four housekeeping genes as controls.

Pre-processing Applied on the Dataset
All MRI of each patient were pre-processed using a series
of image processing steps, including: (i) smoothing (i.e.,
reducing high frequency noise variations while preserving
underlying anatomical structures) using Smallest Univalue
Segment Assimilating Nucleus (SUSAN) denoising (Smith et al.,
1997); (ii) correction for magnetic field inhomogeneity using
N3 bias correction (Tustison et al., 2010); (iii) co-registration
of all MRIs of each patient at 12-degrees of freedom for
examining anatomically aligned signals at the voxel level using
affine registration through the Linear Image Registration Tool
(Jenkinson and Smith, 2001); (iv) skull stripping using the Brain
Extraction Tool (Smith, 2002); and (v) matching of intensity
profiles (histogram matching) of all MRIs of all patients to the
corresponding MRIs of a reference patient.

Following the pre-processing, all tumors were segmented
in distinct radiographic sub-regions of peritumoral edema
region (ED), enhancing tumor (ET), and non-enhancing tumor
(NET) (Figure 1) using a computational algorithm [namely
GLISTRboost (Gooya et al., 2011; Bakas et al., 2016)]. The
segmentations were assessed by two expert readers (H.A.,
G.S.) and revised before image analysis, when necessary. The
segmentations were transformed into a standard atlas space
to produce a standardized statistical distribution atlas for
quantifying the tumor spatial location.

Radiophenotypic Tumor Characterization
The radiophenotypic characteristics of each tumor were
quantified using a comprehensive and diverse set of imaging
features, extracted from all tumor sub-regions (i.e., ED, ET, NET)
and all MRI sequences using the Cancer Imaging Phenomics
Toolkit (CaPTk) (Davatzikos et al., 2018). The feature set
extracted to build the predictive model for this study comprised
of (i) volumetric measurements, (ii) morphology parameters,
(iii) location information, and (iv) statistical moments of the
intensity distributions. The volumetric, location, and intensity
statistics were calculated in 3D. The volumetric measurements
include volume and surface area measurements of ED, NET,
ET, tumor core (TC), which is the union of NET and ET, and
whole tumor (WT), which is the combination of TC with
ED. In addition, ratios of the volumes of the various tumor
sub-regions and their union over the brain volume, were
also calculated.

To capture the spatial distribution of each tumor, eight
spatial distribution atlases were constructed as introduced in
Akbari et al. (2018), two for each molecular subtype, i.e., P(+)

and P(−) for proneural and non-proneural tumors, respectively.
These distribution atlases were generated by superimposing the
TC (ET+NET) segmentation labels of all patients according
to their transcriptomic subtype status, i.e., superimposing
the TC labels of proneural and non-proneural tumors. The
similarity of the distribution pattern of an unseen tumor is
then calculated by considering the intersection area between
the tumor and the spatial map (Figure S1). Maximum and
average frequency for each spatial distribution atlas in the
intersected area are estimated, and four discrete relative values
(L1, L2, L3, and L4) are used to evaluate any new unseen
patient, for each subtype, thereby leading to a total of 16
location features.

L1 = mean
[

P+
]

−mean[ P−],

L2 = max
[

P+
]

−max
[

P−
]

,

L3 =
mean

[

P+
]

mean
[

P−
] ,

L4 =
max

[

P+
]

max
[

P−
]

Moreover, the distance of various tumor sub-regions, e.g.,
ED, TC, from the ventricles, and the proportions of TC in
each lobe of the brain have also been utilized as additional
location features. The proportion of TC in various brain regions,
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FIGURE 1 | Image post-processing workflow. I. Preoperative imaging sequences (examples: T1-Gd, T2-FLAIR, T1, T2). II. Preprocessing. III. Segmentation of various

subregions of tumor such as peritumoral edema region (ED), non-enhancing tumor core (NET), and enhancing tumor (ET). IV. Extraction of radiomic features in the

segmented regions (ED, ET, NET) using all the imaging sequences. V. Multivariate machine learning model of support vector machines with 5-fold cross validation and

sequential feature selection.

including temporal, frontal, parietal, occipital, basal ganglia,
cc fornix, insula, cerebellum, and brain stem, was calculated
by mapping each image to an atlas template via a deformable
registration method (Gooya et al., 2011) that not only accounts
for mass effect but also takes care of inter-individual anatomical
variations (Kwon et al., 2014).

Furthermore, we used first-order statistical moments of
intensity distributions to quantify the phenotypic characteristics
of each tumor sub-region, along with second-order statistics that
describe textural properties in tumor sub-regions. A gray-level
co-occurrence matrix was calculated by considering the voxels
within a radius of 1 and in the 13 main directions, and texture
features of contrast, correlation, energy, and homogeneity were
extracted. The intensity profiles of various sub-regions of tumor
were also quantified using histograms. These histograms are
reflective of the changes caused by the tumor both at functional
and anatomical levels, which in turn change the corresponding
imaging signals, and have shown strong association with various
outcome of interest (Macyszyn et al., 2016; Rathore et al., 2018).
Here, each intensity distribution is divided in to 5 bins and
percentage of voxels in each bin are calculated.

Morphology parameters, comprising area, perimeter, extent,
solidity, and length of major- and minor-axis, were extracted
from one 2D slice per tumor. In order to pick the 2D slice for
extraction of morphological features, we traversed the image in
the axial direction and found the slice that had largest area of
tumor core.

Feature Selection and Predictive Model
Development
Support Vector Machines (SVM) (Chang and Lin, 2011),
that has been extensively used in the past in medical image
classification/segmentation (Lao et al., 2008; Haller et al., 2013),
was used for predictive modeling in this study. We dealt
the problem of classification as 4 one-vs. -rest classification

problems. We trained a separate SVM to discriminate between
one transriptomic subtype and the rest of the subtypes, such as
classical vs. others, mesenchymal vs. others, neural vs. others, and
proneural vs. others. To confirm the robustness of the method
and to ensure that estimates of accuracy would be likely to
generalize to new patients, we evaluated all classifiers through
5-fold cross-validation. In each iteration of the cross-validation,
feature selection and classifier’s parameters optimization was
performed on the training folds and the resulting classification
model, developed solely on the training folds, was applied on
new/unseen test fold. Sequential forward feature selection was
employed at each iteration until convergence, i.e., there was no
improvement over a specific threshold. The final classification
performance was obtained by combining the predictions of
individual classifiers. For each classifier, the particular subtype
was considered positive class and the rest of the subtypes were
considered negative class. The distance of the sample from the
hyperplane was noted for each classifier and highest distance was
chosen as the final label of the sample. For example, if proneural,
neural, mesenchymal, and classical have 0.45, 3.54, −2.43, and
5.32, then the classical label was assigned to the sample.

The classification performance of the proposed models was
evaluated in terms of accuracy, balanced accuracy, sensitivity,
and specificity. Sensitivity and specificity refer to the percentage
of correctly classified samples of positive and negative classes,
respectively. Balanced accuracy is the average of the proportion
corrects of each class individually, whereas accuracy is the total
proportion corrects of the population.

Statistical Analysis
The statistical analysis was performed with R (version 3.3.2,
http://www.R-project.org), SPSS (version 25.0.0.0, IBM), and
MatLab (version R2014b, Mathworks). For evaluation of
statistically significant imaging features associated with each
subtype, we used Kruskal-Wallis test (Chan et al., 1997).
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TABLE 1 | Performance of the proposed transcriptomic subtype prediction model

in terms of various performance measures.

Classification

performance

Imaging subtypes (n)

Proneural

(n = 26)

Neural

(n = 34)

Mesenchymal

(n = 31)

Classical

(n = 21)

Overall

(n = 112)

Accuracy 82.14 75.89 75.89 88.39 71.00

Balanced

accuracy

78.98 76.89 78.36 81.87 79.01

Sensitivity 73.08 79.41 83.87 71.43 77.68

Specificity 84.88 74.36 72.84 92.31 79.75

AUC 0.82 0.78 0.81 0.84 ---

First four rows show the result for binary classification wherein each subtype is classified

against the rest of subtypes. The last row shows the final 4-way classification accuracy

obtained by combining the predictions of individual classifiers.

RESULTS

Performance of the Transcriptomic
Subtype Prediction Model
The cross-validated accuracy and balanced accuracy [BA] of the
obtained classifiers for classical, mesenchymal, proneural, and
neural subtypes was 88.4% [BA: 81.9%], 75.9% [BA: 78.4%],
82.1% [BA: 78.9%], and 75.9% [BA: 76.9%], respectively. The
overall 4-way classification among the four transcriptomic
subtypes was 71% under 5-fold cross-validation experiment.
Performance of the proposed prediction model is given in
Table 1 where the first four columns show the result for binary
classification, wherein each transcriptomic subtype is classified
against the rest of the subtypes, and the last column shows the
final 4-way classification accuracy obtained by combining the
predictions of individual classifiers.

Receiver-operating-characteristic (ROC) analysis on the given
dataset yielded an area-under the-curve (AUC) of 0.82, 0.78,
0.81, and 0.84, for proneural, neural, mesenchymal, and classical
subtypes, respectively (Figure 2).

Important Phenotypic Characteristics of
Different Transcriptomic Subtypes
Along with evaluating the predictive performance of the model,
we assessed individual features with the most predictive value.
Our results have shown that specific subtypes have quite distinct
quantitative imaging features, which can be utilized (Table 2,
Figure 3). The main characteristics of the obtained imaging
signature show that the mesenchymal subtype (in comparison
with other subtypes) have lower T2 and T2-FLAIR signal in
peritumoral edematous/invaded region, ET of lower eccentricity,
NET of higher eccentricity, and higher volumes of ET, ED and
WT. The proneural subtype, compared with the other subtypes,
included signals of lower and uniform T1-Gd in ET. The neural
subtype showed signals of higher T2-FLAIR in ED and lower
eccentricity of NET, and the classical subtype showed smaller
surface area of ED and WT.

FIGURE 2 | ROC curves of the predicted transriptomic subtypes are

compared with chance (the diagonal line). ROC curves correctly classify

proneural, neural, mesenchymal, and classical subtypes with 82.1%

(sensitivity: 73.1, specificity = 84.9), 75.9% (sensitivity: 79.4, specificity =

74.4), 75.9% (sensitivity: 83.9, specificity = 72.8), and 88.4% (sensitivity: 71.4,

specificity = 92.3) classification success rate, respectively.

TABLE 2 | Important imaging characteristics that distinguish each subtype from

the rest of the subtypes.

Imaging subtypes (n)

Proneural

(n = 26)

Neural

(n = 34)

Mesenchymal

(n = 31)

Classical

(n = 21)

Lower Signal

in ET (T1-Gd)

Higher signal in ED

(T2-FLAIR)

Lower signal in ED (T2-FLAIR) Surface area

(ED, WT)

Higher

uniformity in

ET (T1-Gd)

Lower eccentricity

(NET)

Lower signal in ED (T2)

Lower eccentricity (ET)

Higher eccentricity (NET)

Bigger volume (ED, ET, WT)

Replication of the Proposed Model in TCIA
Dataset
The predictive performance of the proposed model was also
evaluated in an independent replication dataset of pre-operative
glioblastoma patients, downloaded from TCIA (Bakas et al.,
2017a), by applying the model trained on the discovery (i.e.,
HUP) dataset. The information about the molecular subtypes
of TCIA patients was acquired from existing studies (Verhaak
et al., 2010; Park et al., 2019). The four models, pertaining to
four different molecular subtypes, trained on HUP dataset were
applied to the patients in the replication (i.e., TCIA) cohort.
The final molecular status of each patient in the replication
dataset was obtained by combining the predictions of individual
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FIGURE 3 | Representative images of different subtypes.

classifiers, as done in the discovery dataset, leading to 69%
classification success rate compared to 25% chance in 4-way
classification accuracy.

DISCUSSION

We identified an in vivo radiographic signature of transcriptomic
subtypes in glioblastoma by using quantitative multivariate
analysis of mpMRI in a non-invasive manner, and further
attempted to provide patho-physiological associations of the
most distinctive imaging features. An important existing study
has demonstrated the potential that deep learning techniques
can be used for identifying associations between brain imaging
phenotypes and genomic characteristics (Khened et al., 2019).
The hereby proposed method is different from existing literature
(Macyszyn et al., 2016; Khened et al., 2019) on the breadth
of extracted mpMRI-based features, leading to an extensive
radiographic signature. The proposed signature sheds light
into the anatomical and pathological characteristics of the
tumor, via macroscopic imaging features summarizing tumor
characteristics related to water concentration, blood-brain
barrier breakage, cell density, uniformity/heterogeneity, and
geometric variations. We have achieved these findings utilizing
routine mpMRI scans acquired under current clinical practice
for glioblastoma, without the need to utilize any molecular
imaging methods. We evaluated our model via a cross-validation
mechanism in the HUP dataset, and also performed a multi-
institutional validation to demonstrate generalizability. Potential
applications of this signature include facilitating the assessment
of transcriptomic status for patients with inadequate tissue. In
a recent study by Park et al., it has been shown that subtype-
specific genetic aberrations have potential to serve as predictive
markers and therapeutic targets (Park et al., 2019). Therefore, in
case of subtype-targeted clinical trials, it becomes very important
to distinguish one particular subtype from the rest. The automatic
distinction of these subtypes leads to personalized diagnosis and
treatment, as different options may be considered depending on
the histologic characteristics of different subtypes.

Biological Explanation of Quantitative
Features of Different Subtypes
Toward gaining an understanding about the biological
developments that induce different mutation status, we

analyzed in isolation each individual feature that we used to
develop our classification models. The analysis revealed that
each subtype had an accompanying distinct and comprehensive
set of radiographically relatable features (Table 2). The main
findings from comparing the features of different transcriptomic
subtypes, in ET, NET, and ED, are as follows:

1. Regions of lower and uniform T1-Gd signal in proneural
subtype, suggestive of less blood–brain barrier compromise;

2. Areas of lower water content in mesenchymal subtype,
reflected by T2-FLAIR and T2-weighted imaging, consistent
with the characteristics of dense tissue;

3. Larger surface area of ED and WT in mesenchymal subtype,
which points toward deep infiltration and migratory nature of
the tumor;

4. Smaller surface area of ED and WT in classical subtype,
supporting a radiographic phenotype of compact and less
migratory nature of the tumor;

5. Major to minor axes ratios, associated with NET in
neural subtype and ET/NET in mesenchymal subtype, were
different from other subtypes (Table 2). The major axis was
characterized by the longest possible 2D distance in a region;
minor axis is vertical to the major axis. This eccentricity
measure is suggestive of regular/spherical NET in neural
subtype and irregular NET in mesenchymal subtype.

6. Regions of relatively lower contrast of T1 imaging sequence in
ET in neural subtype, suggestive of more uniform T1 signal
(Table 2).

It is important to note that despite several discriminative
features, neither of these features is sufficient enough
to predict transcriptomic subtype on each patient basis.
However, synergistic integration of these features via
appropriate machine learning yielded reasonable sensitivity
and specificity in predicting subtype on an individual patient
basis, thereby underscoring the potential of multivariate
analysis methods.

Discriminative Power of Advanced MRI
(DTI and DSC-MRI) Modalities
Advanced MRI sequences were evaluated to probe their
discriminative power, compared to that of structural
(conventional) imaging, i.e., T1, T2, T2-Flair, and T1-Gd.
It is worth mentioning that these imaging sequences were not
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FIGURE 4 | Intensity histograms display the diffusion and perfusion measures of different transcriptomic subtypes as measured by the DTI and DSC-MRI signals. (A)

PH intensity in NET; (B) PH intensity in ET; (C) PSR intensity in ET; (D) ADC intensity in ET; (E) ADC intensity in NET; (F) ADC intensity in ED; (G) T2-Flair intensity in ET;

(H) T2-Flair intensity in NET; (I) T1 intensity in NET; (J) T2 intensity in NET. The measures displayed in the first two rows are for analysis only; these measures have not

been used for building the model.

utilized to develop the classification models, rather only to
analyze the diffusion and perfusion characteristics of a subset of
these patients. These additional sequences comprised derivatives
of DTI [i.e., fractional anisotropy (FA), apparent diffusion
coefficient (ADC), radial diffusivity (RAD), axial diffusivity
(AX)], as well as DSC-MRI derivatives, i.e., percentage signal
recovery (PSR), peak height (PH), and relative cerebral blood
volume (rCBV).

Imaging derivatives of DTI are reflective of the water diffusion
process, which is partially affected by the architecture and density
of tumor cells (Lu et al., 2003), in brain. The classical subtype
has larger regions of lower ADC determined by the histograms
(Figure 4) in NET (p = 2.27 × 10−08) and ET (p = 1.97 ×

10−07) of the tumor, suggestive of less watery, and denser tumors.
Imaging derivatives of DSC-MRI enumerate microvasculature
and hemodynamics characteristics of the tumor (Wintermark
et al., 2005; Tykocinski et al., 2012). When volume of brain
tumors exceeds a certain critical limit, the consequential ischemia
activates the discharge of angiogenic factors, which in turn
endorses vascular proliferation and eventually leads to the
formation of leaky and torturous tumor vessels (Lev and
Hochberg, 1998; McDonald and Choyke, 2003; Bullitt et al.,
2005; Hicklin et al., 2005; Essock-Burns et al., 2011; Thompson
et al., 2011; Swami, 2013; Jensen et al., 2014). These imaging
derivatives also steered toward some key findings. The classical
subtype showed imaging features in agreement with highly
vascular tumor, as shown by the PH in ET (p = 1.54 ×

10−15) and NET (p = 4.00 × 10−06), revealing increased and
compromised micro-vascularity compared to other subtypes.

On the other hand, the proneural subtype had increased
PSR in ET, indicative of lower micro-vascularity compared to
other subtype.

Clinical Relevance and Impact
The assessment of transcriptomic subtype of glioblastoma via
analysis of tissue specimen can be limited due to sampling
error, and reluctance for longitudinal assessment of the status
due to invasive nature of surgery. Our proposed imaging
signature has potential to address both these limitations, since
mpMRI facilitates assessment and monitoring of the tumor in
its entirety in a repeatable manner. Further, the non-invasive
imaging signature captures the heterogeneity of the whole tumor
extent, instead of the analysis of one tissue specimen, therefore
provides a global perspective of the transcriptomic status of a
tumor. Our imaging signature is derivative of mpMRI that is
routinely acquired for glioblastoma patients, therefore, is ready
for immediate translation to the clinic. While the current method
focuses on non-invasive assessment of transcriptomic subtype
status, the same approach could also be used for molecular
assessment in general. Further, the proposed non-invasive
imaging signature can be applied to recurrent glioblastoma,
with the goal of determining transcriptomic subtype status
before, during, and after the treatment. This would help in
non-invasive monitoring of dynamic changes in transcriptomic
subtypes as response to targeted therapeutic approaches
and consequently would in turn allow for tailoring the
adopted therapies.
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CONCLUSION

We can quantify important imaging characteristics within
various sub-regions of the tumor and detect its transcriptomic
subtype only by examining mpMRI data using advanced
analytical methods and without the need of advanced genetic
testing. The present study extracts an extensive set of quantitative
imaging phenomic features from structural MRI sequences, and
employs these variables via machine learning techniques to non-
invasively distinguish transcriptomic glioblastoma subtypes. This
molecular classification, due to its distinct phenotypic pattern
derived from routine MRI, renders our imaging signature of
increased likelihood for effective and immediate translation into
clinical practice. The use of cross-validation within HUP dataset
and the replication of our findings on TCIA dataset provide
confidence in the generalizability of these subtypes and the
proposed method on other datasets.
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An important challenge in segmenting real-world biomedical imaging data is the
presence of multiple disease processes within individual subjects. Most adults above
age 60 exhibit a variable degree of small vessel ischemic disease, as well as chronic
infarcts, which will manifest as white matter hyperintensities (WMH) on brain MRIs.
Subjects diagnosed with gliomas will also typically exhibit some degree of abnormal
T2 signal due to WMH, rather than just due to tumor. We sought to develop a fully
automated algorithm to distinguish and quantify these distinct disease processes within
individual subjects’ brain MRIs. To address this multi-disease problem, we trained a
3D U-Net to distinguish between abnormal signal arising from tumors vs. WMH in
the 3D multi-parametric MRI (mpMRI, i.e., native T1-weighted, T1-post-contrast, T2,
T2-FLAIR) scans of the International Brain Tumor Segmentation (BraTS) 2018 dataset
(ntraining = 285, nvalidation = 66). Our trained neuroradiologist manually annotated WMH
on the BraTS training subjects, finding that 69% of subjects had WMH. Our 3D U-Net
model had a 4-channel 3D input patch (80 × 80 × 80) from mpMRI, four encoding and
decoding layers, and an output of either four [background, active tumor (AT), necrotic
core (NCR), peritumoral edematous/infiltrated tissue (ED)] or five classes (adding WMH
as the fifth class). For both the four- and five-class output models, the median Dice
for whole tumor (WT) extent (i.e., union of AT, ED, NCR) was 0.92 in both training
and validation sets. Notably, the five-class model achieved significantly (p = 0.002)
lower/better Hausdorff distances for WT extent in the training subjects. There was
strong positive correlation between manually segmented and predicted volumes for
WT (r = 0.96) and WMH (r = 0.89). Larger lesion volumes were positively correlated
with higher/better Dice scores for WT (r = 0.33), WMH (r = 0.34), and across all
lesions (r = 0.89) on a log(10) transformed scale. While the median Dice for WMH
was 0.42 across training subjects with WMH, the median Dice was 0.62 for those with
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at least 5 cm3 of WMH. We anticipate the development of computational algorithms
that are able to model multiple diseases within a single subject will be a critical step
toward translating and integrating artificial intelligence systems into the heterogeneous
real-world clinical workflow.

Keywords: segmentation, glioblastoma, convolutional neural network, white matter hyperintensities, deep
learning, radiology, multi-disease classification

INTRODUCTION

A significant challenge in the deployment of advanced
computational methods into typical clinical workflows is
the vast heterogeneity of disease processes, which are present
both between individuals (inter-subject heterogeneity) and
within individuals (intra-subject heterogeneity). Most adults
over the age of 60 have a variable degree of abnormal signal
on brain MRIs due to age-related changes manifesting as white
matter hyperintensities (WMH), which are typically secondary
to small vessel ischemic disease (SVID) and chronic infarcts that
can be found in subjects with vascular risk factors and clinical
histories of stroke and dementia (Wardlaw et al., 2015). These
lesions can confound automated detection and segmentation
of other disease processes, including brain tumors, which also
result in abnormal signal in T2-weighted (T2) and T2 Fluid-
attenuated inversion recovery (T2-FLAIR) MRI scans secondary
to neoplastic processes and associated edema/inflammation. We
sought to address this challenge of intra-individual heterogeneity
by leveraging (i) the dataset of the International Multimodal
Brain Tumor Segmentation (BraTS) 2018 challenge (Menze
et al., 2015; Bakas et al., 2017b, 2019) (ii) expert radiologist
expertise, and (iii) three-dimensional (3D) convolutional neural
networks (CNNs).

Advances in the field of segmentation and radiomics within
neuro-oncology have been supported by data made available
through The Cancer Imaging Archive (TCIA; Clark et al., 2013).
Since 2012, the BraTS challenge has further curated TCIA
glioma multi-parametric MRI (mpMRI) scans, segmentation
of tumor sub-regions, and survival data in a public dataset
and sponsored a yearly challenge to improve performance of
automated segmentation and prognostication methods (Menze
et al., 2015; Bakas et al., 2017b, 2019). Similar to BraTS, there
have been large efforts for improving automatic segmentation
of WMH (Griffanti et al., 2016; Habes et al., 2016), which
include the MICCAI 2017 WMH competition (Li et al., 2018;
Kuijf et al., 2019), as well as stroke lesions, through the
Ischemic Stroke Lesion Segmentation Challenge (ISLES; Winzeck
et al., 2018). Deep learning (DL) approaches for biomedical
image segmentation are now established as superior to the
previous generation of atlas-based and hand-engineered feature
approaches (Fletcher-Heath et al., 2001; Gooya et al., 2012), as
demonstrated by their performance in recent image segmentation
challenges (Chang, 2017; Kamnitsas et al., 2017; Li et al., 2018;
Bakas et al., 2019; Myronenko, 2019).

Deep learning relies on hierarchically organized layers to
process increasingly complex intermediate feature maps and
utilizes the gradient of the error in predictions with regard to

the units of each layer to update model weights, known as “back-
propagation.” In visual tasks, this allows for the identification of
lower- and intermediate-level image information (feature maps)
to maximize classification performance based on annotated
datasets (LeCun et al., 2015; Chartrand et al., 2017; Hassabis
et al., 2017). Typically, CNNs, a class of feed-forward neural
networks, have been used for image-based problems, achieving
super-human performance in the ImageNet challenge (Deng
et al., 2009. Krizhevsky et al., 2012). The U-Net architecture
(Ronneberger et al., 2015; Cicek et al., 2016; Milletari et al.,
2016) describes a CNN with an encoding convolutional arm and
corresponding decoding [de]convolutional arm has been shown
to be particularly useful for 3D biomedical image segmentation
through its semantic- and voxel-wise approach, such as for
segmentation of abnormal T2-FLAIR signal across a range of
diseases (Duong et al., 2019).

Several prior machine learning approaches have been used to
model inter-subject disease heterogeneity, such as distinguishing
on an individual subject basis between primary CNS lymphoma
and glioblastoma (Wang et al., 2011), or between different types
of brain metastases (Kniep et al., 2018). There is evidence that
these approaches may be superior to human radiologists (Suh
et al., 2018), yet little work has been done to address intra-subject
lesion heterogeneity. Notably, one recent study used CNNs to
distinguish between WMH due to SVID versus stroke, finding
that training a CNN to explicitly distinguish between these
diseases allowed for improved correlation between SVID burden
and relevant clinical variables (Guerrero et al., 2018). Although
a large body of work has detailed methodological approaches
to improve segmentation methods for brain tumors, to the best
of our knowledge no prior studies have addressed intra-subject
disease heterogeneity in the BraTS dataset.

Although the task of distinguishing between different diseases
within an individual is typically performed subconsciously by
humans, distinguishing between different diseases could be
challenging for an automated system if it were not specifically
designed and trained to perform such a task. When provided
with enough labeled training data, image-based machine learning
methods have shown success in identifying patterns that are
imperceptible to humans. These include GBM subtypes related
to specific genetic mutations (i.e., radiogenomics; Bakas et al.,
2017a; Korfiatis et al., 2017; Akbari et al., 2018; Chang et al.,
2018; Rathore et al., 2018), or imaging subtypes that are
predictive of clinical outcomes (Rathore et al., 2018). Therefore,
we sought to train a 3D U-Net model to distinguish between
abnormal radiographic signals arising from brain glioma versus
WMH in individual subjects, in the mpMRI data of the BraTS
2018 challenge. We hypothesized that this would (1) allow
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for automatic differentiation of different disease processes, and
(2) improve overall accuracy of segmentation of brain tumor
extent of disease, particularly in subjects with a large amount of
abnormal signal due to WMH.

MATERIALS AND METHODS

Data
We utilized the publicly available data of the BraTS 2018
challenge that describe a multi-institutional collection of pre-
operative mpMRI brain scans of 351 subjects (ntraining = 285,
and nvalidation = 66) diagnosed with high-grade (glioblastoma)
and lower-grade gliomas. The mpMRI scans comprise native
T1-weighted (T1), post-contrast T1-weighted (T1PC), T2, and
T2-FLAIR scans. Pre-processing of the provided images included
re-orientation to LPS (left-posterior-superior) coordinate system,
co-registration to the same T1 anatomic template (Rohlfing
et al., 2010), resampling to isotropic 1 mm3 voxel resolution and
skull-stripping as detailed in Bakas et al., 2019. Manual expert
segmentation of the BraTS dataset delineated three tumor sub-
regions: (1) Necrotic core (NCR), (2) active tumor (enhancing
tissue; AT), and (3) peritumoral edematous/infiltrated tissue
(ED). The whole tumor extent (WT) was considered the union
of all these three classes.

Manual Annotation of WMH
In order to define the new tissue class of abnormal signal relating
to WMH in the BraTS training subjects, a neuroradiologist (JR;
neuroradiology fellow with extensive segmentation experience)
defined manually segmentation masks of WMH using ITK-SNAP
(Yushkevich et al., 2006). WMH were considered to be abnormal
signal due to SVID, chronic infarcts, and/or any periventricular
abnormal signal contralateral to the tumor. Examples of these
new two class segmentations of the BraTS 2018 dataset are shown
in Figure 1.

U-Net Architecture
We adapted the 3D U-Net architecture (Cicek et al., 2016;
Milletari et al., 2016) for voxelwise image segmentation.

Our encoder-decoder type fully convolutional deep neural
network consists of (1) an encoder limb (with successive
blocks of convolution and downsampling encoding progressively
deeper/higher-order spatial features), (2) a decoder limb (with
a set of blocks – symmetric to those of the encoder limb – of
upsampling and convolution, eventually mapping this encoded
feature set back onto the input space), and (3) an introduced
novel so-called skip connections (whereby outputs of encoding
layers are concatenated with inputs to corresponding decoding
layers) in order to improve spatial localization over previous
generations of fully convolutional networks (3D Res-U-Net;
Milletari et al., 2016).

Our adaptations from the prototypical U-Net architecture
included: 4 channel input data (T1, T1PC, T2, T2-FLAIR),
4 or 5 class output data (background = 0, NCR = 1,
ED = 2, AT = 4, WMH = 3), with 3D convolutions, and
no voxelwise weighting of input label masks. Training patch
size was 80 × 80 × 80 voxels (mm), and inference was
conducted in the whole image. We zero padded the provided
images to increase its size from 240 × 240 × 155 voxels to
240 × 240 × 160 voxels, and hence being divisible by the
training input patch size (80 × 80 × 80). Training patch
centerpoints were randomly sampled from within the lesion
(90%) or from within the whole brain (10%). Train-time data
augmentation was performed with random left-right flipping,
and constrained affine warps (maximum rotation 45◦, maximum
scale ±25%, maximum shear ±0.1). Core convolutional blocks
included two nodes each of 3D convolution (3 × 3 × 3 kernel,
stride = 1, zero padded), rectified linear unit activation, and
batch normalization. Four encoding/decoding levels were used,
with 32 convolutional filters (channels) in the base/outermost
level, and channel number increased by a factor of two at each
level (Figure 2).

The network was trained on an NVIDIA Titan Xp
GPU (12GB), using the Xavier initialization scheme, Adam
optimization algorithm (Kingma and Lei Ba, 2015; initial
learning rate 1e−4), and 2nd order polynomial learning rate
decay over 600 epochs. Training time was approximately
4.5 h. 10-fold internal cross validation on the training set was
used for hyperparameter optimization and intrinsic estimation

FIGURE 1 | Revised BraTS 2018 training segmentations including annotations of WMH. (A) Sample revised segmentation of abnormal signal due to WT (red) and
WMH (green) on T2-FLAIR, T2, T1, and T1PC axial slices. (B) Three additional example revised segmentation maps for tumor and WMH overlaid on T2-FLAIR axial
slices.
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FIGURE 2 | Multiclass input and multiclass output U-Net schematic. Our U-Net has 4-channel input accepting 3D patches from mpMRI with four encoding and
decoding layers, and either a four-class output (background, AT, NCR, and ED) or a five-class output (adding WMH as the fifth class).

of generalization performance during training. For inference
on the validation set, the model was retrained 10 times
independently on the entire training set (n = 285), and model
predictions were averaged.

We trained models using this architecture twice; once with the
four tissue classes originally annotated in the BraTS dataset, and
again with the manual WMH segmentations added as a fifth class.
All of the code has been made publicly available at https://github.
com/johncolby/svid_paper.

Performance Metrics
Tissue segmentation performance was evaluated with the Dice
metric (2×TP/(2×TP+ FP+ FN); TP = true positive; FP = false
positive; FN = false negative; Dice, 1945) for the tumor
segmentation in both models, as well as for WMH in the five-
class model. In addition, the 95th percentile of the Hausdorff
distance (Hausdorff95) was used as a performance evaluation
metric, to evaluate the distance between the centers of the
predicted and the expert 3D segmentations. The metrics for the
four tissue classes and the Hausdorff95 distance were measured
by submitting our segmentations to the online BraTS evaluation
portal1 (Davatzikos et al., 2018).

Further Exploration of U-Net Results
In order to further interrogate the performance of our
proposed model, we performed correlations between manually
segmented and predicted volumes for WT and WMH, as well
as Bland Altman plots to assess agreement between the two
measures of tissue volumes for both WT and WMH. For
the evaluation of WMH, we performed correlations among
the 196 cases that contained at least 100 mm3 of WMH.
To better understand what could affect performance, we
also evaluated correlations between total lesion volumes and
Dice scores.

1https://ipp.cbica.upenn.edu/

RESULTS

Manual WMH Segmentations
Of the manually revised BraTS training data (285 subjects),
we found 196 (68.8%) with at least 100 mm3 of WMH, 109
(38.4%) with at least 1000 mm3 (1 cm3) of WMH, 32 (11.2%)
with at least 5000 mm3 (5 cm3) of WMH, and 17 (5.8%) with
at least 10000 mm3 (10 cm3) of WMH. The manual WMH
segmentations have been made available for public use at https:
//github.com/johncolby/svid_paper.

Segmentation Performance
The performance metrics for the training (10-fold cross
validation) and validation subjects (final model) for each of the
tissue classes in the four- and five-class models are shown in
Table 1. We achieved a median Dice of 0.92 for WT in both the
four- and five-class models, in both the training (p = 0.52; 10-fold
cross validation) and validation datasets (p = 0.94). Segmentation
performance on AT and tumor core (the union of AT and
NCR) were also not significantly different between the four- and
five-class models. There were no significant differences between
tumor segmentation performance for high- or low-grade gliomas
in the training set (p = 0.45).

The median Hausdorff95 distance in the training data was
significantly lower (p = 0.002; two tailed t-test) in the five-
class model (3.0, interquartile range 2.2–9.0) than the traditional
four-class model (3.5, interquartile range 2.2–4.9). Example
training cases where the Hausdorff95 distance were much better
in the five-class model are shown in Figure 3 with predicted
segmentations for AT, NCR, ED, and WMH for both the four
and five-class models. However, the Hausdorff95 distance was
not significantly different in the validation data (p = 0.84).
Example validation cases with greater than 5 cm3 of WMH
are shown in Figure 4, with predicted segmentations for AT,
NCR, ED, and WMH.

We achieved a median Dice of 0.42 in the 189 subjects
with WMH of at least 100 mm3. Median Dice for WMH in
subjects with at least 1000 mm3 (1 cm3), 5000 mm3 (5 cm3)
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TABLE 1 | Performance metrics of four- and five-class models applied to the BraTS 2018 Training and Validation datasets.

Training (n = 285) Validation (n = 66)

Performance metric 4 Class model 5 Class model p value 4 Class model 5 Class Model p value

Dice (Whole Tumor) 0.92 (0.87-0.95) 0.92 (0.87-0.94) 0.52 0.92 (0.89-0.95) 0.92 (0.90-0.95) 0.94

Dice (Enhancing Tumor) 0.82 (0.68-0.88) 0.82 (0.68-0.88) 0.76 0.87 (0.82-0.91) 0.87 (0.81-0.91) 0.99

Dice (Tumor Core) 0.88 (0.75-0.93) 0.89 (0.77-0.93) 0.75 0.91 (0.81-0.95) 0.91 (0.80-0.95) 0.97

Dice (WMH) N/A 0.42 (0.25-0.55) N/A N/A N/A N/A

Hausdorff Distance (WT) 3.5 (2.2-9.0) 3.0 (2.2-4.9) 0.002 3.1 (2.0-4.5) 3 (2.0-4.4) 0.84

Dice scores are median (25th percentile – 75th percentile).

and 10000 mm3 (10 cm3) of WMH was 0.52, 0.62, and
0.67, respectively.

Correlation Between Predicted Lesion
Volumes and Manual Segmented
Volumes
Within the training dataset there was a strong correlation
between manually segmented WT volume and predicted WT
volume (Pearson r = 0.96, p < 0.0001; Figure 5A). There
was also a strong correlation between manually segmented
WMH volume and predicted WMH volume (Pearson r = 0.89,
p < 0.0001; Figure 5B). Bland-Altman plots assessing agreement
between manual and predicted volume for WT and WMH are
shown in Figures 5C,D.

FIGURE 3 | Example segmentations in training subjects with smaller (better)
Hausdorff distance metrics in the model with WMH. Axial T2-FLAIR slices of
four example training cases are shown in the first row. The ground truth
segmentations are overlaid in the second row (background, AT, NCR, and
ED). The predicted tumor segmentations overlaid from the four-class model
(background, AT, NCR, and ED) and the five-class model (background, AT,
NCR, ED, and WMH) are shown in the third and fourth rows, respectively. The
red arrows indicate multiple WMH distal to the tumor that were incorrectly
classified in the four-class model as either ED or NCR.

Correlations Between Lesion Volumes
and Dice
Within the training dataset there was a significant correlation
between manually segmented WT volumes and WT Dice scores
(Pearson r = 0.33, p < 0.0001; Figure 6A) and between
manually segmented WMH volumes and WMH Dice scores
(Pearson r = 0.34; p < 0.0001; Figure 6B). When combining
WT and WMH, there was a stronger correlation between
lesion volumes and Dice scores (Pearson r = 0.68; p < 0.0001;
Figure 6C), which was even stronger when the volumes
were transformed to a logarithmic (log(10)) scale (Pearson
r = 0.89; p < 0.0001; Figure 6D). There was no significant
relationship between WMH volume and WT Dice scores
(Pearson r =−0.05, p = 0.42).

DISCUSSION

Advanced computational methods are poised to improve
diagnostic and treatment methods for patients diagnosed with
glioma (Davatzikos et al., 2019; Rudie et al., 2019). However,
a critical challenge facing the eventual deployment of artificial

FIGURE 4 | Example predicted segmentations in validation subjects with
greater than 5 cm3 of WMH. Axial T2-FLAIR slices of four example validation
cases are shown in the first row. The predicted tumor segmentations overlaid
from the four-class model (background, AT, NCR, and ED) and the five-class
model (background, AT, NCR, ED, and WMH) are shown in the second and
third row, respectively.
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FIGURE 5 | Relationship between manually segmented volume and U-Net predicted volume. (A) Pearson correlation between manually segmented tumor volume
and U-Net predicted tumor volume. (B) Spearman ranked correlation between manually segmented WMH volume and U-Net predicted WMH volume.
(C) Bland–Altman plot for WT manually segmented volume and U-Net predicted volume. (D) Bland–Altman plot for WMH manually segmented volume and U-Net
predicted volume. The dotted lines in panels (C,D) mark the bounds of the 95% confidence interval of the bias.

intelligence systems into daily clinical practice is disease
heterogeneity within subjects. In this study, we utilized the BraTS
2018 dataset and expert-revised WMH segmentations to train
a state-of-the-art CNN to successfully distinguish and quantify
abnormal signal due to WMH as a distinct tissue class from
glioma tissue sub-regions.

We used a 3D CNN (U-Net architecture; Cicek et al., 2016;
Milletari et al., 2016) for multiclass tissue segmentation with
performance at the top 10% of the BraTS 2018 leaderboard (Bakas
et al., 2019; noting that we did not participate in the official
competition). U-Nets have been particularly adept at medical
image segmentation, due to their ability to convert feature
maps obtained during convolutions into a vector and from that
vector reconstruct a segmentation, which reduces distortion by
preserving the structural integrity.

To our knowledge this is the first study to distinguish intra-
subject lesion heterogeneity in the BraTS dataset, noting that
Guerrero et al. (2018) previously used a U-Net architecture
to distinguish chronic infarcts from WMH due to SVID.
Although we hypothesized that adding WMH as a tissue
class could improve tumor segmentation performance, we did

not find a significant difference between tumor segmentation
overlap (Dice) in the model that incorporated WMH as an
additional class. Incorporating WMH as a distinct fifth-class
did significantly (p = 0.002; two tailed t-test) improve the
Hausdorff (95th percentile) distance metric within the training
sample. As the Hausdorff95 distance reflects the center of
the lesion, and WMH are often far from the tumor, poorer
Hausdorff95 distance in the four-class model was likely due to
false positive segmentations of WMH as tumor as demonstrated
in Figure 3. However, upon reviewing validation cases with
larger amounts of predicted WMH (Figure 4), it appeared that
the original four-class model, although not explicitly trained
to model WMH, mostly learned to implicitly ignore most
WMH, likely due to spatial characteristics of the WMH being
distant from the primary tumors and in characteristic locations
and shapes. It is possible that the addition of WMH as an
additional class could degrade segmentation performance of
ED that was relatively distal to the center of tumor, thus
the benefits of reducing distal WMH false positives in the
five-class model may have be counterbalanced by increasing
false negatives.
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FIGURE 6 | Relationship between Dice score and lesion volume. (A) Scatter plot and Pearson correlation between WT volume and WT Dice score. (B) Scatter plot
and Pearson correlation between WMH volumes and WMH Dice scores. (C) Scatter plot and Pearson correlation between volumes and Dice scores for both WMH
and WT. (D) Scatter plot and Pearson correlation between log(10) transformed volumes and Dice scores for both WMH and WT.

As evidenced by the BraTS leaderboard, a Dice of ∼0.90 is
considered excellent and has previously been shown to be at a
level similar to inter-rater reliability for BraTS (Visser et al., 2019).
As demonstrated in Figure 6, we found that lesion volume was
an important predictor of Dice scores for both WT (Figure 6A)
and WMH (Figure 6B). When evaluating both WT and WMH
(Figures 6C,D), we found that the majority of the variance in
Dice scores was explained by lesion volume, particularly when
transformed to a logarithmic scale (Figure 6D). Thus, poorer
performance for WMH in our data appear to largely be driven
by smaller lesion sizes. This is consistent with prior literature
that has also shown positive correlations between lesion volumes
and Dice scores (Winzeck et al., 2018; Duong et al., 2019).
Although our reported Dice scores for WMH appear relatively
low (0.42), it should be noted that average volume of WMH in
the MICCAI 2017 dataset was 16.9 cm3 (Kuijf et al., 2019). When

looking at cases with larger volumes of WMH (>10 cm3) the
average Dice score (0.67) was more similar to those reported in
the 2017 MICCAI WMH dataset (0.70–0.80; Kuijf et al., 2019).
A further explanation for reduced segmentation performance
of smaller lesions may be lower inter-rater reliability, such as
what has been reported in multiple sclerosis (Dice ∼0.60; Egger
et al., 2017). A limitation of the current study is that there
is only a single expert annotation for both the BraTS dataset
and the WMH, thus the contribution of inter-rater reliability
could not be assessed. In the future we also plan to improve
detection of smaller lesions by using different neural network
architectures, such as two-stage detectors (Girshick et al., 2014),
or implementing different loss functions, such a focal loss (Lin
et al., 2018; Abraham and Khan, 2019).

As artificial intelligence tools start to become integrated with
clinical workflows for more precise quantitative assessments of
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disease burden, it will be necessary to distinguish, quantify and
longitudinally assess a variety of disease processes, in order
to assist with more accurate and efficient clinical decision-
making. Explicitly tackling intra-subject disease heterogeneity by
training models to perform these tasks should help translate these
advanced computational methods into clinical practice.
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A novel deep learning based model called Multi-Planar Spatial Convolutional Neural

Network (MPS-CNN) is proposed for effective, automated segmentation of different

sub-regions viz. peritumoral edema (ED), necrotic core (NCR), enhancing and

non-enhancing tumor core (ET/NET ), from multi-modal MR images of the brain. An

encoder-decoder type CNN model is designed for pixel-wise segmentation of the

tumor along three anatomical planes (axial, sagittal, and coronal) at the slice level.

These are then combined, by incorporating a consensus fusion strategy with a fully

connected Conditional Random Field (CRF) based post-refinement, to produce the final

volumetric segmentation of the tumor and its constituent sub-regions. Concepts, such

as spatial-pooling and unpooling are used to preserve the spatial locations of the edge

pixels, for reducing segmentation error around the boundaries. A new aggregated loss

function is also developed for effectively handling data imbalance. The MPS-CNN is

trained and validated on the recent Multimodal Brain Tumor Segmentation Challenge

(BraTS) 2018 dataset. The Dice scores obtained for the validation set for whole tumor

(WT :NCR/NE+ET +ED), tumor core (TC :NCR/NET +ET ), and enhancing tumor (ET )

are 0.90216, 0.87247, and 0.82445. The proposed MPS-CNN is found to perform the

best (based on leaderboard scores) for ET and TC segmentation tasks, in terms of both

the quantitative measures (viz. Dice and Hausdorff). In case of the WT segmentation it

also achieved the second highest accuracy, with a score which was only 1% less than

that of the best performing method.

Keywords: convolutional neural network, brain tumor segmentation, spatial-pooling and unpooling, conditional

random field, multi-planar CNN, class imbalance

1. INTRODUCTION

Gliomas (tumors of glial cells) represent 40% of tumors of the Central Nervous System, and
80% of all malignant brain tumors. The World Health Organization (WHO) grades these tumors
based on the aggressiveness and infiltrative nature of their cells. Low-grade gliomas (LGG) are
categorized as lowest- and intermediate-grades (WHO grades II and III), while high-grade gliomas
(HGG) or glioblastoma constitute the highest-grade (WHO grade IV) (Louis et al., 2016). Diffuse
LGGs are infiltrative brain neoplasms which affect different histological classes, and are called
astrocytomas, oligodendrogliomas, and oligoastrocytomas (Louis et al., 2016). Although LGG
patients are observed to have better survival than those with HGG, they often progress to secondary
glioblastomas (GBMs) and eventual death (Li et al., 2013).
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Accurate detection of tumor regions makes the job of
the medical practitioner simpler, by allowing (i) appropriate
measurement of tumor volume, (ii) growth monitoring of
tumor in patients over time, and (iii) prognosis, with follow-
up evaluation, and prediction of overall survival (OS). Based
on the histological heterogeneity observed within a glioma
tumor, its cells are partitioned into different sub-regions, i.e.,
peritumoral edema (ED), necrotic core (NCR), enhancing and
non-enhancing tumor core (ET / NET) (Menze et al., 2015; Bakas
et al., 2018). These sub-regions reflect important and clinically
relevant information.

Magnetic Resonance Imaging (MRI) has become the standard
non-invasive technique for brain tumor diagnosis, over the last
few decades, due to its inherent improved soft tissue contrast
(DeAngelis, 2001; Cha, 2006).MR imaging can effectively capture
the intrinsic heterogeneity of gliomas using multimodal scans
with varying intensity profiles. Typically four MR sequences
viz. native T1-weighted (T1), T2-weighted (T2), post-contrast
enhanced T1-weighted (T1C), and T2-weighted with FLuid-
Attenuated Inversion Recovery (FLAIR), are used. The rationale
behind using multiple sequences is the fact that different tumor
regions are properly visible in different sequences, which again
are complementary to each other; thereby rendering them as
effective tools for accurately demarcating and distinguishing
between different types of tumors (Banerjee et al., 2016a, 2017).
Since gliomas are infiltrative, the sub-regions appear highly
heterogeneous in MRI scans. Therefore, segmentation of Glioma
sub-regions is considered to be one of the most challenging tasks
in medical image analysis (Bakas et al., 2018).

Although manual segmentation of tumors is considered
as the gold standard, it is time-consuming and prone to
errors due to human fatigue. Therefore, there is a growing
body of literature on computational algorithms, addressing
this important task through supervised and unsupervised
techniques (Menze et al., 2015; Banerjee et al., 2016b, 2018a,b;
Mitra et al., 2017; Bakas et al., 2018). Development of such
computer-aided tumor segmentation algorithms entails a lot
of challenges due to the large spatial and structural variability
among brain tumors. For example, segmenting HGG and LGG
tumors with the same algorithm is a difficult proposition.
It is also hard to compare any segmentation method with
other existing ones, since they were often designed and
validated on different private datasets. Such difficulty is due
to various critical factors like (i) modalities used for the
segmentation, (ii) state of the disease in which the image
was taken (prior to treatment, or post-operative), (iii) type
of the tumor (GBM or LGG, solid or infiltratively growing,
primary or secondary), and can significantly influence the
segmentation results.

Studies on tumor segmentation from brain MR images have
been abundant in the literature. Here we provide a very recent
literature review of the field. For extensive review on prior
techniques, the reader is referred to (Bauer et al., 2013; Gordillo
et al., 2013). Methodologically segmentation of tumors from
brain MRI images can be broadly categorized under generative
(Cuadra et al., 2004; Zacharaki et al., 2008; Menze et al., 2010;
Banerjee et al., 2018a) and discriminative (Bauer et al., 2011; Zikic

et al., 2012a,b; Wu et al., 2014; Menze et al., 2015; Bakas et al.,
2018) family of models.

Generative methods are explicitly designed according to the
anatomy and appearance of the tumor and the brain, and
incorporate a-priori information for decision-making. Tumors
can be modeled as outliers as compared to the expected shape
and anatomy of the brain, as reported in references (Cuadra et al.,
2004; Zacharaki et al., 2008). Menze et al. designed a generative
probabilistic model for channel-specific segmentation of the
tumor MRI in Menze et al. (2010). The generative approach in
references (Gooya et al., 2012) first computes the spatial a-priori
or “atlas” from healthy brain MRI scans. This is next modified
using an expectation maximization (EM) algorithm, over a given
set of patient images, to detect the most likely localization of
the tumor therein. The concept of visual saliency is used in
references (Banerjee et al., 2016b, 2018a; Mitra et al., 2017) for
identifying tumor regions from brain MR images. This helps
in automatically and quickly isolating the tumor region to be
subsequently used for delineation. However, generative models
are found to not generalize appropriately on unseen data; mainly
due to their simple hypothesis functions. Their dependence on
a-priori knowledge also makes them unsuitable to applications
where this is not available.

On the other hand, discriminative models directly learn
patterns from representation in the form of image features
from the underlying training data, while not depending on any
a-priori knowledge. These models may overfit the underlying
training data, but have been shown to consistently perform
well over unseen data due to their complex learned hypotheses.
A hierarchical fully automated approach was presented (Bauer
et al., 2011) for brain tissue segmentation, using support vector
machine and conditional random fields. A combination of
discriminative and generative models were developed (Zikic
et al., 2012a) for the segmentation of high grade gliomas into
the constituent sub-regions. This approach used decision forest
as the discriminative classifier, which was fed with three unique,
parameterized, contextually, and spatially aware features along
with probabilities generated from Gaussian mixture models
(Zikic et al., 2012b). Initial probability estimates were then
used with spatially non-local features and context-sensitive
decision forest for the classification of each data point. Another
discriminative approach (Wu et al., 2014) used superpixels
extracted from multi-modal MR images, with an SVM classifier
being trained with features extracted by Gabor wavelet filters. A
model-aware affinity model was defined, with its output being
used alongside the SVM for application of conditional random
fields theory before tumor segmentation.

Recently, Convolutional Neural Networks (LeCun et al., 1998)
(CNNs or ConvNets) have been shown to work impressively on
image recognition or classification problems (Krizhevsky et al.,
2012). ConvNets are particularly useful for data that comes in the
form of multiple arrays, like a color image. ConvNets essentially
revolutionized the field of computer vision and have since
become the de-facto standard for various object detection and
recognition tasks (Farabet et al., 2013; Goodfellow et al., 2013;
Sermanet et al., 2013; Simonyan and Zisserman, 2014). Inspired
by their success, several medical imaging researchers have
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applied them toward abnormality detection and segmentation;
particularly, for brain MRIs. 3D ConvNets were used as a voxel
wise classifier (Urban et al., 2014). Instead of looking at each
slice of each sequence, the 3D ConvNet works directly with the
volumetric MRI sequences; classifying each voxel into tumor
or background. The problems with this approach are the high
computational cost incurred during training and testing phases,
as well as the requirement of huge datasets. A similar approach
was used (Zikic et al., 2014) with minimal pre-processing, by
looking at the 3D patch around each point in the sequence
and classifying the central point as one of the labels. A two-
way ConvNet architecture was developed (Havaei et al., 2017)
to exploit both local and global contexts of the input image.
Each pixel in every 2D slice of the MRI data was classified into
one of the four tumor sub-regions or background, by predicting
the label of the center pixel of an M × M patch. The idea of
local structure prediction was transferred (Havaei et al., 2017)
to the task of predicting dense labels of pathological structures
in multi-modal 3D volumes using patch-based label dictionaries.
Two separate ConvNet architectures were designed (Pereira et al.,
2016) for HGG and LGG-pixel wise label prediction, along
with the use of small kernels of size 3 × 3 throughout the
ConvNets. An ensemble of ConvNet architectures (Kamnitsas
et al., 2018) was introduced for robust brain tumor segmentation.
The contribution won the multimodal brain tumor segmentation
challenge (BraTS) in 2017. Three popular ConvNets, such as
“DeepMedic” (Kamnitsas et al., 2016), “Fully Convolutional
Network (FCN)” (Long et al., 2015), and “U-Net” (Ronneberger
et al., 2015) were used to generate the class-confidence of each
voxel in a multimodal MRI volume, with a class having the
highest confidence being assigned to be the segmentation label
of that voxel.

Inspired by the success of ConvNets in brain tumor
segmentation, we propose here a new deep learning method
for segmentation of different sub-regions viz. ED, NCR, ET,
and NET, from multi-modal MR images of the brain. An
encoder-decoder type ConvNet model is designed for pixel-
wise segmentation of the tumor along three anatomical planes
(axial, sagittal, and coronal) at the slice level. These are
then combined, using a consensus fusion strategy with a
fully connected Conditional Random Field (CRF) based post-
refinement (Krähenbühl and Koltun, 2011), to produce the final
volumetric segmentation of the tumor and its constituent sub-
regions. Novel concepts, such as spatial-pooling and unpooling
(Badrinarayanan et al., 2017) are used to preserve the spatial
locations of the edge pixels, for reducing segmentation error
around the boundaries. A new aggregated loss function is also
developed for effectively handling data imbalance.

The rest of the paper is organized as follows. Section 2
describes details of data, preparation of the patch database for
ConvNet training, the proposed multi-planar Spatial-ConvNet
model which uses a spatial-pooling layer, the aggregated loss
function for imbalanced data handling during segmentation,
and the radiomic analysis of the segmented volume of interest
for overall survival prediction. Section 3 provides experimental
results on the segmentation in multi-planar and multi-sequence
data, with overall survival prediction. It also demonstrates
their effectiveness through qualitative and quantitative analysis.

Finally section 4 draws conclusions, and provides directions for
future research.

2. MATERIALS AND METHODS

In this section we present a detailed description of the brain
tumor MRI dataset, and the proposed methods for tumor
segmentation and patient overall survival (OS) prediction.
Segmentation comprises of extraction of patches, training and
testing of the segmentation model, and post-processing. The
OS prediction consists of quantitative feature extraction and
dimensionality reduction.

2.1. Dataset
Multi-modal MRI volumes used in this paper, were taken from
the Multimodal Brain Tumor Segmentation Challenge (BraTS)
20181 (Menze et al., 2015; Bakas et al., 2017a,b,c, 2018). The
dataset consists of 210 HGG and 75 LGG glioma cases as
training, with 66 unlabeled (HGG or LGG) cases as validation
samples. Multi-modal or multi-channel MRI volumes, consisting
of T1, T1C, T2, and FLAIR, are available for each patient
with the MRI volume being composed of 155 slices of 240 ×

240 resolution. The MRI volumes are first carefully aligned to
the same anatomical template, skull-stripped, and interpolated
to 1mm3 voxel resolution, before being made available for
experimentation. Manual segmentation of the tumor sub-regions
is done by experts, following the same annotation protocol for
all patients. Their annotations were revised and approved by
board-certified neuro-radiologists. Finally, the predicted labels
are evaluated by merging three regions viz. whole tumor
(WT :NCR/NE+ ET + ED), tumor core (TC :NCR/NET + ET),
and enhancing tumor (ET) as shown in Figure 1.

2.2. ConvNet for Tumor Segmentation
Here we present the proposed multi planar ConvNet architecture
for automatic segmentation of different tumor sub-regions,
i.e., ED, ET, and NCR/NET from a given multi-modal MRI
scan. Novel spatial max pooling and unpooling layers are
introduced to better approximate the tumor anatomical structure
by minimizing segmentation errors around the tumor boundary
during up sampling. An adaptive fusion strategy for accurate
and robust segmentation, by combining output from the three
principal planes (axial, coronal, and sagittal), is described. A
weighted aggregated loss function is introduced to train the
networks in the presence of class imbalance.

2.2.1. Patch Based Learning
Tumors are typically heterogeneous, depending on cancer
subtypes, and contain a mixture of structural and patch-level
variability. Applying a ConvNet directly to the entire slice has
its inherent drawbacks. Since the size of each slice is 240 × 240,
therefore overall memory requirement of the model will increase.
Moreover, very little difference is observed in adjacent MRI
slices at the global level; whereas, patches generated from the
same slice often exhibit significant dissimilarity. We develop a
Fully Convolutional Network (FCN) architecture for pixel-wise

1https://www.med.upenn.edu/sbia/brats2018/data.html
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FIGURE 1 | T1 MRI of a sample HGG patient with 3D segmentation of different intra-tumoral structures (ED, ET, and NCR/NET) along three principal planes (axial,

sagittal, and coronal).

FIGURE 2 | Segmentation errors, with error around the boundary marked by blue ellipse and false positive errors are marked by white ellipses.

FIGURE 3 | (A) ConvNet architecture, with (B) Spatial-Max-Pooling and Unpooling, for segmentation.

Frontiers in Computational Neuroscience | www.frontiersin.org 4 January 2020 | Volume 14 | Article 3141

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Banerjee and Mitra Novel Volumetric Segmentation in Gliomas

segmentation of the tumor regions. Since FCN does not contain
fully connected layers, it is invariant to input image size.
Therefore, we can use images of different resolutions during
training and testing (or inference).

2.2.2. ConvNet Architecture
The FCN architecture consists of three blocks “encoder or
downsampling path,” “bottleneck,” and “decoder or upsampling
path.” The encoder block contains four feature extraction blocks,
each having two consecutive convolution layers with filter (or
kernel) size 3 × 3. Four max-pooling layers of window size
2 × 2 are placed in between the feature extraction blocks, to
down sample an image into a set of high-level features. Pairs of
convolution layers are placed in the bottleneck block, between
the encoder and decoder blocks. The structure of decoder block
is the same as that of the encoder, with the only difference being in
the use of upsampling layer instead of max-pooling to construct
a pixel-wise segmentation of the input MR patch.

It was observed during model validation that the predicted
segmentation suffers mainly from two types of errors, as shown
in Figure 2; (i) error around the boundary, and (ii) false
positive at the top and bottom ends of the MRI volume.
The error around the boundary occurs because the network
loses spatial information during down sampling or pooling
operations. The unpooling layers in the decoder block try to
approximate the inverse of the pooling operation or upsample the
reduced image to its original resolution through interpolation.
In this process, the segmentation error percolates around the
boundary of the region-of-interest (ROI) or volume-of-interest
(VOI). This is considered as an important concern for a good
medical image segmentation method. We name this as error
around the boundary. The false positives error occur because
the model is trained on 2D MRI patches without considering
volumetric information.

2.2.3. Spatial-Max-Pooling and Unpooling
To circumvent the problem of error around the boundary to
some extent, we used a modified version of the pooling and
unpooling layers as proposed in references (Badrinarayanan
et al., 2017)—and call it “spatial-max-pooling” and “spatial-max-
unpooling.” Now spatial-max-pooling can retain the position
from where the max-pooling operation selected the maximum
value, to be subsequently used during unpooling through
the spatial-max-unpooling layer. Details of the process is
illustrated in Figure 3B. Although the spatial-max-pooling and
unpooling layers offer an advantage over regular nearest neighbor
upsampling or deconvolution, they also increase the memory
requirement of the overall model. Therefore, the max pooling
locations for each of the input activation maps need to be stored
for a mini batch, during each such operation, and reused in
subsequent mini batches. Shortcut connections are used to copy
and concatenate the high resolution response maps from the
encoder to the decoder. It helps the decoder network localize
and recover the object details more effectively. In this way we
achieve a perfect agreement between high level features and pixel
level details. Figure 3A illustrates the complete architecture of the
proposed ConvNet model.

TABLE 1 | Hyperparameters used for training.

Model Hyperparameters Value

CNN Weights and bias Xavier (Glorot and Bengio, 2010)

Optimizer ADAM (Kingma and Ba, 2014)

Epochs 25

Batch_size 16

Learning rate 1e−4

Hyperparameters Selected values Values searched

CRF ω1, ω2 2.5, 4.0 [2, 2.5, 3, 3.5, 4], [2, 2.5, 3, 3.5, 4]

σα,x , σα,y , σα,y 24, 24, 24 [12, 24], [12, 24], [12, 24]

σβ,x , σβ,y , σβ,z 17, 12, 10 [10− 20], [10− 20], [6, 8, 10, 12]

σγ ,c 8 [4, 8, 12, 16]

2.2.4. Multi-Planar Aggregation With 3D CRF Based

Refinement
The MRI scans are taken in the axial (X-Z) plane, which
represents voxels (or an unit volume) of the 3-Dimensional
human brain. Therefore, it can be reconstructed into coronal
(Y-X) plane and sagittal (Y-Z) planes for having different
3D views of the brain. Using the multi-view property of MR
imaging, we propose a solution for the second error, i.e.,
false positive error. We train three separate ConvNets (same
architecture as Figure 3A) for segmenting the tumor along the
three individual planes/views. Next the predicted probability
maps generated by the softmax layers of the three ConvNets
(paxial, pcoronal, psagital) are fused by averaging the probability
maps, i.e., p = (paxial + pcoronal + psagittal)/3. It is found that
the integrated prediction from multiple planes are superior as
compared to the estimated region based on any single plane
in terms of accuracy, and robustness of decision. This is due
to utilization of more information and minimization of the
estimated loss.

Next a 3D fully-connected Conditional Random Field (CRF)
based bilateral filtering (Krähenbühl and Koltun, 2011) is
used to refine the fused prediction, while maintaining the
local and contextual consistency of the segmentation. The 3D
CRF integrates the four MRI sequences with the multi-planar
fused predicted probability map, to produce an optimized
segmentation by minimizing the energy function

E =

∑

i

− log p
(l)
i + ζ (li, lj)[ω1P(λi, λj)+ ω2f (λi, λj)], (1)

where

P(λi, λj) = exp

(

−

∑

d∈{x,y,z}

|si,d − sj,d|

2σ 2
α,d

)

, (2)

f (λi, λj) = exp

(

−

∑

c∈{T1,T1C,T2,FLAIR}

|Ii,c − Ij,c|

2σ 2
γ ,c

−

∑

d∈{x,y,z}

|si,d − sj,d|

2σ 2
β ,d

)

.

(3)
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FIGURE 4 | Aggregated architecture combining multiple planes, with CRF-based refinement.

Here p
(l)
i is the fused probability of assigning label l to voxel

i and ζ (li, lj) is the label compatibility function between voxel
pairs [li 6= lj], with λi being the feature vector of voxel i
containing seven features (viz. four intensities from the four MR
sequences along with its 3D coordinate values). Note that Ii,c
corresponds to the intensity of the ith voxel in the four MRI
sequences denoted by c, and si,d represents the spatial 3D location
of the voxel i. While function P(·) controls the smoothness of the
segmented region by considering the influence of neighborhood
(using the hyperparameter σα,d), the function f (.) strives to
preserve local and contextual consistency of the segmented
output by controlling the level of similarity and proximity (using
hyperparameters σγ ,c and σβ ,d). Optimizing the energy function
also removes small isolated regions from the segmented output.
All the model hyperparameters (α1, α2, σα , σγ , σβ ) are chosen
through grid searching, as reported in Table 1.

The final model, represented in Figure 4, includes spatial-
max-pooling and unpooling, multi-planar aggregation and 3D
fully connected CRF based refinement. This will be referred to
as “MPS-CNN” in the sequel.

2.2.5. Loss Function for Handling Class Imbalance
Since the dataset is highly imbalanced, with around 98% of
the voxels belonging to either the healthy tissue or to the
black surrounding area (as depicted in Figure 5), standard loss
functions used in the literature are not suitable for training and
optimizing the ConvNet. In such cases training can be dominated
by the most prevalent class, with the classifiers focusing on
learning the larger classes; thereby resulting in poor classification
accuracy for the smaller classes. Therefore, we propose a new loss
function. It is a sum of two factors viz.—Weighted Generalized
Dice Loss (WGDL) (Sudre et al., 2017) and Weighted Log
Loss (WLL) (Ronneberger et al., 2015). Both loss functions
are computed between the soft binary segmentation or the
probability map generated by the network using the softmax layer
(P), and the corresponding gold standard/ground-truth image
(G). TheWGDL andWLL are defined as

WGDL = 1− 2

∑|C|
c=1 wac

∑N
n=1 GcnPcn

∑|C|
c=1 wac

∑N
n=1 Gcn + Pcn

, (4)

FIGURE 5 | Tumor sub-class distribution for a sample MRI slice.

and

WLL = −
1

N

N
∑

n=1

|C|
∑

c=1

wscGcn log(Pcn), (5)

where C = {Background,ED,ET,NCR/NET}, N is the total
number of pixels in the image. Here the contribution of each
class is multiplied by the adaptive weight wac =

1

(
∑N

n=1 Gcn)2
,

which is inversely proportional to the class volume. Thereby
it controls the contribution of larger classes while helping to
learn smaller classes by reducing the classifier bias. Here wsc
is a four dimensional vector, storing the static class weights
for [Background,ED,ET,NCR/NET], and is assigned based on
the class ratio. Parameters Gcn and Pcn correspond to the
ground truth value and the predicted output, respectively, for
the nth pixel w.r.t. the cth class. Optimizing the Generalized
Dice Loss (WGDL) produces over segmented regions, while log
loss generates under-segmented regions. Therefore, we combine
WGDL and WLL in a weighted fashion, so that while cross-
entropy treats every pixel as an independent prediction, the
dice-score looks at the resulting mask in a more holistic
manner. Moreover, considering the fact that these two losses
yield significantly different masks, each with its own merits
and errors, a combination of such complementary information
should be beneficial.

3. EXPERIMENTAL SETUP AND RESULTS

The ConvNet models were developed using TensorFlow, with
Keras in Python. The experiments were performed on the Intel
AI DevCloud platform having cluster of Intel Xeon Scalable
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FIGURE 6 | Box plots of segmentation performance for the proposed MPS-CNN and the other 10 (A–J) models, measured by Dice score and Hausdorff distance, for

the WT, TC, and ET tumor sub-regions of 66 patients from the BraTS 2018 validation dataset. The p-values <0.05, <0.001, <0.0001, and <0.00001 for each

comparison are represented by ∗, ∗∗, ∗∗∗, and ∗∗∗∗, respectively, w.r.t. MPS-CNN.

processors and 96 GB of RAM. The proposed segmentation
model was trained and validated on the corresponding training
and validation datasets provided by the BraTS 2018 (Menze et al.,
2015; Bakas et al., 2017a,b,c, 2018) organizers and is described
in section 2.

The CNN models were trained on the patches extracted from
the standardized and cropped MRI volumes. The BraTS 2018
datasets contains MRI volumes of size 155 × 240 × 240, which
are cropped to have a size of 146 × 192 × 152 for discarding
some unwanted background. This helps minimize the number
of patches extracted from the “non-brain” region. Then patches
of size 128 × 128 (experimentally found to be the best) were

extracted randomly from all the four MRI sequences, with a
constraints such that the center pixel of a patch does not belong
to the minimum intensity value in the FLAIR modality. This
condition helps minimize the extraction of “non-tumor” patches.
A total of 111,690, 142,160, 118,400 training patches were
extracted from the axial, coronal and sagittal planes, respectively.
During inference the entire stack of slices (155 × 240 × 240)
of a patient is input from the test dataset, to produce pixel-wise
segmentation of the tumor regions and the background.

Quantitative metrics used for evaluating the segmentation
results (P) w.r.t. the ground truth (G) (in case of training) and
through the Leaderboard/blind testing (in case of validation)

Frontiers in Computational Neuroscience | www.frontiersin.org 7 January 2020 | Volume 14 | Article 3144

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Banerjee and Mitra Novel Volumetric Segmentation in Gliomas

FIGURE 7 | Sample segmentation results for four patients from the BraTS 2018 training dataset. The green label is edema, the red label is non-enhancing or necrotic

tumor core, and the yellow label is enhancing tumor core.

FIGURE 8 | Comparative study on segmentation obtained by our model MPS-CNN, with respect to the ground truth and Model A, for a sample patient (PID:

BraTS18_2013_11_1).

are (i) Dice score =
( 2|P1

∧

G1|

|P1|+|G1|

)

, (ii) sensitivity =
(

|P1
∧

G1|

|G1|

)

,

(iii) specificity =
(

|P0
∧

G0|

|G0|

)

, and (iv) Hausdorff distance

= max{supp∈∂P1 infg∈∂G1 d(p, g), supg∈∂G1 infp∈∂P1 d(g, t)},

computed for WT, TC, and ET (Menze et al., 2015). Here voxels

with label 0 and 1 are denoted by P0/T0 and P1/T1, respectively.

The Hausdorff distance computes maximum of the shortest
least-square distance d, between all points on the surfaces ∂P1
and ∂G1 of the two volumes P1 and G1.

We performed two experiments to analyze (a) the effect on
performance improvement through the proposed modifications
in the vanilla FCN structure, and (b) the effect of the proposed

aggregated loss function in terms of handling class imbalance.
The hyperparameters, employed through all the experiments,
are provided in Table 1. These were selected through automatic
cross-validation of the baseline model. Since deep CNNs entail
a large number of free trainable parameters, the effective number
of training samples were artificially enhanced using real time data
augmentation in the form of linear transformation like random
rotation (0–10◦), horizontal and vertical shifts, horizontal and
vertical flips. A small part of the training set (20%) was used
for validating the ConvNet model, after each training epoch, for
parameter selection and detection of overfitting. Each model was
trained for 20 epochs, with a single epoch consuming about an
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FIGURE 9 | Comparative study on segmentation obtained by our model MPS-CNN, with respect to the ground truth and Models B–E, for a sample patient (PID: PID:

BraTS18_2013_7_1).

FIGURE 10 | Segmentation results obtained by Model MPS-CNN on the validation dataset for three sample patients (PIDs: BraTS18_CBICA_AAM_1,

BraTS18_CBICA_ALZ_1, and BraTS18_CBICA_AUE_1).

hour (approximately) on Intel AI DevCloud platform. Inference
time, including 3D CRF based refinement, required about 10 min
per patient (approximately).

3.1. Experiment 1
The proposed model MPS-CNNwas compared with ten variants,
as outlined below.

• Model A: Replacing the spatial-max-pooling and max-
unpooling layers of the MPS-CNN by normal max-pooling
and upsampling layers.

• Models B–D: Architectures same as MPS-CNN, but without
incorporating multi-planar aggregation and CRF based post-
processing. Models B, C, and D were trained by patches,
extracted (respectively) along axial, sagittal, or coronal
plane only.

• Model E: MPS-CNN model excluding only the CRF
based post-refinement.

• Models F–J: Training MPS-CNN with unweighted [Equation
(4) with wac = 1] and weighted dice loss (Equation 4) to
generate models F and G. Next unweighted [Equation (5) with
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wsc = 1] and weighted log loss (Equation 5) were considered
to formulate models H and I. Model J was designed by training
MPS-CNN with multiclass Focal loss (Lin et al., 2017), which
was developed for addressing massive class imbalance.

Different models were compared based on their segmentation
performance on the validation dataset, for which the organizers
did not share the tumor grade (HGG/LGG) or the ground truth
segmentation. During testing, the participants were required to
upload the segmentation masks generated by their algorithm
to the dedicated server https://www.cbica.upenn.edu/BraTS18/
for evaluation.

The box-and-whisker plots in Figure 6 report the Dice score
and Hausdroff performance of the segmentation result for the
nested tumor sub-regions WT, TC, and ET for the 66 patients
from BraTS 2018 validation dataset for the MPS-CNN as well
as the other ten (A–J) models. The plots report the minimum
& maximum; lower, median, upper quartiles; mean Dice and
Hausdorff scores. The mean is marked by a red square in each
case. Student’s t-test is used to check whether the performance
difference between the proposedMPS-CNN and each of the other
ten compared models (A–J) is statistically significant based on
their Dice score. It is evident from Figure 6 that the proposed
MPS-CNN achieved the best Dice score (Dice) and Hausdorff
distance (HD) for all the three tumor sub-regions (viz. ET,
TC, and WT). Figure 7 demonstrates the segmentation obtained
by our model MPS-CNN with reference to the corresponding
ground truth, for two sample HGG and LGG patients from the
training dataset.

Figures 8, 9 present a comparative study on the qualitative
segmentation results by our model MPS-CNN and models A-
E (as outlined above), to visualize the effect of the proposed
modifications with respect to the basic FCN architecture.
This serves to highlight the effect of the novel concepts of
spatial-max-pooling and unpooling layers, along with that of
multiplanar aggregation through visual demonstration on sample
patients from the training dataset along all three planes (viz.
axial, sagittal, coronal). Each figure also displays the ground
truth segmentation. It is visually evident from Figure 9 that
segmentation by model A suffers from misclassification error
along the boundary of the different tumor sub-regions, with gross
error in segmenting the small sub-region ET. On the other hand,
our model MPS-CNN produced comparable segmentation w.r.t.
the ground truth, for each of the tumor sub-regions.

Figure 9 demonstrates the role of multiplanar aggregation
and CRF based post-processing for a sample patient. The first
row presents segmentation results obtained with multiplanar
aggregation with (and without) CRF based post-processing by
the models MPS-CNN (and E), respectively, with reference to
the corresponding ground truth. The second row illustrates
segmentation by models trained on patches extracted only
along a single anatomical plane (axial, sagittal, and coronal),
corresponding to models B, C, D, respectively. It is clearly
observed that the aggregated models, MPS-CNN and E, perform
better than any of B, C, D which were trained only along a single
plane. Besides, the CRF based post-processing helps MPS-CNN
to achieve more structured predictions by retaining the local and
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contextual consistency. Thereby, some of the isolated NCR/NET
regions get correctly segmented by our MPS-CNN as compared
to Model E.

Figure 10 depicts the segmentation results, obtained by our
MPS-CNN, on the validation dataset provided for three sample
patients. Incidentally the models F, G, which were trained using
unweighted versions of dice and log losses, were found to
perform the worst due to the problem of class imbalance (as
discussed in section 2.2.5). The performance gradually improved
by introducing class weights to the loss functions in models
H and I. However, the Focal loss function is observed to
perform well in handling intra-class imbalance (for example,
the amount of ET in the TC is not the same for HGG and
LGG patients). However, it is less useful for cases involving
inter-class imbalance.

3.2. Experiment 2
Our proposed model (MPS-CNN) was next compared with
the top five models (based on the leaderboard performance
on the validation dataset) that participated in the BraTS
2018 challenge, available online at (https://www.cbica.upenn.
edu/BraTS18/lboardValidation.html). The name of our team
is “radiomics-miu” and the other five teams selected for
the comparison are “NVDLMED,” “SCUT_EE_CSC,” “SHealth,”
“MIC-DKFZ,” and “SUSTech.” Segmentation performance of
each model is measured in terms of “Dice score,” “Sensitivity,”
“Specificity,” and “Hausdorff distance” (Menze et al., 2015). Three
colors (red, blue, and green) are used to mark the first, second,
and third highest scores, respectively (for each measure), as
reported in Table 2.

It is observed that our model MPS-CNN attained the
highest scores in five comparisons. It performed the best for
ET and TC segmentation tasks, as compared to its nearest
competitor (“NVDLMED”) in terms of both the quantitative
measures (Dice and Hausdorff). It is to be noted that the
segmentation of ET and TC is challenging, and our MPS-CNN
consistently performed best for both these tasks. In case of the
WT segmentation it also acquired the second best accuracy,
with a score which was only 1% less than that of the best
performing method.

4. CONCLUSIONS

Manual segmentation of tumors from MRI is a highly tedious,
time-consuming and error-prone task, mainly due to factors,
such as human fatigue, overabundance of MRI slices per
patient, and an increasing number of patients. Such manual
operations often lead to inaccurate delineation. Development of
automated and reproducible methodologies for accurate brain
tumor segmentation is likely to have great clinical impact, since
automated decision-making reduces human bias and is faster.
We have developed a deep learning based model called Multi-
Planar Spatial Convolutional Neural Network (MPS-CNN), for
the automated segmentation of brain tumors from multi-modal
MR images. The encoder-decoder type ConvNet model for

pixel-wise segmentation was found to perform better than other
patch-based models, mainly due to the introduction of new
concepts like spatial max-pooling and unpooling to preserve the
spatial locations of the edge pixels while reducing segmentation
error around the boundaries. Integrated prediction frommultiple
anatomical planes (axial, sagittal, and coronal) was superior, in
terms of accuracy and robustness of decision (as the data comes
from multiple sources), with respect to the estimation based on
any single plane. Shortcut connections were also incorporated to
copy and concatenate the receptive fields, from the encoder to the
decoder parts, to help the decoder network localize and recover
the object details more efficiently. Very high segmentation scores
were obtained on the test dataset in the blind testing phase.
The effectiveness of the proposed aggregated loss function was
demonstrated in terms of handling data imbalance, and the
MPS-CNN model was found to be perform the best for the
smaller classes viz. ET and TC. The CRF based post-refinement
enhanced the segmentation accuracy by eliminating false
positive regions.
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The manual brain tumor annotation process is time consuming and resource consuming,

therefore, an automated and accurate brain tumor segmentation tool is greatly in

demand. In this paper, we introduce a novel method to integrate location information with

the state-of-the-art patch-based neural networks for brain tumor segmentation. This is

motivated by the observation that lesions are not uniformly distributed across different

brain parcellation regions and that a locality-sensitive segmentation is likely to obtain

better segmentation accuracy. Toward this, we use an existing brain parcellation atlas

in the Montreal Neurological Institute (MNI) space and map this atlas to the individual

subject data. This mapped atlas in the subject data space is integrated with structural

Magnetic Resonance (MR) imaging data, and patch-based neural networks, including

3D U-Net and DeepMedic, are trained to classify the different brain lesions. Multiple

state-of-the-art neural networks are trained and integrated with XGBoost fusion in the

proposed two-level ensemble method. The first level reduces the uncertainty of the

same type of models with different seed initializations, and the second level leverages

the advantages of different types of neural network models. The proposed location

information fusion method improves the segmentation performance of state-of-the-art

networks including 3D U-Net and DeepMedic. Our proposed ensemble also achieves

better segmentation performance compared to the state-of-the-art networks in BraTS

2017 and rivals state-of-the-art networks in BraTS 2018. Detailed results are provided

on the public multimodal brain tumor segmentation (BraTS) benchmarks.

Keywords: gliomas, brain tumor segmentation, brain parcellation atlas, convolutional neural network, DeepMedic,

3D U-Net, ensemble learning, XGBoost

1. INTRODUCTION

Glioma is a common type of brain tumor in adults originating in the glial cells that support neurons
and help them function. The World Health Organization (WHO) classification system categorizes
gliomas from grade I (lowest grade) through grade IV (highest grade), based upon histopathologic
characteristics that predict their behavior over time (Louis et al., 2007). Low-grade gliomas (LGGs)
consist of WHO-grade I tumors andWHO-grade II tumors, that tend to exhibit benign tendencies
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and indicate a better prognosis for the patient. WHO-grade
III and IV tumors are included in high-grade gliomas (HGG)
that are malignant and more aggressive. Patients with HGG had
median survival time (MST) 18 months, and the MST of patients
with Grade III and IV gliomawere 26 and 13months, respectively
(Noiphithak and Veerasarn, 2017). Gliomas are further divided
into four types of sub-regions, namely edema, non-enhancing
core, necrotic core, and enhancing core based on the acuteness
of the tumor cells that have different appearances in MR imaging
data. However, segmenting the different sub-regions of gliomas
is a daunting task because of the intrinsic heterogeneity which
affects their visual appearance as well as shape. Clinically, MR
images help a doctor to evaluate the tumor and plan treatment.
Moreover, the treatment depends on the type, size, shape, grade,
and location of the tumor, which varies widely. Consequently,
this observation leads to the importance of an accurate brain
tumor segmentation for better diagnosis of brain tumors. Also,
the manual annotation process is time consuming and resource
consuming, therefore, an automated and accurate brain tumor
segmentation tool is greatly in demand.

Deep neural networks (DNNs) have achieved state-of-the-
art segmentation performance on the recent Multimodal Brain
Tumor Segmentation (BraTS) Challenges (Bakas et al., 2018).
Kamnitsas et al. (2017a) conducted the comparative study on
performance and concluded that deep learning along with
ensemble learning-based methods outperform the others as they
leverage the advantage of each deep learning model. Wang
et al. (2017) analyzed three different binary segmentations task
rather than a single multi-class segmentation task, and three
different binary segmentations task has a better performance
than a single multi-class segmentation task. Along this line,
Isensee et al. (2017) proposed to integrate segmentation layers at
different levels of optimized 3DU-Net-like architectures followed
by element-wise summation. Myronenko (2018) implemented
a modified decoder and encoder structure of CNN to generate
dense segmentation. Likewise, Isensee et al. (2018) demonstrated
that an original U-Net architecture trained with additional
institution dataset improved the dice score of enhancing tumor.
McKinley et al. (2018) also proposed a U-Net-like network
and introduce a new loss function, a generalization of binary
cross-entropy, to account for label uncertainty. Furthermore,
Zhou et al. (2018) explored the ensemble of different networks
including multi-scale context information, and also segmented
three tumor compartments in cascade with an additional
attention block.

Our recent work (Kao et al., 2018) utilizes an existing
parcellation to bring location information of the brain into
patch-based neural networks that improve the brain tumor
segmentation performance of networks. Outputs from 26 models
were averaged, including 19 different types of DeepMedics
(Kamnitsas et al., 2017b) and seven different types of 3D U-Nets
(Çiçek et al., 2016), to get the final tumor predictions. Different
from our previous ensemble, the proposed ensemble only
contains six models including three DeepMedics and three 3D
U-Nets with different seed initializations that only take <1 min
in the inference time.We also propose a novel two-level ensemble
method which reduces the uncertainty of predictions in the first

level and takes advantage of different types of models in the
second level. In this paper, we also demonstrate that the proposed
location fusion methods improve the segmentation performance
of the single state-of-the-art patch-based network and an
ensemble of multiple state-of-the-art patch-based networks.
The proposed ensemble has better segmentation performance
compared to state-of-the-art networks in BraTS 2017 dataset
and competitive performance to the state-of-the-art networks
in BraTS 2018 dataset. The main contribution of this paper is
two-fold. First, it proposes a location information fusion method
that improves the segmentation performance of state-of-the-
art networks including DeepMedic and 3D U-Net. Second, it
proposes a novel two-level ensemble method which reduces
the uncertainty of prediction and leverages the advantages of
different segmentation networks.

2. MATERIALS AND METHODS

This section describes the details of (i) a proposed location
information fusion method for improving brain tumor
segmentation using a patch-based convolutional neural network
(CNN), and (ii) a proposed ensemble learning method which
takes advantage of model diversity and uncertainty reduction.
This section includes the data description, data pre-processing,
network architectures, training, and test procedure, proposed
location information fusion method, and proposed ensemble
methods. The evaluation metrics are also described at the end of
this section.

2.1. Dataset
The Multimodal Brain Tumor Segmentation Challenges (BraTS)
2017 dataset and BraTS 2018 dataset (Menze et al., 2015;
Bakas et al., 2017a,b,c) comprise clinically-acquired pre-operative
multimodal MRI scans of glioblastoma (GBM/HGG) and lower-
grade glioma (LGG) as training, validation and test data. There
are 285 subjects in the training set and 46 and 66 subjects in the
validation set of BraTS 2017 and BraTS 2018, respectively. The
lesion ground-truth labels are available for the training subjects
but withheld for both the validation and test subjects. MRI
scans were available as native (T1), post-contrast T1-weighted
(T1Gd), T2-weighted (T2), and T2 Fluid Attenuated Inversion
Recovery (FLAIR) volumes. These scans were distributed after
being skull-stripped, pre-processed, re-sampled, and interpolated
into 1 mm isotropic resolution with an image size of 240 ×

240 × 155 in x-, y-, and z-direction. Tumor segmentation labels
were produced manually by a trained team of radiologists and
radiographers. The edema was segmented primarily from T2
images, non-enhancing and enhancing the core of the tumor
from T1c together with the lesions visible in T1 and necrotic
core from T1c. We used the annotated and co-registered imaging
datasets including the Gd-enhancing tumor, the peri-tumoral
edema and the necrotic and non-enhancing tumor core for our
training and test procedure.

2.2. Data Pre-processing
Different modalities used for mapping tumor-induced tissue
changes include MR-T1, MR-T1Gd, MR-T2, and MR-FLAIR,
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which leads to varying intensity ranges. We first normalize each
modality to a standard range of values. Each MR image is pre-
processed by first clipping it at (0.2 percentile, 99.8 percentile)
of non-zero voxels to remove the outliers. Subsequently, each
modality is normalized individually using x̄i = (xi−µ)/σ where
i is the index of voxel inside the brain, x̄i is the normalized voxel,
xi is the corresponding raw voxel, and µ and σ are the mean and
standard deviation of the raw voxels inside the brain, respectively.

2.3. Network Architectures
Two different network architectures adapted from DeepMedic
(Kamnitsas et al., 2017b) and 3D U-Net (Çiçek et al., 2016) are
examined in this study. DeepMedic was initially designed for
brain lesion segmentation, e.g., stroke lesions (Kamnitsas et al.,
2015) and brain tumor lesions (Kamnitsas et al., 2016), and 3DU-
Net which is the 3D version of U-Net (Ronneberger et al., 2015)
is widely used for the volumetric image segmentation tasks (Yu
et al., 2017; Li et al., 2018; Jiang et al., 2019). More details of
network architectures are described below.

2.3.1. Modified DeepMedic
The first network architecture shown in Figure 1 is modified
from DeepMedic (Kamnitsas et al., 2017b). The number of
convolutional kernels is indicated within the white box. Batch
normalization (Ioffe and Szegedy, 2015) is used. Residual
connection (He et al., 2016) is used in the normal resolution

path, and trilinear interpolation is used in the upsampling layer
of the downsampled resolution path. The size of the receptive
field of the normal resolution path is 25 × 25 × 25, and the
size of the receptive field of the downsampled resolution path
is 19 × 19 × 19. The receptive field of downsampled resolution
path is downsampled from an image patch of size 55 × 55 ×

55 by a factor of 3 in the same center as the receptive field
of normal resolution path. The modified DeepMedic predicts
the central 9 × 9 × 9 voxels of the receptive field of normal
resolution path.

2.3.1.1. Training and test procedure
The modified DeepMedic is only trained with patches that have
approximately 50% foreground (lesion) and 50% background
to solve the class imbalance problem, and it is trained with
batch size 50. In every epoch, 20 patches are extracted from
each subject. The network is trained for a total of 500 epochs.
The weights of the network are updated by Adam algorithm
(Kingma and Ba, 2015) with an initial learning rate of l0 =

10−3 following the schedule of l0 × 0.1epoch, L2 penalty
weight decay of 10−4, and AMSGrad (Reddi et al., 2018).
A standard multi-class cross-entropy loss is used. Randomly
flipping in x-, y-, and z-axis with a probability of 50%, and
random noise are applied in the data augmentation of the
training procedure. At the test time, a sliding window scheme
of step size 9 is used to get the tumor lesion prediction

FIGURE 1 | The network architecture of modified DeepMedic. conv(3), 3× 3× 3 convolutional layer; BN, batch normalization; upsample(3), trilinear interpolation by a

factor of 3; and conv(1), 1× 1× 1 convolutional layer.
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FIGURE 2 | The network architecture of modified 3D U-Net. conv(3), 3× 3× 3 convolutional layer; GN, group normalization; D(0.3), dropout layer with 0.3 dropout

rate; maxpool(2), 2× 2× 2 max pooling layer; and conv(1), 1× 1× 1 convolutional layer.

of the test subject. Training takes approximately 6 h, and
a test for each subject takes approximately 24 s on an
Nvidia 1080 Ti GPU and an Intel Xeon CPU E5-2696 v4
@ 2.20 GHz.

2.3.2. Modified 3D U-Net
The second network architecture shown in Figure 2 is modified
from 3D U-Nets (Çiçek et al., 2016). Different colors of blocks
represent different types of layers. The number of convolutional
kernels is indicated within the white box. Group normalization
(Wu and He, 2018) is used, and the number of groups is
set to 4. Residual connection (He et al., 2016) is used in
the encoding path, and trilinear interpolation is used in the
upsampling layer.

2.3.2.1. Training and test procedure
The modified 3D U-Net is trained with randomly cropped
patches of size 128 × 128 × 128 voxels and batch size 2.
In every epoch, a cropped patch is randomly extracted from
each subject. The network is trained for a total of 300 epochs.
The weights of the network are updated by Adam algorithm
(Kingma and Ba, 2015) with an initial learning rate l0 =

10−3 following the schedule of l0 × 0.1epoch, L2 penalty weight
decay of 10−4, and AMSGrad (Reddi et al., 2018). For the
loss function, the standard multi-class cross-entropy loss with
the hard negative mining is used to solve the class imbalance
problem of the dataset. We only back-propagate the negative
(background) voxels with the largest losses (hard negative)
and the positive (lesions) voxels to the gradients. In our
implementation, the number of selected negative voxels is at
most three times more than the number of positive voxels.
Besides, data augmentation is not used for both training and
testing. At the test time, we input the entire image of size 240 ×
240 × 155 voxels into the trained 3D U-Net for each patient
to get the predicted lesion mask. Training takes approximately
12.5 h, and the test takes approximately 1.5 s per subject
on an Nvidia 1080 Ti GPU and an Intel Xeon CPU E5-
2696 v4 @ 2.20 GHz.

2.4. Incorporating Location Information
With Patch-Based Convolutional Neural
Network
The heatmaps (see Figure 3) of different brain tumor lesion sub-
regions reveal that different lesion sub-regions have different
probability occurring in different locations. The heatmaps are
generated by first registering the ground-truth lesions of 285
training subjects from the subject space to the MNI 152 1mm
space using FMRIB’s Linear Image Registration Tool (FLIRT)
(Jenkinson and Smith, 2001) from FSL, extracting the binary
masks of different types of lesion sub-regions from each subject,
and applying element-wise summation to the same type of binary
masks of each subject in the MNI 152 1mm space. However,
the patch-based convolutional neural networks (CNNs), e.g.,
DeepMedic or 3D U-Net, do not consider location information
for brain tumor segmentation. That is, the patch-based CNNs do
not know location information of the input patches.

In this study, an existing brain parcellation atlas, Harvard-
Oxford Subcortical atlas (see Figure 3), is used as location
information of the brain for the patch-based CNN. The details
of Harvard-Oxford Subcortical parcellation regions are described
in Table 1. There are two main reasons for choosing this atlas: (1)
this atlas covers more than 90% of a brain region, and (2) lesion
information and location information are converted into this
atlas (see Figure 3). The distribution in Figure 3E is calculated
by dividing the total volume of the lesion sub-regions from 285
training subjects by the total volume of the corresponding brain
parcellation in the MNI 152 space. Figure 3 shows that different
lesion sub-regions have different probabilities happening in
different parcellation regions.

Our proposed location information fusion method which
is shown in Figure 4 explicitly includes location information
as input into a patch-based CNN. First, the Harvard-Oxford
subcortical atlas is registered to the individual subject space
from MNI 152 1 mm space (Grabner et al., 2006) using FLIRT
(Jenkinson and Smith, 2001) from FSL. The registered atlas
is then split into 21 binary masks and concatenated with the
multimodal MR images as input to a patch-based CNN for both
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FIGURE 3 | Top row shows the heatmaps of different lesion sub-regions, (A): edema, (B): necrosis & non-enhancing tumor, and (C): enhancing tumor, from 285

training subjects of BraTS 2018 in the MNI 152 1 mm space. The brighter (yellow) voxel represents higher value. (D) Shows Harvard-Oxford subcortical structural atlas

(Desikan et al., 2006), and (E) the percentage of brain lesion sub-regions observed in different parcellation regions of the Harvard-Oxford subcortical atlas from 285

training subjects of BraTS 2018. The x-axis indicates the brain parcellation label ID. Regions not covered by the Harvard-Oxford subcortical atlas are in label 0.

training and test. As a result, the fused input has 25 channels. The
first four channels provide the image information, and the last 21
channels contain the location information of the brain.

It is noted that the registration involving in our research
only contain a linear (affline) transformation which has 9
degrees of freedom. In general, the registration should include a
linear transformation followed by a deformable transformation.
However, for the patient having brain lesions, a lesionmask has to
be given in the deformable transformation in order to account for
the effect of the lesion (Kuijf et al., 2013). The problem we have
here is finding the brain tumor lesion based on the multimodal
MR scan. Therefore, we are not able to use any ground truth
lesion information, and the registration only contains a linear
(affine) transformation.

2.5. Ensemble Methods
Ensemble methods aim at improving the predictive performance
of a given statistical learning or model fitting technique. The

general principle of ensemble methods is to construct a linear
combination of some model fitting methods, instead of using
a single fit of the method (Bühlmann, 2012). Ensembles have
been proven to have better performance than any single model
(Dietterich, 2000). Two-level ensemble approach, including the
arithmetic mean and boosting, is proposed in this study, and
more details of these methods are explained below.

2.5.1. Arithmetic Mean
The arithmetic mean, x̄, is the average of n values x1, x2, . . . xn,
i.e., x̄ = (x1 + x2 + . . . + xn)/n. If we have n models in our
ensemble, then the arithmetic mean P is defined by the formula:

P =
1

n

n
∑

i=1

pi =
p1 + p2 + . . . + pn

n
(1)

where pi is the probability map of model i. The arithmetic mean
ensemble method reduces the uncertainties of different models.
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2.5.2. XGBoost
Boosting algorithms are widely used in machine learning to
achieve state-of-art performance. It improves the prediction of
the models by training the base learners sequentially to improve
their predecessor. There are different boosting algorithms such
as AdaBoost (Freund and Schapire, 1997; Hastie et al., 2009),
short for Adaptive Boosting, and Gradient Boosting (Friedman,
2001, 2002). AdaBoost tunes the weights for every incorrect
classified observation at every iteration while Gradient Boosting

TABLE 1 | The label ID and corresponding brain region of Harvard-Oxford

Subcortical Atlas.

Label ID Brain region

1 Left Cerebral White Matter

2 Left Cerebral Cortex

3 Left Lateral Ventrical

4 Left Thalamus

5 Left Caudate

6 Left Putamen

7 Left Pallidum

8 Brain-Stem

9 Left Hippocampus

10 Left Amygdala

11 Left Accumbens

12 Right Cerebral White Matter

13 Right Cerebral Cortex

14 Right Lateral Ventricle

15 Right Thalamus

16 Right Caudate

17 Right Putamen

18 Right Pallidum

19 Right Hippocampus

20 Right Amygdala

21 Right Accumbens

tries to fit the new predictor to the residual errors made by
the previous predictor. Both of the boosting algorithms are
generally very slow in implementation and not very scalable.
Chen and Guestrin (2016) described a scalable tree boosting
system called XGBoost which is an implementation of gradient
boosted decision trees that are efficient in run-time and space
complexity. It also supports parallelization of tree construction,
distributed computing for training very large models, out-of-core
computing for very large datasets that do not fit into memory
and cache optimization to make the best use of hardware. These
features make XGBoost ideal for our purpose of study in brain
tumor segmentation, therefore, it is used in our study.

2.5.3. Two-Level Ensemble Approach: Arithmetic

Mean and XGBoost
The ensemble of multiple identical network architectures
with different seed initializations has been proven to reduce
the uncertainty of models and improve the segmentation
performance (Lakshminarayanan et al., 2017). Moreover,
Dietterich (2000) demonstrated that the boosting algorithm has
the best performance compared to bagging and randomized
trees. Inspired by their works, we propose a two-level ensemble
approach shown in Figure 5 that averages the probability maps
from the same type of models in the first level and then boosts
the averaged probability maps from different models by using the
XGBoost algorithm in the second level. We have examined three
different classification strategies in the second level, and these
classification strategies are based on multi-class classification
and binary class classification. More details are described in
sections 2.5.3.1 and 2.5.3.2.

2.5.3.1. Multi-class classification
The multi-class classification problem refers to classifying voxels
into one of the four classes. It produces segmentation labels of
the background and different glioma sub-regions that include:
(1) the enhancing tumor, (2) the edema, and (3) the necrosis

FIGURE 4 | The proposed location information fusion method for brain tumor segmentation using a patch-based convolutional neural network.
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FIGURE 5 | The workflow of two-level ensemble approach.

& non-enhancing tumor. Since XGBoost is known to produce
better results in different machine learning problems (Nielsen,
2016), XGBoost is used in our multi-class classification problem
with the softmax function objective. The softmax function σ is
defined by

σ (z)i =
ezi

∑K
j=1 e

zj
for i = 1, . . . ,K and

z = (z1, . . . , zK) ∈ R
K .

where K is the number of classes in the classification problem.
Using the softmax objective function, we get a neural network
that models the probability of a class zi as multinominal
distribution.

2.5.3.2. Binary classifications
The multi-class classification problem can be reduced to several
binary classification problems where each binary classifier is
trained to classify voxels into two classes. There are two different
approaches, one-versus-all and one-versus-one, to perform
such a transformation. For a k-class problem, the one-versus-all
method trains k different binary classifiers where the two-class
classifier Ci learns to distinguish the class i from all the other
k− i classes.

C+ = Ci and C− = {Cj|j = 1, · · · ,K, j 6= i}

One-vs.-one approach is based on training k×(k−1)/2 classifiers,
where each classifier learns to distinguish 2 classes only.

C+ = Ci and C− = {Cj|j 6= i}

where C+ and C− are the two classes of the binary class
classification problem.

2.6. Evaluation Metrics
Two evaluation metrics, dice similarity score (DSC) and
Hausdorff distance, are commonly used in the brain tumor
segmentation problem. DSC is used to measure the similarity
of the predicted lesions and ground-truth lesions, and Hausdorff

distance is used tomeasure how far the predicted lesions are from
the ground-truth lesions. More details of these two evaluation
metrics are explained in the following sections.

2.6.1. Dice Similarity Score
Dice similarity score (DSC) is a statistic used to measure the
similarity of two sets. It is defined as

DSC =
2|G ∩ P|

|G| + |P|
(2)

where |G| and |P| are the number of voxels in the ground-truth
and prediction, respectively. DSC ranges between 0 and 1 (1
means perfect matching).

2.6.2. Hausdorff Distance
Hausdorff distance dH(X,Y) measures how far two subsets {X,Y}
of a metric space are from each other. It is defined as

dH(X,Y) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)} (3)

where d is the Euclidean distance, sup is the supremum, and inf
is the infimum. Hausdorff distance ranges from 0 to infinity (0
means perfect matching). In this study, 95 percentile of Hausdorff
distance (HD95) is used to disregard the outliers.

3. EXPERIMENTS AND RESULTS

In this section, we demonstrate the advantage of the proposed
location information fusion method and the proposed two-
level ensemble learning method. In Experiment 1, we first
examine the segmentation performance of the proposed location
information fusion method on a single model. In Experiment
2, we examine the performance of the proposed location
information fusion method on an ensemble of the same type
of models. In Experiment 3, we examine different ensemble
methods that predict the final brain tumor lesions based on the
output probability maps from DeepMedics and 3D U-Nets. In
Experiment 4, we compare the segmentation performance of the
proposed method with state-of-the-art methods. The details of
each experiment and experimental results are described in the
following sections.
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TABLE 2 | Results of the first experiment on the BraTS 2018 validation set.

Model description DSC_ET DSC_WT DSC_TC HD95_ET HD95_WT HD95_TC

DeepMedic 78.1(25.4) 89.5(6.8) 81.4(21.3) 4.21(8.19) 10.60(15.30) 9.90(20.13)

DeepMedic + BP 79.0(22.6) 89.6(6.4) 81.3(21.8) 3.78(7.23) 8.87(15.23) 6.55(6.81)

3D U-Net 74.9(25.8) 89.7(7.7) 76.6(20.3) 5.85(9.50) 4.88(4.41) 10.46(13.51)

3D U-Net + BP 76.4(25.4) 90.1(6.4) 76.9(24.4) 5.48(9.50) 4.87(6.28) 10.07(13.99)

The results are reported as mean (standard deviation). Bold numbers highlight the improved results with additional brain parcellation masks within the same type of model.

TABLE 3 | Results of the second experiment on the BraTS 2018 validation set.

Ensemble description DSC_ET DSC_WT DSC_TC HD95_ET HD95_WT HD95_TC

DeepMedic 79.7(23.6) 90.0(6.8) 81.4(22.1) 3.94(7.77) 7.44(13.36) 8.88(14.03)

DeepMedic + BP 78.4(25.3) 90.2(6.4) 81.8(21.9) 3.37(5.18) 5.64(7.53) 7.01(12.29)

3D U-Net 77.6(24.2) 90.0(9.0) 78.0(21.2) 5.01(9.22) 4.39(4.05) 9.77(13.60)

3D U-Net + BP 77.4(25.1) 90.4(6.6) 79.3(22.4) 4.25(8.31) 4.59(6.29) 9.66(14.20)

The results are reported as mean (standard deviation). Bold numbers highlight the improved results with additional brain parcellation masks within the same type of ensemble.

TABLE 4 | Results of the third experiment on BraTS 2018 validation set.

Ensemble methods DSC_ET DSC_WT DSC_TC HD95_ET HD95_WT HD95_TC

Arith. mean 78.3(25.4) 90.6(6.4) 81.3(21.8) 3.72(7.90) 4.35(6.21) 7.77(13.45)

TLMC 78.3(25.5) 90.7(6.3) 81.0(22.1) 2.81(3.55) 4.38(6.26) 7.80(13.49)

TLBC 76.6(26.8) 90.7(6.2) 82.2(21.2) 7.93(2.66) 4.39(6.27) 8.34(16.98)

TLFC 78.2(25.6) 90.8(6.1) 82.3(21.2) 2.96(3.80) 4.39(6.22) 6.91(12.64)

The results are reported as mean (standard deviation). Bold numbers highlight the best performance between different ensemble methods.

3.1. Experiment 1: Location Information
Fusion Method on a Single Model
In the first experiment, we would like to examine the
performance of the proposed location information fusion
method on a single patch-based neural network. We first train a
DeepMedic and a 3D U-Net using only multimodal MR images.
Thereafter, we train another identical DeepMedic and another
identical 3D U-Net with multimodal MR images and binary
brain parcellation masks. BraTS 2018 training set is used to train
the models with five-fold cross-validation, and the BraTS 2018
validation set is used as the test set. The experimental results are
shown in Table 2.

3.2. Experiment 2: Location Information
Fusion Method on an Ensemble
In the second experiment, we would like to examine the
performance of the proposed location information fusion on the
ensemble of DeepMedics and the ensemble of 3D U-Nets. Each
ensemble has identical network architectures with different seed
initializations, and the output of the ensemble is the arithmetic
mean from networks. We first train ensembles of DeepMedics
without additional brain parcellation masks. Thereafter, we train
ensembles of 3D U-Nets without additional brain parcellation
masks. In the end, we train another identical ensemble of
DeepMedics and another identical ensemble of 3D U-Nets with
additional brain parcellation masks. BraTS 2018 training set is

used to train the models with five-fold cross-validation, and the
BraTS 2018 validation set is used as the test set. The experimental
results are shown in Table 3.

3.3. Experiment 3: Different Ensemble
Methods
In the third experiment, we would like to exam the performance
of different ensemble methods including arithmetic mean and
two-level ensemble approaches described in section 2.5. We
first train three identical DeepMedics with additional brain
parcellation channels and different seed initializations. We also
train three identical 3D U-Nets with additional brain parcellation
channels and different seed initializations. Then, we apply
different ensemble methods on the probability maps from these
models to generate the final tumor segmentation mask. More
details of different ensemble methods are described below.

3.3.1. Experiment 3.1: Arithmetic Mean
In this experiment, the final tumor segmentation mask is
directly generated by averaging the probability maps from three
DeepMedics and three 3DU-Nets. BraTS 2018 training set is used
to train the models with five-fold cross-validation, and the BraTS
2018 validation set is used as the test set. The experimental results
are shown in Table 4.
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3.3.2. Experiment 3.2: Two-Level Ensemble:

Multi-Class Classification
In this experiment, we directly apply an XGBoost classifier on the
probability maps from three DeepMedics and three 3D U-Nets.
The input vector of the XGBoost classifier has 10 dimensions
(5-class probability maps from 2 ensembles of the same type of
models). The XGBoost classifier outputs the 5-class labels which
contain a background (label 0), enhancing tumor (label 1), edema
(label 2), and necrosis & non-enhancing tumor (label 4). BraTS
2018 training set is used to train the models with five-fold cross-
validation, and the BraTS 2018 validation set is used as the test
set. The experimental results are shown in Table 4 as TLMC.

3.3.3. Experiment 3.3: Two-Level Ensemble: Binary

Classification
In this experiment, we train three XGBoost binary classifiers on
the resulting probability maps generated from three DeepMedics

and three 3D U-Nets in the first level. During training,
each classifier uses a one-vs.-one approach to distinguish
between two binary classes. We trained three different models
namely, model_WT (whole tumor), model_TC (tumor core), and
model_ET (enhancing tumor) as shown in Figure 6.

For model_WT: C+ = CWT and C− = Cbackground

For model_TC: C+ = CTC and C− = CWT

For model_ET: C+ = CET and C− = CTC

The whole tumor region is the union of edema, non-enhancing
tumor & necrosis, and enhancing tumor, and the tumor core
regions is the union of edema and non-enhancing tumor &
necrosis. Therefore, the tumor core class is a subset class of
the whole tumor, and the enhancing tumor class is a subset

of the tumor core class. For prediction, we feed the average

probability maps from three DeepMedics and three 3D U-Nets

FIGURE 6 | The training workflow of two-level binary classification approach.

FIGURE 7 | The workflow of Fusion Classification method. For post processing step, we classify the voxels into three classes with background, whole tumor, tumor

core, and necrosis & non-enhancing tumor in decreasing order of priority. For example, if a voxel is classified into both whole tumor and tumor core, we give the final

label as that of tumor core according to the preference mentioned before.
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to the three models. The input vector has 10 dimensions (5-class

probability maps from 2 ensembles of the same type of models).
The model_WT classifies the voxels into the whole tumor and

background. Formodel_TC, we feed the probability maps of such

voxels that are classified as the whole tumor from the experiment
in section 3.3.1. For model_ET, we feed the probability maps of
such voxels that are classified as tumor core from the previous
prediction in the experiment. BraTS 2018 training set is used to

train the models with five-fold cross-validation, and the BraTS
2018 validation set is used as the test set. The experimental results
are shown in Table 4 as TLBC.

3.3.4. Experiment 3.4: Two-Level Ensemble: Fusion

Classifications
This is the final experiment to integrate the methods from the
previous experiments. We observe that while the experiment

TABLE 5 | The first three rows show the results of our proposed method and the state-of-the-art methods on the BraTS 2017 validation set, and the bottom four rows

show the results of our proposed method and the state-of-the-art methods on BraTS 2018 validation set.

DSC HD95

Methods No. of models ET WT TC ET WT TC

Kamnitsas et al. (2017a) 7 73.8 90.1 79.7 4.50 4.23 6.56

Isensee et al. (2017) 5 73.2 89.6 79.7 4.55 6.97 9.48

Proposed method 6 74.3 90.4 78.5 3.49 4.46 8.45

Myronenko (2018) 10 82.3 91.0 86.6 3.93 4.52 6.85

Isensee et al. (2018) 10 81.0 90.8 85.4 2.54 4.97 7.04

Kao et al. (2018) 26 78.8 90.5 81.3 3.81 4.32 7.56

Proposed method 6 78.2 90.8 82.3 2.96 4.39 6.91

The results are reported as mean. Bold numbers highlight the best performance in each dataset. These results are directly copied from their paper.

FIGURE 8 | Examples of predictions from single model with different inputs. Top row shows the predictions from DeepMedic, and bottom row shows the predictions

from 3D U-Net (from left to right: ground-truth lesions, prediction from single model, and prediction from single model with additional brain parcellation masks.) Red:

enhancing tumor, yellow: necrosis & non-enhancing tumor, and green: edema. ITK-SNAP (Fedorov et al., 2012) is used to visualize the MR images and lesion masks.
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in section 3.3.3 performs best for classifying voxels into the
background, whole tumor and tumor core, the experiment in
section 3.3.1 has the best performance on necrosis & non-
enhancing tumor. We use model_WT, model_TC, and multi-
class classifier model for the fusion model. For prediction, we
feed the average probability maps from three DeepMedics and
three 3D U-Nets to the three models. The input vector has 10
dimensions (5-class probability maps from 2 ensembles of the
same type of models). The model_WT classifies the voxels into
the whole tumor and background. For model_TC that is trained
to classify voxels into the whole tumor and tumor core, we feed
the probability maps of such voxels that are classified as the
whole tumor from the experiment in section 3.3.1. For necrosis
& non-enhancing tumor class, we feed the probability maps to
the multi-class classifier as in section 3.3.2. To merge the three
different predicted results, we classify the voxels into three classes
with background, whole tumor, tumor core, and necrosis & non-
enhancing tumor in decreasing order of priority. For example, if a
voxel is classified into both whole tumor and tumor core, we give
the final label as that of tumor core according to the preference
mentioned before. Therefore integrating these two gives the
effective scores as shown in Table 4 as TLFC. BraTS 2018 training
set is used to train the models with five-fold cross-validation, and

the BraTS 2018 validation set is used as the test set. The workflow
of fusion classification is shown in Figure 7.

3.4. Experiment 4: Compare to the
State-of-the-Art Methods
In this experiment, we compare the brain tumor segmentation
performance of the proposed method described in section 3.3.4
with the state-of-the-art methods on both BraTS 2017 and BraTS
2018 dataset. The quantitative results are shown in Table 5.

4. DISCUSSION AND CONCLUSION

Due to the computational limitation of training the state-of-
the-art networks using GPU, we are not able to input the
whole brain volume of size 240 × 240 × 155 to a neural
network for training purposes. Alternatively, we randomly
crop sub-regions of the brain and input these sub-regions
to the neural network for training. For the current patch-
based neural networks, we noted that these neural networks
lack location information of the brain for both training and
test procedure. That is, these patch-based neural networks
do not have the information about where the patch comes

FIGURE 9 | Examples of predictions from ensemble with different inputs. Top row shows the predictions from ensemble of DeepMedics, and bottom row shows the

predictions from ensemble of 3D U-Nets (from left to right: ground-truth lesions, prediction from ensemble, and prediction from ensemble with additional brain

parcellation masks.) Red: enhancing tumor, yellow: necrosis & non-enhancing tumor, and green: edema. ITK-SNAP (Fedorov et al., 2012) is used to visualize the MR

images and lesion masks.
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from the brain. Therefore, we proposed the location fusion
method which explicitly carries location information of the
brain into patch-based neural networks such as 3D U-Net
and DeepMedic. An existing structural brain parcellation atlas,
HarvardOxford Sub-cortical Atlas, is used as additional location
information to these patch-based neural networks in both
training and test.

From Table 2, we demonstrate that the proposed location
fusion method improves the brain tumor segmentation
performance of both a single state-of-the-art model. We also
demonstrate that the proposed location fusion method improves
the ensemble of multiple same types of state-of-the-art models in
Table 3. The proposed location fusion method yields a smoother
prediction for both 3D U-Net and DeepMedic compared to
the resulting prediction without location information (see
Figures 8, 9).

From Table 4, the proposed ensemble method, two-level
fusion classification (TLFC) method, has the best performance
compared to other ensemble methods including arithmetic
mean, two-level multi-class classification (TLMC), and two-level
binary classification (TLBC). TLFC takes advantage of TLMC and
TLBC.Moreover, Figure 10 shows the predictions of brain tumor
lesions from different ensemble methods, and TLFC method has
the best performance among other methods.

From Table 5, the proposed method has the best tumor
segmentation performance compared to other state-of-the-art
methods in BraTS 2017 with a similar number of models in
the ensemble. Also, the proposed method has a competitive
tumor segmentation performance compared to other state-
of-the-art methods in BraTS 2018 with fewer models in the
ensemble. It is noted that the model of Myronenko (2018)
requires a large amount of GPU memory (32 GB) for training,

FIGURE 10 | Examples of predictions from different ensemble methods. The top left image shows the ground-truth lesion mask, and the top middle image shows the

predictions using the arithmetic mean. The top right image shows the prediction using a two-level multi-class classification (TLMC) method. The bottom left image

shows the prediction using a two-level binary classification (TLBC) method, and the bottom right image shows the prediction using a two-level fusion classification

(TLFC) method. Red: enhancing tumor, yellow: necrosis & non-enhancing tumor, and green: edema. ITK-SNAP (Fedorov et al., 2012) is used to visualize the MR

images and lesion masks.
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and Isensee et al. (2018) trained the models with additional
public and institutional data. In addition, Myronenko (2018)
and Isensee et al. (2018) have 10 models in their ensemble
but our proposed ensemble only has six models. The proposed
ensemble has much fewer models with a better segmentation
performance compared to our previous work which has 26
models (Kao et al., 2018). The test time of our previous ensemble
takes approximately 30 min on an Nvidia 1080 Ti GPU and
an Intel Xeon CPU E5-2696 v4 @ 2.20 GHz. However, the
proposed ensemble only takes approximate 3 min on the same
infrastructure. Our previous ensemble ranked 6th out of 63
teams in BraTS 2018 segmentation challenge, and the proposed
ensemble even has a better performance and less inference time
compared to the previous ensemble.

Summarizing, in this paper we proposed a novel method
to integrate location information about the brain into a patch-
based neural network for improving brain tumor segmentation.
Our experimental results demonstrate that the proposed
location information fusion approach improves the segmentation
performance of the baseline models including DeepMedic
and 3D U-Net. Moreover, the proposed location information
fusion method can be easily integrated with other patch-based
network architectures to potentially enhance their brain tumor
segmentation performance. We also proposed a two-level fusion
classificationmethod which reduces the uncertainty of prediction
in the first level and takes advantage of different types of models
in the second level. Also, the proposed ensemble method can also
be easily integrated with more different types of neural networks.
The proposed ensemble helps the neurologists on delineating
brain tumors and improves the quality of the neuro-surgery.
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Demystifying Brain Tumor
Segmentation Networks:
Interpretability and Uncertainty
Analysis
Parth Natekar, Avinash Kori and Ganapathy Krishnamurthi*

Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India

The accurate automatic segmentation of gliomas and its intra-tumoral structures is

important not only for treatment planning but also for follow-up evaluations. Several

methods based on 2D and 3D Deep Neural Networks (DNN) have been developed to

segment brain tumors and to classify different categories of tumors from different MRI

modalities. However, these networks are often black-box models and do not provide any

evidence regarding the process they take to perform this task. Increasing transparency

and interpretability of such deep learning techniques is necessary for the complete

integration of such methods into medical practice. In this paper, we explore various

techniques to explain the functional organization of brain tumor segmentationmodels and

to extract visualizations of internal concepts to understand how these networks achieve

highly accurate tumor segmentations. We use the BraTS 2018 dataset to train three

different networks with standard architectures and outline similarities and differences in

the process that these networks take to segment brain tumors. We show that brain tumor

segmentation networks learn certain human-understandable disentangled concepts on

a filter level. We also show that they take a top-down or hierarchical approach to localizing

the different parts of the tumor. We then extract visualizations of some internal feature

maps and also provide ameasure of uncertainty with regards to the outputs of themodels

to give additional qualitative evidence about the predictions of these networks.We believe

that the emergence of such human-understandable organization and concepts might aid

in the acceptance and integration of such methods in medical diagnosis.

Keywords: interpretability, CNN, brain tumor, segmentation, uncertainty, activation maps, features, explainability

1. INTRODUCTION

Deep learning algorithms have shown great practical success in various tasks involving image, text
and speech data. As deep learning techniques start making autonomous decisions in areas like
medicine and public policy, there is a need to explain the decisions of these models so that we can
understand why a particular decision was made (Molnar, 2018).

In the field of medical imaging and diagnosis, deep learning has achieved human-like results
on many problems (Esteva et al., 2017; Weng et al., 2017; Kermany et al., 2018). Interpreting the
decisions of such models in the medical domain is especially important, where transparency and a
clearer understanding of Artificial Intelligence are essential from a regulatory point of view and to
make sure that medical professionals can trust the predictions of such algorithms.
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Understanding the organization and knowledge extraction
process of deep learning models is thus important. Deep neural
networks often work in higher dimensional abstract concepts.
Reducing these to a domain that human experts can understand
is necessary—if a model represents the underlying data
distribution in a manner that human beings can comprehend
and a logical hierarchy of steps is observed, this would provide
some backing for its predictions and would aid in its acceptance
by medical professionals.

However, while there has been a wide range of research on
Explainable AI in general (Doshi-Velez and Kim, 2017; Gilpin
et al., 2018), it has not been properly explored in the context of
deep learning for medical imaging. Holzinger et al. (2017) discuss
the importance of interpretability in the medical domain and
provide an overview of some of the techniques that could be used
for explaining models which use the image, omics, and text data.

In this work, we attempt to extract explanations for models
which accurately segment brain tumors, so that some evidence
can be provided regarding the process they take and how
they organize themselves internally. We first discuss what
interpretability means with respect to brain tumor models. We
then present the results of our experiments and discuss what
these could imply for machine learning assisted tumor diagnosis.

2. INTERPRETABILITY IN THE CONTEXT
OF BRAIN TUMOR SEGMENTATION
MODELS

Interpreting deep networks which accurately segment brain
tumors is important from the perspectives of both transparency
and functional understanding (by functional understanding, we
mean understanding the role of each component or filter of the
network and how these relate to each other). Providing glimpses
into the internals of such a network to provide a trace of its

FIGURE 1 | Proposed pipeline for interpreting brain tumor segmentation models to aid in increasing transparency. The dotted backward arrow shows the possibility of

using the inferences from such an experiment to enhance the training process of networks.

inference steps (Holzinger et al., 2017) would go at least some
way to elucidating exactly how the network makes its decisions,
providing a measure of legitimacy.

There have been several methods explored for trying to
look inside a deep neural network. Many of these focus on
visual interpretability, i.e., trying to extract understandable
visualizations from the inner layers of the network or
understanding what the network looks at when giving a particular
output (Zhang and Zhu, 2018).

For a brain tumor segmentation model, such methods
might provide details on how information flows through the
model and how the model is organized. For example, it might
help in understanding how the model represents information
regarding the brain and tumor regions internally, and how these
representations change over layers. Meaningful visualizations of
the internals of a network will not only helpmedical professionals
in assessing the legitimacy of the predictions but also help deep
learning researchers to debug and improve performance.

In this paper, we aim to apply visual interpretability and
uncertainty estimation techniques on a set of models with
different architectures to provide human-understandable visual
interpretations of some of the concepts learned by different parts
of a network and to understand more about the organization
of these different networks. We organize our paper into
mainly three parts as described in Figure 1: (1) Understanding
information organization in the model, (2) Extracting visual
representations of internal concepts, and (3) Quantifying
uncertainty in the outputs of the model. We implement our
pipeline on three different 2D brain tumor segmentation
models—a Unet model with a densenet121 encoder (Henceforth
referred to as the DenseUnet) (Shaikh et al., 2017), a Unet model
with a ResNet encoder (ResUnet) (Kermi et al., 2018), and a
simple encoder-decoder network which has a similar architecture
to the ResUnet but without skip or residual connections
(SimUnet). All models were trained till convergence on the BraTS
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TABLE 1 | Performance metrics of our networks.

Model type WT dice TC dice ET dice

DenseUnet 0.830 0.760 0.685

ResUnet 0.788 0.734 0.649

SimUnet 0.743 0.693 0.523

WT, Whole Tumor; TC, Tumor Core; ET, Enhancing Tumor.

2018 dataset (Menze et al., 2014; Bakas et al., 2017a,b, 2018).
A held out validation set of 48 volumes (including both LGG
and HGG volumes) was used for testing. Table 1 shows the
performance of the three models on this test set.

Our models are not meant to achieve state of the art
performance. Instead, we aim to demonstrate our methods on a
set of models with different structures commonly used for brain
tumor segmentation and compare them to better understand the
process they take to segment the tumors. In this primary study,
we do not use 3D models, since the visualization and analysis
of interpretability related metrics is simpler for 2D models.
Also, it is not clear how some of our results would scale to 3D
models and whether it would be possible to visualize these. For
example, disentangled concepts observed by performing network
dissection might not be meaningful when visualized slice wise
and would have to be visualized in 3D. This and the related
analysis poses an additional layer of difficulty.

We now give a brief introduction of each interpretability
techniques in our pipeline. Network Dissection aims to quantify
to what extent internal information representation in CNNs
is human interpretable. This is important to understand what
concepts the CNN is learning on a filter level, and whether
these correspond with human level concepts. Grad-CAM allows
us to see how the spatial attention of the network changes
over layers, i.e., what each layer of the network looks at in a
specific input image. This is done by finding the importance
of each neuron in the network by taking the gradient of the
output with respect to that neuron. In feature visualization, we
find the input image which maximally activates a particular
filter, by randomly initializing an input image and optimizing
this for a fixed number of iterations, referred to as activation
maximization. Such an optimized image is assumed to be a good
first order representation of the filter, which might allow us
to understand how a neural network “sees.” Test-time dropout
is a computationally efficient method of approximate Bayesian
Inference on a CNN to quantify uncertainty in the outputs of
the model.

In the following sections, each element of the proposed
pipeline is implemented and its results and implications
are discussed.

3. UNDERSTANDING INFORMATION
ORGANIZATION IN THE MODEL

3.1. Network Dissection
Deep neural networks may be learning explicit disentangled
concepts from the underlying data distribution. For example,

Zhou et al. (2014) show that object detectors emerge in networks
trained for scene classification. To study whether filters in brain
tumor segmentation networks learn such disentangled concepts,
and to quantify such functional disentanglement (i.e., to quantify
to what extent individual filters learn individual concepts), we
implement the Network Dissection (Bau et al., 2017) pipeline,
allowing us to determine the function of individual filters in
the network.

In-Network Dissection, the activation map of an internal filter
for every input image is obtained. Then the distribution α of
the activation is formulated over the entire dataset. The obtained
activation map is then resized to the dimensions of the original
image and thresholded to get a concept mask. This concept mask
might tell us which individual concept a particular filter learns
when overlaid over the input image.

For example, in the context of brain-tumor segmentation,
if the model is learning disentangled concepts, there might be
separate filters learning to detect, say, the edema region, or the
necrotic tumor region. The other possibility is that the network
somehow spreads information in a form not understandable by
humans - entangled and non-interpretable concepts.

Mathematically, Network Dissection is implemented by
obtaining activation maps 8k,l of a filter k in layer l, and
then obtaining the pixel level distribution α of 8k,l over the
entire dataset.

A threshold Tk,l(x) is determined as the 0.01-quantile level of
αk,l(x), which means only 1.0% of values in 8k,l(x) are greater
than Tk,l(x). (We choose the 0.01-quantile level since this gives
the best results qualitatively (visually) and also quantitatively in
terms of dice score for the concepts for which ground truths are
available). The concept mask is obtained as:

Mk,l(x) = 8k,l(x) ≥ Tk,l(x) (1)

A channel is a detector for a particular concept if:

IoU(Mk,l(x), gt) =
|Mk,l(x) ∩ gt|

|Mk,l(x) ∪ gt|
≥ c (2)

In this study, we only quantify explicit concepts like the core
and enhancing tumor due to the availability of ground truths gt
and recognize detectors for other concepts by visual inspection.
We post-process the obtained concept images to remove salt-
and-pepper noise and keep only the largest activated continuous
concept inside the brain region in the image. The IoU between
the final concept image and the ground truth for explicit concepts
is used to determine the quality of the concept.

The results of this experiment, shown in Figures 2–4, indicate
that individual filters of brain-tumor segmentation networks
learn explicit as well as implicit disentangled concepts. For
example, Figure 2E shows a filter learning the concept whole
tumor region i.e., it specifically detects the whole tumor region for
any image in the input distribution, the filter in Figure 2B seems
to be learning the edema region, while Figure 2A shows a filter
learning the white and gray matter region, an implicit concept
which the network is not trained to learn. Similar behavior is
seen in all networks (Figures 2–4). This means that we can make

Frontiers in Computational Neuroscience | www.frontiersin.org 3 February 2020 | Volume 14 | Article 6168

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Natekar et al. Demystifying Brain Tumor Segmentation Networks

FIGURE 2 | Disentangled concept mask M learned by individual filters of the ResUnet overlaid over brain image. This includes explicit concepts for which ground truth

labels are available as well as implicit concepts for which their are no labels. IoU scores are mentioned in the sub-captions for all 3 images. L, Layer; WT, Whole

Tumor; TC, Tumor Core; ED, Edema.

FIGURE 3 | Disentangled concepts learned by filters of the DenseUnet. L, Layer; WT, Whole Tumor; TC, Tumor Core; ED: Edema.
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FIGURE 4 | Disentangled concepts learned by filters of the SimUnet. L, Layer; WT, Whole Tumor; TC, Tumor Core; ED: Edema.

attributions based on function to the network at a filter level—
indicating a sort of functional specificity in the network i.e.,
individual filters might be specialized to learn separate concepts.

Neural Networks are inspired by neuroscientific principles.
What does this functional specificity mean in this context?
Debates are ongoing on whether specific visual and cognitive
functions in the brain are segregated and the degree to which they
are independent. Zeki and Bartels (1998) discuss the presence of
spatially distributed, parallel processing systems in the brain, each
with its separate function. Neuroscientific studies have shown
that the human brain has some regions that respond specifically
to certain concepts, like the face fusiform area Kanwisher and
Yovel (2006)—indicating certain visual modularity. Studies based
on transcranial magnetic stimulation of the brain also show
separate areas of the visual cortex play a role in detecting concepts
like faces, bodies, and objects (Pitcher et al., 2009).

The emergence of concept detectors in our study indicates
that brain-tumor segmentation networks might show a similar
modularity. This indicates that there is some organization in
the model similar to the process a human being might take
to recognize a tumor, which might have an implications with
regards to the credibility of these models in the medical domain,
in the sense that they might be taking human-like, or at least
human understandable, steps for inference.

The extracted disentangled concepts can also be used for
providing contextual or anatomical information as feedback to
the network. Though we do not explore this in this study, 3D
concept maps obtained from networks can be fed back as multi-
channel inputs to the network to help the network implicitly learn
to identify anatomical regions like the gray and white matter,
tumor boundary etc. for which no labels are provided, which
might improve performance. This would be somewhat similar to
the idea of feedback networks discussed by Zamir et al. (2017),
where an implicit taxonomy or hierarchy can be established
during training as the network uses previously learned

concepts to learn better representations and increase speed
of learning.

3.2. Gradient Weighted Class Activation
Maps
Understanding how spatial attention of a network over an input
image develops might provide clues about the overall strategy
the network uses to localize and segment an object. Gradient
weighted Class Activation Maps (Grad-CAM) (Selvaraju et al.,
2017) is one efficient technique that allows us to see the networks
attention over the input image. Grad-CAM provides the region
of interest on an input image which has a maximum impact on
predicting a specific class.

Segmentation is already a localization problem. However, our
aim here is to see how attention changes over internal layers of
the network, to determine how spatial information flows in the
model. To understand the attentions of each layer on an input
image, we convert segmentation to a multi-label classification
problem by considering class wise global average pooling on
the final layer. The gradient of the final global average pooled
value is considered for attention estimation in Grad-CAM. To
understand the layer-wise feature map importance, Grad-CAM
was applied to see the attention of every internal layer.

This mathematically amounts to finding neuron importance
weights β

c
l,k

for each filter k of a particular layer l with respect
to the global average pooled output segmentation for a particular
channel c:

y(c) =
1

P

∑

i

∑

j

8
c(x) (3)

β
c
l,k =

1

N

∑

i

∑

j

∂y(c)

∂A
ij

l,k
(x)

(4)

OGradCAM(c) = ReLU

(

∑

k

β
c
l,kAl,k(x)

)

(5)
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FIGURE 5 | This figure depicts the gradient based class activation maps obtained at selected intermediate layers of all the three networks in ascending order.

L, Layer; E, Encoding; B, Block; D, Decoding.

Where, P and N are the number of pixels in the output
segmentation map and the activation map of the relevant layer
for channel c respectively, 8

c is the output segmentation map
for class c of network 8, y(c) describes the spatially pooled final
segmentation map, Al,k(x) is the activation map for the kth filter
of the lth layer, and OGradCAM(c) represents an output map which
is the result of GradCAM for channel c.

We posit that model complexity and residual connections
might have an impact on how early a model can localize
the tumor region. For example, the DenseUnet and ResUnet
localize the tumor region in the first few layers, while the
SimUnet, which has no skip or residual connections, localizes
the tumor region only in the final few layers (Figure 5).
This indicates that skip and residual connections help learn
and propagate spatial information to the initial layers for
faster localization. While previous literature indicates that skip
connections allow upsampling layers to retain fine-grained
information from downsampling layers (Drozdzal et al., 2016;
Jégou et al., 2017), our results indicate that information might
also be flowing in the other direction i.e., skip and residual
connections help layers in the downsampling path to learn spatial
information earlier.

Drozdzal et al. (2016) also discuss that layers closer to the
center of the model might be more difficult to train due to
the vanishing gradient problem and that short skip or residual
connections might alleviate this problem. Our results support
this as well - middle layers of the SimUnet, which does not have
residual or skip connections, seem to learn almost no spatial
information compared to the other two networks (Figure 5A).

Our results in Figure 5 also show that models take a largely
top-down approach to localizing tumors - they first pay attention
to the entire brain, then the general tumor region, and finally
converge on the actual finer segmentation. For example, attention
in all three models is initially in the background region. In the
DenseUnet and ResUnet, attention quickly moves to the brain
and whole tumor within the first few layers. Finer segmentations
are done in the final few layers. The necrotic tumor and enhancing
tumor are often separated only in the last few layers for all models,
indicating that segregating these two regions might require a
lesser number of parameters.

This top-down nature is consistent with theories on visual
perception in humans–the global-to-local nature of visual
perception has been documented. Navon (1977) showed through
experiments that larger features take precedence over smaller
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features, called the Global Precedence Effect. While this effect
has its caveats (Beaucousin et al., 2013), it is generally
robust (Kimchi, 2015). Brain tumor segmentation models seem
to take a similar top-down approach, and we see in our
experiments that such behavior becomes more explicit as model
performance improves.

While the results from the last two sections are not
unexpected, they are not trivial either—the models do not
need to learn disentangled concepts, especially implicit ones
like the whole brain or the white matter region for which
no explicit labels have been given, nor do they need to take
a hierarchical approach to this problem. The fact that such
human-understandable traces of inference can be extracted from
brain tumor segmentation models is promising in terms of their
acceptance in the medical domain.

4. EXTRACTING VISUAL
REPRESENTATIONS OF INTERNAL
CONCEPTS

4.1. Activation Maximization
Visualizing the internal features (i.e., the representations of
the internal filters obtained on activation maximization) of a
network often provides clues as to the network’s understanding
of a particular output class. For example, visualizing features of
networks trained on the ImageNet (Deng et al., 2009) dataset
shows different filters maximally activated either by textures,
shapes, objects or a combination of these (Olah et al., 2018).
However, this technique has rarely been applied to segmentation
models, especially in the medical domain. Extracting such
internal features of a brain-tumor segmentation model might
provide more information about the qualitative concepts that the
network learns and how these concepts develop over layers.

We use the Activation Maximization (Erhan et al., 2009)
technique to iteratively find input images that highly activate a
particular filter. These images are assumed to be a good first-
order representations of the filters. Mathematically, activation
maximization can be seen as an optimization problem:

x∗ = argmax
x

(8k,l(x)− Rθ (x)− λ||x||22) (6)

Where, x∗ is the optimized pre-image, 8k,l(x) is the activation of
the kth filter of the lth layer, and Rθ (x) are the set of regularizers.

In the case of brain-tumor segmentation, the optimized
image is a 4 channel tensor. However, activation maximization
often gives images with extreme pixel values or random
repeating patterns that highly activate the filter but are not
visually meaningful. In order to prevent this, we regularize our
optimization to encourage robust images which show shapes and
patterns that the network might be detecting.

4.2. Regularization
A number of regularizers have been proposed in the literature to
improve the outputs of activation maximization. We use three
regularization techniques to give robust human-understandable
feature visualizations, apart from an L2 bound which is included
in Equation (6).

4.2.1. Jitter
In order to increase translational robustness of our visualizations,
we implement Jitter (Mordvintsev et al., 2015). Mathematically,
this involves padding the input image and optimizing a different
image-sized window on each iteration. In practice, we also rotate
the image slightly on each iteration. We find that this greatly
helps in reducing high-frequency noise and helps in crisper
visualizations.

4.2.2. Total Variation
Total Variation (TV) regularization penalizes variation between
adjacent pixels in an image while still maintaining the sharpness
of edges (Strong and Chan, 2003). We implement this regularizer
to smooth our optimized images while still maintaining the edges.
The TV regularizer of an image I with (w, h, c) dimension is
mathematically given as in Equation (7):

RTV (I) =

c
∑

k = 0

h
∑

u = 0

w
∑

v = 0

([I(u, v+ 1, k)

− I(u, v, k)]+ [I(u+ 1, v, k)− I(u, v, k)]) (7)

4.2.3. Style Regularizer
In order to obtain visualizations which are similar in style
to the set of possible input images, we implement a style
regularizer inspired from the work of Li et al. (2017). We
encourage our optimization to move closer to the style of the
original distribution by adding a similarity loss with a template
image, which is the average image taken over the input data
distribution. In style transfer, the gram matrix is usually used for
this purpose. However, we implement a loss which minimizes the
distance between the optimized and template image in a higher
dimensional kernel space, as implemented in Li et al. (2017),
which is computationally less intensive.

Mathematically, Equation (6) is modified to the following:

x∗ = argmax
x

(8k,l(x)− ζRTV (x)+ γ L(x, s)− λ||x||22) (8a)

L(x, s) =
∑

i

∑

j

(k(xi, xj)+ k(si, sj)− 2k(xi, sj)) (8b)

k(x, y) = exp(−
||x− y||22

2σ 2
) (8c)

Where L(x, s) it the style loss between the optimized pre-
image and the template image s, k(x, y) is the Gaussian kernel,
8k,l(x) is the filter for which activations need to be maximized,
RTV (x) is the Total Variation Loss, and ||x||22 is an upper bound
on the optimized pre-image x∗. Approximate values of the
regularization coefficients are λ ∼ 10−4, γ ∼ 10−2, and ζ ∼

10−5. For jitter and rotation, the image is randomly shifted by
∼8 pixels, and rotated by∼10 degrees.

The effect of varying the hyperparameters for each of the
regularizers is shown in Supplementary Figure 6. The effect
of jitter is most pronounced—adding jitter by just 2-3 pixels
helps reduce high frequency noise and clearly elucidate shapes
in the image. Increasing total variation regularization increases
smoothness while maintaining shapes and boundaries, reducing
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FIGURE 6 | This figure depicts the effect of regularizers on visualized features of brain tumor segmentation models. The four columns on the left show the four

channel feature map obtained on optimizing without regularization, while the columns on the right show the effect of adding regularizers.

salt and pepper noise. Increasing style regularization brings
the image closer to an elliptical shape similar to a brain. The
effect of changing the regularization hyperparameters from a
medical perspective in the context brain-tumor segmentation,
however, is not clear and further studies would be required in
this direction.

We find that style constraining the images and making
them more robust to transformations does help in extracting
better feature visualizations qualitatively–optimized pre-images
do show certain texture patterns and shapes. Figure 6 shows
the results of such an experiment. The effect of regularizers
is clear–not regularizing the image leads to random, repeating
patterns with high-frequency noise. Constrained images show
certain distinct shapes and patterns. It is still not clear,
however, that these are faithful reflections of what the filter is
actually detecting.

Not a lot of prior work has been done in this area in the
context of medical imaging, and our results are useful in the
sense that they show that constrained optimization generates
such patterns and shapes as compared to noisy unregularized
images, which has also been seen in the domain of natural images.
In the natural image domain, the resulting pre-images, after
regularization, have less high frequency noise and are more easily
identifiable by humans. As discussed in the work of Olah et al.
(2017) and Nguyen et al. (2016), jitter, L2 regularization, Total
Variation, and regularization with mean images priors are shown
to produce less noisy and more useful objects or patterns. In
medical imaging, however, the resulting patterns and shapes are
harder to understand and interpret.

In order to extract clinical meaning from these, a
comprehensive evaluation of which regularizers generate
medically relevant and useful images based on collaboration
with medical professionals and radiologists would be required.
This could provide a more complete understanding of what a
brain tumor segmentation model actually detects qualitatively.

However, this is out of scope of the current study. As we have
mentioned in section 7, this will be explored in future work.

5. UNCERTAINTY

Augmenting model predictions with uncertainty estimates are
essential in the medical domain since unclear diagnostic cases are
aplenty. In such a case, a machine learning model must provide
medical professionals with information regarding what it is not
sure about, so that more careful attention can be given here.
Begoli et al. (2019) discuss the need for uncertainty in machine-
assisted medical decision making and the challenges that we
might face in this context.

Uncertainty Quantification for deep learning methods in
the medical domain has been explored before. Leibig et al.
(2017) show that uncertainties estimated using Bayesian dropout
were more effective and more efficient for deep learning-based
disease detection. Yang et al. (2017) use a Bayesian approach
to quantify uncertainties in a deep learning-based image
registration task.

However, multiple kinds of uncertainties might exist in deep
learning approaches–from data collection to model choice to
parameter uncertainty, and not all of them are as useful or can
be quantified as easily, as discussed below.

Epistemic uncertainty captures uncertainty in the model
parameters, that is, the uncertainty which results from us not
being able to identify which kind of model generated the given
data distribution. Aleatoric uncertainty, on the other hand,
captures noise inherent in the data generating process (Kendall
and Gal, 2017). However, Aleatoric Uncertainty is not really
useful in the context of this work—we are trying to explain and
augment the decisions of the model itself, not the uncertainty in
the distribution on which it is fit.

Epistemic uncertainty can, in theory, be determined using
Bayesian Neural Networks. However, a more practical and

Frontiers in Computational Neuroscience | www.frontiersin.org 8 February 2020 | Volume 14 | Article 6173

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Natekar et al. Demystifying Brain Tumor Segmentation Networks

FIGURE 7 | Uncertainty estimations (shown in red) for the DenseUnet using TTD for a selected set of images. Ground Truth (Left), Model Prediction (Middle), and

Uncertainty (Right). Misclassified regions are often associated with high uncertainty. (A) Misclassified Core Tumor Region which is associated with high model

uncertainty. (B) Misclassified Enhancing/Core Tumor Region which is associated with high model uncertainty. (C) High model uncertainty at class borders. (D) Tumor

region completely missed by model, captured in the model uncertainty map.

computationally simple approach is to approximate this Bayesian
inference by using dropout at test time. We use test time dropout
(TTD) as introduced in Gal and Ghahramani (2016) as an
approximate variational inference. Then,

p(y|x,w) ≈
1

T

t
∑

t = 1

8(x|wt) (9a)

varepistemic(p(y|x,w)) ≈
1

T

T
∑

t = 1

8(x|wt)T8(x|wt)

−E(8(x|wt))TE(8(x|wt)) (9b)

Where 8(x|wt) is the output of the neural network with weights
wt on applying dropout on the tth iteration. The models are
retrained with a dropout rate of 0.2 after each layer. At test
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time, a posterior distribution is generated by running the
model for 100 epochs for each image. We take the mean
of the posterior sampled distribution as our prediction and
the channel mean of the variance from Equation 9 as the
uncertainty (Kendall et al., 2015). The results of this are shown
in Figure 7.

We find that regions which are misclassified are often
associated with high uncertainty. For example, Figure 7A shows
a region in the upper part of the tumor which is misclassified
as necrotic tumor, but the model is also highly uncertain about
this region. Similar behavior is seen in Figure 7B. In some
cases, the model misses the tumor region completely, but the
uncertainty map still shows that the model has low confidence
in this region (Figure 7D), while in some cases, boundary
regions are misclassified with high uncertainty (Figure 7C). In
a medical context, these are regions that radiologists should
pay more attention to. This would encourage a sort of
collaborative effort—tumors are initially segmented by deep
learning models and the results are then fine-tuned by human
experts who concentrate only on the low-confidence regions,
Figure 1 shows.

More sample images as well as uncertainty for other networks
can be found in the Supplementary Material.

6. CONCLUSION

In this paper, we attempt to elucidate the process that
neural networks take to segment brain tumors. We implement
techniques for visual interpretability and concept extraction to
make the functional organization of the model clearer and to
extract human-understandable traces of inference.
From our introductory study, we make the following inferences:

• Disentangled, human-understandable concepts are
learnt by filters of brain tumor segmentation models,
across architectures.

• Models take a largely hierarchical approach to tumor
localization. In fact, the model with the best test performance
shows a clear convergence from larger structures to
smaller structures.

• Skip and residual connections may play a role in transferring
spatial information to shallower layers.

• Constrained optimization helps to extract feature
visualizations which show distinct shapes and patterns which
may be representations of tumor structures. Correlating
these with the disentangled concepts extracted from Network
Dissection experiments might help us understand how exactly
a model detects and generalizes such concepts on a filter level.

• Misclassified tumor regions are often associated with high
uncertainty, which indicates that an efficient pipeline which
combines deep networks and fine-tuning by medical experts
can be used to get accurate segmentations.

As we have discussed in the respective sections, each of these
inferences might have an impact on our understanding of deep
learning models in the context of brain tumor segmentation.

While more experiments on a broader range of models
and architectures would be needed to determine if such
behavior is consistently seen, the emergence of such human-
understandable concepts and processes might aid in the
integration of such methods in medical diagnosis–a model which
seems to take human-like steps is easier to trust than one
that takes completely abstract and incoherent ones. This is
also encouraging from a neuroscience perspective - if model
behavior is consistent with visual neuroscience research on how
the human brain processes information, as some of our results
indicate, this could have implications in both machine learning
and neuroscience.

7. FUTURE WORK

Future work will be centered around gaining a better
understanding of the segmentation process for a greater
range of models (including 3D models) and better constrained
optimization techniques for extracting human-understandable
feature visualizations which would allow an explicit
understanding of how models learn generalized concepts.
For instance, it would be worth-wile to understand what set
of regularizers generates the most medically relevant images.
Textural information extracted from the optimized pre-images
can also be analyzed to determine their correlation with
histopathological features.

Further exploration regarding how these results are relevant
from a neuroscience perspective can also be done, which might
aid in understanding not just the machine learning model, but
also how the brain processes information. The inferences from
our explainability pipeline can also be used to integrate medical
professionals into the learning process by providing them with
information about the internals of the model in a form that they
can understand.
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Supplementary Figure 1 | Network Architectures used in our study.

Supplementary Figure 2 | Concepts learned by filters of a particular layer of the

ResUnet for an input image (Conv Layer 21).

Supplementary Figure 3 | Concepts learned by filters of a particular layer of the

DenseUnet for an input image (Encoding Block 1, Conv 2).

Supplementary Figure 4 | Grad-CAM results for consecutive layers of the

ResUnet [view: top to bottom, column (A), followed by top to bottom, column (B)].

Supplementary Figure 5 | Activation maps for layers of the ResUnet.

Supplementary Figure 6 | Effect of independently changing hyperparamaters for

each regularizer. (Top) Jitter coefficient increases [0 pixels, 1p, 6p, 12p, 20p].

(Middle) Style Coefficient increases [10−2, 10−1, 1, 5, 10]. (Bottom) Total

Variation regularization increases [10−7, 10−6, 10−5, 10−4, 10−3] to

smoothen image.

Supplementary Figure 7 | Uncertainty estimations (shown in red) for the

DenseUnet (a–d) and ResUnet (e,f). Ground Truth (Left), Model Prediction

(Middle), and Uncertainty (Right).
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Convolutional neural network (CNN) models obtain state of the art performance on image

classification, localization, and segmentation tasks. Limitations in computer hardware,

most notably memory size in deep learning accelerator cards, prevent relatively large

images, such as those from medical and satellite imaging, from being processed as

a whole in their original resolution. A fully convolutional topology, such as U-Net, is

typically trained on down-sampled images and inferred on images of their original size

and resolution, by simply dividing the larger image into smaller (typically overlapping) tiles,

making predictions on these tiles, and stitching them back together as the prediction

for the whole image. In this study, we show that this tiling technique combined with

translationally-invariant nature of CNNs causes small, but relevant differences during

inference that can be detrimental in the performance of themodel. Here we quantify these

variations in both medical (i.e., BraTS) and non-medical (i.e., satellite) images and show

that training a 2D U-Net model on the whole image substantially improves the overall

model performance. Finally, we compare 2D and 3D semantic segmentation models to

show that providing CNNmodels with a wider context of the image in all three dimensions

leads to more accurate and consistent predictions. Our results suggest that tiling the

input to CNN models—while perhaps necessary to overcome the memory limitations in

computer hardware—may lead to undesirable and unpredictable errors in the model’s

output that can only be adequately mitigated by increasing the input of the model to the

largest possible tile size.

Keywords: segmentation, tiling, deep learning, CNN, brain tumor, glioma, BraTS, satellite imaging

1. INTRODUCTION

Since their resurgence in 2012 convolutional neural networks (CNN) have rapidly proved to
be the state-of-the-art method for computer-aided diagnosis in medical imaging, and have led
to improved accuracy in classification, localization, and segmentation tasks (Krizhevsky et al.,
2012; Chen et al., 2016; Greenspan et al., 2016). However, memory constraints in deep learning
accelerator cards have often limited training on large 2D and 3D images due to the size of the
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activation maps held for the backward pass during gradient
descent (Chen et al., 2016; Ito et al., 2019). Two methods are
commonly used to manage these memory limitations: (i) images
are often down-sampled to a lower resolution, and/or (ii) images
are broken into smaller tiles (Huang et al., 2018; Pinckaers
and Litjens, 2018). Tiling is often applied when using large
images due to the memory limitations of the hardware (Roth
et al., 2018). Specifically, in CNN models, the activation maps of
the intermediate layers use several times the memory footprint
of the original input image. These activation maps can easily
increase the allocated memory to hundreds of gigabytes. Fully
convolutional networks are a natural fit for tiling methods, as
they can be trained on images of one size and perform inference
on images of a larger size by breaking the large image into smaller,
overlapping tiles (Ronneberger et al., 2015; Çiçek et al., 2016;
Roth et al., 2018). To perform the overlapping tiling at inference
time, varying N × N (or in the 3D case, N × N × N) tiles are
cropped from the whole image at uniformly spaced offsets along
the image dimensions.

Tiling introduces additional model hyperparameters—
namely, tile size, overlap amount, and aggregation process (e.g.,
tile averaging/rounding)—that must be tuned to generate better
predictions. For example, Roth et al. performed abdominal organ
segmentation on 512 × 512 CT images with between 460 and
1,177 slices by using input tiles of size 132 × 132 × 116 to yield
output prediction tiles of 44 × 44 × 28 in a Cascaded 3D U-Net
(Roth et al., 2018). In the second stage of the prediction, the
probabilities for overlapping tile predictions were averaged to
produce a better Dice Coefficient result. Zeng and Zheng (2018)
introduced “Holistic Decomposition Convolution” that—when
added to a conventional 3D U-Net—significantly reduced the
size of the input data while maintaining the useful information
for the semantic segmentation. They compared the effects of
50× 50× 40, 96× 96× 96, and 200× 200× 40 tile crops from a
480 × 480 × 160 MR and determined that they had better Dice
Coefficient, Hausdorff Distance, and Average Surface Distance
when using the largest tile size that could fit into memory.
Isensee et al. (2019) used a sliding window with a half-tile overlap
and test-time data augmentation that mirrored the tile along all
axes. They also favored larger tile size over large batch size in
order to “maximize the amount of spatial context that can be
captured.” Ghosh et al. (2018) found that by rotating or flipping
the input tile, the prediction was slightly different for the same
tile. By averaging these small variations in the tiled predictions,
Ghosh produced improved predictions in structures within
satellite imagery from a dilated U-Net topology. Huang et al.
determined that zero-padding and strided convolutions (i.e.,
stride > 1)—two methods commonly used in CNNs—created
variability in predictions close to the tile border and caused
translation variance in the output prediction (Huang et al.,
2018).

Previous works like these refer to tiling methods as “necessary
due to constraints in memory” rather than methods to “improve
the accuracy of the algorithms” (Chen et al., 2016; Roth et al.,
2018; Isensee et al., 2019; Ito et al., 2019). In other words,
the tiling method compensates for insufficient memory rather
than adds predictive power. If more memory were available

for training and inference of these models, then tiling methods
would have not been necessary or even desirable. For example,
Kamnitsas et al. (2017) created the first state of the art 3D
topology for predicting brain tumors by finding tiles of “image-
segments” which are “larger than individual patches [tiles], but
small enough to fit into memory.” Roth et al. (2018) remarked,
“with the growing amount of . . .memory, overlapping sub-
volume predictions . . .will be reduced as it will be come possible
to reshape the network to accept arbitrary 3D input image sizes.”

In this study, we focus on the tiling approach—during both
model training and model inference—and its influence on the
model prediction. We implemented U-Net topologies for both
2D (Ronneberger et al., 2015) and 3D (Çiçek et al., 2016) data,
and we question whether this image tiling approach is indeed as
accurate as simply performing inference on the whole image. In a
previous report (Reina and Panchumarthy, 2018), we noticed that
using the entire 2D image gave better predictions than the tiling
approach for a 2D U-Net model trained to detect glial tumors
from brain magnetic resonance imaging (MRI). In this study, we
extend those results by systematically (i) evaluating the resulting
effects in both medical and non-medical data, (ii) comparing
both 2D and 3D U-Net models, and (iii) suggesting that these
differences are caused by operations within the CNN model that
vary due to translations in the input of the model. Finally, we
show that these issues can be partially addressed by increasing
the size of the tile—up to and including training and inferring on
the whole image.

2. METHODS

2.1. Data
2.1.1. Brain Tumor Segmentation (BraTS)
The medical data used for our evaluations reflect the publicly-
available training dataset of the International Brain Tumor
Segmentation (BraTS) challenge 20191 (Figure 1) (Menze et al.,
2014; Bakas et al., 2017a,b,c; Bakas et al., 2018). BraTS created
a publicly-available multi-institutional dataset for benchmarking
and quantitatively evaluating the performance of computer-aided
segmentation algorithms for brain tumors from MRI scans.
These scans were acquired by 1T, 1.5T, or 3T MRI scanners
and all the ground truth labels were manually approved by
expert, board-certified neuroradiologists. The dataset we used
here comprises pre-operative multi-parametric MRI scans from
335 patients diagnosed with glioma. The exact modalities of
the mpMRI scans included describe native T1-weighted (T1),
post-contrast T1-weighted (T1Gd), T2-weighted, and T2 Fluid
Attenuated Inversion Recovery (FLAIR) scans. We randomly
split this dataset into 270 training, 30 validation, and 35
testing scans.

Although the BraTS data describe 3D MRI scans, here we
are considering the 155 2D slices from each scan to be an
independent image for training a 2D model. However, all 2D
slices from a single patient scan were contained in only one of
the three dataset splits (training/validation/testing), to prevent
any potential data leakage toward learning data co-linearities.

1www.med.upenn.edu/cbica/brats2019.html
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FIGURE 1 | Example of a 3D input multi-parametric Magnetic Resonance Imaging scan from the International Brain Tumor Segmentation (BraTS) challenge. From left

to right all four input modalities are illustrated, including native T1-weighted (T1), T1 post-contrast (T1Gd), native T2-weighted (T2), and T2 Fluid Attenuated Inversion

Recovery (T2-FLAIR), followed by the ground truth expert annotation of all three tumor sub-regions, provided as part of the BraTS dataset. From top to bottom three

views (i.e., Axial, Coronal, Sagittal) of these 3D volumes are depicted to showcase the 3-dimensional nature of these scans.

Specifically, there were 41,850, 4,650, and 5,425 2D image/mask
pairs corresponding to 270, 30, and 35 3D MRI scans, across the
training, validation, and testing sets, respectively. All 2D images
were Z-scored along the channel axis from pre-computed means
and standard deviations of the 3D MRI scan. The original 2D
slices were 240× 240 pixels (i.e., whole image).

2.1.2. SpaceNet Vegas Satellite Imagery
The non-medical data is sourced from the public SpaceNet
satellite imagery dataset suite (Figure 2) (SPA, 2018; Weir et al.,
2019)2. Specifically, we used the Vegas subset of the data (SN-
Vegas). It is comprised of 3,851 30 cm spatial resolution, pan-
sharpened, RGB satellite imagery over the city of Las Vegas,
Nevada (USA) as well as latitude-longitude annotations for
108,942 building footprint polygons within the city. We exclude
the official competition test dataset from this study because it
does not contain publicly-available ground truth annotations.
The images were captured by WorldView-2 and 3 satellites, and
filtered to exclude images with excessive cloud cover as well as
extreme capture angles. The labels were professionally created by
geospatial data labeling vendor Radiant Solutions3.

The SpaceNet-Vegas dataset was split into 70% training (2,695
images), 20% validation (770 images), and 10% testing (386
images), corresponding to 77,099 training, 21,505 validation,
and 10,338 testing building polygons. All inputs were Z-scored
along the channel axis from pre-computed means and standard

2spacenet.ai/spacenet-buildings-dataset-v2/
3www.radiantsolutions.com

FIGURE 2 | An example of the SpaceNet-Vegas images used in this study.

The ground truth annotations for buildings and other structures were

professionally labeled.

deviations. All training inputs were also subject to random
horizontal and vertical flips, and rotations between 0 and 360◦.

2.2. U-Net Topology
U-Net is a fully convolutional network based on an encoder-
decoder architecture (Figure 3). The contracting path captures
context and the expanding path enables localization. Unlike the
standard encoder-decoder, each feature map in the expanding
path is concatenated with a corresponding feature map from
the contracting path, augmenting downstream feature maps
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FIGURE 3 | The BraTS 2D U-Net topology. The SpaceNet 2D U-Net and the BraTS 3D U-Net topologies have similar architectures.

with spatial information acquired using smaller receptive fields.
Intuitively, this allows the network to consider features at various
spatial scales. By design, U-Net is agnostic to image size, and
its training and inference can be performed on images of
different size.

2.3. 2D U-Net for Medical Data (BraTS)
We adapted a 2D U-Net model for training on the BraTS data,
and specifically used four MRI modalities as input and output an
equivalently-sized mask predicting the whole tumor appearing in
a 2D slice.

2.3.1. Architectural Modifications
In favor of allowing wider reproducibility of our results, we
specifically modified the originally published 2D U-Net topology
by reducing the number of feature maps by half (from 64 in
the first convolutional layer down to 32) and adding dropout
(0.2) just before the 3rd and 4th max pooling layers. We also
used zero padding in all convolutional layers to maintain the
image dimensions and eliminate the need to crop the image for
concatenation. The reduction of the originally proposed feature
maps happened in favor of our results been reproducible by
others without requiring extreme hardware equipment.

2.3.2. Training Process
We implemented the model used here in Keras 2.2.4 and
TensorFlow 1.11, and made the complete source code publicly
available4. Stochastic gradient descent with the Adam optimizer
(learning rate = 1e-4) was used to minimize the loss function
− log(Dice), where Dice is defined as in equation 1 on page 6.

4github.com/IntelAI/unet

A batch size of 128 was used during training. We created a batch
generator which randomly selected cropped images/masks from
the training set for each batch.

The 2D model was trained for 40 epochs. During training,
a random crop of 128 × 128 pixels was taken from the
normalized 2D images and their corresponding ground truth
masks. Randomized flipping (up/down and left/right), and 90
degree rotation of the training set images were also used during
online data augmentation. TheDice on a center 128×128 crop of
the validation dataset was calculated after every epoch. Themodel
that produced the highest Dice on the center 128 × 128 crop of
the validation data was considered the best trained model.

For pre-processing of the images, on a per image basis,
images were clipped to 98 percentile of their values and
standardization was applied only on non-zero pixels making
background consistent over all images. This created a consistent
effect of normalization over the images.

2.3.3. Zero Padding Experiments
We conducted additional experiments to determine the effects
of zero padding on the tiling approach. This stemmed from
the findings of Huang et al. (2018), who suggested that zero
padding used in CNN topologies caused variability in predictions
at the tile border. To assess this, we also created and trained an
additional 2D U-Net model that did not include zero-padding
for any of the convolutional layers. We named this the “no pad
BraTS” model.

The “no pad BraTS” model was trained in the same way as the
first 2D U-Net model, but with the following changes. This “no
pad BraTS” model took as input a random crop of 236 × 236
and output a 52 × 52 prediction. The decrease in the output
size was due to the progressive loss in the border pixels after
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each non-padded convolutional layer (Ronneberger et al., 2015).
The input size was chosen to be slightly smaller than the whole
240×240 slice so that we could evaluate if the prediction changed
with small translations of the input. The model prediction was
compared to a similarly-cropped version of the ground truth
mask. It was trained for 40 epochs and the model that produced
the highest Dice on the validation data was considered the best
trained model.

2.3.4. Inferring on 2D Tiles (Tiling Approach)
Inference was performed individually on five 128 × 128 pixel-
sized tiles, extracted from the four corners and the center of the
slice (Figure 4A). We performed inference on the whole 2D slice
using themodel and then stacked the 155 slices on a per scan basis
to generate a predicted 3D segmentation mask of the entire scan.

We utilized and compared two tiling aggregation approaches.
The first approach, rounding after averaging, is described by
Roth et al. (2018). In our case the predictions from these five
128 × 128 tiles were first averaged and then rounded to either 0
or 1 (threshold:0.5). We compared the rounding after averaging
approach with a rounding before averaging approach: The five
128× 128 tiles were rounded to either 0 or 1 (threshold:0.5) and
then averaged to provide the whole image prediction (rounding
before averaging). Slicewise predictions for each patient scan
were then stacked together to compare the 2D predictions with
predictions from the 3D BraTS model.

2.3.5. Inferring on the Whole 2D Slice
For fully-convolutional topologies, the TensorFlow
model can be created with a run-time defined height
and width by specifying the input dimensions to be
[Height,Width,Channels] = [None,None, 4] where None
describes the run-time defined parameter5.

By defining and training the model in this manner, we can
pass an image of almost any size into the model and perform
inference. The only limitation to the input image size is that the
dimension must be divisible by 24 in order to align with the 4
max-pool layers of the U-Net model and correctly concatenate
the skip connections.

2.4. 3D U-Net for Medical Data (BraTS)
To create the 3D U-Net model, we used the same number of
convolutional and max-pooling layers as we used in the 2D
U-Net model (Figure 3). We altered the implementation of the
originally proposed 3D U-Net model (Çiçek et al., 2016) by
replacing the ReLU layer with a leaky ReLU activation and adding
instance normalization after each leaky ReLU (Xu et al., 2015;
Ulyanov et al., 2016).

We further modified this implementation by using an initial
learning rate of 0.01. A learning rate decay factor of 0.5 was
applied when the value of the validation loss had not been in the
five best previous losses (i.e., check_best = 5). Training stopped
when the validation loss did not improve in the past 20 epochs
(i.e., patience = 20). Finally, the weights that yielded the lowest
validation loss were used for the final model.

5inputs = tensorflow.keras.layers.Input([None, None, number_channels_in]).

The 3D BraTS model is trained for 100 epochs on 9 tiles, of
128×128×128 voxels, cropped from the 8 corners and the center
of a 3D MRI scan (Figure 4B).

Inferring via a tiling approach was also performed similar to
the 2D U-Net case (section 2.3.4), but used 128 × 128 × 128
tiles from the eight corners and the center of the whole image
(Figure 4B). These nine 128 × 128 × 128 tiles were averaged to
provide a prediction of the whole mask.

Whole image inference was also performed similar to the 2D
U-Net (section 2.3.5) but using the whole 240× 240× 155 scan.

2.5. 2D U-Net on Satellite Data
(SpaceNet-Vegas)
The SpaceNet model uses a single satellite image from SpaceNet-
Vegas as input, and outputs an equivalently-sized mask
predicting the building footprints.

2.5.1. Architectural Modifications
The originally published topology was modified by introducing
batch normalization to the output of a convolution layer, prior to
the activation, for regularization purposes.

2.5.2. Training Process
All models were trained for 300 epochs using the Adam
optimizer with a 5e-4 learning rate to optimize the Binary
Cross Entropy loss. To test our hypothesis that a model trained
in the whole image outperforms a tiling-based approach, we
followed two training processes here; based on (a) tiling, and
(b) down-sampling.

For models trained via tiling, the input image’s source
resolution of 650 × 650 is maintained and a random crop of the
desired dimension is selected. Different models were trained for
each of the following random tiling sizes:

- 128× 128
- 256× 256
- 384× 384
- 496× 496

Due to the U-Net architecture, the input dimensions to the
model must be divisible by 25 in order to align with the
5 max-pool layers. Consequently, for the models trained on
the entire image via down-sampling, the original image was
downsampled with anti-aliasing and bilinear interpolation to
512× 512 and 640× 640.

2.5.3. Zero Padding Experiments
As with the BraTS experiments, we created additional SpaceNet
experiments to determine the effects that zero padding had
on the tiling approach. We also created and trained additional
SpaceNet models that did not include zero-padding for any of
the convolutional layers (namely the “no pad SpaceNet” models).

2.5.4. Inferring on 2D Tiles
Inference was performed using tiles of the same size that was used
when training themodel, with a 50% overlap between tiles in both
the vertical and horizontal dimension. The overlapping tiles were
averaged to provide the whole image prediction.
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FIGURE 4 | Tiling process schematic. (A) In the 2D model, five tiles (4 corners, 1 center) are averaged to produce the whole image prediction. The 3rd picture in the

2nd row depicts the intensity of the tile overlapping. Notably, the tile predictions are either (i) first rounded and then averaged together, or (ii) first averaged together

and then rounded. (B) Example for the 3D BraTS model, where the tiling algorithm is similar with the 2D, but this time uses nine tiles (8 corners and 1 center).

2.6. Evaluation Metric
2.6.1. …for the Medical Data
In consistency with the metric used in the BraTS challenge, the
Dice Similarity Coefficient (Dice) was used here to measure the
quality of the tumor predictions. Dice is defined as:

Dice =
2× TP

2× TP + FP + FN
(1)

where TP, FP,TN, FN are the number of True Positive, False
Positive, True Negative, and False Negative pixels.

2.6.2. …for the Satellite Data
In order to measure performance relative to established
benchmarks on SpaceNet, we used the post-processing Polygon
F1 metric, displayed in Figure 5; namely, the predicted
segmentation mask is polygonized based on same-value pixel

connectivity to generate a set of proposed polygons in latitude
and longitude space. We then calculate the spatial intersection
over union (i.e., Jaccard Index) between proposed and ground
truth polygons. A true positive is asserted if the Jaccard value is
above 0.5. Once we establish TP, FP, and FN counts, we compute
the Dice (also known as SpaceNet (polygonal) F1 Score)—
the harmonic mean between precision and recall—over these
matched polygons and compare this metric to theDice calculated
on a pixelwise basis (Hagerty, 2016).

3. RESULTS

3.1. 2D BraTS Model
The best trained 2D BraTS model yielded an average Dice of
0.8877 when inferred on a single center 128 × 128 tile of the
test dataset slices. Furthermore, as explained in the methods,
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FIGURE 5 | The SpaceNet F1 metric: a list of proposals is generated by the detection algorithm and compared to the ground truth in the list of labels.

although this model was trained on random 128 × 128 tiles, we
were able to perform inference on the entire 240× 240 2D image
slice. The whole 2D slice predictions resulted in an average Dice
on 0.8743 on the whole 3D volume. Using the 2D BraTS model
with five 128× 128 tiles, resulted in an average Dice of 0.8599 for
the tiling aggregation method of rounding after averaging. Using
the rounding before averaging tiling aggregation method, resulted
in a 0.8998 average Dice (Table 1).

Collectively in the testing dataset, application of different
tiling aggregation approaches (i.e., rounding after averaging, and
rounding before averaging) revealed that when we aggregated
the predicted segmentations by rounding after averaging, the
2D segmentations of individual subjects were inferior to
the segmentations obtained from the 3D model. Contrarily,
evaluation of the tiling aggregation approach, where rounding
before averaging was applied, yield that on average more 2D
predictions were closer to the ground truth than when using the
3D model (Figure 6).

3.2. 3D BraTS Model
The results of the 3D U-Net BraTS model showed a different
behavior when compared with the results of the 2DU-Net model.
Specifically, there were no significant differences observed when
the predictions of the model inferred on the whole 3D MRI scan
were compared to the predictions of any of the tiling aggregation
approaches. Inferring the 3D BraTS model on the whole 3D
scan resulted in an average Dice of 0.8974, when for the tiling
aggregation method of rounding after averaging and of rounding
before averaging the average Dice was equal to 0.8991 and 0.8984,
respectively (Table 2).

TABLE 1 | Results of 2D U-Net on medical data (BraTS).

Inference on: Whole 2D slice 2D tiles 2D tiles

Aggregation

approach

N/A (Rounding after

averaging)

(Rounding before

averaging)

Dice 0.8743 0.8599 0.8998

Comparing whole 2D slice prediction to two tiling aggregation methods.

3.3. 2D SpaceNet-Vegas
With the satellite image dataset, we note that higher accuracy was
obtained by training on a larger tile size (i.e., larger context of
the image). The model trained on 128 × 128 random tiles and
inferred on the whole 650 × 650 image with 128 × 128 sliding
tiles, resulted in a Dice score of 0.791, whereas the model trained
on the whole 2D image resized to 640 × 640 and inferred on the
whole 650× 650 image resulted in a Dice score of 0.917. To train
on the whole image, we interpolated the image to 640×640 as
the U-Net topology require the input image to be multiple of 25

to align with 5 max-pool layers. Tables 3, 4 denote that both the
evaluation metrics of Dice and SpaceNet F1 (polygon-wise and
computed over the entire dataset, not per image) improve as the
training tile size increases.

4. DISCUSSION

Our results denote substantial differences in our 2D U-Net
architecture, both for medical and non-medical (i.e., satellite)
data. Specifically, the evaluation of Dice show superiority when
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FIGURE 6 | Comparing pairwise Dice differences between the prediction on

the whole 240× 240 image and the 128× 128 tiles. Zero indicates both

methods produced equal Dice scores for the same scan. (Top) Prediction was

made by first averaging the 5 tiles and then rounding the final prediction to 0

or 1. (Bottom) Prediction was made by first rounding the tiled predictions to

0 or 1 and then averaging the predictions.

TABLE 2 | Results of 3D U-Net on medical data (BraTS).

Inference on: Whole 3D scan 3D tiles 3D tiles

Aggregation

approach

N/A (Rounding after

averaging)

(Rounding before

averaging)

Average Dice (±σ ) 0.8974

(± 0.0702)

0.8991

(± 0.0666)

0.8984

(± 0.0670)

Comparing whole 3D scan prediction to two tiling aggregation methods.

TABLE 3 | Results of 2D U-Net with zero-padding on non-medical data

(SpaceNet Vegas).

Tile size
128 × 128

crop

256 × 256

crop

384 × 384

crop

496 × 496

crop

512 × 512

interp

640 × 640

interp

Dice 0.873 0.900 0.896 0.918 0.917 0.918

SpaceNet F1 0.748 0.803 0.800 0.838 0.840 0.847

Dice and SpaceNet (polygon-wise Dice) F1 metrics on varying tile size.

inferring our model in the whole 2D image, when compared with
inferring in smaller image tiles, supporting our hypothesis for the
large tile sizes. Furthermore, gradual increments of the tile sizes
shows gradual improvement in the performance. Following the
evaluation of our 3D U-Net model, we note that the performance
on 3-dimensional data did not show substantial difference when
comparing inference on the whole 3D image and inference on

TABLE 4 | Results of 2D U-Net without zero-padding on non-medical data

(SpaceNet Vegas).

Tile size
128 × 128

crop

256 × 256

crop

384 × 384

crop

496 × 496

crop

512 × 512

interp

640 × 640

interp

Dice 0.865 0.896 0.907 0.918 0.912 0.914

SpaceNet F1 0.734 0.781 0.797 0.806 0.808 0.821

Dice and SpaceNet (polygon-wise Dice) F1 metrics on varying tile size.

FIGURE 7 | The translationally-variant nature of the MaxPooling layer: note

how the result of MaxPooling significantly differs with a translation of one pixel

to the 10× 2 window between the top and bottom inputs even though they

contain the same values (middle rows). Successive MaxPooling layers (or any

non-unary, strided convolution) compound the effect because they effectively

increase the receptive field window size. Hence, a model with three 2× 2

MaxPooling layers would show translational variance for offsets of up to

23 = 8 pixels.

3D tiles. We hypothesize that this happens due to the inclusion
of large image context (e.g., more neighboring voxels) along the
third dimension.

The overlapping tiling approach is commonly used by
researchers to apply fully convolutional models on large 2D and
3D images that would ordinarily not fit into available memory
(Chen et al., 2016; Roth et al., 2018). Isensee et al. (2019), for
example, specifically designed their topology to “automatically
set the batch size, tile size and number of pooling operations
for each axis while keeping the memory consumption within a
certain budget.” We suggest that researchers should be designing
their topologies not to fit into a hardware constraint, but instead
to produce the most accurate model possible.

We found that the variance in the prediction can be seen
in the linear transformation (flipping) and affine transformation
(translation) (Figures 8, 9). Most neural networks include some
component that makes it translationally-variant, such as a
pooling layer or non-unary convolutional stride. In other words,
the whole image is not necessarily the sum of individual tiles. In
Figure 7, we demonstrate this effect due to a 2 × 2 max-pooling
layer. Both the top and bottom use identical 11 × 2 arrays. If a
10 × 2 tile is used to perform the max-pooling, there are only
two possible tiles. Notice that each tile produces different results.
We further found that this behavior caused by the pooling layers
most prominently affects the sharp intensity changes in object
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FIGURE 8 | Demonstrating the variability of the 2D BraTS model. (Top) Prediction based on normal orientation of the MRI input. (Middle) Prediction based on vertical

flip of the MRI input. (Bottom) Comparing the predictions of the normal and flipped inputs. The prediction of the flipped input was re-flipped to allow direct

comparison with the normal orientation prediction. In bottom right figure, gray pixels indicate no difference, black pixels are in the flipped prediction but are not present

in the normal prediction, and white pixels are in the normal prediction but are not present in the flipped prediction.

boundaries. We believe that many of our results on “blobbier”
borders that are more sensitive to even minor affine transforms
to the tiles are a result of these translationally-variant operations,
especially the max-pooling operation.

Although these differences in prediction are often localized
to the segmentation border, the boundaries of the tumor or
buildings are often the most relevant to the task. Especially in
medical imaging, ensuring adequate tumor margins are critical
to successful therapeutic planning and treatment.

4.1. Medical Data (BraTS)
If the models were linear, then any linear transformation to
the model input should result in the same prediction (with

the same linear transformation). Figure 8 shows that on scan
BRATS19_CBICA_BBG_1.nii.gz it achieves a Dice of 0.9100
on the center 128 × 128 tile of slice 94. However, if the
MRI input is simply flipped vertically, then the prediction is
changed. In this case, the Dice shows that the model provides
a worse prediction with the flipped input (Dice = 0.8480).
By reversing the linear transform (i.e., unflip the prediction)
the two model predictions can be compared directly to show
that they are indeed different (cross-prediction Dice = 0.9139).
Although the two predictions are very similar, the bottom row
of Figure 8 highlights the differences occur along the tumor
borders. We find that the tumor borders appear to be where the
predictions differ.
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FIGURE 9 | Demonstrating the translational variance of the 2D BraTS model. The center shows the prediction of the model on a 128× 128 center crop of the MRI.

Note the entire tumor fits within this tile. The surrounding subplots show the difference in the prediction as the MRI input crop is offset by one or two pixels in either

dimension of the slice. The differences between the predictions in the overlapping pixels show that even the smallest translation in the input can create a difference in

the output. Gray pixels indicate no difference in the predictions of the overlapping pixels between the center crop and the offset crop, black pixels are in the offset-crop

prediction but are not present in the center-crop prediction, and white pixels are in the center-crop prediction but are not present in the offset-crop prediction.

Figure 9 shows the translational variance of the model. The
center shows the prediction of the model on a 128 × 128 center
crop of the MRI. As the grid in the figure indicates, each tile
shows the difference between pixels that overlap between the
predictions of the center crop and a crop translated ±1 or 2
pixels in each dimension from the center crop. The Dice confirm

that the overlapping predictions, while similar, differ significantly
along the border of the tumor. This pattern of differences along
the segmentation border was typical in the results. Note that
the translations of (+2, +2) and (−2, −2) are a multiple of the
max pooling stride and should be less sensitive to the translation
(cf. Huang et al., 2018).

Frontiers in Neuroscience | www.frontiersin.org 10 February 2020 | Volume 14 | Article 65187

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Reina et al. Image Tiling Adverse Effects Evaluation

FIGURE 10 | In this “no pad BraTS” model, there is still translational variance despite the model containing no zero padding in the convolutional layers. The

“Prediction Center Crop” refers to the prediction when using a 236× 236 center crop of the input slice. “Prediction Translate Right” refers to a similar crop but

translated one pixel to the right of the center. The green and red circles highlight predictions that have changed due translating by a single pixel. The figure on the right

shows the difference in the overlapping regions between the “Center Crop” and “Translate Right” predictions. Gray indicates no difference. White indicates a

prediction in the “Center Crop” that was not in the “Translate Right.” Black indicates a prediction in the “Translate Right” that was not in the “Center Crop”.

Figure 10 shows the translational variance of the “no pad
BraTS” model. In this case, the model was trained without a
zero pad in the convolutional layers so that we could assess the
effects of zero padding on the prediction output. In the figure, the
“Center Crop” refers to a 236× 236 center crop of the 240× 240
slice and “Prediction Translate Right” refers to a crop that has
been translated one pixel to the right of the center crop.When we
compare the prediction regions that overlap, we find several areas
where the tumor prediction has changed (red and green circles).
This demonstrates that the translational invariance due to tiling
cannot bemitigated by simplymodifying the topology to only use
valid pixels in the convolutional layers.

Application of different tiling aggregation approaches (i.e.,
rounding after averaging, and rounding before averaging) revealed
unpredictable and inconsistent results. This introduces a new
parameter to standardize the results. The user must be
aware of this discrepancy and make appropriate conclusion
by experimenting with different tiling aggregation methods.
Furthermore, the results of the 3D U-Net model inference
demonstrate that greater image context (3D vs. 2D) contributes
in the performance, but also that after the inclusion of sufficient
image context (i.e., when providing enough context) the model
converges and no further improvements are observed.

The two different tiling aggregation approaches produced
different results in the 2D and 3D models. For the 2D model the
rounding after averaging approach produced a substantially lower
Dice metric than rounding before averaging approach. In the
3D model, the rounding after averaging approach produced an
insignificantly higherDicemetric than rounding before averaging.

4.2. Non-medical Data (SpaceNet-Vegas)
We find that the whole image consistently outperforms tiling-
based approaches on the pixelwise Dice that converge to similar
values once the tile size reached approximately half of the original
height and width of the image (Table 3). Similarly, the polygonal-
wise Dice (SpaceNet F1 metric) also improves as the training
tiles cover a larger proportion of the whole image. Inspection of

the predicted masks reveals the likely culprit: Figure 11 shows
the ground truth mask and image at the top, followed by rows
showing sliding window predictions with 128×128 and 256×256
tiles, with the last row being predictions from the model trained
on 640× 640 resized inputs.

We note that predictions from the models using smaller tile
sizes produce segmentations that fail to capture fine-grained
boundaries between buildings, leading to “blobbier” or more
amorphous predictions. Note that the tiled predictions segment
the buildings in each cul-de-sac as a single continuous mass;
however, there are roughly 6 houses per cul-de-sac. Thesemissing
boundaries lead to the post-processing step of polygonization
creating a reduced number of polygons as multiple buildings are
getting extracted as one. We note that as the tile size increases to
reach at least 1

2H ×
1
2W, then the adverse polygonization effects

are reduced and predictions at the boundary of the segmentations
becomes more accurate (Table 3).

The removal of zero padding in the topology has a negligible
effect on the average per-image Dice coefficient. However, the F1
Metric is lower by 1–3% across all input size variants (Table 4).
Because the removal of zero-padding reduces the output size
of the model, what we see is an effect similar to the discussed
effects of using smaller tiles rather than the whole image during
training. Since the F1 metric is computed over the entirety of
the extracted polygons—that is, a set latitude/longitude pairs
defining a building footprint—we again lose fidelity at the edges
of the buildings which decreased the SpaceNet F1 score. This
does not affect the Dice score, as Dice is not sensitive to the
separation of object instances. In other word, a giant pixel blob
covering two buildings yields good pixelwise Dice values, but
poor SpaceNet F1 polygon values.

5. CONCLUSIONS

In this study, we systematically evaluated the effects of using
tiling approaches vs. using the whole image for deep learning
semantic segmentation, in both 2D and 3D configurations.
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FIGURE 11 | (1st row) Ground truth and whole image. (2nd row) 128× 128 tiles. (3rd row) 256× 256 tiles. (4th row) 640× 640 whole image.

Through quantitative evaluation we demonstrated that larger tile
(i.e., context) sizes yield more consistent results and mitigate
undesirable and unpredictable behavior during inference. We
realize that tiling methods may continue to be necessary
as researchers use images with increasingly greater size and
resolution in their convolutional neural network models. Our
goal in this study is to raise awareness about the issues
surrounding tiling. Namely:

1. Tiling hyperparameters, which include tile size, offset,
orientation, and overlap, can cause large variations in
the prediction, particularly around the borders of the
segmentation mask.

2. This variance is not just limited to a translation less
than the stride (as suggested by Huang et al., 2018),
but seem to be present even with translations of ±2 in
each direction. Therefore, we think that our results show
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a more complicated story to the translational variance
of CNNs.

3. Topologies without zero padding in the convolutional layers
do not eliminate the translational variance of the topology.

4. Methods to aggregate the individual predictions into a whole
image prediction, namely when to average the predicted
outcome pseudo-probability maps and when to round
these predictions, that can have a significant effect on the
overall accuracy.

5. Larger degrees of image context, including adding 3D
information to the model and using larger tile sizes, improves
model performance in training and is less sensitive to these
hyperparameters during inference.

We conclude that increased access to memory—either through
improvements in hardware or through high performance
computing techniques, such as model parallelism (Shazeer et al.,
2018) and data parallelism (Sergeev and Balso, 2018)—is essential
to creating accurate and robust models. Tiling should only
be reserved for those cases where the physical limitations of
memory make it an absolute necessity. When tiling must be used,
researchers should be careful to investigate how the translational
variance of the model affects the predictions and compare
methods of tiling aggregation to determine the best way to
mitigate the variability inherent in tiling.
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In this work, we propose a novel cascaded V-Nets method to segment brain tumor

substructures in multimodal brain magnetic resonance imaging. Although V-Net has been

successfully used in many segmentation tasks, we demonstrate that its performance

could be further enhanced by using a cascaded structure and ensemble strategy.

Briefly, our baseline V-Net consists of four levels with encoding and decoding paths and

intra- and inter-path skip connections. Focal loss is chosen to improve performance

on hard samples as well as balance the positive and negative samples. We further

propose three preprocessing pipelines for multimodal magnetic resonance images to

train different models. By ensembling the segmentation probability maps obtained from

these models, segmentation result is further improved. In other hand, we propose to

segment the whole tumor first, and then divide it into tumor necrosis, edema, and

enhancing tumor. Experimental results on BraTS 2018 online validation set achieve

average Dice scores of 0.9048, 0.8364, and 0.7748 for whole tumor, tumor core and

enhancing tumor, respectively. The corresponding values for BraTS 2018 online testing

set are 0.8761, 0.7953, and 0.7364, respectively. We also evaluate the proposedmethod

in two additional data sets from local hospitals comprising of 28 and 28 subjects, and the

best results are 0.8635, 0.8036, and 0.7217, respectively. We further make a prediction

of patient overall survival by ensemblingmultiple classifiers for long, mid and short groups,

and achieve accuracy of 0.519, mean square error of 367240 and Spearman correlation

coefficient of 0.168 for BraTS 2018 online testing set.

Keywords: deep learning, brain tumor, segmentation, V-Net, multimodal, magnetic resonance imaging

INTRODUCTION

Gliomas are the most common brain tumors and comprise about 30 percent of all brain tumors.
Gliomas occur in the glial cells of the brain or the spine (Mamelak and Jacoby, 2007). They can
be further categorized into low-grade gliomas (LGG) and high-grade gliomas (HGG) according
to their pathologic evaluation. LGG are well-differentiated and tend to exhibit benign tendencies
and portend a better prognosis for the patients. HGG are undifferentiated and tend to exhibit
malignant and usually lead to a worse prognosis. With the development of the magnetic resonance
imaging (MRI), multimodal MRI plays an important role in disease diagnosis. Different MRI

192

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2020.00009
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2020.00009&domain=pdf&date_stamp=2020-02-14
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mozhanhao@jlu.edu.cn
mailto:feng.shi@united-imaging.com
https://doi.org/10.3389/fncom.2020.00009
https://www.frontiersin.org/articles/10.3389/fncom.2020.00009/full
http://loop.frontiersin.org/people/655900/overview
http://loop.frontiersin.org/people/445012/overview
http://loop.frontiersin.org/people/781180/overview
http://loop.frontiersin.org/people/902305/overview


Hua et al. Tumor Segmentation Using Cascaded V-Nets

modalities are sensitive to different tumor tissues. For example,
T2-weighted (T2) and T2 Fluid Attenuation Inversion Recovery
(FLAIR) are sensitive to peritumoral edema, and post-contrast
T1-weighted (T1Gd) is sensitive to necrotic core and enhancing
tumor core. Thus, they can provide complementary information
about gliomas.

Segmentation of brain tumor is a prerequisite while essential
task in disease diagnosis, surgical planning and prognosis (Bakas
et al., 2017a). Automatic segmentation provides quantitative
information that is more accurate and has better reproducibility
than conventional qualitative image review. Moreover, the
following task of brain tumor classification heavily relies on the
results of brain tumor segmentation. Automatic segmentation is
considered as a powered engine and empower other intelligent
medical application. However, the segmentation of brain tumor
in multimodal MRI scans is one of the most challenging tasks
in medical imaging analysis due to their highly heterogeneous
appearance, and variable localization, shape and size.

Before deep learning developed, random forest (RF) achieves
better performance in brain tumor segmentation (Zikic et al.,
2012; Le Folgoc et al., 2016). In recent years, with the
rapid development of deep leaning techniques, state-of-the-
art performance on brain tumor segmentation have been
achieved with convolutional neural network (CNN). For
example, in Cui et al. (2018), an end-to-end training using fully
convolutional network (FCN) showed satisfactory performance
in the localization of the tumor, and patch-wise CNN was used
to segment the intra-tumor structure. In Wang et al. (2018),
a cascaded anisotropic CNN was designed to segment three
sub-regions with three Nets, and the segmentation result from
previous net was used as receptive field in the next net. Ensemble
strategy also shows great advantages, and most models are based
on 3D U-Net, DeepMedic, and their variants (Isensee et al., 2018;
Kamnitsas et al., 2018). One recent paper arguing that a well-
trained U-Net is hard to beat (Isensee et al., 2019). Instead of
modifying architectures, they focused on the training process
such as region based training and additional training data, and
achieved competitive Dice scores.

Inspired by the superior performance of V-Net in
segmentation tasks, we propose a cascaded V-Nets method to
segment brain tumor into three substructures and background.
In particular, the cascaded V-Nets not only take advantage of
residual connection but also use the extra coarse localization
and ensemble of multiple models to boost the performance.
A preliminary version of the method has been presented in a
conference (Hua et al., 2019). Here we extend it to include more
descriptions of the method details and additional experiments
to further evaluate the performance of the proposed method in
local hospital data sets.

METHOD

Dataset and Preprocessing
The data used in experiments come from the released data of
BraTS 2018 online challenge (Menze et al., 2015; Bakas et al.,
2017a,b,c). The training set includes totally 210 HGG patients
and 75 LGG patients. The validation set includes 66 patients and

the testing set includes 191 patients. Each patient has four MRI
modalities including T1-weighted (T1), T2, T1Gd, and FLAIR,
where ground truth labels of tumor substructures are available
only in training set. The images were already skull stripped and
normalized together, with resolution of 1 × 1 × 1 mm3 for
all modalities. We use 80 percent of the training data for our
training, and the rest 20 percent of the training data as our local
testing set.

Meanwhile, in order to further test the performance of the
proposed method, we prepare two additional data sets that
include 28 patients from China-Japan Union Hospital of Jilin
University and another 28 patients from Affiliated Drum Tower
Hospital of Nanjing University Medical School. The resolution
of the T1 images from China-Japan Union Hospital of Jilin
University is 0.6 × 0.6 × 6 mm3, while the resolution of the
T1 images from Affiliated Drum Tower Hospital of Nanjing
UniversityMedical School is 0.67× 0.67× 0.67mm3. The images
of T2, T1Gd, and FLAIR are linearly aligned to its corresponding
T1 image for each subject. Skull stripping is performed on
T1 and the mask is applied to other modalities. The ground
truth labels of the brain tumors are manually delineated by
an experienced radiologist. The experienced radiologist (Z.M.)
was asked to delineate the tumor subregions according to the
image delineating principles of BraTS 2018. Results would serve
as ground truth to evaluate the generalizability of the method.
In detail, the delineating principle includes three subregion
segmentations of the tumor, including the necrotic (NCR) and
the non-enhancing (NET) tumor core, the enhancing tumor (ET)
and the peritumoral edema (ED). The NCR and the NET tumor
core was the low intensity necrotic structures in T1Gd when
compared to T1. The ET area was confirmed as hyper-intensity
structures in T1Gd when compared to T1 images, and when
compared to normal brain in T1Gd. The ED area was identified
as abnormality visible in T2 and FLAIR excluding ventricles and
cerebrospinal fluid.

All data used in the experiments are preprocessed with specific
designed procedures. A flow chart of the proposed preprocessing
procedures is shown in Figure 1, as follows: (1) Apply bias field
correction N4 (Tustison et al., 2010) to T1 and T1Gd images,
normalize each modality using histogram matching with respect
to a MNI template image, and rescale the images intensity values
into range of −1 to 1; (2) Apply bias field correction N4 to all
modalities, compute the standardized z-scores for each image
and rescale 0–99.9 percentile intensity values into range of −1 to
1; (3) Follow the first method, and further apply affine alignment
to co-register each image to the MNI template image.

V-Net Architecture
V-Net was initially proposed to segment prostate by training an
end-to-end CNN onMRI (Milletari et al., 2016). The architecture
of our V-Net is shown in Figure 2. The left side of V-Net reduces
the size of the input by down-sampling, while the right side of V-
Net recovers the semantic segmentation image that has the same
size with input images by applying de-convolutions. The detailed
parameters about V-Net is shown in Table 1. Both left side of
the network and right side of the network were divided into four
blocks that operate at different resolutions. Each block comprises
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FIGURE 1 | The flow chart of the preprocessing procedures.

one to three convolutional blocks. The input of each block is

added to the output of the current block to learn a residual

function, and added to the input of the corresponding block
which has the same resolution in the right side of the network
as a skip connection. By means of introducing residual function
and skip connection, V-Net has better segmentation performance
compared with conventional CNN. Each convolutional block
comprises two convolutional layers with the kernel size of 1 × 1
× 1 at the start and the end of the convolutional block. By means

of introducing the 3D kernel with size of 1× 1× 1, the number of
parameters in V-Net is decreased and the memory consumption
is greatly reduced. Appropriate padding and ReLU non-linearity
are applied throughout the network.

Proposed Cascaded V-Nets Framework
Although V-Net has demonstrated promising performance in
segmentation tasks, it could be further improved if incorporated
with extra information, such as coarse localization. Therefore,
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FIGURE 2 | The architecture of the used V-Net.

we propose a cascaded V-Nets method for tumor segmentation.
Briefly, we (1) use one V-Net for the whole tumor segmentation;
(2) use a second V-Net to further divide the tumor regions into
three substructures, e.g., tumor necrosis, edema, and enhancing
tumor. Note that the coarse segmentation of whole tumor in the
first V-Net is also used as receptive field to boost the performance.
Detailed steps are as follows.

The proposed framework is shown in Figure 3. There are two
networks to segment substructures of brain tumors sequentially.
The first network (V-Net 1) includes models 1–3, designed to
segment the whole tumor. These models are trained by three
kinds of preprocessed data mentioned in part of 2.1, respectively.
V-Net 1 uses four modalities MR images as inputs, and outputs
the mask of whole tumor (WT). The second network (V-Net
2) includes models 4–5, designed to segment the brain tumor
into three substructures: tumor necrosis, edema, and enhancing
tumor. These models are trained by the first two kinds of
preprocessed data mentioned in part of 2.1, respectively. V-Net
2 also uses four modalities MR images as inputs, and outputs
the segmented mask with three labels. Note that the inputs of V-
Net 2 have been processed using the mask of WT as region of
interest (ROI). In other words, the areas out of the ROI are set
as background. Finally, we combine the segmentation results of
whole tumor obtained by V-Net 1 and the segmentation results
of tumor core (TC, includes tumor necrosis and enhancing
tumor) obtained by V-Net 2 to achieve more accurate results
about the three substructures of brain tumor. In short, the
cascaded V-Nets take advantage of segmenting the brain tumor
and three substructures sequentially, and ensemble of multiple
models to boost the performance and achieve more accurate
segmentation results.

Ensemble Strategy
We employ a simple yet efficient ensemble strategy. It works by
averaging the probability maps obtained from different models.

We use ensemble strategy twice in the two-step segmentation
of the brain tumor substructures. For example, in V-Net 1,
the probability maps of WT obtained from model 1, model 2,
and model 3 were averaged to get the final probability map
of WT. In V-Net 2, the probability maps of tumor necrosis,
edema, and enhancing tumor obtained from model 4 and model
5 were averaged to get final probability maps of brain tumor
substructures, respectively. In order to evaluate the effect of
ensemble strategy for enhancing the performance of our cascaded
V-Nets, ablation experiments were conducted onMICCAI BraTS
2018 validation dataset. Briefly, model combinations include
Model 1–4,Model 12–4,Model 123–4,Model 123–45, andModel
123–45-fuse. To evaluate the significance of the results between
different model combinations, we first evaluated the overall
difference across model combinations with Kruskal-Wallis H
test, and then checked the difference between each of two groups
with Mann-Whitney U test. Multiple comparison correction was
performed using Bonferroni criteria.

Network Implementation
Our cascaded V-Nets are implemented in the deep learning
framework PyTorch. In our network, we initialize weights with
kaiming initialization (He et al., 2015), and use focal loss (Lin
et al., 2018) illustrated in formula (1) as loss function. Focal
loss has the advantage of balancing the ratio of positive and
negative samples, and decreases the importance of easy classified
samples to focus more on difficult samples (Lin et al., 2018).
Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014) is
used as optimizer with learning rate of 0.001, and batch size of 8.
Experiments are performed with a NVIDIA Titan Xp 12GBGPU.

Focal_Loss
(

pt
)

=−α
(

1−pt
)r
log

(

pt
)

(1)

where, α denotes the weight to balance the importance
of positive/negative samples, r denotes the factor to
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TABLE 1 | The detailed parameters of the used V-Net, as shown in Figure 2.

Blocks Sub-blocks or layers Input dimensions Output dimensions

Input block Conv(k = 3, p = 1, s = 1) + BN + ReLU 96 × 96 × 96 × 4 96 × 96 × 96 × 16

Down block 1 Conv(k = 2, p = 0, s = 2)+ BN + ReLU 96 × 96 × 96 × 16 48 × 48 × 48 × 32

Conv(k = 3, p = 1, s = 1) + BN* 48 × 48 × 48 × 32 –

(input+output) + ReLU* 48 × 48 × 48 × 32 –

Down block 2 Conv(k = 2, p = 0, s = 2) + BN + ReLU 48 × 48 × 48 × 32 24 × 24 × 24 × 64

Conv block × 2* 24 × 24 × 24 × 64 –

(input+output) + ReLU* 24 × 24 × 24 × 64 –

Down block 3 Conv(k = 2, p = 0, s = 2) + BN + ReLU 24 × 24 × 24 × 64 12 × 12 × 12 × 128

Conv block × 3* 12 × 12 × 12 × 128 –

(input+output) + ReLU* 12 × 12 × 12 × 128 –

Down block4 Conv(k = 2, p = 0, s = 2) + BN + ReLU 12 × 12 × 12 × 128 6 × 6 × 6 × 256

Conv block × 3* 6 × 6 × 6 × 256 –

(input+output) + ReLU* 6 × 6 × 6 × 256 –

Up block 1 Conv(k = 2, p = 0, s = 2) + BN + ReLU 6 × 6 × 6 × 256 12 × 12 × 12 × 128

Cat(output, skip)* 12 × 12 × 12 × 128 12 × 12 × 12 × 256

Conv block × 3* 12 × 12 × 12 × 256 –

(input+output) + ReLU* 12 × 12 × 12 × 256 –

Up block 2 Conv(k = 2, p = 0, s = 2) + BN + ReLU 12 × 12 × 12 × 256 24 × 24 × 24 × 64

Cat(output+skip)* 24 × 24 × 24 × 64 24 × 24 × 24 × 128

Conv Block × 3* 24 × 24 × 24 × 128 –

(input+output) + ReLU* 24 × 24 × 24 × 128 –

Up block 3 Conv(k = 2, p = 0, s = 2) + BN + ReLU 24 × 24 × 24 × 128 48 × 48 × 48 × 32

Cat(output+skip)* 48 × 48 × 48 × 32 48 × 48 × 48 × 64

Conv(k = 3, p = 1, s = 1) + BN + ReLU* 48 × 48 × 48 × 64 –

Conv(k = 3, p = 1, s = 1)+BN* 48 × 48 × 48 × 64 –

(input+output) + ReLU* 48 × 48 × 48 × 64 –

Up block 4 Conv(k = 2, p = 0, s = 2) + BN + ReLU 48 × 48 × 48 × 64 96 × 96 × 96 × 16

Cat(output+skip)* 96 × 96 × 96 × 16 96 × 96 × 96 × 32

Conv(k = 3, p = 1, s = 1) + BN* 96 × 96 × 96 × 32 –

(input+output) + ReLU* 96 × 96 × 96 × 32 –

Out block Conv(k = 1, p = 0, s = 1) + BN + ReLU 96 × 96 × 96 × 32 96 × 96 × 96 × 4

Softmax 96 × 96 × 96 × 4 96 × 96 × 96 × 1

Each Conv sub-block contains three convolution layers: Conv1 (k = 1, p = 0, s = 1), Conv2 (k = 3, p = 1, s = 1), and Conv3 (k = 1, p = 0, s = 1). k, kernel size; p, padding; s, stride.

The symbol “–” means the output dimensions are the same with input dimensions. The symbol “*” denotes that these layers in each block are residual units.

FIGURE 3 | The proposed framework of cascaded V-Nets for brain tumor segmentation.

increase the importance of correcting misclassified
samples, and pt denotes the probability of the
ground truth.

In order to reduce the memory consumption in the training
process, 3D patches with a size of 96 × 96 × 96 are used. And
the center of the patch is confined to the bounding box of the
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brain tumor. Therefore, every patch used in training process
contains both tumor and background. The training efficiency of
the network has been greatly improved.

Post-processing
The predicted tumor segmentations are post-processed using
connected component analysis. We consider that the isolated
segmentation labels with small size are prone to artifacts and
thus remove them. Our strategy is as follows. After the V-Net
1, the small clusters with voxel number <T = 1,000 are directly
discarded. For each cluster with size between 1,000 and 15,000,
its average probability of being a tumor is calculated. This cluster
will be retained if the probability is no <0.85 and removed
otherwise. The rest big clusters with voxel number over T =

15,000 are also retained. A binary whole tumor map is thus
obtained. After the V-Net 2, we also calculated the connected
component and removed the small clusters with voxel number
<1,000. While if all cluster sizes are <1,000, the largest cluster
will be retained.

Evaluation of Tumor Segmentation

Performance
The models trained by MICCAI BraTS 2018 training data are
applied to our local testing set, MICCAI BraTS 2018 validation
set, MICCAI BraTS 2018 testing set, and the additional clinical
testing sets. In order to evaluate the performance of our method,
Dice score, sensitivity, and specificity are calculated for whole
tumor, tumor core and enhancing tumor, respectively. Dice
score indicates the ratio of the area where the segmentation
image intersects with the ground truth image to the total areas.
Sensitivity indicates the ratio of the detected tumor voxels to
all tumor voxels. Specificity indicates the ratio of the detected
background voxels to all background voxels. The evaluation
results for MICCAI BraTS 2018 validation set and testing set are
provided by the organizer of the BraTS 2018 online challenge,
and Hausdorff95 is also included, which indicates the distances
of the two tumor voxels sets with a percentile value of 95%.

Dice =
2
∣

∣A
⋂

B
∣

∣

|A| + |B|
(2)

Sensitivity =
TP

TP+FN
(3)

Specificity =
TN

TN+FP
(4)

Hausdorff95 = max[max (95%)
a∈A

min
b∈B

‖a - b‖,

max(95%)
b∈B

min
a∈A

∥

∥b - a
∥

∥] (5)

where, A denotes the segmentation image, B denotes the ground
truth image, TP denotes the number of the true positive voxels,
FN denotes the number of the false negative voxels, TN denotes
the number of the true negative voxels, and FP denotes the
number of the false positive voxels.

For the additional testing sets of local hospitals, only Dice
scores are evaluated. Given that the images from two data sets

TABLE 2 | Selected features in the training data for the prediction of patient

overall survival.

Features Number of

features

Age 1

Volume of whole brain 1

Volume of whole tumor 1

Volumes of three tumor substructures 3

Ratio of the whole tumor in whole brain 1

Ratios of three tumor substructures in whole tumor 3

Extent of lesion in x, y, z directions 3

Center coordinates of the whole tumor 3

Means and variances of three tumor substructures in four

MR modalities

24

First order statistics features of three tumor substructures 411

Shape-based features of three tumor substructures 78

Gray level cooccurence matrix features of three tumor

substructures

180

Gray level run length matrix features of three tumor

substructures

96

Neigbouring gray tone difference matrix features of three

tumor substructures

96

Gray level dependence matrix features of three tumor

substructures

84

have different resolution, we calculate the average Dice scores
for whole tumor, tumor core and enhancing tumor in two data
sets, respectively.

Prediction of Patient Overall Survival
Overall survival (OS) is a direct measure of clinical benefit to a
patient. Generally, brain tumor patients could be classified into
long-survivors (e.g., >15 months), mid-survivors (e.g., between
10 and 15 months), and short-survivors (e.g., <10 months).
For the multimodal MRI data, we propose to use our tumor
segmentation masks and generate imaging markers through
Radiomics method to predict the patient OS groups.

From the training data, we extract 40 hand-crafted features
and 945 radiomics features (Isensee et al., 2018) in total. The
detailed extracted features are shown in Table 2. All features are
normalized into range of 0–1. Pearson correlation coefficient is
used for feature selection. All features are ranked by Pearson
correlation coefficient from large to small, and the top 10%
features are used as the inputs of the following classifiers.
We use support vector machine (SVM), multilayer perceptrons
(MLP), XGBoost, decision tree classifier, linear discriminant
analysis (LDA), and random forest (RF) as our classifiers in an
ensemble strategy. F1-score is used as the evaluation standard.
The final result is determined by the vote on all classification
results. In order to reduce the bias, a 10-fold cross-validation
is used. For the validation and testing data, these selected
features are extracted and the prediction is made using the
above models.
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FIGURE 4 | The comparison of segmentation results and ground truth on representative cases from local testing set and two clinical testing sets. (A) The

segmentation results and ground truth from local testing set. (B) The segmentation results and ground truth from clinical testing set of China-Japan Union Hospital of

Jilin University. (C) The segmentation results and ground truth from clinical testing set of Affiliated Drum Tower Hospital of Nanjing University Medical School.
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TABLE 3 | Dice, sensitivity, and specificity measurements of the proposed

method on local testing set.

Whole tumor Tumor core Enhancing tumor

Dice mean ± SD 0.8505 ± 0.0972 0.7842 ± 0.1919 0.7426 ± 0.2080

Sensitivity mean ± SD 0.9180 ± 0.1091 0.7596 ± 0.2199 0.7174 ± 0.2337

Specificity mean ± SD 0.9981 ± 0.0012 0.9996 ± 0.0008 0.9997 ± 0.0003

TABLE 4 | Dice, sensitivity, specificity, and Hausdorff95 measurements of the

proposed method on BraTS 2018 validation set.

Whole tumor Tumor core Enhancing tumor

Dice mean ± SD 0.9048 ± 0.0648 0.8364 ± 0.1609 0.7768 ± 0.2355

Sensitivity mean ± SD 0.9146 ± 0.0949 0.8453 ± 0.1781 0.8166 ± 0.2382

Specificity mean ± SD 0.9945 ± 0.0041 0.9971 ± 0.0041 0.9977 ± 0.0032

Hausdorff95 mean ±

SD (mm)

5.1759 ± 7.3622 6.2780 ± 7.7681 3.5123 ± 4.5407

RESULTS

Segmentation Results on Local Testing Set

of 57 Subjects
We use 20 percent of all data as our local testing set, which
includes 42 HGG patients and 15 LGG patients. Representative
segmentation results are shown in Figure 4A. The green shows
the edema, the red shows the tumor necrosis, and the yellow
shows the enhancing tumor. In order to evaluate the preliminary
experimental results, we calculate the average Dice scores,
sensitivity, and specificity for whole tumor, tumor core, and
enhancing tumor, respectively. The results are shown in Table 3.
The segmentation of whole tumor achieves best result with
average Dice score of 0.8505.

Segmentation Results on MICCAI BraTS

2018 Validation Set of 66 Subjects
The segmentation results on BraTS 2018 online validation set
achieve average Dice scores of 0.9048, 0.8364, and 0.7768 for
whole tumor, tumor core, and enhancing tumor, respectively.
That performance is slightly better than that in local testing
set, while the whole tumor still has best result and enhancing
tumor is the most challenging one. The details are shown in
Table 4. For the ablation experiments, the distribution of Dice
scores for whole tumor, tumor core and enhancing tumor are
shown in Figures 5A–C, respectively. Generally, the average
Dice scores for whole tumor, tumor core and enhancing tumor
increase when ensembling more models to our cascaded V-
Nets architecture. The difference of Dice scores for whole tumor
between the baseline V-Nets architecture and our proposed
architecture reaches significance as p = 0.011. Other model
combination methods show the same trend although not get
through Bonferroni correction.

Segmentation Results on MICCAI BraTS

2018 Testing Set of 191 Subjects
The segmentation results on BraTS 2018 online testing set
achieve average Dice scores of 0.8761, 0.7953, and 0.7364 for

whole tumor, tumor core and enhancing tumor, respectively.
Compared with the Dice scores on MICCAI BraTS 2018
validation set, the numbers are slightly dropped. The details are
shown in Table 5. The prediction of patient OS on BraTS 2018
testing set achieve accuracy of 0.519 and mean square error
(MSE) of 367240. The details are shown in Table 6. The BraTS
2018 ranking of all participating teams in the testing data for both
tasks has been summarized in Bakas et al. (2018), where our team
listed as “LADYHR” and ranked 18 out of 61 in the segmentation
task and 7 out of 26 in the prediction task.

Segmentation Results on Clinical Testing

Sets of 56 Subjects
Representative segmentation results on two local hospital testing
sets are shown in Figures 4B,C. The average Dice scores for
whole tumor, tumor core and enhancing tumor in two data sets
are calculated, respectively. The details are shown in Table 7.
Overall, the images from China-Japan Union Hospital of Jilin
University which are acquired using 2D MRI sequences achieve
better segmentation results with Dice scores of 0.8635, 0.8036,
and 0.7217 for whole tumor, tumor core, and enhancing tumor,
respectively. On the other hand, the images from Affiliated Drum
Tower Hospital of Nanjing University Medical School which are
acquired using 3D MRI sequences achieve poor Dice score of
0.6786 for tumor core.

DISCUSSION

In this paper, we propose a cascaded V-Nets framework to
segment brain tumor. The cascaded framework breaks down a
difficult segmentation task into two easier subtasks including
segmenting whole tumor from background and segmenting
tumor substructures from whole tumor. Different from other
methods, our method takes full account of the effect of
preprocessing on the segmentation results, and use a customized
preprocessing approach to process the data and train multiple
models. The cascaded V-Nets are trained only using provided
data, data augmentation and a focal loss formulation. We achieve
state-of-the-art results on BraTS 2018 validation set. Specifically,
the experimental results on BraTS 2018 online validation set
achieve average Dice scores of 0.9048, 0.8364, and 0.7768 for
whole tumor, tumor core and enhancing tumor, respectively. The
corresponding values for BraTS 2018 online testing set are 0.8761,
0.7953, and 0.7364, respectively.

Generally, all the three average Dice scores degenerate in
testing set compared with validation set. The reason may be that
the sample size of testing set is much larger than that of validation
set, and includes more anatomical variances. For clinical testing
sets, we achieve 2% higher average Dice scores in images acquired
using 2D MRI sequences than images acquired using 3D MRI
sequences. The reason may be that the public dataset provided
by the organizers of MICCAI BraTS 2018 includes more images
acquired using 2DMRI sequences than images acquired using 3D
MRI sequences. The trained model thus favors more 2D testing
data than that of 3D. However, given that 2D MRI sequences
are widely adopted in clinical practice for shorter acquisition
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FIGURE 5 | The distribution of Dice scores for whole tumor, tumor core and enhancing tumor in ablation experiments. (A) The bar plot of Dice scores for whole tumor.

The difference between the baseline V-Nets architecture and our proposed architecture reaches significance as p = 0.011. (B) The bar plot of Dice scores for tumor

core. (C) The bar plot of Dice scores for enhancing tumor (The height of the bar indicates the mean Dice scores, and the error bars indicate the standard deviation).

TABLE 5 | Dice and Hausdorff95 measurements of the proposed method on

BraTS 2018 testing set.

Whole tumor Tumor core Enhancing tumor

Dice mean ± SD 0.8761 ± 0.1247 0.7953 ± 0.2543 0.7364 ± 0.2592

Hausdorff95 mean ±

SD (mm)

7.0514 ±

11.5935

6.7262 ±

11.8852

3.9217 ± 6.1934

TABLE 6 | The prediction of patient overall survival on BraTS 2018 testing set.

Scores

Accuracy 0.519

Mean squared error (MSE) 367239.974

Median square error (MedianSE) 38416

Standard deviation square error 945593.877

SpearmanR 0.168

time, the generatedmodelmay bemore practical andmeaningful.
Therefore, for sites using major 3D images, the training set could
include more 3D data and a specific 3D model could be trained.

There are several benefits of using a cascaded framework.
First, the cascaded framework breaks down a difficult
segmentation task into two easier subtasks. Therefore, a
simple network V-Net can have excellent performance. In fact,
in our experiment, V-Net does have better performance when
segment the tumor substructures step by step than segment
background and all the three tumor substructures together.
Second, the segmentation results of V-Net 1 helps to reduce the

TABLE 7 | Dice measurements of the proposed method on clinical testing set.

China-Japan Union

Hospital

Nanjing Drum Tower

Hospital

# of subjects 28 28

Image resolution (mm3 ) 0.6 × 0.6 × 6 0.67 × 0.67 × 0.67

WT Dice mean ± SD 0.8635 ± 0.0838 0.8692 ± 0.1307

TC Dice mean ± SD 0.8036 ± 0.1476 0.6786 ± 0.3093

ET Dice mean ± SD 0.7217 ± 0.1968 0.7054 ± 0.3557

receptive field from whole brain to only whole tumor. Thus,
some false positive results can be avoided.

In addition to cascaded framework, ensemble strategy
contributes to the segmentation performance. In our cascaded
V-Nets framework, V-Net 1 includes models 1–3 and V-Net
2 includes models 4–5. Every model uses the same network
structure V-Net. However, the training data is preprocessed with
different pipelines mentioned in part of 2.1. According to our
experimental experience, the Dice scores will greatly decrease
due to the false positive results. While we did try several ways
to change the preprocessing procedures for the training data, or
change the model used in the segmentation task, the false positive
results always appear. Interestingly, the false positive results
appear in different areas in terms of different models. Therefore,
ensemble strategy works by averaging probability maps obtained
from different models. The results of the ablation experiments
also confirm the proposed ensemble strategy works.

Moreover, we find three interesting points in the experiment.
Firstly, for multimodal MR images, the combination of data
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preprocessing procedures is important. In other words, different
MRI modalities should be preprocessed independently. For
example, in our first preprocessing pipeline, bias field correction
only applied to T1 and T1Gd images. The reason is that the
histogram matching approach may remove the high intensity
information of tumor structure that has negative impact to the
segmentation task. Secondly, we use three kinds of preprocessing
methods to process the training and validation data, and
compared their segmentation results. As a result, there is
almost no difference between preprocessing methods in the
three average Dice scores for whole tumor, tumor core and
enhancing tumor, respectively. However, after the ensemble of
the multiple models, the three average Dice scores all rose at
least 2 percent. This suggests that data preprocessing methods is
not the most important factor for the segmentation performance,
while different data preprocessing methods are complementary
and their combination can boost segmentation performance.
Thirdly, the post-processing method is also important that it
could affect the average Dices scores largely. If the threshold
is too big, some of small clusters will be discarded improperly.
If the threshold is too small, some false positive results will be
retained. In order to have a better performance, we test a range
of thresholds and choose the most suitable two thresholds as the
upper and the lower bounds. For the components between upper
and lower bounds, their average segmentation probabilities are
calculated as a second criterion. Of course, these thresholds may
not be suitable for all cases.

CONCLUSIONS

In conclusion, we propose a cascaded V-Nets framework to
segment brain tumor into three substructures of brain tumor
and background. The experimental results on BraTS 2018 online
validation set achieve average Dice scores of 0.9048, 0.8364,
and 0.7768 for whole tumor, tumor core and enhancing tumor,
respectively. The corresponding values for BraTS 2018 online
testing set are 0.8761, 0.7953, and 0.7364, respectively. The

corresponding values for clinical testing set are 0.8635, 0.8036,
and 0.7217, respectively. For clinical data set, images acquired
using 2D MRI sequences achieve higher average Dice scores
than images acquired using 3D MRI sequences, demonstrates
that the proposed method is practical and meaningful in clinical
practice. The state-of-the-art results demonstrate that V-Net is a
promising network for medical imaging segmentation tasks, and
the cascaded framework and ensemble strategy are efficient for
boosting the segmentation performance.
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Purpose: Gliomas are the most common primary brain malignancies, with varying

degrees of aggressiveness and prognosis. Understanding of tumor biology and

intra-tumor heterogeneity is necessary for planning personalized therapy and predicting

response to therapy. Accurate tumoral and intra-tumoral segmentation on MRI is the

first step toward understanding the tumor biology through computational methods.

The purpose of this study was to design a segmentation algorithm and evaluate its

performance on pre-treatment brain MRIs obtained from patients with gliomas.

Materials andMethods: In this study, we have designed a novel 3D U-Net architecture

that segments various radiologically identifiable sub-regions like edema, enhancing

tumor, and necrosis. Weighted patch extraction scheme from the tumor border regions is

proposed to address the problem of class imbalance between tumor and non-tumorous

patches. The architecture consists of a contracting path to capture context and the

symmetric expanding path that enables precise localization. The Deep Convolutional

Neural Network (DCNN) based architecture is trained on 285 patients, validated on 66

patients and tested on 191 patients with Glioma from Brain Tumor Segmentation (BraTS)

2018 challenge dataset. Three dimensional patches are extracted from multi-channel

BraTS training dataset to train 3D U-Net architecture. The efficacy of the proposed

approach is also tested on an independent dataset of 40 patients with High Grade

Glioma from our tertiary cancer center. Segmentation results are assessed in terms

of Dice Score, Sensitivity, Specificity, and Hausdorff 95 distance (ITCN intra-tumoral

classification network).

Result: Our proposed architecture achieved Dice scores of 0.88, 0.83, and 0.75

for the whole tumor, tumor core and enhancing tumor, respectively, on BraTS

validation dataset and 0.85, 0.77, 0.67 on test dataset. The results were similar on

the independent patients’ dataset from our hospital, achieving Dice scores of 0.92,

0.90, and 0.81 for the whole tumor, tumor core and enhancing tumor, respectively.
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Conclusion: The results of this study show the potential of patch-based 3D U-Net

for the accurate intra-tumor segmentation. From experiments, it is observed that the

weighted patch-based segmentation approach gives comparable performance with the

pixel-based approach when there is a thin boundary between tumor subparts.

Keywords: glioma, intra-tumor segmentation, convolutional neural network, deep learning, 3D U-Net

INTRODUCTION

According to the Central Brain Tumor Registry of the
United States (CBTRUS), 86,970 new cases of primary malignant
and non-malignant brain tumors are expected to be diagnosed in
the United States in 20191. An estimated 16,830 deaths attributed
to primary malignant brain tumors in the US in 2018. Gliomas
are themost frequent primary brain tumors in adults and account
for 70% of adult malignant primary brain tumors. Glioma arises
from glial cells and infiltrates the surrounding tissues such as
white matter fiber tracts with very rapid growth (Menze et al.,
2015). Patients diagnosed with Glioblastoma tumors have an
average survival time of 14 months (Louis et al., 2007).

Accurate segmentation of brain tumor tissues from Brain MR
images is of profound importance in many clinical applications
such as surgical planning and image-guided interventions
(Mahajan et al., 2015). Manual tracing and detection of organs
and tumor structure from medical images is considered as one
of the preliminary steps in disease diagnosis, treatment planning,
andmonitoring tumor growth with follow-up evaluation (Udupa
and Saha, 2003). In a clinical setup, this time-consuming process
is carried out by radiologists, however, this approach becomes
impractical when the number of patients increases. This presents
an unmet need for automated segmentation methods (He et al.,
2019; Vaidya et al., 2019).

In order to diagnose abnormality in brain tissues, various
radio imaging techniques like Magnetic Resonance Imaging
(MRI), Computed Tomography (CT), and Positron Emission
Tomography (PET) are used. Over the last few decades, because
of the better soft-tissue contrast, MRI is widely used to assess
the brain tissues in clinical practices. Unlike X-rays or CT
scans the intensity signature is variable in MRI due to various
acquisition protocols. The same tumor cells follow different
intensity distribution when acquired with different scanners with
varying field strength, voxel resolution, and field of view. More
accurate compositemarking of the tumor regions can be achieved
with four distinct MR sequences like T1, T2, T1 post-contrast
(T1ce), and Fluid Attenuated Inversion Recovery (FLAIR). Intra-
tumor parts for these four MR sequences with varying intensity
can be visualized in Figure 1.

Different heterogeneous intra-tumor regions like edema,
active tumor, and necrotic regions are present in Glial brain
tumors. Intra-tumor segmentation in the brain has been
challenging task because of its several characteristics such as non-
rigid and complex appearance, variation in size, and position
of tumor from patient to patient. Poor delineation of the

1Available: http://www.cbtrus.org/www.cbtrus.org/factsheet/factsheet.html

intra-tumor parts in multi-modal MRI data as well as similar
textural properties of the pathology with healthy tissues make
the segmentation task more prone to error. It has been observed
that even expert raters show significant variations in case of poor
intensity gradients between tumor and rest of the healthy brain
tissues. Though several algorithms have been proposed over the
decades to address this task, most have shortcomings limiting
their utility in routine clinical practice.

The aim of this study is to design a fully automated brain
tumor segmentation algorithm which will accurately segment
the tumors and act as an assistive tool for radiologists for
exact tumor quantification. We have proposed a fully automatic
brain tumor segmentation with 3D U-Net architecture based
on Deep Convolutional Neural Networks. An efficient weighted
patch extraction method along with a unique number of feature
maps at each level of 3D U-Net is proposed for accurate intra-
tumor segmentation.

We briefly review conventional and recent methods for
brain tumor segmentation algorithms available in the literature.
Further, BraTS challenge database along with local dataset from
our hospital and proposed methodology for tumor segmentation
is described. This is followed by experimental results, quantitative
as well as a qualitative evaluation of the results and comparison
with other methods. Finally, we conclude the manuscript with
future directions.

LITERATURE REVIEW

As mentioned by Menze et al. there is a linear increase in the
tumor imaging literature over the past 30 years and over 25%
of the publications aimed at “automated” tumor segmentation.
Segmentation of the glial tumors is the primary focus in most
of the existing methods and very few methods targeted for
specific glioma subtype or meningioma (Bauer et al., 2013).
The brain tumor segmentation methods are broadly classified
into two categories based on generative probabilistic based
models and discriminative approaches. Generative probabilistic
based approaches detect abnormal regions by comparing it with
explicit models of anatomy and outlier detection. On the other
hand, discriminative models learn from feature-based differences
between normal tissues and tumor tissues.

Generative models aim at finding the outliers between a-
priori model of a healthy brain (atlas) and the abnormal regions.
This uses the prior information of tumor appearance and spatial
distribution of the brain tissues and these methods exhibit
good generalization to an unseen database (Prastawa et al.,
2004). Cordier et al. (2016) proposed a fully automatic patch-
based approach for Glioma segmentation with the multi-atlas
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voting technique with less prior learning to avoid overfitting.
The major drawback of these approaches is that it relies
heavily on domain-specific prior knowledge and accurate multi-
modal image registration. Because of the presence of large
abnormalities and resection cavities in the brain, the multimodal
registrationmiserably fails which lead to inaccurate segmentation
in generative models.

Discriminative models directly learn from hand-designed
features calculated on lesions and other brain tissues. This is
carried out on large datasets to avoid the effect of imaging
artifacts, intensity, and shape variations. In these approaches,
various dense, and voxelwise features are extracted from MR
images and fed into the classification algorithms like decision
trees and support vectormachines (Criminisi and Shotton, 2013).
Demirhan et al. (2015) employed amethod based on wavelets and
Self-OrganizingMaps (SOM) to segment intra-tumor parts along
with healthy brain tissues. The drawback of these approaches is
that, since the segmentation highly relies on the intensity, texture
features etc. of the training data, segmentation is specific to the
MRI images acquired with the same imaging protocol as of the
training dataset.

Balafar et al. reviewed brain tumor segmentation methods
and further classified them into four categories as Threshold-
based, Region-based, Pixel classification based, and Model-based
techniques with pros and cons over each other (Balafar et al.,
2010). Many approaches to brain tumor segmentation have been
implemented over decades but there is no winning theory.

Recent methods based on Deep Convolutional Neural

Networks have outperformed all traditional machine learning

methods in various domains like medical image segmentation,

image classification, object detection, and tracking etc. (Smistad
et al., 2015) and are currently considered to be art in biomedical

image segmentation (Moeskops et al., 2016; Pereira et al., 2016;
Havaei et al., 2017). The computational power of GPUs has
enabled researchers to design deep neural network models
with convolutional layers which are computationally expensive
(Eklund et al., 2013; Eminaga et al., 2018; Lee et al., 2018;
Leyh-Bannurah et al., 2018).

Pereira et al. (2016) proposed an automatic segmentation

method using Convolutional Neural Networks by exploring
smal 3 × 3 kernels. 2D patches were extracted from four MR

channels of size 33×33 for training the network. Ronneberger

et al. (2015) segmented the neuronal structures in electron
microscopic stacks with 2D U-Net architecture trained on

transmitted light microscopy images with augmentation of the
training data by geometrical image transformations. Kamnitsas
et al. (2017) proposed dual pathway architecture with dense
training scheme to incorporate both local and larger contextual
information. The architecture processed the input images
at multiple scales simultaneously. False positives in the
segmentation maps were minimized using Conditional Random
Forests (CRF).

Inspired from the above literature, we developed
a novel Deep Convolutional Neural Network-based
3D U-Net model with a unique number of feature
maps. Various heterogeneous histologic sub-regions
like peritumoral edema, enhancing tumor, and necrosis
were accurately segmented in spite of thin and/or
fuzzy boundaries between intra-tumor parts with this
proposed architecture.

PATIENTS AND METHOD

We focused our experimental analysis on MICCAI (Medical
Image Computing and Computer-Assisted Intervention) Brain
Tumor Segmentation (BraTS) 2018 challenge (Bakas et al.,
2019). BraTS dataset consisted of multi-institutional routine
clinically acquired pre-operative multimodal MRI scans of High
Grade Glioma i.e., Glioblastoma (GBM/HGG) and Lower Grade
Glioma (LGG), with a pathologically confirmed diagnosis. In the
challenge, MR data of 285 patients for training, 66 for validation
and 191 patients were provided in the test dataset. The MR
data was acquired with different imaging clinical protocols and
various MR scanners with 19 distinct institutions (Bakas et al.,
2017a,b). Each patient data was provided with FLAIR, T1, T2,
T1 post-contrast MR volume of size 240×240×155 which were
resampled to 1mm × 1mm × 1mm resolution. Segmentation
labels as edema, enhancing tumor, and necrosis were annotated
for all patients by one to four radiologists as shown in Figure 1.
These segmented labels were also verified by expert neuro-
radiologists. The main task of BraTS 2018 challenge was to
auto-segment the tumor into its three constituent regions viz.

1. Enhancing tumor region (ET)
2. Tumor Core (TC) which entails the ET, necrotic (fluid-filled)

and the non-enhancing (solid) parts
3. Whole tumor (WT) which includes all intra-tumor parts along

with Edema.

FIGURE 1 | Multi-modal data with four channels provided in BraTS 2018 challenge dataset along with Ground Truth (GT). Sub tumor parts are represented

as—Edema: Green, Enhancing tumor: Blue, Necrosis: Red.
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Apart from BraTS 2018 dataset, the proposed method was
also tested on 40 pre-treatment multimodal MRI patient
datasets of Glioblastoma (GBM) from our hospital. MR data
of four channels as FLAIR, T1, T2, and T1 post contrast was
collected for the study. The acquisition protocol is provided in
Supplementary Material. The local dataset was explicitly used
for the purpose of testing only. This dataset was also skull-
stripped and resampled to 1mm × 1mm × 1mm resolution.
This dataset was annotated by the expert radiologists from our
hospital with the same protocol which was defined to annotate
BraTS challenge dataset (Menze et al., 2015).

Pre-processing
The input data for the segmentation algorithm were skull
stripped, normalized, and co-registered to an anatomical
template (Smith, 2002). In order to normalize the signal
intensities between the BraTS and our hospital datasets, bias
field correction was performed with N4ITK tool (Tustison et al.,
2010). Further, MR data of each channel was normalized by
subtracting the channel mean and dividing by the variance i.e.,
zero mean and unit variance.

Patch Extraction
Tumor sub-region distribution in BraTS training data was highly
imbalanced. Further, 98% pixels of the dataset belonged to either
healthy brain tissues or background and hence the model was
prone to overfit on non-tumor tissues only. The problem was
exaggerated when the prediction was made based on center
pixel class of the patch. Hence, precise patch selection from the
input data for training is of extreme importance. To overcome
this problem, we adopted a novel 3D patch-based approach for
training with weighted sampling. Zhou et al. (2019) reviewed 2D
and 3D patch extraction methods along with several types of loss

FIGURE 2 | Patch center localization by randomly selecting x, y, z coordinates

in brain volume.

functions. The main approaches included resampling the data
space as: under-sampling the negative class or up-sampling the
negative class and SMOTE (Synthetic Minority Over-sampling
Technique) generating synthetic samples. Themethods discussed
includes patch extraction 50% probability being cantered either
on the lesion or healthy voxel. Also, all training patches centered
on a lesion voxel. AlBadawy et al. (2018) discussed impact of
cross institutional training and testing for segmentation of brain
tumors. In this study patches of 33∗33were extracted on T1, T1ce,
and FLAIR modality. Our proposed approach differs with this
approach in terms of dimension of patch size as 64∗64∗64. It is
well-known fact that T2 modality is widely used to distinguish
tumor core boundary with rest of the tumor and hence we
included T2 channel as well along with the other three MR
channels to incorporate more information during training.

In our proposed approach, 3D patches were extracted from
all the four modalities so that the network can be trained on
a distinct intensity signature of intra-tumor tissues in each
modality. For this, we considered the equidistant seed points in
X, Y, and Z directions of the MR data as shown in Figure 2. A
3D patch of size 64 × 64 × 64 voxels was considered around
each seed point. In the next step, potential patches which had
brain area more than 60% of the total patch were only considered
for the training to minimize the chances of overfitting of the
model to the background pixels. It was observed that the model
was misclassifying the pixels on tumor boundary to healthy
brain tissues. A similar problem occurred when tumors were
present on the boundary of the brain, with pixels being classified
to background. To address this, some patches were explicitly
extracted on the boundary of the tumor with weighted sampling
as shown in Figure 3. The boundary locations of the WT is
considered as the tumor boundary to extract the additional
patches. This is done with find_boundaries() function available in
segmentation module in popular skimage library. Randomly 30%
boundary locations are selected for these extra patch extractions.
Since, there is high class imbalance in tumor tissues and healthy
tissues, this additional patch extraction does not impact on the
performance of model like biased training or overfitting. These
additional patches were added to the training patch dataset so
that model could be trained in a better way to distinguish thin

FIGURE 3 | Uniform sampling and weighted sampling for patch extraction.
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boundaries of the tumor with the rest of the brain or background.
This weighted patch extraction pipeline is fully automatic i.e.,
without any manual intervention. These 3D patches from all the
four channels were concatenated together and given as input to
the first layer of the model along with corresponding ground
truth during training. During testing as well the non-overlapping
patches of size 64 × 64 × 64 were extracted and final output
volume is generated by concatenating all these predicted patches
to get single 240× 240× 155 volume.

Proposed 3D U-Net Architecture
Conventional U-Net architecture consists of a bunch of
basic layers such as convolutional layers, down-sampling and
upsampling layers etc. Several variants of the 2D and 3D U-Net
architectures are available in the recent literature which mainly
differ in respect to the choice of hyperparameters viz. depth of
U-Net, number of feature maps, kernel size etc. Selection of these
hyperparameters along with accurate region input is of utmost
importance for accurate training of the model. The novelty of our
proposed approach lies in the weighted patch extraction scheme
from the edges of the tumor and designing the structure of 3D
U-net with less number of levels and an increased number of
filters at each level. Although several deeper U-Net architectures
are proposed for segmentation task, we restricted our network
to three levels. This reduced the number of trainable parameters
but also avoided the bottleneck problem caused due to smaller
patch size.

In proposed 3D U-Net architecture, from the first level to
third level 48, 96, and 192 feature maps were present at each
subsequent level in down-sampling and up-sampling layers as
shown in Figure 4. The proposed architecture consisted of a
contracting path to capture context and a symmetric expanding
path that enables precise localization. At the first layer four 64
× 64 × 64 multichannel MR volume data was given as input for
training along with the corresponding ground truth. The number
of features maps increased in the subsequent layers to learn the
deep tumor features. These were followed by ReLU activation

function and the features were down-sampled in encoding layer.
Similarly, in decoding layer after convolution layers and ReLU
activation function, features maps were up-sampled by a factor
of 2. Features maps from encoding layers were concatenated
to the corresponding decoding layer in the architecture. In
contrast to conventional U-Net, all the feature maps were zero-
padded to keep the same output dimensions for all convolutional
layers. Finally, four output maps were generated with 1 × 1
convolutional layer corresponding to non-tumor tissue, edema,
necrosis, and enhancing tumor. Each voxel of these four output
maps corresponds to the probability of each voxel belonging
to the particular class. The final prediction was generated by
selecting the label with maximum probability from these four
label maps. At the output layer, the segmentation map predicted
by the model was compared with the corresponding ground
truth and the error was backpropagated in the intermediate 3D
U-Net layers.

In our implementation, the learning rate (α) was initialized
to 0.001 and remained unchanged till 60 epochs. Since, after
60 epochs the Dice loss stopped improving, we decreased it
linearly by a factor of 10−1 which avoided convergence of the
model to local minima. The model is trained for 100 epochs
since beyond that there was no significant improvement in the
Dice loss and hence the training was terminated. Dropout with
ratio 0.25 was added during training to avoid overfitting. The
architecture was trained with a batch size of 8. Further, for
better optimization a momentum strategy was included in the
implementation. This used a temporally averaged gradient to
damp the optimization velocity.

Post-processing
False positives in the segmentation output within the brain
region were minimized with 3D Connected Component Analysis
with the largest connected component being retained in each
predicted volume. Similarly, false positives from the background
were eliminated using a binary brain mask generated from brain
volume and overlaid on the segmentation output with a logical

FIGURE 4 | Proposed 3D U-Net Architecture. Voxels from all four MR channels were given input to the first layer of the model. The predicted labels were compared

with the Ground truth to calculate Dice loss.
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AND operation. This improved the accuracy of the segmentation
significantly for tumors present on the boundaries of the brain.
There are some limitations of 3D connected component analysis
as post-processing method where bifocal tumors are present that
too in distinct brain lobes.

Implementation Details
The proposed architecture was implemented using Tensorflow
library which supported the use of GPUs (Agarwal et al., 2015).
GPU implementation greatly accelerated the implementation of

deep learning algorithms. The approximate time to train the
model was 48 h on 16 GB NVIDIA P100 GPU using cuDNN v5.0
and CUDA 8.0 with 128 GB RAM. The prediction on validation
data took <60 s for a single patient with four MR channels data,
each of dimension 240× 240× 155.

RESULTS AND DISCUSSION

The quantitative evaluation of the proposed model was done
on BraTS 2018 challenge dataset and also on an independent

FIGURE 5 | Segmentation results on BraTS 2018 challenge dataset on High Grade Glioma (HGG) and Low Grade Glioma (LGG). In each row from left to right—FLAIR,

T1, T2, T1ce, Ground Truth (GT), and predicted output. Segmented Edema, Enhancing Tumor and Necrosis shown with Yellow, Blue, and Red colors, respectively.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 February 2020 | Volume 14 | Article 10208

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Baid et al. Automatic Intra-Tumor Segmentation for Gliomas

dataset of GBMs from our hospital. The BraTS dataset comprised
of three data sub-sets, viz. training, validation, and test dataset.
No ground truths were provided for validation and test dataset.
The representative results on BraTS challenge dataset are shown
in Figure 5 with High Grade Glioma (HGG) and Low Grade
Glioma (LGG). Edema, Enhancing Tumor, and Tumor Core
segmented by our approach are shown with Yellow, Blue, and
Red colors, respectively.

Quantitative Performance Evaluation
Performance evaluation was done based on Dice Score,
Sensitivity, Specificity, and Hausdorff 95 distance. These
evaluation matrices are measures of voxel-wise overlap of the
segmented regions (CBICA Image Processing Portal2; Taha and
Hanbury, 2015). The Dice score normalizes the number of true
positives to the average size of the two segmented areas. It is
identical to the F score (the harmonic mean of the precision-
recall curve) and can be transformed monotonously to the
Jaccard score. For the tumor regions Dice Score, Sensitivity (True
positive rate), and Specificity (True negative rate) were computed
as shown in Equations (1)–(3).

Dice (P,T) =
2 ∗ |P1 ∩ T1|

(|P1| + |T1|)
(1)

Sensitivity (P,T) =
|P1 ∩ T1|

(|T1|)
(2)

Specificity (P,T) =
|P0 ∩ T0|

(|T0|)
(3)

Where, P represents the model prediction and T represents
the Ground Truth labels. T1 and T0 are the subset of voxels
predicted as positive and negatives for tumor region and similar
for P0 and P1 as shown in Figure 6. The Hausdorff 95 distance
is the 95th quartile of the maximum overall surface distance
between predicted surface and ground truth surface. Hausdorff
95 overcomes the problem of high sensitivity of the Hausdorff
measure to small outlying sub-regions from both P1 and T1 (Taha
andHanbury, 2015). Specificity was also calculated andwas noted
to be>99% in all the cases. Mean, median, standard deviation, 25
quartile, and 75 quartile were also computed for all the patients in
the dataset. The BraTS challenge organizers had provided online
evaluation system for all the training, validation, and test cases
from the BraTS dataset (CBICA Image Processing Portal). The
evaluation metrics were calculated by us for the in-house cases
(Table 1 and Figure 7).

In BraTS 2018 training dataset, the mean Dice score for ET,
WT, and TC was 0.80, 0.93, and 0.91, respectively. The model
predicted ET, WT, and TC with Dice score of 0.75, 0.88, and 0.83
for validation dataset. Comparison of our approach with other
methods participated in the BraTS challenge is given in Table 2.

2CBICA Image Processing Portal. Available: https://ipp.cbica.upenn.edu/

FIGURE 6 | Red contour: ground truth, green contour: predicted

segmentation. Notation T is to denote ground truth and P to the predicted

segmentation output.

From Table 2, it can be observed that our approach achieved
better segmentation accuracy in terms of Dice Score over other
methods available in the literature. We tested the proposed
architecture on 40 patients from our hospital and achieved Dice
Score 0.81, 0.92, and 0.90 for ET, WT, and TC, respectively.

The proposed approach outperformed over other U-net based
deep learning approaches available in the literature as shown in
Table 2 for training and validation dataset. Since the performance
of other methods on test dataset are not available publically
and hence not included in the comparison. As different tumor
parts appear with distinct intensities in FLAIR, T1, T2, and
T1ce modalities, we extracted 3D patches from all the four
modalities which resulted in better training for intra-tumor
segmentation. Also, we resolved the problems resulting due
to focusing on the center pixels of a patch as has been the
norm in previous approaches (Pereira et al., 2016) which results
in high misclassification due to severe class imbalance in the
patches. We instead have merged the four segmentation label
maps corresponding to enhancing tumor, necrosis, edema, and
background predicted at the output layer, to generate a single
segmentation map.

High class imbalance is also intrinsic tomost imaging datasets.
Around 98.88% pixels belonged to background/healthy class
while an average of 0.64, 0.20, and 0.23% pixels belonged to
Edema, enhancing tumor and necrosis, respectively. Training of
the model with this class imbalance would result in overfitting to

Frontiers in Computational Neuroscience | www.frontiersin.org 7 February 2020 | Volume 14 | Article 10209

https://ipp.cbica.upenn.edu/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Baid et al. Automatic Intra-Tumor Segmentation for Gliomas

TABLE 1 | Experimental results on BraTS 18 challenge training, testing, and validation dataset.

Datasets Evaluation parameters Dice Hausdorff 95

ET WT TC ET WT TC

BraTS18 Training (285 patients) Mean 0.8202 0.9324 0.9198 7.0750 11.0278 11.0985

SD 0.2746 0.1057 0.1327 21.2342 27.9139 29.4150

Median 0.9062 0.9614 0.9565 1.0000 1.4142 1.0000

25 Quartile 0.8422 0.9406 0.9303 1.0000 1.0000 1.0000

75 Quartile 0.9422 0.9728 0.9687 1.4142 1.7320 2.0000

BraTS18 Validation (66 patients) Mean 0.7480 0.8780 0.8267 7.2951 16.8157 11.2021

SD 0.2659 0.1346 0.1828 15.7042 30.2509 20.2365

Median 0.8527 0.9180 0.8985 2.2360 3.3131 4.3589

25 Quartile 0.7325 0.8665 0.7771 1.4142 2.0000 2.0000

75 Quartile 0.8853 0.9420 0.9444 3.9354 8.4183 9.4868

BraTS18 Testing (191 patients) Mean 0.6677 0.8475 0.7688 9.0554 17.2184 14.5728

SD 0.3120 0.1699 0.2786 19.8975 28.9190 26.1504

Median 0.8013 0.9050 0.8946 2.2360 3.4641 3.3166

25 Quartile 0.6557 0.8336 0.7519 1.4142 2.2360 2.0000

75 Quartile 0.8657 0.9404 0.9328 3.6055 9.4604 8.4844

Our patient dataset (40 patients) Mean 0.8134 0.9235 0.9012 6.0863 8.1789 9.8647

ET, enhancing tumor; WT, whole tumor; TC, tumor core; SD, standard deviation.

the healthy class leading to misclassification of necrotic pixels to
healthy pixels. This problemwas overcome by weighted sampling
and augmenting the data for under-represented regions. Patches
from the boundary region of the tumor were added explicitly
for better training of the model with weighted patch extraction.
All these steps increased the segmentation accuracy at the
tumor boundaries.

In patch-based training approaches, larger patches require
more max-pooling layers which minimize the localization
accuracy. Contrarily, training with small patches allows the
network to see only little context. Hence, a classifier output
that takes into account the features from multiple layers is
considered. This leads to better localization with the use of
context. We experimented with various patch extraction size
and schemes along with variations in encoding and decoding
layers in terms of number and dimension of the Conv-filters.
We finalized various hyperparameters like the number of Conv
layers, feature maps, activation function, loss function, patch size,
learning rate, etc. by extensive experimentation on validation
dataset. We evaluated the performance of the model on online
evaluation portal for validation dataset and the hyperparameters
for which best validation Dice score is achieved are finalized.
Three encoding and three decoding layers with 48, 96, and
192 feature maps with ReLU activation function is used in
the model with training on patch size of 64 × 64 × 64. The
weights of the proposed model are updated according to Dice
loss. Some notable variations and performance are provided
in Supplementary Table 2.

Box plot for all the patients in BraTS training and validation
dataset are shown in Figure 7. It can be observed that the median
value is much higher than the mean value in terms of Dice Score.
Theoretically, Dice Score ranges from minimum 0 to maximum

1. From the box plots, it can be observed that the Dice scores
of two cases for enhancing tumor and tumor core segmentation
results are very close to 0 and for the whole tumor is below 0.5
in a few cases. These regions failed to segment accurately because
of the high deviation in characteristics in training and validation
dataset. This problem can be overcome by increasing the training
data with inter-patient variations.

Grading of Segmentation by

Neuroradiologist
The segmentation results on the in-house testing dataset were
further evaluated by an in-house expert radiologist (AM) on a
scale of 0–5. Score 0 referred to the poor segmentation and 5
for the most accurate delineating of the tumor parts from the
healthy tissues. The subjective score for almost all segmented
images was found acceptable by the radiologists. However, in
a few cases with large necrotic tumor cavity, the proposed
algorithm failed to accurately segment the tumor parts. We
further investigated the problem and found that such cases were
not present in the BraTS challenge training dataset on which
proposed architecture was trained and this can be addressed
by increasing the training dataset with patients belonging such
type of tumor parts. We achieved average 4.1 and median 4
score by the expert Neuroradiologist. The details are provided
in Supplementary Table 1. Since, BraTS validation and dataset
comprised of the scans from multiple institution with varying
protocols the performance on them is comparatively poor. Also,
it was observed that on online evaluation portal even if you
predict a single pixel for the sub-tumor part which is not present
in the patient scan, the Dice score for the corresponding case is
zero which reduces the mean Dice score on complete dataset. MR
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FIGURE 7 | Box plot of Dice score, Sensitivity and Hausdorff 95 distance on BraTS18 training and validation data. Red line within box plot is the median of the

corresponding data. ET, enhancing tumor; WT, whole tumor; TC, tumor core.

data of all the patients from our in-house dataset was with all the
tumor subparts and hence there were no cases for which the Dice
score as zero.

CONCLUSION

In this paper, we presented fully automatic brain tumor
segmentation with a novel 3D U-Net architecture based on Deep
Convolutional Neural Networks. An efficient weighted patch
extraction method along with a unique number of feature maps

at each level of 3D U-Net is proposed for accurate intra-tumor
segmentation. The performance of the proposed algorithm is
evaluated on BraTS 2018 dataset as well as on the dataset from
the local hospital. We considered different training schemes
with variable patch sizes, data augmentation methods, activation
functions, loss functions, and optimizers. Nowadays, adversarial
networks are outperforming state of the art methods for semantic
segmentation in several Computer Vision tasks. This can be
further inverstigated to improve the segmentation in medical
images. The work can also be extended for prediction of overall
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TABLE 2 | Comparison of proposed architecture with other segmentation methods who participated in BraTS 2018 challenge.

BraTS18 datasets References Dice Hausdorff 95

ET WT TC ET WT TC

Validation Cabezas et al., 2018 0.7403 0.8892 0.7200 5.3035 6.9563 11.9238

Chen et al., 2018 0.7334 0.8878 0.8078 4.6426 5.50541 8.14015

Fang and He, 2018 0.7200 0.8560 0.7260 5.7000 7.5000 9.5000

Gates et al., 2018 0.6783 0.8055 0.6852 14.5229 14.4150 20.0174

Hu et al., 2018 0.6100 0.8300 0.7300 41.4800 47.2300 41.1400

Myronenko, 2019 0.8233 0.9100 0.8668 3.9257 4.5160 6.8545

Isensee et al., 2018 0.8087 0.9126 0.8634 2.41 4.27 6.52

Mehta and Tal, 2019 0.7880 0.9090 0.825 3.520 4.923 8.316

Lefkovits et al., 2018 0.7190 0.8730 0.6890 7.3040 7.0680 12.6630

Proposed 3D U-Net 0.7480 0.8780 0.8267 7.2951 12.9486 11.2021

ET, enhancing tumor; WT, whole tumor; TC, tumor core.

survival prediction of the patient with the radiomic features
computed on the predicted tumor.
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Biomedical imaging Is an important source of information in cancer research.
Characterizations of cancer morphology at onset, progression, and in response to
treatment provide complementary information to that gleaned from genomics and
clinical data. Accurate extraction and classification of both visual and latent image
features Is an increasingly complex challenge due to the increased complexity and
resolution of biomedical image data. In this paper, we present four deep learning-
based image analysis methods from the Computational Precision Medicine (CPM)
satellite event of the 21st International Medical Image Computing and Computer
Assisted Intervention (MICCAI 2018) conference. One method Is a segmentation
method designed to segment nuclei in whole slide tissue images (WSIs) of adult
diffuse glioma cases. It achieved a Dice similarity coefficient of 0.868 with the CPM
challenge datasets. Three methods are classification methods developed to categorize
adult diffuse glioma cases into oligodendroglioma and astrocytoma classes using
radiographic and histologic image data. These methods achieved accuracy values of
0.75, 0.80, and 0.90, measured as the ratio of the number of correct classifications
to the number of total cases, with the challenge datasets. The evaluations of the four
methods indicate that (1) carefully constructed deep learning algorithms are able to
produce high accuracy in the analysis of biomedical image data and (2) the combination
of radiographic with histologic image information improves classification performance.
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INTRODUCTION

Cancer is a major life-threatening health problem around the
world. More than 1.7 million new cancer cases and over
600,000 cancer deaths are estimated in 2019 in the United States
alone (Siegel et al., 2019). Brain cancer is one of the deadliest
cancer types with low survival rates among both women and
men (Siegel et al., 2016; Yuan et al., 2016). Cancer research
relies on accurate and reproducible disease characterizations
in order to better understand what triggers cancer and how
cancer progresses so that more effective means of evaluating
cancer interventions can be developed. This requires assembling
observational and experimental data at multiple biological scales
and fusing information from multiple data modalities.

Biomedical imaging is one of the crucial data modalities in
cancer research. Features gleaned from high-resolution, detailed
images play a key role in the development of correlative and
predictive representations of cancer morphology. Combined
with clinical and genomics data, image features can result
in more effective data-driven research and healthcare delivery
for cancer patients. Biomedical imaging, hence, has evolved
into an indispensable tool for researchers and clinicians
to extract, analyze, and interpret the complex landscape
of diagnostic and prognostic information and to assess
treatment strategies. Radiology and the rapidly growing field
of Radiomics provide a means of quantitative study of cancer
properties at the macroscopic scale. Radiomics deals with the
extraction, analysis, and interpretation of large sets of visual
and sub-visual image features for organ-level quantification
and classification of tumors (Lambin et al., 2012; Gillies, 2013;
Aerts et al., 2014; Parmar et al., 2015; Gillies et al., 2016;
Zwanenburg et al., 2016). The histopathologic examination
of tissue, on the other hand, reveals the effects of cancer
onset and progression at the sub-cellular level (Gurcan et al.,
2009; Foran et al., 2011; Kong et al., 2011; Kothari et al.,
2013; Griffin and Treanor, 2017; Yonekura et al., 2018).
Histopathology has been used as a primary source of information
for cancer diagnosis and prognosis. Diagnosis and grading
of brain tumors, for example, is traditionally done by a
neuropathologist examining stained tissue sections fixed on
glass slides under a light microscope. Radiology is a more
prevalent imaging modality in research and clinical settings.
Advancements in digital microscopes made it possible to capture
high-resolution images of whole slide tissue specimens and
tissue microarrays, enabling increased use of virtual slides in
histopathologic analysis.

In this paper, we present the application of state-of-the-
art image analysis methods for segmentation and classification
tasks for radiographic and histologic image data. We describe
a collection of four deep learning-based methods: one method
for the segmentation of nuclei and three methods for the
classification of brain tumor cases. These methods are from
the challenge teams who achieved the top scores at the
Computational Precision Medicine (CPM) satellite event of the
21st International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI2018) and agreed
to contribute to this summary manuscript. The CPM event

was organized by a subset of the co-authors on this paper as
a cluster of image analysis challenges. It is one of the series
of challenges organized since 2014 to provide a platform for
biomedical imaging research teams to evaluate state-of-the-art
algorithms in a controlled environment.

The 2018 CPM event targeted brain diffuse glioma and
consisted of two sub-challenges. The first sub-challenge was
designed to evaluate the performance of algorithms for the
detection and segmentation of nuclear material in tissue images.
We describe a nucleus segmentation method from this sub-
challenge. The method employs an adaptation of the Mask-
RCNN algorithm to solve the problem of cell segmentation in
hematoxylin and eosin (H&E) stained tissue microscopy images.
The authors of this method developed pre- and post-processing
steps to further improve the performance of the algorithm. The
method achieved a Dice similarity coefficient score of 0.868
when evaluated against a set of manually segmented tissue
images. The second sub-challenge asked participants to classify
lower grade glioma (LGG) cases into oligodendroglioma and
astrocytoma subtypes using both radiology and histopathology
images. We present three classification methods from this
sub-challenge. One of the methods refines lower confidence
predictions from a radiology image model by combining
predictions from a tissue image model. The second method
implements two distinct classification models for radiographic
and histologic images and combines them through a dropout-
enabled ensemble learning. The third method uses multiple deep
learning models: one model for classifying tissue images and
two models for segmenting and classifying radiology images.
A weighted average operation is then applied to the classification
results from tissue and radiology images to assign a class
label to each case. The methods achieved accuracy values of
0.90, 0.80, and 0.75, respectively—accuracy was measured as
the number of correctly classified cases divided by the total
number of cases.

In addition to presenting these algorithms, we intend to make
the datasets used in the MICCAI CPM 2018 challenge publicly
available to provide a valuable resource for development and
refinement of future segmentation and classification algorithms.

MATERIALS AND METHODS

In this section, we first present a brief overview of existing
work on biomedical image analysis (section “Related Work”). We
describe the CPM challenge and datasets in Section “Datasets and
Performance Evaluation.” We present the nucleus segmentation
method in Section “Instance Segmentation of Nuclei in Brain
Tissue Images” and the three classification methods in Section
“Methods for Classification of Brain Cancer Cases.”

Related Work
Computer-aided analysis and interpretation of image data
is crucial to maximizing benefits from biomedical imaging.
Common image analysis operations include segmentation of
regions and objects (e.g., nodules and cells) and classification
of image regions and images into categories. Image features
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and quantitative measures obtained from segmentation and
classification can be used in downstream analyses that integrate
information from clinical and molecular data and develop
predictive and correlative models. Studies have shown the value
of image analysis and image features in research, and an
increasing number of research projects have developed image
analysis methods to efficiently, accurately, and reliably convert
raw image data into rich information and new knowledge
(Gurcan et al., 2009; Foran et al., 2011; Kong et al., 2011; Kothari
et al., 2012, 2013; Lambin et al., 2012; Gillies, 2013; Cheng
et al., 2016; Coroller et al., 2016; Gao et al., 2016; Ishikawa
et al., 2016; Madabhushi and Lee, 2016; Manivannan et al.,
2016; Xing and Yang, 2016; Al-Milaji et al., 2017; Bakas et al.,
2017c; Lehrer et al., 2017; Chang et al., 2018a, 2019; Fabelo
et al., 2018; Hu et al., 2018; Khosravi et al., 2018; Lee et al.,
2018; Mobadersany et al., 2018; Peikari et al., 2018; Saltz et al.,
2018; Yonekura et al., 2018; Zhou et al., 2018). Recent work
on biomedical image analysis focused on the development and
application of machine learning methods, in particular, deep
learning models.

The work done by Qian et al. detected and differentiated
GBM from solitary brain metastases (van Griethuysen et al.,
2017) using a support vector machine (SVM) model. The analysis
algorithm computes a variety of radiomic features, using the
PyRadiomics package (van Griethuysen et al., 2016; Lu et al.,
2019), from contrast-enhanced Radiology image datasets. The
experiments show that a combination of the least absolute
shrinkage and selection operator (LASSO) and SVM achieves the
best prognostic prediction performance and the highest stability.
Lu et al. (Krizhevsky et al., 2012) proposed and evaluated an
approach, which uses the AlexNet deep learning network (Abrol
et al., 2018) as a feature extractor and applies transfer learning to
train a model for brain disease detection in magnetic resonance
imaging (MRI) data. The last three layers of AlexNet are replaced
by a fully connected layer, a softmax layer, and a classification
layer to implement the feature extractor function. Chang et al.
(2018a) proposed and implemented a CNN model to predict
isocitrate dehydrogenase (IDH) mutations in glioma patients
using preoperative MRI data. Their experimental evaluation
shows that incorporating the age at which a patient was diagnosed
with cancer improves algorithm accuracy to 89%. Abrol et al.
(Binder et al., 2018) applied feature selection and SVM-based
classification methods on MRI data obtained from a group
of GBM patients. Their experimental results show that three-
dimensional radiomic features computed from radiology images
could be used to differentiate pseudo-progression from true
cancer progression in GBM patients. Binder et al. (Shukla et al.,
2017) identified radiographic signatures of extracellular domain
missense mutants (i.e., A289V) of the epidermal growth factor
receptor (EGFR) suggestive of an invasive and proliferative
phenotype, and associated with shorter patient survival. Their
approach leverages the integrated analysis of advanced multi-
parametric MRI (Bakas et al., 2016) and biophysical tumor
growth modeling (Akbari et al., 2018). Their findings were
corroborated by experiments in vitro and in vivo in animal
models, contributing to the discovery of a potential molecular
target and presenting an opportunity for potential therapeutic

development (Shukla et al., 2017). Another study (Bakas et al.,
2017a) found an imaging signature in radiology images of the
most prevalent mutation of EGFR, namely, EGFRvIII, revealing a
complex yet distinct macroscopic GBM radiographic phenotype.
This signature showed a classification accuracy of ∼90% for
determining EGFRvIII GBM tumors. The study used an SVM
model for multivariate integrative analysis of multiple image
features to identify the signature. The features include the tumor’s
spatial distribution pattern leveraging a biophysical growth
model (Akbari et al., 2018) and a distinct within-patient self-
normalized heterogeneity index (Wang et al., 2019).

Mobadersany et al. (2018) examined the application of
deep learning techniques to predict outcomes in LGG and
glioblastoma multiforme (GBM) patients. Their approach
combines tissue image analysis results with genomics data to
achieve high accuracy. The deep learning network consists of
convolutional layers, which are trained to predict image patterns
associated with survival. This network is connected to fully
connected layers that transform the image features for survival
analysis. Survival data are modeled via a Cox proportional
hazard layer. Wang et al. (Qian et al., 2019) implemented an
analysis pipeline to classify glioma cases into grades II, III,
and IV gliomas using whole slide tissue images (WSIs) from
H&E and Ki-67 stained tissue samples. The pipeline consists of
multiple steps, including region-of-interest (ROI) identification,
image feature extraction, feature selection, automated grading
of slides, and interpretation of the grading results. Multiple
image features, such as the shapes and sizes of nuclei and
image intensity distribution, are computed and pruned using
a random forest method. The grading step employs machine
learning models with automatic tuning of model parameters for
the best classification performance. Saltz et al. (2018) employed
a deep learning workflow to create maps of tumor-infiltrating
lymphocytes (TILs) in more than 5,000 WSIs from 13 different
cancer types in The Cancer Genome Atlas (TCGA) repository.
The image analysis approach partitions each WSI into small
(50 µm by 50 µm) patches and classifies each patch as either
TIL-positive or TIL-negative. The workflow implements an
iterative learning phase in which predictions by the deep learning
models are reviewed and corrected by pathologists, to refine and
improve classification accuracy. The analysis method also uses
a convolutional neural network (CNN) to identify and segment
regions of necrosis in order to reduce false positives.

Nucleus segmentation is one of the core analysis tasks in
histopathology imaging projects which study tissue morphology
(Gurcan et al., 2009; Madabhushi and Lee, 2016; Xing and
Yang, 2016). The nucleus segmentation task is challenging
because of the relatively large variation in the intensity of
captured signal and the ambiguity of boundary information
when separating neighboring nuclei. Several projects proposed
machine learning algorithms that use engineered image features
and algorithms that perform statistical analyses of intensity and
texture properties to detect and delineate nucleus boundaries
(Kong et al., 2011; Gao et al., 2016; Peikari and Martel, 2016;
Peikari et al., 2018). In recent years, there has been a significant
shift toward the application of deep learning techniques. Yang
et al. (2018) proposed a method that uses a U-Net model
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to segment lesions in cervical cancer cases. The segmentation
results are fed into a cascade network, which integrates the
foreground and the edges of the segmented nuclei to generate
instance segmentations. Wollmann et al. (2019) developed a
hyperparameter optimization method that searches for the best
parameters of a nucleus segmentation pipeline to improve
segmentation accuracy. The authors evaluated their technique
with two analysis pipelines, a clustering-based pipeline and a
deep learning pipeline, using prostate cancer tissue images. Their
results show that the deep learning pipeline performs better
than the clustering-based pipeline. Alom et al. (2018) proposed
a residual recurrent CNN built on the U-Net architecture
(Ronneberger et al., 2015). While this type of network has
been used for segmentation of macro-level objects such as
retinal blood vessels and the lungs, the authors adopted it to
segmentation of the nuclei. Xie and Li (2018) implemented
a neural network method that learns object-level and pixel-
level information in tissue image patches. The goal is to have
the analysis pipeline carry out nucleus detection and nucleus
segmentation simultaneously. Hou et al. (2019b) proposed a
sparse convolutional autoencoder for the detection of nuclei
and feature extraction in WSIs. The approach integrates nucleus
detection and feature learning in a single network. The network
encodes the nuclei into sparse feature maps, which represent
the nuclei’s locations and appearances and can be fine tuned for
end-to-end supervised learning.

Radiology and pathology capture morphologic data at
different biological scales. The non-invasive and non-ionizing
property of MRI made it quite popular for oncology imaging
studies such as brain tumors (Bakas et al., 2016). On the other
hand, the de facto standard for tumor assessment and grading
is whole slide tissue biopsy examined under a microscope.
Combined use of image modalities from both domains can
lead to improvements in image-based analyses. Lundstrom et al.
(2017) argue for a tighter collaboration between radiology,
pathology, and genomics teams toward enhanced integrated
diagnosis of disease. The authors point to the increasing
use of digital slide technologies in pathology as well as to
the fact that computational approaches for radiology and
pathology imaging modalities are not fundamentally different.
They note that combining complementary views of the disease
from multiple scales can maximize the benefits of biomedical
imaging. Madabhushi and Lee (2016) note that researchers are
increasingly looking at opportunities for combining radiomic
data with features extracted from high-resolution pathology
image for better predictive capabilities in disease prognosis.
On the methodology and software front, Arnold et al. (2016)
developed a web-based platform that integrates radiology and
pathology data for cancer diagnosis. Saltz et al. (2017) devised
methods and tools for combined computation, management,
and exploration of image features from radiology and pathology
image datasets. Kelahan et al. (2017) implemented a dashboard
for radiologists to view pathology reports to aid with diagnosis
and image-guided decision making. McGarry et al. (2018)
proposed a method for combining multi-parametric MRI data
with digital pathology slides to train predictive models for
prostate cancer localization.

Despite a growing body of research and development on
methods and tools, computerized image analysis continues
to be a challenging task. Both image resolutions and data
complexity continue to increase, requiring the enhancement of
existing methods and the development of new techniques. For
example, contemporary digital microscopy scanners are capable
of imaging whole slide tissue specimens at very high resolutions
(e.g., over 80,000 × 80,000 pixels). These images may contain
millions of cells and nuclei, and multiple types of regions (e.g.,
tumor, stromal, and normal tissues). There can be significant
morphological heterogeneity within a specimen, as well as across
specimens in both radiographic and histologic imaging, requiring
novel methods that can handle heterogeneity and increasing the
density of morphologic information.

Datasets and Performance Evaluation
The approaches, which will be described in Sections “Instance
Segmentation of Nuclei in Brain Tissue Images” and “Methods
for Classification of Brain Cancer Cases,” were experimentally
evaluated with radiographic and histologic image datasets from
the MICCAI 2018 CPM challenge event. Here we provide a
brief description of the challenge datasets and the methods for
scoring algorithm performance. The datasets for the 2018 CPM
challenge were obtained from TCGA1 (Tomczak et al., 2015) and
The Cancer Imaging Archive (TCIA2) (Clark et al., 2013; Prior
et al., 2013) repositories, and the images had been scanned at
the highest resolution. Images from these sources are publicly
available and have been used in many publications (e.g., Aerts
et al., 2014; Yu et al., 2016; Bakas et al., 2017c; Mobadersany et al.,
2018; Saltz et al., 2018; Agarwal et al., 2019).

Datasets for Segmentation of Nuclei in Pathology
Images
A WSI may contain hundreds of thousands of nuclei; some
images with large tissue coverage will have more than one million
nuclei. Manually segmenting all nuclei in the entire WSIs would
be infeasible. Thus, we extracted image tiles from WSIs and used
the tiles in the training and test datasets in order to reduce the
cost of generating high-quality ground truth data as well as the
computational requirements of the training and test steps of
analysis algorithms. The image tiles were selected by a pathologist
and extracted from a set of GBM and LGG WSIs at the highest
resolution. The training and test datasets consisted of 15 and
18 image tiles, respectively. The sizes of the tiles ranged from
459 × 392 pixels to 1032 × 808 pixels in the training set and
from 378 × 322 pixels to 500 × 500 pixels in the test set. The
nuclei in each image tile were segmented by two students. The
segmentation results were reviewed, refined, and consolidated by
the pathologist to generate the final set of segmentation data. This
process generated 2905 and 2235 nuclei in the training and test
sets, respectively.

In the challenge event, the performance of a segmentation
algorithm was measured as the average of the standard Dice
similarity coefficient and a modified version of the Dice metric.

1https://portal.gdc.cancer.gov
2https://www.cancerimagingarchive.net
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The standard Dice score (Dice, 1945) measures the overlap
between two sets of segmentation results without taking into
account the individual nuclei. That is, it computes the amount
overlap between the ground truth mask and the mask generated
by the segmentation algorithm without considering splitting and
merging of the nuclei by the algorithm. The modified Dice metric
aims to incorporate split and merge errors into the score. We refer
the reader to an earlier publication (Vu et al., 2019) for a more
detailed description of the modified Dice metric.

Datasets for Combined Radiology and Pathology
Classification
The datasets were matched MRI and digital pathology images
obtained from the same patients and the same time point. Each
case corresponded to a single patient. There was one set of MRI
data (T1, T1C, FLAIR, and T2 images) and one corresponding
WSI for each case. The training set contained a total of 32
cases: 16 cases that were classified as oligodendroglioma and
16 cases classified as astrocytoma. The test dataset consisted of
20 cases with 10 cases of oligodendroglioma and 10 cases of
astrocytoma. We retrieved the WSI and MRI images from the
TCGA and TCIA archives, respectively. These images had been
obtained and classified following the protocols implemented in
the TCGA project3. We obtained the ground truth classification
labels of the cases from the associated clinical and metadata in the
TCGA repository. These classifications were further reviewed by
a pathologist and a radiologist. In the challenge event, we used
the accuracy of a classification method to score its performance
and rank it. We counted the number of correctly classified cases
and divided that number by the total number of cases to compute
the accuracy score.

In the following sections, we will present a nucleus
segmentation algorithm (section “Instance Segmentation
of Nuclei in Brain Tissue Images”), which achieved the
second highest score in the segmentation challenge, and three
classification algorithms (section “Methods for Classification of
Brain Cancer Cases”), which achieved the top three scores in the
classification challenge.

Instance Segmentation of Nuclei in Brain
Tissue Images
In this section, we present the nucleus segmentation algorithm
developed by XR, QW, LZ, and DS. This method achieved the
second highest score in the CPM challenge and its developers
agreed to contribute to this manuscript.

The method implements an application of the Mask-RCNN
network (He et al., 2017) with a novel MASK non-maximum
suppression (MASK-NMS) module, which can increase the
robustness of the model. Mask-RCNN is a deep learning network
extended from the Faster-RCNN model (Ren et al., 2015) and
is used to carry out semantic and object instance segmentation
(see Figure 1). In our implementation, we used ResNet-101
to build a Mask-RCNN pyramid network backbone for the
segmentation of nuclei in WSIs. This adaptation is based on

3https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga/using-tcga/types

an existing implementation by Matterport4. We have extended
this implementation in several ways to improve segmentation
performance. First, we have reduced the region proposal network
(RPN) anchor sizes and increased the number of anchors to
be used because the nuclei are small objects and can be found
anywhere in a tissue image. Second, we have increased the
maximum number of predicted objects, since even a small image
tile from a tissue slide can contain 1000 or more nuclei. Moreover,
rather than training the network end-to-end from the start, we
initialized the model using weights from the pre-training on
the MSCOCO dataset (Lin et al., 2014). We train the layers
in multiple stages. We first train the network heads after they
are randomly initialized. We later train the upper layers of the
network. After this, we reduce the learning rate by a factor of 10
and train the entire network end to end. In our experiments, the
training took 300 epochs using stochastic gradient descent with
momentum set to 0.9. During training and testing, input tissue
images were cropped to 600× 600.

In addition to the above extensions, we implemented a
set of pre-processing steps to further improve the algorithm
performance. Holes in the masks are filled by an image
morphology operation. Fused nucleic masks are split by applying
morphological erosion and dilation. To help avoid overfitting,
data augmentation, which could increase the amount of training
data, is applied in the form of random crops, random rotations,
Gaussian blurring, and random horizontal and vertical flips.

Our implementation combines predictions from fivefold cross
training models in a post-processing step (see Figure 1). We have
implemented this step in a novel module called MASK-NMS,
which is one of our contributions in the segmentation method.
MASK-NMS takes unions of masks with maximum overlap and
removes false-positive masks with a small overlap. It starts with
a set of segmentation results. This set is called I. Each result in
set I is assigned a score S, which is the value of the classification
probability from the Mask-RCNN module and corresponds to
the confidence level of the segmentation result. After selecting
the segmentation with the maximum score M (the maximum
score among scores S), MASK-NMS removes it from the set I
and appends it to the final segmentation set D. D is initialized to
an empty set. It also removes any segmentations with an overlap
greater than a threshold N in the set I, where the intersection over
union (IOU) is used as the overlap metric. IOU is also known as
the Jaccard similarity index (Jaccard, 1901), which measures the
similarity between finite sample sets. It is defined as the size of the
intersection between two sets divided by the size of the union of
the sets. The selection process repeats until set I becomes empty.
Finally, we obtain the segmentation results in set D. The MASK-
NMS module assembles multiple results together and reduces
false positives and false negatives.

Methods for Classification of Brain
Cancer Cases
In this section, we present three classification algorithms, which
achieved the top three scores in the classification challenge and
the developers of which agreed to contribute to this manuscript.

4https://github.com/matterport/Mask_RCNN
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FIGURE 1 | Tissue image segmentation model. The first part of the model consists of the Mask-RCNN module. Output from this module is input to the MASK-NMS
module for final segmentation prediction output.

An Approach for Classification of Low-Grade Gliomas
Using Combined Radiology and Pathology Image
Data
The top-performing method (developed by AB, AsK, AvK, MK,
and GK) (Bagari et al., 2018) in the classification challenge uses
an MRI classification model and a WSI classification model
and combines the predictions from the two models to assign a
class to a given case. The overall analysis pipeline is depicted in
Figures 2–4 and described below.

Radiology image analysis pipeline
Different pulse sequences in MRI, including native T1- and T2-
weighted, T2-Flair, and T1-weighted post-contrast imaging, can
be used to enhance different parts of a tumor. In this part
of the pipeline (Figure 2), we execute a segmentation pipeline
consisting of the following steps on these images before features
are computed from the images and used in the classification
model: (1) Skull stripping: It is necessary to remove the skull
from MRI as its presence can be wrongly interpreted as a tumor,
and most segmentation networks are trained using skull-stripped
images. (2) Co-registration and re-sampling to isotropic voxel
spacing: Following skull stripping is the step of co-registering the
MRI sequences to a reference sequence. Generally, there can be
movement between scans if the patient does not remain still or if
the scan is acquired on a different day or using a different scanner.
Registered images are spatially correlated across channels and
can be used for tumor segmentation. We register sequences T1,
FLAIR, and T2 with respect to T1c scan. The MRI volumes are
re-sampled to an isotropic voxel resolution of 1 mm3 after the
co-registration step. (3) Segmentation of tumor regions using
a CNN: Tumor regions are segmented by a fully CNN trained
on the BraTS-2018 dataset (Menze et al., 2014; Bakas et al.,
2017b,c, 2018; Crimi et al., 2018). After the segmentation step, a
set of 105 radiomic features are computed on segmented regions
using the pyradiomic library (Lu et al., 2019). These features
include shape features, first-order statistics, features from gray
level co-occurrence matrix, features from gray level run length
matrix and gray level size zero matrix, and neighboring gray
tone difference matrix. The 105-dimensional radiomic feature

vectors are reduced to a 16-dimensional feature vector using the
principal component analysis. A classification model is trained
with 16-dimensional feature vectors as input. If the training
dataset has N cases, the model is trained with an (N,16) input
using logistic regression with the liblinear optimization algorithm
(Fan et al., 2008) and a fivefold cross-validation process. This
process fits a logistic regression model on the entire training
data. Classification predictions from the MRI data are obtained
using this model.

Analysis pipeline for whole slide tissue images
Tissue slides may contain large areas of glass background that
are irrelevant to image analysis and should be removed. In
this part of the pipeline (Figure 3), in order to detect and
segment tissue regions and remove regions corresponding to
glass background, a tissue image is first converted from the
RGB color space to the HSV color space. Then, lower and
upper thresholds are applied on color intensities to get a binary
mask. The binary mask is processed to fill in small holes and
remove clustered clumps from foreground pixels. After this step,
bounding boxes around all the discrete contours are obtained.
The bounding boxes serve as blueprints for the patch extraction
process. The patch extraction process partitions the segmented
tissue region into 224 × 224-pixel patches. The 224 × 224-
pixel patches are color-normalized (Reinhard et al., 2001) and
assigned the same label as the label of the WSI. A subset of
distinct patches is filtered out using an outlier detection technique
called the Isolation Forest (Liu et al., 2008). The filtering step is
executed as follows. We train an autoencoder with a pixel-wise
reconstruction loss to generate feature vector representations of
patches from the input image. The isolation forest method is
then executed with these feature vectors to find outlier patches.
The remaining patches after the outlier detection step are used
to refine a DenseNet-161 network, which has been pre-trained
on ImageNet. Binary cross entropy is used as the loss function.
During the prediction phase, test patches extracted from a WSI
are classified using the trained model, and a probability score is
assigned to the image based on a voting of classes predicted for
individual patches.
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FIGURE 2 | Radiology image analysis. Images are pre-processed (i.e., skull stripping and co-registration) before they are analyzed through the remaining steps of the
analysis pipeline. After the pre-processing step, tumor regions in the images are segmented via a CNN model. This step is followed by computation of a set of 105
radiomic features in segmented regions. The high-dimensional feature vector is reduced to a 16-dimensional feature vector using the principle component analysis
method. A classification network is trained with these feature vectors.

FIGURE 3 | Pathology image analysis. A region-of-interest (ROI) step detects and segments tissue regions. The tissue regions are partitioned into patches. Distinct
patches are filtered using the isolation forest technique. The prediction represents the probability values of the case being astrocytoma or oligodendroglioma.

FIGURE 4 | Combining predictions from the pathology and radiology models. A test case is analyzed by the radiology classification model and the pathology
classification model. The results from the two models are processed in a confidence-based voting step, which chooses the class with the highest prediction
probability value.

Combining predictions
As is shown in Figure 4, finally, predictions from both the
radiology and pathology models are compared, and the class
label of a case is determined based on the model, which gives a
prediction with a higher probability score.

Dropout-Enabled Ensemble Learning for Multi-Scale
Biomedical Image Classification
This method is the second best performing (developed by AM,
MT, and OG) (Momeni et al., 2018) and proposes two distinct
classification models for radiographic and histopathologic
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images and their integration through dropout-enabled
ensemble learning.

Radiology classification model
As is shown in Figure 5, radiology images are pre-processed
through a pipeline of bias field correction, skull-stripping, and
co-registration steps before they are input to a 3D CNN network.
The 3D CNN consists of eight layers to extract deep features
from MRI and three 3D max pooling to reduce the sample size.
The input of the 3D CNN is a 3D voxel image in the form
of three spatial dimensions and two modalities per voxel. In
this work, the 3D CNN is trained with the T1c and T2-FLAIR
modalities only because these are the most informative for LGG
segmentation. After the last convolutional layer, the extracted
features are averaged over all of the 3D space to yield a unique
100-dimensional feature vector per case. This vector is connected
to a 1D output for classification with cross-entropy loss. The
whole network is then trained. To avoid overfitting, we use
classical data augmentation techniques (rotation, cropping, etc.)

as well as dropout. Eight dropout layers are placed throughout the
network to avoid overfitting and for the ensemble learning step.

Histopathology classification model
A multiple instance learning approach, as shown in Figure 6, is
implemented for the histopathology images. The learning step
is carried out after a pre-processing phase. The pre-processing
steps here consist of tissue detection, color normalization,
and tiling. Tissue detection is done with Otsu thresholding
to detect and segment tissue regions only, eliminating regions
that are glass background. A simple histogram equalization
algorithm is used for color normalization prior to tiling. The
tiling step extracts 20 448 × 448-pixel patches from a WSI
by uniform random sampling. Once the image patches have
been extracted, a DenseNet network pretrained on ImageNet
is fine tuned, after removing its last fully connected layer. The
remainder of the network is used as a fixed feature extractor
for tissue images, and two fully connected layers with dropout
are used for classification. As with the radiology model, we used

FIGURE 5 | Radiology image analysis pipeline. Radiology images are pre-processed for bias field correction, skull stripping, and co-registration before they are input
to a 3D CNN. The 3D CNN is trained to output a prediction (probability) value for each case as to whether the case is oligodendroglioma (O) or astrocytoma (A).

FIGURE 6 | Histopathology image analysis pipeline. The whole slide tissue images are pre-processed to detect tissue, do color normalization, and extract tiles. The
tiles are input to a DenseNet model for classification. The model outputs the probability of a case being oligodendroglioma or astrocytoma.
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FIGURE 7 | Ensemble model that combines classifications from the radiology and histopathology image analysis pipelines.

classical data augmentation techniques along with dropout to
eliminate overfitting.

Ensemble learning model
The main contribution of our approach is a meta-algorithm that
combines the histopathology and radiology classification models,
as is shown in Figure 7. In this ensemble learning methodology,
each model is trained separately. Their predictions are combined
into a single, more robust output. The basic idea is to extract
the one-to-last feature layer from each individual classification
model and form a single feature vector for each case/patient
by concatenating the two feature vectors. An SVM model is
then trained with the combined feature vectors to classify the
cases. However, if the training dataset is small (which is the case
with the CPM challenge dataset; we have 50-dimensional feature
vectors from both the classification models and only 32 cases
in the training dataset), the classification problem can become
under-determined and result in overfitting of the models. To
address this problem, we use regularization through dropout in
the ensemble learning step. The idea is to enable the dropout
values of the models in the test phase, so that individual models
produce multiple (typically thousands) feature vectors for each
subject. These many feature vectors can then be concatenated to
form the combined feature vectors, creating a training dataset big
enough for the SVM model (Momeni et al., 2018). Dropout at
test time results in sampled feature vectors that are both distinct
and informative and provides sufficient variance in the training
dataset. Hence, the ensemble learning method can learn a more
accurate and robust model from the newly produced dataset.

A Weighted Average-Based Classification Method
The third best performing method (developed by QQ, YZ, YH,
and XD) is illustrated in Figure 8. It analyzes each imaging
modality (radiology images and pathology images) separately and

combines the prediction results via a weighted average operation.
We describe the individual classification models and weighted
average operation below.

Classification of pathology images is carried out by identifying
tissue characteristics that differentiate oligodendroglioma from
astrocytoma. Astrocytoma is noted to have more grades, as
well as necrosis, increased cell density, calcification, and nuclear
atypia. On the other hand, fried egg-like cells, and the tissue
characteristics of chicken-cage-like blood vessels are unique to
oligodendroglioma. In the proposed method, each histologic
image is partitioned into 512 × 512 patches. A sample set
is created to identify typical samples of both subtypes of
brain diffuse gliomas to assess imbalance in the data. In order
to prevent the classification error caused by data imbalance,
our method expands the sample set by rotating the original
image in symmetrical and asymmetrical directions. The balanced
samples are then sent to a CNN classifier network, which is
trained to fully recognize the tissue and cell characteristics of
oligodendroglioma and astrocytoma (see Figure 8). The method
uses the VGG16 CNN network (Simonyan and Zisserman, 2014).
We use data augmentation and add dropout layers or batch
normalization layers to the classification model to reduce the risk
of overfitting the model.

The classification model for radiology images is shown in
Figure 9. Radiology images are pre-processed using methods
from the SPM12 software (Penny et al., 2011). The methods
include Realign, Estimate, and Re-slice to register data of the same
modality in different cases; Co-register and Estimate and Re-slice
to register different modal data of the same case; and Segment
and ImCalc to extract the intracranial cavity. The pre-processed
images are then segmented using the U-Net (Ronneberger et al.,
2015) segmentation network. Patches with tumor, which are
predicted by the segmentation network, are used as training data
for a 2D Densenet (Huang et al., 2017) network. We classify each
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FIGURE 8 | The flow of the entire method. Among them, we slice the entire pathological data and extract the effective diseased area as much as possible. The
active learning strategy follows our work in Qi et al. (2018). The goal of that work is to maximize learning accuracy from very limited labeling data. The classification
model is updated iteratively with an increasing training set. The sliced pathological data are sent to a convolutional neural network to obtain the discrimination results
of the pathological data. The radiological data are sent to the Unet and CNN to obtain classification results after preprocessing. Finally, the results are combined via a
weighted average operation to obtain the final result.
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FIGURE 9 | The classification process of radiology images. The process aligns the images of different modalities through realignment and co-register, extracts brain
tissue through skull stripping, extracts lesion area by the U-Net, and classifies cases by CNN.

patch, set the threshold value of 0.99, and select effective patches.
The ensemble of multiple patches can effectively improve the
robustness of the classifier.

Classification results from the radiology image dataset and the
pathology image dataset are combined via a weighted average
operation (see Figure 8):

ŷ = α∗f (Xp)+ (1− α)∗g(Xr)

where the classifiers for pathology data and radiology data, Xp
and Xr are VGG16 and DenseNet, respectively. f (•) and g(•)
represent the probabilities acquired from softmax function in Xp
and Xr. The weight α is empirically estimated in predicting the
final classification label ŷ.

EXPERIMENTAL RESULTS

Segmentation of Nuclei
The Mask-RCNN model with ResNet-101 backbone obtained
the 45.02% mean IOU (mIOU) on fivefold validation dataset.
mIOU is the average precision score for each IOU with different
thresholds (from 0.05 to 0.95 in the challenge). Tissue images with
nuclei detections and segmentations are illustrated in Figure 10.
A Dice score of 0.868 was achieved with the test dataset.

Classification of Cancer Cases
On testing the algorithms on a dataset containing 20 radiology
and pathology images, the three methods in Section “Methods
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FIGURE 10 | Segmentation result in validation dataset. The left column
shows tissue images. The middle column is ground truth masks. The right
column shows results from the segmentation method.

for Classification of Brain Cancer Cases” achieved the accuracy
scores (i.e., the number of correctly classified cases divided by the
total number of cases) as shown in Table 1.

DISCUSSION AND CONCLUSION

Biomedical imaging has made great strides in image resolution
and image capture speeds over the past decade. Radiology has
enjoyed a widespread adoption for many years in both research
and clinical settings. New imaging technologies are now allowing
researchers to capture larger volumes of more detailed radiology
data. Digital microscopy scanners were emerging technologies
about 20 years ago. They required constant attention to capture
sharp images of tissue and took many hours to scan a tissue
specimen at moderate magnification levels. Nowadays, hundreds
of slide tissues can be automatically imaged in several minutes.
New scanning technologies and tissue staining methods are
enabling researchers to capture richer morphological information
at unprecedented resolutions. We anticipate that the FDA’s
approval in 2017 of WSIs as a primary diagnostic tool will
fuel a rapid increase in adoption of virtual slide technologies
by researchers and clinicians. Combined with cheaper storage
space, more powerful computing capabilities (via multi-core
CPUs and accelerators such as graphics processing units), and
Cloud computing infrastructures, biomedical imaging is rapidly
becoming an essential tool in cancer research.

On the image analysis front, deep learning methods have
seen a tremendous intake from the imaging community. These
methods have demonstrated excellent results in the analysis

TABLE 1 | Accuracy scores of the classification methods presented in Section
“Methods for Classification of Brain Cancer Cases.”

Method Score

Section “An Approach for Classification Of Low-Grade
Gliomas Using Combined Radiology and Pathology Image
Data”

0.90

Section “Dropout-Enabled Ensemble Learning for
Multi-Scale Biomedical Image Classification”

0.80

Section “A Weighted Average-Based Classification Method” 0.75

of natural images. A rapidly growing collection of efforts are
adapting these methods and extending them in innovative ways
for application in biomedical image analysis. The segmentation
method presented in this work shows the use of Mask-RCNN
along with a non-maximum suppression (NMS) module for
robust segmentation of nuclei in WSIs. The image classification
methods employ a variety of deep learning methods and combine
information from both radiology and pathology images to
improve classification accuracy. All the methods described in this
paper were evaluated with image ground truth data generated
in the MICCAI CPM 2018 challenge (organized by a subset of
the co-authors as denoted in the author list). The experimental
results for nucleus segmentation show that high performance
(i.e., high Dice scores) can be achieved by integrated use of
Mask-RCNN and NMS for nucleus segmentation. The results
for the classification methods show that a carefully assembled
set of pipelines for each imaging modality and combination
of prediction results from individual models can produce high
classification accuracy.

While our work and works by other research teams have
shown significant progress with more accurate, efficient, and
robust image analysis algorithms, there remain challenges. One of
the major challenges in machine learning analysis of biomedical
imaging data is the lack of large curated and annotated training
datasets, primarily because of time effort and domain expertise
required for manual segmentations and classifications of tissue
regions and micro-anatomic structures, such as nuclei and
cells, as well as because of privacy and ownership concerns of
source datasets. Some initial studies in the field of distributed
learning in medicine attempted to address the data privacy
and ownership challenge (Chang et al., 2018b; Sheller et al.,
2018). These approaches need more investigation and adoption
to facilitate collaboration across multiple medical institutions.
Some projects have looked at the use of synthetic training
datasets. Mahmood et al. (2018), for example, devised a method
based on a conditional generative adversarial network (GAN)
to improve deep learning-based segmentation of nuclei. Their
method trains segmentation models using synthetic and real data.
The authors employed a cycle GAN method to generate pairs of
synthetic image patches and segmentation masks with varying
amounts of touching and clumped nuclei. Such nuclei are difficult
to segment by automated algorithms. In another work, Hou
et al. (2019a) proposed a GAN architecture for the generation
of synthetic tissue images and segmentation masks. The GAN
architecture consists of multiple CNNs; a set of CNNs generates
and refines synthetic images and masks to reference styles, and
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another CNN is trained online with these images and
masks to generate a segmentation model. Another GAN
approach was proposed by Senaras et al. (2018b) for tumor
grading. The GAN network generates synthetic image
datasets with known amounts of positive and negative
nuclei in immunohistochemistry-stained tissue specimens
(Senaras et al., 2018b).

Another major challenge in automated biomedical image
analysis is the quality assessment of input datasets and analysis
results. This also is a time-consuming and labor-intensive
task, as automated algorithms can process large numbers of
images and generate large volumes of analysis output to be
reviewed and validated, thanks to advances in computing
systems. There is a need to automate the quality assessment
and validation processes. Some projects are looking at this
problem. A recent work by Senaras et al. (2018a) used deep
learning methods to detect out-of-focus regions in WSIs so that
image analysis pipelines can avoid such regions. An approach
proposed by Wen et al. utilized multiple machine learning
methods, namely, SVM, random forest, and CNN, to assess the
quality of nuclear segmentation results. The proposed approach
made use of texture and intensity features extracted from
image patches in a WSI to train the quality control models
(Wen et al., 2017, 2018).

As our capability to capture complex radiology and pathology
image data more rapidly and at higher resolutions evolves,
manual training data generation and quality evaluation will
become increasingly infeasible. We expect that (semi-)automated
approaches, for training data generation, for assessing the
quality of data and analysis results, and for iterative refinement
of deep learning models, will become important tools in a
researcher’s and clinician’s imaging toolset. We also believe
image analysis challenges, such as the MICCAI 2018 CPM
challenge, are important in efforts to develop more robust
methods for image analysis and method assessment and
validation. One of the issues that face machine/deep learning
algorithm developers is the limited amount of ground truth
datasets in biomedical imaging—the small dataset size is
a limitation in our work as well. Thus, in addition to
providing a platform for researchers to evaluate their methods
in a controlled environment, image analysis challenge events
contribute to a growing set of curated datasets that are

valuable resources for development and refinement of future
segmentation and classification algorithms. As part of our work,
we make the datasets used in this challenge available to other
researchers upon request.
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Image registration and segmentation are the two most studied problems in medical

image analysis. Deep learning algorithms have recently gained a lot of attention due

to their success and state-of-the-art results in variety of problems and communities.

In this paper, we propose a novel, efficient, and multi-task algorithm that addresses

the problems of image registration and brain tumor segmentation jointly. Our method

exploits the dependencies between these tasks through a natural coupling of their

interdependencies during inference. In particular, the similarity constraints are relaxed

within the tumor regions using an efficient and relatively simple formulation. We evaluated

the performance of our formulation both quantitatively and qualitatively for registration

and segmentation problems on two publicly available datasets (BraTS 2018 and OASIS

3), reporting competitive results with other recent state-of-the-art methods. Moreover,

our proposed framework reports significant amelioration (p < 0.005) for the registration

performance inside the tumor locations, providing a generic method that does not need

any predefined conditions (e.g., absence of abnormalities) about the volumes to be

registered. Our implementation is publicly available online at https://github.com/TheoEst/

joint_registration_tumor_segmentation.

Keywords: brain tumor segmentation, deformable registration, multi-task networks, deep learning, convolutional

neural networks

1. INTRODUCTION

Brain tumors and more specifically gliomas as one of the most frequent types, are across
the most dangerous and rapidly growing types of cancer (Holland, 2002). In clinical practice,
multi-modal magnetic resonance imaging (MRI) is the primary method of screening and
diagnosis of gliomas. While gliomas are commonly stratified into Low grade and High grade
due to different histology and imaging aspects, prognosis and treatment strategy, radiotherapy
is one of the mainstays of treatment (Stupp et al., 2014; Sepúlveda-Sánchez et al., 2018).
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However, radiotherapy treatment planning relies on tumor
manual segmentation by physicians, making the process tedious,
time-consuming, and sensitive to bias due to low inter-observer
agreement (Wee et al., 2015).

In order to overcome these limitations, numerous methods
have been proposed recently that try to provide tools and
algorithms that will make the process of gliomas segmentation
automatic and accurate (Parisot et al., 2016; Zhao et al., 2018).
Toward this direction, themultimodal brain tumor segmentation
challenge (BraTS) (Menze et al., 2015; Bakas et al., 2017a,b,c)
is annually organized, in order to highlight efficient approaches
and indicate the way toward this challenging problem. In recent
years, most of the approaches that exploit BraTS have been based
on deep learning architectures using 3D convolutional neural
networks (CNNs) similar to VNet (Milletari et al., 2016). In
particular, the best performing approaches use ensembles of deep
learning architectures (Kamnitsas et al., 2018; Zhou et al., 2018),
with autoencoder regularization (Myronenko, 2018) or they even
combine deep learning architectures together with algorithms,
such as conditional random fields (CRFs) (Chandra et al.,
2019). Other top-performing methods in the BraTS 2017 and
2018 challenges used cascaded networks, multi-view and multi-
scale approaches (Wang et al., 2017), generic UNet architecture
with data augmentation and post-processing (Isensee et al.,
2018), dilated convolutions and label uncertainty loss (McKinley
et al., 2018), and context aggregation and localization pathways
(Isensee et al., 2017). A more detailed comparison and
presentation of competing methods in recent BraTS challenges
is presented and summarized in Bakas et al. (2018).

Image registration is a challenging task for medical image
analysis in general and for rapidly evolving brain tumors
in particular, where longitudinal assessment is critical. Image
registration seeks to determine a transformation that will map
two volumes (source and reference) to the same coordinate
system. In practice, we seek a volume mapping function that
changes the coordinate system of the source volume into
the coordinate system of the reference volume. Among the
different types of methods employed in medical applications,
deformable or elastic registration is the most commonly
used (Sotiras et al., 2013). Linear methods are an alternative
but in that case a linear global transformation is sought for
the entire volume. Deformable registration has been addressed
with a variety of methods, including for example surface
matching (Postelnicu et al., 2009; Robinson et al., 2018) or graph
based approaches (Glocker et al., 2009). These methods have
been extended to address co-registration ofmultiple volumes (Ou
et al., 2011). Moreover, some of the most popular methods
traditionally used for the accurate deformable registration
include (Avants et al., 2008; Klein et al., 2009; Shi et al.,
2013). Recently a variety of deep learning based methods
have been proposed, reducing significantly the computational
time but maintaining the accuracy and robustness of the
registration (Christodoulidis et al., 2018; Dalca et al., 2018).
In particular, the authors in Dalca et al. (2018) presented a
deep learning framework trained for atlas-based registration of
brain MR images, while in Christodoulidis et al. (2018) the
authors present a scheme for a concurrent linear and deformable
registration of lung MR images. However, when it comes to

anatomies that contain abnormalities, such as tumoral areas,
thesemethods fail to register the volumes at certain locations, due
to lack of similarity between them. This often leads to distortions
in and around the tumor regions in the deformed image.

To overcome this problem, in this paper, we propose a dual
deep learning based architecture that addresses registration and
tumor segmentation simultaneously, relaxing the registration
constraints inside the predicted tumor areas, providing
displacements and segmentation maps at the same time. Our
framework bears concept similarities with the work presented
in Parisot et al. (2012) where a Markov Random Field (MRF)
framework has been proposed to address both of tumor
segmentation and image registration jointly. Their method
required ∼6 min for the registration of one pair and the
segmentation of one class tumor region was performed with
handcrafted features and classical machine learning techniques
using only one MRI modality. Moreover, there are methods
in the literature that try to address the problem of registration
of brain tumor MRI by registering on atlases or MRIs without
tumoral regions (Gooya et al., 2010, 2012). Here, we introduce
a highly scalable, modular, generic, and precise 3D-CNN
for both registration and segmentation tasks and provide a
computationally efficient and accurate method for registering
any arbitrary subject involving possible abnormalities. To
the best of our knowledge this is the first time that a joint deep
learning-based architecture is presented, showing very promising
results in two publicly available datasets for brain MRI. The
proposed framework provides a very powerful formulation by
introducing the means to elucidate clinical or functional trends
in the anatomy or physiology of the brain via the registration
branch. It further enables the modeling and the detection of brain
tumor areas due to the synergy with the segmentation branch.

2. MATERIALS AND METHODS

Consider a pair of medical volumes from two different patients—
a source S, and a reference R together with their annotations for
the tumor areas (Sseg and Rseg). The framework consists of a bi-
cephalic structure with shared parameters, depicted in Figure 1.
During training the network uses as input a source S and a
reference R volumes and outputs their brain tumor segmentation
masks ̂Sseg and ̂Rseg and the optimal elastic transformation G
which will project or map the source volume to the reference
volume. The goal of the registration part is to find the optimal
transformation to transform the source S to the reference R
volume. In this section, we present the details for each of the
blocks as well as our final formulation for the optimization.

2.1. Shared Encoder
One of the main differences of the proposed formulation with
other registration approaches in the literature is the way that
the source and reference volumes are combined. In particular,
instead of concatenating the two initial volumes, these volumes
are independently forwarded in a unique encoder, yielding two
sets of features maps (called latent codes) Csource and Creference

for the source and the reference volumes, respectively. These two
codes are then independently forwarded into the segmentation
decoder, providing the predicted segmentation maps ̂Sseg and
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FIGURE 1 | A schematic representation of the proposed framework. The framework is composed by two decoders, one which provides tumor segmentation masks

for both S and R images, and one the provides the optimal displacement grid G that will accurately map the S to the R image. The merge bloc will combine the

forward signal of the source input and the reference input (which are forwarded independently in the encoder).

̂Rseg . Simultaneously, the two codes are merged before being
forwarded in the registration decoder—this operation is depicted
in the “Merge” block in Figure 1. The motivation behind
adopting this strategy is based on forcing the encoder to extract
meaningful representations from individual volumes instead of
a pair of volumes. This is equivalent to asking the encoder
discovering a template, “deformation-free” space for all volumes,
and encoding each volume against this space (Shu et al., 2018),
instead of decoding the deformation grid between every possible
pair of volumes. Besides, from the segmentation point of view,
there are no relationship between the tumor maps of the source
volume and the reference volume, so the codes to be forwarded
into the segmentation decoder should not depend on each other.

We tested two merging operators, namely concatenation and
subtraction. Both source and reference images are 4D volumes
whose first dimension corresponds to the 4 different MRI
modalities that are used per subject. After the forward to the
encoder, the codes Csource and Creference are also 4D volumes with
the first dimension corresponding to nf , which is the number
of convolutional filters of the last block of the encoder. Before
Csource and Creference are inserted into the registration decoder,
they are merged, outputting one 4D volume of size 2 × nf in
the case of the concatenation, and of size nf for the elementwise
subtraction operator, both leaving the rest of the dimensions
unchanged. In particular, the subtraction presents the following
natural properties for every coding image CI :

• ∀CI ∈ R
n
:Merge(CI ,CI) = 0

• ∀CI ,CJ ∈ R
n × R

n
:Merge(CI ,CJ) = −Merge(CJ ,CI)

2.2. Brain Tumor Segmentation Decoder
Inspired by the latest advances reported on the BraTS 2018
dataset, we adopt a powerful autoencoder architecture. The

segmentation and registration decoders share the same encoder
(section 2.1) for feature extraction and they provide brain tumor
segmentation masks (̂Sseg and ̂Rseg) for the source and the
reference images. These masks refer to valuable information
about the regions that cannot be registered properly as there
is no corresponding anatomical information on the pair. This
information is integrated into the optimization of the registration
component, relaxing the similarity constraints and preserving to
a certain extent the geometric properties of the tumor.

Variety of loss functions have been proposed in the literature
for the semantic segmentation of 3D medical volumes. In
this paper, we performed all our experiments using weighted
categorical cross-entropy loss and optimizing three different
segmentation classes for the tumor area as provided by the BraTS
dataset. In particular,

Lseg = CE(Sseg ,̂Sseg)+ CE(Rseg ,̂Rseg) (1)

where CE denotes the weighted cross entropy loss. The cross
entropy is calculated for both the source and reference images
and the overall segmentation loss is the sum of the two. Here we
should note that different segmentation losses can be applicable
as for example the dice coefficient (Sudre et al., 2017), focal
loss (Lin et al., 2017), etc.

2.3. Elastic Registration Decoder
In this paper, the registration strategy is based on the
one presented in Christodoulidis et al. (2018), with the
main component being the 3D spatial transformer. A spatial
transformer deforms (or warps) a given image S with a
deformation grid G. It can be represented by the operation,

D = W(S,G),
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where W(·,G) indicates a sampling operation W under the
deformation G and D the deformed image. The deformation is
hence fed to the transformer layer as sampling coordinates for
a backward trilinear interpolation sampling, adapting a strategy
similar to Shu et al. (2018). The sampling process is then
described by

D(Ep) = W(S,G)(Ep) =
∑

Eq

S(Eq)
∏

d

max
(

0, 1−
∣

∣[G(Ep)]d − Eqd
∣

∣

)

,

where Ep and Eq denote pixel locations, d ∈ {x, y, z} denotes an
axis, and [G(Ep)]d denotes the d-component of G(Ep). Moreover,
instead of regressing per-pixel displacements, we predict a matrix
9 of spatial gradients between consecutive pixels along each
axis. The actual grid G can then be obtained by applying an
integration operation on 9 along the x-, y-, and z-axes, which
is approximated by the cumulative sum in the discrete case.
Consequently, two pixels Ep and Ep + 1 will have moved closer,
maintained distance, or moved apart in the warped image, if 9Ep

is respectively < 1,= 1, or > 1.

2.4. Network Architecture
Our network architecture is a modified version of the fully
convolutional VNet (Milletari et al., 2016) for the underlying
encoder and decoders parts, maintaining the depth of the
model and the rest of the filter’s configuration unchanged. The
model, whose computational graph is displayed in Table 1,
comprises several sequential residual convolutional blocks made
of one to three convolutional layers, followed by downsampling
convolutions for the encoder part and upsampling convolutions
for the decoder part.We replaced the initial 5×5×5 convolutions
filter-size by 3 × 3 × 3 in order to reduce the number of
parameters without changing the depth of the model, and also
replace PReLu activations by ReLU ones. In order to speed up
its convergence, the model uses residual connections between
each encoding and corresponding decoding stage for both the
segmentation and the registration decoder. This allows every
layer of the network, particularly the first ones, to be trainedmore
efficiently since the gradient can flow easier from the last layers
to the first ones with less vanishing or exploding gradient issues.
The encoder part deals with 4-inputs per volume, representing
the four different MRI modalities that are available on the BraTS
dataset, an extra 1 × 1 × 1 convolution is added to fuse the
initial modalities. Moreover, the architecture contains 2 decoders
of identical blocks, 1 dedicated to the segmentation of tumors for
the source and reference image and 1 dedicated to the optimal
displacement that will map the source to the reference image.

2.5. Optimization
The network is trained to minimize the segmentation and
registration loss functions jointly. For the segmentation task the
loss function is summarized in Equation (1). For registration, the
classical optimization scheme is to minimize the Frobenius norm
between the R and D image intensities:

Lreg = ||(R− D)||2 + α ‖9 − 9I‖1 (2)

Here, in order to better achieve overall registration, the
Frobenius norm within the regions predicted to be tumors is
excluded from the loss function. We argue that by doing this, the
model does not focus on tumor regions, which might produce
very high norm due to their texture, but rather focuses on the
overall registration task by looking at regions outside the tumor
which contain information more pertinent to the alignment of
the volumes. Here we should mention that on̂Sseg we apply the
same displacement grid as on S, resulting in Dseg = W(̂Sseg ,G).
Further, let̂R0seg and D0

seg be binary volumes indicating the voxels
which are predicted to be outside any segmented regions. Then,
the registration loss can be written as

L
⋆

reg = ||(R− D) · D0
seg ·

̂R0seg ||
2
+ α ‖9 − 9I‖1 (3)

where · is the element-wise multiplication, || · ||2 indicates
the Frobenius norm, 9I is the spatial gradient of the identity
deformation and α is the regularization hyperparameter. The
use of regularization on the displacements 9 is essential in
order to constrain the network to predict smooth deformation
grids that are anatomically more meaningful while at the
same time regularize the objective function toward avoiding
local minimum.

Finally the final optimization of the framework is performed
by the joint optimization of the segmentation and registration
loss functions

L = Lreg + βLseg

where β is a weight that indicates the influence of each of the
components on the joint optimization of the network and was
defined after grid search.

For the training process, the initial learning rate was 2 · 10−3

and subdued by a factor of 5 if the performance on the validation
set did not improve for 30 epochs. The training procedure stops
when there is no improvement for 50 epochs. The regularization
weights α and β were set to 10−10 and 1 after grid search. As
training samples, random pairs among all cases were selected
with a batch size limited to 2 due to the limitedmemory resources
on the GPU. The performance of the network was evaluated
every 100 batches, and both proposed models converged after
nearly 200 epochs. The overall training time was calculated to
∼20 h, while the time for inference of one pair, using four
different modalities was ∼3 s, using an NVIDIA GeForce GTX
1080 Ti GPU.

2.6. Datasets
We evaluated the performance of our method using two publicly
available datasets, namely the Brain Tumor Segmentation
(BraTS) (Bakas et al., 2018) and Open Access Series of Imaging
Studies (OASIS 3) (Marcus et al., 2010) datasets. BraTS contains
multi-institutional pre-operative MRI scans of whole brains with
visible gliomas, which are intrinsically heterogeneous in their
imaging phenotype (shape and appearance) and histology. The
MRIs are all pre-operative and consist of four modalities, i.e.,
4 3D volumes, namely (a) a native T1-weighted scan (T1),
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TABLE 1 | Layer architectures of the shared encoder, the segmentation decoder and the registration decoder.

Name Input Res. input Operations Output shape

ENCODER

Enc1 4D MRI Conv1,8, ReLU, (Conv3,8, ReLU), AddId, (144, 208, 144, 8)

Enc2 Enc1 Conv2,16, ReLU, (Conv3,16, ReLU)*2, AddId (72, 104, 72, 16)

Enc3 Enc2 Conv2,32, ReLU, (Conv3,32, ReLU)*3, AddId (36, 52, 36, 32)

Enc4 Enc3 Conv2,64, ReLU, (Conv3,64, ReLU)*3, AddId (18, 26, 18, 64)

Enc5 Enc4 Conv2,128, ReLU, (Conv3,128, ReLU)*3, AddId (9, 13, 9, 128)

SEGMENTATION DECODER

Dec4seg Enc5 Enc4 DeConv2,64,ReLU, ResConc, (Conv3,64, ReLU)*3, AddId (18, 26, 18, 64)

Dec3seg Dec4seg Enc3 DeConv2,32, ReLU, ResConc, (Conv3,32, ReLU)*3, AddId (36, 52, 36, 32)

Dec2seg Dec3seg Enc2 DeConv2,16, ReLU, ResConc, (Conv3,16, ReLU)*2, AddId (72, 104, 72, 16)

Dec1seg Dec2seg Enc1 DeConv2,8, ReLU, ResConc, (Conv3,8, ReLU), AddId (144, 208, 144, 8)

Dec0seg Dec1seg Conv1,4, Softmax (144, 208, 144, 4)

REGISTRATION DECODER

Merge EnciR, Enc
i
S

For all 1 ≤ i ≤ 5,MEnci = EnciR ⊕ Enci
S

Dec4reg MEnc5 MEnc4 DeConv2,64, ReLU, ResConc, (Conv3,64, ReLU)*3, AddId (18, 26, 18, 64)

Dec3reg Dec4reg MEnc3 DeConv2,32, ReLU, ResConc, (Conv3,32, ReLU)*3, AddId (36, 52, 36, 32)

Dec2reg Dec3reg MEnc2 DeConv2,16, ReLU, ResConc, (Conv3,16, ReLU)*2, AddId (72, 104, 72, 16)

Dec1reg Dec2reg MEnc1 DeConv2,8, ReLU, ResConc, (Conv3,8, ReLU), AddId (144, 208, 144, 8)

Dec0reg Dec1reg Conv1,3, Sigmoid (144, 208, 144, 3)

The sub-architectures are grouped into blocks, one per table line, whose names are indicated in the first column. Each block processed a forward signal as input identified by the second

column. Additionally, both decoders have residual connections from different stages of the encoder, identified by the third column. The blocks are made of a set of successive operations

where Convw,f (resp. DeConvw,f ) stands for a convolutional (resp. deconvolutional) layer with weight size w×w×w and f filters, ReLU—Rectified Linear Unit, AddId—intra-block residual

connection with the output of the first activated convolution of the corresponding block, ResConc—encoder to decoder residual connection from the output of the third column block

to the current signal, Softmax and Sigmoid—finale output activation. * indicates successive repetition of the previous operations in parenthesis. For convolutions and deconvolutions

layers, strides is 1× 1× 1 except for the Conv2,· which is 2× 2× 2. The first layer of the registration decoder indicates the merging operation of the source signal and the reference

signal, which are obtained by inferring them successively in the encoder; ⊕ Indicates elementwise subtraction or channelwise concatenation of the source and reference list of tensors

(forward network signal and four residual connection signals). The last column indicates each block output shape (channels last).

(b) a post-contrast Gadolinium T1-weighted scan (T1Gd), (c)
a native T2-weighted scan (T2), and (d) a native T2 Fluid
Attenuated Inversion Recovery scan (T2-FLAIR). The BraTS
MRIs are provided with voxelwise ground-truth annotations
for five disjoint classes denoting (a) the background, (b) the
necrotic and non-enhancing tumor core (NCR/NET), (c) the
GD-enhancing tumor (ET), (d) the peritumoral edema (ED) as
well as invaded tissue, and finally (e) the rest of the brain, i.e.,
brain with no abnormality nor invaded tissue. Each center was
responsible for annotating their MRIs, with a central validation
by domain experts. We use the original dataset split of BraTS
2018 which contains 285 training samples and 66 for validation.
In order to perform our experiments, we split this training set
into three parts, i.e., train, validation and test sets (199, 26, and
60 patients, respectively), while we used the 66 unseen cases on
the platform to report the performance of the proposed and
the benchmarked methods. Moreover, and especially for the
registration task, we evaluated the performance of the models
trained on BraTS on theOASIS 3 dataset to test the generalization
of the method. We extract from this dataset a subset of 150
subjects which were characterized as either non-demented or
with mild cases of Alzheimer’s disease (AD) using the Clinical
Dementia Rating (CDR). Each scan is made of 3–4 individual T1-
weighted MRIs, which has been intended to reduce the signal-to-
noise ratio visible with single images. The scans are also provided

with annotations for 47 different structures for left and right side
of the brain generated with FreeSurfer. Some samples of both
datasets can be seen in Figure 2.

The same pre-processing steps have been applied for both
datasets. MRIs were resampled to voxels of volume 1 mm3

using trilinear interpolation. Each scan is then centered by
automatically translating their barycenter to the center of
the volume. Ground-truth masks of training and validation
steps were accordingly translated. Each modality of each scan
has been standardized, i.e., the values of the voxels of the
3D subscans were of zero mean and of unit variance. This
normalization step is done independently for each patient and
for each channel in order to equally consider each channel since
modalities have voxels values in completely different ranges.
Finally, these consequent scans are cropped into (144, 208, 144)
sized volumes.

2.7. Statistical Evaluations
Our contributions in this study are three-fold: (i) a multi-
task scheme for joint segmentation and registration; (ii) an
encoding scheme followed by a fusion scheme in the latent
space to aggregate information from the pair of images; and
(iii) a loss formulation (Equation 3) that relaxes the registration
constraints in the tumoral regions. In this section, we present
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FIGURE 2 | Illustration of a slice extracted from two different subjects for both BraTS 2018 and OASIS 3 datasets. The BraTS dataset consists of four modalities (T1,

T1 gadolinium [T1 Gd], T2, T2 FLAIR [Flair]), along with voxelwise annotations for the three tumor tissue subclasses depicting the overall extent of tumors. OASIS 3

consists of a single T1 modality, and images are provided with voxelwise annotations for 47 different normal brain structures for patients without brain tumors.

our extensive experiments to demonstrate the soundness of
our method.

2.7.1. Comparison With Competing Methods
To demonstrate the importance of each component of our
method, we performed multiple experiments to evaluate
performance for both registration and segmentation tasks
by removing one or more components. In particular, we
evaluated 2 merging operators—subtraction and concatenation.
The resulting models are henceforth referred to as “Proposed
concatenation with L

⋆

reg” and “Proposed subtraction with L
⋆

reg ,”
respectively. We further evaluated the importance of the
proposed loss formulation, reporting the performance of the
models without including it in the total loss. This model is called
“w/o L

⋆

reg .” Finally, we also evaluated the performance of the
method without the segmentation decoder, which is reported as
“Proposed concatenation only reg.” and “Proposed subtraction
only reg.,” which again did not use L⋆

reg .
We also benchmark baseline methods, without any of the

proposed contributions. Since our deep learning architecture is
derived from the Vnet (Milletari et al., 2016), this model is
used as baseline for segmentation. This comparison seems fair
since the fully proposed approach can be seen as a Vnet for
the task of segmentation: the shared encoder and the proposed
loss are primarily designed for registration, and have no direct
impact on the segmentation apart from the features learnt in
the encoder. For completeness, the top performing results on
the BraTS (Bakas et al., 2018) challenge are reported, although
we argue that the comparison is unfair since our deep learning
architecture is entirely based on the Vnet (Milletari et al.,
2016), which is not specifically designed to perform well on the
BraTS segmentation task. Finally, we also report the performance
of Voxelmorph (Dalca et al., 2018), a well-performing brain
MRI registration neural network-based approach, although their

entire deep learning structure as well as their grid formulation
is different.

2.7.2. Performance Assessment
For performance assessment of the segmentation task, we
reported the Dice coefficient metric and Hausdorff distance to
measure the performance for the tumor classes Tumor Core
(TC), Enhancing Tumor (ET), and Whole Tumor (WT) as
computed and provided from the BraTS submission website.
These classes are the ones used in the BraTS challenge (Bakas
et al., 2018), but differ from the original ones provided
in the BraTS dataset: TC is the same as the one labeled
in the BraTS dataset for necrotic core (NCR/NET), ET is
the disjoint union of the original classes NCR/NET and
ET, while WT refers to the union of all tumoral and
invaded tissues.

For the registration, we evaluated the change on the
tumor area together with the Dice coefficient metric for the
following categories of the OASIS 3 dataset: brain stem (BS),
cerebrospinal fluid (CSF), 4th ventricle (4V), amygdala (Am),
caudate (Ca), cerebellum cortex (CblmC), cerebellum white
matter (CblmWM), cerebral cortex (CeblC), cerebral white
matter (CeblWM), hippocampus (Hi), lateral ventricle (LV),
pallidum (Pa), putamen (Pu), ventral DC (VDC), and 3rd
ventricle (3V) categories. Here we should mention that for the
experiments with the OASIS 3 dataset, we performed a training
only with the T1-weighted MRIs of the BraTS dataset, in order
to match the available modalities of the OASIS 3 dataset. This
evaluation is important as (i) BraTS does not provide anatomical
annotations in order to evaluate quantitatively the registration
performance and (ii) the generalization of the proposed method
on an unseen dataset is evaluated. For the registration of tumor
tissues, which might not exist in the source or reference MRIs,
we expect the model to register tumor areas while maintaining
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their geometric properties. In particular, we do not really expect
the tumor areas to stay completely unchanged. However, we
expect that the volume of the different tumor types would change
with a ratio similar to the one that the entire source to the
reference volume changes. We calculate this ratio by computing
D
j
seg

S
j
seg

where j = {0, 1, 2, 3} corresponds to the entire brain

and the different tumor classes (NCR/NET, ET, and ED). We
then assess the change of the tumor by calculating the absolute
value of the difference between j = 1 and every other tumor
class. Ideally, we expect a model which preserves the tumor
geometry and shape during inference to present a zero difference
between the entire brain and tumor class ratio.We independently
calculate this difference for each tumor class in order to monitor
the behavior of each class, but also after merging the entire
tumor area.

For statistical significance evaluations between any two
methods, we compute independent t-tests as presented in Rouder
et al. (2009), defining as null hypothesis the evaluation metrics of
the two populations to be equal. We then report the associated
p-value, and the Cohen’s d (Rice and Harris, 2005), which we use
to measure the effect size. Such statistical significance evaluation
is reported in the form (t(n); p; d) where n is the number of
samples for each population, t(n) is the t-value, p is the p-value
and d is Cohen’s d. We defined the difference of two population
means is statistically significant if the associated p-value is lower
than 0.005, and consider, as a rule of thumb, that a value of d
of 0.20 indicates small effect size, 0.50 for medium effect size
and 0.80 for large effect size. All of the results in this paper have
been computed on unseen testing sets, and the performance of all
benchmarked models has been assessed once.

For rigor and for each t-test conducted, we ensure the
following assumptions are met by the underlying distributions:
observations are independent and identically distributed, the
outcome variable follows a normal distribution in the population
(with Jarque and Bera, 1980), and the outcome variable has
equal standard deviations in two considered (sub)populations
[using Levene’s test (Schultz, 1985)]. Finally, when comparing
two populations, each made of several subpopulations, we merge
such subpopulations into a single set, then compute t-tests on the
obtained two gathered-populations.

3. RESULTS

3.1. Evaluation of the Segmentation
Segmentation results for the tumor regions are displayed in
Table 2 for the case of the same autoencoder architecture trained
only with a segmentation decoder (Baseline segmentation) and
the proposed method using different merging operations and
with or without L⋆

reg . One can observe that all evaluated methods
perform quite similarly with Dice higher than 0.66 for all the
classes and models. The baseline segmentation model reports

slightly better average Dice coefficient and average Haussdorf

distance measurements, with an average Dice 0.03 higher, and
an average Hausdorff95 distance 0.6 higher than the proposed

with concatenation merging operator, although none of these

differences are found statistically significant as indicated in

Table 3. In particular, for Dice, the minimum received p-value
was p = 0.24, reported between baseline segmentation and

proposed concatenation with L
⋆

reg together with an associated

Cohen’s d = 0.21 indicating a small size effect. Similarly, for
Hausdorff95, the minimum received p-value was p = 0.46,
reported this time between baseline segmentation and proposed
concatenation w/o L

⋆

reg with d = 0.13 also indicating a small
size effect. These numbers show that the means differences
between those two models and any other two models are not
statistically significant. This is very promising if we take into
account that our proposed model is learning a far more complex
architecture addressing both registration and segmentation, with
the same volume of training data without significant drop of the
segmentation performance.

The superiority of the baseline segmentation seems to be
presented mainly due to higher performance for the TC class
[baseline segmentation and proposed subtraction with L⋆

reg : t(66) =
1.41; p = 0.16; d = 0.24]. Moreover, the concatenation operation
seems to perform slightly better for the tumor segmentation
than the subtraction, with at least 0.02 improvement for
average Dice coefficient, although this improvement is
not statistically significant [proposed concatenation with
L

⋆

reg and proposed subtraction with L
⋆

reg : t(66) = 0.62;
p = 0.53; d = 0.11].

Moreover, even if one of the main goals of our paper is
the proper registration of the tumoral regions, we perform a

TABLE 2 | Quantitative results of the different methods on the segmentation task on the BraTS 2018 validation dataset.

Average Dice Hausdorff95

Method Dice Hausdorff95 ET WT TC ET WT TC

Baseline segmentation 0.79 ± 0.29 7.0 ± 9.6 0.73 ± 0.29 0.87 ± 0.13 0.75 ± 0.24 4.7 ± 8.2 7.2 ± 9.4 9.2 ± 8.9

Proposed

Concatenation w/o L⋆

reg 0.74 ± 0.29 8.3 ± 10.4 0.70 ± 0.29 0.87 ± 0.11 0.65 ± 0.29 6.2 ± 9.8 7.8 ± 11.1 11.3 ± 7.1

Concatenation with L⋆

reg 0.73 ± 0.29 7.6 ± 9.9 0.68 ± 0.30 0.87 ± 0.12 0.66 ± 0.28 6.3 ± 9.9 5.6 ± 4.2 10.8 ± 6.6

Subtraction w/o L⋆

reg 0.76 ± 0.27 7.8 ± 10.3 0.71 ± 0.28 0.88 ± 0.10 0.70 ± 0.24 6.5 ± 10.8 7.4 ± 11.0 10.0 ± 7.4

Subtraction with L⋆

reg 0.76 ± 0.27 7.9 ± 10.1 0.71 ± 0.29 0.88 ± 0.10 0.69 ± 0.25 5.8 ± 9.6 7.7 ± 11.5 11.1 ± 8.3

Dice and Hausdorff95 are reported for the three classes Whole Tumor (WT), Enhancing Tumor (ET), and Tumor Core (TC) together with their average values. Results are reported with

mean across patients (MRIs) along with the associated standard deviation. We upload our predictions on the official leaderboard of the validation set (66 patients).
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TABLE 3 | Statistical significance of the proposed methods with Milletari et al. (2016) on the BraTS segmentation task.

Average Dice Hausdorff95

Method Dice Hausdorff95 ET WT TC ET WT TC

Baseline segmentation 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Proposed

Concatenation w/o L⋆

reg 0.32 0.46 0.55 1.00 0.03 0.34 0.74 0.14

Concatenation with L⋆

reg 0.24 0.72 0.33 1.00 0.05 0.31 0.21 0.24

Subtraction w/o L⋆

reg 0.55 0.65 0.69 0.62 0.24 0.28 0.91 0.58

Subtraction with L⋆

reg 0.55 0.60 0.69 0.62 0.16 0.48 0.79 0.21

For each model (line) and each performance measure (column), the displayed value is the p-value, up to two significant figures, of the statistical significance between the model and

Milletari et al. (2016) for the corresponding measure (Dice or Hausdorff95) on the corresponding tumor class (ET, WT, TC, or the union of the three latter in the two columns Average)

on the 66 testing samples of BraTS. No p-values are statistically significant between all of the proposed variants and Milletari et al. (2016). Blue line represents the reference model, red

cells indicate no statistical significant p-values (cutoff 0.005).

FIGURE 3 | The segmentation maps produced by the different evaluated methods displayed on post-contrast Gadolinium T1-weighted modalities. We present the

provided segmentation maps both on our test dataset and on the BraTS 2018 validation dataset. NCR/NET, necrotic core; ET, GD-enhancing tumor; ED, peritumoral

edema.

comparison with the two best performing methods presented in
BraTS 2018 (Isensee et al., 2018; Myronenko, 2018) evaluated
on the validation dataset of BraTS 2018. In particular, the
Myronenko (2018) reports an average dice of 0.82, 0.91,
and 0.87 for ET, WT, and TC, respectively, while Isensee
et al. (2018) reports 0.81, 0.91, and 0.87. Both methods
outperform our proposed approach on the validation set
of BraTS 2018 by integrating novelties specifically designed
to the tumor segmentation task of BraTS 2018. In this
study, we based our architecture in a relatively simple and
widely used 3D fully convolutional network (Milletari et al.,
2016) although different architectures with tumor specific

components (trained on the evaluated tumor classes), trained
on more data (similar to the ones that are used from Isensee
et al., 2018), or even integrating post-processing steps can
be easily integrated boosting considerably the performance of
our method.

Finally, in Figure 3 we represent the ground truth and
predicted tumor segmentation maps comparing the baseline
segmentation and our proposed method using the different
components and merging operators. We present three different
cases, two from our custom test set, on which we have the
ground truth information and one from the validation set of the
BraTS submission page. One can observe that all the methods
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provide quite accurate segmentation maps for all the three
tumor classes.

3.2. Evaluation of the Registration
3.2.1. Evaluation on Anatomical Structures
The performance of the registration has been evaluated on an
unseen dataset with anatomical information, namely OASIS 3. In
Table 4 the mean and standard deviation of the Dice coefficient
for the different evaluated methods are presented. With rigid we
indicate the Dice coefficient after the translation of the volumes
such that the center of the brainmass is placed in the center of the
volume. It can be observed that the performance of the evaluated
methods are quite similar something which indicates that the
additional tumor segmentation decoder does not decrease the
performance of the registration. On the other hand, it provides
additional information about the areas of tumor in the image.
From our experiments, we show that the proposed formulation
can provide registration accuracy similar to the recent state-
of-the-art deep learning based methods (Dalca et al., 2018)
with approximately the same average Dice values, that is 0.50
for (Dalca et al., 2018) and 0.49 for all but one of the proposed
variants. Moreover, again this difference in the performance
between (Dalca et al., 2018) and the proposed method is not
statistically significant with t(150) = 0.64; p = 0.52; d =

0.07. From our comparisons, the only significant difference on
the evaluation of the registration task was reported between
the proposed method concatenation only reg. with an average
difference of dice reaching 0.05% and with maximum p-values
calculated with Proposed concatenation with L

⋆

reg [t(200) = 3, 33;

p < 10−3; d = 0, 38]. From our experiments, we saw that the
merging operation affects the performance of the only reg.model
a lot, with the concatenation reporting the worst average dice of
all the methods.

In Figure 4 we present some qualitative evaluation of the
registration component, by plotting three different pairs and
their registration from all the evaluated models. The first two
columns of the figure depict the source and reference volumes
together with their tissue annotations. The rest of the columns
present the deformed source volume together with the deformed
tissue annotations for each of the evaluates methods. Visually, all
methods perform well on the overall shape of the brain with the
higher errors in the deformed annotations being presented at the
cerebral write matter and cerebral cortex classes.

Finally, we should also mention that the subjects of the OASIS
3 dataset do not contain regions with tumors. However, our
proposed formulation provides tumor masks so that we could
evaluate the robustness of the segmentation part. Indeed, our
model for all the different combinations of merging operations
and loss functions, reported a precision score of more than 0.999,
indicating its robustness for the tumor segmentation task.

3.2.2. Evaluation on the Tumor Areas
Even if the proposed method reports very similar performance
with models that perform only registration, we argue that it
addresses better the registration of the tumor areas, maintaining
their geometric properties, as can be inferred in Table 5. This
statement is also supported by the statistical tests we performed T
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FIGURE 4 | Qualitative evaluation of the registration performance for the different evaluated methods, displayed on T1 modalities. For an easier visualization, we group

left and right categories and only display the following nine classes: caudate (Ca), cerebellum cortex (CblmC), cerebellum white matter (CblmWM), cerebral cortex

(CeblC), cerebral white matter (CeblWM), lateral ventricle (LV), pallidum (Pa), putamen (Pu), ventral DC (VDC).

to evaluate the difference in performance between the methods,

while registering tumor areas (Table 6). In particular, for each of

the tumor classes NCR/NET, ET, and ED the difference between

(Dalca et al., 2018) and the proposed method subtraction with

L
⋆

reg was significant with NCR/NET: t(200) = 10.69; p < 10−3;

d = 1.07—ET: t(200) = 10.51; p < 10−3; d = 1.05—ED:
t(200) = 8.05; p < 10−3; d = 0.81. The similar behavior
was obtained when the evaluation was performed by merging

Frontiers in Computational Neuroscience | www.frontiersin.org 10 March 2020 | Volume 14 | Article 17238

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Estienne et al. Brain Registration and Tumor Segmentation

TABLE 5 | The table presents the average distance between (i) the ratio of the area

of the deformed tumor mask to the area of the original tumor mask, and (ii) the

ratio of area of the reference brain volume to the area of the source brain volume.

Method NCR/NET ET ED Combined

Dalca et al. (2018) 2.27 ± 2.68 0.67 ± 0.55 1.96 ± 3.03 0.62 ± 0.51

Proposed

Concatenation only reg. 0.51 ± 0.61 0.26 ± 0.19 0.71 ± 0.94 0.22 ± 0.15

Concatenation w/o L
⋆

reg 1.35 ± 1.14 0.64 ± 0.41 1.80 ± 1.82 0.64 ± 0.42

Concatenation with L
⋆

reg 0.26 ± 0.20 0.26 ± 0.13 0.30 ± 0.28 0.21 ± 0.12

Subtraction only reg. 1.34 ± 0.77 0.77 ± 0.59 2.02 ± 1.65 0.68 ± 0.52

Subtraction w/o L
⋆

reg 1.74 ± 1.35 0.72 ± 0.72 2.38 ± 1.74 0.74 ± 0.76

Subtraction with L
⋆

reg 0.24 ± 0.17 0.25 ± 0.13 0.23 ± 0.22 0.20 ± 0.11

Lower values are better. The average has been calculated over 200 testing pairs from the

BraTS 2018 dataset (NCR/NET, ET and ED). On top of the evaluation per tumor class,

we also conduct an evaluation by merging all the tumor classes into just one class (called

combined). Bold indicates best performance per column.

TABLE 6 | Summary of the statistical difference between the Dalca et al. (2018)

and the proposed method on the BraTS 2018 dataset for the tumor preservation

task.

Method NCR/NET ET ED Combined

Dalca et al. (2018) < 10−3
< 10−3

< 10−3
< 10−3

Proposed

Concatenation only reg. < 10−3 0.540 < 10−3 0.130

Concatenation w/o L⋆

reg < 10−3
< 10−3

< 10−3
< 10−3

Concatenation with L⋆

reg 0.282 0.442 0.006 0.386

Subtraction only reg. < 10−3
< 10−3

< 10−3
< 10−3

Subtraction w/o L⋆

reg < 10−3
< 10−3

< 10−3
< 10−3

Subtraction with L⋆

reg 1.000 1.000 1.000 1.000

For each model (line) and each performance measure (column), the displayed value is the

p-value (up to 3 significant figures) of the statistical significance between the model and

subtraction with L
⋆

reg for the tumor preservation measure on the corresponding tumor

class (NCR/NET, ET, ED, and their union in the column Combined). Blue line represents

the reference model, red cells indicate no statistical significant p-values while green cells

represents statistical significant p-values.

all 3 tumor classes into one (denoted Combined). Again, we
reported significant differences between (Dalca et al., 2018) and
the proposed method: t(200) = 11.38; p < 10−3; d = 1.14.

To evaluate the performance of the different variants of our
proposedmethod, we compared the performance of the proposed
subtraction with L

⋆

reg and concatenation with L
⋆

reg that reported
the best performances. Indeed, we did not find significant
changes between the two different components except the edema
class [t(200) = 2.78; p < 10−3; d = 0.28]. Moreover, the
proposed concatenation only reg. reports also competitive results
without using the segmentation masks. In particular, even if the
specific method does not report very good performance on the
registration evaluated on anatomical structures (section 3.2.1),
it reports very competitive performance on the Combined and
the smallest in size tumor class (ET). However, for the other
two classes the difference on the performance that it reports
in comparison to the proposed variant subtraction with L

⋆

reg

is significant different: NCR/NET: t(200) = 6, 03; p < 10−3;

d = 0, 60—ED: t(200) = 7, 03; p < 10−3; d = 0, 70. Here we
should mention that even though subtraction only reg.works very
well for the registration of the anatomical regions (section 3.2.1),
it reports one of the worst results about tumor preservation,
with values close to the ones reported by Dalca et al. (2018).
This indicates again that the only reg. model is highly sensitive
to the merging operation and it cannot simultaneously provide
good performance on tumor areas and registration of the entire
volume, proving its inferiority to the proposed method using the
with L

⋆

reg .
Independently of themerging operation with both registration

and segmentation tasks, i.e., with or without L⋆

reg , we find that
the proposed approach works significantly better in preserving
tumor areas when optimized with L

⋆

reg than without [NCR/NET:
t(200) = −14.33; p < 0.005; d = 1.43—ET: t(200) =

−9.99; p < 0.005; d = 1.00—ED: t(200) = −14.17;
p < 0.005; d = 1.42—Combined: t(200) = −10.94;
p < 0.005; d = 1.09].

Figure 5 presents some qualitative examples from the BraTS
2018 to evaluate the performance of the different methods. The
first two columns present the pair of images to be registered
and segmented and the rest of the columns the deformed source
image with the segmented tumor region superimposed. One
can observe that the most of the methods that are based only
on registration (Dalca et al., 2018, proposed concatenation and
subtraction only reg.) together with the proposed concatenation
and subtraction w/o L

⋆

reg do not preserve the geometry of the
tumor, tending to significantly reduce the area of tumor after
registration, or intermix the different types of tumor. On the
other hand the behavior of the proposed with L

⋆

reg seems to be
much better, with the tumor area properly maintained in the
deformed volume.

Moreover, in Figure 6 we provide a better visualization
for the displacement grid inside the tumor area, highlighting
the importance of Equation (3). Indeed, one can observe
that the displacements inside the tumor area are much
smoother and relaxed when we use the information about the
tumor segmentation.

4. DISCUSSION

In this study, we proposed a novel deep learning based
framework to address simultaneously segmentation and
registration. The framework combines and generates features,
integrating valuable information from both tasks within
a bidirectional manner, while it takes advantage of all the
available modalities, making it quite robust and generic. The
performance of our model indicates highly promising results that
are comparable to recent state-of-the-art models that address
each of the tasks separately (Dalca et al., 2018). However, we
reported a better behavior of the model in the proximity of
tumor regions. This behavior has been achieved by training
a shared encoder that generates features that are meaningful
for both registration and segmentation problems. At the same
time, these two problems have been coupled in a joint loss
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FIGURE 5 | Qualitative evaluation of the tumor deformation of the different evaluated methods, displayed on T1 modalities. Each line is a sample, with source MRI in

the first column to be registered on reference MRI in the second column. BraTS ground-truth annotations are plotted onto the source MRI. Seven models are

benchmarked, one for each of the remaining columns which display the result of applying the predicted grid onto the source MRI. For each model and each line, the

source ground-truth annotation masks of the source MRI were also registered with the predicted deformation grid, and the consequently obtained deformed

ground-truth were plotted onto each deformed source MRI to illustrate the impact of all methods regarding the preservation of tumor extent.

FIGURE 6 | Comparison of the registration grid of the proposed model using the subtraction operation with and w/o L⋆

reg. This figure is obtained by sampling three

random pairs of test patients, and computing the predicted registration fields, which are displayed by line for the two models, and in consecutive columns, one for

each of the three dimensions, showing the registration field as a warped grid (grayscale) and as a colored map obtained by computing its norm pixelwise (blue-green

map). Furthermore, the contour of the Whole Tumor is plotted on top of each image, obtained from the ground truth segmentation.
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function, enforcing the network to focus on regions that exist in
both volumes.

Even if we could not do a proper comparison with Parisot
et al. (2012) which shares similar concepts, our method
provides very good improvements. In particular, we train
both problems at the same time, without using pre-calculated
classification probabilities. The method proposed in Parisot
et al. (2012) is based on a pre-calculated classifier indicating
the tumoral regions. The authors provided their segmentation
results by adapting Gentle Adaboost algorithm and using
different features including intensity values, texture, such as
Gabor filters and symmetry. After training the classifier they
defined an MRF model to optimize their predictions by taking
into account pairwise relations. By adopting this strategy, the
used probabilities for the tumoral regions are not optimized
simultaneously with the registration, something that it is not the
case in our methodology. In particular, by sharing representation
between the registration and segmentation tasks we argue that
we can create features that are more complex and useful
sharing information that comes from both problems. By using
a deep learning architecture that is end-to-end trainable, we
are able to extract features that are suitable to deal with
both problems automatically. Moreover, our implementation is
modular and scalable permitting easy integration of multiple
modalities, something that is not so straightforward with Parisot
et al. (2012) as it is more complicated to adapt and calculate
the different similarity measures and classifiers taking into
account all these modalities. Finally, we should mention that
our method takes advantage of GPU implementation needing
only a few seconds in order to provide segmentation and
displacement maps while the method in Parisot et al. (2012)
needs∼6 min.

Both qualitative and quantitative evaluations of the proposed
architecture highlight its great potentials reporting more
than 0.66 Dice coefficient for the segmentation of the
different tumor areas, evaluated on the publicly available
BraTS 2018 validation set. Our joint formulation reported
performance similar to the model trained only for segmentation,
while simultaneously addressing the registration problem.
Moreover, both concatenation and subtraction operators report
similar performances, an expected result for the specific
segmentation task, since the merging operation is mainly
used on the registration decoder, even if it affects the
learned parameters of the encoder and thus indirectly the
segmentation decoder.

Concerning the comparison between top performing
tumor segmentation methods, although our formulation
underperforms the winning methods of BraTS 2018, we want
to highlight two major points. First of all, our formulation
is modular in the sense that different network architectures
with optimized components for tumor segmentation can
be evaluated depending on the application and the goals of
the problem. For our experiments we chose a simple VNet
architecture (Milletari et al., 2016) proving that the registration
components do not significantly hinder the segmentation

performance and indicating the soundness of our method
however any other encoder decoder architecture can be used
and evaluated. Secondly, the main goal of our method was the
proper registration and segmentation of the tumoral regions
together with the rest of the anatomical structures and that was
the main reason we did not optimize our network architecture
according to the winning methods of BraTS 2018. However,
we demonstrated that with a very simple architecture, we can
register properly tumoral and anatomical structures while
segmenting with more than 76% of Dice the tumoral regions.

Continuing with the evaluation of the registration
performance, once more the joint multi task framework
reports similar and without statistical difference performance
with formulations that address only the registration task
evaluated on anatomical regions that exist on both volumes.
However, we argue that abnormal regions registration is
better addressed both in terms of qualitative and quantitative
metrics. Moreover, from our experiments we observed that
subtraction of the coding features of the tumors reports higher
performances for the registration of the tumor areas. This
indicates that the subtraction can capture and code more
informative features for the registration task. What is more, we
achieved very good generalization for all the deep learning based
registration methods, as they reported very stable performance
in a completely unseen dataset (part of the OASIS3).

Even if, from our experiments, the competence of our
proposed method for both registration and segmentation tasks
is indicated, we report a much better performance for the
registration of the tumoral regions. In particular, in one joint
framework we were able to produce efficiently and accurately
tumor segmentation maps for both source and reference
images together with their displacement maps that register the
source volume to the reference volume space. Our experiments
indicated that the proposed method with the L

⋆

reg variant
register properly the anatomical together with the tumoral
regions with statistical significance compare to the rest of
the methods for the latter. Both qualitative and quantitative
evaluations of the different components indicate the superiority
of the with L

⋆

reg variant of the proposed method for brain
MRI registration with tumor extent preservation. Using such a
formulation, the network focus on improving local displacements
on tissues anywhere in the common brain space instead of
minimizing the loss within the tumoral regions, which are
empirically the regions with the highest registration errors.
Consequently, the network improves its registration performance
on non-tumor regions (as discussed in section 3.2.1), while
also relaxing the obtained displacements inside those predicted
tumor regions.

Some limitations of our method include the number of
parameters that have to be tuned during the training due
to the multi task nature of our formulation, namely α and
β that affect the performance of the network. Moreover,
due to the multimodal nature of the input and the two
decoders, the network cannot be very deep due to GPU
memory limitations.
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Although the pipeline was built using different patients for
the registration task as a proof of concept, such tool could
have numerous applications in clinical practice, especially when
applied in different images acquired from the same patient.
Regarding the radiotherapy treatment planning, several studies
have shown that significant changes of the targeted volumes in
the brain occurred during radiotherapy raising the question of
replanning treatment to reduce the amount of healthy brain
irradiated in case of tumor reduction, or to re-adapt the treatment
for brain tumors that grow during radiation (Champ et al.,
2012; Yang et al., 2016; Mehta et al., 2018). Since MR-guided
linear accelerator will offer the opportunity to acquire daily
images during RT treatment, the proposed tool could help with
automatic segmentation and image registration for replanning
purposes, and it could also allow accurate evaluation of the
dose delivered in targeted volumes and healthy tissues by
taking into account the different volume changes. Moreover,
while changes of imaging features under treatment is known
to be associated with treatment outcomes in several cancer
diseases (Vera et al., 2014; Fave et al., 2017), the registration
grid computed from two same-patient acquisitions realized at
different times allows an objective and precise evaluation of the
tumor changes.

Future work involves a bettermodeling of the prior knowledge
through a more appropriate geometric modeling of tumor
proximity that encodes more accurately the registration errors
in these areas. This modeling can be integrated into the existing
formulation with some additions specific to tumor losses that will
further constrain its change. Moreover, we have noticed that the
use of Fobenius norm during the training of the registration part
is very sensitive to artifacts in the volume, preventing the network
process from being completely robust. In the future, we aim

to evaluate the performance of the proposed framework using
adversarial losses in order to better address multimodal cases.
Finally, means to automatically obtain the training parameters α

and β would be investigated.
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Accurate segmentation of different sub-regions of gliomas such as peritumoral edema,

necrotic core, enhancing, and non-enhancing tumor core from multimodal MRI scans

has important clinical relevance in diagnosis, prognosis and treatment of brain tumors.

However, due to the highly heterogeneous appearance and shape of these tumors,

segmentation of the sub-regions is challenging. Recent developments using deep

learning models has proved its effectiveness in various semantic and medical image

segmentation tasks, many of which are based on the U-Net network structure with

symmetric encoding and decoding paths for end-to-end segmentation due to its high

efficiency and good performance. In brain tumor segmentation, the 3D nature of

multimodal MRI poses challenges such asmemory and computation limitations and class

imbalance when directly adopting the U-Net structure. In this study we aim to develop

a deep learning model using a 3D U-Net with adaptations in the training and testing

strategies, network structures, and model parameters for brain tumor segmentation.

Furthermore, instead of picking one best model, an ensemble of multiple models trained

with different hyper-parameters are used to reduce random errors from each model

and yield improved performance. Preliminary results demonstrate the effectiveness of

this method and achieved the 9th place in the very competitive 2018 Multimodal Brain

Tumor Segmentation (BraTS) challenge. In addition, to emphasize the clinical value of

the developed segmentation method, a linear model based on the radiomics features

extracted from segmentation and other clinical features are developed to predict patient

overall survival. Evaluation of these innovations shows high prediction accuracy in both

low-grade glioma and glioblastoma patients, which achieved the 1st place in the 2018

BraTS challenge.

Keywords: brain tumor segmentation, ensemble, 3D U-net, deep learning, survival prediction, linear regression

INTRODUCTION

Gliomas are the most common primary brain malignancies, with different degrees of
aggressiveness, variable prognosis and various heterogeneous histological sub-regions, i.e.,
peritumoral edema, necrotic core, enhancing, and non-enhancing tumor core (Wrensch et al., 2002;
Louis et al., 2016). This intrinsic heterogeneity of gliomas is also portrayed in their radiographic
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phenotypes, as their sub-regions are depicted by different
intensity profiles disseminated across multimodal MRI (mMRI)
scans, reflecting differences in tumor biology (Cha, 2006;
Upadhyay andWaldman, 2011). Quantitative analysis of imaging
features such as volumetric measures after manual/semi-
automatic segmentation of the tumor region has shown
advantages in image-based tumor phenotyping over traditionally
used clinical measures such as largest anterior-posterior,
transverse, and inferior-superior tumor dimensions on a
subjectively-chosen slice (Kumar et al., 2012; Gillies et al., 2016).
Such phenotyping may enable assessment of reflected biological
processes and assist in surgical and treatment planning. For
brain tumors, including sub-regions, segmentation is challenging
due to their highly heterogeneous appearance and shape, which
may be further complicated by imaging artifacts such as motion
and/or field inhomogeneity.

In recent years, deep convolutional neural networks (DCNN)
have demonstrated effectiveness in natural and medical image
segmentation tasks, including those associated with brain tumor
segmentation (Akkus et al., 2017; Havaei et al., 2017; Iqbal et al.,
2018; Naceur et al., 2018). However, one main issue in DCNN
methods is the reliance on a large number of training data with
expert annotations, which are often difficult to obtain, especially
from multiple institutions. To provide such a dataset to the
scientific community and a platform to compare and evaluate
different automatic segmentation algorithms for brain tumors,
the Multimodal Brain Tumor Segmentation Challenge (BraTS)
was organized using multi-institutional pre-operative MRI scans
for the segmentation of intrinsically heterogeneous brain tumor
sub-regions (Menze et al., 2015; Bakas et al., 2017a,b,b), with the
dataset growing every year. In the 2018 challenge, 285 training
cases, 66 validation cases, and 191 testing cases were provided.
Not surprisingly, DCNN-based models have quickly become the
mainstream in BraTS challenges (Bakas et al., 2018). Similar
to classification networks, one common DCNN method for
segmentation is to use the extracted small patches to predict
the class for the center voxel and slide these patches to cover
the entire volume; to improve the classification accuracy of the
center voxel, multi-scale patches with different receptive field
sizes can be extracted simultaneously as in Kamnisas et al.
(2017). In contrast, U-Net is a widely used network structure
that consists of a contracting path to capture context and a
symmetric expanding path that enables precise localization and
segmentation for the entire input image (Ronneberger et al.,
2015). If the input images and the corresponding output label
maps are 3-dimensional (3D), the original U-Net construction
can be extended by replacing 2D operations with their 3D
counterparts (Cicek et al., 2016). However, in such cases the
requirement for memory and computation speed is greatly
increased so that it may not be possible to use the entire 3D
volume as the input and output. To address this issue, one
method is to extract smaller 3D patches as the network input
and generate the label maps corresponding to these patches
(Li et al., 2018). To achieve a good segmentation performance,
data augmentation and optimization of patch extraction strategy
and network hyper-parameters are often performed. However,
in practice, it is very challenging to achieve a single “optimized”

model and it is possible that any model can suffer from random
errors. Using a similar concept as in traditional machine learning
tasks, an ensemble of multiple models can generally improve the
classification/segmentation accuracy as individual models may
make different errors and by averaging or majority voting, the
final number of errors can be reduced (Tan and Gilber, 2003).
In this study we propose the use of an ensemble of 3D U-Nets
with different hyper-parameters for brain tumor segmentation.
For each 3D U-Net, the smaller 3D patches will be extracted
to minimize memory overhead. To avoid extracting too many
background patches and not learning sufficient information to
segment tumors, a customized probability function is used to
guide the patch extraction process. Furthermore, during testing,
a sliding window approach is used to predict class labels with
overlap between patches as a testing augmentation method to
improve accuracy. On the network structure, althoughmany new
methods have been proposed that show superior performance
than the U-Net in segmentation tasks, such as the densely
connected network (Dense-Net) (Jegou et al., 2016; Stawiaski,
2019), a recent paper claimed that optimization on various
training and testing details based on vanilla U-Net can yield
robust and superior performance (Isensee et al., 2018). In our
study we will compare the U-Net with Dense-Net for this task
when other strategies are kept the same.

Survival prediction has a very high clinical value in prognosis
and patient management. In the BraTS challenge, to demonstrate
one potential clinical application of the segmentation results,
the task to predict patient overall survival measured in days
was also included. Additional data including patient age and
resection status was provided. For training cases, the overall
survival was also available for part of the dataset. Although
complicated models such as DCNN or random forests (Tustison
et al., 2015) can be used to capture sophisticated relationships
between the input features and the output of overall survival, one
main issue with these methods is overfitting, especially in this
task as the training data is very small compared with the huge
number of possible input features. Furthermore, the radiomics
features are often difficult to explain as they lack direct clinical
correspondence. Using the segmentation method proposed in
this study, the sub-regions of brain tumor are expected to be
accurately segmented so that various quantitative features can be
calculated. To reduce overfitting, we will utilize the quantitative
results and a robust linear model while limiting the number of
extracted features. The correlations of these features with overall
survival will also be analyzed.

METHODS

For the brain tumor segmentation task, the steps in our proposed
method include pre-processing of the images, patch extraction,
trainingmultiple models using a generic 3DU-Net structure with
different hyper-parameters, deployment of eachmodel for the full
volume prediction and the final ensemble step. For the survival
prediction task, the steps include feature extraction,model fitting,
and deployment. Data description andmethodological details are
provided in the following sections.
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Dataset and Image Pre-processing
The datasets used in this study are provided by the BraTS
challenge organizers and contains multiple-institutional
clinically-acquired pre-operative multimodal MRI scans of
glioblastoma (GBM/HGG) and low-grade glioma (LGG)
containing (a) native (T1) and (b) post-contrast T1-weighted
(T1Gd), (c) T2-weighted (T2), and (d) Fluid Attenuated
Inversion Recovery (FLAIR) volumes. They were acquired
with different clinical protocols and various scanners. All the
imaging datasets have been segmented manually, by one to
four raters, following the same annotation protocol, and their
annotations were approved by experienced neuro-radiologists.
Annotations comprise the GD-enhancing tumor (ET—label
4), the peritumoral edema (ED—label 2), and the necrotic
and non-enhancing tumor core (NCR/NET—label 1). During
training, 285 imaging cases with annotations were provided
to all challenge participants. An additional 66 cases were used
as validation data which did not include ground truth labels.
Additionally, participants were able to upload their predictions
multiple times and get the corresponding evaluation results.
During the testing phase, 191 cases were provided and the teams
could only upload their results once in a 48-h period and receive
the final score.

To accommodate for the differences in imaging protocols,
pre-processing was performed by the challenge organizers. The
images from different MR sequences of the same subject were
first co-registered to the same anatomical template, the SRI24
multichannel atlas of normal adult human brain (Rohlfing et al.,
2010), followed by interpolation and zero-padding to the same
resolution (1 mm3) and same matrix size (240x240x155). The
field-of-view (FOV) was then unified accordingly (240mm along
the left-right and anterior-posterior directions and 155mm
along the superior-inferior direction). Brain extraction was also
performed using the method described in Bauer et al. (2012).
To improve the homogeneity and suppress noise, N4 bias-
correction (Tustison et al., 2010) and denoising using non-local
means (Manjon et al., 2010) are often used in various studies.
However, although these pre-processing steps can yield visually
improved image quality, as shown in our previous study (Feng
et al., 2018), we did not achieve an improved segmentation result
on the validation data set. Considering the bias-correction and
denoising algorithms are computationally intensive and time-
consuming, we did not perform these two steps. To unify the
intensity range, eachMR sequence is scaled to be between 0 and 1.

To achieve the second task to predict patient overall survival,
during training, 163 cases out of the total 285 had age, resection
status and survival information available. However, the cases
from The Cancer Imaging Archive (TCIA) and a few other
cases did not have the resection status available so they were
labeled as “NA.” For all other cases, the status was either
Gross Total Resection (GTR) or Subtotal Resection (STR). The
survival time was given in days. During validation, 53 cases
with age and resection status were provided. Similar with the
segmentation task, the participants could upload the prediction
multiple times. However, only 28 cases with resection status GTR
were evaluated. During testing, 130 cases were provided and 77
were evaluated.

Non-uniform Patch Extraction
For simplicity, we will use foreground to denote all tumor pixels
and background to denote the rest. There are several challenges
in directly using the whole image as the input to a 3D U-
Net: (1) the memory of a moderate GPU is often 12 Gb so
that in order to fit the model into the GPU, the network needs
to greatly reduce the number of features and/or the layers,
which often leads to a significant drop in performance as the
expressiveness of the network is much reduced; (2) the training
time will be greatly prolonged since more voxels contribute to
calculation of the gradients at each step and the number of
steps cannot be proportionally reduced during optimization; (3)
as the background voxels dominate the whole image, the class
imbalance will cause the model to focus on background if trained
with uniform loss, or prone to false positives if trained with
weighted loss that favors the foreground voxels. Therefore, to
more effectively utilize the training data, smaller patches were
extracted from each subject. As the foreground labels contain
much more variability and are the main targets to segment, more
patches from the foreground voxels should be extracted.

In implementation, during each epoch of the training process,
a random patch was extracted from each subject using non-
uniform probabilities. In extraction, the voxel was first chosen
as the center of the patch and the corresponding patch was
extracted based on the desired size. To make sure that each
extracted patch is within the whole image so that no padding is
required, the voxels close to the edge of the image were excluded
when determining the patch center. From all voxels valid to
be the patch center, the sampling was performed based on the
probability function pi,j,k calculated using the following equation:

pi,j,k =
si,j,k

∑

i,j,k si,j,k
(1)

in which si,j,k = 1 for all voxels with maximal intensity lower
than the 1st percentile, si,j,k = 6 for all foreground voxels and
si,j,k = 3 for the rest. These values were picked to greatly favor
the tumor regions and slightly favor the regions with normal
brain tissue compared with the background voxels. However, the
exact ratio was determined empirically without rigorous tuning.
For each training iteration, one patch was extracted using this
method. Since normal brain images are symmetric along the left-
right direction, a random flip along this direction was made after
patch extraction. No other augmentation was applied.

Before training, the per-input-channel mean and standard
deviation of extracted patches were calculated by running the
extraction process 400 times, with each time using a randomly
selected training subject. The extracted patches were then
normalized by subtracting the mean and dividing by the standard
deviation along each input channel.

Network Structure and Training
A 3D U-Net based network was used as the general structure,
as shown in Figure 1. Zero padding was used to make sure
the spatial dimension of the output is the same with the input.
For each encoding block, a VGG like network (Simonyan and
Zisserman, 2014) with two consecutive 3D convolutional layers
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of kernel size 3 followed by the activation function and batch
norm layers were used. The parametric rectilinear function
(PReLU) (Xu et al., 2015), given as:

f (x) = max (0, x) − αmax (0,−x) (2)

was used as the activation function (with trainable parameter α).
The number of features was doubled while the spatial dimension
was halved with every encoding block, as in the conventional U-
Net structure. A dropout layer with ratio 0.5 was added after the
last encoding block. Symmetric decoding blocks were used with
skip-connections from corresponding encoding blocks. Features
were concatenated to the de-convolution outputs. The extracted
segmentation map of the input patch was expanded to the multi-
class the ground truth labels (3 foreground classes and the
background). Cross entropy was used as the loss function. In
addition to a uniform loss among all classification labels, the
weighted loss, in which different labels can be assigned with
different weights, was also used.

It is shown that a wider network with large number of features
and a deeper network can increase the expressiveness and thus
performance of the network (Wu et al., 2016); furthermore, the
larger the patch size, the more spatial information to be used
in one patch; however, as mentioned before, the memory of the
GPU is often a limiting factor with 3D inputs. In our study, we
balanced the three parameters (number of encoding/decoding
blocks, input features at the first layer and patch size) to make
sure that the GPU memory is sufficient while favoring one
in one model. Specifically, if the patch size is increased, to
keep the same rule of doubling the number of filters every
block, the number of blocks cannot be more than 3 without
exceeding GPU memory. The exact choice of these parameters
was made empirically with the general principle to be as different
as possible to reduce the correlations of random errors by a
single parameter set. In addition, the weighted loss function,
which favors the foreground voxels, can often improve the
sensitivity but sacrifice specificity as it punishes more for missed
foreground segmentations. Therefore, for each combination of
these parameters, we used both the weighted and uniform loss
functions. Although the increase of the number of models may
further benefit the final results, in a way that is similar with
more averages, the time for training and testing will also increase
proportionally. Therefore, a total of six model was selected, with
detailed parameters shown in Table 1. N denotes the input patch
size, M denotes the number of encoding/decoding blocks and f

TABLE 1 | Detailed parameters for all 6 3D U-Net models.

Model# M N f Loss Type

1 3 64 96 Uniform

2 3 64 96 Weighted

3 4 64 96 Uniform

4 4 64 96 Weighted

5 3 80 64 Uniform

6 3 80 64 Weighted

denotes the input features at the first layer. For the weighted loss
function, 1.0 was used for background and 2.0 was used for each
of the foreground classes.

Training was performed on a Nvidia Titan Xp GPU with 12
Gb memory. Six hundred forty epochs were used. As mentioned
earlier, during each epoch, only one patch was extracted
from every subject. Subject orders were randomly permuted
every epoch. Implementation was based on the TensorFlow
framework. Batch size was set to 1 during training. During
testing, due to the sensitivity associated with smaller batch sizes,
all batch norm layers did not use the running statistics but
the statistics of the batch itself. This is the same as instance
normalization (Ulyanov et al., 2016) when the batch size is 1 as
it normalizes each feature map with its own mean and standard
deviation. The Adam optimizer was used with an initial learning
rate of 0.0005 without further adjustments during training as it
can self-adjust the rate of gradient update so that no manual
reduction of learning rate is necessary (Kingma and Ba, 2014).
The total training time was about 60 h.

Deployment of Each Segmentation Model
and Ensemble
Although the fully convolutional segmentation network can be
applied to the input images of any size, due to the fact that
the whole network with the entire image as the input cannot fit
into the memory during deployment, a sliding window approach
needs to be used to get the output for each subject. However, as
significant padding was made to generate the output label map
at the same size as the input, boundary voxels of a patch were
expected to yield unstable predictions when sliding the window
across the whole image without overlaps. To alleviate this
problem, a stride size at a fraction of the window size was used
and the output probability was averaged. In implementation,
the deployment window size was chosen to be the same as the
training window size, and the stride was chosen as ½ of the
window size. For each window, the original image and left-right
flipped image were both predicted, and the average probability
after flipping back the output of the flipped input was used as
the output. Therefore, each voxel, except for a few on the edge,
will be predicted 16 times when sliding across all directions.
Although smaller stride sizes can be used to further improve
the accuracy with more averages, the deployment time will be
increased 8 times for every ½ reduction of the window size and
thus quickly becomes unmanageable. Using the parameters as
mentioned on the same GPU, it took about 1min to generate the
output for the entire volume per subject. Instead of performing
a thresholding on the probability output to get the final labels,
the direct probability output after the last convolutional layer
was saved for each model as a measure of “confidence” for
each model.

The ensemble modeling process was rather straightforward.
The probability output of all classes from each model was
averaged to get the final probability output. The class with the
highest probability was selected as the final segmentation label
for each voxel.
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FIGURE 1 | An example 3D U-Net structure with 3 encoding and 3 decoding blocks.

Comparison of U-Net and Dense-Net
The Dense-Net was implemented following the standard
structure as in Jegou et al. (2016). Specifically, the block number
was 4, layers per block was 12 and the growth rate was 12. In
terms of architecture, the Dense-Net-BC (further compression)
was used. The uniform cross entropy function was used as the
loss function. As a fair comparison, only the U-Net with 4
encoding/decoding blocks and uniform loss function (model 3 in
Table 1) was compared. The patch extraction and augmentation
were kept the same for the two models. As the evaluation using
the BraTS validation and testing datasets requires submission
to the server of the BraTS organizers, which has a limit on the
number of allowed submissions, we only used the BraTS training
dataset and randomly split it with a 3:2 ratio for training and
validation in this comparison experiment.

Survival Prediction
To predict the post-surgery survival time measured in days,
extracted imaging features and non-imaging features were used
to construct a linear regression model. As MR images often
exhibit variations in imaging intensity and contrast, the intensity
values of the images were not directly used in our survival
modeling. Instead, six simple volumetric features were calculated
from the segmented labels of the three tumor sub-regions:
the enhancing tumor core, non-enhancing and necrotic region
and edema, with two features per region. During training, the

ground truth label maps were used; during validation and testing,
the automatically segmented label maps were used. For each
foreground class, the volume (V) was determined by summing
up the voxels whereas the surface area (S) was calculated
by summing up the magnitude of the gradients along three
directions, as described in the following equations

VROI =

∑

i,j,k

si,j,k (3)

SROI =

∑

i,j,k

si,j,k

√

(
∂s

∂i
)
2

+ (
∂s

∂ j
)
2

+ (
∂s

∂k
)
2

(4)

in which ROI denotes a specific foreground class and si,j,k = 1
for voxels that are classified to belong to this ROI and si,j,k = 0
otherwise. The volume represents the size of each sub-region and
thus may reflect the severity of the tumor. It is expected that the
larger the volume, the poorer the prognosis. The surface area is
another measure of the size; however, together with volume, it
can also serve as a measure for the shape. Given a fixed volume,
themore irregular the shape, the larger the surface area; therefore,
a larger surface area may indicate the aggressiveness of the tumor
and the increased difficulty in surgery.

Age and resection status were used as non-imaging clinical
features. As there were two classes of resection status and many
missing values of this status, a two-dimensional feature vector
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was used to represent the status, given as GTR: (1, 0), STR: (0,
1), and NA: (0, 0). A linear regression model was employed after
normalizing each input feature to zero mean and unit standard
deviation. As the input feature size is 9, the risk for overfitting is
greatly reduced.

For evaluation, in addition to mean and median square error
of survival time predictions, the classification of subjects as
long-survivors (e.g., >15 months), short-survivors (e.g., <10
months), and mid-survivors (e.g., between 10 and 15 months)
was performed. For the challenge, ranking of the participating
teams was based on accuracy (i.e., the number of correctly
classified patients) with respect to this grouping.

RESULTS

Comparison of U-Net and Dense-Net
Among the 285 training subjects, 171 were used for training
the two models and 114 were used for testing. The dice indexes
of the enhanced tumor (ET), whole tumor (WT) and tumor
core (TC) were calculated and compared, as shown in Figure 2.
The blue bars show the results from U-Net and the green
bars show those from Dense-Net. The two methods yield very
similar performances with the Dense-Net having slightly better
performance in tumor core. However, the paired Student’s t-
test was performed between the two methods and showed no
statistically significant differences when the threshold of p-value
was set at 0.05.

Brain Tumor Segmentation
All 285 training subjects were used in the training process.
66 subjects were provided as validation. The dice indexes,
sensitivities and specificities, 95% Hausdorff distances of ET, WT,

FIGURE 2 | Comparison of dice indexes using U-Net and Dense-Net. Green

bars show the results using U-Net; blue bars show the results using

Dense-Net. The two models have very similar performances without any

statistically significant differences.

and TC were automatically calculated after submitting to the
CBICA’s Image Processing Portal. ET corresponds to label 4 in the
direct output label maps; WT is the union of all non-background
label maps including label 1, 2, and 4; TC is the union of ET and
NCR/NET, or label 1 and 4. With multiple submissions, we were
able to compare the performances of each individual model and
the final ensemble.

Table 2 shows themeanDice scores (Dice) and 95%Hausdorff
distances (Dist) of ET, WT and TC in mm for the 6 individual
models and the ensemble of them. The model with the best
performance of each metric is highlighted. For the evaluation,
sensitivity and specificity were also calculated to determine
over- or under-segmentations of tumor sub-regions. Detailed
descriptions of the evaluation metrics were provided in Menze
et al. (2015). As we found that sensitivity and specificity were
highly correlated with the Dice indexes, they are not included
in the table. The best performance of each evaluation metric is
highlighted. For WT, all 3D U-Net models perform similarly,
except for a slightly worse performance with model 4. However,
model 4 has the highest Dice for ET. The rankings based on
Dice scores are also not consistent with the rankings based on
the distance measures. This shows that no single parameter
set has clear advantage over others. However, the ensemble
of them has the best overall Dice scores as compared with
each individual model. Paired student’s t-tests were performed
between each model and the ensemble on Dice scores with the
red scores showing statistically inferior performances of one
model compared with the ensemble (p < 0.05). For WT, model
1–5 all showed significant inferior performances. For model
6, although no statistical significance was found, the p-values
were close to 0.05. The distance metrics show a wider range and
the ensemble does not achieve the smallest values. However,
as the Haudorff distance is largely determined by the “worst”
pixels, it may be less reliable in obtaining an overall performance
evaluation as compared with Dice scores. Despite this, the
metrics in the ensemble method for all three sub-regions are
all on the lower end, showing increased robustness. It is also
noticed that weighted cross-entropy loss has high sensitivity but
lower specificity compared with the uniform counterpart, which
is likely due to the fact that by assigning more weights to the
foreground, the network tends to be more aggressive in assigning
foreground labels.

Figures 3, 4 show two slices (axial slice 76 and 81)
of the automatically segmented labels overlaid on the

TABLE 2 | Performances of each individual model and the ensemble.

Model # Dice_ET Dice_WT Dice_TC Dist_ET Dist_WT Dist_TC

1 0.7839 0.9061 0.8233 4.0496 4.0401 6.5389

2 0.7681 0.9070 0.8126 4.2215 6.1359 6.0561

3 0.7538 0.9072 0.8236 4.7615 5.7021 9.0000

4 0.7874 0.9001 0.8088 3.9195 6.3093 6.9586

5 0.7704 0.9061 0.8227 4.0314 4.7068 6.5905

6 0.7819 0.9097 0.8217 3.9368 3.6666 6.3705

Ensemble 0.7946 0.9114 0.8304 3.9679 3.7842 6.5234

Bold values show the model with the best performance of each metric.
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T1Gd and T2 images, respectively. The showed case was
“Brats18_CBICA_BHF_1” and was randomly selected from
the validation dataset for demonstration. A single model may
suffer from under- or over-segmentation while the average of
multiple models achieves a more stable performance, which is
also closer to the ground-truth, as shown with the improved Dice
scores. Furthermore, the ensemble of all 6 models yields a much
smoother boundary for different sub-regions and eliminates a
few isolated regions, which are likely false positives.

In 191 testing cases, as only one submission was allowed, we
submitted the final ensemble results for evaluation. The mean
Dice scores for ET, WT and TC were 0.754, 0.878, and 0.799
and the 95%Hausdorff distances were 20.29, 7.41, and 22.06mm,
respectively. It is also noted that 2 of the testing cases failed to
predict any tumor voxels, resulting in Dice scores of 0. Compared
with validation cases, the average performance for testing cases
was much worse.

The paper published by the challenge organizers (Bakas et al.,
2018) summarized the performance by all 63 participating teams,
including ours. The ranking was based on the testing cases
as only one submission is allowed to avoid learning from the
submissions. Our team (xfeng) achieved the 9th place in the
segmentation task [Figure 7 in Bakas et al. (2018)]. However, the
differences among the top teams were relatively small.

Overall Survival Prediction
Figure 5 plots the extracted features against the overall survival
in the training data. The correlation coefficients between the
six radiomic features from images and the overall survival
were also calculated as well as between age and the survival.
Negative correlations between imaging features and the survival
are observed, indicating that the larger the specific tumor sub-
regions, the shorter the survival will be. To better illustrate
this trend, we binned the overall survival into the short-term
(<10 months), medium-term (10–15 months) and long-term
(>15 months) and drawn the box plots for survivals, as shown
in Figure 6. The general trend is consistent with the previous
results, showing that the larger the volume and surface, the worse
the prognosis. The correlation between age and survival is also
expected. Furthermore, the correlation between age and survival
is the strongest among all selected features. For resection status,
patients who underwent GTR have longer survival rates than
the STR patients. However, no statistical differences were found
using a Student’s t-test.

A multivariate linear regression model was trained with all
the features from 163 training subjects. For the 28 validation
cases, the accuracy was 0.321. The mean and median errors
were 314.8 and 278.85 days, respectively. For the 77 testing
cases, accuracy was 0.61 corresponding to mean and median
errors of 481.4 and 185.22 days, respectively. It should be
noted that the accuracy for the testing cases was much higher
than for the validation cases. We did not use the validation
cases to tune any parameters in training the model due to
potential overfitting. Our testing performance ranked 1st among
all participants, indicating the robustness of the linear model.
Compared with other participating teams, who used radiomics
and/or machine learning based modeling, this simple strategy

yielded the best accuracy. It is noted that one team used the age
as the only predictor and used a linear regression model similar
to our method and achieved the 3rd place in survival task, as
summarized in Bakas et al. (2018).

DISCUSSION AND CONCLUSIONS

In this paper we developed a brain tumor segmentation method
using an ensemble of 3D U-Nets. Six networks with different
numbers of encoding/decoding blocks, input patch sizes and
different weights for loss were trained and ensembled together
by averaging the final prediction probabilities. The results
showed improvements with the ensemble model compared with
any of the single models. For the survival prediction task,
we extracted six simple features from the segmentation labels
and used a multivariate linear regression by combining them
with non-imaging clinical features such as age and resection
status. The survival prediction achieved 1st place among all
challenge participants.

In terms of network structure, we found it very difficult to
pick the “best” model and/or hyper-parameter set since most
models perform very similarly. The comparison between U-Net
and Dense-Net showed that it is hard to pick a clear winner
for network structure. It is indeed one disadvantage of DCNN
as the “black-box” nature of the network makes it challenging
to analyze the effect of network structure and parameter except
from the final performance. Furthermore, the extremely long
computation times and randomness in training the model
and selected validation datasets makes comparison of different
models difficult. In this paper, we empirically determined a few
design options such as the usage of 3D U-Net and non-uniform
patch extraction. Multiple models with architectural variation
can form an ensemble to overcome random errors made by any
individual model. Similar to using averages in measurements to
improve signal-to-noise ratio, in which the marginal increase of
performance can reduce as the number of averages increases,
we aim to strike a balance between training and validation
time and the expected performance. The ensemble yielded an
improved performance in both quantitative measures and visual
examination; however, one limitation of our approach is the
lack of objective measures to achieve optimal combination of
models. Instead, we empirically determined number of models
to be 6 and chose the corresponding hyperparameters. An
interesting alternative is to use grid search to gain an optimal
set of hyperparameters, which is currently a popular research
topic; however, one possible concern is that this may lead to
overfitting as the validation set is much smaller (66 cases)
compared with the training and testing dataset; to mitigate this
concern, N-fold cross validation can be used in combination
with the grid search method, which will be performed in
future studies.

Compared with the patch-based model that only predicts
the center pixel, the 3D U-Net predicts the segmentation
label map for the full input. As it is limited by the GPU
memory to use the full image as the input, smaller patches
are extracted. However, this can lead to reduced receptive field,
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FIGURE 3 | Automatically segmented sub-regions from models 1–6 and the ensemble model. The underlying image is the corresponding T1Gd from the validation

case “Brats18_CBICA_BHF_1.” Red, yellow and blue delineate the predicted boundaries of the total tumor, enhanced tumor core, and peritumoral edema,

respectively.

FIGURE 4 | Automatically segmented sub-regions from model 1–6 and the ensembled model. The underlying image is the corresponding T2 from the validation case

“Brats18_CBICA_BHF_1.” Red, yellow and blue delineate the predicted boundaries of the total tumor, enhanced tumor core, and peritumoral edema, respectively.

which is even worse for the pixels on the edge as only half
of the receptive field contains information. We hypothesize
that with a much larger patch size such as 128x128x128,
the performance can be improved, however, the majority of
GPUs only have 12 Gb memory, which cannot deal with
such an input without significantly sacrificing the network
complexity. To overcome the reduced receptive field of the

edge pixels, we used significant overlap during deployment in a
sliding windows fashion and average the output, which shows
performance improvement.

For pre-processing, although in many studies the bias
correction was commonly used, as in our previous experiment,
we did not find any significant benefit in the proposed
method. Although bias correction can greatly improve the
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FIGURE 5 | Relationships between each extracted feature and the overall survival. The correlation coefficients are shown as well. Age shows the strongest negative

correlation with survival and all imaging features show moderate to very weak negative correlations.

quality of the image by removing inhomogeneity artifacts and
thus segmentation performance for any intensity-based method,
DCNN may be able to learn and overcome any bias in the
image so that it may not be necessary to pre-compensate for it.
As it is time-consuming to run the bias correction, we did not
perform this step in our final experiments. However, additional
experiments on other datasets are required to continue the
investigation on this topic.

For the segmentation results, as we can get the evaluation for
each individual case, it is noted that the median metrics were
significantly higher than the mean metrics. For example, the
median Dice scores were 0.870, 0.926, and 0.911 for ET, WT,
and TC in the final ensemble model. It makes sense in that the
theoretical maximum Dice score is 1 and minimum Dice score is
0. However, we noted that in several cases, the Dice scores were
as low as 0 for ET and TC, meaning that the model completely
missed the corresponding regions. Figure 7 shows an example
(“Brats18_TCIA10_195_1”) with 0 Dice score for ET with post-
contrast T1. Red and blue show the contours for WT and edema,
respectively. No ET is detected in this case. However, it is indeed
very difficult to identify the enhanced regions as the contrast
enhancement is weak. Most of the subjects had the WT Dice
score larger than 0.9, indicating very high segmentation quality.
However, one case had a much lower Dice of 0.63. A careful
examination showed that this case predicted a very small tumor
region and the contrast was visually weak. It shows that although
in most cases the automatic segmentation yields very accurate
result, in difficult cases with reduced contrast and/or small tumor
region, the automatic result may be sub-optimal and manual
expert examination and correction is still required.

Comparing the testing with validation cases, we noticed
a significant gap in performance. Due to the design of the
challenge, the participants can submit multiple times for the
validation cases to gain any performance improvements so that
the model may overfit on the validation cases; however, in
our study we did not use the validation cases to perform any
hyper-parameter tuning to select an optimal model. Therefore,
the performance differences are likely due to more difficult
cases in the testing dataset, including the two that the model
completely failed. One possible reason is that the testing data
covers a wide range of MR imaging protocols and field strength,
some even with moderate to severe artifacts due to motion
and/or inhomogeneity in one or multiple sequences, causing
difficulty in achieving a consistent segmentation performance.
Further investigation to continue to improve the performance
and robustness of the model, especially for these difficulty cases,
will be performed.

Our segmentationmethod ranked 9th in the challenge. The 1st
place winner used a patch size of 128x128x128 with autoencoder
regularization (Myronenko, 2019) and the 2nd place used an
optimized U-Net (Isensee et al., 2019). As all the top teams had
very similar performances and there were many different detailed
strategies in implementation, it is unclear which ones are the
dominating factor for the superior performance. One possible
strategy is to apply post-processing to our method as the removal
of vessels may have a significant impact on the final score. We
also participated in the 2017 BraTS challenge using a singlemodel
(model 1) and ranked 6th in it [Figure 5 in Myronenko (2019)],
showing that the U-Net can be competitive in this challenge with
optimization. Further study will be performed on this topic.
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FIGURE 6 | Relationships between the volume and surface features and the binned overall survival (short-, medium-, and long-term survival). The general trend

shows that the smaller the volume and surface, the longer the survival.

FIGURE 7 | One case (“Brats18_TCIA10_195_1”) from the validation dataset showing failed segmentation for ET region on post-contrast T1. Red and blue show the

boundaries for whole tumor and edema, respectively. No enhanced region is detected. It is indeed very difficult to determine the exact enhanced areas in the images,

even for human experts.
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For the survival prediction task, since the model is very likely
to overfit with the given small dataset and since patient overall
survival is affected by many aspects which are not captured in
this dataset, we used a multivariate linear regression model as the
safest option to minimize overfitting, although at the cost of its
expressiveness. As volumetric features are assumed to be most
relevant to overall survival, we only included the volumes and
surface areas of different sub-regions and ignored other high-
order features to reduce overfitting. In addition, these features
are easy to interpret as they have direct clinical correspondences;
therefore, their clinical adoption can be potentially much easier.
This proved to be effective in the challenge; although exploration
of additional features and more expressive models with a
larger dataset could possibly improve the accuracy of survival
prediction. Furthermore, adding other clinical features such
as molecular and genetic types may continue to improve the
accuracy of prognosis.

In conclusion, we developed an automatic brain tumor
segmentation method using an ensemble of 3D U-Nets and
showed the superiority over a single model. Based on the
segmentation results, we extracted a few simple features
and examined their correlations with the overall survival. A
multivariate linear regression model was trained to predict the
survival and showed high accuracy.
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Automatic segmentation of brain tumors has the potential to enable volumetric measures

and high-throughput analysis in the clinical setting. Reaching this potential seems almost

achieved, considering the steady increase in segmentation accuracy. However, despite

segmentation accuracy, the current methods still do not meet the robustness levels

required for patient-centered clinical use. In this regard, uncertainty estimates are a

promising direction to improve the robustness of automated segmentation systems.

Different uncertainty estimation methods have been proposed, but little is known about

their usefulness and limitations for brain tumor segmentation. In this study, we present

an analysis of the most commonly used uncertainty estimation methods in regards to

benefits and challenges for brain tumor segmentation. We evaluated their quality in terms

of calibration, segmentation error localization, and segmentation failure detection. Our

results show that the uncertainty methods are typically well-calibrated when evaluated

at the dataset level. Evaluated at the subject level, we found notable miscalibrations

and limited segmentation error localization (e.g., for correcting segmentations), which

hinder the direct use of the voxel-wise uncertainties. Nevertheless, voxel-wise uncertainty

showed value to detect failed segmentations when uncertainty estimates are aggregated

at the subject level. Therefore, we suggest a careful usage of voxel-wise uncertainty

measures and highlight the importance of developing solutions that address the

subject-level requirements on calibration and segmentation error localization.

Keywords: segmentation, brain tumor, uncertainty estimation, quality, deep learning

1. INTRODUCTION

Automated segmentation holds promise to improve the treatment of brain tumors by providing
more reliable volumetric measures for treatment response assessment (Reuter et al., 2014) or by
establishing new possibilities for high-throughput analysis, such as radiomics (Gillies et al., 2015).
Over the past years, the improvements in automated brain tumor segmentation methods led to a
steady increase in performance. This increase has two main reasons. First, the amount of annotated
data has increased, leading to larger and more diverse datasets. Second, the available segmentation
methods have evolved rapidly, especially with deep neural networks, which can leverage vast
amounts of data. Although the results are reported to be close or on par with human performance
(Meier et al., 2016; Bakas et al., 2018), there are still concerns about the clinical acceptability due to
lower levels of robustness when compared to humans (Bakas et al., 2018). Possible reasons of this
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lack of robustness comprise the large variability of the imaging
properties (e.g., different vendors, magnetic field strength,
artifacts), and the intrinsic heterogeneity of brain tumors itself.

One promising direction to alleviate the problem of
robustness is using uncertainty estimates of automated
segmentation results. In segmentation, where a class label
is assigned to each voxel, the uncertainty typically reflects
the confidence level of the predicted class label. In that sense,
uncertainty estimates provide additional information on a
method’s prediction and might be employed in various ways,
e.g., as visual feedback, to guide or automate corrections via
segmentation error localization, or for segmentation failure
detection at the patient level (i.e., systems outputting a single
estimate reflecting the quality of the automated segmentation).
Methods producing uncertainty estimates for neural networks
exist for over 20 years (MacKay, 1992; Neal, 1995) and evolved
steadily (Blundell et al., 2015; Hernández-Lobato and Adams,
2015) but have only recently been adapted for large and
complex deep models, such as those employed for brain tumor
segmentation. The most popular methods are: (a) Monte-Carlo
(MC) dropout proposed by Gal and Ghahramani (2016), (b)
aleatoric uncertainty estimation introduced by Kendall and
Gal (2017), and (c) uncertainty from ensembles as shown by
Lakshminarayanan et al. (2017). Their popularity is mainly due
to their ability to be used with state-of-the-art segmentation
methods, requiring only minor modifications to architecture
and training.

The additional information provided through the uncertainty
estimates might be employed to quantify the segmentation
performance or as a post-processing step to correct automatic
segmentations. Being able to reliably quantify the segmentation
performance is crucial when using uncertainty estimates in
clinical applications. Roy et al. (2019) and Wang et al.
(2019) quantified the segmentation performance at structure
level by using structure-wise uncertainty estimates as a proxy
to predict the Dice coefficient of automated segmentation
results. Similarly, Eaton-Rosen et al. (2018) obtained improved
calibration accuracy and more reliable confidence intervals of
brain tumor volume estimates from structure-wise uncertainty.
The segmentation quality can also be assessed at subject
level, which is of interest in clinical applications to flag
possible failure cases for expert review. For brain tumor cavity
segmentation (Jungo et al., 2018b) did so by aggregating voxel-
wise uncertainty. In skin lesion segmentation (DeVries and
Taylor, 2018) proposed to train a separate model predicting the
segmentation’s Dice coefficient based on the input image, the
automated segmentation result, and the voxel-wise uncertainty
estimates. Further, the uncertainty estimates can be used to
correct automated segmentations. Nair et al. (2018) and Graham
et al. (2019) showed improved results by using uncertainty
estimates to exclude highly uncertain multiple sclerosis lesions
and glands, respectively. Both works exclude structures based
on uncertainty and thus use task-related knowledge (e.g.,
multi-lesion segmentation). Directly correcting voxel predictions
based on uncertainty is not suggested since this requires
to overrule the segmentation model that was optimized to
perform the segmentation task. This is especially true when

segmentation and uncertainty estimates are provided by the
same model.

Although uncertainty estimation methods have been applied
to different segmentation tasks, little is known on their usefulness
and limitations, nor a common evaluation of their quality
has been reported for medical image segmentation. Therefore,
we analyzed the most commonly used uncertainty estimation
methods in regards to benefits and challenges for brain tumor
segmentation, which is one promising clinical application for
computer-assisted medical image segmentation. We considered
the methods’ calibration, their segmentation error localization,
and their segmentation failure detection ability (see Figure 1 for
an overview). This work builds on our previous work on the
quality of uncertainties in medical image segmentation (Jungo
and Reyes, 2019) and it is extended here in three aspects. First,
based on our findings on observed deficiencies of voxel-wise
uncertainty estimation approaches, we extend the work with
experiments focusing on subject-level aggregation of uncertainty
estimates. Second, to increase the clinical relevance of the
analyses, we built and evaluated all methods for all three brain
tumor labels (contrary to a simplified whole-tumor segmentation
approach). Third, based on our previous work on the links
between segmentation performance and quality of uncertainty
estimates (Jungo et al., 2018a), we performed an experiment
analyzing the effect of the training dataset size on the quality of
uncertainty estimates.

2. MATERIALS AND METHODS

2.1. Data
We used the BraTS 2018 training dataset (Menze et al., 2015;
Bakas et al., 2017a,b,c, 2018) consisting of 285 subjects with
high- and low-grade brain tumors. Each subject comprises
images of the four standard brain tumor magnetic resonance
(MR) sequences: T1-weighted (T1), T1-weighted post-contrast
(T1c), T2-weighted (T2), and fluid-attenuated inversion recovery
(FLAIR). Additionally, each subject holds a manual expert
segmentation of three tumor sub-compartments: edema (ED),
enhancing tumor (ET), and necrotic tissue combined with non-
enhancing tumor (NCR/NET). In the official BraTS evaluation,
these sub-compartments are combined into three hierarchical
labels: whole tumor, tumor core, and enhancing tumor. Whole
tumor (WT) is a combination of all tumor sub-compartments
(i.e., ED, ET, NCR/NET), tumor core (TC) combines ET and
NCR/NET, and enhancing tumor (ET) is defined by the ET
sub-compartment. Aiming at yielding uncertainty estimates
for these hierarchical tumor regions, we combined the tumor
sub-compartment labels into the hierarchical labels before the
training of the automated segmentation models.

The BraTS 2018 dataset comes pre-processed; the subjects and
MR images are co-registered to the same anatomical template,
resampled to unit voxel size (1×1×1 mm3), and skull-stripped.
We additionally normalized each MR image subject-wise to zero
mean and unit variance. For all our experiments, we subdivided
the BraTS training dataset into a split of 100 training, 25
validation, and 160 testing subjects, stratified by the tumor grade.
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FIGURE 1 | Overview of the analysis performed for the uncertainties produced by different uncertainty estimation methods. The red color indicates additions

introduced by these methods with respect to the baseline.

2.2. Experimental Setup
We used U-Net-like (Ronneberger et al., 2015) architectures
to asses uncertainty estimation methods. The reason for using
U-Net-like architectures is twofold. First, the widely used U-
Net-like architectures are still state-of-the-art in brain tumor
segmentation (Isensee et al., 2018; Myronenko, 2018) and,
second, their simplicity minimizes architectural influences in the
uncertainty estimates. Inspired by Nikolov et al. (2018), our U-
Net processes anisotropic subvolumes of five consecutive axial
slices to predict the corresponding center slices. As in Nikolov
et al. (2018), we adopted a full-slice view which motivated us to
use 2D+1D convolutions (i.e., 2D in-plane convolution followed
by 1D out-plane convolution) instead of using 3D convolutions.
By considering only the valid part of the convolution, each 1D
convolution in the encoder part thereby reduces the off-plane size
by two, leading to a fully 2D decoder. The architecture consists
of four pooling/upsampling steps with two convolutions for each
encoder and decoder level. Every convolution is followed by
dropout (p = 0.05) (Srivastava et al., 2014), batch normalization
(Ioffe and Szegedy, 2015), and ReLU activation (Glorot et al.,
2011). The architecture has four input channels corresponding
to the four MR images (i.e., T1, T1c, T2, FLAIR) and three
sigmoid outputs, one for each of the three tumor regions (i.e.,
WT, TC, ET). We note that a single softmax output that includes
all labels is prohibited by the hierarchy of the tumor regions. A
detailed description of the network architecture can be found
in the Supplementary Section 1.1. Adaptations of the presented
architecture to the individual uncertainty estimationmethods are
described in section 2.3).

We used a common training scheme for all uncertainty
estimationmethods. This scheme consists of training the network
for 50 epochs, from where we selected the best performing
models based on the mean Dice coefficient across labels on the

validation set. Furthermore, we used Adam optimizer (Kingma
and Ba, 2015) (learning rate: 10−4, β1: 0.9, β2: 0.999, ε: 10

−8) to
optimize the cross-entropy loss in mini-batches of 24. Extensive
fine-tuning of the individual methods might introduce large
differences in segmentation performance. Therefore, in order
to minimize the influence of the segmentation performance on
the uncertainty estimates, we purposely omitted extensive fine-
tuning of the individual methods. Likewise, we did not perform
any data augmentation to reduce possible influences on the
uncertainty estimates.

2.3. Uncertainty Estimation Methods
For our experiments, we considered five methods (Figure 1A)
producing voxel-wise uncertainty estimates: one baseline, three
common methods, and one auxiliary approach. The three
common methods were selected due to their popularity in
medical image segmentation, stemming from their simple
integration into state-of-the-art segmentation methods.

2.3.1. Baseline: Softmax/Sigmoid Uncertainty
Although the softmax/sigmoid output is arguably a probability
measure (Gal and Ghahramani, 2016), it is implicitly produced
by classification networks. Therefore, we considered it as a
reference comparison and named it baseline. We used the
normalized entropy

H = −
[

prlog
(

pr
)

+ (1− pr)log
(

1− pr
)] 1

log(2)
∈ [0, 1] (1)

as a measure of uncertainty, with pr being the sigmoid output of
the network (see section 2.2) for tumor region r.
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2.3.2. MC Dropout
As shown by Gal and Ghahramani (2016), test-time dropout
can be interpreted as an approximation of a Bayesian neural
network. If applied during test time, dropout creates stochastic
network samples that can be viewed as Monte-Carlo samples
drawn from the posterior distribution of the network’s weights.
The foreground probability pr of the tumor region r can be
obtained by

pr =
1

T

T
∑

t=1

pr,t ,

where T is the number of samples. We used the normalized
entropy (Equation 1) as a measure of uncertainty.

We considered four different dropout strategies. The first
strategy consists of applying MC dropout throughout all layers
(see presented architecture in section 2.2), whose minimal
dropout (p = 0.05) was intended as regularization. The second
strategy is inspired by existing work in segmentation uncertainty
(Kendall et al., 2015; Nair et al., 2018), where dropout is applied
only at key positions. Accordingly, we modified the architecture
(see section 2.2) and applied a prominent dropout (p = 0.5) at
the center positions of the U-Net architecture only, i.e., before
the pooling and after the upsampling operations (cf. illustration
of MC dropout in Figure 1A). The third strategy is similar to
the second but introduces the center dropout (p = 0.5) only at
the two lowest pooling/upsampling steps. In a fourth strategy,
we replaced the dropout of the initial architecture by concrete
dropout (Gal et al., 2017). Concrete dropout learns the dropout
probability as part of the optimization procedure and can, as the
standard dropout, also be applied during test time to generate
stochastic network samples. We refer to this four strategies as
baseline+MC, center+MC, center low+MC, and concrete+MC.
We considered the non-MC counterparts center, center low,
and concrete as additional softmax/sigmoid uncertainties next to
baseline (described in section 2.3.1).

2.3.3. Aleatoric Uncertainty
Aleatoric uncertainty is said to capture the noise inherent to
an observation (Kendall and Gal, 2017) and is thus different
from model uncertainty (e.g., MC dropout), which accounts for
uncertainty in the model parameters. Kendall and Gal (2017)
showed that aleatoric uncertainty in classification problems can
be obtained by defining a network f (x) for input x that generates
two outputs

[x̂, σ 2] = f (x) ,

where x̂ correspond to the logits, and σ
2 defines the variance

of their Gaussian perturbation (N (x̂, σ 2)). The logits and the
variance are simultaneously optimized by the aleatoric loss,
which approximates the intractable objective with Monte-Carlo
samples of the perturbed logits. We refer to this method as
aleatoric and modified the architecture (see section 2.2) to output
the variance σ

2
r in addition to the logits x̂r for every tumor region

r (see Supplementary Section 1.1 for a detailed architecture
description). We used the x̂r outputs for the segmentations and
the σ

2
r outputs as measures of uncertainty. To normalize the

range of the variance maps across tumor regions, we normalized
it to [0, 1] over all subjects.

2.3.4. Ensembles
Ensembles of neural networks are typically used when
performance is highly relevant, e.g., for the BraTS challenge
(Kamnitsas et al., 2017), but they can also be used to quantify
uncertainties (Lakshminarayanan et al., 2017). Our ensemble
consists of K = 10 models that share the same architecture
(see section 2.2) but differ in training to enforce variability. We
trained each model k on alternating K − 1 folds of the training
dataset (as in k-fold cross-validation, resulting in 90 instead of
100 training subjects. We obtained the foreground probability pr
for each tumor region r by the average

pr =
1

K

K
∑

k=1

pk,r

of all models. As an uncertainty measure we used the normalized
entropy (Equation 1).

2.3.5. Auxiliary Networks
We use the term auxiliary network to describe additional
networks that are trained successively to the primary network
(i.e., segmentation network). Such networks have been used
to assess segmentation performances by regressing subject-level
performance metrics (DeVries and Taylor, 2018; Robinson et al.,
2018). Inspired by this idea, we applied auxiliary networks
for voxel-wise prediction of the segmentation errors (i.e., false
positives, false negatives) of each tumor region separately. Since
the auxiliary networks learn to detect segmentation errors, we
can directly use their sigmoid segmentation error probabilities as
a measure of segmentation uncertainty. Producing uncertainty
estimates by a separate network is motivated by the presumption
that a network might not be the best in assessing its own
trustworthiness (Jiang et al., 2018).

We considered two types of auxiliary networks in our
experiments. The first type, named auxiliary feat., uses the
features maps of the segmentation network (see section 2.2) as
input and consists of three consecutive 1×1 convolutions. The
second type, named auxiliary segm., employs the three label
maps (WT, TC, ET) produced by the segmentation network in
combination with the four MR images as input. The difference
between the two types of auxiliary networks is defined by the
link to the segmentation network. The first is more closely linked
through the feature maps, whereas the second is decoupled
and only requires the resulting segmentations. We refer to
the Supplementary Section 1.2 for a detailed description of the
auxiliary feat. and auxiliary segm. architectures.

2.4. Analyzing Voxel-Wise Uncertainty
We selected three techniques to analyze the quality of voxel-wise
uncertainties produced by the different uncertainty estimation
methods (Figure 1B) independently of their expressed
uncertainty (e.g., model uncertainty, data uncertainty). The
techniques aim at evaluating the model’s confidence levels and
the segmentation error localization abilities, which are required
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for tasks relying on visual feedback, or guided/automated
correction. Additionally, the Dice coefficient was used to
monitor the segmentation performance.

2.4.1. Reliability Diagram
Reliability diagrams (DeGroot and Fienberg, 1983) assess the
quality of a model’s confidence. It is a visual measure of how
close a model’s calibration is to practically unachievable perfect
calibration (Guo et al., 2017). Perfect calibration is obtained when
a model’s predictions f (x) with confidence p are correct with a
rate of p for any label y

P(y(x) = y|f (x) = p) = p ,

where y(x) are the model’s label predictions. For instance, when
a model is confident with 70%, it should be correct 70 out of
100 times (Guo et al., 2017). To create a reliability diagram, the
continuous predictions f (x) are discretized inM confidence bins
cm for m ∈ {1, . . . ,M} and plotted against the accuracies am in
these bins. Therefore, the identity line of the reliability diagram
represents perfect calibration.

For segmentation tasks, the reliability diagrams are typically
reported over an entire test set, jointly considering the
confidences of all voxels across subjects. Although this offers
a general idea of the model’s overall calibration, it omits
information about a single subject (i.e., patient). Achieving
good calibration levels at subject-level is, however, required in
a clinical setting if the voxel confidences should be used for
visual feedback or guided corrections of automated segmentation
results. Therefore, we report subject-level calibration along with
dataset-level calibration.

Calibration builds on model confidence, which we used as
a surrogate for uncertainty (as in Kendall and Gal, 2017). This
consists in considering the tumor region probability pr for the
baseline, MC dropout and ensemble variants. Since aleatoric and
auxiliary variants do not explicitly output probabilities pr , we
translated their uncertainty by y(1 − 0.5q) + (1 − y)0.5q to
confidence values, where y ∈ {0, 1} is the segmentation label and
q ∈ [0, 1] is the normalized uncertainty.

2.4.2. Expected Calibration Error
The expected calibration error (ECE) (Naeini et al., 2015) distills
the information of a reliability diagram into one scalar value. It is
defined by the absolute calibration error between the confidence
and accuracy bins, cm and am, respectively, weighted by the
number of samples nm (in our case voxels) in the bin. More
formally, with N and M being the total number of samples and
the number of bins, the ECE is given by

ECE =

M
∑

m

nm

N
|cm − am| .

The ECE ranges from 0 to 1, where a lower value represents a
better calibration. Through weighting by the bin size, the ECE is
influenced by large confident and accurate extra-cranial regions
typically found in brain tumor MR images. To reduce this effect,
we only considered voxels within the skull-stripped brain to

calculate the ECE. As for the reliability diagram, we are interested
in the subject-level ECE and thus report the mean subject ECE
instead of the dataset ECE (i.e., considering all voxels in the test
set to calculate a single ECE). Complementary to the ECE, we also
computed the average calibration error (Neumann et al., 2018).
We refer to the Supplementary Section 4 for the description
and results.

2.4.3. Uncertainty-Error Overlap
In segmentation, not only calibration is of interest but also the
model’s ability to localize segmentation errors. Ideally, a model
would be uncertain only where it makes mistakes. To assess this
behavior, we introduce the uncertainty-error overlap (U-E). The
U-E measures the overlap, through Dice coefficient, between the
regions where the model is uncertain U about its prediction and
the segmentation error E (i.e., union of false positives and false
negatives), such that

U-E =
2|U ∩ E|

|U| + |E|
,

where | · | represents the cardinality. The U-E ranges from 0
to 1 with 1 describing a perfect overlap. By considering voxels
belonging to U and E only, the U-E is not influenced by the
true negative uncertainty and thus typically independent of the
image size or additional background voxels, as opposed to the
ECE. However, calculating U-E requires to threshold U. We
determined the threshold for each method independently, based
on the maximal U-E performance on the validation set. The U-
E performance was evaluated for thresholds from 0.05 to 0.95 in
steps of 0.05. Complementary to the U-E, we also computed the
area under the curve of the precision-recall curve. We refer to the
Supplementary Section 4 for the description and results.

2.4.4. Dice Coefficient
Although the Dice coefficient is not a measure for analyzing the
quality of the uncertainty, we used it tomonitor the segmentation
performance of the different methods. It measures the overlap
between two segmentation and ranges from 0 to 1, where 1
describes perfect overlap. Rather than determining the best
method for segmentation, the Dice coefficient monitoring aims at
detecting potential influences of the segmentation performance
on the uncertainty estimates. Ideally, all methods would
produce identical segmentations attributing any improvement
in uncertainty measures directly to the corresponding method.
In practice, however, this is unfeasible due to differences
in the architectures and training. An improvement in the
uncertainty measures could, therefore, also be due to an
improved segmentation performance.

2.5. Analyzing Aggregated Uncertainty at
the Subject Level
Besides analyzing the method’s uncertainty estimates on a voxel
level, we further analyzed their quality when aggregated on a
subject level (i.e., one scalar value per subject; Figure 1C). The
motivation of the subject-level analysis is twofold. First, the
aggregation distills the uncertainty information such that the
influence of irrelevant and erroneous voxel-wise information
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is reduced. The aggregation, therefore, provides an assessment
of the individual uncertainty estimations at a higher level that
can forgive deficiencies (e.g., poor calibration) at the voxel
level. Second, the aggregation presents a possible usage of the
uncertainty estimations. It is an alternative to corrections at the
voxel-level which are unfeasible for brain tumor segmentation
where task-related knowledge (e.g., multiple lesions) is very
sparse. In clinical applications subject-level information is
important to flag possible failure cases for expert review. The
vast amount of possible aggregations can further help in pointing
to important characteristic of the voxel-wise uncertainty when
used at the subject level. The quality of the aggregated subject-
level information is defined by its relation to the segmentation
performance; the better the aggregated uncertainty, the better it
should be able to describe the segmentation performance. We
aim at a good correlation between aggregated uncertainty and
segmentation performance, which consequently enables accurate
segmentation failure detection.

2.5.1. Aggregation Methods
The aggregated subject-level scalar is highly influenced by the
chosen aggregation method. Hence, we studied three distinct
aggregation methods.

Mean aggregation. Mean aggregation is one of the simplest
aggregation methods, and it is motivated by the intuition that
an overall higher voxel-wise uncertainty should be an indicator
of poor segmentation performance. This requires the aggregated,
but not necessarily the voxel-wise, uncertainty to be calibrated. In
practice, we used the negative mean uncertainty to obtain direct
relation to the segmentation performance.

Prior knowledge-based aggregation. We know that
uncertainty is inherently present at the segmentation boundary.
Although this boundary uncertainty might be well-calibrated
it is mainly proportional to the size of the segmentation and
consequently introduces a bias toward the tumor size to the
aggregation. Similarly, one might expect more severe issues
when the large amount of uncertainties are present far from
the segmentation boundary. If only boundary uncertainty
is present we would expect less deviation from a reference
segmentation. We used this knowledge to create three different
aggregation weightings which deemphasize uncertainty at
boundaries. The first weighting consists of masking out voxels at
the segmentation boundary. In our experiments we masked three
voxels within the boundary (i.e., one-pixel distance inside and
outside, and at the boundary). The second weighting considers
the distance to the boundary, penalizing uncertainties close
to the boundary, and up-weighting uncertainties distant
from the segmentation boundary. The third weighting
normalizes the boundary uncertainty by dividing through the
segmentation volume.

To aggregate the differently weighted voxel information to
a scalar value per subject, we used three simple operations:
mean, sum, and logsum (as used by Nair et al., 2018). We
considered nine combinations between prior knowledge-
based weightings and these three simple operations. The
nine combinations were then used to train a random
forest regressor that predicts the Dice coefficient of the

segmentation. We used such a prediction model instead of
evaluating the correlation with the segmentation performance
because we aim at obtaining a good predictor rather than
solely finding the most important combination. We refer to
the Supplementary Sections 2.1, 2.3 for details regarding
the nine combinations and training details of the random
forest regressor.

Aggregation with automatically-extracted features. Instead
of manually defining additional aggregation methods, we
employed the PyRadiomics1 (Van Griethuysen et al., 2017,
version 2.2.0) package to extract subject-level features from
the voxel-wise uncertainty estimates automatically. Although
typically used in the context of radiomics, the package is
not limited to this application but is rather a general tool
to extract shape, first-order, and other gray-level features.
The benefit of using automated feature extraction is two-
fold: (a) it allows us to compare to the aggregation with
prior knowledge and (b) potentially points to new predictive
features of the uncertainty. We extracted 102 features from the
thresholded voxel-wise uncertainty estimates. The threshold was
determined for each uncertainty method by the maximal U-E
performance on the validation set (identical to section 2.4.3).
The features were used to train a random forest regressor
that predicts the Dice coefficient of the segmentations. We
refer to the Supplementary Sections 2.2, 2.3 for features and
training details.

2.5.2. Subject-Level Metrics
We assessed the three aggregation methods for each uncertainty
estimation method based on their ability to predict the Dice
performance of the automated segmentations. To do so,
we evaluated the estimates of the aggregation methods by
three metrics.

Spearman’s rank correlation. We used Spearman’s rank
correlation coefficient to asses the correlation between the
estimated and the actual Dice coefficients. Spearman’s rank
correlation was chosen since not all estimates lead to a linear
relationship (i.e., mean aggregation). The metric ranges from -
1 to 1, where the extremes describe a perfect monotone relation
(positive if 1, negative if −1) between estimated and actual Dice
coefficients.

AUC-ROC. We evaluated the segmentation failure detection
abilities of the uncertainty and aggregation methods by the
area under the curve of the receiver operating characteristic
(AUC-ROC). To do so, we translated the regression problem
(i.e., building a predictor for the Dice coefficient) to a
binary classification problem. We classified the segmentations
in successful and failed according to the average inter-rater
Dice coefficient for every tumor region. As the inter-rater
performances are not provided for the BraTS 2018 dataset,
we considered the inter-rater performances reported in Menze
et al. (2015) for the BraTS 2013 dataset2. The AUC-ROC was

1https://pyradiomics.readthedocs.io
2Note that the inter-rater performance between the BraTS 2013 and the BraTS

2018 dataset might differ since the existing annotations were revised by expert

board-certified neuroradiologists. Also, the non-enhancing and the necrosis label

were fused.
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computed by the scores of the regression output and ranges from
0 to 1, where 1 describes a perfect separator between the classes,
0.5 corresponds to random guesses, and 0 is the reciprocal of a
prefect separator (i.e., consistently predicting wrong class).

Youden’s accuracy. For improved comparability and
understanding, we evaluated the accuracy (range [0, 1]) along
with the AUC-ROC. We used the maximal Youden’s index
(Youden, 1950) to determine the accuracy from the ROC curve.
This index is defined for each point on the ROC curve as

J = sensitivity− (1− specificity)

and corresponds to the vertical distance to the chance line (i.e.,
sensitivity = 1 − specificity). Its maximum defines an optimal
point on the ROC curve.

3. RESULTS

3.1. Dataset-Level vs. Subject-Level
Calibration
Figure 2 illustrates the difference between dataset-level (i.e., all
voxels in the test set) and subject-level (i.e., all voxels of a subject)
calibration with reliability diagrams. While the calibration at the
dataset level is good for all tumor regions, miscalibrations in
the form of overconfidence and underconfidence are present at
the subject level. We find an under-/overconfidence in 39%/25%,
30%/32%, and 21%/41% of the test subjects for the three tumor
regionsWT, TC, and ET. Consequently, less than 40% (36%, 38%,
and 38%) of the subjects are well-calibrated. The percentages
indicate that the amount of miscalibration is similar for all
tumor regions, but ET exhibits more overconfidence (and less
underconfidence) than the other regions (column underconfident
subject in Figure 2 is exemplary). Also, we observe small
differences among the uncertainty methods; they mostly agree,
except for the aleatoric uncertainty, which disagrees at the
dataset level.

3.2. Voxel-Wise Uncertainty
We evaluated the voxel-wise uncertainties on average subject-
level ECE, uncertainty-error overlap (U-E), and Dice coefficient.
The results are listed in Table 1 and reveal that no uncertainty
estimation method considerably outperforms others. Most
methods perform in a similar range with a small advantage for
the ensemble method. Only the aleatoric method is distinctly
performing worse in term of the uncertainty metrics ECE
and U-E, while the competitive Dice coefficients indicate no
segmentation related issues. We found that the MC dropout
variants typically marginally outperform the non-MC variants
(i.e., dropout only applied during training), but occasionally
lead to considerable gains in ECE. The results also show
that finding the optimal dropout strategy, i.e., the amount
and position of dropout, is not evident. On one hand,
the method containing moderate dropout (center low/+MC)
outperforms the methods with minimal (baseline/+MC) and
maximal (center/+MC) dropout on all metrics. On the other
hand, the benefit of using MC dropout is larger for the
minimal and maximal dropout strategies. Concrete dropout,

which learns an optimal dropout rate, yielded comparable but
not superior results than (center low/+MC). Furthermore, the
results show that the auxiliary methods achieved uncertainty
performances on par with the baseline model, on whose
segmentation errors they are trained. Benefits in comparison to
baseline are mainly found for auxiliary feat. and in terms of
U-E.

Overall, the results are similar for all tumor regions.
Differences among the tumor regions are mainly found in the
ECE metric, which is considerably lower for ET than WT.
This effect can be explained since the ET includes substantially
fewer voxels predicted as uncertain (since fewer foreground
voxels) and, in turn, the ET tumor class includes more certain
background voxels, leading to an improved ECE. Furthermore,
the results indicate a link between segmentation performance
and ECE, where better-performing methods often relate to an
improved ECE. Methods outputting the uncertainty estimates
separately from the segmentation (i.e., auxiliary segm., auxiliary
feat., and aleatoric) are excluded from this observation.

Figure 3 shows the uncertainty estimates for theWT label (see
Figures S3, S4 for visual examples of TC and ET) produced by
the selectedmethods on underconfident, overconfident, andwell-
calibrated subjects (same subjects as in Figure 2). The examples
visually confirm the similar segmentation performances of
the different methods. Further, the uncertainty estimates
clearly show a pattern between amount of uncertainty and
miscalibration. The underconfident subject exhibits considerably
more overall uncertainty than the overconfident subject and
perceivably more than well-calibrated subject. We also observe
that the amount of uncertainty varies among the methods.
For instance, the center/+MC methods consistently exhibit
more uncertainty than the auxiliary methods. The regions
exhibiting uncertainty are, however, similar for all methods,
except the aleatoric method which visually confirms its
poor calibrations.

In an additional experiment, we analyzed the dependency of
the training dataset size on the quality of uncertainty estimates.
Themethod we used for these experiments is baseline+MC as it is
mostly represents the performance level of the studied methods.
The results in Figure 4 show that quality in terms of ECE is low
(i.e., high ECE) with few training data and increases afterwards.
This demonstrates that the higher uncertainty introduced
through small datasets is worse in terms of quality.

3.3. Subject-Level Aggregated Uncertainty
Figure 5 shows the AUC-ROC results of the uncertainty
estimation methods for the three aggregation methods (see
Figure S5 and Table S5 for the corresponding ROC curves and
the AUC-ROC values, respectively). The results demonstrate that
mean aggregation has a limited ability to detect segmentation
failures and is comparable with guessing (i.e., AUC-ROC of
0.5). Results for the ET tumor label are even below 0.5,
revealing a direct relation between uncertainty and segmentation
performance instead of the expected inverse relation. An
improvement over mean aggregation is achieved by aggregating
with prior knowledge and automatically extracted features. The
aggregation with automatically extracted features obtained the
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FIGURE 2 | Comparison between dataset-level and subject-level calibration (shown in reliability diagrams) for the selected uncertainty estimation methods. The first

column shows the dataset-level calibration, which considers all voxels in the dataset. The second to fourth columns show subject-level calibrations, which consider

voxels of a single subject. The exemplary subjects indicate underconfident, overconfident, and well-calibrated methods. The rows indicate the three tumor regions.

TABLE 1 | Performances of the different uncertainty estimation methods in terms of expected calibration error (ECE), uncertainty-error overlap (U-E), and Dice coefficient.

WT TC ET

ECE% U-E Dice ECE% U-E Dice ECE% U-E Dice

Baseline 1.059 0.427 0.869 0.853 0.41 0.767 0.309 0.401 0.692

Concrete 0.984 0.429 0.875 0.802 0.419 0.775 0.278 0.407 0.686

Center low 0.942 0.434 0.88 0.83 0.409 0.775 0.28 0.403 0.686

Center 1.606 0.425 0.817 1.086 0.41 0.695 0.381 0.395 0.642

Baseline + MC 1.016 0.433 0.869 0.805 0.41 0.765 0.284 0.403 0.693

Concrete + MC 0.952 0.431 0.877 0.785 0.422 0.778 0.27 0.409 0.689

Center low + MC 0.922 0.435 0.881 0.83 0.41 0.769 0.275 0.409 0.69

Center + MC 1.014 0.432 0.874 1.06 0.409 0.716 0.462 0.4 0.651

Ensemble 0.893 0.436 0.88 0.749 0.402 0.778 0.275 0.411 0.701

Aleatoric 12.187 0.001 0.874 2.407 0 0.757 1.284 0.007 0.673

Auxiliary segm. 1.058 0.428 0.869 0.887 0.397 0.767 0.323 0.39 0.692

Auxiliary feat. 1.057 0.433 0.869 0.852 0.403 0.767 0.318 0.423 0.692

All metrics range from 0 to 1, but the ECE is reported in % for better comparisons. Lower ECEs are better as well as higher U-Es and Dice coefficients.We note that the Dice coefficient is

not a measure for analyzing the quality of the uncertainty and is reported to monitor the segmentation performance of the different methods. Mean values are presented, and standard

deviations are omitted due to marginal differences. Bold values indicate best performances. Horizontal separations group types of uncertainty methods and WT, TC, and ET indicate

the tumor regions whole tumor, tumor core, and enhancing tumor.
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FIGURE 3 | Visual examples of the whole tumor uncertainty produced by the different uncertainty estimation methods. The columns correspond to underconfident,

overconfident, and well-calibrated subjects (same as in Figure 2).

overall best AUC-ROC values. Although it is not possible to
determine the best uncertainty method visually, the aletoric
method shows apparent weaknesses. We also built a combined
model with the automatically extracted features and the
generated prior knowledge features, but it did not lead to
consistent improvements in terms of AUC-ROC.

We assessed feature importance by accumulating their ranks
over the individual regression models (i.e., one for each
uncertainty estimation method). We found the distance weighted
masked mean feature to be the most important feature for the
prior knowledge-based aggregation. For the aggregation with
automatically extracted features, the shape sphericity, which is
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FIGURE 4 | Effect of the training dataset size on the expected calibration error

(ECE).

a measure of roundness relative to a sphere, and run length
non-uniformity, which is a measure of similarity among the
different gray level run lengths, were dominantly the two most
important features.

Since it represents the best-performing aggregation method,
we evaluated the aggregation with automatically extracted
features in terms of Spearman’s rank correlation and Youden’s
accuracy in addition to AUC-ROC. The corresponding results are
shown in Figure 6with numerical details in Table S5. The results
reconfirm the similarities found among the different uncertainty
estimation methods, with the aleatoric method yielding the
lowest performance, and producing negative outliers in all three
metrics, although less prominent for the Youden’s accuracy.
Additionally, we observed that the predictions based on the
TC tumor label uncertainty achieved the highest values for all
three metrics, whereas ET tumor label uncertainty is typically the
worst-performing.

4. DISCUSSION

Uncertainty estimation methods have been used for different
medical image segmentation tasks, but little is known on their
quality and limitations. Therefore, we analyzed the quality
of common uncertainty estimation methods on the clinically
relevant problem of automated brain tumor segmentation. The
methods were evaluated on their calibration, segmentation error
localization, and segmentation failure detection abilities. First,
our results show that overall good calibration is only achieved at
the dataset level. Second, segmentation error localization relying
on voxel-wise uncertainty is difficult and unreliable. However,
we found that segmentation failure detection on subject level is
possible by aggregating voxel-wise uncertainty estimates.

We found a good calibration of voxel-wise predictions at the
dataset level but observed notable miscalibrations when assessed
at the subject level. As such, the good dataset-level calibration

can be explained by the subject-level miscalibrations (under-
and overconfidence), which average out when combined. The
subject-level miscalibrations are influenced by the dependence
of neighboring voxels in the uncertainty estimates, resulting
from the fully-convolutional architectures and an inter-voxel
dependence in the MR images itself. Although this dependence
is beneficial for the segmentation task, it also produces similar
uncertainties within a neighborhood and therefore biases the
calibration. Consequently, poor segmentations are expected to
introduce a larger bias. The observed miscalibrations further
indicate that the uncertainty estimates may contain non-
negligible errors. As a consequence, using voxel-wise uncertainty
for user feedback or guided corrections is questionable andmight
lead to undesired outcomes in automated corrections. Therefore,
our findings point on the importance of developing methods able
to calibrate uncertainties for each subject individually.

The results of the voxel-wise uncertainty evaluation reveal
that all methods (including the softmax/sigmoid baseline)
performed similarly, except for the aleatoric uncertainty, which
performed worst. Among the similar performing methods,
the ensemble achieved the overall best results. It achieved
improved uncertainty metrics along with its expected benefits
in segmentation performance. MC dropout, which can be
viewed as a poor man’s ensemble equivalent, showed benefits
similar to ensemble when compared to using standard dropout
(i.e., during training only). However, finding the optimal
dropout strategy that maximizes segmentation performance and
uncertainty estimates remains difficult, also because concrete
dropout showed not to be optimal. Therefore, as a rule of
thumb, we suggest using ensembles when resources allow it.
Otherwise, we suggest applying MC dropout with a focus on
regularization benefits.

The results further indicate a possible relation between
the quality of the uncertainty and segmentation performance.
For instance, the ensemble and the MC dropout methods
revealed benefits for the uncertainty along with improved
segmentation performance. It is impossible to determine whether
these methods are effectively producing qualitatively better
uncertainties or the increased quality results from the improved
segmentation. To assess the uncertainty separately, methods that
produce decoupled uncertainty estimates would be required, as
advocated by Jiang et al. (2018). Our auxiliary networks are
examples of such decoupled solutions. They showed promising
results but without achieving substantial benefits. Further work
in this direction is needed to determine its full potential. The
experiment with limited training data confirmed the observation
of a link between segmentation performance and quality of
the uncertainties by showing improved quality with increasing
dataset size. This observation is troublesome because large
datasets are rare and qualitatively good uncertainties would be
especially desirable for underperforming models due to little
training data.

Aggregating the voxel-wise uncertainty can distill valuable
information for segmentation failure detection. The best-
performing aggregation method tested was the aggregation with
automatically extracted features. It achieved a good correlation
with the Dice coefficient and enabled an accurate separation

Frontiers in Neuroscience | www.frontiersin.org 10 April 2020 | Volume 14 | Article 282265

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Jungo et al. Analyzing Uncertainty in Brain Tumor Segmentation

FIGURE 5 | Differences among the three aggregation methods for each uncertainty estimation approach in terms of area under the curve of the receiver operating

characteristic (AUC-ROC) for segmentation failure detection.

FIGURE 6 | Segmentation failure detection performance of the aggregation

uncertainty by automatically extracted features in terms area under the curve

of the receiver operating characteristic (AUC-ROC) and Youden’s accuracy as

well as correlation with the segmentation performance in terms of Spearman’s

rank correlation (ρ). Each point per color represents an uncertainty estimation

method. The negative outliers in each metric and for each tumor region

correspond to the aleatoric method.

between successful and failed segmentations results. For the
mean aggregation, we obtained notably worse results, indicating
a poor relation between mean uncertainty and segmentation
performance. However, we could greatly improve this relation
by simply weighting the uncertainties according to some
prior knowledge. A subsequent feature importance analysis

revealed that, particularly, the distance to the segmentation
boundary matters as prior knowledge. For the aggregation with
automatically extracted features, two important features in the
voxel-wise uncertainty estimates were revealed: shape sphericity
and run length non-uniformity. The importance of the sphericity
can, to some extent, be explained by its definition, which consists
of a ratio between mesh volume and surface area. This definition
results in low sphericities for large-area-low-volume structures
such as a narrow uncertainty rim that we would expect for a
successful segmentation. Considering volume and area at the
same time might be key to cope with the highly variable brain
tumor volumes and areas. Similarly, the narrow uncertainty
rim of successful segmentations is expected to contain a lot of
similar uncertainty levels and thus resulting in a lower run length
non-uniformity than of failed segmentations.

Overall, the analyzed uncertainty estimation methods only
limitedly provide the desired additional and useful information.
Our results question whether a remedy of the challenges with
voxel-wise uncertainties is even feasible. Additional processing
is required to take advantage of the voxel-wise estimates.
We presented such an additional processing by aggregating
the voxel-wise uncertainties into one value per subject and
achieved promising results for segmentation failure detection.
The promising aggregation results point in the direction of an
intermediate approach, operating in-between voxel and subject
level. We believe this is important in clinical applications where
uncertainty estimation methods would directly operate at the
levels of lesion, region, or image slice e.g., for automated
segmentation correction.
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Our evaluation has several limitations worth mentioning.
First, due to its popularity we used a U-Net-like architecture with
a shared learning scheme for all our experiments. Our findings
may differ for other setups, especially when altering the output
confidences of a network, such as Dice coefficient loss as shown
by Sander et al. (2019). Second, the metrics used to analyze the
quality are comparing with the ideal case. Although good metrics
signify high quality, the opposite (i.e., bad metrics mean low
quality) might not be true, since the quality is not solely defined
by the employed metrics. Moreover, low metric results, as for the
U-E, do not directly mean that the uncertainty information is
useless but might require additional steps to create benefit. Third,
we used a selection of commonly used uncertainty estimation
methods. Hence, we cannot claim that these findings apply to
other, recently proposed techniques (e.g., Baumgartner et al.,
2019; Jena and Awate, 2019;Wang et al., 2019). Also, we analyzed
the different uncertainty estimation methods independently
of their expressed uncertainty (e.g., model uncertainty, data
uncertainty). While this provides information on the quality
across types of uncertainty, an independent analysis by type of
uncertainty might bring additional insights for the development
of new uncertainty estimation methods.

In conclusion, we analyzed common uncertainty estimation
methods and found that the quality of their voxel-wise
uncertainty is limited in terms of subject-level calibration
and segmentation error localization. We further showed that
aggregating the voxel-wise uncertainties to the subject level
enables accurate segmentation failure detection, which after
all confirms the usefulness of the uncertainty estimates. We

suggest a careful usage of voxel-wise uncertainty measures and
highlight the importance of developing solutions that address
the subject-level requirements on calibration and segmentation
error localization.
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Traditionally, radiologists have crudely quantified tumor extent by measuring the longest

and shortest dimension by dragging a cursor between opposite boundary points across a

single image rather than full segmentation of the volumetric extent. For algorithmic-based

volumetric segmentation, the degree of radiologist experiential involvement varies from

confirming a fully automated segmentation, to making a single drag on an image to initiate

semi-automated segmentation, to making multiple drags and clicks on multiple images

during interactive segmentation. An experiment was designed to test an algorithm that

allows various levels of interaction. Given the ground-truth of the BraTS training data,

which delimits the brain tumors of 285 patients on multi-spectral MR, a computer

simulation mimicked the process that a radiologist would follow to perform segmentation

with real-time interaction. Clicks and drags were placed only where needed in response

to the deviation between real-time segmentation results and assumed radiologist’s goal,

as provided by the ground-truth. Results of accuracy for various levels of interaction are

presented alongwith estimated elapsed time, in order tomeasure efficiency. Average total

elapsed time, including loading the study through confirming 3D contours, was 46 s.

Keywords: brain MRI, tumor, segmentation, glioma, deep learning, efficiency

INTRODUCTION

Malignant brain tumors often have unfavorable prognoses such as time to progression and overall
survival, and also have direct impact on motor and/or cognitive function and poor quality of life
(Omuro and DeAngelis, 2013). In recent decades, imaging has played a key role throughout the
entire treatment paradigm of cancer patients ranging from diagnosis and presurgical planning to
treatment response assessment. Additionally, multimodal MRI protocols allow for non-invasive
interrogation of tumor heterogeneity and identification of phenotypic sub-regions i.e., peritumoral
edema/invasion, enhancing active tumor core and necrotic regions which reflect tumor biological
properties including tumor cellularity, vascularity, and blood-brain barrier integrity.

However, despite the exponential enhancement in imaging sequences, hardware and software,
we have barely begun to tap the potential of non-invasive imaging to characterize the
phenotype of tumors. To date, radiologic assessments are qualitative including tumor detection
and image-based tumor staging or semi-quantitative using freehand uni-dimensional and
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bi-dimensional measurements of the tumor. In fact, all current
imaging assessment criteria [such as Response Evaluation
Criteria in Solid Tumors (RECIST), Response Assessment in
Neuro-Oncology (RANO), immune related RECIST (irRECIST),
and immune related response criteria (irRC)] used to evaluate
tumor response in the clinical setting or in clinical trials rely on
these freehand measurements to evaluate tumor size (Sorensen
et al., 2008; Eisenhauer et al., 2009; Wolchok et al., 2009; Wen
et al., 2010).

Accurate assessment of tumor volume is important for clinical
management and particularly for monitoring treatment response
and development of new therapies and trials. Despite the
well-known advantages of whole tumor volumetric assessment,
as recognized by the RANO Working Group, currently it is
only performed for research purposes as manual outlining can
be time-consuming, and it is susceptible to inherent intra-
observer and inter-observer variability (Wen et al., 2010).
Research efforts have focused on the development of computer-
aided techniques for tumor segmentation. Computer-aided
tumor segmentation techniques can be grouped in two major
categories based on the radiologist/user interaction with the tool;
(1) fully automated techniques that require no, or negligible
user input, and (2) semi-automated techniques that require
some localization or initialization from the user; then the
algorithm provides the majority of segmentation optimization.
Semi-automated techniques outperform automatic approaches,
resulting in sufficiently accurate and robust results (Zhao and Xie,
2013). However, semi-automated techniques do not scale well to
large number of labeled datasets, since developing and validating
interactive algorithms becomes laborious as the datasets grow.
Consequently, there is an unmet need for an approach to
simulate user interaction that will allow for efficient and cost-
effective evaluation of semi-automated techniques throughout
the development and validation stages.

In a recent publication we presented Semi-Automated Map-
BAsed Segmentation (SAMBAS), which allows for real-time
feedback by an expert radiologist (Gering et al., 2018). In short,
the user initializes the segmentation process by drawing a long
axis; during the long axis drawing, the 2D segmentation updates
in real-time for interactive feedback. In cases of suboptimal 2D
segmentation the user can refine the result by drawing a short
axis. Further optimization can be performed on the other two
planes prior to 3D segmentation initialization. This interactive
system outperformed the Deep Learning (DL) approach alone;
as demonstrated in our publication, using the Multimodal
Brain Segmentation Competition (BraTS) 2018 validation data
the interactive system resulted in an improved Dice similarity
coefficient over DL alone and the lowest Hausdorff-95% distance
on the BraTS leaderboard (Menze et al., 2015; Bakas et al., 2017a,
2018; Gering et al., 2018).

However, it is still unknown how real-time experiential input
affects Dice coefficient andHausdorff-95% distance. Therefore, in
this study, we designed an experiment to simulate the level of user
interaction. Specifically, we used the 2018 BraTS training data
as the ground-truth and a computer simulation mimicked the
process that a radiologist would follow to perform segmentation
with real-time interaction (Bakas et al., 2018). Clicks and drags

were placed only where needed in response to the deviation
between real-time segmentation results and assumed radiologist’s
goal, as provided by the ground-truth. Results of accuracy for
various levels of interaction are presented along with estimated
elapsed time, in order to measure efficiency.

MATERIALS AND METHODS

Rapid Precise MetricsTM (RPM) implements an interactive
algorithm as a probabilistic framework with efficient user
interaction and control in the HealthMyne R© Platform
(HealthMyne, Madison, WI). Additional details on how
RPM seamlessly merges DL with user interaction can be found
on Gering et al. (2018). For the purposes of this work, we
removed the DL component because access was needed to the
same ground-truth data on which the DL would have trained.
Indications by a skilled radiologist are another aspect of RPM
missing from this experiment. Consequently, the absolute values
of accuracy reported do not fully reflect clinical performance
of RPM, however, relative accuracy and timing measurements
should be representative.

The organization of the manuscript is as follows: the system
for interactive Multi-Plane Reformat (MPR) segmentation will
be described first, followed by the method for simulating a user’s
interaction with the system. Finally, the method for performing
timed tests will be presented.

Interactive Multi-Plane Reformat (MPR)
Segmentation
Like a digital simulation of a traditional light box on which
radiologists formerly viewed film, the 3D volume is visualized by
displaying 2D planes sequentially. A MPR refers to reformatting
more than one plane, such that a trio of planes is displayed side-
by-side corresponding to axial, coronal, and sagittal orientations
(Figure 1).

The user initializes the segmentation process by drawing a
long axis on one plane of the MPR. As the user draws the
long axis, a 2D segmentation updates in real-time for interactive
feedback. The feedback has proven to be very helpful for the
user to know precisely where to place the endpoint of the axis
(Gering et al., 2018). Upon release of themouse, 2D segmentation
occurs immediately on the other MPR planes. Figure 2 shows the
interactive feedback.

When the 2D contour is unsatisfactory, additional drags
may be drawn to complement the long axis. Furthermore,
single clicks may be used to “drop” points along the structure
boundary. Another available editing operation is a “ball tool”
for drawing with a digital brush. A correct 2D segmentation
is important since probability distributions are learned from
the 2D segmentation and employed in segmenting the other
MPR planes.

When the contours on other MPR planes are unsatisfactory,
then the user can further refine the segmentation by either
drawing long axes on these planes, or by editing the
segmentation masks with the ball tool. This is especially
useful for irregularly shaped lesions or lesions oriented
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FIGURE 1 | Multi-Plane Reformat: an example of Multi-Plane Reformat (MPR) slices of the 3D volume corresponding to axial, coronal and sagittal planes. The yellow

lines denote the position of the coronal plane (B), with respect to the axial plane (A) and the sagittal plane (C).

FIGURE 2 | Interactive segmentation: several instances during interactive segmentation (A–D) depicting the segmentation contour (red) updating in real-time as the

user drags the endpoint of the long axis (blue). In (C) a correct segmentation of core tumor is displayed, while (D) displays response to overdrawing.

FIGURE 3 | Separating adjoining tumors: three examples of adjoining tumors (A–C) which were manually separated to form distinct tumors, shown here in tan and

red.

obliquely to the anatomical axes. Once initial segmentation
is satisfactory, the user can initiate 3D segmentation by a
single click.

3D segmentation occurs quickly (approximate time = 1–2 s),
and the user may inspect the resulting contours by scrolling

through slices on any MPR plane. If unsatisfied, the user has
two options, either delete the lesion segmentation and re-draw a
better long axis, or alternatively edit the 3D segmentation using a
3D sphere tool.When satisfied, the user clicks a button to confirm
the 3D contours.
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FIGURE 4 | Medially placed longest axis: a demonstration of a more medially

placed longest axis obtained by fitting an ellipse (blue) to the ground-truth

(yellow) and finding the long and short axes (green) parallel to the major and

minor axes of the ellipse. The true longest axis is drawn in (A), while the more

medially positioned axis is drawn in (B).

Simulation System
The simulation system automatically draws a long axis on each
tumor. Depending on the accuracy of the resulting segmentation,
more drags or clicks are added as needed. The process by which
these are drawn aims to mimic a human user’s actions, as
described below.

Data Preparation
Multi-institutional, routine clinically-acquired, pre-operative,
multispectral MR scans were provided by the 2018 BraTS
challenge (Bakas et al., 2017b,c, 2018). The data have been
preprocessed to be co-registered to the same anatomical
template, interpolated to the same resolution (1 mm3),
and skull-stripped.

For the purposes of this work, we used only the post-contrast
T1-weighted MR scans. While BraTS provided labels for three
phenotypes: whole tumor, core tumor, and active tumor, we
combined the ground-truth masks for “core” and “active” to form
“core tumor,” and used this one tumor component exclusively in
this experiment, since this is representative of the gross tumor
extent assessed by a radiologist in the clinical setting.

Enumerating Tumors
While RPM is designed to segment individual lesions, BraTS
ground-truth presents a unified mask without separating
individual lesions. Therefore, we manually drew blank (zero-
valued) lines to separate adjoining lesions. After this one manual
step, lesions could be enumerated automatically by running 3D
connected-component analysis (CCA) to identify each distinct
“island” of the ground-truth mask, as illustrated in Figure 3.
Given the 285 patients, 232 had 1 lesion, 33 had 2 lesions, and
20 had 3 or more, with the maximum being 5.

Simulating the Drawing of a Long Axis
The first step toward drawing a long axis is selecting the axial slice
on which to draw. Our aim was to replicate the approach of an
expert radiologist briefly scrolling through the slices to eyeball the
one on which the tumor appears the largest. In the first step, for

each enumerated tumor, the range of slices containing ground-
truth was found, and the subset of slices in the central third was
considered. Given this subset, the slice with the largest area of
ground-truth was chosen.

In order to simulate the type of long axis that a user might
draw, we employed four different methods: (i) identification of
the true longest axis, (ii) selection of an axis that is located
more medially than the true longest axis, (iii) search for an axis
that includes pixels that statistically typify the tumor, and (iv)
sweeping a short distance to search for optimal results.

To draw the “medial” long axis, an ellipse is fit by Principle
Component Analysis (PCA) to the 2D segmentation (Duda et al.,
2012). The long axis with the same orientation as the major axis
of the ellipse is selected, as shown in Figure 4. This method is
driven by the fact that RPM tends to perform better on centrally
located drags where symmetry can be exploited.

Since RPM samples statistics under the long axis, it’s
important to consider that aspect in addition to length and
centrality. Therefore, the third method searches the set of N2

possible axes drawn between a set of N points spaced near
each endpoint of the medial axis. Based on the ellipse, these
points are spaced by a few degrees, and lie on the boundary of
the ground-truth. A score is computed for each axis, and the
axis with the best score is selected. Equation (1) describes the
score as a weighted combination of properties of the long axis,
namely length, centrality, and relative entropy, also referred to as
Kullback-Leibler divergence (DKL) (Cover and Thomas, 2012).

Score = α ∗ (1− DKL) + β ∗ Length+ γ ∗ Centrality (1)

where α, β and γ are scalar parameters. Since the Kullback-
Leibler divergence is a measure of how one probability
distribution is different from another, it is an appropriate
metric for evaluating how well the pixels along the long axis
relate to the pixels of the entire 2D structure. Equation (2)
expresses this relationship where the probability distribution, Q,
of pixels sampled under the long axis is estimated by Parzen
window density estimation, and the probability distribution, P, is
estimated similarly from pixels sampled under the ground-truth
mask (Duda et al., 2012).

DKL(P| |Q) = −

∑

x∈X

P (x) log

(

Q(x)

P(x)

)

(2)

The Length and Centrality in Equation (1) are terms with a range
[0, 1] and are computed as follows:

Length =
length of axis

length of true longest axis
(3)

Centrality = 0.1+ 0.9 ∗ C/(2r) (4)

Where C encodes the distance from center of ellipse obtained for
Equation (5):

C = |i− r| +
∣

∣j− r
∣

∣ (5)

Where indices, i and j, index the sets of N points on each side of
the axis, and r represents the index, N/2, of the middle point in
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FIGURE 5 | Comparing distributions: estimations of the probability distribution function (PDF) for tumor ground truth and pixels under the long axis are plotted. A high

discrepancy is plotted in (A) resulting in large Kullback-Leibler (KL) divergence, while the PDFs are more similar in (B) resulting in small KL divergence.

FIGURE 6 | Demonstration of sweeping approach for long axis identification:

while the leftmost endpoint of the long axis (green) is held fixed, the rightmost

endpoint is swept along a short path (pink) along the boundary of ground-truth

(dark blue). At each position, the similarity between the segmentation (light

blue) and ground-truth is measured.

a set. Furthermore, we favor axes that cross the center by halving
the expression above when i and j both lie on the same side of r.
Figure 5 presents examples of probability distribution functions
for a long axis that is representative of the tumor, and another
axis that is divergent.

To draw the “swept” long axis, the first endpoint of the long
axis is held fixed while the second endpoint is dragged along the
boundary of the structure, by a short distance in each direction,
as shown in Figure 6. At each position during the sweep, the
interactive 2D segmentation is performed, and the position with
the best comparison with ground-truth is selected (by DSC
defined below).

Simulating the Drawing of a Short Axis
While the RPM algorithm allows multiple drags of any
orientation, we simplified this experiment by drawing only

the “short axis,” which is defined as the longest axis that lies
perpendicular to the long axis.

Simulating Dropped Points Along Structure Boundary
Given a segmentation based on the long and short axes, the
contour point of greatest disagreement with the ground-truth is
identified. Subsequently, an editing operation is performed by
“dropping” a point on the structure boundary as indicated by the
ground-truth. As described earlier, these drops serve as inputs
into RPM’s algorithm that are quicker to draw than a line with
two endpoints.

Following the first dropped point, segmentation is
recomputed and the next contour point of greatest disagreement
is identified, if any, as there may be no remaining significant
discrepancies. New points cannot be placed too closely to
earlier points. In this manner, more points can be “dropped”
in succession, triggering new segmentations with each dropped
point (Figure 7).

Simulating Drawing on MPR
The center of the long axis is used to determine the center of the
reformatted sagittal and coronal planes that comprise the 3-plane
MPR. Long and short axes were drawn in similar manner on all
planes. The additional axes precipitate MPR segmentation.

Comparison of Volumes
While each tumor is segmented individually, the “ground-truth”
is provided per patient rather than per lesion. Consequently,
we took the union of the segmentations of all lesions for each
patient, and compared these aggregates with the “ground-truth”
for agreement. The Dice similarity coefficient (DSC) was used to
measure the similarity between two sets of segmentations andwas
calculated using the Equation (3):

DSC =
2(A ∩ B)

(A+ B)
(6)

where A represents the semi-automated segmentation and B
represents the “ground-truth” (Allozi et al., 2010). Scores were
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FIGURE 7 | Demonstration of dropping points: segmentation (yellow) relative to the ground-truth outline (blue) for a progression of dropping points to segment a

complex lesion: (A) green line denotes where a dropped point is most needed, (B) updated segmentation after dropping that point, (C) updated segmentation after

dropping five points, each indicated with a green line.

TABLE 1 | Timed tasks.

Load study

Scroll to lesion

Segment by dragging long axis

Optionally open MPR view for additional drags/clicks

Perform 3D segmentation

Scroll to inspect 3D contours

Confirm 3D contours

computed by uploading segmentations to the CBICA Image
Processing Portal.

Timing Tests
To estimate an average elapsed time, the entire population was
partitioned into three categories so that a weighted average could
be computed where the weights are determined based on the size
of each category. From each category, 10 cases were randomly
sampled (by Python script) to be segmented by a human user
with the interactive system; the user has extensive background
in the design and implementation of clinical software solutions,
though no specific radiology training. The total elapsed time
measured included all of the tasks listed in Table 1, which span
from beginning to load the study to confirming 3D contours.

The three categories were the following: (i) cases that
segmented well with drawing an axial long axis (DSC > 0.883;
n = 109); (ii) cases that required drawing long axis on all MPR
planes (n = 123); (iii) cases that required additional edits (n =

53). Prior to the random selection, the categories were whittled
down in size by more restrictive criteria in order to form subsets
of patients for which the interaction was more meaningful. These
subsets were cases that segmented extremely well (DSC >= 0.93)
with a single drag (n = 39), cases whose score increased by at
least 0.05 to achieve a total score of at least 0.85 given a long axis
drag on all MPR planes (n= 25), and cases whose score increased
further by at least 0.05 to achieve a total score of at least 0.85 given
additional edits on MPR (n= 41).

TABLE 2 | Comparison of various strategies for simulating the drawing of the long

axis.

Long axis style 3D dice

True longest

Mean 0.798

St. Deviation 0.130

Range [0.315–0.972]

Favoring medial position

Mean 0.812

St. Deviation 0.122

Range [0.232–0.963]

Searching for statistics

Mean 0.807

St. Deviation 0.130

Range [0.232–0.963]

Sweeping one endpoint

Mean 0.821

St. Deviation 0.120

Range [0.305–0.972]

To evaluate the realistic nature of simulations against real user
interaction, DSC score frommanual segmentation was compared
against DSC obtained from simulations. First, the fitness of DSC
scores to normal distribution was determined by Kolmogorov-
Smirnov test, and then the scores were compared using t-test
or Mann-Whitney test accordingly. A p-value of <0.05 was
considered statistically significant. Finally, for completeness we
calculated the DSC score between the segmentation obtained
from real user interaction and from simulation.

RESULTS

Of the 285 patients, 232 had a solitary lesion, and 53 had more
than one lesion resulting in a total of 365 brain lesions available
for segmentation.
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Long Axis Simulation
We simulated four different strategies for drawing the long axis:
(i) obtaining the true longest axis, (ii) assigning the long axis
more medially than the true longest axis, (iii) searching for an
axis that statistically typifies the tumor, and (iv) sweeping a short

TABLE 3 | Varying levels of interaction.

User input Axial plane only All 3 MPR planes

Long axis only

Mean 0.821 0.851

St. Deviation 0.120 0.079

Range [0.305–0.972] [0.517–0.965]

Long and short axes

Mean 0.823 0.858

St. Deviation 0.110 0.068

Range [0.385–0.973] [0.512–0.965]

Long and short axes and

few dropped points

Mean 0.834 0.864

St. Deviation 0.103 0.063

Range [0.309–0.973] [0.557–0.965]

Edited to perfection

Mean 0.839 0.890

St. Deviation 0.105 0.050

Range [0.431–0.970] [0.681–0.970]

TABLE 4 | Progression through processing stages.

Stage True

long

Sweep

long

Long and

short

Long, short

and drops

Axial

perfect

MPR

perfect

2D 0.886 0.916 0.919 0.947 0.972 0.968

3-plane

Scout

0.845 0.859 0.866 0.878 0.886 0.960

3D 0.798 0.821 0.823 0.834 0.839 0.890

distance to search for optimal results. Using the aforementioned
strategies as initialization step, the 3D segmentations were
compared with the “ground-truth.” Table 2 summarizes the
results for DSC between the four strategies, with swept being
noticeably superior (DSC= 0.821).

Simulating User Interaction
We simulated a varied degree of user interaction from drawing
only one axis to editing 3D segmentation to perfection.
Additionally, simulations allowed for drawing on the axial plane
only, or on all 3 MPR planes: axial, coronal, and sagittal. Table 3
summarizes the results of 3D segmentations with varying degrees
of user interaction. Our results indicate that drawing long axes
on MPR planes compared to drawing only one long axis on the
axial plane resulted in significantly (by at least 0.05) improved
DSC scores in 76 patients out of a total of 285. Similarly,
drawing short axes and dropping points on MPR planes resulted
in significantly higher DSC scores in 88 patients, while in 14
patients the DSC score worsened significantly. Finally, editing
segmentation outcome to perfection on MPR planes significantly
improved the DSC score in 123 patients while significantly
worsening only 2.

Table 4 presents results from a few intermediate stages of
the algorithm. For responsive interaction, RPM segments first
in 2D, corresponding to the first row of Table 4, and then it
initializes the 3D segmentation by segmenting on a 3-plane
“scout” reformat, corresponding to the second row of theTable 4,
and then it finally segments in 3D. There is a column for each
level of user interaction.

Timing Tests
The average elapsed time for each patient in the entire population
was estimated to be 46.2 s; this was a weighted average computed
over three categories whose boundaries were described in section
Timing Tests. The number of cases in the first category (drawing
an axial long axis) is the total number of cases whose scores were
above 0.883, which was 109. The number of cases in the second
category (drawing long axes on all MPR planes) was the number

TABLE 5 | Timing measurements.

User input Mean elapsed time

(seconds)

DSC (user vs.

ground-truth)

DSC (simulation vs.

ground-truth)

p-value DSC (user vs.

simulation)

Long axis only

Mean 30.38 0.934 0.943 0.1041 0.951

St. Deviation 6.41 0.013 0.008 0.021

Range [23.65–44.92] [0.911–0.952] [0.933–0.954] [0.918–0.985]

Long axis on 3 MPR planes

Mean 52.0 0.882 0.876 0.3075 0.877

St. Deviation 17.70 0.063 0.035 0.059

Range [31.75–86.61] [0.719–0.935] [0.8162–0.928] [0.792–0.962]

Long and short and few dropped

points, on MPR

Mean 65.31 0.844 0.857 0.5205 0.825

St. Deviation 18.01 0.054 0.029 0.063

Range [46.73–107.75] [0.729–0.923] [0.817–0.907] [0.718–0.921]
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FIGURE 8 | Accuracy Comparison: segmentation outlines by simulation (green), user (red) relative to the ground-truth (yellow) for one case in each of the three

categories (A) drawing an axial long axis, (B) drawing long axes on all MPR planes, and (C) performing additional edits required by dropping points.

of the remaining patients whose scores were at least 0.796 given
MPR drags, which is 123. Finally, 53 cases comprised the third
category (additional edits required).

Table 5 summarizes the results of measuring elapsed time for
a user to segment a batch of 10 cases from each of the three
categories of interaction. Regarding the first category where the
long axis is drawn only on the axial plane, the average time the
segmenter reported was 30.38 s, ranging from 23.65 to 44.92 s.
One of the 10 cases was large and highly heterogeneous, and
therefore the user had more slices to sort through to determine
a good place to drag; it should be noted that the initial drag for
this case was deleted and redrawn from a better angle. Similarly,
drawing the long axis on all three MPR planes resulted in an
average time of 52.0 s (range: 31.75–86.61 s). In the final category,
dragging lines and dropping points, as well as drawing using the
ball tool, as needed onMPR, resulted in an average time of 65.31 s
(range: 46.73–107.75 s).

DSC scores obtained from manual segmentation and
simulations are presented in Table 5. Simulated interaction
performed marginally better in the first and third categories,
while real interaction scored moderately better in the second
category, though none of those differences were statistically
significant. Further, DSC scores obtained by comparing user
segmentation and simulation are in the same range as DSC scores
with ground-truth. Given the three levels of user interaction,
segmentation results are depicted in Figure 8. In most cases, the
“between” DSC score was higher than both individual scores
computed relative to ground-truth (Figure 8B). In Figure 8A,
the “between” score is between the individual scores, which
in this case, occurs because the user under-segmented the
tumor area. Lastly, Figure 8C illustrates the third pattern of
the “between” score lying below both individual scores. In
this case the user under-segmented while the simulation over-
segmented, resulting in great disparity between the two. Note, in
the case depicted in Figure 8C there is no enhancing component
surrounding the necrotic core, a typical presentation of a GBM,
which would aid identification of tumor border and increase
agreement between user and simulation.

DISCUSSION

As large-scale labeled image datasets are being curated for
academic challenges and training DL models, the most
common application tends to be the development of fully
automatic methods for tumor segmentation that do not
involve user interaction. One driver of this trend might
be that developing and validating interactive algorithms
becomes laborious as the datasets grow, owing to the
time required to interact with every case in the validation
dataset. Further, validation ideally occurs very frequently,
interspersed between algorithm updates, and throughout
the process of algorithm development. However, for a
segmentation algorithm to be clinically applicable its outcome
should be optimal, i.e., similar to the ground-truth, and
therefore it’s expected to require “some” user input (Langlotz
et al., 2019). Our research aims to provide an approach to
automate many aspects of user interaction and thus expedite
large-scale validation.

Given a labeled dataset, it seems natural to employ it for
validation by measuring the true longest axis, and then using
that as an input to an interactive algorithm such as RPM.
However, our results showed that the true longest axis would
be a poor choice, as it scored the lowest of the four strategies
listed in Table 2, where “sweeping” the long axis proved the
optimal approach.

Further, our results showed a steady improvement in 3D
accuracy as interaction increases on axial plane; DSC scores
increased from 0.82 to 0.89. We demonstrate that drawing on
MPR markedly improves accuracy vs. drawing on axial planes
alone. Somewhat surprisingly, drawing a short axis in addition
to the long axis made a rather insignificant improvement in DSC.
Motivated by this finding, we changed RPM’s design to accept
multiple arbitrary lines rather than a single line constrained to be
perpendicular to the long axis. Therefore, the user may draw the
line through image content whose brightness needs to be sampled
in order to complement the sampling already performed by the
long axis.
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Future work will be inspired by the results of Table 4, which
suggest that accuracy in the 2D segmentations falls offmoderately
as the algorithm advances to the scout segmentations, and
does so again during advancement to the 3D segmentation.
Although each stage of the algorithm performs some machine
learning to glean information from the results of the prior stage,
perhaps more can be done in this regard. Future work will also
investigate why additional editing operations worsened scores
for certain patients as the statistical sampling from the initial
long axis appears to have been better suited for application to
3D segmentation.

Table 5 reveals that accuracy was comparable between the
simulated interaction and the real human interaction. Simulated
interaction performed marginally better in the first and third
categories, while real interaction scored moderately better in
the second category. Human interaction scores lower when
the segmenter and creators of ground-truth have a difference
of opinion. This effect is somewhat canceled out by the fact
that human interaction scores higher when the segmenter
can apply more intelligence than that embodied by the
simulation algorithm.

Timing results were extremely fast when comparing with
the limited number of reports currently published; one study
measured lung lesion contouring to require an average of
10.31min (Velazquez et al., 2013). Our sub-minute timing
confirms that RPM enables segmentation in routine clinical use.

For a technical description of how the algorithm compares
with popular interactive methods, the reader is referred to Gering
et al. (2018). Recent works have also introduced simulated user
interaction to either identify the object and initiate segmentation
(Xu et al., 2016) or refine the segmentation output obtained by
DL (Wang et al., 2018; Zhou et al., 2019). In contrast, our goal
in this manuscript was to simulate the approach a radiologist
would follow for initiating a segmentation and providing input
real time until the optimal result is achieved. When comparing
the approach Xu et al. followed for object identification, their
mode of interaction was to drop points, in contrast to our
mixture of lines and points (Xu et al., 2016). Further, their
objective was to generate tens of thousands of training samples
and points are sampled randomly from the foreground and

background object interiors with spacing constraints (Xu et al.,
2016). For comparison with other methods which accept user
strokes instead of just points, these randomly sampled points
are expanded to circles of radius 5 pixels. Observe that human
users would draw free-form strokes rather than perfect circles, so
our method differs by its intention to more realistically mimic
the actions of a human user, and by its purpose of facilitating
continuous algorithm development. Last but not least, in our
work we performed direct comparison of the outcome obtained
from simulations with the outcome obtained by a human user
to demonstrate that our simulations realistically capture real user
interaction (Table 5 and Figure 8).
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Accurate segmentation is an essential task when working with medical images.

Recently, deep convolutional neural networks achieved a state-of-the-art performance

for many segmentation benchmarks. Regardless of the network architecture, the deep

learning-based segmentation methods view the segmentation problem as a supervised

task that requires a relatively large number of annotated images. Acquiring a large

number of annotated medical images is time consuming, and high-quality segmented

images (i.e., strong labels) crafted by human experts are expensive. In this paper, we

have proposed a method that achieves competitive accuracy from a “weakly annotated”

image where the weak annotation is obtained via a 3D bounding box denoting an object

of interest. Our method, called “3D-BoxSup,” employs a positive-unlabeled learning

framework to learn segmentation masks from 3D bounding boxes. Specially, we consider

the pixels outside of the bounding box as positively labeled data and the pixels inside

the bounding box as unlabeled data. Our method can suppress the negative effects

of pixels residing between the true segmentation mask and the 3D bounding box and

produce accurate segmentation masks. We applied our method to segment a brain

tumor. The experimental results on the BraTS 2017 dataset (Menze et al., 2015; Bakas

et al., 2017a,b,c) have demonstrated the effectiveness of our method.

Keywords: brain tumor segmentation, deep learning, weakly-supervised, 3D bounding box, positive-unlabeled

learning

1. INTRODUCTION

Gliomas are one of the most common brain tumors in adults. They can be categorized into
different levels of aggressiveness, including High-Grade Gliomas (HGG) and Lower Grade Gliomas
(LGG) (Louis et al., 2016). Gliomas consist of heterogeneous histological sub-regions, including
peritumoral edema, the necrotic core, as well as the enhancing and non-enhancing tumor core
(Menze et al., 2015). Magnetic Resonance Imaging (MRI) of brain tumors is commonly used
to evaluate tumor progression and plan treatments. An MRI usually contains multi-modal data,
such as T1-weighted, T2-weighted, contrast enhanced T1-weighted (T1ce), and Fluid Attenuation
Inversion Recovery (FLAIR) images, which provide complementary information for analysis of
brain tumors.
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The automatic segmentation of brain tumors and subregions
is a crucial pre-treatment step for the characterization and sub-
typing ofgliomas. This is a challenging problem because tumors
vary in shape and size across patients and may have low contrast
in some modalities. Recently, deep convolutional neural network
(CNN)-basedmethods have achieved new records in brain tumor
segmentation. Most of these methods are extensions of the U-Net
structure (Ronneberger et al., 2015; Çiçek et al., 2016) in various
ways (Isensee et al., 2017, 2018; Kamnitsas et al., 2017a,b; Wang
et al., 2017; Li et al., 2018). For example, some works focus on the
design of new convolutional network structures, such as using
a mix between convolutional kernels and modifying the down-
sampling strategy (Havaei et al., 2015; Kamnitsas et al., 2017b).
Other works have aimed to improve the method of fusing multi-
modal information. For example, Wang et al. (2017) suggested
a patch-based framework combined with multi-view fusion
techniques to reduce false positive segmentation. Kamnitsas et al.
(2017a) proposed another fusion method through aggregation
of predictions from a wide range of methods. The overall
approach is more robust and reduces the risk of over-fitting to
a particular dataset.

A key problem of CNN-based segmentation methods is the
requirement of accurate pixel/voxel-level annotations. However,
annotating a 3D image at the voxel level requires human expertise
and is expensive and time consuming. Motivated by a recent
work in weakly supervised segmentation in natural 2D images
(Dai et al., 2015), we proposed to learn the segmentation network
from 3D bounding box annotations. As pointed out in Dai et al.
(2015), boxing out the object location is about 15 times faster
than drawing the segmented mask (Dai et al., 2015). In 3D MRI
images, the burden of annotating voxels is much higher than that
of annotating 2D images because the number of voxels increases
exponentially with image dimension. However, the cost of 3D
bounding box annotations is comparable to that of 2D bounding
boxes. Therefore, learning from 3D bounding boxes is valuable
for brain tumor segmentation.

In this paper, we have investigated how to train a segmentation
network from coarse but easily accessible 3D bounding box
annotation. The main difficulty comes from the inaccurate
annotations inside the bounding box. More specifically, the
region bounded by a 3D bounding box contains tumor voxels
as well background voxels. If one simply considers the voxels
inside and outside of the bounding box as two classes,
i.e., tumor and non-tumor; the non-tumor voxels inside the
bounding box will have the wrong labels, and the learned
network tends to classify the voxels outside but close to the
tumor boundaries as tumor voxels. To solve this problem,
we considered segmentation from 3D bounding boxes as a
positive-unlabeled (PU) learning problem (Denis, 1998; Elkan
and Noto, 2008) in which we consider the voxels outside of
the bounding boxes as a positive class and the voxels inside
the bounding box as unlabeled data. We have proposed the
“3D-BoxSup” method to train a deep convolutional neural
network reliably from 3D bounding box annotations with a
non-negative risk estimator that is robust against overfitting
(Kiryo et al., 2017). We conducted experiments on the BraTS
2017 dataset, and the results show that our method can obtain

competitive accuracy by just learning from coarse bounding
box annotations.

2. METHODS

Our 3D-BoxSup method is inspired by the BoxSup method
(Dai et al., 2015), which aims to segment objects from 2D
bounding box annotations. BoxSup is a straightforward method
to train deep CNNs from coarse box annotations. It provides
a biased objective function and utilizes the updated network
in turn to improve the estimated segmentation masks used
for training, which means the estimated segmentation masks
in the previous training epoch are used as the ground truth
mask for the next epoch. However, this iterative method is not
practical for the 3D patch-based method because re-calculating
the segmentation mask for each volume for each epoch has a
high time-cost. In addition, it is unclear whether the iterative
method will finally converge to the optimal solution. To achieve
a considerable performance without iteratively updating the
segmentation masks, we have cast the segmentation problem
as a PU learning problem and applied a non-negative PU risk
estimator (Kiryo et al., 2017) as the train objective to learn the
segmentation network, where we viewed the 3D box annotated
region as the unlabeled data and the area outside the box as
positive data. In the following section, we have outlined the base
model with a biased box-learning estimator as our baseline and
the unbiased-box learning method as our proposed method.

In this section, we have first introduced the basic problem
setup with precise mathematical definitions. Second, we
have introduced our baseline convolutional neural network
architecture, used for predicting the segmentation masks. Third,
we have presented how the network is usually trained if the
ground truth segmentation mask is available. Last, we have
described our PU learning-based 3D-BoxSup method and the
corresponding algorithm.

2.1. Problem Setup
In the real application, the accurate segmentationmask is difficult
to acquire. Thus, in this paper, we only considered the cases
where we only had access to box-labeled segmentation data.

Let S1 denote the annotated 3D box region where gliomas
reside and S0 denote the background area outside of the
bounding box. Assuming we extract 3D patches from S1 and S0
for training, which is shown in Figure 1, the label of each voxel
in S1 and S0 is assigned to 1 and 0, respectively. The proportion
of non-tumor voxels is denoted as πp =

n0
n0+n1

, where n1 is the
number of voxels inside the box and n0 is the number of voxels
outside of the box.

2.2. Training Data Generation
First, for each volume of a patient, we generated a 3D bounding
box to roughly cover the whole tumor (WT) area (S1), and the
uncovered region was considered to be the background area S0.
We show an example of the box-labeled data in Figure 1B. For
convenience, we only showed the box label with a 2D yellow
rectangle. It should be noted that the training label in our case is
actually a 3D bounding box for each volume. In our experiment,
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we generated this 3D bounding box from the accurate ground
truth segmentation mask, and we assumed that we did not have
access to this accurate segmentation data during the training
time, which was available in our testing.

We then followed the standard preprocessing step to process
the original 3D input images (Bakas et al., 2018). To reduce the
sensitivity to absolute pixel intensities variations, an intensity
normalization step is applied to each volume of all subjects by
subtracting the mean and dividing by the standard deviation so
that each MR volume will have a zero mean and unit variance,
which is operated to each volume dependently. In practice, as
only the central region that contains the brain is used, the mean
and standard deviation are estimated using this brain area; where
we exclude the black area outside the brain with voxel value
0. Finally, we extract 200 patches per patient with patch size
48 × 48 × 48 in S1 and S0. If the extracted patch of S1 is partial
beyond the boxed area, we pad 0 value to the exceeded part for
the segmentation mask. In our experiment, we randomly selected
3D patches from area S1 and S0 with a proportion of 0.8 and
0.2, respectively. In all of the following settings, we allocated
patches from S1 with the label 1 and patches from S0 with the
label 0.

2.3. Network Structure
To build a deep network for 3D patch segmentation, we applied
the 3D U-Net (Çiçek et al., 2016), consisting of an encoder and
a decoder network with skip connections similar to our base
model. In contrast to (Çiçek et al., 2016), we removed the last
down-sampling layer and the first up-sampling layer for the LHS

and RHS of the 3DU-Net, respectively. This is because the down-
sampling structure would eliminate edge features of brain tumor.
Our modified 3D U-Net is shown in Figure 1A.

2.4. Learning With Ground Truth Mask
In the fully supervised brain tumor segmentation task, accurately
annotated masks were provided for training. Assuming the mask
prediction function modeled by a CNN is ŷ = f (x; θ) ∈ x ∈

R
d×d×d, where x ∈ R

d×d×d is a randomly chosen 3D patch
U from a patient V , and θ is the global trainable parameter.
The ground truth patch tumor mask is y ∈ R

d×d×d. To learn
the network parameters, we can apply the sigmoid function to
generate probability values and cross-entropy loss function to
evaluate voxel-wise prediction error. The objective function for
a single value in the predicted mask can be written:

Lmask(y, ŷ) = (1− y) · log(
1

1+ e−ŷ
)+ y · log(

1

1+ eŷ
), (1)

where y is a single value in the ground truth mask, and ŷ is the
corresponding value in the predicted mask. The overall empirical
risk R̂mask is a summation of Lmask(y, ŷ) on all voxels in all the
3D patches and can be efficiently minimized by using stochastic
gradient descent (SGD) methods.

2.5. Positive-Unlabeled Learning With Box
Labeled Data
When the images are only provided with bounding box
annotations, it is much more difficult to learn the segmentation
network f (x; θ) because the voxels inside the box can be classified

FIGURE 1 | This figure shows the training model with box labeled data. The network structure is shown in sub-figure (A), which is a typical 3D U-Net. The general

training process is shown in sub-figure (B). To be intuitive, we applied a 2D slice as our example in (B) in the training process, and we fed 3D patches with a 3D

bounding box label to optimize our model.
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FIGURE 2 | In this figure, we show the example of how to reconstruct our training data in the 2D aspect for better comprehensive as it is easy to implement in 3D

level as well. We concatenated the Flair, T2, T1, and T1ce models in the channel dimension and combined extra scale information to enhance the model training.

as either tumor or non-tumor. A straightforward solution would
be assigning all the voxels in patches coming from S1 with label 1
and labeling all the voxels in patches coming from S0 with label 0.
We could then train the segmentation network using the cross-
entropy loss (1), which we call the “Naive-BoxSup” method. The
problem with the naive method is that some non-tumor voxels
inside the box are wrongly assigned with tumor class label 1. As
a result, the learned network tends to classify the voxels outside
but close to the tumor boundaries as tumor voxels.

To alleviate this problem of the Naive-BoxSup, we proposed
to consider segmentation from boxes as a positive-unlabeled
learning problem. We can ensure that patches extracted from
S0 only contains positively-labeled voxels (0 is considered the
positive label), which are far away from tumor area. In the
bounding box area S1, voxels in S1 can be considered as an
unlabeled object. Thus, segmentation network learning from
bounding box annotations is a typical positive-unlabeled learning
problem, which tries to learn a classifier to model the distribution
of positive data pp and negative data pn by using only positive
labeled data and unlabeled data. In the following, we have
described how we applied a recently proposed non-negative PU-
Learning loss (Kiryo et al., 2017) to train our segmentation
network. We chose to use this loss because the non-negative
constraint on the loss makes it less prone to overfitting when a
deep network is being learned.

Let p(x) denote the marginal distribution of input features
corresponding to a single output y in the predicted segmentation
mask. By stacking all the 3D patches together, we can get a sample
{(xi, yi)}

n
i=1. Let pp(x) = p(x|y = 0) and pn(x) = p(x|y = 1)

denote the positive and negative class conditional distributions,
respectively. We have

p(x) = πppp(x)+ (1− πp)pn(x). (2)

Equivalently, (1 − πp)pn(x) = p(x) − πppp(x). Let L(y, ŷ) be a
general loss function evaluating the distance between output and
ground truth labels, which is cross-entropy loss in our case. This

is denoted by

R+p (θ) = Ex∼pp(x)L(f (x, θ), y = 0), (3)

R−n (θ) = Ex∼pn(x)L(f (x, θ), y = 1), (4)

R−p (θ) = Ex∼pp(x)L(f (x, θ), y = 1), and (5)

R−u (θ) = Ex∼p(x)L(f (x, θ), y = 1). (6)

By using (), we can have an approximation of the risk on the
true distribution R(f ) = E(x,y)∼p(x,y)L(f (x, θ), y) = πpR

+
p (f ) +

πnR
−
n (f ) by

RPU = πpR
+
p (θ)+ R−u (θ)− πpR

−
p (θ). (7)

Theoretically, we can minimize RPU to learn the optimal theta
for our segmentation network. However, as pointed out in Kiryo
et al. (2017), if the model is very flexible, empirical risks on
training data will go negative, and we will suffer from serious
over-fitting. Since our model is a very complicated convolutional
neural network, we applied a non-negative risk estimator (Kiryo
et al., 2017), as with the objective function:

RPUB = πpR
+
p (θ)+max{0,R−u (θ)− πpR

−
p (θ)}. (8)

In practice, we need to replace the risk terms by their empirical
estimates from data:

πp̂R
+
p (θ) = −πp

1

n

n
∑

i=1

(1− yi) · log(1−
1

1+ e−f (xi;θ)
)

̂R−u (θ) =
1

n

n
∑

i=1

yi · log(
1

1+ e−f (xi;θ)
)

πp̂R
−
p (θ) = −πp

1

n

n
∑

i=1

yi · log(1−
1

1+ e−f (xi;θ)
).

The overall algorithm is shown in Algorithm 1. We used
the ADAM optimizer to optimize the empirical risk. In our
algorithm, we set πp = 0.75 and we set γ = 1, η = 0.5, which is
a very common choice for PU learning.
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3. EXPERIMENT

To demonstrate the effectiveness of our method, we presented
a number of experiments examining different aspects of our
method. After introducing the implementation details, we
evaluated our methods on BraTS (Wang et al., 2017) brain tumor
training dataset. We compared the segmentation performance
of our 3D-BoxSup method with the Naive-BoxSup segmentation
method and show advantages of our proposed method over the
baseline approach.

Algorithm 1: Optimization of Our 3D-BoxSup segmentation
algorithm

Input: training data (xi, yi);
hyperparameters 0 ≤ β ≤ πp and 0 ≤ γ ≤ 1

Output:model parameter θ for f (x; θ)

1: Let A be an external ADAM optimizer (Kingma and Ba,
2014)

2: while no stopping criterion has been met:
3: Shuffle (xi, yi) into N mini-batches
4: for i = 1 to N:
5: if̂R−u (θ)− πp̂R

−
p (θ) ≥ −β :

6: Set gradient ∇θ
̂Rpu(θ)

7: Update θ byA with its current step size η

8: else:
9: Set gradient ∇θ (πp̂R

−
p (θ)−̂R−u (θ))

10: Update θ byA with a discounted step size γ η

3.1. Training Setting
We got all our training data from BraTS web1 to evaluate our
method. The training data consisted of 285 patients, including
segmented masks annotated by human experts. These training
data were separated into two categories, including HGG and
LGG, each containing 210 HGG and 75 LGG images. There is
an imbalance between HGG and LGG, and the data distributions
of HGG and LGG were also different, especially for TC and
ET. Each patient had four sequences, which are FLAIR, T2,
T1, and T1ce. In training time, we randomly split the whole
training set to 80% training set and 20% as our evaluation
set, and we carried out five folds testing in this manner. We
only use the ground truth segmented label during evaluation.
We fed all of the sequences into our network by combining
them in channel dimension. Thus, our input data are in 5D,
the dimensions of which are batch, sequences, width, length,
and depth. The training model structure is shown in Figure 1A.
To generate the training data, we followed the abovementioned
section 2.2 method, and the proportion of the non-tumor voxels
was πS2 = 0.75.

We set our training batch size to 64, and each training patch
voxel size is 48 × 48 × 48 for saving memory, which is sufficient
to train the model; another aspect to the design of such a parch
size is that a larger patch would contain more background voxel,
which means the model would over-fit the background and

1https://www.med.upenn.edu/sbia/brats2018/data.html

would not be able learn a pattern of Whole Tumor segmentation.
For the data training strategy, we randomly generated 40,000
locations as the center point of patches for each patient volume;
finally, only 200 locations were selected as our training patches.
To fully utilize the information from each model provided with
FLAIR, T2, T1, and T1ce, we reconstructed our multi-modal
data by stack theses modals in the channel dimension, which can
be directly fed to convolutional neural networks (CNNs). Also,
imitating the technique from (Bakas et al., 2018), we enabled the
network to capture the multiscale information from data. To do
so, we got the 96 × 96 × 96 patches for each modal, extracted in
the same way as the 48× 48× 48 patches, which were two times
bigger than the basic training patch; this bigger patch also belongs
to the same center location as the basic training patch. Then, we
resized the 96 × 96 × 96 patches to 48 × 48 × 48. Finally, we
concatenated all the different models and scaled patches, which
is shown in Figure 2. Thus, the input patch size of our model was
batchsize×8×48×48×48.We trained our whole network using
Pytorch (Paszke et al., 2017), which is a new hybrid front-end
seamlessly transitions between eager mode and graph mode to
provide both flexibility and speed. NVIDIA TITAN XP GPU was
applied to train our network, and the cost was about 11 gigabytes
GPU RAM. The whole training process was finished in 4 h with
5 epochs, and each epoch traversed the whole training dataset.
To optimize our model, we chose the common gradient descent
algorithm Adam.

3.2. Evaluation Metrics
3.2.1. Dice Coefficient

The Dice-Coefficient Score was calculated as the performance
metric. This measure states the similarity between clinical
Ground Truth annotations and the output segmentation of the
model which are A and B respectively. Afterwards, we calculated
the average of those results to obtain the overall dice coefficient
of the models.

D =
2|A

⋂

B|

|A| + |B|
(9)

3.2.2. Hausdorff Distance

The Hausdorff Distance is mathematically defined as the
maximum distance of a set to the nearest point in the other set, in
other words, how close the segmentation and the expected output
are. In most evaluations, we usually adopt the 95% Hausdorff
Distance, Hausdorff95, which means the chosen distance is
greater or equal to exactly 95% of the other distance in two
point sets.

−→
dH(A,B) = max

a∈A
max
b∈B

d(a, b) (10)

H(A,B) = max{
−→
dH(A,B),

−→
dH(B,A)} (11)

3.3. Experimental Results
To compare the model performance straightly, we gave the
segmented mask generated by the baseline Naive-BoxSup
method and our proposed method 3D-BoxSup, shown in
Figure 3. Corresponding to the evaluated metric in section 3.2,
the quantitative results are shown in Table 1. The chosen samples
were randomly picked fromHGG testing set and LGG testing set.
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FIGURE 3 | This figure shows that we randomly sampled two patients from HGG testing set and LGG testing set respectively. Each column represents the applied

method, and each row is the chosen patient. The A patient is from HGG samples, and the B patient is from LGG samples. The estimated segmentation result of WT is

shown by both the naive method and our proposed PU box method. To better visualize the segmented result, we provide three different views: axial, coronal, and

sagittal.

As can be seen from Figure 3, our proposed 3D-BoxSup method
obviously produced a more accurate segmentation mask than the
Naive-BoxSupmethod, which produced amuchmore noisymask
around the tumor boundary. It seems the Naive-BoxSup over-fits
the data from no-tumor area S0, which verifies that our method

is able to alleviate this over-fitting and learning better from box
area S1.

In terms of the quantitative metrics of the Dice Score
and Hausdorff Distance, our method performs better than the
baseline method in each aspect, especially the Dice Score.
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FIGURE 4 | We randomly choose six patients from testing set as more example displaying and for simplicity we only show the view of axial plane.

TABLE 1 | Mean values of Dice and Hausdorff measurements of the proposed

method on the BraTS 2018 validation set.

Dice Hausdorff (mm) Hausdorff95 (mm)

WT WT WT

Naive-BoxSup (baseline) 0.49 ± 0.04 31.213 ± 2.316 20.857 ± 1.503

3D-BoxSup (ours) 0.62 ± 0.02 28.641 ± 1.395 15.476 ± 1.132

Region Grow 0.50 39.920 29.151

WT denotes whole tumor.

Visually, as shown in Figure 4, out method also generates finer
segmentation mask than the baseline method. The variance of
our 5-folds evaluation results is also smaller than the baseline
model, which means our model is more robust. Also, due to
the fact that we only applied a simple post-process for fill in
the hole of segmented mask, the Hausdorff Distance could be
influenced by the wrong segmentation area, which is beyond
the tumor area. Compared with the hand-crafted region grow

method (watershed clustering Ng et al., 2006), we set the
threshold of discontinuities in gray-scale to be 0.5, and the result
of the region grow is shown as below. To evaluate the region
grow method, we tested it on both training data and testing
data as tge region grow does not need to be trained. Overall,
our proposed method shows a superiority when given a weak
box annotation.

4. CONCLUSION

Precisely labeled data is limited in real world, especially for
medical data; it would cost a significant amount time and labor
to annotate the data, and it would also require a highly qualified
doctor as the annotator. Thus, we need to refer to some easily
labeled data, saving time, and also explore the information
derived from these weakly labeled data. In this paper, we explored
one of the possibilities of weakly supervised approach on medical
image segmentation. Our method is called the “3D-BoxSup,”
which only acquired a 3D bounding box label for brain tumor.
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Compared to the traditional supervised labeled data, which needs

a fine boundary for tumor annotation, our annotated data is

more accessible. However, training on the box labeled data would

lead to over-fitting of the background as well as a biased risk

function. Box labeled data is a typical positive-unlabeled task, and

we thus proposed to apply the non-negative PU risk function

(Kiryo et al., 2017) to boost the performance of our model. We

have shown the effectiveness of our proposed method on the

data provided by BRATS challenge (Menze et al., 2015). Since

our model is a general method when tackling such box labeled

data, our method can be further applied to mostly if not all of the
segmentation tasks.
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Despite great advances in brain tumor segmentation and clear clinical need, translation

of state-of-the-art computational methods into clinical routine and scientific practice

remains amajor challenge. Several factors impede successful implementations, including

data standardization and preprocessing. However, these steps are pivotal for the

deployment of state-of-the-art image segmentation algorithms. To overcome these

issues, we present BraTS Toolkit. BraTS Toolkit is a holistic approach to brain

tumor segmentation and consists of three components: First, the BraTS Preprocessor

facilitates data standardization and preprocessing for researchers and clinicians alike.

It covers the entire image analysis workflow prior to tumor segmentation, from

image conversion and registration to brain extraction. Second, BraTS Segmentor

enables orchestration of BraTS brain tumor segmentation algorithms for generation

of fully-automated segmentations. Finally, Brats Fusionator can combine the resulting

candidate segmentations into consensus segmentations using fusion methods such as

majority voting and iterative SIMPLE fusion. The capabilities of our tools are illustrated

with a practical example to enable easy translation to clinical and scientific practice.

Keywords: brain tumor segmentation, anonymization, MRI data preprocessing, medical imaging, brain extraction,

BraTS, glioma

1. INTRODUCTION

Advances in deep learning have led to unprecedented opportunities for computer-aided image
analysis. In image segmentation, the introduction of the U-Net architecture (Ronneberger et al.,
2015) and subsequently developed variations like the V-Net (Milletari et al., 2016) or the 3D
U-Net (Çiçek et al., 2016) have yielded algorithms for brain tumor segmentation that achieve a
performance comparable to experienced human raters (Dvorak and Menze, 2015; Menze et al.,
2015a; Bakas et al., 2018). A recent retrospective analysis of a large, multi-center cohort of
glioblastoma patients convincingly demonstrated that objective assessment of tumor response via
U-Net-based segmentation outperforms the assessment by human readers in terms of predicting
patient survival (Kickingereder et al., 2019; Kofler et al., 2019), suggesting a potential benefit of
implementing these algorithms into clinical routine.
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FIGURE 1 | Illustration of a typical dataflow to get from raw MRI scans to segmented brain tumors by combining the three components of the BraTS Toolkit. After

preprocessing the raw MRI scans using the BraTS Preprocessor, the data is passed to the BraTS Segmentor, where arbitrary state-of-the-art models from the BraTS

algorithmic repository can be used for segmentation. With BraTS Fusionator, multiple candidate segmentations may then be fused to obtain a consensus

segmentation. As the Toolkit is designed to be completely modular and with clearly defined interfaces, each component can be replaced with custom solutions

if required.

Recent works present diverse approaches toward brain
tumor segmentation and analysis. Jena and Awate (2019)
introduced a Deep-Neural-Network for image segmentation
with uncertainty estimates based on Bayesian decision theory.
Shboul et al. (2019) deployed feature-guided radiomics for
glioblastoma segmentation and survival prediction. Jungo et al.
(2018) analyzed the impact of inter-rater variability and
fusion techniques for ground truth generation on uncertainty
estimation. Shah et al. (2018) combined strong and weak
supervision in training of their segmentation network to reduce
overall supervision cost. Cheplygina et al. (2019) created an
overview of Machine Learning methods in medical image
analysis employing less or unconventional kinds of supervision.

In earlier years researchers experimented with a variety of
approaches to tackle brain tumor segmentation (Prastawa et al.,
2003; Menze et al., 2010, 2015b; Geremia et al., 2012), however in
recent years the field is increasingly dominated by convolutional
neural networks (CNN). This is also reflected in the contributions
to the Multimodel Brain Tumor Segmentation Benchmark
(BraTS) challenge (Bakas et al., 2018). The BraTS challenge
(Menze et al., 2015a; Bakas et al., 2017) was introduced in 2012 at
the International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI), evaluating different
algorithms for automated brain tumor segmentation. Therefore,
every year the BraTS organizers provide a set of MRI scans,
consisting of T1, T1c, T2, and FLAIR images from low- and high-
grade glioma patients, coming with the corresponding ground
truth segmentations.

Nonetheless, the computational methods presented in the
BraTS challenge have not found their way into clinical and
scientific practice. While the individual reasons vary, there are
some key obstacles that impede the successful implementation
of these algorithms. First of all, the availability of data for
training, especially of high-quality, well-annotated data, is

limited. Additionally, data protection as well as ethical barriers,
complicate the development of centralized solutions, making
local solutions strongly preferable. Furthermore, there are
knowledge and skill barriers, when it comes to the conduction
of setting up necessary preprocessing of data, while time and
resources are limited.

While individual solutions for several of these problems
exist, such as containerization for simplified distribution of code
or public datasets, these are oftentimes fragmented and hence
difficult to combine. Centralizing these efforts holds promise
for making advances in image analysis easily available for
broad implementation. Here we introduce three components to
tackle these problems. First BraTS preprocessor facilitates data
standardization and preprocessing for researchers and clinicians
alike. Building upon that, varying tumor segmentations can
be obtained from multiple algorithms with BraTS Segmentor.
Finally, BraTS Fusionator can fuse these candidate segmentations
into consensus segmentations by majority voting and iterative
SIMPLE (Langerak et al., 2010) fusion. Together our tools
represent BraTS Toolkit and enable a holistic approach
integrating all the steps necessary for brain tumor image analysis.

2. METHODS

We developed BraTS Toolkit to get from raw DICOM data
to fully automatically generate tumor segmentations in NIFTI
format. The toolkit consists of three modular components.
Figure 1 visualizes how a typical brain tumor segmentation
pipeline can be realized using the toolkit. The data is first
preprocessed using the BraTS Preprocessor, then candidate
segmentations are obtained from the BraTS Segmentor and
finally fused via the BraTS Fusionator. Each component
can be replaced with custom solutions to account for local
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requirements1. A key design principle of the software is that all
data processing happens locally to comply with data privacy and
protection regulations.

BraTS Toolkit comes as a python package and can be
deployed either via Python or by using the integrated command
line interface (CLI). As the software is subject to ongoing
development and improvement this work focuses on more
abstract descriptions of the software’s fundamental design
principles. To ease deployment in scientific and clinical practice
an up-to-date user guide with installation and usage instructions
can be found here: https://neuronflow.github.io/BraTS-Toolkit/.

Users that prefer an easier approach can alternatively use
the BraTS Preprocessor’s graphical user interface (GUI) to
take care of the data preprocessing2. The GUI is constantly
improved in a close feedback loop with radiologists from the
department of Neuroradiology at Klinikum Rechts der Isar
(Technical University of Munich) to address the needs of clinical
practitioners. Depending on the community’s feedback, we plan
to additionally provide graphical user interfaces for BraTS
Segmentor and BraTS Fusionator in the future. Therefore, BraTS
Toolkit features update mechanisms to ensure that users have
access to the latest features.

2.1. Component One: BraTS Preprocessor
BraTS Preprocessor provides image conversion, registration, and
anonymization functionality. The starting point to use BraTS
Preprocessor is to have T1, T1c, T2, and FLAIR imaging data in
NIFTI format. DICOM files can be converted to NIFTI format
using the embedded dcm2niix conversion software (Li et al.,
2016).

The main output of BraTS Preprocessor consists of the
anonymized image data of all four modalities in BraTS
space. Moreover, it generates the original input images
converted to BraTS space, anonymized data in native space,
defacing/skullstripping masks for anonymization, registration
matrices to convert between BraTS and native space and
overview images of the volumes’ slices in png format. Figure 2
depicts the data-processing in detail.

BraTS Preprocessor handles standardization and
preprocessing of brain MRI data using a classical front- and back
end software architecture. Figure 3 illustrates the GUI variant’s
software architecture, which enables users without programming
knowledge to handle MRI data pre-processing steps.

Advanced Normalization Tools (ANTs) (Avants et al., 2011)
are deployed for linear registration and transformation of images
into BraTS space, independent of the selected mode. In order
to achieve proper anonymization of the image data there are
four different processing modes to account for different local
requirements and hardware configurations:

1. GPU brain-extraction mode

1As an example users who do not want to generate tumor segmentations on their

own hardware using the BraTS Segmentor, can alternatively try our experimental

web technology based solution nicknamed the Kraken: https://neuronflow.github.

io/kraken/.
2For an up-to-date installation and user guide please refer to: https://neuronflow.

github.io/BraTS-Preprocessor/.

2. CPU brain-extraction mode
3. GPU defacing mode (under development)
4. CPU defacing mode

Brain extraction is implemented by means of HD-BET (Isensee
et al., 2019) using GPU or CPU, respectively. HD-BET is a
deep learning based brain extraction method, which is trained
on glioma patients and therefore particularly well-suited for
our task. In case the available RAM is not sufficient the CPU
mode automatically falls back to ROBEX (Iglesias et al., 2011).
ROBEX is another robust, but slightly less accurate, skull-
stripping method that requires less RAM than HD-BET, when
running on CPU.

Alternatively, the BraTS Preprocessor features GPU and
CPU defacing modes for users who find brain-extraction too
destructive. Defacing on the CPU is implemented via Freesurfer’s
mri-deface (Fischl, 2012), while deep-learning based defacing on
the GPU is currently under development.

2.2. Component Two: BraTS Segmentor
The Segmentor module provides a standardized control interface
for the BraTS algorithmic repository3 (Bakas et al., 2018). This
repository is a collection of Docker images, each containing
a Deep Learning model and accompanying code designed for
the BraTS challenge. Each model has a rigidly defined interface
to hand data to the model and retrieve segmentation results
from the model. This enables the application of state-of-the-
art models for brain tumor segmentation on new data without
the need to install additional software or to train a model
from scratch. However, even though the algorithmic repository
provides unified models, it is still up to the interested user to
download and run each Docker image individually as well as
manage the input and output. This final gap in the pipeline
is closed by the Segmentor, which enables less experienced
users to download, run and evaluate any model in the BraTS
algorithmic repository. It provides a front end to manage all
available containers and run them on arbitrary data, as long as the
data conforms to the BraTS format. To this end, the Segmentor
provides a command line interface to process data with any or all
of the available Docker images in the repository while ensuring
proper handling of the files. Its modular structure also allows
anyone to extend the code, include other Docker containers or
include it as a Python package.

2.3. Component Three: BraTS Fusionator
The Segmentor module can generate multiple segmentations
for a given set of images which usually vary in accuracy
and without prior knowledge, a user might be unsure which
segmentation is the most accurate. The Fusionator module
provides two methods to combine this arbitrary number of
segmentation candidates into one final fusion which represents
the consensus of all available segmentations. There are two main
methods offered: Majority voting and the selective and iterative
method for performance level estimation (SIMPLE) proposed by

3https://github.com/BraTS/Instructions/blob/master/Repository_Links.md#

brats-algorithmic-repository
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FIGURE 2 | Illustration of the data-processing. We start with a T1, T1c, T2, and FLAIR volume. In a first step we co-register all modalities to the T1 image. Depending

on the chosen mode, we then compute the brain segmentation or defacing mask in T1-space. To morph the segmented images in native space, we transform the

mask to the respective native spaces and multiply it with the volumes. For obtaining the segmented images in BraTS space, we transform the masks and volumes to

the BraTS space using a brain atlas. We then apply the masks to the volumes.

Langerak et al. (2010). Both methods take all available candidate

segmentations produced by the algorithms of the repository and
combine each label to generate a final fusion. In majority voting,

a class is assigned to a given voxel if at least half of the candidate
segmentations agree that this voxel is of a certain class. This is
repeated for each class to generate the complete segmentation.
The SIMPLE fusion works as follows: First, a majority vote fusion
with all candidate segmentations is performed. Secondly, each
candidate segmentation is compared to the current consensus
fusion and the resulting overlap score (a standard DICE measure
in the proposed method) is used as a weight for the majority
voting. This causes the candidate segmentations with higher

estimated accuracy to have a higher influence on the final result.
Lastly, each candidate segmentation with an accuracy below
a certain threshold is dropped out after each iteration. This
iterative process is stopped once the consensus fusion converges.
After repeating the processes for each label, a final segmentation
is obtained.

3. RESULTS

The broad availability of Python, Electron.js, and Docker allows
us to support all major operating systems with an easy installation
process. Users can choose to process data using the command line
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FIGURE 3 | BraTS Preprocessor software architecture (GUI variant). The front end is implemented by a Vue.js web application packaged via Electron.js. To ensure a

constant runtime environment the Python based back end resides in a Docker container (Merkel, 2014). Redis Queue allows for load balancing and parallelization of

the processing. The architecture enables two-way communication between front end and back end by implementing Socket.IO on the former and Flask-Socket.IO on

the latter. In contrast to this the python package’s front end is implemented using python-socketio.

(CLI) or through the user friendly graphical user interface (GUI).
Depending on the available hardware, multiple threads are run to
efficiently use the system’s resources.

3.1. Practicality in Clinical and Scientific
Practice
To test the practicality of BraTS Toolkit we conducted a brain
tumor segmentation experiment on 191 patients of the BraTS
2016 dataset. As a first step we generated candidate tumor
segmentations. BraTS Segmentor allowed us to rapidly obtain
tumor delineations from ten different algorithms of the BraTS
algorithmic repository (Bakas et al., 2018). The standardized
user interface of BraTS Segmentor abstracts all the required
background knowledge regarding docker and the particularities
of the algorithms. In the next step we used BraTS Fusionator to
fuse the generated segmentations by consensus voting. Figure 4
shows that fusion by iterative SIMPLE and class-wise majority
voting had a slight advantage over single algorithms. This effect
was particularly driven by removal of false positives as illustrated
for an exemplary patient in Figure 5. BraTS Toolkit enabled us
to conduct the experiment in a user-friendly way. With only a
few lines of Python code we were able to obtain segmentation
results in a fully-automated fashion. This impression was
confirmed by experiments on further in house data-sets where
we also deployed the CLI and GUI variants of all three BraTS
Toolkit components with great feedback from clinical and
scientific practitioners. Users especially appreciated the increased
robustness and precision of consensus segmentations compared
to existing single algorithm solutions.

4. DISCUSSION

Overall, the BraTS Toolkit is a step toward the democratization of
automatic brain tumor segmentation. By lowering resource and

FIGURE 4 | Evaluation of the segmentation results on the BraTS 2016 data

set for whole tumor labels on n = 191 evaluated test cases. We generated

candidate segmentations with ten different algorithms. Segmentation methods

are sorted in descending order by mean dice score. The two fusion methods,

iterative SIMPLE (sim) and class-wise majority voting displayed on the left,

outperformed individual algorithms depicted further right. The red horizontal

line shows the SIMPLE median dice score (M = 0.863) for better comparison.

knowledge barriers, users can effectively disseminate dockerized
brain tumor segmentation algorithms collected through the
BraTS challenge. Thus, it makes objective brain tumor volumetry,
which has been demonstrated to be superior to traditional image
assessment (Kickingereder et al., 2019), readily available for
scientific and clinical use.

Currently, BraTS segmentation algorithms and therefore
BraTS Segmentor require each of T1, T1c, T2, and FLAIR
sequences to be present. In practice, this can become a limiting
factor due to errors in data acquisition or incomplete protocols
leading to missing modalities. Recent efforts try to bridge this
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A B

C D

FIGURE 5 | Single algorithm vs. iterative SIMPLE consensus segmentation. T2 scans with segmented labels by exemplary candidate algorithms from (A) Pawar et al.

(2018), (B) Sedlar (2018), and (C) Isensee et al. (2017) (Green: edema; Red: necrotic region/non-enhancing tumor; Yellow: enhancing tumor). (D) Shows a

consensus segmentation obtained using the iterative SIMPLE fusion. Notice the false positives marked with white circles on the candidate segmentations. These

outliers are effectively reduced in the fusion segmentation shown in (D).

gap by using machine learning techniques to reconstruct missing
image modalities (e.g., Dorent et al., 2019; Li et al., 2019).

Other crucial aspects of data preprocessing are the lack
of standards for pulse sequences across different scanners
and manufacturers, and absence of data acquisition protocols’
harmonization in general. For the moment, we address this only
with primitive image standardization strategies as described in
Figure 2. However, in clinical and scientific practice, we already
found our application to be very robust across different data
sources. Brain extraction with HD-BET also proved to be sound
for patients from multiple institutions with different pathologies
(Isensee et al., 2019).

These limitations are in fact some of the key motivations
for our initiative. We strive to provide researchers with tools
to build comprehensive databases which capture more of the
data variability in magnetic resonance imaging. In the longterm
this will enable the development of more precise algorithms.

With BraTS Toolkit clinicians can actively contribute to
this process.

Through well-defined interfaces, the resulting output
from our software can be integrated seamlessly with further
downstream software to create new scientific and medical
applications such as but not limited to, fully-automatic MR
reporting4 or tumor growth modeling (Ezhov et al., 2019;
Lipková et al., 2019). Another promising future direction
is to focus on integration with the local PACS to enable
streamlined processing of imaging data directly from the
radiologist’s workplace.

4Our Kraken web service can be seen as an an exemplary prototype for this

(for the moment it is not for clinical use, but for research and entertainment

purposes only). The Kraken is able to send automatically generated segmentation

and volumetry reports to the user’s email address: https://neuronflow.github.io/

kraken/.
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Glioblastoma is a WHO grade IV brain tumor, which leads to poor overall survival (OS)

of patients. For precise surgical and treatment planning, OS prediction of glioblastoma

(GBM) patients is highly desired by clinicians and oncologists. Radiomic research

attempts at predicting disease prognosis, thus providing beneficial information for

personalized treatment from a variety of imaging features extracted from multiple MR

images. In this study, first-order, intensity-based volume and shape-based and textural

radiomic features are extracted from fluid-attenuated inversion recovery (FLAIR) and T1ce

MRI data. The region of interest is further decomposed with stationary wavelet transform

with low-pass and high-pass filtering. Further, radiomic features are extracted on these

decomposed images, which helped in acquiring the directional information. The efficiency

of the proposed algorithm is evaluated on Brain Tumor Segmentation (BraTS) challenge

training, validation, and test datasets. The proposed approach achieved 0.695, 0.571,

and 0.558 on BraTS training, validation, and test datasets. The proposed approach

secured the third position in BraTS 2018 challenge for the OS prediction task.

Keywords: brain tumor, glioblastoma, overall survival, radiomic, machine learning

INTRODUCTION

Glioblastoma (GBM) remains the most aggressive primary malignant brain tumor in adults,
with a median survival time of 15 months and 5-year survival of ∼5% after initial diagnosis
(Chang et al., 2016). Nearly all patients with GBM relapse despite providing maximal safe surgical
resection, radiotherapy, temozolomide, and aggressive therapy. Spatial and temporal intra-tumor
heterogeneity, extent, and location are some of the factors that make these tumors challenging to
resect and, in some cases, inoperable. The inability to perform complete surgical tumor resection
and poor drug delivery to the brain contributes notably to the lack of effective treatment and poor
prognosis (Mahajan et al., 2015).

Certain biological variables such as MGMT promoter methylation status, 1p/19q deletion, and
IDH1 gene mutation status have been shown to explain to a certain extent this observed variation,
in addition to certain host variables such as age and gender. The fact that GBM shows extremely
wide clinical behavior points to the fact that the current understanding of GBM as a single disease
entity is an oversimplification. This is further supported by the fact that there have been multiple
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attempts to divide GBM into more distinct subgroups using
molecular subtyping (Verhaak et al., 2010). However, these
methods are difficult to replicate in routine clinical practice
owing to the complexity of the assays and high costs. Further,
tumors show subtype plasticity with a complex transition
from one subtype to another during progression (Lee et al.,
2018). Thus, predicting survival of patients with GBM is a
challenging task.

Magnetic resonance imaging (MRI) plays a vital role in
neuro-oncology for initial diagnosis and assessment of treatment
response and is increasingly used as a powerful non-invasive
predictive tool. Researchers have identified that MRI provides
distinct information that can predict survival independently of
pathologic and clinical data. The process that extracts various
quantitative features on the basis of intensity, volume, shape,
and textural variations from radiographic images and design
predictive algorithms to find the association of these vast features
to the survival and outcome of the patient is known as radiomics
(Chaddad et al., 2019b). Radiomics incorporates several essential
disciplines, including radiology for imaging interpretation,
computer vision for quantitative feature extraction, and machine
learning for classifier evaluation and regression (Seow et al., 2018;
Vaidya et al., 2019).

In recent years, several radiomic models have been proposed
for survival prediction (Huang et al., 2016), distant metastasis
prediction (Coroller et al., 2015), and molecular characteristics
classification (Kickingereder et al., 2016a,b). Researchers
extracted several radiomic features on the basis of texture, area,
volume, and Euler characteristics-based features from different
intra-tumor parts (Shboul et al., 2019). Extreme Gradient
Boosting (XGBoost) was used as a regressor to predict the
OS. This approach achieved 0.519 accuracy on Brain Tumor
Segmentation (BraTS) 2018 test dataset. In another study,
multi-planer spatial convolutional neural networks were used for
brain tumor segmentation, and semantic and agnostic features
were extracted on these segmented tumor parts. These radiomic
features were provided as input to multilayer perceptron (MLP)
to predict OS (Banerjee et al., 2019). Although the proposed
approach performed well for segmentation task, the algorithm
performed poorly on BraTS 2018 test dataset for overall survival
(OS) prediction task. Other than the sophisticated machine
learning approaches, a simple linear regressor was used on
only nine features. These features were computed by the
volume, by summing up the voxels and the surface area, and by
summing up the magnitude of the gradients along with three
directions. There were fewer chances of overfitting because
of only nine features, and hence, the method performed well
(Feng et al., 2019). Multi-scale texture features-based approach
for predicting GBM patients’ progression-free survival and OS
on T1- and T2-weighted fluid-attenuated inversion recovery
(FLAIR) MRIs was proposed using the random forest (Chaddad
et al., 2018). The study results showed that the identified
seven-feature set, when combined with clinical factors, improved
the model performance, yielding an area under the receiver
operating characteristic curve (AUC) value of 85.54% for OS
predictions. Osman et al. extracted a set of 147 radiomic image
features locally from three tumor subregions on standardized

preoperative multiparametric MR images. LASSO regression was
applied for identifying an informative subset of chosen features,
whereas a Cox model was used to obtain the coefficients of those
selected features (Osman, 2019). Despite the various correlations
between imaging features, genomic expression, and survival
reported in the literature, no single analysis has been substantive
enough to enter clinical practice.

In another study, usefulness of geometric shape features,
extracted from MR images, as a potential non-invasive way to
characterize GBM tumors and predict the OS times of patients
with GBM, is evaluated (Chaddad et al., 2016a). Multi-contrast
MRI texture features were used for the prediction of survival
of patients GBM using texture features derived from gray-level
co-occurrence matrices (GLCMs). The statistical analysis based
on the Kaplan–Meier method and log-rank test was conducted in
order to identify the texture features most closely associated with
the OS (Chaddad and Tanougast, 2016; Chaddad et al., 2016b). A
study underlines that radiomic features could be complimentary
to biopsy-based sequencing methods to predict survival of
patients with IDH1 wild-type GBM (Chaddad et al., 2019a).

This study aims to evaluate the efficiency of the radiomic
feature-based MRI signatures from multi-modal MRI data and
to find their associations with OS in patients with high-
grade gliomas (HGGs) with improved accuracy compared with
those of the available state-of-the-art methods. The rest of the
manuscript is organized as follows: the dataset used for the study,
preprocessing steps, and radiomic feature extraction framework
is described in the Material and Method. Sample results are
discussed in the Result and Discussion. Conclusion and Future
Work concludes the paper with future direction.

MATERIALS AND METHODS

We participated in BraTS 2018 challenge, which mainly focused
on two tasks:

1. segmentation of brain tumor with intra-tumor parts like
edema, enhancing tumor, and necrotic part; and

2. OS prediction of the patients in days with the help of
imaging features.

In this study, we mainly focused on the survival prediction
aspects of the BraTS challenge.

Dataset
Since 2012, every year, the BraTS challenge is organized at
Medical Image Computing and Computer Assisted Intervention
(MICCAI) conference (Menze et al., 2015). The challenge is to
segment HGG and low-grade glioma (LGG) with high accuracy.
From 2017 onwards, the task is extended for the prediction
of OS of the patients in days as well (Bakas et al., 2017a,b,
2019). The BraTS organizers had provided multi-institutional
training dataset of 163 patients diagnosed with GBM. For the
validation dataset and test dataset, 53 and 130 cases were
provided separately. The data were obtained from various
institutions all over the globe, with different clinical protocols
and scanners. For each patient, MRI data of size 240 ×

240 × 155 were provided with FLAIR, T1, T1ce, and T2
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modalities along with the ground truth as shown in Figure 1.

The same annotation protocol was followed to segment all

the cases manually by one to four raters, which were later

verified by expert neurologists with more than 15 years of

experience. The labels were termed as edema, enhancing tumor

(ET), and necrosis. One of the tasks of BraTS 2018 challenge

was to auto-segment the tumor into its three constituent

regions, namely,

1. enhancing tumor region (ET), which shows hyperintensity in
T1 postcontrast when compared with T1;

2. tumor core (TC), which entails the ET, necrotic (fluid filled),
and non-enhancing (solid) parts; and

3. whole tumor (WT), which includes all intra-tumor parts along
with edema.

Additional information like resection status, age, and survival in
days were also provided exclusively for OS prediction task. The

FIGURE 1 | Multi-modal data with four channels provided in BraTS 2018 challenge dataset along with ground truth (GT). Subtumor parts are represented as follows:

green, edema; blue, enhancing tumor; red, necrosis. BraTS, Brain Tumor Segmentation; FLAIR, fluid-attenuated inversion recovery.

FIGURE 2 | Top row: original input MR slice and slice after biased field correction. Bottom row: corresponding histograms of original slice and histogram after biased

field correction. The horizontal X-axis of the histogram is intensity, and the vertical Y axis is frequency.
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MR data provided by BraTS organizers was skull stripped and
co-registered to 1mm× 1mm× 1mm isotropic resolution. The
proposed three-step pipeline is shown in Figure 2.

Proposed Methodology
We proposed three-step methodology for OS prediction, as
shown in Figure 3. In our approach, radiomic features were
extracted on region of interest (ROI). The segmentation labels
were provided for training dataset only, and hence, we segmented
the tumors in validation and test dataset first and then extracted
the radiomic features on the segmented ROI as first step. In step
2, radiomic features were extracted, and feature selection and OS
prediction model was designed in step 3.

Preprocessing
The biased field algorithm was applied on FLAIR, T1, T2, and
T1ce channel to correct the intensity inhomogeneity with N4ITK
tool (Tustison et al., 2010). From Figure 2, it can be observed
that the slice after bias field correction is more homogeneous in
terms of intensity. All the four MR channels were normalized to
zero mean and unit variance. We extracted multi-channel and
multi-regional radiomic features with the help of intra-tumor
annotations provided by the organizers on training dataset. We
segmented the tumor with patch-based 3D U-Net architecture
(Baid et al., 2019, 2020).

Radiomic Feature Extraction
We extracted radiomic features on FLAIR and T1ce channels.
Because whole tumor is best seen in FLAIR modality and
enhancing tumor boundaries can be best visualized in T1ce
modality, we selected these channels only for feature extraction.
We computed radiomic features on these modalities with three
varying combinations of intra-tumor parts as a whole tumor,
that is, all intra-tumor parts, necrosis with enhancing tumor, and

FIGURE 4 | Representative diagram for stationary wavelet decomposition.

LPF, low-pass filter; HPF, high-pass filter.

FIGURE 3 | Proposed three-step framework for overall survival prediction in glioblastoma (GBM).

Frontiers in Computational Neuroscience | www.frontiersin.org 4 August 2020 | Volume 14 | Article 61298

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Baid et al. Overall Survival Prediction in Glioblastoma

FIGURE 5 | Distribution of survival groups identified using two-step clustering and correlation with age. Left: the age is in years and overall survival in given days.

Right: on the X-axis of two-step cluster, Group 1, Group 2, and Group 3 are represented.

enhancing tumor only. So at the end, we had six combinations to
extract radiomic features.

First-order statistical features and shape-based features were
extracted from these combinations of ROI and MR channels.
ROI was decomposed into four sub-bands with a multi-level
2-D stationary wavelet decomposition using a biorthogonal
wavelet (Kickingereder et al., 2016b). In the first step, ROI
was decomposed into two sub-bands with low-pass filter (LPF)
and high-pass filter (HPF). Further, these sub-bands were again
passed through LPF and HPF, giving LL, LH, HL, and HH
bands (Figure 4). This was to extract directional texture features
from approximate, horizontal, vertical, and diagonal components
obtained after decomposition of the ROI (Nason and Silverman,
1995). It should be noted that we have not down-sampled the LPF
and HPF to generate LL, LH, HL, and HH purposefully to avoid
any sort of loss of information. GLCM features were extracted
from these sub-bands (Haralick and Shanmugam, 1973). One
hundred and thirteen first-order statistics, shape-based, and
GLCM features were extracted for each tumor part and modality
considering all four wavelet sub-bands. Thus, we had a total of
678 radiomic features extracted from six different combinations
of tumor parts and modalities. Each patient in the BraTS dataset
was provided with age as additional information, which we had
concatenated in our feature vector. Finally, for each patient, we
had 679 variables to be used to train the regression model for
the survival prediction task. In training dataset, we had 163
patients for whomOSwas provided in days. The radiomic feature
extraction pipeline is available at Github1.

Survival Prediction
Survival prediction was divided into two tasks. One task
aimed at classifying patients into three survival groups obtained
by unsupervised two-step clustering. These groups roughly

1https://github.com/ujjwalbaid0408/Radiomics

correspond to the known survival groups in GBM (PMID:
22517216). The survival groups were characterized as long
survivors (e.g., >900 days), short survivors (e.g., <300 days),
and mid-survivors (e.g., between 300 and 900 days). For precise
treatment planning, it is valuable to categorize a patient to either
of these survival subgroups. This will enable clinicians to decide
how aggressively a patient needs to be treated. The second task
aimed at predicting OS in days, which is the same as the task
required for BraTS 2018.

Delineating Survival Groups
Natural grouping of patients based on survival was investigated
using unsupervised two-step hierarchical clustering. This
resulted in three groups with a good silhouette of separation:
Group 1 (short survivors; patients with <300 days’ OS, n = 65),
Group 2 (mid-survivors; patients with OS between 300 and 900
days, n = 86), and Group 3 (long survivors; patients with >900
days’ survival, n = 12). Pearson’s correlation revealed a strong
inverse relationship of age with this group, with younger patients
having the greatest OS (p = 0.000008, r = −0.368), as shown
in Figure 5.

Assessment of Relationship With Survival and

Radiomic Feature Vector Dimension Reduction
In order to reduce the dimensionality of the feature vector,
Spearman’s correlation coefficient was calculated for each pair
of radiomic features. The features having Spearman’s correlation
coefficient >0.95 with each other were discarded, retaining
a single feature in each set (Supplementary Table 1). This
reduced the feature vector size from 679 to 118. The feature
set was further reduced to 54 by excluding all variables
with statistically insignificant (p > 0.05) relationship with
the survival groups (tested using ANOVA) identified above
and with OS (tested using Pearson’s correlation coefficient).
It was observed that in terms of normalized importance,
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FIGURE 6 | Performance summary of the overall survival (OS) prediction algorithm. (A) Predicted pseudoprobabilities across the three prediction categories. (B) Area

under the receiver operating characteristic curve (AUC) for the three categories. (C) Dot plot of predicted and actual survival in days. (D) Residual vs. predicted plots

for the survival prediction in days.

age is the most important feature. Because whole tumor
is visible in FLAIR modality with hyperintense pixels, their
features followed age. The enhancement tumor and core tumor
counts were of significant importance for survival prediction
(Supplementary Table 1).

Predicting Survival Groups Using Radiomic Features
Neural networks were designed using MLP to build a
predictive model using the reduced radiomic feature vector set
and age.

Neural Network Design
A single neural network was designed to classify the features in
the three survival categories and to predict the OS in days. The
neural network designed had two hidden layers. The number
of units per layer were fixed to “auto.” The sigmoid activation
function was used in hidden layers and output layers. Results
were replicated by setting a random seed. For fair evaluation
and to avoid overfitting, the BraTS training dataset was further
divided into training (51.5%), validation (14.7%), and testing
(33.7%) subsets by using randomly generated Bernoulli variates.
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TABLE 1 | Quantitative evaluation of multilayer perceptron for OS prediction on

the BraTS dataset.

BraTS Accuracy MSE Median Std. deviation Spearman R

dataset SE

Training 0.695 18,920.841 9,139.551 22,253.812 0.877

Validation 0.571 59,550,213.1 1,136,111.6 128,250,465.8 0.427

Testing 0.558 338219.366 38408.16 939986.796 0.222

OS, overall survival; BraTS, Brain Tumor Segmentation; MSE, mean squared error.

TABLE 2 | Quantitative evaluation of MLP and RF for OS prediction on BraTS

validation dataset.

Approach Accuracy MSE Median SE Std. deviation Spearman R

RF 0.375 6,109,105.6 47,545.13 143,070.37 0.11

MLP 0.571 5,955,021.1 11,361.6 12,825,046.8 0.427

MLP, multilayer perceptron; RF, random forest; OS, overall survival; BraTS, Brain Tumor

Segmentation; MSE, mean squared error.

All the features were rescaled with an adjusted normalized
correction of 0.2. We also performed an individual variable
importance analysis (Supplementary Table 1).

RESULT AND DISCUSSION

Neural Network Performance
For the prediction of survival categories, the neural network
demonstrated an accuracy of 70.2% in the training subset and
62.5 and 63.6% in the validation and testing subsets, respectively,
which we divided from BraTS training dataset. The accuracy was
73% for the entire training dataset. The AUC was 0.799 (0.817 for
Group 1, 0.709 for Group 2, and 0.784 for Group 3). A summary
of the model performance is shown in Figure 6. The designed
model performed better for patients in the mid-survivor groups,
with the least accuracy for patients in the long-survivor group.

For fair evaluation of all the proposed algorithms of
researchers participating in the BraTS challenge, organizers
had provided an online evaluation platform. Participants were
expected to submit the results on this platform, and later, they
could download the quantitative results for the same2. It had been
observed that despite less accuracy on validation dataset, our
method achieved the third position in OS prediction task in the
BraTS challenge3. The most convincing reason behind this was
that all other participants might have overfitted their methods
to the validation dataset. BraTS organizers have provided
leaderboard of all the participants with segmentation and OS
prediction task with several quantitative evaluation matrices4.
We evaluated the proposed approach on BraTS training testing
and validation dataset as shown in Table 1. The comparison
between random forest and MLP is given in Table 2 on BraTS
validation dataset.

We have also evaluated the efficiency of the proposed
approach with 10-fold validation. At every fold, 90% of patients

2https://ipp.cbica.upenn.edu/
3https://www.med.upenn.edu/sbia/brats2018/rankings.html
4https://www.cbica.upenn.edu/BraTS18/

are used for training and 10% of samples are kept as a holdout.
The classification accuracy at each fold is given in Figure 7. The
X-axis of the plot represents the fold number, and Y-axis gives
the corresponding classification accuracy. The average accuracy
is found to be 58.49, which is comparable with accuracy on
BraTS 2018 validation dataset, which proves the robustness of the
proposed approach.

DISCUSSION

Predicting outcomes has been the holy grail of modern oncology,
notoriously difficult to achieve with high accuracy, yet driving
numerous investigators toward finding newer ways of attempting
to reach that goal. Because of multiple challenging factors, this
task is out of clinical reach. Some of the challenges are the
limitations of the human mind and recording devices to quantify
the biological variations. The other is an amalgamation of cross-
disciplinary interactions of clinical sides (for treatment planning)
and engineering sides (toward quantitative analysis).

In this work, we have evaluated a couple of methods (MLP
and RF) to predict OS using radiomic feature extracted using
deep learning-based segmentation and feature pipeline as shown
in Figure 3. What is interesting is the fact that although
our segmentation pipeline did not feature in the top models
submitted to BraTS 2018, our survival prediction pipeline did
make it to the third position on the basis of the performance
metrics decided by the BraTS 2018 organizers. The neural
network achieved an accuracy of 0.583 with a relatively low
standard error. Age was the most important variable in the
predictive model. Further, we have also identified radiomic
features that contributed maximally to the model.

The importance of the independent variable in descending
order is given in Supplementary Table 1. It was observed that age
is the most important factor for the OS prediction. We observed
that radiomic analysis of tumor core region, which is comprised
of necrosis and enhancing tumor on FLAIRmodality contributed
significantly toward prediction OS. It can be concluded that the
core tumor count, that is, volume of enhancing tumor and tumor
core, are of extreme importance in OS prediction of patients
with GBM.

The amount of clinical information (only age and OS)
provided in BraTS 2018 is extremely limited; and no
details regarding gender, other co-existing comorbidities,
performance status, and details of treatment received are
provided. Considering these limiting factors, it is interesting to
note that radiomic features coupled with age could explain a
significant amount of variability seen in the OS of these patients
with GBM. Although predicting survival in terms of closest
number of days is desirable, in actual clinical practice, it often
suffices to predict prognostically relevant groups for treatment
intensification. For example, we were able to identify patients
with <300 days of survival with a significantly high accuracy
(0.804). These patients are ideal candidates for treatment
intensification. Our accuracy in predicting survival for the long
survivors was the least, possibly owing to the small number of
cases in that group.
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FIGURE 7 | K-fold cross-validation analysis. X-axis, fold number; Y-axis, accuracy.

Implementation Details
The radiomic feature extraction pipeline is designed in MATLAB
environment. The neural network design, feature reduction,
and other statistical analysis were performed with SPSS v24 on
computing machine with Windows 10 operating system.

CONCLUSION AND FUTURE WORK

In this study, we evaluated the efficiency of radiomic features
and machine learning-based classifier to predict the OS of
the patients diagnosed with GBM. Multi-modal radiomic
features were extracted from the FLAIR and T1ce channel
of preoperated MRI data. OS of the patient was predicted
with MLP and RF regressors. The classification accuracy
shows that MLP outperformed over random forest in terms
of accuracy. The proposed approach achieved the third
position in BraTS 2018. We have also identified radiomic
features that contribute maximally to the neural network’s
predictive ability. Further, the work could potentially
include incorporating additional prognostic variables such
as pathologic assessment information, molecular aberration
information, comorbidities, and performance status into the
predictive model.
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A significant challenge in Glioblastoma (GBM) management is identifying

pseudo-progression (PsP), a benign radiation-induced effect, from tumor recurrence,

on routine imaging following conventional treatment. Previous studies have linked tumor

lobar presence and laterality to GBM outcomes, suggesting that disease etiology and

progression in GBM may be impacted by tumor location. Hence, in this feasibility study,

we seek to investigate the following question: Can tumor location on treatment-naïve

MRI provide early cues regarding likelihood of a patient developing pseudo-progression

vs. tumor recurrence? In this study, 74 pre-treatment Glioblastoma MRI scans with

PsP (33) and tumor recurrence (41) were analyzed. First, enhancing lesion on Gd-T1w
MRI and peri-lesional hyperintensities on T2w/FLAIR were segmented by experts

and then registered to a brain atlas. Using patients from the two phenotypes, we

construct two atlases by quantifying frequency of occurrence of enhancing lesion

and peri-lesion hyperintensities, by averaging voxel intensities across the population.

Analysis of differential involvement was then performed to compute voxel-wise significant

differences (p-value < 0.05) across the atlases. Statistically significant clusters were

finally mapped to a structural atlas to provide anatomic localization of their location. Our

results demonstrate that patients with tumor recurrence showed prominence of their

initial tumor in the parietal lobe, while patients with PsP showed a multi-focal distribution

of the initial tumor in the frontal and temporal lobes, insula, and putamen. These

preliminary results suggest that lateralization of pre-treatment lesions toward certain

anatomical areas of the brain may allow to provide early cues regarding assessing

likelihood of occurrence of pseudo-progression from tumor recurrence on MRI scans.
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INTRODUCTION

A significant challenge in management of Glioblastoma (GBM),
the most aggressive form of brain cancer, is differentiating
tumor recurrences from pseudo-progression (PsP) on routine
magnetic resonance (MR) scans (Parvez et al., 2014). PsP
is a benign radiation-induced treatment effect which occurs
in approximately 19–33% of all malignant brain tumors
(Wang et al., 2016) and usually stabilizes or regresses without
further treatment. Unfortunately, PsP mimics tumor recurrence
radiologically on routine MRI scans [Gadolinium-enhanced T1-
weighted (Gd-T1w), T2-weighted (T2w), FLAIR], making it
challenging to differentiate from true tumor recurrence (Wang
et al., 2016). Studies have previously explored advanced imaging
modalities such as perfusion imaging (Prager et al., 2015; Chuang
et al., 2016; Detsky et al., 2017), MR spectroscopy (Chuang
et al., 2016), and diffusion-weighted imaging (Prager et al.,
2015) in distinguishing tumor recurrence from PsP. However,
these advanced imaging modalities are limited by acquisition
variability, costs, reproducibility, and unavailability at most
clinical sites (Brandsma et al., 2008). Reliable disease assessment
using routine imaging is thus needed in order to aid in accurately
identifying PsP from tumor recurrence. Timely identification
of these conditions could avoid unnecessary interventions in
patients with PsP, while allowing for change in treatment for
patients with tumor recurrence (Parvez et al., 2014).

Multiple studies have linked initial lesion location in the

brain to be a prognostic marker of tumor recurrence and overall
survival in diffuse Gliomas (Ellingson et al., 2012). For instance,

recent studies have demonstrated a higher rate of 1p19q deletion

in the frontal lobe (Laigle-Donadey et al., 2004), and absence

of 1DH1 mutation within the insula (Metellus et al., 2010).
Similarly, Gliomas in the frontal locations have been shown
to be associated with a better prognosis compared to other
locations (Stockhammer et al., 2012). Further, enhancing lesion
developing in the periventricular region has been linked to PsP
(Patel et al., 2014; Van West et al., 2017). These studies seem to
suggest that the underlying disease etiology may be driven by
tumor location. Hence, it may be reasonable to rationalize that
initial GBM location in the brain may implicitly contribute to an
increased likelihood of a patient developing pseudo-progression
or tumor recurrence, following conventional treatment of
maximal surgical resection and chemo-radiation therapy.

In this feasibility study, we evaluate this hypothesis that lesion
location on pre-treatment MR scans could provide early cues
regarding likelihood of a patient developing tumor recurrences
vs. PsP. In order to anatomically localize the disease, we
employ “population atlases” of GBM phenotypes to establish
predisposition of tumor recurrence or PsP to specific spatial
locations in the brain based on their frequency of occurrence
(Larjavaara et al., 2007; Ellingson et al., 2012; Bilello et al.,
2016). The statistical population atlases allow for the succinct
encapsulation of structural and anatomical variability of the
disease across a patient population using a single reference
or canonical representation. We will construct population
atlases on a cohort of 74 brain MRI scans across two lesion
sub-compartments (peritumoral hyperintensities as defined on

FLAIR scans and enhancing core as defined on T1w MRI),
to quantify the frequency of occurrence of PsP and tumor
recurrence in pre-treatment lesions. We will further employ a
statistical mapping technique, ADIFFI, to identify if there exist
any statistically significant lesion locations in the brain across the
two disease pathologies, by comparing the population atlases of
PsP and tumor recurrence.

MATERIALS AND METHODS

Study Population
The Institutional Review Board-approved and HIPAA-compliant
study comprised GBM patient population from Cleveland Clinic.
The population cohort for pre-treatment cases included 74 cases
in total; 41 tumor recurrence cases, and 33 PsP cases. All cases
were confirmed for disease presence using the criteria provided
below. Informed consent was obtained for all patients involved
in the study. All MR scans were acquired using either a 1.5 Tesla
or a 3-Tesla scanner. Table 1 summarizes the demographics for
this study population.

Confirmation for Disease Presence
Our dataset was identified by performing a retrospective review
of all brain tumor patients who had an enhancing lesion
within 6 months of treatment (treatment strategies for each
patient are provided in Supplementary Material). Our inclusion
criteria consisted of the following: (1) pre-, and post-treatment
MRI scans that are of diagnostic image quality as determined
by collaborating radiologists, (2) availability of all 3 routine
MRI sequences (Gd-T1w, T2w, FLAIR), (3) a suspected post-
treatment enhancing lesion with more than 5 millimeters (mm)
of rim or nodular enhancement, and (4) confirmation of PsP or
tumor recurrence for the suspected lesion.

In order to carefully assess the presence of PsP/recurrence, the
following steps were followed. First, MRI and other advanced
imaging scans (if available) were read by a neuro-radiologist
(board-certified in neuroradiology, CAQ) to identify the presence
of PsP/recurrence using image assessment based on the RANO
criteria (Wen et al., 2010). Then, the initial interpretation
was reviewed by patient’s clinical team (Neuro-oncology staff,
radiation oncologist). All cases were later discussed at a
multidisciplinary tumor board in order to provide the final
decision. The tumor board constituted of 2+ neuro-oncologists,
a neuro-radiologist, a neuropathologist, and one or more
surgeons, at our collaborating institution (CCF). A consensus
opinion on each individual case was finally formed based on a
methodical review of the clinical assessment, prior therapies, and
assessment based on imaging features, to identify every study as
PsP or tumor recurrence.

Image Registration and Tumor
Segmentation
Manual segmentations in our work were carefully performed by
our collaborating experts, where every 2-D slice of eachMRI scan
(for n = 74 studies) with visible tumor was manually annotated
[using 3D Slicer (Kikinis et al., 2014)] into 2 regions: enhancing
lesion and T2w/FLAIR hyperintense peri-lesional component.
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TABLE 1 | Summary of the study population used in this work to create

population atlases for PsP and tumor recurrence.

Characteristic Tumor recurrence Pseudo-progression

No. of patients 41 33

Females 16 12

Males 25 21

Mean age (year) 59.1 61.96

Age range (year) 26–75 24–75

Gd-T1w MRI scans were used to delineate the enhancing lesion,
while both T2w and FLAIR scans were used to annotate the
T2w/FLAIR hyperintense peri-lesional compartment. A total of
four experts were asked to perform the manual annotations.
The senior-most expert (V.H expert 1, >10-years of experience
in neuroradiology) independently annotated half of the studies,
while expert 2 (V.S) with 7 years of experience in neuroradiology
supervised expert 3 (K.B, with >3 years of radiology experience,
and G. S. with >3 years of experience), to manually annotate
the remaining cases individually. In rare cases with disagreement
across the readers (expert 2, expert 3, and expert 4), the
senior-most radiologist (V.H, expert 1) was consulted to reach
consensus and obtain the final segmentations.

In order to map all scans to the same space for the purpose
of spatial atlas construction, the Gd-T1w MRI sequence of each
patient was co-registered to a healthy 1.0-mm isotropic T1-
weighted brain atlas (MNI152; Montreal Neurological Institute),
using mutual-information-based similarity measure provided
in ANTs (Advanced Normalization Tools) SyN (Symmetric
Normalization) toolbox (Avants et al., 2008). This toolbox was
employed due to its proved efficiency in mapping brain images
containing lesions into healthy templates (Eloyan et al., 2014).
In order to ensure exclusion of intensity differences within
the tumor regions while only considering intensity differences
from healthy tissue, the entire tumor mask was removed
during registration. Skull stripping was then performed using
a deformable surface classification algorithm (Tao and Chang,
2010), followed by bias field correction that was performed
using the non-parametric non-uniform intensity normalization
technique in Tustison et al. (2010).

Frequency Map Construction
From the available annotations for both enhancing lesion
and T2w/FLAIR hyperintense peri-lesional compartments,
population atlases for each compartment were built for both
pathologies (tumor recurrence and PsP). These atlases were
constructed to quantify the frequency of occurrence of both
enhancing lesion and peri-lesional hyperintensities across
tumor recurrence and PsP, by averaging intensity values for
all voxels across all the annotated binary images of all patients
involved in the study. The frequency of lesion occurrence was
visualized using a heat map superimposed on the reference
MNI152 atlas.

Analysis of Differential Involvement
(ADDIFI)
From the constructed tumor progression and PsP frequency
atlases, analysis of differential involvement (ADIFFI) was
performed as described in Ellingson et al. (2012), once for the
enhancing lesion compartment and once for the peri-lesional
hyperintensities. ADIFFI has been previously applied and shown
success in the literature in the context of similar clinical problems
(Ellingson et al., 2012; Kinoshita et al., 2014). ADIFFI employs
Fisher’s exact test on a voxel-wise basis, where the test yields exact
p-values based on contingency tables (McDonald, 2009). Fisher’s
exact test is also recommended in the cases with two nominal
variables, where there is a need to assess whether the proportions
of one variable are different depending on the value of the other
variable (McDonald, 2009).

First, a two-tailed Fisher’s exact test was conducted, to
evaluate a 2 x 2 contingency table that compares tumor
recurrence/PsP along with tumor/non-tumor occurrence for
each voxel across all patients. From this voxel-wise analysis,
significance level was then measured, and the voxels that
yielded p-value < 0.05 were stored. The voxel-wise probabilities
according to Fisher’s exact test are computed using the
following formula:

p =

(a + b)!(c + d)!(a + c)!(b + d)!

a!b!c!d!n!
,

where a, b, c, d, and n are defined as follows:

a: represents the number of tumor recurrence as well as
the lesion-positive occurrences across all subjects at the
current voxel.

b: represents the number of tumor progression as well as
the lesion-negative occurrences across all subjects at the
current voxel.

c: represents the number of PsP as well as the lesion-positive
occurrences across all subjects at the current voxel.

d : represents the number of PsP as well as the lesion-negative
occurrences across all subjects at the current voxel.

n: represents the total number of studies.

Next, connected component analysis was applied (Vincent,
1993), to cluster all statistically significant voxels found across
the two compartments for both tumor recurrence and PsP
that appeared on the ADIFFI maps, for enhancing lesion as
well as for peri-lesional hyperintensities. The brain was finally
partitioned using pre-labeled anatomical structures inMNI space
(Mazziotta et al., 2001), for the purpose of identifying the
anatomic areas of localization for tumor recurrence/PsP across
all subjects.

Cluster-Size Correction Using Random
Permutation Analysis
Due to the extensive number of voxel-wise calculations
performed during ADIFFI, multiple comparison corrections
were performed, which also aim at isolating the spatially distinct
clusters associated with significant differences between the two
groups. Random permutation (RP) analysis was conducted for

Frontiers in Computational Neuroscience | www.frontiersin.org 3 December 2020 | Volume 14 | Article 563439306

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ismail et al. Location to Predict Tumor Recurrence

cluster size correction (Bullmore et al., 1999). Specifically, our
task was to determine to what extent we can randomly obtain
a cluster of statistical significance the same size or larger than
the observed pattern in the original tumor recurrence versus
PsP statistical maps. In order to achieve this, all T2w/FLAIR
hyperintense peri-lesional components, as well as the enhancing
lesion ones, across the two categories (tumor recurrence/ PsP)
were randomly reassigned to one of these pathologies, then
ADIFFI was re-conducted, and voxels with p-values < 0.05 were
stored. In addition, the sizes of statistically significant clusters
were documented at each iteration. The whole process was
reiterated across 500 iterations. RP analysis was employed in
order to identify distinct clusters occurring <5% by chance,
which would provide distinct spatial differences between tumor
recurrence and PsP.

Finally, statistically significant clusters appearing on the
cluster-size corrected ADIFFI maps were designated as either
PsP or tumor recurrence by referring to the population atlases
that were individually constructed for tumor recurrence and
PsP. A specific anatomic localization was then obtained from
these cluster-size corrected ADIFFI maps, by mapping them to
a structural MNI atlas. The entire pipeline of this work is shown
in Figure 1.

RESULTS

The resulting frequency maps that were constructed for
both T2w/FLAIR hyperintense peri-lesional and lesion
areas from pre-treatment scans are shown in Figures 2,
3, respectively. These figures show that tumor recurrence
in both compartments (enhancing lesion and T2w/FLAIR
hyperintense peri-lesional areas) is more likely lateralized
toward the parietal lobe, whereas PsP is more likely to be
multi-focally distributed across different anatomical areas of
the brain including frontal and temporal lobes, the insula, and
the putamen.

Tumor Recurrence Is Lateralized Toward
the Parietal Lobe
The frequency maps as well as ADIFFI maps for peri-lesional
T2/FLAIR hyperintensities of the pre-treatment scans show that
tumor recurrence is more likely to be present in the parietal lobe,
with frequency of occurrence of 85% (59% of this distribution
was found in the right hemisphere, whereas 41% was found
in the left hemisphere), 13% in the occipital lobe (83% in the
right hemisphere and 17% in the left hemisphere), and 2%
in the right temporal lobe (Figures 2A, 4A). Frequency maps
as well as ADIFFI maps obtained for the enhancing lesion
also reveal that tumor recurrence is more likely to be present
in the parietal lobe of left and right hemispheres (70% and
30% chances of occurrence, respectively), Figures 3A, 4C. These
results suggest that tumor recurrence exhibits lobar prominence
across the population atlases, but do not exhibit any hemisphere-
specific preference. These lobar percentages were obtained by
parcellating the brain with respect to an MNI structural atlas,
shown in Figure 4E.

Pseudo-Progression Exhibits a Multi-Focal
Distribution in the Enhancing Lesion as
Well as the Perilesional Hyperintensities
PsP, unlike tumor recurrence, seems to more likely be
multi-focally distributed across the brain in pre-treatment
cases, for both the enhancing lesion and the peri-lesional
hyperintensities. PsP exhibited a multi-focal distribution in
the right hemisphere of the peri-lesional hyperintensities, with
frequencies of occurrence of 55% in the frontal lobe, 11% in
the temporal lobe, 10% in the insula, 10% in the putamen,
and 9% in the parietal lobe (77% in the right hemisphere and
23% in the left hemisphere), and 5% in the right thalamus
(Figures 2B, 4B). In the analysis of the enhancing lesion regions,
PsP appears to more likely be multi-focally distributed within
both left and right hemispheres. The spatial distribution was
35% in the insula (with 63% of this distribution in the right
hemisphere and 37% in the left hemisphere), 21% in the right
frontal lobe, 13% in the right temporal lobe, 17% in the putamen
(with 57% of this distribution in the right hemisphere and
43% in the left hemisphere), and 14% in the right parietal
lobe (Figures 3B, 4D).

Random Permutation Analysis for Cluster
Size Correction
RP analysis conducted on the peri-lesional T2/FLAIR
hyperintensities of the pre-treatment cases revealed that
the average and standard deviation of maximum cluster size
are 3,700 and 1726.8 voxels, respectively. Also, 95% of the
cluster sizes were smaller than 6,192 voxels, meaning that
clusters larger than this size threshold would occur in <5% of all
random permutations. This resulted in one distinct T2w/FLAIR
hyperintense peri-lesional cluster size of 6,502 voxels, localized
at the right parietal lobe, and associated with tumor recurrence,
and another one of size of 6,200 voxels localized at the left
parietal lobe.

RP analysis conducted on the enhancing lesion revealed that
average and standard deviation ofmaximum cluster size are 2,258
and 1774.1 voxels, respectively. Also, 95% of the cluster sizes were
smaller than 5,164 voxels, meaning that clusters larger than this
size threshold would occur in <5% of all random permutations.
This resulted in one distinct enhancing lesion cluster size of 5,450
voxels, localized at the left parietal lobe, and associated with
tumor recurrence.

The designation of PsP or true progression based
on ADIFFI maps as for each significant voxel/cluster
was accomplished by referring to the population atlases
of both compartments (enhancing lesion, T2w/FLAIR
hyperintense peri-lesion) that were individually constructed
for tumor recurrence and PsP. The cluster-size corrected
ADIFFI maps obtained for tumor recurrence are shown
in Figure 1D.

Apart from the probabilistic approach conducted above,
we conducted a statistical experiment, where we used a two-
sample t-test, that was performed on the clinical parameters of
tumor recurrence versus pseudo-progression, namely extent of
resection, age, and gender, to obtain the 5% significance level.
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FIGURE 1 | Pipeline of the framework. (A) MR scans of tumor recurrence and pseudo-progression. (B) Frequency map atlases that were constructed from the two

classes. (C) Results from Fisher’s Exact test on peri-lesional T2/FLAIR hyperintensities in tumor recurrence (Top), and enhancing lesion in tumor recurrence (Bottom).

(D) Results after applying RP analysis on ADIFFI maps shown in (C).

FIGURE 2 | (A) Frequency maps of tumor occurrence for peri-lesional T2/FLAIR hyperintensities in tumor recurrence of pre-treatment scans, where lobar prominence

is present in the parietal lobe of both hemispheres. (B) Frequency maps of tumor occurrence for peri-lesional T2/FLAIR hyperintensities in pseudo-progression, where

a multi-focal distribution is present in the frontal lobe, temporal lobe, insula, and putamen of the right hemisphere.

We found that the difference between the two pathologies was
not statistically significant, based on each of the 3 parameters,
p-values = 0.52, 0.25, and 0.82 for extent of resection, age,
and gender, respectively. All of this information is available in
Supplementary Material.

DISCUSSION

Distinguishing tumor recurrence from PsP is one of the biggest
clinical challenges in GBM management. This feasibility study
aimed at creating population atlases to study spatial proclivity
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FIGURE 3 | (A) Frequency maps of tumor occurrence for enhancing lesion in tumor recurrence of pre-treatment scans, where lobar prominence is present in the

parietal lobe of both hemispheres. (B) Frequency maps of tumor occurrence for enhancing lesion in pseudo-progression, where a multi-focal distribution is present in

the insula, frontal lobe, putamen, and the temporal lobe, of both left and right hemispheres.

of brain tumor recurrence vs. PsP based on their occurrences
on pre-treatment MR scans. The study assessed the voxel-
wise tumor frequency across two lesion compartments using
a statistical mapping technique named ADIFFI, in efforts to
find significant spatial distribution differences between the
two phenotypes.

Our preliminary findings suggest that likelihood of tumor
recurrence is more consistent with lesions occurring in the
parietal lobe of both left and right hemispheres, based on the
analysis of both enhancing lesion and peri-lesional T2/FLAIR
hyperintensities, on pre-treatment MRI scans. Parietal lobe is
largely responsible for cognitive functions. Damage to parietal
lobe may have direct implications in processing speech as well
as sensory information. Hence, presence of tumor recurrence
in parietal lobe may cause symptoms associated with numbness
and tingling, hemi-neglect, and cognitive issues around right-
left confusion and reading and math problems. PsP, on the other
hand, did not exhibit lobar-specific distribution in pre-treatment
scans, but showed a multi-focal distribution of the initial tumor
in the frontal (associated with motor function, memory, problem
solving) and temporal lobes (associated with primary auditory
perception, such as hearing and visual recognition) as well as
the insula and putamen. While the association of presence of
tumor recurrence or PsP with specific lobes in the brain is not
well-understood, their presence in specific lobes could ultimately
contribute toward making more informed decisions regarding
their diagnosis.

Previous studies have largely employed population atlases in
brain tumors using pre-treatment MRI to obtain probabilistic
maps of spatial predisposition in patients based on their disease

aggressiveness (Duffau and Capelle, 2004) or molecular status
(Drabycz et al., 2010; Ellingson et al., 2012; Kanas et al., 2017). For
instance, a few studies have shown that tumor recurrence closer
to the ventricular system was significantly associated with poor
survival (Jafri et al., 2012; Adeberg et al., 2014). Interestingly,
the study in Liu et al. (2016) showed that tumors in the right
occipito-temporal periventricular white matter were significantly
associated with poor survival in both training and test cohorts.
Similarly, more aggressive GBMs were reported to be close to
the ventricular system, and had a rapid progression (Li et al.,
2018), suggesting that tumor location may play a significant role
in disease etiology.

The closest studies to our work have attempted to identify
associations of lesion location with likelihood of tumor
recurrence and PsP, to investigate any spatial differences
between the two phenotypes. For instance, the study by
Tsien et al. (2010) incorporated location along with clinical
and conventional MRI parameters to distinguish tumor
progression from PsP in high-grade gliomas, yet no significant
location differences could be found between the two groups,
perhaps on account of the relatively small population size
involved in this study (27 patients total). The study by Van
West et al. (2017) reported the incidence of PsP in low
grade gliomas, and found that 50% of their PsP enhancing
lesions were located in the periventricular walls; attributing
to the relatively poor blood supply in the periventricular
areas that make it more vulnerable to radiation-induced
processes. However, these studies did not report any findings
regarding lobular preferences for either PsP or tumor recurrence
in GBMs.
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FIGURE 4 | (A) ADIFFI maps for peri-lesional T2/FLAIR hyperintensities in tumor recurrence, and (B) pseudo-progression. (C) ADIFFI maps for enhancing lesion in

tumor recurrence, and (D) pseudo-progression. The level of significance was at a p-value of 0.05 for all of these maps. These were the maps prior to applying RP

analysis. (E) The labeled anatomical MNI atlas that is used for parcellating ADIFFI maps and identifying significant areas.

Our study did have its limitations. First, our dataset is
relatively small (74 studies). However, our sample size of n =

74 studies is comparable to existing studies in the literature
on distinguishing PsP from tumor recurrence with sample sizes
ranging from n= 19 to n= 98 (Cha et al., 2014;Wang et al., 2016;
Boxerman et al., 2017; Elshafeey et al., 2019). Additionally, our
work, similar to some of the published studies in distinguishing
PsP vs. tumor recurrence (Cha et al., 2014; Elshafeey et al., 2019),
did not include a separate hold-out validation cohort for analysis.
Future work will focus on obtaining additional pre-treatment
cases to further investigate our spatial predisposition findings,

for tumor recurrence and pseudo-progression on large multi-
institutional studies, as well as validate our findings on a separate

independent patient cohort. In addition, while our results are
promising as a feasibility study, our study did not account for
molecular status (i.e., MGMT), or Karnofsky performance score
as potential confounders during analysis. A potential limitation
of this study is the lack of advanced imaging modalities such
as dynamic susceptibility contrast (DSC), and Fluoro-O-(2)
fluoroethyl-l-tyrosine (FET), which could have allowed for a
joint multi-modal analysis combining these modalities with the
probabilistic atlases. Additionally, one of our future directions
includes extensively evaluating different automated segmentation
approaches on the tumor compartments for the constructed

probabilistic atlases, to extend our feasibility analysis. We also
plan to obtain multiple segmentations from different readers
for every study, to assess the impact of segmentation variability
on our analysis. The prognostic implications (i.e., predicting
patient overall survival), based on the location differences
across PsP and tumor recurrence will also be investigated in
the future.

To conclude, this study attempted to demonstrate the
likelihood of occurrence of tumor recurrence and pseudo-
progression, using the location of the lesion on pre-treatment
MR scans. Our results revealed distinct localization between
tumor recurrences and PsP that could aid in predicting these two
similar appearing pathological conditions. Future work will focus
on integrating the location biomarker with other biomarkers,
such as shape and texture features, on a larger cohort of multi-
institutional studies. We will also consider identifying location
specific markers associated with radiation necrosis (delayed
treatment effects) vs. tumor recurrence.
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Every year thousands of patients are diagnosed with a glioma, a type of malignant

brain tumor. MRI plays an essential role in the diagnosis and treatment assessment of

these patients. Neural networks show great potential to aid physicians in the medical

image analysis. This study investigated the creation of synthetic brain T1-weighted (T1),

post-contrast T1-weighted (T1CE), T2-weighted (T2), and T2 Fluid Attenuated Inversion

Recovery (Flair) MR images. These synthetic MR (synMR) images were assessed

quantitatively with four metrics. The synMR images were also assessed qualitatively by

an authoring physician with notions that synMR possessed realism in its portrayal of

structural boundaries but struggled to accurately depict tumor heterogeneity. Additionally,

this study investigated the synMR images created by generative adversarial network

(GAN) to overcome the lack of annotated medical image data in training U-Nets to

segment enhancing tumor, whole tumor, and tumor core regions on gliomas. Multiple

two-dimensional (2D) U-Nets were trained with original BraTS data and differing subsets

of the synMR images. Dice similarity coefficient (DSC) was used as the loss function

during training as well a quantitative metric. Additionally, Hausdorff Distance 95% CI

(HD) was used to judge the quality of the contours created by these U-Nets. The model

performance was improved in both DSC and HD when incorporating synMR in the

training set. In summary, this study showed the ability to generate high quality Flair, T2,

T1, and T1CE synMR images using GAN. Using synMR images showed encouraging

results to improve the U-Net segmentation performance and shows potential to address

the scarcity of annotated medical images.

Keywords: GaN, U-net, glioma, GBM, segmentation

INTRODUCTION

Approximately 121,000 (Ostrom et al., 2018) people in the US are diagnosed with a malignant
brain tumor annually, with over 13,000 of those being Glioblastoma (GBM), defined by the World
Health Organization (WHO) as grade IV tumors with an unacceptable median overall survival
despite best available treatment of less than to 2 years. For primary brain tumors WHO grade
II-IV, there are no curative treatments and limited approved therapies. Current management
of primary brain tumors has two standard benchmarks, tissue analysis for diagnosis, and the
longitudinal analysis of treatment response/ tumor stability through serial brain tumor imaging.
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In fact, the brain MRI in patients with GBM is used to stratify
clinical trial options prior to initial surgery and to offer patients
definitive cytoreduction surgery for malignant glioma or GBM
when radiographic features are highly suggestive of a malignant
tumor. Therefore, advanced imaging methods to stratify patients
into phenotypic, functional, molecular, and prognostic groups is
highly sought after.

Amongst GBM researchers, clinicians, patients, and patient
advocates there is hope that new advances as promised by
molecular targeted therapies, advanced radiation techniques,
evolving surgical technologies, and unforeseen innovation will
result in improved patient outcomes. One key element to all
of these are MR images; both for diagnosis and longitudinal
patient monitoring. Applications of deep machine learning in
brain tumor imaging has the potential to transition from a
subjective analysis to objective analysis and create a new set
of tools to refine treatment options, improve care quality,
and ultimately impact patient care. One critical limitation to
achieving the success seen in non-medical imaging is the volume
of data needed to power deep machine learning. It is common
knowledge that deep learning techniques are highly powerful
when there are numerous training samples. However, in the
medical field, especially in clinical trials, where limited numbers
of training samples are accessible, deep learning models are
easily overfitting during the training stage and perform poorly
in prediction (Shen et al., 2017). Besides, annotation of medical
images is generally expensive, time-consuming, and requires
highly trained clinicians. Therefore, data argument has been
widely used to increase the original dataset to improve the
performance of supervised learning. One possible solution to
overcoming the limited brain tumor imaging data available
for analysis is to create synthetic brain tumor MR images.
Synthetic MR (synMR) images of sufficient quality may be
created using a generative adversarial network (GAN). Herein,
we quantitively and qualitatively evaluated the quality of these
created synMR and established the capability of using synMR
images for the practical application of increasing the volume of
data required by deep learning. Specifically, we evaluated the
performance of image segmentation using a widely implemented
two-dimensional (2D) U-Net model (Ronneberger et al., 2015)
by augmenting real patients’ T1-weighted (T1), post-contrast T1-
weighted (T1CE), T2-weighted (T2), and T2 Fluid Attenuated
Inversion Recovery (Flair) MR images data with varying amount
of synMR images. In fact, the investigation of the changes in
accuracy of enhancing tumor (ET), whole tumor (WT), and
tumor core (TC), also known as the non-enhancing necrotic
region, for glioma patients when incorporating varying amounts
of synMR images may be the most practically useful metric in
judging both quality and real-world usability of T1, T1CE, T2,
and Flair synMR.

METHOD

Patient Population
Data was obtained from the BraTS multimodal Brain Tumor
Segmentation Challenge 2018 (Menze et al., 2015; Bakas et al.,
2017a,b, 2018). Nineteen different institutions provided a total

of 210 patients for training and 66 patients for validation. T1,
T1CE, T2, and Flair MR images were provided for each patient.
Provided ET/WT/TC contouring was performed by one to four
clinicians and approved by neuro-oncologists.

Image Pre-processing
BraTS provided T1, T2, and FlairMRI that were rigidly registered
with T1CE, resampled (1 × 1 × 1 mm3) and skull stripped. In
addition to the pre-processing performed by BraTS, this study
performed normalization and padding of each 2DMRI slice from
240 × 240 to 256 × 256. To aid in data balance between tumor
and unlabeled areas, the z dimension in the training dataset
was cropped to 64 slices from original 155 slices. This served
to decrease amount of unlabeled data present during training
and increase focus on the tumor regions for data augmentation
and segmentation. Data augmentation was done by flipping each
slice left/right to decrease dependence on location as the brain
exhibits marked symmetry across the sagittal plane. No cropping
was performed on the validation dataset as all 155 slices were
segmented during validation.

Generative Adversarial Neural Network
We developed an augmentation network to create synMR images
as a new augmentation approach to aid in overcoming the
well-known limitation of available annotated medical image
data. We manipulated semantic label maps of lesions in real
MR (rMR) images, e.g., changing lesion locations or types,
and then transferred the new label to synMR image using the
augmentation network. Compared to traditional augmentation
methods such as affine transformation or cropping, which
could not guarantee standard anatomical structures, this
approach introduced new data augmentations by varying tumor
sizes, shapes and locations while maintained the authentic
morphologic structures of brain.

Architecture
Our augmentation network consisted of a generator (blue box
in Figure 1) and two discriminators (red and yellow box in
Figure 1). The generator was used to generate synMR images
from sematic label maps which in turn were derived from rMR
images. The semantic label map was composed of normal brain
tissue and GBM tumor segments. GBM segments were further
classified into the ET/WT/TC regions derived from T2 rMR.
Three quarters, one half and a quarter of maximum pixel values
of T2 were the three categorizing thresholds that were used to
segment normal brain tissues. Five categories of segments were
generated in total. The discriminators were used to distinguish
between synMR images and rMR images.

Generator
The generator consists of several components Ci-„ with each
operating at a different resolution. The semantic label (256× 256)
is down sampled to provide segmentation layout at the different
resolutions (wi × hi, wi = hi). The first component, C0, gets
down-sampled semantic labels at the resolution of w0 = h0 =

4 as input and then it generates feature maps as an output for
the next component. For components C1 to Cn, feature maps
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FIGURE 1 | Architecture of Augmentation Net. The Generator is shown in blue box and discriminators in yellow and red boxes.

from previous component are up sampled at a scale of 2 and
are concatenated with the semantic labels of the same resolution
as input. A residual block is applied to generate feature maps as
output. The convolution kernel size is 3×3, layer normalization
(Gomez-Iturriaga et al., 2016) is applied, and ReLU (Maas et al.,
2013) is used as the activation function.

Discriminator
Two discriminators are used. The first one is a pre-trained VGG-
19 convolutional neural network (Simonyan and Zisserman,
2014), which won the first and second place in localization and
classification in the Image Net Large Scale Visual Recognition
Challenge (ILSVRC) 2014. It is used to calculate the perceptual
loss (

∑

i
pi) and the image per-pixel loss Lim.

Lim =

∑

m

∑

n

|Ireal − Isynthetic| (1)

Ireal represents the real patient rMR image, Isynthetic represents the
synMR image created by the generator, with

∑

m

∑

n
indicating the

summation over all pixels

pi =
∑

m

∑

n

|θireal − θisynthetic| (2)

piis the perceptual loss from layer i of VGG-19 Net. Perceptual
loss was firstly proposed by Johnson et al. (2016) and was claimed
to be more robust than image per-pixel loss to measure image
similarities. θireal and θisynthetic are feature maps of rMR image
and synMR images generated at layer i, respectively. The second
one is a patch GAN, which penalizes on image patches, the loss
is given as Ladv = E

[

D
(

Ireal, Isynthetic
)]

+ E
[

1− D
(

Isynthetic
)]

.

D(.) is the discriminator net. The total loss is computed as the
weighted summation of each loss.

The synMR image is generated by solving the
following objective:

S∗ = argmin(E

[

n
∑

i=0

λipi,+λimLim

]

+ λLadv) (3)

Training and Generation of New Training Samples
One hundred sixty-four patients were randomly selected from
the BraTS18 dataset for training. For each MRI modality, an
independent model was trained. λi, λim and λ were adapted
every 10 epochs to maintain the balance among each loss. The
total training epoch was 100 for each modality. New semantic
labels were created from real labels to augment synMR images.
The lesion contours were rotated with a random angle (0◦-90◦),
translated with a random number (0–40) of pixels and randomly
flipped left/right/up/down. The lesion contours that were outside
the brain contour were changed to zero (background). Then the
augmented semantic labels were used as the new training dataset
and transferred into image domain using the augmentation
network of each imaging modality.

GAN Evaluation Metrics
Mean Square Error (MSE), Mean Absolute Error (MAE), Peak
Signal to Noise Ratio (PSNR), and Structural Similarity Index
(SSIM) were used to quantitatively compare between the synMR
and rMR images.

InMSE (Equation 4) variable “n” represents number of images
being compared. Since MSE depends on intensity scaling, it is
necessary to report these details. In this study, 16-bit images were
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used with the pixel range 0–255.

MSE = 1/n
∑

{(original image− generated image)2} (4)

MAE (Equation 5) determines the prediction error between the
rMR and synMR.

MAE = 1/n
∑

{(original image− generated image)} (5)

PSNR (Equation 6) overcomes the limitation of MSE by scaling
the MSE value according to image range, which is done by the S2

value in Equation 4. Generally, the higher the PSNR, the better
the synthetic image; however, this metric has a limitation.

PSNR (dB) = −10∗log10

(

MSE

S2

)

(6)

SSIM shows the perceived change in structural information as
opposed to MSE, MAE, and PSNR that show absolute error
differences. SSIM assumes pixels close to each other possess
strong inter-dependency. It is based on luminance, contrast, and
structure differences between the images and is among the most
commonly used metrics to compare the synthetic images to the
original images.

The benchmark of quantitative metrics of our study deviated
from other works on synthetic images as one of the key
characteristics of our methodology was to produce variations
of tumor size, shape and location in synMR. Therefore, there
were inherent differences between the synMR and rMR which
made direct quantitative comparisons difficult. To overcome
this limitation, qualitative analysis of synMR images was
performed in the form of the Turing test, physician individual
synMR review, and investigation of changes in deep learning
performance. The Turing test requires a physician to correctly
classify a dataset consisting of both rMR and synMR. A
misclassification percentage of fifty percent implies the rMR and
synMR are indistinguishable. In addition to this test, an in-
depth analysis of a randomly selected synMR was performed
by an authoring physician. SynMR images were also assessed
for the practical application of increasing the volume of data
required by deep learning. Specifically, synMR was incorporated
both in subgroups and as a whole during training of the
outlined U-Net segmentation model. Investigation of impact on
performance of segmentation could provide feedback on the
quality of synMR images.

U-NET Segmentation Model
The segmentation model is comprised of three individual 2D U-
Nets designed by Ronneberger et al. (2015), one for each of the
three tumor regions: ET/WT/TC. Each U-Nets was trained with
rMR and synMR images of modalities T1, T1CE, T2, and Flair.
This model combines the ET/WT/ET contours generated by the
three separate U-Nets during post-processing. Two processing
techniques were used to improve the segmentation model’s
ability to accurately contour ET/TC. The first one served to
aid the segmentation model during training by mathematically
manipulating input T1 MRI to improve delineation of ET/TC

boundaries. Specifically, each input T1 MRI was used in
conjunction with its corresponding T1CE MRI and the pixel-
wise intensity difference between these MRI was calculated. This
calculated array replaced the T1MRI during training. The second
technique was to use the WT contour as a boundary for ET/TC
delineations. Therefore, any ET/TC contour predicted outside of
the WT contour would be erased. The best model for each type
of contour was chosen according to the validation loss within 100
epochs run on GPU (Titan XP, nVidia, Santa Clara, CA).

U-NET Architecture
Each U-Net followed Pelt and Sethian (2018) recommendation of
four downscaling and upscaling layers. Each downscaling layer is
followed by a batch normalization layer (Pelt and Sethian, 2018)
and the architecture uses this grouping to downsize the image
while increasing the number of features. Each upscaling layer
is merged with its corresponding downscale layer and used to
return the downsized image to the size of the original. These
layers combined to form a merged layer and soft dice (Equation
7) was employed as the loss function.

Dice Loss =
2∗ < ytrue,ypred > +c

< ytrue,ytrue > + < ypred,ypred > +c
(7)

y-true is the clinician’s contour, ypred is the model’s output, and c
(0.01) is a constant to avoid division-by-zero singularities.

Creation of Training Datasets
As outlined previously, synMR images were generated from
210 GBM patients’ rMR. To further investigate how synMR
could affect segmentation performance during training of the
U-Net, the synMR images were randomly partitioned into four
unique subsets. Multiple U-Nets were trained using the total
rMR in combination with each of these synMR subsets. One
U-Net was trained using only rMR to serve as a baseline with
which to compare performance. Four other U-Nets were trained
on datasets that contained either a quarter, half, three-quarters
or total generated synMR to investigate how the amount of
synMR incorporated in the training dataset influences model
performance. In order to solely evaluate the impact of amount
of synMR images on the model performance, extra care was
taken to decrease variance of the quality of synMR used in
each training datasets. This was accomplished by dividing all
synMR into four subsets equally, with each subset containing an
exclusive quarter of all available synMR. These subsets were then
numerically labeled one through four and used in the following
manner to create the training datasets. Subset one was used to
form the training dataset containing one quarter of synMR. To
form the training dataset that employed half of the generated
synMR, subset one was combined with subset two. Similarly,
subsets one, two, and three were used to form training dataset
representing three-quarters of available synMR, while all four
subsets were used for the total synMR dataset. By staggering
synMR subsets in each training model, we could evaluate the
model performance differences with regards to change in the
amount of synMR incorporated.
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U-NET Evaluation Metrics
Dice similarity coefficient (DSC), Hausdorff distance with 95%
confidence interval (HD), sensitivity, and specificity are used
to evaluate U-Net segmentation as these metrics quantitatively
show the agreement between the created U-Net model and
the “gold-standard” physician created contours. Specifically,
DSC indicates volumetric agreement of the physician created
contour and the contours generated in this study. Reported
DSC values fall into the range zero to one with zero indicating
no volumetric overlap and one indicating complete volumetric
agreement. HD indicates point-based agreement between the
compared contours. This quantitative metric shows largest
relevant Euclidean offset between every pixel in the ground truth
contour and its corresponding pixel in the generated contour.

h (A,B) = maxa∈A
{

minb∈B
{

d
(

a, b
)}}

(8)

with a and b being points of sets A and B, respectively, and d(a,b)
is the Euclidean metric between these points (Menze et al., 2015).

Sensitivity (true positive) and specificity (true negative)
indicate level of border agreement between generated and
physician contours. While DSC shows volumetric overlap
of contours, these metrics report relative size differences.
Essentially, they report if the generated contour is smaller or
larger than the physician’s contour.

Sensitivity = (9)

number of true positives

number of true positives + number of false negatives

Specificity = (10)

number of true negatives

number of true negatives + number of false postives

RESULTS

SynMR Quantitative Analysis
MSE, MAE, PSNR, and SSIM were performed to provide
quantitative analysis of synMR. Table 1 shows quantitative
metric for each modality. Consistent inter-modality results
demonstrate that high similarity is achieved between the rMR
and synMR for all modalities (T1,T1CE,T2, Flair).

SynMR Qualitative Analysis
Qualitative analysis was performed to further investigate both
overall and inter-modality synMR quality. Specifically, qualitative
analysis of synMR was assessed in two ways by an authoring
physician. The first assessment was the performance of the
Turing test (Table 2). The second one was an in-depth
visual comparison of generated synMR images with their
corresponding rMR images on each of the following modalities:
T2, Flair, T1, and T1CE.

SynMR Qualitative Analysis: Turing Test
A subset of 9 rMR images and 10 synMR images flair, T1,
T1CE, and T2MR images were randomly selected for evaluation.
The physician was presented with each of these 19 MR images
blindly and judged if the MR image was rMR or synMR and

TABLE 1 | Average reported Mean Square Error (MSE), Mean Absolute Error

(MAE), Peak Signal to Noise Ratio (PSNR), and Structural Similarity Index (SSIM)

for synMR images generated by GAN.

MSE MAE PSNR SSIM

T1 19.3 ± 0.3 23.4 ± 0.6 43.1 ± 0.4 0.788 ± 0.002

T1CE 19.2 ± 0.3 22.8 ± 0.6 43.1 ± 0.4 0.789 ± 0.004

T2 19.2 ± 0.3 23.4 ± 0.4 43.1 ± 0.5 0.784 ± 0.003

Flair 18.9 ± 0.4 24.1 ± 1.5 43.1 ± 0.5 0.794 ± 0.005

TABLE 2 | The classification accuracy of a subset of synMR and original images

reviewed by the physician blindly.

Modality % Misclassified

Flair 26.3

T1 10.5

T1CE 26.3

T2 26.3

The amount of synMR and rMR improperly categorized by physician is represented by

percent misclassified.

provided feedback. Ideally the rMR and synMR images would
be completely indistinguishable from each other, and this would
be reflected by a 50 percent misclassification rate of the images.
As shown in Table 2, Flair, T1CE, and T2 MR images were
misclassified 26.3 percent of the time, while T1 was incorrectly
identified 10.5 percent of the time. This lower score was due to the
visible streaking artifacts on coronal and sagittal views for some
of the synMR images.

SynMR Qualitative Analysis: In-Depth Physician

Analysis
Figure 2 shows that the T2 MR image’s main difference between
the synMR and rMR lay in the tumor at the right frontal lobe
(lower left on the images A3 vs. A7). It was noted that the tumor
geometry was preserved, but the relative signal intensities in the
region were distorted. Specifically, synMR differed in appearance
in the core of the tumor, as it displayed a hyperintense T2 signal
compared with the surrounding edema. In addition, the signal
from edema was also slightly different in images A4 and A8.
Image A8 had a broader range of contrasts within the edema,
whereas A4 delineated the extent of the edema with a sharper
drop-off at the edges than the rMR. Comparing the edema
between Flair rMR images and synMR images (B3 vs. B7), it
showed differences in the extent of the edema. Also, there were
noted circumferential artifacts in the rMR flair images (B1–B4).
T1 MR images showed that quality of synMR (C1–C4) was very
good. For T1CE MR images, the boundary of enhanced rim
and necrotic regions of the T1CE synMR (D1–D4) were clearly
defined, although the area surrounding the tumor had slight
decrease in intensity.

In summary, synMR had high image quality with clearly
defined structural boundaries. However, synMR suffered in
showing details inside lesions and areas of high gradient (e.g.,
edema signal in T2 modalities). It was possible that this detailed
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FIGURE 2 | Synthetic MRI compared with patient MR images. (A1–A4), synthetic T2; (A5–A8), patient T2; (B1–B4), synthetic Flair; (B5–B8), patient Flair; (C1–C4),

synthetic T1; (C5–C8), patient T1; (D1–D4), synthetic T1CE; (D5–D8), patient T1CE.

information was lost when lesion pixels were classified into
the same semantic label. This is notable as re-gaining lost
information is a well-known GAN limitation.

U-Net: Utilization of SynMR
In addition to quantitative and qualitative investigation of synMR
image quality, incorporation of generated synMR in training
datasets for the U-Net segmentation model was done to assess
the ability of synMR to enhance segmentation performance.
The impact on the U-Net’s segmentation performance by
incorporating synMR during training is indicative of both
quality and synMR’s capabilities as a data distillation technique.
SynMR was evaluated both as a whole set and in overlapping
subsets containing either a quarter, half, or three quarters of the
synMR images.

U-Net: DSC/HD Analysis
The two most popular metrics, DSC and HD, are used to identify
ET, WT, and TC segmentation performance for the U-Nets.
Figure 3 shows the DSC and HD for each structure of the
validation dataset trained with different subsets of synMR.

Figure 3 shows standard box-plot results for both DSC and
HD for each model. T-Test reported statistically significance
in models containing one quarter, half, and total synMR when
compared against baseline. In addition, the relationships between
neighboring models as synMR increased showed statistical
significance as well. It can be seen that U-Nets trained using
at least half synMR show a direct relationship between the
amount synMR used and the U-Net performance. The statistical
significance in model relationships combined with differences in
model performance (Figure 3) indicate that a threshold ratio of
2:1 (rMR:synMR) is necessary to introduce more variance while

maintaining a proper distribution of data. HD shows significant
improvement; however, DSC shows lower relative improvement
as DSC is inherently biased in this study due to the fact that it was
used as the loss function during the training of each U-Net.

U-Net: Sensitivity/Specificity Analysis
While sensitivity and specificity are not as integral in judging the
quality of generated contour as DSC/HD, they show the level
of accuracy in defining the tumor border, as well as the size
differences between the ground truth and generated contours.
As the U-Net was trained, DSC was optimized, however, this
metric only indicates the level of volumetric overlap, which leaves
the size of the generated contour dependent on other factors.
These factors can relate to the differences in training datasets and
give insight into how incorporation of synMR changes the U-
Nets. Table 3 shows that when one half or a quarter of synMR
was implemented, sensitivity and specificity both increased,
indicating improvement in border definition. However, when all
synMR was used, sensitivity decreased while specificity remained
relatively unchanged. Since synMR showed higher distinction
from rMR at the boundaries with sharper gradient drop off, this
could lead to a systematic difference of the segmentation labels
between the two datasets and led to smaller contours generated
from U-Net. However, the smaller contour generated by training
on synMR possessing gentler gradients does not negatively affect
overall U-Net performance, as specificity and sensitivity mainly
show the direction of the offset between the ground truth and
generated contours (HD).

Individual Cases
It is necessary to outline the best and worst cases to assess the
model performance. The best performing and worst performing
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FIGURE 3 | ET/WT/TC Validation Results for U-Nets trained by BraTS MRI and different subsets of synMR(None, 1/4,1/2,3/4, total synMR incorporated). Top row

shows DSC, bottom shows HD. Each grouping displays results in order ET/WT/TC. Incorporation of synMR above threshold ratio of 2:1 (rMR:synMR) improves DSC

and HD. Standard box-plot format used with singular points displaying outliers.

TABLE 3 | Validation results for U-Nets trained by BraTS MRI and different

subsets of synMR.

Percent of SynMR added None (rMR

Only)

1/4 1/2 3/4 All

Sens. ET 0.70 0.80 0.84 0.78 0.62

WT 0.89 0.90 0.89 0.83 0.80

TC 0.66 0.74 0.75 0.77 0.66

Spec. ET 0.96 0.99 0.99 0.99 0.99

WT 0.99 0.98 0.99 0.99 0.99

TC 0.99 0.99 0.99 0.99 0.99

Bolded values indicate highest contour metric value.

individual cases are carefully evaluated. Figures 4–7 show the
comparison of contours on WT for two good and two poor
performing cases.

We have observed encouraging improvement of the
segmentation accuracy for high grade glioma when the lesion
was centrally and radially located. However, the challenge
still exists in the low-grade glioma cases due to increased
difficulty in boundary definition. Location also plays a role in
discerning whether the contouring accuracy would improve
or not. The improved low-grade glioma case was centrally
located, while in the case that did not show improvement was
located toward the edge of the brain. It can also be seen in
the improved cases (Figures 4, 5) that the U-Net focuses more
on differences in structure, rather than differences in pixel

intensity. This is in line with the strength of synMR, as synMR
quality regarding structure outperforms its quality pertaining
to intensities.

DISCUSSION

The original idea of synthesizing images indistinguishable from
reality is inspired by the development of GANs (Goodfellow,
2014). GANs have been employed to expand training datasets
for many tasks. Specifically, synthesizing new images as training
samples provides a possible solution to overcome the challenge
of the limited number of annotated medical images. Frid-Adar
et al. (2018) achieved impressive results in lesion classification
using GAN-synthesized images, which indicated the potential of
GAN for data distillation tasks. Bowles et al. (2018) used GAN for
segmentation, however, there are important differences between
the studies. First, they experimented on image patches sampled
from the dataset, while we experimented on the entire images
(Bowles, 2018). Second, their study generated synMR images
and contours from Gaussian noise (Bowles, 2018). Due to this,
their study was not able to provide a quantitative evaluation
between rMR and synMR images. Their work was limited to
only providing a visual comparison using the Turing test (section
SynMR Qualitative Analysis).

Researchers have leveraged GANs in a conditional setting
which allows the model to deterministically control the
generation of particular samples based on external information
(Gauthier, 2014; Mirza, 2014; Isola, 2017) However, some
researchers suggested that adversarial training might be unstable
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FIGURE 4 | Case One (Improved). Flair MRI. rMR only (Left) and Total SynMR

MRI (Right) DSC of WT was improved from 0.21 to 0.67.

FIGURE 5 | Case Two (Improved). Low-grade Glioma. Flair MRI. rMR only

(Left) and Total SynMR MRI (Right) DSC of WT was improved from 0.49

to 0.88.

or even diverge, and introduced image per-pixel loss and
perceptual loss (Dosovitskiy and Brox, 2016) that was used
in this study. In this paper, we proposed an augmentation
network that was trained in a supervised fashion using paired
semantic labels and rMR images. This method was chosen over
(Frid-Adar, 2018) and (Bowles, 2018) as it incorporated flexible
object manipulations with desired scenarios, which allows for the
creation of synMR with various tumor size and location from
those present in the rMR images.

Our study explored the idea to utilize GAN to generate
synthetic images to improve image segmentation performance.
Specifically, the segmentation model employed the previously
outlined 2D U-Net (Ronneberger et al., 2015) due to its
effectiveness, competitiveness and high familiarity, as it has
been widely adopted in the field of image segmentation. In the
medical field, especially in clinical trials, where limited numbers
of training samples are accessible, deep learning models can
easily overfit during training and perform poorly in application
on independent datasets (Ronneberger et al., 2015). Purely
increasing the size of the training dataset by simple inclusion
of synMR does not guarantee higher performance. However,
the neural networks performance will show improvement if the

FIGURE 6 | Case One (Worsened). Flair MRI. rMR only (Left) and Total

SynMR MRI (Right) DSC of WT changed from 0.76 to 0.58.

FIGURE 7 | Case Two (Worsened). Low-Grade Glioma. Flair MRI. rMR only

(Left) and Total SynMR MRI (Right) DSC of WT showed a decrease from 0.86

to 0.59.

synMR is of sufficient quality and introduce diversity. This study
assumes that the model performance is sufficient to judge the
overall data distillation ability of synMR generated in this study.
We postulate that that all neural network-based segmentation
models should show improvement if trained on datasets
containing more variance, although level of improvement may
vary model to model. However, this study recognizes that this
should be further investigated in a future study by introduction
of one or more additional segmentation neural networks.

“TumorGan” (Qingyun Li et al., 2020) and “ANT-GAN”
(Sun et al., 2020) were different GAN methodologies to
generate synMR. Direct quantitative comparison of synMR
image quality is difficult among studies due to synMR/rMR
structural differences. Specifically, the tumor location in our
synMR was purposefully changed from original rMR to increase
variability of resulting datasets. This structural difference
between synMR and rMR created the need for advanced
qualitative analysis by authoring physicians. However, compared
to the other two studies, our work showed competitive results
on the improvement of segmentation using synMR as a data
augmentation technique. The other two studies reported an
increase over baseline of 2.6 and 2.5% in the average DSC while
our study showed an improvement of 4.8%.
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Statistical investigation of incorporation of certain subsets of
synMR during training showed improved performance when
incorporating synMR at or above the threshold ratio of 2:1 (rMR
to synMR). This ratio could be due to the inherent necessity to
introduce additional variance in the training dataset. However,
differences in individual synMR image quality could also play
a role. Even though the subsets of synMR were staggered in
the training models, there are still differences in the quality of
individual synMR images. This difference in individual synMR
qualities could play a part in the reasoning behind reduced
results in segmentation performance when trained using only
one randomized subset of synMR. The difference in individual
synMR qualities can be partially explained by the fact that rMR
quality was not constant. Individual rMR quality differed as it
was obtained from different MRI machines over many years.
Since image quality had been improved throughout this time,
recently obtained rMR images generally show a higher image
quality than older rMR. Performance of the employed GAN
was impacted by this as it is not likely that the generated
synMR will possess greater quality than its corresponding input
rMR. However, the relationship of individual synMR quality
and its impact regarding the model’s performance should be
further investigated.

CONCLUSION

We were able to generate high quality Flair, T2, T1, and
T1CE synMR using the presented augmentation network and

had a thorough evaluation of the images both quantitatively
and qualitatively. In addition, the synMR images proved their
capability as a data augmentation technique, as incorporation of
the created synMR images to increase the size and diversity of

the training dataset showed promising results. The presented data
manipulation strategy has the potential to address the challenges
regarding the limited labeled medical dataset availability for
medical image segmentation.
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