About this Research Topic
A nice application example that seems to be an emerging need for such musculoskeletal models is in the design of assistive devices for rehabilitation and augmentations purposes. The integrated human and device models would save time and cost of multiple prototyping steps in both the design and evaluation phases of such devices. Bio-fidelic predictive neuromusculoskeletal models could delineate crucial parameters of a design and elucidate the effect of a device conceptual design on the human’s kinematics and kinetics. Therefore, the design process will become human-centered in which a design optimization step includes all important factors, such as mechanical, electrical, material, as well as physiological.
This Research Topic calls for submissions that cover following subtopics:
● New methods and approaches in the field of musculoskeletal modeling and simulation, including motion prediction, neural control, central pattern generators, subject-robot co-simulations, subject-specific simulations
● Simulated effects of neurological conditions such as stroke, spinal cord injury, and cerebral palsy on the neural control and muscle properties.
● Design of human-centered assistive devices such as prostheses, orthoses, and hard and soft exoskeletons by investigating properties such as kinematic alignment, changes in subject movement pattern, strap and joint reaction forces, metabolic energy consumption, etc.
● Studies of human-robot interaction by taking advantage of musculoskeletal models.
Keywords: neurorehabilitation, neural control, assistive device design, human-robot interaction, Musculoskeletal modeling
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.