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on resting-state connectivity and Balsters et al. (2013) assess the 
correlation between BOLD spectral power and working memory 
performance.

The ICA applications featured in this Research Topic range from 
clinical resting-state studies with patients suffering from schizo-
phrenia (Manoliu et al., 2013; Sui et al., 2013) and neurological 
patients performing chin and hand motor tasks (Robinson et al., 
2013) to the investigation of processing streams using chemosen-
sory stimuli (Frasnelli et al., 2012). Combined methodological 
approaches are used to study belief decision making with fMRI 
and EEG (Douglas et al., 2013), to discriminate schizophrenia using 
data from fMRI, DTI, and sMRI (Sui et al., 2013), to identify amyo-
trophic lateral sclerosis diseased brains (Welsh et al., 2013) and to 
examine the microvascular specificity of the BOLD effect at 3 and 
7 T using SWI (Geissler et al., 2013).

We hope this collection of original research articles illustrates 
the extent to which ICA is becoming an increasingly flexible and 
potent analysis method – particularly through innovations such as 
real-time ICA, temporal ICA, and parallel processing implemen-
tations – and that the capacity of ICA to isolate the underlying 
signal sources in fMRI data is being enhanced by multimodal and 
ultra-fast imaging. These innovations are leading to an increase in 
the utility of ICA and the richness of information it can provide 
in both basic research work and clinical applications.
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Independent component analysis  (ICA) is the most commonly 
used and most diversely applicable exploratory method for the 
analysis of functional magnetic resonance imaging (fMRI) data. 
Over the last 10 years it has offered a wealth of insights into brain 
function during task execution and in the resting state.

Independent component analysis is a blind source separa-
tion method that was originally applied to identify technical and 
physiological artifacts in fMRI, and to allow their removal prior 
to analysis with model-based approaches. It has matured into a 
method capable of offering a stand-alone assessment of activa-
tion on a sound statistical footing. Recent innovations have taken 
on the challenges of how components should be combined over 
subjects to allow group inferences, and how activation identified 
with ICA might be compared between groups – of patients and 
controls – for instance. Its reputation having been bolstered by 
multiple successes in the investigation of resting-state networks, 
ICA is being applied in other cutting edge uses of fMRI; in mul-
tivariate pattern analysis, real-time fMRI, in utero studies, with a 
wide variety of paradigms and stimulus types and with challenging 
tasks with patients at ultra-high field. These are testament both to 
ICA’s flexibility and its evolving role both in basic neuroscience 
and clinical applications of fMRI.

This Research Topic has attracted 19 contributions from the 
most renowned researchers in the field, including the inventor 
of Fast ICA, Aapo Hyvärinen (Hyvärinen and Ramkumar, 2013), 
and the authors of the most widely used ICA software for fMRI – 
Christian Beckmann (FSL’s MELODIC) and Vince Calhoun 
(GIFT). The capacity of ICA to find common patterns of activa-
tion in huge cohorts of subjects is demonstrated by the parallel 
computing approach described by Kalcher et al. (2012) and the use 
of ICA with cutting edge MR methods are presented by the groups 
of Stefan Posse [Echo Volume Imaging (Posse et al., 2013)], Markus 
Barth [EEG-fMRI (Meyer et al., 2013) and Ultra-Fast Generalized 
Inverse Imaging (Boyacioglu et al., 2013)], and Jorge Jovicich [real-
time fMRI (Soldati et al., 2013a,b)].

Two articles in this research topic reflect the continued use of 
ICA to identify artifacts, using the temporal characteristics of com-
ponents (Rummel et al., 2013) or both temporal and spatial fea-
tures (Bhaganagarapu et al., 2013). In addition to using frequency 
 signatures to identify noise, the frequencies of signal fluctuations 
during rest have been studied using temporal ICA (Boubela et al., 
2013) and in ultra-fast generalized imaging (Boyacioglu et al., 
2013), while Di et al. (2013) examine the influence of amplitude 
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We recently demonstrated that ultra-high-speed real-time fMRI using multi-slab echo-
volumar imaging (MEVI) significantly increases sensitivity for mapping task-related acti-
vation and resting-state networks (RSNs) compared to echo-planar imaging (Posse et al.,
2012). In the present study we characterize the sensitivity of MEVI for mapping RSN
connectivity dynamics, comparing independent component analysis (ICA) and a novel seed-
based connectivity analysis (SBCA) that combines sliding-window correlation analysis with
meta-statistics. This SBCA approach is shown to minimize the effects of confounds, such
as movement, and CSF and white matter signal changes, and enables real-time monitor-
ing of RSN dynamics at time scales of tens of seconds. We demonstrate highly sensitive
mapping of eloquent cortex in the vicinity of brain tumors and arterio-venous malforma-
tions, and detection of abnormal resting-state connectivity in epilepsy. In patients with
motor impairment, resting-state fMRI provided focal localization of sensorimotor cortex
compared with more diffuse activation in task-based fMRI. The fast acquisition speed of
MEVI enabled segregation of cardiac-related signal pulsation using ICA, which revealed
distinct regional differences in pulsation amplitude and waveform, elevated signal pulsa-
tion in patients with arterio-venous malformations and a trend toward reduced pulsatility
in gray matter of patients compared with healthy controls. Mapping cardiac pulsation in
cortical gray matter may carry important functional information that distinguishes healthy
from diseased tissue vasculature.This novel fMRI methodology is particularly promising for
mapping eloquent cortex in patients with neurological disease, having variable degree of
cooperation in task-based fMRI. In conclusion, ultra-high-real-time speed fMRI enhances
the sensitivity of mapping the dynamics of resting-state connectivity and cerebro-vascular
pulsatility for clinical and neuroscience research applications.

Keywords: real-time resting state fMRI, multi-slab echo-volumar imaging, independent component analysis (ICA),
seed-based functional connectivity, cerebrovascular pulsatility, epilepsy, brain tumor, arteriovenous malformation

INTRODUCTION
Mapping of intrinsic signal variation mostly in the low-frequency
band <0.1 Hz has emerged as a powerful tool and adjunct to task-
related fMRI and fiber tracking based in diffusion tensor imaging
(DTI) for mapping functional connectivity within and between
resting-state networks (RSNs) (Fox et al., 2005; De Luca et al., 2006;
Raichle and Snyder, 2007; Schopf et al., 2010; Li et al., 2011). Recent
studies have shown that dozens of different RSNs can be mea-
sured across groups of subjects (Abou-Elseoud et al., 2010; Allen
et al., 2011). Anti-correlations between the default mode network
(DMN) and task-positive networks provide insights into compet-
itive mechanisms that control resting-state fluctuations (Fox et al.,
2005; Uddin et al., 2009). There is increasing evidence that RSNs
are not stationary (Hou et al., 2006; Kang et al., 2011) and that

correlations with fluctuations in other measurements, such as α-
power in EEG (Wu et al., 2010) and transient (∼100 ms) topogra-
phies of EEG current source densities (microstates) (Britz et al.,
2010; Laufs, 2010; Lehmann, 2010; Musso et al., 2010; Van de Ville
et al., 2010) exist. Variations in ongoing activity have been shown
to predict changes in task performance and alertness, highlighting
their importance for understanding the connection between brain
activity and behavior (Eichele et al., 2008; Sadaghiani et al., 2010).
Resting-state correlation mapping has been shown to be a promis-
ing tool for reliable functional localization of eloquent cortex in
healthy controls, and patients with brain tumors and epilepsy (Liu
et al., 2009; Zhang et al., 2009; Mannfolk et al., 2011; Stufflebeam
et al., 2011). It has been suggested that this task-free paradigm
may provide a powerful approach to map functional anatomy in
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patients without task compliance, which allows multiple brain sys-
tems to be determined in a single scanning session (Liu et al.,
2009). Recent studies have investigated non-stationarity, which is
prominent in the resting state, and demonstrated dynamic changes
in network connectivity (Chang and Glover, 2010; Sakoglu et al.,
2010; Kiviniemi et al., 2011). There is now emerging evidence
that these fluctuations differ in clinical populations compared
to healthy controls. However, the mechanisms that govern the
dynamics of resting-state connectivity at different time scales are
still poorly understood. Monitoring these dynamics in real-time
enables assessment of data quality and sensitivity as intra-scan
non-stationarity of connectivity can compromise the detection of
RSNs in single subjects. Real-time monitoring of these dynamics is
not only expected to improve consistency of data quality in clinical
research studies, but will also contribute to our understanding of
the neurophysiological mechanisms underlying the resting-state
dynamics.

Seed-based correlation analysis (Van Dijk et al., 2010) and spa-
tial independent component analysis (ICA) (Calhoun et al., 2001)
are the principal tools to map functional connectivity, which have
been shown to provide similar results (Van Dijk et al.,2010; Erhardt
et al., 2011). Seed-based connectivity measures have been shown to
be the sum of ICA-derived within- and between-network connec-
tivities (Joel et al., 2011). ICA also performs spatial filtering, which
enables segregation of spatially overlapping components. Seed-
based techniques are sensitive to the choice of the seed regions
(Cole et al., 2010a). On the other hand, source separation with ICA
is sensitive to the selection of the model order, which is a priori
unknown and necessitates dimensionality estimation approaches,
such as the minimum description length (MDL), Bayesian infor-
mation criterion (BIC), and Akaike’s information criterion (AIC)
(Calhoun et al., 2001; Li et al., 2007). Furthermore, automated
ordering of ICA components to enable consistent identification of
RSNs is not yet feasible and source separation with ICA in indi-
vidual subject data is limited by the contrast-to-noise ratio of the
signal fluctuations and aliasing of cardiac- and respiration-related
signal fluctuations. Seed-based correlation analysis surpasses ICA
in detecting resting-state connectivity, but it requires regression
of confounding signals, which typically include the six parameters
of motion correction and their derivatives, and the average signal
from up to three brain regions (whole brain over a fixed region in
atlas space, ventricles, and white matter in the centrum semiovale).
Regression of these signals is computationally intensive and may
remove RSN signal changes that are temporally correlated with
confounding signals.

The measurement of functional connectivity in the resting
state has been limited, in part, by sensitivity and specificity con-
straints of current fMRI data acquisition methods. Echo-planar
imaging (EPI) methods necessitate long scan times and detec-
tion of resting-state signal fluctuation suffers from temporally
aliased physiological signal fluctuation, despite ongoing efforts to
develop post-acquisition correction methods (Glover et al., 2000;
Deckers et al., 2006; Beall and Lowe, 2007; Behzadi et al., 2007).
Movement during the fMRI acquisition is a major confound for
resting-state connectivity studies obscuring networks as well as
creating false-positive connections (Satterthwaite et al., 2012; Van
Dijk et al., 2012) despite state-of-the-art motion “correction” in

post-processing. Distinction of BOLD contrast-based resting-state
activity and of confounding physiological signal fluctuations has
been shown to benefit from multi-echo acquisition. This approach
not only increases BOLD sensitivity (Posse et al., 1999), but
was also found to enable differentiation of BOLD contrast-based
resting-state activity and of confounding physiological signal fluc-
tuations (Kundu et al., 2012; Wu et al., 2012). However, multi-
ple echo acquisition reduces temporal resolution and/or volume
coverage, which have limited practical applications (Posse, 2012).

Recent advances in high-speed fMRI method development that
enable un-aliased sampling of physiological signal fluctuation have
considerably increased sensitivity for mapping task-based activa-
tion and functional connectivity, as well as for detecting dynamic
changes in connectivity over time (Feinberg et al., 2010; Posse et al.,
2012; Smith et al., 2012). High temporal resolution fMRI improves
separation of RSNs using data driven analysis approaches (Smith
et al., 2012) and may facilitate detecting the temporal dynamics of
RSNs at much higher frequencies (up to 5 Hz) than detectable with
traditional resting-state fMRI (Boubela et al., 2013; Boyacioglu
et al., 2013; Chu et al., 2013; Lee et al., 2013). The development
of ultra-high-speed fMRI methods with temporal resolution on
the order of 100 ms or less has focused on echo-volumar imaging
(EVI) (Rabrait et al., 2008; Witzel et al., 2008; van der Zwaag et al.,
2009), inverse imaging (InI) (Lin et al., 2006, 2008, 2010), and MR
encephalography (MREG) using highly undersampled projection
imaging (Grotz et al., 2009), and fast volumetric imaging based on
single-shot 3D rosette trajectories (Zahneisen et al., 2011). How-
ever, these single-shot methods are associated with degradation of
spatial resolution and image uniformity. The recent development
of simultaneous multi-slice (SMS) EPI using parallel imaging with
blipped CAIPI acquisition increases temporal resolution without
the
√

R penalty incurred when using conventional parallel imaging
methods, while maintaining acceptable image quality (Setsompop
et al., 2012). Typical acceleration factors of eightfold are achievable
using a 32 channel coil and faster acceleration has been shown in
combination with in-plane parallel imaging (Moeller et al., 2010)
and simultaneous echo refocusing (Feinberg et al., 2010; Chen
et al., 2012). Recent advances in SMS-EPI enable up to 16-fold
acceleration. Although acceleration is limited by RF power deposi-
tion (SAR), necessitating small flip angles, and image degradation
at high acceleration factors due to increasing slice cross-talk and
worsening g-factor (Moeller et al., 2010, 2012), SMS-EPI currently
enables much higher spatial resolution compared to EVI. Further-
more, recent advances in RF pulse design, such as spatially periodic
pulses, mitigate the RF power requirement for SMS EPI (Norris
et al., 2011; Koopmans et al., 2013). We have recently introduced
parallel imaging accelerated sequential multi-slab echo-volumar
imaging (MEVI), which shortens the long EVI readout to achieve
an image quality approaching that of EPI, and have demonstrated
significant increases in BOLD sensitivity compared to EPI (Posse
et al., 2012). This methodology enables ultra-high-speed real-time
fMRI on conventional clinical 3 T scanners with 276 ms tempo-
ral resolution for whole brain acquisition and 136 ms temporal
resolution for partial brain acquisition.

In the present study the primary goals were to characterize
the sensitivity of MEVI for mapping major RSNs, comparing
ICA and a novel real-time seed-based connectivity method that
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combines sliding-window correlation analysis with meta-statistics,
and to map dynamic changes in resting-state connectivity at short
time scales. The hypotheses for this novel seed-based connectivity
approach are that: (a) resting-state connectivity can be measured
at short time scales (seconds) and (b) averaging across short-term
connectivity maps avoids the conventional artifact prone corre-
lation across the entire scan. The secondary goals were to: (a)
compare resting state and task-based fMRI in patients with neu-
rological disorders for localizing sensorimotor and visual cortex
in the vicinity of brain tumors and arterio-venous malformations,
and to (b) to assess the feasibility of monitoring disease-related
changes in functional connectivity in epilepsy. Localization of elo-
quent cortex adjacent to brain lesions is of critical value in presur-
gical planning and decision-making. Mapping of RSNs using fMRI
has been suggested as an alternative to task-based fMRI, however,
the utility for presurgical planning is still under investigation (Liu
et al., 2009; Zhang et al., 2009; Mannfolk et al., 2011; Stufflebeam
et al., 2011). The tertiary goal was to characterize regional dif-
ferences in the cardiac-related cerebro-vascular pulsation in the
healthy controls and in the patients with brain tumors, arterio-
venous malformations, and epilepsy. Virtually all fMRI studies
so far have sought to remove physiological signal fluctuations
due to cardiac and respiration using model-based retrospective
deconvolution methods (Glover et al., 2000). Ultra-high-speed
fMRI enables direct observation of cardiac pulsation and its har-
monics, which may carry important functional information that
distinguishes healthy from diseased tissue vasculature.

MATERIALS AND METHODS
EQUIPMENT
Data were collected on a clinical 3 T scanner, MAGNETOM Trio,
A Tim System (Siemens Healthcare, Erlangen, Germany) equipped
with MAGNETOM Avanto gradient system and 12-channel array
receive-only head coil. A 32 channel coil became available during
the last months of the study. Pulse and respiration waveforms were
recorded with 1 kHz sampling rate using an MP150 data acqui-
sition system and Acknowledge software 4.3 (Biopac Inc., Goleta,
CA, USA). Reconstructed 2D images were exported from the scan-
ner reconstruction computer via the scanner host computer to an
external Intel Xeon E5530, six core, 2.4 GHz workstation for recon-
struction of the third spatial dimension and real-time fMRI analy-
sis, which were integrated into our custom TurboFIRE real-time
fMRI software version V5.12.3.11.4.2 (Posse et al., 2001, 2012).

SUBJECTS
Nine healthy male and female subjects aged 21–50 years and
eight patients with neurological disorders participated after giving
institutionally reviewed informed consent.

Brain tumor
Patient 1 was a 30-year old male with a low-grade right frontal
lobe lesion associated with epilepsy and motor impairment, which
was radiologically diagnosed as a low-grade glioma. The rou-
tine EEG demonstrated C4 (right central) epileptiform spikes.
His seizures consist of an initial numbness and tingling sensa-
tion in the left arm and leg, followed by stiffening and jerking
movements of the left side of the body. He failed treatment with

oxcarbazepine, phenytoin, topiramate, and lorazepam. There was
no obvious involvement of the primary motor cortex, based on
the MEG motor and somatosensory responses, and the structural
MRI. High-speed 3D short TE MR spectroscopic imaging (MRSI)
using proton-echo-planar-spectroscopic-imaging (PEPSI) (Posse
et al., 2007) showed increased Choline, reduced N -acetyl-aspartate
(NAA), and strong lipid resonances, suggesting an oligoden-
droglioma (Posse et al., 2013). Intraoperative assessment con-
firmed a high lipid content. Postsurgical histology classified the
tumor as an oligodendroglioma.

Patient 2 was a 38-year old female with a 1.5-year history of
headaches. The clinical MRI showed loss of gray-white matter
differentiation with multiple areas of gyral expansion in the left
superior frontal gyrus and in the left parietal lobe, which were
suspected to be a primary glial tumor, such as multiple oligoden-
droglioma or multiple astrocytic tumors. High-speed 3D short TE
MRSI using PEPSI (Posse et al., 2007) showed only a slight increase
in Choline and slight reduction of N -acetyl-aspartate (NAA). The
patient remained under observation. A biopsy performed a year
later in the T2 hyperintense left parietal lesion revealed disease
progression. The histological interpretation was infiltrating grade
2 astrocytoma.

Arterio-venous malformation
Patient 3 was a 44-year old male with a two and a half year
history of complex partial seizures and progressive right lower
extremity weakness, who on imaging studies was found to have a
Spetzler–Martin grade III arterio-venous malformation in the left
fronto-parietal area. Cerebral angiography demonstrated a dense
nidus with feeders from anterior, middle, and posterior cerebral
arteries with early drainage into the superior sagittal sinus without
significant deep drainage. Because of its location in the eloquent
cortex, definitive treatment, either by surgery or endovascular
means was not recommended. His seizures followed a Jacksonian-
March pattern: starting from his right foot and marching up. The
frequency of seizures at the time of testing was variable, ranging
from daily to weekly, despite treatment with multiple anti-epileptic
medications. The patient’s interictal EEG did not contain epilepti-
form abnormalities. He is on multiple anti-epileptic medications
and his seizure control remains a challenge.

Patient 4 was a 24-year old male with new onset of seizures with
vivid visual aura who on workup was found to have a vascular
lesion in the right occipital region. He described his aura as colors
of rainbow that started in the center of the visual field and quickly
shifted to the left hemifield followed by a generalized tonic-clonic
seizure. Cerebral angiography demonstrated a clear hypervascular
nidus without early venous drainage to qualify for an AVM. He
underwent a surgical resection, which showed an arterial venous
malformation with multiple thrombosed cortical veins. He is cur-
rently been weaned off his anti-epileptic medications and remains
seizure free.

Temporal lobe epilepsy
Patient 5 was a 53-year old male who had temporal lobe
epilepsy with right mesial temporal lobe sclerosis and complex
partial seizures preceded by deja vu, sometimes progressing to
a secondarily generalized seizure. Epilepsy monitoring during
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withdrawal of anti-epileptic medication demonstrated seizures
electrographically localized to the right anterior temporal area,
and all interictal epileptiform activity similarly arising from the
right anterior temporal area (F8 maximal). FDG-PET scanning
demonstrated right mesial temporal hypometabolism and MEG
interictal epileptiform activity localized to the left anterior tempo-
ral lobe in a distribution typical for mesial temporal epilepsy. He
underwent temporal lobe resection and remains seizure free.

Patient 6 was a 12-year old female who had had complex par-
tial seizures with left temporal FDG-PET hypometabolism and
seizures lateralized to the left hemisphere on non-invasive epilepsy
monitoring. Invasive monitoring demonstrated seizure onset in
the left temporal mesial area.

Cortical epilepsy
Patient 7 was a 27-year old female with right posterior temporal
lobe epilepsy. She suffered simple and complex partial seizures.
FDG-PET demonstrated right posterior temporal hypometabo-
lism and EEG and MEG localized interictal epileptiform spikes to
the right occipital area. MRI demonstrated a right occipital area of
cortical dysplasia, consistent with the patient’s left homonymous
hemianopia.

Patient 8 was a 50-year old male who had a left hemispheric
localized cortical dysplasia associated with epilepsy and a prior
history of stroke and transient ischemic attack. The MRI showed
gyral expansion in the left frontal lobe with abnormal T2 signal
extension through the cortical mantle to the ventricular margin.
The morphology suggests focal transmantle cortical dysplasia with
balloon cells. Single voxel MR spectroscopy and MRSI demon-
strated elevated choline, consistent with focal cortical dysplasia. At
the time of testing he had failed to gain complete seizure control
despite trying multiple anti-epileptic medications.

DATA ACQUISITION
Resting-state fMRI data were acquired using a MEVI pulse
sequence with flyback along the kz-direction, which was described
in Posse et al. (2012). Briefly, multiple adjacent slabs were excited
sequentially in a single TR and encoded using repeated EPI mod-
ules with interleaved phase encoding gradients, fourfold accelera-
tion using partial parallel imaging (GRAPPA), 6/8 partial Fourier
encoding, and oversampling along the slab-direction. The recon-
struction pipeline used distributed computing across the scanner
using the ICE environment for in-plane (kx, ky) reconstruction and
the external workstation using TurboFIRE (Posse et al., 2001) for
reconstruction of the third dimension (kz) as described in Posse
et al. (2012). The time delay from acquisition to display of recon-
structed images was less than a TR. MEVI data were acquired using
the following parameters:

• Four-slab EVI/MEVI4: TR: 276 ms,TEeff : 28 ms,α: 10°, four slabs
in AC/PC orientation, interleaved acquisition order, slab thick-
ness: 24 mm, inter-slab gap: 10%, matrix per slab: 64× 64× 8,
Field of View (FOV) per slab: 256× 256× 32 mm3, recon-
structed isotropic voxel dimensions: 4 mm, 27 slices, scan time:
5 min and 15 s using 1100 scan repetitions.

• Two-slab EVI/MEVI2: TR: 136 ms, TEeff : 28 ms, α: 10°, two slabs
in AC/PC orientation, slab thickness: 42 mm, inter-slab gap:

10%, matrix per slab: 64× 64× 8, FOV per slab: 256× 256×
48 mm3, reconstructed voxel dimensions: 4× 4× 6 mm3, 13
slices, scan time: 5 min and 16 s using 2200 scan repetitions.

The 32 channel coil was used in one healthy control studied with
MEVI2, in two of the five patients studied with MEVI2, and in two
of the three patients studied with MEVI4, where one patient was
scanned using both methods. Patient 7 was studied using MEVI2
with the 12-channel coil and eight repetitions of 2.5 min scan time.

For comparison, resting-state scans in one healthy control was
performed with multi-echo EPI using six TEs ranging from 5.8
to 49 ms, TR: 2 s, FOV 256 mm, spatial matrix, threefold GRAPPA
acceleration, 6/8 partial Fourier encoding, 3.6 mm slice thickness,
10% slice gap,168 scan repetitions,and 5 min 55 s scan time. Multi-
echo data were combined using weighted echo averaging (Posse
et al., 1999).

Task-based fMRI in patients was performed with multi-echo
EPI using 10 TEs ranging from 5.8 to 82 ms, TR: 3 s, FOV 256 mm,
spatial matrix, threefold GRAPPA acceleration, 6/8 partial Fourier
encoding, 3.6 mm slice thickness, 10% slice gap, 56 scan repeti-
tions, scan time: 3 min 12 s. Multi-echo data were combined using
weighted echo averaging (Posse et al., 1999).

Structural imaging was performed using high-resolution
Turbo-Spin-Echo and multi-echo MP-RAGE scans. Diffusion ten-
sor MRI was performed using TR/TE: 9 s/84 ms, 35 gradient direc-
tions, b-values: 0 and 800 s/mm2, voxel size: 2× 2×2 mm3, and
scan time: 5 min 42 s.

RESTING STATE AND ACTIVATION TASKS
Resting-state scans were performed during eyes open condition.
Subjects were instructed to relax, clear their minds, and fixate on
a crosshair presented on a computer screen.

The block-design auditory-gated visual-motor activation task
consisted of eyes open in the lit scanner environment versus eyes
closed, and simultaneous 2 Hz right hand index finger tapping ver-
sus rest. Subjects were asked to tap with maximum extension of the
index finger. Covert word generation was performed in response
to presentation of single letters. The task duration was 12 s and the
interstimulus interval was 18 s. Five blocks of task activation were
performed. Subjects were instructed to attend to each task with
a constant effort across scans. Paradigm presentation was pro-
gramed using ePrime software (Psychology Software Tools, Inc.,
Pittsburgh, PA, USA). Visual stimulation was provided using an
in-house built MR compatible projection system. Auditory stim-
ulation was delivered using an MR compatible headset (Avotek
Inc., Stuart, FL, USA). An in-house developed button-response
device (MIND Research Network, Albuquerque, NM, USA) was
employed to monitor motor task execution.

DATA ANALYSIS
Retrospective ICA analysis
Spatial ICA was performed using the GIFT software package
v1.3i1. Preprocessing using SPM82 consisted of motion cor-
rection, coregistration with the EPI.mni template and spatial

1http://mialab.mrn.org/software/gift/
2http://www.fil.ion.ucl.ac.uk/spm/
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normalization to ensure consistent multi-session and/or multi-
subject analysis. Spatial interpolation and Gaussian smoothing
(6× 6× 6 mm3) was applied. The ICA algorithm used through-
out was FastICA introduced by Hyvarinen and Oja (1997), since it
had previously been shown to be more robust and computation-
ally efficient compared with the competing alternative approaches
for fMRI data analysis (Mutihac and Van Hulle, 2004). The settings
used for all data sets were the following: epsilon: 10−6, maximum
number of iterations: 1024, maximum number of fine-tuning ses-
sions: 64, using tanh as the non-linear transfer function, sample
size: 1, deflation mode, stabilization: on, and pow3 as “g” function.
In order to estimate the data subspace (model selection), MDL was
applied to the raw data. Alternatively, heuristically settings of 64
and 128 estimated number of independent latent sources, respec-
tively, were investigated in view of detecting as many as possible
default networks irrespective of any data model selection criteria.
The validation of ICA decomposition was carried out by running
ICASSO3 for each subject, so that the most stable directions were
selected after statistical resampling (bootstrap) of the raw data.
Principal component analysis (PCA) was used for prewhitening
based on singular value decomposition. A Z -threshold of 1.2 was
used to map independent components (ICs). The maximum Z -
scores in each component was measured. ICs representing RSNs
were identified by visual inspection in reference to the MNI brain
atlas using spatial selection criteria described for 7 RSN categories
and 28 components identified as RSNs in Allen et al. (2011). RSNs
were further identified by slowly modulated signal time courses
that were well above noise level. The power spectral density (PSD)
estimate was computed by means of Welch’s overlapped segment
averaging estimator implemented in MATLAB.

A time-frequency analysis of the time courses of RSN identi-
fied in two-slab EVI data was performed using thespectrogram
function in MATLAB with a 28.6-s window for the FFT and 24.3 s
overlap. The high-frequency limit of the RSN spectrum was mea-
sured using an amplitude threshold that was set at the level of the
peaks of the high-frequency noise level outside of the cardiac and
the respiratory bands.

Online seed-based sliding-window correlation analysis with
meta-statistics
Real-time fMRI analysis was performed using TurboFIRE (Posse
et al., 2001). Data preprocessing included motion correction, spa-
tial normalization into MNI space using the SPM99 EPI template
(Gao and Posse, 2003), segmentation of the MNI atlas space into
144 brain regions in reference to the Talairach Daemon Database
that segregated left and right hemispheric regions (Zheng et al.,
2013), and spatial smoothing using an 8× 8× 8 mm3 Gaussian
filter. Signal fluctuation due to cardiac pulsation and respiration
was suppressed using a 4-s time domain moving average filter
(Lin et al., 2011). Detrending of confounding signal changes using
weighted subtraction of multiple ROI time courses from white
matter, CSF, and the entire brain was implemented as an option.
Six single voxel seed locations were selected in reference to the MNI
coordinates of the peak activations in six of the seven principal
RSN categories reported in Allen et al. (2011):

3http://www.cis.hut.fi/projects/ica/icasso/

• Auditory RSN (IC17): left superior temporal gyrus (BA22),
coordinate:−51,−18, 7

• Sensorimotor RSN (IC7): left precentral gyrus (BA4), coordi-
nate:−52,−9, 31

• Visual RSN (IC64): bilateral lingual gyrus (BA17, 18), coordi-
nate: 1,−71, 13

• Default mode RSN (IC50): bilateral precuneus (BA7), coordi-
nate: 1,−64, 43

• Attention RSN (IC34): left inferior parietal lobule (BA40),
coordinate:−47,−57, 39

• Frontal RSN (IC42): right inferior frontal gyrus (BA45), coordi-
nate: 50, 23, 2

The signal time course within each seed region was used as
input to dynamic reference vector modeling (Gao and Posse,2004),
which was adapted to bypass convolution with the hemodynamic
response function. Seed-based sliding-window correlation analy-
sis was combined with a meta-statistics approach that employs
an efficient running variance algorithm (Welford, 1962) across
dynamically updated correlation maps to generate cumulative
meta-statistics maps of the mean and the standard deviation. The
sliding-window width (N w) was 4, 8, 28, 52, 105, 210, or 420 scans,
i.e., 1, 2, 4, 8, 15, 30, or 60 s, respectively. The initial 50 scans were
discarded (N d). Correlation values were threshold with correction
for degrees of freedom as described in eq. 13 in Bandettini et al.
(1993) using a cross-correlation threshold of 0.52. Meta-statistics
were computed at each TR starting at (N d+N w) and the final
meta-statistics maps were used for individual and group analy-
sis. The final meta-statistics maps were segmented into 144 brain
regions based on the modified Talairach Daemon database. Cross-
correlation coefficients between the six seed ROI time courses were
computed at each TR.

Offline processing of seed-based connectivity results
A metric of functional network connectivity (FNC) was created
by spatially averaging the meta-statistics maps within each brain
region. The group average across nine subjects of the intra-network
FNC within each of six major seeded RSNs was computed using
the following subset of brain regions (Allen et al., 2011):

• Auditory RSN: left and right BA22, BA24
• Sensorimotor RSN: left and right BA2, BA4, BA6
• Visual RSN: left and right BA17, BA18
• Default mode RSN: left and right BA7, BA10, BA23, BA31, BA32,

BA39
• Attention RSN: left and right BA8, BA40
• Frontal RSN: left and right BA22, BA44, BA45

Signal time courses from the six seed regions were extracted
at each TR to represent RSN time courses. A matrix of cross-
correlation coefficients between the different RSN time courses
was computed as a metric of inter-network FNC at 4 s intervals.
Time averaged matrices were computed across entire scans. The
rows of the inter-network FNC matrix were averaged to obtain
a metric of global FNC for each seed region. Group averages
of the inter-network and global FNC across nine subjects were
computed.
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Cardiac pulsatility
The time course of ICs with cardiac-related signal pulsation,
measured in nine healthy controls and in seven patients who
underwent resting-state fMRI using MEVI2, was analyzed in a
beat-by-beat manner using an automatic delineator method that
identifies fiducial points of the pulsation waveform (Li et al., 2010)
to enable coherent time averaging of the pulsation waveforms in
the presence of heart rate variability. The averaged waveforms were
replicated 128 times and Fourier transformed to create power spec-
tra of cardiac-related pulsation. The peak amplitudes at the cardiac
frequency, the first harmonic, and the second harmonic were mea-
sured. The ratio R of the amplitude of the peak at the cardiac
frequency with respect to the amplitude of the first harmonic was
computed.

Diffusion tensor imaging
DICOM images were converted to NIFTI format using the MAT-
LAB toolbox MRIconvert. Eddy current correction was performed
in FSL using the FDT Diffusion toolbox. Brain masking was
applied to exclude artifacts outside the brain. DTI analysis with
tractography was performed using MedINRIA software4. Manu-
ally defined seed ROIs in the motor pathways were used for fiber
tracking.

Statistical analysis
The TurboFIRE data output was post-processed using custom
PERL scripts and spreadsheets, and standard MATLAB toolboxes.
Statistical analysis was performed using a two-tailed heteroscedas-
tic Student’s t -test.

RESULTS
RESTING-STATE fMRI IN HEALTHY CONTROLS USING ICA
Independent component analysis analysis of MEVI2 and MEVI4
data showed clear delineation of major RSNs (Figure 1A)
described in Allen et al. (2011), and separation of multiple ICs
showing cardiac- and respiration-related signal pulsation. ICs with
RSNs were characterized by slowly varying signal time courses with
high contrast-to-noise-ratio well above noise level (Figure 1B) and
small contamination from cardiac- and respiration-related sig-
nal pulsation (Figure 1C). Cardiac-related signal pulsation was
resolved on a beat-by-beat basis in synchrony with peripheral
pulse recording (Figure 1D). The corresponding ICs mapped
cardiac signal pulsation in insular cortex, cortical gray matter,
brain stem, sagittal sinus, and ventricles. Respiration-related sig-
nal changes were detected at the edges of the imaging slabs. Brief
head movements were clearly detected as separate ICs with spatial
components located in orbital frontal cortex and at the edges of
the brain.

Independent component analysis of 5 min 25 s scans collected
in eight subjects using MEVI2 and the 12-channel coil sepa-
rated on average 28.4± 7.2 ICs, which consisted on average of
11.5± 5.7 ICs corresponding to the major RSNs described in
Allen et al. (2011). In some subjects multiple RSNs belonging
to a particular category (e.g., some of the six sensorimotor RSNs

4http://www-sop.inria.fr/asclepios/software/MedINRIA/

described in Allen et al., 2011) were mapped into different ICs,
but co-localized with RSNs belonging to other categories (e.g.,
the auditory RSN) within single ICs. As a consequence, the sum
of RSN, cardiac, respiratory, and artifact ICs exceeded the num-
ber of total ICs. On average, 12.8± 4.9 RSNs were identified in
these ICs with some of the ICs containing up to three different
RSNs. In addition, 6.6± 3.3 ICs corresponded to cardiac pul-
sation, 4.6± 2.9 ICs corresponded to respiration-related signal
changes, and 7.8± 4.9 ICs corresponded to artifacts related to
head movement and to 1 Hz signal oscillations, predominantly at
the edges of the slabs (Table 1). Maximum Z -scores ranged from
5.2 to 20.2 for attentional RSNs with other RSNs having maxi-
mum Z -score within this range. The average Z -score across all
RSNs was 11.8± 0.7. ICA analysis of data collected in one sub-
ject using the 32 channel coil separated 42 ICs, of which 20 were
related to RSNs, 10 were related to cardiac pulsation, 5 were related
to respiration related signal changes, and 13 were related to head
movement and artifacts, including coherent constant amplitude
1 Hz signal oscillation at the edges of the brain and in parietal
cortex. Z -scores reached up to 32.2 for sensorimotor and atten-
tional RSNs, and the average Z -score across all RSNs was 18.4.
These results are consistent with the data collected in the patients
(see below). Table 1 shows the results averaged across all nine
subjects.

The time-frequency analysis of signal fluctuations in RSNs
measured with MEVI2 was performed in five subjects. The spec-
trograms (Figures 1C,D) displayed low-frequency components
that had maximum power around 0.1 Hz and extended on average
to a maximum frequency of 0.27 Hz (Table 2). Short-term fluctu-
ations of this frequency range at short times scales (i.e., individual
24.3 s segments) were up to±0.1 Hz. The range of measurable RSN
frequencies was also limited by residual signal fluctuation due to
respiration, which in some cases overlapped with RSN frequency
components.

SENSITIVITY COMPARISON MEVI2, MEVI4, AND MEPI
In one healthy subject a sensitivity comparison was performed
between MEVI2, MEVI4, and weighted averaged multi-echo
EPI using the 12-channel coil and identical isotropic resolution
(4× 4× 4 mm3). ICA analysis of the multi-echo EPI data sep-
arated 33 ICs, which were related to 16 RSNs (Table 1). RSNs
measured with multi-echo EPI were mixed with aliased cardiac-
and respiration-related signal pulsation and displayed spurious
connectivity in white matter. ICs with predominantly cardiac (2)
and respiratory (3) signal changes in these data were only iden-
tifiable based on their spatial localization in reference to the EVI
results. The MEVI4 data in this subject displayed improved sep-
aration of cardiac- and respiration-related signal contamination,
but smaller number of separated ICs (21), with 14 identifiable
RSNs. The corresponding MEVI2 data showed further reduction
of spurious connectivity in white matter, larger number of ICs (34)
comparable to multi-echo EPI and larger number of identified
RSNs (21).

In patients a corresponding trend was found: MEVI2 sep-
arated more ICs on average than MEVI4 (38.6± 13.4 versus
26.0± 12.1) with more ICs corresponding to RSNs (16.6± 7.8
versus 7.0± 5.3, p= 0.09). MEVI2 enabled identification of a
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FIGURE 1 | (A) Resting-state fMRI in a healthy control using whole brain
MEVI4 with TR: 276 ms. The spatial ICA map with Z -scores up to 15 shows a
clearly delineated default mode RSN. (B–D) ICA-based mapping of RSNs and
cardiac pulsatility using MEVI2 with TR: 136 ms. (B) Slowly varying signal

changes well above noise level (zmax > 10) distinguish (C) RSNs from (D)
cardiac-related signal pulsation. The corresponding spectrograms display (C)
the dynamically fluctuating low-frequency power spectrum of the RSN and
(D) the first and second harmonics of the cardiac pulsation.

larger number of RSNs (19.6± 9.1 versus 13.0± 8.9) and cardiac
components (7.6± 4.4 versus 4.0± 1.7, p= 0.16) compared to
MEVI4 (Table 1).

Using seed-based connectivity with meta-statistics (see below)
MEVI2 yielded larger peak correlation coefficients and larger
extent of connectivity across the two-slab volume compared with
MEVI4 across a wide range of time scales from 4 to 60 s (Figure 2).

RESTING-STATE DYNAMICS USING SEED-BASED CONNECTIVITY WITH
META-STATISTICS
The meta-statistics approach provided strong rejection of con-
founding signals from head movement, respiration, cardiac
pulsation, and signal drifts (Figures 3A,B), without using regres-
sion of movement parameters and signals from white matter and
CSF. The degree of rejection of confounding signals increased

with decreasing sliding-window width, while mean correlation
coefficients decreased only slightly. A window width of 60 s often
provided considerable artifact suppression, but a 15-s window was
preferred due to even more robust artifact suppression. The cor-
relation coefficients in white matter and CSF using this approach
were small, typically <0.2 (Figure 3B). Weighted subtraction of
signals from white matter, CSF, and the entire brain did not result
in consistent improvement of mapping the major RSNs.

Our data show high sensitivity for mapping intra- and inter-
network connectivity at time scales as short as 4 s, which is consis-
tent with the upper frequency range of signal fluctuation in major
RSNs shown in Table 2. Interestingly, the auditory network dis-
played connectivity at time scales as short as 1 s with little decrease
in mean correlation coefficient (Figures 3C–F). Using this meta-
statistics approach RSNs were detected in tens of seconds. Some
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of the major RSNs, such as the DMN, the auditory network, and
the visual network were often detectable in as little as 10–20 s. The
localization and spatial extent of principal nodes of major RSNs
using the seed-based analysis approach were comparable to the
ICA results (Figure 4).

Mapping of dynamic changes in intra-network FNC revealed
considerable differences in short-term fluctuations in different
nodes of major RSNs. For example, the IPL region (BA39+BA40)
showed some of the strongest fluctuation within the DMN
(Figure 5), consistent with a recent group ICA study (Allen et al.,
2012). FNC between the 6 seeds and 144 brain regions averaged
across an entire scan was predominantly positive and showed
extensive connectivity across many brain areas. In general, major

Table 2 | High-frequency cutoff of low-frequency resting-state signal

fluctuations in healthy controls.

Subject Mean (Hz) SD (Hz)

1 0.29 0.02

2 0.25 0.02

3 0.32 0.09

4 0.26 0.02

5 0.22 0.02

Mean 0.27 0.03

SD 0.04 0.03

nodes of connectivity with higher short-term correlation were
predominantly associated with lower standard deviation of short-
term correlation as shown in Figure 6, which is an example of
seed-based connectivity across 144 brain regions averaged across
nine subjects using a 15-s sliding window. On the other hand,
higher standard deviation was frequently measured in regions with
lower short-term correlation. The default mode and the visual
networks share a similar pattern of FNCs. There were notable
right-left asymmetries in the meta-means maps: for example,
FNC in the frontal network with BA45 showed the largest right
side dominance (difference= 0.2), along with BA25, BA44, BA46,
and BA47. The FNC in the attention network showed the largest
asymmetry for BA39. The DMN showed the largest asymmetry in
Medial Geniculum Body.

A group analysis in nine subjects demonstrated that intra-
network FNC measured using this sliding-window based meta-
statistics approach yielded intra-network correlation values that
were comparable in amplitude with previous studies using ICA
(Figure 7) (Allen et al., 2012). Intra-network FNC in major
nodes of six principal RSNs decreases moderately at 4 s sliding-
window width compared to 15 and 60 s sliding-window widths
(Figure 7A). Some of the strongest intra-network FNC was mea-
sured within the DMN. Consistent with previous studies, tempo-
ral fluctuations in intra-network FNC increased with decreasing
sliding-window width (Figure 7B).

A group analysis of inter-network FNC in nine subjects demon-
strated mean correlation values comparable to previous studies

FIGURE 2 | Seed-based mapping with 4 s sliding window of the
sensorimotor RSN comparing (A) MEVI4 (TR: 286 ms) and (B) MEVI2
(TR: 136 ms), which shows higher peak correlation and larger spatial
extent of connectivity across the two-slab volume compared with

MEVI4. (C) The spatial extent of connectivity decreases strongly with
sliding-window width, but it is larger with MEVI2 compared to MEVI4 at all
three time scales. (D) The mean correlation is comparable across the
range of time scales.
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FIGURE 3 | Seed-based connectivity of the sensorimotor RSN
measured with MEVI2 (TR: 136 ms). (A) Correlation across the entire
5 min scan without regression of confounding signal changes displays
widespread artifacts (yellow arrow) and edge artifacts due to head
movement (red arrows). (B) Sliding-window correlation analysis with
meta-statistics using a 4-s sliding-window removes the artifacts and reveals
the expected localization of the sensorimotor network in the mean
meta-statistics map. (C–F) Seed-based connectivity of the auditory RSN
shown as mean meta-statistics across the 5 min scan using sliding-window
widths of (C) 15 s, (D) 4 s, (E) 2 s, and (F) 1 s.

using ICA (Figures 8A–C) (Allen et al., 2012). Some of the
strongest inter-network FNC was measured between the DMN and
the visual network, and between the DMN and the attention net-
work. The inter-network connectivity increased moderately with
increasing sliding-window width between 4 and 60 s. The global
FNC averaged across nine subjects decreased moderately at 4 s
sliding-window width compared to 15 and 60 s sliding-window
widths (Figure 8D). Inline with the intra-network connectiv-
ity, temporal fluctuations in global FNC increased with decreas-
ing sliding-window width (Figure 8E). The DMN displayed the
strongest temporal fluctuation of global FNC at a time scale of 4 s.

Figure 8F shows a typical series of dynamic inter-network FNC
matrices in a single subject for a seed in the DMN, which show
both positive and negative FNC at short time scales (sliding-
window width: 15 s) between the seed in the DMN and five
seeds in task-positive RSNs. The corresponding five time courses
of the short-term FNC within the sliding-window demonstrate
rapidly changing correlations between positive and negative val-
ues (Figure 8G). The mean and the standard deviation across
these correlation time courses show considerable fluctuation of
inter-network coherence (Figure 8H). Similar short-term tempo-
ral dynamics of positive and negative FNC between the seed in the
DMN and the five seeds in task-positive RSNs were observed in all
subjects.

RESTING-STATE fMRI IN PATIENTS WITH NEUROLOGICAL DISORDERS
Patients exhibited a greater number of RSNs on average compared
to healthy controls (Table 1) due in part to the transition to the 32
channel coil. Spatial displacement of major RSNs and reduced con-
nectivity within RSNs was mapped in the vicinity of brain tumors
and vascular malformations. Unanticipated connectivity was also

found in some of the patients. The following cases demonstrated
noteworthy changes in functional organization.

Patient 1 with a frontal lobe brain tumor showed much stronger
activation of motor cortex and extensive activation of non-motor
areas adjacent to the tumor during left hand index finger tapping
compared to right hand index finger tapping (Figure 9). This may
reflect the increased effort of left hand task execution, which the
patient reported, and dysregulation of cerebro-vascular coupling
within the edema around the tumor. By contrast, the sensori-
motor RSNs measured in this patient showed comparable focal
connectivity within both motor cortices. Interestingly, the senso-
rimotor RSN was separated into two lateralized subnets, which
suggests reduced functional connectivity within the sensorimotor
RSN due to the tumor. In this patient we also illustrate the integra-
tion of RSN maps into the StealthStation neuronavigation system
(Medtronics, MN, USA) for presurgical planning using the sum of
all RSNs in the vicinity of the tumor (Figure 9H).

Functional connectivity mapping in patient 2 with a pos-
terior temporal lobe tumor showed decreased connectivity in
and adjacent to the lesion in DTI-based fiber tracking and in
the default mode RSN. Interestingly, the sensorimotor RSN was
not detected with ICA although the other major RSN were
present and task-based fMRI clearly localized sensorimotor cor-
tex. Seed-based connectivity using seed locations based on motor
activation that was detected in task-based fMRI mapped the
sensorimotor RSN.

Patient 3 with a temporal lobe AVM exhibited extensive recruit-
ment of brain regions in the vicinity of the AVM during right
finger tapping, which may reflect the considerably increased effort
of task execution compared to left hand finger tapping and dys-
regulation of cerebro-vascular coupling in the vicinity of the AVM
(Figures 10A–K). The resting-state sensorimotor network showed
a complete disconnection on the side of the AVM, resulting in the
detection of with three separate RSNs in the left and the right
sensorimotor cortex and the supplementary motor area.

Patient 4 with an occipital lobe AVM displayed asymmetrical
activation in visual cortex during visual stimulation that excluded
the rims of the AVM (Figures 10L–Q). Interestingly, a visual
imagery task that involved imagining the “aura” resulted in a com-
plex activation pattern along the rims of the AVM, suggesting that
these regions may be involved in the visual aura associated with the
seizure. The major visual RSN, which was detected both with ICA
and seed-based correlation analysis, excluded the rims of the AVM.
However, a seed placed in the AVM revealed extensive connectivity
with secondary visual cortex.

Patient 6 with temporal lobe epilepsy exhibited hyperplasia
in anterior left frontal cortex (Figures 11A–D), which in DTI-
based fiber tracking shows reduced connectivity and, uncharac-
teristically for epilepsy, hypermetabolism in this region in the
FDG-PET scan. Cortical recordings using an implanted electrode
grid (Figure 11B) showed that this region was not the source of
epileptic activity. The default mode RSN showed asymmetric con-
nectivity in the frontal cortex. The attention RSN displayed spatial
asymmetry as well, whereas the visual RSN displayed connectivity
with the hyperplasia lesion. The lesion itself was also connected
to other cortical regions, which was mapped in a separate IC. In
this patient we also illustrate the integration of RSN maps into the
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FIGURE 4 | Comparison of (left) ICA and (right) seed-based connectivity in a single subject for mapping (A) the default mode RSN, (B) the visual RSN,
(C) the sensorimotor RSN, and (D) the auditory using MEVI2 atTR: 136 ms.

StealthStation neuronavigation system (Medtronics, MN, USA)
for presurgical planning.

Functional connectivity mapping in patient 7 with cortical
epilepsy revealed progressive changes in functional connectivity
during eight consecutive resting-state scans (Figures 11E–J). In
the third scan the visual RSN became spatially asymmetric. In the
fourth scan a new RSN was detected that encompassed right pos-
terior parietal and temporal cortex, a region that showed interictal
spike activity in EEG and MEG. The visual RSN was spatially asym-
metric and the sensorimotor RSN was not detected. In the fifth
scan a spatially asymmetric visual RSN was detected again. In scan
6 the spatial asymmetry of the visual RSN increased, excluding the

right posterior temporal lobe, and negative correlation with the
right motor and posterior parietal cortex was seen. In scan 8 the
previously detected RSN in right posterior parietal and temporal
cortex extended into more inferior brain regions.

CARDIAC-RELATED PULSATILITY
Cardiac-related physiological signal fluctuation in healthy controls
was mapped into clearly separated ICs in insular cortex, cortex,
sagittal sinus, brain stem, and CSF. Several cardiac-related ICs
of vascular origin with Z -scores ranging from 8.1 to 20.7 were
detected in insular cortex, cortex, sagittal sinus (Figure 12), in
addition to pulsation in the brain stem (Z = 22.2) and in the
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ventricles (Z = 16.5). This pulsation, which was detected on a
beat-by-beat basis, was synchronous with peripheral pulse record-
ing throughout the entire scan. Power spectra showed significant
amplitude at the first harmonic and in some cases also at the sec-
ond harmonic (Figure 12C). The waveform of the cardiac-related
signal pulsation in insular cortex (Figures 12D,E) was inverted
with respect to typical Transcranial Doppler Ultrasound (TDU)

FIGURE 5 | Dynamic changes in temporal correlation within the default
mode RSN measured at 30 s intervals using MEVI2 (TR: 136 ms) and
sliding-window seed-based correlation analysis with 30 s window in a
healthy control.

and phase contrast MRI waveforms obtained from the middle
cerebral artery (e.g., Wagshul et al., 2011), which suggests that the
cardiac-related signal pulsation in our MEVI data is dominated
by BOLD contrast rather than in-flow effects as usually assumed
for BOLD contrast fMRI (e.g., Kruger and Glover, 2001). The
signal pulsation in our data is also consistent with the pulsation
waveform measured in cingular cortex in one of the early studies
using conventional EPI (Dagli et al., 1999). The first harmonic
of the cardiac-related pulsation was stronger in components with
vascular origin (insula, sagittal sinus) compared to components
originating from the ventricles and the brain stem (Figure 13).
Multiple ICs with strongly enhanced cardiac-related signal pulsa-
tion were measured in patient 1 with a brain tumor and in patient 3
with an arterio-venous malformation (Figure 13B). Distinct time
shifts on the order of 100 ms were measured between cardiac-
related ICs in and adjacent to the AVM, which reflect different
phases of the cardiac-related pulse wave propagation. The sta-
tistical analysis showed a trend (t -test, p= 0.14) toward a larger
amplitude ratio R in gray matter in patients compared with healthy
controls (Figure 13C).

DISCUSSION
ICA AND SEED-BASED CONNECTIVITY
Mapping of intrinsic signal variation mostly in the low-frequency
band <0.1 Hz has emerged as a powerful tool and adjunct to task-
related fMRI and DTI-based fiber tracking for mapping functional
connectivity within and between RSNs (Fox et al., 2005; De Luca
et al., 2006; Raichle and Snyder, 2007; Schopf et al., 2010; Li et al.,
2011). Recent studies have shown that dozens of different RSNs
can be measured across groups of subjects (Abou-Elseoud et al.,
2010; Allen et al., 2011). However, source separation with ICA in

FIGURE 6 | Seed-based FNC between 6 seed regions and 144 brain
regions using MEVI2 (TR: 136 ms) and meta-statistics averaged across
nine healthy subjects at the end of the scan. Spatial means of (A) left

hemisphere meta-statistics means, (B) right hemisphere meta-statistics
means, (C) left hemisphere meta-statistics standard deviations, and (D) right
hemisphere meta-statistics standard deviations.
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FIGURE 7 | Seed-based intra-network FNC at the end of the scan averaged across nine healthy subjects using MEVI2 (TR: 136 ms). Spatial means of the
meta-statistics (A) means and (B) standard deviation in a subset of 18 selected Brodmann areas as a function of sliding-window width (4, 15, and 60 s).

individual subject data using conventional EPI is limited by the
contrast-to-noise ratio of the signal fluctuations and aliasing of
cardiac- and respiration-related signal fluctuations, which requires
model-based retrospective deconvolution methods (Glover et al.,
2000). Our data using MEVI and ICA show that a considerable
number of RSNs that have been mapped in a recent group study
(Allen et al., 2011) can be identified in single subjects. Our data
also show that source separation in single subjects exhibits con-
siderable inter-individual variability. This variability may reflect
inter-individual differences in dynamic cycling between differ-
ent FNC states, including hypersynchronization, drowsiness, and
low synchronization (Allen et al., 2012), as well as in neurovas-
cular coupling and physiological signal fluctuation. Physiological
noise correction might further improve ICA analysis, in particular
in data sets that exhibit low contrast-to-noise ratio in the RSN
signal time courses. Given the spatial heterogeneity in cardiac-
related signal pulsation shown in our study this approach will
require a comprehensive analysis of ICA source separation as a
function of contrast-to-noise ratio in the RSN, respiration, and
cardiac frequency bands using regionally adaptive signal pulsa-
tion models. This approach will be explored in a future study.
Movement during the fMRI acquisition is a major confound for
resting-state connectivity studies obscuring networks as well as
creating false-positive connections (Satterthwaite et al., 2012; Van
Dijk et al., 2012) despite state-of-the-art motion “correction” in
post-processing. Monitoring these dynamics in real-time to assess
data quality is expected to improve consistency of data quality in
clinical research studies and our understanding of the underlying
neurophysiological mechanisms.

Seed-based correlation analysis (Van Dijk et al., 2010) and spa-
tial ICA (Calhoun et al., 2001) are the principal tools to map
functional connectivity, which have been shown to provide simi-
lar results (Van Dijk et al., 2010; Erhardt et al., 2011). Seed-based
connectivity measures have been shown to be the sum of ICA-
derived within- and between-network connectivities (Joel et al.,
2011). Seed-based correlation analysis is suitable for real-time

resting-state fMRI due to the high sensitivity of correlation analysis
and straightforward interpretation of results (Cole et al., 2010a).
In contrast, data driven approaches, such as ICA, in single subjects
may require considerable user interaction to interpret resulting
maps and time courses. Semi-automated data sorting routines for
ICA are under development, but actual real-time applications have
not yet been demonstrated (Soldati et al., 2013a,b). A model-based
approach such as seed-based correlation analysis that uses prior
knowledge is advantageous compared to ICA for detecting small
signal changes. However, seed-based techniques are sensitive to
the choice of the seed regions (Cole et al., 2010a). Furthermore,
seed-based correlation analysis requires regression of confound-
ing signals, which typically include the six parameters of motion
correction and their derivatives, and the average signal from up
to three brain regions (whole brain over a fixed region in atlas
space, ventricles, and white matter in the centrum semiovale).
Regression of these signals is computationally intensive and may
remove RSN signal changes that are temporally correlated with
confounding signals. Here we introduce the combination of seed-
based sliding-window correlation analysis with a meta-statistics
approach that employs a running mean and standard deviation
(Welford, 1962) across dynamically updated correlation maps to
generate cumulative meta-statistics maps. Our data show that this
meta-statistics approach provides strong rejection of confounding
signals from head movement, respiration, cardiac pulsation, and
signal drifts (Figure 3) and high sensitivity for mapping inter- and
intra-network connectivity dynamics at time scales as short as 1 s
without the need for regression of confounding signals (Figures 6
and 7). Furthermore, this methodology is suitable for real-time
mapping of FNC dynamics as shown in Figures 5 and 8.

Independent component analysis on the other hand is a pow-
erful data driven approach that has been applied in many group
studies and is suitable for single subject analysis (Koopmans et al.,
2012). ICA also performs spatial filtering, which enables seg-
regation of spatially overlapping components. However, source
separation with ICA is sensitive to the selection of the model order,
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FIGURE 8 | (A–E) Seed-based inter-network FNC averaged across nine
healthy subjects using MEVI2 (TR: 136 ms) and (F–H). Simulated real-time
monitoring of inter-network FNC in a single subject using MEVI2 (TR: 136 ms)
with the 12-channel coil and a 15-s sliding window. Subject average of the
meta-statistics correlation coefficient matrix for six seeds at a time scale of
(A) 4 s (B) 15 s, and (C) 60 s at the end of the scan. Group-averaged (D) mean
and (E) standard deviation of global FNC for six seeds at time scales of 4, 15,

and 60 s at the end of the scan. (F) Selected connectivity matrices for 15 s
sliding windows at time points of low (64, 83 s), high (95 s), and intermediate
(190 s) synchronization in a single subject. (G) Corresponding time courses of
the correlations between the cuneus seed time course of the DMN and the
seed time courses of five major task-positive RSNs within the sliding window.
(H) Corresponding time courses of the mean and standard deviation of the
correlation time courses in (G) as a metric of inter-network FNC.

which is a priori unknown and necessitates dimensionality esti-
mation approaches, such as the MDL, BIC, and AIC (Calhoun
et al., 2001; Li et al., 2007). Furthermore, automated ordering

of ICA components to enable consistent identification of RSNs
is challenging. Using the MDL criterion to determine the model
order resulted in a relatively small number of ICs relative to the
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FIGURE 9 | Presurgical mapping in patient 1 with right prefrontal
low-grade oligodendroglioma. (A) T2-weighted MRI. Task-based fMRI
using MEPI (TR: 2 s). (B) Right hand finger tapping shows sharp
delineation of eloquent cortex. (C) Left hand finger tapping shows diffuse
activation in the vicinity of the tumor. Resting-state fMRI using MEVI2 (TR:
136 ms) and ICA shows (D) left sensorimotor cortex localization ICA
(zmax =7.9) consistent with task-activation in (B,E) right sensorimotor RSN

mapping with showing more focal localization (zmax =12). Seed-based
analysis shows focal localization of the sensorimotor RSN consistent with
ICA: (F) left motor seed and (G) right motor seed (arrows). (H) Sum of all
seed-based resting-state networks in the vicinity of the tumor integrated
into presurgical planning. Color scales for task-based correlation analysis
and seed-based connectivity (top), and ICA (bottom) are shown on the
right.

large number of time points in a MEVI scan. At shorter simu-
lated scans times the ICA was less able to separate sources and
we found that multiple RSNs were merged in single ICs. Our
resting-state data also suggest that using a larger number of com-
ponents than provided by the MDL criterion may be advantageous
for separating RSNs that are co-localized in a single IC in some
of our data. Interestingly, the number ICs detected by the MDL
criterion increased considerably when spatially interpolating the
data, which suggests that spatial dimensionality independent of
spatial information content plays an important role in source
separation with ICA. This dependence of ICA source separa-
tion on preprocessing warrants further investigation. The effects

of increasing model order on the noise level and segregation of
RSNs in individual subject data need to be addressed in a future
study. Furthermore, it will be of interest to investigate the loss
of MEVI information in the initial PCA-based data reduction
step. The performance of ICA source separation with high-speed
fMRI requires further investigation as sensitivity for detecting
and for separating RSNs varied across subjects. For example, in
some subjects the ICA time course displayed dynamic mixing and
unmixing of different signal sources throughout the entire ICA
time course. In other cases a separation of a steady signal pulsa-
tion time course into two complementary ICs with time courses
that displayed decreasing and increasing pulsation amplitude was
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FIGURE 10 | Presurgical mapping in two patients with arterio-venous
malformations (AVM). Patient 3 with left parietal AVM : (A) T1-weighted
MRI, (B) T2-weighted MRI, (C) MR-angiogram, (D) DTI-based fiber tracking
show distortion of motor pathways. Task-based fMRI using MEPI (TR: 2 s):
(E) right hand finger tapping shows distributed activation around the lesion
(indicated by arrow) beyond the left motor cortex and in the supplementary
motor area and (F) left hand finger tapping shows focal localization of right
motor cortex. Resting-state fMRI using MEVI2 (TR: 136 ms) and ICA
segregates the sensorimotor RSN into three subnetworks with focal
localization of motor areas: (G) a right sensorimotor RSN (zmax =7.9), (H) a
left sensorimotor RSN (zmax =8.9), and (I) a supplementary motor area RSN
(zmax = 9.4). ICA also segregates the default mode RSN into two

subnetworks (J,K) that do not extend into the left parietal cortex (zmax =6.2
and 8.5, respectively). Patient 4 with right occipital AVM : (L) T2-weighted
MRI. Task-based fMRI using MEPI (TR: 2 s). (M) Visual stimulation does not
activate the lesion and (N) imagination of the experience of the “aura”
associated with epilepsy activates and deactivates areas at the rim of the
lesion. (O) Intraoperative image. (P) Resting-state fMRI using MEVI2 (TR:
136 ms) and ICA shows a visual RSN that does not extend into the AVM
consistent with visual stimulation (zmax =12.6). (Q) Seed-based functional
connectivity of the visual RSN with a seed in BA 17 (green box) does not
show visual eloquence within the AVM. Color scales for task-based
correlation analysis and seed-based connectivity (top), and ICA (bottom) are
shown on the right.
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FIGURE 11 | Presurgical mapping in two patients with epilepsy
Resting-state fMRI using MEVI2 (TR: 136 ms) and ICA. Patient 6 with
temporal lobe epilepsy. (A) The T2-weighted MRI shows hyperplasia in
anterior left frontal cortex and left mesial temporal lobe sclerosis. (B)
Presurgical planning using resting-state networks encompassing language
areas and the area of dysplasia. ICA shows (C) a resting-state network
encompassing the area of dysplasia (zmax =15.6) and (D) abnormal
connectivity between the area of dysplasia and the visual RSN (zmax =9.0).
Patient 7 with cortical epilepsy. (E) The T1-weighted MRI shows cortical

thickening in the right posterior temporal lobe (yellow circle) (F) FDG-PET
shows hypometabolism in this region (yellow circle). ICA shows dynamic RSN
changes in consecutive scans. (G) An unanticipated RSN emerges in right
posterior parietal and temporal cortex during scan 4 (zmax =15.0). (H,I) In scan
6 the visual RSN displays spatial asymmetry that excludes the right posterior
temporal lobe and exhibits negative correlation with the right motor and
posterior parietal cortex (zmax =17.3). (J) The unanticipated RSN in right
posterior parietal and temporal cortex extends into inferior regions during
scan 8 (zmax =16.3). The color scale for ICA is shown on the right.

observed. Several studies have shown that optimization of the data
analysis methodology, such as using back-projection methods,
reduces inter-session variability (Smith et al., 2005; Chen et al.,
2008). Further work across larger groups of subjects is thus nec-
essary to assess the reproducibility of source separation in single
subjects.

There is now increasing evidence that RSNs are not stationary
(Hou et al., 2006; Kang et al., 2011), which has attracted consider-
able interest in recent studies (Chang and Glover, 2010; Scholvinck
et al., 2010; Allen et al., 2012). However, the neural correlates of
resting-state fluctuations in fMRI are not well understood and are
a focus of current research (Morcom and Fletcher, 2007; Shmueli
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FIGURE 12 | Cardiac-related signal pulsation measured in a healthy
control using MEVI2 (TR: 136 ms). (A) ICA time course of the pulsation. (B)
ICA spatial map shows pulsation predominantly in insular cortex and medial
gray matter (zmax =12.5). The color scale for ICA is shown on the right. (C)

Corresponding raw power spectrum shows the cardiac frequency and its first
harmonic. (D) Fitted MEVI2 signal time course, which is inverted with respect
to (E) a typical Transcranial Doppler Ultrasound waveform from the middle
cerebral artery (from Wagshul et al., 2011).

et al., 2007; Pizoli et al., 2011; Wong et al., 2011). The seed-based
real-time sliding-window correlation analysis with meta-statistics
developed in this study enables sensitive analysis of fluctuations in
resting-state connectivity at much shorter time scales compared
to ICA and hypothesis-driven analysis of connectivity between
specific nodes of RSNs. The decreases in connectivity fluctua-
tion with increasing sliding-window width measured in our data
highlights the advantage of ultra-high-speed fMRI for character-
izing the temporal dynamics of resting-state connectivity and for
monitoring transitions between resting states. It also emphasizes
that averaging across several minutes of a resting-state scan may
underestimate the maximum strength of functional connectivity
between regions that exhibit strongly fluctuating connectivity.

Our seed-based sliding-window correlation analysis combined
with meta-statistics revealed considerable short-term temporal
fluctuation of intra- and inter-network FNC between positive and
negative values at short time scales. FNC averaged across an entire
5 min scan was predominantly positive across subjects as shown
in Figure 8, which is consistent with previous studies demonstrat-
ing positive overall correlation between RSN time courses before
regression of the global mean (Fox et al., 2009; Murphy et al.,
2009). A recent study demonstrated that correlation coefficients

between the PCC and its anti-correlated regions without global
regression were substantially weaker than those of the positive
correlations within regions of the DMN, consistent with previ-
ous studies (Chang and Glover, 2010). That study also showed
considerable fluctuation in signal correlation at time scales of 2
and 4 min. The observed anti-correlation between the DMN and
task-positive networks remains a topic of ongoing investigation
and intense debate with regards to the validity of global signal
regression (Fox et al., 2009; Murphy et al., 2009; Uddin et al., 2009;
Cole et al., 2010b; Chai et al., 2012). With seed-based connectiv-
ity the observation of correlations and anti-correlations is highly
dependent on the choice of seed locations. Future studies will have
to more thoroughly investigate correlations with a wider range of
seed locations. In summary, the measurement of short-term cor-
relations and anti-correlations at time scales much shorter than
those reported in previous studies, using high-speed fMRI with-
out global signal regression, will facilitate the characterization of
the neurobiological basis of the observed anti-correlations.

Monitoring RSN fluctuations online in correlation with other
observables of subject behavior and state would provide a new
approach for studying the physiological and cognitive correlates
of resting-state fluctuations. Our real-time methodology enables

Frontiers in Human Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 479 | 24

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Posse et al. High-speed resting-state fMRI

FIGURE 13 | Cardiac-related signal pulsation in different brain areas
measured using MEVI2 (TR: 136 ms) in (A) a healthy control and (B)
patient 3 with an AVM. Selected slices from the spatial ICA show regions
with cardiac-related signal pulsation [zmax ranging from 7.7 to 14.4 in (A) and
from 5.3 to 14.4 in (B)]. Interpolated ICA time courses within a 6.8-s window
showing remarkable morphological waveform differences and shifts in phase

in the AVM and in adjacent gray matter regions. The ratio R of the power
spectrum amplitudes at the cardiac frequency versus the first harmonic is
shown in the insets. (C) Group analysis across healthy controls (n=9) and
patients (n=6) shows regional differences in R (ratio of the power spectrum
amplitudes at the cardiac frequency versus the first harmonic). The color scale
for ICA is shown between (B) and (C).

experimental neurofeedback based on intra- and inter-network
connectivity, which may provide a means for self-controlling the
temporal dynamics of resting-state fluctuations. For example, by
controlling activation of task-positive networks it may be possi-
ble to modulate the anti-correlated default mode RSN, which may
have implications for cognitive behavioral therapy.

SENSITIVITY OF MEVI
Inline with recent studies, we show that the detection of major
RSNs and separation of physiological signal fluctuation in sin-
gle subjects is facilitated by the high temporal resolution MEVI,
which avoids aliasing of cardiac- and respiration-related signal
fluctuations, and by the high BOLD sensitivity of MEVI (Posse
et al., 2012). As recent studies have shown high temporal resolution
improves separation of RSNs using ICA (Smith et al., 2012) and
may facilitate detecting the temporal dynamics of RSNs at frequen-
cies above 0.1 Hz (Boubela et al., 2013; Boyacioglu et al., 2013; Chu
et al., 2013; Lee et al., 2013), which as a recent study suggests may
exhibit greater spatial and temporal stability than low-frequency
connectivity (Lee et al., 2013). Consistent with these studies our
data show that MEVI improves separation of RSNs and facili-
tates detecting the higher frequency ranges of resting-state signal
fluctuation, which as our data show extend up to 0.27 Hz.

High-speed fMRI reveals respiration-related signal changes at
the edges of the MEVI slabs, which may be due to movement,
B0-shifts, or a combination of both, whereas the center of the
slabs was free of these signal changes. This spatial separation of
respiration-related artifacts represents a distinct advantage of 3D
encoding with MEVI compared to multi-slice EPI, where these
signal changes are not spatially separable and may thus be more
difficult to remove.

CLINICAL FEASIBILITY STUDIES
There is now increasing evidence that alterations in functional
connectivity are detectable in neurologic (Bettus et al., 2010;
Pereira et al., 2010; Luo et al., 2011; Negishi et al., 2011) and psy-
chiatric (Greicius, 2008; Broyd et al., 2009) disorders, which may
have diagnostic value. The clinical cases in this study demonstrate
that high-speed fMRI has high sensitivity for mapping major RSNs
and disease-related changes in functional connectivity in individ-
ual patients. Spatial displacement of major RSNs and reduced
connectivity within RSNs was mapped in the vicinity of brain
tumors and vascular malformations. Resting-state fMRI is par-
ticularly advantageous for mapping the sensorimotor cortex in
patients with motor impairment, which may be challenging with
task-based fMRI due to attention-related unspecific activation
and dysregulation of cerebro-vascular coupling in the vicinity
of brain lesions. Localization of sensorimotor cortex in patients
with motor disability and in the vicinity of brain lesions with
impaired cerebro-vascular coupling was more focal in resting-
state fMRI compared with task-based fMRI. Segregation of the
sensorimotor RSN into laterality-specific subnetworks in patients
with brain tumors and AVMs in this study suggests disruption of
functional connectivity in the sensorimotor cortex. This dynamic
measure of functional integration is complementary to the sta-
tic connectivity metric obtained with fiber tracking in DTI. Our
data show that disease-related changes in resting-state connectiv-
ity in the vicinity of brain lesions may manifest as decreases or
increases in connectivity between nodes of major RSNs, or even
as separate lesion-specific RSNs. Anti-correlations between the
DMN and task-positive networks that may be affected by brain
lesions provide insights into competitive mechanisms that con-
trol resting-state fluctuations (Fox et al., 2005; Uddin et al., 2009).
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Inter-individual variability in connectivity may be elevated by cer-
tain disease conditions, in particular in the vicinity of brain lesions
known to impair neurovascular coupling and in brain regions
with inflammation. For example, gliomas may be associated with
mass effect that can distort anatomy, and may affect eloquent cor-
tex function by tumor infiltration and abnormal neurovascular
coupling, generally greater with higher grade, potentially com-
promising detection of BOLD fMRI signal (Holodny et al., 2000;
Hou et al., 2006; Jiang et al., 2010). While resting-state fMRI may
provide a sensitive approach for studying neurovascular corre-
lates of disease processes that is complementary to structural MRI
and DTI, further studies are required to characterize the speci-
ficity of this connectivity information and to quantitatively assess
the impact of altered cerebro-vascular reactivity in the vicinity of
brain lesions on resting-state connectivity. As a range of patholog-
ical tissue changes, such as hyperplasia, inflammation, and edema,
may impact apparent resting-state connectivity, it is necessary to
investigate whether these changes are indeed indicative of true
changes in functional connectivity or whether they are a side-effect
of changes in regional cerebro-vascular reactivity.

In two of our patients with epilepsy it was feasible to monitor
dynamic changes in major RSNs and the emergence of a sep-
arate RSN associated with cortical dysplasia. In patient 7 with
cortical epilepsy a separate RSN emerged dynamically in right
posterior parietal and temporal cortex, a region that exhibited
interictal spike activity. While these findings may be related to
interictal spike activity during the scans, a more definitive assess-
ment requires concurrent EEG-fMRI, which is under development
in our laboratory. The high sensitivity of high-speed fMRI is
expected to be advantageous for studying the infrequent hemody-
namic responses to interictal spike activity in patients with epilepsy
compared to conventional EPI. MEVI is compatible with the stan-
dard 12-channel head array coil that accommodates an EEG cap.
It employs small flip angle excitation resulting in low RF power
levels, which minimizes saturation of the EEG amplifiers.

CARDIAC-RELATED PULSATILITY
Only recently was arterial pulse wave propagation mapped with
fMRI (Tong and Frederick, 2012). There is increasing evidence
that aging, hypertension, dementia, and Alzheimer disease may
have a common microvascular origin and that traumatic brain
injury is associated with microvascular damage (Wagshul et al.,
2011). However, lack of a non-invasive method capable of assess-
ing pulsatile blood volume in small resistance arteries proves to
be the limitation to investigate cerebral microvessels (Wszedybyl-
Winklewska et al., 2011).

Our data show that cardiac-related signal pulsation has region
specific waveforms and may carry clinically relevant functional
information about cerebro-vascular pulsatility in cortex and in

vascularized brain lesions. The high temporal resolution of MEVI
enables measurement of the pulsation waveform on a beat-by-
beat basis using spatial ICA. Increasing the temporal resolution
of MEVI to 50 ms is desirable to more fully resolve regional dif-
ferences in the pulsation waveform and in the phase of the pulse
wave propagation. This real-time approach is complementary to
phase contrast MRI and TDU as it extends the measurement of
cardiac-related pulsatility into gray matter and enables monitoring
of dynamic changes in pulsatility waveform.

CONCLUSION
We have shown that ultra-high-speed resting-state fMRI is a sen-
sitive tool for presurgical mapping of connectivity within the
sensorimotor network, which is complementary to task-based
fMRI. Preliminary results in patients with neurological disease
demonstrate high sensitivity for monitoring altered resting-state
connectivity in the vicinity of brain lesion. Localization of senso-
rimotor cortex in patients with motor disability and in the vicinity
of brain lesions with impaired cerebro-vascular coupling is more
focal in resting-state fMRI compared with task-based fMRI, which
is advantageous for presurgical mapping. Resting-state fMRI thus
provides unique insights into altered functional connectivity asso-
ciated with brain lesions, which is advantageous for presurgical
mapping. Ultra-high-speed fMRI also enables whole brain online
monitoring of vascular pulsation and may be useful to assess alter-
ations in arterial pulse wave propagation and vascular compliance
in patients with neurological diseases.

The multi-slab EVI pulse sequence and the TurboFIRE software
tool are available for research use. Please contact the corresponding
author for additional information.
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Amyotrophic lateral sclerosis (ALS) is a devastating disease with a lifetime risk of ∼1 in
2000. Presently, diagnosis of ALS relies on clinical assessments for upper motor neu-
ron and lower motor neuron deficits in multiple body segments together with a history
of progression of symptoms. In addition, it is common to evaluate lower motor neuron
pathology in ALS by electromyography. However, upper motor neuron pathology is solely
assessed on clinical grounds, thus hindering diagnosis. In the past decade magnetic res-
onance methods have been shown to be sensitive to the ALS disease process, namely:
resting-state connectivity measured with functional MRI, cortical thickness measured by
high-resolution imaging, diffusion tensor imaging (DTI) metrics such as fractional anisotropy
and radial diffusivity, and more recently magnetic resonance spectroscopy (MRS) measures
of gamma-aminobutyric acid concentration. In this present work we utilize independent
component analysis to derive brain networks based on resting-state functional magnetic
resonance imaging and use those derived networks to build a disease state classifier using
machine learning (support-vector machine).We show that it is possible to achieve over 71%
accuracy for disease state classification. These results are promising for the development
of a clinically relevant disease state classifier. Future inclusion of other MR modalities such
as high-resolution structural imaging, DTI and MRS should improve this overall accuracy.

Keywords: independent component analysis, support vector machine, resting-state functional connectivity,
amyotrophic lateral sclerosis, machine learning, disease-state classification

INTRODUCTION
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegener-
ative disease involving the motor cortex, corpus callosum, cortical
spinal tract, and spinal anterior horn neurons, and presents with
upper motor neuron and lower motor neuron signs (Ghadge et al.,
2003; Turner et al., 2009). The disease can have a highly variable
presentation and can be challenging to diagnose, which can have
significant implications for the patients as the median survival
time is between 2 and 4 years (Beghi et al., 2006). There is no
definitive diagnostic test for ALS. The diagnosis relies on the clin-
ical examination to detect upper and lower motor neuron signs
in multiple body segments (Brooks et al., 2000) along with symp-
tom progression. Unfortunately, there is on average a 1-year delay
between onset of symptoms and diagnosis for this rapidly pro-
gressive disease (Zoccolella et al., 2006), which precludes timely
intervention with emerging disease-modifying treatments. The
development of reliable diagnostic and prognostic biomarkers
would represent a significant advance in the clinical work-up of
ALS (Karitzky and Ludolph, 2001; Cudkowicz et al., 2004; Turner
et al., 2009).

Conventional magnetic resonance imaging provides limited
and potentially inconsistent information describing ALS patients
(Cheung et al., 1995; Hofmann et al., 1998; Comi et al., 1999;

Chan et al., 2003). Therefore, there has been great interest in
using advanced neuroimaging modalities to establish markers
of ALS. Although techniques such as voxel-based morphometry
(Roccatagliata et al., 2009), resting-state functional connectivity
(Mohammadi et al., 2009; Jelsone-Swain et al., 2010; Verstraete
et al., 2011; Agosta et al., 2013), magnetic resonance spectroscopy
(Foerster et al., 2012a), and diffusion tensor imaging (Filippini
et al., 2010) have demonstrated differences between groups of
ALS patients and healthy controls (HC), few studies have investi-
gated diagnostic test accuracy measures (Turner and Modo, 2010;
Foerster et al., 2012b).

Functional connectivity is a relatively new and powerful
advanced neuroimaging method to evaluate regional brain inter-
actions (establishing neural networks) that occur when a subject
is not performing an explicit task (Biswal et al., 1997; Lowe et al.,
1998; Jelsone-Swain et al., 2010). Alterations of brain networks
have been seen in diseases such as Alzheimer’s disease (Greicius
et al., 2004), schizophrenia (Welsh et al., 2010), depression (Zeng
et al., 2012), obsessive compulsive disorder (Stern et al., 2011), as
well as ALS (Mohammadi et al., 2009; Jelsone-Swain et al., 2010;
Verstraete et al., 2010, 2011; Douaud et al., 2011; Agosta et al.,
2013). In particular, there is evidence of extensive brain network
alterations due to the ALS disease process, such as those affecting
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the default-mode network (Mohammadi et al., 2009), motor net-
works (Douaud et al., 2011), and fronto-parietal networks (Agosta
et al., 2013).

Statistical image analysis that can incorporate the entirety of
a brain image can have an advantage over massively parallel uni-
variate techniques (Wang and Summers, 2012). Machine-learning
methods integrate a potentially large number of observables
(that is, variables or features, and in the example of functional
connectivity the feature space spans the number of connection
strengths/edges derived from each resting-state time-series) into a
coherent analysis that leverages the combined space of the fea-
tures into an increase of detection power (Chen et al., 2008).
Machine-learning methods using functional connectivity data
have been applied to classify disease state such as in Alzheimer’s
disease (Magnin et al., 2008; Orrù et al., 2012), depression (Crad-
dock et al., 2009), and other psychiatric diseases (Orrù et al.,
2012), and therefore could also be applied to ALS. To meet this
important unmet need, we have explored the utility of machine-
learning methodology to analyze resting-state functional magnetic
resonance imaging (fMRI) data for ALS disease classification.

MATERIALS AND METHODS
PARTICIPANTS
We recruited 32 patients diagnosed with ALS and 31 age and
gender matched healthy controls (HCs). The ALS patients were
recruited through the University of Michigan Motor Neuron Dis-
ease Clinic in the Department of Neurology at the University of
Michigan. HC participants were recruited through local advertis-
ing and web portals. This study was approved by the University
of Michigan Institutional Review Board. The participants gave
informed consent prior to the MRI examination. All partici-
pants in this cohort underwent MRI examination, which included
resting-state fMRI. All ALS participants had date of symptom
onset recorded as well as disease severity at time of scan assessed
by the ALS Functional Rating Scale, revised version (ALSFRS-R)
(Cedarbaum et al., 1999). The maximum score of the ALSFRS-R
is 48, with lower scores indicating increased physical disability.

MAGNETIC RESONANCE ACQUISITION
Image acquisition
All scanning took place on a GE 3T Excite 2 magnet (General Elec-
tric, Milwaukee, WI, USA). All participants had high-resolution
anatomic T1-weighted imaging (spoiled-gradient-recall, SPGR).
High-resolution images were collected with a 2562 matrix, 220 mm
FOV, and 1.0 mm slice thickness) and resting-state fMRI. T2

∗-
time-series data were acquired parallel to the AC-PC axis using
a reverse-spiral k-space readout. A total of 240 T2

∗-weighted vol-
umes were collected during each scanning session (repetition time,
TR= 2 s; 40-slice volumes; 3 mm slice thickness, no skip; echo
time, TE= 30 ms; 64× 64 matrix; field-of-view FOV= 220 mm).

Functional connectivity
Resting-state time-series data were pre-processed similarly to
Welsh et al. (2010). We used an in-house pre-preprocessing
method which uses both FSL 4.1.9 (Jenkinson et al., 2012) and
SPM8 (release 4667). Time-series data were preprocessed in the
following steps: slice-time corrected (FSL), motion corrected

(FSL), and normalized to MNI space (SPM8/VBM8). Time-series
data were resampled to 3 mm voxel resolution and isotropically
smoothed with a 5-mm Gaussian kernel. A mask of white-matter
was derived from the SPGR during the spatial normalization step
using VBM8. To minimize partial volume effects, the resulting
mask was eroded three times over with FSL. A similarly derived
cerebral spinal fluid (CSF) mask was also created, however, due to
variance in ventricular size across subjects the CSF mask was only
eroded once. Prior to independent components analysis (ICA)
data were further filtered: (1) global signal normalization was per-
formed (Chang and Glover, 2009; Fox et al., 2009); (2) motion
parameters (translation and rotation) were regressed from the
time-series data; (3) voxel time-courses were then extracted from
white-matter and CSF masks and analyzed with principle compo-
nents analysis (PCA), following Behzadi et al. (2007) the top five
PCA components were then used to regress out systematic variance
due to physiological noise; (4) data were then band-pass filtered
(fast-Fourier transform) in the 0.01–0.10-Hz range (Cordes et al.,
2001).

The resulting time-series data for each subject was then inde-
pendently analyzed with ICA using FSL/Melodic (Beckmann and
Smith, 2004). The number of components was not specified as the
number was best determined by Melodic (Beckmann and Smith,
2004) using the Minimum Description Length algorithm (Rissa-
nen, 1978). The ICA analysis produced between 15 and 40 ICA
spatial components and corresponding temporal modes1.

Next, we used the spatial templates from the networks defined
in Smith et al. (2009). We took the top 10 templates defined
from their BrainMap analysis2 in the 20-component ICA scheme,
thresholding each map at (component magnitude) >3.0. These
template network maps were then used to identify the correspond-
ing resting-state network (RSN) in our analysis. Assignment of a
particular network to a component was done by maximizing the
overall match for all 10 RSNs following the procedure of Gre-
icius et al. (2004). A score was calculated for each network for the
best matching ICA spatial component by taking the average of the
in-map spatial component weight minus the average out-of-map
spatial component weight. We required that a component could
only be used once and if there was one component best matched to
two or more RSNs, then all possible combinations were searched
to get an overall best RSNs match for that subject.

In order to provide properly scaled data to the support vec-
tor machine, a correlation map for any particular RSN was
created by calculating the correlation coefficient for each voxel
in the RSN with the associate ICA time-course, after all other
ICA time-courses had been regressed from the voxel time-
series.

For this work we explored the utility of disease state classi-
fication based upon the networks that have been shown to be
altered in ALS: DMN, Motor, and Fronto-Parietal. Additionally,
given the observed ∼35% cognitive impairment in ALS (Jelsone-
Swain et al., 2012) we also included the frontal executive network.
In the Smith et al. (2009) nomenclature these are RSNs: RSN04,

1Mean number of components for ALS was 27 +/−7 and the mean number of
components for HC was 24 +/- 4.
2http://www.fmrib.ox.ac.uk/analysis/brainmap+rsns/
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RSN06, RSN073, RSN08, RSN09, RSN10. The selected networks
are shown in Figure 1.

SUPPORT VECTOR MACHINE
Current implementations of support vector machines were first
formulated by Cortes and Vapnik (1995). Briefly, a support vec-
tor machine is a supervised learning formalism that allows for
complex solutions of discrimination classification. Typically an
array of measures is carried out for each instance of a class.
In our study measures of connectivity (the array of measures)
are determined for each participant (each participant being an
instance/observation) in the study. Unlike a massively parallel
univariate analysis carried out between two groups, support vec-
tor machine formalism examines all measures simultaneously to
determine a hyperplane in the space defined by the array of

3We visually inspected each RSN template prior to selection. By using the “atlas”
tool in FSL we determined that RSN07 also included portions of the motor system
(pre-central gyrus), therefore we included it as a relevant network.

measures that may separate the two groups. Using the notation
of Guyon and Elisseeff (2003):

D(x) = wx+ b

using a training data set, the decision boundary is optimized to
give the weights w . At the testing phase the decision solution for a
given observation x of the array of measures can be calculated with
the weight vector w determined by the SVM, and b is a bias value
also determined by the SVM. When D(x) < 0, then x belongs to
the first class, while D(x) > 0 indicates membership in the second
class. Inherently, the decision is a binary one. Further formalism of
the SVM methodology can be found in Cortes and Vapnik (1995).

As a simple example we illustrate this concept with Figure 2. In
both examples each observation is characterized by two metrics.
The boundary of the first is easily derived, but the boundary of the
second that maximally discriminates between the two groups can
take a highly complex form, even in this two-dimensional example.

We utilized the support vector machine (libsvm version 3.17 )
implementation of Chang and Lin (2011) and we opted to use

FIGURE 1 | Resting-state network templates corresponding to
networks 1 through 10 from Smith et al. (2009). RSNs are numbered
1 through 10, with upper left being 1, and lower right be number 10. As

in Smith et al. (2009) networks are as follows: 1–3: visual, 4: default
mode, 5: cerebellum, 6: sensorimotor, 7: auditory, 8: executive, 9–10:
fronto-parietal.

FIGURE 2 |Two-dimensional examples of a simple and a complex support vector machine solution. The two-class membership is indicated by
color. The support vectors are indicated by the circles with the boundary defined by D(x)=0. During testing only the support vectors are used in
determination of the class for the test case.
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the linear kernel. Given the observations in the literature for com-
promises related to ALS in a variety of resting-state networks, we
built feature-vectors of correlation coefficients from the following
RSNs: default mode (Mohammadi et al., 2009), motor areas (Ver-
straete et al., 2010, 2011; Douaud et al., 2011), and left and right
frontal-parietal regions (Agosta et al., 2013).

We used leave-one-out-cross-validation (LOOCV) (Burges,
1998) for calculation of SVM accuracy. The overall scheme is
shown in Figure 3. We also examined the efficacy of simple fea-
ture filtering by including those features from a network that
passed a two-tailed liberal statistically significant group difference
of p≤ 0.05 (uncorrected) (Craddock et al., 2009). We performed
a bootstrap (Jiang and Simon, 2007) on the LOOCV (100 boot-
straps) and calculated the class prediction for each test case in
the LOOCV as a continuous variable by averaging the 100 binary
decision results. This average class prediction then allowed for
the calculation of a receiver-operator curve (ROC). To estimate
the variance on the area-under-the-curve (AUC) of the ROC we
performed a bootstrap ROC.

Final classification accuracy was defined as the:

N ALS
Correct + N HC

Correct

N ALS
Total + N HC

Total

with N ALS
Total = 32 and N HC

Total = 31. N ALS
Correct and N ALS

Correct being
the number of correctly SVM classified ALS and HC participants.
To assess performance of the SVM against a typical univariate
method, we followed methods by Fair et al. (2007) and calculated
the number of nodes (Sporns, 2009) (voxels) present for a sub-
ject in the given network surpassing a Z -score of 0.10, 0.15, 0.20,
0.25, and 0.30. The number of nodes by subject was then used to
calculate a univariate ROC.

RESULTS
DEMOGRAPHICS
A total of 32 individuals with ALS were enrolled in our study.
Our main objective for HCs was to match for age. Mean ALS
age was 58.4± 6.6 years and our HCs were aged 56.9± 5.0 and
there was no significant difference in age (two-sample t -test
p= 0.319). We did have a slight imbalance in gender match-
ing, with ALS male/female= 21/11, and HC male/female= 16/15.
However there was no age by gender bias, p > 0.05. Mean time
since onset of symptoms for ALS was 1.8± 1.4 years with a range of
0.4–6.0 years. ALSFRS-R average score was 38.2± 5.7 with a range
of 25–46. The ALSFRS-R score and time of scan since symptom
onset distributions are show in Figure 4.

ICA GROUP VALIDATION
To demonstrate that the template matching succeeded, we calcu-
lated typical resting-state group analyses: subject correlation maps
for each RSN were converted to Z -scores and entered into random
effects analyses by group. Statistical images for the default mode
(RSN04) and the primary motor network (RSN06) are shown in
Figure 5.

SUPPORT VECTOR MACHINE RESULTS
In this survey of classification performance the SVM achieved
71.5% accuracy for determination of disease state as either ALS
or healthy. This maximal classification accuracy came from a
combined use of the default-mode network (RSN04) and the
primary motor network (RSN06). For this combination the frac-
tion of correctly classified ALS and HC was N ALS

Correct = 23 and
N HC

Correct = 22. The SVM classification and univariate classifi-
cation ROCs are shown in Figure 6. The bootstrap calculated
AUC and variance was AUC= 0.716± 0.047. The univariate AUC
was AUC= 0.544± 0.008. To test for a classification bias due to

FIGURE 3 | Data flow of resting-state times series into ICA and then into SVM. A leave-one-out-cross-validation was utilized to assess SVM classification
accuracy.
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FIGURE 4 | Distribution of time of scan since symptom onset and observed distribution of ALSFRS-r in our ALS participant cohort. Inserted
distributions are for the true-positive and false-negative classified groups.

FIGURE 5 | Random effects analysis for default-mode network and
motor network. Healthy controls are in top row and ALS are in bottom row.
Statistical maps thresholded for t ≥3.5 for illustrative purposes.

ALSFRS-R or time-of-scan-since-symptom-onset (ONSET) we
did a post hoc examination of the ALSFRS-R score and ONSET
for those ALS participants that were accurately classified as ALS
and those incorrectly classified as healthy. We also tested disease
progression rate [defined as (48-ALSFRS-R)/ONSET] between
these groups. We performed a non-parametric Kolmogorov–
Smirnov (Chakravarti et al., 1967) test to assess if these values
were drawn from the same or different parent distribution. Com-
parison of ALSFRS-R, ONSET, and progression rate between
true-positive and false-negative groups revealed no significant dif-
ferences (p= 0.306, p= 0.744, and p= 0.372 respectively). The
ALSFRS-R and ONSET distributions for true positives and false
negatives are shown in Figure 4.

DISCUSSION
Our work combined resting-state connectivity [derived from ICA
(Beckmann and Smith, 2004)] and machine learning (Chang and
Lin, 2011) to explore their utility for ALS disease-state prediction.
ICA reliably identified well established (Damoiseaux et al., 2006;
Smith et al., 2009) RSNs in our ALS and HC cohorts. By using a
subset of these networks that have been shown to be altered by
the ALS disease process (Mohammadi et al., 2009; Jelsone-Swain
et al., 2010; Verstraete et al., 2010; Douaud et al., 2011; Agosta et al.,

FIGURE 6 | Receiver-operator curve for LOOCV SVM and ROC for
univariate node counting. Smooth curve is a binormal (Cai and Moskowitz,
2004) fit to the LOOCV SVM ROC. AUC is calculated from binormal fit.

2013), in conjunction with machine learning (as implemented
with a support vector machine), we have shown that machine
learning has modest disease classification accuracy using resting-
state fMRI data. The AUC of the SVM indicates better performance
than the univariate classifier. In schizophrenia SVM derived clas-
sifications have been found to be between ∼62 and ∼85% (Tang
et al., 2012; Yu et al., 2013) using whole brain connectivity. Using
a specific and more finite number of network nodes Craddock
et al. (2009) achieved 62% classification accuracy in depression
with comparable t -test filtering.

Although extra motor regions have been implicated in ALS
using other advanced neuroimaging methods such as diffusion
tensor imaging (DTI), it is important to note that the motor net-
works had significant contribution to the SVM state classification.
Though not presently recognized as a resting-state network show-
ing alteration, the executive control network also contributes to
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the disease state classification. The classification sensitivity to the
executive network could be due to the ∼35% observed cognitive
impairment seen in ALS (Rippon et al., 2006; Jelsone-Swain et al.,
2012). Our findings demonstrate the power of multivariate tech-
niques such as machine learning. We have shown there can exist
significant systematic differences when the network is considered
as a whole even though there can be a lack of statistically signif-
icant differences in specific node or edge-wise comparisons, such
as in counting of significant nodes in a network (Sporns, 2009).

Seeley et al. (2009) suggested that disease state can be clas-
sified by functional network metrics derived from resting-state
measurements using fMRI. Until recently the vast majority of
the resting-state fMRI literature tested for statistically significant
group differences with a voxel-wise approach (Smith, 2012). Much
of that work was done with either seed based analysis or ICA (Fox
et al., 2005; Damoiseaux et al., 2006) to determine these brain
networks. The voxel-wise approach requires a spatial coherence
in change due to the disease process, but also requires an observ-
able change that meets statistical significance after correction for
multiple comparisons (Marchini and Presanis, 2004). Although
in our previous approach of investigating group differences, we
relaxed this condition of spatially coherent change in the net-
work by examining distribution differences of network metrics
(correlation coefficient) (Jelsone-Swain et al., 2010). More recent
group comparison approaches have taken on graph theoretical
methodology (Cabral et al., 2011) to address questions of group
differences.

In a multivariate approach, the data are used coherently
to assess significance between groups. This approach is readily
extended to build a decision algorithm to determine group mem-
bership based on the full suite of variables under consideration.
The decision algorithm can be trained with an independent dataset
and then assessed for accuracy through the use of an independent
testing dataset. Indeed this is the operational approach of machine
learning (Vatolkin et al., 2012). Essentially a mathematical deci-
sion boundary can be derived in the space of the suite of variables.
This boundary is derived to maximize the separation of the groups
to be classified [though due to noise in real systems one would not
expect 100% separation (Wang and Summers, 2012)].

Discovering differences in brain metrics between two cohorts
leads to a better understanding of the effect that a disease process
has on a brain (Bandettini, 2012), such as an aberration in the
motor network in ALS (Jelsone-Swain et al., 2010; Verstraete et al.,
2010, 2011; Douaud et al., 2011). However, with increased under-
standing of observed changes, patterns can be revealed. These
group differences can manifest patterns that can then be iden-
tified through machine-learning algorithms, more specifically in
regard to identifying group membership. Eventually this can lead
to the use of brain metrics to classify between two brain activ-
ity states (Laconte et al., 2005; De Martino et al., 2008; LaConte,
2011), or between states of diseased and healthy (Orrù et al., 2012).
Thus, invoking multivariate techniques can lead to better state dif-
ferentiation than differentiation based on voxel-wise or edge-wise
univariate comparisons.

Advanced neuroimaging techniques, specifically resting-state
fMRI, DTI and voxel-based morphometry, generate a large num-
ber of potentially useful data points. It is becoming increasingly

clear that more conventional univariate brain analysis techniques
used in concert with single modality imaging techniques do not
provide sufficient disease discrimination in ALS. For example,
a meta-analysis of DTI data results indicates only modest diag-
nostic test accuracy in ALS (Foerster et al., 2012b). As a result
there is increased interest in applying more advanced brain map-
ping statistical techniques in ALS, including the implementation
of machine-learning methods to analyze advanced MRI data in
an effort to develop an imaging “fingerprint” of disease. The
results presented here point to the potential utility of machine-
learning methods to classify disease status in ALS using imaging
data sets with a large number of variables. Additional research
efforts are required to further explore this approach including
combining different advanced neuroimaging approaches using
machine-learning methods. In addition to resting-state fMRI the
modalities to be included should be: DTI (Chapman et al., 2013),
high-resolution structural imaging (Grosskreutz et al., 2006), and
magnetic resonance spectroscopy (Foerster et al., 2012a) as put
forth by Turner et al. (2009). Furthermore, given the heterogenous
presentation of ALS, which can lead to clinical diagnostic uncer-
tainly, it would be warranted to apply SVM classification methods
and advanced neuroimaging techniques to a cohort of individu-
als at first presentation with neurological symptoms. The imaging
should occur prior to a definitive diagnosis of ALS and follow the
individuals longitudinally. Given the differential nature of disease
diagnosis, future studies should also include ALS mimics, that
is, other neurodegenerative diseases with overlapping symptom
presentation, to fully explore the power of classification schemes
(Turner and Modo, 2010). The true diagnostic utility of such a
classifier would be in providing input into the clinical process with
the resulting goal of shortening the duration between symptom
presentation and final diagnosis of ALS.

LIMITATIONS
There are of course limitations to our study. First, ALS is a highly
divergent disease process with highly varying progression paths.
Certainly, utilizing a larger cohort of individuals with ALS and a
larger cohort of HCs would lead to a better definition of classi-
fiers. Though the ALS disease process has a quite divergent nature
we have built our classifier decision from two classes. Another
approach would be to build a single state (one-class) classifier
(Manevitz and Yousef, 2002). Under those conditions, the ques-
tion would be, “Does the test case belong to the one-class classifier?”
Our approach has also only included a single category of metrics,
namely resting-state derived brain networks. Other MRI modali-
ties have also been shown to be sensitive to the ALS disease process,
such as cortex thinning (Roccatagliata et al., 2009; Turner et al.,
2009), increased radial diffusivity (RD) and decreased fractional
anisotropy (FA) (Wang and Melhem, 2005; Schimrigk et al., 2007;
Filippini et al., 2010; Foerster et al., 2012b), and more recently
decreased gamma-aminobutyric acid (GABA) concentration in
the motor cortex (Foerster et al., 2012a). We do note that this is
the first application of machine learning for the classification of
disease status in ALS using MRI data4. Construction of a complex

4A pubmed.org search of the title/abstract terms [(“ALS” or “amyotrophic lateral
sclerosis”) and (“support vector machine” or “SVM”)] yields no imaging literature.
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differential diagnosis classification scheme first has to demonstrate
distinction between well-defined classes such as definite ALS and
HCs. As such, this current work is exploratory in nature but
demonstrates the clear promise of such techniques to continue
in the near future.

CONCLUSION
Resting-state functional connectivity reveals intrinsic networks in
the human brain. These networks can be viewed as patterns that are
a manifestation of the state of the brain including altered network
patterns present in disease (Seeley et al., 2009). By applying multi-
variate pattern classification methodology we have demonstrated
that machine-learning methodology (support vector machine) in
conjunction with brain networks derived from resting-state fMRI
can be used to classify a diseased brain (ALS) from a healthy brain.

Additional research efforts are required to validate our findings
as well as to investigate the added diagnostic utility of including
other MR modalities in the setting of ALS using machine-learning
methods.
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Independent component analysis (ICA) is increasingly used to analyze patterns of sponta-
neous activity in brain imaging. However, there are hardly any methods for answering the
fundamental question: are the obtained components statistically significant? Most meth-
ods considering the significance of components either consider group-differences or use
arbitrary thresholds with weak statistical justification. In previous work, we proposed a sta-
tistically principled method for testing if the coefficients in the mixing matrix are similar in
different subjects or sessions. In many applications of ICA, however, we would like to test
the reliability of the independent components themselves and not the mixing coefficients.
Here, we develop a test for such an inter-subject consistency by extending our previous
theory. The test is applicable, for example, to the spatial activity patterns obtained by spa-
tial ICA in resting-state fMRI. We further improve both this and the previously proposed
testing method by introducing a new way of correcting for multiple testing, new variants
of the clustering method, and a computational approximation which greatly reduces the
memory and computation required.

Keywords: independent component analysis, inter-subject consistency, resting-state fMRI, significance testing,
group analysis

1. INTRODUCTION
After estimating the parameters of any statistical model, it would
be reasonable to test them in some way for statistical significance,
also called reliability in some contexts. In the case of indepen-
dent component analysis (ICA), methods for such testing have
not been widely used, nor do many exist in the first place. Meth-
ods for group-difference testing (Calhoun et al., 2009) are widely
used, but the fundamental question of which components are reli-
able in a single group or even a single subject is rarely considered
using principled statistical testing methods.

In previous work, we proposed a framework which develops
such testing methods based on the concept of inter-subject consis-
tency. The basic idea is to perform ICA separately for each subject,
and define that an estimated component can be considered sig-
nificant if it appears in sufficiently similar form in more than one
subject (Hyvärinen, 2011). A rigorous formula for what is “suf-
ficiently” similar was derived based on the definition of a null
hypothesis and application of statistical testing theory. This pro-
vided a quantitative theoretical basis for the self-organizing group
ICA method originally proposed by Esposito et al. (2005). Thus,
the testing method provided, at the same time, a solution to the
problem of how to do ICA simultaneously on data from many
subjects, or in general, many data matrices (Calhoun et al., 2001,
2009). In fact, data from a single subject can also be tested by
doing ICA separately for data from several sessions recorded from
the same subject, and considering similarities between the sessions
in the same way.

However, the theory by Hyvärinen (2011) was only developed
for the case where the inter-subject consistency was seen in the
columns of the mixing matrices. This is relevant in particular to
the case of temporal ICA, typically applied on EEG and MEG,
where the mixing matrix gives the spatial patterns of activity. Yet,
the most common application of ICA in brain imaging is the spa-
tial ICA of fMRI data, often measured at rest (Kiviniemi et al.,
2003; van de Ven et al., 2004; Beckmann et al., 2005). A related
spatial ICA method was recently proposed on MEG as well by
Ramkumar et al. (2012). For such spatial ICA, inter-subject con-
sistency is usually measured between the spatial patterns which are
the independent components themselves, and not the columns of
the mixing matrix.

Here, we adapt the theory by Hyvärinen (2011) for the case
where the inter-subject consistency is sought among the inde-
pendent components, as in spatial ICA of resting-state fMRI.
We propose a generalization of the null hypothesis by Hyväri-
nen (2011) to accommodate the case of testing the indepen-
dent components. We take an empirical approach to model-
ing the null distributions since a purely analytical approach
like in Hyvärinen (2011) does not seem feasible. We also pro-
pose a number of improvements and generalizations to the
general framework, which can be used in the case of test-
ing the mixing matrix as well. Like the method in Hyväri-
nen (2011), the current method can be directly applied on
data from different recording sessions of the same subject
as well.
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2. MATHEMATICAL THEORY
2.1. CLUSTERING OF COMPONENTS BY INTER-SUBJECT

CONSISTENCY
Assume we have measurements of r subjects or sessions. Denote
by Xk, k = 1, . . ., r the data matrix for the k-th subject or ses-
sion. For simplicity of terminology, we assume in the following
that the data comes from different subjects and not sessions. If the
data matrix comes from fMRI recordings, and we are to perform
spatial ICA, each row is one time point (one volume) and each
column a voxel. Assume we have performed ICA separately for all
the subjects, obtaining the estimated decompositions.

Ŝk = Ŵk Xk , or Xk = Âk Ŝk , (1)

where Âk is the pseudoinverse of Ŵk . In the following we only
analyze Ŝk , so it is immaterial whether any dimension reduction
is done by PCA, and whether the Ŵk and Âk are in the whitened
space or in the original.

Now, following Esposito et al. (2005), we want to combine the
ICA results for the different subjects by clustering. That is, we try
to find components which are similar enough in different subjects,
so that we can consider them to correspond to the same underlying
component. Each such cluster of sufficiently similar components
(i.e., components with sufficient inter-subject consistency) is then
considered a single group-level component in subsequent analy-
sis. The key challenges in such a method are to find principled
and practical definitions for similarity, and to define the thresh-
olds regarding when the components are similar enough to be
considered the same.

Our goal here is to devise a statistical test to determine if some
of the rows of Ŝk are sufficiently similar for different k in the sense
that the similarity cannot be due to chance. We assume here that
the rows of Ŝk model the phenomena of interest (e.g., spatial pat-
terns of brain activity in fMRI) whose inter-subject consistency
we want to test. In contrast, we do not assume that the Ak have
any inter-subject consistency. For example, in spatial ICA of fMRI,
the Ak give the time courses which hardly have any inter-subject
consistency in the case of resting-state activity.

The key to a principled statistical test is the definition of a null
hypothesis, H0. The null hypothesis should model the case where
the ICA results for different subjects are completely independent
of each other in the sense that the components in different sub-
jects have no similarity at all, other than what would be expected
by chance. As argued by Hyvärinen (2011), the randomness can in
fact come from two different sources:

1. It could be that the ICA algorithm fails completely, or
2. It could be that the underlying data are completely different for

each subject in the sense that the brain networks are completely
different from each other.

We will begin by introducing a null distribution which embodies
these two sources of randomness.

2.2. DEFINITION OF NULL DISTRIBUTION
In order to model the randomness in the ICA estimation proce-
dure, we define a null hypothesis as follows. We assume, following

Hyvärinen (2011), that the estimated Âk are random orthogo-
nal transformations of the actual mixing matrices. Denote by
Uk random orthogonal matrices (more precisely, matrices uni-
formly distributed in the set of orthogonal matrices). Under the
null hypothesis we have, for the estimated decompositions:

Âk = Ak Uk or Ŵk = UT
k Wk (2)

where Ak and Sk below denote the actual underlying values of those

parameters or random variables, as opposed to the estimates Âk

and Ŝk . This randomness due to the Uk models errors in the ICA
estimation procedure. The idea is to assume that the prewhitening
step in ICA was successfully performed, but the ICA algorithm
returned a random result, i.e., a random orthogonal transforma-
tion in the whitened space. This is equivalent to assuming that
the estimates of the Sk are random orthogonal rotations of the
actual Sk:

Ŝk = UT
k Sk (3)

since Xk = Âk Ŝk = Ak Sk .
We have to further model randomness in the actual indepen-

dent components, due to individual differences in brain anatomy
and physiology. In our previous model (Hyvärinen, 2011), the
randomness relating to the actual individual differences of the
brains was assumed to be reflected in this same orthogonal rota-
tion, since the spatial patterns corresponded to the columns of
Ak. This assumption was justified in the case of testing the mixing
matrix, e.g., in the case of temporal ICA of EEG or MEG. How-
ever, when testing for similarities of the independent components,
that assumption does not seem to be adequate. This is because if
the individual differences of the brains were modeled by a ran-
dom rotation of the spatial patterns as in equation (3), we would
be violating the ICA model, since such a random rotation would
make the components dependent. Therefore, we need to model the
individual variability of the brains by a separate random model.
The random model should give random spatial patterns which still
follow the ICA model, i.e., are independent for each subject.

The approach we take here is to assume that under the null
hypothesis H0, the rows of the Sk, denoted by Ski, follow the same
multivariate distribution ps(Ski). In general, this is a stochastic
(spatial) process which models the hypothetical generation of spa-
tial patterns given by the independent components. Drawing each
Ski randomly and independently of each other from ps does give us
a number of components which are, by construction, independent,
and thus respect the assumptions of the ICA model.

In the case of spatial ICA, the distribution ps essentially models
the spatial regularities of the patterns, including patterns of brain
activity or artifacts on the one hand, and measurement noise on
the other. We cannot assume, for example, that the voxels are all
independent of each other, since this would grossly overestimate
the degree of randomness, and thus underestimate the similarities
obtained by chance.

Here, we do not attempt to construct an explicit model of ps.
Instead, we construct an empirical model of the null distribution
of the similarities between the components, which is the relevant
quantity for the construction of tests, as will be discussed next.
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Hyvärinen and Ramkumar Testing independent component patterns

2.3. EMPIRICAL MODEL OF NULL DISTRIBUTION OF SIMILARITIES
We define the similarities of the components of two subjects k 6= 1
as the entries of the following matrix:

Γkl = Ŝk Ŝ
T
l (4)

This simple definition assumes that the estimated rows Ŝk are zero
mean, and constrained to unit norm. The Ŝki are further assumed
orthogonal for each subject, i.e., for i 6= j for fixed k. For example,
components estimated by FastICA always fulfill the orthogonality
and norm constraint after the means have been subtracted from
the estimated components.

The central problem is how to model the distribution of the
matrix Γ under the null hypothesis. For simplicity, we only attempt
to model the marginal distributions of the entries in this matrix
and approximate the joint distribution by assuming independence
of the entries. Denote this marginal distribution by pγ. We take
here an empirical approach and fit a parametric model to the
statistics of the measured similarities to model pγ.

Under H0, we have

Γkl = UT
k Sk ST

l UT
l (5)

where Uk and Ul are random orthogonal matrices independent of
each other, and the rows of Sk and Sl are obtained from the prior
distribution ps. It is, in fact, possible to obtain an empirical sample
of pγ by the following procedure: take the matrices of the esti-

mated independent components Ŝk , make a number of random
rotations as Vk Ŝk , and compute the similarities

Γ̃kl = Vk Ŝk ŜT
l VT

l . (6)

This has the distribution of Uk Sk Sl Ul where Uk = Vk UT
k is

again a random orthogonal matrix (and likewise for the index
l). Thus, the constructed matrix follows the same distribution
as the similarity matrix Γ̃kl under H0. In principle, we could
obtain a Monte Carlo sample of this distribution by generating
random orthogonal matrices, but we will show next that this is
not necessary.

It was pointed out by Hyvärinen (2011) that the distribution
of the square of each entry of UT

k Ul follows a beta distribution
Beta(α, β) with parameters α= 1/2 and β= (n− 1)/2 where n is
the dimension of the data Xk (after a possible dimension reduc-
tion by PCA). So, we decide to fit a Beta(1/2, β) distribution to the
entries of the random matrix Γ̃kl , with β being the free parameter.
This should provide a reasonable approximation, and as we will
see next, this approximation leads to a particularly simple method.

A basic way of estimating the parameters in a beta distribution
is given by the moment method. A well-known formula gives the
expectation of a beta-distributed random variable u2 as

E
{

u2}
=

α

α+ β
(7)

from which we can derive, using the method of moments, the
estimator of β with known α= 1/2 as

β̂ = α
([

E
{

u2}]−1
− 1

)
=

1

2

([
E
{

u2}]−1
− 1

)
(8)

Thus, we see that parameter β can be estimated based on the expec-
tation of the squares of the matrix of similarities after random
rotations.

Using the expectation of squares leads to a dramatic simplifi-
cation of the method. Since the expectation of squares is taken
over all the elements of the matrix, we can think of it being first
taken over all the elements of the similarity matrix for each sub-
ject pair Γkl , and then over different subject pairs k, l, k 6= l. Now,
the orthogonal transformations in equation (6) do not change
the sum of the squares of the elements of the matrix, so they can
be omitted. Thus, we do not need to take the random rotations
into account in the estimation of β, and no Monte Carlo sim-
ulation of the distribution is necessary. We can simply estimate
β using the sum of squares of the computed similarity matrices
Γkl as

β̂ =
1

2
(ñ − 1) (9)

with

ñ =
[
E
{
γ2}]−1

=
n2r (r − 1)∑
ij ,k 6=l

γ2
kl ,ij

(10)

where γ2
kl ,ij is the i, j-th entry in the matrix Γkl . Here, the quan-

tity ñ can be considered as measure of the “randomness,” i.e., lack
of structure, of the independent components. If the independent
components are very random in the sense of having no spatial
structure (e.g., white noise), the similarities in the denominator
will be small and this quantity will be large; however, ñ depends
on the data dimension as well. In fact, ñ coincides with a para-
meter which gives the “effective” data dimension in the original
framework by Hyvärinen (2011).

Thus, to test the hypothesis, we only need to estimate β as β̂

in equation (9) and then compute the p-values based on the beta
distribution.

2.4. NEW CORRECTIONS FOR MULTIPLE TESTING
The p-values for the connections (similarities) computed above
can be used in a hierarchical clustering procedure to create clusters
which contain one component from as many subjects as possible
using only significant connections. Since we will be testing many
possible candidates to be included in the clusters, we need some
corrections for multiple testing.

As proposed by Hyvärinen (2011), we control here the false
positive rate (FPR) for the formation of clusters, and the false dis-
covery rate (FDR) for adding new elements to clusters. This is
because claiming the existence of a cluster which does not actu-
ally exist can be considered a more serious error than adding an
extra component to the cluster, and thus we want to be more
conservative in forming new clusters.

For controlling the number of falsely formed clusters, we thus
use Bonferroni correction like in Hyvärinen (2011). Denoting by
αFP the uncorrected false positive level, we obtain the corrected
level as

αcorr
FP =

αFP

m
(11)
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Hyvärinen and Ramkumar Testing independent component patterns

where the number of tests is

m =
nr (r − 1)

2
(12)

with r, the number of subjects, and n, the dimension of the data.
The goal here is to make the probability of inferring even one
wrong cluster smaller than αFP. This is essentially the same as the
family wise error rate.

Regarding the process of adding further components to the
cluster after it has been formed, we develop here a method related
to FDR. The problem with using ordinary FDR as in Hyvärinen
(2011) is that in computing the true and false positives, it uses the
number of connections which are considered true, while we are
interested in the number of components which are added to the
clusters. To see why these may not be closely related, consider a
true cluster of 10 components. It contains 45 connections within
itself, and thus the number of true connections within the cluster
should be taken as 45. Now, if we falsely infer one of the out-
going connections to be true, we would calculate the FDR to be
1/46. However, since this means that we will have 11 components,
one of which is falsely added to the cluster, it would make more
sense to say we have an FDR of 1/11. The relationship between
the FDR of connections and the FDR of components is thus quite
complicated.

Since it is not straightforward to define the number of false dis-
coveries in this problem, it is not clear how generic FDR methods,
such as Simes’ procedure (Simes, 1986; Benjamini and Hochberg,
1995) should be applied, as already pointed out by Hyvärinen
(2011). Next, we provide one possible definition of false dis-
coveries (and their rate) which attempts to optimally adapt the
concept to the problem at hand. The number of false discoveries
is basically the number of components falsely added to any of the
clusters.

Consider a cluster which actually has c components, all of them
true ones. There are c(r − c) connections which go out of that
cluster (we are considering maximal connections only as explained
below in Section 2.5), each of which can give rise to a false positive.
Given a corrected αcorr

FD level used in the test, and considering the
tests independent, we would have an FDR which is smaller than

αcorr
FD c (r − c)

c
= (r − c) αcorr

FD (13)

where we omit the false positives in the denominator to obtain a
simple upper bound. To guarantee that this is smaller than a given
FDR rate αFD, we can simply choose

αcorr
FD =

αFD

r − 2
(14)

which makes (13) less than or equal to αFD for any c > 2 (in the
case r = 2, i.e., only two subjects, the FDR is not used anyway).
Thus, we propose to use the correction in equation (14) in the
testing. It controls the FDR in the sense of the number of falsely
added components.

2.5. COMPUTATIONAL SIMPLIFICATION
Next, we propose to reduce the computational resources (both
memory and CPU time) by a simple approximation. After com-
puting the similarities of the components of two subjects in matrix
Γkl , we only store the maximum similarities of each component
with the components of the other subject. In other words, we only
store the maxima of the rows and columns of Γkl , as well as the
indices obtaining those maxima. This is justified because a com-
ponent can belong to only one cluster anyway, and it is most likely
to be the one with the most significant similarity.

This reduces the amount of memory needed by a factor of n/ 2,
and the computation time is reduced by a similar amount although
its exact computation is not straightforward. Hyvärinen (2011)
found that the computational bottleneck of the method is in the
memory needed for storing all the similarities, so this reduction
in memory storage is what perhaps most matters in practice.

We need to find the distribution for these maxima. We propose
a simple approximation assuming the elements of the similarity
matrix are independent, and by applying basic probability calculus,
which gives

P

(
max

i
si ≤ α

)
=

n∏
i=1

P (si ≤ α) (15)

for independent variables si.

2.6. DIFFERENT CLUSTERING STRATEGIES
We further propose that the clustering can use different strate-
gies. The method proposed by Hyvärinen (2011) is related to the
single-linkage strategy in hierarchical clustering, and adds a new
component to a cluster by finding the largest similarity (which
here means minimum p-value) among the similarities from the
cluster to components not yet clustered (belonging to subjects not
yet in the cluster). The classical alternatives to such a single-linkage
are average-linkage and complete-linkage.

We propose to use complete-linkage as an alternative strategy
in our testing method. Adapted to our specific clustering scheme,
the idea is that we add a component to a cluster by considering the
maximum of the p-values of the similarities from within the cluster
to components in the remaining subjects (who do not have compo-
nents in that cluster). The component with the smallest maximum
of p-values will be added to the cluster. In particular, this means
that a candidate component can be added to the cluster only if the
connections from all the components inside the cluster are sig-
nificant, because otherwise the maximum p-value would not be
significant. (Since we store only the strongest connections between
subjects, we have to also check that all the maximizing links stored
point to the same component. If they don’t, the component will
not be considered for inclusion.)

Using complete-linkage alleviates the well-known drawback of
the single-linkage strategy, which is that when components are
added one-by-one to the cluster, they can be more and more dif-
ferent from the two components which started the cluster. The
last component to be added can be so different that the cluster
cannot be considered very meaningful anymore. On the other
hand, complete-linkage has the drawback of sometimes leading to
conservative cluster formation.
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Hyvärinen and Ramkumar Testing independent component patterns

The average-linkage strategy is often considered a useful com-
promise between the single-linkage and complete-linkage strate-
gies. As an implementation of the principle of average-linkage,
we further propose here a method called median-linkage. The
idea is that the median of the p-values of the connections to the
new component has to be significant, which means half of the
connection from the cluster have to be significant1. This should
provide an interesting compromise between single-linkage and
complete-linkage.

3. EXPERIMENTAL METHODS
Next, we validated the testing method proposed above by simula-
tions and experiments on real data.

3.1. SIMULATION 1: DATA RESEMBLING fMRI
As a basic test for the validity of our method, we created indepen-
dent components which resemble those obtained in a (resting-
state) fMRI experiment. The number of subjects was fixed to 12,
and the number of independent components (or PCA dimension)
was fixed to 40.

The consistent spatial patterns were small blobs in a grid. The
size of the grid was 25× 25 because this seems to be statistically
the closest to real fMRI data in terms of giving a similar effective
dimension ñ. FMRI data of course has more voxels, but the cor-
relations between the voxels are strong, and thus the statistics of
similarities are more similar to our simulations on such a small
grid2.

Various amounts of Gaussian white noise were added to the
blob-like patterns to simulate measurement noise. The signal-to-
noise ratio was quantified as the z-score of the activity blobs: the
noise always had standard deviation equal to one, whereas the

1In our implementation, we handle ties inherent in median calculation by requiring
that more than one half of the connections must be significant.
2For a grid of this size, the effective dimension is at most 625, and typically of the
order of hundreds. In the fMRI experiments reported below, the ñ was in the range
of 100 . . . 500, depending mainly on the PCA dimension.

maxima of the blobs were varied in the range of 1–5, and this
we called the z-level of the pattern. Some examples are shown in
Figure 1.

In the basic setting, half of the subjects (the “consistent sub-
jects”) had 20 consistent components (half of the components).
In the consistent components, the underlying spatial patterns
were equal for all subjects, but the measurement noises were
independent for different subjects. The rest of the subjects (the
“non-consistent subjects”) had patterns consisting of Laplacian
white noise, generated independently of each other. Laplacian
white noise is a simple model for components which are sparse and
reasonably independent, thus having properties similar to blobs in
fMRI data3. The measurement noise added to the non-consistent
subjects had the same variance as the spatial patterns. After adding
the noise, all the patterns were normalized to unit variance.

We created data from four different scenarios. In Scenario 1,
the measurement noise was Gaussian, the single-linkage strategy
was used for clustering, and as already mentioned, the proportion
of consistent subjects and components was one half. We varied
these basic settings one at a time to produce the other scenar-
ios. In Scenario 2, we investigated the effect of more consistency
in the data, and thus set the number of consistent subjects and
consistent components to be 3/4 instead of 1/2 as in Scenario
1. In Scenario 3, we applied the complete-linkage strategy for
clustering, while the data was like in Scenario 1. In Scenario 4,
we investigated the effect of non-Gaussian noise: the noise was
Laplacian, while other parameters were like in Scenario 1. The
Laplacian distribution is not meant as a physically realistic noise
model (Wink and Roerdink, 2004); its purpose is to model heavy-
tailed noise possibly consisting of outliers and other deviations
from the model.

3While we could have created the inconsistent patterns to contain activity blobs as
well, this would have created the problem that some of the supposedly inconsistent
patterns would have been strongly correlated by chance. Then, the validation of the
method would have failed since the distinction between consistent and inconsistent
patterns would not have been well-defined.

FIGURE 1 |Two patterns of activity used in Simulation 1. Left: z-level 1.5; Right, z-level 4. Z-level means the ratio of maximum of activity blob to noise
standard deviation, i.e., maximum z-score of the signal.
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Hyvärinen and Ramkumar Testing independent component patterns

For comparison, we applied the method by Hyvärinen (2011)
on the same spatial patterns. While the method by Hyvärinen
(2011) was not really conceived for this purpose, it is possible to
input the obtained spatial patterns to that algorithm to obtain a
useful baseline.

We ran 250 trials with αFP= αFD= 10% and computed a
number of quantities to characterize the clustering results:

• the false positive rate for clusters. A cluster was considered false
positive if it didn’t include the same consistent component from
at least two different consistent subjects. We ignored the actual
number of false positive clusters and simply computed if there
was at least one such cluster for each trial. Averaging this over
trials, we computed the probability of having at least one false
positive cluster, which is then compared to the FPR defined
above.

• the false discovery rate of further connections. First we deter-
mined for each cluster the component which was most often
present among the consistent subjects. False discoveries were
then defined as components which either came from the non-
consistent subjects, or came from consistent subjects but were
not the same component as the one most often present (if the
cluster was false positive, all the components were considered
false discoveries). Their number was divided by the total number
of components clustered to give the FDR. We took the median
of FDR over the trials since taking a mean of rates is not very
meaningful.

• The number of “perfect” clusters found. As in Hyvärinen (2011),
we defined a perfect cluster as one which contains the same com-
ponent from all consistent subjects, and no components from
the non-consistent subjects. This is basically a rather stringent
measure of true positives found by the methods. The number
was averaged over trials.

• Finally, we computed the total number of clusters found (includ-
ing false positives), and averaged it over trials.

3.2. SIMULATION 2: NEW VARIANT FOR TESTING THE MIXING MATRIX
While the theory presented in this paper is primarily intended to
extend our earlier theory to testing the independent components,
we have also proposed two ideas which can be used to improve the
testing of the mixing matrix. In particular, our explicit FDR con-
trol formula in Section 2.4 and the computational simplification
in Section 2.5 should improve the method in Hyvärinen (2011).
Also, the new linkage strategy in Section 2.6 could be used as an
option. To investigate this possibility, we provide here a simula-
tion in which we use the present theory for testing the mixing
matrix.

Here, we replicate Simulation 1 in Hyvärinen (2011) with the
new FDR formula and the computational simplification. (We do
not consider the alternative linkage strategies here.) The simula-
tion consists of artificial data of five different scenarios in which
FPR and FDR are explicitly defined, see Hyvärinen (2011) for
details.

The goal of the simulation is to see if both αFP and αFD are
still well controlled if use the introduced modification to test the
mixing matrix. We set both to error rates to 0.05 in the testing
method.

3.3. SIMULATION 3: COMPUTATIONAL COMPLEXITY
Next, we investigated the computational complexity of the
method, using the same framework as in our earlier work
(Hyvärinen, 2011).

First, to allow straightforward comparison with Hyvärinen
(2011), we took the procedure of Simulation 4 from that paper
without any changes, except for trying out larger dimensions. In
particular, we applied the testing on the columns of the mixing
matrix (which is possible as pointed out above).

Here, no ICA was done, instead we randomly generated data
which models the mixing matrices obtained by ICA. We took the
number of subjects to be equal to the number of independent com-
ponents, using the values 8, 16, 32, 64, 128, 256, and 512 for those
parameters. We generated the data so that for half of the subjects,
half of the components were consistent (in fact, equal). For half
of the subjects, the mixing coefficients were pure noise, and for
those subjects with half consistent components, the other half of
the mixing matrix was noise. The actual data generation procedure
does not have a lot of influence on the computational complexity,
but what is important here is that the data contains significant
clusters whose number is proportional to the data dimension, and
their size is proportional to the number of subjects.

We set αFP= αFD= 0.05. The computations were done using
Matlab on a rather ordinary Linux desktop computer system with
two cores of 2.66 GHz each, and 2.4 GB of memory available.

To assess the complexity, we computed the CPU time needed
as well as the memory needed. The memory usage considered
only the memory needed for storing the explicit variables, i.e., the
final values of any Matlab operations neglecting any intermediate
results, and thus clearly provides a lower bound only.

Second, we did the same simulations for testing the indepen-
dent components in a more fMRI-like setting. We generated the
independent component matrices Sk randomly with the same idea
of half the components being consistent for half the subjects. The
number of voxels (data points) was taken to be 10,000. The same
settings for the number of subjects and independent components
were used.

3.4. EXPERIMENTS ON REAL fMRI DATA
Finally, we applied the method on real fMRI data from Mali-
nen et al. (2010). The data consisted of 10-min resting-state 3 T
fMRI data obtained from 10 healthy subjects (37–64 years; mean
50 years; 8 males, 2 females). The statistical parametric mapping
software SPM24 was used to preprocess the fMRI data, includ-
ing realignment, skull-stripping, normalization into the Montreal
Neurological Institute (MNI) standard space, and smoothing with
a 6-mm (full-width at half-maximum) Gaussian filter. For fur-
ther details about fMRI data acquisition and preprocessing, see
Malinen et al. (2010).

From each individual subject’s data, we reduced the dimen-
sionality to 48 using principal component analysis (PCA) and
subsequently extracted 48 spatial independent components (ICs)
using FastICA (Hyvärinen, 1999). While methods have been pro-
posed for automatically estimating the PCA dimension (Beck-
mann and Smith, 2004), their application is not without problems

4http://www.fil.ion.ucl.ac.uk/spm/
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Hyvärinen and Ramkumar Testing independent component patterns

(Abou-Elseoud et al., 2010), which is why we simply fix the PCA
dimension here. Our testing framework further assumes that the
PCA dimension is the same for different subjects, while it would, in
principle, be possible to estimate it separately for different subjects
(Beckmann and Smith, 2004).

We applied the method using two different false positive
rates and false discovery rates, set to either αFP= αFD= 0.05 or
αFP= αFD= 0.01. In addition, we also investigated the effect of
the two different linkage strategies during hierarchical cluster-
ing: single and complete-linkage. Finally, we applied the method
for two further PCA dimensions, 25 and 75, where we fixed
αFP= αFD= 0.05, and adopted the complete-linkage strategy.

4. RESULTS
4.1. SIMULATION 1: DATA RESEMBLING fMRI
The results are shown in Figure 2. Basically, our new
method has quite well controlled error rates (less than the set
αFP= αFD= 10%) in most cases (green curves on the left).

The FPR rates reach 10% in many cases, and go to 15% in
the case of non-Gaussian noise (scenario 4). The case of non-
Gaussian noise makes the distributions have heavier tails and
therefore our method seems to slightly underestimate the proba-
bility of false positives. On the other hand, Laplacian noise is quite
non-Gaussian and presumably more non-Gaussian than typical
fMRI measurement noise.

The FDR are always clearly lower than the desired 10%. This
may not be surprising since our corrected FDR threshold was
constructed to be conservative.

On the other hand, for our previous test proposed in Hyvärinen
(2011), the FPR rates are not properly controlled, and sometimes
exceed 10%, while the FDR are extremely small (so close to zero
that they are not clearly visible). The fact that the error rates are
not controlled is not very surprising considering that the test in
Hyvärinen (2011) was designed for a different kind of test. Thus,
this result merely confirms that we cannot directly use our earlier
theory for testing independent components themselves, and the
present developments are necessary.

Furthermore, the proposed test has clearly more power than
the one in Hyvärinen (2011), which is seen in that fact that it finds
more perfect clusters, as well as clusters in general (right-hand side
panels in Figure 2).

Overall, there is surprisingly little variation between the four
different scenarios.

4.2. SIMULATION 2: NEW VARIANT FOR TESTING THE MIXING MATRIX
The false positive rates and false discovery rates, as defined in
Hyvärinen (2011) are shown in Figure 3 for the different data-
generating scenarios of Hyvärinen (2011). We can see that they
are all less than the required 5%, and thus well controlled in spite
of the further approximations done in developing our method in
addition to the ones in Hyvärinen (2011). In fact, the approxi-
mation made in the computation of the p-values seem to lead to
conservative testing, so the FPR and FDR do not need to be chosen
particularly small.

4.3. SIMULATION 3: COMPUTATIONAL COMPLEXITY
The results are shown in Figure 4. Regarding the testing of the mix-
ing matrix, we see a clear improvement with respect to Hyvärinen

(2011). Both the memory and the CPU time needed are decreased
approximately by a factor of 20 for the largest data set5. Thus, the
optimized method greatly expands the applicability of the method,
for example to the case of databases with hundreds of subjects.

In the case of testing the independent components, both the
memory and the CPU time requirements are larger than in the
case of testing the mixing matrix, approximately by a factor of
five in the case of the largest data set. This is understandable since
the independent components have much larger dimensions than
the columns of the mixing matrix. In fact, we ran into a prob-
lem unrelated to our testing method, which is that just storing
the independent components in memory takes a lot of space and
ultimately seems to limit the dimensions we can use6. Thus, the
poorer performance is rather related to the size of the data being
analyzed and not the testing method itself.

Based on the computed graphs of memory and CPU time
consumption, it is possible to extrapolate and approximate what
amount of computational resources are sufficient for a given n= r,
knowing that our computer was sufficient for the cases mentioned
above. The results are of course a very rough approximation since
they depend on implementation details, and because the num-
ber of values of n= r we used was limited. We set the target at
n= r = 512 which would correspond to rather long recordings of
hundreds of subjects collected in a database. Simple linear extrapo-
lations indicate 7 GB of memory is sufficient for testing the mixing
matrix, and 150 GB for testing the components. Thus, while test-
ing the mixing matrix is not a problem even for many computer
systems at the time of this writing, the testing of components is
more challenging. The number of voxels might also be larger than
the 10,000 we used above, which would further increase the mem-
ory requirements. Likewise, we can extrapolate the computation
times needed in the case n= r = 512: whether testing the mixing
matrix or components, the computations would take some 30 h
on our modest computer system, so the computation time is really
not the bottleneck here.

4.4. EXPERIMENTS ON REAL fMRI DATA
Table 1 shows the number of clusters found, the average number
of components per cluster, and the total number of components
clustered for the 5 different parameter settings.

Typically, the method assigned a bit more than 30% of the
independent components to one of the clusters. Interestingly, the
percentage of components clustered was much higher, almost 50%,
when the PCA dimension was increased, which indicates that 48
principal components may not be enough. A larger PCA dimen-
sion may be necessary to be able to find more corresponding
components in different subjects.

5To characterize the significance of the improvement on a more anecdotal basis, let
us point out that in Hyvärinen (2011) we could do n= r = 64 on an ordinary com-
puter (the very same computer as in the current experiments), while n= r = 128
was impossible because we ran out of memory. With the new optimized method
which stores maximal connections only, we were able to compute n= r = 128 as
well as n= r = 256. The case n= r = 512 was not feasible because the system ran
out of memory.
6Again, considering the performance of our particular computer system: We were
able to do only n= r = 64 since simply storing the independent components in
memory took 37% of it.
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Hyvärinen and Ramkumar Testing independent component patterns

FIGURE 2 | Simulation 1: data resembling fMRI. Each row is one
scenario, briefly: scenario 1 is basic setting, scenario 2 has more
inter-subject consistency, scenario 3 uses complete-linkage, scenario 4
has non-Gaussian noise. In all plots, green curves are obtained by the
method proposed here, and blue curves by the method proposed by

Hyvärinen (2011), given for comparison. In error rates (left), solid line is
FPR and dashed line FDR. In number of clusters (right), dashed line gives
the number of perfect clusters, solid line gives the total number of clusters
(including false ones). The desired rates αFD = αFP =0.10 are shown by the
dotted red line.

We also see the well-known phenomenon where complete-
linkage clustering leads to smaller clusters, but produces more
of them. We found that single-linkage in fact produced clusters

which were sometimes quite heterogeneous (results not shown),
so complete-linkage may be preferred on this data. On the other
hand, the total number of component clustered is smaller for
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Hyvärinen and Ramkumar Testing independent component patterns

FIGURE 3 | Simulation 2: testing the mixing matrix. False positive rates
and false discovery rates are shown for simulated data. Different settings of
data dimension n and number of subjects r are given in different colors. The
data scenarios are explained in detail in Hyvärinen (2011), briefly: 1: no
consistent components, 2: half of components consistent for all subjects, 3:
all components consistent for half of the subjects, 4: for half the subjects,
all components consistent and half of the components consistent for the
rest of the subjects, 5: for half of the subjects, half of the components were
consistent. The desired false positive and discovery rates αFP = αFD =0.05
are shown by the dotted red line. For scenario 1, FDR cannot be
meaningfully computed since the number of true positives is zero.

complete-linkage, because it requires all the connections from the
cluster to be significant, which is a more conservative criterion.

Obviously, a smaller α leads to fewer clusters and fewer com-
ponents in the clusters, but the difference between 0.01 and 0.05
is rather small.

Some examples of the clusters are shown in Figures 5–7. These
were obtained in the basic setting where PCA dimension was 48,
complete-linkage was used, and the α levels were 0.05. The first
cluster in Figure 5 seems to consist of a part of the default-mode
network, the second in Figure 6 seems to be a motor network, and
the third in Figure 7 is an auditory area. The clusters contain

components from 5 to 6 subjects. The clusters were manually
selected to reflect some well-known resting-state networks.

5. DISCUSSION
In this paper, we extended our previous work (Hyvärinen, 2011)
on testing the ICA mixing matrix to testing the values of the inde-
pendent component patterns. An important application for the
present method is spatial ICA of fMRI, especially in resting-state.
We proposed an empirical model of the null distribution, whose
parameters can be directly estimated from the observed data. We
further proposed improvements to the general framework, applic-
able to both our present and earlier testing methods; they sim-
plify the theory of FDR computation, reduce the computational
requirements, and provide alternative clustering strategies.

While the idea of doing a separate ICA on each subject, fol-
lowed by clustering, is not new (Esposito et al., 2005), the method
proposed here is, to the best of our knowledge, the first one which
associates statistically principled p-values to each cluster. Thus,
the method indicates which clusters should be included in any
further analysis and which should be discarded, with a principled
computation of the similarity thresholds.

Matlab code for computing the tests proposed in this paper is
freely available at www.cs.helsinki.fi/u/ahyvarin/code/isctest/.

5.1. UTILITY IN fMRI ANALYSIS
Results on real fMRI group data showed reasonable clustering of
components to clusters similar to well-known resting-state ICA
networks.

Some well-known networks may also be split into more than
one cluster. The splitting may be due to individual variability of
the spatial patterns. The probability of such splitting depends on
the α value as well as the clustering strategy. It is well-known in
the theory of hierarchical clustering that complete-linkage tends
to create clusters which are smaller, but at the same gives more
clusters than single-linkage.

Another factor which has a strong effect on the splitting of clus-
ters, independently of individual variability or our testing method,
is the PCA dimension. Its effect was systematically investigated by
Abou-Elseoud et al. (2010), who found that with a PCA dimen-
sion of 10, a single default-mode network is found. For larger
dimensions, it is often split into at least two components, and at
a PCA dimension of 50 (very close to 48 used above), even four
components.

These factors should largely explain why, for example, the clus-
ter related to the default-mode network in Figure 5 contained
only the precuneus and only from six subjects. In fact, other clus-
ters containing parts of the default-mode network were found as
well (but not shown). Increasing the false positive and false discov-
ery rates and using single-linkage would prevent such splitting of
clusters to some degree but at the risk of too permissive clustering
of components which may not be related enough. Even so, simply
due to the effect of our relatively large PCA dimension, it seems
unlikely that we could capture the whole default-mode network
in a single cluster. This problem might possibly be alleviated by
estimating the number of independent components separately for
each subject (Beckmann and Smith, 2004), but determining the
dimension automatically is not easy as discussed by Abou-Elseoud
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Hyvärinen and Ramkumar Testing independent component patterns

FIGURE 4 | Simulation 3: computational complexity. The results are
shown in each case as far as our computer was able to perform the
computations, i.e., in the case of the mixing matrix, n= r =512 was

infeasible because it would have required more memory than was
available, and likewise for n= r =128 in the case of testing independent
components.

Table 1 | Results on real resting-state fMRI data.

PCA dim α Linkage strategy Clusters found Avg. comps per cluster # Comps clustered % Comps clustered

48 0.05 Single 25 6.92 173 36.1

48 0.05 Complete 36 4.14 149 31.0

48 0.01 Complete 34 3.88 132 27.5

75 0.05 Complete 93 3.92 365 48.7

25 0.05 Complete 18 4.22 76 30.4

The testing and clustering method was applied by varying the PCA dimension, the false positive rate α= αFP = αFD, and the linkage strategy during hierarchical clustering.

et al. (2010). Another factor that might be relevant is the large
age range of the subjects; age was shown to change resting-state
networks by Dosenbach et al. (2010), so our group might have
particularly small inter-subject consistency.

Our method does not by any means discard artifacts, which
sometimes form consistent clusters as well, although we only
showed resting-state networks above. In fact, the testing method
does not seem to contain anything which would prefer compo-
nents of real brain activity over any kind of artifacts (whether phys-
iological or technical). ICA is well-known to find many artifacts,

and the present method just considers all components on an equal
footing. Of course, it might be possible that some artifacts are
either more or less consistent than brain activity, but we are not
aware of results showing any such systematic differences. An auto-
matic method for detecting which components are artifacts was
proposed by Tohka et al. (2008).

5.2. RELATIONSHIP TO OTHER METHODS
Related testing methods were proposed by Perlbarg et al. (2008);
Varoquaux et al. (2010); Schöpf et al. (2010). Schöpf et al. (2010)
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Hyvärinen and Ramkumar Testing independent component patterns

FIGURE 5 | One cluster found in real resting-state fMRI data. The component was found in sufficiently similar form in six subjects (out of 10). The cluster
seems to correspond to a part of the default-mode network, centered in the precuneus.

FIGURE 6 | A second cluster found in real resting-state fMRI data. This cluster also has components from six subjects, and seems to correspond to bilateral
motor areas.

used principled statistical methods based on GLM to quantify the
similarities between the components, and to rank them in order of
consistency. Perlbarg et al. (2008) applied bootstrapping to test the
consistency of inter-subject consistency grouping, but the group-
ing itself used similarity thresholds which were not statistically
principled. Varoquaux et al. (2010) applied the idea of random
orthogonal rotations like Hyvärinen (2011), but not over different
subjects. While all the work cited above used statistical methods to
quantify the similarity and/or significance of components, none
of them directly addressed the problem we are concerned with:
obtaining principled p-values for each component.

An alternative utility of single subject ICA was proposed byYang
et al. (2012), who did ICA on individual subjects and then clus-
tered the subjects instead of components based on the inter-subject
consistencies of the components.

5.3. RELATIONSHIP TO OUR PREVIOUS TESTING METHOD
Our empirical approach introduced above is closely related to the
original testing method by Hyvärinen (2011). Thus, we need to
understand the differences between the two methods.

5.3.1. Which testing method should be applied?
First we would like to clarify when the different testing methods
should be applied. While both methods are applicable in the myr-
iad of application fields where ICA can be applied, we consider
only brain imaging data in the following discussion.

The choice of testing method really depends on the combina-
tion of two factors: whether we do temporal or spatial ICA, and
what the experimental paradigm is. (The imaging modality per se
plays a smaller role here, but it affects the choice of temporal vs.
spatial ICA.) The discussion of whether temporal or spatial ICA is
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Hyvärinen and Ramkumar Testing independent component patterns

FIGURE 7 | A third cluster found in real resting-state fMRI data. The cluster has components from five subjects and seems to correspond to auditory areas.

to be performed for a given data set is a completely separate one
(see, e.g., Calhoun et al., 2009). First one should decide which type
of ICA is the right one, and only then choose the testing method.

ICA is typically applied on data on which we can only perform
one of the tests. This is the case when the data come from a resting-
state study, from a study where the responses are induced but not
time-locked to stimuli and hence not correlated (e.g., event-related
suppression in EEG/MEG), or any non-resting study with no sys-
tematically evoked responses. For such data, we can assume the
spatial patterns to be similar, but not the time courses.

Basically, in the case of temporal ICA for such data, we would
typically assume that the mixing matrix is approximately the same
over subjects, since the mixing matrix gives the spatial patterns of
activity. This is the case whether we analyze EEG, MEG, or fMRI.
(Temporal ICA on fMRI is very rare, however.) So, we should test
the mixing matrix using the method by Hyvärinen (2011). Testing
the independent component patterns would not be meaningful
since they correspond to the activity time courses which cannot
be assumed to be correlated here.

Next we consider the cases where the data comes from spa-
tial ICA, and from the experimental paradigms mentioned above
(resting-state or similar). Then, it is typically the independent
components (Sk) which are approximately the same over sub-
jects, since they correspond to the spatial patterns. So, we should
test the independent components themselves, using the method
in this paper. Testing the mixing matrix would not meaningful
here, since again, the time courses cannot be assumed to be cor-
related over subjects in the above-mentioned cases. In particular,
the popular spatial ICA of resting-state fMRI needs our new test-
ing method proposed in this paper, and cannot be done with our
previous method.

However, in some cases it may be possible to apply either of the
two tests. This is the case when the data comes from an evoked
response study in which the responses for different subjects are
similar enough in the sense of being strongly correlated. This

is because then both the spatial patterns and the time courses
can be tested for inter-subject consistency. The choice of testing
method then depends on which of the inter-subject consistencies is
stronger, or more interesting from the viewpoint of the study. For
example, in an evoked response study with fMRI, after applying
spatial ICA, it may be particularly interesting to apply the testing
on the mixing matrix to see if the responses themselves (and not
just the spatial patterns) have inter-subject consistency.

5.3.2. Similarity measures and effective dimensions
Next, we consider the connections between our two testing
methods from the viewpoint of the theory.

In both testing methods, we compute similarities between the
components. One important difference is that Hyvärinen (2011)
used a weighted Mahalanobis similarity, whereas here we use sim-
ple correlations. Related to this, it was assumed by Hyvärinen
(2011) that the covariances of the subjects are equal. These two
assumptions made it possible to analytically derive the null dis-
tribution in Hyvärinen (2011), while here we used an empirical
model of the null distribution.

However, these two differences may not be as large as they seem.
In fact, let us first consider what happens if we use our empirical
model of the similarities when testing the mixing matrix. Sup-
pose that we are testing the similarities of mixing matrices like
Hyvärinen (2011), and the covariances of the subjects are equal.
Theorem 1 by Hyvärinen (2011) shows that the Mahalanobis
similarity matrix is a random orthogonal matrix under the null
hypothesis. Thus, its sum of squares equals the data dimension,
and the estimate ñ of the effective dimension we would get from
equation (10) is equal to the data dimension. This means that the
empirical model of the null distribution would be equal to the one
used by Hyvärinen (2011). Thus, if we use our empirical approach
to modeling the similarity matrix in testing the mixing matrix,
we recover exactly the same null distribution which was analyti-
cally derived by Hyvärinen (2011), provided that the assumption
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Hyvärinen and Ramkumar Testing independent component patterns

of equal covariances holds. In this sense, the present empirical
method is a generalization of our earlier method.

On the other hand, one may ask if we could or should we use
the Mahalanobis distance in testing independent components like
in this paper. This does not seem necessary because if we adapt the
assumptions in Hyvärinen (2011) to the present case, we in fact
obtain the simple similarity measure used here. Since the Sk have
orthogonal rows of unit variance, as assumed above, the weight-
ing matrix in the Mahalanobis similarity is equal to identity in
the subspace spanned by the rows of Sk. Thus, any weighting in
the distance measure would disappear. In this sense, our present
method is rather a special case of the framework by Hyvärinen
(2011).

The two points above show that the apparent differences in the
definition of the similarities and effective dimensions are much
smaller than it seems. Rather, one might see our earlier method and
the method proposed here as two instances of the same method,
adapted to the parameters inherent to the testing of the mixing
matrix or the independent components, respectively.

There is one practical difference, however. In the empiri-
cal method proposed here, we do not re-estimate the effective
dimension after deflating away components, as was done by
Hyvärinen (2011). This makes the present test less conservative.
The effect of such re-estimation of the dimension would prob-
ably be much smaller here because the effective dimension ñ is
higher (typically of the order of hundreds), so reducing it by the
number which is of the same order as the number of compo-
nents (typically not more than one hundred) as in our earlier
method would not change much. Moreover, it may not be nec-
essary even on theoretical grounds because it is closely related to
the assumption of equal covariances. If the covariances are not
equal over subjects, the vectors are much less constrained and
such reduction of degrees of freedom does not happen. There
is some the risk that this makes the test too permissive and
creates false positives. However, according to the simulations pre-
sented, this does not seem to be the case in reasonably realistic
scenarios.

5.3.3. Modeling of the independent components
Any modeling of the independent components using a distribution
ps was not necessary in our earlier method (Hyvärinen,2011), since
the analysis was exclusively concentrated on the estimated mixing
matrices. Introduction of ps in this paper basically means that we
admit that there is some additional source of uncertainty. Taking
the empirical approach means that we further admit we cannot
explicitly model the independent components, i.e., ps, because of
their complexity. This uncertainty is then implicitly modeled by
fitting the parameter ñ (or β) to the data. Thus, the present method
is a generalization of our earlier method in this sense as well: we
allow for more uncertainty under H0, and adapt to it empirically.

In addition to modeling individual differences, another practi-
cal meaning of ps is modeling measurement noise. Any measure-
ment noise is still present in the independent components, and
its effect on the similarities has to be modeled. This is in contrast
to similarities of columns of the mixing matrix: since measure-
ment noise is basically averaged out in the estimates of the mixing
matrix, it can largely be ignored.

5.4. APPLICABILITY TO DIFFERENT ICA ALGORITHMS
In the simulations above, we used FastICA. However, no part of
the derivation of the testing method assumed that we would use
FastICA instead of other ICA algorithms. The only assumption
related to ICA estimation was that the estimation is divided into
two parts: whitening and finding an orthogonal mixing matrix.
Most ICA and blind source separation algorithms, including SOBI
(Belouchrani et al., 1997), AMUSE (Tong et al., 1991), and JADE
(Cardoso and Souloumiac, 1993), use the same division of estima-
tion into two stages, so our method is just as applicable to them as
it is for FastICA.

The notable exception among the ICA algorithms is the info-
max algorithm (Bell and Sejnowski, 1995; Amari et al., 1996),
which does not require such a division into two stages. How-
ever, most implementations of the infomax algorithm do use a
preliminary whitening to speed up the algorithm, effectively using
two estimation stages as above. Yet, there is usually no constraint
of orthogonality of the mixing matrix in the infomax algorithm.
This means that our method may not be fully justified for the info-
max algorithm. On the other hand, by the definition of the ICA
model, even the infomax algorithm should asymptotically give an
orthogonal mixing matrix for whitened data, under the theoretical
assumption that the ICA model holds. Thus, the assumptions of
our method are approximately correct even for the infomax algo-
rithm. Whether this approximation is good enough in practice is
an empirical question that we leave for future research.

5.5. COMPUTATIONAL IMPLEMENTATION DETAILS
We proposed a simple way of speeding up computation by stor-
ing only the maximal similarities in memory. This is not exactly
equivalent to using all of them as in our earlier method (Hyvärinen,
2011) but the difference is likely to be very small. This improve-
ment can be used with the testing method in Hyvärinen (2011)
as well, and, indeed, with many related methods (Himberg et al.,
2004; Esposito et al., 2005).

In Simulation 3, the bottleneck of the computations was seen
to be in the large size of the spatial patterns themselves, which
we stored in the memory. Thus, the bottleneck is essentially in
the database implementation, and not in our testing method per
se. A further computational improvement would presumably be
obtained if we didn’t try to hold all the independent components
in the memory at the same time. This would require some rela-
tively simple programing solutions in which only part of the ICA
outputs are loaded into memory at the same time for computation
of the similarities. Such methods might be quite slow because of
the disk access needed but they would expand the possibilities of
the testing method. However, we leave such database technicalities
for future research.

5.6. GROUP ICA AND TESTING
The method developed here can also be viewed as a method for
group ICA, if the datasets come from different subjects, as orig-
inally proposed by Esposito et al. (2005) and further developed,
among others, by Wang and Peterson (2008) and Schöpf et al.
(2010). The approach is quite different from conventional group
ICA methods (Calhoun et al., 2009) in which the primary goal is
to obtain a set of group-average components which characterize
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Hyvärinen and Ramkumar Testing independent component patterns

the whole group. Such a set of average components can then be
used to compute the corresponding components in each subject.
Malinen et al. (2010) originally applied such a method (GIFT) on
the data we re-analyze here, so comparing the present results to
theirs will give a general idea on the differences and commonalities
of the two analyses.

Estimating group-level component has been further advanced
by Beckmann and Smith (2005), whose tensorial ICA method
allows some inter-subject variability in both the independent com-
ponents and the mixing matrix; however, tensorial ICA assumes
the component time courses to be similar for all the subjects
in whom the component is present, so it is hardly applicable to
spatial ICA of resting-state fMRI. Guo and Pagnoni (2008) fur-
ther proposed a principled expectation-maximization approach
for estimating group components.

A possible problem with estimating group-level components
is that there is no guarantee that the component “exists” in each
subject, since the subject-wise components are computed by sim-
ple formulas without any checking that the obtained component
matches the data of the subject in question. The question of
whether the components obtained by group-level ICA are present
in single subjects was considered by Erhardt et al. (2011) and Allen
et al. (2012). The main advantage of computing a separate ICA for
each subject is that there is more certainty that the subject-wise
components really correspond to the statistical properties of the
subject (Esposito et al., 2005).

On the other hand, computing a separate ICA for each subject
may have the disadvantage that the estimation of the compo-
nents does not use all the information available, in particular the
information that the components are likely to be similar in the dif-
ferent subjects. In fact, in the fMRI results above, the components
were hardly ever found in more than half of the subjects. While
this may be an accurate description of the underlying individual

differences in neurophysiology and anatomy, it is also possible that
this is a conservative estimate. For example, due to the algorithmic
randomness of ICA algorithms (Himberg et al., 2004), the compo-
nents obtained are just a subset of the larger set of all the possible
components. In ICA estimation, there is thus an aspect of random
sampling from this pool of components, which reduces the num-
ber of matches that can be found by a clustering algorithm like the
one proposed here.

A possible compromise would be to use a framework similar to
Varoquaux et al. (2011), which develops an explicit model of the
components, and in particular their individual differences. This is
an interesting direction for future research. However, such models
cannot be straightforwardly used for the testing of the components
because the components are not estimated independently in dif-
ferent subjects. Another important question for future research is
how comparison between groups can be done in the present testing
framework. Any methods applicable for the original framework by
Esposito et al. (2005) are likely to be applicable for our method
as well.
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Independent component analysis (ICA) techniques offer a data-driven possibility to analyze
brain functional MRI data in real-time. Typical ICA methods used in functional magnetic
resonance imaging (fMRI), however, have been until now mostly developed and optimized
for the off-line case in which all data is available. Real-time experiments are ill-posed
for ICA in that several constraints are added: limited data, limited analysis time and
dynamic changes in the data and computational speed. Previous studies have shown that
particular choices of ICA parameters can be used to monitor real-time fMRI (rt-fMRI) brain
activation, but it is unknown how other choices would perform. In this rt-fMRI simulation
study we investigate and compare the performance of 14 different publicly available ICA
algorithms systematically sampling different growing window lengths (WLs), model order
(MO) as well as a priori conditions (none, spatial or temporal). Performance is evaluated
by computing the spatial and temporal correlation to a target component as well as
computation time. Four algorithms are identified as best performing (constrained ICA,
fastICA, amuse, and evd), with their corresponding parameter choices. Both spatial and
temporal priors are found to provide equal or improved performances in similarity to the
target compared with their off-line counterpart, with greatly reduced computation costs.
This study suggests parameter choices that can be further investigated in a sliding-window
approach for a rt-fMRI experiment.

Keywords: independent component analysis, whole-brain fMRI, ill-posed problems, real-time

1. INTRODUCTION
Independent component analysis (ICA) is a data-driven blind
source separation (BSS) method widely used in brain functional
magnetic resonance imaging (fMRI) data analysis (McKeown
et al., 1998; Calhoun and Adali, 2006). The basic idea underlying
ICA is to disentangle in a multivariate way all the independent
components (ICs) whose combination gives the actual measured
signal. The generic procedure is thus to fix an arbitrary number
of ICs, i.e., the model order (MO), and let the algorithm exploit
a criterion of independence to compute the decomposition that
optimizes the criterion given that MO. Several algorithms have
been proposed to measure independence of the sources in order
to separate them into ICs. The most popular criteria have been
based on information theory principles, such as the Infomax
algorithm (Bell and Sejnowski, 1995) or higher order statistics
(second, third, and fourth order cumulants), such as kurtosis fas-
tICA (Hyvärinen and Oja, 2000). Given the nature of data-driven
BSS algorithms which try to deal with and take advantage of an
enormous amount of data, ICA found an optimal field of appli-
cation in the analysis of fMRI data. Its canonical use has been that
of analyzing data off-line, that is, once all experimental data has
been already acquired. For this paper the use of ICA off-line can

be defined as analyzing data in well-posed conditions, as we have
usually a great amount of time available for computation and a
complete dataset with all the relevant information.

A very different situation arises if ICA is to be considered for
dynamic studies such as real-time fMRI (rt-fMRI), in which there
is an interest in the dynamic characterization of brain states dur-
ing the experiment (deCharms, 2008; Weiskopf, 2012). Recently
rt-fMRI received a great deal of attention since it makes it pos-
sible to perform experiments characterized by novel paradigms
(LaConte, 2011; Caria et al., 2012). The most investigated novel
paradigm with rt-fMRI is neurofeedback (Shibata et al., 2011;
Subramanian et al., 2011). In such experiments subjects receive
stimulation that is derived from their ongoing fMRI activity and
the task can be to develop mental strategies to regulate the acti-
vation. ICA methods could be of interest in such studies for their
data-driven nature, particularly when considering experimental
designs in which hemodynamic response models will be difficult
to use for predicting the brain states under investigation, such as
resting state. In a rt-fMRI context ICA will work under ill-posed
conditions because the data need to be analyzed under critical
time constraints and with a reduced dataset. In addition, since
the data changes dynamically whereas the algorithm is usually
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fixed, the choice of the algorithm can drastically affect compu-
tation time and quality of the results. The first implementation
of ICA algorithms for rt-fMRI demonstrated successful use of the
fastICA algorithm (Esposito et al., 2003). In that work the authors
adopted several specific choices for real-time ICA analysis, includ-
ing a specific ICA algorithm, the choice of a sliding window with
a defined temporal window length (WL) and a MO. This study
gave two main results. Firstly, it demonstrated in both real and
simulated data that the expected task-related activity was equally
detected by ICA and by the standard general linear model (GLM)
approach. Secondly, ICA was able to detect transient or unex-
pected neural activity which had not been originally included in
the hemodynamic response model. Together these results support
the motivation of the evaluation and use of ICA in a rt-fMRI
experiments. Real-time ICA has been recently implemented as a
plug-in of Turbo Brain Voyager software (Goebel, 2012).

However, there are many possible choices for ICA algorithms,
differing mostly in the mathematical criteria used to establish
source independence, and it is not obvious which of these algo-
rithms could best characterize neural activity as captured by the
BOLD contrast. In addition to which particular algorithm is
used, there is also freedom for parameter setting and it is not
clear how these might affect the performance of an ICA-based
rt-fMRI analysis. Indeed, performance comparisons among dif-
ferent ICA algorithms applied to fMRI data have historically been
reported only for the well-posed off-line fMRI case in which the
full acquired time-series data was available after the experiment
(Esposito et al., 2002; Correa et al., 2005, 2007). Further, from
off-line ICA experiments it is known that a priori conditions
may help the identification of a particular IC most congru-
ent with a predefined target, such as a spatial map (Lin et al.,
2010). This a priori knowledge can be implemented in differ-
ent ways depending on the characteristics of the algorithms. It
can be as low invasive as a simple tailoring in the nature of
the statistical distribution to be extracted, i.e., weighting more
super-Gaussian or sub-Gaussian distributions, or as constrained
as targeting a specific time course or spatial map. This approach
is known as semi-blind decomposition, and its main property
is to fuse the positive principles of data-driven algorithms with
some kind of a priori knowledge on the problem of interest. The
introduction of a priori knowledge can be done in several ways,
e.g., by orienting the decomposition of data into sources with
some specific properties. An example of a semi-blind approach
is presented in Lin et al. (2010), in which a spatial a priori
constraint has been introduced in the decomposition algorithm
with the aim of extracting the source most congruent with a
predefined spatial target. The motivation of considering priors
includes reduced computational time (as a priori information
suggests shortcuts in the decomposition to the algorithm), and
improved quality of the sources obtained (given that the results
are closer to what is expected). In general not all ICA imple-
mentations foresee the possibility of introducing prior knowledge
at spatial or temporal level. In this context, and given the noisy
data of rt-fMRI experiments from the limited data available for
analysis, it is of interest to extend the evaluation of real-time
ICA strategies with the consideration of temporal and spatial
priors.

In this study we investigated and compared the performance of
various ICA algorithms under the ill-posed conditions imposed
by rt-fMRI. We used fMRI data of healthy subjects performing
a visual-motor task in a framework that simulated a real-time
acquisition for each subject separately. Four brain networks were
extracted from the full time course of an independent randomly
chosen subject not included in further analysis and used as tar-
get networks for the performance evaluations: the right and left
visual motor networks, the default mode network (DMN), and
a noise (NOISE) network associated with physiological noise.
In each network we tested 10 out of 14 different publicly avail-
able ICA algorithms, and for each algorithm we investigated how
the length of the time window (i.e., the number of time points)
used for the analysis, the MO (i.e., the number of computed ICs)
and the type of a priori information (none, spatial or temporal)
affected performance. The evaluation of performance was done
by considering computation time together with the spatial and
temporal correlations of the dynamic ICs with the network refer-
ence target. The goal was thus to find, for each network, the ICA
implementation that gave the fastest and highest spatial and tem-
poral similarity to the target, but using only a fraction of the time
series.

2. MATERIALS AND METHODS
2.1. fMRI EXPERIMENT
This simulation study was based on data acquired in a real fMRI
experiment (Calhoun et al., 2003). This data set (7 male, 1 female,
average age 24 years) has been chosen because it activates a
variety of well-known networks (including Default Mode, right
visual/motor, and left visual/motor areas) and it has been exten-
sively studied with ICA since part of the dataset is included in
the public distribution of the Group ICA fMRI toolbox (GIFT:
http://mialab.mrn.org/software/gift/index.html). The dataset is
fully described in the original publication and here we out-
line only the main aspects related to the cognitive tasks, data
acquisition and preprocessing.

2.1.1. Cognitive tasks
The visual-motor paradigm contains two identical but spatially
offset, periodic, visual stimuli, shifted by 20 s from one another
(Figure 1). The visual stimuli were projected via an LCD projec-
tor onto a rear-projection screen subtending approximately 25◦ of

FIGURE 1 | Summary of the stimulus set-up presented to the subject

during experiment data acquisition.
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visual field, visible via a mirror attached to the MRI head coil. The
stimuli consisted of an 8 Hz reversing checker-board pattern pre-
sented for 15 s in the right visual hemi-field, followed by 5 s of an
asterisk fixation, followed by 15 s of checker-board presented to
the left visual hemi-field, followed by 20 s of a central asterisk fixa-
tion. The 55 s event set was repeated four times for a total of 220 s.
The motor stimuli consisted of participants touching their right
thumb to each of their four fingers sequentially, back and forth,
at a self-paced rate using the hand on the same side on which
the visual stimulus is presented. fMRI data from this paradigm,
when analyzed with standard ICA (Calhoun et al., 2003), sep-
arated activation network results into two different task-related
components, one in left visual and motor cortex, the other in right
visual and motor cortex.

2.1.2. Imaging parameters
Scans were acquired by a Philips NT 1.5-Tesla MRI scanner. A
sagittal localizer scan was performed first, followed by a T1-
weighted anatomic scan [repeat time (TR) = 500 ms, echo time
(TE) = 30 ms, field of view = 24 cm, matrix = 256 × 256,
slice thickness = 5 mm, and gap = 0.5 mm] consisting of 18
slices through the entire brain including most of the cerebellum.
Functional scans were acquired over the same 18 slices consist-
ing of a single-shot, EPI scan (TR = 1 s, TE = 39 ms, field of
view = 24 cm, matrix = 64 × 64, slice thickness = 5 mm, gap =
0.5 mm, and flip angle = 90◦) obtained consistently over a 3 min,
40 s period for a total of 220 scans. Ten dummy scans were per-
formed at the beginning to allow for longitudinal equilibrium,
after which the paradigm was automatically triggered to start by
the scanner.

2.1.3. Preprocessing
The data used in this study were previously preprocessed.
The fMRI data were first corrected for timing differences
between the slices using windowed Fourier interpolation to
minimize the dependence upon the reference slice chosen.
Next, the data were imported into the statistical parametric
mapping software package, SPM99. Data were motion cor-
rected, spatially smoothed with a 6 × 6 × 10 mm Gaussian ker-
nel, and spatially normalized into the standard Talairach space.
The data (originally collected at 3.75 × 3.75 × 5 mm) were
slightly sub-sampled to 3 × 3 × 5 mm, resulting in 53 × 63 × 28
voxels.

2.2. SOFTWARE AND COMPUTER FOR ICA SIMULATIONS
The entire simulation work was based on an in-house MATLAB
(The MathWorks Inc., Natick, Massachusetts) implementa-
tion (http://www.mathworks.com/products/matlab) (MATLAB,
2010) that exploits the code available with the GIFT toolbox
(GIFT,http://mialab.mrn.org/software/gift). Given the ICA algo-
rithms code present in the toolbox, all the data analysis steps were
implemented in an automatic fashion to permit a testing rou-
tine to be run on ICA algorithms varying their parameters (i.e.,
varying the WL, the MO, the a priori knowledge, and the sub-
jects). The PC adopted to run the simulations was an Intel(R)
Core(TM) i5 CPU M460 @2.53 GHz equipped with 6 GB of RAM
and running a Windows 7 64-bit OS.

2.3. ICA ALGORITHMS
From a total of 14 different ICA algorithms a subset of 10 was
considered (see Table 1). Among the algorithms not selected were
those based on Infomax criterion, which has been used as ref-
erence algorithm, thus it and all the ICA methods based on it
(semi-blind infomax, radical ICA, and SDD ICA) were elim-
inated from the analysis. The algorithms were available from
the GIFT toolbox and most of them were discussed in a recent
comparative study (Correa et al., 2005). The list included algo-
rithms already used in rt-fMRI experiments, like the fastICA
algorithm (Esposito et al., 2003). These algorithms, which are
public and were taken as in their original distributions, differ in
their data reduction preprocessing steps (e.g., centering, whiten-
ing, and dimensionality reduction) and independence criteria
for source separation (e.g., minimization of mutual information
and maximization of non-Gaussianity) (Cichocki and Amari,
2002).

In the following we outline key aspects of the adopted ICA
algorithms. A detailed description of each technique is beyond
the scope of this study and we refer the reader to the cited works.
The selected algorithms cover the major approaches known in
the ICA literature for defining independence of sources: infor-
mation maximization, maximization of non-Gaussianity, joint
diagonalization of cross-cumulant matrices and second-order
correlation-based methods.

Infomax is a stochastic method which uses a non-linear func-
tion to maximize the information mapped between input and
output of a network. The implementation adopted here was
extended infomax, which improves the ability to disentangle
sub and super-Gaussian sources using natural gradient descend
method (Bell and Sejnowski, 1995; Lee et al., 1999).

FastICA is a stochastic method that uses a fixed-point itera-
tive approach to extract maximally non-Gaussian sources. The

Table 1 | List of tested ICA algorithms and their possibility to accept

as parameters arbitrary a priori knowledge (both spatial and

temporal) and a varying number of ICs.

ICA algorithm a priori knowledge Arbitrary number of ICs

Infomax Yes Yes

FastICA Yes Yes

ERICA No Yes

SIMBEC No Yes

EVD No Yes

JADEOPAC No No

AMUSE No No

SDD ICA No No

Semi-blind infomax Yes Yes

Constrained ICA Yes No

Radical ICA No No

COMBI No No

ICA-EBM Yes Yes

FBSS Yes No

Those algorithms which cannot accept an arbitrary number of ICs extract a

number of ICs equal to the time window length. These algorithms references are

contained in GIFT toolbox (GIFT: http://mialab.mrn.org/software/gift/index.html).
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independence criterion adopted can be higher order statistics or
the negentropy of the output (Hyvärinen and Oja, 2000).

ERICA (equivariant robust ICA) is an algorithm that mini-
mizes the amount of signal and noise interference on the esti-
mated sources. It is also asymptotically equivariant for sufficient
number of samples (Cruces et al., 2000).

SIMBEC (simultaneous blind extraction using cumulants) is a
deterministic algorithm that exploits natural gradient ascent in a
Stiefel manifold with the aim of jointly identify sources using as
contrast function higher order cumulants (Amari, 1999; Cruces
et al., 2001).

EVD (eigen value decomposition) is an algorithm that sepa-
rates sources exploiting both second-order statistics and higher-
order correlation functions. It creates and sums a set of shifted
cross variance matrices, after this it applies singular-value decom-
position to achieve source separation. The EVD approach is fast
and useful when the spectra of the components are different
(Georgiev and Cichocki, 2002).

JADEOPAC (joint approximate diagonalization of eigenmatri-
ces) is another deterministic algorithm which diagonalizes fourth
order cumulant matrices using the Jacobi technique to obtain
spatially independent sources (Cardoso and Souloumiac, 1993).

AMUSE (algorithm for multiple unknown sources extraction)
is a second order method based on the EVD algorithm. The
difference is that it applies EVD on a single time-delayed covari-
ance matrix for pre-whitened data. The shift of the cross-variance
matrix is chosen here to obtain sources with non-zero autocorre-
lation of sources at that shift, with auto-correlations as different
as possible from each other (Cichocki and Amari, 2002).

Constrained ICA is an algorithm that exploits a reference signal
to perform ICA. The extracted source is forced to be as close as
possible to the reference adopted (Lin et al., 2007, 2010).

COMBI is an algorithm which is the result of a combination
of two different methods (Combination and Multi-combination
of WASOBI and EFICA). SOBI (second order blind identifica-
tion) was developed with the aim of dealing with sources which
could be temporally correlated. It exploits second order statistic
to get rid of temporal correlation and maximize the separability
of sources (Belouchrani et al., 1993). WASOBI is an asymp-
totically optimal algorithm for autoregressive sources (Yeredor,
2000), while EFICA is an asymptotically efficient version of the
FastICA algorithm (Koldovsky et al., 2006).

ICA-EBM (entropy bound minimization) is based on an
entropy numerical estimation. The estimated bound of entropy
is minimized to find the ICAs. The algorithm adopts a line
search procedure initially constraining the demixing matrix to be
orthogonal (Li and Adali, 2010b).

FBSS (full BSS) is an algorithm that exploits an entropy rate
estimator to model second and higher-order correlated sources.
This estimator is the adopted to separate sources minimizing their
entropy rate (Li and Adali, 2010a).

2.4. USE OF a priori INFORMATION
As previously mentioned, the exploitation of a priori knowledge
permits an improvement in the performance of analysis run in
ill-posed conditions. However, it is worth noting that the use of
a priori knowledge can also address another practical challenge

of ICA decomposition, which is particularly relevant in ill-posed
conditions. In fact a critical choice in ICA algorithms implemen-
tation is the ranking or selection of ICs. A practical challenge is
to select and track the ICs of interest against the background of
non-relevant (or noise) ICs. To address this problem the concept
of either spatial (Lin et al., 2010) or temporal (Esposito et al.,
2003) a priori information has been explored in literature. Other
ways to solve the problem of ranking ICs could be represented
by exploitation of characteristic expected features of the ICs of
interest via a classifier (DeMartino et al., 2007; Soldati et al.,
2009).

In the context of rt-fMRI a priori information may be available
from a localizer scan that elicits aspects of activation that are then
to be tracked dynamically in a subsequent experiment. The priors
can make the mathematical computation of ICA easier, driving
the algorithm initial conditions closer to the basin of attraction
of the target IC. In this simulation study the temporal and spatial
IC priors were determined from the ICA analysis of the full time
series of an independent subject taken from the same group. This
a priori information was incorporated into the ICA algorithms as
an initial estimation of the weighted matrix or as a final constraint
of the shape of the target IC. Due to the intrinsic characteristics
of the ICA algorithms, only a subset of them allowed us to incor-
porate spatial and/or temporal a priori knowledge in the analysis
(see Table 1).

Given the general model of ICA (Calhoun et al., 2001), it is
possible to describe an fMRI ICA problem as Y = AX, where Y is
the data matrix of dimension equal to the number of time points
by the number of voxels; A is a mixing matrix of dimension equal
to the number of time points by the number of ICs; and X is the
matrix of the sources of dimension equal to the number of ICs by
the number of voxels. If we denote with W = A−1 the weighting
matrix (i.e., unmixing matrix), it is then possible to insert a priori
information in the rows of the matrix W directly, if the infor-
mation is temporal (i.e., a time course). In case the expected or
known behavior is spatial (i.e., spatial map) it is possible to con-
struct the W matrix as W = YpinvX where the rows of X, i.e., the
expected spatial maps of the independent sources are known. In
one case [spatially constrained ICA algorithm (Lin et al., 2010)]
the a priori knowledge is not given as initialization of the weighted
matrix but, following the implementation, it is imposed as final
target of the decomposition. In this last case instead of starting
from a point close to the basin of attraction, the constraint means
that the ending point will be close to the basin of attraction. In the
context of rt-fMRI a priori information may be available from the
functional localizer scan that is typically acquired at the beginning
of neurofeedback experiments to define the networks that will be
of interest to track dynamically.

2.5. PARAMETERS ANALYSED IN THE ICA SIMULATIONS
The main purpose of this rt-fMRI simulation study was to inves-
tigate a number of ICA algorithms to find the one that performed
best across subjects using a trade-off of the following parameters:

1. Window length (WL) (i.e., time length of data acquisition)
2. Model order (MO) (i.e., number of ICs)
3. Type of a priori information (none, spatial, or temporal)
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These choices for these parameters are discussed in more details
in the following sections.

2.6. WINDOW LENGTH AND MODEL ORDER
The amount of data that an ICA algorithm uses depends directly
on the number of brain volumes available in the growing time
window, which in turn defines a limit to the maximum number
of ICs that may be computed. As the time WL becomes longer
there may be a more accurate representation of the averaged
dynamic responses of the brain because more data is available.
However, this may come at a cost related to both reducing tem-
poral resolution of the dynamics characterized and increasing the
computation time. Conversely, with shorter windows the charac-
terizations may be faster yet less accurate. In this study we focused
on a growing window approach because we were interested in
finding an optimal WL. For the simulation of each ICA algorithm
the WL was varied between 3 and 12 brain volumes (the full time
series consisted of 220 brain volumes, and 12 TRs approximated
to the hemodynamic delay). For each time WL the number of ICs
was varied between 2 (minimum meaningful value of MO in BSS)
and the actual WL. Moreover, since for computational reasons
the MO must be less than or equal to the WL, the WL minimum
value was set to 3. Thus while increasing the WL all possible MOs
between 2 and WL were evaluated to find the best performing pair
of parameters (WL and MO). Not all the ICA algorithms consid-
ered permitted an arbitrary selection of the number of desired
ICs. Some of them (jade-opac, amuse, Radical ICA, combi, ICA-
ebm, and FBSS) allowed extraction of only the number of ICs that
was fixed for each run and was equal to the number of available
data points. In our case, this means that for these algorithms the
spanned parameter space was represented by a line identified by
the points in the space with equal number of ICs and time WL.

2.7. COMPUTATION TEMPLATE ICs FOR PERFORMANCE EVALUATIONS
Four template ICs were identified on a single subject not included
in further analysis by applying the Infomax ICA algorithm with
20 components on the full time series. Infomax is well known
to fMRI studies as it has been commonly applied and its perfor-
mances shown to be stable and reliable (Calhoun et al., 2004).
Moreover, when applied on task-related datasets, it furnishes
results completely similar to those obtained via application of
SPM (Calhoun et al., 2001; Correa et al., 2007). For this rea-
son, although an absolute accuracy as gold standard cannot be
defined for ICA results, we opted to use it as a relative reference
against which to compare results computed by other algorithms.
In addition, to further reduce bias we decided to eliminate from
the on-line test analysis Infomax itself and all the other ICA algo-
rithms based on the same criteria (semi-blind infomax, radical
ICA, and SDD ICA).

The spatial maps and associated time courses of these networks
were later used as reference and as a priori knowledge options for
the performance evaluation of different ICA implementations, in
particular shorter time series to simulate rt-fMRI conditions.

The task-related networks were the right visuo-motor task
(RVMT) and left visuo-motor task (LVMT), which were selected
by visual inspection using as reference the originally published
results (Calhoun et al., 2003). In addition, the DMN and a NOISE

network were also identified and used as templates for networks
typically present in resting state studies (Robinson et al., 2009;
Soldati et al., 2009). Figure 2 shows sample spatial representations
of the four template networks in a subject.

In our simulation study there could be a potential bias favor-
ing the performance of algorithms that use a priori information
given that the priors are derived in the same way as the reference
templates used for performance estimation: spatial and temporal
ICA for the networks of interest using the Infomax ICA algo-
rithm on the full time series. Two considerations were made to
reduce this bias. Firstly, a random subject was chosen from the

FIGURE 2 | Spatial maps of ICs considered in the simulation obtained

from Group ICA 20 ICs. For ease of visualization only the relevant slices are
reported here. First row depicts default mode network (DMN) and residual
motion artifact (Noise). Second and third rows depict the two task-related
ICs, right visuo-motor task (RVMT) and left visuo-motor task (LVMT).
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group of 8, the spatial and temporal priors were derived from
this subject and used as priors for the other seven subjects. In
this way the priors and reference templates are not identical,
because the latter ones continue to be calculated for each sub-
ject separately. Secondly, the real-time simulation did not use
the Infomax algorithm nor other algorithms based on similar
principles (semi-blind infomax, radical ICA, and SDD ICA)for
performance evaluations.

2.8. EVALUATION OF PERFORMANCE FOR DIFFERENT ICA
IMPLEMENTATIONS

The performance of each ICA algorithm was assessed separately
for each subject (7 out of 8) and network (RVMT, LVMT, DMN,
and NOISE) by systematically sampling the space of algorithm
variables, finding for each variable set the targeted network ICs
and comparing them with the corresponding template networks.

The ICA implementations for each subject and network were
manipulated through the following variables:

• ICA algorithm: 10 out of 14 algorithms listed in Table 1.
• Prior: all 10 algorithms were tested without priors. A subgroup

of four algorithms (fastICA, Constrained ICA, ICA-EBM, and
FBSS) allowed the additional implementation of either spatial
or temporal priors taken from the template ICs.

• Window length (WL): for each algorithm the WL varied from 3
TRs to 12 TRs in a growing window scheme. The lower limit of
3 TRs was chosen as the minimum time course length for which
an ICA can be computed. The upper limit of 12 TRs was chosen
because it is approximate to the hemodynamic response.

• Model Order (MO): for each WL the MO was varied between
2 and WL.

These parameters were manipulated according to an iterative
automatic procedure (Soldati et al., 2010), as schematically shown
in Figure 3. This meant that for each subject (a total of 7 out of 8),

FIGURE 3 | Diagram of adopted method for ICA algorithm comparison.

For one separated subject data are exploited for creating templates using
INFOMAX with model order (ICs) of 20 and window length (WL) equal to
the entire available time course. The ICA algorithms are then tested
iteratively on all the other subjects for each combination of IC and WL.
Results of each computation are compared with templates and evaluated in
terms of spatial similarity and temporal correlation.

network (a total of 4), and ICA algorithm (a total of 18: 10 with
no priors, 4 with spatial, and 4 with temporal priors), 66 ICA
computations were made given that WL spans from 3 to 12 and
for each WL, MO spans from 2 to WL. At each iteration the
extracted IC results were compared with the templates to estimate
the performance of the iteration’s parameters.

The performance of each algorithm was characterized from the
following three parameters:

1. Spatial similarity with template network: the target network
IC was selected automatically by choosing the one with the
highest spatial similarity (i.e., spatial overlap) between the ICs
extracted and the template IC for the corresponding network.
The spatial similarity metric was computed as the absolute
value of

Similarity = a ∗ b

norm(a) ∗ norm(b)
(1)

where a and b are the vectors representing the spatial map
(reshaped to 1D) of extracted and the template IC of interest,
respectively.

2. Temporal correlation with template network: the tempo-
ral correlation between the IC extracted and the template
IC derived was computed, with its statistical significance
(p < 0.05).

3. Computation time: the computation time to extract the ICs
was recorded.

Considering a fixed subject, brain network and ICA algorithm
(with or without prior), the best performing ICA implementa-
tion (choice of WL and MO) was considered the one that gave the
highest spatial similarity with a significant temporal correlation
to the reference network and a computational time below the 12 s
threshold.

3. RESULTS
The proposed method has been applied to characterize the behav-
ior of different ICA algorithms in ill-posed conditions simulating
rt-fMRI manipulating MO, WL, and a priori conditions. The
goal was to find the implementations that would give the best
compromise between computational time and similarity between
the detected IC and the reference IC at minimal computation
time.

The obtained group performance results are reported in
Figures 4–6. These figures report the optimal values of the
parameters obtained without exploiting a priori knowledge
(Figure 4), exploiting spatial a priori knowledge (Figure 5), or
temporal a priori knowledge (Figure 6). From the results it can
be clearly seen how the selected ICA algorithms differed in per-
formance in these extreme conditions. A trade-off of these results
must be obtained to evaluate the winners. In the case of no a priori
knowledge exploitation (Figure 4) erica, evd, amuse, and partially
fastICA seemed to be the more suitable algorithms given their
particularly low computational time, with fastICA and evd being
the best performing also with respect to spatial and temporal
similarity to the reference template.

When considering spatial (Figure 5) and temporal (Figure 6)
a priori knowledge only 4 of the 10 considered ICA algorithms
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FIGURE 4 | Results of the best performing runs (mean across subjects)

for all available ICA algorithms for a growing length of time window up

to 12 TRs and no a priori information considered. For each ICA algorithm
the values of similarity (Sim), computational time (CT), temporal correlation
(TC), model order (MO), and window length (WL) w.r.t. four reference ICs
representing brain activities of interest (Figure 3), are reported for the same

optimal condition identified. It is worth noting that here is reported a total of
8 algorithms out of 14 given that Infomax and all those algorithms based on it
(semi-blind infomax, radical ICA, and SDD ICA) are excluded from the on-line
simulations. Moreover constrained ICA has been excluded since it cannot
work without a priori knowledge. Finally SIMBEC proved itself to not respect
the constraints on computational time, thus it has not been included.

FIGURE 5 | Similar to Figure 4, but considering only the algorithms which permit the inclusion of spatial a priori knowledge.

allowed the evaluation of a priori information. Constrained ICA
and FBSS were the fastest algorithms, while fastICA, though
slower, obtained a slightly higher overall performance in com-
puting similarity metrics. A comparison between Figures 4 and 6

shows the advantages of using prior information with some of
the tested algorithms. In particular, for FBSS the computational
time improved by a factor of more than two with either spatial
or temporal a priori information keeping the same performance
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FIGURE 6 | Similar to Figure 4, but considering only the algorithms which permit the inclusion of temporal a priori knowledge.

in terms of spatial and temporal correlation. Also, with the use of
a priori information the fastest algorithm (constrained ICA, com-
putation time < 0.15 s) was about two orders of magnitude faster
than those giving comparable spatial similarities without priors. It
is worth noting that the results varied across different monitored
networks, i.e., tasks.

4. DISCUSSION
The aim of the present study was to evaluate the performance of
ICA algorithms in ill-posed conditions, i.e., with a small amount
of data availability and constraints on computational time. The
issue here was to understand if it is possible to adapt an ICA
algorithm to a non-ideal environment, as presented in Esposito
et al. (2003). Moreover the analysis was extended to investigate
which ICA algorithm was more suitable to this kind of con-
ditions from the perspectives of monitoring a brain activity of
interest.

Our goal was to explore the performance in terms of
ability to reach the spatial and temporal network character-
istics that could be derived from the full dataset in a stan-
dard off-line analysis. Thus, we assumed as reference template
the optimal results obtained via a single subject ICA with
all time-points available, a MO of 20 and using the info-
max algorithm, considering stochastic differences not critical.
Another intrinsic issue is that the differences in results between
off-line and ill-posed conditions can be related not only to
computation, but also to the extraction of dynamic behavior
with respect to the stationary behavior typically extracted by
off-line ICA.

One issue that deserves special consideration is circularity. The
use of a validating reference template obtained from the same
data used in the simulations did not introduce circularity issues
since we are in principle just checking that the same informa-
tion can be extracted in different ways, with only differences due
to noise.

A practical issue to consider is that the high dimension-
ality of the parameter space results in a high computational
load for running simulations spanning the entire multidimen-
sional parameter space. The best performance can be evalu-
ated in a trade-o perspective, since different combinations of
parameters can give similar results. The consequence is that
performance optimization is heavily connected to the practi-
cal application and conditions in which the ICA algorithm is
adopted.

Relying on these elements, we performed a direct compari-
son of different algorithms, defining a cluster of algorithms on
the basis of the manipulability of the parameters that they offer
(Table 1). In fact the tested ICA algorithms can be divided into
three groups: those which accept setting of MO and a priori
knowledge (i.e., infomax, fastICA, and semi-blind infomax),
those which accept neither setting of MO nor a priori knowledge
(i.e., jade-opac, amuse, radical ICA, and combi), and those which
accept only one of the two (i.e., erica, simbec, evd, constrained
ICA, ICA-ebm, and FBSS). These constraints are intrinsic to the
publicly distributed algorithms. It is beyond the scope of this work
to try to change any of the algorithms to eventually make them
more flexible. The more flexible algorithms (i.e., those accepting
full manipulability of parameters) will, however, not necessarily
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be better, since the most rigid could be the most adaptable for
specific circumstances. Putting everything in a rt-fMRI experi-
ment perspective, it is possible to distinguish the algorithms on
the basis of the tasks and conditions they must face. Those algo-
rithms which do not accept any a priori knowledge could work
very well to define the target networks from the functional local-
izer step that usually precedes a rt-fMRI acquisition, a step in
which a priori knowledge may not be necessary or even available.
For this use it is possible to permit a higher computational load,
since usually the localizer part of an experiment can have more
time allocated. The algorithms that tended to be more suitable
for this use were evd and amuse, which resulted in particularly
fast computation, with evd performing slightly better. The jade-
opac and fastICA algorithms also performed well but at the cost of
a higher computational time (Figure 5). The results showed that
the use of a priori knowledge can drastically improve computa-
tion time and spatial similarity to a target IC. This suggests that
use of priors may be crucial in the dynamic analysis part of the rt-
fMRI experiment, where any information from the localizer can
be exploited to speed up the process and increase accuracy. From
this point of view the flexibility of the ICA algorithm is essential.
Thus among the algorithms which accept a priori knowledge, con-
strained ICA provided the optimal solution, followed by fastICA
(Figures 5 and 6).

For completeness, it is important to analyze the values of the
two parameters growing WL and MO for the previously reported
best performing algorithms. In an on-line perspective these values
are related to the time needed to elapse before obtaining the first
real-time result or step updating. This means that the longer the
window and the higher the MO, the more time will pass before the
availability of results. This is critical for the on-line computation,
since the scale of the resolution in monitoring the brain dynamics
will be directly associated to that.

Another observation is related to the type of brain activ-
ity monitored (i.e., if it represents a resting state brain activity,
a task-related activity or physiological noise). Monitoring ICs
with different origins conveys different information. Cross-task
variability can be due to the fact that the less the variance of
data is explained by the IC, the more difficult it is to extract,
especially with a decreased amount of data available. For this
reason ICs whose rank is low in a full-data ICA decomposition
are critical to identify in the ill-posed conditions. Nonetheless,
as the simulations showed, they can still be at least partially
captured.

The periodicity of the ICs of interest affects the choice of
optimal parameters. The DMN deserves particular considera-
tions due to the low frequency nature of its sources (Damoiseaux
et al., 2006). Its identification, despite being easily done by data-
driven algorithm, is dramatically harder in ill-posed conditions
given that its periodicity is significantly longer than the WL.
This results in difficulties in observing its full dynamic. Given
these new dimensions (type of brain activity and periodicity) it
was possible to see that different algorithms had different effec-
tiveness in adequately identifying brain activity coming from
different kinds of sources. It can be seen that the same algo-
rithm could outperform all the others in detecting task-related
activity, while suffering in dealing with non-structured noise or,

vice versa, as for example it happened in the case of evd and
jade-opac, or evd and combi with no a priori knowledge. The
same reasoning holds for the use of a priori knowledge. Even
if in this case not all algorithms permitted the introduction of
a priori knowledge in performing the ICA decomposition, for
those which accepted this input the performance varied consider-
ing different target sources. Indeed fastICA and constrained ICA
alternated best performance, with constrained ICA performing
slightly better overall.

Additional ambiguity comes from the stochastic nature of
most ICA algorithms, resulting in different runs of ICA deliver-
ing slightly different results. This is due to the search procedure
of final results optimization, which could result in the algorithm
being trapped in a local minima. Another observation can be
related to the computational time of ICA decomposition: in gen-
eral it grows linearly with the increase of the WL, and this can be
easily justified by the fact that the more data are to be processed
the more time it takes. But as the data become more descriptive
of the source to be extracted, the algorithm is able to extract the
source more easily, thus reducing the computational time needed,
independently of the data length.

One limitation of this study is that the adopted implementa-
tions of ICA algorithms are not directly optimized for ill-posed
conditions. This opens the door to further development ori-
ented toward their methodological and algorithmic optimization,
which would make them more efficient and flexible. Nonetheless,
this work demonstrates a methodology for evaluating differ-
ent ICA implementations for the purpose of finding the ICA
algorithms and analysis parameters for the optimal detection
of a target brain network under ill-posed conditions. Further
experiments are needed to evaluate the performance of ICA
implementations on larger datasets and also other networks.

Another element to be taken into account is the relatively small
number of subjects adopted in the simulations (8) and reduced
number of brain networks studied (visual, motor, and default
mode). These constraints result from the use of a dataset whose
behavior is well known in the ICA domain and which could con-
firm the stability and validity of obtained results. Nonetheless, this
work demonstrated a methodology for evaluating different ICA
implementations for the purpose of finding the ICA algorithms
and analysis parameters for the optimal detection of a target
brain network under ill-posed conditions. Further experiments
are needed to evaluate the performance of ICA implementa-
tions on larger datasets, other brain networks and experimental
conditions.

The results of this study can be used to evaluate ICA imple-
mentations for the dynamic analysis of fMRI data. In particular,
in a potential rt-fMRI perspective, the best performing ICA algo-
rithm without the use of a priori knowledge can be adopted to
analyze the functional localizer data in a data-driven way. In this
approach the target ICs to be then followed dynamically in the
real-time experiment are defined without considering spatial or
temporal constraints. The sources defined by the functional local-
izer can then be used in different algorithms that include a priori
spatial, temporal or spatio-temporal knowledge for the dynamic
monitoring of target ICs in a rt-fMRI experiment, such as for
neurofeedback.
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5. CONCLUSION
In this paper we presented an extensive comparison of ICA algo-
rithms under the constraints to have a fast decomposition with
a small amount of data available (ill-posed condition). The aim
of ICA is to exploit the multivariate nature of data-driven meth-
ods to perform a whole-brain analysis. Here we have shown that
ICA can satisfactory work in ill-posed conditions with results
which are similar and thus acceptable with respect to the off-
line implementation. In our comparison we found that several
ICA algorithms (evd, amuse, fastICA , and constrained ICA) can
be adopted in ill-posed conditions and thus can be exploited for
dynamic analysis of fMRI data. The best performing algorithms
(evd and constrained ICA) were also shown to be useful in terms
of robustness against errors in parameters, and fast in terms of

computational time. this opens the door to their exploitation in
applications such as rt-fMRI, both as functional localizers and for
on-line dynamic analysis. Adoption of these methods would be
useful for experimental designs such those known as neurofeed-
back experiments, although further work is needed to implement
a fully real-time ICA method for fMRI data analysis.
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Real-time brain functional MRI (rt-fMRI) allows in vivo non-invasive monitoring of neural
networks. The use of multivariate data-driven analysis methods such as independent
component analysis (ICA) offers an attractive trade-off between data interpretability and
information extraction, and can be used during both task-based and rest experiments.The
purpose of this study was to assess the effectiveness of different ICA-based procedures to
monitor in real-time a target IC defined from a functional localizer which also used ICA. Four
novel methods were implemented to monitor ongoing brain activity in a sliding window
approach. The methods differed in the ways in which a priori information, derived from
ICA algorithms, was used to monitor a target independent component (IC). We imple-
mented four different algorithms, all based on ICA. One Back-projection method used ICA
to derive static spatial information from the functional localizer, off-line, which was then
back-projected dynamically during the real-time acquisition.The other three methods used
real-time ICA algorithms that dynamically exploited temporal, spatial, or spatial-temporal
priors during the real-time acquisition.The methods were evaluated by simulating a rt-fMRI
experiment that used real fMRI data. The performance of each method was character-
ized by the spatial and/or temporal correlation with the target IC component monitored,
computation time, and intrinsic stochastic variability of the algorithms. In this study the
Back-projection method, which could monitor more than one IC of interest, outperformed
the other methods. These results are consistent with a functional task that gives stable
target ICs over time.The dynamic adaptation possibilities offered by the other ICA methods
proposed may offer better performance than the Back-projection in conditions where the
functional activation shows higher spatial and/or temporal variability.

Keywords: real-time fMRI, ICA, a priori knowledge, dynamic monitoring, adaptive algorithms

INTRODUCTION
Real-time fMRI (rt-fMRI) is an emerging neuroimaging tool based
on the estimation of brain activity in real-time (typically around
1–2 s; Weiskopf et al., 2004, 2007; deCharms, 2008; LaConte, 2011).
This tool can be used not only for overall monitoring of fMRI data
quality (Weiskopf et al., 2007) but also for manipulating the cogni-
tive state of the subject based on their own brain activity (Shibata
et al., 2011). The neurofeedback approach has been used in various
fields of cognitive neuroscience such as attention (Thompson et al.,
2009) and emotion (Posse et al., 2003). Neurofeedback approaches
have also been used with rt-fMRI in clinical research, such as the
study of control of chronic pain (deCharms et al., 2005) and the
control of craving (Chiu et al., 2010; Anderson et al., 2011).

Since its advent, rt-fMRI has had to face a number of techni-
cal challenges, mainly due to the computational load of the data
analysis which directly competes against the goal of providing
real-time feedback (i.e., <1 TR). However, recent technological

advancements have provided a way to overcome this issue by mak-
ing large scale computations possible even on standard platforms
(Weiskopf et al., 2007; Weiskopf, 2012). These technical advances
have enabled us to shift our focus of attention from technical issues
to data analysis aspects.

The usual goal of a real-time system is to permit the iden-
tification and monitoring of an activity of interest during its
ongoing development and actuation. The identification is defined
as an initialization phase where the real-time analysis and derived
spatial-temporal features to be monitored are defined, usually with
a functional localizer (FL) or a classification training step (LaConte
et al., 2007). The monitoring represents the execution of the on-
line analysis of the event of interest and the real-time delivery of
results that can eventually operate on the stimulation paradigm.
From a conceptual point of view, it is thus possible to discriminate
the identification and monitoring phases and to develop different
algorithms and strategies to deal with them.
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The initial and still most common analysis framework for rt-
fMRI is based on univariate hypothesis-driven approaches, with
adaptation of standard algorithms, such as the general linear
model family (GLM), to the real-time domain (Cox et al., 1995;
Gembris et al., 2000; Hinds et al., 2011). These methods are
common mostly because they are associated with ease of inter-
pretability and fast computation. In these approaches both the
identification and monitoring phases are typically implemented
using hemodynamic response-based models of the expected cog-
nitive tasks and eventual nuisance variables taking place during
the rt-fMRI experiment.

Another family of data analysis techniques is represented by
the multivariate data-driven algorithms, which have shown a great
capability of exploiting the full information content intrinsically
present in the data to be analyzed without assuming the explicit
shape or timing of the hemodynamic response to a stimulus (McK-
eown et al., 1998; Mouro-Miranda et al., 2005; Norman et al.,
2006). The driving motivation behind these methods is that they
allow characterizing functions that may not be detectable without
exploiting both second order (variance) and higher-order sta-
tistics, thus relying on a greater amount of information. These
properties make the multivariate data-driven techniques very
appealing for use in the real-time domain. Within this concept sev-
eral machine learning algorithms have been successfully adopted
and exploited in the real-time data analysis framework. The most
successful implementations are based on support vector machines
(SVM; LaConte et al., 2007; Magland et al., 2011; Sitaram et al.,
2011). SVM provides a powerful solution to a number of applica-
tions that are subject specific, at the cost of training the classifier
and imposing some interpretability issues on the results. In this
context, the two phases of the canonical rt-fMRI framework are
represented by the two steps of a classifier, i.e., the first phase is
the training of the classifier, and the second phase is the test or
execution of the classifier (i.e., the classification itself).

In addition to SVM, independent component analysis (ICA),
another multivariate data-driven technique, has proven to be very
effective in fully exploiting the complete amount of informa-
tion which is present in the data. ICA enables the extraction of
knowledge other than that merely modeled in a classical uni-
variate approach (Hyvrinen and Oja, 2000; Calhoun et al., 2001;
Beckmann and Smith, 2004). Furthermore, ICA methods can also
be applied in a series of problems for which univariate inference
cannot offer a solution, i.e., in experiments that lack a regressor
model to be adopted in the univariate analysis. This is the case for
resting data analysis or also experiments with particular patient
populations (Calhoun et al., 2009).

The idea of translating ICA properties to a real-time implemen-
tation was firstly proposed by Esposito et al. (2003) in a seminal
paper and implemented as a plug-in in Turbo Brain Voyager soft-
ware (Goebel, 2012). In this initial work the authors presented
a FastICA based rt-fMRI analysis tool exploiting precise design
choices and including an identification phase and a monitoring
phase. The first identification phase solved the problem of rank-
ing ICs of interest, i.e., a canonical univariate functional localizer
step was implemented to define areas of interest. Other ways to
solve the problem of ICs ranking could be represented by exploita-
tion of expected characteristic features of the ICs of interest via a

classifier (DeMartino et al., 2007). The second monitoring phase
used on-line execution of FastICA (implemented in a sliding win-
dow fashion) for extracting different ICs. The ICs were ordered on
the basis of their spatial overlap with the IC of interest, which in
this case consisted of single-slice representation of motor activity
derived from a finger tapping localizer.

The work presented by Esposito et al. (2003) was recently
extended to evaluate the performance of 14 different ICA algo-
rithms considering as additional variables the model order and
different types of a priori knowledge (spatial/temporal; Soldati
et al., 2013). This work showed that ICA algorithms such as EVD,
amuse, jadeopac, and FastICA were suitable when implemented
in the identification phase via a functional localizer since they
performed well even without extensive use of a priori knowl-
edge. It is interesting to note that FastICA algorithm represented
a good trade-off and its performance was valid in both functional
localizer and dynamic monitoring phases. Other algorithms like
constrained ICA performed worse without a priori knowledge and
may thus be more suited for the dynamic monitoring phase due
to their ability to incorporate a priori knowledge. Such a priori
knowledge may help guiding the algorithm to detect a specific tar-
get IC with higher priority over the other ICs present in the data.
However, there are several types of prior information that are avail-
able including spatial domain, the temporal domain, or both, and
any of these could be used in different ways (as constant references
from a localizer or derived dynamically). It is however not clear
how these various ways of using priors may affect the performance
of the results both in terms of computation time and correlation to
a reference optimal ICA. Moreover, the ICA algorithm (FastICA)
is stochastic, which means that multiple repetitions of the analy-
sis on the same dataset can give slightly different results, both in
the spatial and temporal domains. The problem has been exten-
sively discussed in the literature, with one of the main proposed
solutions being based on multiple ICA runs and clustering of the
obtained components, with the aim of reducing the issue of sto-
chastic variability (Himberg et al., 2004). Such instabilities can
be characterized by the standard deviation of the derived (STD)
results (spatial and/or temporal) when the analysis is repeated
multiple times on the same dataset. The STD can be considered
as a stability performance parameter of the algorithm, lower STD
algorithms corresponding to more stable ones. This parameter
may be particularly relevant if different ICA-based algorithms are
to be considered and compared for real-time fMRI, where the
analysis is repeated dynamically during data acquisition.

This study extends previous work (Esposito et al., 2003) in two
ways. Firstly, the target IC to be monitored dynamically is identi-
fied from a functional localizer using an ICA-based method instead
of using a GLM of the hemodynamic response. This approach
allows the full analysis pipeline to be multivariate and data-driven.
Secondly, novel ICA-based algorithms are proposed that introduce
different types of a priori knowledge for the dynamic monitoring
of ongoing fMRI activity. The main goal of this study was to eval-
uate how these algorithms perform with respect to an off-line ICA
analysis after the acquisition is complete. The a priori information
considered was either temporal, spatial, or both spatial and tem-
poral. In addition, the a priori information was considered both
in its static version when derived from the functional localizer, as
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well as dynamic when estimated recursively as the sliding window
progresses over the time course throughout the run. The different
ICA-based analysis methods proposed here were tested by arti-
ficially simulating a real-time fMRI experiment using real fMRI
data from a visual motor study (Calhoun et al., 2001). The origi-
nal data used is unrelated to a real-time fMRI experiment, but was
adopted because it is public and offers robust functional activation
in well-known anatomical areas. The measures of performance to
compare the various real-time methods were based on the follow-
ing three metrics: (i) spatial and/or temporal correlation between
the independent component (IC) estimated dynamically and the
target IC derived from the localizer, (ii) computation time, and
(iii) intrinsic stochastic variability of the algorithms as estimated
from multiple analysis runs.

MATERIALS AND METHODS
DATASET
One of the aims of this work was to test a variety of ICA imple-
mentations in a fashion which can be directly applied to real world
conditions. For the simulation of the rt-fMRI experiment we used
a dataset coming from a real publicly available fMRI experiment,
with tasks that show robust activation in well-known brain net-
works. We chose to use the data that comes as part of the GIFT
package (Calhoun and Adali, 2006) because the ICA characteriza-
tion of the task-induced activation networks was extensively tested.
The dataset is thus publicly available and in the release it is stated
that The Johns Hopkins Institutional Review Board approved the
protocol and all participants provided written informed consent.

Imaging parameters
Scans were acquired on a Philips NT 1.5-T scanner. A sagit-
tal localizer scan was performed first, followed by a T1-
weighted anatomic scan [repeat time (TR)= 500 ms, echo time
(TE)= 30 ms, field of view= 24 cm, matrix= 256× 256, slice
thickness= 5 mm, gap= 0.5 mm] consisting of 18 slices through
the entire brain including most of the cerebellum. Next, we
acquired functional scans over the same 18 slices consist-
ing of a single-shot, echoplanar scan (TR= 1 s, TE= 39 ms,
field of view= 24 cm, matrix= 64× 64, slice thickness= 5 mm,
gap= 0.5 mm, flip angle= 90˚) obtained consistently over a 3-
min, 40-s period for a total of 220 scans. Ten “dummy” scans were
performed at the beginning to allow for longitudinal equilibrium,
after which the paradigm was automatically triggered to start by
the scanner.

Experiment setup
The GIFT package contains three subjects example data-sets that
employ a visuo-motor paradigm derived from other studies (Cal-
houn et al., 2001). The paradigm contains two identical but
spatially offset, periodic, visual stimuli, shifted by 20 s from one
another. The stimuli consisted of an 8 Hz reversing checker-board
pattern presented for 15 s in the right visual hemi-field, followed by
5 s of a central asterisk fixation, followed by 15 s of checker-board
presented to the left visual hemi-field, followed by 20 s of a central
asterisk fixation. The 55 s set of events was repeated four times for
a total of 220 s. The motor stimuli consisted of participants touch-
ing their thumb to each of their four fingers sequentially, back and

forth, at a self-paced rate using the hand on the same side on which
the visual stimulus is presented.

Pre-processing
The images were first corrected for timing differences between
the slices using windowed Fourier interpolation to minimize the
dependence upon the reference slice chosen. Next, the data were
imported into the statistical parametric mapping software pack-
age, SPM99. Data were motion corrected, spatially smoothed with
a 6 mm× 6 mm× 10 mm Gaussian kernel, and spatially normal-
ized into the standard Montreal Neurologic Institute space. The
data were slightly subsampled to 3 mm× 3 mm× 5 mm, resulting
in 53× 63× 28 voxels.

In this study the pre-processing steps were not included as part
of the real-time fMRI simulations for several reasons: (i) the pre-
processed and not the raw data are publicly available as part of
the GIFT package (Calhoun et al., 2001) thereby being a reference
starting point for various analysis tools, (ii) these pre-processing
steps can be performed in real-time as several review studies
describe (LaConte, 2011; Caria et al., 2012; Maclaren et al., 2013),
(iii) the focus of this simulation study was on the data-driven net-
work characterization through various real-time algorithms. For
these reasons, and to keep a manageable number of variables in this
study we limit our simulations to the manipulation of real-time
analyses that follow the standard pre-processing steps.

TOOLBOX AND PC
The entire simulation work was based on an in-house implemen-
tation with MATLAB (2010) of the tested algorithm based on the
code of GIFT toolbox (Calhoun and Adali, 2006). Given the ICA
algorithms code present in the toolbox, all the data analysis steps
(presented in Materials and Methods section) were implemented
in an automatic fashion to permit a testing routine to be run by
varying parameters, techniques, a priori knowledge, and different
subjects. The PC adopted to run the simulations was an Intel(R)
Core(TM) i5 CPU M460 @ 2.53 GHz equipped with 6 GB of RAM
and running a Windows 7 64-bit OS.

ICA MATHEMATICAL PRELIMINARIES
Since all the methods share a common core based on ICA princi-
ples, we briefly recall the main concept associated with the ICA.
Let’s assume that we have a set of fMRI measurements Yi where
i= 1, . . ., v is the index of voxels and each Yi is a vector of yij

elements, where j= 1, . . ., t is the index of time points. The entire
dataset can thus be represented as a matrix Y of dimensions time
points by voxels. Now, let’s assume that the signal measured in
the dataset is generated by a subset of n underlying sources which
are linearly mixed and summed up. This reflects in the following
canonical formulation using the vector-matrix notation.

Y = AX (1)

where Y is the acquired data matrix of dimension equal to the
number of time points by the number of voxels, A is the mix-
ing matrix of dimension equal to the number of time points by
the number of sources to be recovered and X is the matrix of
the sources (i.e., ICs) of dimension the number of sources by the
number of voxels. Each jth row of Y is a vector yji=1:v representing
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an fMRI volume in a jth time point and is thus obtained by
the linear weighted combination of hidden sources spatial maps
yj= aj1x1+. . .+ ajnxn∀j. This means

Y =
n∑

j=1

aj xj (2)

Given this definition and assuming that the sources xn are
mutually independent, it is possible to recover those hidden
sources by computing an estimation of the unmixing matrix
W=A−1 such that

X = WY (3)

is an estimate of the sources. The estimation of W can be obtained
via different algorithms, leading to different ICA implementations
with different properties and effectiveness (see Bell and Sejnowski,
1995 for details). In this paper the selection of FastICA (Hyvrinen
and Oja, 2000) as the core ICA algorithm has been driven by a
recent study that compared the performance of 14 different ICA
algorithms, and found FastICA to be amongst the most stable
ones (Soldati et al., 2013). The FastICA algorithm exploits the
non-Gaussianity as a metric of independence of the sources. This
means, in the simplified iterative algorithm for several units, that
the estimation of W is obtained through the following steps

1. initialize randomly W
2. given W = W√

‖W W T‖

3. repeat until convergence W = 2
3 W − 1

2 W W T W and step 1–3.

Other approximations of the solution can be obtained, but a
detailed description of the methods to obtain FastICA decompo-
sition is anyway beyond the scope of the present paper.

ANALYSIS FRAMEWORK
The purpose of our analysis was to perform an extensive com-
parison between the standard off-line ICA analysis and several
novel on-line ICA methods. The main goals of this study were to
evaluate the feasibility of on-line ICA and identify the best per-
forming algorithm from those proposed. For the purpose of our
rt-fMRI simulations we proceeded with three different stages: cal-
culation of reference ICs for performance evaluation, calculation
of the target ICs from a functional localizer, and estimation of
a dynamic IC on real-time. The first stage used FastICA on the
complete fMRI time series to identify spatial and temporal IC
templates from the networks that were later monitored dynami-
cally. These templates were derived from the full dataset so they
were in this sense considered as gold standard references against
which the dynamically extracted components were later compared
for spatial-temporal accuracy evaluations. The second and third
stages were more strictly related to the rt-fMRI simulations. The
second stage simulated a functional localizer (FL) session by taking
the first 60 TRs of the fMRI time series. FastICA was used on the
simulated FL to extract target ICs that was later monitored dynam-
ically. The third stage represented the real-time fMRI simulation,
the on-line ICA decomposition that used the information coming

from the simulated FL. This last stage of real-time ICA decomposi-
tion was performed using the different novel techniques proposed
and described in the next subsections.

The proposed framework for performing rt-fMRI used a mul-
tivariate and data-driven approach schematically presented in
Figure 1. The general structure and workflow can be outlined
as follows: (1) The MR data acquired by the scanner was stored
during acquisition and made available to the data analysis system
as soon as the images were reconstructed. (2) At the beginning of
the experiment a short period (typically about 5 min or less) was
devoted to acquire data from a FL. In the proposed framework the
FL data was analyzed using a blind (unconstrained) ICA algorithm
to preserve the multivariate data-driven advantages. Others used
univariate methods at this stage (Esposito et al., 2003). (3) An IC
of interest was selected from the FL analysis, this IC became the
data-informed multivariate ROI whose activity was meant to be
monitored dynamically. (4) The IC of interest, along with pos-
sible a priori information, could be incorporated in the rt-ICA
data analysis algorithm. The ICA algorithm used a sliding win-
dow approach and a blind source extraction (BSE) perspective to
deliver results at each TR while updating the best match to the
target component. This monitored component or other a priori
knowledge was then provided recursively to the algorithm, which
extracted the actual version of the monitored IC updated by the
actual values of data. (5) The monitored IC could be used as in
classical rt-fMRI paradigms for visualization, neurofeedback, or
brain computer interfaces. The component selected in real-time
was the one that has a spatial map which maximally correlates with
the reference spatial map component identified during the Func-
tional Localizer (FL) step. The spatial FL component corresponds
in turn to the FL component whose temporal correlation with the
timing of the paradigm was highest.

In this study two main different approaches were investigated
to dynamically extract in real-time a target IC: static methods
based on Back-projection and dynamic methods based on iter-
atively performed ICA. In particular, for the dynamic methods,
FastICA, and constrained ICA were updated for a sliding window
real-time fMRI implementation. The size of the sliding window
was fixed and it was chosen based on previous work that sys-
tematically evaluated the performance of multiple ICA algorithms
as function of window length amongst other variables (Soldati
et al., 2013). This study showed that the sliding window length
that gave the optimal trade-off between computational speed and
spatial/temporal correlation with the results from the whole time
course was approximately equal to the period of the behavioral task
to be monitored. In our experiment this could be approximated
to around 30 s, i.e., 15 TRs. It is worth noting that the size of this
window, as pointed out in the discussion, was strongly related to
the period of the behavior to be monitored.

Template creation and accuracy estimation
To estimate the accuracy of one technique in correctly describ-
ing a monitored IC at one arbitrary time point we generated
task related network templates which represented the principal
spatial and temporal characteristics of the ICs to be monitored
during the simulation. These templates of task related ICs were
thus taken into account as reference data to evaluate the quality
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FIGURE 1 |The experimental design framework. In this structure it is
possible to identify two main phases (or steps). The first step is to identify
what to monitor, i.e., performing a Functional Localization. This can be done

with or without incorporating some kind of a priori knowledge. The second
step is to monitor the phenomenon we identified in the previous step using a
suitable on-line analysis method.

of rt techniques. This evaluation was obtained via comparing the
dynamically reconstructed ICs with these templates using tempo-
ral correlation and spatial overlap. To create the templates an ICA
analysis was performed on the single subject level by considering all
time points (i.e., 220 TR), but using FastICA with the same model
order to be used in the on-line implementation (i.e., 5). Three dif-
ferent target ICs were manually selected to simulate their dynamic
monitoring see Figure 2: two task related components (RVMT and
LVMT) and the task-induced default mode network (DMN).

Functional localizer
In a rt-fMRI experiment the functional localizer could be used to
identify the IC to be later dynamically monitored. For the analysis
of the FL we considered the use of whole brain ICA to maintain a
multivariate data-driven method. Previous simulations suggested
that the ICA analysis of the FL data is most accurate when using
algorithms such as evd, jadeopac, or FastICA (Soldati et al., 2013).
We thus performed the FL applying the FastICA algorithm with
a model order of 5, the same algorithm used in the template cre-
ation, to the first 60 TRs of the time series. With the application of
FastICA as FL an unmixing matrix W was estimated of dimension
5 by number of time points. Each row of the matrix represented
a time course of a hidden source, and the associated row of the
X derived matrix represented the corresponding spatial map. The
target IC to be monitored was then automatically selected as the
one whose spatial map maximally correlated with the reference
template and was monitored later dynamically with the on-line
techniques. In this study three components were extracted from
the FL for separate evaluations in the dynamic monitoring: the
default mode network, the right, and left hemisphere visual motor
networks activated by the cognitive task.

On-line techniques
In this section we present the main developed work, that is the
methods implemented to perform the on-line monitoring of the
sources. To simulate the on-line ICA analysis, coming after the FL,
the rest of the time course (i.e., 220–60 TRs) was used to dynam-
ically monitor the FL-derived target ICs using a sliding window
approach. Given that the target was to properly exploit the a priori

FIGURE 2 |The monitored ICs. An illustrative example of the monitored
ICs is reported. Spatial maps of ICs considered in the simulation are
obtained from Group ICA 20 ICs. For ease of visualization only the relevant
slices are reported here. First column depicts Default Mode Network
(DMN). Second and third columns depict the two task related ICs, Right
Visuo-Motor Task (RVMT) and Left Visuo-Motor Task (LVMT).

knowledge, different approaches to combine this knowledge and
the ICA algorithms were developed. In a comprehensive perspec-
tive all the possible combinations were explored. Starting from
the concept of sliding window ICA as it was presented by Espos-
ito et al. (2003), more sophisticated and different methods were
implemented. The target was to obtain an actual temporal value
of the activation of interest and/or an actual spatial map of this
component. Two main criteria were the guidelines in these imple-
mentations, that is the dynamic of the data and the type of a priori
knowledge. The dynamic criterion means how much novel infor-
mation is exploited and weighted into the on-line method, while
the type of information exploited denote the nature of the a priori
knowledge, i.e., temporal, spatial, or both. The implementation
exploited state of the art ICA algorithms (FastICA, Constrained
ICA) with the target of making the implementation easy to reply
and distribute.

The following subsections present the details of the different
on-line monitoring techniques proposed.

Static method: back-projection. The basic assumption behind
this static method was that the brain activation of interest main-
tains its basic characteristics, in particular its spatial map (SM),
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relatively stable during the fMRI experiment. If this assumption
holds, the spatial ICA performed in the FL step is enough to extract
a precise representation of that spatial map that will be later tracked
dynamically during the real-time experiment. ICA would be in fact
able to create a space described by the directions of the extracted
ICs that is fairly representative of the brain state during the perfor-
mance of the task of interest. Given this assumption, the SM of an
IC of interest obtained from the FL can be kept fixed and it should
then be possible to simply back project each newly acquired vol-
ume of data into this space (i.e., onto the SM of the IC of interest)
to be able to quantify the contribution of the new data to the brain
activity of interest. This means that no ICA analysis must be per-
formed in real-time, and the results will only depend on the ICA
performed in the Functional Localizer session. This contribution
will thus represent the time course of the IC. In more detail, the
processing steps can be outlined as follows:

1. FastICA was used on the FL to estimate an unmixing matrix
W=A−1 and thus the associated SM of the sources XnIC,v with
nIC equal to the number of extracted components (5 in this
case) and v equal to the number of voxels.

2. The SM of the desired component was then chosen as the source
whose associated time course was the most correlated to the
task of the FL, that is we have XnIC=sel,v. The chosen spatial
map was therefore an independent component computed by
the FastICA algorithm, which gives it unitary variance and null
mean value characteristics.

3. At this point, for each newly acquired volume Yith of dimension
one by number of voxels we could compute:

aith = Yith X
†

nIC=sel ,v (4)

where aith is the actual single time value of the IC of interest and
† denotes the pseudo-inverse. It is worth noting that this can be
straightforwardly extended to cases in which multiple compo-
nents are monitored simultaneously via parallelizing equation
(4) for different SM or obtaining a meta-SM via combining
different SM, i.e., X matrices.

Dynamic method: recursive temporally constrained. This algo-
rithm is a direct extension of that used by Esposito et al. (2003).
The main differences are that here it was applied to the whole
brain and that the computation of a priori temporal knowl-
edge was not model-driven, but it was rather data-driven and
obtained with an approach based on the previously presented
Back-projection method. The actual difference with the previ-
ously presented Back-projection method, in which the SM was
static, was that we obtained an actual updated dynamic SM via
iterative ICA computation. The details of the method are as
follows:

1. From the FL a SM was obtained, which was used as in Back-
projection method to obtain temporal a priori information in
subsequent steps

2. During the experiment
(a) using the Back-projection the time course of the brain

activation was extracted

(b) a FastICA algorithm with model order 5 and time window
length 15 TR was applied to the data with a sliding win-
dow approach. The FastICA was temporally constrained
using the a priori temporal constraint (obtained using the
Back-projection) to initialize the mixing matrix A.

In practice a sliding window of dimension ∆ was updated
for each newly acquired volume n leading to a matrix Y [n-∆,n],v

of dimension ∆ by number of voxels. This matrix and the SM
obtained in the FL step (i.e., XnIC=sel,v) were used to extract a time
course in a data-driven way in the same fashion as for the Back-
projection algorithm, resulting in a time course an of dimension
nTP by one. With the actual data matrix Y [n-nTP,n+nTP],v and the
time course an it was then possible to apply FastICA to extract the
actual SM of the component of interest. This was done by initial-
izing the first entry of the W matrix with the inverse of an, given
that W=A−1, in the routine presented in the ICA mathematical
preliminaries section. The result was the actual SM IC (i.e., Xnew)
present in the data whose behavior was closest to the reference time
course. In other words the extracted IC was constrained to be as
close as possible to the reference one at the initial step, permitting
a much more dynamic computation of the IC and thus update of
the monitoring. In this approach the SM was dynamically updated
each time a new volume was acquired.

Dynamic method: recursive spatially constrained. As in the
previous method, also in this dynamic method, the on-line mon-
itoring required a continuous update of the ICA decomposition
matrix. There were two main differences with respect to the RTC
method: (i) the ICA algorithm was a spatially constrained ICA (Lin
et al., 2010), and (ii) the a priori knowledge was spatial instead of
temporal. In this approach, the knowledge of an a priori SM of
the IC of interest (obtained by the FL) permitted constraining the
computation of the ICA algorithm. The constrained ICA algo-
rithm was applied on time windows of data still of length 15 TR
with a sliding window approach. The extracted IC, although based
on newly acquired data, was forced to be spatially as close as pos-
sible to the spatial a priori given map (i.e., to the SM obtained
during FL). This means that the dynamically extracted IC repre-
sented the SM of the brain activity of interest in the shape that
was actually present in the novel data, thus dynamically updated.
The associated time value was given by an approach similar to
the Back-projection method but depending on the dynamically
updated SM, i.e., given the new SM (i.e., Xnew), by computing

aith = YithX
†
new .

Dynamic method: recursive spatio-temporal method. This algo-
rithm implemented the possibility of obtaining actual dynamic
values from both the time course and the spatial map with two
concatenated steps. This was obtained by combining the previous
methods to obtain a fully updated on-line method based on the
following steps:

1. Back project the actual data on the SM of FL, obtaining the

actual value of time course in the FL space aFL = YithX
†

nIC=sel ,v
(note that in the BP algorithm we assumed little or no difference
between the template space and the actual subject space)
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2. Apply the temporally constrained algorithm (i.e., initialize the
W matrix exploiting the aFL) to obtain the SM (i.e., Xsub) in
the actual subject space (note that this is different from the FL
space)

3. Apply the spatially constrained ICA with the SM in the actual
subject space to obtain the actual time course value in the

subject space, that is asub = YithX
†

sub .

Adopting the described steps it was thus possible to obtain
temporal and spatial values of the brain activation of interest fully
exploiting the actual data, thus adapting to the dynamic changes
which could occur, but keeping as a target the characteristics
defined in the FL session.

VARIABILITY EFFECTS FROM THE STOCHASTIC NATURE OF ICA
ICA methods (with some exceptions like the jade algorithm) are
typically non-deterministic since there is a stochastic component
in the analysis. This introduces variability each time the algo-
rithm is run, which in turn can affect the computation time and
the performance of the dynamic monitoring of a target IC. Such
variability effects were investigated by repeating the analysis 10
times for each subject on the same data, and then computing the
standard deviation across repeated trials for the mean correlation
between dynamic and template spatial maps and temporal time
course.

RESULTS
Using publicly available fMRI data from a previous experiment
(Calhoun et al., 2001) we simulated a real-time acquisition in

a sliding window approach to evaluate the performance of four
implementations of ICA with different uses of a priori informa-
tion: (i) Back-projection of constant spatial information derived
from a functional localizer (BP), (ii) dynamic use of temporal
(RTC), (iii) spatial (RSC), or (iv) spatio-temporal ICA constrained
data (RSTC).

Given the stochastic nature of the ICA algorithms used, the vari-
ability of the spatial and temporal results was evaluated for each
subject on each of the target networks (Default Mode Network
(DMN), Right Visual Motor and Left Visual Motor Task related
components (RVMT and LVMT respectively)) and for each of the
four ICA implementations. The results showed in Figure 3 point
out that stochastic effects can introduce variability in the perfor-
mance of the IC order ranking accuracy up to 10%, sometimes
producing large fluctuations. This behavior suggested that none
of the four ICA implementations gave consistently the lowest sen-
sitivity to fluctuations due to stochastic effects, although the BP
method tended to be the lowest in 15 out of 18 cases.

Proceeding with further analysis it was possible to focus on
the evaluation of stability of results across subjects and across
different monitored ICs, as presented in Figure 4. This figure
reports the standard deviation across subjects of the mean (across
trials, for each subject) spatial and temporal correlation for the
monitored ICs.

Finally the performance evaluation numbers were reported
in Figure 5 and Table 1, in which one can see the spatial and
temporal correlation between the reconstructed time courses and
spatial maps of the monitored ICs and the reference templates of
those ICs.

FIGURE 3 | Variability of dynamic tracking performance results due to the
stochastic nature of ICA. Performance is here represented by two metrics:
spatial or temporal correlation between the template and the dynamically
tracked IC, averaged along the time course. The calculations were repeated 10
times for each subject, for each of the three networks evaluated (default mode

or DMN, right visual motor or RVMT, and left visual motor or LVMT), and for
each ICA implementation (Back-projection or BP, temporally constrained or TC,
spatially constrained or SC, spatio-temporal constrained or STC).The variability
of the dynamic tracking performance results is expressed as the standard
deviation across trials, per subject, brain network, and ICA implementation.
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FIGURE 4 | Variability of dynamic tracking performance results due to
subjects. Similar to Figure 2, but here mean results across trials are used
to compute variability across subjects, expressed as standard deviation. The
subject variability is shown for each of the three networks evaluated
(default mode or DMN, right visual motor or RVMT, and left visual motor or
LVMT) and for each of the four ICA implementations (Back-projection or BP,
temporally constrained or TC, spatially constrained or SC, spatio-temporal
constrained or STC).

FIGURE 5 | Overall dynamic tracking performance in reconstructing
ICs. The mean and standard deviation performance results are shown
across subjects and trials in terms of both spatial and temporal correlation
with the template ICs. The results are shown for each of the three
networks evaluated (default mode or DMN, right visual motor or RVMT, and
left visual motor or LVMT) and for each of the four ICA implementations
(Back-projection or BP, temporally constrained or RTC, spatially constrained
or RSC, and spatio-temporal constrained or RSTC).

The table reports the performances in terms of computational
time necessary to update the actual value of time course or spatial
maps for each new available data volume. This represents another
critical issue of a real-time analysis.

The results show that the Back-projection method offered the
highest performance both in terms of time course reconstruc-
tion (correlation value to the template time course was significant
and quite high, around 0.9), and speed (computation of update
value was far below the TR). This method was very fast and effec-
tive as long as the monitored IC had a strong and well defined
behavior and/or it was well extracted in the FL, since it relied
on an accurate description of the spatial behavior. The fluctua-
tion reported in the figures represents error fluctuations in the
FL phase which directly reflect in the Back-projection method.
The dynamic methods offered comparable performances at cost
of higher computational time (CT) (around 2 s for RTC). In
particular the spatio-temporal method performed comparably
in terms of CT to Back-projection, offering more variable per-
formances in terms of reconstruction of spatial maps and time
courses.

Table 1 | Performance.

On-line method CT[s]

DMN RVMT LVMT

Back-projection 0.0056 (0.0002) 0.0054 (0.0004) 0.0054 (0.0007)

Temporally

constrained

2.3 (0.4) 2.1 (0.1) 2.0 (0.3)

Spatially constrained 0.119 (0.003) 0.1167 (0.0002) 0.1169 (0.0003)

Spatio-temporally

constrained

0.123 (0.003) 0.1207 (0.0002) 0.1208 (0.0002)

This table summarizes the performance results in terms of computational time

(CT) from all the investigated rt-ICA techniques relative to the different monitored

ICs. Mean values of updating CT are reported for simulations on three subjects

and ten trials per subject. Standard deviations associated to mean values across

subjects and trials are shown in parenthesis. The selected ICs to monitor were

default mode network (DMN), right visuo-motor task (RVMT), and left visuo-motor

task (LVMT).

DISCUSSION
In the present work we presented and evaluated different meth-
ods to combine ICA-based algorithms for real-time fMRI. The
motivation for this work was to investigate how the advantages
of such multivariate data-driven based methods can be adapted
to real-time fMRI applications, extending previous work (Espos-
ito et al., 2003). One goal of this work was to simulate a realistic
scenario fully based on ICA consisting of two essential steps. The
first step was dedicated to identifying brain networks of interest
from the ICA of a functional localizer. The second step consisted
in dynamically monitoring a target IC (derived from the first step)
with the use of different types of a priori knowledge in the com-
putations. The a priori information considered ranged from static
to dynamic, where spatial maps and time courses can be updated
separately or together to give more weight to the dynamic moni-
toring of data within a pre-established time window in the fMRI
time course. The incorporation of a priori information was moti-
vated to address the challenge of identifying and keeping track
of a specific IC of interest, despite all the other ICs that might
be present in the data. This work therefore focused on evaluating
different ways of using prior information about the target IC to
monitor such that during the dynamic monitoring phase the tar-
get IC could be effectively detected with higher priority relatively
to other possible ICs.

The ICA-based techniques presented for the on-line monitor-
ing were characterized by different advantages and disadvantages.
Overall findings confirmed two general expected features: (i)
the dynamic monitoring performance was directly related to the
strength of activation of the target IC identified in the functional
localizer, stressing the importance of this first step, and (ii) as algo-
rithms became more adaptive in the use of spatial and/or temporal
priors in the dynamic monitoring, they introduced less stabil-
ity in the performance results compared to off-line results. This
reflected the intrinsic differences between static off-line analysis
and dynamic one.

Back-projection is the only method presented for which the
ICA is computed only once in the FL session, and not updated
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later during the on-line monitoring. This means that this method
as implemented here is based on ICA since it depends on the
quality of ICA performed in the FL session, but it is not a fun-
damentally ICA method. Back-projection could in principle also
be used by defining a target brain network from the functional
localizer with a standard general linear model that makes assump-
tions on the hemodynamic responses. The use of ICA, however,
allowed the analysis to be fully data-driven (Esposito et al., 2003;
Beckmann and Smith, 2004; Norman et al., 2006; Calhoun et al.,
2009; Magland et al., 2011; Sitaram et al., 2011) and this represents
an advantage in all those experimental designs where the classical
ICA showed to be robust, as in all cases lacking a defined regres-
sor. The Back-projection technique had the positive features of
being stable in terms of lowest fluctuation across trial and sub-
jects, very fast relative to the TR of fMRI data acquisition (since
it just involves a matrix multiplication), conceptually simple, and
being able to monitor more than one IC of interest. The main
potential disadvantage of the Back-projection method was related
to its non-adaptivity, since it assumed that the target IC of interest
was always present with the same properties, i.e., a fixed spatial
map was considered.

The temporally constrained ICA was more adaptive to data with
respect to Back-projection. Even if similar to what was presented
by Esposito et al. (2003) this method offered different character-
istics. The main one was that the reference time course used as
constraint was not obtained using a hemodynamic model, but
it was extracted from the data in a multivariate data-driven way
by the FL. Moreover in this method the reference time course
was updated in a similar way to Back-projection, while the cru-
cial difference was that the spatial map updates iteratively each
time new data become available. A characteristic of the tempo-
rally constrained ICA was that the dynamic spatial map generated
was derived from the time course used to initialize the ICA algo-
rithm. This time course, being derived from the Back-projection
of actual data on a static space (i.e., keeping the spatial map of
the IC of interest fixed), was strictly related to the quality of the
FL. For this reason the time course reconstructed was in the tem-
plate space (i.e., FL space), while the spatial map was in the subject
space, being obtained by exploiting the reconstructed time course
as a priori knowledge during the application of the ICA algorithm.
A limitation of the temporally constrained algorithm was that its
mean computation time was more than one order of magnitude
higher relative to all the other methods tested. This is due to the
fact that the FastICA algorithm adopted in it, while performing
generally lower than a TR, sometimes (around 2–3% of the times)
got stuck in a local minimum thus increasing the time to perform
the decomposition (in some cases from 1.5 upto 8 s). A possible
solution to this would be to skip the updating of the information
for those volumes which exceed a pre-determined temporal limit
to update.

The spatially constrained ICA assumed a fixed spatial map
of the IC of interest. This approach suffered from the small
amount of data available for the decomposition. The main advan-
tages included low computational time and low variability of the
results, qualities that make it a good candidate for use in real-time
experiments.

The combined implementation of spatial and temporal con-
strained ICA permitted a better description of the actual dynamic
behavior of data, thus focusing on data characteristics which were
strongly transient and for this reason probably not modeled in
the off-line static analysis, which privileged extraction of static
periodic or quasi-periodic behaviors. This method enabled us to
obtain valuable results both in terms of accuracy and compu-
tational time. Its main disadvantage was that it was less able to
characterize static aspects of the data.

A further consideration is needed related to the variability of
monitoring performance. Three kinds of variability were investi-
gated in the simulations. The first one was due to the stochastic
nature of principal ICA algorithms, which caused different results
to be obtained in different runs of the algorithm on the same data.
Multiple repetitions of the analysis showed that this variability can
affect computation time, but the obtained performance had a sta-
bility better than 10%. The second kind of variability identified
was subject specific which caused about 20% of the variability.
The third source of variability in the dynamic performance mon-
itoring related to the specific target IC within a subject. Across
different monitored ICs within the same subject, the results of
Table 1 and Figure 2 confirm that the difference in behavior of
different subjects was consistent across ICs. Indeed the perfor-
mance improved for all the subjects when monitoring task related
RVMT and LVMT (Figure 1) with respect to Resting State Net-
work (RSN) related Default Mode Network (DMN) (Figure 2)
thus proving that difference in the nature of monitored IC was
the strongest source of variability (up to 30%) for these kind
of presented methods. This may be due to the fact that differ-
ent activations have particular statistical distribution properties,
being more or less suitable to be extracted by ICA algorithms. In
addition, a reason for the difficulty in extracting spatial charac-
terization of the DMN is its low frequency relative to the sliding
time window length, thus making it difficult for the algorithm to
correctly follow it.

This work has some limitations. One limitation is related to the
definition of dynamic monitoring performance, which depends on
temporal or spatial correlations with a template reference derived
from the whole time course. It is not necessarily correct to expect
that spatial-temporal characteristics derived from the sliding win-
dow along the time course should match the ones derived from
the whole time course. For this reason the performance measures
are only indicative.

The possibility that the actual dynamic brain activation is
correctly identified by these on-line methods opens the door to
future definition of techniques and experiments. These exper-
iments could exploit these methods to have a confirmation of
transient activation identification independently of the off-line
analysis, which represents a general reference for evaluation of
results, but may also represent a bias.

Another limitation relates to the simulation nature of the work,
which should be further evaluated on a real implementation in
which the performance of the different methods can be studied,
for example using a neurofeedback setup.

The comparison of ICA with non-ICA approaches in rt-fMRI
setups was beyond the scope of this study. Given the known
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potential advantages of data-driven analysis (Norman et al., 2006;
Magland et al., 2011; Sitaram et al., 2011), and in particular
ICA methods (Esposito et al., 2003; Beckmann and Smith, 2004;
Calhoun et al., 2009), this simulation study is limited to the
comparison of novel ICA-based methods for rt-fMRI using robust
activation in well-known visual motor areas. Future studies will be
needed to evaluate these ICA methods with brain activation that
could be more challenging to identify.

This work proposed and evaluated several strategies for using
a priori information for the monitoring of brain networks in
real-time fMRI experiments. The performance of the methods
was characterized by both computation speed and correlation
between the spatial-temporal properties of a target independent
component derived dynamically and a reference component. The
method that gave the highest performance was based on the Back-
projection of a constant target spatial map derived by the spatial
localizer. In this method the use of ICA was exploited only in
the Functional Localizer phase, while during the on-line monitor-
ing the reference component was kept constant and not updated
with any ICA algorithm. This combination of both ICA and
non-ICA methods shows thus to be very helpful and promising.
This method had the limitation that its reference was constant
and this means that it may not be optimal to follow dynamic
changes as it cannot adapt to changes in brain. The other tested
methods were based on the use of adaptive spatial, temporal, or
spatial-temporal priors and may have useful applications in stud-
ies where there is a need of higher flexibility to monitor variable
activation.

CONCLUSION
This study proposed and evaluated several strategies for using spa-
tial and/or temporal a priori information in ICA-based methods
for the monitoring of brain networks in real-time fMRI experi-
ments. The effectiveness of the novel real-time ICA-based method
was evaluated against the off-line ICA analysis that is typically
possible after all data has been acquired. The performance of
the methods was characterized by both computation speed and
correlation between the spatial-temporal properties of a target
independent component derived dynamically and a reference
component. In our testing conditions of relative low frequency
task-induced activations (with a period of 20 s) we found that the
Back-projection method outperformed the other methods giving
the highest spatial-temporal correlations to the reference and the
fastest computation time. The Back-projection method here inves-
tigated uses the ICA decomposition only in the functional localizer
data, and not during the dynamic on-line analysis. It remains to
be further investigated whether the spatial-temporal constrained
methods can be better, as in principle expected, in situations where
the networks to be monitored have higher frequency fluctuations
in space and time.
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The 1000 Functional Connectomes Project is a collection of resting-state fMRI datasets
from more than 1000 subjects acquired in more than 30 independent studies from around
the globe. This large, heterogeneous sample of resting-state data offers the unique
opportunity to study the consistencies of resting-state networks at both subject and study
level. In extension to the seminal paper by Biswal et al. (2010), where a repeated temporal
concatenation group independent component analysis (ICA) approach on reduced subsets
(using 20 as a pre-specified number of components) was used due to computational
resource limitations, we herein apply Fully Exploratory Network ICA (FENICA) to 1000
single-subject independent component analyses. This, along with the possibility of using
datasets of different lengths without truncation, enabled us to benefit from the full
dataset available, thereby obtaining 16 networks consistent over the whole group of 1000
subjects. Furthermore, we demonstrated that the most consistent among these networks
at both subject and study level matched networks most often reported in the literature,
and found additional components emerging in prefrontal and parietal areas. Finally, we
identified the influence of scan duration on the number of components as a source of
heterogeneity between studies.

Keywords: magnetic resonance imaging, fMRI, resting-state, ICA, default-mode network

INTRODUCTION
Since the seminal report by Biswal et al. (1995), low-frequency
spontaneous fluctuations (in the range of 0.01–0.1 Hz) of blood
oxygen level dependent (BOLD) signal in the brain have con-
sistently been found in the absence of task-induced activity.
Research in this area has increasingly gained momentum during
the last years, from both a methodological perspective (Margulies
et al., 2010) and a neuroscientific point of view (Raichle and
Snyder, 2007). Even beyond the original finding of the motor
network by Biswal et al. (1995), an increasing number of other
networks have consistently been reported, and these are now
referred to as resting state networks (Fox and Raichle, 2007).
Most commonly, networks related to motor function, visual pro-
cessing, executive function, auditory processing, memory, as well
as the default-mode network have been named in this con-
text (Damoiseaux et al., 2006; Robinson et al., 2009; Schöpf
et al., 2010). However, variability in the exact extent of networks
reported as well as the total number of resting-state networks and
their possible subdivisions still exist today (Leech et al., 2011),
and a quantification of variability of number and type of resting-
state networks identified in the data of different centers has not
yet been performed.

In the most general terms, the concept of brain networks is
based on the measure of functional connectivity, defined as tem-
poral coherence between the low-frequency (< 0.1 Hz) BOLD

signal of spatially remote brain regions (Richiardi et al., 2011).
This functional connectivity is commonly calculated using a seed-
based analysis approach, where temporal correlation is calculated
with respect to a seed voxel or region. Consequently, a clear-cut
distinction of the networks is limited by the fact that a single brain
region can be involved in several networks (Joel et al., 2011), e.g.,
the lateral parts of the parietal lobes that are associated with both
the default-mode network and the frontoparietal (working mem-
ory) network (Corbetta and Shulman, 2002). Additionally, the
detection of previously unknown networks and the identification
of unexpected properties are hampered by the inherent neces-
sity for a priori selection of seed regions rendering seed-based
functional connectivity an inherently parametric approach.

Non-parametric methods have been used to overcome this
limitation, among them clustering and pattern-recognition algo-
rithms, but it is independent component analysis (ICA)—or,
more specifically, spatial ICA, as opposed to temporal ICA—that
has emerged as the most successful method to identify spatially
independent brain networks, as witnessed by a large number of
influential studies (Damoiseaux et al., 2006; Smith et al., 2009;
Biswal et al., 2010; Allen et al., 2011). The capability of ICA
to identify neuroscientifically meaningful effects is corroborated
by the similarity of results from ICA of resting state fMRI data
and from ICA of electrophysiology data acquired using mag-
netoencephalography (MEG) (Brookes et al., 2011). In contrast
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to seed-based analysis, though, ICA offers no canonical method
for group comparison, and multiple solutions have been put
forward to address this question, including, among others, time-
concatenated ICA (Calhoun et al., 2001), i.e., time concatenation
of individual-subject time series before ICA analysis, tensor-based
ICA, tensor-based probabilistic ICA (Damoiseaux et al., 2006),
probabilistic ICA (PICA) (Luca et al., 2006), and self-organizing
group ICA (sogICA) (van de Ven et al., 2008). Earlier studies
relying on these methods have found varying numbers of inde-
pendent components based on automated dimension estimation,
ranging from 5 (Luca et al., 2006) to about 12 (Damoiseaux et al.,
2006; Robinson et al., 2009), while more recently, the use of a pre-
specified number of components has become more widespread,
using either a low model order with about 20 components (Smith
et al., 2009; Biswal et al., 2010) or a high model order with about
75 components (Allen et al., 2011), different choices of model
order of course leading to the identification of different networks
or subdivisions of networks.

The variability of results depending on model order has been
investigated by Abou-Elseoud et al. (2010), who found that low
model order ICA results had highest repeatability, while higher
model orders lead to the identification of finer subdivisions of the
networks, up to a model order of about 100—beyond that value,
repeatability only declined without any additional benefits. Model
order is not the only source of variability in the results of ICA
studies, though. A certain amount of inconsistency between stud-
ies is due to random variability between samples, which, due to
practical limitations, often comprise only 20–30 subjects. Finally,
some divergence between results can be attributed to method-
ological issues: for once, there is the inherent stochasticity of
the fastICA algorithm, the basis for most ICA implementations
currently employed (Himberg et al., 2004) and additional vari-
ability may be introduced by the heterogeneity of preprocessing
strategies (Weissenbacher et al., 2009).

Evaluation of between-subject variability of group compo-
nents can be undertaken from two directions. Back reconstruc-
tion algorithms (Biswal et al., 2010; Allen et al., 2011, 2012) start
with group components and evaluate how consistent the connec-
tivity of these group components is on the single-subject level.
In this study, we opted for the opposite direction—starting with
individual-subject components and evaluating the variability of
components between subjects—and chose fully exploratory net-
work ICA (FENICA), proposed by Schöpf et al. (2010), as a means
for combining single-subject results at group level. FENICA is a
group ICA method that, based on single-subject ICA, calculates
each group component as the mean of the most similar com-
ponents, one of each individual-subject ICA. This in turn allows
for the group components to be directly related to single-subject
ICA components and thus to gain a more immediate view on
the differences of ICA components across subjects. In addition,
the averaging of components from multiple ICA runs in FENICA
helps to increase stability of group results and limits the effects
of the stochasticity of fastICA (Himberg et al., 2004), though
some caution in this respect is still advisable when interpreting
individual single-subject components.

It must be noted, though, that the heterogeneity of pop-
ulations investigated by different studies leads to inter-study

variability near-impossible to overcome within the scope of a
single study. A comprehensive exploratory analysis should there-
fore neither take into account only a single population nor a
single setup of scanner hardware but rather combine a large num-
ber of different datasets from different studies. A meta-analytic
approach using individual-subject data therefore seems most
promising to summarize available evidence about resting-state
networks and to assess heterogeneity between datasets of differ-
ent origin (Huf et al., 2011). The 1000 Functional Connectomes
Project (Biswal et al., 2010), a collection of resting-state fMRI
datasets from over 30 international centers encompassing more
than 1000 different subjects, provided us with the opportunity
to perform precisely this kind of analysis on a suitably broad
basis for approaching the question of consistent networks on a
large scale.

METHODS
The entirety of the dataset of the 1000 Functional Connectomes
Project (Biswal et al., 2010) directly available at its webpage
was downloaded (see http://www.nitrc.org/projects/fcon_1000).
To avoid the most important sources of heterogeneity as well as
complications due to non-independence, subjects with more than
one run in the dataset were excluded from the analysis. The final
sample consisted of 1000 subjects (age 28 ± 13, 561 females; see
Table 1) randomly sampled from the remainder of the dataset
consisting of 33 independent samples originating from 26 centers
in North America (15), Europe (8), Asia (2), and Australia (1).
The original scans were performed using echo planar imaging
(EPI) during resting-state with variable scanning parameters and
brain coverage at 1.5 T, 3 T, and 4 T, with a duration between 216
and 590 s.

Due to the post-hoc nature of the 1000 Functional
Connectomes dataset’s formation by merging independent,
non-coordinated individual studies, between-study heterogeneity
is an important issue to clarify before analyzing this dataset. The
original analysis by Biswal et al. (2010) has, as one of its main
results, established the feasibility of using the dataset as a whole
with a reasonable expectation to obtain homogeneous results,
even for studies using scanners with different magnetic field
strength. Further attempts to include estimated study quality,
e.g., for weighting purposes, are discouraged in the meta-analytic
setting due to possible bias introduced by such procedures (Huf
et al., 2011), and are thus not part of our analysis.

Preprocessing of the resting-state fMRI data was performed
according to Weissenbacher et al. (2009) by first applying
motion correction and spatial smoothing using an 8 mm FWHM
Gaussian kernel followed by correction for mean cerebro-spinal
fluid (CSF), white matter (WM) and gray matter signals as well as
motion parameters. Subsequently, time series were filtered using
a bandpass of the interval 0.01–0.1 Hz, and ICA was calculated on
the resulting time series using FSL MELODIC (Smith et al., 2004)
with the dimension estimation criterion LAP, yielding a number
of components in the range of typical low model order stud-
ies. Automated model order estimation rather than fixed model
order was chosen to allow for a comparison of model order esti-
mates between subjects and between the datasets of the individual
studies, as well as for an estimation of the variability of these
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Table 1 | Demographic statistics of the sample analyzed.

Study N % Male Mean age SD age Voxel size TR Volumes Duration Components

1 AnnArbor_a 25 88.0 21.0 7.4 35.4 1.00 295 295.0 17

2 AnnArbor_b 36 47.2 NA NA 37.8 1.00 395 395.0 19

3 Atlanta 28 46.4 30.9 9.9 47.3 2.02 205 414.1 16

4 Baltimore 23 34.8 29.3 5.5 21.3 2.50 123 307.5 15

5 Bangor 20 100.0 23.4 5.3 27.0 2.00 265 530.0 20

6 Beijing 198 38.4 21.2 1.8 35.2 2.00 225 450.0 17

7 Berlin 26 50.0 29.8 5.2 36.0 2.30 195 448.5 19

8 Cambridge 198 37.9 21.0 2.3 27.0 3.00 119 357.0 17

9 Cleveland 31 35.5 43.5 11.1 16.0 2.80 127 355.6 17

10 Dallas 24 50.0 42.6 20.1 47.3 2.00 115 230.0 13

11 ICBM 86 47.7 44.2 17.9 27.0 2.00 192 384.0 12

12 Leiden_2180 12 100.0 23.0 2.5 40.7 2.18 215 468.7 19

13 Leiden_2200 19 57.9 21.7 2.6 40.7 2.20 215 473.0 19

14 Leipzig 37 43.2 26.2 5.0 36.0 2.30 195 448.5 20

15 Milwaukee_a 18 NA NA NA 84.4 2.00 175 350.0 22

16 Milwaukee_b 46 32.6 53.6 5.8 56.2 2.00 175 350.0 16

17 Munchen 16 62.5 68.4 4.0 43.0 3.00 72 216.0 11

18 Newark 19 47.4 24.1 3.9 59.1 2.00 135 270.0 14

19 NewHaven_a 19 52.6 31.0 10.3 70.9 1.00 249 249.0 13

20 NewHaven_b 16 50.0 26.9 6.3 65.0 1.50 181 271.5 18

21 NewYork_a 25 80.0 35.0 9.6 27.0 2.00 192 384.0 13

22 NewYork_a 84 51.2 24.4 10.1 27.0 2.00 192 384.0 13

23 NewYork_b 20 40.0 29.8 9.9 36.0 2.00 175 350.0 13

24 Ontario 9 NA NA NA 64.0 3.00 105 315.0 15

25 Orangeburg 20 75.0 40.6 11.0 61.2 2.00 165 330.0 12

26 Oulu 103 35.9 21.5 0.6 70.4 1.80 245 441.0 15

27 Oxford 22 54.5 29.0 3.8 31.5 2.00 175 350.0 17

28 PaloAlto 17 11.8 32.5 8.1 57.9 2.00 235 470.0 20

29 Pittsburgh 17 58.8 37.9 9.0 31.3 1.50 275 412.5 13

30 Queensland 19 57.9 25.9 3.9 46.5 2.10 190 399.0 17

31 SaintLouis 31 45.2 25.1 2.3 64.0 2.50 127 317.5 17

32 Taipei_a 13 NA NA NA 56.3 2.00 295 590.0 25

33 Taipei_b 8 NA NA NA 47.3 2.00 175 350.0 17

Mean and standard deviation of age are given in years, voxel size in mm3, TR in seconds; the column Volumes lists the number of volumes (or time points) scanned

for every subject in the study, the column Duration lists scan duration in seconds and the column Components contains the median number of ICA components

identified for the subjects of this study.

estimates. Finally, preprocessing was concluded by normalization
to MNI 152 standard space and re-sampling to 3 mm isotropic
voxels to enable group level analyses. All preprocessing steps
were computed using AFNI (Cox, 1996), second-level analyses
were performed in R 2.13.1 (R Development Core Team, 2012),
using specialized packages for fMRI analysis, parallelization, and
handling of large data (Tabelow et al., 2011; Boubela et al., 2012).

Following this preprocessing, individual-subject ICA results—
one z-map for each component—were combined using the
FENICA algorithm proposed by Schöpf et al. (2010). Briefly, the
algorithm aims at exploratorily finding components consistent
over a population of subjects and is composed of three stages: (1)
identification of pairs of matching maps, (2) building of candidate
average maps, and (3) selection of final average maps.

To allow for automated and thus reproducible exploratory
selection of parameters of the algorithm, two modifications to

the algorithm as originally described (Schöpf et al., 2010) have
been made to adapt it to the necessities of the large dataset while
minimizing the influence of observer bias (Boubela et al., 2012).
First, identification of eligible pairs was set to match the number
of original components. Second, the similarity threshold (Schöpf
et al., 2010) to discard average components similar to at least one
other component with a higher t-sum was chosen as the lowest
value that produced a number of final components corresponding
to the median number of components of the individual-subject
results. Related groups of final components were defined by
spatially clustering the components using hierarchical cluster-
ing with centroid distance between clusters (Mangiameli et al.,
1996) using Kolmogorov–Smirnov distance (Kolmogorov, 1933)
between z-values of components as the distance between maps.

Consistency across subjects was assessed for each resulting
component by calculating the correlation of the original pairwise
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average map that was used as the candidate for the generation of
the group map with each subject’s respective best matching com-
ponent. The distribution of these correlation coefficients was then
used to evaluate the consistency of each component.

An assessment of spectral characteristics of group networks
was performed by computing individual-subject power spectra
for each group network using a back reconstruction algorithm.
The individual-subject spectra were averaged to determine power
spectra at group level. From these, the dynamic range (i.e., the
difference between the power at the peak of the spectrum and
the minimum power of frequencies higher than this peak) and
the power ratio (i.e., the ratio between the integral of the power
of the frequencies below 0.1 Hz and the integral of the power of
the frequencies higher than 0.15 Hz) are computed for each of the
group components identified (Robinson et al., 2009).

In addition, the whole computation was performed separately
for the subset of subjects of each individual study to determine
consistency of components across studies. Group components
were considered to be present in an individual study sample
if and only if there was a component in the individual study
results that could be partner-matched (Wang and Peterson, 2008)
to that group component, i.e., if the group component had
highest spatial correlation among all group components to the
individual-study component in question and vice versa.

To assess the relationship between scan duration and number
of components found at individual-subject level, a least-squares
regression as well as a robust MM-estimator (Koller and Stahel,
2011) were fitted.

RESULTS
At single-subject level, the number of ICA components was sym-
metrically distributed with a mean and median number of com-
ponents both equal to 16 ± 3.5 (SD) (cf. the bar plot in Figure 1).
In total, there were 16,365 individual-subject components from
which the same number of candidate pairs of components were
selected for calculation of average maps.

At group level, 16 group components were identified for a
similarity threshold of 0.75, chosen to produce a number of
components corresponding to the median number of individual-
subject components as detailed above. Of these components,
13 can be described as gray matter networks (shown in Figure 2,
using an arbitrary thresholded at t999 = 18, p = 1.6 · 10−57 FWE
corrected for displaying purposes), and 3 show consistent activ-
ity mainly located in voxels outside the gray matter (components
C.05, C.15 and C.16, see Figure 3) and will therefore be referred
to as (consistent) artifact components from here on.

Gray matter networks, designated C.01 to C.16 in descend-
ing order of their voxelwise sum of t-values, can be described
as follows (for correspondence to known resting-state networks
cf. Discussion). Component C.01 corresponds mainly to the
occipital lobe. Component C.02 includes the posterior cingu-
late cortex and precuneus. Component C.03 shows activation in
ventral medial prefrontal, posterior cingulate, and lateral pari-
etal cortex as well as hippocampus and, to a lesser extent, the
inferior temporal lobe. Component C.06 is situated in ventral
and dorsal medial prefrontal cortex, posterior cingulate cortex
and, to a lesser extent, lateral parietal cortex. Thus, these two
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FIGURE 1 | Bar plot of the distribution of the number of components

in the individual-subject ICA results.

components correspond to regions commonly identified as part
of the default-mode network, with component C.03 more focused
in the posterior, and component C.06 in the anterior parts. C.04
is centered on the posterior cingulate cortex and precuneus, with
co-activations in the dorsolateral prefrontal cortex. Components
C.07 and C.09 are strongly lateralized, situated in the ventral and
dorsal lateral prefrontal cortex, lateral parietal cortex and supe-
rior temporal lobe—predominantly right for component C.07,
and left for component C.09—as well as the respective contralat-
eral part of the cerebellum. Component C.10 and C.12 encompass
dorsal parietal, precentral, as well as occipitotemporal (BA 37)
areas, with C.10 being more focused on the ventral parts and
C.12 more strongly involved in the dorsal parts of these areas, in
particular the precentral areas. Component C.08 covers the pre-
and postcentral gyri and can be described as a sensory-motor
network, C.11 is focused on the anterior cingulate cortex, with
co-activations in the dorsolateral prefrotal, orbitofrontal as well
as posterior cingulate cortex. Finally, components C.13 and C.14
are located on the temporal lobes.

Clustering results of the networks are presented as a den-
drogram in Figure 4, along with boxplots of the distribution of
the correlation coefficients between candidate pairwise average
maps and best matching components of each subject, showing
inter-subject consistency of the final component maps. It can
be noted that the gray matter components (shown in green),
whose correlation coefficients are mostly around 0.3–0.4, are
generally more consistent than the components identified as arti-
facts (shown in gray), with correlation coefficients of around 0.2.
Still, there is also a number of gray matter components (C.06,
C.12–C.14) which show lower consistency, comparable to that
of the artifact components. In addition, on the left side of the
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FIGURE 2 | Consistent gray-matter networks from 1000 resting-state

datasets. Results are presented as t-values, thresholded at t999 = 18
(p = 1.6 · 10−57, FWE-corrected), each row corresponding to one network
showing nine representative slices spaced 15 mm in z direction. Red color
represents highest t-values, images are shown in radiological convention
(the right side of the brain is displayed on the left). Color bar shown for
t-values between 18 and 36 (bottom).

dendrogram in Figure 4, one can find the least consistent com-
ponents (C.12–C.16) situated quite apart from the components
with higher consistency (including C.05, the most consistent of
the three artifact components).

The spectral characteristics of the networks indicate that the
artifact components have lower power ratio between high and low
frequencies as well as lower dynamic range (see Figure 5): both
values are lowest for components C.15 and C.16, while compo-
nent C.05 shows higher values than the two least consistent gray
matter components C.13 and C.14, but still lower than the other
components. Indeed, the difference in the spectra for the compo-
nents C.15 and C.16 is evident at the first glance (see Figure 6),
while the spectrum of C.05 seems more similar to the spectra of
the gray matter components. It is noteworthy here that the spec-
tral characteristics of this occipital component can be related to an

FIGURE 3 | Artifact components consistent in 1000 resting-state

datasets. Results are presented as t-values, thresholded at t999 = 18
(p = 1.6 · 10−57, FWE-corrected), each row corresponding to one
component showing nine representative slices spaced 15 mm in z
direction. Red color represents highest t-values, images are shown in
radiological convention (the right side of the brain is displayed on the left).
Color bar shown for t-values between 18 and 36 (bottom).

observation by Birn et al. (2008), where a medial occipital com-
ponent was found to at least partly reflect respiratory-induced
changes. One possible interpretation put forward by Birn et al.
was that the component might be a mixture of gray matter and
respiratory signal, which is consistent with our observation of the
spectrum being more similar to gray matter component spectra
than the other two artifact components.

At study level, Figure 7 shows comparisons between the com-
ponents in the individual FENICA component sets of all sites
analyzed separately with the group components from the analysis
of the whole sample presented in Figures 2 and 3. The most con-
sistent components (i.e., C.01, C.03, C.07–C.09) are characterized
by the existence of a successful match in almost all individ-
ual sites as well as high spatial correlation of the best matching
components with the group component.

Of note, it can be seen that while on the one hand there are
some components that can be found in almost all component
sets of single studies analyzed separately (C.01, C.03, C.07–C.09),
other components appear only in the single-study results of about
half of the studies included in the 1000 Functional Connectomes
dataset (C.02, C.12–C.16). Still, even the most consistent group
components do not exhibit uniformly high spatial correlation
with their matching components or fail to bidirectionally match
with a component from each set of single-study components.
Component C.08, for instance, has a partner-matched compo-
nent in every single study, yet spatial correlations with its matched
components are as low as 0.12 for the dataset Ann Arbor b, 0.39
for Milwaukee a and 0.46 for München. Conversely, there is a
generally low consistency of some studies with all group results
(the maximum correlations of a component of the three exam-
ple studies mentioned above with a group component are 0.65,
0.7, and 0.62, respectively). On the other extreme, there are some
group components which could not be unambiguously matched
to only one component in a given study despite there being a
component with high spatial correlation. This is an indication
that there might be a second equally well matching component
in this study’s dataset, probably due to a division of the network
into subcomponents.
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FIGURE 4 | Clustering and consistency of results. On top, a dendrogram
represents results of hierarchical clustering using complete linkage distance
between clusters. Below, boxplots of correlation coefficients illustrate the
consistency of components between subjects. Boxes for gray matter

components are drawn in green, artifacts are drawn in dark gray. It can be
seen that the clusters with lower consistency (i.e., C.12–C.16) are quite
distinct from a more homogeneous cluster of higher consistency
components.
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FIGURE 5 | Power ratio and dynamic range of the components

identified. Gray matter components are shown in green, artifact
components in red. Both power ratio and dynamic range are highest for
gray matter networks and lower for artifactual components, though with
some overlap since the most consistent of the artifact components, C.05,
has higher power ratio and dynamic range than the two least consistent
gray matter components, C.13 and C.14.

The components can thus be divided in three categories. First,
there are components with high consistency at both single-subject
and study level; these include C.01, C.03, C.04, and C.07–C.11.
The second group of components can be characterized as those
least consistent at both levels, notably C.12–C.16. As a third
group, some components show differences in these two metrics:
C.02 is about as consistent as other gray matter components at
single-subject level, but can be found in only half of the single-
study samples, C.05 and C.06 are among the less consistent com-
ponents at single-subject level, but show average consistency at
study-level. Figure 8 illustrates this relationship between subject
level and study level consistency.

Finally, single-subject results show systematic variation of the
number of components, identified by MELODIC using the LAP
criterion, depending on the study of origin of the individual-
subject dataset (see Figure 9). In particular, there is a significant
correlation between the median number of components found
in the subjects of a study with the duration of the scans of that
study, with longer scans being associated with larger number of
components. The robustness of this finding is corroborated by the
observation that the application of a robust methods of moments
regression leads to the same result.

DISCUSSION
In this study we analyzed a publicly available dataset of 1000 sub-
jects’ resting-state scans using the exploratory analysis method
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FIGURE 6 | Spectra of all components. All single-subject spectra were
drawn as black lines, and the mean spectrum of each component is displayed
as a red line. The artifact components C.15 and C.16 have markedly different

spectra than the other components, the third artifact C.05 is more similar to
the gray matter components in that it has higher power in lower frequency
bands, but its decline in power after the peak is less steep.

FENICA (Schöpf et al., 2010; Boubela et al., 2012). Our goal was
to examine the consistency of resting-state networks identified
in previous, smaller studies in a very large sample originating
from multiple, international centers, and to assess heterogeneity
of results between studies.

Altogether, we identified 16 consistent components. Among
them, 13 can be regarded as neuroscientifically meaningful gray
matter components, while the remaining three may be attributed
to consistent artifacts. The latter mostly correspond to ventric-
ular/CSF regions, the most consistent of the three components
being situated mainly in the occipital CSF. The consistency values
of these artifacts, in particular the inter-subject spatial correlation
coefficient of these component maps of around 0.2, can be seen

as a reference to which the consistency of gray matter components
can then be related.

Indeed, the consistency values of most gray matter networks
are markedly higher than those of all artifact components. Many
of the gray matter networks identified in this study correspond to
networks as previously published (Damoiseaux et al., 2006; Smith
et al., 2009; Biswal et al., 2010; Allen et al., 2011). The occipi-
tal visual network (C.01), the sensory-motor network (C.08) as
well as the dorsal parietal network (C.10) have been reported
in most fMRI studies on the resting brain. This study adds
a quantification of the consistency of these networks, showing
that the visual (C.01) and the sensory-motor networks (C.08)
can be found in almost all single-study samples (85% for C.01
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FIGURE 7 | Matrix of bidirectional 1-to-1 matching of components in

individual-study analyses compared to group results from the whole

dataset comprising 1000 subjects. Each field contains the spatial
correlation coefficient (multiplied by 100 for readability) between the group
component and the best matching individual-study component. White fields
indicate a bidirectional match with a spatial correlation of at least 0.75, gray
fields indicate bidirectional matches with lower spatial correlation, and black

fields indicate the absence of a bidirectional match (note that the spatial
correlation to the best matching component can nonetheless be high in some
cases). To the right of each row, the number of other components found in
the individual-study analysis which do not bidirectionally match any of the
group components is listed. At the bottom of each column, a bar plot
indicates the study-level consistency of each component, counting the
number of studies in which a bidirectional match was found.

and 100% for C.08), and the dorsal parietal network (C.10)
appears in two-thirds of these samples. The components C.07 and
C.09, encompassing the regions associated with memory func-
tion in dorsolateral prefrontal and lateral parietal cortex, are both
also among the most consistent networks identified (94% and
97%, respectively), highlighting the lateralized subdivision of the
working memory network.

We found two networks associated with regions of the default-
mode network of the brain (C.03 and C.06), with the posterior of
the two (C.03) being one of the most consistent networks iden-
tified, appearing in 94% of single study results, and the anterior
(C.06) being found in 79% of the study samples. The anterior
default mode component, however, exhibits lower spatial corre-
lation both between the group component map and study-level
components as well as between the group component map and
single-subject component maps. This supports the hypothesis of
a functional segregation of the default-mode network (Kim and
Lee, 2011), with one part particularly involved in the prefrontal

regions, and the other part dominating in the posterior cingulate
cortex, the parietal cortex, and the hippocampus. This division
into anterior and posterior parts of the default-mode network,
although not a novel concept, is not yet fully embraced in the
literature (Buckner et al., 2008).

In contrast to the high consistency in the subdivision of the
working memory networks in a left and right part, there are subtle
differences in the results relating to the division of the default-
mode network between Biswal et al. (2010) and this paper: here,
the subcomponent focused on the medial prefrontal cortex (C.06)
shows less activation in the posterior cingulate and parietal parts
of the network than the corresponding component found by
Biswal et al., while the posterior component with the main activa-
tion in the posterior cingulate cortex shows a marked coactivation
in the medial prefrontal cortex, where the corresponding com-
ponent found by Biswal et al. has very little coactivation. This
variation in the spatial segregation of overlapping networks by
spatial ICA can be attributed to methodological differences, in
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FIGURE 8 | Comparison of subject level consistency based on spatial

correlation of single subject component maps with study level

consistency based on identification of maps in individual-study

results. Ordinary least squares (OLS; p = 0.002) and robust MM-estimator
(p < 10−4) illustrate the relationship between the two measures. The
shaded area corresponds to a 95% confidence interval for the OLS
estimator.

particular due to the fact that spatial ICA intrinsically guarantees
spatial independence of components and thus enforces a more or
less arbitrary delineation of borders between possibly intermin-
gled networks. Temporal ICA might resolve this issue but, due to
its computational demands and the low number of time points in
most experiments, is not yet widely used in fMRI research. With
current multi-band acquisition protocols and their high temporal
resolution, resulting in more time points without increasing scan
duration, temporal ICA becomes an increasingly viable approach
(Smith et al., 2012).

Altogether, the networks identified in this study correspond
well to networks already found in the literature. For example,
in Damoiseaux et al. (2006), network A corresponds well to our
network C.01, B to C.03, C to C.09, D to C.07, H to C.10, I
to C.13, and K to C.06. Note in particular that, despite the low
model order of 10, Damoiseaux et al. found a segregation of both
the default-mode network and the auditory network into two
subcomponents, though their split of the auditory network was
different than the one identified in our study, highlighting the
apparent heterogeneity in this area. As another example, Smith
et al. (2009) also found components matching our components
rather closely: their component 120 corresponds to C.02, 220 to
C.01, 320 to C.10, 420 to C.03, 620 to C.08, 720 to C.13, 820 to C.11,
920 to C.07 and 1020 to C.09. Networks C.04 and C.12 have no
immediate counterparts in these two studies, though component
C.04 can at least to some extent be related to components in high
model order studies, e.g., to component 50 in Allen et al. (2011).

FIGURE 9 | Scatterplot showing a linear relationship between scan

duration in seconds and median number of components per subject

identified in each individual study using LAP criterion in FSL MELODIC.

Note that both ordinary least squares (OLS) and the robust MM-estimator
identify the same relationship, highlighting the robustness of this ratio
(p < 10−4 for both estimators). The shaded area corresponds to a 95%
confidence interval for the OLS estimator.

C.12, being among the less consistent components in our sample,
might be regarded as spurious unless it can be corroborated in
future studies.

On the other hand, our study did not find some components
otherwise typically found in resting-state ICA studies. First, we
found fewer artifactual components than most previous stud-
ies, with the lack of a WM component being the most obvious;
this might be due to different preprocessing strategies. Second,
we found no basal ganglia component, which has been found in
many (e.g., Robinson et al., 2009; Smith et al., 2009; Biswal et al.,
2010), but not all (e.g., Damoiseaux et al., 2006) resting state ICA
studies. Finally, our results did not include a separate cerebellar
component, and instead included some cerebellar activity into the
lateralized fronto-parietal components. One reason for this might
lie in the differences in field of view between studies, with differ-
ent coverage of the cerebellum, but other aspects of data quality
(scanner performance, noise, motion, physiological effects) also
introduce variability between the data of different studies.

This between-study variability leads to one of the main limi-
tations of the FENICA method. Since it implicitly assumes that
the group components appear in every subject (the assump-
tion lies in the fact that the best matching component of
every subject is averaged for the final group component maps),
the algorithm is less likely to detect components that are
not present in every subject, for example a cerebellar com-
ponent if the cerebellum is not wholly within the field of
view of all studies included in the analysis. This is corrobo-
rated by Biswal et al. (2010) who, using a different method
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for the group ICA, identified a cerebellar network on data from
the 1000 Functional Connectomes database. On a related note,
in the short duration of a typical fMRI resting-state scan, it is
possible that not all networks show a distinguishable activity pat-
tern in all subjects to be discerned by ICA methods, which might
also account for some between-subject variability in the networks
identified. This fact is also a useful reminder that there are limits
in the interpretability of individual ICA components (Moser and
Ranjeva, 2010).

Another confounding effect could be the influence of motion
on the component map estimation, as highlighted by Power et al.
(2012), which could also generate some between-subject and even
between-study heterogeneity if subjects of different studies dif-
fered in their head motion in the scanner. However, as Power
et al. (2012) also pointed out, the motion effects they described
are only of limited magnitude in adults, and a specific correction
for these effects seems only necessary in studies with children or
adolescents.

This work presents the largest exploratory fMRI study to date,
including 1000 single subjects simultaneously, made possible due
to new computational methods implemented in an R frame-
work (R Development Core Team, 2012; Boubela et al., 2012).
In Biswal et al. (2010), group ICA as the most complex of the
computational tasks involved was performed separately on mul-
tiple subsets of 306 subjects due to computational limitations
preventing simultaneous analysis of the whole sample. The exten-
sive work of the R community in the handling of large datasets
and parallel computing, including computation on graphics pro-
cessing units (GPUs), provides the tools for analyses previously
prohibitive from a computational point of view and accelerates

the emergence of data driven discovery science in the field of neu-
roimaging. For instance, the exploratory approach used in this
work allows for the unbiased drawing of an overall picture of
the substantial amount of data acquired in 33 studies performed
by 26 centers worldwide, while still keeping the total processing
time under a week. The most important addition to the cur-
rent knowledge made possible by the computational techniques
employed, however, is the assessment of heterogeneity of result-
ing components with respect to the entire sample, both at the
level of single subjects and of individual studies. As a result, an
overview on networks more commonly found in individual stud-
ies as well as an assessment of divergence between the sets of
networks intrinsically emerging from the data of different cen-
ters has been presented, possibly providing some guidance for
the interpretation of variability in resting-state networks obtained
in past and future studies. This paper shows the richness of evi-
dence present in the 1000 Functional Connectomes dataset, but
ultimately only scratches the surface of what can be examined
and opens a host of new questions to be answered in future
analyses.
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The neuronal underpinnings of blood oxygen level dependent (BOLD) functional magnetic
resonance imaging (fMRI) resting state networks (RSNs) are still unclear. To investigate
the underlying mechanisms, specifically the relation to the electrophysiological signal, we
used simultaneous recordings of electroencephalography (EEG) and fMRI during eyes open
resting state (RS). Earlier studies using the EEG signal as independent variable show incon-
clusive results, possibly due to variability in the temporal correlations between RSNs and
power in the low EEG frequency bands, as recently reported (Goncalves et al., 2006, 2008;
Meyer et al., 2013). In this study we use three different methods including one that uses
RSN timelines as independent variable to explore the temporal relationship of RSNs and
EEG frequency power in eyes open RS in detail.The results of these three distinct analysis
approaches support the hypothesis that the correlation between low EEG frequency power
and BOLD RSNs is instable over time, at least in eyes open RS.

Keywords: combined EEG-fMRI, resting state, source modeling, RSN, ICA, ECP, IHM

INTRODUCTION
Blood oxygen level dependent (BOLD) functional magnetic reso-
nance imaging (fMRI) resting state networks (RSNs) have increas-
ingly generated interest in the neuroscientific community, but
the neuronal underpinnings remain unclear so far. Early studies,
which examine correlations between the electroencephalography
(EEG) theta, alpha, or beta band power and BOLD signal fluctu-
ations using EEG derived regressors (Goldman et al., 2002; Laufs
et al., 2003a,b, 2006; Moosmann et al., 2003; Feige et al., 2005;
Goncalves et al., 2006; Scheeringa et al., 2008), report rather mixed
and inconclusive BOLD correlation maps. The discovery and fur-
ther analysis of RSNs (Biswal et al., 1995; Lowe et al., 2000; Cordes
et al., 2001; Greicius et al., 2003; Fox et al., 2005; Damoiseaux
et al., 2006; De Luca et al., 2006; Smith et al., 2009), together
with the above mentioned early combined EEG-fMRI studies gave
rise to the assumption that several frequency bands might be
involved in distinct functional networks (Laufs et al., 2006; Man-
tini et al., 2007). The replication of this finding on subject level
would fundamentally improve our understanding of the link with
electrophysiology.

Simultaneous recordings of EEG and fMRI during resting state
(RS), enables the investigation of the electrophysiological cor-
relates of BOLD RSNs. Using simultaneous recordings, Mantini
et al. (2007) reported a specific EEG frequency band power signa-
ture for RSNs on group level in eyes closed RS. However, further
studies show large inter-subject variations of distinct brain areas
correlated with EEG alpha band power (Goncalves et al., 2006,
2008) in RS. In a recent study by Meyer et al. (2013) electrophys-
iological correlation patterns (ECPs) between RSN BOLD time
courses and EEG frequency band power showed large inter-subject

and within subject variability. While RSNs by themselves exhibit
a high reproducibility of their spatial characteristics across sub-
jects, these studies point to less stable temporal correlations
between RSNs seen in BOLD fMRI and EEG frequency band
power.

Based on this evidence we hypothesize that the relationship
between EEG frequency band power and RSN BOLD time courses
is not stable over time. In order to assess this temporal variance
in the correlation of the EEG signal and RSNs within a subject in
this study, a dataset with a long RS of 34 min was split up into 15
segments and each was analyzed using the following three analysis
approaches:

(1) Global frequency power correlation (GFPC) (Meyer et al.,
2013) resulting in ECPs an approach that is similar to the one
used by Mantini et al. (2007) who found stable correlation
patterns on group level.

(2) An extended version of this method, including an anatom-
ically informed analysis (Dale et al., 2000; Ou et al., 2010;
Janssen et al., 2012) to separate the EEG based on RSN Z -maps
within a subject, to obtain source frequency power correlation
(SFPC), which should reduce the effect of volume conduction
in the EEG.

(3) A channel wise frequency power fit (CFPF) with minimal
assumptions, using the BOLD RSN time courses as the inde-
pendent variable, which further reduces methodological bias.

We then calculated the temporal variance over the 15 segments
for each of the three methods to estimate the temporal stability of
the correlation between the two modalities.
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MATERIALS AND METHODS
DATA ACQUISITION AND PRE-PROCESSING
In this study we performed a new analysis of the data sets acquired
in Meyer et al. (2013). We briefly summarize the acquisition pro-
tocol and the pre-processing steps (for details, see Meyer et al.,
2013): 34 min of eyes open RS were recorded from 12 healthy
subjects, using combined EEG-fMRI, with approval of the local
ethical committee. MR data were acquired on a 3 T Magne-
tom TIM Trio system (Siemens Healthcare, Erlangen, Germany)
using the product 32 channel head coil. Functional data were
recorded using a multi echo EPI sequence (Poser et al., 2006) (1030
Vol., TR = 2000 ms, 3.5 mm isotropic voxel size). A T1-weighted
structural scan (MPRAGE) at 1 mm isotropic voxel size was also
obtained (with EEG cap), to register the functional data to Mon-
treal neurological institute (MNI) space. Five of the subjects (sub-
jects 1, 2, 4, 10, and 11) were invited back to acquire a second
T1-weighted structural scan without the EEG cap to enable the
head model based analysis.

Simultaneous EEG data were recorded with a 32 channel cap
(ANT WaveGuard MRI), using a BrainAmp MR plus ampli-
fier (250 Hz low-pass analog hardware filter, 10 s time con-
stant, 5 kHz sampling rate, 0.5 µV resolution, reference elec-
trode: FCz) and BrainVision Recorder (BrainVision, Gilching,
Germany). Two of the subjects were recorded with a 64 chan-
nel cap (BrainVision) using two BrainAmp MR plus amplifier;
the same 30 channels (10–20 system) were used for all subjects
in the analysis. The subjects were asked to relax, keep their eyes
open, stay awake, and not think of anything specific. The room
was darkened during the scan and an infrared eye tracker was
used to confirm that the subject did not fall asleep. All sub-
jects managed to stay awake for the complete duration of the
experiment.

Functional magnetic resonance imaging pre-processing was
performed using functions from the SPM5 software package
(Welcome Department of Imaging Neuroscience, University Col-
lege London, UK). The five echoes acquired at every time point
were combined after SPM5 motion correction (Poser et al.,
2006).

Electroencephalography pre-processing: MR related artifacts in
the EEG signal were removed using Analyzer 2 (BrainVision). Trig-
ger based average subtraction (Allen et al., 2000), as implemented
in Analyzer 2, was applied to correct for gradient artifacts. The data
were filtered using a Butterworth zero phase filter, 48 dB/oct, with a
low cutoff at 0.8 Hz, to remove slow fluctuations from respiration,
and a high cutoff at 50 Hz. Additionally, a notch filter at 50 Hz was
used to remove residual mains frequency noise. Cardiac related
MR artifacts were removed using the adaptive average subtraction
(AAS) method of Analyzer 2 in semiautomatic mode (Allen et al.,
1998). Further, eye blink related artifacts were removed using ICA
and the EEG data were re-referenced to a common average.

ANALYSIS
As motivated in the introduction, three distinct methods (see
Figure 1) were used to infer whether the relationship between
EEG frequency band power and RSN BOLD time courses is tem-
porally instable. For all these methods, the preprocessed fMRI
data were spatially smoothed by 5 mm and transformed to MNI

space using FMRIB’s Software Library’s (FSL) Feat (version 4.11;
Smith et al., 2004; Woolrich et al., 2009; Jenkinson et al., 2012).
Group independent component analysis (ICA, as implemented in
the FSL tool Melodic version 3.1) was performed on the fMRI data
to obtain 30 ICs and 12 task related RSNs were selected according
to Smith et al. (2009), see Figure 2 for a depiction of the RSNs. A
dual regression approach was used to derive subject specific RSN
maps and time courses (Filippini et al., 2009). The further analysis
is described for each method separately below.

GLOBAL FREQUENCY POWER CORRELATION
The datasets were split into 15 sections of equal length, each
still longer than 2 min. For every section the EEG signal was
split into 2 s segments corresponding to the TR used in the MR-
acquisition. Within each section, for every segment, the mean
frequency power over all channels for four frequency bands, i.e.,
delta: (2–4) Hz, theta: (4–8) Hz, alpha: (8–12) Hz, and beta: (12–
30) Hz, was calculated, using a fast Fourier transformation (FFT),
resulting in one time series for each frequency band. Motion
related artifacts in the frequency power time courses were cor-
rected. The frequency power time series were convolved with
the standard SPM5 hemodynamic response function (HRF) and
correlated with the RSN time courses taking into account com-
mon variance (partial correlation) between frequency bands. The
correlation values were Z -transformed, using the mean over all
correlation values across subjects as global mean, which resulted
in time series of 15 Z -scores for every frequency band (see
Figure 3). The temporal variance for each RSN and frequency
band over the 15 time points was calculated and averaged over
subjects (see Table 1). To estimate the temporal stability of
ECPs within and across subjects, for each RSN and frequency
band the Z -scores of the 15 sections were ranked from high
to low, and averaged over subjects to visualize inter-subject
variance.

SOURCE FREQUENCY POWER CORRELATION
In order to get an indication for the effect of volume conduction
and obtain more specific correlation patterns, in five subjects an
in-house developed fMRI-informed source model was applied. In
combination with a four layer realistic head model it enables to
separate the EEG according to the fMRI-RSNs. This new method
was tested in a separate study that employs a simple visual stimu-
lation and is further referred to as Integrative Head Model (IHM).
It merges FSL analysis, Freesurfer mesh generation (Freesurfer
image analysis suite2), and a Neuroelectromagnetic Forward Head
Modeling Toolbox (NFT) based head model (VER 2.03; Acar and
Makeig, 2010), to combine fMRI and EEG in an integrative way
(see Figure 1). Tissue surface meshes (TSMs) from the individual
T1 images are derived using Freesurfer and NFT. The scalp, inner
and outer skull as well as brain TSMs are used in the Boundary
Element Method (BEM) based forward model as implemented
in NFT (Brain/scalp conductivity = 0.33 S/m, Skull conductiv-
ity = 0.0132 S/m, CSF conductivity = 1.79 S/m). The source space

1www.fmrib.ox.ac.uk/fsl
2http://surfer.nmr.mgh.harvard.edu/
3http://sccn.ucsd.edu/nft/
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FIGURE 1 | Overview of the three analysis methods used in this study. The highlighted regions and arrows are labeled accordingly.
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FIGURE 2 | RSNs on group level as maximum intensity projection on the central slices and their classification according to Smith et al. (2009).

is constructed by seeding the cortical sheet with dipoles, the loca-
tion, and orientation of which is derived from the pial and white
matter TSMs. Sources are defined by selecting dipoles accord-
ing to fMRI RSNs, mapped to the cortical sheet. A source is
defined as the weighted vector sum of its active dipoles, where
the weights are equal to the Z values of the fMRI activation
map at dipole location, and normalized subsequently so that the
sum of all weights within one source equals one. These fMRI
derived sources are fed into the forward model (in NFT) to cal-
culate the specific lead field matrix (LFM) using an electrode
template, which was manually transformed to each subjects head.
This specific LFM has a low dimensionality given by the num-
ber of sources times number of channel. It is inverted using a
Moore–Penrose pseudo inverse and the inverted LFM is used
to transform the EEG data to source specific time courses. This
results in an EEG time course for each RSN. Furthermore, the
same analysis steps as described in Method 1 were applied to the
transformed EEG signal. For each of the 15 sections and each
frequency band the fMRI derived source frequency power time
courses were convolved with the standard SPM5 HRF, partial
correlated with their associated RSN time course, and the cor-
relation values were Z -transformed. The variance over the 15
sections was calculated and the Z -scores of the sections were
ranked from high to low, to obtain an estimate of the temporal
stability.

CHANNEL WISE FREQUENCY POWER FIT
After pre-processing, each channel of the EEG data was band
pass filtered in four frequency bands [delta: (2–4) Hz, theta: (4–
8) Hz, alpha: (8–12) Hz, and beta: (12–30) Hz] using an FFT-filter

(EEGlab). Power time courses were obtained from the filtered data
by applying a Hilbert transform and taking the squared magni-
tude of the resulting signal. To correct for movement, time points
where the power estimate exceeded a threshold (seven times the
mean of the time course) were set to the average of the time
points immediately before and after. Power time courses were seg-
mented in to 2 s segments, according to the TR used in the fMRI
acquisition; subsequently each segment was averaged over time
and the resulting frequency power time course for each channel
were convolved with an HRF (SPM 5). Finally the HRF convolved
frequency power time course and the RSN time courses were nor-
malized to have zero mean and a standard deviation of one. Time
courses of all ICs (including noise related components) were fit-
ted to each frequency power time course in a separate GLM for
every channel. This resulted in an estimate of signal contribu-
tion for each RSN to each electrode and EEG frequency band.
Plotting these contribution estimates on a scalp plot, here termed
independent component expression pattern (ICEP), gives a visual
representation of the electrophysiological expression of the RSN
for each frequency band. Applying this approach to each of the
15 sections resulted in 15 subsequent ICEPs representing their
evolution over time.

In order to obtain a comparable estimate for this method,
which gives a spatial distribution as opposed to a point esti-
mate of the other two methods, the temporal stability of the
ICEPs was assessed by calculating the spatial correlation between
subsequent sections within one subject, RSN and EEG fre-
quency band. For each of those, the correlation values were
Z -transformed using bootstrap statistics and the Z -scores were
averaged to obtain the mean over all combinations of sections.
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FIGURE 3 | Exemplary representation of data for the three methods
used, depicting the results for RSN3 (lateral visual component) of
subject 1. On the upper left hand side the subject specific map of RSN3 is
plotted as maximum intensity projection on the central slices. The two graphs
in the middle show the ECP time courses for each frequency band for GSPC
and SFPC, illustrating the temporal variance. In the rank graph below the two

methods are plotted on top of each other, depicting the similar variance of
SFPC (solid line) and GFPC (dot-dashed line); for both methods alpha shows
more negative correlation with BOLD in this visual component. On the upper
right hand side the temporal sequence of ICEPs as calculated by CFPF for the
four frequency bands is shown. Below the results of the spatial correlation of
the subsequent ICEPs are depicted, showing no stable temporal signature.

For the bootstrapped Z -transformation a distribution was gen-
erated by repeatedly (n = 10,000) selecting 15 ICEPs at ran-
dom from the entire set of ICEPs for that subject applying the
same spatial correlation analysis. For each RSN and frequency
band the Z -scores of the 15 sections were ranked from high
to low, and for group analysis averaged over subjects. Addition-
ally the variance over the 15 sections as well as the average
variance over subjects for each RSN and frequency band was
calculated.

RESULTS
As reported in Meyer et al. (2013) we found reproducible fMRI
RSNs across subjects (see Figure 2 for a depiction of the RSNs). In
this study we observed very large inter-subject and intra-subject
variability in the EEG frequency power correlations across all

applied analysis methods. Figure 3 depicts the output of the
different methods for one network (RSN3) of subject 1. It is
clearly visible that GFPC and SFPC are not stable in time regard-
ing their EEG frequency power correlation with the RSN time
courses for all frequency bands. Figure 4 shows the results of the
group analysis for GFPC and Figure 5 the results for the five sub-
jects analyzed with SFPC. In both figures the group rank plots
for four different RSNs show a large temporal variance within a
subject – as reflected in the variance of the ranked Z -scores –
in the depicted RSNs for all frequency bands. The error bars,
indicating the standard deviation across subjects, show the con-
siderable inter-subject variability. The error bars in Figure 5 are
larger compared to those in Figure 4 which cannot be explained
by the smaller number of analyzed subjects as controlled by per-
forming GFPC on the same five subjects as for SFPC. Also note
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Table 1 | Group mean temporal variance values (variance across the 15 sections) for GFPC and CFPF, as well as the mean temporal variance

values of the same five subjects analyzed with SFPC and GFPC, for each RSN and frequency band.

Freq band RSN1 RSN2 RSN3 RSN4 RSN5 RSN6 RSN6b RSN7 RSN8 RSN9 RSN10 RSN11 Average

GFPC MEAN VARIANCE ACROSS ALL SUBJECTS

delta 1.029 1.080 0.985 1.036 0.857 1.081 1.050 0.805 1.031 0.882 1.091 0.936 0.989

theta 0.953 0.913 0.906 0.988 0.871 0.973 0.983 0.825 1.031 0.791 0.877 0.828 0.912

alpha 1.186 1.124 1.171 1.121 0.980 1.063 1.148 1.248 1.031 0.995 1.116 1.172 1.113

beta 1.193 1.219 0.981 0.961 0.855 1.060 1.124 0.994 1.031 0.943 1.102 1.136 1.050

Average 1.090 1.084 1.011 1.026 0.891 1.044 1.076 0.968 1.031 0.903 1.046 1.018

CFPF MEAN VARIANCE ACROSS ALL SUBJECTS

delta 0.620 0.501 0.695 0.566 0.667 0.658 0.590 0.731 0.685 0.650 0.635 0.669 0.639

theta 0.690 0.751 0.737 0.799 0.660 0.643 0.749 0.717 0.685 0.809 0.693 0.666 0.717

alpha 0.897 0.876 0.833 0.819 0.780 0.702 0.702 0.864 0.685 0.698 0.756 0.677 0.774

beta 0.798 0.842 0.856 0.759 0.767 0.763 0.808 0.827 0.685 0.743 0.839 0.755 0.787

Average 0.751 0.742 0.780 0.736 0.719 0.691 0.712 0.785 0.685 0.725 0.731 0.692

SFPC VARIANCE FOR FIVE SUBJECTS

delta 1.077 0.763 1.306 0.884 1.327 1.230 1.140 1.097 0.708 1.067 1.125 0.698 1.035

theta 0.587 0.829 1.004 0.791 1.241 1.330 1.018 0.840 0.708 0.889 0.882 0.965 0.924

alpha 1.658 1.582 1.366 1.550 0.671 1.508 1.511 1.763 0.708 1.081 1.491 1.095 1.332

beta 1.534 1.994 1.933 1.909 0.678 1.331 0.919 1.759 0.708 2.228 2.225 1.493 1.559

Mean variance five subjects 0.902

GFPC VARIANCE FOR FIVE SUBJECTS

delta 1.152 1.124 1.219 1.189 0.972 1.342 1.513 0.849 1.161 0.917 1.242 0.959 0.987

theta 0.812 0.944 0.923 1.121 0.923 1.190 1.135 0.867 1.161 0.734 0.949 0.860 0.838

alpha 1.448 1.315 1.325 1.253 0.885 1.323 1.503 1.317 1.161 0.990 1.336 1.109 1.056

beta 1.209 1.168 1.091 1.137 0.843 1.071 1.049 1.109 1.161 1.064 1.483 1.149 0.994

Mean variance five subjects 0.968

The variance values of GFPC and SFPC are comparable since both show the temporal variance of ECPs which represents the direct correlation between frequency

power and RSNs. For CFPF the variance values represent the variance of the subsequent spatial correlation of the ICEPs, which is an indirect measure and not directly

comparable to the other methods. However the overall huge temporal variance across all methods depicts the temporal instable relation between both modalities.

that, using SFPC the overall observed Z -scores are lower com-
pared to GFPC. Strikingly, one can see in the ranking plots that
for the visual components (see RSN2 and RSN3 in Figures 4
and 5) alpha power shows a more negative correlation with the
BOLD signal whereas delta power shows a more positive corre-
lation. This is also the case for the third visual component (not
shown).

On the right hand side of Figure 3 the temporal sequence of
ICEPs as calculated by CFPF for the four frequency bands as well
as the results of the spatial correlation of the subsequent ICEPs
is depicted. Clearly there is no temporally stable signature in the
scalp maps for different sections of the dataset. This can be also
observed in the group rank plot in Figure 6. The data shown in
Figure 3 as well as the rank plots in Figures 4, 5, and 6 are typical
examples for all analyzed subjects, all RSNs, and the four frequency
bands examined, respectively. Table 1 summarizes the results con-
taining the group mean temporal variance across the 15 sections,
for each RSN and frequency band for GFPC and CFPF, respec-
tively, as well as for the same five subjects analyzed with SFPC and
GFPC.

DISCUSSION
The three methods used in this study were chosen to examine
the temporal variability of ECPs from different perspectives with

the aim to minimize methodological bias. GFPC is a very con-
servative approach with fairly little assumptions, taking the global
EEG frequency power as independent parameter. However, due to
the mixed nature of the EEG signal, volume conduction cannot
be excluded, which might cause several sources contributing to a
certain correlation and might explain temporally unstable ECPs.
SFPC addresses this shortcoming by separating the EEG signal
according to the fMRI-RSNs to correlate with, but this also did
not result in temporally stable ECPs.

To test for possible methodological bias of GFPC and SFPC as
source for the observed variance, we analyzed the data sets using a
third approach. CFPF uses the RSN timelines as independent para-
meters and only uses the HRF to model the relation between the
two modalities. Also this approach did not result in temporally sta-
ble correlation patterns. While the human HRF itself shows quite
complex spatial dependencies (de Munck et al., 2007, 2009), in
our correlation analysis it mainly causes a constant time shift and
temporal smoothing, therefore it cannot be the reason for tempo-
rally instable correlation. Together with the findings of GFPC and
SFPC, this leads to the suggestion that the analyzed low dimen-
sional RSNs do not have a temporally stable relationship with EEG
frequency band power fluctuations. However, the observed nega-
tive correlation of alpha power with the BOLD time courses for
the visual components reaches statistical significance within three
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FIGURE 4 | Exemplary group results of RSN2 (occipital visual
component), RSN3 (lateral visual component), RSN4 (DMN), and RSN6
(sensory motor component) for GFPC as rank graph showing large
temporal variance within a subject. The error bars (standard deviation

across subjects) show the considerable inter-subject variability. Clearly alpha
power shows a more negative correlation with the BOLD signal whereas
delta power shows a more positive correlation for the visual components.
Note that the connecting lines are only for visualization purposes.

FIGURE 5 | Exemplary results of RSN2 (occipital visual component),
RSN3 (lateral visual component), RSN4 (DMN), and RSN6 (sensory
motor component) for the five analyzed subjects using SFPC
comparable to Figure 4. The error bars (standard deviation across subjects)
show the considerable inter-subject variability, which is higher compared to

GFPC; note that the Z -scores are smaller compared to GFPC. Despite these
differences, also when using SFPC, alpha power shows a more negative
correlation with the BOLD signal whereas delta power shows a more positive
correlation for the visual components. The connecting lines are only for
visualization purposes.
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FIGURE 6 | Exemplary group results of RSN2 (occipital visual
component) and RSN4 (DMN) for CFPF as rank graph showing no
stable temporal signature. The connecting lines are only for visualization
purposes.

subjects for GFPC in agreement with previous literature (Gold-
man et al., 2002; Laufs et al., 2003a, 2006; Goncalves et al., 2006,
2008; Meyer et al., 2013), but does not reach statistical significance
for either method on the group level.

One possible explanation for our observation of temporally
instable ECPs might be given by Smith et al. (2012), who applied
temporal ICA on high dimensional (200 spatial IC components)
fMRI-RSNs and reported vast temporal dynamics within the lower
dimensional (20–30 spatial IC components) RSNs. As such, there
still might be a direct relation between RSNs and EEG frequency
band power, but on a smaller spatial scale. However, one would
expect a certain temporal stability in the results of SFPC and CFPF
even if just a subcomponent of the low dimensional RSN expresses
itself in a given EEG frequency band, which was not observed in
our study.

An alternative explanation of our results would be, that dur-
ing RS, frequency-specific power in the lower frequency bands of
the EEG is not linked to changes in neuronal activity, reflected
in changed oxygen consumption as measured by BOLD fMRI.
This would also be supported by recent animal studies, e.g.,
Schölvinck et al. (2010), that show no stable correlation for the
lower frequency bands in EEG with BOLD fMRI particularly in
eyes open RS.

The observation that using SFPC reduced the overall observed
Z -scores compared to GFPC gives rise to the assumption that the
studied RSN characteristics are not related. However, one has to
consider the potential limitation of the head model as used in our
study; (a) the spatial resolution of the head model is limited by
the relatively low number of electrodes and (b) its reduced spatial
specificity in the context of spatially extended sources like RSNs,
as we assume a concurrent temporal behavior within the whole
source.

We therefore conclude that the correlation between lower fre-
quency band power in EEG and BOLD RSNs time courses is at
least temporally instable or even absent in eyes open RS.
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In functional magnetic resonance imaging (fMRI) coherent oscillations of the blood oxygen
level-dependent (BOLD) signal can be detected. These arise when brain regions respond
to external stimuli or are activated by tasks. The same networks have been character-
ized during wakeful rest when functional connectivity of the human brain is organized in
generic resting-state networks (RSN). Alterations of RSN emerge as neurobiological mark-
ers of pathological conditions such as altered mental state. In single-subject fMRI data the
coherent components can be identified by blind source separation of the pre-processed
BOLD data using spatial independent component analysis (ICA) and related approaches.
The resulting maps may represent physiological RSNs or may be due to various artifacts.
In this methodological study, we propose a conceptually simple and fully automatic time
course based filtering procedure to detect obvious artifacts in the ICA output for resting-
state fMRI. The filter is trained on six and tested on 29 healthy subjects, yielding mean
filter accuracy, sensitivity and specificity of 0.80, 0.82, and 0.75 in out-of-sample tests.
To estimate the impact of clearly artifactual single-subject components on group resting-
state studies we analyze unfiltered and filtered output with a second level ICA procedure.
Although the automated filter does not reach performance values of visual analysis by
human raters, we propose that resting-state compatible analysis of ICA time courses could
be very useful to complement the existing map or task/event oriented artifact classification
algorithms.

Keywords: ICA, resting-state networks, fMRI, BOLD, artifacts, group studies

1. INTRODUCTION
Functional magnetic resonance imaging (fMRI) technologies have
nowadays been implemented into various clinical applications,
e.g., pre-surgical mapping of eloquent areas of the brain before
resective surgery in brain tumors and epilepsy (Gutbrod et al.,
2012; Kollndorfer et al., 2013). The basic principle of fMRI lies
in the statistical testing of changes in the blood oxygen level-
dependent (BOLD) signal induced by either a given task or
correlations with endogenous stimuli in the brain, as interictal
epileptiform discharges (Hauf et al., 2012). Whilst the analysis of
fMRI data is most frequently univariate, i.e., by paired categorical
analysis using statistical parametric mapping, recent attempts have
shifted toward understanding how multiple brain regions interact
with one another. From a theoretical point of view, distributed
networks are obscured by categorical analysis because subtraction
methods are univariate, i.e., image voxels are analyzed indepen-
dently. Categorical analysis thus has several limitations. It may
overlook parts of a network that do not attain the defined level
of significance, or vice versa, may resemble activations inciden-
tal to the studied phenomenon. Covariance analysis, in contrast,

determines voxels of the brain that exhibit BOLD signal fluctua-
tions correlated in time at low frequencies (. 0.1 Hz). This type
of functional connectivity resembles networks of brain areas that
reveal synchronized neural activity among topographically distinct
regions.

Recently, a set of 23 independent networks has been identi-
fied in a sample of 180 healthy subjects (Doucet et al., 2011).
They correspond to the so-called intrinsic and extrinsic systems,
which are associated with internal- and external-oriented process-
ing, respectively. The most frequently reported intrinsic module is
the default mode network (DMN). These brain areas are typically
active during rest and deactivated during tasks requiring attention
such as visuo-spatial tasks (Greicius et al., 2003). The extrinsic
modules include parietal the sensori-motor network (SMN), the
frontal attention network (FAN), the visual (VIN), and auditory
networks (AUN) as well as the working memory network (WMN).

The analysis of covariance in the BOLD signal is nowadays most
frequently performed by independent component analysis (ICA).
While region of interest (ROI) based approaches have focused on
a priori assumptions, i.e., the presence of functional connectivity
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is assumed from previous hypotheses, data-driven approaches as
ICA offer the advantage to analyze coherent physiological signals
on the whole brain level. Several implementations, most frequently
based on the FastICA algorithm (Hyvärinen and Oja,1997; Hyväri-
nen, 1999), have been provided to disentangle mixed signals into
mutually least dependent spatial source signals that represent dif-
ferent networks following a similar temporal pattern. A frequent
assumption is that N src spatial “sources” s are linearly mixed by a
constant N obs

×N src matrix A to yield the N obs “observations” x
in the following way:

x = A · s (1)

both, A and s are a priori unknown. Here and in the sequel s and x
are matrix notations for sli with l = 1, . . ., N src and xti with t = 1,
. . ., N obs, respectively. The index i= 1, . . ., N spc with N spc

�N src,
N obs numbers the spatial degrees of freedom and will be omitted
from now on to ease the notation. In ICA and related techniques
the mixing matrix A is estimated by the requirement that the sl

become as independent as possible.
In spatial single-subject ICA the columns of the “mixing

matrix” A of equation (1) represent the time courses of the inde-
pendent components (IC) and the matrix elements Atl inform
how strongly and with which sign the source sl contributes to
the observation xt. At a group level different approaches to ICA
have been developed, either performing a secondary analysis on
preselected single-subject ICs or methods in which raw single-
subject data is integrated before analysis (for reviews, see Guo and
Pagnoni, 2008; Calhoun et al., 2009). This includes group ICA
approaches in which single-subject data is concatenated in time
(Calhoun et al., 2001; Beckmann et al., 2005; Schöpf et al., 2010b)
or space (Svensén et al., 2002; Schmithorst and Holland, 2004)
or by using a three-dimensional tensor representing spatial, tem-
poral, and subject-specific loadings for each group component
(Beckmann and Smith, 2005). Group ICA methods after single-
subject ICA have been introduced by selecting the single-subject
ICs by visual inspection (Harrison et al., 2008), based on a spatial
template (Calhoun et al., 2008), or based on the spatial correlation
of the single-subject maps (Esposito et al., 2005; De Luca et al.,
2006; Schöpf et al., 2010a, 2011; Varoquaux et al., 2010). A dif-
ferent technique that deserves mentioning in this context is “IC
dictionary” creation using “bagged clustering” over a large num-
ber of single-subject ICs (Anderson et al., 2011). This approach
first reduces dimensionality by projection onto anatomical ROIs
and subsequently pools the data by k-means clustering.

By construction the ICs of fMRI data are not necessarily related
to the BOLD effect. Rather, all kinds of physiological or non-
physiological artifacts may appear in ICs. As their removal reduces
the noise level in the data, several attempts to automated artifact
classification of ICs have been undertaken. In McKeown (2000) a
hybrid approach was proposed that combined data-driven spatial
ICA with task-related a priory hypotheses that could be analyzed
by the general linear model (GLM). IC maps explained by task-
related head motion were identified in Kochiyama et al. (2005) by
statistically examining task-related intensity and variance changes
of the BOLD signals. Both methods require the presence of tasks to
enable classification. In contrast, the method proposed by Thomas

et al. (2002) used the power spectrum of IC time courses to clas-
sify them as candidates for white or structured noise (physiological
fluctuations). Perlbarg et al. (2007) used manually defined regions
of interest (ROIs) to define typical time courses of structured noise
in fMRI data, which were used as regressors for the BOLD signals.

Also spatial features have been employed for artifact identifica-
tion. A combination of six temporal and spatial features was used
in Tohka et al. (2008) to classify ICs from fMRI data in event related
and block design. Motivated by typical “IC fingerprints” (De Mar-
tino et al., 2007) in Sui et al. (2009) spatial correlation with tissue
class templates as well as spatial structure and information content
was used to identify artifactual IC maps.

So far, most attempts to automated IC classification were either
designed for task/event related fMRI data or rely on spatial infor-
mation. To our knowledge, automated time course based artifact
identification suitable for resting-state fMRI data has not yet been
undertaken. In the present contribution we propose a conceptually
simple algorithm for unsupervised identification (and potentially
removal) of artifactual single-subject ICs, which is entirely based
on the time courses. After training on six datasets the algorithm
is tested in 29 data sets and classification accuracy is compared
to visual rating. Thereafter, the filtered data is subjected to a sec-
ondary ICA analysis to illustrate the impact of artifactual ICs on
group studies.

2. MATERIALS AND METHODS
2.1. SUBJECTS AND DATA ACQUISITION
The data used in the present study consisted of 35 subjects that
participated as healthy volunteers in a multiple sclerosis study.
The study was approved by the ethics commission of the Canton
of Bern. Demographics were chosen to match those of multiple
sclerosis patients presenting at the neurological outpatient clinic
of the Inselspital in Bern, see Table 1.

All subjects underwent T2∗-weighted functional and T1-
weighted high resolution structural MR imaging. Imaging was
performed at the University Institute of Diagnostic and Interven-
tional Neuroradiology, Inselspital, Bern (Rajeev Kumar Verma)
on a 3-T Siemens Scanner (Magnetom Verio®, Siemens Medical
Solutions, Erlangen, Germany) using a 32-channel head coil. Head
motion was minimized by fitting foam pads between head and coil.
Scanner noise was reduced by using ear plugs.

Resting-state functional images were acquired with a standard
EPI sequence and analyzed in detail. In two groups BOLD data
were registered with the same MR parameters: repetition time
(TR) 1980 ms; echo time (TE) 30 ms; flip angle 90˚; inversion
time(TI) 910 ms; slice thickness 4 mm; field of view (FOV) 192 mm
(matrix size 192× 192); voxel size 3.0 mm× 3.0 mm× 4.0 mm.
The “training data set” and “test data set” consisted of N subj

= 6
and N subj

= 29 subjects, respectively, where N obs
= 270 and

N obs
= 300 volumes were registered. The shorter data sets were

acquired earlier than the longer ones, i.e., the groups are not
randomized. Notwithstanding, age, gender, and handedness dis-
tributions were not significantly different between the groups, see
Table 1.

For anatomical co-registration three-dimensional T1-weighted
images were obtained using the Modified Driven Equilibrium
Fourier Transformation (MDEFT) sequence. The acquisition
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Table 1 | Demography of subject groups.

Training set Test set Difference

between

sets

N subj=6 N subj=29

Nobs=270 Nobs=300

Age (years) Range 26–42 21–61 pU=0.69

M 32.3 35.3

SD 6.7 11.0

Gender Male/female 1/5 8/21 pχ =0.72

Handedness Right/

ambidexter/left

6/0/0 27/2/0 pχ =0.36

Test for equal median age: Mann-Whitney-Wilcoxon U-test. Test for equal gender

and handedness distribution: χ 2-test with one (gender) and two (handedness)

degrees of freedom.

was performed with the following parameters: TR= 7.92 ms;
TE= 2.48 ms; flip angle= 16˚; slices per slab= 176; slice thickness
1 mm; FOV= 256 mm (matrix size= 256× 256), with a resulting
voxel size of 1.0 mm× 1.0 mm× 1.0 mm.

2.2. DATA PRE-PROCESSING
Pre-processing and analysis of resting-state fMRI data was per-
formed independently for each subject using the freely available
FMRIB’s Software Library FSL (http://www.fmrib.ox.ac.uk/fsl/),
version 4.1.7. Analysis was done on a Quadcore computer with
Intel Xenon®CPU at 2.4 GHz and 12 GB memory under the 64-bit
version of Ubuntu Linux 12.04 LTS.

The pre-processing stream was as follows: Motion correc-
tion was carried out using the MCFLIRT tool and slice timing
was corrected. The BET tool was used for brain extraction in
structural and functional MR data and spatial smoothing with
a 6-mm FWHM kernel was performed for functional data. The
time constant for the high pass filter was set to 111 s, leaving only
frequencies f> 0.009 Hz in the pre-processed BOLD time course.

fMRI data were first registered to each subject’s high resolution
structural images (MDEFT). Subsequently, the BOLD data were
registered to the standard MNI space. For both registration steps
linear transformations with 12 degrees of freedom (translation,
rotation, scaling, sheering) were used.

2.3. SINGLE-SUBJECT ICA
Least dependent components in the BOLD maps were estimated
for each subject separately. The number of single-subject sources
N src

n was estimated from the data for each subject by maxi-
mizing the Laplacian estimate to the Bayesian evidence of the
model order (Minka, 2000; Beckmann and Smith, 2004). After
dimensionality reduction by principal component analysis (PCA)
single-subject ICA was performed using probabilistic ICA (Beck-
mann and Smith, 2004) as implemented in version 3.10 of FSL’s
MELODIC toolbox.

2.3.1. Supervised post-processing
The MELODIC output includes a collection of spatial maps, some
of which represent physiological RSNs and some of which repre-
sent artifacts. For visual artifact identification the following criteria
were applied by three raters independently (Christian Rummel,

Eugenio Abela, and José Fernando Zapata Berruecos), both in the
training as well as in the test data set. Maps were marked as obvious
artifacts if the activations were confined:

(a) to the boundaries of the brain,
(b) to the cerebral ventricles,
(c) to the inter-hemispheric scission, or
(d) to less than three slices.

In addition, maps were marked as artifacts:

(e) if the activations were distributed irregularly over the whole
parenchyma without clear regions of accumulation,

(f) if the time course resembled one or several motion correction
parameters, or

(g) if the power spectrum of the time course was extraordinarily
broad or narrow.

After independent rating the raters agreed on obvious arti-
fact ICs and potential RSNs in a discussion session. The rating
sensitivities:

sensn =
TPn

TPn + FNn
, (2)

specificities

specn =
TNn

FPn + TNn
(3)

and accuracies

accn =
TPn + TNn

TPn + FNn + FPn + TNn
=

TPn + TNn

N src
n

(4)

were calculated subject-wise. In equations (2–4) TPn and TNn
denote the numbers of true positives and true negatives in sub-
ject n= 1, . . ., N subj (i.e., the number of single-subject ICs rated
the same way by an individual rater and in the agreement of all
raters). Similarly, FPn and FNn are the numbers of false positives
and false negatives (i.e., the number of single-subject ICs with
disagreement).

2.3.2. Automated post-processing
The problem of automatic classification of ICs has been
approached in De Martino et al. (2007), Tohka et al. (2008) by
subjecting multi-dimensional feature vectors to support vector
machines or global decision trees, respectively. Here, we do not
aim at full IC classification. Rather, our objective is automated
identification of single-subject ICs that are obviously artifacts. To
this end we implemented two simple time course based criteria in
an automatic filtering process:

(I) A GLM was fitted to the time course sl of each single-subject
IC with the motion correction parameters as regressors (three
translations, three rotations). If the significance pmoco of
Pearson’s correlation coefficient between sl and the GLM
prediction was smaller than a threshold pcrit

moco ∈ [0, 1] the
component was discarded as probable artifact of residual
subject motion.
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(II) The spectral power density of the IC time courses sl was esti-
mated and filtered in the frequency band 0.009< f< 0.08 Hz,
where RSN associated spontaneous BOLD fluctuations are
expected (Biswal et al., 1995; Weissenbacher et al., 2009;
Schöpf et al., 2010a). If the null hypothesis that the origi-
nal and the filtered power distribution are compatible was
rejected on a significance threshold pcrit

pow ∈ [0, 1] by a
Kolmogorov-Smirnov test (Siegel, 1956) the corresponding
components were also interpreted as artifacts.

The criteria (I) and (II) of the automated filter represent a
quantitative formulation of the time course based visual criteria
(f) and (g) above. No information about the spatial distribution
of activations was used.

Both thresholds pcrit
moco and pcrit

pow were chosen in a data driven
way by optimizing the agreement between automated and visual
analysis of single-subject IC maps in the training set. To this end
the parameter space was systematically scanned in 10−50

≤ pmoco,
ppow≤ 10−1 and subject-wise agreement between automatic and
visual rating (agreement of all raters) was assessed by the accuracy
of the discriminator as defined in equation (4). The mean 〈accn〉

over the single-subject accuracies of the filter defined in equation
(4) was maximized. As opposed to maximization of the global
accuracy:

accglob =

∑
n TPn +

∑
n TNn∑

n N src
n

(5)

of all single-subject ICs from all subjects this prevents over-tuning
the parameters for training subjects with large N src

n . The same
thresholds pcrit

moco and pcrit
pow were subsequently used in the test set.

2.4. SIMPLE APPROACH TO GROUP ICA
Group ICA was performed by concatenating single-subject IC
maps from all N subj subjects in time and performing a secondary
ICA on the joint data set using MELODIC. As in the single-subject
case we estimated the number of group ICs using the Laplacian
approximation to the model order (Minka, 2000; Beckmann and
Smith, 2004). Comparing results for filtered and unfiltered single-
subject ICs we briefly illustrate the potential impact of artifactual
ICs on group ICA studies.

2.5. STATISTICAL EVALUATION
Statistical analysis was performed using Matlab 7.0.4 (MathWorks,
Natick, MA, USA). As for our group sizes most often at least
one distribution is small (N < 10) significance of different medi-
ans between k distributions was tested non-parametrically by the
Mann-Whitney-Wilcoxon U -test for k = 2 and by the Kruskal-
Wallis test for k > 2 (Siegel, 1956). Difference in discrete distri-
butions was tested by the χ2-test (Siegel, 1956). As significance
level we chose α= 0.01 for all tests. Results were interpreted as
“marginally significant” or “trends” if p< 0.05.

3. RESULTS
3.1. SINGLE-SUBJECT ICA
In Figure 1 we illustrate the results for the DMN exemplarily
in two subjects. Figures 1A,E give an overview of the typical
between-subject variability of the representation of the functional

IC maps on the individual anatomies. The corresponding time
courses sl are displayed in Figures 1B,F and the best fit of
a GLM with the six motion correction parameters as regres-
sors in Figures 1C,G. Correlation is significant in both subjects.
Figures 1D,H show the power spectra of the DMN time courses.
Filtering in the range 0.009< f< 0.08 Hz (shaded in light blue)
leads to significant changes of the power distribution.

Two obviously artifactual ICs are shown in Figure 2. Data was
taken from the same subject as the right column in Figure 1. The
IC of the left column is clearly related to residual subject motion,
leading to a much smaller value pmoco than observed in Figure 1B.
The activations of the IC map were mainly confined to the brain
boundaries (Figure 1A). Other examples of this artifact type are
characterized by typical activation “halos” in axial slices. In con-
trast to pmoco the power related ppow is in the same range as for
the DMNs in Figure 1. A typical power related artifact IC is dis-
played in the right column. Correlation between the time course
and the GLM of the motion correction parameters is the same as
in Figure 1. However, the time course has much more power in
large frequencies (see Figures 1F,H), leading to a much smaller
value of ppow. In contrast to the motion related artifact here the IC
map is much less suspicious on its own (Figure 1E). However, the
asymmetry and the strong involvement of the cerebellum confirm
this IC as artifact in visual inspection.

The large separation of p-values between obviously artifact
related ICs and ICs that might represent RSNs allowed the con-
struction of the proposed time course based automated artifact
filter. In Figure 3 the objective function 〈accn〉 is displayed for the
training set as a function of the two thresholds pmoco and ppow (log-
arithmic scale). The mean of the accuracies defined in equation
(4) is maximized by the choice pcrit

moco = 10−17 and pcrit
pow = 10−8,

where 〈accn〉= 0.88. Note that in the range 10−25< pmoco< 10−15

and 10−15< ppow< 10−5 the mean accuracy is rather insensitive
to the precise choice of the thresholds.

In Table 2 the number of single-subject ICs are compiled.
Neither the MELODIC estimate N src

n nor the number of poten-
tial RSNs that passed the visual rating or the automatic filtering
process (i.e., ICs that were not automatically rated as obvious arti-
facts) were significantly different between the training and the test
data set. Starting from the Laplacian estimator for N src

n , approx-
imately 2/3 of the single-subject ICs were concordantly rated as
obvious artifacts in both groups by the raters and the filter.

Neither the visual rating accuracies (i.e., single rater opinion as
compared to inter-rater agreement) nor the filter accuracies were
significantly different between the data sets, see Table 3. How-
ever, the smallest obtained accuracies were much smaller in the
test set than in the training set, especially for the filter. Although
the overall accuracy of the proposed time course based filter was
rather high (mean accuracy 0.80 in out-of-sample tests) it did not
reach the performance of human raters. The difference was much
more significant in the test set than in the training set. Rating
sensitivities and specificities are compiled in Tables 4 and 5. The
only difference between the data sets was a trend toward smaller
specificity of the automated filter in the test set (pU= 0.03). While
in the training data set sensitivity and specificity of the filter were
only marginally smaller than for human raters the differences were
significant in the test set.

Frontiers in Human Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 214 | 99

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rummel et al. Artifact identification for ICA of resting-state fMRI

FIGURE 1 | Default mode networks for two subjects. Left: 37 year old
male, right: 35 year old female participant. (A,E) Activation maps. Colorbars
represent z-scores of IC weights per voxel. Data are presented in native

space. (B,F) Associated BOLD time courses (normalized to zero mean and
unit variance). (C,G) Best fit of a GLM with motion correction parameters as
regressors to the BOLD data. (D,H) Power spectra of the BOLD time courses.

FIGURE 2 | Artifact related single-subject ICs that are excluded by the
automatic filter. Data is taken from a 35-year old female participant. Right:
typical type I artifact (residual subject motion), left: typical type II artifact (too
much power in high frequencies). (A,E) Activation maps. Colorbars represent

z-scores of IC weights per voxel. Data are presented in native space. (B,F)
Associated BOLD time courses (normalized to zero mean and unit variance).
(C,G) Best fit of a GLM with motion correction parameters as regressors to
the BOLD data. (D,H) Power spectra of the BOLD time courses.
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FIGURE 3 | Average filter accuracy in the training set as a function of
−log10 (pmoco) and −log10 (ppow).

Table 2 | Number of single-subject ICs as proposed by MELODIC and

number of potential RSNs (i.e., ICs that were not rated as obvious

artifacts by visual inspection or the automated filter).

Training set Test set Difference

between sets

Nsrc
n Range 35–48 29–84 pU=0.57

M 42.3 45.4

SD 6.0 9.1

NRSN
n (visual insp.) Range 11–17 3–30 pU=0.77

M 13.2 13.9

SD 2.1 4.7

NRSN
n (filter) Range 8–24 5–26 pU=0.28

M 13.3 15.6

SD 5.8 5.5

Difference visual vs. filter pU=0.78 pU=0.18

Test for equal medians: Mann-Whitney-Wilcoxon U-test.

3.2. GROUP ICA
Concatenating all single-subject IC maps from all subjects in
time (254 in the training set and 1356 in the test set) and per-
forming a secondary ICA the MELODIC toolbox respectively
estimated 29 and 581 group ICs (Laplacian method). Especially
the number obtained for the test data set is of course much
too large. In consequence, the vast majority of obtained group
ICs were obviously artifactual and none of the typical RSNs
was obtained. Rather, some ICs seemed to resemble fragments
of known RSNs. After automated removal of the artifact ICs
by the proposed filter, the secondary ICA revealed 14 and 59
group ICs in the training and test data sets, respectively. Many
of the established RSNs were found as, e.g., the DMN, the SMN,
the AUN, the VIN, and the WMN. Examples are compiled in
Figure 4.

Table 3 | Rating accuracies of individual raters and automated filter as

compared to the raters’ agreement.

Training set Test set Difference

between sets

accn (visual insp.) Range 0.95–1.00 0.82–1.00 pU=0.23

M 0.98 0.96

SD 0.02 0.04

accn (filter) Range 0.76–0.94 0.41–0.96 pU=0.12

M 0.88 0.80

SD 0.07 0.11

Difference visual vs. filter pU <10−3 pU <10−11

Test for equal medians: Mann-Whitney-Wilcoxon U-test.

Table 4 | Rating sensitivities of individual raters and automated filter

as compared to the raters’ agreement.

Training set Test set Difference

between sets

sensn (visual insp.) Range 0.94–1.00 0.83–1.00 pU=0.79

M 0.97 0.97

SD 0.02 0.04

sensn (filter) Range 0.62–1.00 0.58–1.00 pU=0.17

M 0.89 0.82

SD 0.14 0.11

Difference visual vs. filter pU=0.03 pU <10−10

Test for equal medians: Mann-Whitney-Wilcoxon U-test.

Table 5 | Rating specificities of individual raters and automated filter

as compared to the raters’ agreement.

Training set Test set Difference

between sets

specn (visual insp.) Range 0.92–1.00 0.67–1.00 pU=0.81

M 0.97 0.94

SD 0.04 0.09

specn (filter) Range 0.67–1.00 0.10–1.00 pU=0.03

M 0.81 0.75

SD 0.14 0.23

Difference visual vs. filter pU=0.02 pU <10−6

Test for equal medians: Mann-Whitney-Wilcoxon U-test.

4. DISCUSSION
In this contribution we proposed a simple filter for automated
identification of obviously artifactual single-subject ICs. The fil-
ter relies on only two features of the associated IC time courses:
(I) correlation with motion correction parameters and (II) power
outside the expected range 0.009< f< 0.08 Hz. Thresholds were
deduced from a training data set of six subjects. The maximum
of the mean subject-wise in-sample accuracy was found unique
and broad (Figure 3) and thus smaller variations of the threshold
parameters are not expected to influence our results sizably. In
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FIGURE 4 | Examples of group RSNs obtained from the test data set by
a secondary ICA procedure: (A) DMN, (B) AUN, (C) WMN. Obvious
artifacts were automatically removed before concatenation of the
single-subject maps. The networks are displayed on a standard brain in MNI
space.

addition, alternative implementations of the rules (I) and (II) are
conceivable. For example, the p-value of the KS-test for the origi-
nal and filtered power spectra could be replaced by a criterion on
the spectral width or a threshold for the fraction of power found
outside the allowed region.

The filter was applied to an out-of-sample test data set of 29
subjects. Neither the group demographics (see Table 1) nor the
rater and filter performance were significantly different between
the training and test data set (see Tables 3–5). We take these find-
ings as a confirmation that the non-random selection of training
and test data did not induce a bias.

Although our results for the test data set indicate that the auto-
mated artifact filter does not reach the performance of visual
inspection by human raters, we consider the mean out-of-sample
accuracy of 0.80 (mean sensitivity 0.82, mean specificity 0.75) high
enough to considerably aid or replace user intervention in large
data sets. As expected, performance differences between human
raters and the filter were much more significant in the test than in
the training data set. Besides the fact that in-sample performance
is optimized whereas out-of-sample performance is not, the better
statistics due to five times larger number of subjects may be the

main explanation for this finding. As filters will almost always be
trained on limited data and applied to larger sets, we consider this
a realistic setting.

In contrast to the proposal by Sui et al. (2009), where only
spatial information of IC maps was used, our artifact detector is
entirely based on properties of the IC related BOLD time courses.
However, as can be seen in Figures 2A,E, these are reflected by sus-
picious visual appearance of the IC maps. This suggests that map
based identification of head movement related artifacts affecting
mainly the brain boundaries (Tohka et al., 2008) could proba-
bly be replaced by our conceptually simpler criteria. Inclusion of
our criteria (I) and (II) in a combination of non-related temporal
and spatial features similar to the classification approaches by De
Martino et al. (2007), Tohka et al. (2008) could possibly help to
improve filter performances considerably.

Our rule (II) has similarity with the power spectrum based clas-
sification into structured or white noise time courses in Thomas
et al. (2002) and the two signal power dependent features of Tohka
et al. (2008). The criterion (I) is related to the methods by McK-
eown (2000), Kochiyama et al. (2005). However, these methods
rely on the presence of tasks and are consequently not applic-
able to resting-state fMRI. In contrast, our proposal of using
motion correction parameters in a GLM may also be suitable to
distinguish task-related activations from task-related movement
artifacts. The approach by Perlbarg et al. (2007) uses physiological
noise time courses as regressors. Here, an important difference is
that our proposal does not require manual user intervention for
ROI definition.

Also the recent publication by Kundu et al. (2012) deserves
discussion. Measuring at three echo times (TE) a differentiation
between BOLD and non-BOLD signals in fMRI data was possi-
ble. However, this method requires acquisition of multi-echo echo
planar imaging (EPI) sequences and can of course not be applied
retrospectively to standard EPI data.

To illustrate the impact of artifact ICs on group studies we
used a secondary ICA on top of full and artifact corrected single-
subject ICA output. Considerable improvement was found in the
sense that typical RSNs were obtained only after exclusion of arti-
facts. We used a simple group analysis strategy, which is similar to
the approach implemented in GIFT (Calhoun et al., 2001, 2009).
Spatial maps from all N subj subjects are processed jointly by an
arbitrary ICA algorithm. An important difference is that in our
approach the number N src

n of single-subject ICs is estimated indi-
vidually for each subject n= 1, . . ., N subj, while in GIFT a PCA
based dimensionality reduction is performed to the same prede-
fined number N src

fix in all subjects. This bears the risk of subjecting
noise ICs to the second level analysis in some subjects, while poten-
tially eliminating ICs of interest in others. A common advantage of
GIFT and the secondary ICA procedure is that the respective data
dimensions N (2)

= N subj
· N src

fix and N (2)
=

∑
n N src

n are usually
much smaller than for straight forward temporal concatenation,
where N (2)

= N subj
· N obs.
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An enduring issue with data-driven analysis and filtering methods is the interpretation of
results. To assist, we present an automatic method for identification of artifact in inde-
pendent components (ICs) derived from functional MRI (fMRI).The method was designed
with the following features: does not require temporal information about an fMRI para-
digm; does not require the user to train the algorithm; requires only the fMRI images
(additional acquisition of anatomical imaging not required); is able to identify a high propor-
tion of artifact-related ICs without removing components that are likely to be of neuronal
origin; can be applied to resting-state fMRI; is automated, requiring minimal or no human
intervention. We applied the method to a MELODIC probabilistic ICA of resting-state func-
tional connectivity data acquired in 50 healthy control subjects, and compared the results
to a blinded expert manual classification. The method identified between 26 and 72% of
the components as artifact (mean 55%). About 0.3% of components identified as artifact
were discordant with the manual classification; retrospective examination of these ICs sug-
gested the automated method had correctly identified these as artifact.We have developed
an effective automated method which removes a substantial number of unwanted noisy
components in ICA analyses of resting-state fMRI data. Source code of our implementation
of the method is available.

Keywords: functional magnetic resonance imaging, fMRI, independent component analysis, ICA, automated
classification, automatic, artifacts, independent component labeling

1. INTRODUCTION
Functional magnetic resonance imaging (fMRI) is a non-invasive
technique that uses the blood oxygen level dependent (BOLD)
effect to explore neural activity (Ogawa et al., 1990). However,
BOLD fMRI suffers from numerous sources of structured noise
(Biswal et al., 1996; Friston et al., 1996; Glover et al., 2000)
which compromises the fMRI signal. These include rapid and
slow head movements, physiological activity (breathing and heart-
beat), and potential acquisition artifacts. Even after traditional
pre-processing steps, such as slice-timing correction, motion cor-
rection, high-pass filtering, and spatial smoothing, some of these
artifacts still remain (Grootoonk et al., 2000; Lund et al., 2006).
To overcome this, the use of data-driven techniques are increas-
ingly being employed to generate potentially valuable information
on the nature of signal and noise in fMRI data. In particular,
spatial Independent Component Analysis (ICA), has been pro-
posed (McKeown et al., 1998). Spatial ICA is a blind source
separation (BSS) technique, that decomposes fMRI data into com-
ponents which are maximally independent (Hyvärinen, 1999).
Each Independent Component (IC) contains a 3D spatial map
and a 1D time-course. When compared to traditional fMRI analy-
sis approaches, where a design paradigm and assumptions about
the hemodynamic processes in the brain are required to obtain
spatial activation maps (Buxton et al., 2004), ICA offers a hypoth-
esis free model to gain further insights in identifying the spatial

location of brain activity. However, such an approach, due to its
hypothesis free nature begs the question of interpretation of the
results. In particular, how does one distinguish between ICs which
are signal (i.e., components of neuronal origin) and noise (i.e.,
due to movement, cardiac pulsations etc.)? Typically, this has been
done by visually inspecting each IC and manually categorizing
them (McKeown et al., 1998; Moritz et al., 2003; Kelly Jr. et al.,
2010). This is however, a very time consuming and subjective pro-
cedure which is dependent on the experience of the researcher.
For example, Kelly Jr. et al. (2010) provide a detailed description
of the criteria to manually classify ICs via visual inspection. They
estimate approximately 37 min for classifying 100 ICs which can
be a typical yield from lengthy resting-state ICA (Rodionov et al.,
2007; LeVan et al., 2010).

Other methods have classified ICs by using paradigm informa-
tion (Thomas et al., 2002; Calhoun et al., 2005; Kochiyama et al.,
2005). Specifically, Calhoun et al. (2005) present an approach for
semi-blind ICA analysis of event-related fMRI data by imposing
regularization on certain estimated time courses using the para-
digm information. This approach, however, is limited to studies
where temporal information is available. In some applications it
may not be desirable to use temporal information in the classi-
fier. Resting-state functional connectivity is one such application.
Another, which is a particular interest of ours, is the data-driven
exploration of fMRI prior to an epileptic seizure (Federico et al.,
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2005), where we have no prior model of expected signal change or
event timing (apart from the seizure itself at which point the data
acquisition usually ends).

More recently, several automatic techniques have been devel-
oped to assist in classifying ICs into categories of noise and signal
(Perlbarg et al., 2007; Stevens et al., 2007; Calhoun et al., 2008; Sui
et al., 2009; Kundu et al., 2012). Perlbarg et al. (2007) uses both
spatial and temporal patterns to categorize ICs into noise and
signal. However, their automatic classifier, CORSICA, is limited
to identifying physiological noise. Calhoun et al. (2008) utilize a
brain atlas to aid sorting ICs. However, atlas based sorting requires
strong a priori assumptions on the spatial layout of the activation
which is not always available. Sui et al. (2009) employ spatial only
criterion to automatically classify ICs as they use contrast images
that contain no time-domain information. Their method relies on
generating cerebrospinal fluid (CSF) red and gray-matter (GM)
masks. It can be difficult to obtain an accurate GM mask with fMRI
images, especially at higher magnetic field strengths (e.g., 3 T)
where image distortions and signal dropout can result in blurred
boundaries between gray matter and white matter. Kundu et al.
(2012) differentiate BOLD-like functional network components
from non-BOLD-like components related to motion, pulsatil-
ity, and other nuisance effects based on TE-dependence. While
this was found to be a robust method compared to conventional
techniques for classifying artifacts, the technique requires a multi-
echo acquisition sequence and cannot be applied to conventional
single-echo fMRI data.

Other automatic techniques based on machine learning algo-
rithms have been applied to identify artifactual ICs (De Martino
et al., 2007; Tohka et al., 2008). De Martino et al. (2007) represents
each IC in a multidimensional space, called an IC-fingerprint.
Using these IC-fingerprints, they classify ICs into various cate-
gories of signal and noise. Tohka et al. (2008) uses a combination
of spatial and temporal criteria to aid in classifying signal and
noise via global decision trees. However, their classifier overlooks
physiological noise. Moreover these two techniques are primarily
dependent on a training data set.

We sought to overcome some of the limitations of existing
classifiers by developing an artifact identification method that:

• Does not require temporal information about the fMRI para-
digm.

• Does not require the user to train the algorithm.
• Requires only the EPI images (additional acquisition of anatom-

ical images is not required).
• Is able to identify a high proportion of artifact-related ICs with-

out removing components that are likely to be of neuronal
origin.

• Can be applied to resting-state fMRI.
• Is automated, requiring minimal or no human intervention.

We are not aware of any existing IC artifact identification
method that contains all of the above features. We have dubbed
our method the Spatially Organized Component Klassifikator
(SOCK). In the context of this paper, we mean by “Klassifika-
tor” (a German word meaning classifier) the ability to distinguish
between ICs dominated by artifact and those containing possible

neuronal signal. We note from the outset that our approach is
designed to complement rather than replace existing approaches.
A limitation in some applications can be a strength in others.
We designed SOCK for particular applications where the features
listed above are the highest priorities.

2. METHODS
2.1. METHODS OVERVIEW
The overview of the automatic IC classification process is given
below (see also Figure 1).

1. ICA was applied to the pre-processed fMRI data (see Section
2.5) using MELODIC (Beckmann and Smith, 2004), yield-
ing both thresholded (P < 0.05) and unthresholded ICs and
associated time courses and power spectra1.

2. Calculation of features (smoothness measure, edge, CSF, and
temporal frequency power) for each IC was computed via the
SOCK algorithm.

3. Based on the above features, ICs dominated by artifact are clas-
sified into an Artifact category and all other ICs (i.e., those
containing possible neuronal signal) into an Unlikely Artifact
category.

Source code of our implementation of the method is available
at http://www.brain.org.au/software.

2.2. ICA DECOMPOSITION
The idea behind ICA is to decompose the 4D fMRI time series into
a linear combination of spatially independent component maps
with an associated time-course (McKeown et al., 1998; Hyvärinen,
1999). This is expressed mathematically as follows:

X =
N∑

i=1

TiSi (1)

where X is a K ×M matrix (K = number of samples and
M = number of time courses) of the fMRI time series, S the N ×M
matrix whose rows Si (i= 1, . . ., N ) represent the ith spatial com-
ponent (K ≤T ) and T is the K ×N mixing matrix (unknown),
whose columns Ti (i= 1, . . ., N ) contain the time courses of the
N sources. Estimating the number of sources, N is done in the
pre-processing step, usually via PCA (Beckmann and Smith, 2004).

The only constraint enforced in this decomposition is that each
of the component maps, Si’s are spatially independent. This is
equivalent to saying that all Si’s, with the exception of one have to
be non-Gaussian. Structured non-Gaussian noise (head motion
and physiological noise) in the fMRI data series is not explic-
itly modeled, but is treated as an independent source in the ICA
decomposition (McKeown et al., 1998; Hyvärinen, 1999).

The ICA decomposition is done by estimating the mixing
matrix, T, by minimizing redundancy in the spatial maps of the
components, S. This can be mathematically expressed as:

S =
N∑

i=1

WiXi (2)

1Temporal information expressed in the frequency domain. This is done mathemat-
ically by taking the discrete Fourier Transform of the time course.
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FIGURE 1 | ICA was applied to pre-processed fMRI data yielding spatial
component maps with associated time courses and power spectra.
SOCK automatically distinguishes between ICs dominated by artifact (Artifact

category) and those containing possible neuronal signal (Unlikely Artifact
category) by calculating IC features (smoothness measure, edge, CSF, and
temporal frequency power).

where matrix W, called the “un-mixing” matrix, is the inverse of
T. Several freely available software packages are available to per-
form this decomposition; we used MELODIC which is part of the
FSL package (Beckmann and Smith, 2004). The output is a set of
spatial maps (Si) with associated time courses (Ti) and power spec-
tra (PSi). These then form the input for the automatic classifier,
SOCK.

2.3. CALCULATION OF IC FEATURES
SOCK automatically identifies artifact in each IC using features
likely to indicate motion, physiological noise, or machine or unde-
termined noise. To achieve this, each IC is assessed for the presence
of substantial edge-only activity, activity in the ventricles, or a
large number of isolated very small clusters or isolated voxels
(i.e., a “spotty” appearance), respectively. Specifically, we use four
measures:

1. Smoothness measure. This assesses the contributions of low
and high spatial frequency content for each IC (Section 2.3.1).

2. Edge activity measure. This assesses the extent of activity in
peripheral areas of the brain, via an edge mask (Section 2.3.2).

3. CSF activity measure. This assesses the extent of activity in
ventricular areas of the brain, via a CSF mask (Section 2.3.3).

4. Temporal Frequency Noise (TFN) measure. This assesses the
power in temporal frequency beyond 0.08 Hz (Section 2.3.4).

2.3.1. Smoothness measure
The spotty appearance of an IC, which reflects the degree of
smoothness, is identified by observing spatial frequencies via a
Fourier Transform. We assume components that are likely to be of

neuronal origin will be relatively smooth and that by observing
contributions in spatial frequency, we can distinguish between
ICs that are smooth and unsmooth. The framework for the
smoothness criterion is as follows.

Let F i(Kx , Ky , Kz ) be the 3D Discrete Fourier Transform of IC,
i. That is,

F i (Kx , Ky , Kz
)
=

∑
X

∑
Y

∑
Z

Si

(X , Y , Z ) e−2πj(Kx ·X ·X0+Ky ·Y ·Y0+KZ ·Z ·Z0) (3)

where j is an imaginary unit, X, Y, and Z are vectors correspond-
ing to the fMRI image dimensions and X 0, Y 0, and Z 0 are the step
sizes between consecutive samples in the X, Y, and Z directions
respectively. Kx, Ky, and Kz are vectors in the Fourier space and
S is the intensity in the image space. A typical Fourier Transform
for a single slice is illustrated in 2A. While a 3D Discrete Fourier
Transform is implemented in SOCK, we show a 2D illustration for
simplicity. Data in the center of this figure contains low spatial fre-
quency information about the image,while data near the periphery
represents high spatial frequencies. We apply the above Discrete
Fourier Transform to unthresholded ICs, thus capturing all spa-
tial frequency modes to assess whether or not an IC is smooth.
To classify the extent of spatial smoothness of a particular IC, we
calculate a ratio of low to high frequency information.

Let Li be the low frequency information contained within
volume, V 1 (see Figure 2A) for IC, i. That is,

Li
=

∑
V 1x

∑
V 1y

∑
V 1z

F i (Kx , Ky , Kz
)

(4)
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FIGURE 2 | An overview of identifying “spotty” artifact. The example
data is taken from an ICA of a control that underwent a 10 min
resting-state fMRI study (see Section 2.5). (A) Discrete Fourier Transform
of a single slice of an IC. While a 3D Discrete Fourier Transform is
implemented in SOCK, we show a 2D illustration for simplicity. Data in
the center of figure contains low spatial frequency information about the
image, while data near the periphery represents high spatial frequencies.
The sphere with volume V 1 is an arbitrary region which contains low

spatial frequency information. (B) A plot of the ratio of low to high
frequency information [equation (6)] vs. the radius of sphere V 1 for all ICs.
(C) A spatial map of the top and bottom curves corresponding to the
smoothest and least smooth IC respectively. (D) Applying k-means
clustering to split the ICs into a set of “smooth” (red curves),
“subsmooth” (green curves), and “unsmooth” (blue curves) ICs. Each line
in (B,D) represents the ratio for a particular IC calculated over all slices,
not just the slice shown in (A).

where V 1x, V 1y, and V 1z are vectors corresponding to the dimen-

sions in Fourier space of volume, V 1. Let Hi be the high fre-
quency information contained outside of volume, V 1 for IC, i.
That is,

H i
=

∑
Kx−V 1x

∑
Ky−V 1y

∑
Kz−V 1z

F i (Kx , Ky , Kz
)

(5)

We then define, Ri as the ratio of low to high frequency
information for IC, i. That is,

Ri
=

Li

H i
(6)

This ratio is a function of the radius of the volume, V 1. As we
increase the radius of V 1, we increase the volume of low intensity
frequencies contributing to the ratio. Plotting equation (6) as a
function of different radius values, we obtain curves such as the
example shown in Figure 2B. Each curve represents a different IC.
These are referred to as ratio curves from here on in. These ratio
curves naturally organize themselves from top to bottom repre-
senting the smoothest IC at the top to the least smooth IC at the
bottom (Figure 2C).

To distinguish between smooth and unsmooth ICs, we apply
a k-means clustering in a 2D feature space (Euclidean distance
metric) implemented in MATLAB R2010b (The MathWorks Inc.,

Natick, MA, USA) to the ratio curves. Firstly, we split the ratio
curves into two clusters:

(ClusterA, ClusterD) = kmeans
(

Ri , 2
)

(7)

We further split the lower cluster into two clusters:

(ClusterB, ClusterC) = kmeans (ClusterD, 2) (8)

This yields three sets of vectors (ClusterA, ClusterB, ClusterC),
which contain ratio curves. We label these clusters (Smooth, Sub-
smooth, Unsmooth). An example of the clustering is shown in
Figure 2D.

2.3.2. Edge activity measure
It has been demonstrated that in ICA of fMRI data, gross subject
motion can result in artifactual activity at the edge of the brain
(McKeown et al., 1998). We therefore assess the amount of activity
within an edge mask, an example of which is shown in Figure 3A
(single slice shown). For this we utilize the sub-routine, “New
Segment” from the SPM8 software package (The Wellcome Trust
Centre for Neuroimaging2), applied to the mean functional image.
“New Segment” generates two edge masks covering the inner and

2www.fil.ion.ucl.ac.uk/spm
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FIGURE 3 | An overview of identifying motion artifact. The example data is
taken from an ICA of a control that underwent a 10 min resting-state fMRI
study (see Section 2.5). (A) An edge mask (in green) automatically created by
an SPM sub-routine, “New Segment” (single slice shown). This is overlaid
onto a mean functional image. In red are an illustration of contiguous clusters
which overlap the edge mask. (B) A plot of the edge activity for all ICs. (C) A

spatial map of the top and bottom points corresponding to the highest and
lowest edge activity ICs respectively. (D) Using k-means clustering, the ICs
are automatically divided into a set of “High Edge Activity” components
(points colored red in the scatter-plot) and “Low Edge Activity” components
(points colored blue in the scatter-plot). Each point in the scatter-plot
represents the edge activity for a particular IC summed over all slices.

outer brain boundary; we amalgamate these masks to produce a
single edge mask. To identify ICs characterized by gross motion
artifact, we define a variable, edge activity, which is a measure of the
extent of activation overlapping the edge mask. The edge activity,
EAi for each IC, i is defined as follows:

EAi
=

∑
k OEk

Ev
(9)

where Ev is the volume of the edge mask and OEk, ∀k = 1, 2, . . .,
n is the volume of those contiguous clusters which overlaps the
edge mask with there being n of these clusters. An illustration of
these clusters is shown in Figure 3A for a single slice. We used
the “locmax.m” function within the FMRISTAT software (Worsley
et al., 2002) to extract these contiguous clusters.

Plotting equation (9) for each IC, i produces a plot such as
that shown in Figure 3B. Each point represents a different IC
with the highest and lowest points corresponding to the ICs with
the highest edge activity and lowest edge activity respectively
(Figure 3C). Similar to the technique used in clustering the smooth
and unsmooth ICs, we employ k-means clustering in a 2D feature
space (Euclidean distance metric) to group edge activity into two
clusters:

(ClusterA, ClusterB) = kmeans
(

EAi , 2
)

(10)

where (ClusterA, ClusterB) are two vectors which contain edge
activities. We label these clusters (Low Edge Activity, High Edge
Activity). An example of the clustering is shown in Figure 3D. In

addition to the adaptive clustering we employ a fixed threshold
rejecting ICs independent of any other criteria when they have a
50% or greater volume of activity overlapping the edge mask. This
threshold was identified by testing combinations of thresholds on
data independent from the data presented here (see Appendix B).

2.3.3. CSF activity measure
Physiological noise, due to breathing and heart-beat, is often most
evident in or at the borders of CSF regions such as the ventri-
cles (Weisskoff et al., 1993; Windischberger et al., 2002). To detect
such noise we create a CSF mask, isolating the lateral ventricles.
An example is shown in Figure 4 (single slice shown). For this we
utilize the sub-routine, “New Segment” from the SPM8 software
package [The Wellcome Trust Centre for Neuroimaging (see text
footnote 2)], applied to the mean functional image. To isolate the
lateral ventricles, we manually defined this region on the Mon-
treal Neurological Institute (MNI) templates included in SPM 8.
To identify ICs characterized by CSF artifact, we define a variable,
CSF activity, which is a measure of the extent of activation overlap-
ping the CSF mask. The CSF activity, CAi for each IC, i is defined
as follows:

CAi
=

∑
k

OCk

CSFv
(11)

where OCk, ∀k = 1, 2, . . ., m is the volume of the contiguous clus-
ters which overlaps the CSF mask with there being m of these
clusters. An illustration of these clusters is shown in Figure 4 for a
single slice. CSFv is the volume of the CSF mask.
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FIGURE 4 | An overview of identifying CSF artifact. A CSF mask
automatically created by an SPM sub-routine, “New Segment” is shown in
green (single slice shown). This is overlaid onto a mean functional image. In
red are an illustration of contiguous clusters which overlap the CSF mask. If
the volume of activity overlapping the CSF mask is 10% or greater, the IC is
labeled High CSF Activity (Low CSF Activity otherwise). The CSF activity
for a particular IC calculated over all slices, not just the slice shown above.

Unlike the smoothness and motion artifact measures, we do
not employ a clustering technique to identify ICs characterized
by CSF artifact. Instead, we employ a fixed threshold. If the vol-
ume of activity overlapping the CSF mask is 10% or greater, the
IC is labeled High CSF Activity (Low CSF Activity otherwise). In
addition, we reject ICs independent of any other criteria when
they have a 30% or greater volume of activity overlapping the CSF
mask. This threshold was identified by testing combinations of
thresholds on data independent from the data presented here (see
Appendix B).

2.3.4. Temporal frequency noise measure
The dominant period of the hemodynamic Response Function
(HRF) is approximately 12 s (from onset to return to baseline,
ignoring the post-stimulus undershoot) (Chapter 10, Huettel et al.,
2009). Therefore we expect the dominant frequency for com-
ponents which exhibit BOLD neuronal signal to be about 1/12
or 0.08 Hz. Hence to identify activity that is unlikely to come
from the BOLD HRF, we quantify the temporal power beyond
0.08 Hz.

To identify ICs characterized by high frequency noise in the
time series, we define a variable, Temporal Frequency Noise (TFN),
which is a measure of the extent of temporal power beyond
0.08 Hz. The TFN, TFNi for each IC, i, is defined as follows:

TFN i
=

fNyquist∑
0.08

PSi (12)

where PSi, are the power spectrum values for each IC, i, which are
provided by the MELODIC ICA (Beckmann and Smith, 2004) and
fNyquist is Nyquist frequency. This formula in essence calculates the
sum of all power spectrum values from 0.08 Hz to the Nyquist
frequency. Plotting equation (12) for each IC, i produces a plot,
such as the example shown in Figure 5A. Each point represents
a different IC. K-means clustering in a 2D feature space (Euclid-
ean distance metric) is employed to cluster TFN values into two
clusters:

(ClusterA, ClusterB) = kmeans
(

TFN i , 2
)

(13)

where (ClusterA, ClusterB) are two vectors which contain TFN
values. We label these clusters (High TFN, Low TFN ) which cor-
respond to ICs with high and low TFN values respectively. An
example of the clustering is shown in Figure 5B, with the spatial
maps for the highest and lowest points shown in Figure 5C. The
associated power spectra for these ICs are shown in Figure 5D with
the blue and red curves representing the low and high TFN ICs
respectively. This is a zoomed in view showing only frequencies
beyond 0.08 Hz which is the region of interest.

2.4. CLASSIFICATION OF ICs
Based on the above features, ICs dominated by artifact are identi-
fied using the conditions given in Table 1. These were established
by the authors based on their experience in visually classifying
components from independent data (5 subjects scanned on the
same scanner as data sets 1 and 2 in Section 2.5).

2.5. fMRI DATA
We validate SOCK for individual ICA analyses in 50 subjects, from
three separate data sets. All were resting-state studies. See Table 2
for a summary.

2.5.1. Data sets 1 and 2
The first two data sets consisted of resting-state data from thirty
healthy control subjects that had participated in studies at our
institute (Waites et al., 2005, 2006; Lillywhite et al., 2009; Abbott
et al., 2010). Ethics approval was obtained from the Austin Health
Human Research Ethics Committee or the Howard Florey Insti-
tute of Experimental Physiology and Medicine Human Research
Ethics Committee and each subject gave informed consent.

Participants were instructed to close their eyes and relax with-
out falling asleep and without focusing on anything in particular.
A single run of fMRI data was collected for each of the partici-
pants; each run was 60 min in 9 of the participants and 10 min in
21 of the participants.

The fMRI studies were carried out with a 3 T GE Signa
LX whole body scanner (General Electric, Milwaukee, WI,
USA), using a standard birdcage quadrature head coil. Func-
tional images were acquired as a series of gradient-recalled
echo planar imaging (GR-EPI) volumes (TR/TE= 3,000/40 ms
in 9 of the participants and TR/TE= 3,600/40 ms in 21 of the
participants, 25 oblique slices 4 mm thick+ 1-mm gap, voxel
size= 1.875 mm× 1.875 mm× 5 mm, 24-cm field of view (FOV),
128× 128 matrix). The first 14 volumes were discarded (to allow
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FIGURE 5 | An overview of identifying ICs withTemporal Frequency
Noise (TFN). The example data is taken from an ICA of a control that
underwent a 10 min resting-state fMRI study (see Section 2.5). (A) A plot of
the TFN activity (sum of power spectrum values from 0.08 Hz to Nyquist
frequency) for all ICs. (B) Applying k-means clustering to split the ICs into a

set of Low and High TFN ICs. (C) A spatial map of the top and bottom points
corresponding to the highest and lowest TFN activity ICs respectively. (D) The
associated power spectra for these ICs with the blue and red curves
representing the low and high TFN ICs respectively. This is a zoomed in view
showing only frequencies beyond 0.08 Hz which is the region of interest.

Table 1 |The conditions used to automatically identify ICs dominated

by artifact.

Smoothness Edge activity CSF activity Temporal

frequency noise

Unsmooth – – –

Subsmooth – – High

Smooth High High –

– High (above 50%) – –

– – High (above 30%) –

Each row indicates a combination of conditions for which the IC is classified as

artifact. For example an IC is classified as artifact if it is subsmooth and has high

TFN activity.

Table 2 | A summary of the three different data sets used to verify

SOCK.

Data set No. of subjects Length of

study (min)

TR (s) Pre-processed

1 9 60 3.0 Yes

2 21 10 3.6 Yes

3 20 9 2.0 No

In total, fMRI data of 50 healthy control subjects were used which had different:

study lengths, TR’s, and pre-processing pipelines.

the scanner time to reach steady-state and the subject to become
settled to the procedure).

fMRI data were processed using SPM8 software (Wellcome
Department of Imaging Neuroscience, London, UK3) with the
aid of iBrainTM (Abbott and Jackson, 2001) and the iBrainTM

Analysis Toolbox for SPM (Abbott et al., 2011)4. In brief, pre-
processing included slice-timing correction, motion correction
(realignment), and non-linear warping to a custom local template
approximating that of the standard Montreal Neurological Insti-
tute (MNI) template supplied with SPM8. The spatially normal-
ized image data were smoothed with an 8 mm isotropic Gaussian
kernel and were written at a voxel size of 2 mm× 2 mm× 2 mm.
No further pre-processing was carried out in FSL prior to ICA
being performed using the MELODIC tool (Beckmann and Smith,
2004).

2.5.2. Data set 3 (functional connectomes data)
The third set of data consisted of resting-state fMRI data with a
relatively short TR from twenty healthy controls obtained from
the 1000 Functional Connectomes Project website (Biswal et al.,
2010, data set 2 from Table S1 with TR= 2,000 ms, 34 slices and
voxel size= 3 mm× 3 mm× 3 mm). Participants were instructed
to open their eyes without focusing on anything in particular. fMRI
data was collected for each of the participants in a 9 min study. The
fMRI studies were carried out with a 3 T scanner (make of scanner
not specified). Functional images were acquired using a sequential

3http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
4www.brain.org.au/software
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ascending sequence, discarding the first 5 time points of each time
series.

No pre-processing [slice-timing correction, motion correction
(realignment), normalization, or smoothing] was carried out on
this data set.

Preforming ICA using the MELODIC tool, yielded both thresh-
olded and unthresholded ICs and associated time courses and
power spectra which were then inputs for SOCK (Figure 1).

In order to evaluate the performance of our algorithm, we
assessed SOCK’s classification against manual classification. An
expert manual classification of components as either artifact or
unlikely artifact was performed blinded to the SOCK classifi-
cation. The manual classification used visual inspection criteria
similar to that outlined in Kelly Jr. et al. (2010) and had previously
been applied by consensus of all the authors on data indepen-
dent from that presented here. In the present study, author KB
manually classified all components, and author DA additionally
manually classified all ICs in the 1000 Functional Connectomes
Project dataset. For all 50 data sets, the number of discordant
components [those which were identified as artifact by SOCK but
as unlikely artifact by an expert (KB or DA)] were examined in an
effort to understand the reason for discordance.

3. RESULTS
3.1. ICA ANALYSIS AND SOCK CLASSIFICATION
MELODIC ICA was applied to resting-state fMRI data acquired in
50 healthy control subjects across three data sets:

1. Data set 1: 7 male, 2 female; age range 7–11 years, mean= 8.8,
SD= 1.6

2. Data set 2: 14 male, 7 female; age range 17–40 years,
mean= 24.4, SD= 5.9

3. Data set 3: 20 male; age range 19–38 years, mean= 23.4,
SD= 5.3

A total of 2,722 components (average of 54 components per
subject) were obtained. SOCK classified between 26 and 72% of
each subject’s components as artifact (mean 55%). See Table 3 for
a summary. A comprehensive list of the ICA decomposition and
the SOCK classification for all 50 subjects is also provided in the
Appendix (see Tables A1–A3 in Appendix A).

The time required for SOCK to run, including the automatic
generation of the edge and CSF masks, was approximately 2 min
per subject on a PC equipped with an Intel Quad-Core i7-2,600
3.4 GHz CPU.

We show below a case example of each of the SOCK criteria
for ICs from a MELODIC ICA on one of the 50 subjects (Table 4;
Figure 6). ICA yielded 87 components for this particular subject,
out of which 44 (51%) ICs were classified as artifact. No discordant
ICs were identified for this particular subject.

Figure 6 illustrates the spatial maps and the SOCK classifica-
tion of a selected set of components from an ICA for this subject.
The numbering of the ICs is based on the order of extraction in
the ICA decomposition. For example, IC16 has been classified by
SOCK as unlikely artifact as it has been clustered into the smooth
category and has low edge and CSF activity and low TFN.

3.2. CLASSIFICATION PERFORMANCE
We assess the performance of SOCK by calculating the sensitivity,
that is, the proportion of components SOCK classifies in the arti-
fact category and the specificity, how many of these components
are actually artifact. Table 3 indicates that on average, 55% of ICs
were classified in the artifact category. That is, SOCK was able to
approximately halve the number of ICs we would otherwise need
to look at.

We assessed the specificity by comparing SOCK’s classifica-
tion against manual classification done by an expert (KB or DA)
blinded to the SOCK classification. An expert manually classified
each IC into either an artifact or unlikely artifact category. All the
ICs which SOCK classified as artifact were compared to ICs which
the experts classified. Only 0.3% (7) of components identified as
artifact by SOCK were discordant with the manual classification
(last column of Table 3); retrospective examination of these ICs
suggested SOCK had correctly identified these as artifact. All seven
discordant components with their spatial maps and SOCK features
are provided in Figures 7 and 8.

3.2.1. IC27 (subject 1)
IC27 in subject 1 (Figure 7A) was accepted by an expert because it
contained smooth activity in regions of gray matter and was free
from CSF artifact and high TFN. However, SOCK classified this
IC as artifact as it contains greater than 50% of volume of activity
overlapping the edge mask (see Table 1).

Table 3 | A summary of the SOCK classification for 50 subjects.

Data set Number of

subjects

SOCK classification % of rejected

ICs

Number of

discordant ICs

Total number of

ICA components

Artifact Unlikely

artifact

1 9 758 399 359 53 (39–71) 5

2 21 410 193 217 47 (26–61) 0

3 20 1,554 902 652 58 (42–72) 2

Total 50 2,722 1,494 1,228 55 (26–72) 7

The last column indicates the components which disagree with an experts classification (see Section 3.2).
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3.2.2. IC7, IC23, and IC96 (subject 5)
IC7, IC23, and IC96 in subject 8 (Figure 7B) were accepted by an
expert as they all appeared smooth and did not have gross edge
or CSF activity. However, a closer look at the thresholded spatial
maps of each IC overlaid on the edge mask (in green) reveals that a
significant proportion of activation is overlapping the edge mask.
Both axial and coronal views are shown to clearly indicate this.
Hence, SOCK classified these ICs as artifact as they contain greater
than 50% of volume of activity overlapping the edge mask (see
Table 1).

3.2.3. IC90 (subject 5)
IC90 in subject 5 (Figure 7C) was accepted by an expert as it was
smooth and did not have gross edge or CSF activity. However, a
closer look at the unthresholded spatial map of IC90 (shown on
the right of the thresholded map) reveals that the IC is not as
smooth as it appears compared to viewing the thresholded spatial

Table 4 | A summary of the SOCK classification for one (Subject 4) of

the 30 subjects.

Total number of

ICA components

SOCK classification % of rejected

ICs

Number of

discordant ICs

Artifact Unlikely

artifact

87 44 43 51 0

ICA yielded 87 components for this particular subject, out of which 44 (51%) ICs

were classified as artifact. No discordant ICs were identified.

map. Hence, SOCK clustered it in the unsmooth category and
subsequently classified it as artifact (see Table 1).

3.2.4. IC70 and IC75 (subject 41)
IC70 and IC75 in subject 41 (Figure 8) were not rejected by an
expert as they appeared to contain some possible neuronal activ-
ity. However these components were rejected by SOCK. SOCK
determined IC70 was not sufficiently spatially smooth. Retrospec-
tive examination of the ICA decomposition revealed another IC
(IC24, not rejected by SOCK) that had overlapping spatial regions
(Figure 8A). Examination of the unthresholded component maps
(not considered during manual classification) revealed the rejected
component did indeed have a less smooth spatial pattern than the
accepted component (Figure 8A). IC 75 was rejected by SOCK due
to substantial temporal frequency noise. In this case, retrospective
examination revealed two ICs (26 and 29) with spatial maps over-
lapping the apparent neuronal activity in the rejected component.
These other components had less temporal frequency noise (as
can seen in the shaded area of the power spectrum, Figure 8B)
and were not rejected by SOCK.

4. DISCUSSION
We have illustrated a general approach for the identification of
artifact in independent components derived from fMRI primar-
ily using spatial criteria. The motivation for our algorithm was
to automatically remove artifact without removing signal likely
to be of neuronal origin from an ICA of resting-state fMRI. The
algorithm assesses four types of artifacts; CSF, sparsely distributed
noise, movement-related artifact, and high temporal frequency
noise. The temporal feature of the IC is considered only after the
initial clustering of ICs using spatial features because temporal

FIGURE 6 | A selected set of spatial maps from an ICA and corresponding SOCK classification for Subject 4. The numbering of the ICs is based on the
order of extraction in the ICA decomposition.
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frequency ranges of artifactual and neural activity sometimes over-
lap (Beckmann et al., 2005; Birn et al., 2006). Such overlap in
frequencies complicates the determination of how much of com-
ponent variance is due to artifacts vs. signal likely to be of neuronal
origin.

We chose to use generic properties of the IC to categorize
artifact, specifically limiting them to spatial features as we have
particular interest in the application of SOCK to resting-state func-
tional connectivity and to fMRI data collected prior to an epileptic
seizure (Federico et al., 2005). In this case, we have no prior model
of expected signal change or event timing (apart from the seizure
itself at which point the data acquisition usually ends).

Despite the limited a priori information, SOCK was able to
reduce the solution space by over 50% without rejecting any com-
ponents that are likely to be of neuronal origin in our test group
of 50 healthy controls. Only 0.3% (7) of components identified
as artifact by SOCK were discordant with the manual classifica-
tion and retrospective examination of these ICs suggested SOCK
had correctly identified these as artifact. Thus, our method leads
to a substantial reduction of the number of components to be
inspected and interpreted.

There are other automatic classifier methods which like SOCK
use a combination of spatial and temporal characteristics to inform
IC classification (Thomas et al., 2002; Kochiyama et al., 2005; De
Martino et al., 2007; Perlbarg et al., 2007; Tohka et al., 2008; Sui
et al., 2009; Kundu et al., 2012), however, an important difference
is that these methods either rely on training data (De Martino
et al., 2007; Tohka et al., 2008) or task-related temporal or spatial
information (Thomas et al., 2002; Kochiyama et al., 2005; Sui et al.,
2009) or set thresholds (Perlbarg et al., 2007) or multi-echo acqui-
sition sequences (Kundu et al., 2012). For example De Martino
et al. (2007) used IC-fingerprints for characterizing independent
components and in a support vector machines framework to clas-
sify them into six classes including activation and noise classes.
However, the accuracy of their classifier was dependent on the
training data. They found that automatic classification was less
accurate in detecting residual motion signal effects due to small
number of samples employed in the training. Other methods, such
as Sui et al. (2009) classify ICs using contrast images that contain
no time-domain information. Their method works on utilizing
information concerning the proportion of active voxels overlap-
ping ventricular CSF and gray-matter masks. From our experience,
it is often difficult to obtain accurate gray-matter masks with EPI
images at 3 T, as the boarders between GM and WM are often indis-
tinct. Edge and CSF masks such as those used in SOCK can be more
reliably extracted from EPI images than GM masks. The method
of Sui et al. (2009) also requires a user-selected parameter (Z -score
threshold) whereas SOCK uses the threshold automatically deter-
mined by the Gaussian mixture modeling approach implemented
in MELODIC (Beckmann and Smith, 2004) when determining the
edge and CSF activity and unthresholded maps when determining
the degree of smoothness. Finally, the work of Kundu et al. (2012)
offers a robust means for classifying components of interest vs.
artifact based on TE-dependence. However, the applicability of
this method is dependent on functional images being acquired
with a multi-echo EPI sequence, which precludes it from use with
data from studies not acquired in this fashion.

4.1. LIMITATIONS
The use of k-means clustering equips SOCK with objective and
adaptive criteria, however it does require that at least some
components are dominated by noise and others by signal of
interest so that a meaningful clustering is achieved. This applies
to clustering based upon degree of smoothness, edge activ-
ity, and temporal frequency noise. Even in the cases contain-
ing the fewest components in our study (subjects 25 and 27
in Table A2 in Appendix), SOCK was still effective at cor-
rectly removing a substantial proportion artifactual components:
ICA yielded 14 components out of which SOCK classified 43
and 50% as artifact respectively. Nevertheless we advise cau-
tion in applying SOCK as presently implemented to varia-
tions of ICA that are already effective in producing very few,
if any, components that are dominated by noise. For exam-
ple event-related ICA (eICA) typically yields very few compo-
nents due to it only dealing with short time epochs time-locked
to events of interest (Masterton et al., 2013a,b). When only a
handful of components are generated there is less need for an
automatic classifier as it is relatively easy to manually inspect
the ICs.

The performance of the SOCK classification is dependent on
the accuracy of the edge and CSF masks which are generated using
SPM’s New Segment tool. We found this tool robust in generating
edge and CSF masks for the mean functional images used in this
study. However, we did not test accuracy in cases where there exists
gross pathology in subjects’ brains or where insufficient contrast
between CSF and gray-matter regions exists in the EPI images.
In these situations where the automated edge or CSF segmenta-
tion fails, the user could either generate custom masks, or elect
to ignore these criteria (in which case SOCK would be unable to
reject as artifact components exhibiting these features).

We tested the SOCK algorithm successfully on data from
two different 3 T MRI scanners. These data had TR’s of
2.0, 3.0, and 3.6 s, voxel sizes of 2 mm× 2 mm× 2 mm and
3 mm× 3 mm× 3 mm and smoothing of 0 and 8 mm. The per-
formance of SOCK was similar across all data sets. However, we
only tested SOCK in conjunction with MELODIC (a popular ICA
package). Other good ICA software exists [for example Egolf et al.
(2004) and Himberg et al. (2004)] and we would therefore rec-
ommend a validation study if one were contemplating the use of
SOCK with these or other packages.

A potential limitation of SOCK is that it may reject some
neuronal activity if it is mixed with substantial noise in a sin-
gle component. In the data we tested this may have occurred
in two of the components we examined, as shown in Figure 8.
In cases such as these it is not clear whether one should reject
the component. One might argue that a conservative approach
is rejection, because the potential activity of interest has the
same time-course as noise. On the other hand, in clinical appli-
cations it may be considered conservative to retain the IC if
any portion might be neuronal, even in the presence of noise.
In the case of the two discordant components in this study,
rejection would have had a minor impact on the possible neu-
ronal activity, as there were other accepted components that
contained substantially more activity in the same locations (see
Figure 8).
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In conclusion we have demonstrated a novel method for the
automatic identification of artifactual ICs from resting-state fMRI
data. SOCK proved to be effective in separating noise from sig-
nal in each of 50 healthy controls by identifying a high pro-
portion of artifact-related ICs without removing components
that are likely to be of neuronal origin. We tested the method
with resting-state fMRI, however the method may also be effec-
tive for other study types and we therefore encourage validation
studies in other contexts. SOCK does not require the user to
train the algorithm and is able to adaptively determine variable
threshold settings via use of k-means clustering. It does not

require any temporal information about the fMRI paradigm or
high-resolution anatomical scans. SOCK software is available at
http://brain.org.au/software.
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APPENDIX A

Table A1 | ICA decomposition and the SOCK classification for 9 healthy controls who underwent a 60 min resting-state fMRI withTR of 3.0 s.

Length of study (min) TR (s) Subject Number of ICA components SOCK classification % of rejected ICs No. of discordant ICs

Artifact Unlikely artifact

60 3.0 1 34 17 17 50 1

60 3.0 2 34 19 15 56 0

60 3.0 3 127 60 67 47 0

60 3.0 4 87 44 43 51 0

60 3.0 5 97 54 43 56 1

60 3.0 6 84 33 51 39 0

60 3.0 7 108 55 53 51 0

60 3.0 8 129 76 53 59 3

60 3.0 9 58 41 17 71 0

SOCK classified between 39 and 71% of each subject’s components as artifact (mean 53%). Only 5 of the components identified as artifact by SOCK were discordant

with the manual classification (last column); retrospective examination of these ICs suggested SOCK had correctly identified these as artifact.

Table A2 | ICA decomposition and the SOCK classification for 21 healthy controls who underwent a 10 min resting-state fMRI withTR of 3.6 s.

Length of study (min) TR (s) Subject Number of ICA components SOCK classification % of rejected ICs No. of discordant ICs

Artifact Unlikely artifact

10 3.6 10 22 9 13 41 0

10 3.6 11 22 12 10 55 0

10 3.6 12 24 11 13 46 0

10 3.6 13 21 12 9 57 0

10 3.6 14 21 10 11 48 0

10 3.6 15 26 15 11 58 0

10 3.6 16 19 6 13 32 0

10 3.6 17 21 8 13 38 0

10 3.6 18 22 11 11 50 0

10 3.6 19 22 12 10 55 0

10 3.6 20 18 8 10 44 0

10 3.6 21 17 6 11 35 0

10 3.6 22 19 5 14 26 0

10 3.6 23 16 9 7 56 0

10 3.6 24 19 11 8 58 0

10 3.6 25 14 6 8 43 0

10 3.6 26 18 7 11 39 0

10 3.6 27 14 7 7 50 0

10 3.6 28 18 11 7 61 0

10 3.6 29 16 6 10 38 0

10 3.6 30 21 11 10 52 0

SOCK classified between 26 and 61% of each subject’s components as artifact (mean 47%). None of components identified as artifact by SOCK were discordant

with the manual classification (last column).
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Table A3 | ICA decomposition and the SOCK classification for 20 healthy controls who underwent a 9 min resting-state fMRI withTR of 2.0 s.

Length of study (min) TR (s) Subject Number of ICA components SOCK classification % of rejected ICs No. of discordant ICs

Artifact Unlikely artifact

9 2.0 31 79 50 29 63 0

9 2.0 32 100 49 51 49 0

9 2.0 33 78 41 37 53 0

9 2.0 34 74 45 29 61 0

9 2.0 35 72 40 32 56 0

9 2.0 36 109 54 55 50 0

9 2.0 37 82 59 23 72 0

9 2.0 38 63 41 22 65 0

9 2.0 39 78 45 33 58 0

9 2.0 40 58 33 25 57 0

9 2.0 41 79 50 29 63 2

9 2.0 42 98 57 41 58 0

9 2.0 43 90 56 34 62 0

9 2.0 44 57 26 31 46 0

9 2.0 45 83 51 32 61 0

9 2.0 46 79 51 28 65 0

9 2.0 47 78 54 24 69 0

9 2.0 48 63 32 31 51 0

9 2.0 49 74 43 31 58 0

9 2.0 50 60 25 35 42 0

Data was obtained from the 1000 Functional Connectomes Project website. SOCK classified between 42 and 72% of each subject’s components as artifact (mean

58%). Only 2 of the components identified as artifact by SOCK were discordant with the manual classification (last column); retrospective examination of these ICs

suggested SOCK had correctly identified these as artifact.
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APPENDIX B
This appendix describes how we arrived at the hard thresholds
used to determine when a component could be safely classified as
artifact solely on edge or solely on CSF criteria. Our subsequent
validation of the algorithm on data substantially different from
that used here indicates that this procedure does not need to be
re-done by an end user of the SOCK algorithm.

SOCK uses a combination of measures with adaptively deter-
mined thresholds to assist classification. However when there is
a very large amount of edge or CSF activity, this alone can be
enough to definitively classify the component as artifact. There-
fore we use additional fixed thresholds to classify components as
artifact when extremes occur in the edge and CSF measures. We
tested a combination of fixed edge and CSF thresholds from 5 sub-
jects scanned on the same scanner as data sets 1 and 2 in Section
2.5, where a manual classification was known. This was done via
a Receiver Operating Characteristic (ROC) (Figure A1), which
illustrates the performance of SOCK on these subjects for a total
of 525 combinations of edge and CSF thresholds ranging from
0 to 70%. Each combination represents an edge and CSF thresh-
old, with combination 0 representing 0% edge and CSF threshold
and combination 525 representing 70% edge and CSF threshold
(Figure A2). We found the classification in the 5 subjects did not
change significantly (within 10%) in the range of 40–50% for edge
threshold and 20–30% for the CSF threshold (points in light gray).
Lower values resulted in at least one neuronal component being
misclassified as artifact (i.e., having a sensitivity of less than one
which we regard as failure), whilst higher values resulted in fewer
artifacts being identified (which we regard as a decrease in perfor-
mance or smaller specificity). To minimize the chance of failure
we chose the highest thresholds before a decrease in performance
occurs (i.e., well away from the failure condition); 50 and 30% for
the edge and CSF thresholds respectively.

FIGURE A1 | Receiver Operating Characteristic (ROC) curve for edge
and CSF thresholds for 5 test subjects. A total of 525 combinations of
edge and CSF thresholds (ranging from 0 to 70%) were tested. Shown in
light gray are combinations where the classification in the 5 subjects did
not change significantly (within 10%). These represent the ranges, 40–50%
for the edge threshold and 20–30% for the CSF threshold. Lower values
resulted in at least one neuronal component being misclassified as artifact
(i.e., having a sensitivity of less than one which we regard as failure), whilst
higher values resulted in fewer artifacts being identified (which we regard
as a decrease in performance or smaller specificity). To minimize the chance
of failure we chose the highest thresholds before a decrease in
performance occurs (i.e., well away from the failure condition); 50 and 30%
for the edge and CSF thresholds respectively.

FIGURE A2 | A total of 525 combinations for edge and CSF thresholds
ranging from 0 to 70% were tested. Each combination represents an
edge and CSF threshold, with combination 0 representing 0% edge and
CSF threshold and combination 525 representing 70% edge and CSF
threshold. Shown on the graph is combination 367, which corresponds to
50% edge threshold and 30% CSF threshold.
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Analysis of resting-state networks using fMRI usually ignores high-frequency fluctuations
in the BOLD signal – be it because of low TR prohibiting the analysis of fluctuations with
frequencies higher than 0.25 Hz (for a typical TR of 2 s), or because of the application of a
bandpass filter (commonly restricting the signal to frequencies lower than 0.1 Hz). While
the standard model of convolving neuronal activity with a hemodynamic response func-
tion suggests that the signal of interest in fMRI is characterized by slow fluctuation, it
is in fact unclear whether the high-frequency dynamics of the signal consists of noise
only. In this study, 10 subjects were scanned at 3 T during 6 min of rest using a multi-
band EPI sequence with a TR of 354 ms to critically sample fluctuations of up to 1.4 Hz.
Preprocessed data were high-pass filtered to include only frequencies above 0.25 Hz, and
voxelwise whole-brain temporal ICA (tICA) was used to identify consistent high-frequency
signals. The resulting components include physiological background signal sources, most
notably pulsation and heart-beat components, that can be specifically identified and local-
ized with the method presented here. Perhaps more surprisingly, common resting-state
networks like the default-mode network also emerge as separate tICA components. This
means that high-frequency oscillations sampled with a ratherT1-weighted contrast still con-
tain specific information on these resting-state networks to consistently identify them, not
consistent with the commonly held view that these networks operate on low-frequency
fluctuations alone. Consequently, the use of bandpass filters in resting-state data analysis
should be reconsidered, since this step eliminates potentially relevant information. Instead,
more specific methods for the elimination of physiological background signals, for example
by regression of physiological noise components, might prove to be viable alternatives.

Keywords: resting-state fMRI, temporal ICA, heart rate variability, resting-state networks

1. INTRODUCTION
The investigation of BOLD fluctuations in the resting brain using
fMRI has been a rapidly expanding field of research since the
first identification of consistent patterns in these data (Biswal
et al., 1995), and ICA in particular has gained great popularity
in fMRI as a powerful tool for exploring these data (Biswal and
Ulmer, 1999; Calhoun et al., 2001). The appeal of Independent
Component Analysis (ICA) in the context of resting-state fMRI
(rs-fMRI) lies to a great extent in the fact that, in contrast to
task-fMRI, little a priori knowledge about the temporal dynamics
of the fluctuations is available and ICA can be used to identify
consistent patterns in an exploratory manner (Beckmann, 2012).
Thus, using ICA on rs-fMRI data, several consistent resting-state
networks have been identified in a multitude of different indi-
vidual studies (Damoiseaux et al., 2006; Robinson et al., 2009;
Allen et al., 2011; Yeo et al., 2011) as well as in collections of

data pooled from multiple sites (Biswal et al., 2010; Kalcher et al.,
2012).

A common feature to most rs-fMRI ICA studies thus far is
the use of relatively long TRs (usually 2–3 s) in order to increase
BOLD weighting (Kim and Ogawa, 2012), and scan durations of
mostly between 5 and 10 min (Biswal et al., 2010), limiting the
fluctuations that can be studied to those at frequencies between
0.001 and 0.25 Hz. Within this frequency range, the highest ampli-
tudes of oscillations in resting-state networks in these studies have
been observed in the lower part (<0.1 Hz), which lead to the gen-
eral characterization of resting-state brain networks as networks
of low-frequency fluctuations, typically between 0.01 and 0.1 Hz
(Margulies et al., 2010; Yeo et al., 2011; Kalcher et al., 2012).

In recent years, simultaneous image readout (SIR) and multi-
banded (MB) EPI pulse sequences allowing simultaneous acqui-
sition of multiple brain slices during a single EPI echo train have
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opened new opportunities for accelerating fMRI scans without
sacrificing spatial resolution (Feinberg et al., 2010; Feinberg and
Yacoub, 2012). The increased temporal resolution can be put to
use in different ways. First, the higher sampling rate allows to per-
form new kinds of analysis methods, leading to a new view on
low-frequency fluctuations, as exemplified by the identification of
temporal functional modes (TFM) by Smith et al. (2012). On the
other hand, the increase in temporal resolution without the need to
limit image acquisition to a few slices can be harnessed to investi-
gate higher-frequency fluctuations at whole-brain level. Of course,
this will change the specific contrast from mainly BOLD-based to
flow/perfusion-based (Kim and Ogawa, 2012).

It should be noted at this point that the focus on low-frequency
BOLD fluctuations is not only due to technical limitations, but
also motivated by the temporal delays involved in the hemo-
dynamic response to neuronal activity. Indeed, the peak of the
hemodynamic response to a particular stimulus – and thus of
the BOLD signal – occurs 3–10 s after the underlying neuronal
response (Aguirre et al., 1998; Cunnington et al., 2002). Thus, the
BOLD signal can be seen as temporally smoothed in comparison
with the neuronal activity, motivating the neglect of signal fluctu-
ations in higher frequencies. Nonetheless, the possibility to obtain
this high-frequency signals opens the question to investigate what
patterns can be found in these frequency domains.

Due to limited a priori knowledge on networks of high-
frequency rs-fMRI BOLD oscillations, an exploratory approach
seems most viable (Tukey, 1977) to get an unbiased estima-
tion of the global structure of these oscillations. While different
exploratory analysis techniques for fMRI data exist, e.g., principal
components analysis (Baumgartner et al., 2000), canonical corre-
lation analysis (Friman et al., 2001), fuzzy clustering (Baumgartner
et al., 1998; Moser et al., 1999), as well as spatial or temporal ICA
(Calhoun et al., 2001), our analysis specifically needs a method that
can deal with overlapping spatial distributions of different signal
sources. Temporal ICA (tICA) can achieve this in identifying tem-
porally independent signal sources with potentially overlapping
spatial distributions, and in this offers good interpretability, since
its result is a solution to the blind source separation problem. In
particular, the potential to better distinguish spatially overlapping
signal sources might prove useful for the identification of cardiac
and other physiological signal sources, a feature that spatial ICA
cannot accomplish as shown by Beall and Lowe (2010).

Temporal ICA has rarely been used thus far in fMRI analyses,
mostly due to two reasons. The first lies in originally unsurmount-
able computational difficulties in computing the necessary linear
algebra operations, in particular computing the covariance matrix
of dimension (number of voxels× number of voxels) (Calhoun
et al., 2001), but new algorithms as well as the increased com-
putational power available have greatly alleviated this limitation.
The second reason is the limited number of time points (the data
points for tICA) available in most fMRI scans, limited by common
TRs of 2–3 s and scan durations under 10 min to about 300 time
points. In contrast to spatial ICA, where the corresponding vari-
able is the number of voxels instead of the number of time points,
this limited amount of data points leads to computational issues
regarding the stability of the ICA algorithm when applying it as
temporal ICA. Multiplexed EPI sequences, with greatly reduced

TRs, lead to larger amounts of data points without increasing scan
duration, and thus allow for a reasonable application of tICA on
the resulting datasets.

Beyond the increase in stability of tICA estimation, the high
sampling rate also allows to see fluctuations of higher frequencies
than before in whole-brain fMRI datasets. It is however unclear
as of now what exactly is gained by critically sampling higher fre-
quencies (at low TR). In this study, we set out to investigate the
information gained in these high frequencies, and in particular the
frequency domain above the highest frequency usually inspected in
resting-state fMRI studies, about 0.25 Hz. A priori, two thoughts on
these high-frequency fluctuations come to mind: first, they could
be expected to contain pulsation-related artifacts, and second, due
to the slow hemodynamic response usually expected for neuronal
activity, one might be tempted not to expect to identify neuronal
signals among the high-frequency BOLD oscillations. Indeed,early
investigations by Cordes et al. (2001) on the relative contributions
of different frequency ranges – Cordes et al. acquired signal from
4 slices with a TR of 400 ms – found that functional connectivity
was almost exclusively dependent on the signal fluctuations below
0.1 Hz for neuronal signal sources, and only the correlation coef-
ficients from signal in major arteries or veins as well as in the CSF
were dependent upon higher frequencies.

However, there is some evidence in more recent studies that
this latter expectation might not hold true. For once, studies on
spectral characteristics of resting-state networks by Niazy et al.
(2011) and Van Oort et al. (2012) have revealed that the spec-
tral range of commonly identified resting-state networks is wider
than the hypothesized 0.01–0.1 Hz and extend to at least 0.17 and
0.25 Hz, respectively. Moreover, there are studies on specific high-
frequency behavior of BOLD oscillations, e.g., the co-occurrence
of spikes in different regions of a particular network (Tagliazucchi
et al., 2011, 2012) or variation in amplitude variance asymme-
try (Davis et al., 2013), that can also be attributed to resting-state
network activity, indicating consistent patterns of BOLD and/or
perfusion variability beyond low-frequency fluctuations.

In this study, we investigated high-frequency signal fluctua-
tions during rest by temporally filtering fMRI data with a low TR
to frequencies above 0.25 Hz and analyzing the resulting time-
courses using temporal ICA. In view of the hypotheses men-
tioned above, we examined the extent to which tICA is able
to specifically separate physiological background signals, in par-
ticular heart-beat related signal fluctuations, from other signal
sources in the brain, as this is seen as one of the “killer applica-
tions” of ICA in rs-fMRI (Beckmann, 2012). Moreover, we wanted
to explore whether resting-state network related signals are still
present in those high-frequency domains and could effectively be
identified.

2. MATERIALS AND METHODS
2.1. SUBJECTS
Ten subjects (5 males/5 females, mean age 23.4, SD 3.1 years) were
recruited at Medical University of Vienna. Exclusion criteria were
prior psychiatric or neurologic illnesses, as well as the usual exclu-
sion criteria for MR studies. All subjects gave written informed
consent prior to the scan and the study was approved by the local
institutional review board.
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2.2. MEASUREMENTS
Subjects underwent a 6 min resting-state scan on a Siemens
TIM Trio 3 T scanner using a 32-channel head coil with a
multiplexed EPI sequence by Feinberg et al. (2010), acquir-
ing in total 1024 volumes (flip angle= 30˚, TE/TR= 32/354 ms,
2.4 mm× 1.9 mm× 3.5 mm, bandwidth= 1748 Hz/pixel, 20 axial
slices, 2 mm slice gap, multiband acceleration factor 4, 6/8 par-
tial Fourier). Subjects were instructed to keep their eyes closed,
refrain from movement during the scan and avoid to fall asleep
without concentrating on anything in particular. After the resting-
state scan, a high-resolution anatomical image was acquired using
MPRAGE with 1 mm× 1 mm× 1.1 mm resolution with 160 sagit-
tal slices (TE/TR= 4.21/2300 ms, flip angle 9˚, inversion time
900 ms).

2.3. PREPROCESSING
All data were preprocessed with a combination of AFNI (Cox,
1996) and FSL (Smith et al., 2004), using an analysis framework
in R (Boubela et al., 2012; R Development Core Team, 2013)
on Ubuntu Linux (Version 11.10 “Oneiric Ocelot”). Anatomical
images were skullstripped and normalized to MNI152 standard
space. Functional images were corrected for intensity inhomo-
geneity using a bias field estimation by FSL FAST, skullstripped
and realigned to the 500th volume. Subsequently, functional
images were aligned to the anatomical images in MNI152 standard
space and resampled to 2 mm× 2 mm× 2 mm isotropic resolu-
tion, blurred with an isotropic Gaussian 6 mm FWHM kernel, and
motion parameters (3 translations and 3 rotations) were regressed
out using a generalized linear model (GLM).

2.4. INDEPENDENT COMPONENT ANALYSIS
After the preprocessing steps mentioned above, all further analy-
ses were performed in R (Version Under Development (unstable)
2012-11-27 r61172 “Unsuffered Consequences”; this version was
used to allow the allocation of objects with more than 231 –
1 elements, necessary for the processing of time concatenated
group ICA). At single-subject level, the first 24 volumes of all
subjects were discarded to account for transient effects, and all
voxel time-series were scaled to mean 0 and standard deviation
1. To isolate high-frequency oscillations, a discrete Fourier trans-
form was applied to each voxel’s time course, all magnitudes in
Fourier space corresponding to frequencies below 0.25 Hz (the
highest frequency that can be sampled at a typical TR of 2 s)
were set to 0, and the signal was then transformed back in the
original space using the inverse discrete Fourier transform. Thus,
the signal that was analyzed contained only fluctuations above
0.25 Hz. Single-subject data were analyzed individually as well
as concatenated for group analysis, forming a 10,000 (i.e., 10
subjects× 1000 time points)× 239901 (number of voxels within
the brain mask) matrix. Prewhitening and dimensionality reduc-
tion was performed by principal component analysis (PCA) using
the R package irlba (Baglama and Reichel, 2005, 2012), which
implements implicitly restarted Lanczos bidiagonalization singu-
lar value decomposition (SVD), and the 76 principal components
with the largest eigenvalues were computed and used for the
ICA analysis. All matrix multiplications on the data matrix nec-
essary to compute the SVD and the principal components were

performed using the library phiGEMM (Spiga and Girotto, 2012),
which distributed computation on two NVidia Tesla C2070 graph-
ics processing units. Finally, fastICA (Hyvärinen, 1999) was used
to compute 75 temporally independent components for the time
concatenated group dataset.

2.5. GROUP COMPONENTS
In the group analysis, components were discarded if they were
driven by individual subjects only (as opposed to being present
in all subjects; this can easily be identified in the component
timecourses, see Figure A1 in Appendix). As a formal criterion,
components were discarded if the ratio of the sum of the squares
of the time course of one subject divided by the sum of the squares
of the time courses of all other subjects was larger than 1, i.e., if
one subject contributed more variance to the component than all
other subjects combined.

2.6. CHARACTERIZATION OF RESULTING COMPONENTS
Spatial maps of all resulting components were projected back from
the principal component space into the original space. Temporal
ICA time courses were Fourier transformed to compute power
spectra, and the fraction of the power in each of the frequency
ranges 0.25–0.5, 0.5–0.75, 0.75–1.0, 1.0–1.25, and 1.25–1.4 Hz was
computed.

2.7. LOW-FREQUENCY REFERENCE NETWORKS
To get a sense of how resting-state networks obtained in the high-
frequency range relate to low-frequency resting-state networks,
the data preprocessed as above but without applying the high-pass
filter were analyzed with temporal ICA directly and the resulting
networks were used as reference for the high-frequency networks.

3. RESULTS
Of the 75 tICA components, 25 were found to be consistent
across subjects using the definition above, i.e., no single sub-
ject contributed more to the component than all other subjects
combined. Among these consistent group-level components, four
distinct types of components can broadly be distinguished: pul-
sation or physiological components (8 components), components
resembling known resting-state networks as described by previous
low-frequency sICA studies (2), technical artifacts (2), and other
signal sources (13).

Generally speaking, pulsation components were the most con-
sistent across subjects using the measure described above. They
were located primarily in the ventricles and in the vicinity of
large blood vessels (see Figure 1 left) and exhibited more ampli-
tude in higher frequencies (mainly above 0.6 Hz, see Figure 1
right). Specifically, the ventricular components had peak power
between 0.6 and 0.8 Hz, while other pulsation components includ-
ing mainly the insula had a broader frequency range between 0.6
and 1.4 Hz. Overall, though, it can be said that pulsation artifacts
showed a flat, modulated power spectrum.

The resting-state components identified in the high-frequency
range were the default-mode network and the fronto-parietal net-
work, the corresponding maps are shown in Figure 2. In contrast to
the pulsation artifacts, resting-state network timecourses tended to
have higher amplitude in the lower frequencies (0.25–0.6 Hz). The
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FIGURE 1 |Temporal ICA components attributed to pulsation in ventricles and large blood vessels. Left: maps thresholded at 0.1 (weights in the mixing
matrix). Right: frequency spectra corresponding to the ICA components represented on the left.
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most distinctive characteristic of the spectra of the resting-state
networks as opposed to the pulsation and artifact components is
their skewness – amplitude is highest for lower frequencies and
decreases continually as the frequency increases, and converges to
a minimum at about 0.6 Hz.

Corresponding resting-state networks could also be identified
in the analysis of the non-bandpassed data (Figure 3). It can be
seen that most of the power of the resting-state networks orig-
inates in the low-frequency range (below about 0.2 Hz), but the
qualitatively very similar maps in the high-frequency data sug-
gest that these same networks can also be identified by their
distinctive high-frequency fluctuations, which indeed amount to
about 50% of the total spectral power of these networks. Table 1
summarizes the fraction of power of the fluctuations of these net-
works that fall in the frequency bands 0.01–0.1, 0.1–0.25, and
0.25–1.4 Hz. (For further reference, Figure 4 shows the com-
plete set of components identified by tICA on the unfiltered
data.)

The third group of components were technical artifacts defined
by two unique characteristics. The first emerges from the spatial
maps of these components, which shows alternating bands of high
and low loadings aligned in planes parallel to the acquisition slices
(see Figure 5 left). The second characteristic is the narrow peak of
the frequency spectrum at about 0.8 Hz (see Figure 5 right).

The relative power of each frequency range (0.25–0.5, 0.5–0.75,
0.75–1.0 Hz, 1.0–1.25 Hz, and 1.25–1.4 Hz) of the spectra is shown
in Figure 6. The technical artifacts are easiest to distinguish due
to their power being almost entirely in the range between 0.75
and 1.0 Hz, with much higher relative power in this range than
all other components, and very low power in all other frequency
bands. Resting-state networks can also be distinguished by their
having highest relative power in the lowest of the frequency bands
(0.25–0.5 Hz), while the pulsation components and other arti-
facts have lower power in this frequency range, but tend to have
higher power in all other ranges. Overall, the distribution of rela-
tive spectral power is more similar between resting-state networks

FIGURE 2 |Temporal ICA components representing high-frequency fluctuations in brain regions commonly associated with resting-state networks.
Figure layout as in Figure 1.

FIGURE 3 |Temporal ICA components from non-bandpassed data corresponding to the high-frequency resting-state networks in Figure 2. Figure
layout, color scale, and threshold are identical to the ones in Figure 2.

Frontiers in Human Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 168 | 125

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Boubela et al. Beyond noise: high-frequency fMRI signals

Table 1 | Fractional amplitude of fluctuations in various frequency

bands (0.01–0.25, 0.01–0.10, 0.10–0.25, 0.25–1.4 Hz) for RSN 1 and RSN

2 depicted in Figure 3.

0.01–0.25 Hz

(%)

0.01–0.10 Hz

(%)

0.10–0.25 Hz

(%)

0.25–1.4 Hz

(%)

RSN 1 46.77 31.24 15.52 52.49

RSN 2 49.91 33.87 16.04 49.3

and pulsation components than between any one of these groups
and technical artifacts.

Finally, components related to heart-beat could be found in
the components discarded due to their inconsistency across sub-
jects (this inconsistency presumably is due to heart rate differences
between subjects). For each subject, the spectrum of the group
component driven mainly by that subject that can be interpreted
as heart-beat related signal is shown in Figure 7. The power spectra
of these heart-beat components can be distinguished by their peak
at frequencies around 1–1.3 Hz (the exact frequency of the peak
varies, depending on the heart rate variability (HRV) of the indi-
vidual subject). Thus, HRV would be a physiological parameter to
be extracted from our data.

4. DISCUSSION
In this work, we have shown that consistent large-scale high-
frequency signal oscillations in the brain exist and can be attributed
to specific signal sources using temporal ICA. Potentially of most
practical interest among these are the physiological or pulsation-
related components and the resting-state networks, but other sig-
nal sources can be distinguished as well. We have concentrated on
fluctuations of frequencies higher than 0.25 Hz to study consistent
effects that cannot be identified in typical fMRI experiments with
a TR of about 2–3 s, since they are beyond the Nyquist frequency
of the measurements performed in these experiments. It should
be noted that, even though they cannot be isolated when using
TRs of 2–3 s, in the resulting data these high-frequency effects
are nonetheless present in the form of aliased lower-frequency
fluctuations, i.e., so-called physiological noise. The specific iden-
tification of pulsations and artifacts can be useful in disentangling
them from neuronal signal sources, in order to isolate the lat-
ter more specifically, but also to study physiological effects by
themselves.

Two innovations from different fields have been employed in
this study in order to identify the high-frequency components of
fMRI signal. First, the measurement of whole-brain time-series
at the low TR required for a sufficiently high sampling rate has
only become possible with the introduction of multiband EPI
sequences (Feinberg et al., 2010; Moeller et al., 2010; Feinberg
and Yacoub, 2012), allowing the simultaneous acquisition of mul-
tiple slices and leading to a reduction of the TR to 354 ms with the
parameters used in this study. Second, new computational meth-
ods were needed to perform the analysis at hand. This included
improvements in handling the large datasets generated by this
sequence, with both high spatial and high temporal resolution, as
well as fast iterative computation of SVD – and by consequence of

FIGURE 4 | Depending on the number of components chosen, various
temporally independent low-frequency components (≤0.25 Hz) are
separated by the algorithm (LF 1–LF 13, left row). Note that time courses
and corresponding frequency spectra (right side) are not contaminated by
any high-frequency components (e.g., respiration, heart-beat, etc.),
increasing functional contrast-to-noise ratio. The interpretation whether a
component is (predominantly) of vascular or brain tissue origin, however, is
not obvious from the spectra alone.

PCA and ICA – on these datasets, both necessary to divide the sig-
nal acquired into temporally independent sources (Boubela et al.,
2012).
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FIGURE 5 |Temporal ICA components attributed to technical artifacts.
Figure layout as in Figure 1, spatial maps are thresholded at 0.05. Note that
even though they cover almost the whole brain, and thus have at least some

overlap with all other components, tICA is able to separate them from the
other components due to the technical artifacts distinctive temporal
characteristics (visible in their power spectra).

Perhaps the most surprising finding of this study was the iden-
tification of resting-state networks, and most notably the default-
mode network, in the high-frequency data alone. While the tradi-
tional view of resting-state networks as low-frequency fluctuations
below 0.1 Hz has been challenged, previous findings have related
mostly to oscillations below 0.16 (Niazy et al., 2011) and 0.25 Hz
(Van Oort et al., 2012). The present study adds to this the notion
that even in frequencies beyond the frequency range critically sam-
pled by usual fMRI acquisition sequences, oscillations attributable
to resting-state networks can be recognized. Indeed, the amount of
information contained in the high-frequency oscillations of these
two networks is sufficient to produce a spatial delineation con-
sistent with previously published spatial maps, even despite the
small sample size. Consequently, further investigations into the
fluctuation characteristics of resting-state networks embracing the
recent developments in fast fMRI acquisition techniques appear
to be worthwhile. Indeed, whether ’sources of resting-state BOLD
responses are similar to those of stimulus-induced responses’ is
still an open question and part of ongoing research (Kim and
Ogawa, 2012), and it is not yet clear if and to what extent the
theory of hemodynamic coupling can be drawn upon to substan-
tiate the widespread dismissal of high-frequency oscillations in
resting-state fMRI.

The identification of resting-state networks in high-frequency
data of course does not imply that they are primarily
high-frequency phenomena, but rather that the frequency range
of resting-state fluctuations is broader than previously assumed.
Still, it must be noted that only two of the typically described
resting-state networks were found in the high-pass-filtered data of
this study. Both the default-mode network and the fronto-parietal
network are characterized by high low-to-high-power ratio and
high dynamic range (defined as the difference between the peak
power of the spectrum minus the minimum of the power at
higher frequencies compared to this peak) (Robinson et al., 2009;
Kalcher et al., 2012), which seems paradoxical for networks that
can be identified by their high-frequency oscillations. On the other
hand, these two metrics are also associated with the robustness

of the networks, i.e., networks with high power ratio and high
dynamic range are identified more robustly across studies, and
this robustness of the networks might be the reasons why only
these two are identified here. High-frequency oscillations in other
resting-state networks might exist, but in this case, their power
must then be too low to be detected with the SNR level attained in
this study.

The identification and separation of physiological signal
sources made possible by the combination of a high sampling
rate and temporal ICA of the resulting time courses can be seen
as another way of using the high-frequency data and has multiple
applications. First, the ability to disentangle physiological signal
components from signals of neuronal origin could be used for
the correction of the typical BOLD signal and thus for increas-
ing the specificity not only of resting-state, but also of task-fMRI
analyses (based on the assumption that physiological signals are
the same during tasks and during rest). Correction of fMRI time-
series for non-neuronal effects could then be performed using
either the time course itself or a separately measured dataset (e.g.,
a resting-state dataset measured before or after a task-fMRI para-
digm) (Kalcher et al., 2013). As another possible future application,
measuring and separating physiological signals directly from fMRI
data, as opposed to using separately acquired physiological respi-
ratory and cardiac signals, would have the advantage that these
signals could immediately be located in the brain using the spatial
maps of the corresponding components, and would not require
additional equipment for the acquisition of physiological signals.
Indeed, the possibility of directly estimating cardiac and respira-
tory signal from the fMRI data has already been explored, e.g.,
by Beall and Lowe (2007) and Chuang and Chen (2001), and
the methods presented here could be used to improve on these
techniques. One potential advantage of avoiding the need for
additional equipment is an increase in reliability of the com-
plete system due to less individual parts that can possibly fail
which might be critical for particular applications like real-time
fMRI (Weiskopf, 2012). Furthermore, reducing the number of
components separately introduced into the measuring systems
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FIGURE 6 | Fractional amplitude of fluctuations in frequency bands
0.25–0.5, 0.5–0.75, 0.75–1.0, 1.0–1.25, and 1.25–1.4 Hz plotted against each
other for all consistent tICA components. Note that technical artifacts can
easily be separated from all other components in the frequency bands

0.25–0.5, 0.5–0.75, and 0.75–1.0 Hz. Components attributed to classical
resting-state networks appear as mixed with pulsation components, though
they tend to have higher power in the lowest frequency range, between 0.25
and 0.5 Hz, than most of the pulsation components.

means reducing the possible amount of operator bias – thus
effectively increasing reproducibility of fMRI study results and
comparability across studies in the face of possible future meta-
analyses (Huf et al., 2011). Finally, direct measurement in the
subject’s brain could circumvent time-delay issues due to mea-
surement of multiple physiological variables on different parts
of the body, e.g., the acquisition of pulse-oximetry data on the

finger. Of course, these suggestions would require further studies
to demonstrate their suitability for routine application.

Previous approaches taken to eliminate physiological signal
sources include bandpass-filtering to frequencies below 0.1 Hz, but
the adequateness of this method has been questioned – one of the
main reasons for this being that many physiological confounds
(like heart-beat) occur beyond the Nyquist frequency of typical
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FIGURE 7 | Frequency spectra of components attributed to heart-beat (with peaks in the frequency range around 1–1.3 Hz), one component for each
of the 10 subjects.

measurement sequences and are thus aliased into the lower fre-
quency ranges. On one hand, the higher sampling rate as used
in this study avoids aliasing of high-frequency signals into lower
frequencies, thus making the bandpass approach potentially better
able to separate low-frequency from higher-frequency signals than
it has been the case for long-TR measurements. On the other hand,
this study highlights that a considerable amount of information on
resting-state network activity pattern is lost when only looking into
low-frequency fluctuations. This corroborates existing findings by

Tagliazucchi et al. (2011, 2012) that as much as 50% of correlation
patterns are lost when eliminating the information in the BOLD
spikes they investigated. Furthermore, there is evidence that blood-
flow related BOLD signal sources originating in the vessels of the
brain are important confounding factors that should be taken into
account specifically (Strik et al., 2002). Thus, the use of a band-
pass filter to frequencies below 0.1 Hz is only advisable if one is
explicitly interested in low-frequency dynamics alone, as opposed
to studies investigating resting-state networks more generally.
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While the range of applications mentioned above see the physi-
ological components as signal of no interest to be eliminated from
the data, it is equally possible to treat them as the main target for
analysis. The identification of disruptions in the normal pattern
of physiological fluctuations in the brain can be useful for clini-
cal applications, for example in the localization of lesions (Yating
et al., 2013), an application where the high temporal resolution
can be critical for the detection of signal delays. Indeed, pulsa-
tions in the arteries of the brain have already been studied as
main focus of research by Strik et al. (2002), and HRV would be
a valuable parameter when studying patients with cardiovascular
diseases.

Scientific implications of the results shown here might be that
high-frequency signal oscillations should not be ignored, they can
and should be measured with current acquisition techniques and
should not be eliminated from analyses by coarse-grained correc-
tion methods such as bandpassing the entire fMRI time-series.
Future investigations might focus on the development of more
specific correction for physiological effects, if one attempts to
eliminate those from the dataset, for example by using their tICA
component time courses as regressors.

The findings presented here further challenge the traditional
view of resting-state networks as low-frequency oscillations alone
and support the idea of them exhibiting more complex behavior.
Additional work on the temporal dynamics of resting-state net-
work activity patterns might help to understand the structure of
the brain processes underlying the associated BOLD and perfusion
related fluctuations. In this study, only two resting-state networks
could be consistently identified across subjects by their high-
frequency components. This could be interpreted in terms of dif-
ferences in spectral characteristics between resting-state networks,
but could also be due to the scan duration used here (6 min)
being insufficient to detect other networks. Future studies might
uncover similar high-frequency components in other resting-state
networks using longer scan duration or higher sampling rate with
lower TRs and higher sensitivity, e.g., at 7 T.
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APPENDIX

FIGURE A1 | Concatenated time-series (left) and corresponding spectra (right) of two example components. Top: a component dominated by a single
subject – most of the variance of the time course originates from subject 2 (time points 1001–2000 in the concatenated time-series). Bottom: a component that
is equally present in all subjects, i.e., the variance in the concatenated time course is more homogeneous across subjects.
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Studies of brain functional connectivity have provided a better understanding of organi-
zation and integration of large-scale brain networks. Functional connectivity using resting-
state functional magnetic resonance imaging (fMRI) is typically based upon the correlations
of the low-frequency fluctuation of fMRI signals. Reproducible spatial maps in the brain
have also been observed using the amplitude of low-frequency fluctuations (ALFF) in
resting-state. However, little is known about the influence of the ALFF on the functional con-
nectivity measures. In the present study, we analyzed resting-state fMRI data on 79 healthy
old individuals. Spatial independent component analysis and regions of interest (ROIs)
based connectivity analysis were performed to obtain measures of functional connectivity.
ALFF maps were also calculated. First, voxel-matched inter-subject correlations were com-
puted between back-reconstructed IC and ALFF maps. For all the resting-state networks,
there was a consistent correlation between ALFF variability and network strengths (within
regions that had high IC strengths). Next, inter-subject variance of correlations across 160
functionally defined ROIs were correlated with the corresponding ALFF variance.The con-
nectivity of several ROIs to other regions were more likely to correlate with its own regional
ALFF.These regions were mainly located in the anterior cingulate cortex, medial prefrontal
cortex, precuneus, insula, basal ganglia, and thalamus. These associations may suggest a
functional significance of functional connectivity modulations. Alternatively, the fluctuation
amplitudes may arise from physiological noises, and therefore, need to be controlled when
studying resting-state functional connectivity.

Keywords: ALFF, basal ganglia, brain network, default mode network, independent component analysis, insula,
thalamus

INTRODUCTION
Studies of brain networks and functional connectivity have pro-
vided a better understanding of organization and integration of
large-scale brain networks. After the initial observation that the
motor cortex exhibits highly synchronized intrinsic fluctuations
during the absence of specific tasks (Biswal et al., 1995), the resting-
state functional connectivity has emerged as a promising approach
to investigate the functional integration of the brain. Studies using
seed-based correlations have shown that the resting-state BOLD
signal of functionally related regions generally demonstrate high
correlation coefficients (e.g., Cordes et al., 2000). Seed-based cor-
relation analysis has since been used to define brain networks such
as the default mode network (DMN; Greicius et al., 2003), and to
study the functional parcellation of specific brain structures, such
as the cingulate cortex (Margulies et al., 2007), basal ganglia (Di
Martino et al., 2008), and insula (Taylor et al., 2009).

As an alternative to seed-based analysis, where the region of
interest is known, researchers have used independent component
analysis (ICA), a data driven methodology to decompose the brain
into spatially independent networks (McKeown et al., 1998). ICA
simultaneously investigate multiple networks such as the DMN,
salience, left/right executive, attention, motor, and visual networks
(Greicius et al., 2004; Beckmann et al., 2005) and several successful

applications have been reported in mental diseases (e.g., Greicius
et al., 2004; Veer et al., 2010; Westlye et al., 2011).

The studies of functional connectivity and networks gener-
ally rely on the correlations and relative independence of low-
frequency fluctuation signals of resting-state functional magnetic
resonance imaging (fMRI). However, the influences of resting-
state fMRI signal fluctuation amplitude on the measures of func-
tional connectivity and networks have largely been ignored. The-
oretically, the correlation coefficient should be independent of the
scale of the signals. However, the reliability of fMRI signals might
be associated with the level of noises as well as meaningful neuronal
functions (e.g., Sirotin and Das, 2009). Therefore, the fluctua-
tion amplitudes may indeed affect the functional connectivity and
network measures.

The “noise” of the brain has been shown to characterize the
developing (McIntosh et al., 2008) and the aging (Garrett et al.,
2010, 2011) brain, and the variability of the noise has been shown
to explain behavioral variability (for a review, see McIntosh et al.,
2010). On the other hand, the resting-state fMRI is susceptible to
many sources of noise such as head motion (Power et al., 2012;
Van Dijk et al., 2012), respiration, and heartbeat (Birn et al.,
2006, 2008; Chang et al., 2008). Data processing strategies were
found to significantly affect connectivity measures (Weissenbacher

Frontiers in Human Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 118 | 133

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2013.00118/abstract
http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2013.00118/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=XinDi&UID=63547
http://www.frontiersin.org/people/EunKim/86023
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=Ching_PoLin&UID=31470
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=BharatBiswal_1&UID=43120
mailto:bbiswal@yahoo.com
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Di et al. ALFF and brain connectivity

et al., 2009; Saad et al., 2012), which implies that the connec-
tivity results are still largely influenced by different sources of
noise even after following careful processing procedures. Taken
together, a better understanding of how the resting-state fMRI
fluctuation amplitude affect functional connectivity and networks
is warranted.

The fluctuations of resting-state BOLD signals are generally
observed to be present between 0.01 and 0.08 Hz frequency band
(Biswal et al., 1995). The amplitude of resting-state BOLD fluc-
tuations is usually calculated in this low-frequency band, which
has been termed as the amplitude of low-frequency fluctuations
(ALFF, Zang et al., 2007). Higher ALFF in resting-state have been
shown in regions constituting the DMN (Zang et al., 2007), sug-
gesting that ALFF to some extent reflects neural activity. In addi-
tion, recent studies have observed an overlap between changes
in regional ALFF and functional connectivity in several brain
regions in stuttering (Xuan et al., 2012) and seasonal affective dis-
order subjects (Abou Elseoud et al., 2012). These studies suggest
a relationship between ALFF and functional connectivity; how-
ever, the extent and selectivity of this association has not been
investigated.

In the present study, we aimed to systematically examine the
relationships between ALFF and resting-state connectivity. A large
dataset of healthy old subjects were analyzed so that the inter-
subject variability of ALFF and connectivity was maximized. First,
spatial ICA was performed on the resting-state fMRI data to iden-
tify resting-state networks. These networks were correlated with
regional ALFFs in a voxel-wise manner to examine whether the
inter-subject variability of the network strengths were correlated
with ALFFs. Second, functional connectivity across 160 regions
of interest (ROIs) were calculated. The functional connectivity
was correlated with ALFF to examine whether the local amplitude
fluctuations affect the strength of connectivity. We hypothesize
that the strength of connectivity of ICA and ROI based analyses
would be correlated to the local ALFF. In addition, the correlations
were examined across different networks and connectivity pairs to
determine whether these associations were across the entire brain
or specific to selective networks.

MATERIALS AND METHODS
RESTING-STATE MRI DATA
Resting-state fMRI and anatomical MRI data were obtained
on a sample of old male subjects. After removing data with
large head motion, 79 subjects were included with a mean
age of 80.3 years (range from 65 to 92) for further analy-
sis. A 3.0-T Siemens Magnetom Tim Trio scanner equipped
with a 12-channel head coil (Erlangen, Germany) was used
to acquire the MR images. All the functional and anatomi-
cal images were scanned parallel to the anterior commissure-
posterior commissure line. The resting-state data were scanned
for 500 s with a TR of 2.5 s, resulting in 200 images for each
subject. The scanning parameters were as follows: TE= 27;
acquisition matrix= 64× 64; flip angle= 77˚; slices= 43; spa-
tial resolution= 3.44 mm× 3.44 mm× 3.40 mm. High resolution
MPRAGE anatomical images were also acquired with the scanning
parameters as follows: TR= 2530 ms; TE= 3.5 ms; flip angle= 7˚;
resolution= 1 mm× 1 mm× 1 mm (no gap).

DATA ANALYSIS
Preprocessing
The functional and anatomical image preprocessing were per-
formed using SPM8 toolbox1 under MATLAB7.7 software2. The
first two functional images were discarded. Then, the remain-
ing functional images were motion corrected and coregistered
to the subjects’ own anatomical images. The anatomical images
were segmented using the new segmentation routine in SPM8.
The deformation field maps obtained in segmentation were used
to normalize all the functional images into standard Montreal
Neurological Institute (MNI) space. For each voxel, the six rigid
body head motion parameters, the first five eigenvectors from
white matter (WM) signals, and the first five eigenvectors from
cerebrospinal fluid (CSF) signals were regressed out using linear
regression. The WM and CSF masks were defined for each subject
using the segmented WM and CSF images thresholded at p > 0.99.
Finally, all the functional images were spatially smoothed using a
Gaussian kernel of 8 mm full width at half maximum (FWHM).

Calculation of ALFF
Amplitude of low-frequency fluctuations maps were calculated
between 0.01 and 0.08 Hz band using Resting-State fMRI Data
Analysis Toolkit V1.6 (REST; Song et al., 2011). The ALFF maps
were then divided by whole brain mean ALFF values to normalize
the global effects.

Relationships between network strength and ALFF
Spatial ICA was conducted to define intrinsic networks using the
Group ICA of fMRI Toolbox (GIFT)3 (Calhoun et al., 2001).
Twenty components were extracted. Resting-state networks were
visually identified according to the literature (Biswal et al., 2010;
Cole et al., 2010). These ICs were back-reconstructed to each sub-
ject using group ICA algorithm, resulting in 20 IC maps for each
subject (Erhardt et al., 2011). To examine whether there was a
consistent network effect across subjects, voxel-wise one-sample t
tests was performed for each of the networks. The resulting t maps
were thresholded at |t | > 3.42 (p < 0.001).

A voxel-matched correlation analysis was used to study the
relationships between resting-state network strengths and ALFFs
(similar to Mennes et al., 2010, 2011). For each voxel, network
strengths of an IC were correlated with ALFFs across all subjects
using Pearson’s correlation coefficient. The correlation maps were
calculated separately for each of the network maps. Some voxels
within an IC had negative value which reflects a negative relation-
ship between a given voxel to the corresponding IC. Therefore,
negative correlation between ALFF and negative IC strength is
equivalent to positive correlation between ALFF and positive IC
strength.

The resulting r maps were thresholded at |r | > 0.364
(p < 0.001). Because the aim of the current analysis was to
show the overall correlation patterns, we did not use multi-
ple comparison correction. However, a Monte Carlo simulation
using AlphaSim4 indicated that a cluster exceeding 24 voxels were

1http://www.fil.ion.ucl.ac.uk/spm/
2http://www.mathworks.com/
3http://icatb.sourceforge.net/
4http://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf

Frontiers in Human Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 118 | 134

http://www.fil.ion.ucl.ac.uk/spm/
http://www.mathworks.com/
http://icatb.sourceforge.net/
http://afni.nimh.nih.gov/pub/dist/doc/manual/AlphaSim.pdf
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Di et al. ALFF and brain connectivity

significant at p < 0.05 after a whole brain multiple comparison
correction. This analysis shows that most of our large clusters
reported in the results were still significant even after multiple
comparison correction.

Relationships between functional connectivity and ALFF
Mean time series from 160 functionally defined ROIs were calcu-
lated within spherical ROIs with 8 mm radius (Dosenbach et al.,
2010). These 160 ROIs were also assigned into six networks accord-
ing to a modularity analysis of resting-state data (Dosenbach et al.,
2010), including the cerebellar, cingulo-opercular, DMN, fronto-
parietal, occipital, and sensorimotor networks (see Table A1 in
Appendix for details). Then, functional connectivity matrices were
calculated for each subject using Pearson’s correlation coefficient
across 160 ROIs. The connectivity matrices were transformed into
Fisher’s z. For each of the ROI, the Fisher’s z scores between a
given ROI to other ROIs were correlated with ALFF value of the
given ROI.

To identify which ROI’s local ALFF were more likely to correlate
with connectivity, the correlations were thresholded at |r | > 0.364
(p < 0.001). Then, we selected the ROIs with local ALFFs that were
correlated with more than 30 significant connectivity between the
given ROI and other ROIs. These ROIs and the corresponding con-
nections with other ROIs were visualized using BrainNet Viewer5.

RESULTS
RELATIONSHIPS BETWEEN NETWORK STRENGTH AND ALFF
Out of the 20 ICs, 8 ICs were identified which corresponded to the
8 networks described by Cole et al. (2010), including the DMN,
left and right executive, attention, salience, motor, visual, and
fronto-parietal opercular networks (the left column of Figure 1).
The voxel-matched correlations between network strengths and
ALFFs for the eight networks were shown in the right column.

5http://www.nitrc.org/projects/bnv/

FIGURE 1 | Eight networks identified by spatial ICA that
correspond to Cole et al. (2010) (left column) and voxel-wise
correlations between network strengths and ALFFs (right
column). All maps are thresholded at p < 0.001. For the ICA t maps,

displayed range is absolute t value between 3.42 and 20, and for the
correlation maps, display range is absolute r value between 0.364
and 0.6. Hot and cold colors encode positive and negative effects,
respectively.
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Strong correlations between network strengths and ALFFs were
generally observed within each network with less spatial extent
when using the compatible statistical threshold of p < 0.001. For
the DMN network, correlations between network strengths and
ALFFs were observed in the posterior cingulate cortex/precuneus,
medial prefrontal cortex (MPFC), and the right inferior parietal
lobule/superior temporal gyrus. Within the left and right exec-
utive network, correlations were identified in the left and right
dorsolateral prefrontal cortex and superior parietal lobule, respec-
tively. The attention network demonstrated correlations within
the bilateral superior parietal lobule and middle temporal gyrus.
In the salience network, although clusters of high correlations were
unapparent, there were small clusters within the bilateral insula
and inferior frontal gyrus. For the motor network, correlations
were observed in the bilateral sensorimotor cortex and supplemen-
tary motor area. In the visual network, correlations were identified
primarily in the visual cortex. Lastly, correlations were observed
in the bilateral insula/inferior frontal gyrus, and cingulate cortex
within the fronto-parietal opercular network.

In addition to the eight ICs, four other ICs were considered to
be meaningful brain networks (the left column of Figure 2). IC
12 was mainly comprised of the bilateral insula, bilateral anterior
temporal lobe, bilateral hippocampal gyrus, and bilateral amyg-
dala. IC 14 included regions within the bilateral superior frontal
gyrus, medial frontal gyrus, and bilateral inferior parietal lobe,
whereas IC 15 was mostly within the bilateral temporal lobe. IC
18 was mainly located in the MPFC, anterior cingulate cortex, and
posterior cingulate cortex. High correlation between IC strengths
and regional ALFFs were also observed in these regions of each
network, respectively (right column).

We classified the remaining eight ICs as components related to
noise. Voxels with high values within these ICs were mainly located

in the CSF, WM, or large vessels (see Figure A1 in Appendix). We
also observed high correlations between these IC strengths and
ALFFs.

RELATIONSHIPS BETWEEN FUNCTIONAL CONNECTIVITY AND ALFF
The mean connectivity matrix across 160 ROIs is illustrated in
the left panel of Figure 3. Even with strong connectivity coeffi-
cient values, we observed higher connectivity within each network
compared with between networks. These ROIs were sorted by their
six network affiliations (see Table A1 in Appendix), and high cor-
relation values within the networks are evident as subsquares along
the mean connectivity matrix diagonal, for example the cerebellar
network (ROI 1–18), DMN (ROI 51–84), fronto-parietal network
(ROI 85–105), occipital network (ROI 106–127), and sensorimo-
tor network (ROI 128–160). However, we did not observe strong
within network connectivity of the cingulo-opercular network
(ROI 19–50).

The correlation between the ALFF of a given ROI and the
connectivity between the given ROI with other ROIs are illus-
trated in the middle panel of Figure 3. The matrix was thresh-
olded (|r | > 0.364, i.e., p < 0.001) to determine which correlation
between the ALFF of a given ROI and its connectivity were statis-
tically significant. The right panel of Figure 3 demonstrates that
the matrix was asymmetrical with respect to the diagonal which
suggests that ALFFs of both ROIs within a pair affect functional
connectivity differently. It also demonstrates that ALFF of specific
ROIs were more likely to influence the connectivity between these
specific ROIs with other ROIs.

The number of positive and negative correlations correlated
with the local ALFF was tabulated (Figure 4) to identify the regions
where the local ALFF were more likely to affect connectivity. We
set an arbitrary threshold of n > 30 to identify these regions (see

FIGURE 2 | Other four networks identified by spatial ICA (left column)
and voxel-wise correlations between network strengths and ALFFs (right
column). All maps are thresholded at p < 0.001. For the ICA t maps, display

range is absolute t value between 3.42 and 20, and for the correlation maps,
display range is absolute r value between 0.364 and 0.6. Hot and cold colors
encode positive and negative effects, respectively.
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FIGURE 3 | Mean correlation matrix of resting-state connectivity across
160 ROIs (left), and their relationships to regional ALFF (middle and
right). Each row of the middle panel revealed correlations between ALFF in

one ROI and connectivity between this ROI to all the other ROIs. The
thresholded correlations between ALFF and connectivity were shown in the
right panel (|r | > 0.364, i.e., p < 0.001).

FIGURE 4 | Number of significant correlations between ALFF and
connectivity for each ROI. The number of positive and negative
correlations were shown separately, and displayed in positive and negative
directions, respectively.

Table 1). Fifteen ROIs revealed more than 30 connections that
were positively correlated with ALFFs from the corresponding
ROIs, while two ROIs revealed more than 30 connections that were
negatively correlated with ALFFs from the corresponding ROIs.

These ROIs were categorized into four groups based on their
spatial approximations and affiliated networks. The first group
of ROIs were located in the MPFC and anterior cingulate cor-
tex (ACC) (Figure 5A). These five ROIs were either a part of
the DMN or the cingulo-opercular network as described by

Table 1 | ROIs that have more than 30 connections that are correlated

with the corresponding regional ALFF.

Label ROI # Network MNI coordinates

x y z

POSITIVE EFFECTS

ACC 19 Cingulo-opercular −2 30 27

aPFC 23 Cingulo-opercular 27 49 26

Basal ganglia 24 Cingulo-opercular 14 6 7

Basal ganglia 25 Cingulo-opercular −20 6 7

Thalamus 43 Cingulo-opercular −12 −3 13

Thalamus 44 Cingulo-opercular −12 −12 6

Thalamus 45 Cingulo-opercular 11 −12 6

ACC 51 Default 9 39 20

aPFC 54 Default −25 51 27

vmPFC 83 Default −11 45 17

Mid insula 131 Sensorimotor −42 −3 11

Mid insula 132 Sensorimotor −36 −12 15

Mid insula 133 Sensorimotor 33 −12 16

vFC 159 Sensorimotor 43 1 12

vFC 160 Sensorimotor −55 7 23

NEGATIVE EFFECTS

Precuneus 72 Default 5 −50 33

Precuneus 76 Default −6 −56 29

Dosenbach et al. (2010); however, these nearby ROIs exhibited
similar correlation patterns. The connectivity between the five
ROIs with other DMN, fronto-parietal, cingulo-opercular, sen-
sorimotor, and occipital regions demonstrated positive correla-
tions with local ALFF (Figures 5E,I). The second set of ROIs
were located in the precuneus (Figure 5B), and the connec-
tivity of these ROIs to cingulo-opercular, fronto-parietal, and
sensorimotor regions were negatively correlated with local ALFF
(Figures 5F,J). The third set was comprised of five ROIs in the
bilateral putamen, caudate, and thalamus (Figure 5C), and their
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FIGURE 5 | Regions that have more than 30 connections correlated with
regional ALFF (A–D), and their associated connections (E–L). The ROIs are
stratified into four sets according to their affiliated networks and connectivity
behavior (one for each column). Middle and bottom rows showed left and

right lateral views, respectively. Hot and cold colors of connections indicate
positive and negative correlations. Color codes of the ROIs: blue,
cingulo-opercular network; cyan, DMN; yellow, fronto-parietal network;
orange, occipital network; brown, sensorimotor network.

connectivity to the DMN, fronto-parietal, cingulo-opercular, and
occipital regions revealed positive correlations with local ALFF
(Figures 5G,K). The fourth group of ROIs were located at the
bilateral insula and ventral fontal regions (Figure 5D), and their
connectivity to the DMN, fronto-parietal, cingulo-opercular, and
occipital regions revealed positive correlations with local ALFF
(Figures 5H,L).

DISCUSSION
The current analysis demonstrates that the network strengths as
measured by ICA were selectively correlated with ALFFs within the
corresponding network. The network strength measured by ICA
reflects the extent that a particular voxel correlates with the whole
IC. Thus, the correlations between ALFFs and network strengths
imply that the within network connectivity are correlated with the
local fluctuation amplitudes. The relationship between ICA and
ALFF were replicated by directly correlating ALFFs with connec-
tivity measured via correlations. Within each network, ALFFs were
positively correlated with the connectivity and were demonstrated
as squares within each network nearby the diagonal of the matrix
(see the right panel of Figure 3, e.g., cerebellar and sensorimo-
tor networks). Interestingly, the correlation between ALFFs and
connectivity were not restricted to within network but extends
to between network connectivity. The functional connectivity of
regions, particularly the MPFC, ACC, precuneus, basal ganglia,
thalamus, and insula, with other regions were widely spread in the
whole brain and suggest a special role of these regions in functional
connectivity pattern.

The association between local fluctuations and connectivity
may simply reflect that the BOLD signals are more reliable with

less noise. However, given that the correlations are not uniform
across the whole brain and that selective correlations are between
specific regional ALFFs and connectivity, these associations may
suggest functional significance. One possible explanation is that
these selective regions may be involved in transmitting informa-
tion to various brain regions, such that the greater the neural
activity results in larger regional amplitude of fluctuations, and
greater connectivity between these regions to other regions. In
addition, the variances of ALFF may reflect different levels of neu-
rotransmitters that give rise to functional connectivity variances.
The later notion can be tested by combining resting-state fMRI
with magnetic resonance spectroscopy (MRS) or positron emis-
sion tomography (PET) (Horn et al., 2010; Hahn et al., 2011; Cole
et al., 2012; Kapogiannis et al., 2013).

Alternatively, it is also possible that these regions are more likely
to be impacted by physiological noise. Even though ALFF is con-
sidered to be a measure of amplitude of neural activity, our recent
studies have shown that ALFF is highly correlated with neurovas-
cular response of breath holding task (Biswal et al., 2007; Di et al.,
2013). In addition, the regions that demonstrate high correlations
between ALFF and connectivity were also the regions that were
more likely to be affected by physiological noise due to the adjacent
large vessels, including the MPFC and precuneus, and insula (Di
et al., 2013). These physiological noises may also influence func-
tional connectivity (Birn et al., 2006, 2008; Chang et al., 2008), and
therefore, reflect the common sources of physiological noise that
affects both measures. Consistent with this notion, the ICs that
reflected physiological noises exhibited high correlations in the
regions located in the CSF, WM, and large vessels (see Figure A1
in Appendix). However, for the ICs that reflect meaningful neural
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networks, the correlations between ALFF and network strength
may reflect both neural and noise contributions.

The first two sets of ROIs exhibiting correlations between
connectivity and ALFF were within the DMN, including the
MPFC/ACC regions,and precuneus. These regions are also defined
as the structural core of the human brain that has the most
anatomical connections to other brain regions (Hagmann et al.,
2008). Most interestingly, the correlations between regional ALFF
and connectivity showed reversed relationships between the pre-
frontal regions and precuneus. The connectivity between the two
ROIs in precuneus with other regions was negatively correlated
with the precuneus ALFF. These brain regions were task positive
networks such as the sensorimotor, fronto-parietal, and cingulo-
opercular networks. The connectivity between DMN and task
positive networks is generally negative (Fox et al., 2005),which sug-
gests that greater regional ALFF is associated with greater negative
connectivity between DMN and task positive networks. In addi-
tion, we did not apply global scaling on the current dataset in order
to prevent artificial negative correlations and no negative connec-
tivity was observed. Thus, the negative relationship between con-
nectivity (DMN and task positive networks) and ALFF is not due
to preprocessing of the data. In contrast, the connectivity between
MPFC/ACC ROIs and other regions revealed positive correlations
with ALFF. MPFC/ACC ROIs were correlated with regions within
other areas of the DMN, and with regions of the fronto-parietal,
sensorimotor, cingulo-opercular, and occipital networks. These
different correlation pattern suggests that the modulation of con-
nectivity may involve different underlying mechanisms, e.g., via
excitatory and inhibitory neurotransmitter modulations. Gluta-
mate concentration, which reflects excitatory mechanisms in the
ACC (Horn et al., 2010) and posteromedial cortex (Kapogiannis
et al., 2013) has been shown to positively modulate the resting-
state functional connectivity. In contrast, GABA concentration,
which reflects inhibitory mechanisms, in the posteromedial cor-
tex has been shown to negatively correlate with the resting-state
functional connectivity. However, the links between the amplitude
of fluctuations and neurotransmitter concentrations is still largely
unknown, thus require further studies.

The other two sets of ROIs include the basal ganglia, thalamus,
insula, and adjacent sensorimotor regions. Previous studies have
demonstrated a widely spread functional connectivity of these
regions to other brain regions (e.g., Di Martino et al., 2008; Taylor

et al., 2009; Cauda et al., 2011; Tang et al., 2011). The positive cor-
relations between connectivity and ALFF suggest a special role of
these regions in functional connectivity pattern.

A practical implication of the present result is that when study-
ing resting-state functional connectivity or networks, ALFF may
be a potential confounding variable that needs to be taken into
account. ALFF has been widely used to study the “baseline” activ-
ity of a wide spectrum of psychological states and mental diseases,
for example aging (Biswal et al., 2010; Yan et al., 2011), schizophre-
nia (Hoptman et al., 2010; Huang et al., 2010), and attention deficit
hyperactivity disorder (ADHD; Zang et al., 2007). Distributed dif-
ferences of ALFF have been observed to be associated with different
pathologies and mental states. On the other hand, increasingly
studies have been conducted to investigate brain functional con-
nectivity alterations in mental diseases using both seed-based
correlation and spatial ICA (e.g., Greicius et al., 2004; Castel-
lanos et al., 2008; Veer et al., 2010; Westlye et al., 2011). Although
these differences are presumed to reflect the group differences in
resting-state connectivity and networks, ALFF was not controlled
by previous studies. Therefore, the underlying group differences
in functional connectivity that have been reported by previous
studies may be due to the unrestrained ALFF. By including ALFF
as covariance, Abou Elseoud et al. (2012) demonstrated increased
connectivity, but less number of voxels in the visual network. Thus,
the current result and that of Abou Elseoud et al. (2012) raises
a concern regarding ALFF as a potential confound when study
functional connectivity and network. More specifically, our data
suggests that one should be cautious when interpreting seed-based
correlations of regions that are more likely to be affected by ALFF,
such as the precuneus, MPFC, basal ganglia, thalamus, and insula.

The present study only analyzed a sample of old individuals
because old subjects typically demonstrate larger variance of func-
tional connectivity and the associations of functional connectivity
with ALFF may be easier to identify. Even though we believe that
the current results will also hold for younger individuals, further
studies investigating younger individuals is needed to determine
whether the relationship between local fluctuation amplitudes and
functional connectivity generalizes to young population.
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APPENDIX

Table A1 | One hundred sixty functionally defined ROIs used in the

current study.

ROI # x y z Label Network

1 −34 −67 −29 Inf cerebellum Cerebellum

2 32 −61 −31 Inf cerebellum Cerebellum

3 −25 −60 −34 Inf cerebellum Cerebellum

4 −37 −54 −37 Inf cerebellum Cerebellum

5 18 −81 −33 Inf cerebellum Cerebellum

6 −6 −79 −33 Inf cerebellum Cerebellum

7 −21 −79 −33 Inf cerebellum Cerebellum

8 33 −73 −30 Inf cerebellum Cerebellum

9 −24 −54 −21 Lat cerebellum Cerebellum

10 21 −64 −22 Lat cerebellum Cerebellum

11 −28 −44 −25 Lat cerebellum Cerebellum

12 −34 −57 −24 Lat cerebellum Cerebellum

13 14 −75 −21 Med cerebellum Cerebellum

14 1 −66 −24 Med cerebellum Cerebellum

15 −6 −60 −15 Med cerebellum Cerebellum

16 −16 −64 −21 Med cerebellum Cerebellum

17 5 −75 −11 Med cerebellum Cerebellum

18 −11 −72 −14 Med cerebellum Cerebellum

19 −2 30 27 ACC Cingulo-opercular

20 −41 −47 29 Angular gyrus Cingulo-opercular

21 38 21 −1 Ant insula Cingulo-opercular

22 −36 18 2 Ant insula Cingulo-opercular

23 27 49 26 aPFC Cingulo-opercular

24 14 6 7 Basal ganglia Cingulo-opercular

25 −20 6 7 Basal ganglia Cingulo-opercular

26 −6 17 34 Basal ganglia Cingulo-opercular

27 11 −24 2 Basal ganglia Cingulo-opercular

28 9 20 34 dACC Cingulo-opercular

29 54 −31 −18 Fusiform Cingulo-opercular

30 0 15 45 mFC Cingulo-opercular

31 37 −2 −3 Mid insula Cingulo-opercular

32 −30 −14 1 Mid insula Cingulo-opercular

33 32 −12 2 Mid insula Cingulo-opercular

34 −55 −44 30 Parietal Cingulo-opercular

35 58 −41 20 Parietal Cingulo-opercular

36 −4 −31 −4 Post cingulate Cingulo-opercular

37 −30 −28 9 Post insula Cingulo-opercular

38 8 −40 50 Precuneus Cingulo-opercular

39 42 −46 21 Sup temporal Cingulo-opercular

40 43 −43 8 Temporal Cingulo-opercular

41 −59 −47 11 Temporal Cingulo-opercular

42 51 −30 5 Temporal Cingulo-opercular

43 −12 −3 13 Thalamus Cingulo-opercular

44 −12 −12 6 Thalamus Cingulo-opercular

45 11 −12 6 Thalamus Cingulo-opercular

46 −52 −63 15 TPJ Cingulo-opercular

47 −46 10 14 vFC Cingulo-opercular

48 −48 6 1 vFC Cingulo-opercular

49 51 23 8 vFC Cingulo-opercular

50 34 32 7 vPFC Cingulo-opercular

(Continued)

ROI # x y z Label Network

51 9 39 20 ACC Default

52 −48 −63 35 Angular gyrus Default

53 51 −59 34 Angular gyrus Default

54 −25 51 27 aPFC Default

55 28 −37 −15 Fusiform Default

56 −59 −25 −15 Inf temporal Default

57 −61 −41 −2 Inf temporal Default

58 52 −15 −13 Inf temporal Default

59 −36 −69 40 IPS Default

60 0 51 32 mPFC Default

61 45 −72 29 Occipital Default

62 −9 −72 41 Occipital Default

63 −42 −76 26 Occipital Default

64 −28 −42 −11 Occipital Default

65 −2 −75 32 Occipital Default

66 10 −55 17 Post cingulate Default

67 −11 −58 17 Post cingulate Default

68 −8 −41 3 Post cingulate Default

69 1 −26 31 Post cingulate Default

70 −5 −52 17 Post cingulate Default

71 −5 −43 25 Post cingulate Default

72 5 −50 33 Precuneus Default

73 11 −68 42 Precuneus Default

74 9 −43 25 Precuneus Default

75 −3 −38 45 Precuneus Default

76 −6 −56 29 Precuneus Default

77 23 33 47 Sup frontal Default

78 −16 29 54 Sup frontal Default

79 46 39 −15 vlPFC Default

80 6 64 3 vmPFC Default

81 −6 50 −1 vmPFC Default

82 9 51 16 vmPFC Default

83 −11 45 17 vmPFC Default

84 8 42 −5 vmPFC Default

85 −1 28 40 ACC Fronto-parietal

86 29 57 18 aPFC Fronto-parietal

87 −29 57 10 aPFC Fronto-parietal

88 −42 7 36 dFC Fronto-parietal

89 40 17 40 dFC Fronto-parietal

90 44 8 34 dFC Fronto-parietal

91 40 36 29 dlPFC Fronto-parietal

92 46 28 31 dlPFC Fronto-parietal

93 −44 27 33 dlPFC Fronto-parietal

94 −48 −47 49 IPL Fronto-parietal

95 −41 −40 42 IPL Fronto-parietal

96 −53 −50 39 IPL Fronto-parietal

97 44 −52 47 IPL Fronto-parietal

98 54 −44 43 IPL Fronto-parietal

99 −32 −58 46 IPS Fronto-parietal

100 32 −59 41 IPS Fronto-parietal

(Continued)
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Table A1 | Continued

ROI # x y z Label Network

101 −35 −46 48 Post parietal Fronto-parietal

102 42 48 −3 Vent aPFC Fronto-parietal

103 −43 47 2 Vent aPFC Fronto-parietal

104 39 42 16 vlPFC Fronto-parietal

105 −52 28 17 vPFC Fronto-parietal

106 −44 −63 −7 Occipital Occipital

107 17 −68 20 Occipital Occipital

108 36 −60 −8 Occipital Occipital

109 −34 −60 −5 Occipital Occipital

110 39 −71 13 Occipital Occipital

111 19 −66 −1 Occipital Occipital

112 −16 −76 33 Occipital Occipital

113 9 −76 14 Occipital Occipital

114 15 −77 32 Occipital Occipital

115 29 −73 29 Occipital Occipital

116 −29 −75 28 Occipital Occipital

117 20 −78 −2 Occipital Occipital

118 −18 −50 1 Occipital Occipital

119 −29 −88 8 Post occipital Occipital

120 13 −91 2 Post occipital Occipital

121 27 −91 2 Post occipital Occipital

122 −4 −94 12 Post occipital Occipital

123 −5 −80 9 Post occipital Occipital

124 29 −81 14 Post occipital Occipital

125 33 −81 −2 Post occipital Occipital

126 −37 −83 −2 Post occipital Occipital

127 46 −62 5 Temporal Occipital

128 60 8 34 dFC Sensorimotor

129 58 11 14 Frontal Sensorimotor

130 53 −3 32 Frontal Sensorimotor

131 −42 −3 11 Mid insula Sensorimotor

132 −36 −12 15 Mid insula Sensorimotor

133 33 −12 16 Mid insula Sensorimotor

134 −26 −8 54 Parietal Sensorimotor

135 −47 −18 50 Parietal Sensorimotor

136 −38 −15 59 Parietal Sensorimotor

137 46 −20 45 Parietal Sensorimotor

138 −55 −22 38 Parietal Sensorimotor

139 −38 −27 60 Parietal Sensorimotor

140 −24 −30 64 Parietal Sensorimotor

141 41 −23 55 Parietal Sensorimotor

142 18 −27 62 Parietal Sensorimotor

143 −47 −12 36 Parietal Sensorimotor

144 42 −24 17 Post insula Sensorimotor

145 −41 −31 48 Post parietal Sensorimotor

146 10 5 51 Pre-SMA Sensorimotor

147 −54 −22 22 Precentral gyrus Sensorimotor

148 −54 −9 23 Precentral gyrus Sensorimotor

149 44 −11 38 Precentral gyrus Sensorimotor

150 −44 −6 49 Precentral gyrus Sensorimotor

(Continued)

ROI # x y z Label Network

151 46 −8 24 Precentral gyrus Sensorimotor

152 58 −3 17 Precentral gyrus Sensorimotor

153 0 −1 52 SMA Sensorimotor

154 34 −39 65 Sup parietal Sensorimotor

155 −53 −37 13 Temporal Sensorimotor

156 −41 −37 16 Temporal Sensorimotor

157 59 −13 8 Temporal Sensorimotor

158 −54 −22 9 Temporal Sensorimotor

159 43 1 12 vFC Sensorimotor

160 −55 7 23 vFC Sensorimotor

The ROIs were obtained from Dosenbach et al. (2010), and sorted by their affiliating

networks. The x, y, and z coordinates were given in MNI space.
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FIGURE A1 | Eight noise networks identified by spatial ICA (left column)
and voxel-wise correlations between network strengths and ALFFs (right
column). All maps are thresholded at p < 0.001. For the ICA t maps, display

range is absolute t value between 3.42 and 20, and for the correlation maps,
display range is absolute r value between 0.364 and 0.6. Hot and cold colors
encode positive and negative effects, respectively.
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Higher order sensory processing follows a general subdivision into a ventral and a dorsal
stream for visual, auditory, and tactile information. Object identification is processed in
temporal structures (ventral stream), whereas object localization leads to activation of
parietal structures (dorsal stream). To examine whether the chemical senses demonstrate
a similar dissociation, we investigated odor identification and odor localization in 16 healthy
young subjects using functional MRI. We used two odors—(1) eucalyptol; (2) a mixture
of phenylethanol and carbon dioxide)—which were delivered to only one nostril. During
odor identification subjects had to recognize the odor; during odor localization they had
to detect the stimulated nostril. We used general linear model (GLM) as a classical
method as well as independent component analysis (ICA) in order to investigate a possible
neuroanatomical dissociation between both tasks. Both methods showed differences
between tasks—confirming a dual processing stream in the chemical senses—but
revealed complementary results. Specifically, GLM identified the left intraparietal sulcus
and the right superior frontal sulcus to be more activated when subjects were localizing
the odorants. For the same task, ICA identified a significant cluster in the left parietal lobe
(paracentral lobule) but also in the right hippocampus. While GLM did not find significant
activations for odor identification, ICA revealed two clusters (in the left central fissure
and the left superior frontal gyrus) for this task. These data demonstrate that higher
order chemosensory processing shares the general subdivision into a ventral and a dorsal
processing stream with other sensory systems and suggest that this is a global principle,
independent of sensory channels.

Keywords: olfaction, trigeminal system, independent component analysis, general linear model, ventral, dorsal

INTRODUCTION
Over the last 20 years, neuroimaging methods such as positron
emission tomography (PET) and functional magnetic resonance
imaging (fMRI) have allowed for the investigation of brain
regions involved in olfactory processing. Since Zatorre and col-
league’s seminal paper, in which they localized olfactory infor-
mation processing to piriform and orbitofrontal cortex (Zatorre
et al., 1992), researchers have investigated cerebral areas involved
in different olfactory tasks. The olfactory system has been sug-
gested to be dependent on concurrent parallel and hierarchial
pathways. According to this model, olfactory stimulation always
leads to activation of basic olfactory processing areas, such as
the piriform cortex, amygdala, orbitofrontal cortex and insula,
independent of the task. Higher order brain structures (e.g., pre-
frontal cortex) are thereafter activated dependent on the specific
task (e.g., olfactory memory) (Savic et al., 2000). For exam-
ple, by presenting two concentrations (low and high) of each
a pleasant and an unpleasant odor, Anderson et al. investi-
gated cortical representation of odor valence and intensity. They
observed an intensity-dependent activation of the amygdala dis-
associated from odor valence. Regions of the orbitofrontal cortex,

in contrast, were differentially activated by odor valence where
odor intensity had no effect (Anderson et al., 2003). However,
these results were later suggested to be paradigm rather than
intensity-dependent (Winston et al., 2005). Later a study with a
similarly elegant design investigated the effect of chemical struc-
ture and quality using cross adaptation. Here, anterior portions
of the piriform cortex were demonstrated to encode informa-
tion regarding chemical structure, whereas posterior parts of the
same area responded independent of chemical structure, but dif-
ferentially to odor quality (Gottfried et al., 2006). These studies
provide evidence that the olfactory system is indeed organized
both hierarchically and topographically. This is in analogy to the
other sensory systems, such as tonotopy in audition, with high
and low frequencies being represented in medial and lateral por-
tions, respectively, of the Heschl gyrus (Schonwiesner et al., 2002)
or retinotopy in vision, where neighboring retinal areas project to
adjacent cortical areas in the occipital cortex (Grill-Spector and
Malach, 2004).

Analogies between the senses may extend beyond hierarchi-
cal and topographical organization with dual processing streams
being a possible candidate. Two separate processing streams, the
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dorsal and ventral stream, were first described within the visual
system of the monkey (Mishkin et al., 1983). The dorsal stream,
extending from visual cortex to posterior parietal cortex, has a
role in spatial perception (i.e., localization of an object in space,
“where is the object?”), whereas the ventral stream to the tem-
poral cortex processes object perception (i.e., identification of an
object, “what is the object?”). This model of separation of process-
ing according to stimulus characteristics has subsequently been
confirmed also within the human visual (Haxby et al., 1991),
auditory (Rauschecker and Tian, 2000), and somatosensory sys-
tems (Reed et al., 2005), as well as in multisensory integration
(Renier et al., 2009).

Whether a dual processing stream also exists within the
chemical senses is not known. Several lines of evidence do,
however, indicate that a separation according to stimulus char-
acteristics exists. The intranasal chemical systems are able to
extract information related to both object localization, a ventral
stream associated process, as well as object identification, a dor-
sal stream associated process. The main noticeable difference to
our visual and auditory senses is that these abilities—especially
object localization—are dependent on associative processing in
two separate senses, the olfactory and trigeminal sense. While
object identification is evident for olfaction (Doty et al., 1984),
localization of odorous objects seems to be more difficult, if
not impossible, for humans based on the sense of smell solely.
When directional smelling, i.e., the ability to localize odors in
space, is assessed in humans, researchers achieve a maximal con-
centration gradient between both nostrils by stimulating only
one nostril with an odor; the other nostril receives only air.
Even in this extreme case, subjects were not able to correctly
localize the stimulated nostril unless the odor additionally stim-
ulates the intranasal trigeminal system (von Skramlik, 1924;
Schneider and Schmidt, 1967; Wysocki et al., 2003; Frasnelli
et al., 2009, 2010; Kleemann et al., 2009; Wise et al., 2012);
these odors are called mixed olfactory trigeminal stimuli as
opposed to pure odors, which stimulate the sense of smell exclu-
sively (Kobal et al., 1989). Nonetheless, studies have claimed
that localization of pure odors is possible for humans (von
Békésy, 1964; Porter et al., 2005), however, they used odors
which under certain circumstances are known to stimulate the
trigeminal nerve (Frasnelli et al., 2011). In fact, the vast major-
ity, if not all, odors stimulate the trigeminal nerve, at least in
higher concentrations (Doty et al., 1978; Frasnelli et al., 2011)
rendering a pure odor sensation a very rare event (Wise et al.,
2012).

Nasal stimulation with a pure odorant (phenyl ethanol), a
pure trigeminal stimulus (carbon dioxide), and a mixture thereof
were recently studied in more detail (Boyle et al., 2007). The
pure odor activated brain areas classically considered to be olfac-
tory (piriform cortex—PIR, and orbitofrontal cortex—OFC).
The pure trigeminal stimulus, in turn, activated the somatosen-
sory brain areas (thalamus, postcentral gyrus) as well as those
aforementioned olfactory related areas. The mixture of both stim-
uli, however, activated additional brain areas than the sum of the
activations to the individual components. Specifically, the mix-
ture activated chemosensory processing areas (PIR, OFC) and
multisensory integration areas located in the parietal lobe (such

as the intraparietal sulcus—IPS) and the temporal lobe (such
as the superior temporal sulcus—STS) more than the individual
components (Boyle et al., 2007).

Mixed olfactory-trigeminal stimuli which are both identifiable
(Doty et al., 1984; Laska et al., 1997) and localizable (Kobal et al.,
1989; Frasnelli et al., 2009, 2011) are therefore good stimulus can-
didates if one aims to investigate whether a dual processing stream
using a ventral and a dorsal pathway exists in the chemical senses,
akin our other senses.

The literature provides us with several brain regions in which
multisensory integration takes place on a cortical level. Some
studies compared superadditive effects of multimodal compared
to unimodal stimulation, e.g., for auditory and visual stimuli
(Calvert et al., 2001) or for olfactory and trigeminal stimuli
(Boyle et al., 2007). The resulting activation maps of both stud-
ies overlapped partially, and exhibited superadditive effects for
the insula, IPS, STS, as well as frontal regions (middle and supe-
rior frontal gyrus). Some of these multisensory integration areas
were activated in a task specific manner in another study which
used auditory and vibrotactile multimodal stimuli. Here, the task
of localizing the stimuli activated parietal cortex (left and right
inferior parietal lobule—IPL, right precuneus, superior parietal
lobule—SPL), whereas identifying the stimuli activated bilat-
eral insula, and right inferior frontal gyrus (Renier et al., 2009).
These multisensory integration areas are prime candidates to
serve as nodes also within a chemosensory ventral and a dorsal
stream.

The aim of this study was to determine the existence of
a separation into a ventral and dorsal stream for chemosen-
sory processing. In contrast to earlier studies, which showed
dual streams for monomodal processing, we aimed to investi-
gate this question by using stimuli which stimulated separate
sensory systems, i.e., the olfactory system and the trigeminal sys-
tem. Despite the fact that both sensory systems exhibit distinct
peripheral pathways—the olfactory nerve and bulb as well as pir-
iform cortex for the olfactory system, the trigeminal nerve and
ganglion, thalamic rely for the trigeminal system—they share
important central processing areas such as the orbitofrontal cor-
tex and the insula (Boyle et al., 2007; Albrecht et al., 2010).
These brain areas can therefore be considered chemosensory pro-
cessing areas (Albrecht et al., 2010), in line with the notion
of a unique flavor sense (Auvray and Spence, 2008) inte-
grating inputs from different sensory channels to one single
percept.

In this study we used both exploratory and model driven fMRI
analyses. To this extent, we performed a standard regression based
fMRI analysis based on the general linear model (GLM) and
compared the results to the fully exploratory method based on
independent component analysis (ICA). Chemosensory experi-
ments are susceptible to factors such as movement due to the
very nature of the stimulus. Although motion parameters of
the subject can be included as nuisance regressors in the GLM
analysis, this reduces motion effects particularly in event-related
designs (Birn et al., 1999), but BOLD sensitivity is substantially
reduced even if a moderate correlation between motion and task
is present (Johnstone et al., 2006). These time-locked effects can
lead to false positive results in a GLM (Hajnal et al., 1994). We
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therefore additionally performed an analysis based on spatial
ICA, which is able to isolate activation in data based on spatial
independence rather than temporal similarity between stimu-
lus and response adding a beneficial factor to the analysis in
this study.

MATERIALS AND METHODS
SUBJECTS
We included 16 healthy, young participants (12 women, mean
age: 24; 20–29 years) in this study. The study was conducted
at the University of Dresden Medical School, according to the
Declaration of Helsinki and all subjects gave written informed
consent prior to the study. It was approved by the local Ethics
Committee (EK number 185062009).

BEHAVIORAL TESTING
Before the fMRI session, we assessed subjects’ olfactory abilities
and trigeminal chemoreception. Subjects’ ability to identify odors
was determined by means of the Sniffin’ Sticks identification test
kit (Kobal et al., 2000). In this test, subjects are presented with
12 pen-like odor dispensing devices. Their task was to choose the
right descriptor from a list of four for each odor. We counted the
number of correct responses. Further, we assessed subjects’ abil-
ity to localize odors by means of the odor lateralization test for
eucalyptol (Hummel et al., 2003). We stimulated subjects with a
device which allows the delivery of predefined volumes of air to
both nostrils simultaneously. In this test, subjects were stimulated
with odorized air to one nostril and odorless air to the other; their
task was to detect the side of odor stimulation. We used neat euca-
lyptol as the odor stimulus. The task was repeated 40 times with
each trial separated by 40 s. We counted the number of correct
localizations. We only included participants with a normal abil-
ity to identify odors [i.e., who were able to identify more than 10
out of 12 sticks (Hummel et al., 2001)] and the ability to local-
ize odors above chance [more than 25 out of 40 (Frasnelli et al.,
2008)].

CHEMOSENSORY STIMULI
We used 20% of eucalyptol saturated air (eucalyptus odor) and
a mix of 20% of phenyl ethyl alcohol saturated air (rose odor)
with 60% carbon dioxide (CO2) (Boyle et al., 2007) as bimodal
odors; both are known to activate the olfactory and the intranasal
trigeminal system (Hummel et al., 2003; Boyle et al., 2007). The
reasons why we decided to use a mixture of phenyl ethanol and
carbon dioxide instead of a monomolecular substance are two-
fold. First, phenyl ethanol is a pure odorant and therefore very
difficult to be localized by humans (Frasnelli et al., 2009); car-
bon dioxide is virtually odorless and therefore very difficult to
identify; the mixture of both, however, is both localizable and
identifyable (Boyle et al., 2007). Second, it is difficult to match a
monomolecular substance with regards to olfactory and trigemi-
nal intensity. By using a mixture, we could adjust both trigeminal
and olfactory intensity (by changing the concentrations of phenyl
ethanol and CO2 separately) to match eucalyptol’s in pilote exper-
iments. Stimuli were therefore isointense on both, the olfactory
and the trigeminal dimensions. Subjects were familiarized with
both odors and could easily distinguish them.

ODOR PRESENTATION
Odor stimuli were applied by means of a computer-controlled
air-dilution olfactometer (OM6b; Burghart, Wedel, Germany).
This stimulator allows application of rectangular-shaped chem-
ical stimuli with controlled stimulus onset. Mechanical stimu-
lation is avoided by embedding stimuli into a constant flow of
odorless, humidified air of controlled temperature (80% rela-
tive humidity, total flow 8 L/min, 36◦C) (Kobal, 1981). Thus,
throughout the experiment, the subjects received humidified,
warm air to their nostril. During stimulation an odor was
embedded into this constant airflow. The olfactometer allows for
stimulation of each nostril separately. Subjects were instructed
to breathe through their mouth to avoid potential sniff-related
activity.

TESTING PARADIGM
We used a block design for stimulation. During the entire fMRI
session, subjects focussed on a black cross on a screen. Nine sec-
onds before the “on-period”, the cross switched to one of two
questions [task; either “where?” (German: “wo?”) or “what?”
(“was?”)]. The order of the questions was pseudo-randomized
and counterbalanced. The text stayed on the screen for 5 s after
which it switched back to the black cross. Four seconds later, the
“on”-period begun during which odor stimuli were delivered five
times, each 400 ms long, every 4 s. The chemosensory stimuli were
either eucalyptol or the PEA/CO2 mixture and delivered either
to the left or the right nostril (all stimuli pseudorandomized and
counterbalanced). After each stimulus, subjects responded to the
task by pressing one of two buttons with the index of their right
hand. Specifically, during the localization task they had to indi-
cate whether their left or their right nostril was stimulated and
during the identification task, they had to indicate whether they
received eucalyptol or the PEA/CO2 mix. The “on”-period was
followed by a 30 s “off”-period, during which subjects received
odorless air (AIR). During one run, we delivered 10 “on”- and 10
“off”-periods; subjects were tested in two runs. For data analy-
sis we classified volumes during the “on”-periods as “where” or
“what” conditions, whereas the “off”-periods were classified as
“baseline” condition.

IMAGE ACQUISITION
The study was performed using a 1.5 MRI scanner (Sonata;
Siemens, Erlangen, Germany). For anatomical overlays, a T1-
weighted (turboflash sequence) axial scan with 224 slices, voxel
size of 1.6 × 1.1 × 1.5 mm, a repetition time (TR) of 3000 ms,
echo time (TE) of 3.93 ms, and 2 averages (2130/3.93/2) was
acquired. Functional data acquisition was performed in the axial
plane (oriented parallel to the planum sphenoidale to mini-
mize artifacts) using a multislice spin-echo echo-planar imaging
sequence. Scan parameters included a 64 × 64 matrix, voxel size
of 3 × 3 × 3.75 mm, TR of 3000 ms, and a TE of 35 ms. A total
of 207 images were acquired at each of 24 slice locations per run
over the course of a total functional acquisition session of approx-
imately 10 min in length. The three imaging conditions consisted
of (1) subjects identifying a chemosensory stimulus (“what”), (2)
subjects localizing a chemosensory stimulus (“where”), and (3)
chemosensory-free low-level baseline.
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DATA ANALYSIS
The functional MRI data was analyzed by means of SPM8
(Wellcome Trust, http://www.fil.ion.ucl.ac.uk/spm/software/
spm8/) implemented in Matlab (Mathworks Inc., Natick, MS).
Functional data were registered, motion-corrected, and resliced
using SPM8 preprocessing procedures. Mean functional images
were coregistered to the anatomical T1 volume. We then per-
formed the analysis on spatially normalized stereotactically
transformed into ICBM152-space and smoothed images (8 mm
full width at half maximum Gaussian kernel).

General linear model—GLM
We calculated a second level analysis contrasting images using
a paired sample t-test to highlight the difference between con-
ditions (what and where vs. baseline; what vs. where; where vs.
what). We corrected for whole brain family-wise error (FWE)
thresholding at p < 0.05 If this analysis yielded no significant
result, we lowered the criterion to p < 0.001 uncorrected (indi-
cated as “uncorrected”) and then only reported areas where we
had a strong a-priori hypothesis of result based on the existing
literature. Moreover, in order to minimize the potential for false
positive findings, indeed a worry when reporting uncorrected
results, we set the cluster criterion to 10 voxels to only detect areas
of extended neural activity, thus lowering the possibly of results
based on random fluctuations.

Independent component analysis—ICA
Functional data sets were post-processed using probabilistic inde-
pendent component analysis (P-ICA) (Beckmann and Smith,
2004) as implemented in MELODIC (Multivariate Exploratory
Linear Decomposition into Independent Components) version
3.10, a part of FSL (FMRIB’s Software Library, www.fmrib.ox.
ac.uk/fsl). The optimum number of components to be estimated
was 29, determined using the implemented criterion Minimum
Description Length (MDL) (Rissanen, 1978). Regression was used
by utilizing the first two stages of the dual regression approach
version v0.5, a part of FSL (Filippini et al., 2009) to obtain
single-subject specific component maps and time courses. For
each individual subject temporal correlations revealed the single-
subject independent component (IC) with the best fit for both
conditions (condition 1: “what,” condition 2: “where”) using
Matlab (Matlab 7.8, Release 2009a). Corresponding spatial IC
maps for every subject and both conditions were then exported
to SPM8 for statistical testing and visualization. For second-level
analysis, two separate t-tests were performed for both conditions
(p < 0.05, FWE corrected). Again, the cluster threshold was set at
10 voxels.

RESULTS
GENERAL LINEAR MODEL (GLM)
In order to first verify that our imaging paradigm reliably acti-
vated chemosensory processing areas, we initially assessed the
main effect of odor stimulation by comparing both odor con-
ditions against no odor condition (where + what vs. no-odor
baseline). We observed activations areas commonly associated
with chemosensory processing, such as left and right insula, the
right OFC, as well as multisensory integration centers such as the

right inferior parietal lobule and the left supramarginal gyrus (see
Table 1).

To verify task specific brain activations, we compared the two
stimulation conditions to each other. When contrasting odor
localization against odor identification (where vs. what), we
observed activations of a cluster in the left intraparietal sulcus,
and one in the right superior frontal sulcus (Table 2).

The opposite contrast (what vs. where) did not reveal any
significant activation above threshold criteria.

INDEPENDENT COMPONENT ANALYSIS (ICA)
We used ICA to obtain specific component maps for individual
subjects. We then extracted, for each subject, the component with
the best fit to the time course of each condition. Information on
correlation coefficients for individual components in both tasks is
outlined in Table 3.

The resulting statistical maps were submitted to a subsequent
second level analysis where the component for odor identification
(“what”) revealed two significant clusters within an area of the left
central fissure and the left superior frontal gyrus (Table 4).

For odor localization (“where”), we detected two clusters
above set criterion, one located in the right hippocampal region
and another in left paracentral lobule (Table 5).

In Figure 1 we provide an overview of activations in the
parietal cortex obtained in different conditions (Figure 1).

DISCUSSION
In this study we examined whether processing of chemosensory
information displays a subdivision into localization and iden-
tification following the notion of a dual stream demonstrated
for other senses (Mishkin et al., 1983). We investigated local-
ization and identification of mixed trigeminal-olfactory objects
and observed that subjects activated distinct brain regions.

Table 1 | Brain activation due to stimulation with eucalyptus and a

phenyl ethanol/ CO2 mixture: comparison of both tasks vs. baseline

[contrast (where & what) vs. baseline].

Area x y z T Voxels

Right insula 54 14 4 10.1 260

Left insula −42 14 1 6.8 42

Right lateral OFC 45 44 −5 8.5 38

Right inferior parietal lobule 51 −37 49 6.9 20

Right middle frontal G 42 41 19 7.1 23

p < 0.05, corrected, extent threshold 10 voxels.

Table 2 | Brain activation due to stimulation with eucalyptus and a

phenyl ethanol/CO2 mixture: comparison of between odor

localization vs. odor identification (contrast where—what).

Area x y z T Voxels

Left intraparietal sulcus −36 −43 31 4.7 10

Right superior frontal sulcus 21 20 34 4.3 10

p < 0.001, uncorrected, extent threshold 10 voxels.
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Table 3 | Correlation between independent component and task (left: “where“; right: “what”) per subject.

Subject “where” “what”

max cc IC# mean abs cc SD abs cc max cc IC# mean abs cc SD abs cc

1 0.03 4 0.06 0.04 0.02 4 0.06 0.06

2 0.21 14 0.07 0.06 0.21 16 0.09 0.05

3 0.09 5 0.09 0.05 0.13 2 0.07 0.05

4 0.07 11 0.05 0.03 0.13 10 0.08 0.07

5 0.05 16 0.03 0.02 0.16 16 0.04 0.04

6 0.05 7 0.04 0.03 0.11 2 0.06 0.03

7 0.13 2 0.11 0.08 0.10 13 0.08 0.06

8 0.06 4 0.05 0.03 0.09 4 0.05 0.03

9 0.20 1 0.10 0.07 0.31 9 0.14 0.08

10 0.10 14 0.07 0.04 0.23 14 0.09 0.06

11 0.11 14 0.04 0.04 0.12 16 0.05 0.04

12 0.08 7 0.05 0.03 0.16 6 0.05 0.04

13 0.08 7 0.07 0.05 0.16 16 0.06 0.05

14 0.21 4 0.10 0.08 0.13 13 0.07 0.06

15 0.09 7 0.05 0.05 0.17 16 0.07 0.05

16 0.03 16 0.10 0.08 0.08 14 0.11 0.08

Subject, consecutive subject ID; max cc, maximal correlation coefficients; IC#, number independent component corresponding to max cc; mean abs cc, mean of

absolute values of correlation coefficients; SD abs cc, standard deviation of absolute values of correlation coefficients.

Table 4 | Brain activation due to stimulation with eucalyptus and a

phenyl ethanol/CO2 mixture: independent component analysis:

component fitting best for odor identification [ICA (what)].

Area x y z T Voxels

Left central fissure −24 −31 52 15.9 19

Left superior frontal gyrus −24 −16 40 5.92 20

p < 0.05, corrected, extent threshold 10 voxels.

Table 5 | Brain activation due to stimulation with eucalyptus and a

phenyl ethanol/CO2 mixture: independent component analysis:

component fitting best for odor localization [ICA (where)].

Area x y z T Voxels

Right hippocampus 30 −46 4 6.73 19

Left paracentral lobule −3 −31 55 5.21 11

p < 0.05, corrected, extent threshold 10 voxels.

Specifically, when subjects localized unilaterally presented mixed
olfactory-trigeminal stimuli, regions in the left intraparietal sul-
cus and the right superior frontal sulcus were activated to a higher
degree than if they were identifiying the same stimuli. Further, an
ICA allowed us to extract task specific networks for each odor
localization and odor identification. For odor localization, the
network revealed two clusters, one in the right hippocampus,
and one in the left paracentral lobule. For odor identification,
also two clusters could be observed, one located around the
left central fissure, the other one in the left superior frontal
gyrus.

DUAL CHEMOSENSORY PROCESSING STREAMS
When subjects were localizing the odorous objects, both means of
analysing the neuroimaging data identified significant activation
of the left posterior parietal lobe, in addition to its general activa-
tion independent of the task. These observations fit well with the
literature where object localization consistently activates posterior
parietal regions. For instance, in analogy to the findings in non-
human primates (Mishkin et al., 1983) a visual spatial localization
task led to activation in the lateral superior parietal cortex (Haxby
et al., 1991). In the auditory system, object localization activated
a dorsal stream from the caudal primary auditory cortex to the
inferior parietal cortex (somewhat lower than for visual stim-
uli) to middle and inferior frontal gyri, whereas anterior primary
auditory cortex to posterior frontal and orbitofrontal regions
formed the ventral stream for object identification (Rauschecker
and Tian, 2000; Maeder et al., 2001).

Different subregions of the parietal lobe play particular roles
in the dual stream dichotomy. SPL and IPS, whose activation
is often associated with activation of the dorsoloateral frontal
lobe, are part of the dorsal frontoparietal system for directing
spatial attention. IPL on the other hand, is activated, together
with more ventral frontal regions when individuals perform non-
spatial tasks. Thus, there is a gradient from more spatial tasks
in SPL to less spatial tasks in IPL, with the IPL’s suggested role
to sustain attention over time (Husain and Nachev, 2007). The
data obtained within the present study corresponds closely with
these earlier reports, especially with regards the parietal lobe:
unilateral chemosensory stimuli triggered activation of right IPL
independent of the task subjects performed, indicating multisen-
sory integration. Localization of these stimuli, however, led to
a significantly stronger activation of the left IPS than what we
observed for stimulus identification. Therefore, the cortex in and
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FIGURE 1 | Activations in the parietal lobe. (A) Activation in the right
inferior parietal lobule due to odorant perception [GLM—contrast: (odor
identification and odor localization) vs. baseline; p < 0.05 (corrected)];
(B) activation in the left intraparietal sulcus due to odor localization
[GLM—contrast: odor localization vs. odor identification; p < 0.001
(uncorrected)]; (C) activation in the left paracentral lobule due to odor
localization [ICA—component fitting best for odor localization; p < 0.05
(corrected)].

around the IPS is part of a dorsal stream responsible for object
localization in different sensory systems, including the chemical
senses. Activation of this particular brain region was observed
when subject localized monomodal stimuli, such as visual (Haxby
et al., 1991), auditory (Rauschecker and Tian, 2000; Maeder et al.,
2001), and somatosensory (Reed et al., 2005) ones as well as mul-
timodal stimuli such as audio-somatosensory (Renier et al., 2009)
and olfactory-trigeminal ones (present study). It is commonly
activated with mixed olfactory trigeminal stimuli (Boyle et al.,
2007; Lombion et al., 2009).

Next to the parietal activations, we also observed activa-
tions in the frontal lobe. First, object localization led to a
significant activation of the right superior frontal sulcus, as
shown by the GLM contrast “where” vs. “what.” Second, the
ICA demonstrated odor object identification to be associated
with the left superior frontal gyrus. In addition to these hemi-
spheric differences, the latter activation was located more pos-
teriorily than the former. It has been demonstrated that there
are distinct working memory systems for spatial and verbal

FIGURE 2 | Suggested pathways: (A) task-independent pathway

(regions in red; orange arrow) from piriform cortex (PIR) via

orbitofrontal cortex (OFC) and insula (INS) to right inferior parietal

lobule (IPL). (B) Task-dependent pathway (regions in green): localization
pathway (blue arrow) from right inferior parietal lobule (IPL) via left
intraparietal sulcus (IPS) and left paracentral lobule (PCL) to right superior
frontal gyrus (rSFG); odorant identification pathway (pink arrow) from IPL to
left superior frontal gyrus (lSFG).

information predominantly located in the (dorsolateral) pre-
frontal cortex of both hemispheres. The right hemisphere stores
and maintains information on spatial features, whereas the left
hemispheres does the same for verbal and object identity infor-
mation (Smith and Jonides, 1997; Belger et al., 1998). This
appears to be modality independent, as both visual and tac-
tile working memory evoked similar frontoparietal networks
including the posterior parietal cortex and the dorsolateral pre-
frontal cortex, with a leftwards tendency for object discrimi-
nation (Ricciardi et al., 2006). In Figure 2 we highlight how
our results fit into the same framework. After activation of
chemosensory regions common to both tasks, both tasks activated
a parieto-frontal network, from the posterior parietal cortex to
prefrontal areas, with activation of a left sided and a right sided
frontal area for object identification and localization, respectively
(Figure 2).

ICA revealed a puzzling finding in the activation of the
right posterior hippocampus when subjects were localizing
odors. Hippocampal activation is usually linked to spatial nav-
igation and episodic memory (Igloi et al., 2010). Localizing
odorants to the left or right nostril is clearly a spatial task;
however, our paradigm did not explicitly involve a mnesic
component. We know that hippocampus also stores serial
working memory of spatial locations even in the encoding
phase (Toepper et al., 2010). Importantly, this is true even in
implicit conditions: hippocampal activation can be observed
when subjects learn the temporal structure of sequences even
without any conscious sequence knowledge (Schendan et al.,
2003). In our paradigm, we presented our subjects with a
series of spatial locations. Therefore, implicit spatial sequence
learning may therefore explain the hippocampal activity we
observed.
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There has been a prior attempt to investigate the dissocia-
tion between object localization and identification in the chemical
senses (Porter et al., 2005). Here, subjects smelled four odor-
ants. Similarly to our study, odors were delivered monorhinally,
and subjects were asked to either identify or localize the odors.
Although the main focus of the study was to investigate nostril
specific receptive fields within the piriform cortex, the authors
also compared brain activations between both tasks. They did
indeed observe dissociations between tasks which differentially
activated three specific brain areas: odor identification activated
the occipital gyrus and the paracentral lobule to a larger extent
than odor localization; odor localization, in turn, activated the
superior temporal gyrus more than odor identification. These
findings contradict the existing literature where activation of dif-
ferent regions of the occipital cortex has been reported mainly
for visual stimuli, during object identification [e.g., the occip-
itotemporal junction for face recognition (Haxby et al., 1991)]
rather than for object localization. On the other hand, tempo-
ral areas have been associated with object identification rather
than object localization (Mishkin et al., 1983), with the excep-
tion of sound localization (Maeder et al., 2001). Further, the
existing literature, paired with the present results, suggest that
activation of superior parietal areas, such as the paracentral lob-
ule, appears to be more commonly linked to object localization
(Haxby et al., 1991; Rauschecker and Tian, 2000; Maeder et al.,
2001; Reed et al., 2005; Renier et al., 2009). The exact implications
of Porter and colleagues (Porter et al., 2005) findings therefore
remain unclear.

COMPARISON BETWEEN ICA AND GLM
An earlier study on chemosensory stimulation with CO2 has
compared regression-based analysis of fMRI based data using
the GLM with that of group analysis using the ICA methods.
Some activations were only detected by group ICA, but not by
GLM; this could be explained by the fact that activity in these
regions was shifted temporally and therefore delayed with respect
to the expected response. Furthermore, it showed a variation
of CO2-stimulus-evoked responses which was different for the
selected ROIs within one subject (Schopf et al., 2011). This find-
ing of differing hemodynamic responses across subjects, brain
regions and sessions is a known constraint of regression-based
methods such as GLM (Aguirre et al., 1998; Cunnington et al.,
2003; Neumann et al., 2003; Handwerker et al., 2004; Menz

et al., 2006). Fully exploratory analysis methods such as ICA
[introduced by (McKeown et al., 1998)] do not require the spec-
ification of a model or a hemodynamic response function. A
number of approaches have been developed to extend ICA from
the analysis of a single data set to the group level (Calhoun
et al., 2009); the most widely adopted method is to concatenate
single-subject data in time prior to performing ICA (Calhoun
et al., 2001; Beckmann and Smith, 2005) [for a comparison of
toolboxes using temporal concatenation ICA see (Schopf et al.,
2010)].

A challenge in group ICA is the need to identify and evalu-
ate group components. This can either be done by temporally
correlating the model time course with the corresponding time
courses of the group components or by template matching, which
includes the spatial correlation of a predefined template with the
group component maps. For the present data, we used tempo-
ral correlation to find spatial activity patterns across subjects.
As hypothesized earlier (Schopf et al., 2011) our study showed
that group ICA provides supplemental information—in our case
regarding parallel pathways processing—in addition to a priori
defined model-dependent regression-based analysis.

CONCLUSION
Earlier studies have demonstrated that cerebral architecture fol-
lows a subdivision into two parallel sensory processing pathways
linking modality specific primary regions with amodal processing
regions (posterior parietal cortex for the dorsal pathway, tem-
poral, and inferior parietal regions for the ventral pathway) to
frontal regions where both pathways terminate (Reed et al., 2005).
Our study using both exploratory and model-driven methods of
fMRI analysis revealed results which fit into this framework and
extends it to the chemical senses. Taken together, these data sug-
gests that, as for our sensory modalities, the neural processing of
intranasal chemosensory stimuli appears to follow a dual pathway
model.

ACKNOWLEDGMENTS
This work was supported by a pilote grant of the Bioimaging
Network Québec (RBIQ-QBIN 8436) to Johannes Frasnelli
and Franco Lepore, and by a grant from the Deutsche
Forschungsgemeinschaft to Thomas Hummel (DFG HU 441/10-
1). Johannes Frasnelli holds a postdoctoral fellowship by the
Canadian Institutes of Health Research.

REFERENCES
Aguirre, G. K., Zarahn, E., and

D’esposito, M. (1998). The variabil-
ity of human, BOLD hemodynamic
responses. Neuroimage 8, 360–369.

Albrecht, J., Kopietz, R., Frasnelli,
J., Wiesmann, M., Hummel, T.,
and Lundstrom, J. N. (2010). The
neuronal correlates of intranasal
trigeminal function – an ALE meta-
analysis of human functional brain
imaging data. Brain Res. Rev. 62,
183–196.

Anderson, A. K., Christoff, K., Stappen,
I., Panitz, D., Ghahremani, D. G.,

Glover, G., et al. (2003). Dissociated
neural representations of intensity
and valence in human olfaction.
Nat. Neurosci. 6, 196–202.

Auvray, M., and Spence, C. (2008). The
multisensory perception of flavor.
Conscious. Cogn. 17, 1016–1031.

Beckmann, C. F., and Smith, S. M.
(2004). Probabilistic independent
component analysis for functional
magnetic resonance imaging. IEEE
Trans. Med. Imaging 23, 137–152.

Beckmann, C. F., and Smith, S. M.
(2005). Tensorial extensions of
independent component analysis

for multisubject FMRI analysis.
Neuroimage 25, 294–311.

Belger, A., Puce, A., Krystal, J. H.,
Gore, J. C., Goldman-Rakic,
P., and McCarthy, G. (1998).
Dissociation of mnemonic and
perceptual processes during spatial
and nonspatial working memory
using fMRI. Hum. Brain Mapp. 6,
14–32.

Birn, R. M., Bandettini, P. A., Cox, R.
W., and Shaker, R. (1999). Event-
related fMRI of tasks involving
brief motion. Hum. Brain Mapp. 7,
106–114.

Boyle, J. A., Frasnelli, J., Gerber, J.,
Heinke, M., and Hummel, T.
(2007). Cross-modal integration
of intranasal stimuli: a functional
magnetic resonance imaging study.
Neuroscience 149, 223–231.

Calhoun, V. D., Adali, T., Pearlson,
G. D., and Pekar, J. J. (2001). A
method for making group infer-
ences from functional MRI data
using independent component
analysis. Hum. Brain Mapp. 14,
140–151.

Calhoun, V. D., Liu, J., and Adali, T.
(2009). A review of group ICA

Frontiers in Human Neuroscience www.frontiersin.org October 2012 | Volume 6 | Article 288 |150

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Frasnelli et al. Dual processing in chemosensory perception

for fMRI data and ICA for joint
inference of imaging, genetic,
and ERP data. Neuroimage 45,
S163–S172.

Calvert, G. A., Hansen, P. C., Iversen,
S. D., and Brammer, M. J. (2001).
Detection of audio-visual integra-
tion sites in humans by applica-
tion of electrophysiological criteria
to the BOLD effect. Neuroimage 14,
427–438.

Cunnington, R., Windischberger, C.,
Deecke, L., and Moser, E. (2003).
The preparation and readiness for
voluntary movement: a high-field
event-related fMRI study of the
Bereitschafts-BOLD response.
Neuroimage 20, 404–412.

Doty, R. L., Brugger, W. P. E., Jurs,
P. C., Orndorff, M. A., Snyder,
P. J., and Lowry, L. D. (1978).
Intranasal trigeminal stimulation
from odorous volatiles: psychome-
tric responses from anosmic and
normal humans. Physiol. Behav. 20,
175–185.

Doty, R. L., Shaman, P., and Dann,
M. (1984). Development of the
University of Pennsylvania Smell
Identification Test: a standardized
microencapsulated test of olfac-
tory function. Physiol. Behav. 32,
489–502.

Filippini, N., Macintosh, B. J.,
Hough, M. G., Goodwin, G.
M., Frisoni, G. B., Smith, S. M.,
et al. (2009). Distinct patterns
of brain activity in young carri-
ers of the APOE-epsilon4 allele.
Proc. Natl. Acad. Sci. U.S.A. 106,
7209–7214.

Frasnelli, J., Charbonneau, G.,
Collignon, O., and Lepore,
F. (2009). Odor localization
and sniffing. Chem. Senses 34,
139–144.

Frasnelli, J., Hummel, T., Berg,
J., Huang, G., and Doty, R. L.
(2011). Intranasal localizability
of odorants: influence of stim-
ulus volume. Chem. Senses 36,
405–410.

Frasnelli, J., La Buissonnière Ariza,
V., Collignon, O., and Lepore, F.
(2010). Localisation of unilateral
nasal stimuli across sensory systems.
Neurosci. Lett. 478, 102–106.

Frasnelli, J., Ungermann, M., and
Hummel, T. (2008). Ortho- and
retronasal presentation of olfactory
stimuli modulates odor percepts.
Chemosens. Percept. 1, 9–15.

Gottfried, J. A., Winston, J. S., and
Dolan, R. J. (2006). Dissociable
codes of odor quality and odorant
structure in human piriform cortex.
Neuron 49, 467–479.

Grill-Spector, K., and Malach, R.
(2004). The human visual

cortex. Annu. Rev. Neurosci. 27,
649–677.

Hajnal, J. V., Myers, R., Oatridge,
A., Schwieso, J. E., Young, I.
R., and Bydder, G. M. (1994).
Artifacts due to stimulus correlated
motion in functional imaging of
the brain. Magn. Reson. Med. 31,
283–291.

Handwerker, D. A., Ollinger, J.
M., and D’esposito, M. (2004).
Variation of BOLD hemodynamic
responses across subjects and brain
regions and their effects on sta-
tistical analyses. Neuroimage 21,
1639–1651.

Haxby, J. V., Grady, C. L., Horwitz,
B., Ungerleider, L. G., Mishkin,
M., Carson, R. E., et al. (1991).
Dissociation of object and spa-
tial visual processing pathways
in human extrastriate cortex.
Proc. Natl. Acad. Sci. U.S.A. 88,
1621–1625.

Hummel, T., Futschik, T., Frasnelli,
J., and Huttenbrink, K. B. (2003).
Effects of olfactory function, age,
and gender on trigeminally medi-
ated sensations: a study based on
the lateralization of chemosensory
stimuli. Toxicol. Lett. 140–141,
273–280.

Hummel, T., Konnerth, C. G.,
Rosenheim, K., and Kobal, G.
(2001). Screening of olfactory
function with a four-minute odor
identification test: reliability, nor-
mative data, and investigations
in patients with olfactory loss.
Ann. Otol. Rhinol. Laryngol. 110,
976–981.

Husain, M., and Nachev, P. (2007).
Space and the parietal cortex. Trends
Cogn. Sci. 11, 30–36.

Igloi, K., Doeller, C. F., Berthoz,
A., Rondi-Reig, L., and Burgess,
N. (2010). Lateralized human
hippocampal activity predicts
navigation based on sequence or
place memory. Proc. Natl. Acad. Sci.
U.S.A. 107, 14466–14471.

Johnstone, T., Walsh, K. S. O.,
Greischar, L. L., Alexander, A.
L., Fox, A. S., Davidson, R. J.,
et al. (2006). Motion correction
and the use of motion covari-
ates in multiple-subject fMRI
analysis. Hum. Brain Mapp. 27,
779–788.

Kleemann, A. M., Albrecht, J., Schopf,
V., Haegler, K., Kopietz, R., Hempel,
J. M., et al. (2009). Trigeminal
perception is necessary to local-
ize odors. Physiol. Behav. 97,
401–405.

Kobal, G. (1981). Elektrophysiologische
Untersuchungen des menschlichen
Geruchssinns. Stuttgart: Thieme
Verlag.

Kobal, G., Klimek, L., Wolfensberger,
M., Gudziol, H., Temmel, A., Owen,
C. M., et al. (2000). Multicenter
investigation of 1, 036 subjects
using a standardized method for
the assessment of olfactory function
combining tests of odor identifi-
cation, odor discrimination, and
olfactory thresholds. Eur. Arch.
Otorhinolaryngol. 257, 205–211.

Kobal, G., Van Toller, S., and Hummel,
T. (1989). Is there directional
smelling? Experientia 45, 130–132.

Laska, M., Distel, H., and Hudson,
R. (1997). Trigeminal perception
of odorant quality in congenitally
anosmic subjects. Chem. Senses 22,
447–456.

Lombion, S., Comte, A., Tatu, L.,
Brand, G., Moulin, T., and Millot, J.
L. (2009). Patterns of Cerebral acti-
vation during olfactory and trigemi-
nal stimulations. Hum. Brain Mapp.
30, 821–828.

Maeder, P. P., Meuli, R. A., Adriani, M.,
Bellmann, A., Fornari, E., Thiran, J.
P., et al. (2001). Distinct pathways
involved in sound recognition and
localization: a human fMRI study.
Neuroimage 14, 802–816.

McKeown, M. J., Makeig, S., Brown,
G. G., Jung, T. P., Kindermann,
S. S., Bell, A. J., et al. (1998).
Analysis of fMRI data by blind
separation into independent spatial
components. Hum. Brain Mapp. 6,
160–188.

Menz, M. M., Neumann, J., Muller, K.,
and Zysset, S. (2006). Variability
of the BOLD response over
time: an examination of within-
session differences. Neuroimage 32,
1185–1194.

Mishkin, M., Ungerleider, L. G., and
Macko, K. A. (1983). Object vision
and spatial vision – 2 cortical path-
ways. Trends Neurosci. 6, 414–417.

Neumann, J., Lohmann, G., Zysset, S.,
and Von Cramon, D. Y. (2003).
Within-subject variability of BOLD
response dynamics. Neuroimage 19,
784–796.

Porter, J., Anand, T., Johnson, B., Khan,
R. M., and Sobel, N. (2005). Brain
mechanisms for extracting spatial
information from smell. Neuron 47,
581–592.

Rauschecker, J. P., and Tian, B. (2000).
Mechanisms and streams for pro-
cessing of “what” and “where” in
auditory cortex. Proc. Natl. Acad.
Sci. U.S.A. 97, 11800–11806.

Reed, C. L., Klatzky, R. L., and Halgren,
E. (2005). What vs. where in touch:
an fMRI study. Neuroimage 25,
718–726.

Renier, L. A., Anurova, I., De Volder,
A. G., Carlson, S., Vanmeter, J.,
and Rauschecker, J. P. (2009).

Multisensory integration of
sounds and vibrotactile stimuli
in processing streams for “what”
and “where”. J. Neurosci. 29,
10950–10960.

Ricciardi, E., Bonino, D., Gentili, C.,
Sani, L., Pietrini, P., and Vecchi,
T. (2006). Neural correlates of spa-
tial working memory in humans:
a functional magnetic resonance
imaging study comparing visual and
tactile processes. Neuroscience 139,
339–349.

Rissanen, J. (1978). Modelling by short-
est data description. Automatica 14,
465–471.

Savic, I., Gulyas, B., Larsson, M., and
Roland, P. (2000). Olfactory func-
tions are mediated by parallel and
hierarchical processing. Neuron 26,
735–745.

Schendan, H. E., Searl, M. M.,
Melrose, R. J., and Stern, C.
E. (2003). An fMRI study of
the role of the medial tempo-
ral lobe in implicit and explicit
sequence learning. Neuron 37,
1013–1025.

Schneider, R. A., and Schmidt,
C. E. (1967). Dependency of
olfactory localization on non-
olfactory cues. Physiol. Behav. 2,
305–309.

Schonwiesner, M., Von Cramon, D.
Y., and Rubsamen, R. (2002). Is it
tonotopy after all? Neuroimage 17,
1144–1161.

Schopf, V., Windischberger, C., Kasess,
C. H., Lanzenberger, R., and Moser,
E. (2010). Group ICA of resting-
state data: a comparison. MAGMA
23, 317–325.

Schopf, V., Windischberger, C.,
Robinson, S., Kasess, C. H.,
Fischmeister, F. P., Lanzenberger,
R., et al. (2011). Model-free
fMRI group analysis using
FENICA. Neuroimage 55,
185–193.

Smith, E. E., and Jonides, J. (1997).
Working memory: a view from
neuroimaging. Cognit. Psychol. 33,
5–42.

Toepper, M., Markowitsch, H. J.,
Gebhardt, H., Beblo, T., Thomas,
C., Gallhofer, B., et al. (2010).
Hippocampal involvement in work-
ing memory encoding of changing
locations: an fMRI study. Brain Res.
1354, 91–99.

von Békésy, G. (1964). Olfactory ana-
logue to directional hearing. J. Appl.
Physiol. 19, 369–373.

von Skramlik, E. (1924). Über die
Lokalisation der Empfindungen
bei den niederen Sinnen.
Z. Sinnesphysiol. 56, 69.

Winston, J. S., Gottfried, J. A., Kilner,
J. M., and Dolan, R. J. (2005).

Frontiers in Human Neuroscience www.frontiersin.org October 2012 | Volume 6 | Article 288 |151

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Frasnelli et al. Dual processing in chemosensory perception

Integrated neural representations of
odor intensity and affective valence
in human amygdala. J. Neurosci. 25,
8903–8907.

Wise, P. M., Wysocki, C. J., and
Lundstrom, J. N. (2012). Stimulus
selection for intranasal sensory iso-
lation: eugenol is an irritant. Chem.
Senses 37, 509–514.

Wysocki, C. J., Cowart, B. J., and
Radil, T. (2003). Nasal trigeminal
chemosensitivity across the adult

life span. Percept. Psychophys. 65,
115–122.

Zatorre, R. J., Jones-Gotman, M.,
Evans, A. C., and Meyer, E. (1992).
Functional localization and lateral-
ization of human olfactory cortex.
Nature 360, 339–340.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any

commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 28 August 2012; accepted:
01 October 2012; published online: 19
October 2012.
Citation: Frasnelli J, Lundström JN,
Schöpf V, Negoias S, Hummel T and
Lepore F (2012) Dual processing streams
in chemosensory perception. Front.

Hum. Neurosci. 6:288. doi: 10.3389/
fnhum.2012.00288
Copyright © 2012 Frasnelli,
Lundström, Schöpf, Negoias, Hummel
and Lepore. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are cred-
ited and subject to any copyright notices
concerning any third-party graphics etc.

Frontiers in Human Neuroscience www.frontiersin.org October 2012 | Volume 6 | Article 288 |152

http://dx.doi.org/10.3389/fnhum.2012.00288
http://dx.doi.org/10.3389/fnhum.2012.00288
http://dx.doi.org/10.3389/fnhum.2012.00288
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HUMAN NEUROSCIENCE
ORIGINAL RESEARCH ARTICLE

published: 16 May 2013
doi: 10.3389/fnhum.2013.00207

BOLD frequency power indexes working memory
performance
Joshua Henk Balsters1,2*, Ian H. Robertson1 and Vince D. Calhoun3,4

1 Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
2 Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
3 The Mind Research Network, Albuquerque, NM, USA
4 Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA

Edited by:
Veronika Schöpf, Medical University
of Vienna, Austria

Reviewed by:
Handwerker A. Daniel, National
Institutes of Health, USA
Roser Sala-Llonch, University of
Barcelona, Spain

*Correspondence:
Joshua Henk Balsters, Neural Control
of Movement Lab, Y36 M 12,
Winterthurerstrasse 190, 8057 Zürich,
Switzerland.
e-mail: joshua.balsters@hest.ethz.ch

Electrophysiology studies routinely investigate the relationship between neural oscillations
and task performance. However, the sluggish nature of the BOLD response means that
few researchers have investigated the spectral properties of the BOLD signal in a similar
manner. For the first time we have applied group ICA to fMRI data collected during a stan-
dard working memory task (delayed match-to-sample) and using a multivariate analysis, we
investigate the relationship between working memory performance (accuracy and reaction
time) and BOLD spectral power within functional networks. Our results indicate that BOLD
spectral power within specific networks (visual, temporal-parietal, posterior default-mode
network, salience network, basal ganglia) correlated with task accuracy. Multivariate analy-
ses show that the relationship between task accuracy and BOLD spectral power is stronger
than the relationship between BOLD spectral power and other variables (age, gender, head
movement, and neuropsychological measures). A traditional General Linear Model (GLM)
analysis found no significant group differences, or regions that covaried in signal intensity
with task accuracy, suggesting that BOLD spectral power holds unique information that
is lost in a standard GLM approach. We suggest that the combination of ICA and BOLD
spectral power is a useful novel index of cognitive performance that may be more sensitive
to brain-behavior relationships than traditional approaches.

Keywords: BOLD oscillations, ICA, fMRI, delayed match-to-sample, aging

INTRODUCTION
Studies of neural oscillations are pervasive in neuroscience, from
single and multi-unit recordings through to non-invasive whole
brain methods such as electroencephalography (EEG) and mag-
netoencephalography (MEG). Studies using these methods have
repeatedly demonstrated that the synchronization of neural oscil-
lations within specific frequency bands impact on cognitive and
motor processes (Klimesch, 1999; Buzsaki and Draguhn, 2004).
For example, a number of studies have highlighted the role of mid-
frontal theta in cognitive control (Cavanagh et al., 2009; Cohen and
Cavanagh, 2011), whilst posterior alpha power has been linked to
sustained and spatial attention (Thut et al., 2006; Dockree et al.,
2007; O’Connell et al., 2009). Nearly 20 years ago Jezzard et al.
(1993) and Biswal et al. (1995) demonstrated regional BOLD dif-
ferences in low frequency oscillatory fluctuations (0.01–0.1 Hz).
Since then a large number of studies have demonstrated that this
<0.1 Hz BOLD signal relates to underlying neural processes (He
et al., 2010; He, 2011; Honey et al., 2012) and can be used to detect
differences in resting connectivity between clinical populations
(Greicius et al., 2004; Jafri et al., 2008; Zhang and Raichle, 2010),
as well as task-related changes in functional networks (Grady et al.,
2010; Zhang and Li, 2012). However, these aforementioned studies
have used spectral information as a filtering tool, typically remov-
ing signal >0.1 Hz in order to remove potential artifacts, rather
than analyzing the relationship between BOLD oscillations and

task performance as one might in an EEG or MEG study. To our
knowledge no previous studies have investigated whether a direct
correlation exists between task performance (i.e., accuracy) and
BOLD spectral power at different frequencies.

To date it is mostly resting state studies that have investi-
gated BOLD oscillations. Studies investigating BOLD oscillations
at rest have demonstrated that multiple frequency bands within
the 0.004–0.15 Hz range contribute to the RSN signal (Niazy et al.,
2011). Niazy et al. (2011) also showed that phase synchrony dif-
fers within this spectral range, suggesting that RSNs likely contain
multiple oscillatory components. Studies by Baria et al. (2011)
and Zuo et al. (2010) have additionally shown that BOLD sig-
nals originating from different cytoarchitectonic and anatomical
regions resonate at distinct frequency ranges. Baria et al. (2011) is
one of the few studies to also investigate BOLD oscillations dur-
ing task performance (visual-motor task). They found a global
decrease in lower BOLD frequency oscillations (0.01–0.05 Hz)
during task compared to rest along with a global increase in higher
frequency BOLD oscillations (0.05–0.1 Hz). Compared to a stan-
dard general linear model (GLM) analysis there was less than
30% spatial overlap in regions showing task-related differences in
BOLD oscillations, suggesting that BOLD spectral changes are not
detected by standard fMRI analyses. Salvador et al. (2008) inves-
tigated connectivity within the frequency domain [differing from
Baria et al. (2011) who investigated regional changes in BOLD
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spectral power] and found increased low frequency connectivity
(<0.08 Hz) between prefrontal, parietal, and thalamic regions dur-
ing performance of an N-back task compared to rest. There was
also decreased high frequency connectivity (0.08–0.25 Hz) during
the N-back task within the anterior cingulate/paracingulate gyri
and insula. Whilst both Salvador et al. (2008) and Baria et al. (2011)
have shown that BOLD oscillations differ in task compared to rest
conditions neither of these studies investigated the extent to which
task performance was correlated with BOLD spectral activity.

Apart from Baria et al. (2011) and Salvador et al. (2008) no
other studies to date have investigated the relationship between
BOLD spectral power and task performance. However, a hand-
ful of fMRI studies have begun to investigate temporal variability
within the BOLD signal and its relationship to task performance.
In a series of studies by Garrett et al. (2010, 2011, 2013) they used
a partial least squares approach to extract functional networks and
subsequently analyzed the variability (standard deviation) within
these circuits and their relationship to age and task performance.
Garrett et al. (2010) showed that BOLD variability was a robust
marker of chronological age, explaining more age-related variance
than mean BOLD signal. BOLD variability was also an important
indicator of task performance. Garrett et al. (2011) showed that
young participants increased BOLD variability during task perfor-
mance and decreased variability during fixation. However, elderly
participants failed to modulate BOLD variability between task and
fixation conditions, showing reduced variability during task and
increased variability during fixation. Samanez-Larkin et al. (2010)
used a similar analytical approach and demonstrated increased
BOLD variability in elderly participants within the nucleus accum-
bens (NAcc), which was associated with increased financial risk
taking. As with the work of Garrett et al. (2010, 2011, 2013),
Samanez-Larkin et al. (2010) found that these results were specific
to BOLD variability measures and that the average NAcc signal
did not predict risk seeking behavior. It is clear from both of these
studies that BOLD variability might be a more sensitive measure
of functional changes with age than average BOLD signal. It is
likely that these changes in BOLD variability have an oscillatory
underpinning and could be better explained by investigating the
BOLD spectrum.

The previously mentioned studies show that spectral properties
of the BOLD signal are anatomically and functionally informative,
although this approach has typically only been applied to resting
state fMRI. Studies investigating BOLD variability during task per-
formance suggest that this measure holds unique task dependent
information that is lost in a standard GLM analysis. Using tools
available in the GIFT toolbox, we aim to bridge the gap between
studies of BOLD oscillations at rest and studies of BOLD variabil-
ity during task by investigating the relationship between BOLD
spectral power and task performance (delayed match-to-sample
task) in young and older participants.

MATERIALS AND METHODS
PARTICIPANTS
Sixteen young (22.08± 3.31) and nineteen elderly (70.2± 3.96)
neurologically normal, right-handed subjects participated in this
study. The two participant groups were matched for gender, hand-
edness, hospital anxiety and depression scale (HADS) score, and

Mini Mental State Exam (MMSE) score. Participants gave writ-
ten informed consent prior to the study that was approved by the
Trinity College Dublin School of Psychology Ethics Committee.

PROCEDURE
Trial structure
Figure 1 illustrates the trial structure. Throughout the experiment
participants were asked to fixate on a white cross hair presented
in the center of a black screen. The same basic trial structure was
applied in all conditions, with condition-specific variations (see
“Conditions” below). After a variable inter-trial interval (1782–
6881 ms) a sample cue was presented in the center of the screen
for 750 ms. This was replaced by the crosshair for a variable period
between 4299 and 9630 ms. A probe cue was then presented left
or right of the cross hair for 1500 ms. At this point the participant
made a judgment about the stimuli by pressing the left or right
button on the keypad placed in their right hand. No feedback was
given to the participant about their response. In all trials the probe
stimulus was presented at a different angle/orientation to the sam-
ple stimulus so they were not perceptually identical. This forced
participants to encode stimulus identity and not just perceptual
features of the stimulus.

Conditions
Four trial types were embedded in a 2× 2 factorial design (two
factors each with two levels).

Factor 1: task (match, respond). Participants performed four
blocks where they had to make a judgment about whether the sam-
ple and probe matched (Match) and four blocks where they had
to make a judgment about the position of the probe (Respond).
These blocks were pseudo-randomly intermixed. At the beginning
of each block a cue was presented for 750 ms saying “MATCH”
or “RESPOND.” This informed the subject which task they had
to perform for the block. In blocks of Respond trials participants
responded by pressing the left button if the probe cue was on the
left of the screen, or the right button if the probe cue was on the
right side of the screen. During Respond trials participants did not
need to encode or attend to the sample cue, as it held no informa-
tion that could guide the subsequent response. During blocks of
Match trials participants had to respond at the time of the probe
by pressing the left button if the probe stimulus matched the sam-
ple stimulus or the right button if they did not match. Each block
lasted 4.14 min.

Factor 2: stimulus type (line, face). During both Respond and
Match blocks the stimulus type was pseudo-randomly intermixed
and could be either a gray line or a greyscale face. The faces were
obtained from the Max Planck Institute for Biological Cybernetics
database (Blanz and Vetter, 1999). For Line stimuli the participant
was first presented with a horizontal line as a sample. At the time
of the probe the participant was presented with a vertical line that
was either the same or a different length. For Face stimuli, the
participant was presented with a frontward facing face as a sam-
ple. At the time of the probe the face stimuli was presented at a
30˚ orientation facing either leftward or rightward (the presenta-
tion of leftward facing and rightward facing faces on the left or
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Balsters et al. BOLD oscillations track working memory

FIGURE 1 | Delay match-to-sample trial structure. A fixation cross was
presented in the center of the screen for the duration of the study. Sample
cues (either a face or a line) were presented in the center of the screen during
the first 2TRs of a trial (stimulus onset jittered 0–3250 ms from the onset of
the first TR), after a variable time delay (4299–9630 ms), a probe cue was

presented left or right of the fixation cross (stimulus onset jittered 0–2500 ms
from the onset of the fifth TR). Participants responded as quickly possible at
the presentation of the probe cue making either a left/right judgment or a
match/non-match judgment. Face and line probe cues were presented in a
different orientation to the sample cue.

right of the screen was counterbalanced). This approach forced
participants to encode stimulus identity and not just perceptual
features of the stimulus.

The combination of these two factors with two levels each
resulted in four conditions:

1. Line Respond: is the probe Line on the left or right of the screen?
(40 trials)

2. Face Respond: is the probe Face on the left or right of the screen?
(40 trials)

3. Line Match: is the length of the probe Line the same as the
length of the sample Line? (40 trials)

4. Face Match: is the probe Face the same as the sample Face? (40
trials)

Participants practiced four to six shorter blocks of the task before
entering the MRI scanner to make sure they understood the task.
This typically lasted ∼7 min.

BEHAVIORAL ANALYSES
Behavioral measures were analyzed using a two way repeated mea-
sures ANOVA. Two factors of Task (Match, Respond) and Stimulus
(Face, Line) were included with an additional between subject’s
factor of group (young, old). This was used to assess differences
in error rate, reaction time (RT), and RT variability. RT variability
(intra-individual coefficient of variation) was calculated by divid-
ing the RT standard deviation of each individual by their mean RT
(Stuss et al., 2003; Bellgrove et al., 2004).

APPARATUS
Subjects lay supine in an MRI scanner with the thumb of the right
hand positioned on a two-button MRI-compatible response box.

Stimuli were projected onto a screen behind the subject and viewed
in a mirror positioned above the subjects face. Presentation soft-
ware (Neurobehavioral Systems, Inc., USA) was used for stimulus
presentation both inside and outside the scanner. TTL pulses were
also used to drive the visual stimuli in Presentation. Event timings
and RTs were calculated off-line using event timings acquired by a
separate laptop running Brain Recorder (Brain Products, Munich,
Germany) at a higher sampling frequency (5000 Hz).

fMRI DATA ACQUISITION
We first acquired a high-resolution T1-weighted anatomical
MPRAGE image (FOV= 230 mm, thickness= 0.9 mm, voxel
size= 0.9 mm× 0.9 mm× 0.9 mm), followed by phase and mag-
nitude images at different echo times (TE1= 1.46 ms, TE2= 7 ms),
which were used to generate a voxel displacement map. Each par-
ticipant then performed a single EPI session containing 1024 vol-
umes lasting ∼34 min. The field of view covered the whole brain,
224 mm× 224 mm (64× 64 voxels), 34 axial slices were acquired
(0.05 mm slice gap) with a voxel size of 3.5 mm× 3.5 mm× 4 mm;
TR= 2 s, TE= 32, flip angle= 78˚. This was a sparse-sampling
sequence with the slices compressed to the first 1700 ms of the
TR, leaving 300 ms without gradient switching to facilitate the
simultaneously recorded EEG (Debener et al., 2005). The com-
bined EEG/fMRI data will be presented in a separate manuscript.
All MRI data was collected on a Philips 3T Achieva MRI Scanner
(Trinity College Dublin).

fMRI PRE-PROCESSING
Scans were pre-processed using SPM81. Images were realigned
and unwarped using field maps to correct for motion artifacts,

1www.fil.ion.ucl.ac.uk/spm
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susceptibility artifacts and motion-by-susceptibility interactions
(Andersson et al., 2001; Hutton et al., 2002). Images were subse-
quently normalized to the ICBM EPI template using the unified
segmentation approach (Ashburner and Friston, 2005). Lastly, a
Gaussian kernel with a full-width at half-maximum (FWHM) of
8 mm was applied to spatially smooth the image.

fMRI ANALYSES
Group ICA analysis
A single group spatial ICA was run using the GIFT toolbox2. In this
approach single-subject datasets were first compressed using prin-
cipal component analysis (PCA, 123 components), single-subject
data were then combined and PCA was performed for a second
time on the whole group. Spatial ICA was then performed using
the infomax algorithm (Bell and Sejnowski, 1995), with subse-
quent back reconstruction into single subjects (Calhoun et al.,
2001; Erhardt et al., 2011). The resulting output is an independent
component map and an associated timecourse for every compo-
nent and subject. A modified minimum descriptive length (MDL)
criteria (Li et al., 2007) determined that the optimal number of
independent components was 82 and ICASSO was run with 100
re-runs and random initial conditions to ensure a robust decom-
position (Himberg et al., 2004). Components with a quality (iQ;
the difference between intra-cluster and extra-cluster similarity)
below 0.9 were excluded from further analysis as were components
that significantly correlated with regions of white matter or CSF.
Head movement components (i.e., ringing around the edge of the
brain) were also excluded from further analysis.

The Mancovan toolbox (Allen et al., 2011) was used to deter-
mine relationships between IC networks and descriptive vari-
ables such as age, gender, and task performance. This approach
allowed us to investigate within component effects by analyz-
ing IC spatial maps (SMs), and IC timecourse spectra as well
as how descriptive variables modulate connectivity between net-
works using functional network connectivity (FNC; Jafri et al.,
2008). For each component the BOLD spectrum were estimated on
the detrended subject-specific timecourses (removing the mean,
slope, and period π and 2π sines and cosines over each timecourse)
using the multi-taper approach as implemented in Chronux3, with
the time-bandwidth product set to three and the number of tapers
set to five (Mitra and Bokil, 2008). These are the default settings
within the Mancovan toolbox.

Two mancovan models were run which both included age, gen-
der, neuropsychological measures (NART, Logical memory subtest
of the WMS, MMSE), and head movement (rotation and trans-
lation). Task performance (accuracy and RT) was also included
in these models, but RT values for line match and face match
performance were highly correlated (r = 0.96, p= 2e−19). In
order to improve model estimation we ran two separate mod-
els; (1) face match performance orthogonalized with respect to
line match performance (FM_r), and (2) line match performance
orthogonalized with respect to face match (LM_r). Two linear
regressions were used to calculate these residual values. As such
one model included the aforementioned variables along with face

2http://mialab.mrn.org/software/gift
3http://chronux.org

match accuracy (FM_acc), face match RT (FM_RT), residual line
match accuracy (LM_r_acc) and residual line match reaction time
(LM_r_RT), and a second model was run with residual face match
accuracy (FM_r_acc), residual face match RT (FM_r_RT), line
match accuracy (LM_acc) and line match reaction time (LM_RT).

Multivariate analyses were first performed in order to assess
the extent to which each of the independent variables explained
variance in the data (Figure 3). At this stage redundant variables
that do not explain significant variance in the data (p > 0.05) are
removed from the model. This procedure determines how well the
independent variables explain variance within the dependent vari-
ables once other independent variables are taken into account. For
example, Figure 3 shows that for component 58 BOLD spectral
power is significantly modulated by FM accuracy, FM RT, gender,
and rotation (p < 0.05, uncorrected). Importantly, we can see that
rotation is the strongest predictor variable, explaining more vari-
ance in the BOLD spectrum then any other variables. Components
will only be described as showing a significant relationship with
task accuracy if they show the strongest relationship with BOLD
spectral power based on these multivariate analyses.

In order to determine which spectral bins were associated with
task performance we additionally performed univariate analyses.
Partial correlation was used to measure the strength of the lin-
ear relationship between two variables [e.g., log(power) and face
match accuracy] after adjusting for all other independent vari-
ables. Univariate tests were corrected for multiple comparisons at
p < 0.05 using false discovery rate (FDR; Genovese et al., 2002).

Standard GLM analyses
Along with the ICA analyses we also conducted two standard GLM
analyses implemented in SPM8 (Friston et al., 1995a,b). The first
modeled events using the canonical hemodynamic response func-
tion (hrf), the second modeled events using Fourier basis functions
(2 sine and 2 cosine functions of different frequencies with a 15-
s Hanning window; Balsters and Ramnani, 2008). All first level
models included nine event types. Sample and probe cues for each
of the four conditions were modeled as eight separate event types.
Trials in which responses were incorrect, too early (before the
probe cue) or too late (responded after the presentation of the next
sample cue) were modeled separately as a ninth event-type and dif-
ferentiated from experimental conditions. This ninth event type
included the onsets from both the sample and probe cues in error
trials. Thus, activity time-locked to incorrect trials was excluded
from regressors explaining instruction related activity. The resid-
ual effects of head motion were modeled as covariates of no interest
in the analysis by including the six head motion parameters esti-
mated during the realignment stage of the pre-processing. Prior
to the study, a set of planned experimental timings were gener-
ated from two volunteers who performed the task outside of the
scanner. These timings were carefully checked so that they resulted
in an estimable GLM in which the statistical independence of the
nine event types was preserved (piloting on volunteers allowed to
generate a realistic error trial regressor).

To determine voxels significant at the group level, t -contrasts
were incorporated into a random effects analysis using either one
or two sample t -tests for the analyses using the canonical hrf or
two way ANOVAs for analyses using the Fourier basis functions.
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ANOVAs had two factors; Group (two independent levels) and
Basis functions (five non-independent levels). In all cases contrast
images describing the main effect of stimulus (face vs. line), main
effect of task (match vs. respond), and stimulus× task interac-
tions at the single-subject level were calculated for both sample
and probe cues. For analyses using the canonical HRF this was
one contrast image per subject whereas analyses using the Fourier
basis set used five contrast images per subject (one for each basis
function).

Significant within group differences were established using a
conjunction analysis (Price and Friston, 1997; Friston et al., 2005).
This analysis confirms what is statistically similar across groups.
Significant group differences were run on the same model. Beta
values for the face match condition were also input into a one-
sample t -test in order to see if beta values correlated with task
accuracy in a similar manner to the ICA analyses. All results were
corrected for multiple comparisons (FWE, p < 0.05).

RESULTS
BEHAVIOR
Error rates
For both young and old groups there was a significant main
effect of task [F(1, 28)= 170.99, p < 0.001] as significantly more
errors were made in the matching task (7.46 error trials± 0.53)
compared to the respond task (0.58 error trials± 0.12). Both
groups also made significantly more errors for faces (4.88 error
trials± 0.28) compared to lines [3.41 error trials± 0.35; F(1,
28)= 28.85, p < 0.001]. There was also a significant stimulus by
task interaction [F(1, 28)= 34.42, p < 0.001] as significantly more
errors in face match condition than any other condition.

A number of group differences were also present. Although
the main effect of group [F(1, 28)= 3.77, p= 0.06] did not
reach significance, there were clear selective deficits in the per-
formance of old participants compared to young. This was
seen in the significant group× stimulus interaction [significantly
more errors to faces than lines in the old participants; F(1,
28)= 16.84, p < 0.001], and a significant group× task× stimulus
interaction [F(1, 28)= 21.05, p < 0.001], as elderly participants
made significantly more errors in the face matching condition
compared to any other condition [T (1, 28)= 4.19, p < 0.001].
This suggests that key difference in performance between the
young and old participants was in the face match condition (see
Figure 2A).

Reaction time
As with error rate, all participants showed a significant main effect
of task on RT (slower RTs during match (1236.99± 43.33 ms)
compared to respond conditions [718.2± 24.54 ms; F(1,
28)= 159.85, p < 0.001]. There was also a significant main effect
of stimulus type [slower to respond to faces (1044.08± 30.92 ms)
compared to lines (911.11± 26.99 ms); F(1, 28)= 189.73,
p < 0.001], and a significant stimulus× task interaction [signif-
icantly slower on face matching compared to all other conditions;
F(1, 28)= 142.92, p < 0.001].

Older participants showed significantly slower RTs com-
pared to young participants (Old (1148.25± 41.8 ms); Young
(806.93± 39.1 ms); significant main effect of group [F(1,

FIGURE 2 | Behavioral Results. Bar graphs showing task accuracy (A) and
response times. (B) Gray bars show average scores for young participants;
white bars show average scores for elderly participants. Error bars show
the standard error.

28)= 35.564, p < 0.001]). There were also significant group×
stimulus interactions [F(1, 28)= 22.14, p < 0.001; old participants
were significantly slower than young participants to respond to
faces compared to lines] and significant group× task interactions
[F(1, 28)= 12.86, p < 0.005; Older participants were significantly
slower than young participants to match compared to respond].
Finally there was also a significant group× task× stimulus inter-
action illustrating the significant difference in face matching in
young compared to old [F(1, 28)= 34.56.2, p < 0.001]. These
results are illustrated in Figure 2B.

Whilst there were no significant group effects on RT vari-
ability there was a significant main effect of stimulus type [F(1,
28)= 8.49, p < 0.01] on RT variability (greater variability for line
stimuli compared to faces) and a significant task× stimulus inter-
action [F(1, 28)= 4.3, p < 0.05; greater variability in the line
match condition compared to all other conditions].

fMRI ANALYSES
Group ICA analyses
Out of 82 ICs, 54 were included in the mancovan models. Figure 3
shows the strength of the relationship between spectral power for
each IC and each of the variables of interest and nuisance variables.
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FIGURE 3 | Multivariate statistics. Results from the reduced mancova models, depicting the significance of covariates of interest and nuisance predictors for
power spectra in log10(p) units. Gray cells indicate terms that were removed from the full model during backward selection process.

ICs were ignored if they showed a stronger relationship with head
movement than task performance.

Task performance. We first examined the relationship between
IC features and accuracy. SMs and FNC showed no significant
relationship to task accuracy, but for a number of ICs BOLD spec-
tral power was significantly correlated with task performance (see
Figure 4). In all cases there was a positive relationship between 0
and 0.1 Hz BOLD spectral power and task performance (greater
spectral power= better performance) and a negative relationship
between 0.1 and 0.25 Hz power and accuracy (greater spectral
power= poorer performance). Spectral power within the ante-
rior cingulate cortex (ACC) (area 24; IC 71) correlated to both LM
and FM accuracy. Spectral power within the caudate nuclei (IC
47) was specific to LM accuracy. Spectral power within six net-
works related to FM accuracy including putamen (IC 14), visual
(IC 15), right superior STG (IC 26), precuneus (posterior DMN;
IC 48), insular (IC 63), and the salience network (SN) (ACC and
bilateral anterior insular; IC 65) (see Table 1 for details). All of
these results were significant in the analysis of the residual values
(FM_r_acc and LM_r_acc) as well as analysis of the original val-
ues. Table 2 shows the results of linear multiple regression using
single-subject IC timecourses as the dependent variable and the
GLMs used for the hrf analysis as independent variables (see Stan-
dard GLM Analyses above for details). A one-sample t -test was
performed on beta values to establish if there was a significant rela-
tionship between event timecourses and IC timecourses (p < 0.05,
uncorrected). Two sample t -tests were also run on these same
beta values to establish whether the relationship differed between
groups (p < 0.05, uncorrected).

Figure 5 shows spectral profiles for both young and older par-
ticipants and the correlations between spectral power and accuracy
after variance associated with age had been removed from the data.
Even after age-related variance was removed from the data there
were still very strong correlations between task accuracy and spec-
tral power below 0.1 Hz (r values between 0.64 and 0.79). However,
removing age-related variance from higher frequencies (>0.1 Hz)
typically removed the relationship between spectral power and
accuracy for most ICs. Only the SN (IC 65) maintained signifi-
cance at higher frequencies after removing age-related variance.
All of the BOLD spectra presented in Figure 5 show a clear peak

at 0.08 Hz (every 12.5 s). This peak reflects the presentation of the
stimuli and is not an artifact. Resting state data acquired immedi-
ately prior to the collection of this task was run through a similar
analysis pipeline and the 0.08-Hz peak was not present (Balsters
et al., 2013). Table 3 shows partial correlation values for BOLD
spectral power and task accuracy after age-related variance was
regressed out of the data. Partial correlations were run across all
subjects as well as young and old subjects only.

We also analyzed the extent to which RT related to IC features
(see Figure 6). In this case only the original values explained IC
features and there were no significant effects of residual values
(FM_r_RT or LM_r_RT). Both FM_RT and LM_RT were sig-
nificantly correlated to SM activity within motor lobules of the
cerebellum [left lobule HVI (85%) (Diedrichsen et al., 2009)]. LM
RT was correlated with 0.15–0.2 Hz spectral power in the thala-
mus [IC 12, Visual Thalamus (Behrens et al., 2003)], and FM RT
was correlated with 0.15–0.2 Hz spectral power in fusiform gyrus
(IC 46) and ACC (area 32; IC 62) (see Table 1 for details). In all
three cases 0.15–0.2 Hz spectral power was positively correlated
with RT (greater spectral power= slower RT). The relationship
between spectral power and RT was not present after variance
associated with age had been removed from the data.

GLM analyses
Faces vs. lines. Within group analyses showed significant activa-
tions in predicted regions. For example, a comparison of stimulus
type (faces vs. lines) showed greater activity in bilateral fusiform
gyrus for faces compared to lines. This was present both at the
time of the sample and probe cue. However, there were no signif-
icant group differences. The FDR thresholded main effect of faces
vs. lines was compared spatially with all the ICs found to corre-
late with task performance by overlaying these images in MRIcron.
There was no spatial overlap between any of these ICs and the main
effect of stimulus type. These results were consistent for HRF and
Fourier models.

Match vs. respond. Similarly, a comparison of task (match vs.
respond) showed greater activation in right middle/inferior frontal
gyrus, as well as ACC and bilateral insula for match compared to
respond. Overlaying this FDR thresholded activation map with ICs
found to correlate with task performance showed a clear spatial
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FIGURE 4 | Components showing a relationship between spectral
power and face match accuracy. Left column shows components where
spectral power significantly covaried with task accuracy. Red markers
indicate a positive relationship with task accuracy (greater spectral power
with higher accuracy), blue markers indicate a negative relationship

(greater spectral power with lower accuracy), black indicates their was no
significant difference after correcting for multiple comparisons. Right
column shows spatial maps for components which showed a significant
relationship with face match accuracy. All results are FDR thresholded
(p < 0.05).

overlap with the previously identified SN (IC65; see Figure 7).
There was no spatial overlap with any other of the ICs found to cor-
relate with task performance. Despite significant behavioural dif-
ferences (group× task interaction) there were no significant group
differences for this comparison. These results were consistent for
HRF and Fourier models.

Stimulus× task interaction. There were no significant within-
or between group activations for the stimulus× task interaction,

despite there being very significant behavioral differences. These
results were consistent for HRF and Fourier models.

Face match and task performance. In order to more
directly compare the ICA and GLM analyses, we performed
a one-sample t -test looking for correlations between accu-
racy and beta values associated with Face match condi-
tion (both sample and probe). There were no significant
correlations.
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Table 1 | Peak activations of spatial maps showing a relationship with task performance.

Component # (Iq) Brain region Cluster size t Co-ordinates Cytoarchitectonic BA

(probability if available)

x y z

FACE AND LINE MATCH ACCURACY

71 (0.93) Left anterior cingulate cortex 3091 26.91 0 32 14 Area 24

FACE MATCH ACCURACY

14 (0.98) Left putamen 3277 31.42 −18 8 0 n/a

Right putamen 3123 29.83 28 4 0 n/a

15 (0.98) Left calcarine gyrus 6131 46.69 −2 −84 −2 Area 17 (90%)

26 (0.98) Right insula lobe 4400 27.11 38 −20 0 Insula (Ig2) (90%)

Left superior temporal gyrus 188 10.77 −46 −12 −2 Insula (Ig2) (10%)

48 (0.97) Right precuneus 6738 32.23 6 −70 34 SPL (7M) (60%)

Left angular gyrus Same cluster 16.14 −38 −60 40 hIP2 (10%), hIP3 (10%)

Right angular gyrus Same cluster 10.86 36 −58 42 hIP1 (20%), hIP3 (10%)

63 (0.97) Left insula lobe 3811 25.19 −40 4 0 Area 48

Right insula lobe 1083 16.6 42 0 6 Area 48

Right angular gyrus 319 11.41 52 −56 26 IPC (PGa) (50%)

Left supramarginal gyrus 224 9.06 −58 −34 28 IPC (PF) (90%)

Right anterior cingulate cortex 93 7.86 4 16 28 Area 24

65 (0.97) Right superior medial gyrus 1495 24.05 4 20 42 Area 32

Right insula lobe 1209 21.1 40 10 −2 Area 48

Left insula lobe 563 17.9 −36 16 −10 Area 48

LINE MATCH ACCURACY

47 (0.98) Right caudate nucleus 3655 29.34 8 18 2 n/a

Left caudate nucleus Same cluster 27 −8 16 0 n/a

FACE MATCH RT

46 (0.98) Left inferior temporal gyrus 1121 18.89 −48 −62 −6 Area 37

Right inferior temporal gyrus 862 16.13 46 −60 −14 Area 37

Left cerebellum 445 17.29 −4 −78 −12 HVI (6%)

Right superior parietal lobule 180 12.18 24 −72 48 SPL (7P) (40%)

Left precuneus 152 11.11 −4 −52 18 Area 30

Left middle cingulate cortex 90 9.8 −2 14 38 Area 24

62 (0.97) Left anterior cingulate cortex 4681 30.48 −6 42 20 Area 32

Left inferior frontal gyrus (p. orbitalis) 295 13.95 −48 24 −14 Area 47

The quality index (Iq) associated with each RSN is listed in parentheses adjacent to the component number. Cluster size refers to the number of voxels in each cluster,

negative x co-ordinates refer to left hemisphere activations. Cytoarchitectonic probabilities were established where possible by using the Anatomy toolbox (Eickhoff

et al., 2005, 2006, 2007).

DISCUSSION
It has been repeatedly shown that elements of executive function,
such as working memory, degrade with age (Grady and Craik,
2000). As in other studies (Grady et al., 1995, 1998) we found that
elderly participants performed significantly worse than young con-
trols on a DMS task (both in terms of error rate and RT), with the
group difference being largest when matching facial stimuli (see
Figure 2). Whilst standard GLM-based approaches failed to dis-
tinguish between age groups or task performance, a combination
of ICA and multi-taper spectral analyses illustrated a number of
functional networks where BOLD spectral power tracked task per-
formance. Multivariate statistics further demonstrated that task

accuracy was the strongest predictor variable for BOLD spectral
power within these networks, stronger than age, head movement,
gender, or any neuropsychological variables (Figure 3).

AGE-RELATED CHANGES IN FUNCTIONAL NETWORKS DURING DMS
PERFORMANCE
The functional networks identified as tracking task performance
regardless of age included the primary visual network, temporal-
parietal network, posterior default-mode network, SN, and basal
ganglia. The visual, posterior DMN, and SNs also showed higher
frequency BOLD oscillations that negatively correlated with both
task accuracy and age. The differences between high and low
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Table 2 | Linear regression between event-related task timecourses and IC timecourses.

IC Sample line

respond

Sample face

respond

Sample line

match

Sample face

match

Probe line

respond

Probe face

respond

Probe line

match

Probe face

match

1 SAMPLE t -TEST

14 (BG) Y Y Y Y Y

15 (Visual) Y Y Y Y Y Y Y

26 (Left STG) Y

48 (Posterior DMN) Y Y Y Y

63 (Insula) Y Y Y Y

65 (Salience) Y Y Y Y Y

71 (ACC) Y Y Y Y

46 (Fusiform) Y Y Y Y Y Y Y

62 (ACC) Y Y Y Y Y Y

2 SAMPLE t -TEST

14 (BG) Y Y

15 (Visual) Y Y Y Y

26 (Left STG) Y Y Y

48 (Posterior DMN) Y Y

63 (Insula) Y

65 (Salience) Y Y

71 (ACC) Y

46 (Fusiform) Y Y Y

62 (ACC) Y Y Y Y

Y indicates a significant relationship (as measured by beta values) between task regressors and IC timecourses (1 Sample t-test) or a significant difference between

groups (2 Sample t-test). Significance thresholded at p < 0.05 uncorrected.

frequency BOLD oscillations will be discussed below. Studies using
the delayed match-to-sample task have typically found increased
activity within the frontal-parietal network (FPN) and decreased
activity within the DMN (Grady et al., 2010; Spreng et al., 2010;
Salami et al., 2012). When investigating aging populations it has
been further shown that the DMN decreases less during task per-
formance with age whilst the FPN increases with age (Grady et al.,
2010; Salami et al., 2012). There has been some indication that
this increased FPN activity is compensatory, whilst others argue
that this may indicate reduced neural efficiency (see Grady, 2012
for review). The results of this study move the focus away from
prefrontal regions in working memory and place a greater empha-
sis on the DMN. It is well established that DMN connectivity
decreases with age during rest (Damoiseaux et al., 2008; Allen
et al., 2011; Balsters et al., 2013), however there is more debate
surrounding DMN connectivity during task performance. Whilst
some studies have shown increased DMN activity during task com-
pared to young controls (Grady et al., 2010) others have shown
a continued decrease in DMN functional connectivity (Andrews-
Hanna et al., 2007; Sambataro et al., 2010). Sambataro et al. (2010)
scanned young and old participants during a working memory
task (1- and 2-back tasks) and showed reduced DMN connectiv-
ity with age, and that increased connectivity within this network
was correlated with better performance. In line with the results of
this study the Sambataro et al. (2010) also showed reduced low
frequency BOLD spectral power (0.03–0.08 Hz) in the posterior
DMN related to age and increased BOLD spectral power within the
same band limits as task difficulty increased. Garrett et al. (2013)

also found reduced BOLD variability with aging in regions of the
posterior DMN during task performance (including DMS task)
compared to rest. The precise role of the DMN in cognitive con-
trol is unclear, however these findings add to previous suggestions
that the posterior nodes of the DMN are involved in memory
retrieval (Menon, 2011; Vannini et al., 2011).

The SN was the only network which showed both low and high
BOLD frequency correlates of task accuracy after accounting for
age-related variance (Figure 5F). The SN comprises of bilateral
anterior insula and ACC. The insula has been shown to be an
important node in functional connectivity, linking multiple brain
regions, and functional networks (see Menon and Uddin, 2010 for
review). Two of the key roles proposed for the SN are: (1) detection
of salient events and (2) switching between large-scale functional
networks once a salient event has been detected (Menon and
Uddin, 2010; Menon, 2011). Along with being the only IC to track
accuracy at both high and low BOLD frequencies, this was also the
only IC to overlap with GLM-based results (match > respond).
As in our study, Sridharan et al. (2008) found a strong overlap
between the SN found using ICA and GLM-based analyses. The
behavioral results of our study showed a strong effect of task on
RTs and accuracy (poorer performance on match trials compared
to respond trials) indicating that the match task was more difficult.
It is therefore likely that increased attentional demands were placed
on the match blocks compared to the respond blocks, thus high-
lighting the SN in the GLM analyses for match > respond events.
Control signals from the SN are believed to have a top-down influ-
ence on multiple networks including basic sensory networks and
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FIGURE 5 | Group spectral profiles and correlations with face match
accuracy. Left column shows spectral power distributions for young and old
participants. Shaded error bars show the standard error. Black markers
underneath highlight where spectral power covaried with task accuracy
(these are the same values shown in Figure 4). Middle and right columns
show correlations with spectral power and accuracy after age was regressed

out of the data. Middle column shows correlations for significant frequency
points at lower frequencies (<0.1 Hz). The right column shows correlations for
significant frequency points >0.1 Hz. (A) Putamen (IC 14), (B) Visual cortex (IC
15), (C) right STG (IC 26), (D) precuneus (posterior DMN; IC 48), (E) left insula
(IC 63), (F) cingulo-insula network (salience network; IC 65). In all plots red
refers to young participants and blue to elderly.
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Table 3 | Partial Correlations between BOLD frequency power and task performance with age-related variance removed.

IC Low frequency (0–0.1 Hz) High frequency (0.1–0.25 Hz)

Group Young Old Group Young Old

r p r p r p r p r p r p

14 (BG) 0.7451 <0.001 0.6869 0.0136 0.4522 0.0519

15 (Visual) 0.6414 0.001 0.6414 0.001 0.0655 0.79 −0.2419 0.1898 −0.2833 0.3722 −0.3849 0.1037

26 (Left STG) 0.8085 <0.001 0.0962 0.7662 −0.1585 0.5168

48 (Posterior DMN) 0.7468 <0.001 0.627 0.0291 0.5326 0.0189 −0.293 0.1097 −0.219 0.4941 −0.5345 0.0184

63 (Insula) 0.7695 <0.001 0.7959 0.002 0.5348 0.0183 −0.3017 0.09 −0.6288 0.0285 −0.4624 0.0462

65 (Salience) 0.758 <0.001 0.7899 0.022 0.5322 0.019 −0.4991 0.0042 −0.6403 0.0249 −0.4347 0.0629

p-Values marked in bold were significant (p < 0.05, uncorrected).

functionally complex networks like the DMN and FPN. It is pos-
sible that control signals from the SN were impacting on BOLD
oscillations within other identified networks such as the posterior
DMN and visual cortex, however we did not find a significant
correlation between these networks after correcting for multiple
comparisons. One would also predict based on previous studies
that the SN signal would elevate activity within the FPN rather
than the DMN. This may suggest that an increase in FPN connec-
tivity is not directly correlated with task accuracy in aging and may
indeed index inefficient neural activity. As mentioned previously,
there is still a great deal of debate about whether increased FPN
connectivity is a positive or negative marker of executive function
in aging (Grady, 2012).

MULTIPLE BOLD FREQUENCIES DIFFERENTIALLY CONTRIBUTE TO TASK
PERFORMANCE
Our results suggest two broad relationships exist between task
accuracy and BOLD oscillations; power at BOLD frequencies
below 0.1 Hz were positively correlated with working memory per-
formance and unrelated to the age of the subjects, whilst power
at frequencies above 0.1 Hz were negatively associated with task
performance and typically contained age-related variance (the SN
being the only exception). Previous studies have also shown that
multiple oscillatory dynamics are contributing to low frequency
fluctuations in the BOLD signal and that these different oscil-
lations may have distinct functional roles (Salvador et al., 2008;
Baria et al., 2011; Niazy et al., 2011). Studies by Garrity et al.
(2007), Malinen et al. (2010), and Calhoun et al. (2011) have
shown that control groups had stronger BOLD fluctuations below
0.05 Hz whilst patient groups (schizophrenic, bipolar, and chronic
pain patients) had stronger high frequency BOLD fluctuations
(>0.1 Hz). Similarly, Allen et al. (2011) showed decreasing BOLD
frequency power (<0.15 Hz) with age, whilst some RSNs showed
increasing spectral power with age at frequencies greater than
0.2 Hz. All of these studies would suggest that increased higher
frequency BOLD oscillations, present in schizophrenic patients,
bipolar patients, chronic pain patients, and healthy aging, are a
negative symptom (although none of these studies directly linked
higher frequency oscillations to behavioral or neuropsychologi-
cal measures). Our results are in keeping with the idea that high
frequency BOLD fluctuations are a negative symptom given that

we find a negative correlation with working memory performance
and high frequency BOLD spectral power. One difference between
this study and the studies of Garrity et al. (2007), Malinen et al.
(2010), and Calhoun et al. (2011), is that our data was collected
during task performance whilst the other studies report used rest-
ing data. Although it is likely that differences in the underlying
causes of BOLD oscillations will differ between rest and task, Cal-
houn et al. (2008) showed that decreased low and increased high
frequency BOLD spectral power was present in the same schizo-
phrenic patients during both task performance (auditory oddball)
and rest.

It has been proposed by Garrity et al. (2007) and Malinen
et al. (2010) that increased higher frequency oscillations might be
indicative of reduced connectivity within the functional network.
It is well established that both structural and functional connectiv-
ity decreases with age (Andrews-Hanna et al., 2007; Damoiseaux
et al., 2009; Allen et al., 2011), therefore an increase in BOLD spec-
tral power at higher frequencies may represent reduced network
synchronization. Cohen (2011) had participants perform a similar
working memory task and investigated the delay period between
the sample and probe using EEG. Cohen (2011) found a significant
negative relationship between performance and peak oscillatory
frequency (faster oscillations= poorer performance) during the
delay period. Peak oscillatory frequency was also strongly neg-
atively correlated with the structural connections between the
hippocampus and ventrolateral PFC. These results add to the
evidence that slower frequencies are necessary for encoding and
maintaining complex information (Cohen, 2011; Honey et al.,
2012), whilst changes in higher frequency oscillations might be
indicative of reduced functional and structural connectivity.

A number of previous studies have suggested that resting state
BOLD fluctuations >0.1 Hz are noise (Wise et al., 2004; Birn et al.,
2006; Zou et al., 2008; Zuo et al., 2010), and might reflect cardiac or
respiratory signals. One must therefore ask whether the >0.1 Hz
effects seen in this study might be related to cardiac or respiratory
signals. Unfortunately, we did not collect cardiac or respiratory
recordings so we can not completely rule out this possibility, but
we would argue based on previous resting state studies that BOLD
fluctuations >0.1 Hz can contain meaningful information. First,
it has been shown that ICA is capable of isolating physiological
noise sources from functional networks (Birn et al., 2008; Beall and
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Balsters et al. BOLD oscillations track working memory

FIGURE 6 | Components showing a relationship between spectral power
and face match reaction time (RT). (A) Components where spectral power
significantly covaried with face match RT. Red markers indicate a positive
relationship (greater spectral power= slower RT), black indicates their was no

significant difference after correcting for multiple comparisons. (B) Significant
covariation with voxel intensity and face match RT within left cerebellar lobule
HVI. (C) IC 46 spatial map. (D) IC 62 spatial map. All results are FDR
thresholded (p < 0.05).
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FIGURE 7 | Overlap between IC 65 (salience newtork) and SPM results.
Red voxels show the spatial map for IC 65 which was identified to track
task accuracy at both low (<0.1 Hz) and high (>0.1 Hz) frequencies.
Activations in yellow were from the SPM analysis showing common
activations between both groups for match compared to respond blocks.
Both sets of activations were FDR corrected (p < 0.05).

Lowe, 2010; Allen et al., 2011). By excluding 28 components that
correlated with white matter and CSF,displayed ringing around the
edge of the brain, or had a variable decomposition, we believe we
have managed to remove some physiological noise sources. Similar
studies to ours were able to assess the impact of cardiac and res-
piration signals on BOLD oscillations at rest, and in both studies
their results were not explained by these noise sources (Malinen
et al., 2010; Baria et al., 2011). However, we would also reiterate
that the strongest relationship between task accuracy and BOLD
spectral power was at frequencies below 0.1 Hz that are widely
acknowledged to reflect underlying neural fluctuations (He et al.,
2010; He, 2011; Honey et al., 2012).

ADVANTAGES AND DISADVANTAGES OF ICA/SPECTRA APPROACH
COMPARED TO GLM APPROACHES
A number of studies have previously demonstrated that BOLD sig-
nal correlates with task performance (Pessoa et al., 2002; Todd and
Marois, 2004; Nagel et al., 2011). However, we believe there are a
number of advantages to using BOLD frequency power instead of
GLM-based values such as beta values or percent signal change. As
mentioned previously, fluctuations in the BOLD signal are com-
posed of a number of different oscillatory signals (Zuo et al., 2010;
Baria et al., 2011; Niazy et al., 2011). As such, just investigating one
oscillatory signal may not capture the underlying complexities
that exist within BOLD data. Although BOLD variability has been
shown to be more sensitive than mean BOLD signal, this approach
still fails to take into account different BOLD frequency bands. For
example, Garrett et al. (2013) found there was very little difference

in BOLD variability within the elderly population between fixa-
tion and delayed match-to-sample performance. By investigating
the entire BOLD spectrum we were able to find BOLD fluctu-
ations that significantly correlate with delayed match-to-sample
performance across young and old participants, as well as addi-
tional BOLD dynamics that are related to age. We therefore believe
that this approach is more sensitive to brain-behavior relationships
than other approaches such as GLM-based approaches and BOLD
mean/variability measurements.

It may also be possible to integrate the spectral analyses con-
ducted within this study with GLM approaches. For example, one
could apply this spectral analysis to regions identified using a
GLM approach instead of using ICA timecourses. However, GLM-
based approaches require additional assumptions about the hrf. A
number of studies have shown that BOLD response is far from
canonical, changing across brain areas (Handwerker et al., 2004;
Eichele et al., 2008; Wall et al., 2009), subjects (Aguirre et al.,
1998), clinical populations (Rombouts et al., 2005), and in healthy
aging (D’Esposito et al., 1999). In this study we used both the
canonical HRF as well as more flexible Fourier basis functions
to model events. The results were consistent across both GLM
approaches, and neither of these highlighted the results established
using ICA/spectral approaches. However, even if one uses multiple
basis functions, or generates a custom HRF per subject, this still
assumes that response functions are consistent from trial-to-trial.
In event-related designs such as the one used in this study there is
likely to be a great deal of trial-to-trial variability. By analyzing the
spectral content of the whole time course we overcome this issue.
However, this is also the main disadvantage of this approach. By
analyzing the entire timecourse of the experiment we are not able
to establish whether these BOLD spectral changes are time locked
to specific cue types or task phases. Early investigations into work-
ing memory changes with age using the delayed match-to-sample
task found that the deficit was specifically at the time of encoding
rather than at the recognition/decision phase (Grady et al., 1995).
Unfortunately, we are not able to address this question regarding
the encoding and recognition phases of the experiment. It is pos-
sible to perform temporal regression on IC timecourses as we have
done in this study (Table 2). However, this requires us to make
assumptions about the shape of the hrf and trial-to-trial variabil-
ity, which for reasons mentioned above may not be valid. Another
alternative would be use a block design experiment where spectral
content of encoding and recognition phases can be analyzed sep-
arately. Recent studies by Allen et al. (2012), Smith et al. (2012),
and Sakoglu et al. (2010) are also investigating changes within and
between functional networks over time. A modified version of
these approaches may also allow us to investigate BOLD spectral
changes in an event-related manner.

It is possible that the experimental design used in this study
favored ICA/spectral analyses and biased against GLM approaches,
however, we do not believe this to be the case. In this study we col-
lected a long timeseries of data (∼34 min) which consisted of long
4.14 min blocks of task performance. Such a design is certainly
amenable for Fourier transforms, however we do not believe that
this unfairly biases against GLM approaches. Long, single session
acquisitions such as the ones used in this study are recommended
by a number of fMRI papers (Josephs and Henson, 1999; Smith
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et al., 2005,2007). In addition the results of our study are consistent
with previous studies of BOLD oscillations/variability conducted
by Salvador et al. (2008) and Garrett et al. (2011) who used
much shorter task blocks of 48 and 36 s (DMS task) respectively
for their analyses. It may still be the case that the experimen-
tal design used in this study is inefficient for GLM approaches,
both to identify significance and accurately model response mag-
nitude. Different filtering procedures were also used in the ICA
analysis compared to the GLM-based analyses which could have
impacted on the results. However, given the consistency with pre-
vious studies (Garrett et al., 2010, 2011, 2013; Samanez-Larkin
et al., 2010; Baria et al., 2011), we believe that ICA/spectral analy-
ses are tapping into brain-behavior relationships that are lost in
GLM approaches.

CONCLUSION AND FUTURE DIRECTIONS
This study demonstrates for the first time that BOLD spec-
tral power is a useful index of brain-behavior relationships that
appears to be more sensitive than traditional GLM approaches.
Unfortunately the sluggish nature of the BOLD response does not

make it possible to directly compare BOLD spectral measures with
similar EEG and MEG spectral measures. Simultaneous EEG/fMRI
studies have begun to investigate the relationships between EEG
frequency bands and fMRI SMs (Mantini et al., 2007; Balsters
et al., 2011, 2013), however in order to understand the relationship
between M/EEG oscillations and BOLD oscillations one must con-
tend with the fact that M/EEG oscillations are significantly faster
than events used in a task paradigm whereas BOLD oscillations are
more likely to be directly influenced by the task paradigm. Further
research is necessary to establish (a) the potential relationships
between EEG and fMRI frequency bands and (b) the reliability of
>0.1 Hz BOLD fluctuations in both task and rest.
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With the advancements in MRI hardware, pulse sequences and reconstruction techniques,
many low TR sequences are becoming more and more popular within the functional MRI
(fMRI) community. In this study, we have investigated the spectral characteristics of resting
state networks (RSNs) with a newly introduced ultra fast fMRI technique, called general-
ized inverse imaging (GIN). The high temporal resolution of GIN (TR=50 ms) enables to
sample cardiac signals without aliasing into a separate frequency band from the BOLD
fluctuations. Respiration related signal changes are, on the other hand, removed from the
data without the need for external physiological recordings. We have observed that the
variance over the subjects is higher than the variance over RSNs.

Keywords: GIN, resting state, respiration, dual regression, ICA, frequency analysis, fMRI BOLD, physiological noise

INTRODUCTION
Functional MRI (fMRI) studies related to “resting” brain has been
one of the constantly growing fields in cognitive neuroscience
(Biswal et al., 1995; Beckmann et al., 2005; Damoiseaux et al., 2006;
De Luca et al., 2006; Smith et al., 2009; Laird et al., 2011). For the
interpretation of resting state networks (RSNs) a clean mapping
of relevant frequencies is of relevance to prevent the conclusion
that RSNs are a mere artifact of physiological signals. Moreover, it
has also recently been shown that RSNs are detectable for frequen-
cies well above 0.1 Hz (Niazy et al., 2011; Smith et al., 2012; van
Oort et al., 2012). It is therefore important that the main physio-
logical fluctuations are sampled without aliasing into functionally
relevant frequency bands. The breathing frequency is particularly
problematic as the related frequency band is close to the main fre-
quencies commonly associated with RSNs and as breathing leads
to a more global effect than cardiac noise. For example, the default
mode network, a commonly observed RSN, has been linked to
respiration depth (Birn, 2012). The cardiac noise, however, is spa-
tially localized to big vessels and arteries and introduces variance
especially into the auditory network (Beall and Lowe, 2007).

Recent developments in MR acquisition techniques in 2D
which are called simultaneous multislice imaging (SMS) enable
sufficiently fast sampling of the MR signal to separate and remove
the respiration related fluctuations (Moeller et al., 2009; Fein-
berg and Yacoub, 2012; Setsompop et al., 2012). However, if one
aims to discern the cardiac noise, then ultra-fast MRI techniques,
such as MR-encephalography (MREG) (Hennig, 2012; Zahneisen
et al., 2012) or inverse imaging based methods (Boyacioglu and
Barth, 2012b; Lin et al., 2012) should be the method of choice.
Among these methods resting state analysis has been carried out
with MREG by using a seed based correlation analysis (Lee et al.,
2012) and with SMS by applying ICA (Feinberg et al., 2010).

Both of these studies are proof of principle studies showing
the benefits of increased time points and investigate the spatial
characteristics of RSNs. Another study that used SMS dissected
the RSNs into temporal functional modes (TFMs) by using tem-
poral ICA (Smith et al., 2012). In this study we investigated
the frequency spectra of RSNs by largely avoiding physiologi-
cal contamination which could obscure functional interpretation.
Therefore, we used a recently developed ultra-fast acquisition
technique, generalized inverse imaging (GIN) (Boyacioglu and
Barth, 2012b), with implicit acquisition of a phase regressor that
resembles physiological fluctuations.

MATERIALS AND METHODS
DATA ACQUISITION
The data were acquired with a 3-T MRI scanner (TIM Trio;
Siemens Healthcare, Erlangen, Germany) and a 32-channel head
coil. Six healthy subjects (one female, five male; aged 28–37) were
recruited for the study and written informed consent was obtained
according to the guidelines of the local IRB. Ultra-fast fMRI was
performed using the GIN method (Boyacioglu and Barth, 2012b):
the reference scan for the GIN reconstruction was carried out
with a 3D EPI scan with the following parameters: in plane resolu-
tion 3.5 mm× 3.5 mm, slice thickness 3.5 mm, flip angle= 15˚,
TE/TR= 28/50 ms, 44 partition phase encoding steps, sagittal
slices, FOV= 224 mm× 224 mm× 156 mm. The GIN data were
acquired with the same parameters but with a 2D EPI scan with
a slice thickness of 156 mm which resulted in a single collapsed
slice in the left-right direction. Then, this slice was unaliased into
a 3D volume using the GIN reconstruction framework. GIN uses
the phase as a constraint to improve the solution of the highly
undersampled regularized reconstruction and only needs a single
3D EPI prescan to obtain the necessary coil sensitivity information
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and reference images that are used to reconstruct standard images,
so that standard analysis methods such as ICA and general lin-
ear model (GLM) are applicable. 5 min of resting state data (eyes
open) were collected from each subject.

ANALYSIS
The data was preprocessed with FSL’s FEAT (v4.1.7)1 by removing
the temporal drift and spatially smoothing with an 8-mm ker-
nel. We have used DRIFTER (Särkkä et al., 2012) for physiological
noise correction. It was shown that the phase drift time course,
a by-product obtained during the GIN reconstruction, fluctuates
with the respiration (Boyacioglu and Barth, 2012a) and was there-
fore used as the reference signal for DRIFTER to estimate the
frequencies which were removed from the data. We have regis-
tered the eight template RSNs from Beckmann et al. (2005)2, to
the individual subjects’ native space. Dual regression of the sub-
jects’ functional data against these eight maps then gave rise to
subject-dependent versions of these RSNs (Filippini et al., 2009).
Dual regression analysis simply consists of two GLMs where the
first one extracts the associated time course from the single subject
data by using one of the RSNs as a spatial regressor and the second
one uses that time course as a regressor to map the RSN onto the
single subject level. The DICE overlap score (for subject m= 1, 2
. . . 6 and RSN k = 1, 2 . . . 8) was calculated to depict the similarity

1http://www.fmrib.ox.ac.uk/fsl/
2http://www.fmrib.ox.ac.uk/analysis/royalsoc8/

between a template (rsnk) and an individual subject (submk) map
as follows,

dicemk =
2 |rsnk ∩ submk |

|rsnk | + |submk |
(1)

where || represents the number of voxels of a map and∩ represents
the intersection of two maps. Each RSN map on the single subject
level was masked with a gray matter (GM) mask. The frequency
spectra were normalized by their total power.

RESULTS
Figure 1 shows the average time course (a) and frequency spectra
(b) for eight RSNs for a single subject before and after phys-
iological noise removal. When the phase drift is used as the
reference signal for physiological noise estimation/removal with
DRIFTER, the data shows clear power reduction in the frequency
range of breathing (see red line shown in Figure 1B), but the
power at other frequencies is preserved and is free from respi-
ratory fluctuations. Note that the phase drift time course carries
little information about the cardiac signal (for this specific run
around the principal cardiac frequency at 1.2 Hz) and thus does
not reduce the power in that specific frequency band (see red
line).

Eight typical RSNs and the corresponding dual regression maps
are shown in Figure 2 for a single subject. The spatial patterns of
the prototypical RSNs are matched by their GIN counterparts.

FIGURE 1 | A section of the average time course (A) and frequency spectrum on a log-linear scale (B) of RSNs for a single subject before (blue line)
and after (red line) physiological noise removal, as well as the corresponding phase drift regressor (green line).
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FIGURE 2 | Eight prototypical RSNs (Beckmann et al., 2005) and the corresponding dual regression maps (in z-scores) overlaid on the four most
representative slices for a single subject.
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Table 1 | DICE overlap scores for all the subjects and RSNs.

Visual

medial

Visual

lateral

Auditory Sensory

motor

DMN Frontal Fronto parietal

(right)

Fronto parietal

(left)

Mean ± SD

S1 0.25 0.44 0.40 0.36 0.44 0.52 0.33 0.43 0.39±0.08

S2 0.34 0.39 0.49 0.14 0.39 0.33 0.30 0.29 0.33±0.10

S3 0.30 0.37 0.42 0.37 0.36 0.52 0.43 0.44 0.40±0.07

S4 0.29 0.33 0.40 0.34 0.42 0.54 0.45 0.43 0.40±0.08

S5 0.29 0.36 0.47 0.43 0.39 0.53 0.44 0.43 0.42±0.07

S6 0.28 0.33 0.46 0.39 0.33 0.55 0.38 0.38 0.39±0.08

FIGURE 3 | Eight prototypical RSNs (Beckmann et al., 2005) and the corresponding dual regression maps (in z-scores) averaged over all subjects and
overlaid on the four most representative slices in MNI space.
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The similarity and spatial overlap between the dual regression
maps and the typical RSNs is quantified with the DICE overlap
score for all the subjects and RSNs in Table 1. The group level
average of dual regression maps is shown in Figure 3. As the
effective spatial resolution of GIN in the left-right direction is
considerably reduced as a tribute to the high temporal resolution
compared to fully encoded acquisitions the RSN maps are typically
larger.

Figure 4 shows the normalized frequency spectra of all RSNs
(in green) and their averages (in black) for all the subjects below
0.2 Hz. Most of the RSNs’ power reduces significantly above 0.1 Hz
and the RSNs have similar frequency spectra within subjects. How-
ever, there’s considerable variation between the subjects’ average
frequency spectra. Figure 5, on the other hand, shows each RSNs’
frequency spectra plotted for each subject (in green) and averaged
over subjects (in black).

DISCUSSION
One very important point for using fast sampling in fMRI is that
the main physiological fluctuations are sampled without aliasing
into functional relevant frequency bands. For the interpretation
of RSNs the breathing frequency is particularly problematic as the
related frequency band is close to those frequencies commonly
associated with RSNs. This has stirred some discussion to whether
RSNs are an artifact of physiological signals (Birn et al., 2008;
Birn, 2012). By using GIN, we are not only able to acquire the data
fast enough but we can also correct for respiratory fluctuations,
mostly due to bulk susceptibility changes, by using the information

derived from the data itself. This can be seen from the blue curve
in Figure 1B where respiration related signal changes are located
in the frequency band of 0.15–0.25 Hz and are not only not aliased
into lower frequencies, but also corrected for (red line). Since the
phase drift time course is dominated by the global respiration
signal, it matches the data within the same frequency band.

The phase drift time course does not carry much information
about the cardiac signal (so very little variation around the princi-
pal cardiac frequency is removed), but this is of less concern as the
frequency band is far from the typical RSN frequencies. Cardiac
signals are much smaller in magnitude compared to respiration
since they are localized to specific regions whereas respiration is a
more global effect.

Within each subject we found very similar frequency character-
istics for all RSNs, and that the variation over subjects was much
higher than the variation over RSNs. Similar results have been
reported in the literature (Niazy et al., 2011). These results could
very likely be due to the result of differences of the hemodynamic
response function (HRF) which is known to have high power in
these frequencies (<0.1 Hz).

While the spatial fidelity of RSNs was not the specific focus of
this study due to the inherent lower spatial resolution of GIN, all
RSNs were spatially matched by their dual regression GIN counter-
parts, some (DMN, frontal) better than the others (fronto-parietal
right, visual), however both the fronto-parietal networks – includ-
ing their associated anti-correlated clusters – are recovered with
GIN resting state data. As GIN does not have any gradient encoding
in the left-right direction but uses the coil sensitivity information

FIGURE 4 | Normalized frequency spectra of all RSNs (in green) and their average (in black) for each of the six subjects up to 0.2 Hz. Variation over
subjects is much higher than the variation over RSNs.
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FIGURE 5 | Normalized frequency spectra of all RSNs (in green) and their average over subjects (in black) for each of the 8 RSNs up to 0.2 Hz. RSNs do
not have specific frequencies associated with all the subjects.

to separate the aliased voxels, this inevitably results in the trade off
spatial resolution for increased temporal resolution. The effective
resolution depends on the independent and uncoupled informa-
tion available from the coil channels. In general, the effective
resolution is higher for GM than white matter and poses fewer
problems for fMRI. Naturally, the lower spatial resolution of GIN
leads to a larger spatial extent especially in the left-right direction
for some of the networks, leading to some of the relatively low
DICE scores in Table 1. Another drawback of low TR acquisitions

and GIN is the abundance of physiological noise related com-
ponents obtained with regular ICA as they dominate the total
variance in the data. The dual regression approach used in the
study enabled to directly obtain network specific frequency spectra
and overcome the disadvantages of GIN and low TR acquisitions.

Studies related to temporal ICA (Smith et al., 2012) and the
high frequency content of RSNs (Niazy et al., 2011; van Oort et al.,
2012) would certainly benefit from the large number of time points
obtained with GIN in relatively short scan times.
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Multimodal brain imaging data have shown increasing utility in answering both scientifically
interesting and clinically relevant questions. Each brain imaging technique provides a differ-
ent view of brain function or structure, while multimodal fusion capitalizes on the strength
of each and may uncover hidden relationships that can merge findings from separate neu-
roimaging studies. However, most current approaches have focused on pair-wise fusion and
there is still relatively little work on N -way data fusion and examination of the relationships
among multiple data types. We recently developed an approach called “mCCA+ jICA” as
a novel multi-way fusion method which is able to investigate the disease risk factors that
are either shared or distinct across multiple modalities as well as the full correspondence
across modalities. In this paper, we applied this model to combine resting state fMRI
(amplitude of low-frequency fluctuation, ALFF), gray matter (GM) density, and DTI (frac-
tional anisotropy, FA) data, in order to elucidate the abnormalities underlying schizophrenia
patients (SZs, n=35) relative to healthy controls (HCs, n=28). Both modality-common and
modality-unique abnormal regions were identified in SZs, which were then used for suc-
cessful classification for seven modality-combinations, showing the potential for a broad
applicability of the mCCA+ jICA model and its results. In addition, a pair of GM-DTI compo-
nents showed significant correlation with the positive symptom subscale of Positive and
Negative Syndrome Scale (PANSS), suggesting that GM density changes in default model
network along with white-matter disruption in anterior thalamic radiation are associated
with increased positive PANSS. Findings suggest the DTI anisotropy changes in frontal
lobe may relate to the corresponding functional/structural changes in prefrontal cortex and
superior temporal gyrus that are thought to play a role in the clinical expression of SZ.

Keywords: multimodal fusion, mCCA + jICA, resting state fMRI, DTI, sMRI, schizophrenia, ALFF, GM

INTRODUCTION
Multimodal brain imaging techniques are playing increasingly
important roles in elucidating structural and functional properties
in normal and diseased brains, as well as providing the conceptual
glue to bind together data from multiple types or levels of analysis.
The related computational methods are also valuable for clinical
research on the mechanisms of disease progression. The goal of
multimodal fusion is to capitalize on the strength of each imag-
ing modality as well as their inter-relationships in a joint analysis,
rather than to analyze separately.

Each imaging modality provides a different view of brain func-
tion or structure, and data fusion capitalizes on the strengths of
each imaging modality/task and their inter-relationships in a joint
analysis, creating an important tool to help unravel the black box

of psychotic disorders, such as schizophrenia (SZ) (Calhoun et al.,
2006; Sui et al., 2012a). Recent advances in data fusion include
integrating multiple (task) fMRI data sets (Sui et al., 2009b, 2010;
Kim et al., 2010) from the same participant to specify common ver-
sus specific sources of activity to a greater degree than traditional
general linear model-based approaches. This can increase confi-
dence when making conclusions about the functional significance
of brain regions and activation changes in brain diseases. In addi-
tion, the combination of function and structure may provide more
informative insights into both altered brain patterns and connec-
tivity (McCarley et al., 2008; Michael et al., 2010; Sui et al., 2011).
For example, a lower and different function–structure connection
is often found in patients with SZs compared with healthy controls
(HCs) (Zhou et al., 2008; Venkataraman et al., 2010; Camchong
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et al., 2011; Michael et al., 2011), while varied brain patterns are
also identified frequently (Calhoun et al., 2008; Xu et al., 2009;
Brown et al., 2012; Lu et al., 2012).

WHY GO BEYOND TWO MODALITIES?
However, most current approaches have focused on pair-wise
fusion and there is still relatively little work on N -way data
fusion and examination of the full relationships among mul-
tiple data types. Given the availability of more powerful MR
scanners, there are typically more than two imaging modalities
available for one participant. Hence, we believe the joint multi-
variate analysis of multiple data types (e.g., resting state fMRI,
task-related fMRI, DTI, and sMRI) will improve our ability to
understand brain diseases. We have proposed an N -way fusion
model, “multi-set canonical correlation analysis (mCCA)+ joint
independent component analysis,” i.e., “mCCA+ jICA,” which
successfully identified both modal-common and modal-unique
group-discriminative patterns for HCs and SZs via combination
of task-related fMRI, DTI, and sMRI data (Sui et al., 2013). Consid-
ering the importance of the interpretation of multi-way features,
the method and tool we propose will enable examination of full
correspondence across N modalities by achieving reliable inter-
modality associations and high decomposition accuracy together,
thus making discoveries of changes in one modality causing related
alterations in distant, but connected regions in other modalities
possible.

To our knowledge, there have been only a few reports com-
bining three or more types of brain imaging data to investigate
brain disorders (e.g., Correa et al., 2009) examined changes that
are related across fMRI, sMRI, and EEG data for SZ (Groves et al.,
2011) compared Alzheimer’s patients and age-matched controls
by combining gray matter (GM) density and three diffusion data
measures [fractional anisotropy (FA), mean diffusivity, and tensor
mode]. For resting state fMRI data, several pair-wise fusion appli-
cations have been reported (Teipel et al., 2010; Long et al., 2012;
Segall et al., 2012); however, there has been no report that combine
resting state fMRI with other two or more different types of brain
imaging data to study SZ.

In this project, we applied the N-way fusion model,
“mCCA+ jICA” (Sui et al., 2013), to compare not only modality-
common but also modality-unique abnormalities among resting
state fMRI, sMRI, and DTI data, which is the first attempt to
combine such three types of data to discriminate SZ patients
(n= 35) from HCs (n= 28). N -way fusion of brain imaging data is
more challenging than pair-wise combination, since many fusion
applications rely on studying correlations between highly distilled
measures (e.g., small regions of interest), while there is still rela-
tively little examination of the full relationships among data types.
The method and tools we propose will enable such an exami-
nation and can be potentially useful for identification of unique
biomarkers of brain disorders. Furthermore, the high-dimensional
neuroimaging data is typically very noisy and massive redundancy
reduction is usually necessary to facilitate the identification of
relationships among modalities. For this purpose, each modal-
ity is first reduced to a “feature” for each subject, which tends to
be more tractable than working with the large-scale original data
(Calhoun and Adali, 2009) and provides a simpler space to link the

data (Smith et al., 2009), e.g., an fMRI contrast map from the gen-
eral linear model, a GM segmentation image from the sMRI scan
and voxel-wise DTI measures such as FA. For resting state fMRI
data, we used the amplitude of low-frequency fluctuation (ALFF)
as fusion input (Zang et al., 2007; Zou et al., 2008; Calhoun and
Allen, 2013), which has been used previously for default mode or
other applications in multiple papers (Calhoun et al., 2012; Turner
et al., 2012; Yu et al., 2012b, 2013).

MATERIALS AND METHODS
THEORY DEVELOPMENT
Existing multivariate fusion methods have different optimiza-
tion priorities and limitations: some enable common as well as
distinct levels of connection among modalities, such as mCCA
(Correa et al., 2009) and partial least squares (PLS) (Lin et al.,
2003; Chen et al., 2009), but their separated sources may not be
sufficiently spatially sparse. For example, mCCA maximizes the
inter-subject covariation across two sets of features and gener-
ates two linked variables, one from each dataset, i.e., canonical
variants (CVs); which correlate with each other only on the
same indices (rows) and their corresponding correlation values
are called canonical correlation coefficients (CCC). This strategy
allows for both common and distinct aspects of two features, but
the brain maps of several components may look similar when
the CCCs are not sufficiently distinct. Some approaches per-
form well in spatial decomposition, such as jICA (Calhoun et al.,
2006) and linked ICA (Groves et al., 2012), which aim at max-
imizing the independence among estimated sources combining
more than two modalities, but only allow a common mixing
matrix. These two methods enable detection of features com-
mon to all modalities at the expense of features which may be
distinct to one or more of them (a situation which becomes
more likely when combining more than two modalities). Multiple
previous studies that combined function and structure (Olesen
et al., 2003; Rykhlevskaia et al., 2008; Camara et al., 2010; Sui
et al., 2012b) provide support for the assumption that com-
ponents decomposed from each modality have some degree of
correlation between their mixing profiles among subjects. This
motivates our data-driven model that is optimized for both flex-
ibility in inter-modal associations and high capability on source
separation.

The basic strategy of mCCA+ jICA is shown in Figure 1.
MCCA is first adopted to project the data in a space so that the
correlations among mixing profiles (Dk, k = 1, 2, . . ., n) of n (n= 3
in this study) modalities are jointly maximized (in their sum of
squared correlations). The resulting CVs Dk are sorted by correla-
tion which provides a closer initial match to the potential highly
or weakly correlated mixing profiles between components, which
will make the subsequent application of jICA more reliable. At
this time, the associated maps Ck may not be completely separated
by mCCA. We then apply jICA on the concatenated maps (C1,

C2, . . ., Cn) to obtain the final maximally independent source Sk.
In other words, mCCA first relates multiple datasets with flexible
linkages (correlation) in their mixing matrices, which matches well
with the assumptions of jICA that is subsequently applied to the
joint spatial maps. Hence, mCCA and jICA are complementary to
one another, and can relax the limitations of each listed above if
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FIGURE 1 | N -way mCCA + jICA fusion strategy of for real human data (n = 3 in this study).

used together, generating both highly and weakly correlated joint
components that are independent.

We assume that the multimodal dataset Xk, is a linear mix-
ture of Mk sources given by Sk, mixed with a non-singular mixing
matrix (or loading parameters) Ak for each, k denotes modality.

Xk = Ak Sk k = 1, 2, . . . , n (1)

where Xk is a subjects-by-voxels feature matrix (we use voxels for
our description but it could also be, e.g., time points or genes).
The sources Sk, are distinct within each dataset, while the columns
of Ai and Aj have higher correlation only on their correspond-
ing indices, i, j ∈ {1, 2, . . ., n} i 6= j are modality number. Given
that there are N subjects, typically, the number of voxels L in Xk is
much larger than N. Due to the high dimensionality and high noise
levels in the brain imaging data, order selection is critical to avoid
over fitting the data. Using the improved minimum description
length (MDL) criterion (Li et al., 2007), the number of indepen-
dent components Mk are estimated for each modality and we set
the final component number for jICA as M =max(M 1, M 2, . . .,
Mn). Dimension reduction is then performed on Xk using singular
value decomposition to determine the signal subspace given by

Yk = Xk Ek k = 1, 2, . . . , n (2)

where Yk is in size of N ×M and Ek contains eigenvectors cor-
responding to significant (the top M highest) singular values.
Multi-set CCA (Li et al., 2009) is thus performed on Yk, gener-
ating the CVs Dk = Ykwk by maximizing the sum-of-squares of all
correlation values in the corresponding columns of Dk so that

E{DT
k Dk} = I; E{DT

k Dj} ≈ diag (r (1)

k,j , r (2)

k,j ...r (M )

k,j ) (3)

where k, j ∈ {1, 2, . . ., n}, k 6= j. Based on the linear mixture
model, we simultaneously obtain the associated components Ck

via Xk=Dk·Ck, Ck= pinv(Dk)·Xk. However, the performance
of mCCA for blind source separation (BSS) may suffer when

r (1)

k,j , r (2)

k,j ...r (M )

k,j are very close in values, which might occur in

applications using real brain data, since the multimodal connec-
tion among components usually are not very high and could be
similar in value (Sui et al., 2011). Therefore, Ck will typically be
a set of sources that are not completely independent. Joint ICA is
then implemented on the concatenated maps (C1, C2, . . ., Cn), to
maximize the independence among joint components by reducing
their second and higher order statistical dependencies, as in Eq. 4.
ICA as a central tool for BSS has been studied extensively and we
utilized Infomax (Bell and Sejnowski, 1995) in our work due to its
good stability.

[S1, S2...Sn]=W · [C1, C2...Cn] (4)

Finally, n sets of independent components Sk are achieved, with
their corresponding mixing matrices Ak linked via correlation. The
proposed scheme “mCCA+ jICA” can be summarized as shown
in Figure 1.

Xk = (Dk ·W
−1) · Sk , Ak=Dk ·W

−1 (5)

Multi-set canonical correlation analysis+ jICA was compared
with its alternatives in simulation in Sui et al. (2013), where results
show that combination of mCCA and jICA mitigates the perfor-
mance deficits of each and achieves more reliable and better sep-
aration on both sources and mixing matrices. Interestingly, when
the estimated component number is higher than the ground truth,
the source estimation performance continues to be high, while the
estimation of mixing coefficients achieves best performance when
M equals to true values.

HUMAN BRAIN DATA
Participants
Multi-set canonical correlation analysis+ jICA was applied to
DTI, resting state fMRI, and sMRI data of 63 subjects recruited as
part of a multimodal SZ center for biomedical research excellence
(COBRE) study at the Mind Research Network1. Informed consent

1http://cobre.mrn.org
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was obtained from all subjects according to institutional guidelines
required by the Institutional Review Board at the University of
New Mexico (UNM). Table 1 lists the demographic information.
All subjects were screened and excluded if they had history of neu-
rological disorder, history of mental retardation, history of severe
head trauma with more than 5 min loss of consciousness, or his-
tory of substance abuse, or dependence within the last 12 months
(except for nicotine). HCs were free from any Axis I disorder,
as assessed with the SCID-NP (Structured Clinical Interview for
DSM-IV-TR, Non-patient version). Patients met criteria for SZ
defined by the DSM-IV-TR based on the SCID-P interview (First
et al., 1995). All patients were on stable medication prior to the
fMRI scan session. The two groups did not differ with regard to
age, gender, and ethnicity, see Table 1. Symptom scores were deter-
mined based on the positive and negative syndrome scale (PANSS)
(Kay et al., 1987).

Imaging parameters
All the data were collected on a 3-T Siemens Trio scanner with
a 12-channel radio frequency coil at the Mind Research Net-
work. The imaging parameters were as follows: fMRI : resting
state data were collected with single-shot full k-space echo-planar
imaging (EPI) with ramp sampling correction using the inter com-
missural line (AC/PC) (anterior commissure/posterior commis-
sure) as a reference (TR= 2 s, TE= 29 ms, matrix size= 64× 64,
flip angle= 75 °, slice thickness= 3.5 mm, slice gap= 1.05 mm,
field of view (FOV) 240 mm, matrix size= 64× 64, voxel
size= 3.75 mm× 3.75 mm× 4.55 mm. sMRI : a multi-echo
MPRAGE sequence was used with the following parameters:
TR/TE/TI= 2530/(1.64,3.5,5.36,7.22,9.08)/900 ms,flip angle= 7
°, FOV= 256× 256 mm, slab thickness= 176 mm, matrix
size= 256× 256× 176, Voxel size= 1 mm× 1 mm× 1 mm, Pixel
bandwidth= 650 Hz, Total scan time= 6 min. DTI : data was
collected along the AC/PC line, throughout the whole brain,
FOV= 256× 256 mm, slice thickness= 2 mm, NEX (number of
excitations)= 1, TE= 84 ms, TR= 9,000 ms. A multiple channel
radio frequency coil was used, with GRAPPA (generalized autocal-
ibrating partially parallel acquisition) (×2), 30 gradient directions
with a diffusion sensitivity, b= 800 s/mm2. The b= 0 experiment
was repeated five times, and equally inter-spread between the 30
gradient directions. All b= 0 images were registered to the first
b= 0 image with a six degrees-of-freedom transformation. This
was followed by registering the b= 800 s/mm2 image to the b= 0
image immediately before it by an affine 12 degrees-of-freedom
transformation. The two transformations were multiplied and
then one transformation applied to the b= 800 s/mm2 image to
align it to the first b= 0 image. This resulted in all images being
registered to the first b= 0 image. FLIRT (FMRIB’s Linear Image
Registration Tool) was used for all registration steps.

Table 1 | Demographic information of the subjects.

Num Age Gender Ethnicity

HC 28 39±15 21M/7F 21 Whites

SZ 35 36±12 26M/9F 22 Whites

p Value 0.36 0.99 0.58

Resting state fMRI
Resting-state scans were a minimum of 5 min, 4 s in duration (152
volumes). Subjects were instructed to keep their eyes open dur-
ing the scan and stare passively at a foveally presented fixation
cross, as this is suggested to facilitate network delineation com-
pared to eyes-closed conditions and helps ensure that subjects
are awake.

fMRI preprocessing
SPM8 software package2 was employed to perform fMRI pre-
processing. Slice timing was performed with the middle slice
as the reference frame. Images were realigned using INRIalign,
a motion correction algorithm that is unbiased by local signal
changes (Freire et al., 2002). Data were then spatially normalized
into the standard Montreal Neurological Institute (MNI) space
(Friston et al., 1995) with affine transformation followed by a non-
linear approach with 4× 5× 4 basis functions. Images (originally
collected at 3.75 mm× 3.75 mm× 4.55 mm) were then slightly
upsampled to 3 mm× 3 mm× 3 mm, resulting in a data cube of
53× 63× 46 voxels. Before smoothing, we further regress out the
six motion parameters for each slice to remove the motion effect.
Finally,data were spatially smoothed with a Gaussian kernel of full-
width half maximum (FWHM) of 10 mm× 10 mm× 10 mm. For
the rest fMRI, we extracted the voxel-wise ALFF to generate a map
for each subject. The ALFF calculation consisted of computing
the fast Fourier transform (FFT) of each voxel time series, taking
the square root of the power spectrum to obtain amplitude, and
averaging amplitude in (0.01, 0.1) Hz. Prior to computing ALFF,
the original 4D fMRI data sets were divided by their global mean
(over time and space) to normalize differences in scan intensity
units. ALFF maps computed in this manner were used previously
in a comparative classification analysis (Erhardt et al., 2011) and
the use of ALFF maps in a “second-level” ICA has been previously
studied (Calhoun and Allen, 2013).

DTI preprocessing
DTI data were preprocessed by FMRIB Software Library (FSL)3

and consisted of the following steps: (a) quality check, any gradi-
ent directions with excessive motion or vibration artifacts were
identified and removed; (b) motion and eddy current correc-
tion; (c) correction of gradient directions for any image rotation
done during the previous motion correction step; (d) calculation
of diffusion tensor and scalar measures such as FA, which were
then smoothed and resized to a final 53× 63× 46 matrix for each
subject, see more details in Sui et al. (2011).

sMRI preprocessing
sMRI data were also preprocessed using the SPM8 software pack-
age which was used to segment the brain into white-matter (WM),
GM, and cerebral spinal fluid with unmodulated normalized para-
meters via the unified segmentation method (Ashburner and Fris-
ton, 2005). After segmentation, the GM images were smoothed
to a FWHM Gaussian kernel of 10 mm (White et al., 2001) and

2http://www.fil.ion.ucl.ac.uk/spm/software/spm8
3www.fmrib.ox.ac.uk/fsl
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re-sliced to a matrix of 53× 63× 46 voxels. Subject outlier detec-
tion was further performed using a spatial Pearson correlation
with the template image, to ensure that all subjects were properly
segmented (for details, see Segall et al., 2009).

Normalization
After feature extraction (preprocessing), the 3D brain images of
each subject were reshaped into a one-dimensional vector and
stacked, forming a matrix with dimensions of 63× number of
voxels for each of the three modalities. These three feature matri-
ces were then normalized to have the same average sum-of-squares
(computed across all subjects and all voxels/locus for each modal-
ity) to ensure all modalities had the same ranges. Following nor-
malization, the relative scaling (a normalization factor) within a
given data type was preserved (i.e., 1.08, 0.24, 0.39 for ALFF, FA,
GM respectively), but the normalized input units have the same
voxel-wise mean square variance for all modalities. Next, the data
was processed via the pipeline shown in Figure 1, i.e., dimension
reduction→multi-set CCA→ jICA→ component analysis. The
component number was estimated using modified MDL (Li et al.,
2007) to be 10, 5, 8 for fMRI, DTI, and sMRI respectively. We
thus choose M = 10 for the following analysis since we have found
that a slight overestimation of the component number does not
adversely affect the results in simulation (Sui et al., 2011). Note
that the estimated IC number is lower than that used for 4D fMRI
data typically, since mCCA+ jICA works on extracted features of
interests, instead of the original imaging data. However, a consid-
erable amount of variance is retained for the M = 10 case, i.e., 95,
96, 99% for fMRI, DTI, and sMRI respectively.

ANALYZING GENERATED COMPONENTS AND MIXING COEFFICIENTS
After applying the mCCA+ jICA to the human brain data, inde-
pendent component Sk and the mixing matrices Ak for each
modality (k = 3 in this study) were generated, providing a vari-
ety of ways to analyze the inter-correlation between modalities as
well as the group differences, as in Sui et al. (2011). In this paper,
we are most interested in:

Shared/distinct abnormalities
Two-sample t -tests were performed on mixing coefficients of each
IC for each modality (i.e., first 28 elements corresponding HC ver-
sus last 35 elements corresponding SZ from mth column of Ak

for the mth IC of modality k), the results tell us which compo-
nents are significantly abnormal in SZ. If the components of the
same index show group differences in more than one modality,
they are called modality-common (or joint) group-discriminative
ICs. By contrast, if the component shows significant group dif-
ference only in a single modality, it is called a modality-unique
group-discriminative IC. That are what we call shared or distinct
abnormalities.

Inter-modality correlation
We also looked into the column-wise correlations between A1, A2,
and A3 pair wisely. It is likely that the joint group-discriminative
components have a strong inter-modality correlation between
their mixing coefficents, which indicates the interaction and
correspondence among modalities.

Impact of clinical measures
The derived mixing coefficients also provide a way to investigate
the relationships between the identified components and subjects’
clinical data, e.g., the correlation between mixing coefficients of
patients for each component and antipsychotic medication doses
[standardized as olanzapine equivalents (Gardner et al., 2010)]
or PANSS scores. In this paper, we computed the correlation with
PANSS (Kay et al., 1987), which rate the scale of severity of positive,
negative, and general symptoms in SZ.

Potential use for classification
To test the potential use of the identified group-discriminative
components (i.e., corresponding rows of Sk of modality k), we
next used them to generate features (e.g., the Z map above cer-
tain threshold) and train a classifier, to see whether they are able
to predict diagnosis or serve as potential biomarkers, which may
prove the great significance for multimodal analysis.

For each modality, we transferred the group-discriminating
components (for ALFF and GM, we use only two ICs with mini-
mum p values) into Z values and thresholded at |Z | > 3.5, generat-
ing a mask from each component. The masks of the same modality
were then combined and applied to the raw input matrix of each
modality, which served as the input to the further classification
based on uni-modal and multimodal features. Each individual
was assigned one of two class memberships (SZ versus HC).
We trained four different classification algorithms: linear support
vector machine (LSVM) (Cortes and Vapnik, 1995), radial basis
function support vector machine (RSVM) (Amari and Wu, 1999),
k-nearest neighbor algorithm (KNN) (Geva and Sitte, 1991), and
Gaussian naïve bayes (GNB) (McCallum and Nigam, 1998). Each
algorithm was trained on 50% of the data (randomly chosen sam-
ples) with 10-fold cross validation, and tested on the other half for
1000 times, with the mean and maximal success rate recorded.
Because this paper is not mainly focused on classification, we
will not address the details of each algorithm. One limitation
of this experiment is that the data set used to identify group-
discriminating components is the same as the one which we did
classification with, since we don’t have other similar resting fMRI-
DTI-sMRI data at hand for cross validation and our main aim is to
test whether mCCA+ jICA is able to serve as an effective feature
selection method for group prediction.

RESULTS
GROUP DIFFERENCES IN HUMAN BRAIN DATA
Two-sample t -tests found both modality-common group-
discriminative ICs (e.g., IC6 and IC7 in green frames, as shown
in Figure 2) as well as modality-unique group-discriminative ICs,
e.g., GM_IC5, ALFF_IC3 in our case. Interestingly, the modal-
connection between joint-discriminative ICs indicate significant
correlations (GM-ALFF IC6: r = 0.28, p= 0.025; FA-GM IC7:
r = 0.38, p= 0.002; FA-ALFF IC7: r = 0.31, p= 0.015) between
their mixing profiles.

CORRELATION WITH PANSS SCORES
There was no significant correlation regarding the antipsychotic
medication doses. However, two ICs: FA_IC4 (anterior thalamic
radiation, ATR and superior longitudinal fasciculus, SLF) and
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FIGURE 2 | Group-discriminating regions across three
modalities, with a threshold of |Z | > 2.5. Two-sample t -tests were
performed on mixing coefficients of each IC for each modality. If the
components of the same index show group differences in more

than one modality, they are called modality-common (or joint)
group-discriminative ICs in green frames; otherwise, it is called a
modality-unique group-discriminative IC, e.g., GM_IC5, ALFF_IC3 in
red frames.

GM_IC4 (subregions of the default mode) were significantly cor-
related with positive PANSS scores, while there was no significant
correlation with negative PANSS score. The scatter plots and linear
trends are shown in Figure 3.

The specific identified regions of the components of interest
and their abbreviations are summarized in Table 2 for resting
state fMRI components (Talairach labels), Table 3 for DTI (WM
tracts), and Table 4 for sMRI (MNI labels) respectively. For fMRI
and sMRI, each IC is transformed into a Z map by dividing its stan-
dard deviation across all voxels, and the voxels above the threshold
(|Z | > 2.5) were converted from MNI coordinates to Talairach
coordinates and entered into a database to provide anatomic and
functional labels for the right (R) and left (L) hemispheres. The
volume of identified voxels in each area is provided in cubic cen-
timeters (cm3). Within each area, the maximum Z value and its
MNI coordinates are provided for all three tables. To summarize
the WM results, we used the Johns Hopkins WM tractography

atlas (from FSL) (Hua et al., 2008), from which 20 structures were
identified; mostly large bundles. In Table 3, the WM tract labels,
the identified volume (cc), and the percentage that indicates the
overlap of the identified voxels with each WM tract are listed in
detail.

CLASSIFICATION BASED ON SELECTED COMPONENTS
After transferring the group-discriminating components into Z
values and thresholded at |Z | > 3.5, the mask from each compo-
nent were generated and applied to the raw input matrix of each
modality, resulting in three feature matrices in dimension of sub-
ject by voxels, i.e., FA: 63× 312, ALFF 63× 566, GM 63× 1035,
which served as the input to the further classification based on
uni-modal and multimodal features.

Each individual was assigned one of two class memberships
(SZ versus HC) and we have seven modal combinations (three
single, three pair-wise, one three-way) as shown in Figure 4.
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FIGURE 3 |The scatter plots and linear trends of components with significant correlation between positive PANSS score and its loadings.

After comparison, RSVM achieved the best classification accuracy
among the four algorithms we trained with each of seven modal
combinations; its mean, and maximum rates were summarized in
Figure 4, where GM features obtained the highest accuracy in sin-
gle modality, while FA+GM predict best among all seven modal
combinations (mean 0.79, max 0.96).

DISCUSSION
In this paper we applied the mCCA+ jICA model to three-way
fusion of resting state fMRI, sMRI, and DTI data. The aim of the
method is to identify precise correspondence among n data types
and make possible the investigation of both shared and distinct
abnormalities spanning multiple modalities for a specified brain
disorder. Some abnormalities may occur in specific modalities,
while others may be found in more than one modality simultane-
ously. Also, hidden linkages between components from different
modalities may underlie in the data.

GROUP DIFFERENCES
IC 7 significantly differentiated SZ from HC in all three modalities,
suggesting the following abnormalities in SZ: (a) prefrontal cortex
and left superior temporal gyrus (STG) (rest fMRI); (b) ATR, cor-
ticospinal tract (CSF), and forceps major (FMAJ; WM, DTI); and
(c) regions of the motor cortex, medial/superior frontal cortex,
and temporal gyrus (GM density). Furthermore, these identified
affected regions may share some underlying relationship in SZ.
The FA changes in ATR, CST, and FMAJ were previously asso-
ciated with disconnectivity of brain networks in SZ in separate
studies (Schlosser et al., 2007; Friedman et al., 2008; Sussmann
et al., 2009). In particular, ATR projects from the anterior and
medial regions of the thalamus to the frontal lobe, while CST
subserves motor control. Accordingly, GM_IC7 shows strong alter-
ations in motor cortex and, corresponding nicely to findings in
Douaud et al. (2007) where the abnormalities in the primary sen-
sorimotor and premotor cortices and in WM CST tracts were
detected. Moreover, ALFF_IC7 implicates prefrontal cortex as

abnormal, which plays an important role in the sensory integra-
tion and has been frequently reported dysfunction in SZ (Badcock
et al., 2005; Hamilton et al., 2009; Yu et al., 2012a). These two
pairs of components (FA-ALFF IC7, FA-GM IC7) depict a set of
functional-anatomical “connected” regions. Note that both pairs
have significant correlations (0.31/0.38) between their subject-
mixing profiles as mentioned before, suggesting that disrupted
WM connectivity may contribute to coordinated brain dysfunc-
tion, especially in the frontal and motor cortex, which is frequently
hypothesized to be “disconnected” from other brain regions in SZ
(Williams et al., 2004). Our results suggest that the anisotropy
changes may relate to functional/structural changes in brain con-
nectivity that are thought to play a central role in the clinical
expression of SZ (Douaud et al., 2007).

Furthermore, GM-ALFF IC6 is another joint group-
discriminative component, with middle/medial frontal cortex and
thalamus (Woodward et al., 2012) indicated in ALFF map and
temporal/frontal cortex shown in GM changes. The abnormality
in each component have been previously found associated with
the SZ deficits separately (Onitsuka et al., 2004; Zhou et al., 2007a;
Edgar et al., 2012). Specifically, the result in Jayakumar et al. (2005)
was in well accordance with our findings that SZ patients have
significantly smaller global and regional GM volumes in inferior
frontal, superior temporal, and parahippocampal gyri etc. Our
results also suggest that functional disconnectivity associated with
frontal lobe (also shown in ALFF_IC3) is present in SZ during
rest (Hoptman et al., 2009). This is consistent with the notion
that deregulation of medial frontal regions is associated with self-
directed thoughts. This may lead to confusion between the source
of internal and external stimuli, and may provide a neurophysi-
ological basis for hallucinations (Whitfield-Gabrieli et al., 2009).
This would have to be verified in future work.

We also identified ICs of interest showing significance only in
one modality, such as GM_IC 5, 9, 10 and ALFF_IC3 (pink frame).
The three structural components indicated regions including STG,
precuneus, prefrontal cortex, insula, and thalamus, Hence, GM
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Table 2 | Anatomic regions of the GM components of interest.

Area Brodmann area Vol. (cm3) Z max value (L/R) (x, y, z)

GM IC6 (JOINT)

Positive

Superior temporal gyrus 13, 22, 38, 39, 41 4.4/3.4 3.6 (−48, −40, 8)/4.6 (48, −38, 7)

Middle temporal gyrus 21, 22, 37, 39 5.4/1.3 4.5 (−48, −35, 2)/3.5 (48, −32, 2)

Middle frontal gyrus 6, 8, 9, 46 3.4/1.5 3.7 (−50, 16, 32)/3.0 (50, 19, 32)

Inferior frontal gyrus 9, 44, 45, 47 3.8/0.1 3.1 (−50, 10, 33)/2.1 (42, 30, 12)

Negative

Middle temporal gyrus 21 0.7/0.3 3.1 (−45, −55, 6)/2.6 (42, −52, 8)

Parahippocampal gyrus 30 0.3/0.2 3.0 (−24, −46, 5)/2.6 (27, −46, 5)

GM IC7 (JOINT)

Positive

Superior temporal gyrus 21, 22, 39 1.0/2.0 2.9 (−48, −40, 8)/3.6 (50, −26, −1)

Middle temporal gyrus 19, 20, 21, 22, 39 1.8/2.9 3.2 (−48, −32, 2)/3.5 (48, −26, −4)

Inferior frontal gyrus 13, 46 1.2/1.6 2.7 (−39, 30, 12)/3.1 (39, 35, 9)

Parahippocampal gyrus 28, 36 1.3/1.0 2.8 (−27, −12, −15)/2.4 (30, −7, −17)

Fusiform gyrus 37 0.8/0.4 2.8 (−48, −47, −13)/2.5 (48, −47, −13)

Negative

Precentral gyrus 4, 6 6.1/6.0 4.3 (−24, −23, 65)/3.3 (15, −23, 67)

Lingual gyrus 18 0.6/1.0 4.0 (3, −73, −6)/4.2 (12, −82, −14)

Paracentral lobule 4, 5, 6, 31 2.6/2.5 4.2 (0, −29, 51)/3.9 (3, −32, 51)

Postcentral gyrus 1, 2, 3, 5, 7, 40 4.3/3.3 4.1 (−21, −26, 65)/3.0 (50, −29, 51)

Medial frontal gyrus 6, 8, 32 3.0/4.2 4.1 (0, −23, 56)/3.6 (3, −20, 56)

Posterior cingulate 29 0.3/0.4 3.2 (−3, −58, 6)/3.6 (3, −58, 6)

Superior frontal gyrus 6, 8 3.4/3.2 3.3 (0, 5, 49)/3.2 (21, −8, 67)

Precuneus 7, 39 1.4/4.9 3.3 (−30, −62, 34)/3.2 (9, −74, 42)

Inferior parietal lobule 40 1.6/2.0 3.3 (−42, −35, 54)/3.3 (48, −32, 54)

GM IC4

Positive

Middle temporal gyrus 19, 21, 22, 37, 39 6.2/2.2 3.7 (−42, −69, 15)/2.9 (53, −58, 11)

Superior temporal gyrus 13, 22, 38, 39, 41, 42 5.2/2.6 3.5 (−53, −57, 19)/3.0 (50, −52, 14)

Supramarginal gyrus 40 2.9/2.4 3.4 (−53, −54, 22)/2.8 (53, −45, 30)

Precuneus 7, 19, 23, 31, 39 3.2/6.0 3.2 (0, −51, 36)/3.3 (3, −36, 43)

Parahippocampal gyrus 19, 28, 34 2.3/0.9 3.2 (−24, −38, 5)/2.7 (24, −41, 5)

Cingulate gyrus 24, 31, 32 2.0/2.1 3.1 (0, −42, 35)/3.2 (3, −33, 40)

Anterior cingulate 25 0.6/0.3 3.1 (0, 5, −8)/2.7 (3, 5, −10)

Postcentral gyrus 2, 40 2.0/0.2 3.1 (−50, −33, 49)/2.1 (50, −32, 51)

GM IC5

Positive

Precuneus 7, 19, 39 2.9/1.5 4.0 (−24, −65, 36)/4.6 (30, −59, 36)

Cerebellum 8.8/7.8 3.7 (0, −47, −8)/3.5 (3, −50, −8)

Middle frontal gyrus 6, 10 1.0/0.7 3.6 (−33, 39, 20)/2.9 (33, 47, 6)

Thalamus 1.8/1.0 3.5 (−6, −23, 12)/2.7 (3, −14, 12)

Middle temporal gyrus 19, 21, 22, 37, 39 1.8/0.9 3.1 (−48, −38, 5)/2.9 (48, −35, 2)

Negative

Superior temporal gyrus 21, 38 1.5/0.6 3.1 (−30, 16, −24)/2.4 (45, 20, −16)

GM IC9

Positive

Superior temporal gyrus 22, 38 1.4/2.5 3.1 (−45, 11, −11)/3.7 (48, 11, −6)

Cuneus 7, 17, 18, 23, 30 2.6/0.7 3.5 (−12, −93, 5)/2.4 (18, −96, 8)

Superior frontal gyrus 6, 8, 9, 10 4.0/3.1 3.3 (−24, 48, 31)/3.1 (21, 11, 49)

Middle frontal gyrus 6, 8, 9, 10 5.3/2.6 3.1 (−33, 58, 3)/2.7 (27, 3, 52)

Precuneus 7, 19, 31 1.5/0.6 3.1 (−27, −62, 34)/2.9 (30, −62, 36)

Medial frontal gyrus 6, 8, 10, 32 1.3/1.1 3.1 (0, 11, 44)/3.0 (21, 5, 49)

(Continued)
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Table 2 | Continued

Area Brodmann area Vol. (cm3) Z max value (L/R) (x, y, z)

Negative

Middle temporal gyrus 19, 22, 39 1.8/1.5 3.9 (−48, −43, 5)/5.0 (42, −57, 22)

GM IC10

Positive

Angular gyrus 39 0.6/0.4 3.7 (−33, −54, 36)/3.8 (36, −56, 36)

Precuneus 7, 19, 39 1.5/0.6 3.7 (−30, −62, 36)/3.1 (36, −62, 36)

Supramarginal gyrus 40 0.4/0.4 3.1 (−36, −51, 36)/3.2 (36, −51, 36)

Middle frontal gyrus 6, 8, 9, 10 1.0/2.6 3.0 (−33, 16, 27)/2.9 (33, 19, 27)

Lingual gyrus 17 1.7/0.5 3.0 (−12, −87, 2)/2.6 (18, −87, 4)

Negative

Inferior frontal gyrus 9, 44, 45, 47 2.7/2.1 3.7 (−48, 14, −3)/3.7 (48, 17, −6)

Superior temporal gyrus 22, 38, 42 4.2/1.7 3.7 (−48, 11, −6)/3.2 (50, 14, −6)

Insula 13 1.6/0.1 3.5 (−45, 8, −5)/2.2 (45, 8, −5)

Table 3 | White-matter tract labels of the FA components of interest.

Abbreviation WM tracts Vol. (cm3) % Z max (R/L)

FA IC7 (JOINT)

Positive

ATR Anterior thalamic radiation 2.3/7.2 5/14 4.7 (26, 31, 13)/5.2 (28, 25, 6)

CST Corticospinal tract 2.1/2.3 6/7 5(25, 33, 7)/5.1(31, 34, 14)

CG Cingulum 0.5/0.7 2/2 2.9(18, 21, 18)/3.1(28, 14, 31)

FM Forceps minor/Forceps major 1.7/3.4 3/7 3.9(27, 47, 21)/5(27, 26, 22)

IFO Inferior fronto-occipital fasciculus 1.1/2 2/5 3.9(16, 11, 22)/3.7(35, 45, 21)

ILF Inferior longitudinal fasciculus 1.7/3.1 4/7 3.9(12, 19, 17)/5.3(41, 31, 15)

SLF Superior longitudinal fasciculus 5.6/4.6 5/4 4.8(6, 25, 15)/5.4(44, 27, 15)

UF Uncinate fasciculus 0.3/0.5 3/4 3.8(22, 51, 13)/2.9(40, 37, 10)

Negative

ATR Anterior thalamic radiation 1.1/0.9 2/2 3.3(20, 38, 27)/3.4(27, 27, 4)

CST Corticospinal tract 1.9/1.4 5/4 3.5(25, 27, 7)/4.6(29, 31, 8)

SLF Superior longitudinal fasciculus 3.2/4.1 3/4 5.2(12, 39, 29)/6(46, 30, 11)

FA IC4

Positive

ATR Anterior thalamic radiation 0.8/4.2 2/8 7.8(27, 26, 2)/7.4(28, 24, 1)

CST Corticospinal tract 2.7/1.9 7/6 8.5(26, 26, 1)/9.3(27, 26, 1)

ILF Inferior longitudinal fasciculus 0.7/2.2 2/5 2.9(11, 32, 12)/4.2(44, 30, 12)

SLF Superior longitudinal fasciculus 1.6/3.0 2/3 5.6(4, 26, 17)/5.3(48, 29, 10)

Negative

ATR Anterior thalamic radiation 2.3/1.2 6/4 4.2(24, 24, 8)/4.3(28, 31, 11)

IFO Inferior fronto-occipital fasciculus 2.1/1.7 4/4 3.6(19, 9,23)/3.7(40, 15, 25)

ILF Inferior longitudinal fasciculus 2.1/1.4 5/3 3.4(13, 15, 18)/3.3(45, 32, 13)

SLF Superior longitudinal fasciculus 4.4/6.3 5/6 5(7, 27, 15)/5.1(48, 29, 14)

concentrations were significantly reduced in the above regions in
the SZ group, consistent with other findings (Ha et al., 2004; Chua
et al., 2007; Segall et al., 2009). Since structurally segregated and
functionally specialized regions of the human cerebral cortex are
interconnected by a dense network of cortico-cortical pathways
(Hagmann et al., 2008; Segall et al., 2012), supporting the hypoth-
esis that the SZ deficit may lie in aberrant structural changes and
disconnectivity among different cortical areas.

CORRELATION WITH POSITIVE SYMPTOMS
Positive symptoms refer to an excess or distortion of normal
psychological functions, e.g., hallucinations and delusions. In
Figure 3, the higher positive symptoms were correlated with iden-
tified voxels in the middle/STG, precuneus, anterior cingulate,
and the parahippocampal gyrus in GM_IC4. This is consistent
with similar findings in fMRI (Garrity et al., 2007) where PANSS
positive scores were associated with abnormal activation of STG,
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Sui et al. fMRI-DTI-sMRI fusion to discriminate schizophrenia

Table 4 | Anatomic regions of the group-discriminating fMRI components.

Area Brodmann area Vol. (cm3) Z max value (L/R) (x, y, z)

ALFF – IC 6 (JOINT)

Positive

Superior frontal gyrus 8, 9, 10, 11 3.8/4.8 9.5 (−30, 43, −15)/9.5 (21, 43, −17)

Middle frontal gyrus 6, 10, 11, 46, 47 6.5/5.8 7.9 (−30, 40, −17)/7.8 (30, 40, −17)

Inferior frontal gyrus 11, 46, 47 2.4/3.3 7.4 (−24, 31, −19)/6.0 (15, 31, −17)

Medial frontal gyrus 10, 11, 25 5.8/6.8 6.0 (−12, 28, −17)/6.1 (9, 43, −17)

Superior temporal gyrus 22, 38 0.4/0.4 3.5 (−56, 11, −6)/2.8 (59, 11, −6)

Anterior cingulate 10, 25, 32 1.0/0.3 3.5 (−12, 49, −5)/2.3 (15, 46, −5)

Thalamus 0.3/0.2 3.0 (−6, −11, 14)/3.0 (6, −5, 11)

ALFF – IC 7 (JOINT)

Positive

Superior frontal gyrus 6, 10, 11 0.8/0.3 5.4 (−18, 64, 8)/3.4 (9, 67, 8)

Superior temporal gyrus 22, 38 5.4/0.1 4.9 (−33, 13, −28)/2.3 (30, 10, −31)

Medial frontal gyrus 10 0.9/0.0 4.3 (−6, 64, 5)/−999.0 (0, 0, 0)

Inferior frontal gyrus 44, 45, 46, 47 2.0/0.0 4.0 (−53, 20, −9)/−999.0 (0, 0, 0)

Middle frontal gyrus 10, 11 1.3/0.3 3.4 (−42, 52, −10)/3.7 (30, 62, 19)

Negative

Cingulate gyrus 23, 24, 32 2.2/2.8 3.5 (−9, 4, 27)/4.1 (9, 4, 27)

Anterior cingulate 24, 33 0.5/0.8 3.5 (−6, 10, 24)/4.0 (12, 13, 24)

Superior frontal gyrus 8, 10, 11 1.1/1.7 3.7 (−30, 32, 51)/3.9 (18, 43, −15)

Middle temporal gyrus 21, 38, 39 0.1/0.8 3.0 (−56, −66, 28)/2.6 (62, −35, −8)

ALFF – IC 3

Positive

Superior frontal gyrus 6, 8, 9, 10, 11 14.3/14.1 6.6 (−21, 57, 28)/6.5 (18, 65, 16)

Middle frontal gyrus 6, 8, 9, 10, 11, 46 12.5/11.6 5.0 (−27, 59, 19)/5.6 (24, 62, 19)

Medial frontal gyrus 6, 8, 9, 10 4.9/4.5 4.7 (−3, 49, 42)/4.7 (3, 49, 42)

Inferior frontal gyrus 9, 10, 45, 46, 47 2.6/2.0 3.9 (−42, 55, 0)/2.9 (56, 10, 33)

Superior temporal gyrus 38 0.6/0.1 3.1 (−42, 19, −26)/2.2 (39, 22, −26)

FIGURE 4 | Classification accuracy based on selected group-discriminative components from mCCA + jICA for seven modal combinations.

precuneus. Similarly GM volumes in anterior and posterior cin-
gulate regions were correlated with positive symptoms (Choi et al.,
2005; Yan et al., 2012). Additionally, in Meda et al. (2012), similar

regions were also reported in resting state fMRI data, in which
anterior default mode and frontal-occipital regions have signifi-
cant correlation with the PANSS positive subscale in SZ. All these
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findings suggest a general hypothesis that psychotic symptoms
derive from functionally disconnected brain circuits, e.g., the dis-
integrated brain connectivity between medial frontal/prefrontal
and parietal networks in SZ (Zhou et al., 2007b). For FA_IC4,
the FA values in left ATR and SLF showed a significant negative
correlation with positive PANSS, consistent with (Caprihan et al.,
2008; Cui et al., 2011), suggesting that deficits of WM integrity
in left frontal-parietal lobe may also be involved in the patho-
physiology of positive symptoms. Finally, this data also supports
the hypothesis that the failure of left-hemisphere lateralization
might be involved in the pathophysiology of SZ (Szeszko et al.,
2005).

CLASSIFICATION BASED ON SELECTED ICs
The classification in Figure 4 shows that GM feature achieves the
best classification among three single modalities, consistent with
the fact that the selected GM components have much smaller p
values than ALFF or FA. The most powerful prediction can be
accomplished by using features from FA+GM, which is able to
detail the multifaceted pathology that is likely to be present in
SZ compared with single modality. Our results suggest that mul-
timodal fusion of the selected group-discriminative components
can improve the potential diagnosis prediction, in accordance with
Sui et al. (2009a) and Yang et al. (2010), however, fusing as many
modalities as possible in the training sample does not guaran-
tee best classification rates, as we showed here and reported in
Zhang et al. (2012); thus it would be helpful to compare a com-
bination of uni-modal and multimodal results, as we did in Kim
et al. (2010), to detect the potential biomarkers. We plan to pursue
this possibility in future work by using larger data sets and vari-
ous modalities, which aims to have bigger effect size and achieve
higher accuracy.

FUTURE WORK
In this paper we develop and evaluate a novel multivariate method
that can explore cross-information in multiple (more than two)
data types and applied it to compare SZ patients to controls using
an fMRI-DTI-sMRI combination. This is a novel attempt to per-
form a fusion of three different imaging modalities. The method
described here could be applied straightforwardly to study other
brain diseases (or subsets of a particular illness, such as psychotic
or non-psychotic bipolar disorder). In addition, the choice of
which multimodal data type to utilize is flexible, i.e., EEG, MEG, or
genetic data, different features like fractional ALFF (fALFF) from
fMRI (Kalcher et al., 2013) are also applicable. In a recent study,
we found both ALFF and fALFF to be interesting and decided to
start with ALFF (Turner et al., 2012), and will consider fALFF in
future work. Finally the proposed method is very computationally
efficient.

A limitation to the current study is that the subject number is
not very high. Several statistical tests did not survive from the mul-
tiple comparisons, which may be complemented in future studies
by including more subject samples or by multi-site recruitment.
Additionally, mCCA+ jICA operates on extracted features, rather
than the original imaging data (e.g., using FA values instead of
raw DTI data). Although some of the information is lost using
this method, a “feature” tends to be more tractable than work-
ing with the large-scale original data due to the reduced number
of dimensions (Calhoun and Adali, 2009) and provides a sim-
pler space to link the data (Smith et al., 2009). Note that in our
study we did not perform WM tractography but provided a type
of summary statistic. A major strength of mCCA+ jICA is that
it can discover changes in one modality, e.g., which are related to
alterations in distant, but connected regions in other modalities,
without requiring a direct link.

Another point worth noting is that we did not collect physio-
logic data during the rest fMRI session as studies of patients tend
to make this more difficult to collect. However it would be worth
evaluating this in future work. With the advent of more rapid scan-
ning (e.g., multiband sequences) which can adequately sample the
cardiac noise, it is becoming much more feasible to characterize
physiologic noise in large patient studies. We did not collect infor-
mation on nicotine use either in these subjects, which may have
potential effects on the imaging results, and would better be taken
into account in the future. For example, recent studies indicated
evidences of smoking effect in resting-state networks (Janes et al.,
2012) and more prevalence in subjects with psychiatric disorder
like SZ (Dickerson et al., 2013).

Multimodal fusion is an effective approach for analyzing bio-
medical imaging data that combines multiple data types in a
joint analysis. It helps to identify the unique and shared variance
associated with each imaging modality that underlies cognitive
functioning in HCs and impairment in mental illness. In this real-
world fusion application, we highlighted data from rest fMRI, WM
tract, and GM concentration from SZ and healthy control sub-
jects. We identified both modality-common and modality-unique
group-discriminating aspects that verified the abnormalities in SZ,
as well as replicated and extended previous findings. Such obser-
vations add to our understanding of the neural correlates of SZ.
The proposed model promises a widespread utilization in the neu-
roimaging community and may be used to identify potential brain
illness biomarkers.
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Increased BOLD sensitivity at 7T offers the possibility to increase the reliability of fMRI,
but ultra-high field is also associated with an increase in artifacts related to head motion,
Nyquist ghosting, and parallel imaging reconstruction errors. In this study, the ability of
independent component analysis (ICA) to separate activation from these artifacts was
assessed in a 7T study of neurological patients performing chin and hand motor tasks.
ICA was able to isolate primary motor activation with negligible contamination by motion
effects. The results of General Linear Model (GLM) analysis of these data were, in con-
trast, heavily contaminated by motion. Secondary motor areas, basal ganglia, and thalamus
involvement were apparent in ICA results, but there was low capability to isolate activation
in the same brain regions in the GLM analysis, indicating that ICA was more sensitive as
well as more specific. A method was developed to simplify the assessment of the large
number of independent components. Task-related activation components could be auto-
matically identified via these intuitive and effective features. These findings demonstrate
that ICA is a practical and sensitive analysis approach in high field fMRI studies, particularly
where motion is evoked. Promising applications of ICA in clinical fMRI include presurgical
planning and the study of pathologies affecting subcortical brain areas.

Keywords: independent component analysis, ultra-high field fMRI, presurgical planning, motor, neurology, motion,
artifacts

INTRODUCTION
Time-series SNR and BOLD sensitivity (BS) increase with field
strength (Triantafyllou et al., 2005; van der Zwaag et al., 2009;
Beisteiner et al., 2011; Duchin et al., 2012), motivating the use
of very high field for fMRI (Barth and Poser, 2011; De Martino
et al., 2011; Ugurbil, 2012). In clinical fMRI applications such as
presurgical planning (Roessler et al., 2005; Stippich, 2007) with a
patient cohort that may have limited tolerance in an fMRI session,
increased BS may allow the measurement time to be reduced, or
the reliability of fMRI findings to be increased for a particular
measurement time. Against this prospect of increased sensitivity
at ultra-high field stand a number of methodical challenges. In
clinical practice, the most significant of these is increased head
motion artifacts. Motion artifacts are the most frequent reason
for the failure of presurgical fMRI even at 1.5 T (Krings et al.,
2001). This study addresses the question of whether activation
may be isolated from motion and other artifacts in ultra-high
field fMRI using independent component analysis (ICA), and
assesses the specificity of activation maps derived with ICA com-
pared with those generated with the general linear model (GLM)
approach.

Head motion between image volumes generates signal changes
at contrast boundaries such as the ventricles and edge of the brain,
while displacement in the slice select direction during one TR leads
to spin history effects (Friston et al., 1996). Motion also introduces

dynamic non-linear distortions in regions of high susceptibility
gradients (Hutton et al., 2002; Robinson and Jovicich, 2011; Visser
et al., 2012) and increases Nyquist ghosting and parallel imaging
reconstruction artifacts (Poser et al., 2013). Head motion artifacts
are particularly severe in patient studies (Bullmore et al., 1999;
Seto et al., 2001) and at very high field, as parallel imaging recon-
struction artifacts, eddy currents, and B0 changes due to motion
increase (Beisteiner et al., 2011).

Head motion can be reduced to some extent using molded
cushions (Kearfott et al., 1984) or restraining masks or helmets
(Greitz et al., 1980; Fox et al., 1985; Edward et al., 2000). Some
residual motion will be present, however, particularly if jaw move-
ment is inherent to the task. While motion can be corrected for
prospectively by tracking the head position (Zaitsev et al., 2006;
Ooi et al., 2009; Qin et al., 2009), this cannot eliminate effects relat-
ing to motion during acquisition of a volume or changes to the
shim brought about by a modified head, jaw, or tongue position.
Motion-correction algorithms can improve the quality of fMRI
results (Oakes et al., 2005) but cannot correct for changing distor-
tions or spin history effects, and can also lead to false positive fMRI
results (Wu et al., 1997; Freire and Mangin, 2001). Motion parame-
ters can be included in a GLM as nuisance variables. This reduces
motion contamination, particularly in event-related designs (Birn
et al., 1999), but substantially reduces BS when even moderate cor-
relation exists between motion and task (Johnstone et al., 2006).
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In short, while a range of strategies exist to minimize and correct
for motion, some level of motion artifacts will remain, particu-
larly in ultra-high field fMRI with tasks which necessitate some
motion, such as overt speech (Foki et al., 2008) and motor tasks,
particularly of the jaw or feet. If motion is uncorrelated with the
stimulus these effects lead to increased residuals after fitting with
a GLM, which reduces BS (Friston et al., 1996). If they are time-
locked to the stimulus they can lead to false positive results in a
GLM (Hajnal et al., 1994).

Spatial ICA is a promising alternative analysis approach to iso-
lating activation in data containing motion effects since it identifies
signal sources on the basis of spatial independence rather than the
temporal similarity between stimulus and response. As well as
proving effective in identifying activation in conventional fMRI
experiments (McKeown et al., 1998), ICA can detect BOLD signal
changes resulting from epileptic events (LeVan and Gotman, 2009)
and multiple neuronal networks to be separated in such challeng-
ing contexts as natural stimulation (Malinen et al., 2007) and the
resting state (Beckmann et al., 2005).

Independent component analysis has proved capable of sep-
arating activation from computer-simulated motion (McKeown
et al., 1998). In the context of real motion, however, ICA has, to
date, been used as a filtering tool (Kochiyama et al., 2005; Tohka
et al., 2008; Kundu et al., 2012) or to motion-correction data (Liao
et al., 2006). In this study, we test ICA as the primary means to iden-
tify activation in data containing real motion effects. Our study
hypotheses were:

1. that ICA would allow a near complete separation of stimulus-
correlated motion and activation, even where there are devi-
ations from task timing or modified HRF in the region of
pathology and

2. that it would be possible to identify one or more components
reflecting task-relevant activation automatically on the basis of
temporal and/or spatial characteristics, or “features.”

These hypotheses were tested in a clinical study involving chin
and hand motion tasks at very high field.

MATERIALS AND METHODS
PATIENTS
All patients participated in the study, which was approved by the
Ethics Committee of the Medical University of Vienna, with writ-
ten informed consent. In the case of minors this was provided by
legal guardians. Patients were referred for functional localization
of essential motor cortex (primary hand representation – typically
localized in the precentral“knob”(Yousry et al., 1997) and primary
chin representation – typically the most lateral and inferior part of
primary motor cortex) by physicians who were not involved in this
study. Most referrals were for surgical planning prior to excision
of a tumor. All patients were in a good general state of health at the
time of measurement and were able to perform the tasks. Those
patients undergoing chin localizations showed normal masticatory
function and those undergoing hand localizations could move the
relevant hand against resistance. One patient from the Chin group
was excluded due to poor performance (difficulty following task
timing). Ten patients remained in the Chin study (age range 8–
55 years old, mean age 30± 16 years old, 5 females); see Table 1
for demographic and clinical details. The Hand study consisted of
12 patients (age range 11–61 years old, mean age 31± 17 years old,
5 females); see Table 1.

TASKS
The functional chin paradigm was repetitive opening and closing
of the mouth with a target of one open and close cycle per second.

Table 1 | Patient demographics.

Patient ID Head coil

(# elements)

Age Gender Number

of runs

completed

Pathology

Chin Hand Chin Hand

C1 H1 24 55 F 12 7 Left precentral tumor, unknown origin

C2 H2 24 32 F 12 8 Temporal lobe resection left (status post glioblastoma)

C3 H3 24 11 M 10 5 Fronto-central focal cortical dysplasia right

C4 H4 24 21 M 12 8 Right central tumor, unknown origin

C5 H5 8 36 M 12 8 Right frontal tumor, unknown origin

C6 H6 24 28 M 11 8 Oligodendroglioma II., frontal lobe right

C7 H7 32 54 F 10 8 Left parietal tumor, unknown origin

C8 H8 32 14 M 10 8 Extra-temporal epilepsy

C9 H9 32 21 F 12 8 Temporal lobe epilepsy right, status post partial temporal lobe resection right

H10 24 61 F 4 Suspected precentral glioma right

H11 24 14 M 10 Cryptogenic epilepsy of the right parietal lobe

H12 24 21 M 7 Fibrillary astrocytoma (grade 2), temporal lobe epilepsy right

C10 32 8 F 8 Focal cortical dysplasia frontal and occipital

Patients who performed the chin task have patient IDs beginning with “C” and those who performed the hand task “H.” These IDs are used in other images and

descriptions in the text.
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The movement was self-paced and symmetrically performed in a
blocked design. The hand task was a repetitive opening and closing
of the affected hand with the eyes open. For both tasks, each run
consisted of four rest and three movement phases of 20 s (eight
volumes). Patients were asked to perform 20 runs in total if they
were able. If a number of tasks were performed in the same scan
session (e.g., chin, hand, foot localizations), the task for each run
was communicated prior to the beginning of the run. Commands
to begin and stop movement were communicated via headphones
during image acquisition.

fMRI ACQUISITION
Images were acquired with a 7 T Siemens MAGNETOM scan-
ner (Siemens, Erlangen, Germany). Three different head RF coils
were used, as hardware upgrades were undertaken during the
study. These were an 8-channel coil (Rapid Biomedical,Würzburg,
Germany), a 24-channel coil (Nova Medical, Wilmington, MA,
USA) and a 32-channel coil (Nova Medical). Table 1 lists which
coil was used for each patient measurement. To minimize head
movement, plaster helmets were individually constructed for each
patient (Edward et al., 2000). Functional MRI data were acquired
with a 2D single-shot gradient echo (GE) EPI sequence, with 34
slices acquired parallel to the AC-PC plane, with a matrix size of
128× 128, FOV = 230 mm× 230 mm (nominal 1.8 mm× 1.8 mm
in-plane resolution), 3 mm thick slices with 0.3 mm gap. This EPI
protocol has been used in a number of prior studies with neu-
rological patients at 3 T (e.g., Foki et al., 2007; Beisteiner et al.,
2010), and has been validated in clinical application at 7 T (Beis-
teiner et al., 2011). The resolution is in the higher resolution
regime in which physiological noise is minimized and the high-
est BS gains are expected with field strength (Triantafyllou et al.,
2005). Three dummy excitations were performed before acquisi-
tion of 56 volumes per run. TE/TR were 22/2500 ms, and partial
Fourier encoding was used, with omission of the first 25% of
phase-encoding steps, receiver bandwidth was 1445 Hz/pixel, and
parallel imaging with GRAPPA (Griswold et al., 2002) was used
with a factor of 2.

High-resolution T1-weighted MR images were acquired using
a 3D MPRAGE sequence with a matrix size of 320× 320× 224,
with 0.7 mm isotropic resolution, flip angle of 9°, and GRAPPA
acceleration factor 2; acquisition time 7 min 57 s.

fMRI PREPROCESSING
Acquisition, preprocessing, and analysis steps are schematically
illustrated in Figure 1.

Image preprocessing was carried out in general accordance
with the approach used by the Clinical fMRI Study Group at the
Department of Neurology of the Medical University of Vienna
for presurgical mapping (e.g., Foki et al., 2007; Beisteiner et al.,
2010, 2011). For the single-subject analysis, the following prepro-
cessing steps were carried out, with FSL (Smith et al., 2004), in
the native space of the high-resolution EPI of each patient. Each
run was registered to the first volume of the middle run using
FLIRT (Jenkinson et al., 2002), with 12 degrees of freedom, after
which runs were concatenated. In the GLM, temporal concatena-
tion equates to a fixed effects analysis in which run is treated as a
fixed effect, a valid approach if there is signal stability between runs

Motion Correction
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2

3

1

2

3

1

2

3

...

Run 1

...

Run 2

Run 3

ICA GLM

Runs concatenated

...
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.........

IC 2
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...... ... ... ... ...
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Using Features
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FIGURE 1 | A schematic representation of data processing steps for
each patient in the main analysis.

and no inferences are to be drawn about a group. No slice timing,
normalization, or spatial smoothing was performed. These data
were analyzed with MELODIC ICA (Beckmann and Smith, 2004).
For GLM analysis, the concatenated time-series was addition-
ally motion-corrected using MCFLIRT (Jenkinson et al., 2002).
Non-brain tissue was also removed using BET (Smith, 2002), the
grand-mean intensity of the entire 4D dataset was normalized
using a single multiplicative factor and high-pass temporal fil-
tering was applied (Gaussian-weighted least-squares straight line
fitting, with sigma= 20.0 s).

GLM ANALYSIS
Analysis was carried out using FSL’s FEAT (Smith et al., 2004). The
six parameter rigid-body transformations determined in motion
correction were included in the analysis model as confounds.
Time-series statistical analysis was carried out using FILM with
local autocorrelation correction (Woolrich et al., 2001). Resulting
statistical z-images were first thresholded at Z > 2.3 to determine
continuous clusters. Each resulting cluster was then compared
against a (corrected) cluster significance threshold of P < 0.05
using Gaussian random field theory (Worsley, 2001).

The possibility the GLM may be able to provide an improved
separation of activation and motion-related artifacts at higher sta-
tistical thresholds was investigated by closely examining results
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over a range of thresholds. In supplementary analyses, the pos-
sibility of reducing motion-related artifacts in GLM results via
cluster size was evaluated by using larger cluster extent thresholds.
The possibility that using no cluster thresholding might reveal
activation in the basal ganglia and thalamus in GLM results was
assessed by applying no cluster extent threshold.

To explore additional possibilities for reducing motion artifacts,
GLM analysis was also repeated (i) with the inclusion of the tem-
poral derivatives of motion parameters (in addition to the motion
parameters themselves), (ii) on data which were smoothed with a
Gaussian kernel with FWHM of 5 mm, and (iii) in a subject-level
analysis, rather than a temporal concatenation analysis.

INDEPENDENT COMPONENT ANALYSIS
Probabilistic ICA was carried out with FSL’s MELODIC (Beck-
mann and Smith, 2004). No temporal filtering was performed on
the assumption that the signal was stable and that ICA would
prove capable of isolating minor drifts, if present, in separate
components. Non-brain voxels were masked before voxel-wise
de-meaning of the data and a normalization of voxel-wise vari-
ance. Pre-processed data were whitened and projected into an
n-dimensional subspace using probabilistic principal component
analysis. The number of components into which the data was
decomposed (the model order) was estimated for each patient
using the Laplace approximation to the Bayesian evidence of the
model order (Beckmann and Smith, 2004).

AUTOMATED IDENTIFICATION OF SALIENT ICs
Several hundred components may be generated in the analysis of
data from each patient. From these, the single component or small
number of components which reflect task activation must be iden-
tified. In MELODIC, components are ordered by the percentage
of the total signal variance in the data for which they account.
In the presence of motion and other artifacts, task-related activa-
tion often appears low in the list, meaning that a large number of
components need to be assessed.

One or more ICs related to task activation were identified by
a clinical fMRI expert (RB), who assessed all components for all
patients. The identification was based on the presence of clear
activation in primary and secondary motor areas, with consid-
eration of the effects of the brain pathology (e.g., cluster divi-
sions), supported by time courses which approximately accorded
with that expected from the paradigm, and with reference to the
clinical report (the local gold standard) (Beisteiner et al., 2000,
2008).

Automatic identification of task-activation components was
implemented via ranking of components on the basis of spatial
and temporal features. Three features were implemented. The first
was the value of the correlation between each IC spatial map
and the GLM t-map (“GLMcorr”). The second was the correla-
tion between each IC spatial map and a mask for the precentral
gyrus (“TEMPLATEcorr”). The third feature was the correlation
between the frequency distribution of ICs and the frequency distri-
bution of the model regressor (“SPECcorr”). For the third feature,
correlation between frequency spectra rather than time courses
was used to ensure sensitivity to responses which could be delayed
due to modified HRF or late task performance (Moritz et al., 2003),

and to reduce sensitivity to low frequency behavior such as drift.
All features were programed in MATLAB (Mathworks Inc, Natick,
MA, USA).

GLMcorr was calculated as the correlation between in-brain
voxels in the unthresholded IC maps and the unthresholded Z -
statistic map for the sole contrast of interest in the GLM, using
MATLAB’s “corrcoef” function.

The Harvard-Oxford template (Desikan et al., 2006)1 was used
for the calculation of the TEMPLATEcorr feature. This proba-
bilistic atlas assigns unique numerical labels to 48 cortical and 21
subcortical regions. For the TEMPLATEcorr feature, the Harvard–
Oxford template was converted to a precentral gyrus mask by
converting atlas values of 7 (the template value for the precentral
gyrus) to 1, and setting all other values to 0. This mask was reg-
istered to the space of each patient’s EPI using a transformation
derived as follows. First, the MNI T1 brain (i.e., skull-stripped)
template, which is in the same space as the Harvard-Oxford tem-
plate, was coregistered, using FLIRT (Jenkinson et al., 2002), to
patients’ MPRAGE structural scans, which had been bias-field
corrected with FAST (Zhang et al., 2001), and skull-stripped
using BET (Smith, 2002). This defined the first transformation
matrix. Secondly, each patient’s skull-stripped, bias-field corrected
MPRAGE was coregistered to the middle EPI of the concatenated
time-series. This defined the second transformation matrix. The
two transformations were combined to define the transformations
from the template space to the space of each patient’s EPI. The cor-
relation between the precentral gyrus of this template and each IC
map was calculated.

For the SPECcorr feature, the frequency distribution of each IC,
calculated using MELODIC, was correlated with the frequency dis-
tribution associated with the predicted responses. This latter was
calculated as the Fourier transform of the convolution of a regres-
sor for the ON and OFF task periods convolved with a HRF. The
HRF was generated with the statistical parametric mapping (SPM)
software (Friston et al., 1995) using the function spm_hrf.m, in the
SPM8 version2, using default values for the parameters (p) of the
response. The convolution and Fourier Transform were carried
out in MATLAB.

TIME-COURSE ANALYSIS
To assess the signal behavior in activated areas virtually free from
bias of analysis approach (ICA or GLM), the mean time courses
(over runs) of voxels in the left and right primary motor areas
(PMA) were calculated for each patient, and averaged over runs.
VOIs were coboids sized 9× 9× 9 voxels centered on the peak
voxel in the ICA results in the left and right motor cortex. The
ICA results were chosen because they were cleaner, but selection
of the GLM peak voxels would not significantly affect results, as
these were close to ICA peak voxels, and VOIs were large.

INDEPENDENT ASSESSMENT OF ACTIVATION
To provide an additional means to assess the validity of GLM
and ICA results, activation maps were also generated with the
“risk map” approach (Beisteiner et al., 2000, 2008); a correlation

1http://www.cma.mgh.harvard.edu/fsl_atlas.html
2http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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analysis over a range of thresholds and with shifted regressors
to generate a map of a small number of highly reliably acti-
vated voxels. This method has been validated via reference to
Direct Electrocortical Stimulation (Roessler et al., 2005), and
is used locally as a clinical gold standard to generate clinical
reports.

RESULTS
EXTENT OF HEAD MOTION
Patients in the Chin group completed between 8 and 12 runs (aver-
age 11.0± 1.4),and those in the Hand group between 4 and 10 runs
(average 7.4± 1.6). Rigid-body motion correction yielded three
translation vectors (x, y, z) and three rotation vectors (roll, pitch,
yaw). These were reduced to two representative metric vectors, one
for translation – the root-mean-square (RMS) translation and one
for rotation – the sum of the magnitudes of the individual angles
(i.e., disregarding sign). Over all patients and all runs in the Chin
group, the mean RMS displacement was 0.43± 0.45 mm, and the
mean rotation 0.0078± 0.0083 rad. Corresponding values for the
Hand group were a mean RMS displacement of 0.107± 0.058 mm
and a mean rotation of 0.0035± 0.0030 rad.

CHIN TASK
General linear model
There were no significant signal discontinuities between runs.
Motion artifacts were identified as suprathreshold voxels either
on the edge of the brain or at high contrast boundaries or in
areas affected by Nyquist ghosts (Hajnal et al., 1994; Robinson
and Moser, 2004; Beckmann, 2012). This attribution was sup-
ported by an assessment of the independent components whose
time courses correlated best with motion parameters (not shown).
Motion artifacts were present in all GLM results at a cluster-
corrected threshold of P < 0.05 (Figure 2, left). Partial volume
motion artifacts manifested as suprathreshold voxels either on the
edge of the brain or at high contrast boundaries. These were appar-
ent in the GLM results of patients C2, C4, C5, C7, and C8 (Figure 2,
left, at yellow arrows). Broad areas of false positive results, tenta-
tively ascribed to reconstruction artifacts, were present in GLM
results of patients C1, C2, C4, C5, C6, and C10 (Figure 2, left,
at cyan arrows). Typically these artifacts were reduced at higher
thresholds but did not disappear. Increasing the cluster extent
threshold did not help to reduce motion artifacts, as they were
large and distributed. Inclusion of the temporal derivatives of

ICA
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FIGURE 2 | A comparison of GLM and ICA analyses of 7T fMRI data with
a chin task. GLM results are contaminated by motion artifacts (yellow and
cyan arrows). ICA components show no motion contamination and bilateral
activation throughout primary motor areas. Activated areas not present in

corresponding GLM results, or not distinguishable from artifacts, are
indicated by magenta arrows. White vertical lines separate sample slices
covering the basal ganglia from those showing primary motor regions. All
brain images are displayed in radiological convention.
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motion parameters in the analysis (in addition to the motion
parameters themselves) led to a moderate reduction in the arti-
fact level in two patients (C7 and C9, not shown) but not in other
patients. Smoothing data prior to GLM analysis increased signif-
icance values in both artifacts and activation clusters, leaving the
overall pattern of suprathreshold voxels smoother, but broadly
unchanged. The contamination of GLM results by artifacts was no
lower in subject-level analysis than in the temporal concatenation
analysis reported here throughout. Basal ganglia activation present
in ICA results but not GLM is indicated in Figure 2 by magenta
arrows in lower slices.

Despite artifacts, it was possible to identify the perirolandic
area via detection of central sulcus activation in all patients. Acti-
vation was not apparent in some known motor regions, however
(Figure 2, magenta arrows). In many patients there was no clearly
segregable activation in the basal ganglia and thalamus. The extent
to which motion artifacts and low sensitivity to basal ganglia acti-
vation may be threshold effects is investigated in Figure 3, and
reported in Section “Additional Task-related Components.”

Independent component analysis
A task-activation component was identified for all patients. Bilat-
eral precentral gyrus activation was identified in these, with no
contamination by motion artifacts (Figure 2, right column). Acti-
vation was confirmed to correspond to the clinical report and
also to the GLM results (Table 2). Subcortical motor activa-
tion, in the basal ganglia, was also present in all patient’s results
other than C9 (Figure 2). This was evaluated and judged, on
a neuroanatomical and neurophysiological basis, to be plausible
task-related activation.

Separate resting-state networks in motor regions (Biswal et al.,
1995) and the basal ganglia (Robinson et al., 2009), which are
known from other studies to persist during task execution (Fox
et al., 2007; Calhoun et al., 2008) could also be identified in the
ICA results of a number of patients (not shown).

Comparison of GLM and ICA
Primary motor activation in ICA generally extended into more
inferior parts of the motor strip and was more concordant with
known motor regions than GLM results, and motion artifacts
were dramatically reduced (Figure 2). Basal ganglia activation
associated with the motor task was apparent in most patients’
ICA results, but not GLM results. GLM results in the basal gan-
glia were not substantially changed when no cluster extent size
was imposed, regardless of the statistical threshold at which these
results were assessed. This demonstrates that the low sensitivity of
GLM in subcortical regions was not a cluster extent or a thresh-
olding effect. Thalamic activation was present in all patients’ ICA
results other than those of C9, and in the putamen in the results
of all patients other than C1 and C9 (Figure 2). Artifacts were
also lower in ICA results than in high-threshold GLM images
(Figure 3).

For patients C1, C2, C5, C6, C7, C8, and C10, the most infe-
rior and lateral extent of primary motor activation merged with
motion artifacts in the GLM analyses, so that their detection was
much more difficult, regardless of the statistical threshold. Table 2
lists the extent to which activation could be detected with GLM

and ICA in cortical and subcortical regions. GLM and ICA results
are compared over a range of GLM thresholds in Figure 3 in slices
which indicate increased ICA sensitivity.

HAND TASK
General linear model
General linear model results for patients H1, H2, H4, H5, H8, H9,
H10, H11, and H12 were subject to significant contamination by
motion artifacts at a cluster-corrected threshold of P < 0.05. These
artifacts appeared as areas of false positive results on the edge of the
brain and/or at boundaries between high contrast areas (Figure 4,
at yellow arrows). Wide areas of false positives were also present
in H1, H8, and H9 (cyan arrows), originating from reconstruction
errors for these GRAPPA-accelerated acquisitions.

Despite contamination by false positive voxels, activation in the
contralateral primary motor area, responsible for hand motion,
was detected in all the patients. However, activation in the sup-
plementary motor area was difficult to identify due to motion
artifacts in H1 and could not be identified in H3 with the GLM at
this threshold (magenta arrows). Thalamic activation was present
bilaterally in patient H7 and unilaterally in patients H2, H3, H4,
H5, H6, H8, H11, and H12. No thalamic activation was evident in
patients H1, H9, and H10.

Basal ganglia activation was present in H3, H4, H5, H6, H7, H8,
H11, and H12, depicting the putamen either bilaterally (H4, H5,
H6, H7, H11, H12) or unilaterally (H3, H8). The posterior part
of the left putamen was apparent in H1, but not the right, due to
the presence of GRAPPA artifacts. No basal ganglia activation was
detected with the GLM in H2, H9, and H10.

Independent component analysis
Clear and well-defined activation of the contralateral primary
motor area was evident in one or more components in the ICA
results for each of the 12 patients. There was little or no motion-
related artifact contamination at a canonical Gaussian mixture
model threshold of 0.5. Activation in the supplementary motor
area was clearly depicted in all the patients.

Activation of subcortical structures, such as the thalamus and
the putamen, was evident in the ICA results for all patients except
for H9 and H10. A small number of voxels corresponding to acti-
vation in the right putamen and in the right thalamus were visible
in H3.

Motion artifact level was higher in ICA results in H7 than
in other patients, though activation in the primary and supple-
mentary motor regions and in the basal ganglia (putamen and
thalamus) was still clearly visible.

Comparison of GLM and ICA
There was a high level of consistency in all the patients between
PMA identified as being activated using GLM and ICA. Motion-
related false positive results were more prominent in GLM results,
in which detected activation was in many cases highly contam-
inated. Motion-related false positives were strongly reduced in
both cortical and subcortical regions in ICA results for all patients
except for H7, in which the quality of the results was similar in
GLM and ICA.

Independent component analysis results for patient H1 show
a clear advantage over the GLM results in the depiction of

Frontiers in Human Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 496 | 195

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Robinson et al. ICA of 7T clinical fMRI

 z=2.3

11.9

 z=2.2

33.3 15.715.715.715.715.7

 z=0.3  z=1.3  z=3.6  z=6.9 z=2.3

18.1 18.1 18.1 18.1

 z=2.3  z=3.6  z=5.2  z=6.9

18.1

 z=1.3

 z=2.2  z=0.3  z=0.7  z=0.9  z=1.3  z=2.3

7.1 7.17.17.17.1

 z=0.3

 z=6.9

 z=6.9

 z=6.9

14.314.314.3

 z=1.3  z=2.3

18.318.318.318.318.3

 z=1.3  z=2.3

17.617.617.617.6

 z=1.3  z=2.3

 z=0.9  z=1.3  z=2.3  z=3.9

 z=2.3  z=3.6  z=5.2

19.6 19.6 19.6 19.6 19.6

20.4 20.4 20.4 20.4 20.4

10.5

35.3

28.0

22.0

30.8

17.8

26.9

25.7

14.1 14.1 14.1 14.1 14.1

16.7 16.7 16.7 16.7 16.7

14.3 14.3

17.6

 z=1.3

 z=1.3  z=2.3  z=3.6  z=5.2

 z=3.8

 z=2.8

 z=3.6

 z=2.5

 z=2.8

 z=2.7

 z=2.5

 z=1.3  z=2.3  z=3.6  z=5.2

 z=0.7  z=3.9  z=4.3

 z=0.7  z=3.9  z=4.3

 z=0.7  z=3.9  z=4.3

  C2

  C3

  C4

  C5

  C6

  C7

  C8

C10

  C9

  C1

ICA GLM

FIGURE 3 | Examination of the activation visible in GLM results over a
range of thresholds (chin task). Activation visible in independent
components and GLM results is compared in a single slice. The threshold
corresponding to a GLM cluster-corrected P =0.05 is indicated by a yellow

spot. Activation maps are illustrated at higher and lower thresholds than this
to allow the ability to separate activation and motion in GLM results to be
assessed. Clusters which are substantially better defined in ICA are indicated
by green arrows.

activation in the putamen. The anterior part of the right puta-
men and the left putamen are easily identified in ICA results, with
no surrounding false positives, whereas in the GLM results the

anterior part of the right putamen is not visible, even at higher
thresholds, and only the posterior part of the left putamen is clearly
depicted.
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Table 2 | A comparison of the ability of the GLM and ICA to detect

activation in cortical and subcortical sensorimotor areas in the chin

task.

Patient Cortical sensorimotor

activity (perirolandic

cortex)

Subcortical sensorimotor

activity (basal

ganglia/thalamus)

GLM ICA GLM ICA

C1 y y (y) y

C2 y y n y

C3 y y (y) y

C4 y y n (y)

C5 y y (y) y

C6 y y y y

C7 y y n y

C8 y y (y) y

C9 y y n n

C10 y y (y) y

GLM results were assessed at a number of statistical thresholds. Activation was

marked as unequivocally present “y,” arguable “(y),” or not detectable “n.” A clear

benefit for detection of subcortical activation was evident with ICA, with better

depiction of the basal ganglia in 8 out of 10 patients.

Table 3 details the extent to which activation could be detected
with GLM and ICA in cortical and subcortical regions.

ADDITIONAL TASK-RELATED COMPONENTS
For patients C4, C5, C7, and C8, only one component was related
to task-related motor activation. For C1, C2, C3, C6, C9, and C10,
some task-related activation was present in additional compo-
nents. In most cases this was secondary motor and basal ganglia
activation. These components are illustrated in Figure 5. For C1, a
component was identified which showed activation mainly on the
side of the pathology, in face-M1. The time course of this second
component suggests that it was dominated by activation in a sin-
gle run. A component for C2 detected secondary motor regions,
including the precentral sulcus and SMA, indicating the capacity
for ICA to separate subnetworks of motor function. This compo-
nent was associated with a more rapidly fluctuating time course
than the primary component. A component for C3 contained
both pre-SMA, SMA, precentral sulcus, and posterior parietal acti-
vation, again demonstrating ICA’s ability to separate PMA from
secondary areas responsible for motor planning and sensorimotor
integration. Neither this nor the primary motor IC showed a time
course which correlated well with the stimulus (see Figure 6). An
additional component of interest for C6 included participation of
the basal ganglia, particularly the thalamus, with activation also
in the SMA and right perirolandic area on the pathological side.
The time-course of this IC was similar to that of the main com-
ponent but was dominated by later runs. A secondary component
for C9 showed activation in the precentral sulcus and inferior
parietal regions, language-related areas, including Wernicke’s area
arising from the response to auditory command and possible
vocalization. An additional component for C10 showed activa-
tion in primary motor area (left hemisphere) and the postcentral

sulcus (right hemisphere), reflecting sensorimotor integration
(Figure 5).

In H4, the main component shows the predicted activation
in the right hemisphere (see Figure 4, which uses radiological
convention). An additional task-related motor component was
found for patient H4 (see Figure 5), which represents bilateral
integrative parietal activity and additional M1 activation in the
left hemisphere, in response to motion of the left hand. This could
be interpreted as auxiliary M1 activation due to paresis elicited by
motion of the contralateral arm. The time course associated with
this activation is delayed, so was not detected in the GLM analysis.

An additional bilateral component was also found for patient
H9. This was interpreted as representing activation in the face area.
The time course of this component is counter to that of the task,
indicating that it could be associated with facial movements dur-
ing the rest phases or with systematic reduction in perfusion in the
face area.

TIME COURSES
With the exception of patients C2 and C3, time-courses in the
PMA in the chin task accorded well with the prescribed timing;
four rest periods (A) and three task periods (B) of equal duration,
presented in an ABABABA design (Figure 6). Time courses in
PMA in C2 and C3 are non-model-conform (see graphs outlined
red in Figure 6), and GLM results show high levels of noise as well
as activation in the PMA. Clean activation is detected in the ICA
results, however, indicating that characteristic signal changes take
place in the PMA, despite a lack of conformity with the model.

Time courses for the hand task were in good agreement with
the prescribed timing, which was identical to that in chin task
(Figure 7).

MOTION ARTIFACTS
Independent component analysis allows contributions to the
motion artifacts in GLM to be separated into contributing sources
and assessed in more detail. We examine these here as an aside from
the central aim of this study. Examples of the most prominent arti-
facts are illustrated in Figure 8, for a single patient, C5, along with
tentative attribution of their origin. Artifacts labeled “A” and “B”
in Figure 8 arise from motion in the anterior-posterior direction,
and manifest at contrast boundaries; the edge of the brain and the
borders of gyri. Artifact “C” reflects motion in the through-plane
direction, and presents as an outline of the ventricles. One compo-
nent indicates rapid intensity fluctuations in the Nyquist ghost of
a single slice (“D”). Component “E” likewise occurs in a Nyquist
ghost region but occurs in every second slice of the volume (which
was acquired interleaved), and shows interference with the signal
in the main image. These components were identified by their
similarity with those reported in Beckmann (2012).

AUTOMATIC IDENTIFICATION OF SALIENT ICs
In MELODIC, independent components are ranked by the per-
centage of total variance in the data that they explain. Primary
task components in the Chin group (which had been identified by
an expert) were ranked by variance on average in position 145± 48
out of a total of 194± 73 components (with quoted errors being
one standard deviation). In the single-patient analysis of the hand
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FIGURE 4 | A comparison of GLM and ICA analyses of 7T fMRI
data with a hand task. The same thresholds were applied as in
Figure 2. Activation in the basal ganglia and thalamus is indicated by

arrows in ICA. Activated areas not present in corresponding GLM
results, or not distinguishable from artifacts, are indicated by
magenta arrows.

task, they were ranked in position 92± 36 out of 126± 43. Primary
motor components were ranked more highly using the features
tested; GLMcorr, TEMPLATEcorr, and SPECcorr. Of these, both
GLMcorr and TEMPLATEcorr were highly effective. Over the Chin
and Hand tasks, the primary activation component was ranked
in position 1.8± 1.0 using TEMPLATEcorr, in position 2.6± 6.6
using GLMcorr and 17± 47 using SPECcorr. A full list of compo-
nent rankings by feature is given in Tables 4 and 5 for the Chin
and Hand groups, respectively. The potential of the GLMcorr and
TEMPLATEcorr features to discriminate from other components
is demonstrated in Figure 9.

DISCUSSION
Independent component analysis of 7 T fMRI data acquired
from neurological patients performing chin and hand tasks
cleanly separated primary motor activation from motion artifacts.

Secondary motor areas and the basal ganglia and thalamus could
also be distinguished in most patients. A single (default) ICA
threshold was appropriate to be able to visualize PMA bilat-
erally in all patients. GLM analysis of the same data was, in
contrast, contaminated by severe motion artifacts arising from
partial volume and spin history effects, increased Nyquist ghost-
ing and parallel imaging reconstruction noise. This was despite
the use of effective head fixation, motion correction, and the
inclusion of motion parameters in the analysis model. Because
of these artifacts, GLM results had to be assessed over a range
of statistical thresholds in order to be able to identify primary
motor activation. The participation of some secondary motor
regions and subcortical regions could, in many patients, not be
distinguished from artifacts in GLM results. The advantages of
ICA were particularly evident in patients whose responses devi-
ated – either because of locally modified hemodynamics or because
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Table 3 | A comparison of the ability of the GLM and ICA to detect

activation in cortical and subcortical sensorimotor areas in the hand

task.

Patient Cortical sensorimotor

activity (perirolandic

cortex)

Subcortical sensorimotor

activity (basal

ganglia/thalamus)

GLM ICA GLM ICA

H1 y y (y) y

H2 y y (y) (y)

H3 y y (y) (y)

H4 y y y y

H5 y y y y

H6 y y y y

H7 y y y y

H8 y y y y

H9 (y) y n n

H10 y y n n

H11 y y y y

H12 y y y y

GLM results were assessed at a number of statistical thresholds. Activation was

marked as unequivocally present “y,” arguable “(y),” or not detectable “n.” ICA

detected cortical sensorimotor activation in one patient in which it was not clearly

visible in GLM (H9), and in the basal ganglia in one patient in which it was not

detectable in GLM (H1).
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FIGURE 5 | Additional motor components identified in the ICA results
of chin patients C1, C2, C3, C6, C9, C10, H4, and H9.
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FIGURE 6 | Mean responses in voxels in primary motor areas in the
chin task. Time courses in PMA in C2 and C3 (outlined in red) are
non-model-conform, and correspond with low sensitivity in GLM results
(left) but not ICA (right).

task execution strayed from the intended task timing – from the
model.

Previous studies have used ICA to identify and remove non-
activation components (Kochiyama et al., 2005; Tohka et al., 2008).
The features implemented included slice-to-slice signal variation,
brain boundary signal, and time-course heteroscedasticity, which
are very different from the features we applied here, which were
targeted at identifying activation rather than artifacts. While arti-
fact removal using ICA was successful in those prior studies at 1.5
and 3 T, it would be substantially more challenging to correctly
identify only artifacts in the data acquired in this study, particu-
larly in the chin task. At 7 T, signals resulting from motion – partial
volume effects, spin history effects, parallel imaging artifacts, and
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B0 changes – account for a larger proportion of the total variance
than at lower field strength, and motion effects manifest with very
different spatial signatures. As such, there is increased likelihood
that some motion-related components would not be identified
by the algorithms proposed (false negatives), or that activation-
related components be erroneously removed (false positives). For

A

B

C

D

E

FIGURE 8 | Motion artifact components isolated in data from Chin
patient C5. These artefacts are attributed to motion in the anterior-posterior
direction (A, B), through-plane motion (C), fluctuating Nyquist ghost (D, E).

that reason, a direct analysis with ICA, with ranking/classification
of components, would seem to be a more promising option than
filtering with ICA prior to GLM analysis.

The model orders estimated in this study (mean± SD over
patients: 194± 73) were much higher than those reported by
Tohka et al. (2008). This is likely to be because our concatenated
runs were longer and the data itself more complex, due to the
artifacts induced by the task combined with higher resolution, the
use of GRAPPA, and very high field. In a study into model order,
Abou-Elseoud et al. (2010) found that 70± 10 components were
appropriate for PICA of the 1.5-T data they considered, but that
“Different model orders may be found more optimal when higher
field strengths and higher resolutions are used.” Our findings
support those authors’ conclusions.

Resting-state networks in motor regions (Biswal et al., 1995)
and the basal ganglia (Robinson et al., 2009), which are known
from other studies to persist during task execution (Fox et al.,
2007; Calhoun et al., 2008) (and which are also known as “Tem-
porally Coherent Brain Networks” in this context) could also be
identified using ICA in this study. This is of particular relevance
for patients who may have difficulty performing motor tasks, as
others studies have shown that the sensorimotor area can be local-
ized with resting-state measurements in presurgical populations
(Kokkonen et al., 2009).

Recent implementations of ICA (Calhoun et al., 2001; Beck-
mann et al., 2005) make it a simple analysis to perform. The
identification of relevant, activation-related component(s) can,
however,be time-consuming,given a large number of independent
components. The use of ranking according to one of a number of
simple features greatly simplifies this problem. When components
were correlated with a precentral gyrus mask, the primary motor
component was ranked in position 1 for most patients, and within
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Table 4 | Summary of the total number of components identified in

the Chin group (No. ICs) and ranking of the primary motor component

in the list by (i) percentage of variance explained (MELODIC default)

(ii) GLMcorr: the correlation between IC spatial map and GLM t-map

(iii)TEMPLATEcorr: the correlation between IC spatial map and a

precentral gyrus template (iv) SPECcorr: the correlation between the

frequency spectra of model time courses and frequency spectra

of IC.

Patient ID No. ICs Primary motor IC position in ranking by

Variance

(i)

GLMcorr

(ii)

TEMPLATEcorr

(iii)

SPECcorr

(iv)

C1 234 132 1 2 4

C2 205 191 2 2 18

C3 138 129 32 1 223

C4 200 155 1 1 15

C5 250 159 5 2 16

C6 118 110 1 1 10

C7 209 167 1 1 19

C8 163 162 1 1 5

C9 256 113 1 1 16

C10 165 138 1 1 1

Median 203 147 1.0 1.0 15.5

Mean 194 145 4.6 1.3 32.7

SD 73 48 9.7 0.5 67.2

Table 5 | Summary of the total number of components identified in

the Hand group (No. ICs) and ranking of the primary motor

component in the list by (i) percentage of variance explained

(MELODIC default) (ii) correlation between IC spatial map and GLM

t-map (iii) correlation between IC spatial map and a precentral gyrus

template (iv) correlation between frequency spectrum of model time

course and frequency spectrum of IC.

Patient ID No. ICs Primary motor IC position in ranking by

Variance

(i)

GLMcorr

(ii)

TEMPLATEcorr

(iii)

SPECcorr

(iv)

H1 161 99 1 1 1

H2 138 130 1 3 1

H3 120 80 1 2 44

H4 126 58 1 3 1

H5 169 93 1 6 1

H6 100 70 1 2 2

H7 24 16 1 1 1

H8 158 122 1 3 1

H9 163 108 1 1 1

H10 84 79 1 1 1

H11 159 157 1 1 1

H12 108 102 1 2 1

Median 132 96 1.0 2.0 1.0

Mean 126 93 1.0 2.2 4.7

SD 43 37 0 1.5 12.4
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FIGURE 9 | A plot of the two most successful features used to
automatically identify primary motor activation components (red
circles) amongst other components (black crosses) in the Chin and
Hand groups.

the first six positions for all others. This reduces the time required
for an interpretation of the ICA results by the clinician. A similar
approach might also work for other clinical tasks such as presur-
gical language mapping with neuroanatomical predefinition of
Brocas and Wernicke areas. Limitations concern the possibility
of missing components related to neuroplastically shifted brain
activations or difficulties in defining neuroanatomical regions
of interest in largely distorted brains. In these cases, individual
screening of all components would probably still be necessary. In
an extension of the ranking we have demonstrated, fully auto-
matic identification of the primary motor component might be
achieved with a combination of the “GLMcorr” and “TEMPLATE-
corr” features using a trained classifier (Tohka et al., 2008; e.g.,
Soldati et al., 2009), although this would need to be developed
with a larger number of data sets for training and testing. The
performance of the SPECcorr feature, which has shown to be an
effective ranking feature in a previous motor task study at 1.5 T
(Moritz et al., 2003) was relatively poor in this context. This is
due to the similarity between the frequency spectra of activation
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and stimulus-correlated motion. The poor performance of the
SPECcorr feature also suggests that the Hybrid ICA approach of
McKeown (2000), which combines components with time courses
similar to a hypothesized reference function, would be likely to
incorporate motion components if applied to these data.

In contrast to Tohka et al. (2008), no motion correction was
carried out prior to analysis with ICA in this study. Given effective
head restraint, it was expected that ICA would be able to cleanly
separate activation from motion-related signal sources without
using prior motion correction. This proved to be the case, proba-
bly because the dominant motion artifacts in these data were not
related to voxel shifts, but rather to changes in B0 and GRAPPA
reconstruction errors, which are more pronounced at very high
field. At lower field and with less effective head restraint voxel
shifts may constitute the dominant source of signal change, and a
prior motion correction may be necessary to ensure the effective
performance of ICA.

We consider the potential implications of our findings for ultra-
high field presurgical planning with motor tasks. In the resection of
tumors close to motor regions, the primary aim is to reliably iden-
tify the perirolandic area via detection of central sulcus activation.
If reliable definition of the course of the central sulcus is possible,
the primary motor cortex may be spared in its entirety. In this
study, central sulcus activation could be identified in all patients
using the GLM approach, despite substantial motion-related arti-
facts. Depending on the degree of malformations present in the
perirolandic area, precentral gyrus regions can be rendered dys-
functional by a tumor, however, and neoplastic reorganization
may take place. This leads to function being subsumed by other
portions of the precentral gyrus or the contralateral precentral
gyrus. In this case it may be necessary to map the primary motor
homunculus with a variety of motor tasks. In such cases sensitivity
may be required in more inferior regions, where motion artifacts
are more pronounced, as observed in this study. ICA results have
been shown to be more sensitive and specific in these regions.

The presence of pathology can lead to modification of the
hemodynamic response. In presurgical planning it may be nec-
essary to include the temporal derivative of the HRF, use a Finite
Impulse Response or Fourier Basis set approach, or estimate the
HRF for each patient (Carter et al., 2008; Casanova et al., 2008)
and assess the consistency of response over a range of thresholds
and runs (Beisteiner et al., 2000, 2010). The results achieved here
suggest that the same end – robust results in the case of atypical
temporal dynamics – may be achieved using ICA with a much
reduced clinical analysis and assessment overhead. “Killer applica-
tions” of ICA are those in which task timing cannot be monitored,
such as studies of the resting state (Beckmann, 2012). While per-
formance can be recorded for many tasks, such as the simple motor
tasks described here, there may be an absence of compatible mon-
itoring devices for ultra-high field systems, and some stages of
processing may be hard to monitor for other tasks relevant to
presurgical planning, such as the “home town walking” task used
to map memory (Beisteiner et al., 2008).

For specific clinical questions targeting responses of all parts of
a motor network (e.g., movement disorders) and for research pur-
poses, it is desirable to have the sensitivity to be able to detect the

participation of motor regions which may show smaller BOLD sig-
nal changes, such as subcortical sensorimotor areas predominantly
involved in extrapyramidal motor disease. Our results indicate the
most prominent benefit of ICA for such tasks.

Although not directly assessed in this study, the artifacts
observed here are expected to be similar to those encountered with
overt speech paradigms used in presurgical localization of lan-
guage (Gartus et al., 2009). Language tasks lead to smaller BOLD
signal changes which are localized more inferiorly, where artifacts
are more pronounced. Another promising area of application is
basic neuroscience studies involving painful or emotionally evoca-
tive stimuli, which may likewise elicit substantial motion (Moser
et al., 2007). The effectiveness of ICA in isolating the weaker and
more variable responses in emotion and language tasks needs to
be established in dedicated studies, however.

We have shown that ICA, combined with feature-based rank-
ing of components, constitutes a fast and practical approach to
the analysis of 7 T fMRI motor task data containing stimulus-
correlated motion. Assessment of the first few ranked components
at a single statistical threshold is sufficient to identify motor
activation without contamination by motion artifacts, offering
additional information and clarity compared to a GLM analysis.
ICA allows advantage to be taken of the increased SNR and BS
promised by ultra-high field for clinical studies (Beisteiner et al.,
2011) even for challenging tasks involving head motion. This paves
the way for increased reliability of results and the use of higher
resolution in such applications as presurgical mapping at 7 T.

CONCLUSION
Independent component analysis was found to be capable of
cleanly separating activation from motion artifacts in ultra-high
field fMRI data which contained stimulus-correlated motion.
Some activated regions were evident in ICA results but not GLM
results, indicating not only higher specificity to activation but
also higher sensitivity in the analysis of motion-contaminated
data. The features presented here allowed task-relevant activation
components to be easily identified from the large number of con-
tributing signals, making ICA a feasible approach to the routine
analysis of presurgical planning fMRI data with motor tasks in
the lab and clinic. The fact the correlation between GLM results
and ICA spatial maps allowed the primary motor components to
be identified in most patients adds weight to the argument that
both methods should be applied to the analysis of such patient
data.
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In functional MRI it is desirable for the blood-oxygenation level dependent (BOLD) signal to
be localized to the tissue containing activated neurons rather than the veins draining that
tissue. This study addresses the dependence of the specificity of the BOLD signal – the
relative contribution of the BOLD signal arising from tissue compared to venous vessels –
on magnetic field strength. To date, studies of specificity have been based on models or
indirect measures of BOLD sensitivity such as signal to noise ratio and relaxation rates, and
assessment has been made in isolated vein and tissue voxels. The consensus has been
that ultra-high field systems not only significantly increase BOLD sensitivity but also speci-
ficity, that is, there is a proportionately reduced signal contribution from draining veins.
Specificity was not quantified in prior studies, however, due to the difficulty of establishing
a reliable network of veins in the activated volume. In this study we use a map of venous
vessel networks extracted from 7T high resolution Susceptibility-Weighted Images to quan-
tify the relative contributions of micro- and macro-vasculature to functional MRI results
obtained at 3 and 7T. High resolution measurements made here minimize the contribu-
tion of physiological noise and Independent Component Analysis (ICA) is used to separate
activation from technical, physiological, and motion artifacts. ICA also avoids the possibility
of timing-dependent bias from different micro- and macro-vasculature responses. We find
a significant increase in the number of activated voxels at 7T in both the veins and the
microvasculature – a BOLD sensitivity increase – with the increase in the microvasculature
being higher. However, the small increase in sensitivity at 7T was not significant. For the
experimental conditions of this study, our findings do not support the hypothesis of an
increased specificity of the BOLD response at ultra-high field.

Keywords: fMRI, specificity, BOLD, susceptibility-weighted imaging, independent component analysis

INTRODUCTION
In functional MRI it is desirable for the blood-oxygenation level
dependent (BOLD) signal to be localized, as closely as possi-
ble, to the site of neurons activated by a task. Veins draining
the capillary bed also give rise to BOLD signal changes, how-
ever, leading to a shift in the detected signal away from its
origins (Yacoub et al., 2001; Shmuel et al., 2007). The propor-
tion of the BOLD response (quantified either by the number of
activated voxels, or mean Z value) that arises in tissue to that
which comes from the draining veins defines the specificity of
the BOLD response. A body of evidence suggests that the rel-
ative contribution of draining veins (Menon, 2012) decreases
with field strength, leading to the expectation that in ultra-high
field functional MRI (fMRI) the measured BOLD signal is bet-
ter localized to its origin in gray matter (Gati et al., 1997; Ogawa
et al., 1998; Yacoub et al., 2001; Duong et al., 2003). These stud-
ies are based on numeric models, and measurements examining
signal changes and relaxation rate changes in isolated veins and

tissue voxels. To date, however, specificity has not been mea-
sured with activation statistics or quantified over the whole acti-
vated volume, due to difficulty in establishing a reliable network
of veins.

Questions as to the exact vascular origin of BOLD signal
changes began to be raised soon after the first human fMRI exper-
iments (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al.,
1992). In 1993, Gomiscek et al. indicated that inflow effects origi-
nating in large vessels might be a relevant source of the fMRI signal
(Gomiscek et al., 1993). Haacke et al. (1994) proceeded to demon-
strate that the high signal changes observed in FLASH-based fMRI
at 1.5 T were due to large vessels rather than the parenchyma.
This finding was supported by experiments in which Stejskal–
Tanner gradients, which suppress signal from flowing blood, were
included in measurement sequences (Boxerman et al., 1995). The
BOLD fMRI signal was reduced by 70–100%, demonstrating that
the 1.5-T BOLD fMRI signal originates predominantly from blood
in vessels rather than tissue.
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Geißler et al. BOLD specificity at 3 and 7T

Later experiments across the field strengths 0.5, 1.5, and 4.0 T
demonstrated that the percentage signal change between rest
and activated conditions increases more than linearly with field
strength in tissue but less than linearly in vessels (Gati et al.,
1997). These findings were extended to 7.0 T, and it was estab-
lished that the short T2 of blood at high magnetic field was the
origin of the reduced vessel contribution at very high field given
the relatively long echo time used in fMRI (Yacoub et al., 2001).
These studies provided evidence of and an explanation for an
increase in the relative specificity of the BOLD signal to gray
matter with field strength. The effect has only been measured
in isolated vessels identified in T1 and T2 scans, however. The
extent to which any changes in the relative contribution of the
tissue and vessel signal affects the localization of BOLD signal in
a bulk volume of activated tissue is clearly dependent on the dis-
tribution of veins in the imaged volume, however. In this study
we define maps of venous vessel networks from 7 T Susceptibility-
Weighted Images (SWI) (Reichenbach et al., 1997, 1998) to allow
the relative contributions of vessel and tissue signal to fMRI results
obtained at 3 and 7 T to be quantified. Applying independent
component analysis (ICA), rather than a General Linear Model
analysis, allows a clean separation of activation from technical,
physiological, and motion artifacts, and avoids the possibility of
bias to draining vein or microvasculature responses which could
have different timing and thereby influence the assessment of
specificity.

MATERIALS AND METHODS
HEALTHY SUBJECTS
Twelve healthy, right handed volunteers (eight male, four female,
mean age 31.6 years, age range from 23 to 45) participated in the
study, which was approved by the Ethics Committee of the Medical
University of Vienna, with written informed consent.

TASK DESIGN AND PROCEDURE
A hand motor task was chosen because it elicits a strong and repro-
ducible BOLD response which is localized in a well circumscribed
region. Volunteers were instructed to perform repetitive opening
and closing of the right hand at 1 Hz. Auditory start and stop
commands were computer-generated and communicated via the
scanner intercom system. The sequence of timed commands was
executed with the software Presentation (Neurobehavioral Sys-
tems, Albany, CA, USA) and was triggered by the MRI scanner.
All subjects performed a simple blocked design consisting of four
movement and five rest periods of 20 s each, with two runs at each
field strength.

DATA ACQUISITION
All subjects were examined with both a 3-T Siemens MAGNETOM
TIM TRIO scanner and a 7-T Siemens MAGNETOM scanner
(Siemens Medical, Erlangen, Germany). A 32 channel head coil
was used on both systems (on 3 T, manufactured by Siemens Med-
ical, on 7 T, manufactured by Nova Medical, Wilmington, MA,
USA).

Functional data were acquired on both systems with high reso-
lution 2D single shot gradient-echo (GE) EPI, with slices aligned
parallel to the AC-PC plane and whole brain coverage. To ensure

that results obtained here are relevant to fMRI in general prac-
tice, we chose to assess specificity using the echo time which,
for each field strength, provides the maximum BOLD sensitiv-
ity (approximately equal to T2∗ in gray matter; Deichmann et al.,
2002). Protocols used at 3 and 7 T were also independently opti-
mized according to specific absorption rate (SAR) constraints, the
requirement of whole brain coverage and other recommendations
in the literature (Triantafyllou et al., 2005; Robinson et al., 2008;
Speck et al., 2008; van der Zwaag et al., 2009).

At both field strengths, GE-EPI was acquired with a square field
of view (FOV) of 220 mm, in-plane matrix size 220× 220, with
slice thickness of 2 mm and 20% gap (i.e., 1 mm× 1 mm× 2.4 mm
voxels), with 73 repetitions, a repetition time (TR) of 3000 ms,
fat suppression with a chemical shift selective saturation pulse
prior to every slice, 6/8 partial Fourier factor (omitting the first
25% of k-space phase-encoding lines), and parallel imaging with
a GRAPPA-iPAT factor of 4. This relatively high GRAPPA fac-
tor was required to achieve the desired echo times with these
high resolution acquisitions. At 3 T, 37 slices were acquired with
TE= 35 ms, a receiver bandwidth per pixel (BW) of 1082 Hz,
flip angle (FA) of 90°. At 7 T, 44 slices were acquired with
TE= 22 ms, BW= 990 Hz, FA= 75°. As these echo times are
different between the two field strengths (35 ms for 3 T, 22 ms
for 7 T) we also performed an additional comparison of speci-
ficity with a single subject (subject 8) using runs with both
echo times – 35 and 22 ms – at both field strengths, to assess
to what extent specificity findings are echo-time dependent. A
total of four additional motor runs – two with 35 ms and two
with 22 ms – were measured at each field strength for subject
8 only.

High resolution, fully flow compensated T2∗-weighted 3D GE
images were acquired at 7 T for SWI. The acquisition matrix
size was 704× 704× 96 voxel, with a FOV of 220 mm, lead-
ing to 0.3125 mm× 0.3125 mm× 1.2 mm, TE/TR= 11.9/28 ms,
FA= 15°, with BW= 163 Hz/px, and an acquisition time of
13 min 20 s.

DATA PROCESSING
Functional data analysis
Echo planar images were motion corrected using MCFLIRT (Jenk-
inson et al., 2002) from Version 5.0.1 of the FSL software package
(Smith et al., 2004), with all volumes registered to the first vol-
ume of the first functional experiment (3 and 7 T separately).
ICA was performed in this native EPI space with “MELODIC”
(Beckmann and Smith, 2004) for each subject with no smooth-
ing applied. MELODIC was run in multi-session tensorial mode
(TICA) without skull stripping but with the brain volumes of
interest (VOI) as a confinement. The mean bias-corrected EPI was
used as a background image for functional overlays. The thresh-
old for the mixture model-based inference was 0.5 (the default)
and the model order, or number of components into which
the data is split – was determined automatically using Laplacian
estimation.

To identify which voxels overlay veins and which tissue, func-
tional data were registered to SWI space in a number of linear
registration steps, with increasing number of degrees of free-
dom as the quality of the result improved, followed by non-linear
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Geißler et al. BOLD specificity at 3 and 7T

registration. Registration was performed using the mean EPI and
magnitude SWI image, both of which were skull stripped with
BET2 (Jenkinson et al., 2002), with subject-specific fractional
intensity thresholds and bias-corrected with FSL’s“FAST”package.
Magnitude SWI were additionally denoised with FSL’s non-linear
noise reduction tool“SUSAN” and intensity-normalized to a value
of 1000. A binary brain mask was generated from this image (by
setting all non-zero values to 1). This was for used with FNIRT
and for the generation of venous vessel maps (see “Generation of
Venous Vessel Maps”).

For 7 T EPI, the first step was linear registration of mean skull
stripped, bias-corrected EPI to 7 T SWI using FSL’s “FLIRT” (Jenk-
inson et al., 2002) with correlation ratio as the cost function and
7 degrees of freedom (three translational, three rotational, and
global rescaling). The output matrix of this transformation was
used as a starting point for a second execution of FLIRT (again
to SWI), using mutual information as the cost function and 12
degrees of freedom. The final registration step was a non-linear
transformation of the output of the linear transformations to
SWI using “FNIRT.” In the light of the sequence-dependent inten-
sity disparity between EPI and SWI, the local non-linear intensity
model was used for FNIRT.

For 3 T EPI, registration steps were as described for 7 T above,
other than that they were preceded by the addition step of linear
registration to the 7-T EPI using FLIRT with 7 degrees of freedom.
The normalized correlation ratio was used as the cost function
for all linear registration stages of 3 T data. Normalized correla-
tion ratio is usually used for intermodal registration, but provided
the best results in this application due to the contrast differences
between 3 and 7 T data. The global non-linear intensity model was
used for FNIRT.

This multi-step registration procedure was found to provide
accurate registration for all subjects. For both 3 and 7 T fMRI
data all transformation steps, both linear and non-linear, were
combined to define the transformation from EPI to 7 T SWI. The
merged transformations were finally applied to ICA maps. This
approach ensured the equal treatment of 3 and 7 T functional
data – of a single transformation with one resampling step, vital
because every applied transformation causes some smoothing of
the data.

Generation of venous vessel maps
Vessel maps were generated semi-automatically from SWI magni-
tude images using MATLAB (MathWorks, Inc., Natick, MA, USA).
Steps are illustrated in Figure 1, and were as follows. For each sub-
ject’s magnitude SWI (Figure 1A), a threshold“T”was determined
for the whole volume by hand, below which images were classi-
fied as consisting of veins or background signal. Voxels whose
value was below T and which were inside a BET mask of the
brain (Figure 1B) were set to 1, and all other voxels were set to
0 (Figure 1C). This preliminary vein mask was smoothed using
the “smoothn” MATLAB function with the smoothing parameter
S of 1 (Garcia, 2009) (Figure 1D). A binary vein map was created
by assigning the value of 1 to voxels in the smoothed prelimi-
nary mask (Figure 1D) which exceeded a value of 0.3 (yielding
Figure 1E). The vein mask was compared by visual inspection
with the SWI for the verisimilitude of the vessels identified, and the

FIGURE 1 | Generation of the venous vessel maps. (A) SWI. (B) Brain
mask. (C) Preliminary vein mask, achieved by applying threshold “T” to
SWI. (D) Smoothed version of preliminary vein mask. (E) Final vein mask
derived from (D). (F) Tissue mask derived from (D).

threshold “T” modified, if necessary. A “tissue” mask was assigned
the value of one where values in the smoothed preliminary mask
(Figure 1D) were below 0.15 (yielding Figure 1F).

The process of thresholding, smoothing, and thresholding a
second time removed isolated voxels and bridged gaps in ves-
sels (compare Figures 1C,E). Using different thresholds for the
vein and tissue masks (0.15 and 0.3 respectively) led to a cleaner
allocation of voxels to the vein and tissue categories. fMRI acti-
vation was classified as being in a vein if it coincided with the
vein mask and being in the microvasculature if it was in the tissue
mask. Voxels in the zone between the two were not considered in
further analysis.

Statistical analysis
To assess effects related to the two field strengths under con-
trolled conditions, anatomical VOIs were located within the pri-
mary hand motor area. VOI’s were manually defined for each
subject by an experienced fMRI expert (RB) and comprised the
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Geißler et al. BOLD specificity at 3 and 7T

neurophysiological representation of the human hand area, i.e.,
the knob structure. The individual VOI was the same for both
field strengths. The following values were calculated for both veins
and microvasculature: (1) number of activated voxels (alterna-
tive hypothesis test at a Gaussian mixture modeling threshold
of p > 0.5; Beckmann and Smith, 2004), (2) percent activated
voxels, (3) mean Z value, and (4) ratio of the mean Z values
in the microvasculature/veins for all voxels within the anatom-
ical VOI. Both the number of activated voxels as well as the
mean t -values of those voxels was assessed with a Student’s paired
two-tailed t -test carried out in Microsoft Excel 2007 (Redmond,
Washington, MA, USA). A decreased vascular contribution to
the BOLD signal is to be expected at 7 T due to the short T2
of blood. As specificity effects can be expected to be echo-time
dependent, data at the same echo times (22 and 35 ms) were
likewise compared.

RESULTS
Figure 2 illustrates, for a single subject, both the accuracy of the
image registration and the appearance of the vein maps, the outline
of which are overlaid (in cyan) on sample 3 and 7 T EPI volumes,
and SWI. Some identified veins appear to lie outside the brain.
A proportion of these are genuine veins on the surface of the
brain, beyond the cortical surface, which appear further outside
the brain due to partial volume effect over slices. In EPI there
is also strong T2∗ dephasing of signal from the periosteal and
meningeal dural layers, which makes the brain appears slightly
smaller than the skull-stripped SWI, enhancing the impression
that these veins lie further outside the brain. Any errors in the
vein maps outside the anatomically defined VOIs in the primary
motor cortex do not affect our results, as analysis was constrained
to those VOIs.

Figure 3 illustrates typical functional results within the prede-
fined anatomical VOI (green) for a single subject. Row A shows
voxels above threshold (determined via the Gaussian mixture
modeling approach described in the see “Statistical Analysis”),
row B all functional voxels. The zoomed depiction clarifies the

FIGURE 2 | Verification of the accuracy of the normalization 7T → SWI
space and 3 → 7T (SWI) space for a typical subject and illustration of
the corresponding vein map. For the illustration only, the boundaries of
the veins (rather than the vein masks themselves) are shown, overlaid in
cyan. These were generated with the contour function of CorelDraw (Corel
Corporation, Ottawa, ON, Canada). Bottom row: zoomed depiction of the
hand area.

situation inside the target area. Both the number of voxels above
threshold as well as the mean Z values of all voxels in the VOI were
assessed for each subject (see Table 1).

On average, 21% more voxels were above threshold in veins
at 7 T than at 3 T and 42% more voxels were above threshold
in the microvasculature at 7 T than at 3 T (see Table 2). These
increases in BOLD sensitivity with field strength in both veins
and the microvasculature were statistically significant in student’s
two-tailed t -tests assessed at p < 0.05. The proportion of activated
voxels in the microvasculature to the total did not differ signif-
icantly between the two field strengths, however, indicating no
increase in specificity.

Mean Z values were significantly higher in the 7-T results in
both the vessels and the microvasculature. In veins, the increase
was 41%, in the microvasculature it was 48%. The increase in the
ratio of mean Z values in the microvasculature to veins with field
strength was small and not statistically significant, indicating no
increase in specificity. The same finding, of no substantial increase
in specificity, held when the assessment was carried out at the same
echo time (Table 3).

DISCUSSION
The field strength dependence of the specificity of the BOLD
response has been studied using high resolution fMRI at 3 and
7 T with a hand task. ICA was used to identify task-related acti-
vation in order to obviate possible bias of a model-based analysis
to either the vascular or microvascular response, as these could
be subject to different latencies. Activation maps were meticu-
lously normalized to the space of vessel maps derived from high
resolution 7 T SWI scans using state-of-the-art non-linear image
registration. The results of this analysis allowed both the relative
sensitivity and the relative specificity of the BOLD response at 3
and 7 T to be assessed.

There was significant increase in the number of activated vox-
els at 7 T in both the veins and the microvasculature, with the
increase in the microvasculature being higher. The increase in

FIGURE 3 | Exemplified single subject illustration (radiological
convention). (A) Functional image with vessels (cyan) thresholded IC map
and anatomical VOI (green) overlaid. (B) As in (A), but with no thresholding
applied to IC map. A zoomed representation of the target area is also
illustrated.
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Table 1 | Individual subject results showing the number of activated voxels and mean Z values in regions identified as vessels and

microvasculature.

3T Subject Number of activated voxels in VOI Mean Z over all voxel in VOI

Vessels µvasc % In µvasc Vessel µvasc Z µv/Z vessel

1 1521 17,367 91.9 2.1 1.3 0.61

2 1323 6982 84.1 2.6 1.1 0.41

3 1345 8058 85.7 2.2 1.0 0.48

4 1209 5056 80.7 1.9 1.0 0.53

5 1926 4720 71.0 2.1 0.7 0.33

6 2339 8856 79.1 2.8 1.4 0.50

7 1314 6746 83.7 1.9 0.8 0.44

8 2083 8097 79.5 3.3 1.2 0.37

9 1655 7075 81.0 1.8 0.8 0.44

10 2124 13,940 86.8 3.6 1.5 0.41

11 1026 7732 88.3 1.8 1.0 0.54

12 2094 14,617 87.5 2.2 1.0 0.45

Mean 1670 9100 82.9 2.4 1.1 0.45

SD 430 4000 7.5 0.6 0.2 0.08

7T 1 1986 25,895 68.0 2.8 1.8 0.64

2 1366 9849 92.9 3.3 1.8 0.53

3 1840 10,869 87.8 3.4 1.7 0.50

4 1269 5598 85.5 2.3 1.4 0.59

5 2422 11,218 81.5 3.0 1.5 0.49

6 2392 11,206 82.2 2.9 1.6 0.56

7 1664 9019 82.4 2.3 1.0 0.45

8 2343 8490 84.4 3.4 1.3 0.38

9 1804 5316 78.4 2.3 0.9 0.41

10 2339 20,568 74.7 4.9 2.0 0.40

11 2213 16,217 89.8 3.9 1.8 0.45

12 2780 19,780 88.0 4.5 1.8 0.40

Mean 2030 12,800 84.3 3.2 1.5 0.47

SD 460 6400 5.6 0.8 0.3 0.08

3/7T stats t -Test 0.0025* 0.0025* n.s. 0.0017* 7.33E−05* n.s.

All values are investigated within neuroanatomically definedVOIs. *Indicate statistically significant differences between 3 and 7T, and “n.s.,” indicates a non-significant

result.

Table 2 | Summary sensitivity and specificity results extracted from

Table 1.

7/3T SENSITIVITY

N vessels 1.21 (0.31)

N µvasc 1.42 (0.44)

Z vessels 1.41 (0.35)

Z µvasc 1.48 (0.32)

7/3T SPECIFICITY

% In µvasc 1.01 (0.13)

Z µv/Z vessel 1.07 (0.17)

Values in brackets are standard deviations on the mean.

both tissue classes confirms the increase in BOLD sensitivity of
7 T fMRI observed in other studies (Triantafyllou et al., 2005;
van der Zwaag et al., 2009; Beisteiner et al., 2011). While the

fact that there was a larger increase in the number of voxels
activated in the microvasculature might suggest an increase in
microvascular specificity at 7 T, this tendency was non-significant
due to high variance over subjects. Findings were the same for
mean Z values. There were significant increases, of ∼40%, in
Z values in both the veins and tissue in 7 T results compared
to 3 T results. Again, the increase was consistently higher in tis-
sue, but not significantly so. The obvious conclusion, that BOLD
specificity is not significantly higher at 7 T than at 3 T could
be affected by our choice of echo times, which was different
(and near optimum) for each field strength (35 ms for 3 T and
22 ms for 7 T) (Yacoub et al., 2001; Robinson et al., 2004). We
tested the generality of our conclusion, however, by perform-
ing additional measurements at both 22 and 35 ms at each field
strength. Although there was a small difference in all Z values
between echo times the ratio Z µvasc/Z vessel did not differ sub-
stantially. We therefore conclude that while changing echo-time
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Table 3 | A comparison of functional specificities measured at two the same echo times at 3 and 7T in one subject (subject 8; mean over two

runs).

3T Echo time (ms) Number of activated voxels in VOI Mean Z over all voxel in VOI

Vessels µvasc Vessel µvasc Ratio

µvasc % In µvasc Z mean Z mean Z µv/Z vessel

22 1735 10,608 85.94 2.55 1.41 0.55

35 2028 13,004 86.51 2.88 1.63 0.57

7T 22 3561 28,622 88.94 8.15 3.38 0.41

35 3630 31,608 89.70 7.81 3.71 0.48

All values are investigated within neuroanatomically defined VOIs. There is no substantial increase in specificity, measured via percentage of activated voxels in the

microvasculature, or the ratio of mean Z values in the microvasculature to that in vessels, with field strength, even if the same echo times are used at 3 and 7T.

(unsurprisingly) influences BOLD sensitivity, it did not, to a
measurable degree, affect specificity.

Our primary hypothesis in this study was that the increase
in sensitivity would be larger in tissue than veins, demonstrating
an increase in specificity and indicating that improved localiza-
tion of the BOLD signal is to be expected at ultra-high field.
This could not be confirmed, in apparent contradiction of prior
work. For instances, Gati et al. (1997) predicted larger signal
increases in tissue than veins in the visual cortex at 0.5, 1.5, and
4.0 T on the basis of measurement of SNR, ∆R2∗, and R2∗ at
these field strengths. Yacoub et al. (2001) extended Gati et al.’s
findings relating to ∆R2∗ and R2∗ from 4 to 7 T, but likewise
based their predictions on increasing signal changes compared
to relatively constant noise. The authors assumed that thermal
noise “will ultimately dominate the noise term” – i.e., that when
physiological noise is better understood and imaging systems are
more developed, physiological noise will be reduced to below the
level of thermal noise. Despite progress on this front (e.g., Boya-
cioglu and Barth, 2012), this point has not yet been reached. One
source of physiological noise is pulsatory blood flow. In conven-
tional EPI at least, the signal changes related to pulsatory flow
(which typically have a frequency of 1–1.5 Hz) are undersam-
pled with TRs of ∼0.5 Hz, and other physiological noise sources
cannot be comprehensively removed, meaning that physiological
noise is still at least as large as thermal noise at 7 T (Triantafyl-
lou et al., 2005). The relatively high resolution measurements
we made here with full brain coverage and accelerated imag-
ing go as far as possible to reducing the relative contribution
of physiological noise to the total (physiological plus thermal
noise), and thereby yield the best specificity possible. A relatively
high GRAPPA factor of 4 was used to achieve the desired echo
times with these high resolution acquisitions. While the use of
high parallel imaging factors increases g-factor noise and reduces
BOLD sensitivity, the BOLD sensitivity in this study was suffi-
cient to detect activation in the primary motor cortices of all
subject. This GRAPPA factor is not expected to have any influence
on specificity.

Fully automatic identification of vessels from SWI scans is a
complex process and the subject of considerable research effort
as a separate field (see, e.g., Frangi et al., 1998). Our attempts to
apply a leading existing approach (Kroon, 2009) in this study led

to imperfect detection of vessels and false positive vessel detection
and enlarged vessels, and motivated the development of our own
method. While our simple magnitude threshold-based approach
performed much better than existing methods with this data it
is also subject to shortcomings. Firstly, a threshold needs to be
set to determine where veins end (how broad a vein mask is
for a given appearance in SWI) and where tissue begins. Our
vein maps were defined quite conservatively and a margin was
left before defining voxels as belonging to tissue. In this way,
we minimized the influence of this border zone between vein
and tissue on our specificity results. Veins have low signal in
SWI, but so does CSF and the interhemispheric fissure, so these
regions are erroneously included in the vein mask. These errors
did not influence results obtained here, as all analysis was per-
formed within a VOI for the primary motor cortex which excluded
these problems, but would lead to errors if applied uncritically in
other studies.

It should be noted that our finding of no demonstrable increase
in specificity at 7 T compared to 3 T are constrained to the motor
system. A motor paradigm was chosen due to its robustness and
our group’s interest in precise localization of motor function in
the context of presurgical planning (Beisteiner et al., 1995, 2001).
Future work could involve extending this examination to the visual
system, which would afford more direct comparison with prior
studies, although specificity findings should be independent of the
region studied. Finally, these findings are constrained to the mea-
surement sequence and methods applied at both field strengths.
Future developments in fast imaging may allow both the sensitiv-
ity and specificity of ultra-high field fMRI to be increased (Poser
et al., 2013).

In summary, this study, comparing high resolution fMRI of the
motor system at 3 and 7 T, does not confirm a significant increase
in the specificity of the BOLD response at ultra-high field.
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Schizophrenia is characterized by aberrant intrinsic functional connectivity (iFC) within
and between intrinsic connectivity networks (ICNs), including the Default Mode- (DMN),
Salience- (SN), and Central Executive Network (CEN). The anterior insula (AI) of the SN
has been demonstrated to modulate DMN/CEN interactions. Recently, we found that the
dependence of DMN/CEN interactions on SN’s right AI activity is altered in patients with
schizophrenia in acute psychosis and related to psychotic symptoms, indicating a link
between aberrant AI, DMN, CEN, and psychosis. However, since structural alterations
of the insula are also present during psychotic remission and associated with negative
symptoms, impaired AI interaction might be relevant even for psychotic remission and
corresponding symptoms. Twelve patients with schizophrenia during psychotic remission
(SR) and 12 healthy controls were assessed using resting-state fMRI and psychometric
examination. High-model-order independent component analysis of fMRI data revealed
ICNs including DMN, SN, and CEN. Scores of iFC within (intra-iFC) and between (inter-
iFC) distinct subsystems of the DMN, SN, and CEN were calculated, compared between
groups and correlated with the severity of symptoms. Intra-iFC was altered in patients’
SN, DMN, and CEN, including decreased intra-iFC in the left AI within the SN. Patients’
inter-iFC between SN and CEN was increased and correlated with the severity of neg-
ative symptoms. Furthermore, decreased intra-iFC of the left AI correlated with both
severity of negative symptoms and increased inter-iFC between SN and CEN. Our result
provides first evidence for a relationship between AI dysfunction and altered between-
network interactions in schizophrenia during psychotic remission, which is related to the
severity of negative symptoms. Together with our previous results, data suggest specific
SN/DMN/CEN reorganization in schizophrenia with distinct insular pathways for distinct
symptom dimensions.

Keywords: schizophrenia, remission, anterior insula, salience network, default mode network, central executive
network

INTRODUCTION
Schizophrenia is a severe mental disorder associated with aberrant
functional and structural connectivity within and between intrin-
sic connectivity networks (ICNs), including the Default Mode-
(DMN), Salience- (SN), and Central Executive Network (CEN)
(Menon, 2011; Palaniyappan and Liddle, 2012). ICNs are char-
acterized by spatially consistent functional connectivity (FC) of
intrinsic brain activity (Fox and Raichle, 2007; Allen et al., 2011).
Since DMN, SN and CEN play a critical role in high-level cogni-
tion [and are therefore considered as core neurocognitive networks
(Uddin et al., 2011)], they have been suggested to be involved

in different symptom dimensions of schizophrenia (Williamson,
2007).

More specifically, the DMN includes primarily the ventrome-
dial prefrontal cortex, the posterior cingulate cortex, bilateral infe-
rior parietal cortex, and the middle temporal lobe and is involved
in self-related/internally oriented processes (Buckner et al., 2008).
The CEN includes mainly the dorsolateral prefrontal cortex and
posterior parietal cortex and is involved in goal-directed/externally
oriented tasks (Fox and Raichle, 2007). In schizophrenia, alter-
ations in FC have been reported for DMN as well as CEN during
both rest (Whitfield-Gabrieli et al., 2009; Rotarska-Jagiela et al.,
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2010; Skudlarski et al., 2010), and task (Garrity et al., 2007;
Minzenberg et al., 2009; Whitfield-Gabrieli et al., 2009). Further-
more, the interaction between these networks has been reported
to be disrupted in patients (Hasenkamp et al., 2011), suggesting
that altered between-network interactions and thus impaired coor-
dination of self-related processes and goal-directed tasks might
underlie both positive and negative symptoms in schizophrenia
(Williamson, 2007).

The SN includes primarily the anterior insular cortex and dorsal
anterior cingulate cortex and is involved in detecting and orienting
to salient external stimuli and internal events, including emotional,
autonomic, and interoceptive informations (Seeley et al., 2007).
Within the SN, the anterior insular cortex plays a crucial role in
maintaining representations and updating of current and predic-
tive salience (Singer et al., 2009; Palaniyappan and Liddle, 2012).
Functional and structural alterations within the insular cortex are
among the most frequently reported anomalies in schizophre-
nia (Palaniyappan and Liddle, 2012), including altered functional
activity during tasks (Murray et al., 2008), reduced gray matter
(GM) (Ellison-Wright et al., 2008), and decreased white matter
(WM) fractional anisotropy (Ellison-Wright and Bullmore, 2009).
Therefore, it has been suggested that functional and/or structural
alterations within the insular cortex might contribute to aber-
rant salience processing, leading to the emergence of symptoms in
schizophrenia (Palaniyappan and Liddle, 2012).

But how are anomalies in the anterior insula (AI) within the
SN linked to aberrant DMN/CEN interactions in schizophrenia?
Recently, it has been demonstrated that the anterior insula within
the SN is crucial for modulating interactions between DMN-
mediated self-related and CEN-mediated external-task directed
processes in response to cognitive demands (Sridharan et al., 2008;
Uddin et al., 2011). Recent models of insular dysfunction in schiz-
ophrenia hypothesized a relationship between impaired activity of
the AI within the SN, disrupted DMN/CEN interaction, and differ-
ent symptoms in schizophrenia (Menon, 2011; Palaniyappan and
Liddle, 2012). Corresponding with these models, we demonstrated
in a previous study (Manoliu et al., 2013) that the dependence
of DMN/CEN interactions on SN’s right AI activity was aber-
rant in patients with schizophrenia during state of acute psychosis
and related to psychotic symptoms. More specifically, we found
that the decreased connectivity within the SN’s right AI correlated
with both increased connectivity between DMN and CEN and the
severity of hallucinations. These data demonstrate a specific link
between right anterior insular dysfunction,aberrant inter-network
connectivity, and positive symptoms in schizophrenia during psy-
chosis. However, these data provide no information about insula’s
role in psychotic remission and for negative symptoms partic-
ularly in the context of network interactions. This might be of
relevance because insular alterations such as structural reorgani-
zation or aberrant reward-related activity have been demonstrated
to be present during psychotic remission and to be associated with
negative symptoms (Palaniyappan et al., 2011; Gradin et al., 2013).
Based on these data, we suggested that insular network interactions
might be aberrant also during psychotic remission and associated
with negative symptoms.

To test this hypothesis, we followed the approach previously
reported (Manoliu et al., 2013) and performed resting-state

functional magnetic resonance imaging (rs-fMRI), which mea-
sures ongoing blood-oxygenation-level-dependent (BOLD) fluc-
tuations, and structural magnetic resonance imaging as well as
psychometric assessment in 12 patients with schizophrenia dur-
ing state of psychotic remission and 12 matched healthy controls
(HCs). Rs-fMRI data were decomposed by high-model-order
independent component analysis (ICA) into spatially indepen-
dent z-maps of functionally coherent brain areas and correspond-
ing time courses (TCs) of component activity (Calhoun et al.,
2001). From these spatial maps, we selected those representing
the SN, DMN, and CEN. Main outcome measures were Pearson’s
correlation between-network time series, reflecting inter-network
intrinsic functional connectivity (inter-iFC), and components’
z-maps, reflecting the intra-network intrinsic functional connec-
tivity (intra-iFC). We controlled our analyses for effects of age, sex,
medication, and structural anomalies.

MATERIALS AND METHODS
PARTICIPANTS
Twelve patients with schizophrenia during state of remission and
12 age and sex-matched HCs participated in the study (Table 1).
Participants’ data have been used in a previous study, which
focused on intrinsic striatal activity in patients with schizophre-
nia during psychosis and psychotic remission (Sorg et al., 2013).
In particular, data from patients in psychotic remission were re-
analyzed in the current study focusing on the relationship between
insular dysfunction, aberrant inter-network interactions and neg-
ative symptoms in schizophrenia. All patients provided informed
consent in accordance with the Human Research Committee
guidelines of the Klinikum Rechts der Isar, Technische Univer-
sität München. Patients were recruited from the Department of
Psychiatry, controls by word-of-mouth advertising. Participants’
examination included medical history, psychiatric interview,

Table 1 | Demographic and clinical characteristics.

Measure SR (n = 12) HC (n = 12) SR vs. HC1

Mean (SD) Mean (SD) T -score p-Value

Age 32.50 (10.04) 34.67 (12,25) −0.474 0.640

Sex (m/f) 4/8 4/8

PANSS

Total 53.09 (14.56) 30.41 (1.44) 5.379 <0.001*

Positive 12.09 (3.75) 7.08 (0.29) 4.824 <0.001*

Negative 13.08 (5.95) 7.17 (0.58) 3.431 0.002*

General 27.36 (8.69) 16.17 (0.58) 4.458 <0.001*

GAF 59.09 (15.14) 99.17 (2.89) −9.013 <0.001*

CPZ 207.42 (198.12)

Duration of illness

(years)

4.11 (3.29)

1Two-sample t-test; *significant for p < 0.05, Bonferroni-corrected for multiple

comparisons.

SR, patients with schizophrenia during state of remission; HC, healthy control

group; PANSS, Positive and Negative Syndrome Scale; GAF, Global Assessment

of Functioning Scale; CPZ, chlorpromazine equivalent dose.
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psychometric assessment, and blood tests for patients. Psychi-
atric diagnoses were based on DSM-IV (American Psychiatric
Association, 2000). The Structured Clinical Interview for DSM-IV
[SCID-I (Spitzer et al., 1992)] was used to assess the presence of
psychiatric diagnoses. Severity of clinical symptoms was measured
with the Positive and Negative Syndrome Scale (PANSS) (Kay et al.,
1987) on the day of scanning. Psychiatrists Dirk Schwerthöffer and
Martin Scherr, who performed clinical-psychometric assessment,
have been professionally trained for SCID and PANSS-based inter-
views with inter-rater reliability for diagnoses and scores of more
than 95%. The global level of social, occupational, and psycho-
logical functioning was measured with the Global Assessment of
Functioning Scale (GAF) (Spitzer et al., 1992).

All patients were diagnosed with schizophrenia and were ambu-
latory during state of remission at the time-point of scanning.
Further inclusion criteria were age between 18 and 60 years and
remission of psychotic symptoms [as indicated by significantly
decreased PANSS scores compared to the admission during state
of acute psychosis, see (Sorg et al., 2013) for detailed presenta-
tion of clinical characteristics at time-point of admission]. On
average about 10 months after psychosis (t mean= 306.08 days,
t SD= 278.72 days), patients approved an investigation during state
of remission. Patients were free of any current or past neurolog-
ical or internal systemic disorder, current or past depressive or
manic episode, substance abuse (except nicotine), and cerebral
pathology in MRI. The mean duration of illness was 4.11 years
(SD= 3.29 years), the mean number of hospital stays was 4.00
(SD= 1.07). Four out of 12 patients were free of antipsychotic
medication. All other patients received mono- or dual ther-
apy with atypical antipsychotic medication, including Amisul-
pride (n= 1 case), Olanzapine (n= 1), Clozapine (n= 3), Que-
tiapine (n= 3), Risperidone (n= 2), and Aripiprazole (n= 1)
(see Table 2 for individual medication protocols and dosage
and Table 1 for mean chlorpromazine (CPZ) equivalent dose
(Woods, 2003). All controls were free of any current or past
psychiatric, neurological or systemic disorder or psychotropic
medication.

All participants underwent 10 min of rs-fMRI with the instruc-
tion to keep their eyes closed and not to fall asleep. We verified that
subjects stayed awake by interrogating via intercom immediately
after the rs-fMRI scan. Before and after scanning, a medical exami-
nation of patients validated their stable condition and investigated
whether they had feelings of odd situations during the scanning.
No patient dropped out during the scanning session.

MRI DATA ACQUISITION
MRI was performed on a three T MR scanner (Achieva, Philips,
Netherlands) using an eight-channel phased-array head coil. For
co-registration and volumetric analysis, T1-weighted anatom-
ical data were obtained by using a magnetization-prepared
rapid acquisition gradient echo sequence (TE= 4 ms, TR= 9 ms,
TI= 100 ms,flip angle= 5˚,FoV= 240 mm2

× 240 mm2,matrix=
240× 240, 170 slices, voxel size= 1 mm3

× 1 mm3
× 1 mm3).

fMRI data were obtained by using a gradient echo
EPI sequence (TE= 35 ms, TR= 2000 ms, flip angle= 82˚,
FoV= 220 mm2

× 220 mm2, matrix= 80× 80, 32 slices, slice
thickness= 4 mm, and 0 mm interslice gap; 300 volumes).

Table 2 | Individual subject medication protocol and dosage.

Participants Scan during state of remission

1 400 mg Clozapine

2 NO medication

3 2 mg Risperidone

4 NO medication

5 12.5 mg Olanzapine

6 NO medication

7 NO medication

8 300 mg Clozapine

9 600 mg Quetiapine

10 600 mg Amisulpride, 400 mg Quetiapine

11 600 mg Quetiapine, 5 mg Risperidone

12 450 mg Clozapine, 15 mg Aripiprazole

fMRI DATA ANALYSIS
Preprocessing
For each participant, first three functional scans of fMRI were
discarded due to magnetization effects. SPM8 (Wellcome Depart-
ment of Cognitive Neurology, London) was used for motion
correction, spatial normalization into the stereotactic space of
the Montreal Neurological Institute (MNI) and spatial smooth-
ing with an 8 mm× 8 mm× 8 mm Gaussian kernel. To control
for differences in motion between groups, excessive head motion
(linear shift > 3 mm across run and on a frame-to-frame basis,
rotation > 1.5˚) was applied as exclusion criteria (Sorg et al., 2013).
None of the participants had to be excluded. Two-sample t -tests
between patients with schizophrenia during psychotic remission
(SR) and HC yielded no significant results regarding translational
(SR vs. HC: x-axis: T =−0.035, p= 0.972; y-axis: T = 0.478,
p= 0.639; z-axis: T =−0.082, p= 0.936) and rotational move-
ments of any direction (SR vs. HC: pitch: T = 0.594, p= 0.560;
roll: T = 1.013, p= 0.325; yaw: T =−0.107, p= 0.298). Signal-
to-noise ratio of fMRI data was not different between patients
with schizophrenia during state of remission (mean= 46.16,
SD= 11.46) and HCs (mean= 45.79, SD= 11.58)(two-sample
t -test, p= 0.94).

Independent component analysis
Following a recently proposed approach (Allen et al., 2011), pre-
processed data were decomposed into 75 spatial independent com-
ponents within a group-ICA framework (Calhoun et al., 2001),
based on the infomax-algorithm and implemented in the GIFT-
software1. High-model-order ICA approaches yield independent
components, which are in accordance with known anatomical
and functional segmentations (Damoiseaux et al., 2006; Kiviniemi
et al., 2009; Smith et al., 2009; Abou-Elseoud et al., 2010; Allen
et al., 2011). fMRI data were concatenated and reduced by two-step
principal component analysis, followed by independent compo-
nent estimation with the infomax-algorithm. We subsequently
ran 20 ICA (ICASSO) to ensure stability of the estimated com-
ponents. This results in a set of average group components, which

1http://icatb.sourceforge.net
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Manoliu et al. Insular dysfunction in psychotic remission

are then back-reconstructed into single-subject space. Each back-
reconstructed component consists of a spatial z-map reflecting
component’s FC pattern across space (intra-iFC) and an associated
time course reflecting component’s activity across time.

Selection of model-order and networks-of-interest
The selection of the optimal ICA model-order to analyze rs-fMRI
data is still a subject of ongoing debate (see Manoliu et al., 2013
for extensive discussion). However, it has been demonstrated that
a model-order around 70 components may represent an opti-
mal level to detect between-group differences and to avoid false
positive results (Abou-Elseoud et al., 2010). Bearing this in mind
and exactly following a recently proposed approach of Allen et al.
(2011), we decomposed our data into 75 independent compo-
nents. The congruence with Allen’s approach enables greater com-
parability of results across studies and reduced subjective bias for
ICN selection. In more detail, Allen and colleagues used an ICA
model-order of 75 to decompose rs-fMRI data of 603 subjects
within a group-ICA framework based on the infomax-algorithm
and implemented in the GIFT-software2 (Calhoun et al., 2001).
Authors provided T-maps of 28 components, which reflect canon-
ical ICNs online3 (Allen et al., 2011). To select components, which
reflect networks-of-interest, in an automated and objective way,
we chose from these T-maps those representing subsystems of the
SN, DMN, and CEN (7 of 28 maps, see Figure 1), and performed
multiple spatial regression analyses of our 75 independent com-
ponents’ spatial maps on these templates. We selected components
of highest correlation coefficient with the templates, resulting in
seven ICNs of interest: one component reflecting the SN, three
reflecting subsystems of the DMN or CEN, respectively. In the
end, this approach yielded for each subject and ICN a compo-
nent’s z-map and time course, which reflect network’s coherent
activity.

Outcome measures and statistical analysis
Intra-iFC. To statistically evaluate intra-iFC of selected ICs, we
calculated voxel-wise one-sample t -tests on participants’ recon-
structed spatial maps for each group, using SPM8 [p < 0.05,
family-wise-error (FWE)-corrected for multiple comparisons]. To
analyze group differences, participants’ spatial maps were entered
into two-sample t -tests with age, sex and total GM volumes [see
Voxel-based Morphometry Analysis. for detailed presentation of
calculation of total GM] as covariates-of-no-interest (p < 0.05
FWE-corrected).

Inter-iFC. To statistically evaluate inter-iFC between selected ICs,
subject specific ICN TCs were detrended, despiked, filtered using
a fifth-order Butterworth low-pass filter with a high frequency
cutoff of 0.15 Hz, and pairwise correlated by Pearson’s correla-
tion, following the approach of Jafri et al. (2008). To assess group
differences, correlation coefficients were transformed to z-scores
using Fisher’s z-transformation and entered into two-sample t -
tests with age, sex, and total GM volumes (see Voxel-Bases Mor-
phometry Analysis. for details regarding the calculation of total

2http://icatb.sourceforge.net
3http://mialab.mrn.org/data/hcp/RSN_HC_unthresholded_tmaps.nii

FIGURE 1 |T-maps of intrinsic connectivity networks of interest as
described and provided online by Allen et al. (2011). Allen and colleagues
used an ICA model-order of 75 to decompose rs-fMRI data of 603 subjects,
obtaining 28 components. T-maps of components were provided online
(http://mialab.mrn.org/data/hcp/RSN_HC_unthresholded_tmaps.nii). In the
present study, we chose the T-maps of ICs representing the default mode
network, salience network and central executive network, and performed
multiple spatial regression analyses of our 75 independent components’
spatial maps on these templates to select the networks-of-interest in an
automated and objective way. Here, provided T-maps were superimposed
on a single-subject high resolution T1 image (color scale representing
t -values from 5 to 25). (A) Anterior default mode network (aDMN),
corresponding to Allen-IC 25. (B) Inferior-posterior default mode network
(ipDMN), corresponding to Allen-IC 53. (C) Superior-posterior default-mode
network, corresponding to Allen-IC 50. (D) Salience network (SN),
corresponding to Allen-IC 55. (E) Left-ventral central executive network
(lvCEN), corresponding to Allen-IC 34. (F) Right-ventral central executive
network (rvCEN), corresponding to Allen-IC 60. (G) Dorsal central executive
network (dCEN), corresponding to Allen-IC 52.

GM) as covariate-of-no-interest (p < 0.05, Bonferroni-corrected
for multiple comparisons).

Correlation analyses. Insular dysfunction has been suggested to
be associated with various symptom dimensions, including both
positive and negative symptoms in schizophrenia (Menon, 2011;
Palaniyappan and Liddle, 2012). Accordingly, PANSS scores for
total positive and negative symptoms were selected for further
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Manoliu et al. Insular dysfunction in psychotic remission

correlation analyses. To evaluate potential relationships between
AI’s aberrant intra-iFC within the SN and both altered between-
network interactions (inter-iFCs) and severity of symptoms in
patients with schizophrenia during state of psychotic remis-
sion, we followed a recently reported analysis approach (Mano-
liu et al., 2013). By applying the same analysis procedures as
previously reported, we were able to ensure a broad compara-
bility between our recently reported findings in patients with
schizophrenia during state of acute psychosis and the current
study’s results in patients with schizophrenia during state of
psychotic remission, thus providing the possibility to poten-
tially infer on disease-state specific alterations in FC in schiz-
ophrenia. First, we calculated voxel-wise one-sample t -tests on
patients’ reconstructed intra-iFC maps for the SN and masked
the result with a mask derived from the two-sample-t -test con-
trasting patients from HCs. Subsequently, we extracted principle
eigenvariates of the clusters representing intra-iFC of the left and
right AI within the SN. Then we used eigenvariate-scores for par-
tial correlation analyses of Fisher-z-transformed inter-iFC scores
and PANSS scores of total positive and negative PANSS scores,
respectively, including age, sex, total GM, and CPZ as covari-
ates of no interest (see Voxel-Bases Morphometry Analysis. for
detailed description of the calculation of total GM). To study
the relationship between inter-iFCs and severity of symptoms in
patients, we used Fisher-z-transformed inter-iFC scores for par-
tial correlation analyses of total positive and negative PANSS
scores, respectively, including age, sex, total GM, and CPZ as
covariates of no interest. Results of partial correlation analyses
were thresholded at p < 0.05, Bonferroni-corrected for multiple
comparisons.

VOXEL-BASED MORPHOMETRY ANALYSIS
The VBM analysis followed the description provided in Manoliu
et al. (2013). The FC of intrinsic brain networks depends on wide-
spread structural integrity of polysynaptic pathways (Lu et al.,
2011). Since we focus on alterations of functional interactions
among networks, we included total GM scores as covariate-of-
no-interest in above-mentioned FC analyses to control for this
influence of structural variations. As described recently (Sorg et al.,
2013), we used the VBM8 toolbox4 to analyze brain structure.
T1-weighted images were corrected for bias-field in homogene-
ity, registered using linear (12-parameter affine) and non-linear
transformations, and tissue-classified into GM, WM, and cerebro-
spinal fluid (CSF) within the same generative model (Ashburner
and Friston, 2005). The resulting GM images were modulated
to account for volume changes resulting from the normalization
process. Here, we only considered non-linear volume changes so
that further analyses did not have to account for differences in
head size. Finally images were smoothed with a Gaussian kernel of
8 mm (FWHM). For group comparisons, voxel-wise t -tests were
performed. We applied a height threshold (voxel level) of 0.05,
family-wise error (FWE) corrected. Global volumes of GM and
WM were derived from the first segmentation process. Groups
were compared by two-sample t -tests. Finally, we included total

4http://dbm.neuro.uni-jena.de/vbm.html

GM scores as covariate-of-no-interest in the functional analyses
of ICNs.

RESULTS
INTRINSIC CONNECTIVITY NETWORKS: INTRA- AND INTER-iFC
In general, both intra-iFC and inter-iFC were almost perfectly in
line with findings of Allen et al. (2011), indicating that the basic
functional architecture of SN, DMN, and CEN was present in both
groups (see Figure 1 for presentation of spatial templates, Figure 2
and Table 3 for detailed presentation of intra-iFC within ICNs of
interest and Figure 3 and Table 5 for detailed presentation of
inter-iFC between ICNs of interest).

Intra-iFC
Automated component selection, which was based on spatial tem-
plates representing subsystems of the DMN, SN, and CEN (see
Figure 1 for presentation of spatial templates), revealed seven com-
ponents of interest for each individual: the SN was represented in
one component. The DMN was represented in three components
[anterior DMN (aDMN), inferior-posterior DMN (ipDMN),
superior-posterior DMN (spDMN)]. The CEN was represented in
three components [left-ventral CEN (lvCEN), right-ventral CEN
(rvCEN), dorsal CEN (dCEN)]. Selected components were spa-
tially consistent across groups and matched previous results of
SN, DMN, and CEN (Allen et al., 2011) (see Figure 2; Table 3 for
detailed description of intra-iFC within selected ICNs, p < 0.05,
FWE-corrected).

Inter-iFC
Inter-iFC between intrinsic networks matched results of Allen et al.
(2011) (see Figure 3; Table 5 for detailed description of inter-iFC
between all network-pairs). Noteworthy, we found positive corre-
lations between distinct subsystems of the DMN and CEN in both
groups. Although this is inconsistent with previously described
patterns of anti-correlation between these two networks (Fox and
Raichle, 2007), it is well in line with recent findings using high-
model-order ICA (Allen et al., 2011). Furthermore, Smith et al.
(2012) identified several sub-networks within the DMN,each asso-
ciated with characteristic patterns of inter-network connectivity by
using high temporal resolution resting-state fMRI.

INTRA-iFC OF THE SN IS DISRUPTED IN BILATERAL ANTERIOR INSULA
IN PATIENTS WITH SCHIZOPHRENIA DURING REMISSION
Compared to HCs, patients demonstrated altered intra-iFC within
the DMN, SN, and CEN. (Figure 2; Table 4; p < 0.05 FWE-
corrected with age, sex, and total GM as covariates-of-no-interest).
Regarding the SN, patients showed decreased intra-iFC within the
bilateral AI. Furthermore, intra-iFC was increased in bilateral ACC
within the SN (see Figure 2D). Regarding the DMN, patients
showed decreased intra-iFC in bilateral ACC within the aDMN
(see Figure 2A) and decreased intra-iFC in bilateral precuneus
within the ipDMN (see Figure 2B). No between-group differences
were observed within the spDMN. Regarding the CEN, patients
showed increased intra-iFC in the left inferior temporal gyrus
within the dCEN (see Figure 1G). No between-group differences
were observed within both lvCEN and rvCEN.
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FIGURE 2 | Default mode network, salience network, and central
executive network in healthy controls (HCs) and corresponding group
differences for patients with schizophrenia in state of remission. (1)
Spatial maps of selected ICs representing the default mode, salience, and
central executive network (DMN, SN, CEN) in HCs were entered into
voxel-wise one-sample t -tests and thresholded at p < 0.05, corrected for
family-wise error (FWE). Statistical parametric maps (SPMs) representing
brain areas with significantly co-varying activity were superimposed on a
single-subject high resolution T1 image (color scale representing t -values
from 5 to 25; only maps of HCs are shown). (2) To analyze between-group
differences, patients’ and controls’ ICs of the DMN, SN, and CEN were
entered into voxel-wise two-sample-t -test with age, sex, and total GM

volume as covariates of no interest and thresholded at p < 0.05,
FWE-corrected. SPMs were superimposed on a single-subject high resolution
T1 image (color scale representing t -values from 5 to 15; yellow (“hot”) color
maps indicate regions displaying higher intra-iFC in SR compared to HC; blue
(“cold”) color maps indicate regions displaying less intra-iFC in SR compared
to HC). Results for each network of interest are presented panel-wise: (A)
anterior default mode network (aDMN); (B) inferior-posterior default mode
network (ipDMN); (C) superior-posterior default-mode network; (D) salience
network (SN); (E) left-ventral central executive network (lvCEN); (F)
right-ventral central executive network (rvCEN); (G) dorsal central executive
network (dCEN). SR, group of patients with schizophrenia during remission;
HC, healthy control group (see alsoTables 3 and 4).

INTER-iFC BETWEEN SN AND CEN IS INCREASED IN PATIENTS WITH
SCHIZOPHRENIA DURING REMISSION
Compared to HCs, patients during psychotic remission
showed both increased and decreased inter-iFC (Figure 4;
Table 5; p < 0.05, corrected for age, sex, and total GM,

Bonferroni-corrected for multiple comparisons). Patients showed
decreased inter-iFC between ipDMN and rvCEN, suggesting a
decreased FC between the DMN and CEN. Furthermore, patients
showed increased inter-iFC between SN and rvCEN, indicating
increased FC between the SN and CEN.
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Table 3 | Intrinsic connectivity networks in healthy controls.

Anatomical region L/R/Bi cluster z-Score p-Value* MNI (x,y,z)1

(A) ANTERIOR DEFAULT MODE NETWORK (aDMN)

Medial prefrontal cortex L 451 6.88 <0.001 −6, 45, 0

Medial prefrontal cortex R ′′ 6.73 <0.001 6, 39, −3

(B) INFERIOR-POSTERIOR DEFAULT MODE NETWORK (ipDMN)

Medial posterior parietal cortex L 579 >8.00 <0.001 −3, −60, 30

Medial posterior parietal cortex R ′′ 6.80 <0.001 6, −51, 24

Angular gyrus R ′′ 6.55 48, −57, 27

(C) SUPERIOR-POSTERIOR DEFAULT MODE NETWORK (spDMN)

Precuneus Bi 344 6.53 <0.001 −9, −75, 36

Inferior parietal lobule L ′′ 4.77 <0.001 −33, −37, 39

Posterior cingulate cortex Bi 57 5.90 <0.001 −3, −36, 24

(D) SALIENCE NETWORK (SN)

Anterior cingulate cortex Bi 255 6.19 <0.001 −3, 27, 39

Insula lobe L 77 5.91 <0.001 −39, 18, −3

Insula lobe R 66 5.90 <0.001 36, 27, 0

(E) LEFT-VENTRAL CENTRAL EXECUTIVE NETWORK (lvCEN)

Inferior parietal lobule L 412 6.87 <0.001 −48, −63, 33

Superior frontal gyrus L 137 6.16 <0.001 −39, 21, 51

Middle frontal gyrus L ′′ 5.65 <0.001 −33, 9, 42

Inferior parietal lobule R 42 5.00 <0.001 60, −51, 39

Precuneus L 33 4.86 <0.001 −6, −69, 39

(F) RIGHT-VENTRAL CENTRAL EXECUTIVE NETWORK (rvCEN)

Inferior parietal lobule R 229 6.00 <0.001 42, −69, 45

Middle frontal gyrus R 167 6.54 <0.001 30, 24, 45

Middle cingulate cortex R 70 5.25 <0.001 9, −27, 36

Middle orbital gyrus R 22 4.81 <0.001 30, 57, −6

(G) DORSAL CENTRAL EXECUTIVE NETWORK (dCEN)

Supramarginal gyrus L 300 6.35 <0.001 −60, −30, 39

Inferior temporal gyrus L 24 5.96 <0.001 −51, −57, −6

Inferior frontal gyrus L 12 5.20 <0.001 −48, 3, 33

Supramarginal gyrus R 7 5.19 <0.001 63, −42, 30

*One-sample-t-test, significant for p < 0.05, FWE-corrected for multiple comparisons, cluster-threshold > 10 voxel. 1MNI, Montreal Neurological Institute; L, left

hemisphere; R, right hemisphere; Bi, bilateral (see also Figure 2).

LEFT ANTERIOR INSULA’S ABERRANT SN CONNECTIVITY IS
ASSOCIATED WITH ALTERED SN-CEN INTERACTION IN PATIENTS WITH
SCHIZOPHRENIA DURING REMISSION
To study the influence of insular SN activity on altered inter-
network connectivity in patients, we correlated eigenvariates of
SN’s left and right AI group difference clusters with Fisher-
z-transformed correlation coefficients of each pair of network
TCs (Figure 5; Table 6, p < 0.05, partial correlations with age,
sex, total GM, and CPZ as covariates of no-interest, Bonferroni-
corrected for multiple comparisons). In patients, SN’s left AI
intra-iFC correlated negatively with inter-iFC between SN and
rvCEN (r =−0.96). There was no further significant correlation
of SN’s right or left AI intra-iFC with inter-iFC scores.

LEFT ANTERIOR INSULA’S ABERRANT SN CONNECTIVITY IS
ASSOCIATED WITH SEVERITY OF NEGATIVE SYMPTOMS IN PATIENTS
WITH SCHIZOPHRENIA DURING REMISSION
To study the influence of insular SN activity on the severity
of positive and negative symptoms in patients, we correlated

eigenvariates of SN’s left and right AI group difference clusters with
PANSS scores for total positive symptoms and total negative symp-
toms, respectively (Figure 5; Table 7; p < 0.05, partial correlations
with age, sex, total GM, and CPZ as covariates of no-interest,
Bonferroni-corrected for multiple comparisons). In patients, SN’s
left AI’s intra-iFC correlated negatively with the severity of total
negative symptoms (r =−0.97) but not with the severity of total
positive symptoms. Furthermore, SNs right AI’s intra-iFC cor-
related positively with the severity of total positive symptoms
(r = 0.886). However, this result was not significant when cor-
rected for multiple comparisons. There was no further significant
correlation of SN’s right or left AI intra-iFC with behavioral scores.

IMPAIRED SN-CEN INTERACTION IS SELECTIVELY ASSOCIATED WITH
SEVERITY OF NEGATIVE SYMPTOMS
To study the relationship of between-network interactions with
severity of positive and negative symptoms, we correlated inter-
iFC scores with PANSS scores for both total positive symptoms and
total negative symptoms, respectively (Figure 5; Table 8; p < 0.05,
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Manoliu et al. Insular dysfunction in psychotic remission

FIGURE 3 | Inter-network intrinsic functional connectivity matrix
for patients with schizophrenia in state of remission and healthy
controls (HCs). Pairwise Pearson’s correlations between time
courses of the default mode, salience, and central executive network
(DMN, SN, CEN) were Fisher-z-transformed, averaged across

subjects for each group of patients with schizophrenia and HCs, and
presented in a correlation matrix. Colors represent intensity of
averaged z -scores. a/ip/spDMN: anterior/inferior-posterior/superior-
posterior DMN; lv/rv/dCEN: left-ventral/right-ventral/dorsal CEN (see
alsoTable 5).

partial correlations with age, sex, total GM, and CPZ as covariates
of no-interest, Bonferroni-corrected for multiple comparisons).
Inter-iFC between SN and rvCEN correlated positively with the
severity of total negative symptoms (r = 0.969) but not with
the severity of positive symptoms. There was no further signifi-
cant correlation of inter-iFC across network-pairs with behavioral
scores.

ALTERATIONS IN INTRA-iFC AND INTER-iFC ARE NOT EXPLAINED BY
BRAIN STRUCTURE OR MEDICATION
Regarding potential alterations in brain structure, voxel-wise tests
yielded no regional GM or WM differences between groups.
Although slightly decreased, total GM was not significantly
changed in patients (T =−0.16, p= 0.98). Regarding poten-
tial effects of medication, we correlated CPZ with both intra-
iFC of each ICN and inter-iFC for each pair of ICNs. CPZ
showed no significant effect on both intra- (p < 0.05, FWE-
corrected) and inter-iFC (p < 0.05, corrected for multiple com-
parisons), respectively. In addition, we included total GM and
CPZ-scores as covariate-of-no-interest in the functional analy-
ses of ICNs to account for these measures as potential con-
founders.

DISCUSSION
To test our hypothesis that insular dysfunction, altered between-
network interactions, and negative symptoms are related in
schizophrenia during psychotic remission, we investigated the
intrinsic FC within- and between the SN, DMN, and CEN in
patients with schizophrenia during psychotic remission and HCs.
We found decreased intra-iFC in the left anterior insular cor-
tex within the SN as well as increased inter-iFC between the
SN and CEN. Furthermore, these alterations were related to
each other and associated with the severity of negative symp-
toms. In addition, we found a strong trend for the associ-
ation between decreased intra-iFC within the right AI and
patients’ positive symptoms, corresponding to our previous find-
ing in psychotic patients. This result extends our knowledge
about insular dysfunction in schizophrenia by demonstrating
a link between left anterior insular dysfunction, altered inter-
network connectivity and negative symptoms, which is present
during psychotic remission. Together with our previous result
of impaired right anterior insula dysfunction in psychosis,
data suggest specific SN/DMN/CEN reorganization in schizo-
phrenia with distinct insular pathways for distinct symptom
dimensions.
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Manoliu et al. Insular dysfunction in psychotic remission

Table 4 | Altered intra-iFC in patients with schizophrenia in state of remission compared to healthy controls.

Anatomical Region L/R/Bi cluster z-Score p-Value* MNI (x,y,z)1

(A) ANTERIOR DEFAULT MODE NETWORK (aDMN)

(a) SR > HC

– – – – – –

(b) SR < HC

Anterior cingulate cortex Bi 179 >8.00 <0.001 9, 42, −3

(B) INFERIOR-POSTERIOR DEFAULT MODE NETWORK (ipDMN)

(a) SR > HC

– – – – – –

(b) SR < HC

Precuneus R 21 5.71 <0.001 12, −60, 24

L 23 5.37 0.001 −9, −60, 30

(C) SUPERIOR-POSTERIOR DEFAULT MODE NETWORK (spDMN)

(a) SR > HC

– – – – – –

(b) SR < HC

– – – – – –

(D) SALIENCE NETWORK (SN)

(a) SR > HC

Anterior cingulate cortex Bi 33 5.83 <0.001 0, 27, 12

(b) SR < HC

Insula lobe R 18 5.68 <0.001 36, 27, 0

Insula lobe L 8 5.08 <0.001 −27, 27, 9

(E) LEFT-VENTRAL CENTRAL EXECUTIVE NETWORK (lvCEN)

(a) SR > HC

– – – – – –

(b) SR < HC

– – – – – –

(F) RIGHT-VENTRAL CENTRAL EXECUTIVE NETWORK (rvCEN)

(a) SR > HC

– – – – – –

(b) SR < HC

– – – – – –

(G) DORSAL CENTRAL EXECUTIVE NETWORK (dCEN)

(a) SR > HC

Inferior temporal gyurs L 111 7.52 <0.001 −54, −52, −21

(b) SR < HC

– – – – – –

*Two-sample-t-test with age, sex, and total GM volume as covariates of no-interest, significant for p < 0.05, FWE-corrected for multiple comparisons. cluster-

threshold > 5 voxel. 1MNI, Montreal Neurological institute; L, left hemisphere; R, right hemisphere, Bi, bilateral (see also Figure 2).

THE SALIENCE NETWORK IN PSYCHOTIC REMISSION
The link between insular dysfunction within the SN, aberrant
inter-network connectivity, and severity of symptoms in psychotic
remission
In accordance to our hypothesis (Menon, 2011; Palaniyappan and
Liddle, 2012), we found both altered intra-iFC in the left AI
within the SN and altered inter-iFC between the SN and CEN.
We demonstrated that both findings are related to each other
(Figure 5; Table 6) and to the severity of negative symptoms
in patients (Figure 5; Tables 7 and 8), indicating an association
between insular dysfunction and aberrant inter-network connec-
tivity in patients with schizophrenia during psychotic remission.

Noteworthy, the right anterior insula,which showed also decreased
intra-iFC within the SN, yielded a trend for a correlation with
the severity of positive symptoms (r = 0.89, p= 0.02). Although
this result is well in line with previous findings (Palaniyappan
et al., 2012; Manoliu et al., 2013), and current models of insu-
lar dysfunction in psychosis (Menon, 2011; Palaniyappan and
Liddle, 2012), it did not survive correction for multiple com-
parisons. This missing significance might be explained by small
statistical power due to the limited size of our patient sample and
low levels of variance of positive symptoms in patients (see also
Limitations). All tests were performed including age, sex, total
GM and CPZ as covariates-of-no-interest. Therefore, it is unlikely
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Manoliu et al. Insular dysfunction in psychotic remission

FIGURE 4 | Between-group differences of inter-network intrinsic
functional connectivity. Based on network time courses (TCs),
inter-network intrinsic functional connectivity (inter-iFC) were calculated by
the use of Pearson’s correlation between subject specific ICN TCs. The red
arrows indicates increased inter-iFC in patients compared to healthy controls
(HCs) (two-sample t -test, p < 0.05, Bonferroni-corrected for multiple
comparisons); The blue arrows indicates decreased inter-iFC in patients

compared to HCs (two-sample t -test, p < 0.05, Bonferroni-corrected for
multiple comparisons). Spatial maps indicate the anterior/inferior-
posterior/superior-posterior default mode network (a/ip/spDMN),
left-ventral/right-ventral/dorsal central executive network (lv/rv/dCEN), and
salience network (SN). All tests were corrected for age, sex and total GM
volume. Abbreviations: SR, group of patients with schizophrenia during
remission; HC, healthy control group (see alsoTable 5).

that present results are explained by these factors. Taken together,
data demonstrate that dysfunction of the left AI within the SN in
schizophrenia is present during psychotic remission and related to
both altered inter-network connectivity and severity of patients’
negative symptoms.

These results are in line within the suggested disruption of the
AI’s control function for between-network interactions in schizo-
phrenia, which may persist even during psychotic remission and
may be related to distinct symptom dimensions (Palaniyappan
and Liddle, 2012). Several findings support this idea: Firstly, the
AI has been demonstrated to play a critical role regarding the mod-
ulation of between-network interactions (Sridharan et al., 2008;
Menon and Uddin, 2010). Secondly, alterations within the AI such
as structural reorganization or aberrant reward-related activity
have been shown in patients with schizophrenia during psychotic

remission and to be linked with negative symptoms (Palaniyappan
et al., 2011; Gradin et al., 2013). Thirdly, the current findings cor-
respond with previous findings demonstrating that an impaired
dependence of aberrant between-network interactions on right
insular dysfunction is related with positive symptoms (Manoliu
et al., 2013). Fourthly, recently formulated models providing a link
between aberrant engagement and disengagement of large-scale
intrinsic connectivity networks and psychopathology suggest an
impaired control function of the AI in patients with schizophrenia,
giving rise to both positive and negative symptoms (Menon, 2011;
Palaniyappan and Liddle, 2012). Therefore, the present results sug-
gest that anterior insular dysfunction may contribute to symptoms
of schizophrenia via aberrant inter-network interaction.

Our findings suggest an asymmetric involvement of the AI in
patients with schizophrenia as a function of state of disease. While
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Manoliu et al. Insular dysfunction in psychotic remission

Table 5 | Inter-network intrinsic functional connectivity in patients

with schizophrenia in state of remission and healthy controls.

Inter-iFC SR (n = 12) HC (n = 12) SR vs. HC1

Mean SD Mean SD Direction p-Value

aDMN – ipDMN 0.351 0.188 0.424 0.200 HC > SR 0.266

aDMN – spDMN 0.328 0.195 0.138 0.141 SR > HC 0.034

aDMN – SN 0.274 0.148 0.152 0.188 SR > HC 0.141

aDMN – lvCEN 0.261 0.168 0.157 0.124 SR > HC 0.078

aDMN – rvCEN 0.312 0.131 0.105 0.173 SR > HC 0.011

aDMN – dCEN −0.411 0.223 −0.318 0.121 HC > SR 0.473

ipDMN – spDMN 0.268 0.123 0.317 0.295 HC > SR 0.563

ipDMN – SN −0.094 0.178 −0.301 0.194 SR > HC 0.052

ipDMN – lvCEN 0.387 0.195 0.545 0.195 HC > SR 0.14

ipDMN – rvCEN 0.003 0.143 0.371 0.107 HC > SR <0.001*

ipDMN – dCEN −0.782 0.195 −0.523 0.126 HC > SR 0.008

spDMN – SN 0.171 0.193 0.149 0.148 SR > HC 0.988

spDMN – lvCEN 0.343 0.176 0.162 0.267 SR > HC 0.076

spDMN – rvCEN 0.418 0.197 0.190 0.192 SR > HC 0.021

spDMN – dCEN −0.222 0.216 0.032 0.229 HC > SR 0.066

SN – lvCEN 0.071 0.134 −0.140 0.240 SR > HC 0.066

SN – rvCEN 0.166 0.157 −0.177 0.237 SR > HC 0.002*

SN – dCEN 0.109 0.176 0.260 0.147 HC > SR 0.088

lvCEN – rvCEN 0.410 0.166 0.359 0.223 SR > HC 0.609

lvCEN – dCEN −0.150 0.230 −0.119 0.159 HC > SR 0.678

rvCEN – dCEN −0.025 0.195 −0.088 0.168 SR > HC 0.289

1Two-sample t-test, controlled for age, sex, and total GM volume. Italics indicate

p < 0.05; *significant for p < 0.05, Bonferroni-corrected for multiple comparisons

(n=21).

SR, group of patients with schizophrenia during remission; HC, healthy con-

trol group; inter-iFC, inter-network intrinsic functional connectivity; a/ip/spDMN:

anterior/inferior-posterior/superior-posterior DMN; lv/rv/dCEN: left-ventral/right-

ventral/dorsal CEN; SN: salience network (see also Figures 3 and 4).

the intra-iFC within the left AI was associated with both altered
interactions between SN and CEN and severity of negative symp-
toms in patients during state of remission (Figure 5, Tables 6
and 7), the intra-iFC within the right AI was associated with both
altered interactions between the DMN and CEN and severity of
positive symptoms in patients during state of psychosis [(Mano-
liu et al., 2013), see also Table 7]. This observation corresponds
to the asymmetric representation of body-related interoceptive
information in the AI, which has been suggested to originate
from the asymmetry of the peripheral autonomic nervous system;
the left AI is more associated with the parasympathetic system,
the right AI more with the sympathetic system (Craig, 2002). It
has been suggested that this asymmetric autonomous represen-
tation in the AI might underlie asymmetric representations of
emotions and interoceptive awareness (Craig, 2009). For example,
the right AI is more involved in “sympathetic” emotions induced
by stimuli that increase arousal and energy costs of behavioral
responses such as pain or aversive pictures (Craig, 2009), while
the left AI is more related to positive emotions such as maternal
and romantic love, joy, or positive reactions induced by pleas-
ant stimuli, and relaxation (Craig, 2009). Considering the left AI’s

role in processing positive and affiliative emotional feelings (Craig,
2009), deficits within the left AI might be associated with negative
symptoms in schizophrenia (Palaniyappan and Liddle, 2012). For
example, negative symptoms such as anhedonia and diminished
social interactions might be associated with anomalies within the
left anterior insula via impaired responses on pleasant stimuli.
Accordingly, structural deficits within the anterior insular cortex
have been demonstrated to be highly related to the severity of
negative symptoms in patients with schizophrenia (Koutsouleris
et al., 2008) while Horn et al. (2010) demonstrated a relation-
ship between altered connectivity between AI and ACC and the
severity of affective symptoms in patients with major depres-
sive disorder. Bearing these findings in mind, our results might
represent a first hint toward a relationship between asymmetric
interoceptive-emotional representation in the left and right AI
and the AI’s asymmetric association with positive and negative
symptoms in schizophrenia as a function of state of disease. How-
ever, it is to note that we did not explicitly test for asymmetry
in the present study. Future studies investigating the potential link
between aberrant intrinsic FC within the left and right AI and pos-
itive and negative symptoms in patients with schizophrenia during
both psychosis and psychotic remission are necessary to improve
our understanding of the left and right AI’s relevance for distinct
symptom dimensions in schizophrenia.

Further observations
In the following we want to make three further comments that may
help to better evaluate and contextualize our findings centered on
the SN.

Potential inconsistency with previous findings. In contrast to
the current study, Woodward et al. (2011) found no significant
findings regarding the intra-iFC of the SN in patients with schizo-
phrenia. More specifically, the authors observed a non-significant
trend to decreased network connectivity within the SN by apply-
ing a seed-based region-of-interest correlation analysis to calculate
SN’s iFC in a combined group of patients with schizophrenia
and schizoaffective disorder. According to the evaluation of the
reported coordinates for the seeds using the “SPM Anatomy tool-
box” (Eickhoff et al., 2005), the seeds were placed in the left and
right inferior frontal gyrus pars orbitalis, near to the AI. In con-
trast, we investigated selectively patients with schizophrenia, once
during state of acute psychosis in a previous study (Manoliu et al.,
2013) and once during state of psychotic remission in the current
study by the use of an ICA-approach. Our analyses yielded con-
sistently aberrant intra-iFC in both AI and ACC within the SN in
patients with schizophrenia during both state of acute psychosis
and state of remission. Although Woodward and colleagues also
found a trend for reduced intra-iFC within the SN, these con-
tradictory results might be explained by different methodological
approaches, including the exact position of the seed as reported in
Woodward et al. (2011) and, maybe more important, by the highly
different composition of the patient samples.

Findings beyond altered interactions within and between the SN,
DMN, and CEN in schizophrenia. Although increasing evidence
for functional (White et al., 2010; Gradin et al., 2013; Manoliu
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Manoliu et al. Insular dysfunction in psychotic remission

FIGURE 5 | Intra-iFC in the left anterior insula within the salience network
is associated with increased SN-CEN interaction and severity of negative
symptoms. Intrinsic functional connectivity (inter-iFC) between ICNs of
interest was calculated by the use of Pearson’s correlation between-networks’
time courses. (A) Intra-iFC in the left anterior insula within the SN (turquoise
spatial map) was significantly correlated with severity of negative symptoms
in patients (partial correlation, r =−0.978, p < 0.001). (B) Furthermore,
intra-iFC in the left anterior insula within the SN was significantly correlated

with the inter-iFC between SN and CEN in patients (turquoise arrow, partial
correlation, r =−0.961, p=0.002). (C) Finally, the inter-iFC between SN and
CEN was significantly correlated with the severity of negative symptoms
(purple arrow, partial correlation, r =0.969, p < 0.001). All partial correlations
were corrected for age, sex, total GM volume, and medication (CPZ). Spatial
maps indicate the anterior/inferior-posterior/superior-posterior default mode
network (a/ip/spDMN), left-ventral/right-ventral/dorsal central executive
network (lv/rv/dCEN), and salience network (SN) (see alsoTables 6–8).

et al., 2013) and structural alterations (Palaniyappan et al., 2012)
within the salience network of patients with schizophrenia points
at the important role of aberrant SN-centered triple network inter-
actions in schizophrenia (Menon, 2011), it is unclear whether
and how findings beyond the SN, DMN, and CEN link with
such altered triple network properties. For example Williamson
and colleagues argue that models considering only the connec-
tivity within and between SN, DMN, and CEN miss to account
for both known alterations within auditory networks in patients
with schizophrenia and differences between schizophrenia and
other neuropsychiatric disorders demonstrating also altered FC
within the SN (Williamson and Allman, 2012). Furthermore, it
is unknown how aberrant iFC within subcortical regions such
as the striatum (Sorg et al., 2013) or neurochemical anomalies
such as increased dopaminergic activity during psychosis (Howes
et al., 2009; Howes et al., 2012) are related with altered interac-
tions between these three networks. Future studies are necessary
to investigate the relationship between altered connectivity within
and between the SN, DMN, and CEN and anomalies the triple
network model (Menon, 2011) does not account for. It is an
important research question whether the integrative potential of

the SN-centered triple network model can be extended to allow
also for further reported findings such as alterations in auditory
networks, subcortical structures, and neurochemical activity.

Proximal and motivational salience in schizophrenia. Current
results are well in line with the aberrant proximal salience model
of Palaniyappan and Liddle (2012). Proximal salience refers to
a momentary interoceptive state, which results from the eval-
uation of internal/external stimuli; it is represented by the SN
activity particularly the AI, and it modulates both subsequent
choices of actions/cognitions and learning processes to optimize
evaluation; this modulation includes the control of DMN/CEN
interactions via AI signals. Palaniyappan and colleagues suggest
that AI/SN-related proximal salience is impaired in patients with
schizophrenia contributing to distinct symptom dimensions. It
is obvious that our findings support this model. Noteworthy, the
concept of proximal salience is distinct from the more popular idea
of motivational salience and its relevance for psychotic symptoms
via aberrant prediction error processing (Kapur, 2003). Motiva-
tional salience refers to the assignment of motivational value to an
external/internal stimulus after the stimulus has been evaluated;
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Table 6 | Partial correlations between intra-iFC in the right/left AI

within the SN and inter-iFC in patients with schizophrenia in state of

remission.

Inter-iFC right AI left AI

r -score p-Value r -score p-Value

aDMN – ipDMN 0,056 0,916 −0,603 0,205

aDMN – spDMN −0,015 0,977 0,507 0,305

aDMN – SN −0,671 0,145 −0,009 0,987

aDMN – lvCEN 0,232 0,658 0,392 0,442

aDMN – rvCEN 0,101 0,849 0,793 0,06

aDMN – dCEN −0,604 0,204 0,605 0,204

ipDMN – spDMN 0,306 0,555 −0,698 0,123

ipDMN – SN −0,05 0,925 0,038 0,943

ipDMN – lvCEN 0,672 0,144 −0,132 0,803

ipDMN – rvCEN 0,819 0,046 −0,24 0,646

ipDMN – dCEN −0,374 0,466 0,293 0,572

spDMN – SN −0,034 0,949 0,84 0,036

spDMN – lvCEN 0,049 0,926 −0,236 0,653

spDMN – rvCEN −0,407 0,423 −0,597 0,21

spDMN – dCEN −0,28 0,591 0,493 0,321

SN – lvCEN −0,602 0,206 0,238 0,65

SN – rvCEN 0,207 0,695 −0,961 0,002*

SN – dCEN −0,528 0,281 0,956 0,003

lvCEN – rvCEN 0,356 0,488 −0,491 0,322

lvCEN – dCEN −0,779 0,068 −0,037 0,945

rvCEN – dCEN −0,362 0,481 0,319 0,538

Italics indicate p < 0.05; *significant for p < 0.05, Bonferroni-corrected for mul-

tiple comparisons (n=21). Partial correlation, corrected for age, sex, total GM

volume and chlorpromazine equivalent dose (CPZ).

a/ip/spDMN: anterior/inferior-posterior/superior-posterior DMN; lv/rv/dCEN: left-

ventral/right-ventral/dorsal CEN; SN: salience network; AI: anterior insula (see

also Figure 5).

Table 7 | Partial correlations between intra-iFC in the right/left AI

within the SN and severity of positive and negative symptoms in

patients with schizophrenia in state of remission.

PANSS scores right AI left AI

r -Score p-Value r -Score p-Value

(A)TOTAL SCORES

Total positive symptoms 0,886 0,019 −0,553 0,255

Total negative symptoms 0,141 0,789 −0,978 0,001*

Italics indicate p < 0.05; *significant for p < 0.05, Bonferroni-corrected for multiple

comparisons (n=4). Partial correlation, corrected for age, sex, total GM volume

and chlorpromazine equivalent dose (CPZ).

AI: anterior Insula; PANSS: Positive and Negative Syndrome Scale (see also

Figure 5).

this process depends on the reward prediction error, which in turn
is associated with aberrant dopamine activity in the striatum of
psychotic patients. This model is in line with broader models of
schizophrenia, which suggest aberrant prediction error processing

Table 8 | Partial correlations between inter-iFC and severity of positive

and negative symptoms in patients with schizophrenia in state of

remission.

Inter-iFC Total Positive

Symptoms

Total Negative

Symptoms

r -score p-Value r -score p-Value

aDMN – ipDMN 0.443 0.379 0.595 0.213

aDMN – spDMN −0.254 0.627 −0.574 0.233

aDMN – SN −0.717 0.109 0.135 0.799

aDMN – lvCEN −0.152 0.774 −0.402 0.429

aDMN – rvCEN −0.243 0.643 −0.869 0.025

aDMN – dCEN −0.764 0.077 −0.463 0.355

ipDMN – spDMN 0.361 0.482 0.597 0.211

ipDMN – SN −0.184 0.727 −0.016 0.977

ipDMN – lvCEN 0.807 0.052 0.071 0.893

ipDMN – rvCEN 0.844 0.034 0.105 0.844

ipDMN – dCEN −0.166 0.753 −0.129 0.808

spDMN – SN −0.256 0.624 −0.865 0.026

spDMN – lvCEN −0.03 0.955 0.188 0.722

spDMN – rvCEN −0.115 0.828 0.643 0.169

spDMN – dCEN −0.327 0.526 −0.362 0.481

SN – lvCEN −0.615 0.194 −0.073 0.89

SN – rvCEN 0.555 0.253 0.969 <0.001*

SN – dCEN −0.686 0.133 −0.9 0.014

lvCEN – rvCEN 0.396 0.437 0.486 0.329

lvCEN – dCEN −0.728 0.101 0.179 0.735

rvCEN – dCEN −0.509 0.302 −0.228 0.663

Italics indicate p <0.05; *significant for p < 0.05, Bonferroni-corrected for multiple

comparisons (n=21). Partial correlation, corrected for age, sex, total GM volume

and chlorpromazine equivalent dose (CPZ).

a/ip/spDMN: anterior/inferior-posterior/superior-posterior DMN; lv/rv/dCEN: left-

ventral/right-ventral/dorsal CEN; SN: salience network (see also Figure 5).

as critical element underlying patients’ positive symptoms, tak-
ing the huge body of evidence for aberrant striatal dopamine in
psychotic patients into account (Murray et al., 2008; Fletcher and
Frith, 2009). As mentioned above, it seems to be important to study
how these two concepts of aberrant salience link in schizophrenia,
i.e., in terms of our finding: how do aberrant AI interactions relate
with aberrant striatal prediction error activity?

DMN/CEN INTERACTIONS IN PSYCHOTIC REMISSION
Intra-iFC within the DMN in psychotic remission
Compared to HCs, patients showed decreased intra-iFC in both
ACC and PCC within the DMN, while inter-iFC between DMN’s
subsystems was not altered. Although alterations in FC within
the DMN in patients with schizophrenia are frequently reported
during both task (Garrity et al., 2007) and rest (Whitfield-Gabrieli
and Ford, 2012), the nature of this alterations remains still unclear.
For instance, recent fMRI studies investigating the FC within the
DMN demonstrated both decreased (Camchong et al., 2011) and
increased (Whitfield-Gabrieli et al., 2009) intra-iFC in patients
with schizophrenia. Among other things, inhomogeneous patient
samples, often including patients during both state of psychosis
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Manoliu et al. Insular dysfunction in psychotic remission

and state of remission, and the application of not-standardized
methodological approaches might account for this contradictory
results (Whitfield-Gabrieli and Ford, 2012).

In the present study, we adopted a recently proposed pipeline
for ICA of resting-state fMRI data (Allen et al., 2011) to obtain
canonical ICNs in a robust and reproducible way, thus allowing for
better comparability with studies using the same approach. Pre-
viously, we found decreased intra-iFC within as well as increased
inter-iFC between distinct subsystems of the DMN in patients
with schizophrenia during psychosis using the same methodolog-
ical approach (Manoliu et al., 2013). Furthermore, the absence
of increased FC between distinct subsystems of the DMN in psy-
chotic remission is well in line with current literature, suggesting
a relationship between increased FC within the DMN, severity of
positive symptoms and psychosis (Garrity et al., 2007). Taken these
findings together, our data suggest an aberrant intrinsic FC within
the DMN as a function of state of disease.

Intra-iFC within the CEN in psychotic remission
Compared to HCs, patients showed increased intra-iFC in the left
inferior temporal gyrus, while inter-iFC between CEN’s subsys-
tems was not altered. Heterogeneous alterations within the CEN
have been reported in schizophrenia, including both increased and
decreased intra-iFC within the CEN during rest (Woodward et al.,
2011). Following the above-mentioned argument for the DMN,
inconsistent findings of aberrant intra-iFC within the CEN in
schizophrenia might be due to both heterogeneous patient sam-
ples and distinct methodological approaches (Whitfield-Gabrieli
and Ford, 2012). Previously, we found both increased and reduced
intra-iFC within the CEN in psychotic patients (Manoliu et al.,
2013). Due to the identical methodological approaches applied in
the previous and current study, the present data suggest that the
aberrant intrinsic FC within the CEN may depend on the state of
disease.

Inter-iFC between DMN and CEN in psychotic remission
Compared to HCs, patients showed decreased inter-iFC between
ipDMN and rvCEN, suggesting an aberrant inter-network connec-
tivity between DMN and CEN. It has been suggested that schiz-
ophrenia is characterized by a disrupted relationship between the
task-negative DMN and task-positive CEN (Williamson, 2007),
which might underlie both positive and negative symptoms
(Menon, 2011; Palaniyappan and Liddle, 2012). In particular, aber-
rant recruitment of anti-correlated networks has been demon-
strated in schizophrenia (Hasenkamp et al., 2011). Furthermore,
we demonstrated aberrant connectivity within DMN and CEN in
patients with schizophrenia during acute psychosis (Manoliu et al.,
2013). Our current result extends this finding by demonstrating
that impaired between-network interactions in schizophrenia are
also present during psychotic remission.

LIMITATIONS
We acknowledge several limitations, which have to be consid-
ered in the present study. Firstly, antipsychotic drugs have been
shown to have an impact on FC in patients with schizophrenia
(Sambataro et al., 2010). However, only 4 out of 12 patients were
free of antipsychotic medication, while all other patients received

mono- or dual therapy with atypical antipsychotic medication. To
account for this potential confounder, the total current CPZ equiv-
alent dose was calculated and entered as covariate of no interest in
all corresponding analyses. Furthermore, CPZ-scores had no sig-
nificant effect on both intra-iFC and inter-iFC. Nevertheless, CPZ
was entered as a linear covariate, thus not ruling out non-linear
effects of antipsychotic medication. Moreover, the possible effects
of different antipsychotic drugs on BOLD activity are currently
not completely understood. In addition to these observations,
antipsychotic drugs have in most cases an effect on positive symp-
toms but not on negative symptoms, potentially being reflected
in a higher standard deviation of negative symptoms compared
to positive symptoms in our patient sample and thus compli-
cating the investigation of the relation between SN dysfunction
and psychotic symptoms. Therefore, the present results should be
interpreted with care until replicated in an unmedicated patient
sample.

Secondly, limitations of the ICA have to be taken into consider-
ation, including the arbitrary model-order selection and subjective
bias in selection of the components of interest (Cole et al., 2010).
Bearing this in mind, we adopted a recently proposed analysis
pipeline (Allen et al., 2011) to provide a better comparability with
current and future studies using the same approach. A detailed dis-
cussion of this methodological limitation can be found in Manoliu
et al. (2013). Finally, only 12 patients with schizophrenia dur-
ing state of remission were included in this study. It has been
shown that analyses of rather small patient samples can yield
very robust and interpretable results (Dovern et al., 2012; Sorg
et al., 2013). However, small study samples increase the risk of
obtaining false-negative statistical results, possibly explaining our
negative finding regarding a relationship between intra-iFC within
the right AI and the severity of positive symptoms. Therefore, a
replication of our results in a larger patient sample might con-
tribute to our current understanding of insular dysfunction in
schizophrenia.

CONCLUSION
Results provide evidence that left anterior insular dysfunction
within the SN is selectively associated with both aberrant between-
network interactions and severity of negative symptoms in patients
with schizophrenia during psychotic remission. Together with
correspondent findings concerning the right anterior insula in
patients during psychosis, these findings suggest that the relation-
ship between insular dysfunction and altered between-network
interactions is a characteristic feature of schizophrenia, with pos-
sibly distinct insular pathways for distinct symptom dimensions.
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The complex task of assessing the veracity of a statement is thought to activate uniquely
distributed brain regions based on whether a subject believes or disbelieves a given
assertion. In the current work, we present parallel machine learning methods for predicting
a subject’s decision response to a given propositional statement based on independent
component (IC) features derived from EEG and fMRI data. Our results demonstrate
that IC features outperformed features derived from event related spectral perturbations
derived from any single spectral band, yet were similar to accuracy across all spectral
bands combined. We compared our diagnostic IC spatial maps with our conventional
general linear model (GLM) results, and found that informative ICs had significant spatial
overlap with our GLM results, yet also revealed unique regions like amygdala that were
not statistically significant in GLM analyses. Overall, these results suggest that ICs may
yield a parsimonious feature set that can be used along with a decision tree structure for
interpretation of features used in classifying complex cognitive processes such as belief
and disbelief across both fMRI and EEG neuroimaging modalities.

Keywords: machine learning, decoding, EEG, fMRI, ICA, decision making, decision tree, interpretation

INTRODUCTION
The complex process of decision-making appears to engage dis-
tinct cortical regions whose spatio-temporal evolution occurs
over multiple stages of directed processing. While this process-
ing likely varies according to the specific task and its difficulty,
its framework is thought proceed by internal representation of
variables, valuation of these internal states, and eventual action
selection (Rangel et al., 2008). EEG and fMRI have each been
used according to their individual strengths in temporal and spa-
tial precision to measure both serial and parallel aspects of neural
computation involved in decision-making in humans (Heekeren
et al., 2008).

Neuroimaging studies using fMRI have demonstrated that
decision tasks involving perceptual stimuli discrimination con-
sistently activate fronto-parietal networks (White et al., 2012)
including the dorsolateral prefrontal cortex (dlPFC). Similar
functional activation patterns also emerge in humans during the
process of consciously assessing the truth content of a state-
ment, as revealed by fMRI (Harris et al., 2008). Nonetheless,
the specific brain loci and patterns of activation appear to
vary uniquely according to both the eventual decision out-
come, and the categorical decision being made (Heekeren et al.,
2003).

Machine learning (ML) methods are now commonly applied
to neuroimaging data and have been used predicatively to decode
decision responses based on blood oxygenation level dependent
(BOLD) signals in selected brain regions (Calvert and Brammer,

2012). However, the volume of data in fMRI is vast—far beyond
what can be interpreted readily from a simple localization per-
spective, and a more parsimonious representation of the data
can ease the interpretation process. When applied in a “trans-
parent” fashion, ML methods can also be leveraged for their
explanatory power to gain insight into the underpinnings of neu-
ral circuitry (O’Toole et al., 2007; Ecker et al., 2010; Hanke et al.,
2010).

On the one hand, whole brain voxel data has been used
effectively for fMRI decoding (e.g., LaConte et al., 2007), par-
ticularly when a classifier such as a support vector machine
(SVM) is well tuned on these data (Chu et al., 2012). However,
with too many inputs, a classifier may begin to fit the noise,
and this overfitting may lead to poor generalization capabil-
ity (Yamashita et al., 2008). Physiologically-driven approaches
such as selecting functional regions of interest (ROIs) dimin-
ish input size substantially (Cox and Savoy, 2003; Chu et al.,
2012), but require a priori knowledge of brain morphology
associated with a given task (Mourão-Miranda et al., 2006).
While tools like multivoxel pattern analysis (Norman et al.,
2006) provide methods for determining voxel subsets with high
signal-to-noise ratio, these subsets may differ across individ-
ual scans, and spatially adjacent voxels may provide redundant
information.

The challenge or extracting class specific signal features from
EEG data is similarly challenging. EEG are inherently noisy and
non-stationary, varying significantly from trial-to-trial (Müller
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et al., 2008). Nonetheless, decoding brain states at the single trial
level has been made possible by developing analysis tools that
explain the high dimensional data with a well-defined underlying
structure. While event related potential features derived from the
EEG signal itself (e.g., P300) have been used to drive ML based
brain computer interfaces (Krusienski et al., 2008), it is often
useful to apply a dimension reduction technique first. Common
spatial patterns (e.g., Dornhege et al., 2006) that seek to find
filters that maximize variance in one condition, principle compo-
nent analysis (Subasi and Ismail Gursoy, 2010) and analytic signal
reconstruction of event related spectral perturbations (D’Zmura
et al., 2009) have all been useful for feature extraction in decoding
EEG signals. Ideally, the dimension reduction step is both inter-
pretable and capable of being used in the absence of a class specific
signature hypothesis (Lal et al., 2004), particularly if the goal is
identification of novel EEG components related to a cognitive
process.

Using a method such as independent component analysis
(ICA) allows basis images to cover the entire brain, and is an unsu-
pervised blind source separation technique (Bell and Sejnowski,
1995; Calhoun and Adali, 2006) that does not require a pri-
ori physiologic knowledge about a certain brain process. ICA
has found numerous applications in fMRI and EEG (Lan et al.,
2005) to include: data exploration (Beckmann et al., 2006), noise
component elimination (Tohka et al., 2008), and as a basis for
decoding analysis (De Martino et al., 2007; Anderson et al., 2009;
Douglas et al., 2011). A key advantage is that ICs are nominated by
the data themselves. Furthermore, IC spatio-temporal signatures
across individuals appear both stable and consistent within func-
tional neural subsystems (Damoiseaux et al., 2006; Smith et al.,
2012).

In the present paper, we describe an ICA based ML approach
to classify fMRI and EEG data of persons engaged in a bivariate
task, asserting their belief or disbelief of a variety of propo-
sitional statements. We extend previous work (Douglas et al.,
2011) by developing a quantitative metric for comparing IC
features with traditional general linear model (GLM) analysis
results for interpretation purposes. We then create a parallel ML
approach for single trial classification of belief versus disbelief
using high-density electrode EEG data, and compare the classifi-
cation accuracy achieved using ICs derived from each functional
modality.

METHODS
OVERVIEW
Our method involved application of parallel IC processing to both
EEG and fMRI data for the purpose of classification of belief
decision making. In brief, we collected EEG and fMRI from sub-
jects who were prompted to decide whether they believed or
disbelieved a particular statement presented to them on a screen.
Decision responses were recorded and used for training and test-
ing a ML classifier. ICA was run on training sets for both fMRI
and EEG data. ICs were sampled at time points that were deter-
mined to be informative for discrimination. We then projected
our ICs forward onto test data and applied our ML classifier to
test data. We then calculated accuracy by comparing the sub-
ject’s keypad response to our ML predicted response. A schematic

illustrating the parallel ICA ML processing pipelines for fMRI and
EEG is shown in Figure 1.

SUBJECTS
A total of 37 healthy participants volunteered for this experiment.
Written informed consent was obtained from each participant
prior to the experiment, which was approved by the UCLA
Institutional Review Board. Fourteen subjects participated in the
fMRI portion of the study, while 23 participants participated in
the EEG portion of the experiment. All subjects were healthy vol-
unteers aged 18–45 years old, with 15 of the participants being
female.

EXPERIMENTAL DESIGN
During the experiment, subjects were asked to evaluate truth con-
tent from a given statement, and indicate their assessment with
a keypad response. Statements were chosen at random from the
following categories: mathematical, geographical, semantic fac-
tual, autobiographical, religious, and ethical. For the fMRI task,
statements were presented via MR-compatible goggles. For addi-
tional details about the fMRI stimulus paradigm, and categorical
statements see (Harris et al., 2008). For the purposes of our ML
analysis here, we collapse all belief and disbelief events across
statement category.

The stimuli task paradigm was implemented in MATLAB
(Mathworks, Inc.) using the Psychophysics Toolbox, Version 3.0
(Brainard, 1997). Each subject trial began with a brief instruc-
tional statement following by a crosshair fixation. Statements
were presented in random order as black text against a gray back-
ground. For the subjects who participated in the EEG portion of
the experiment, a subset of subjects (n = 10) viewed each state-
ment using a rapid serial visual presentation (RSVP) protocol
with inter-word and inter-stimulus intervals of 500 ms. However,
in the present work, we focus on EEG data from subjects that
viewed the statements using the same protocol as for the fMRI
portion of the experiment. In this design, the entire statement
was presented on the screen at once. Each statement was cen-
tered on the screen with new lines beginning after each set of four
words to minimize saccade artifact. Progression to the following
statement was self-paced, and a central crosshair was presented
on the screen during the interval between successive statements.
Presentation of each new stimulus occurred 500 ms after subject
key press response.

The correspondence of the keyboard keys to belief or dis-
belief was also randomized and the statements themselves were
excluded from the MATLAB report to protect subject privacy
and as a double-blind measure. The statements were also coun-
terbalanced across each category with the goal of approximately
half of the statements yielding a “belief” response. For exam-
ple, the total number of mathematical statements that were true
such as, “2 + 2 = 4,” was equal to the number of mathematical
statements that were false. The aim of this is to derive acti-
vation related to belief and disbelief in a content-independent
manner, with approximately equal numbers of data exemplars
in each response category. Each session consisted of ∼180 trials,
which were subsequently used for training and testing of machine
learning classifiers.
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FIGURE 1 | Parallel Method for Independent Component Analysis (ICA)

based discrimination of belief and disbelief using machine learning

techniques. Following ICA decomposition on data exemplars randomly
parsed into the training set, FMRI ICs (top, red arrows) are thresholded
and binarized. These spatial masks are then multiplied by testing data.

Mean activation values are then extracted for each IC, and sampled
timecourses are used as features for decoding. EEG IC activations (bottom,
blue arrows) are projected onto testing data, and IC activation timecourses
are sampled at time points determined by wavelet data, and used as
inputs for classification.

DATA ACQUISITION AND PREPROCESSING
fMRI
All structural and functional MRI scans were acquired using
a Siemens Allegra 3T scanner (Siemens, Milwaukee, WI).
High-resolution structural images were acquired using
a magnetization-prepared rapid gradient-echo sequence.
Additional scanning parameter details can be found in Harris
et al. (2008). Standard preprocessing of data including brain
extraction, slice timing correction, motion correction, spatial
smoothing using a 5 mm kernel, high-pass filtering, and regis-
tration were carried using tools available in FSL (FMRIB Image
Analysis Group, http://www.fmrib.ox.ac.uk/fsl) (Woolrich et al.,
2001; Jenkinson et al., 2002)

EEG
EEG data were recorded using a high density 256-channel GES
300 Geodesic Sensor Net (Electrical Geodesics Inc.) with a sam-
pling rate of 250 Hz in a copper shielded room that was dimly lit.
Initial data preprocessing steps were carried out using NetStation

4.4.2 software. These steps included: bandpass filtering from 0.1
to 100 Hz, and a 60 Hz notch filter with a passband gain of –0.1 dB
(99%) and stopband gain –40dB (1.0%). We then segmented data
500 ms before and 2500 ms after the stimulus presentation for
each event.

Artifact detection for removal of eye movement was accom-
plished using a moving average of 80 samples with a window size
160 samples to correct for eye movement. Channels that con-
tained >20% error and segments with >10 bad channels were
excluded from analysis. Ocular artifact removal was then per-
formed to exclude eye blinks from the analysis, using a blink
threshold of 10 μV/ms for eyeblink detection. Identification and
subsequent removal of these artifacts from all channels was
accomplished using methods described here (Gratton et al., 1983;
Miller et al., 1988). Segments were then averaged across each
stimuli condition, and baseline corrected using a 100 ms baseline
prior to the stimulus onset for correction.

For our analysis of ERSPs, we bandpass filtered the EEG data
into each of the following respective subands: delta (0.1–4 Hz),
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theta (4–8 Hz), alpha (8–12 Hz), beta (12–20 Hz), and gamma
(20–45 Hz). Following preprocessing, the power envelope of each
characteristic frequency band was calculated using software devel-
oped for this purpose in Matlab (Mathworks, Inc.), and sampled
at time points as described below.

INDEPENDENT COMPONENT ANALYSIS AND FEATURE EXTRACTION
fMRI
We performed a global ICA computation on each subject’s data
set. ICA is a powerful tool for finding hidden factors that under-
lie multivariate data. Known input data, D, is decomposed into
a linear combination of statistically independent latent variables,
or components, in an unknown mixing system, M. Classic ICA
proceeds by the following decomposition:

D = MA. (1)

The matrix A is optimized to obtain statistically independent
spatial maps that correspond to various regions of the brain
with corresponding temporal aspects. Probabilistic ICA was per-
formed here, using the methodology described above, which
forms the basis for the computational program FSL MELODIC,
(Beckmann and Smith, 2004).

IC timecourses calculated on training data were sampled
at time points corresponding to the maximum predicted
BOLD response value. Due to the rapid, self-paced experimen-
tal paradigm, multiple belief and disbelief events sometimes
occurred within a single repetition time (TR). To avoid overlap
in these cases, we included only those data instances whose class
label was identical for two or more consecutive trials, effectively
reducing the number of exemplars by approximately one third.

In order to extract corresponding IC timecourses from data
parsed into the test set for ML purposes, IC spatial masks were
binarized and multiplied by the fMRI test data over time. In our
previous work, we found that approximately six ICs were effective
for classification and describing the data (Anderson et al., 2011).
We therefore extracted mean values from each of these IC spa-
tial masks multiplied by the test data, and sampled at time points
corresponding to the maximal BOLD activity for each keypad
response for subsequent predictive labeling.

EEG
Following preprocessing, ICA decomposition was performed on
each set of training data for all subjects using the Infomax
algorithm (Bell and Sejnowski, 1995) as implemented in the logis-
tic infomax algorithm “binICA” call within EEGLab (Delorme
and Makeig, 2004). ICA decomposition of EEG channel data is
decomposed into a mixing matrix of weights and IC activations,
analogous to equation 1. Segmented data epochs were randomly
parsed into ten approximately equal bins. As explained further
in the machine learning section, nine of the ten bins were used
for training on each cross validation fold. In order to project ICs
derived from the training data onto the test data, we calculate the
inverse of the mixing matrix and multiply it by the new data as
follows:

ATest = DTrainingM−1
Training (2)

In each case, our mixing matrix was square and invertible, where
the number of ICs was equal to the number of channels. IC
data was demeaned for each channel prior to ML analysis. We
compared classification of ICs to accuracy using data from each
spectral band. In order to accomplish this, we similarly demeaned
and squared each spectral time course, and sampled each spectral
band along with ICs at time points described below.

Wavelet Informed EEG IC Sampling. In order to determine time
points for feature extraction, we utilized time-frequency informa-
tion contained in the wavelet spectrogram, whose transform is
described by equation 3 (Sanei, 2007):

W(s, t) =
∫

x(t)
1

s
y∗

(
t − t

s

)
dt (3)

where, ψ is the equation of the mother wavelet, σ is the scal-
ing factor used to dilate and contract the mother wavelet and
achieve different pseudofrequencies, τ is the position parameter,
and x(t) is the signal being analyzed. Wavelet decomposition was
performed on all electrode channels, using the wavelet toolbox
within NetStation (v 4.4.2). We used a Morlet wavelet which has
a Gaussian shape in both time and frequency domains, with a
width of 6 (Tallon-Baudry et al., 1996) and a frequency step of
1 Hz. Power spectrograms in the training data were then averaged
across conditions, as has been done by many (e.g., Tallon-Baudry
et al., 1997). We baseline corrected and calculated the power
by squaring the magnitude of the complex wavelet coefficient
and dividing the mean power across the entire segment for each
frequency step.

A between-condition difference was then calculated for each
channel by averaging the power for each condition at all time
points and subtracting the mean power from the opposite con-
dition. The time point that maximized the sum of the power
across frequency bands in these differences across all channels was
selected for feature extraction as follows:

argmax
[
fB, {t, n}] fB = ∑

jw

(
E2

B − E2
DB

)
argmax

[
fDB, {t, n}] fDB = ∑

jw

(
E2

DB − E2
B

) (4)

where, EB is the power for belief at time point t in channel n aver-
aged across the frequencies contained within the band jω, and
EDB is the corresponding measure for disbelief. Feature extraction
time points were averaged across all subjects using a leave one out
cross validation approach, so wavelet information from the cur-
rent subject undergoing classification was not used to inform the
time point selection. Feature extraction proceeded by sampling
power envelopes of either IC time courses or spectral band signa-
tures for each electrode channel at these key discriminatory time
points.

MACHINE LEARNING CLASSIFICATION
Within subject classification of EEG and fMRI data was accom-
plished using a nested 10-fold cross validation procedure. Events
are first parsed randomly into ten bins. Nine bins are then
used for training and parameter tuning via an inner cross
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validation procedure, and the tenth held out data is used as
the test set. We tested four machine learning classifiers over a
range of complexity: Bayes Net, Support vector machine (SVM)
(Burges, 1998; Vapnik, 2000), Adaboost (Viola and Jones, 2001),
and J48 decision tree based on the C4.5 decision tree algo-
rithm (Quinlan, 1993). Classification accuracy for each algo-
rithm was assessed via 10-fold cross validation. Hyperparameters
were optimized using a 10-fold nested cross validation proce-
dure and ranked features were sequentially added to the train-
ing set using a forward feature subset approach, as described
in Douglas et al. (2011). For the J48 decision tree, we set
the minimum number of instances per leaf to 40. We used
implementations of each ML algorithm available in the open
source Weka (Waikato Environment for Knowledge Analysis)
software.

Interpretation of classification
In order to visualize the classification structure for interpretation
purposes, we used the WEKA Knowledge Flow tool to illustrate
the underlying classifier structure for the J48 decision tree. FMRI
IC features that were assigned to either the root node or a decision
node further along in the partitioning structure were compared to
the GLM data quantitatively by thresholding (z ≥ 2.3) and then
binarizing each spatial map.

RESULTS
EEG BELIEF DECISION DATA
We averaged the number of responses in each category across
subjects to compare the number of data exemplars in each cat-
egory. Overall, we found that subjects responded “belief” to

45.6% of questions, thus making “disbelief” a slightly more fre-
quent response. The feature extraction time averaged across the
group was 578 ± 19 ms earlier than the average time for disbelief.
Wavelet spectrograms from an illustrative individual are shown in
Figure 2 for channels that mutually maximized belief and disbe-
lief contrasts, along with selected channels location with respect
to the electrode channel configuration.

CLASSIFICATION ACCURACY INTERPRETING CLASSIFIER STRUCTURE
Comparing IC spatial maps with GLM results
Mean 10-fold cross validation accuracy for IC based classifica-
tion of FMRI was 80.8, 91, 84, and 80% for support vector
machine, naïve Bayes, J48 decision tree and k-star classifiers.
We generated decision trees for each cross validation fold using
reduced error pruning. Based on our nested cross validation, we
selected a minimum number of 10 data instances per leaf. The
structure of an IC based decision tree classifier using fMRI data
from a representative subject’s data is shown in Figure 3, with
final labels of belief (B) and (DB) indicating the final predicted
response.

The root IC and subsequent nodal ICs used in partitioning the
data are shown in the inset. IC voxels that also survived thresh-
old in GLM contrasts for belief-disbelief, and disbelief-belief are
shown in left and right columns respectively. The root node, IC 5,
and ICs 15 and 19 colocalized with belief GLM areas in left middle
frontal gyrus and precuneus. ICs 13, 19 and GLM disbelief-belief
contrast revealed significant voxels in lateral occipital cortex,
whereas paracingulate gyrus was unique to IC 13. Areas that were
unique to IC maps included right medial frontal gyrus, right
precentral gyrus, right amygdala, and bilateral cingulate cortex.

FIGURE 2 | Wavelet informed sampling of EEG data. Stimulus-locked
wavelet data are shown for a specific individual for illustrative purposes.
(Left) Electrode array configuration. (Right) In the top panel, wavelet power
data are shown for each category for a particular frontal channel that was

used to determine the belief extraction time point. The lower panel
similarly shows data from the channel used to determine the disbelief
extraction time. Power increases occurred earlier for belief events than for
disbelief events.
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FIGURE 3 | (Inset) J48 Decision tree structure using independent

component (IC) features derived from fMRI data. The green box at top
is the root node, pink boxes are used for subsequent nodes for splitting of
the data, and blue boxes indicate terminal decisions or leaf nodes. These
IC spatial maps along with general linear model (GLM) contrasts are

shown at right. (Left Column) Belief (Green) thresholded z-stat masks
generated from a GLM analysis with the contrast of belief-disbelief are
overlaid with IC masks (blue) and the voxels that are common to both
(pink). (Right Column) Disbelief (red) shown similarly with blue for IC and
coregistered voxels in yellow.

EEG classification accuracy
Similar to our fMRI analysis, we calculated classification accuracy
with respect to the four classifiers tested. IC and power envelopes
from spectral timecourses were sampled at points determined
from wavelets, as described previously. Figure 4 shows the pruned
J48 decision tree hierarchical structure for a specific subject’s EEG
data. Average classification across all four algorithms was 78.8,
77.1, 73.5, 72.2, and 66.1% for gamma, theta, beta, alpha, and
delta, respectively. We also stacked all of the spectral features
into a “combined” classifier. Mean accuracy for the combined
spectral classifier was 82.3%. Overall, the mean of each of these
spectral bans as well as the combined spectral classifier were less
than 88.6%, the average accuracy achieved using ICs across the
four algorithms. Accuracy obtained from using IC features was
85.9, 87.7, 92.6, 88.7%, for support vector machine, BayesNet,
AdaBoost, and the J48 Decision tree. Classification accuracy
using power envelopes from spectral bands and ICs as features
is summarized in Figure 4.

DISCUSSION
In the current study, we described a method for bivariate clas-
sification of belief and disbelief brain states using ICA for both
dimension reduction and subsequent feature extraction. We pre-
viously developed a method for training a ML classifier on
mean time courses extracted from thresholded IC spatial maps

(Douglas et al., 2011). In this analysis, we tested the perfor-
mance of six different ML classifiers in their utility for shatter-
ing belief and disbelief data. In this previous analysis, our goal
was to develop a classifier that was interpretable by trading off
model complexity with error. In this analysis we modeled our
classifier output using a sum of exponentials and terminated
the addition of more features to the model using the Akaike
Information Criterion. While the addition of more features would
often diminish the error on the training set marginally, we argued
that the sparse classifier would be easier to interpret from a neu-
roscientific point of view. In the current work, we extended this
analysis in two ways. First, we interpreted the classifiers that
resulted from our initial analysis by visualizing the extent to which
our sparse remaining IC features correlated spatially with the
voxel set of significant BOLD activations that resulted from a con-
ventional GLM analysis. Second, we collected EEG data on the
same belief decision making paradigm, and applied an analogous
ML approach to determine how well IC timecourses could be used
to classify EEG belief data.

We first presented the structure of example decision trees clas-
sifiers based on fMRI ICs. We found that the spatial patterns of
certain IC decision tree nodes were quite similar to conventional
GLM results. However, certain IC nodes mapped to regions with
unknown relevance to belief decision making. Given the spar-
sity with which these classifiers were operating, it is possible that

Frontiers in Human Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 392 | 233

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Douglas et al. Single trial EEG belief decoding

FIGURE 4 | (Top) Mean classification accuracy achieved using

features derived from power envelopes for each spectral band

for four classifier algorithms shown in left panel, and IC

accuracy with compared with accuracy achieved when

combining all spectral features into a single classifier for the

same four machine learning algorithms. (Bottom) Structure of
an individual subject example J48 decision tree used in IC based
classification.

these additional areas are involved in some stage of the complex
directed processing that occurs in decision making. These regions
may only be involved in certain categorical decisions or for cer-
tain individuals, and therefore did not survive thresholding in
conventional analyses. It is possible that this process may be one
mechanism for using IC for exploratory purposes.

We also presented EEG based IC classification results on this
same task. The J48 decision tree structure for partitioning data
into classes is somewhat similar to decision flow diagrams used
for triage in the clinical setting. Decision trees may therefore rep-
resent an intuitive structure for interpreting ML features and their
output. Overall, we found that ICs proved useful as features for
discriminating between the cognitive states of “belief” and “dis-
belief” at the single trial level in both fMRI and EEG data collected
from a high density 256 electrode net. Our IC based classifica-
tion process can be easily mapped back to the data for interpretive
purposes.

INTERPRETING DIAGNOSTIC FEATURES: fMRI BOLD ACTIVATIONS
AND ICs
It is often the case in fMRI decoding studies that the ML process is
abstract and can involve thousands of features. While a large vec-
tor of features often outperforms a reduced feature set, the margin
of improved accuracy may only be slight (e.g., Brodersen et al.,

2011; Chu et al., 2012). Selecting relevant features while con-
currently minimizing extraneous and redundant features is a key
challenges in machine learning (ML) applications, as the perfor-
mance of certain classifiers degrades with abundant or extraneous
information (Kohavi and John, 1997). A parsimonious attribute
subset may not only improve the generalization capability of a
classifier (Yamashita et al., 2008), but also all for scientific gain
when the process is readily intelligible.

Depending on the objective, IC features may be advantageous
for ML, as they offer a concise functional representation of the
data, which can be easily interpreted and does not require a priori
information. It is not surprising that our analysis revealed that
certain highly discriminatory ICs coregistered to a large extent
with the group level contrasts for Belief-Disbelief and Disbelief-
Belief. It is perhaps more interesting to consider regions unique
to IC maps.

IC activity not related to the GLM spatial maps that remained
in the decision tree after pruning may be meaningful. For exam-
ple, reading phrases that contain negative emotional associations
have been shown to activate amygdala (Osaka et al., 2013), and
the amygdala also appears to play a key role in autobiographi-
cal memory encoding, consolidation, and retrieval (Markowitsch
and Staniloiu, 2011). Others have shown that basolateral amyg-
dala is part of a circuit involved in effort based decision making

Frontiers in Human Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 392 | 234

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Douglas et al. Single trial EEG belief decoding

in rodents (Floresco and Ghods-Sharifi, 2007). Our observa-
tion here could therefore relate to emotional or autobiographical
memory processing or even the amount of effort required for a
particular decision. Activation that did not coregister with GLM
regions might also reflect neural activity that non-linearly dis-
criminates between disbelief and belief in a way that t-statistics
do not capture. It is also important to note that in our analysis
here as well as in (Douglas et al., 2011), we collapsed our anal-
ysis across all belief and disbelief categories. Previous work by
our group demonstrated that there were no statistically significant
differences between these categorical decisions using fMRI GLM
analysis (Harris et al., 2008). It is therefore possible that differen-
tial regions that we observed, here, reflect categorical differences
that did not survive statistical thresholding.

Given the highly complex and distributed nature of the cog-
nitive processing of belief, it is highly likely that the independent
multivariate normal assumption of the GLM is violated. However,
the nature of this activity is difficult to interpret using simple
concepts of up or down regulation of networks. It is also possi-
ble that discriminatory information revealed by ICA may not be
present in all subjects or all belief/disbelief data exemplars, and
therefore a GLM analysis may be underpowered to detect these
changes.

FEATURE SELECTION AND SPECTRAL CLASSIFICATION IN EEG
We used power envelopes derived from spectral bands as fea-
tures in classification of belief decision-making. Overall, these
results demonstrated that the gamma frequency band was most
the most discriminatory spectral band for belief/disbelief label-
ing. Compared to these results, IC features outperformed power
envelope in other spectral bands, but was overall similar to the
performance of the gamma band features across each of the four
classification algorithms discussed here.

A number of studies have found that EEG classification accu-
racy can vary across frequency subands (e.g., D’Zmura et al.,
2009). The functional significance of different neural oscillations
are thought to be reflect with different cognitive or neuronal states
(Engell et al., 2012). However, interactions across frequencies
provide the rich potential for computational encoding of higher
order representations. Gamma frequencies, for example, are often
modulated by lower frequencies (Buzsáki and Wang, 2012). In
terms of decision-making, cross frequency entrainment has been
shown to be important in rodent navigation and decision-making
(Tort et al., 2008). A number of papers have suggested cross-
frequency coupling as a potential mechanism for hierarchical
integration of network-level activity (Canolty and Knight, 2010)
for higher cognitive processing such as sensory binding. Our
wavelet informed feature selection method is consistent with the
idea that belief and disbelief would require synchronous activity
across frequency bands. However future work is needed to fully
understand cross frequency interactions and how they are related
to decision processing and whether or not ICs reflect aspects of
this coupling.

fMRI vs. EEG
Overall, IC features derived from EEG data outperformed
fMRI data. It is interesting to note that in many of the

EEG channels, there were observable event-locked changes in
spectral power for both belief and disbelief that were sep-
arated in time. Given that these categorical time-frequency
changes were separated by ∼500 ms, it is unlikely that these
temporal changes would be reflected in the BOLD signal.
Nonetheless, it is possible that signal changes measured at
different times at the same loci on the scalp were actu-
ally generated by spatially distinct brain regions, resolvable by
fMRI. Future work may involve analyzing EEG in the source
domain.

DECISION TREES AS HIERARCHICAL INTERPRETABLE CLASSIFIERS
In the present work, we used decision trees for not only classifica-
tion but also for interpretation of features used in the multistage
learning process. Decision trees, which are directed trees with
edges and nodes that provide a unique mapping from the root
node to a class label. While the overall process is indeed non-
linear, decision tree classifiers break down complexity learning
problems into the union of a series of simple decisions. Decision
trees are perhaps intuitive because provide a quantitative pro-
cess not all that unlike a decision flow diagrams used commonly
in medical triage. When decision tress are used in combination
with IC features, decision trees may allow for combining statisti-
cal knowledge of activations and deactivations in an interpretable
way.

CONCLUSIONS AND FUTURE WORK
Overall, these results suggest that ICs may yield an important
basis set for classifying complex cognitive processes such as belief
and disbelief across both fMRI and EEG neuroimaging modal-
ities. Future work may focus on studying belief and disbelief
decision making using concurrently collected EEG-fMRI data. A
joint analysis of simultaneous data using methods like joint ICA
(e.g., Franco et al., 2008; Edwards et al., 2012) may yield a more
in-depth understanding of the neural comparators involved in
belief decision-making.

There are strong motivations for understanding the mecha-
nisms underlying veracity assessment, and subsequent decision
making about truth content in particular, since a number of
potential applications exist given this understanding. When
used in combination with machine learning (ML) pattern
classification techniques, such knowledge could be used in
biomedical applications to drive brain computer interface based
communication devices or improved consumer product test-
ing (Calvert and Brammer, 2012). While the ICA computation
may be time consuming, in the present work ICs were calcu-
lated on training data, and then applied to testing data. Given
that the application of ICs to testing data is computation-
ally rapid, real-time application of this methodology may be
possible.
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