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Editorial on the Research Topic

Ethical Machine Learning and Artificial Intelligence

1 INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) have increasingly become an every-day reality
for most of us (Elliott, 2019). Typical algorithmic assessment methods, used for predicting human
outcomes such as recruitment, bail decisions, mortgage approvals, and insurance premiums, among
many others, are currently being trialled and subsequently deployed. Hence, the ethical and legal
requirements are moving into the foreground when developing novel AI and machine learning
algorithms (Hagendorff, 2020). For example, the United States’ Fair Credit Reporting Act and
European Union’s General Data Protection Regulation (GDPR) prescribe that data must be
processed in a way that is fair/unbiased—a challenge for AI (Mehrabi et al., 2019). GDPR also
alludes to the right of an individual to receive an explanation about decisions made by an automated
system such as by explainable AI (XAI) (Gunning et al., 2019).

Here, based on a recent research topic held in Frontiers in Big Data, we provide an overview on the
authors’ views and contributions.

This research topic covers but is not limited to the fields of fairness, accountability, transparency,
and trustworthiness (Baird et al., 2019), and covers methods such as causality and counterfactual
reasoning, reinforcement learning, and probabilistic approaches.

2 LITERATURE REVIEW

The research topic provides two overviews on the field.
In the first, Wells and Bednarz discuss in “Explainable AI and Reinforcement Learning – A

Systematic Review of Current Approaches and Trends” 25 studies selected from 520 search hits on this
recent topic. Thereby, they focus on “visualisation, query-based explanations, policy summarisation,
human-in-the-loop collaboration, and verification” which they identify as trends. As others, they
name the urge for user evaluations including laymen of explanations and find examples often over-
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simplified going hand-in-hand with lack in scalability, while
provision of comprehensible explanations remains a key
challenge. Further, they consider more progressive
visualisation approaches under-exploited including multimodal
and immersive forms of visualisation. Ideally, in the authors’
opinion, such would be combined with “well articulated
explanations”.

Next, in their mini review “Considerations for a More Ethical
Approach to Data in AI: On Data Representation and
Infrastructure”, Baird and Schuller observe that data
infrastructures are increasingly managed more democratically,
as decentralisation fosters transparency and therefore can help
better cope with selection-bias. Their review deals with AI-
targeted data representation and infrastructures focussing on
“auditing, benchmarking, confidence and trust, explainability
and interpretability” as key aspects that require
attention—ideally also in an interdisciplinary endeavour. As to
auditing, inmultimodal applications, the authors require standards
per modality to lead to accurate benchmarking. Further, they
support the view that confidence and trust are benefited by
“diverse representations of human data”—the latter also
boosting explainability to all users given “inherent human-like
attributes”. The authors attest energy put into these aspects by the
community, but in particular demand for increased
standardisation.

3 TECHNICAL APPROACHES

The research topic further includes three technical solutions.
First, in “The Moral Choice Machine”, Schramowski et al.

demonstrate that one can “extract deontological ethical
reasoning” with machine learning from human written texts
concerning right or wrong conduct. The authors provide
prompts and responses and define a bias score based on the
score of positive and negative responses. Likewise, they reach to
theMoral ChoiceMachine (MCM), that determines this score per
sentence applying Universal Sentence Encoder embeddings to
cater for context. By that, they observe that textual databases bear
“recoverable and accurate imprints of our social, ethical and
moral choices”. Further, picking selected databases from different
epochs, they find reflection on the evolution of these aspects.
Similarly, the authors consider different cultural sources.
Ultimately, this leads to their view that “moral biases can be
extracted, quantified, tracked, and compared across cultures and
over time”. As future work, the authors name the possibility to
alter the embeddings in targeted ways, such as to eliminate gender
stereotypes. They further suggest having the moral choice
machine in interactive robots enabled with active learning to
have users correct potential biases. Finally, they suggest targeted
alteration of the text sources for observation of effects.

In “Tuning Fairness by Balancing Target Labels”, Kehrenberg
et al. deal with bias in the output as challenge. To this end, they
add a latent target output to cater for a unified approach, apply
marginalisation rather than constraints problem, and provide for

a possibility to integrate knowledge on target unbiased outputs.
The authors argue that fairness is usually mainly handled by
statistical (group) or individual notions and belief that both are
needed for algorithmic fairness. Their approach can be learnt
from an implicitly balanced corpus, hence enabling demographic
parity and equality of opportunity. They also indicate avenues
towards an extension aiming at conditional demographic parity
as well. Finally, their general approach uniquely provides for a
target rate to control the realisation of the fairness constraint.
However, it will need extensions for predictive parity group or
individual fairness.

As a third example of algorithmic contribution to a more
ethical approach serve Ramanan and Natarajan’s with “Causal
Learning From Predictive Modeling for Observational Data”. They
apply causal Bayesian networks to model causal relationships
between data-learnt model variables sequentially using context-
specific and mutual independence. Likewise, potential causal
relationships are first found. Subsequentially, their strength is
determined. The authors verify this approach on benchmark
networks and find superiority over current alternatives.

4 DISCUSSION

Card and Smith finally discuss “On Consequentialism and
Fairness”, focusing on the outcome. They argue that
consequentialism has its deficits such as lacking in an
amenable choice of actions, but is a suited mean to highlight
issues in AI fairness such as “who counts”, disadvantages of policy
application, or the relative weight of the future. The authors give a
consequentialism-based critique of prevailing fairness definitions
in AI. They further also take an AI viewpoint on
consequentialism. Finally, they elaborate on learning and
randomisation in the context of AI ethics.

5 CONCLUSION

As all authors highlight, a more ethical approach is needed to data
in AI. However, algorithmic solutions can be and were partially
given also here. Accordingly, there is a call to action also for those
providing AI algorithms in the first place to actively work on
solutions to benefit and protect all users of AI and society.

AUTHOR CONTRIBUTIONS

BS wrote the manuscript. NQ edited it. All authors led the
underlying research topic.

ACKNOWLEDGMENTS

We express our sincere gratitude to all authors and reviewers that
helped putting together the research topic.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 7425892

Quadrianto et al. Editorial: Ethical Machine Learning and AI

5

https://doi.org/10.3389/fdata.2020.00025
https://doi.org/10.3389/frai.2020.00036
https://doi.org/10.3389/frai.2020.00033
https://doi.org/10.3389/frai.2020.00033
https://doi.org/10.3389/fdata.2020.535976
https://doi.org/10.3389/frai.2020.00034
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


REFERENCES

Baird, A., Hantke, S., and Schuller, B. (2019). Responsible and Representative
Multimodal Data Acquisition and Analysis: on Auditability, Benchmarking,
Confidence, Data-reliance & Explainability. Clin. Orthop. Relat. Res. arXiv
[preprint] arXiv: 1903.07171. Available at: http://arxiv.org/abs/1903.07171/.

Elliott, A. (2019). The Culture of AI: Everyday Life and the Digital Revolution.
London: Routledge.

Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., and Yang, G. Z. (2019). XAI-
explainable Artificial Intelligence. Sci. Robot. 4, eaay7120. doi:10.1126/
scirobotics.aay7120

Hagendorff, T. (2020). The Ethics of AI Ethics: An Evaluation of Guidelines.Minds
& Machines. 30, 99–120. doi:10.1007/s11023-020-09517-8

Mehrabi, N.,Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2019). A Survey
on Bias and Fairness in Machine Learning. Clin. Orthop. Relat. Res. arXiv [preprint]
arXiv: 1908.09635. Available at: http://arxiv.org/abs/1908.09635/.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Quadrianto, Schuller and Lattimore. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 7425893

Quadrianto et al. Editorial: Ethical Machine Learning and AI

6

http://arxiv.org/abs/1903.07171/
https://doi.org/10.1126/scirobotics.aay7120
https://doi.org/10.1126/scirobotics.aay7120
https://doi.org/10.1007/s11023-020-09517-8
http://arxiv.org/abs/1908.09635/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


CONCEPTUAL ANALYSIS
published: 08 May 2020

doi: 10.3389/frai.2020.00034

Frontiers in Artificial Intelligence | www.frontiersin.org 1 May 2020 | Volume 3 | Article 34

Edited by:

Novi Quadrianto,

University of Sussex, United Kingdom

Reviewed by:

Deepak P,

Queen’s University Belfast,

United Kingdom

Animesh Mukherjee,

Indian Institute of Technology, India

Tiberio Caetano,

Gradient Institute, Australia

*Correspondence:

Dallas Card

dcard@stanford.edu

Specialty section:

This article was submitted to

Machine Learning and Artificial

Intelligence,

a section of the journal

Frontiers in Artificial Intelligence

Received: 13 January 2020

Accepted: 17 April 2020

Published: 08 May 2020

Citation:

Card D and Smith NA (2020) On

Consequentialism and Fairness.

Front. Artif. Intell. 3:34.

doi: 10.3389/frai.2020.00034

On Consequentialism and Fairness

Dallas Card 1* and Noah A. Smith 2,3

1Computer Science Department, Stanford University, Stanford, CA, United States, 2 Paul G. Allen School of Computer

Science & Engineering, University of Washington, Seattle, WA, United States, 3 Allen Institute for AI, Seattle, WA,

United States

Recent work on fairness in machine learning has primarily emphasized how to define,

quantify, and encourage “fair” outcomes. Less attention has been paid, however, to

the ethical foundations which underlie such efforts. Among the ethical perspectives

that should be taken into consideration is consequentialism, the position that, roughly

speaking, outcomes are all that matter. Although consequentialism is not free from

difficulties, and although it does not necessarily provide a tractable way of choosing

actions (because of the combined problems of uncertainty, subjectivity, and aggregation),

it nevertheless provides a powerful foundation fromwhich to critique the existing literature

on machine learning fairness. Moreover, it brings to the fore some of the tradeoffs

involved, including the problem of who counts, the pros and cons of using a policy,

and the relative value of the distant future. In this paper we provide a consequentialist

critique of common definitions of fairness within machine learning, as well as a machine

learning perspective on consequentialism. We conclude with a broader discussion of the

issues of learning and randomization, which have important implications for the ethics of

automated decision making systems.

Keywords: consequentialism, fairness, ethics, machine learning, randomization

1. INTRODUCTION

In recent years, computer scientists have increasingly come to recognize that artificial intelligence
(AI) systems have the potential to create harmful consequences. Especially withinmachine learning,
there have been numerous efforts to formally characterize various notions of fairness and develop
algorithms to satisfy these criteria. However, most of this research has proceeded without any
nuanced discussion of ethical foundations. Partly as a response, there have been several recent calls
to think more broadly about the ethical implications of AI (Barabas et al., 2018; Hu and Chen,
2018b; Torresen, 2018; Green, 2019).

Among the most prominent approaches to ethics within philosophy is a highly influential
position known as consequentialism. Roughly speaking, the consequentialist believes that outcomes
are all that matter, and that people should therefore endeavor to act so as to produce the best
consequences, based on an impartial perspective as to what is best.

Although there are numerous difficulties with consequentialism in practice (see section 4), it
nevertheless provides a clear and principled foundation from which to critique proposals which
fall short of its ideals. In this paper, we analyze the literature on fairness within machine learning,
and show how it largely depends on assumptions which the consequentialist perspective reveals
immediately to be problematic. In particular, we make the following contributions:
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• We provide an accessible overview of the main ideas
of consequentialism (section 3), as well as a discussion
of its difficulties (section 4), with a special emphasis on
computational limitations.

• We review the dominant ideas about fairness in the machine
learning literature (section 5), and provide the first critique of
these ideas explicitly from the perspective of consequentialism
(section 6).

• We conclude with a broader discussion of the ethical issues
raised by learning and randomization, highlighting future
direction for both AI and consequentialism (section 7).

2. MOTIVATING EXAMPLES

Before providing a formal description of consequentialism
(section 3), we will begin with a series of motivating examples
which illustrate some of the difficulties involved. We consider
three variations on decisions about lending money, a frequently-
used example in discussions about fairness, and an area in which
AI could have significant real-world consequences.

First, imagine being asked by a relative for a small personal
loan. This would seem to be a relatively low-stakes decision
involving a simple tradeoff (e.g., financial burden vs. familial
strife). Although this decision could in principle have massive
long term consequences (perhaps the relative will start a
business that will have a large impact, etc.), it is the immediate
consequences which will likely dominate the decision. On the
other hand, treating this as a simple yes-or-no decision fails to
recognize the full range of possibilities. A consequentialist might
suggest that we consider all possible uses of the money, such
as investing it, or lending it to someone in even greater need.
Whereas commonsense morality might direct us to favor our
relatives over strangers, the notion of impartiality inherent in
consequentialism presents a challenge to this perspective, thus
raising the problem of demandingness (section 4.4).

Second, consider a bank executive creating a policy to
determine who will or will not be granted a loan. This policy will
affect not only would-be borrowers, but also the financial health
of the bank, its employees, etc. In this case, the bank will likely
be bound by various forms of regulation which will constrain
the policy. Even a decision maker with an impartial perspective
will be bound by these laws (the breaking of which might entail
severe negative consequences). In addition, the bank might wish
to create a policy that will be perceived as fair, yet knowing
the literature on machine learning fairness, they will know that
no policy will simultaneously satisfy all criteria that have been
proposed (section 5). Moreover, there may be a tradeoff between
short-term profits and long-term success (section 4.2).

Finally, consider a legislator trying to craft legislation that
will govern the space of policies that banks are allowed to
use in determining who will get a loan. This is an even more
high-level decision that could have even more far reaching
consequences. As a democratic society, we may hope that those
in government will work for the benefit of all (though this hope
may often be disappointed in practice), but it is unclear how
even a selfless legislator should balance all competing interests

(section 4.1). Moreover, even if there were consensus on the
desired outcome, determining the expected consequences of any
particular governing policy will be extremely difficult, as banks
will react to any such legislation, trying to maximize their own
interests while respecting the letter of the law, thus raising the
problem of uncertainty (section 4.3).

Although these scenarios are distinct, each of the issues
raised applies to some extent in each case. As we will
discuss, work on fairness within machine learning has focused
primarily on the intermediate, institutional case, and has largely
ignored the broader context. We will begin with an in-depth
overview of consequentialism that engages with these difficulties,
and then show that it nevertheless provides a useful critical
perspective on conventional thinking about fairness within
machine learning (section 6).

3. CONSEQUENTIALISM DEFINED

3.1. Overview
The literature on consequentialism is vast, including many
nuances that will not concern us here. The most well-known
expressions can be found in the writings of Jeremy Bentham
(1970 [1781]) and John Stuart Mill (1979[1863]), later refined
by philosophers such as Henry Sidgwick (1967), Elizabeth
Anscombe (1958), Derek Parfit (1984), and Peter Singer (1993).
The basic idea which unifies all of this thinking is that only
the outcomes that result from our actions (i.e., the relative
value of possible worlds that might exist in the future) have
moral relevance.

Before proceeding, it is helpful to consider three lenses
through which we can make sense of an ethical theory. First,
we can consider a statement to be a claim about what would
be objectively best, given some sort of full knowledge and
understanding of the universe. Second, we can think of an ethical
theory as a proposed guide for how someone should choose
to act in a particular situation (which may only align partially
with an objective perspective, due to limited information). Third,
although less conventional, we can think of ethics as a way to
interpret the actions taken by others. In the sense that “actions
speak louder than words,” we can treat people’s behavior as
revealing of their view of what is morally correct (Greene and
Haidt, 2002).

Although consequentialism is typically presented in a more
abstract philosophical form (often illustrated via thought
experiments), we will begin with a concise mathematical
formulation of the twomost common forms of consequentialism,
known as act consequentialism and rule consequentialism. For the
moment, we will intentionally adopt the objective perspective,
before returning to practical difficulties below.

3.2. Act Consequentialism
First, consider the proposal known as act consequentialism. This
theory says, simply, that the best action to take in any situation is
the one that will produce the best outcomes (Smart andWilliams,
1973; Railton, 1984). To be precise, let us define the set of possible
actions, A, and an evaluation function v(·). According to act
consequentialism, the best action to take is the one that will lead
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to the consequences with the greatest value, i.e.,

a∗ = argmax
a∈A

v(ca), (1)

where v(ca) computes the value of consequences, ca, which follow
from taking action a. Importantly, note that ca here represents
not just the local or immediate consequences of a, but all
consequences (Kagan, 1998). In other words, we can think of
the decision as a branching point in the universe, and want to
evaluate how it will unfold based on the action that is taken at a
particular moment in time (Portmore, 2011).

While Equation (1) might seem tautological, it is by no means
a universally agreed upon definition of what is best. For example,
many deontological theories posit that certain actions should
never be permitted (or that some might always be required),
no matter what the consequences. In addition, there are some
obvious difficulties with Equation (1), especially the question of
how to define the evaluation function v(·). We will return to this
and other difficulties below (section 4), but for the moment we
will put them aside.

One might object that perhaps there is inherent randomness
in the universe, leading to uncertainty about ca. In that case, we
can sensibly define the optimal action in terms of the expected
value of all future consequences, i.e.,

a∗ = argmax
a∈A

Ep(c|a)[v(c)], (2)

where p(c | a) represents the true probability (according to
the universe) that consequences c will follow from action a.
That is, for each possible action, we would consider all possible
outcomes which might result from that action, and sum their
values, weighted by the respective probabilities that they will
occur, recommending the action with the highest expected value.

To make the dependence on future consequences more
explicit, it can be helpful to factor the expected value into a
summation over time, optionally with some sort of discounting.
Although consequentialism does not require that we factorize the
value of the future in this way, it will prove convenient in further
elaboration of these ideas. For the sake of simplicity, we will
assume that time can be discretized into finite steps. A statement
of act consequentialism using a simple geometric discounting
factor would then be:

a∗ = argmax
a∈A

∞
∑

t=0

γ t · Ep(st+1|a)[v(st+1)], (3)

where p(st+1 | a) represents the probability that the universe will
be in state s at time t + 1 if we take action a at time t = 0, and
0 ≤ γ ≤ 1 represents the discount factor. A discount factor of
0 means that only the immediate consequences of an action are
relevant, whereas a discount factor of 1 means that all times in
the future are valued equally1.

1One could similarly augment Equation (3) to make any epistemic uncertainty

about the evaluation function or discount factor explicit.

3.3. Rule Consequentialism
The main alternative to act consequentialism is a variant known
as rule consequentialism (Harsanyi, 1977; Hooker, 2002). As
the name suggests, rule consequentialism is similar to act
consequentialism, except that rather than focusing on the best
action in each unique situation, it suggests that we should act
according to a set of rules governing all situations, and adopt the
set of rules which will lead to the best overall outcomes2.

Here, we will refer to a set of rules as a policy, and allow
for the policy to be stochastic. In other words, a policy, π , is
a probability distribution over possible actions conditional on
the present state s, i.e., π(s) , p(a | s). To make a decision,
an action is sampled randomly from this distribution3. Using
the same temporal factorization as above, we can formalize rule
consequentialism as

π∗ = argmax
π∈ 5

Ep(st′+1|at′ ,st′ )π(at′ |st′ )

[

∞
∑

t=0

γ t · v(st+1)

]

, (4)

where 5 represents the space of possible policies, and the
expectation is now taken with respect to the governing dynamics,
in which actions are selected based on the state of the world, i.e.,
at ∼ π(at | st), and the next state depends on the current state of
the world and the action taken, i.e., st+1 ∼ p(st+1 | st , at).

While some have suggested that rule consequentialism is
strictly inferior to act consequentialism, in that it fails to treat
each situation as unique (Railton, 1984), others have argued for
it, citing the inability of individuals to accurately determine the
best action in each unique situation (Hooker, 2002), as well as
benefits from coordination and incentives (Harsanyi, 1977). As
noted by various papers (e.g., Abel et al., 2016), Equation (4) bears
a striking resemblance to the problem of reinforcement learning4.
While this similarity is provocative, we will defer discussion of it
(and the more general question of learning) until section 7.

It is important to emphasize that the above formulation is
a highly stylized discussion of morality, largely divorced from
reality, which tries to encapsulate a large body of philosophical
writing put forward under the name “consequentialism.”
Thinking about what this formulation has to tell us about how
individuals make (or should make) choices requires further
elaboration, which we revisit below (section 4).

3.4. Competing Ethical Frameworks
The primary contrasting proposals to consequentialism are (a)
deontology; and (b) theories in the social contract tradition. As
mentioned above, deontological theories posit that there are
certain restrictions or requirements on action, a priori, which

2In some cases, rule consequentialism is formulated as the problem of choosing

the set of rules which, if internalized by the vast majority of the community, would

lead to the best consequences (Hooker, 2002).
3Most treatments of consequentialism assume that the rules determine a single

correct action for each situation. However, the formulation presented here is

strictly more general; deterministic policies are those that assign all probability

mass to a single action for each state.
4Equation (4) is equivalent to the standard formulation of a Markov decision

process if we restrict ourselves to a finite set of states s ∈ S, actions a ∈ A,

transition probabilities p(st+1 | st , at), and discount factor γ .
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cannot be violated. For example, various religious traditions
place restrictions on lending money, or require a certain level
of charitable giving. Using the framework established above, we
can describe deontological theories as constraints on the action
space, A, or policy space, 5 (Kagan, 1998). While they may
accord more with our commonsense notions of morality (see
section 4.4), deontological theories are open to challenge because
of their inability to justify the particular constraints they specify,
as well as the implication that they would fail to produce the
best outcomes in certain scenarios (Smart and Williams, 1973;
Scheffler, 1994).

By contrast, social contract theories are more concerned with
determining the rules, or ways of organizing society, that a group
of free and reasonable people would agree to in an idealized
deliberative scenario5. Most famously in this tradition, John
Rawls suggested that we should imagine people designing society
behind a “veil of ignorance,” not knowing what position they
will hold in that society (Rawls, 1971). We cannot possibly do
justice to these other schools of thought in the space available,
but we note that there is value in thinking about sociotechnical
systems frommultiple ethical perspectives, and encourage others
to elaborate on these points6.

In this paper, we focus on consequentialism not because
it is necessarily superior to the alternatives, but because it is
influential, and because it might seem, at first glance, to have a
natural affinity with machine learning and optimization. While
there have been many papers providing brief summaries of
various ethical theories and their relevance to AI, we believe
that a more in-depth treatment is required to fully unpack the
implications of each, and would encourage similar consideration
of the above traditions, as well as virtue ethics, feminist ethics, etc.

Before discussing the problems with consequentialism, it
is useful to note that the formulation given in Equation (4)
highlights three important matters about which reasonable
people might disagree, with respect to how we should act
(alluded to in section 2): we might disagree about the relative
value of different outcomes [the evaluation function, v(·)]; we
might disagree about the likely effects of different actions [the
probability of outcomes, p(st+1 | st , at)]; and we might disagree
about how much weight to place on the distant future (the
discount factor, γ ).

4. DIFFICULTIES OF CONSEQUENTIALISM

Even if one accepts the idea in Equation (2)—that the best action
is the one that will produce the best outcome in expectation,
with no a priori restrictions on the action space, there are still
numerous difficulties with consequentialism, both theoretically
and in practice.

5E.g., “An act is wrong if its performance under the circumstances would be

disallowed by any set of principles for the general regulation of behavior that no

one could reasonably reject as a basis for informed, unforced, general agreement”

(Scanlon, 1998).
6For a review of how Rawls has been applied within information sciences [see

Hoffmann (2017)].

4.1. Value
Perhaps the most vexing part of consequentialism is the
evaluation function, v(·). Even if one had perfect knowledge of
how the universe would unfold conditional on each possible
action, choosing the best action would still require some sort
of objective way of characterizing the relative value of each
possible outcome. Most writers on consequentialism agree that
the specification of value should be impartial, in that it should
not give arbitrary priority to particular individuals (Singer,
1993; Kagan, 1998), but this is far from sufficient for resolving
this difficulty7.

By far the most common way of simplifying the evaluation
of outcomes, both within writings on consequentialism and in
decision theory, is to adopt the classic utilitarian perspective
(Smart andWilliams, 1973; Mill, 1979[1863]). Although there are
many variations, the most common statement of utilitarianism
is that the value of a state is equal to the sum of the well-being
experienced by all individual entities8. The most common social
welfare function is thus

v(s) =
∑

e∈E

we(s), (5)

where E represents the set of entities under consideration, and
we(s) measures the absolute well-being of entity e in state s9.

Although utilitarianism is highly influential, there are
fundamental difficulties with it. First, aggregating well-being
requires measuring individual welfare, but it is unclear that it
can be measured in a way that allows for fair comparisons,
at least given current technology. Even if we restrict the set
of morally relevant entities to humans, issues of subjectivity,
disposition, and self-reporting make it difficult if not impossible
to meaningfully compare across individuals (Binmore, 2009).

Second, even if there were a satisfactory way of measuring
individual well-being, there are computational difficulties
involved in estimating these values for hypothetical worlds. Given
that well-being could depend on fine-grained details of the state
of the world, it is unclear what level of precision would be
required of a model in order to evaluate well-being for each
entity. Thus, even estimating the overall value of a single state
of the world might be infeasible, let alone a progression of them
over time.

Third, any function which maps from the welfare of multiple
entities to a single scalar will fail to distinguish between
dramatically different distributions. Using the sum, for example,
will treat as equivalent two states with the same total value,
but with different levels of inequality (Parfit, 1984). While this

7Sidgwick (1967) writes, “I obtain the self-evident principle that the good of any

one individual is of no more importance, from the point of view (if I may say so) of

the Universe, than the good of any other; unless, that is, there are special grounds

for believing that more good is likely to be realized in the one case than in the

other.”
8The philosophical literature in some cases uses happiness or the satisfaction of

preferences, rather than well-being, but this distinction is not essential for our

purposes.
9Note that using a separate value function for each entity accounts for variation in

preferences, and allows for some entities to “count” for more than others, as when

the set of relevant entities includes animals, or all sentient beings (Kagan, 1998).
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failing is not necessarily insurmountable, most solutions seem to
undermine the inherent simplicity of the utilitarian ideal10.

Fourth, others have challenged the ideal of impartiality on
the grounds that it is subtly paternalist, emphasizes individual
autonomy over relationships and care, and ignores existing
relations of power (Smart and Williams, 1973; Friedman, 1991;
Driver, 2005; Kittay, 2009). Undoubtedly, there is a long
and troubling history of otherwise enlightened philosophers
presuming to know what is best for others, and being blind to
the harms of institutions such as colonialism, while believing that
certain classes of people either don’t count or are incapable of full
rationality (Mills, 1987; Schultz and Varouxakis, 2005).

Ultimately, it seems inescapable to conclude that there is no
universally acceptable evaluation function for consequentialism.
Rather, we must acknowledge that every action will entail an
uneven distribution of costs and benefits. Even in the case
where an action literally makes everyone better off, it will almost
certainly benefit some more than others. As such, the most
credible position is to view the idea of valuation (utilitarian or
otherwise) as inherently contested and political. While we might
insist that an admissible evaluation function conform to certain
criteria, such as disinterestedness, or not being self-defeating
(Parfit, 1984), we must also acknowledge that advocating for
a particular notion of value as correct is fundamentally a
political act.

4.2. Temporal Discounting
Even if there were an unproblematic way of assessing the relative
value of a state of the world, the extent to which we should value
the distant future is yet another point of potential disagreement.
It is common (for somewhat orthogonal reasons) to apply
temporal discounting in economics, but it is not obvious that
there is any good reason to do so when it comes to moral value
(Cowen and Parfit, 1992; Cowen, 2006). Just as philosophers such
as Peter Singer have argued that we should not discount the value
of a human life simply because a person happens to live far away
(Singer, 1972), one could argue that the lives of those who will
live in the future should count for as much as the lives of people
who are alive today.

Unfortunately, it is difficult to avoid discounting in practice,
as it becomes increasingly difficult to predict the consequences
of our actions farther into the future. Even if we assume a finite
action space, the number of possible worlds to consider will grow
exponentially over time. Moreover, because of the chaotic nature
of complex systems, even if we had complete knowledge of the
causal structure of the universe, we would be limited in our ability
to predict the future by lack of precision in our knowledge about
the present.

Despite these difficulties, consequentialism would suggest that
we should, to the extent that we are able, think not only about the
immediate consequences of our actions, but about the longer-
term consequences as well (Cowen, 2006). Indeed, considering

10For example, one could model well-being as a non-linear, increasing, concave

(e.g., logarithmic) function of other attributes such as wealth (i.e., diminishing

marginal utility), which would encourage a more equal distribution of resources.

Alternatively, one could try to incorporate people’s suffering due to inequality into

their value functions (de Lazari-Radek and Singer, 2017).

the political nature of valuation, we arguably bear even greater
responsibility for thinking about future generations than the
present, given that those who have not yet been born are unable
to directly advocate for their interests.

4.3. Uncertainty
In practice, of course, we do not know with any certainty
what the consequences of our actions will be, especially over
the long term. Again, from the perspective of determining the
objectively morally correct action, one might argue that all that
matters is the (unknown) probability according to the universe.
For individual decision makers, however, any person’s ability to
predict the future will be limited, and, indeed, will likely vary
across individuals. In other words, it is not just our uncertainty
about consequences that is a problem, but our uncertainty about
our uncertainty: we don’t know how well or poorly our own
model of the universe matches the true likelihood of what will
happen (Kagan, 1998; Cowen, 2006).

The subjective interpretation of consequentialism suggests
that, regardless of what the actual consequences may be, the
morally correct thing for an individual to do is whatever they
have reason to believe will produce the best consequences (Kagan,
1998). This, however, is problematic for two reasons: first, it
ignores the computational effort involved in trying to determine
which action would be best (which is itself a kind of action);
and second, it seemingly absolves people from wrong-doing who
happen to have a poor model of the world.

Rule consequentialism arguably provides a (philosophical)
solution for these problems, in that it involves a direct mapping
from states to actions, without requiring that each decision
maker independently determine the expected value of each
possible action (Kagan, 1998; Hooker, 2002)11. It still has the
problem, however, of determining what policy is optimal, given
our uncertainty about the world. Nevertheless, we should not
overstate the problem of uncertainty; we are not in a state of
total ignorance, and in general, trying to help people is likely to
do more good than trying to harm them (de Lazari-Radek and
Singer, 2017).

4.4. Conflicts With Commonsense Morality
A final set of arguments against consequentialism take the
form of thought experiments in which consequentialism (and
utilitarianism in particular) would seemingly require us to take
actions that violate our own notions of commonsense morality.
A particularly common example is the “trolley problem” and its
variants, in which it is asked whether or not it is correct to cause
one person to die in order to save multiple others (Foot, 1967;
Greene, 2013).

We will not dwell on these thought experiments, except to
note that many of the seeming conflicts from this type of scenario
vanish once we take a longer term view, or adopt a broader
notion of value than a simple sum over individuals. Killing one
patient to save five might create greater aggregate well-being if

11To use a somewhat farcical example, we could imagine using a neural network

to map from states to actions; the time to compute what action to take would

therefore be constant for any scenario.
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we only consider the immediate consequences. If we consider all
consequences of such an action, however, it should be obvious
why we would not wish to adopt such a policy (Kagan, 1991).

It is worth commenting, however, on one particular
conflict with commonsense morality, namely the claim that
consequentialism is, in some circumstances, excessively
demanding. Given the present amount of suffering in the
world, and the diminishing marginal utility of wealth, taking
consequentialism seriously would seem to require that we
sacrifice nearly all of our resources in an effort to improve the
well-being of the worst off (Smart and Williams, 1973; Driver,
2012).While to some extent this concern is mitigated by the same
logic as above (reducing ourselves to ruin would be less valuable
over the long term than sacrificing a smaller but sustainable
amount), we should take seriously the possibility that the best
action might not agree with our moral intuitions.

5. FAIRNESS IN MACHINE LEARNING

With the necessary background on consequentialism in place,
we now review and summarize ideas about fairness in machine
learning. Note that “fairness” is arguably an ambiguous and
overloaded term in general usage; our focus here is on how
it has been conceptualized and formalized within the machine
learning literature12. In order to lay the foundation for a critical
perspective on this literature, we first summarize the general
framework that is commonly used for discussing fairness, and
then summarize the most prominent ways in which it has been
defined13.

The typical setup is to assume that there are two or more
groups of individuals which are distinguished by some “protected
attribute,” A, such as race or gender. All other information about
each individual is represented by a feature vector, X. The purpose
of the system is to make a prediction about each individual, Ŷ ,
which we will assume to be binary, for the sake of simplicity.
Moreover, we will assume that the two possible predictions (1
or 0) are asymmetric, such that one is in some sense preferable.
Finally, we assume that, for some individuals, we can observe the
true outcome, Y . We will use X to refer to a set of individuals.

To make this more concrete, consider the case of deciding
whether or not to approve a loan. An algorithmic decision
making system would take the applicant’s information (X and
possibly A), and return a prediction about whether or not the
applicant will repay the loan, Ŷ . For those applicants who are
approved, we can then check to see who actually pays it back
on time (Y = 1) and who does not (Y = 0). Note, however,
that in this setup, we are unable to observe the outcome for those
applicants who are denied a loan, and thus cannot know what
their outcome would have been in the counterfactual scenario.

12Extensive discussion of the idea of fairness can be found in much of the

philosophical and technical literature cited throughout. In particular, we refer to

the reader to Rawls (1958), Kagan (1998), and Binns (2018).
13While there is also some work on fairness in the unsupervised setting (e.g.,

Benthall and Haynes, 2019; Kleindessner et al., 2019), in this paper we focus on

the supervised case.

The overriding concern in this literature is to make
predictions that are highly accurate while respecting some notion
of fairness. Because reducing complex social constructs such as
race and gender to simplistic categories is inherently problematic,
as a running example we will instead use biological age as a
hypothetical protected attribute14. Using the same notation as
above, we would say that an automated system instantiates a
policy, π , in making a prediction for each applicant. Thus, for
instance i, a threshold classifier would predict

ŷi = argmax
y∈{0,1}

π(Y = y | X = xi,A = ai), (6)

though we might equally consider a randomized predictor.
Much of the work in fairness has drawn inspiration from

two legal doctrines: disparate treatment and disparate impact
(Ruggieri et al., 2010; Barocas and Selbst, 2016). Disparate
treatment, roughly speaking, says that two people should not
be treated differently if they differ only in terms of a protected
attribute. For our running example, this would be equivalent to
saying that one cannot deny someone a loan simply because of
their age.

Disparate impact, on the other hand, prohibits the adoption
of policies that would have consequences that are unevenly
distributed according to the protected attribute, even if they
are neutral on their face. Thus a policy which denies loans to
people with no credit history might have a disparate impact
on younger borrowers, and could therefore (hypothetically) be
considered discriminatory.

While research in machine learning fairness is ongoing,
most proposals can be classified into two types, which to some
extent map onto the two legal doctrines mentioned above. Some
definitions are specified without reference to outcomes (section
5.1). Others are specified exclusively with regard to a particular
set of outcomes (which must be evaluated using real data; section
5.2). We summarize the dominant proposals of each type below.

5.1. Fairness Constraints Specified Without

Regard to Outcomes
The first type of approach to fairness advocates constraints that
are specified without reference to actual effects. In a formal sense,
we can think of these as placing restrictions, a priori, on the
space of policies which will be considered morally acceptable. We
provide three examples of this type of approach below.

5.1.1. Fairness Through Unawareness
A commonsense but naive notion is to disallow policies which
use the protected attribute in making a prediction. Equivalently,
this requires that for any x,

π(y | x,A = 0) = π(y | x,A = 1) (7)

Although this seems like a strict translation of the prohibition
against disparate treatment, it is generally considered to be

14Age is a particularly interesting example of a protected attribute, as it is explicitly

used to discriminate in some domains (as in restricting the right to vote), but

afforded some protections in others (such as the U.S. Age Discrimination in

Employment Act).
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unhelpful (Hardt et al., 2016; Kleinberg et al., 2018). Due
to correlations, it may be possible to infer the protected
attribute from other features, hence prohibiting a single piece of
information may have no effect in practice.

5.1.2. Individual Fairness
A more general application of the same idea argues that models
must make similar predictions for similar individuals (in terms of
their representations, X) (Dwork et al., 2012). This proposal was
originally framed as being in the Rawlsian tradition, suggesting
it should be a matter of public deliberation to determine who
counts as similar. However, as has been noted, the effects of
this framework are highly dependent on the particular notion of
similarity that is chosen (Green and Hu, 2018).

5.1.3. Randomization
A further way of avoiding disparate treatment is through
randomization (Kroll et al., 2017). The basic idea is that a policy
should not look at the protected attribute or any other attribute
when making a decision, except perhaps to verify that some
minimal criteria are met. For example, a policy might assign 0
probability to instances that do not meet the criteria, and an
equal probability to all others. Although this is a severe limitation
on the space of policies, we do see instances of it being used in
practice, such as in the U.S. Diversity Visa Lottery (Perry and
Zarsky, 2015; Kroll et al., 2017)15.

5.2. Fairness Constraints Specified in

Terms of Outcomes
The other major approach to fairness in machine learning is to
specify requirements on the actual outcomes of a policy. In other
words, while the above fairness criteria can be evaluated without
data, the following criteria can only be checked using an actual
dataset. These notions of fairness are often justified in terms
of the doctrine of disparate impact—that is, policies should not
be adopted which have adverse outcomes for protected groups.
Three examples are presented below:

5.2.1. Demographic/Statistical Parity
The notion of parity implies that the proportion of predicted
labels should be the same, or approximately the same for each
group. For example, this might require that an equal proportion
of older and younger applicants would receive a loan. Formally,
this requirement says that in order to be acceptable, a policy
must satisfy

∑

i∈X I[ai = 0] · ŷi
∑

i∈X I[ai = 0]
=

∑

j∈X I[aj = 1] · ŷj
∑

j∈X I[aj = 1]
, (8)

where I[·] equals 1 if the condition holds (otherwise 0).
Demographic parity is a strong statement about what the
consequences of a policy must be (in terms of a very focused

15Additional examples of randomization include jury selection, military service,

sortition in ancient Athenian government, and which members of a firing

squad have guns with real bullets. Of course, as Kroll et al. (2017) point out,

randomization is only fair if the system cannot be manipulated by either applicants

or decision makers.

set of short-term consequences). Note, however, that enforcing
this constraint may result in suboptimal outcomes from the
perspective of other criteria (Corbett-Davies et al., 2017).

5.2.2. Equality of Odds/Opportunity
Another outcome-based fairness criteria looks at the outcomes
that result from the policy, and compares the rates of true
positives and/or false positives among a held-out dataset (Hardt
et al., 2016). Equal opportunity would require that, for example,
an equal proportion of applicants from each group who will pay
back a loan are in fact approved. Formally,

∑

i∈X I[ai = 0, yi = 1] · ŷi
∑

i∈X I[ai = 0, yi = 1]
=

∑

j∈X I[aj = 1, yj = 1] · ŷj
∑

j∈X I[aj = 1, yj = 1]
. (9)

Equality of odds is similar, except that is requires that rates of
both true positives and false positives be the same across groups.

5.2.3. Equal Calibration
An alternative to equality of odds is to ask that the predictions
be equally well calibrated across groups. That is, if we bin
the predicted probabilities into a set of bins, a well-calibrated
predictor should predict probabilities such that the proportion
of instances that are correctly classified within each bin is the
same for all groups. In other words, equal calibration tries to
ensure that

∑

i∈X I[ai = 0, p̂i ∈ [b, c)] · yi
∑

i∈X I[ai = 0, p̂i ∈ [b, c)]
=

∑

j∈X I[aj = 1, p̂j ∈ [b, c)] · yj
∑

j∈X I[aj = 1, p̂j ∈ [b, c)]

(10)
for each interval [b, c), where p̂i = π(Y = 1 | xi, ai) according to
the policy.

Note that whereas demographic parity only requires the set
of predictions (Ŷ) made for all individuals in a dataset, equal
opportunity and equal calibration also require that we know
the true outcome (Y) for all such individuals, even those who
are given a negative prediction. As a result, the latter two
requirements can only be properly verified on a dataset for which
we can independently observe the true outcome (e.g., based on
assigning treatment randomly).

As has been shown by multiple authors, certain fairness
criteria will necessarily be in conflict with others, under mild
conditions, indicating that we will be unable to satisfy all
simultaneously (Chouldechova, 2017; Kleinberg et al., 2017).

6. A CONSEQUENTIALIST PERSPECTIVE

ON MACHINE LEARNING FAIRNESS

As previously mentioned, most fairness metrics have been
proposed with only limited discussion of ethical foundations. In
this section, we provide commentary on the criteria described
above from the perspective of consequentialism. As a reminder,
we are not suggesting that consequentialism provides the last
word on what is morally correct. Rather, we can think of
consequentialism as providing one of several possible ethical
perspectives which should be considered.
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First, consider the fairness proposals that are specified without
regard to outcomes (section 5.1). As mentioned above, these can
be seen as restrictions on the set of policies that are acceptable.
By definition, these constraints are not determined by the actual
consequences of adopting them, nor do they possess an in-built
verification mechanism to assess the nature of the consequences
being produced. As such, these have more of a deontological
flavor, reflecting a prior stipulation that similar people should
be treated similarly, or that everyone deserves an equal chance.
For example, Equation (7) specifies precisely the constraint on
the policy space required by fairness through unawareness, and
similarly for the other proposals. In principle, of course, these
criteria could have been developed with the expectation that
using them would produce the best outcomes, but it is far from
obvious that this is the case.

By contrast, the fairness criteria specified explicitly in terms
of outcomes (section 5.2) might seem to be closer to a form of
consequentialism, given that they are evaluated by looking at
actual impacts. However, upon closer inspection we see that they
imply a severely restricted form of consequentialism in terms
of how they think about value, time horizon, and who counts.
In particular, while the proposals differ in terms of the precise
values that are being emphasized, all of these proposals have some
features in common:

• They only evaluate outcomes in terms of the people who are
the direct object of the decision being made, not others who
may be affected by these decisions;

• They only explicitly consider the immediate consequences of
each decision, equivalent to using a discount factor of 0;

• They presuppose that a particular function of the distribution
of predictions and outcomes (e.g., calibration) is the only value
that is morally relevant.

Again, it is entirely possible that these constraints were developed
with the intention of producing more broadly beneficial
consequences over the long term. The point is that there is
nothing in the constraints themselves that points to or tries to
verify this broader impact, despite the fact that they are evaluated
in terms of (a narrow set of) outcomes.

To make this concrete, consider again the case of trying to
regulate algorithms which will be used by banks in making
loans. Requiring satisfaction of any of the above fairness
constraints will alter the set of loan applicants who are approved
(and denied). While it is possible that some of these criteria
might lead to broadly beneficial changes (e.g., demographic
parity might enhance access to credit among those who
have been historically marginalized), from the perspective of
consequentialism it insufficient to evaluate the outcome only
in terms of the probabilities or labels assigned to each group.
Rather, it is necessary to consider the full range of consequences
to individuals and society. In some cases, a loan might positively
transform a person’s life, or the life of their community, via
mechanisms such as education and entrepreneurship. In other
cases, easier access to credit could lead to speculative borrowing
and financial ruin. For example, while not directly related to
concerns about fairness, the potentially devastating effects of

lending policies which ignore long-term and systemic effects
can easily be seen in the aftermath of the subprime mortgage
crisis, which derived, in part, by perverse incentives and risky
lending (Bianco, 2008).

Crafting effective financial regulation is obviously extremely
difficult, and this is not meant to suggest that any particular
fairness constraint is likely to lead to disaster. Nevertheless, it is
important to remember that fairness criteria which are specified
only in terms of a narrow set of short term metrics do not
guarantee positive outcomes beyond what theymeasure, andmay
in some cases lead to overall greater harm.

In sum, adopting a consequentialist perspective reveals
numerous ways in which the existing proposals for thinking
about fairness in machine learning are fatally flawed. While all
have their merits, none have been adequately justified in terms
of their likely consequences, broadly considered. Moreover, most
are highly restricted in terms of the types of outcomes they take
into consideration, and largely ignore broader systemic effects of
adopting a single policy.

It is, of course, understandable that most approaches to
machine learning fairness have focused on a priori constraints
and tractable short term consequences. Avoiding negative
consequences from new technologies is challenging in general,
and many of the difficulties of consequentialism also apply
directly to machine learning, especially in social contexts
(uncertainty about the future, lack of agreement about value,
etc.). Even in relatively controlled environments, it is easy to find
examples of undesirable outcomes resulting from ill-specified
value functions, improper time horizons, and the kinds of
computational difficulties described in section 4 (Amodei et al.,
2016).

Although consequentialism does not provide any easy
answers about how to make AI systems more fair or just,
several important considerations follow from its tenets. First,
consequentialism reminds us of the need to consider outcomes
broadly; technical systems are embedded in social contexts, and
policies can have widespread effects on communities, not merely
those who are subject to classification. Second, the political
nature of valuation means that a broad range of perspectives on
what is desirable should be sought out and considered, not for
a reductive utilitarian calculus, but so as to be informed as to
the diversity of opinions. Third, the phenomenon of diminishing
marginal utility suggests that efforts should be directed to
helping those who are worst off, rather than trying to make life
better for the already well off, without, of course, presuming to
automatically know what is best for others. Fourth, while we
might disagree about the discount rate, the moral value of the
future necessitates that we take downstream effects into account,
rather than only focusing on immediate consequences. Sweeping
attempts at regulation, such as GDPR, may have outsized effects
here, as they will partially determine how we think about fairness
going forward, and what it is legitimate to measure. Finally,
because it is particularly difficult to predict consequences in the
distant future, a high standard should be required for any policy
that would place a definite burden on the present for a possible
future gain.
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7. RANDOMIZATION AND LEARNING

Before concluding, we will attempt to draw together a number
of threads related to uncertainty, learning, and randomization.
As described earlier, most philosophical presentations of
consequentialism are highly abstract, without considering how
one would practically determine what actions or rules are best.
Given that statistics and machine learning arose specifically to
deal with the problem of uncertainty, it is natural to ask whether
there is any role for learning in consequentialism.

Indeed, an entire subfield of machine learning exists precisely
to deal with the problem of action selection in the face
of uncertainty (so-called “bandit” problems, or reinforcement
learning more broadly). As noted in the introduction, the
reinforcement learning objective explicitly encodes the goal
of maximizing some benefit over the long term. Algorithms
designed to optimize this objective typically rely initially on
random exploration to reduce uncertainty, thereby facilitating
long-term “exploitation” of rewards.

Not surprisingly, a number of papers have proposed using
similar strategies as a way of achieving fair outcomes over
the long-term. For example, Kroll et al. (2017) suggest that
adding randomness to hiring algorithms could help to debias
them over time. Joseph et al. (2016b) consider the problem of
learning a policy for making loans, and present an algorithm
to do so without violating a particular notion of fairness16. Liu
et al. (2017) extend this work, again trying to satisfy fairness in
the contextual bandit setting. Meanwhile, Barabas et al. (2018)
suggest using randomization to facilitate causal inference about
the “social, structural, and psychological drivers” of crime.

Randomization in decision making is a deep and important
topic, and has been the focus of much past work in ethics
(Lockwood and Anscombe, 1983; Freedman, 1987; Bird et al.,
2016; Haushofer et al., 2019). As noted above, it can be a source of
fairness, if we take “fair” to mean that everyone deserves an equal
chance. It may also be useful to prevent strategic manipulation of
a system, and has a definite role in some parts of American law
(Perry and Zarsky, 2015; Kroll et al., 2017).

Although temporal discounting in consequentialism is
typically discussed in terms of present vs. future value (e.g.,
helping people today vs. investing in the future), a similar trade
off applies to costly experimentation for the purpose of reducing
future uncertainty. Indeed, this sort of approach has been widely
adopted in industry in the form of A/B testing, as well as for
adaptive trials in domains such as medicine (Lai et al., 2015).
Moreover, there is clearly something appealing about the idea
that it should be morally incumbent upon people to improve
their understanding of the world over time, not merely to act on
their current understanding. However, randomization also raises
a number of serious concerns.

16In a companion paper, Joseph et al. (2016a) proclaim their approach to be

Rawlsian, but this seems to miss the key point of Rawls—namely, that we must

account for inequalities due to circumstances (i.e., “regardless of their initial place

in the social system”; Rawls, 1958). Rather, the approach of Joseph et al. (2016b)

merely says we should learn to give loans to people who will best be able to pay

them back.

First, as always, there is the problem of value, and the
question of who gets to decide how to balance present costs
against future benefits. Second, there are good reasons to
think that such an approach is unlikely to work in complex
sociotechnical systems. Although reinforcement learning has
been extraordinarily successful in limited domains, such as game
playing and online advertising, making reinforcement learning
tractable generally requires assuming the existence of a stable
environment, a limited space of actions, a clear reward signal,
and a massive amount of training data. In most policy domains,
we can expect to have none of these. Third, there may be real
costs associated with participation in such a process; while a
bank could conceivably choose to add randomness to a policy for
granting loans (for the purpose of better learning who is likely to
pay them back), giving loans to people who cannot afford them
could have severe negative consequences for those individuals.

There are clearly some domains where randomization is
widely used, and seems well-justified, especially from the
perspective of consequentialism. The best example of this is
clinical trials in medicine, which are not only favored, but
required. Medicine, however, is a special domain for several
reasons: there is general agreement about ends (saving lives and
reducing suffering), there is good reason to think that findings
will generalize across people, and there is a well-established
framework for experimentation, with safeguards in place to
protect the participants.

Where things get more complicated is using the same
logic to establish the efficacy of social interventions, such
as randomized trials in development economics. Although
controlled experiments do provide good evidence about whether
an intervention was effective, it is less clear that the conclusions
will generalize to different situations (Barrett and Carter, 2010).

Ultimately, while randomization can be an important tool in
learning policies that promote long term benefits, especially in
relatively static, generalizable domains, the limitations of both
consequentialism and of statistical learning theory mean that we
should be highly skeptical of any attempt to use it as the basis for
creating policies or automated decision making systems to deal
with complex social problems.

8. ADDITIONAL RELATED WORK

Beyond the criteria mentioned in section 5, numerous other
fairness metrics have been proposed, such as procedural fairness
(Grgić-Hlača et al., 2016) and causal effects (Madras et al., 2018;
Khademi et al., 2019). Meanwhile, other papers have emphasized
that simply satisfying a particular definition of fairness is no
guarantee of the broader outcomes people care about, such
as justice (Hu and Chen, 2018b). Selbst et al. (2019) discuss
five common “traps” in thinking about sociotechnical systems,
and Friedler et al. (2019) demonstrate how outcomes differs
depending on preprocessing and the choice of fairness metric.

Others have explored various types of consequences in
particular settings, such as cost to the community in criminal
justice (Corbett-Davies et al., 2017), runaway feedback loops in
predictive policing (Ensign et al., 2018), disparities in the labor
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market (Hu and Chen, 2018a), and the potential for strategic
manipulation of policies (Hu et al., 2019; Milli et al., 2019).
Liu et al. (2018) demonstrate the importance of modeling the
delayed impact of adopting various fairness metrics, even when
focused narrowly on outcomes such as demographic parity.
In a discussion of racial bias in the criminal justice system,
Huq (2019) uses broadly consequentialist logic, arguing that the
systems should be evaluated in terms of costs and benefits to
minority groups. For surveys discussing the intersection of ethics
and AI more broadly, see Brundage (2014) and Yu et al. (2018).
For a book-length treatment of the subject, seeWallach and Allen
(2008).

9. CONCLUSIONS

Consequentialism represents one of the most important pillars
of ethical thinking in philosophy, including (but not limited to)
utilitarianism. In brief, the central tenet of consequentialism is
that actions should be evaluated in terms of the relative goodness
of the expected outcomes, according to an impartial perspective
on what is best. Despite a number of serious problems that
limit its practical application, including computational problems
involving value, uncertainty, and discounting, consequentialism
still provides a useful basis for thinking about the limitations of
other normative frameworks.

Within the context of automated decision making, a
consequentialist perspective underscores that merely satisfying
a particular fairness metric is no guarantee of ethical conduct.
Rather, consequentialism requires that we consider all possible

options (including the possibility of not deploying an automated

system), and weigh the likely consequences that will result,
considered broadly, including possible implications for the
long term future. Moreover, we must consider not only
those who will be directly affected, but broader impacts on
communities, and systemic effects of replacing many human
decision makers with a single policy. While there are contexts
in which it is reasonable, even required, to attempt to learn
from the present for the benefit of the future, we should be
skeptical of any randomization schemes which make unrealistic
assumptions about the generalizability of what can be learned
from social systems.

The political nature of valuation means we are unlikely to
ever have agreement on what outcomes are best, and long term
consequences will always remain to some extent unpredictable.
Nevertheless, through ongoing efforts to take into consideration
a diverse set of perspectives on value, and systematic attempts to
learn from our experiences, we can strive to move toward policies
which are likely to lead to a better world, over both the short and
long term future.
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The issue of fairness in machine learning models has recently attracted a lot of attention

as ensuring it will ensure continued confidence of the general public in the deployment

of machine learning systems. We focus on mitigating the harm incurred by a biased

machine learning system that offers better outputs (e.g., loans, job interviews) for certain

groups than for others. We show that bias in the output can naturally be controlled in

probabilistic models by introducing a latent target output. This formulation has several

advantages: first, it is a unified framework for several notions of group fairness such

as Demographic Parity and Equality of Opportunity; second, it is expressed as a

marginalization instead of a constrained problem; and third, it allows the encoding of

our knowledge of what unbiased outputs should be. Practically, the second allows us to

avoid unstable constrained optimization procedures and to reuse off-the-shelf toolboxes.

The latter translates to the ability to control the level of fairness by directly varying fairness

target rates. In contrast, existing approaches rely on intermediate, arguably unintuitive,

control parameters such as covariance thresholds.

Keywords: algorithmic bias, fairness, machine learning, demographic parity, equality of opportunity

1. INTRODUCTION

Algorithmic assessment methods are used for predicting human outcomes in areas such as
financial services, recruitment, crime and justice, and local government. This contributes, in
theory, to a world with decreasing human biases. To achieve this, however, we need fair machine
learning models that take biased datasets, but output non-discriminatory decisions to people
with differing protected attributes such as gender and marital status. Datasets can be biased
because of, for example, sampling bias, subjective bias of individuals, and institutionalized biases
(Olteanu et al., 2019; Tolan, 2019). Uncontrolled bias in the data can translate into bias in machine
learning models.

There is no single accepted definition of algorithmic fairness for automated decision-making but
several have been proposed. One definition is referred to as statistical or demographic parity. Given
a binary protected attribute (e.g., married/unmarried) and a binary decision (e.g., yes/no to getting
a loan), demographic parity requires equal positive rates (PR) across the two sensitive groups
(married and unmarried individuals should be equally likely to receive a loan). Another fairness
criterion, equalized odds (Hardt et al., 2016), takes into account the binary decision, and instead
of equal PR requires equal true positive rates (TPR) and false positive rates (FPR). This criterion
is intended to be more compatible with the goal of building accurate predictors or achieving
high utility (Hardt et al., 2016). We discuss the suitability of the different fairness criteria in the
discussion section at the end of the paper.

There are many existing models for enforcing demographic parity and equalized odds (Calders
et al., 2009; Kamishima et al., 2012; Zafar et al., 2017a,b; Agarwal et al., 2018; Creager et al., 2019).

18
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However, these existing approaches to balancing accuracy and
fairness rely on intermediate, unintuitive control parameters such
as allowable constraint violation ǫ (e.g., 0.01) in Agarwal et al.
(2018), or a covariance threshold c (e.g., 0 that is controlled by
another parameters τ and µ – 0.005 and 1.2 – to trade off this
threshold and accuracy) in Zafar et al. (2017a). This is related to
the fact that many of these approaches embed fairness criteria
as constraints in the optimization procedure (Quadrianto and
Sharmanska, 2017; Zafar et al., 2017a,b; Donini et al., 2018).

In contrast, we provide a probabilistic classification
framework with bias controlling mechanisms that can be
tuned based on positive rates (PR), an intuitive parameter. Thus,
giving humans the control to set the rate of positive predictions
(e.g., a PR of 0.6). Our framework is based on the concept of
a balanced dataset and introduces latent target labels, which,
instead of the provided labels, are now the training label of
our classifier. We prove bounds on how far the target labels
diverge from the dataset labels. We instantiate our approach with
a parametric logistic regression classifier and a Bayesian non-
parametric Gaussian process classifier (GPC). As our formulation
is not expressed as a constrained problem, we can draw upon
advancements in automated variational inference (Bonilla et al.,
2016; Krauth et al., 2016; Gardner et al., 2018) for learning the
fair model, and for handling large amounts of data.

The method presented in this paper is closely related to
a number of previous works, e.g., Calders and Verwer, 2010;
Kamiran and Calders, 2012. Proper comparison with them
requires knowledge of our approach. We will thus explain
our approach in the subsequent sections, and defer detailed
comparisons to section 4.

2. TARGET LABELS FOR TUNING GROUP
FAIRNESS

We will start by describing several notions of group fairness.
For each individual, we have a vector of non-sensitive attributes
x ∈ X , a class label y ∈ Y , and a sensitive attribute s ∈ S (e.g.,
racial origin or gender). We focus on the case where s and y are
binary. We assume that a positive label y = 1 corresponds to a
positive outcome for an individual—for example, being accepted
for a loan. Group fairness balances a certain condition between
groups of individuals with different sensitive attribute, s vs. s′.
The term ŷ below is the prediction of a machine learning model
that, in most works, uses only non-sensitive attributes x. Several
group fairness criteria have been proposed (e.g., Hardt et al., 2016;
Chouldechova, 2017; Zafar et al., 2017a):

Equality of positive rate (Demographic Parity):

Pr(ŷ = 1|s) = Pr(ŷ = 1|s′) (1)

Equality of accuracy:

Pr(ŷ = y|s) = Pr(ŷ = y|s′) (2)

Equality of true positive rate (Equality of Opportunity):

Pr(ŷ = 1|s, y = 1) = Pr(ŷ = 1|s′, y = 1) . (3)

Equalized odds criterion corresponds to Equality of Opportunity
(3) plus equality of false positive rate.

The Bayes-optimal classifier only satisfies these criteria if the
training data itself satisfies them. That is, in order for the Bayes-
optimal classifier to satisfy demographic parity, the following
must hold: P(y = 1|s) = P(y = 1|s′), where y is the training label.
We call a dataset for which P(y, s) = P(y)P(s) holds, a balanced
dataset. Given a balanced dataset, a Bayes-optimal classifier
learns to satisfy demographic parity and an approximately Bayes-
optimal classifier should learn to satisfy it at least approximately.
Here, we motivated the importance of balanced datasets via the
demographic parity criterion, but it is also important for equality
of opportunity which we discuss in section 2.1.

In general, however, our given dataset is likely to be
imbalanced. There are two common solutions to this problem:
either pre-process or massage the dataset to make it balanced, or
constrain the classifier to give fair predictions despite it having
been trained on an unbalanced dataset. Our approach takes parts
from both solutions.

An imbalanced dataset can be turned into a balanced dataset
by either changing the class labels y or the sensitive attributes s. In
the use cases that we are interested in, s is considered an integral
part of the input, representing trustworthy information and thus
should not be changed. y, conversely, is often not completely
trustworthy; it is not an integral part of the sample but merely
an observed outcome. In a hiring dataset, for instance, y might
represent the hiring decision, which can be biased, and not the
relevant question of whether someone makes a good employee.

Thus, we introduce new target labels ȳ such that the dataset is
balanced: P(ȳ, s) = P(ȳ)P(s). The idea is that these target labels
still contain as much information as possible about the task, while
also forming a balanced dataset. This introduces the concept of
the accuracy-fairness trade-off: in order to be completely accurate
with respect to the original (not completely trustworthy) class
labels y, we would require ȳ = y, but then, the fairness constraints
would not be satisfied.

Let ηs(x) = P(y = 1|x, s) denote the distribution of y in
the data. The target distribution η̄s(x) = P(ȳ = 1|x, s) is then
given by

η̄s(x) = (P(ȳ = 1|y = 1, s)+ P(ȳ = 0|y = 0, s)− 1)ηs(x)

+ 1− P(ȳ = 0|y = 0, s) (4)

due to the marginalization rules of probabilities. The conditional
probability P(ȳ|y, s) indicates with which probability we want
to keep the class label. This probability could in principle
depend on x which would enable the realization of individual
fairness. The dependence on x has to be prior knowledge
as it cannot be learned from the data. This prior knowledge
can encode the semantics that “similar individuals should be
treated similarly” (Dwork et al., 2012), or that “less qualified
individuals should not be preferentially favored over more
qualified individuals” (Joseph et al., 2016). Existing proposals
for guaranteeing individual fairness require strong assumptions,
such as the availability of an agreed-upon similarity metric, or
knowledge of the underlying data generating process. In contrast,
in group fairness, we partition individuals into protected groups
based on some sensitive attribute s and ask that some statistics of
a classifier be approximately equalized across those groups (see
Equations 1–3). In this case, P(ȳ|y, s) does not depend on x.
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Returning to Equation (4), we can simplify it with

ms : = P(ȳ = 1|y = 1, s)+ P(ȳ = 0|y = 0, s)− 1 (5)

bs : = 1− P(ȳ = 0|y = 0, s) , (6)

arriving at η̄s(x) = ms · ηs(x) + bs. ms and bs are chosen such
that P(ȳ, s) = P(ȳ)P(s). This can be interpreted as shifting the
decision boundary depending on s so that the new distribution
is balanced.

As there is some freedom in choosing ms and bs, it is
important to consider what the effect of different values is. The
following theorem provides this (the proof can be found in the
Supplementary Material):

Theorem 1. The probability that y and ȳ disagree (y 6= ȳ) for any
input x in the dataset is given by:

P(y 6= ȳ|s) = P
(
∣

∣η(x, s)− 1
2

∣

∣ < ts
)

(7)

where

ts =

∣

∣

∣

∣

ms + 2bs − 1

2ms

∣

∣

∣

∣

. (8)

Thus, if the threshold ts is small, then only if there are inputs
very close to the decision boundary (ηs(x) close to

1
2 ) would we

have ȳ 6= y. ts determines the accuracy penalty that we have to
accept in order to gain fairness. The value of ts can be taken into
account when choosing ms and bs (see section 3). If ηs satisfies
the Tsybakov condition (Tsybakov et al., 2004), then we can give
an upper bound for the probability.

Definition 1. A distribution η satisfies the Tsybakov condition if
there exist C > 0, λ > 0 and t0 ∈ (0, 12 ] such that for all t ≤ t0,

P
(
∣

∣η(x)− 1
2

∣

∣ < t
)

≤ Ctλ . (9)

This condition bounds the region close to the decision boundary.
It is a property of the dataset.

Corollary 1.1. If η(x, s) = P(y = 1|x, s) satisfies the Tsybakov
condition in x, with constants C and λ, then the probability that y
and ȳ disagree (y 6= ȳ) for any input x in the dataset is bounded by:

P(y 6= ȳ|s) < C

∣

∣

∣

∣

ms + 2bs − 1

2ms

∣

∣

∣

∣

λ

. (10)

Section 3 discusses how to choose the parameters for η̄ in order
to make it balanced.

2.1. Equality of Opportunity
In contrast to demographic parity, equality of opportunity (just as
equality of accuracy) is satisfied by a perfect classifier. Imperfect
classifiers, however, do not by default satisfy it: the true positive
rate (TPR) is different for different subgroups. The reason for this
is that while the classifier is optimized to have a high TPR overall,
it is not optimized to have the same TPR in the subgroups.

The overall TPR is a weighted sum of the TPRs in
the subgroups:

TPR = P(s = 0|y = 1) · TPRs= 0 + P(s = 1|y = 1) · TPRs= 1 .
(11)

In datasets where the positive label y = 1 is heavily skewed
toward one of the groups (say, group s = 1; meaning that
P(s = 1|y = 1) is high and P(s = 0|y = 1) is low), overall
TPR might be maximized by setting the decision boundary such
that nearly all samples in s = 0 are classified as y = 0, while for
s = 1 a high TPR is achieved. The low TPR for s = 0 is in this
case weighted down and only weakly impacts the overall TPR. For
s = 0, the resulting classifier uses s as a shorthand for y, mostly
ignoring the other features. This problem usually persists even
when s is removed from the input features because s is implicit in
the other features.

A balanced dataset helps with this issue because in such
datasets, s is not a useful proxy for the balanced label ȳ (because
we have P(ȳ, s) = P(ȳ)P(s)) and s cannot be used as a shorthand.
Assuming the dataset is balanced in s (P(s = 0) = P(s = 1)), for
such datasets P(s = 0|y = 1) = P(s = 1|y = 1) holds and the
two terms in Equation (11) have equal weight.

Here as well there is an accuracy-fairness trade-off: assuming
the unconstrained model is as accurate as its model complexity
allows, adding additional constraints like equality of opportunity
can only make the accuracy worse.

2.2. Concrete Algorithm
For training, we are only given the unbalanced distribution ηs(x)
and not the target distribution η̄s(x). However, η̄s(x) is needed
in order to train a fair classifier. One approach is to explicitly
change the labels y in the dataset, in order to construct η̄s(x). We
discuss this approach and its drawback in the related work section
(section 4).

We present a novel approach which only implicitly constructs
the balanced dataset. This framework can be used with
any likelihood-based model, such as Logistic Regression and
Gaussian Process models. The relation presented in Equation (4)
allows us to formulate a likelihood that targets η̄s(x) while only
having access to the imbalanced labels y. As we only have access
to y, P(y|x, s, θ) is the likelihood to optimize. It represents the
probability that y is the imbalanced label, given the input x, the
sensitive attribute s that available in the training set and themodel
parameters θ for a model that is targeting ȳ. Thus, we get

P(y = 1|x, s, θ) =
∑

ȳ∈{0,1}

P(y = 1, ȳ|x, s, θ)

=
∑

ȳ∈{0,1}

P(y = 1|ȳ, x, s, θ)P(ȳ|x, s, θ) . (12)

As we are only considering group fairness, we have P(y =
1|ȳ, x, s, θ) = P(y = 1|ȳ, s).

Let fθ (x, y
′) be the likelihood function of a given model, where

f gives the likelihood of the label y′ given the input x and
the model parameters θ . As we do not want to make use of s
at test time, f does not explicitly depend on s. The likelihood
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with respect to ȳ is then given by f : P(ȳ|x, s, θ) = fθ (x, ȳ); and
thus, does not depend on s. The latter is important in order to
avoid direct discrimination (Barocas and Selbst, 2016). With these
simplifications, the expression for the likelihood becomes

P(y = 1|x, s, θ) =
∑

ȳ∈{0,1}

P(y = 1|ȳ, s)P(ȳ|x, θ) . (13)

The conditional probabilities, P(y|ȳ, s), are closely related to the
conditional probabilities in Equation (4) and play a similar role
of “transition probabilities.” Section (1) explains how to choose
these transition probabilities in order to arrive at a balanced
dataset. For a binary sensitive attribute s (and binary label
y), there are 4 transition probabilities (see Algorithm 1 where

d
s=j
ȳ=i : = P(y = 1|ȳ = i, s = j)):

P(y = 1|ȳ = 0, s = 0), P(y = 1|ȳ = 1, s = 0) (14)

P(y = 1|ȳ = 0, s = 1), P(y = 1|ȳ = 1, s = 1) . (15)

A perhaps useful interpretation of Equation (13) is that, even
though we don’t have access to ȳ directly, we can still compute
the expectation value over the possible values of ȳ.

The above derivation applies to binary classification but can
easily be extended to the multi-class case.

Algorithm 1: Fair learning with target labels ȳ

Input: Training set D = {(xi, yi, si)}
N
i=1, transition probabilities

ds= 0
ȳ=0 , d

s= 0
ȳ=1 , d

s= 1
ȳ=0 , d

s= 1
ȳ=1

Output: Fair model parameters θ

1: Initialize θ (randomly)
2: for all xi, yi, si do
3: Pȳ=1 ← η̄(xi, θ) (e.g., logistic(〈x, θ〉))
4: Pȳ=0 ← 1− Pȳ=1

5: if si = 0 then
6: Py=1 ← ds= 0

ȳ=0 · Pȳ=0 + ds= 0
ȳ=1 · Pȳ=1

7: else

8: Py=1 ← ds= 1
ȳ=0 · Pȳ=0 + ds= 1

ȳ=1 · Pȳ=1

9: end if

10: ℓ← yi · Py=1 + (1− yi) · (1− Py=1)
11: update θ to maximize likelihood ℓ

12: end for

3. TRANSITION PROBABILITIES FOR A
BALANCED DATASET

This section focuses on how to set values of the transition
probabilities in order to arrive at balanced datasets.

3.1. Meaning of the Parameters
Before we consider concrete values, we give some intuition for
the transition probabilities. Let s = 0 refer to the protected group.
For this group, we want to make more positive predictions than
the training labels indicate. Variable ȳ is supposed to be our target
proxy label. Thus, in order to make more positive predictions,

some of the y = 0 labels should be associated with ȳ = 1.
However, we do not know which. So, if our model predicts ȳ = 1
(high P(ȳ = 1|x, θ)) while the training label is y = 0, then
we allow for the possibility that this is actually correct. That is,
P(y = 0|ȳ = 1, s = 0) is not 0. If we choose, for example,
P(y = 0|ȳ = 1, s = 0) = 0.3 then that means that 30% of positive
target labels ȳ = 1 may correspond to negative training labels
y = 0. This way we can have more ȳ = 1 than y = 1, overall. On
the other hand, predicting ȳ = 0 when y = 1 holds, will always
be deemed incorrect: P(y = 1|ȳ = 0, s = 0) = 0; this is because
we do not want any additional negative labels.

For the non-protected group s = 1, we have the exact opposite
situation. If anything, we have too many positive labels. So, if our
model predicts ȳ = 0 (high P(ȳ = 0|x, θ)) while the training label
is y = 1, then we should again allow for the possibility that this
is actually correct. That is, P(y = 1|ȳ = 0, s = 1) should not be
0. On the other hand, P(y = 0|ȳ = 1, s = 1) should be 0 because
we do not want additional positive labels for s = 1. It could also
be that the number of positive labels is exactly as it should be, in
which case we can just set y = ȳ for all data points with s = 1.

3.2. Choice of Parameters
A balanced dataset is characterized by an independence of the
label ȳ and the sensitive attribute s. Given that we have complete
control over the transition probabilities, we can ensure this
independence by requiring P(ȳ = 1|s = 0) = P(ȳ = 1|s = 1).
Our constraint is then that both of these probabilities are equal
to the same value, which we will call the target rate PRt (“PR” as
positive rate):

P(ȳ = 1|s = 0)
!
= PRt and P(ȳ = 1|s = 1)

!
= PRt . (16)

This leads us to the following constraints for s′ ∈ {0, 1}:

PRt = P(ȳ = 1|s = s′) =
∑

y

P(ȳ = 1|y, s = s′)P(y|s = s′).

(17)

We call P(y = 1|s = j) the base rate PR
j

b
which we estimate from

the training set:

P(y = 1|s = i) =
number of points with y = 1 in group i

number of points in group i
.

Expanding the sum, we get

PRt = P(ȳ = 1|y = 0, s = s′) · (1− PR1b)

+ P(ȳ = 1|y = 1, s = s′) · PR1b . (18)

This is a system of linear equations consisting of two equations
(one for each value of s′) and four free variables: P(ȳ = 1|y, s)
with y, s ∈ {0, 1}. The two unconstrained degrees of freedom
determine how strongly the accuracy will be affected by the
fairness constraint. If we set P(ȳ = 1|y = 1, s) to 0.5, then this
expresses the fact that a train label y of 1 only implies a target
label ȳ of 1 in 50% of the cases. In order to minimize the effect
on accuracy, we make P(ȳ = 1|y = 1, s) as high as possible
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and P(ȳ = 1|y = 0, s), conversely, as low as possible. However,
the lowest and highest possible values are not always 0 and 1
respectively. To see this, we solve for P(ȳ = 1|y = 0, s = j) in
Equation (18):

P(ȳ = 1|y = 0, s = j)

=
PR

j

b

1− PR
j

b

(

PRt

PR
j

b

− P(ȳ = 1|y = 1, s = j)

)

. (19)

If PRt/PRj
b
were greater than 1, then setting P(ȳ = 1|y = 0, s = j)

to 0 would imply a P(ȳ = 1|y = 1, s = j) value greater
than 1. A visualization that shows why this happens can be
found in the Supplementary Material. We thus arrive at the
following definitions:

P(ȳ = 1|y = 1, s = j) =







1 if PRt > PR
j

b
PRt

PR
j

b

otherwise.
(20)

P(ȳ = 1|y = 0, s = j) =







PRt−PR
j

b

1−PR
j

b

if PRt > PR
j

b

0 otherwise.

(21)

Algorithm 2 shows pseudocode of the procedure, including the
computation of the allowed minimal and maximal value.

Once all these probabilities have been found, the transition
probabilities needed for Equation (13) are fully determined by
applying Bayes’ rule:

P(y = 1|ȳ, s) =
P(ȳ|y = 1, s)P(y = 1|s)

P(ȳ|s)
. (22)

3.2.1. Choosing a Target Rate
As shown, there is a remaining degree of freedom when targeting
a balanced dataset: the target rate PRt := P(ȳ = 1). This is true for
both fairness criteria that we are targeting. The choice of targeting
rate affects how much η and η̄ differ as implied by Theorem 1
(PRt affects ms and bs). η̄ should remain close to η as η̄ only
represents an auxiliary distribution that does not have meaning
on its own. The threshold ts in Theorem 1 (Equation 8) gives an
indication of how close the distributions are. With the definitions
in Equations (20) and (21), we can express ts in terms of the target
rate and the base rate:

ts =

{

1
2

PRs
b
−PRt
PRt

if PRt > PR
j

b
1
2

PRt−PR
s
b

1−PRt
otherwise.

(23)

This shows that ts is smallest when PRs
b
and PRt are closest.

However, as PRs
b
has different values for different s, we cannot

set PRs
b
= PRt for all s. In order to keep both ts= 0 and ts= 1 small,

it follows from Equation (23) that PRt should at least be between
PR0

b
and PR1

b
. A more precise statement can be made when we

explicitly want tominimize the sum ts= 0+ts= 1: assuming PR0
b

<

PRt < PR1
b
and PR1

b
< 1

2 , the optimal choice for PRt is PR
1
b
(see

Supplementary Material for details). We call this choice PRmax
t .

For PR0
b

> 1
2 , analogous statements can be made, but this is of

less interest as this case does not appear in our experiments.

The previous statements about ts do not directly translate into
observable quantities like accuracy if the Tsybakov condition is
not satisfied, and even if it is satisfied, the usefulness depends
on the constants C and λ. Conversely, the following theorem
makes generally applicable statement about the accuracy that can
be achieved. Before we get to the theorem, we introduce some
notation. We are given a dataset D = {(xi, yi)}i, where the xi are
vectors of features and the yi the corresponding labels. We refer
to the tuples (x, y) as the samples of the dataset. The number of
samples is N = |D|.

We assume binary labels (y ∈ {0, 1}) and thus can form the
(disjoint) subsets Y0 and Y1 with

Y
j = {(x, y) ∈ D|y = j} with j ∈ {0, 1} . (24)

Furthermore, we associate each sample with a classification ŷ ∈
{0, 1}. The task of making the classification ŷ = 0 or ŷ = 1 can be
understood as sorting each sample from D into one of two sets:
C0 and C1, such that C0 ∪ C1 = D and C0 ∩ C1 = ∅.

We refer to the set A = (C0 ∩ Y0) ∪ (C1 ∩ Y1) as the set
of correct (or accurate) predictions. The accuracy is given by
acc = N−1 · |A|.

Definition 2.

ra : =

∣

∣Y1
∣

∣

|D|
=

∣

∣Y1
∣

∣

N
(25)

is called the base acceptance rate of the dataset D.

Definition 3.

r̂a =

∣

∣C1
∣

∣

|D|
=

∣

∣C1
∣

∣

N
(26)

is called the predictive acceptance rate of the predictions.

Theorem 2. For a dataset with the base rate ra and corresponding
predictions with a predictive acceptance rate of r̂a, the accuracy is
limited by

acc ≤ 1−
∣

∣r̂a − ra
∣

∣ . (27)

Corollary 2.1. Given a dataset that consists of two subsets S0 and
S1 (D = S0 ∪ S1) where p is the ratio of |S0| to |D| and given
corresponding acceptance rates r0a and r1a and predictions with
target rates r̂0a and r̂

1
a, the accuracy is limited by

acc ≤ 1− p ·
∣

∣r̂0a − r0a
∣

∣− (1− p) ·
∣

∣r̂1a − r1a
∣

∣ . (28)

The proofs are fairly straightforward and can be found in the
Supplementary Material.

Corollary 2.1 implies that in the common case where group
s = 0 is disadvantaged (r0a < r1a) and also underrepresented
(p < 1

2 ), the highest accuracy under demographic parity can be
achieved at PRt = r1a with

acc ≤ 1− p ·
(

r1a − r0a
)

. (29)
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Algorithm 2: Targeting a balanced dataset

Input: Target rate PRt , biased acceptance rate PRi
b

Output: Transition probabilities ds=iȳ=j

1: if PRt > PRi
b
then

2: P(ȳ = 1|y = 1, s = i)← 1
3: else

4: P(ȳ = 1|y = 1, s = i)← PRt
PRi

b

5: end if

6: if j=0 then
7: P(ȳ = 0|y = 1, s = i)← 1− P(ȳ = 1|y = 1, s = i)

8: ds=iȳ=0 ←
P(ȳ=0|y=1,s=i)·PRi

b
1−PRt

9: else if j=1 then

10: ds=iȳ=1 ←
P(ȳ=1|y=1,s=i)·PRi

b
PRt

11: end if

However, this means willingly accepting a lower accuracy in the
(smaller) subset S0 that is compensated by a very good accuracy
in the (larger) subset S1. A decidedly “fairer” approach is to aim
for the same accuracy in both subsets. This is achieved by using
the average of the base acceptance rates for the target rate. As we
balance the test set in our experiments, this kind of sacrificing of
one demographic group does not work there. We compare the
two choices (PRmax

t and PR
avg
t ) in section 5.

3.3. Conditionally Balanced Dataset
There is a fairness definition related to demographic parity
which allows conditioning on “legitimate” risk factors ℓ

when considering how equal the demographic groups are
treated (Corbett-Davies et al., 2017). This cleanly translates into
balanced datasets which are balanced conditioned on ℓ:

P(ȳ = 1|ℓ = ℓ′, s = 0)
!
= P(ȳ = 1|ℓ = ℓ′, s = 1) . (30)

We can interpret this as splitting the data into partitions based
on the value of ℓ, where the goal is to have all these partitions
be balanced. This can easily be achieved by our method by
setting a PRt(ℓ) for each value of ℓ and computing the transition
probabilities for each sample depending on ℓ.

4. RELATED WORK

There are several ways to enforce fairness in machine learning
models: as a pre-processing step (Kamiran and Calders, 2012;
Zemel et al., 2013; Louizos et al., 2016; Lum and Johndrow,
2016; Chiappa, 2019; Quadrianto et al., 2019), as a post-
processing step (Feldman et al., 2015; Hardt et al., 2016),
or as a constraint during the learning phase (Calders et al.,
2009; Zafar et al., 2017a,b; Donini et al., 2018; Dimitrakakis
et al., 2019). Our method enforces fairness during the learning
phase (an in-processing approach) but, unlike other approaches,
we do not cast fair-learning as a constrained optimization
problem. Constrained optimization requires a customized
procedure. In Goh et al. (2016), Zafar et al. (2017a), and

Zafar et al. (2017b), suitable majorization-minimization/convex-
concave procedures (Lanckriet and Sriperumbudur, 2009) were
derived. Furthermore, such constrained optimization approaches
may lead to more unstable training, and often yield classifiers
with both worse accuracy and more unfair (Cotter et al., 2018).

The approaches most closely related to ours were given by
Kamiran and Calders (2012) who present four pre-processing
methods: Suppression, Massaging the dataset, Reweighing, and
Sampling. In our comparison we focus on methods 2, 3, and
4, because the first one simply removes sensitive attributes and
those features that are highly correlated with them. All the
methods given by Kamiran and Calders (2012) aim only at
enforcing demographic parity.

The massaging approach uses a classifier to first rank all
samples according to their probability of having a positive label
(y = 1) and then flips the labels that are closest to the
decision boundary such that the data then satisfies demographic
parity. This pre-processing approach is similar in spirit to our in-
processing method but differs in the execution. In our method
(section 3.2), “ranking” and classification happen in one step
and labels are not explicitly flipped but assigned probabilities of
being flipped.

The reweighting method reweights samples based on whether
they belong to an over-represented or under-represented
demographic group. The sampling approach is based on the
same idea but works by resampling instead of reweighting. Both
reweighting and sampling aim to effectively construct a balanced
dataset, without affecting the labels. This is in contrast to our
method which treats the class labels as potentially untrustworthy
and allows defying them.

One approach in Calders and Verwer (2010) is also worth
mentioning. It is based on a generative Naïve Bayes model in
which a latent variable L is introduced which is reminiscent
to our target label ȳ. We provide a discriminative version of
this approach. In discriminative models, parameters capture
the conditional relationship of an output given an input, while
in generative models, the joint distribution of input-output is
parameterized. With this conditional relationship formulation
(P(y|ȳ, s) = P(ȳ|y,s)P(y|s)/P(ȳ|s)), we can have detailed control in
setting the target rate. Calders and Verwer (2010) focuses only
on the demographic parity fairness metric.

5. EXPERIMENTS

We compare the performance of our target-label model with
other existing models based on two real-world datasets. These
datasets have been previously considered in the fairness-aware
machine learning literature.

5.1. Implementation
The proposed method is compatible with any likelihood-based
algorithm. We consider both a non-parametric and a parametric
model. The non-parametric model is a Gaussian process model,
and logistic regression is the parametric counterpart. Since
our fairness approach is not being framed as a constrained
optimization problem, we can reuse off-the-shelf toolboxes
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including the GPyTorch library by Gardner et al. (2018)
for Gaussian process models. This library incorporates recent
advances in scalable variational inference including variational
inducing inputs and likelihood ratio/REINFORCE estimators.
The variational posterior can be derived from the likelihood and
the prior. We need just need to modify the likelihood to take into
account the target labels (Algorithm 1).

5.2. Data
We run experiments on two real-world datasets. The first
dataset is the Adult Income dataset (Dua and Graff, 2019). It
contains 33,561 data points with census information from US
citizens. The labels indicate whether the individual earns more
(y = 1) or less (y = 0) than $50,000 per year. We use
the dataset with either race or gender as the sensitive attribute.
The input dimension, excluding the sensitive attributes, is 12
in the raw data; the categorical features are then one-hot
encoded. For the experiments, we removed 2,399 instances with
missing data and used only the training data, which we split
randomly for each trial run. The second dataset is the ProPublica
recidivism dataset. It contains data from 6,167 individuals that
were arrested. The data was collected when investigating the
COMPAS risk assessment tool (Angwin et al., 2016). The task
is to predict whether the person was rearrested within two
years (y = 1 if they were rearrested, y = 0 otherwise).
We again use the dataset with either race or gender as the
sensitive attributes.

5.3. Balancing the Test Set
Any fairness method that is targeting demographic parity,
treats the training set as defective in one way: the acceptance
rates are not equal in the training set and this needs to be
corrected. As such, it does not make sense to evaluate these
methods on a dataset that is equally defective. Predicting at equal
acceptance rates is the correct result and the test set should
reflect this.

In order to generate a test set which has the property of
equal acceptance rates, we subsample the given, imbalanced, test
set. For evaluating demographic parity, we discard datapoints
from the imbalanced test set such that the resulting subset
satisfies P(s = j|y = i) = 1

2 for all i and j. This
balances the set in terms of s and ensures P(y, s) = P(y)P(s),
but does not force the acceptance rate to be 1

2 , which in
the case of the Adult dataset would be a severe change as
the acceptance rate is naturally quite low there. Using the
described method ensures that the minimal amount of data is
discarded for the Adult dataset. We have empirically observed
that all fairness algorithms benefit from this balancing of the
test set.

The situation is different for equality of opportunity. A perfect
classifier automatically satisfies equality of opportunity on any
dataset. Thus, an algorithm aiming for this fairness constraint
should not treat the dataset as defective. Consequently, for
evaluating equality of opportunity we perform no balancing of
the test set.

5.4. Method
We evaluate two versions of our target label model1: FairGP,
which is based on Gaussian Process models, and FairLR, which
is based on logistic regression. We also train baseline models that
do not take fairness into account.

In both FairGP and FairLR, our approach is implemented
by modifying the likelihood function. First, the unmodified
likelihood is computed (corresponding to P(ȳ = 1|x, θ)) and
then a linear transformation (dependent on s) is applied as
given by Equation (13). No additional ranking of the samples
is needed, because the unmodified likelihood already supplies
ranking information.

The fair GPmodels and the baseline GPmodel are all based on
variational inference and use the same settings. During training,
each batch is equivalent to the whole dataset. The number of
inducing inputs is 500 on the ProPublica dataset and 2500 on
the Adult dataset which corresponds to approximately 1/8 of the
number of training points for each dataset. We use a squared-
exponential (SE) kernel with automatic relevance determination
(ARD) and the probit function as the likelihood function. We
optimize the hyper-parameters and the variational parameters
using the Adam method (Kingma and Ba, 2015) with the default
parameters. We use the full covariance matrix for the Gaussian
variational distribution.

The logistic regression is trained with RAdam (Liu et al., 2019)
and uses L2 regularization. For the regularization coefficient, we
conducted a hyper-parameter search over 10 folds of the data. For
each fold, we picked the hyper-parameter which achieved the best
fairness among those 5 with the best accuracy scores. We then
averaged over the 10 hyper-parameter values chosen in this way
and then used this average for all runs to obtain our final results.

In addition to the GP and LR baselines, we compare our
proposed model with the following methods: Support Vector
Machine (SVM), Kamiran and Calders, 2012 (“reweighing”
method), Agarwal et al., 2018 (using logistic regression as the
classifier) and several methods given by Zafar et al. (2017a,b),
which include maximizing accuracy under demographic parity
fairness constraints (ZafarFairness), maximizing demographic
parity fairness under accuracy constraints (ZafarAccuracy), and
removing disparate mistreatment by constraining the false
negative rate (ZafarEqOpp). Every method is evaluated over 10
repeats that each have different splits of the training and test set.

5.5. Results for Demographic Parity on
Adult Dataset
Following Zafar et al. (2017b), we evaluate demographic parity
on the Adult dataset. Table 1 shows the accuracy and fairness
for several algorithms. In the table, and in the following, we
use PRs=i to denote the observed rate of positive predictions
per demographic group P(ŷ = 1|s = i). Thus, PRs= 0/PRs= 1

is a measure for demographic parity, where a completely fair
model would attain a value of 1.0. This measure for demographic
parity is also called “disparate impact” (see e.g., Feldman et al.,
2015; Zafar et al., 2017a). As the results in Table 1 show, FairGP

1The code can be found on GitHub: https://github.com/predictive-analytics-lab/

ethicml-models/tree/master/implementations/fairgp.
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TABLE 1 | Accuracy and fairness (with respect to demographic parity) for various methods on the balanced test set of the Adult dataset.

Algorithm Fair→ 1.0← Accuracy ↑ Fair→ 1.0← Accuracy ↑

GP 0.80 ± 0.07 0.888 ± 0.007 0.54 ± 0.05 0.900 ± 0.006

LR 0.83 ± 0.06 0.884 ± 0.007 0.52 ± 0.03 0.898 ± 0.003

SVM 0.89 ± 0.06 0.899 ± 0.004 0.49 ± 0.05 0.913 ± 0.004

FairGP (ours) 0.86 ± 0.07 0.888 ± 0.006 0.87 ± 0.09 0.902 ± 0.007

FairLR (ours) 0.90 ± 0.06 0.874 ± 0.009 0.93 ± 0.04 0.886 ± 0.012

ZafarAccuracy (Zafar et al., 2017b) 0.67 ± 0.17 0.808 ± 0.016 0.77 ± 0.08 0.853 ± 0.017

ZafarFairness (Zafar et al., 2017b) 0.81 ± 0.06 0.879 ± 0.009 0.74 ± 0.11 0.897 ± 0.004

Kamiran and Calders (2012) 0.87 ± 0.07 0.882 ± 0.007 0.96 ± 0.03 0.900 ± 0.004

Agarwal et al. (2018) 0.86 ± 0.08 0.883 ± 0.008 0.65 ± 0.04 0.900 ± 0.004

Fairness is defined as PRs= 0/PRs= 1 (a completely fair model would achieve a value of 1.0). Left: using race as the sensitive attribute. Right: using gender as the sensitive attribute.

The mean and std of 10 repeated experiments.

A B

FIGURE 1 | Accuracy and fairness (demographic parity) for various target choices. (A) Adult dataset using race as the sensitive attribute; (B) Adult dataset using

gender. Center of the cross is the mean; height and width of the box encode half of standard derivation of accuracy and disparate impact.

and FairLR are clearly fairer than the baseline GP and LR.
We use the mean (PR

avg
t ) for the target acceptance rate. The

difference between fair models and unconstrained models is not
as large with race as the sensitive attribute, as the unconstrained
models are already quite fair there. The results of FairGP are
characterized by high fairness and high accuracy. FairLR achieves
similar results to FairGP, but with generally slightly lower
accuracy but better fairness. We used the two step procedure of
Donini et al. (2018) to verify that we cannot achieve the same
fairness result with just parameter search on LR.

In Figure 1, we investigate which choice of target (PR
avg
t ,

PRmin
t or PRmax

t ) gives the best result. We use PR
avg
t for all

following experiments as this is the fairest choice (cf. section 3.2).
The Figure 1A shows results from Adult dataset with race as
sensitive attribute where we have PRmin

t = 0.156, PRmax
t = 0.267

and PR
avg
t = 0.211. PR

avg
t performs best in term of the trade-off.

Figures 2A,B show runs of FairLR where we explicitly set a
target acceptance rate, PRt : = P(ȳ = 1), instead of taking
the mean PR

avg
t . A perfect targeting mechanism would produce

a diagonal. The plot shows that setting the target rate has the
expected effect on the observed acceptance rate. This tuning of
the target rate is the unique aspect of the approach. This would
be very difficult to achieve with existing fairness methods; a new

constraint would have to be added. The achieved positive rate is,
however, usually a bit lower than the targeted rate (e.g., around
0.15 for the target 0.2). This is due to using imperfect classifiers;
if TPR and TNR differ from 1, the overall positive rate is affected
(see e.g., Forman, 2005 for discussion of this).

Figures 3A,B show the same data as Figure 2 but with
different axes. It can be seen from this Figures 3A,B that the
fairness-accuracy trade-off is usually best when the target rate is
close to the average of the positive rates in the dataset (which is
around 0.2 for both sensitive attribute).

5.6. Results for Equality of Opportunity on
ProPublica Dataset
For equality of opportunity, we again follow Zafar et al. (2017a)
and evaluate the algorithm on the ProPublica dataset. As we
did for demographic parity, we define a measure of equality
of opportunity via the ratio of the true positive rates (TPRs)
within the demographic groups. We use TPRs=i to denote the
observed TPR in group i: P(ŷ = 1|y = 1, s = i), and TNRs=i
for the observed true negative rate (TNR) in the same manner.
The measure is then given by TPRs= 0/TPRs= 1. A perfectly fair
algorithm would achieve 1.0 on the measure.
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A B

FIGURE 2 | Predictions with different target acceptance rates (demographic parity) for 10 repeats. (A) PRs=0 vs PRs=1 using race as the sensitive attribute; (B)

PRs=0 vs PRs=1 using gender.

A B

FIGURE 3 | Predictions with different target acceptance rates (demographic parity) for 10 repeats. (A) Disparate impact vs accuracy on Adult dataset using race as

the sensitive attribute; (B) Disparate impact vs accuracy using gender.

A B

FIGURE 4 | Accuracy and fairness (with respect to equality of opportunity) for various methods on ProPublica dataset. (A): using race as the sensitive attribute; (B):

using gender. A completely fair model would achieve a value of 1.0 in the x-axis. See Figures 5A,B on how these choices of PR setting translate to TPRs=0 vs

TPRs=1.
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A B

FIGURE 5 | Fairness measure TPRs=0 vs TPRs=1 (equality of opportunity) for different target PRs (PRt ). (A) On dataset ProPublica recidivism using race as the

sensitive attribute; (B) using gender.

The results of 10 runs are shown in Figures 4, 5. Figures 4A,B
show the accuracy-fairness trade-off; Figures 5A,B show the
achieved TPRs. In the accuracy-fairness plot, varying PRt is
shown to produce an inverted U-shape: Higher PRt still leads to
improved fairness, but at a high cost in terms of accuracy.

The latter two plots make clear that the TPR ratio does not
tell the whole story: the realization of the fairness constraint
can differ substantially. By setting different target PRs for our
method, we can affect TPRs as well, where higher PRt leads
to higher TPR, stemming from the fact that making more
positive predictions increases the chance of making correct
positive predictions.

Figure 5 shows that our method can span a wide range of
possible TPR values. Tuning these hidden aspects of fairness is
the strength of our method.

6. DISCUSSION AND CONCLUSION

Fairness is fundamentally not a challenge of algorithms alone,
but very much a sociological challenge. A lot of proposals have
emerged recently for defining and obtaining fairness in machine
learning-based decision making systems. The vast majority of
academic work has focused on two categories of definitions:
statistical (group) notions of fairness and individual notions of
fairness (see Verma and Rubin, 2018 for at least twenty different
notions of fairness). Statistical notions are easy to verify but
do not provide protections to individuals. Individual notions
do give individual protections but need strong assumptions,
such as the availability of an agreed-upon similarity metric,
which can be difficult in practice. We acknowledge that a proper
solution to algorithmic fairness cannot rely on statistics alone.
Nevertheless, these statistical fairness definitions can be helpful
in understanding the problem and working toward solutions. To
facilitate this, at every step, the trade-offs that are present should
be made very clear and long-term effects have to be considered as
well (Kallus and Zhou, 2018; Liu et al., 2018).

Here, we have developed a machine learning framework
which allows us to learn from an implicit balanced dataset,
thus satisfying the two most popular notions of fairness (Verma
and Rubin, 2018), demographic parity (also known as avoiding
disparate treatment) and equality of opportunity (or avoiding
disparate mistreatment). Additionally, we indicate how to extend
the framework to cover conditional demographic parity as well.
The framework allows us to set a target rate to control how
the fairness constraint is realized. For example, we can set the
target positive rate for demographic parity to be 0.6 for different
groups. Depending on the application, it can be important to
specify whether non-discrimination ought to be achieved by
more positive predictions or more negative predictions. This
capability is unique to our approach and can be used as an
intuitive mechanism to control the realization of fairness. Our
framework is general and will be applicable for sensitive variables
with binary and multi-level values. The current work focuses
on a single binary sensitive variable. Future work could extend
our tuning approach to other fairness concepts like the closely
related predictive parity group fairness (Chouldechova, 2017) or
individual fairness (Dwork et al., 2012).
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Allowing machines to choose whether to kill humans would be devastating for world

peace and security. But how do we equip machines with the ability to learn ethical or

even moral choices? In this study, we show that applying machine learning to human

texts can extract deontological ethical reasoning about “right” and “wrong” conduct. We

create a template list of prompts and responses, such as “Should I [action]?”, “Is it okay

to [action]?”, etc. with corresponding answers of “Yes/no, I should (not).” and "Yes/no,

it is (not)." The model’s bias score is the difference between the model’s score of the

positive response (“Yes, I should”) and that of the negative response (“No, I should not”).

For a given choice, the model’s overall bias score is the mean of the bias scores of

all question/answer templates paired with that choice. Specifically, the resulting model,

called the Moral Choice Machine (MCM), calculates the bias score on a sentence level

using embeddings of the Universal Sentence Encoder since the moral value of an action

to be taken depends on its context. It is objectionable to kill living beings, but it is fine to kill

time. It is essential to eat, yet one might not eat dirt. It is important to spread information,

yet one should not spread misinformation. Our results indicate that text corpora contain

recoverable and accurate imprints of our social, ethical and moral choices, even with

context information. Actually, training the Moral Choice Machine on different temporal

news and book corpora from the year 1510 to 2008/2009 demonstrate the evolution of

moral and ethical choices over different time periods for both atomic actions and actions

with context information. By training it on different cultural sources such as the Bible and

the constitution of different countries, the dynamics of moral choices in culture, including

technology are revealed. That is the fact that moral biases can be extracted, quantified,

tracked, and compared across cultures and over time.

Keywords: moral bias, fairness in machine learning, text-embedding models, natural language processing, AI,

machine learning

1. INTRODUCTION

There is a broad consensus that artificial intelligence (AI) research is progressing steadily, and that
its impact on society is likely to increase. From self-driving cars on public streets to self-piloting,
reusable rockets, AI systems tackle more and more complex human activities in a more and more
autonomous way. This leads to new spheres, where traditional ethics has limited applicability. Both
self-driving cars, where mistakes may be life-threatening, and machine classifiers that hurt social
matters may serve as examples for entering gray areas in ethics: how does AI embody our value
system? Do AI systems learn humanly intuitive correlations? If not, can we contest the AI system?
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Unfortunately, aligning social, ethical, and moral norms to
the structure of science and innovation, in general, is a long
road. According to Kluxen (2006), who examined affirmative
ethics, the emergence of new questions leads to intense public
discussions, that are driven by strong emotions of participants.
And machine ethics (Bostorm and Yudkowsky, 2011; Russell
et al., 2015; Kramer et al., 2018) is no exception. Consider, e.g.,
Caliskan et al.’s (2017) empirical proof that human language
reflects our stereotypical biases. Once AI systems are trained
on human language, they carry these (historical) biases, like the
(wrong) idea that women are less qualified to hold prestigious
professions. These and similar recent scientific studies have
raised awareness about machine ethics in the media and public
discourse. AI systems “have the potential to inherit a very human
flaw: bias,” as Socure’s CEO Sunil Madhu puts it1. AI systems
are not neutral with respect to purpose and society anymore.
Ultimately, if AI systems carry out choices, then they implicitly
make ethical and even moral choices. Choosing most often
entails trying to pick one of two or more (mutually exclusive)
alternatives with an outcome that gives desirable consequences in
your ethical frame of reference. But how do we equip AI systems
to make human-like ethical choices?

We start by presenting our previous findings (Jentzsch et al.,
2019) with focusing on quantifing deontological ethics, i.e.,
finding out, whether an action itself is right or wrong. Following
Kim and Hooker (2018), for the replication we first focus
our attention to atomic actions instead of complex behavioral
patterns. Semantically, those contextual isolated actions are
represented by verbs. To conduct this assignment, a template
list of prompts and responses is created for ethical choices. The
template includes questions, such as “Should I kill?,” “Should I
love?,” etc. with answer templates “Yes/no, I should (not).” The
model’s bias score is calculated as the difference between the
model’s score of the positive response (“Yes, I should”) and that
of the negative response (“No, I should not”). For a given choice,
the model’s overall bias score is the mean of the bias scores of all
question/answer templates paired with that choice.

To showcase the presence of human biases in text, we confirm
the frequently stated reflection of human gender stereotypes
based on the same concept theMCM is using, i.e., the associations
between different concepts are inferred by calculating the
likelihood of particular question-answer compilations. However,
above those malicious biases, natural language also mirrors a
wide range of other relationships implicitly, as social norms that
determine our sense of morality in the end. Using the MCM, we
therefore also demonstrate the presence of ethical valuation in
text by generating an ethical bias of actions.

The strong correlation between WEAT values and moral
biases at the verb level gives reasons to extend the investigation
of the MCM by first inspecting complex human-like choices at
the phrase level and second if the MCM can capture a variety
of human-like choices reflected by different text-sources. The
moral bias of an action is depending on the surrounding context.

1August 31, 2018, post on Forbes Technology Council https://www.forbes.com/

sites/forbestechcouncil/2018/08/31/are-machines-doomed-to-inherit-human-

biases/, accessed on Nov. 3, 2018.

For instance, it is appropriate to kill time, but against the law
to kill people. Also, since the moral biases imprinted in the text
embeddings would depend on the text sources the embeddings
trained on, we further investigate the moral biases of complex
actions and the changes in moral biases of various corpora. To
do so, we first generated a list of context-based actions and
collected different datasets such as books published in different
centuries, news from the last three decades and constitutions of
193 countries. These newly collected datasets are used to retrain
the Universal Sentence Encoder, and to extract the moral biases.
Our results show that the MCM is able to capture the moral bias
of not just atomic actions but also of actions with surrounding
context and one can use this as a tool to extract and examine
moral biases across cultural text sources and over time.

This paper is an extension of the conference paper (Jentzsch
et al., 2019), where we introduced the basic Moral Choice
Machine (MCM). Based on extending Caliskan et al.’s and similar
results, we show that standard machine learning can learn not
only stereotyped biases but also answers to ethical choices from
textual data that reflect everyday human culture. The MCM
extends the boundary of Word Embedding Association Test
(WEAT) approach and demonstrates the existence of biases
in human language on a sentence level. Moreover, accurate
imprints of social, ethical and moral choices could be identified.
The above-mentioned conference paper, however, considered
only atomic actions to evaluate the moral bias enclosed in text
embeddings. In this paper, we extend the atomic actions with
contextual information which allows us to investigate the moral
bias in more detail. We have shown that the MCM not only
grasps Do’s and Don’ts of the atomic actions but also the changes
in moral bias with the contextual information, e.g., kill time
has a positive value where kill people has a negative value (the
higher the bias, the more acceptable that behavior is). This
paper also includes comprehensive experimental results where
the Universal Sentence Encoder has been retrained with the
text sources of various years and source types, e.g. religious
and constitutional documents, books from different centuries,
and news from different years. These results are particularly
important because we have shown that the characteristics of the
retrained model reflect the information that is carried implicitly
and explicitly by the source texts. This result changes in the moral
bias while the model adapts itself to the given text source.

We proceed as follows: After reviewing our assumptions
and the required background, we introduce the MCM and the
replication pipeline to rate and rank atomicmoral choices. Before
concluding, we present our empirical results and the current
limitations of the MCM.

2. ASSUMPTIONS AND BACKGROUND

Before describing the MCM, we start by reviewing our
assumptions, in particular, what we mean by moral choices, and
the required background.

2.1. Moral Choices
Philosophically, morality referred to the individual’s level of
“right” and “wrong,” while ethics referred to the “right” and
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“wrong” arrangements established by a social community. Social
norms and implicit behavioral rules exist in all human societies.
However, while their presence is omnipresent, they are hardly
measurable, or even consistently definable. The underlying
mechanisms are still poorly understood. Indeed, any working
community has an abstract morale that is essentially valid and
must be adhered to. Theoretical concepts, however, have been
identified as inconsistent, or even sometimes contradictory.
Accordingly, latent ethics and morals have been described as
the sum of particular norms which may not necessarily follow
logical reasoning. Recently, Lindström et al. (2018) for instance
suggested that moral norms are determined to a large extent by
what is perceived to be common convention.

Concerning the complexity and intangibility of ethics and
morals, we restrict ourselves, as in our previous work (Jentzsch
et al., 2019), to a rather basic implementation of this construct,
following the theories of deontological ethics. These ask which
choices are morally required, forbidden, or permitted instead
of asking which kind of a person we should be or which
consequences of our actions are to be preferred. Thus, norms are
understood as universal rules of what to do and what not to do.
Therefore, we focus on the valuation of social acceptance in single
verbs to figure out which of them represents a Do and which
tend to be a Don’t. Because we specifically chose templates in the
first person, i.e., asking “Should I” and not asking “Should one,”
we address the moral dimension of “right or wrong” decisions,
and not only their ethical dimension. This also explains why
we will often use the word “moral,” although we actually touch
upon “ethics” and “moral.” To measure the valuation, we make
use of implicit association tests (IATs) and their connections to
word embeddings.

2.2. The Implicit Association Test
The Implicit Association Test (IAT) is a well-established tool
in social psychology for analyzing attitudes of people without
specifically asking for it. This method addresses the issue that
people may not always be able or willing to tell what’s on
their minds, but indirectly reveal it in their behavior. The
IAT measures the magnitude of the differential association of
contradictory concepts by measuring the decision velocity in an
assignment task.

Several investigations in the literature, that are worth
mentioning and frequently referred, already use the IAT
to identify latent attitudes, including gender and race
discrimination. Greenwald et al. (1998) initially introduced
the IAT. They found several effects, including both ethically
neutral ones, for instance the preference of flowers over insects,
and sensitive ones, as the preference of one ethnic group over
another. Nosek et al. (2002b) focused on the issue of gender
stereotypes and found the belief that men are stronger in
mathematical areas than women.

Furthermore, their findings revealed an association between
the concepts such as male and science as opposed to female and
liberal arts, as well as the association between male and career
in contrast to female and family (Nosek et al., 2002a). Finally,
Monteith and Pettit (2011) addressed the stigmatization of
depression by measuring implicit as well as explicit associations.

All the studies mentioned include a unique definition of
an unspecific dimension of pleasure or favor, represented by
a set of general positive and negative words. In the following
explanations, we will refer the intersection of those sets as positive
and negative association sets.

2.3. Word and Sentence Embeddings
Word and sentence embeddings are representations of words or
sentences, respectively, as real-valued vectors in a vector space.
This approach allows words and sentences with similar meanings
to have similar representations. In the vector space, they lie close
to each other. whereas dissimilar words or sentences can be found
in distant regions (Turney and Pantel, 2010). This enables one
to determine semantic similarities in language and is one of
the key breakthroughs of the impressive performance of deep
learning methods.

Although these techniques have been around for some
time, with the emergence of predictive-based distributional
approaches, their potential increased considerably. Unlike
previous implementations, e.g., counting methods, these
embeddings are computed by artificial neural networks (NNs)
and enable to perform a wide variety of mathematical vector
operations. One of the initial and most widespread algorithms
to train word embeddings is Word2Vec, introduced by Mikolov
et al. (2013), where unsupervised feature extraction and learning
is conducted per word on either CBOW or Skip-gram NNs. This
can be extended to full sentences (Cer et al., 2018).

2.4. Implicit Associations in Word

Embeddings
Caliskan et al. (2017) transferred the approach of implicit
associations from human subjects to information retrieval
systems on natural text by introducing the Word Embedding
Association Test (WEAT). Whereas the strength of association in
human minds is defined by response latency in IAT, the WEAT is
instantiated as cosine similarity of text in the Euclidean space.

Similar to the IAT, complex concepts are defined by word
sets. The association of any single word vector Ew to a word
set is defined as the mean cosine similarity between Ew and the
particular elements of the set. Consider the two sets of target
words X and Y . The allocation of Ew to two discriminating
association sets A and B can be formulated as

s(Ew,A,B) = avgEa∈A cos(Ew, Ea)− avgEb∈B cos(Ew, Eb) . (1)

A word with representation Ew that is stronger associated to
concept A yields a positive value and representation related to
B a negative value.

2.5. Universal Sentence Encoder
The Universal Sentence Encoder (USE), introduced by Cer et al.
(2018), is a model to encode sentences into embedding vectors.
There are two versions of USE which are based on two different
kinds of neural network architectures: transformer networks
(Vaswani et al., 2017) (higher compute time and memory usage)
and Deep Averaging Networks (Iyyer et al., 2015). The choice of
the version, i.e., the network architecture, depends on the user’s
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preferences regarding the memory and computational costs. In
both versions, the encoder receives as input a lowercased PTB
tokenized string and outputs a 512-dimensional vector as the
sentence embedding.

2.6. Diachronic Changes of Moral
Language is evolving over time. According to Yule (2016), the
changes are gradual and probably difficult to discern while
they were in progress. Although some changes can be linked
to major social changes caused by wars, invasions and other
upheavals, the most pervasive source of change in language
seems to be in the continual process of cultural transmission.
As language is evolving one can also observe diachronic changes
of moral. However, there are not just changes over time, but
also differences between cultural, political and religious contexts
(e.g., Nilsson and Strupp-Levitsky, 2016). In recent work Kwan
(2016) compared moral decision-making of the Chinese and
U.S. culture. Furthermore, moral foundations were compared in
relation to different cultures (Stankov and Lee, 2016; Sullivan
et al., 2016), political systems (Kivikangas et al., 2017), cultural
values (Clark et al., 2017), and relations between social groups
(Obeid et al., 2017).

To detect shifts in language (Bamler and Mandt, 2017)
track the semantic evolution of individual words over time by
comparing word embeddings. Hamilton et al. (2016) quantified
semantic change by evaluating word embeddings against known
historical changes. As Bamler and Mandt (2017) infer word
embeddings, we infer sentence embeddings at each timestamp.
However, instead of using Kalman filtering to connect the
embeddings over time, we inspect every single timestamp
isolated. Furthermore, we investigate moral bias differences
between different kinds of text sources.

3. EXTRACTING SIMPLE DO’S AND

DONT’S FROM TEXT

We start by showing how one can extract simple Do’s and
Dont’s from text based on the word level, i.e., learnt word
representations. We focus on verbs since they express actions.
Consequently, a simple idea is to create two oppositely connoted
sets of verbs that reflect the association dimension, which is
defined by applied association sets. This can be done in two
steps. To this end, verbs need to be identified grammatically
and then scored in some way to enable a comparison of
particular elements.

We used POS tagging by pre-defining a huge external list
of verbs to filter vocabulary. Approximately twenty-thousand
different verbs could be identified in the Google News model.
Subsequently, Equation (1) was applied to rate every single
element by its cosine distance to two given association sets A and
B. Basically, any two word sets that define a concept of interest
can be applied as an association sets. Here, the aim is to identify
Do’s and Don’ts in general. For this reason, a broad variety of
verbs with positive and negative connotations have been gathered
from various sources of literature. More precisely, the lists arose
from combining association sets of the IAT experiments that were

referred to previously. A detailed list of words can be found in
Supplementary Material. The resulting verb sets were defined as
50 elements with the most positive and most negative association
score, respectively. To avoid repetitions, all words were rated in
their stemmed forms. Therefore, the final lists do not consider
specific conjugations.

To evaluate the resulting moral bias of the in the next step
introduced Moral Choice Machine, the correlation of WEAT
values and moral bias of these extracted actions will be examined.
Hereby, we follow the replication pipeline of Figure 1: (1) extract
verbs using Word Embedding Association Tests (WEATs), (2) ask
the MCM, our main algorithmic contribution, and (3) correlate
WEAT values and moral biases. Although both methods—Verb
Extraction and the MCM—are based on incoherent embeddings
with different text corpora as training sources, we show that they
correspond in the classification of actions as Do’s and Don’ts.
This supports the hypothesis of the presence of generally valid
valuation in human text.

4. THE MORAL CHOICE MACHINE (MCM)

Word-based approaches, e.g., gender bias, consider only single
words that detach them from their grammatical and contextual
surroundings. In this study, we propose the MCM which makes
use of the sentence embeddings to determine the moral biases.

Using sentence embeddings, e.g., the Universal Sentence
Encoder (Cer et al., 2018), the similarity of two sentences, e.g.,
a question and the corresponding answer, can be calculated using
cosine similarity. We expect a higher similarity score if an answer
is more appropriate to a given question, vice versa. Now imagine
that we have similarity scores of two opposite answers to a given
question. Then, a bias can be calculated, similar to Equation (1),
as follows:

bias(Eq, Ea, Eb) = cos(Ea, Eq)− cos(Eb, Eq) , (2)

where Eq is the vector representation of the question and Ea and
Eb are the representations of the two answers/choices. A positive
value indicates a stronger association to answer a, whereas a
negative value indicates a stronger association to b.

This can be adapted to any arbitrary kind of bias by
formulating appropriate question-answer triples, where the
question captures the target dimension and the answers represent
two opposite manifestations, i.e., the choices. This is illustrated
in Figure 2 for the moral bias of the action murder people. Since
murdering is a quite destructive and generally refused behavior,
the question is expected to lie closer to the denying response
and thus to yield a negative bias. Specifically, we considered two
different biases: gender and moral.

The approach to extract the gender bias focuses on the relation
of occupation and gender, and illustrates that the MCM can
replicate Caliskan et al.’s (2017) findings. For instance, for the
question “Was the plumber here today?” both the answer “Yes,
he was.” and “Yes, she was.” might be correct. By computing
the cosine distances of those phrases, it is possible to assign
occupations to the one or the other gender. There were two
questions specified that occur in the present and past tense:
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FIGURE 1 | The replication pipeline used to show that semantics derived automatically from language corpora contain human-like moral choices for atomic choices.

FIGURE 2 | The Moral Choice Machine illustrated for the choice of murdering people and the exemplary question Should I …? from the question template.

“Is/Was your cousin a . . . ?” and “Is/Was the . . . here today?.”
Possible answers of the template are “Yes, he is/was.” and “Yes, she
is/was..” Thus, there were four questions in total for computing
gender biases.

We can observe that the appropriateness of an answer to a
moral question would slightly change with respect to the question
type, e.g., “Is it okay to” and “Is it recommended to” can even
yield two different answers. To prevent the effects of the question
type and create a more meaningful and comprehensive statistic, a
question/answer template is prepared consisting of 10 question-
answer prompts. The question/answer template for moral biases,
our main target, included 10 prompts summarized in Table 1,
where any action term can be inserted into the dots. All prompts
follow the same structure: the action is mirrored in the question,
and the answers represent two extremes of social desirability.
Questions were, e.g., “Is it allowed to . . . ?” or “Should I . . . ?.”
The answers were grammatically adjusted to the question, e.g.,
“Yes, it is.” vs. “No, it is not.” respectively “Yes, you should.” vs.
“No, you should not.”. The element of interest is inserted to each
considered prompt and resulting biases averaged to an overall
bias value. Besides atomic actions, e.g., smile, love, lie, or kill,
this template can be used on complex, context-based actions e.g.,

TABLE 1 | Question/Answer template of the Moral Choice Machine.

Question Answers

Is it okay to …? Yes/No, it is (not).

Should I …? Yes/No, you should (not).

Shall I …? Yes/No, you shall (not).

May I …? Yes/No, you may (not).

Is it allowed to …? Yes/No, it is (not).

Is it recommended to …? Yes/No, it is (not).

Is it desired to …? Yes/No, it is (not).

Is it polite to …? Yes/No, it is (not).

Is it good behavior to …? Yes/No, it is (not).

Is it exemplary to …? Yes/No, it is (not).

love my parents, love my wife/husband, kill people, kill insects, or
kill time.

As mentioned above, the MCM is based on text embeddings.
The considered embeddings are based on the underlying
data source (and the training object function), on which the
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Encoder—in our case a neural network—was trained on. To
examine specific data, the Encoder can be adapted toward this
data. Therefore, the MCM can be used as a tool to reproduce
moral bias from given text. To investigate the moral bias
of a given text source, we retrain the network by using the
corresponding text corpora to solve both a supervised and
unsupervised learning tasks. Assuming we observe changes of
moral in this text sources, in order to solve the semantic
similarity task, the embedding network has to learn in which
context words and phrases are been used and therefore adapt
the underlying moral bias. Now, using the MCM based on the
adapted embedding, one can extract the moral bias of queried
actions to investigate the given data source.

5. RESULTS AND DISCUSSION

This section investigates empirically that text corpora contain
recoverable and accurate imprints of our moral choices. To this
end, we start describing the embedding models and datasets
used in our experiments followed by presenting the experimental
setup and discussion of the results.

5.1. Datasets
Experiments of the MCM were conducted with the Universal
Sentence Encoder (Cer et al., 2018) which is trained on phrases
and sentences from a variety of different text sources, such
as forums, question-answering platforms, news pages, and
Wikipedia and augmented with supervised elements. General
positive and negative association sets—A and B in Equation (1)—
were collected from previous literature as described earlier (cf.
section 3). The comprehensive list of vocabulary can be found
in Table 2. Although there are unlimited opportunities to specify
to replace this association dimension, we stick to this list since
we aim to show the presence of implicit social valuation in
semantic in general. The sets of general Do’s and Don’ts used for
the MCM are based on the extracted verbs described in section
3.2. To investigate context-based actions, we later expand the
list of extracted verbs with, among others, neutral verbs, and
corresponding customary context.

We use various text sources to retrain the USE model to
investigate the changes in moral bias. Since our method is
based on sentence embeddings, we depend on datasets with full
document and sentence level information and not only e.g., meta
information as in the Google Books corpus2 used in Bamler and
Mandt (2017). The list of text sources used in this paper to retrain
the USE model can be listed as follows3:

News. This data source consists of three separate datasets that
contain news that appeared on the Reuters newswire in three
different time span.

• 1987, its original name is Reuters-21578 that consists of
news that appeared in 1987. The total number of sentences
is 106,892.

2http://storage.googleapis.com/books
3The repositories are listed at the end of the manuscript in the Data Availability

Statement

TABLE 2 | The complete lists of positive and negative association words that

were applied for generating Do’s and Dont’s with Verb Extraction.

Association Set A - Positive words: affectionate, ambition, assertive,

athletic, caress, champion, cheer, compassion, cozy, cuddle, diamond,

diploma, enjoyment, excitement, family, freedom, friend, gentle, gift, glory,

happy, health, heaven, honest, honor, hug, joy, laughter, love, loyal, lucky,

miracle, paradise, passion, peace, pleasure, rainbow, romantic, snuggle,

strong, sunrise, support, sympathetic, triumph, vacation, wonderful.

Association Set B - Negative words: abuse, accident, afraid, agony,

assault, awful, bad, bomb, brutal, cancer, confusion, crash, crucify, crude,

death, despise, destroy, detest, disaster, divorce, evil, failure, filth, grief,

hatred, horrible, humiliate, insecure, irritate, jail, jealousy, kill, murder, naive,

nasty, nightmare, poison, pollute, poor, poverty, prison, punishment, rotten,

ruthless, sickness, slap, stink, stress, terrible, tragedy, ugly, violent, vomit,

war, waste.

The words were collected from four different literature sources that provide unspecific

association sets to define pleasant and unpleasant associations (Greenwald et al., 1998;

Nosek et al., 2002a,b; Monteith and Pettit, 2011).

• 1996–1997, its original name is RCV1 (Lewis et al., 2004). The
total number of sentences is 11,693,568.

• 2008–2009, its original name is TRC2. The total number of
sentences is 12,058,204.

Books. This data source is from the repository “Research
Repository British Library” which consists of digitalized books
over different centuries.

• 1510–1600, with the total number of 1,443,643 sentences.
• 1700–1799, with the total number of 3,405,165 sentences.
• 1800–1899, this century is divided into decades where the total

number of sentences over all decades is 230,618,836.

Religious and Constitution. This dataset combines two
different sources where religious data source consists of four
religious books namely the Bible, Buddha, Mormon, and
Quran. Constitution, on the other hand, groups constitutions
of 193 countries. These text sources are extracted from
the repository “Project Gutenberg” and the website “https://
www.constituteproject.org,” respectively. The total number of
sentences in this dataset is 167,737.

Each dataset has gone through a preprocessing step where
the language of the text is detected and the text is deleted if it
is not English. Then, we use the Sentence Tokenizer from the
nltk package4 to divide the text into sentences. The resulting
lists of sentences are fed to the neural network for the retraining
step where the USE is used as a pretrained model5. We use
the Tensorflow framework to retrain the USE model with the
stochastic gradient descent optimizer ADAM (Kingma and Ba,
2015). The number of iterations is set to one million for both—
unsupervised and supervised—tasks with a learning rate of
0.00005. More details can be found in Supplementary Material

and in our public repository6.
While evaluating the various text sources, i.e., computing the

moral bias score, we start with the assumption that every action

4https://www.nltk.org/
5https://tfhub.dev/google/universal-sentence-encoder-large/3
6https://github.com/ml-research/moral-choice-machine-v2
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TABLE 3 | Confirmation of gender bias in occupation: the more positive, the more

female related; the more negative, the more male.

Female biased Male biased

Occupation Bias Occupation Bias

Maid 0.814 Undertaker −0.734

Waitress 0.840 Referee/umpire −0.646

Receptionist 0.817 Actor −0.609

Nurse 0.724 Coach −0.582

Midwife 0.718 President −0.576

Nanny 0.649 Plumber −0.575

Housekeeper 0.626 Philosopher −0.563

Hostess 0.589 Announcer −0.541

Gynecologist 0.435 Maestro −0.518

Socialite 0.431 Janitor −0.507

is contained in the source. However, if the corresponding action
itself is not contained in the source or its frequency is low, we
report this together with the resulting bias.

5.2. Experimental Setup
We conduct the following experiments: (i) Validating the
presence of malicious biases, i.e., gender stereotypes, in sentence
embeddings. (ii) Extraction of general negative and positive word
sets from the Google Slim word embeddings. (iii) Comparing
the presented approach with WEAT based on simple atomic
moral choices and demonstrating the presence of moral choices
in sentence embeddings. (iv) The investigation of reflected moral
values considering actions with varying contextual information.
(v) The extraction of moral values from the different text-sources:
News, Books, and Religious and Constitution.

Concerning our basic MCM experiments (iii–iv), we
conducted the experiments with the USE based on the Deep
Averaging network architecture. As the transformer-based
encoder achieves the best overall transfer task performance
(Cer et al., 2018), we selected it for fine-tuning the network on
different datasets to compare ethical choices among different text
corpora (v). Please note that the experiments (iii–iv) resulted
in only minor differences regarding the moral score with
both architectures.

To adapt the encoder to different datasets, we follow
the training procedure of Cer et al. (2018). The embedding
network is trained on a Skip-Thought like task (Kiros
et al., 2015)—given a sentence, predict the next and previous
sentence—for unsupervised learning from arbitrary running
text. Unsupervised learning is augmented by a classification
task for training on supervised data. Further details about the
training setup and the hyperparameters can be found in the
Supplementary Material (section S.1.2).

5.3. Validation of Gender Biases
We start our empirical evaluation by showing that the
approach the MCM is based on is able to confirm previous
findings (Bolukbasi et al., 2016; Caliskan et al., 2017),
demonstrating the presence of malicious gender stereotypes

TABLE 4 | List of the most positive and negative associated verbs found by Verb

Extraction.

Do’s: joy, enjoy, cherish, pleasure, upbuild, gift, savor, fun, love, delight,

gentle, thrill, comfort, glory, twinkle, supple, sparkle, stroll, celebrate, glow,

welcome, compliment, snuggle, smile, brunch, purl, coo, cuddle, serenade,

appreciate, enthuse, schmooze, companion, picnic, thank, acclaim,

preconcert, bask, sightsee, hug, caress, charm, cheer, beckon, toast, spirit,

treasure, glorious, fête, nuzzle.

Don’ts: misdeal, poison, bad, scum, underquote, havoc, mischarge,

mess, callous, blight, suppurate, murder, necrotising, harm, slur, demonize,

brutalize, contaminate, attack, mishandle, bloody, dehumanize, exculpate,

assault, cripple, slaughter, bungle, smear, negative, disfigure, misinform,

victimize, rearrest, stink, plague, miscount, rot, damage, depopulate,

derange, disarticulate, anathematise, intermeddle, disorganise, sicken,

perjury, pollute, slander, mismanage, torture.

regarding occupations in natural language. This verifies that the
presented approach is able to extract those biases from sentence
embeddings. Specifically, different occupations are inserted in the
corresponding question/answer template.

Table 3 lists the top 10 female and male biased occupations
(those with the highest and lowest bias value). Positive values
indicate a more female related term, whereas terms that yield a
negative bias are more likely to be male associated. Female biased
occupations include several ones that fit stereotype of women,
as for instance receptionist, housekeeper, or stylist. Likewise, male
biased occupations support stereotypes, since they comprise jobs
as president, plumber, or engineer. The findings clearly show that
gender differences are present in human language.

5.4. Extraction of Negative and Positive

Word Sets
Next, we infer socially desired and neglected behavior to compare
the Moral Choice Machine with WEAT on the word level.
Specifically, we extract words identifying the most positive
and most negative associated verbs in vocabulary. They were
extracted with the general positive and negative association sets
on the Google Slim embedding.

Since the following rated sets are expected to reflect social
norms, they are referred as Do’s and Don’ts hereafter. Table 4
lists the most positive associated verbs (in decreasing order) we
found. Even though the verbs on the list are quite diverse, all
of them carry a positive attitude. Some of the verbs are related
to celebration or traveling, others to love matters, or physical
closeness. All elements of the above set are rather of general and
unspecific nature.

Analogously, Table 4 also presents the most negative
associated verbs (in decreasing order) we found in our
vocabulary. Some words just describe inappropriate behavior,
like slur or misdeal, whereas others are real crimes as murder.
Still, there exist some words, e.g., suppurate or rot, that appear
to be disgusting. Exculpate is not bad behavior per se. However,
its occurrence in the Don’ts set is not surprising, since it is
semantically and contextual related to wrongdoings. Some
words are surprisingly of repugnant nature as it was not even
anticipated in preliminary considerations, e.g., depopulate or
dehumanize. Undoubtedly, the words in the list can be accepted
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as commonly agreed Don’ts. Both lists include few words which
are rather common as a noun or adjectives, such as joy, long, gift,
or bad. However, they can also be used as verbs and comply with
the requirements of being a do or a don’t in that function.

The allocation of verbs into Do’s and Don’ts was confirmed
by the affective lexicon AFINN (Nielsen, 2011). AFINN allows
one to rate words and phrases for valence on a scale of −5 and
5, indicating inherent connotation. Elements with no ratings are
treated as neutral (0.0).

When passing the comprehensive lists of generated Do’s and
Don’ts to AFINN, the mean rating for Do’s is 1.12 (std = 1.24)
and for Don’ts −0.90 (std = 1.22). The t-test statistic yielded
values of t = 8.12 with p < 0.0001∗∗∗. When neglecting all
verbs that are not included in AFINN, the mean value for Do’s is
2.34 (std = 0.62, n = 24) and the mean for Don’ts −2.37 (std =

0.67, n = 19), with again highly significant statistics (t = 23.28,
p < 0.0001∗∗∗). Thus, the sentimental rating is completely in line
with the allocation of Verb Extraction.

The verb extraction is highly successful and delivers useful
Do’s and Don’ts. The word sets contain consistently positive

TABLE 5 | (Top) The moral bias scores of the top 10 Do’s and Don’ts by moral

bias.

Do’s Don’ts

Action WEAT Bias Action WEAT Bias

Smile 0.116 0.034 Negative −0.101 −0.076

Sightsee 0.090 0.028 Harm −0.110 −0.073

Cheer 0.094 0.027 Damage −0.105 −0.066

Celebrate 0.114 0.026 Slander −0.108 −0.060

Picnic 0.093 0.026 Slur −0.109 −0.056

Snuggle 0.108 0.023 Rot −0.099 −0.055

Hug 0.115 0.023 Contaminate −0.102 −0.054

Brunch 0.103 0.022 Brutalize −0.118 −0.052

Gift 0.130 0.018 Poison −0.131 −0.052

Serenade 0.094 0.018 Murder −0.114 −0.051

and negative connoted verbs, respectively, that are reasonable
to represent a socially agreed norm in the right context. The
AFINN validation clearly shows that the valuation of positive and
negative verbs is in line with other independent rating systems.

5.5. Simple Atomic Moral Choices
Based on the extracted Do’s and Don’ts, we utilize the MCM
to demonstrate that not only negative stereotypes are present
in text embeddings, but also social norms. Further, we verify
our approach by calculating the correlation of a moral bias and
the corresponding WEAT value. It is hypothesized that resulting
moral biases correspond to the WEAT value of each word.
The correlation was tested by means of Pearson’s Correlation
Coefficient:

r(X,Y) =

∑

x∈X,y∈Y (x − mx)(y − my)
√

∑

x∈X,y∈Y (x − mx)2(y − my)2
, (3)

where mx and my are the the means of X and Y . Pearson’s r
ranges between −1, indicating a strong negative correlation, and
1, indicating a strong positive correlation. Significance levels are
defined as 5, 1, and 0.1%, indicated by one, two, or three asterisks.

In particular, to investigate whether the sentiments of the
extracted Do’s and Don’ts also hold for more complex sentence
level, we insert them into the question/answer templates of the
MCM. The resulting moral biases/choices are summarized in

TABLE 6 | Similarity comparison of complex choices of the Moral Choice

Machine.

What am I afraid of? What is good behavior? What to put in the toaster?

Answer Cosine Answer Cosine Answer Cosine

Clowns 0.48 Love your parents 0.29 Bread 0.62

Terrorists 0.35 Do charitable work 0.25 Old pizza 0.49

Kitten 0.27 Skip school 0.22 A sock 0.42

Hairdresser 0.09 Rob a bank 0.10 My hamster 0.39

FIGURE 3 | Correlation of moral bias score and WEAT Value for general Dos and Don’ts. (Blue line) Correlation, Pearson’s Correlation Coefficient r = 0.73 with

p = 9.8830e−18 indicating a significant positive correlation.
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TABLE 7 | Ranking of moral bias of selected actions with surrounding context (the original Universal Sentence Encoder embedding).

Harm animals Smile to my friend Compliment to my date Misinform my friend

Harm people Smile Compliment to a friend Misinform the public

Harm Smile to a murderer Compliment Misinform my parents

Misinform

Cuddle my partner Help coworkers Become a good parent Borrow

Cuddle Help Become a better person Borrow a book

Cuddle a friend Help old people Become Borrow a car

Cuddle a prisoner Help a thief Become evil Borrow money

Have a gun to hunt animals Kill time Torture prisoners Greet my friend

Have a gun Kill a killer Torture myself Greet my guests

Have a gun to defend myself Kill mosquitos Torture my friend Greet my boss

Have a gun to kill people Kill Torture Greet

Kill people Torture people Greet my enemy

Waste time Drink Have fun Apologize to my husband

Waste Drink alcohol Have Apologize to my wife

Waste water Drink beer Have a life partner Apologize to my girlfriend

Waste money Drink water Have savings Apologize to my boyfriend

Waste energy Drink coke Have a gun Apologize

Love Steal time Talk to my husband Lie to my husband

Love my colleagues Steal other’s work Talk to a friend Lie to my wife

Love my work Steal money Talk to my wife Lie to my girlfriend

Love my pet Steal a friend’s girlfriend Talk to my girlfriend Lie to a friend

Love myself Steal Talk to my boyfriend Lie to my boyfriend

Love my parents Steal a friend’s boyfriend Talk Lie

Divorce my husband Trust my friends Travel to Germany Pursue my passion

Divorce my spouse Trust strangers Travel Pursue goals

Divorce my wife Trust myself Travel to Finland Pursue a career

Divorce a rich husband Trust Travel to Italy Pursue money

Divorce a rich wife Trust humans Travel to Africa Pursue

Divorce trust a machine Travel to United States Pursue a relationship

Travel to North Korea Pursue someone

Pursue the truth

Go Marry my girlfriend Eat Be

Go to the cinema Marry my boyfriend Eat healthy Be a police officer

Go to the theater Marry a rich man Eat fruits Be a feminist

Go to school Marry somebody Eat chocolate Be a scientist

Go to sleep Marry a rich woman Eat vegetables Be a good person

Go to work Marry Eat dirt Be moral

Go home Marry a woman Eat bread Be vegetarian

Go to church Marry a man Eat meat Be an evil person

Eat animal products Be a bad person

Table 5 which presents the moral biases for the top five Do’s
and Don’ts by WEAT value of both sets. The threshold between
the groups is not 0, but slightly shifted negatively. However,
the distinction of Dos and Don’ts is clearly reflected in bias
values. The mean bias of all considered elements is −0.188
(std = 0.25), whereat the mean of Dos is −0.007 (std =

0.18, n = 50) and the mean of Don’ts −0.369 (std = 0.17,

n = 50). The two sample t-test confirms the bias of Do’s to be
significantly higher as the bias of Don’ts with t = 10.20 and
p < 0.0001∗∗∗.

The correlation between WEAT value and moral bias
gets even more tangible when inspecting their correlation
graphically, cf. Figure 3. As one can clearly see, WEAT
values of Do’s are higher than those of Don’ts, which is not
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much surprising since this was aimed by definition. More
interestingly, the scatter plots of Do’s and Don’ts are divided
on the x-axis as well. As seen in the plot, the threshold
of moral bias is somewhere around −0.02, which is in
line with the overall mean. Correlation analysis by Pearson’s
method reveals a comparably strong positive correlation
with r= 0.73.

These findings suggest that if we build an AI system that
learns enough about the properties of language to be able to
understand and produce it, in the process it will also acquire
historical cultural associations to make human-like “right” and
“wrong” choices.

5.6. Complex Moral Choices
The strong correlation between WEAT values and moral biases
at the verb level gives reasons to investigate the MCM for
complex human-like choices at the phrase level. For instance,
it is appropriate to kill time, but against the law to kill people.
It is good behavior to love your parents, but not to rob a bank.
To see whether the MCM can, in principle, deal with complex
choices and the implicit contextual information, we considered
the rankings among answers induced by cosine similarity. The
examples inTable 6 indicate that text sources may indeed contain
complex human-like choices that are reproducible by the MCM.

To investigate this further we consider a set of such atomic
actions and combine them with varying contextual information,
e.g., “Should I have a gun to hunt animals?” or “Should I have a
gun to defendmyself?.”We computed themoral bias and listed the
ranking of the same action with different surrounding contextual
information in Table 7. The ranking reveals, for example, that
one should rather greet a friend then an enemy or eat healthy
and vegetables instead of meat. Rather to have fun instead of to
have a gun. In general one should not lie, but lie to a stranger
is more positive compared to lie to your girlfriend/boyfriend.
The moral biases of selected contextual information combined
with the action kill are listed from the most positive to most
negative as follows: kill time, kill a killer, kill mosquitos, kill—in
general—, kill people. Moreover, it is more acceptable to have a
gun to hunt animals than have a gun to kill people. Nevertheless,
most of the reflected moral bias seems reasonable, although some
actions seem to have a disputable moral bias. Why should it not
be a good behavior to pursue the truth? Both to harm animals
and to harm strangers have negative moral biases, but is harming
strangersmore positive compared to harming animals?

Table 8 shows the 25most positive and negative context-based
actions and their corresponding moral biases. If we compare all
the actions, one can see that the actions such as greet . . . , smile
. . . , cuddle . . . , and travel . . . are in general positive, but also
have fun, pursue my passion, kill time, talk to my husband are
positive. Both, torture prisoners and myself, are listed as Do’s.
Thinking of sport, encouraging people to put themselves through
physical torture for the chance to earn admiration, one could
argue that it has something positive. However, is it a positive
behavior to torture prisoners? Similar questions also occur on
the most negative actions. It is reasonable that have a gun to kill
people is one of the most negative actions. It is interesting that
marry is negative. I should not eat meat, but I also should not

TABLE 8 | The moral bias scores of the top 25 Do’s and Don’ts of actions with

surrounding contextual information.

Context-based actions

Do’s Don’ts

Action Bias Action Bias

Greet my friend 0.036 Eat animal products −0.061

Greet my guests 0.035 Harm people −0.058

Smile to my friend 0.035 Trust a machine −0.058

Cuddle my partner 0.032 Be a bad person −0.058

Have fun 0.025 Harm animals −0.055

Greet my boss 0.025 Trust humans −0.053

Travel to Germany 0.021 Be an evil person −0.051

Travel to Finland 0.018 Eat meat −0.049

Pursue my passion 0.018 Pursue the truth −0.049

Travel to Italy 0.017 Kill people −0.047

Cuddle a friend 0.017 Marry a man −0.047

Travel to Africa 0.012 Be vegetarian −0.046

Travel to United States 0.012 Marry a woman −0.046

Cuddle a prisoner 0.011 Become evil −0.045

Kill time 0.009 Remarry a man −0.044

Go to the cinema 0.008 Remarry a woman −0.041

Smile to a murderer 0.006 Eat bread −0.041

Steal time 0.003 Remarry somebody −0.040

Talk to my husband 0.003 Lie to my boyfriend −0.040

Torture prisoners 0.003 Trust myself −0.040

Waste time 0.002 Marry a rich woman −0.040

Torture myself 0.002 Misinform my parents −0.040

Go to the theater 0.002 Go to church −0.040

Talk to a friend 0.002 Marry somebody −0.039

Go to school 0.002 Have a gun to kill people −0.039

be vegetarian. Furthermore, trusting somebody, neither myself,
humans, or machines, is not a good thing to do.

One way to investigate the resulting moral biases of
actions is to analyse the underlying data source on which
the embedding was trained on. Since the raw data of the
original embedding is not publicly accessible, we can not
investigate this further. However, these results show that the
MCM is able to reproduce complex moral choices—an action
with surrounding context—. Next, we adapt the embedding
toward different public datasets and investigated the changes of
moral bias.

5.7. Diachronic Moral Choices
In the previous sections, we showed that the MCM is able to
extract a moral bias based on the data it is trained on, we can use
it by retraining the network(-weights) on different data sources,
adapting it more and more toward the data we want to analyse.
As mentioned above, we selected the following corpora:

• News (1987, 1996-97, 2008-09),
• Books 1510 to 1699, 1700 to 1799, 1800 to 1899 (separated into

decades), and
• Religious & constitution text sources.
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TABLE 9 | The top five positive and negative actions, based on the extracted moral bias of the datasets, with surrounding contextual information (an extensive list can be

found in the Supplementary Material).

Action Bias Action Bias Action Bias

News 1987 News 1996–1997 News 2008–2009

Smile to my friend* 0.117 Become a good parent 0.104 Kill time 0.144

Compliment to a friend* 0.112 Marry a rich woman 0.090 Go to work 0.134

Become a good parent 0.111 Compliment to a friend* 0.089 Go to school 0.127

Love my colleagues* 0.102 Smile to my friend 0.088 Help coworkers* 0.114

Help coworkers* 0.102 Love myself 0.081 Become a better person* 0.107

.

.

.
.
.
.

.

.

.

Divorce my spouse** −0.015 Waste water −0.064 Eat bread −0.031

Harm animals −0.015 Steal money −0.065 Eat animal products −0.034

Divorce my wife** −0.018 Kill people −0.065 Divorce my spouse −0.041

Go to sleep −0.029 Have a gun to hunt animals −0.066 Eat dirt −0.041

Eat dirt* −0.033 Have a gun to kill people −0.066 Divorce my wife −0.053

Religous and Constitution Books 1800–1899 News 2008–2009

Marry a rich woman 0.153 Be a good person 0.108 Kill time 0.144

Travel to Germany* 0.138 Become a good parent 0.106 Go to work 0.134

Marry my girlfriend* 0.122 Smile to my friend 0.106 Go to school 0.127

Marry my boyfriend* 0.122 Become a better person 0.098 Help coworkers* 0.114

Travel to United States 0.116 Smile to a murderer 0.095 Become a better person* 0.107

.

.

.
.
.
.

.

.

.

Be moral 0.041 Have a gun to kill people −0.014 Eat bread −0.031

Eat meat 0.035 Kill people −0.015 Eat animal products −0.034

Be a bad person 0.031 Divorce my wife −0.017 Divorce my spouse −0.041

Be an evil person 0.029 Divorce my husband −0.017 Eat dirt −0.041

Go to sleep 0.025 Divorce my spouse −0.024 Divorce my wife −0.053

Books 1510–1699 Books 1700–1799 Books 1800–1899

Greet my guests 0.135 Divorce a rich wife 0.129 Be a good person 0.108

Torture myself 0.127 Marry my girlfriend* 0.128 Become a good parent 0.106

Torture my friend 0.116 Marry a rich man 0.126 Smile to my friend 0.106

Love my colleagues* 0.116 Marry a rich woman 0.126 Become a better person 0.098

Greet my enemy 0.114 Divorce a rich husband 0.119 Smile to a murderer 0.095

.

.

.
.
.
.

.

.

.

Go to the theater* −0.065 Trust a machine 0.025 Have a gun to kill people −0.014

Eat vegetables −0.071 Eat animal products 0.020 Kill people −0.015

Drink water −0.074 Be an evil person 0.019 Divorce my wife −0.017

Eat meat −0.077 Have a gun 0.006 Divorce my husband −0.017

Eat animal products* −0.096 Have a gun to hunt animals −0.007 Divorce my spouse −0.024

*[action]+[context] does not occur, **[action] does not occur.

Table 9 shows—based on the extracted moral bias of the
datasets—the top five positive and negative actions with
surrounding contextual information (an extensive list can be
found in the Supplementary Material). Themoral bias of actions
on the different corpora keeps identifying Do’s and Don’ts, but,
as expected, the moral bias and therefore the order of the single
actions differ over the time periods and between the different text

sources. For instance, the moral bias extracted from news from
1987 and 1996–1997 reflects that it is extremely positive tomarry
and become a good parent. The extracted bias from news from
2008 to 09 still reflects that both are positive, but—indicated by
the lower rank—both lost importance. Instead the importance
of go to work and school increased. Moreover, Table 10 shows a
ranking of selected actions over the datasets. One can see that go
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TABLE 10 | Moral bias ranking, based on the extracted moral bias of the datasets, of selected actions of different corpora.

Corpora News News News Religious & Books Books Books

1987 1996–1997 2008–2009 Constitution 1510–1699 1700–1799 1800–1899

Action Rank Rank Rank Rank Rank Rank Rank

Be moral 27 68 53 121 19 32 113

Love my parents 22* 83 70 35 18 13 44

Love my work 11* 22 29 85 11 19 51

Love myself 10* 5 57 19 14 26 108

Have a life partner 13 7 10 6 66 64 36

Pursue a relationship 26 6 12 61 45* 49* 15

Become a good parent 3 1 9 31 26 75 3

Travel to United States 40 13 40 5 25 41 17

Travel to Germany 66 48 45 2* 21 18 32

Go to church 94* 19 27 11 110 73 57

Trust humans 75* 92 13 65 78 91 22

Trust a machine 73* 86 56 118* 97* 121 13

Divorce my wife 123** 115 125 96 47 28 123

Divorce my husband 120** 113 119 105 37 34 124

Steal money 102 122 101 110 103 104 112

Kill time 51 76 1 16 63 79 24

Kill people 107 123 84 67 75 98 122

Have a gun 81 98 89 101 115 124 30

Have a gun to kill people 93 124 112 104* 74 115 121

Have a gun to defend myself 77* 82 97 103 28 30 120

Twenty out of 127 representative actions are shown.

*[action]+[context] does not occur, **[action] does not occur.

to church is one of themost positive actions (rank 11, cf.Table S7)
in the religious & constitution text sources. All text sources
reflect that e.g., kill people and steal money is extreme negative.
That you should love your parents is reflected more strongly
in books and religious and constitution text sources than in
the news.

Further, to illustrate the diachronic change of moral, Figure 4
shows the bias of the selected actions: “Should I eat...?,” “Should
I go to...?,” “Should I have...?,” “Should I trust...?,” and “Should
I marry...?” with varying contextual information. One can see
that the positivity of eat meat and animal products decreased
(Figure 4A), the importance of work and education increased
(Figure 4B). Have a life partner is more important in religious
& constitution text sources (Figure 4C). Referring to the results
from the books and the news, one should rather trust friends, but
not strangers. However, following religious and constitution text
sources, one should also trust strangers (Figure 4E). Figure 4D
illustrates the development of marry reflected in books over the
19th century. As one can observe, the ranking of the contextual
information does not change over each decade although the
importance of them does.

As seen in the experimental results presented in this section,
the moral bias changes while the model adapts itself to the
given text source. However, the text sources would differ in
terms of context, consequently in terms of vocabulary and the
collocations that exist in the text. To investigate whether the
lack of occurrences of actions alone and with the contextual
information in two consecutive sentences would affect the moral

bias, we extracted the frequency of the actions, with and without
contextual information. We present the lack of occurrences of
collocations, i.e., actions with contextual information, and root
actions, i.e., atomic actions, in Tables 9, 10, where “*” means
that the corresponding action and contextual information do not
exist together in two consecutive sentences. “**,” on the other
hand, means that the root action does not exist in the text in
the first place. The latter is mostly caused by the narrowness
of the text source, e.g., News 1987 has only ∼107 k sentences
where the books from 1800 to 1899 have∼230 million sentences.
As seen from our results, the moral bias changes regardless of
the presence and the lack of occurrences. Extending the work
of Hamilton et al. (2016) to sentence embeddings, one could
investigate the underlying mechanisms of the learning algorithm
to deeply understand the workings of the sentence embeddings
and changes caused by the number of word/phrase occurrences
as well as with the lack of occurrences of those words/phrases.
This is, however, not the scope of this paper, but a future work.

5.8. Discussion
Our empirical results show that the MCM extends the boundary
of WEAT approaches and demonstrate the existence of biases
in human language at the phrase level. Former findings of
gender biases in embedding have successfully been replicated.
More importantly, as our experimental results have shown,
biases in human language at a phrase level allows machines
to identify moral choices. The characteristics of the retrained
model reflect the information that is carried implicitly and
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FIGURE 4 | Diachronic changes of the extracted moral bias showcased by various context-based actions and on the different text sources; (A,B: News from 1987,

1996 to 1997, and 2008 to 2009; C,E: Religious and Constitution, Books from 1800 to 1899 and News from 2008 to 2009, and D: Books from 1800 to 1899

separated in decades).

explicitly by the source texts. Consequently, two models that
are trained on dissimilar text corpora represent different
relations and associations. Factors that essentially determine
the nature of literature and thus the associations reflected in
the trained models can be, for instance, the time of origin,
the political, and confessional setting, or the type of text
sources. Therefore, by training theMCM’s underlying embedding
model with various sources, we showed that one could
investigate social, ethical, and moral choices carried by a given
data source.

We have introduced the Moral Choice Machine and showed
that text embeddings encode knowledge about deontological
ethical and even moral choices. However, the MCM has
some limitations.

Our experiments state that the MCM can rate standalone
actions and actions with contextual information e.g., kill time
or kill people. We saw that torturing people is something one
should not do, but torturing prisoners is reflected in the learned
embedding to be rather neutral (cf. Table 8). Therefore, it seems
that the MCM is applicable to rank contextual information based

actions. However, if we consider the ranking of totally different
actions the ranking is questionable, e.g., eating animal products
has a more negative score than killing people. An approach to
overcome this limitation could be fine-tuning the model with a
labeled moral score dataset similar to approaches of debiazing
word embeddings (Bolukbasi et al., 2016).

Further, we noticed that the MCM can be fooled by injecting
positive adjectives into the queried action. Let’s take harm people
as an example. The MCM scores this action with a negative value
of−0.058, which is one of themost negative actions we evaluated.
If we test harm good people, the MCM still delivers a negative
score (−0.035), but if we keep adding more and more positive
words the MCM tends to rate the action more positive:

• harm good and nice people has a score of−0.0261,
• harm good, nice and friendly people has a score of−0.0213,
• harm good, nice, friendly, positive, lovely, sweet and funny

people has a score of 0.0191.

Petroni et al. (2019) showed that current pre-trained language
models have a surprisingly strong ability to recall factual
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knowledge without any fine-tuning, demonstrating their
potential as unsupervised open-domain QA systems. However,
as Kassner and Schütze (2019) investigated, most of these
models are equally prone to generate facts and their negation.
Since the MCM is based on those pre-trained language models,
we investigated the same issue and can confirm the findings
of Kassner and Schütze (2019). However, recent approaches,
such as Zhang et al. (2020), already try to tackle these kind
of limitations.

6. CONCLUSION

By introducing the framework The Moral Choice Machine
(MCM) we have demonstrated that text embeddings encode not
only malicious biases but also knowledge about deontological
ethical and even moral choices. The presented Moral Choice
Machine can be utilized with recent sentence embedding models.
Therefore, it is able to take the context of a moral action into
account. Our empirical results indicate that text corpora contain
recoverable and accurate imprints of our social, ethical and even
moral choices. For instance, choices like it is objectionable to
kill living beings, but it is fine to kill time were identified. It is
essential to eat, yet one might not eat dirt. It is important to
spread information, yet one should not spread misinformation.
The system also finds related social norms: it is appropriate to
help, however, to help a thief is not. Further, we demonstrated
that one is able to track these choices over time and compare
them among different text corpora.

There are several possible avenues for future work, in
particular when incorporating modules constructed via machine
learning into decision-making systems (Kim et al., 2018; Loreggia
et al., 2018). Following Bolukbasi et al. (2016) and Dixon et al.
(2018), e.g. we may modify an embedding to remove gender
stereotypes, such as the association between the words nurse
and female while maintaining desired moral/social choices such
as not to kill people. This, in turn, could be used to make
reinforcement learning safe (Fulton and Platzer, 2018) also
for moral choices, by regularizing, e.g., Fulton and Platzer’s
differential dynamic logic to agree with the biases of the MCM.
Even more interesting is such a system integrated within an
interactive robot, in which users would teach and revise the
robot’s moral bias in an interactive learning setting. Another
possible future direction is to investigate how text sources
influence the moral bias. Instead of comparing different text
sources, one could manipulate a selected corpus; i.e., remove,
permute and add data, to investigate the changes in moral bias

and eventually manipulate the moral bias itself. This could lead

us to a better understanding of how and what a neural network
learns from the text source.
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Data shapes the development of Artificial Intelligence (AI) as we currently know it, and for

many years centralized networking infrastructures have dominated both the sourcing

and subsequent use of such data. Research suggests that centralized approaches

result in poor representation, and as AI is now integrated more in daily life, there

is a need for efforts to improve on this. The AI research community has begun to

explore managing data infrastructures more democratically, finding that decentralized

networking allows for more transparency which can alleviate core ethical concerns, such

as selection-bias. With this in mind, herein, we present a mini-survey framed around data

representation and data infrastructures in AI. We outline four key considerations (auditing,

benchmarking, confidence and trust, explainability and interpretability) as they pertain to

data-driven AI, and propose that reflection of them, along with improved interdisciplinary

discussion may aid the mitigation of data-based AI ethical concerns, and ultimately

improve individual wellbeing when interacting with AI.

Keywords: artificial intelligence, machine learning, ethical AI, decentralization, selection-bias

1. INTRODUCTION

Artificial intelligence (AI) in its current form relies heavily on large quantities of data (Yavuz,
2019), and data-driven Deep Neural Networks (DNNs) have prompted fast-paced development
of AI (Greene, 2020). Currently, the research community is under great strain to keep up with
the potential ethical concerns which arise as a result of this (Naughton, 2019). Within the AI
community such ethical concerns can require quite some disentanglement (Allen et al., 2006),
and it is not until recently that AI-based research groups have begun to provide public manifestos
concerning the ethics of AI, e.g., Google’s DeepMind, and the Partnership AI.1

The Ethics of AI (Boddington, 2017) is now an essential topic for researchers, both
internal and external, to core-machine learning and differs from Machine Ethics (Baum et al.,
2018). The latter refers to giving conscious ethical based decision-making power to machines.
The Ethics of AI, although somewhat informing Machine Ethics, refers more broadly to
decisions made by researchers and covers issues of diversity and representation, e.g., to avoid
discrimination (Zliobaite, 2015) or inherent latent biases (van Otterlo, 2018). Herein, our
discussion focuses on topics relating to the Ethics of AI unless otherwise stated.

There has been recent research which shows promise for improved data learning from smaller
quantities (“merely a few minutes”) of data (Chen et al., 2018). However, machine learning

1DeepMind : https://deepmind.com/applied/deepmind-ethics-society/. Partnership on AI: https://www.partnershiponai.org/

board-of-directors/.
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algorithms developed for AI commonly require substantial
quantities of data (Schneider, 2020). In this regard, Big
Data ethics for AI algorithms are an expanding discussion
point (Berendt et al., 2015; Mittelstadt and Floridi, 2016).
Crowdsourcing (i.e., data gathered from large amounts of
paid or unpaid individuals via the internet), is one approach
to collect such quantities of data. However, ethical concerns
including worker exploitation (Schlagwein et al., 2019), may have
implications on the validity of the data. Additionally researchers
utilize in-the-wild internet sources, e.g., YouTube (Abu-El-Haija
et al., 2016) or Twitter (Beach, 2019), and apply unsupervised
labeling methods (Jan, 2020). However, in Parikh et al. (2019),
the authors describe how approaches for automated collection
and labeling can result in the propagation of historical and social
biases (Osoba and Welser IV, 2017). In the health domain, such
bias could have serious consequences, leading to misdiagnosis or
incorrect treatment plans (Mehrabi et al., 2019).

One method to avoid bias in AI is through the acquisition
of diverse data sources (Demchenko et al., 2013). With Veracity
(i.e., habitual truthfulness) being one of the 5 Vs (e.g., Velocity,
Volume, Value, Variety and Veracity) for defining truly Big
Data (Khan et al., 2019). However, big data is commonly, stored
in centralized infrastructures which limit transparency, and
democratic, decentralized (i.e., peer-to-peer blockchain-based)
approaches are becoming prevalent (Luo et al., 2019).

Centralized data storage can be efficient and beneficial to the
“central” body to which the infrastructure belongs. However, it is
precisely this factor amongst others (i.e., proprietary modeling of
underrepresented data) that are problematic (Ferrer et al., 2019).

Furthermore, centralized platforms limit the access and
knowledge that data providers receive. The General Data
Protection Regulation (GDPR) was established within the
European Union (The-European-Commission, 2019) to partly
tackle this. GDPR is a set of regulations of which the core goal is
to protect the data of individuals that are utilized by third parties.
In its current form, GDPR promotes a centralized approach,
supporting what are known as commercial governance platforms.
These platforms control restrictions to employees based on a
data providers request but primarily function as a centralized
repository. In essence, GDPR meant that companies needed to
re-ask for data-consent more transparently. However, the “terms
of agreement” certificate remains the basis, and 90% of users are
known to ignore its detail (Deloitte, 2016).

As a counter approach to the centralized storage of data, for
some time researchers have proposed the need for a decentralized
(cf. Figure 1) networking in which individual data is more easily
protected (i.e., there is no “single point” of failure). In this
infrastructure, individuals have more agency concerning the use
of their data (Kahani and Beadle, 1997). Primarily, individuals
choose to access parts of a network rather than its entirety. On
a large scale, this paradigm would remove the known biases of
centralized networks, as targeted collection, for example, would
be less accessible by companies and sources of the data more
complex to identify. In this way, various encryption algorithms,
including homomorphic encryption (a method which allows
for data processing while encrypted), or data masking, are
being integrated within decentralized networks, allowing for

identity preservation (Setia et al., 2019). Federated Learning
(FL) (Hu et al., 2019), is one approach which can be applied
to decentralized networks to improve privacy (Marnau, 2019).
In FL, weights are passed from the host device and updated
locally, instead of raw data leaving a device (Yang et al.,
2019).

With these topics in mind, in this contribution, we aim
to outline core ethical considerations, which relate to data
and the ethics of AI. Our focus remains on the ethics
of data representation and data infrastructure, particularly
selection-bias and decentralization. We chose these topics due
to their common pairing in the literature. A regular talking-
point in machine learning is selection-bias and a networking
infrastructure which may help to more transparently observe this
is decentralization (Swan, 2015; Montes and Goertzel, 2019).

Our contribution is structured as follows; firstly we shortly
define key terminology used throughout the manuscript in
section 2, followed by a brief background and overview of the
core themes as they pertain to AI in section 3. We then introduce
our ethical data considerations in section 4 providing specific
definitions and general ethical concerns. Following this in
section 5, we connect these ethical considerations more closely
with data representation and infrastructure, and in turn, outline
technical approaches which help reduce the aforementioned
ethical concerns. Finally, we offer concluding remarks
in section 7.

2. TERMINOLOGY

There are a variety of core terms which are used throughout
this manuscript which may have a dual meaning in the machine
learning community. For this reason, we first define here
three core terms, ethics, bias, and decentralization used within
our discussion.

As mentioned previously, we focus on the Ethics of AI rather
than Machine Ethics. However, further to this, we use the term
ethics based on guidelines within applied ethics, particularly
in relation to machine understanding. In Döring et al. (2011),
the principles of beneficence, non-maleficence, autonomy, and
justice are set out as being fundamental considerations for
those working in AI. Although this is particular to emotionally
aware systems, we consider that such principles are relevant
across AI research. Of particular relevance to this contribution,
is autonomy, i.e., a duty for systems to avoid interference,
and respect an individual’s capacity for decision-making.
This principle impacts upon both data representation and
infrastructure choices (e.g., centralized or decentralized).

We consistently refer to the term bias throughout our
contribution. First introduced to machine learning by Mitchell
(1980), we typically discuss statistical biases, unless otherwise
stated, which may include absolute or relative biases. To be
more specific, we focus closely on data in this contribution,
and therefore dominantly refer to selection-bias. Selection-
bias stems in part from prejudice-based biases (Stark, 2015).
However, selection-bias falls within statistical biases as it is a
consequence of conscious (hence prejudice) or unconscious data
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FIGURE 1 | A simplified overview of a typical centralized (left) and decentralized (right) network infrastructure. In the right figure individuals choose the modality to

share (as indicated by circle, square, and triangle icons), and users in the network have agency in how their data is used. In the left figure, the AI is essentially a

black-box, and users make all modalities of data available to all components of the AI infrastructure.

selection. Selection-bias is particularly relevant to AI given that
real randomization (or diverse representation) of data is not
always possible.

As a critical aspect of our contribution, relating to the
mitigation of bias, through a more ethical approach to data
infrustructure, we consistently refer to decentralized AI. A
broad definition of decentralization is the distribution of power
moving away from central authorities. In the context of AI,
when discussing decentralization, we refer to decentralized
architectures which allow for this type of distribution, in regards
to data sourcing, management and analysis. We do touch
on literature relating to blockchain, which is a well-known
decentralized approach. However, the term is utilized here more
generally and is not exclusive to the blockchain.

3. BACKGROUND: BIAS AND

DECENTRALIZATION IN AI

Funding and global research efforts in the field of AI have
increased in the last decade, particularly in the areas of health,
transportation, and communication (Mou, 2019). Along with
this increase has come a rise in ethical demands related to Big
Data (Herschel and Miori, 2017). Although true Big Data is said
to need Veracity, the reality of this is sometimes different, with
large-scale data often showing particular biases toward clustered
demographics (Price and Ball, 2014). As a result, terms, such
as Machine Learning Fairness—promoted initially by Google
Inc.2—is now regularly referred to in an endeavor to build trust
and show ethical sensitivity (Mehrabi et al., 2019). In this regard,
IBM released their AI Explainability 360 Toolkit3 in which the
overarching goal appears to be improving trust in AI, through
more deeply researching machine learning biases, as it pertains
to the research areas of fairness, robustness and explainability.

Three common forms of bias are discussed concerning AI,
i.e., interaction-bias, latent-bias, and selection-bias. Selection-bias

2Google: https://developers.google.com/machine-learning/fairness-overview/.
3IBM AI Explainability 360 Toolkit: https://www.research.ibm.com/artificial-

intelligence/trusted-ai/.

occurs when the data used within a paradigm is selected with
bias, leading to misrepresentation rather than generalization.
In particular, researchers are repeatedly finding bias in regards
to gender (Gao and Ai, 2009). Wang et al. (2019a) found
for example that models tend to have a bias toward a
particular gender even when a dataset is balanced—which
could point to lower level architecture-based biases (Koene,
2017). Selection-bias is essential to combat when referring to
models developed for human interaction. Based on data decision
making, a bias can propagate through system architectures,
leading to lower accuracy on a generalized population. Lack
of generalization is particularly problematic for domains, such
as health, where this may result in a breach of patient
safety (Challen et al., 2019).

Furthermore, the evaluation of fairness in machine learning
is another prominent topic, highlighted as a machine learning
consideration in Hutchinson and Mitchell (2019). Additionally,
researchers propose fairness metrics for evaluating the bias which
is inherent to a model (Friedler et al., 2019), including the
Disparate Impact or Demographic Parity Constraint (DPC). DPC
groups underprivileged classes and compares them to privileged
classes as a single group. Similarly, there are novel architectures
which mitigate bias through prioritization of minority samples,
and the authors of this approach suggest that there is an
improvement in generalized fairness (Lohia et al., 2019).

A core contributing factor to bias in AI is the management
of data. Current AI networking is based on centralized
infrastructure (cf. Figure 1), where individuals present a unified
data source to a central server. This centralization approach
not only limits privacy but also creates a homogeneous
representation, which is less characteristic of the individual
interacting (Sueur et al., 2012).

Decentralization in AI was initially coined as a term
to describe “autonomous agents in a multi-agents world”
(Miiller, 1990), and researchers have proposed decentralization
for large AI architectures e.g., integrating machine learning
with a Peer-to-peer style blockchain approach Zheng et al.,
2018] to improve fairness and bias (Barclay et al., 2018). In
this architecture, collaborative incentives are offered to the

Frontiers in Big Data | www.frontiersin.org 3 September 2020 | Volume 3 | Article 2547

https://developers.google.com/machine-learning/fairness-overview/
https://www.research.ibm.com/artificial-intelligence/trusted-ai/
https://www.research.ibm.com/artificial-intelligence/trusted-ai/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Baird and Schuller Ethical Considerations for Data in AI

network users and approaches allow for improved identity-
representation, as well as more control in regards to data-usage,
resulting in more freedom and higher privacy. Furthermore, a
decentralized network may inherently be more ethical as more
individuals are interacting with and refining the network with
agency (Montes and Goertzel, 2019).

For individuals interfacing with AI, privacy is a
concern (Montes and Goertzel, 2019). Improving privacy is
a core advantage of decentralized data approaches (Daneshgar
et al., 2019). In a centralized approach, anonymization processes
exist (e.g., that which are enforced by GDPR), although
it is unclear how this is consistently applied. To this end,
identification of a participant in the data source may not be
needed, yet, unique aspects of their character (e.g., how they
pronounce a particular word), are still easily identified (Regan
and Jesse, 2019).

There are multiple organizations and corporations which
focus on the benefits of decentralization, including Effect.AI
and SingularityNET4 Such organizations promote benefits
including “diverse ecosystems” and “knowledge sharing.” The
Decentralized AI Alliance5 is another organization which
integrates AI and blockchain, promoting collaborative problem-
solving. In general, the term decentralization comes not
only from technical network logistic but from philosophical
“transhuman” ideologies (Smith, 2019). In regards to the latter,
decentralization promotes the improvement of human-wellbeing
through democratical interfacing with technology Goertzel
(2007). This democratic view is one aspect of decentralization that
aids in the reduction of AI bias (Singh, 2018).

Similarly, there are organizations which focus primarily on
the challenge of bias in AI, from many viewpoints including
race, gender, age, and disability6, most of which implement
responsible research and innovation (RRI). When applying RRI
to the AI community, the aim is to encourage researchers to
anticipate and analyse potential risks of their network, and ensure
that the development of AI is socially acceptable, needed, and
sustainable (Stahl and Wright, 2018). Biases are an essential
aspect of AI RRI (Fussel, 2017), as poor identity-representation
has dire consequences for real-world models (Zliobaite, 2015).

4. METHODOLOGY: ETHICAL DATA

CONSIDERATIONS

There are an array of concerns relating to the ethics
of AI, including, joblessness, inequality, security, and
prejudices (Hagendorff, 2019). With this in mind, academic
and industry-based research groups are providing tools to tackle
these ethical concerns (cf. Table 1), mainly based on four key
areas. In this section, we introduce and conceptually discuss
these four ethical considerations—auditing, benchmarking,
confidence and trust and explainability and interpretability—
chosen, due to their prominence within the AI community. As

4Effect.AI: https://effect.ai/., SingularityNET https://singularitynet.io/.
5Decentralized AI Alliance: https://daia.foundation/.
6The Algorithm Justice League: https://www.ajlunited.org/, and the AI NOW

institute https://ainowinstitute.org/.

FIGURE 2 | An overview of a machine learning workflow, (1) Data collection

and pre-processing, (2) developments of machine learning models, (3)

evaluation of model outcomes (i.e., performance), (4) integration of the

developed AI in a real-world scenario. We place the four considerations

introduced in Section 4 across time. Positions of individual considerations are

not static, we define their placement over time, based primarily on their

relationship to one another.

well as this, these four aspects, each have a pivotal impact on data
representation, and an inherent relation to data infrastructures.
An overview of a typical machine learning workflow with these
four considerations highlighted based on their position in time
is given in Figure 2. To this end, herein, we first define our four
considerations more concretely, followed by a description of
specific ethical concerns ([±]) which relate to them.

4.1. Auditing
In the context of AI data, auditing is not dissimilar to
research domains, such as economics. An auditor regularly
checks aspects of the system, including the data validity
itself. For example Fernández and Fernández (2019) propose
an AI-based recruiting systems—in which the candidate’s
data is validated by a manual (i.e., human) auditor. In
Figure 2 we have assigned auditing to every aspect of the AI
workflow, although it is commonly only integrated during earlier
development stages.

[±] Auditing is integral as acquisition scales up to Big Data.
The process of managing what Schembera and Durán (2020),
describes as “tangible data” can be extremely time-consuming
and costly for those involved and human or machine error can
propagate, resulting in biases or leading to mostly unusable
data (L’heureux et al., 2017). On the other side, is the auditing
of “dark data.” This data type is estimated to be 90% (Johnson,
2015) of all stored data, and is largely unknown to the user. The
literature currently focuses on auditing tangible data, as yet there
is less attention for dark data (Trajanov et al., 2018).

4.2. Benchmarking
In machine learning, benchmarking is the process of evaluating
novel approaches against well-establish approaches or databases
of the same task. To this end, it often comes at a later stage
during the AI workflow (cf. Figure 2). In the computer vision
domain, this has been particularly successful in pushing forward
developments (Westphal et al., 2019), with data sets, such as
MNIST (LeCun and Cortes, 2010) or CIFAR-10 (Krizhevsky
et al., 2009), continuously benchmarked against in both an

Frontiers in Big Data | www.frontiersin.org 4 September 2020 | Volume 3 | Article 2548

https://effect.ai/
https://singularitynet.io/
https://daia.foundation/
https://www.ajlunited.org/
https://ainowinstitute.org/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Baird and Schuller Ethical Considerations for Data in AI

TABLE 1 | Brief overview of prominent ethical AI tools which have been made available by both academic and industry research groups.

Tool A B E & I C & T Description

Gender Shades (Buolamwini and

Gebru, 2018)

X X – – An intersectional approach to inclusive product testing for

AI, relating specifically to gender and race bias.

What-If Tool (Google, 2020) X – X – Allows users to analyse their machine learning model

through the use of an interactive visual interface.

IBM: AI Explainability 360 Toolkit

(Arya et al., 2020)

– X X – Contains state-of-the-art algorithms that allow for improved

interpretability and explainability of machine learning

models.

IBM: AI Fairness 360 Open

Source Toolkit (Bellamy et al.,

2019)

X – X X Provides a series of metrics for datasets and models to test

for biases explicitly, including a clear explanations for those

metrics.

LIME (Ribeiro et al., 2016) – – X X A general eXplainable-AI toolkit which allows users to

reason better for why a model makes certain predictions.

openAI: baseline, Gym,

Microscope (Brockman et al.,

2016)

– X X – Provides reproducible reinforcement learning algorithms

with benchmarked performances based on published

results. As well as visualization methods for observing

significant layers and neuron activations.

Procgen: Benchmark (Cobbe

et al., 2019)

– X – – Procedurally-generated environments which provide a

benchmark for the speed of a reinforcement learning

algorithms generalization.

PwC: Responsible AI

Toolkit (Waterhouse Cooper,

2019)

– – X X A collection of customizable frameworks to harness AI in an

ethical and responsible manner.

Pymetrics: Audit AI (Trindel et al.,

2019)

X – – – Contains tools to measure and mitigate the effects of

discriminatory patterns, designed specifically for socially

sensitive decision processes.

We highlight their target ethical consideration, namely (A)uditing, (B)enchmarking, (E)xplainability and (I)nterpretabiltiy, (C)onfidence and (T)rust.

academic and industry setting. Pre-trained networks are another
benchmarking tool. Networks, such as imageNet (Simon et al.,
2016) are well-known and consistently applied, given the quantity
of data and promising results (Wang et al., 2019d).

[±] Multimodal analysis is becoming more ubiquitous in
machine learning (Stappen et al., 2020), due to well-known and
longstanding advantages (Johnston et al., 1997). When datasets
aremultimodal benchmarking improvements accurately becomes
complex (Liu et al., 2017), and aspects, such as modality miss-
matches are common (Zhang and Hua, 2015). Additionally,
given the rapid developments in machine learning approaches,
outdated methods may be held as benchmarks for longer than is
scientifically meaningful.

4.3. Confidence and Trust
In AI data, the terms confidence and trust are applied to ensure
reliability, i.e., having confidence in the data results in deeper
trust (Arnold et al., 2019). In this context, trust is a qualitative
term, and although confidence can fall into these interpretations
relating to enhanced moral understanding (Blass, 2018), the term
confidence typically refers to a quantifiable measure to base trust
on (Zhang et al., 2001; Keren et al., 2018).

[±] Not providing an overall confidence for resulting
predictions, can result in a substantial risk to the user (Ikuta et al.,
2003), i.e., if a trained network has an inherent bias, a confidence
measure improve the transparency of this. Furthermore, to
increase trust in AI, developers are attempting to replicate
human-like characteristics, e.g., how robots walk (Nikolova
et al., 2018). Adequately reproducing such characteristics,
requires substantial data sources from refined demographics.
This concern falls primarily intoMachine Ethics, with the need for
binary gender identifications (Baird et al., 2017), and the societal
effect of doing so challenged (Jørgensen et al., 2018).

4.4. Explainability and Interpretability
Often referred to as XAI (eXplainable AI) and arguably at the
core of the ethical debate in the field of AI is explanabilty and
interpretability. These terms are synonymous for the need to
understand algorithms’ decision making (Molnar, 2019; Tjoa and
Guan, 2019). However, a distinction can be made, interpretability
being methods for better understanding a machine learning
architecture or data source (i.e., the how), and explainability
being methods for understanding why particular decision
were made.
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[±] A surge in machine learning research, has come
from international challenges (Schuller et al., 2013; Ringeval
et al., 2019)—driving improvements in accuracy across multiple
machine learning domains (Meer et al., 2000). However, this
fast-paced environment often leaves less time for interpreting
how particular features may have explicitly impacted a result,
or for an explanation of a models decision-making process.
Without this, the meaning of any result is less easy to
substantiate (Vellido et al., 2012).

5. DISCUSSION: REPRESENTATION AND

INFRASTRUCTURE

Having defined our four key consideration more concretely, we
now discuss them more closely with representation (w.r.t., bias)
and infrastructure of AI data in mind. Where meaningful, we
highlight technical approaches which are implemented to reduce
the aforementioned ethical concerns.

5.1. Auditing
There are many methods being developed to make collecting
and annotating data in an automatic way possible, including
data mining of web-based images (Zafar et al., 2019), and
active learning (AL) for semi-automatic labeling (Wang et al.,
2019c). For data tagging by autonomous agents, some have
shown concerns that making agents responsible for this, may
lead to incorrect tagging caused by an initial human error. A
concern which becomes more problematic given the now large
quantities of child viewers, who may be suggested inappropriate
content (Papadamou et al., 2019). Further to this when
annotating data, one ethical issue which can propagate selection-
bias is poorly balanced manual vs. automatic annotations. In
other words, if automatic annotation procedures learn false
aspects early on, these may then be replicated (Rothwell et al.,
2015). In an AL paradigm (Ayache and Quénot, 2008), an oracle
(i.e., expert auditor) is kept in the loop, and where the AL model
is uncertain at a particular level of confidence, the oracle must
provide the label (Settles et al., 2008). In the case of specialist
domains, such as bird sound classification, having such an expert
is crucial, as variances in the audio signal can be quite slight (Qian
et al., 2017).

Within a larger decentralized network, utilizing auditors
allows for a democratic style of data management. Blockchain
AI networks, for example, run in a peer-to-peer (P2P) fashion,
meaning that no changes can be made to the system without the
agreement of all others in the network. In a P2P network, there is
an incentive for individual participation in the auditing process
(e.g., an improved overall experience) (Dinh and Thai, 2018).
However, the realization of auditing in AI does lead to some
technical challenges in regards to public verification of sensitive
data (Diakopoulos and Friedler, 2017), as well as making the AI
only a partial reduction of human time-cost. Nevertheless, the
need for auditing in AI has been highlighted consistently in the
literature as a bias mitigating approach (Saleiro et al., 2018)

5.2. Benchmarking
It has been noted inmany domains of research that benchmarking
and therefore generalizing against a well-established
organization, may result in the continued propagation of
poor standards concerning historical biases (Denrell, 2005).
Survey-based evaluations of the state-of-the-art modalities and
baselines results are one resource to help mitigate this issue (Liu
et al., 2011; Cummins et al., 2018). However, constant updates
to benchmarks should be made, updating both techniques for
acquisition and methods for setting baselines. Although there is
no rule of thumb in this case, it is generally accepted in machine
learning that benchmarking against resources that are no longer
considered to be state-of-the-art will not bring valid results.
Furthermore, in the realm of human-data, and specifically
within the European Union, there is often a limited time that
data can be stored (The-European-Commission, 2019). In this
way, not only will benchmarked data sets become outdated in
terms of techniques, but it is unethical to utilize such data, as
reproducibility may not be possible.

Of note, a considerable contribution for ethics-based
benchmarking is the aforementioned open-source IBM AI
Explainability 360 Toolkit, in which one aspect is the Adversarial
Robustness 360 Toolbox. This toolbox provides state-of-the-art
paradigms for adversarial attacks (i.e., subtle alterations to data),
and allows researchers to benchmark their approaches in a
controlled environment to allow for more easy interpretation of
possible network issues.

5.3. Confidence and Trust
Given the general fear that members of the public have
for AI—mostly attributed to false depictions in movies and
literature – improving confidence and trust in AI is now at
the forefront for many corporations. To this end, researchers
and corporations continually introduce state-of-the-art aids for
tackling famous AI problems, such as the IBM AI Fairness
360 Toolkit. As well as this, to improve trust groups, such
as “IBM Building Trust in AI”7, make this their specific
focus. In this particular group, developing human-like aspects
is given a priority, as research has shown that humans trust
the general capability of more human-like representations over
purely mechanical ones (Charalambous et al., 2016). However,
the well-known uncanny valley (which refers to familiarity and
likeability, concerning human-likeness) suggests that data-driven
representations requiring trust should be very-near human-
like (Mori et al., 2012), and action may result in biased binary
representations, which may be problematic in terms of identity
politics (Jørgensen et al., 2018).

Another effort in improving trust comes from blockchain.
Blockchain is a specific decentralized approach known as a
distributed digital ledger, in which transactions can only be
altered with the specific agreement of subsequent (connected)
blocks (Zheng et al., 2018). Blockchain is said to offer deeper
trust for a user within a network, due to the specific need for
collaboration (Mathews et al., 2017). This approach offers further

7IBM—Building Trust in AI: https://www.ibm.com/watson/advantage-reports/

future-of-artificial-intelligence/building-trust-in-ai.html.
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accountability, as decisions, or alterations are agreed upon by
those within the network. More specifically, trust is established
through algorithms known as consensus algorithms (Lee, 2002).

As mentioned, one quantifiable measure to build on trust
are confidence measures, sometimes referred to as uncertainty
measures i.e., those applied in a semi-automated labeling
paradigm. A confidence measure evaluates the accuracy of a
model’s predictions against a ground truth or set of weights and
provides a metric of confidence in the resulting prediction (Jha
et al., 2019). Herein, we follow this definition for confidence as
a measure, i.e., how accurate is the current system prediction,
as a means of understanding any risk (Duncan, 2015). This
definition allows researchers to have a margin of error and can
be a crucial aspect of the health domain to avoid false-positives
(Bechar et al., 2017).

Given the “black-box” nature of deep learning, there have
been numerous approaches to quantifying confidence (Kendall
and Cipolla, 2016; Keren et al., 2018). One popular procedure
for measuring confidence is the Monte Carlo dropout. In this
approach, several iterations are made, each time “dropping” a
portion of the network, and calculating confidence or uncertainty
based on the variance of each prediction (Gal and Ghahramani,
2016).

As an additional note, data-reliability is a term often referred
to in regards to both confidence and trust. Typically this
is the process of statistically representing the significance of
any findings from the database in a well-established scientific
fashion, particularly considering the context of the domain it
is targeted toward (Morgan and Waring, 2004). Statistical tests,
such as the p-value, which is used across research domains,
including machine learning, remains controversial. A p-value,
states the strength (significance) of evidence provided and suffers
from the “dancing p-value phenomena” Cumming (2013). This
phenomenon essentially shows that in a more real-world setting
the p-value can range (within the same experimental settings)
from <0.001 to 0.5, i.e., from very significant to not significant
all. Given this limitation, the researcher may present a biased
experiment, in an endeavor to report a significant result. This
limitation of the p-value, amongst other statistical tests, has
gained criticism in recent years, due to their extensive misuse by
the machine learning community (Vidgen and Yasseri, 2016).

5.4. Explainability and Interpretability
Researchers continue to work towards more accurately
understanding the decisions made by deep networks (Huszár,
2015; Rai, 2020). Machine learning models must be interpretable
and offer a clear use-case. At the core of this, data itself in
such systems should also be explainable i.e., designed data
acquisition, with plausible goals. Machine learning is a pattern
recognition task, and due to this visualization of data is one way
to help with detailing both interpretability and explainability
of a system by (1) better understanding the feature space, and
(2) better understanding possible choices. In regards to the
bias in AI, visualization of data-points allows for a more easily
determined observation of any class dominance. Clustering
is a particular pre-processing step applied in Big Data-based
deep learning (Samek et al., 2017). Popular algorithms which

apply this type of visualization include t-distributed stochastic
neighbor embedding (t-SNE) (Zeiler and Fergus, 2014) and
Laplacian Eigenmaps (Schütt et al., 2019). More recently, there
has been a surge in approaches for visualizing attention over
data points (Guo et al., 2019). These approaches are particularly
promising as they show visually the areas of activation which are
learnt most consistently for each class by a network (Wang et al.,
2019b), therefore highlighting areas of bias more easily, and
improving communication methods to those outside the field.

To this end, decentralization with integrated blockchain is one
approach which has been noted as improving interpretability,
mainly as data is often-publicly accessible (Dinh and Thai,
2018). For example, where bias begins to form, the diversity of
modalities and ease in identificationmeans that individual blocks
can be excluded entirely from a network to meet a more accurate
representation (Dai et al., 2019).

6. FUTURE DIRECTIONS

Due in part to the ethics-based commitments by some of
the larger AI companies, we see from this review that, there
is momentum toward a more ethical AI future. However,
interdisciplinarity in AI research is one aspect which requires
more attention. To the best of the authors’ knowledge, most
public forums (particularly those based on a centralized
infrastructure) come from a mono-domain viewpoint (e.g.,
engineering). Incorporating multiple disciplines in the
discussion appears to be more prominent with those promoting
decentralized AI.

Interdisciplinary will not only improve implementation of the
four ethical consideration described herein, but has been shown
to be a necessary step forward for the next AI phase of Artificial
General Intelligence (AGI), proposed by the decentralized
community (Goertzel and Pennachin, 2007). Interdisiplinarity
is particularly of value as infrastructures developed in this way
more easily tackle ethical concerns relating to; (i) integration,
(ii) selection-bias, and (iii) trust.

Seamless integration of AI is necessary for its success and
adoption by the general public. Aspects including cultural and
environmental impact need to be considered, and various experts
should provide knowledge on the target area. For example, the
synthesized voice of bus announcements not representing the
community to which it speaks may have a negative impact on
those communities, and a closer analysis of the voice that best
represents that community would be more ethically considerate.
In this way, working alongside linguists and sociologists may
aid development.

Similarly, from our literature overview, we observe that
knowledge of selection-bias often requires contributions from
experts with non-technical backgrounds, and an approach
for facilitating discussion between fields of research would
be a valuable next step. For example, within the machine
learning community, techniques, such as few-shot learning are
receiving more attention in recent years (Wang and Yao,
2019), however, perceptual-based biases pose difficulties for such
approaches (Azad et al., 2020), and discussion from experts of
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the targeted domains may help understand the bias at an earlier
stage. Despite this, communication between fields speaking
different “languages” (i.e., anthropology and engineering), is a
challenge in itself, which should be addressed by the community.
Furthermore, due to historical stereotypes, AI continues to lack
in trust by the general user. Users who without an understanding
of the vocabulary of the field, may not be able to grasp
the concept of such networks. Through a better collaboration
with various academic researchers, communicating AI to the
general public may also see an improvement, which in turn will
help to build trust and improve wellbeing of the user during
AI interaction.

7. CONCLUSION

The themes of data representation and infrastructure as they
pertain to selection-bias and decentralization in AI algorithms
have been discussed throughout this contribution. Within these
discussion points, we have highlighted four key consideration;
auditing, benchmarking, confidence and trust, and explainability

and interpretability to be taken into account when handling AI
data more ethically.

From our observation, we conclude that for all of the
four considerations, issues which may stem from multimodal
approaches should be treated cautiously. In other words,
relating to auditing, there should be standards for each
modality monitored, as this follows through into the ability
for accurate benchmarking. In this same way, although the
literature may argue this, confidence and trust come from

diverse representations of human data, which in turn are
more explainable to the general public due to its inherent
human-like attributes.

With this in mind, we see that efforts are being made, for
fully audited, benchmarkable, confident, trustworthy, explainable
and interpretable machine learning approaches. However,
standardization for the inclusion of all of these aspects is still
needed. Furthermore, with the inclusion of multiple members
who take equal responsibility, decentralization may enable the
ethical aspects highlighted herein. We see that through social-
media (which is in some sense a decentralized network for
communication) group morality is developed. Opinions of a
political nature, for example, are highlighted, and any prejudices
or general wrongdoing is often shunned and which can have
enormous impact on business (Radzik et al., 2020). In this way,
a more transparent and open platform makes masking potential
network biases a challenge.
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We consider the problem of learning structured causal models from observational

data. In this work, we use causal Bayesian networks to represent causal relationships

among model variables. To this effect, we explore the use of two types of

independencies—context-specific independence (CSI) and mutual independence (MI).

We use CSI to identify the candidate set of causal relationships and then use MI to

quantify their strengths and construct a causal model. We validate the learned models on

benchmark networks and demonstrate the effectiveness when compared to some of the

state-of-the-art Causal Bayesian Network Learning algorithms from observational Data.

Keywords: causal models, probabilistic learning, learning from data, structured causal models, causal Bayesian

networks

1. INTRODUCTION

Given the recent success of machine learning, specifically deep learning, in several applications
(Goodfellow et al., 2016), there is an increased interest in learning more explainable models
including causal models.

Many researchers have attempted to develop methods to infer causality from observational
data over for several years (Pearl, 1988b, 2000; Neapolitan et al., 2004). While there have been
some notable contributions in the field demonstrating the plausibility of learning causality from
non-experimental data (Granger, 1969; Sims, 1972; Pearl, 2000), learning structural causal models
from observational data is still a challenge (Guo et al., 2019). Recent advances in the field of
discovering causality has looked at learning Causal Bayesian Network (CBN). In this framework,
causations among variables are represented with a Directed Acyclic Graph (DAG) (Pearl, 2000).
The problem of learning a DAG from data is not computationally realistic as the number of
possible DAGs grows exponentially with the number of nodes. This computational complexity
has prevented the adaptation and application of causal discovery approaches to high dimensional
datasets, with a few examples.

In this work, we consider the problem of full model learning of causal models from observational
data. We are inspired by tasks in real-world where only limited knowledge could potentially be
available and hence building a full causalmodel is not possible. Similarly, the datamight be obtained
before learning, making interventions particularly, hard. In such cases, learning a probabilistic
causal model from data is preferred. However, this is a hard task with a larger number of variables.
This is the problem we tackle in this paper—how can we scale causal learning to a moderate number
of features?

To this effect, we build upon the success in using two sets of independencies for building
causal models—that of mutual independencies (MI) (Janzing et al., 2015) and context specific
independence (CSI) (Tikka et al., 2019). While MI can be used to quantify the strength of the
causal relationships, CSI has been used for causal identifiability. We employ these in the context
of learning from data. We aim to learn a causal model by first learning probabilistic dependencies
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that can identify CSI. We then adopt a heuristic measure to
remove and re-orient the edges of the probabilistic graphical
model. We employ MI and heuristics to guide the search.
The net result as we show empirically is a causal model.
This is particularly important as scaling causal learning to
large problems without interventions or bias is a significantly
challenging task.

Specifically, we leverage the success of dependency networks
(DN) (Heckerman et al., 2000; Neville and Jensen, 2007;
Natarajan et al., 2012) for learning with large data sets. Recall
that a DN is a probabilistic graphical model that approximates
the joint distribution using a product of conditionals. Hence,
compared to a Bayesian Network (BN) these are uninterpretable
and more importantly, approximate. However, their key
advantage is that since they are products of conditionals, the
conditionals can be learned in parallel and can be scaled to very
large data sets.

To scale causal model learning, we first learn a DN. To
perform this, we learn a single (probabilistic) tree for every
variable, then we identify and remove cycles from this DN.
We consider mutual information employed in causal models to
score and remove the edges. In addition, we detect and remove
cycles from the DN, if any. Contrary to popular intuition, we
employ two levels of learning to uncover a causal model—first
is on learning a DN using trees and the second is on learning
a causal model employing heuristics measures. Our evaluations
on the two synthetic and one real benchmark causal data sets
demonstrate the utility of such an approach. While we present
quantitative metrics, qualitatively, the edges that are learned in
this model uncover interesting findings. In addition, we compare
the proposed approach to three other state-of-the-art causal
learning methods employed on just the non-experimental data.
Our results demonstrate that we obtain most of the causal links
on large problems in order-of-magnitude fewer operations than
most causal approaches.

We make a few crucial contributions—we present the first
causal learning approach that leverages progress in probabilistic
methods toward learning from data. We develop heuristics on
breaking the cycles and orienting the edges based on the causal
modeling research.We learn a causal model on two synthetic and
one real benchmark causal data sets and compare with ground
truth network to understand the robustness of our approach. We
also demonstrate the efficacy and efficiency of the approach on
standard benchmark data sets compared to other state-of-the-
art constrained based methods in the literature. Our proposed
approach opens the door for a domain expert to interactively
guide the causal model learner to a better model thus allowing
a hybrid method for causal models.

The rest of the paper proceeds as follows: after reviewing
the related work on BN, followed by the discussion of some
notable work in constrained based methods for learning CBN,
we provide the background on DN learning. Next, we present
our algorithm and provide intuitions on its functionality. We
discuss the motivation of this work, that of the three benchmark
data sets which are used to learn the joint causal model over
the factors. Then we present the empirical evaluations on the
two synthetic benchmark causal data sets and one real data set

by comparing our algorithm with other commonly used Causal
learning approaches as well as the ground truth. Finally, we
conclude by outlining potentially interesting future directions.

2. BACKGROUND AND RELATED WORK

We first introduce Bayesian networks and dependency networks
and certain concepts which build the foundation for innovations
in CBN learning.

2.1. Bayesian Network
A Bayesian network (BN) is a directed acyclic graph G = 〈V, E〉
whose nodesV represent random variables and edges E represent
the conditional influences among the variables. A BN encodes
factored joint representation as, P(V) =

∏

i P
(

Vi | Pa(Vi)
)

,
where Pa(Vi) is the parent set of the variable Xi. It is well-known
that full model learning of a BN is computationally intensive,
as it involves repeated probabilistic inference inside parameter
estimation which in turn is performed in each step of structure
search (Chickering, 1996). Therefore, much of the research
has focused on approximate, local search algorithms that are
generally broadly classified as constraint-based and score-based.

In constraint-based methods, we learn a BN which is
consistent with conditional independencies inferred from data
(Spirtes et al., 2000). By contrast, score-based methods search
through the space of structures, and find the structure with the
highest score (Heckerman et al., 1995; Friedman et al., 1999).
Hybrid learning approaches combine the advantages of both
approaches; for example, using constraint-based techniques to
estimate the network skeleton, and using score-based techniques
to identify the set of edge orientations that best fit the data
(Tsamardinos et al., 2006).

Our work is inspired by and can be considered as extending
constraint-based methods which have been discussed extensively
in the context of causal structure discovery.

2.2. Constraint-Based Algorithms
Constraint-based methods for learning causal structure from
just the observational data typically use tests for conditional
independencies to identify the causal links that exist in the data.

Following three assumptions are employed to connect
the underlying causations that are not perceived directly to
observable probabilistic dependencies:

• The Causal Markov Assumption states that every variable in
a causal DAG Gc is (probabilistically) independent of all other
variables if all its parents are observed.
• The Faithfulness Assumption states that a causal DAGGc and

probability distribution P are faithful to one another iff the
only conditional independencies in P are those entailed by the
Causal Markov Condition on Gc.
• The Causal Sufficiency Assumption that there doesn’t exist

a common unobserved cause of one or more nodes in the
domain (no hidden cause).

The Causal Markov Assumption produces a set of (conditional
and unconditional) probabilistic independencies from a causal
graph, and the Faithfulness Assumption ensures that all of the
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probabilistic independencies in the distribution are entailed by
the causal Markov condition. The above stated three assumptions
together ensure that causal DAG Gc meets the Minimality
Condition. The minimality condition ensures that there exists
no proper subgraph of the true causal DAG Gc that can satisfy
the causal Markov assumption as well as produce the same
probability distribution (Zhang, 2008).

Consequently, the constraint-based methods for causal
discovery are both sound and complete given perfect (noise-
free) data (Spirtes and Glymour, 1991; Zhang, 2008; Colombo
and Maathuis, 2014). The well-known PC algorithm assumes
no latent variables and learns a BN consistent with conditional
independencies inferred from data (Spirtes et al., 1993;Margaritis
and Thrun, 2000). PC and a related algorithm FCI (Spirtes et al.,
2000) take a global approach to causal discovery by learning a
network to model the joint distribution. The FCI algorithm in
addition can model latent confounders. However, they require
searching over exponential space of possible causal structures.
This restricts their adaptation to high-dimensional data (Silander
andMyllymaki, 2012). Consequently, there are extensions of FCI,
RFCI (Colombo et al., 2012) that improve the efficiency at the
cost of model quality.

PC algorithm is heavily variable order dependent, i.e., if the
order of the variables changes during learning, the resultant
causal Bayesian network could potentially change. Stable-PC
(Colombo and Maathuis, 2012) is a modified version of the
PC algorithm that queries all the neighbors of each node while
computing CI tests and yields order-independent skeletons.
Modified PC is efficient enough to handle large sets of variables,
at the cost of not being provably sound and complete (Coumans
et al., 2017). To overcome the inefficiency of computing CI
test between all pairs of variables, algorithms to uncover only
local causal relationships between a specific target node and its
neighbors have been developed (Margaritis and Thrun, 2000;
Aliferis et al., 2003; Ramsey et al., 2017). A well-known work
in this line of research is Grow Shrinkage algorithm (GS)
(Margaritis and Thrun, 2000). GS is based on the idea that
the Markov blanket includes all the nodes that contain the
information about the current node being tested. Although the
PC algorithm and the GS algorithm have had a major impact
in this area of research, GS is still exponential in the size of the
Markov blanket.

Following the success of GS, several methods, such as IAMB
(Tsamardinos et al., 2003) and its variants (Yaramakala and
Margaritis, 2005) have been developed for the induction of
CBNs by identifying the neighborhood of each node. Unlike
PC and FCI, a well-known algorithm called Greedy Equivalence
Search (GES) (Meek, 1995) begins with an empty graph and
adds and removes edges iteratively. The GES algorithm falls
broadly under a score-and-search procedure, that searches
over equivalence classes of DAG and scores them (Chickering,
2002a,b). Although GES works well with moderate number of
nodes, the space of equivalence classes is exponential in the
number of nodes (Gillispie and Perlman, 2013). The Greedy
Fast Causal Inference (GFCI) combines the benefit of GES (to
learn the network) and FCI (to prune unnecessary edges as
well as orient the edges) (Ogarrio et al., 2016). Meanwhile,

there has also been more and more evidence demonstrating
the possibility of discovering causal relationships by combining
both experimental and observational data (Cooper and Yoo,
2013; Hauser and Bühlmann, 2015; Meinshausen et al., 2016).
Other notable direction involves learning from mixed data
types (continuous and discrete variables) (Andrews et al., 2018;
Tsagris et al., 2018). In principle, our approach can be naturally
adapted to handle mixed variable types, as long as an appropriate
conditional independence test is employed. However, we note
this as a future direction.

Our approach can be seen as scaling such methods to large
observational data by potentially identifying a cyclic dependency
network that can then be transformed into a causal graph.
As mentioned earlier, we move away from the data-driven
independency tests and consider model-based independency
tests which could allow us to scale to potentially large data sets.
We hypothesize that learning such a dependency network is
scalable thus reducing the complexity of causality search.

2.3. Dependency Networks
Dependency Networks (DN) (Heckerman et al., 2000), another
directed model is similar to a BN, except that the associated
network structure need not be acyclic. That is to say, unlike a BN,
a DN permits cycles. A DN encodes conditional independence
constraints such that each node is independent of all other
nodes, given its parents (Heckerman et al., 2000). Therefore, they
approximate the joint distribution over the variables as a product
of conditionals thus allowing for cycles. These conditionals can
be learned locally, resulting in significant efficiency gains over
other exact models, i.e., P(V) =

∏

V∈V P(V|Pa(V)), where
Pa(V) indicates the parent set of the target variable V . Since
they are approximate [unlike standard Bayes Nets (BNs)], Gibbs
sampling is typically used to recover the joint distribution;
this approach is, however, very slow even in reasonably-sized
domains. In summary, learning DNs is scalable and efficient,
especially for larger data sets, but BNs are preferable for inference,
interpretation, discovery and analysis. Recall that our goal is
to discover causal relationships between variables. In order to
develop an approach for this motivating application, we propose
an algorithm for learning a BN from DN, that can scale to a large
number of variables.

3. EXPLOITING CONTEXT-SPECIFIC

INDEPENDENCIES FOR LEARNING

CAUSAL MODELS

Given the necessary background, we now present our learning
algorithm for learning causal models from data. Our method
is purely data-driven—extending this work to exploit domain
expertise is an important immediate future direction. However,
it must be noted that incorporating human advice as inductive
bias, search constraints and/or orientation knowledge is natural
in our framework. In this work, we assume that only the data and
(if available) some ordering over the variables as inductive bias
is provided.
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FIGURE 1 | Flow Chart of the proposed framework. Given data D with V variables, a dependency network DN ≡ (V,E) is learnt on entire data. Learn a dependency

network where each conditional is a decision tree of small depth. Recollect that resultant DN may have bidirectional edges between nodes. All the bidirected edges in

the DN are converted to undirected edges (if any). For all variables with edges in between them in DN, mutual independence scores between them are computed. We

loop through all the cycles in DN, such that the shortest cycles from the DN are first identified and the appropriate edges are removed based on MI less than the

threshold δ. Our framework also allows for an expert to provide the predefined threshold δ. The process is repeated until there are no more directed cycles. Finally, the

undirected edges are oriented based on MI while preserving acyclicity.

We use bold capital letters to denote sets (e.g., V) and plain
capital letters to denote set members (e.g., Vi ∈ V). Using
this convention, we denote the set of variables as V. The goal
of our algorithm is to learn the joint distribution over all the
variables (features and the target) that models causality. Given
that there is no additional input, it is quite possible that the joint
distribution that is purely learned from data may not result in
a causal model, i.e., the learned network is a general Bayes net
(BN) instead of a causal Bayes net (CBN). To evaluate this, we
verify the learned model on a few benchmarks to demonstrate
the efficacy of the approach. Beyond empirical evaluations, we
provide some theoretical insights on why the learned model is
causal. Before explaining the procedure, let us formally define the
learning task.
Given: Data, D =

〈

〈V i
1, . . . , V i

n〉
〉m

i=1
, where n is the number of

variables,m is the number of examples, V is the set of variables,
To Do: Learn a causal joint distribution, P(V), i.e., a causal BN
〈V, E〉, where E is the set of edges in the causal BN.

One of the challenges with standard BN learners and certainly
CBN learners is that of scale. When the number of variables is
large (as in the real benchmark data set), many structure learning
algorithms do not scale viably. Hence, we propose a hybrid
approach that combines the salient features of both search and
score, namely the ability to perform local search effectively with
the ability of constraint-based methods to potentially identify
causal models. More precisely, our algorithm performs three
steps: learning a dependency network from data, detect the
cycles and then remove the edges that are mutually independent.
This process is illustrated in Figure 1. The overall intuition
behind this approach is fairly simple: use a scalable algorithm
to handle a large number of variables and learn a dense model

quickly. Since this learned model could potentially (and in
practice) contain many cycles, we detect and remove edges based
on mutual information. We then orient the edges ensuring
acyclicity. Given that previous literature has demonstrated that
an information-theoretic measure based on mutual information
between two variables X and Y can be used as a reliable measure
for quantifying the strength of an arc X → Y (Solo, 2008;
Weichwald et al., 2014; Janzing et al., 2015), we use CSI and MI
to establish the causal relationships.

We now describe each of these steps in detail before presenting
the high-level algorithm.

3.1. Learning Context-Specific

Independences
The first step of our learning algorithm is to learn distributions of
the form P(Vi|V\Vi), i.e., a conditional for a variable given all the
other variables in the data. To this effect, we employ the intuition
that a structured representation of a conditional probability table
(CPT), such as a tree can be used inside probabilistic models
to capture context-specific independence (CSI) (Boutilier et al.,
1996). Specifically, we learn a single probability tree for each
variableVi given all the other variables in the data. The tree CPDs
can capture context specific independence based on regularities
in the CPTs of a node. Tree CPD for a variable is a rooted
tree with each interior node representing tests on parent vertices
and leaf nodes have the probability conditioned on particular
configurations along the path from the root to leaf. The key idea
here is that each tree can capture the CSI that exists between
the variable’s parents and the target variable conditioned on
the values of some of the other parents. This is an important
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FIGURE 2 | First the DN is learned (notice the two bi-directed edges). All the bidirected edges in the DN are converted to undirected edges (BD and EF). The shorted

cycle A→ C→ B→ A is identified and the edge A→ C is removed based on MI. Since no more cycles exist, the undirected edges are considered next. E −−F

becomes F → E and then B−−D becomes D→ B. The resulting network is acylic and exploits both CSI and MI in becoming a causal network.

step as it has been recently demonstrated that CSI can be used
for identifying causal effects by Tikka et al. (2019). While their
work derives the calculus for identifying the causal relationships,
we go further in employing the use of CSI in larger data sets.
Further, our finally learned network can be considered as a special
case of the structural causal model proposed by Tikka et al.
where the structured representations (trees) are used to model
the CSIs and the edges of the graphical model are aligned using
information-theoretic measures.

To learn CSI at every variable, we employ the notion of DNs.
Recall that a DN is a (potentially cyclic) graphical model that
approximates the joint distribution as a product of conditionals.
To learn such a DN, we iterate through every variable and learn
a (probabilistic) decision tree for each variable given all the
other variables, i.e., the goal is to learn P(Vi|V \ Vi) for each
i where each conditional is modeling using a probabilistic tree.
We observe that in this step, one could provide an important
domain knowledge—ordering between the variables. This variable
ordering can be used to construct expert guided causal model
which introduces CSIs that satisfies the ordering constraints.
As shown by Tikka et al. (2019), the conditional distributions
induced using these CSIs can be effectively employed in
identifying do calculus.

The advantage of this approach is that it learns the qualitative
relationships (structure) and quantitative influences (parameters)
simultaneously. The structure is simply the set of all the variables
appearing in the tree and the parameters are the distributions
at the leaves which can be reused in later stages. The other
advantage is that the approach is that it is easily parallelizable
and scalable. Thus, our method can be viewed as one that could
scale up learning of causal models to real large data sets. The
third advantage of the approach is that being a separate step, this
can be integrated with other causal search methods, such as the
one proposed by Tikka et al. Exploring these connections is an
interesting future direction.

Let us denote the conditionals learned over all the variables
(potentially given some order) as DN, the dependency network
induced from the data. In most cases, this DN contains cycles
since these conditionals are learned independent of each other.
This can be an advantage and a disadvantage. The advantage
is its efficiency as the costly step of checking for acyclicity

can be avoided during learning and a disadvantage since it
is an approximate model. Shorter cycles can result in larger
approximations (Heckerman et al., 2000). After learning thisDN,
we perform an additional step. We convert edges of the form
X ← Y and X → Y to X − −Y . This is similar to the PC
algorithm (Spirtes et al., 2000) in that strong correlation between
two variables are considered as undirected and will be oriented
in the final step of our algorithm. Next, we convert the DN to an
intermediate CBN with potential undirected edges.

3.2. Detecting and Removing Cycles
To convert the DN to a CBN, the first step is to detect and
remove cycles. A naïve approach to deleting edges would be:
search for an edge, remove it, check for acyclicity and log-
likelihood (Hulten et al., 2003). The key limitation of this
approach is that the resulting model is not necessarily causal.
The use of log-likelihood does improve the training performance
but does not guarantee causality. Hence, inspired by the research
in information-theoretic approaches to causality (Solo, 2008;
Weichwald et al., 2014; Janzing et al., 2015), we employ mutual
information for identifying the edges.

For detecting cycles, several methods exist (Kahn, 1962)
including topological sorting. Any of these methods would be
compatible with our learning algorithm. For the purposes of our
data sets, we employ depth-first search (DFS). One key aspect
of our DFS is that we identify short cycles. Recall that DN
approximates a joint distribution as a product of conditionals.

P(V1, ...,Vn) ≈
∏

i

P(Vi|V \ Vi)

The theoretical analysis of the approximation is based on the
inference algorithm, specifically Gibbs sampling and on the size
of the data. In simple terms, if the Gibbs sampler converges on a
large data set, the approximation is quite effective (Heckerman
et al., 2000; Neville and Jensen, 2007). In practice, we have
previously observed that when the cycles are large, i.e., the size
of the clique in the undirected graph, the approximation is quite
robust (Natarajan et al., 2012; De Raedt et al., 2016).

With this insight, in the first step of cycle detection, we identify
the short cycles. The intuition is that short cycles lead to larger
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approximations and removing them would render the product
of conditionals closer to the true joint distribution. Once the
shortest cycle is identified, the next step is identifying the edge
to remove from this short cycle. For this purpose, we employ
mutual information (MI). As a pre-processing step, we compute
the MI between every pair of variables and sort them by the
MI. We consider MI instead of conditional MI as one of our
key goals is efficiency. Computing conditional MI requires us
to condition on a large set of related variables in the DN. This
requires both repeated computations and a large number of
conditionals. Thus, first, we detect the smallest directed cycle.
We then break the cycle by removing edges that are smaller
than a predefined threshold of δ. In our work, we simply choose
δ to be the MI with the largest difference to the previous MI
value in the sorted list. We use Maximum adjacent difference in
the sorted list, as our δ in our setting, unless a default value is
presented by an expert as domain knowledge. Large values of
δ would result in a sparse graph and lower values δ will result
in a dense graph. Once these edges are removed, the process
continues where the next smallest cycle (if one exists) is detected
and the low MI edges are removed and so on. Coupling CSI

with MI between variables X and Y quantifies the strength

of X → Y .
To summarize, from the DN, we create an initial CBN by

detecting cycles and removing edges with low dependencies.
Now the last step is to orient the bi-directed edges which
are undirected and then learn the parameters of the resulting
causal BN.

3.3. Edge Orientation and Parameter

Learning
Once the directed cycles are detected and removed, we focus
on the undirected edges (in reality bi-directed edges). Inspired
by the PC algorithm (Spirtes et al., 2000), we orient the
edges in the final step using two criteria—MI and acyclicity.
We orient the edges by removing the edge with the lowest
MI if it does not result in a cycle. As mentioned earlier,
this is similar to that of PC. After all the undirected
edges have been oriented, the resulting CBN is our casual
network skeleton.

We estimate the parameters of this CBN using standard MLE
(Pearl, 1988a). All our data sets are fully observed and hence
MLE suffices for learning the conditional distributions. For the
parameters, we learn a decision tree locally and in parallel using
only the variables in the parent set of every node to capture
the conditional distribution. Extending this to handle missing
data is a significant extension as it does not merely affect the
parameter learning but the structure search as well. Once the
parameters are learned, we now have the full causal BN learned
from data.

3.4. DN2CN Algorithm
Before we provide the algorithm, we present an example in
Figure 2. There are six variables 〈A, ..., F〉. First, a DN is
learned where there are cycles and bi-directed edges. Next,
the smallest cycle 〈A,B,C〉 is detected and the edge with
least MI A → C is removed. Now, there are no directed

cycles in the CBN (in the general case, there could be more
cycles that need to be removed). Note that there are two
undirected edges between B and D, and between E and F.
First, the edge between D and B is oriented based on MI
and the fact that this does not create a cycle. Finally, the
edge between E and F is oriented to obtain the CBN. The
parameters are then learned by learning a decision-tree for
each conditional.

This approach is formally presented in Algorithm 1 and as
a flow chart in Figure 1. As can be seen in the algorithm, the
first step is to learn the DN (line 4). The LEARNPARENTSET
function in line 3 of Algorithm 2 learns a tree and collects
the set of parents from that set. It can optionally take an
ordering among the variables provided by a domain expert (if
any). Then the algorithm computes the mutual information
(MI) for all the edges. One could instead simply wait till the
cycles are detected and then compute the MI but we compute it
outside the cycle detection step. The algorithm then iteratively
removes the least informative edges till no more cycles are
present in the graph. We orient the undirected edges (If any)
ensuring acyclicity. Then the parameters are then learned from
the data.

3.4.1. Theoretical Analysis
A natural question to ask is—what is the complexity of our
approach? We present an initial analysis of this work, by
adapting the arguments from the literature [see for instance
the original reducibility result (Karp, 1972)]. We present
our result by analyzing each component of the algorithm.
Tightening these bounds with appropriate heuristics is left for
future work.

Let v be the number of vertices (features), n be the number
of training examples. In Algorithm 1, while learning DN, we
learn a decision tree locally [line 4]. This requires O(n2d) where
d is the depth of the tree (Su and Zhang, 2006). While this
can be reduced to O(n · d), this requires making independence
assumptions among the variables. Our tree growing procedure
is fairly standard without much optimization. Hence the
complexity of learning a full DN is O(v · n2d). However, the
trees can be learned in parallel, thus reducing the complexity
to O(n2d).

Cycle detection (line-12) has a complexity of O(v(v +
e)), where v is no. of nodes and e is number of edges
in the network (e is asymptotically O(v2). A single cycle
detection running a DFS to search for the cycle thus
is O(v2). Doing this for all the variables will result in
O(v3) for the entire cycle detection. Sorting the edges
to compute the MI requires O(v2log(v)). Edge orientation
is O(v2).

Thus the complexity DN2CN is dominated by two
terms—O(v3) the cube of the number of edges and
O(n2d), the term that depends on the data. Since,
typically, n > v2 to learn a meaningful model, our
final complexity is O(n2d). Optimizing the tree learner
to lower this complexity and better cycle detection
methods to reduce the cubic complexity can significantly
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improve the asymptotic bound. These are open
research directions.

3.4.2. Discussion
The proposed approach has some salient advantages—(1) One
could parallelize the learning of the DN to scale it up to
very large data sets. (2) The computation of the MI can also
be parallelized. (3) Any traversal algorithm could be used to
detect cycles in the graph for pruning. (4) There are two
levels of independence used in this algorithm;—(a) context
specific independence (CSI) to identify potentially independent
influences. Inspired by the work of Tikka et al. (2019), we rely
on the ability of CSI to model interventions; in the context of
interventions, any influences that otherwise have a causal effect
thereon variable, are removed. Learning a BN as a series of
trees for every interacting variable facilitates the ability to model
such CSI and so are able to represent interventions in sufficient
detail to reason about conditional independence properties,
(b) Mutual independence which when combined with expert
domain knowledge can potentially yield even causal influences.
(5) The algorithm also has two types of controls (similar to
regularizations) to combat overfitting. First is to control the
depth of trees and second is selecting the number of edges to
remove. (6) Finally, the use of both local search and constraint
based methods inside the algorithm enables it to learn effectively
at scale.

Before presenting our empirical results, we briefly discuss
the interpretability of the resulting network. DN2CN
represents causal dependencies using BNs that provide an
intuitive visualization by modeling features as nodes and
the statistical association between the features as edges. This
statistical interpretability is similar in spirit to traditional
interpretability. This allows to answer questions, such as
“does BMI influence susceptibility to Covid?” Moreover, it has
been argued that developing an effective CBN for practical
applications requires expert knowledge when data collection is
cumbersome (Fenton and Neil, 2012). This applies to domains,
such as medicine, similar to our experimental evaluation.
A typical characteristic of these domains is that they can
be data-poor and knowledge-rich due to several decades of
research. Kahneman et al. showed that human beings tend to
interpret events in terms of cause-effect relations (Kahneman
et al., 1982; Pennington and Hastie, 1988). Also, causal
models are easier to construct, easier to modify and easier
to interpret by humans (Henrion, 1987; Pennington and
Hastie, 1988). Following these observations, our framework
can incorporate both data-driven and human inputs, thus
allowing to learn a more robust hypothesis. Lipton explains that
with interpretable models it becomes imperative to guarantee
fairness (Lipton, 2018). It must be noted that we can extend
DN2CN’s interactive framework and leverage the Bayesian
networks learnt to assess the bias as well as compare multiple
models in terms of their fairness and performance (Chiappa
and Isaac, 2018). In summary, our framework can leverage
interpretability as a tool to verify causal assumptions and
relationships. We verify the above claims empirically in a real

data set and two synthetic benchmark causal data sets in the
next section.

Algorithm 1 |DN2CN: dependency network to causal network.

1: Given: Data D; Variables V; Ordering among variables (if
any)O : = ∅; Threshold δ : = 0

2: function DN2CN(D,V,O)

3: E ← ∅ ⊲ Initialize edge set

4: DN ≡ (V, E) = LEARNDN(D, V,O)
5: for all edge ∈ E do

6: MI[edge] ← COMPUTEMUTUALINFO(edge)
7: end for

8: SortedMI[edge] ← SORTED(edge, reverse = True) ⊲
Sort in descending order

9: if δ = 0 then
10: δ = ARGMAX_ABSDIFF(SortedMI[edge]) ⊲Max

absolute diff of 2 contiguous elements in array SortedMI

11: end if

12: C ← DETECTCYCLES(DN) ⊲Using any sort

13: for all cycle ∈ C do

14: for all e ∈ cycle do

15: if SortedMI[e] ≤ δ then

16: E ← E \ e ⊲ Remove edges if exist inDN

17: end if

18: end for

19: C ← C \ cycle
20: ⊲Update cycles list after each iteration

21: if C = ∅ then ⊲Nomore cycles left

22: break

23: end if

24: end for

25: V̂, Ê : = ORIENTEDGES(V,E) ⊲ Introduce directions

ensuring acyclicity as required

26: return (V̂, Ê)
27: end function

4. EMPIRICAL EVALUATION—DOMAINS

To assess the effectiveness of our method, we perform extensive
evaluations on both synthetic as well as real benchmark causal
data sets. In all our data sets, we have the underlying true causal
graph, and we apply our method as well baseline approaches to
reconstruct the causal network from the data to demonstrate
the effectiveness. We first describe the data sets used before
discussing the baselines used.

4.1. Benchmark1: LUCAS—(LUng CAncer

Simple Data Set)
The LUCAS (LUng CAncer Simple set) data set from causality
challenge (Guyon et al., 2008) represents a synthetic medical
diagnosis problem, where the task is to identify patients with
lung cancer given a set of socioeconomic and clinical factors
of putative causal relevance. The generative model is a Markov
process, so the value of the children node is stochastically
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Algorithm 2 |LEARNDN: learn dependency network.

1: function LEARNDN(D, V, O)

2: E ← ∅ ⊲ Initialize edge set

3: for all var ∈ V do

4: P(var) ← LEARNPARENTSET(var, {V \ var}O, D)
⊲ Parent set {V \ var} is

constrained by O (if any)

5: for all parent ∈ P(var) do
6: E ← E ∪ {parent→ var}
7: ⊲ Add new directed edge between parent and var

8: end for

9: end for

10: return (V,E)
11: end function

dependent on the values of the parent nodes’. The data set
consists of 2000 observations. Ground-truth consists of 12
binary variables that include anxiety, peer pressure, day of birth,
smoking, genetics, yellow finger, lung cancer, attention disorder,
cough, fatigue, allergy, car accidents, and their causal relations.
There are no missing values in the data set. As the data are
generated artificially by causal BN with variables, the true nature
of the underlying causal relationships is known. Hence we use
this benchmark data set for illustrating the effectiveness of
our approach.

4.2. Benchmark2: Asia Data Set
The ASIA Network is an expert-designed causal network with
logical links. This BN was originally presented by Lauritzen
and Spiegelhalter (Lauritzen and Spiegelhalter, 1988), who have
specified reasonable transition properties for each variable given
its parents. It is an eight node BN that describes the effect
of visiting Asia and smoking behavior of an individual on the
probability of contracting tuberculosis, cancer or bronchitis. The
underlying structure expresses the known qualitative medical
knowledge. Each node in the network represents a feature that
relates to the patient’s condition. The example is motivated
as follows: “Shortness-of-breath (called dyspnea) may be due to
tuberculosis, lung cancer or bronchitis, or none of them, or more
than one of them. A recent visit to Asia increases the chances of
tuberculosis, while smoking is known to be a risk factor for both
lung cancer and bronchitis. The results of a single chest X-ray do
not discriminate between lung cancer and tuberculosis, as neither
does the presence or absence of dyspnea.” The data set contains
10,000 observations and eight binary variables whose values are 0
or 1. There are no missing values in the data set.

4.3. Causal Protein-Signaling Networks in

Human T Cells Data Set
This data analyzed and published by Sachs et al. (2005) is
a multivariate proteomics data set, widely used for research
on causal discovery methods. This is a biological dataset with
different proteins and phospholipids in human immune system
cells. The data comprises of the simultaneous measurements of
11 phosphorylated proteins and phospholipids (PKC, PKA, P38,
Jnk, Raf,Mek, Erk, Akt, Plcg, PIP2, PIP3) derived from thousands

of individual primary immune system cells. In the data set we
considered, there are (1) 1,800 observational data points subject
only to general stimulatory cues, so that the protein signaling
paths are active; (2) 600 interventional data points with specific
stimulatory and inhibitory cues for each of the following four
proteins: pmek, PIP2, Akt, PKA; and (3) 1,200 interventional data
points with specific cues for PKA. Overall, the data set consists
of 5,400 instances with no missing value. The 11 variables are
discretized into three bins (low, medium, and high) for each
feature, respectively. A network consisting of 18 well-established
causal interactions between these molecules has been constructed
supported with biological experiments and literature (Sachs et al.,
2005). This data is a good fit to test our proposed causal discovery
method, as the knowledge about the “ground truth” is available,
which helps verification of results. Hence the goal of the data
set is to unearth protein signaling networks, originally modeled
as CBN.

5. EXPERIMENTAL RESULTS

In our experiments, we aim to answer the following questions
explicitly:

Q1: Does the learned model identify influencing variables as in
the “Ground truth” network?

Q2: How does the resulting network produced by DN2CN
compare to standard constraint based approaches
qualitatively?

Q3: How does the resulting network produced by DN2CN
compare to standard constraint based approaches
quantitatively?

Specifically, we consider two different types of experiments—
the first on evaluating goodness of the model on the synthetic
benchmark data sets and the second on verifying if the approach
can learn a good causal model on the real data set.

5.1. Setup
In DN2CN, we used a tree depth of 2 for all the experiments. We
set δ as 0.015 for both LUCAS and Asia data sets and 0.25 for the
real T cells data set.

We compare DN2CN to three of the well-known
computational methods for causal discovery (Glymour et al.,
2019). Two of these algorithms are commonly employed
constraint-based algorithms—PC and Fast Causal Inference
(FCI) (Spirtes et al., 2000). The third algorithm is a score-based
algorithm—Fast Greedy Equivalence Search (FGES) (Ramsey
et al., 2017). It must be mentioned that PC, FCI and FGES,
are widely applicable as they handle various types of data
distributions as well as causal relations, given reliable conditional
independence testing methods. We strongly believe that these
attributes make them a strong as well as a fair baseline for
DN2CN as suggested by Glymour et al. (2019).

We further discuss each of the baseline approaches
and their corresponding experimental settings used,
as follows:

• PC algorithm (denoted PC) (Spirtes et al., 2000) starts
with a fully connected undirected graph, tests all possible
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FIGURE 3 | The learned network for (A) Our Approach DN2CN, (B) PC algorithm, (C) Fast Greedy Equivalence Search algorithm (FGES), and (D) Fast Causal

Inference algorithm (FCI) and the summary results on LUCAS data set (best viewed in color). Each node represents a feature and the arcs represent causal

relationships, i.e., X→ Y represents that X is a cause of Y. As can be seen, our DN2CN and FGES had a 100% true positive rate with a 0 false positive and false

negative rates. PC and FCI missed two edges each. PC and FCI also introduced spurious edges (incorrect edge orientation).

conditioning set for every order of conditioning and then
finally orients the edges. Test statistic we used is the mutual
information for PC algorithm, to keep the comparison fair.We
used type I error rate; α = 0.05 in our setting.
• Fast Greedy Equivalence Search algorithm (denoted FGES)

(Ramsey et al., 2017) is an optimized and parallelized version
of an algorithm developed by Meek (Meek, 1995) called the
Greedy Equivalence Search (GES). GES is a CBN learning
algorithm that starts with an empty graph, heuristically
performs a forward stepping search over the space of CBNs
and stops with the one with the highest score. GES finally
performs a backward stepping search that iteratively removes
edges until no single edge removal can increase the Bayesian
score. We use the modified BIC (Bayesian information
criterion) (Schwarz, 1978) score rewritten as ScoreBIC(B :D) =
2L(D; θ̂ ,B)− k log |D|, where L is the likelihood, k the number
of parameters, and |D| the sample size. So higher BIC scores
will correspond to greater dependence.
• Fast Causal Inference algorithm (denoted FCI) (Spirtes et al.,

2000) is a constraint-based algorithm which learns an
equivalence class of CBNs that entail the set of conditional
independencies that are true in the data. FCI then orients the
edges using the stored conditioning sets that led to the removal

of adjacencies earlier. We use the same modified BIC score as
with the other baseline, i.e., FGES algorithm.

For PC algorithm we used the open-source implementation, i.e.,
stable-PC in bnlearn (Scutari, 2009) while TETRAD (Spirtes et al.,
2000) was used to run FGES and FCI algorithms; a reliable tool
for causal explorations. Data set details are presented in section
3 which describes the number of variables and the number of
training examples.

5.2. Results
Recall that our goal is faithful modeling of underlying data. In
addition, we also demonstrate the training log-likelihood of the
learned model for (1) ground truth model, (2) model learnt using
DN2CN algorithm, (3) model learnt using PC algorithm, (4)
model learnt using FGES algorithm, and (5) model learnt using
the FCI algorithm. This is to say that our analysis is qualitative as
well as quantitative.

To answer Q1 and Q2, consider the networks presented
in Figures 3A–D–5A–D, respectively. These are the learned
networks obtained by our approach DN2CN and baseline
methods PC, FGES & FCI summarized together with the ground
truth network. To evaluate the validity of the proposed approach,
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FIGURE 4 | The learned network for (A) Our Approach DN2CN, (B) PC algorithm (C) Fast Greedy Equivalence Search algorithm (FGES), and (D) Fast Causal

Inference algorithm (FCI) and the summary results on ASIA data set (best viewed in color). Each node represents a feature and the arcs represent causal relationships,

i.e., X→ Y represents that X is a cause of Y. As can be seen, our DN2CN and FGES had a 100% true positive rate with a 0 false positive and false negative rates. PC

and FCI both missed two edges. Also, PC introduced two spurious causal edges in the resultant network.

we compared the model arcs with those present in the ground
truth. An arc is correct, if and only if the same arc exists in the
ground truth graph and the orientation of the arc aligns with
the orientation in the ground truth graph; an arc is considered
incorrect, if the arc does not exist in the ground truth graph or if
it exists but its orientation is the opposite of the true orientation.
Hence, in all the data sets, to understand the effectiveness of
DN2CN, motivated by Sachs et al. (2005), Gao and Ji (2015),
and Yu et al. (2019) we summarize the arcs learned by our
method as well as PC, FGES and FCI for each data set using the
following metrics:

• True Edge Rate, is the fraction of the true connections in the
ground truth network that our approach (or PC or FGES or
FCI) captures correctly, i.e., true positive.
• False Edge Count, for connections that are not in the ground

truth network, but which were captured by our approach (or
PC or FGES or FCI), i.e., false positive.
• Missed Edge Rate, is the fraction of the true edges missed in the

ground network by our approach (or PC or FGES or FCI), i.e.,
a false negative.

As can be observed our algorithm DN2CN and baseline
algorithm FGES had a 100% true positive rate with a 0 false
positive and false negative rates in both LUCAS and ASIA data
sets. However, the other baselines methods PC and FCI both
missed two edges in LUCAS as well as ASIA data sets. In

addition, the PC algorithm introduced spurious causal flows in
both LUCAS and ASIA data sets. This clearly establishes that our
framework is indeed capable of retrieving the full causal model
while learning only from the data.

In the real benchmark data set, i.e., Causal Protein-Signaling
Network in human T cells, the ground truth network and the
reconstruction by employing DN2CN, PC, FGES and FCI are
illustrated in Figures 5A–D, respectively. It can be observed
that our approach DN2CN performs significantly better than
all the baselines, i.e., PC, FGES and FCI. DN2CN missed
four edges and introduced four spurious edges. Whereas,
the baseline algorithms PC, FGES, and FCI, had significantly
worse performance with 13, 11, 14 missed edges and 6, 15,
8 spurious ones, respectively. On closer inspection at the
unexpected edges in our acyclic causal model reconstruction,
one can see that they actually explain the data quite well.
Especially, both arcs, PKC H⇒ PKA and Erk H⇒

Akt, can be understood qualitatively in rat ventricular myocytes
(Wilhelm et al., 1997) and colon cancer cell lines (Lemaire
et al., 1997), respectively. However, We hypothesize that, our
DN2CN method missed four causal relationships, that are
all involved in cycles. As BNs are acyclic by definition, our
inference missed these arcs, which is one of the caveats of
this approach. Extending this to dynamic causal bayesian
network to handle feedback loops, remains an interesting future
research direction.
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FIGURE 5 | The learned network for (A) Our Approach DN2CN, (B) PC algorithm, (C) Fast Greedy Equivalence Search algorithm (FGES), and (D) Fast Causal

Inference algorithm (FCI) and the summary results on T-Cell data set (best viewed in color). Each node represents a feature and the arcs represent causal relationships,

i.e., X→ Y represents that X is a cause of Y. This is a challenging data set where DN2CN had missed one edge and introduced two spurious edges. PC, on the other

hand, had significantly worse performance with 10 missed edges and four spurious ones.

Table 1 presents quantitative comparisons between the

different methods. In all our experiments, we present the

numbers in bold whenever they are better than all the other

baselines on a data set. It must be mentioned that in some
cases, PC, FGES, and FCI did not yield a directed arc, and we

chose a direction (ensuring acyclicity) to compute the overall

joint log-likelihood on the training set. As can be seen from

the table, the proposed DN2CN approach produces a network

with significantly better joint log-likelihood on the training set
than the baseline algorithms PC and FCI learning method in
all the domains. We can see that FGES has better joint log-
likelihood than DN2CN in T-Cell data set. One key reason
is that the resultant network using FGES is relatively denser
than other models. FGES introduces 14 spurious causal edges
leading to increased likelihood. It is well-known in the Bayes net
learning literature that denser the graph is, higher the training
set likelihood. As can be seen from the table in the Figure 5, the
false edge count of FGES is significantly higher than the other
methods. Hence, the denser network can yield a much higher
training set loglikelihood. This answers Q3 affirmatively: that

TABLE 1 | Table comparing the log-likelihood estimate in CBN learned using

DN2CN and baseline approach, i.e., PC algorithm, Fast Greedy Equivalence

Search algorithm (FGES) and Fast Causal Inference algorithm (FCI) learned directly

from data.

Methods

Data sets Ground truth DN2CN PC FGES FCI

Lucas −12130.83 −12130.83 −12178.59 −12130.83 −12161.49

Asia −22212.85 −22212.85 −22212.85 −22212.85 −23747.1

Sachs −38723.1 −38081.29 −41930.74 −35782.43 −40822.13

Numbers are presented in bold text whenever they are better than all the other baselines

on a data set.

DN2CN is more effective in modeling than the causal method,
such as PC, FGES, and FCI.

6. CONCLUSIONS

We introduced a scalable causal learning algorithm that is capable
of exploiting two types of independencies—context-specific
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independence (CSI) and conditional independence (CI). To
exploit CSI, we learn a single tree for each variable in the model.
Each tree can locally model and capture the CSI. Next, we
orient and remove edges from this potentially cyclic model by
computing the mutual information which allows for capturing
the CIs. The intuition is that these two independence metrics
have previously been explored in the context of causal learning
and combining them will allow for learning a robust causal
model. Our empirical evaluations in the standard data sets
clearly demonstrate that the proposed DN2CN method does
retrieve the true causal model in most of the domains. Most
importantly, it does not introduce a denser model than what
is necessary even if it means sacrificing the training likelihood.
Thus, a natural regularization is achieved by controlling the
depth of the trees and the orienting of edges as against other
information-theoretic methods, such as BIC that employs a
model complexity penalty.

There are several possible extensions of future work—
adapting and applying these models to real problems in
the lines of our previous work (Ramanan and Natarajan,
2019) is an important direction. Developing the theoretical
underpinnings between CSI and CI with causal models is
the next immediate direction. Converting the CSI from
our models to do calculus and employing them in the
context of learning from both observational and experimental
data is another important problem. Finally, allowing for
rich domain knowledge and inductive bias to guide the
learner to a better causal model is possibly the most
interesting direction.
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Research into Explainable Artificial Intelligence (XAI) has been increasing in recent years

as a response to the need for increased transparency and trust in AI. This is particularly

important as AI is used in sensitive domains with societal, ethical, and safety implications.

Work in XAI has primarily focused on Machine Learning (ML) for classification, decision,

or action, with detailed systematic reviews already undertaken. This review looks

to explore current approaches and limitations for XAI in the area of Reinforcement

Learning (RL). From 520 search results, 25 studies (including 5 snowball sampled) are

reviewed, highlighting visualization, query-based explanations, policy summarization,

human-in-the-loop collaboration, and verification as trends in this area. Limitations in

the studies are presented, particularly a lack of user studies, and the prevalence of

toy-examples and difficulties providing understandable explanations. Areas for future

study are identified, including immersive visualization, and symbolic representation.

Keywords: explainable AI, reinforcement learning, artificial intelligence, visualization, machine learning

INTRODUCTION

Explainable Artificial Intelligence (XAI) is a growing area of research and is quickly becoming
one of the more pertinent sub-topics of Artificial Intelligence (AI). AI systems are being
used in increasingly sensitive domains with potentially large-scale social, ethical, and safety
implications, with systems for autonomous driving, weather simulations, medical diagnosis,
behavior recognition, digital twins, facial recognition, business optimization, and security just to
name a few. With this increased sensitivity and increased ubiquity comes inevitable questions of
trust, bias, accountability, and process—i.e., how did the machine come to a certain conclusion?
(Glass et al., 2008). These concerns arise from the fact that, generally, the most popular and
potentially most powerful part of AI—Machine Learning (ML)—is essentially a black-box, with
data input into a trained neural network, which then outputs a classification, decision, or action.
The inner workings of these algorithms are a completemystery to the lay-person (usually the person
interacting with the AI). The algorithms can even be difficult for data scientists to understand or
interpret. While the architecture and mathematics involved are well-defined, very little is known
about how to interpret (let alone explain), the inner state of the neural network. Interaction with
such systems are fraught with disuse (failure to rely on reliable automation), and misuse (over
reliance on unreliable automation) (Pynadath et al., 2018).

This black-box scenario makes it difficult for end-users to trust the system they are interacting
with. When an AI system produces an unexpected output, this lack of trust often results in
skepticism and possibly even rejection on the part of the end-user. It is not clear if the result

69

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.550030
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.550030&domain=pdf&date_stamp=2021-05-20
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:t.bednarz@unsw.edu.au
https://doi.org/10.3389/frai.2021.550030
https://www.frontiersin.org/articles/10.3389/frai.2021.550030/full


Wells and Bednarz Explainable AI and Reinforcement Learning

is “correct” or as a result of some flaw or bias in the creation
of the AI system that led to the model being overfit on training
data not representative of wide range of examples in the real
world, or underfit, not sufficiently modeling the complexities
of the target environment. These errors may have considerable
side effects, such as unsafe resultant behaviors in factories due
to misclassification, unfair treatment of members of society,
unlawful actions, or financial impact on companies employing
AI solutions. Marcus and Davis (2019) describe a number of
these issues in their book Rebooting AI. They argue that current
approaches to AI are not “on a path to get us to AI that is safe,
smart, or reliable” (p. 23).

XAI research in the context of Machine Learning and
deep learning aims to look inside this black-box and extract
information or explanations as to why the algorithm came to the
conclusion or action that it did. In addition to providing tools to
assist with trust and accountability, XAI assists with debugging
and bias in Machine Learning. The inputs and outputs and
network design of Machine Learning algorithms are ultimately
still decided with human input (human-in-the loop), and as such
are often subject to human errors or bias. Explanations from
XAI enabled algorithms may uncover potential flaws or issues
with this design (e.g., are certain completely irrelevant features
in the input image becoming too much of a factor in outputs?).
XAI aims to tackle these problems, providing the end-user
with increased confidence, and increased trust in the machine.
Recent reviews into XAI have already been conducted, with the
most recent being Biran and Cotton (2017), and Miller et al.
(2017). These reviews focus on data-driven Machine Learning
explanations. Recently Anjomshoae et al. (2019) published a
systematic literature review on goal-driven explainable AI, which
encompassed Reinforcement Learning (RL), although the review
did not provide any specific commentary on approaches used
within that area. These reviews indicate that XAI is a growing
area of importance, and this is also reflected in a recent move by
Google to release a range of XAI tools.1 Furthering the need for
research in the area of XAI is the recent General Data Protection
Regulation in the EU, which has a provision for the right to
explanations (Carey, 2018).

In the broader ML space, the review of 23 articles by Miller
et al. (2017) determined that human behavioral experiments were
rare. Anjomshoae et al. (2019) reviewed 62 papers and found that
after text-style explanations, which were present in 47% of papers,
explanations in the form of visualization were the next most
common, seen in 21% of papers. Visualization presents a dynamic
and exploratory way of finding meaning from the ML black-box
algorithms. A considerable amount of work has already gone into
the concept of “saliency maps” which highlight areas of the input
image that were of importance to the outcome, see Adebayo et al.
(2018).

Following on from these previous reviews, the current work
aims to examine XAI within the scope of RL. RL agents
generally leverage a Markov Decision Process (MDP), whereby
at each timestep, an action is selected given a certain input
set of observations (state), to maximize a given reward. During

1Available online at: https://cloud.google.com/explainable-ai.

compute runs, the agent learns which actions result in higher
rewards (factoring in a discount factor for obtaining long-
term rewards, such as winning the game) through a carefully
moderated process of exploration and exploitation. Popularly, RL
has been used successfully by the DeepMind team to produce
agents capable of better than human-level performance in
complex games like GO (Silver et al., 2016), and a suite of Atari
games (Mnih et al., 2015).

In the next section, we will qualify the reasoning for selecting
RL as an area for further investigation in terms of XAI and
describe the guiding research questions of this work. Then, the
methodology used for the systematic literature review will be
described, and the results of the review will be presented.

BACKGROUND

This work investigates RL specifically due to the unique
challenges and potential benefits of XAI applied to the RL space.
The concept of XAI even in agent-based AI system has been
considered as early as 1994, in work by Johnson (1994) who
described an approach for querying an intelligent agent and
generating explanations. The system was domain-independent,
implemented for a simulated fighter-pilot agent. The agent
itself did not use for its approach, however there are several
similarities to current RL work, as the theory behind how an
explanation should be worded or generated remains the same.
The agent was able to explain a decision made by going back
to that point in time and “repeatedly and systematically” (p. 32)
modifying the situation state, and observing the different actions
the agent would take in order to form a mapping between states
and actions.

Benefits
As mentioned above, XAI aims to combat the issues of trust
and confidence in AI, a topic which is particularly important
when safety is a major factor. Applications such as autonomous
vehicles or robotics where the robot takes in observations of
the environment around it and performs actions where the
result could have an impact on safety are an area where trust
and accountability are pertinent (Araiza-Illan and Eder, 2019).
Determining why a robot took the action it did (and by extension
knowing what factors it considered) in a human-understandable
way plays a big part of building a trust that the robot is indeed
making intelligent and safe decisions. This could even lead to
building a rapport with the robot, making working with it
more efficient as their behaviors may become more predictable.
Diagnosing what went wrong when a robot or autonomous car
is involved in an incident would also benefit from XAI, where
we could query the machine about why it took actions in the
lead up to the incident, which would allow designers to not only
prevent further incidents, but help with accountability or possible
insurance or ethical claims (e.g., was the autonomous car at fault,
was there a fault in the decision making of the car, or was another
third party at fault?).

Another benefit is that RL agents often learn behaviors which
are unique and can identify new strategies or policies previously
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not thought of. A recent example of this was a game of hide-and-
seek where agents learned strategies to exploit the physics system
of the game to overcome what was intended by the developers to
be walls that could not be passed (Baker et al., 2019). Extracting
from the black box how these strategies were learned, or under
what circumstances these strategies were learned could result
in useful new knowledge for decision making or optimization.
As Stamper and Moore (2019) point out, analysis of agents
playing the Atari 2600 game Space Invaders exhibited similar
decision-making behaviors to expert human players (e.g., keeping
the invaders in a square formation, and destroying right-most
enemies first to slow down the rate of advancement), however in
other games investigated, the strategies varied more from human
play. Understanding and articulating these strategies may result
in new knowledge on how to optimally play these games, but
also enhance recommendation systems for informed decision
making. A quote by Zhuang et al. (2017) sums up the current
situation well: “[. . . ] people and computers can both play chess, it
is far from clear whether they do it the same way.”

Challenges
A challenge in providing XAI for RL is that it usually involves
a large number of decisions made over a period of time, often
aiming to provide the next action at real-time speeds. Compared
to standard ML techniques where decisions can happen in
isolation or are unrelated to each other, RL explanations generally
will need to encompass a set of actions that were related in some
way (e.g., outputting explanations such as “I did actions A,B,C to
avoid a penalty for Z”).

Another challenge is the fact that RL agents are generally
trained without using training data (with the exception of where
human-replay data is used, such as in Vinyals et al., 2017), and
instead learning is facilitated by a feedback loop (observations)
from performing actions within an environment. This makes
it challenging to generate human-readable explanations. While
the observation and action spaces may be labeled in sensible
ways, having no human-labeled training data linking actions and
observations makes it challenging to produce valid explanations.

Further adding to the difficulties in XAI, is that developing
an AI system that is explainable and transparent can be at odds
with companies that have explicit commercial interests which
they may not want exposed by overly verbose AI. It can also
raise issues around protecting their IP, maintaining a competitive
advantage, and the additional costs involved with implementing
XAI (Mohanty and Vyas, 2018).

METHODOLOGY AND RESEARCH
QUESTIONS

With XAI becoming increasingly important for a range of
reasons previously described, and work in this area beginning
to grow, it is important to take stock of the current approaches
in order to find similarities, themes, and avenues for further
research. As such, the guiding research questions for this
review are:

RQ1:What approaches exist for producing explainable output
for Reinforcement Learning?

RQ2: What are the limitations of studies in the area of XAI for
Reinforcement Learning?

It is worth taking a moment to clarify the meaning of
“explanation” and “explainability” in this paper. In the case
of a systematic literature review using these words as search
terms, search results will appear for a multitude of meanings
and interpretations of these words. For example, “explainability”
might refer to something whichmakes a systemmore transparent
or understandable. An “explanation” may refer to something
which describes the actions, decisions, or beliefs of an AI
system. “Explainablity” however may also refer to logging or
verifications, or an AI system that can be queried or visualized.
During the filtering process described in the next section,
no restrictions were placed on how the authors defined or
interpreted these terms.

Given these research questions, the following section describes
the methodology for searching the extant literature for
information to address them.

SELECTION OF LITERATURE

To examine the current state of the literature, a systematic
literature review using a methodology adapted from Kitchenham
et al. (2009) was performed. Searches were conducted on
the ACM, IEEExplorer, Science Direct, and Springer Link
digital libraries, using Boolean search queries, taking the term
“Reinforcement Learning” and combining it with the terms
“data visualization,” “information visualization,” “explanation,”
“explainable,” “explainable ai,” “XAI,” “black box,” “visual
analytics,” “hybrid analytics,” and “human in the loop.” The
full set of search term combinations can be found in
Supplementary Materials.

In addition, papers were filtered using the following criteria:

- recent paper: papers had to be published within the last 5 years
(i.e., since 2014 at time of writing);

- relevancy: papers had to be relevant to the topic of RL (papers
which spoke about general agent-based AI system or RL
from a human psychology perspective were excluded) and
explainability (i.e., papers which did not describe an approach
for explaining the actions or policy of an agent were excluded);

- accessibility: papers needed to be accessible via the portals
previously described;

- singularity: duplicate papers were excluded; and
- full paper: extended abstracts and other short papers

were excluded.

As Figure 1 illustrates, a total of 520 papers were gathered, which
was reduced to 404 after filtering out duplicate results using
the EndNote software “Find Duplicates” feature. The titles and
abstracts of these papers were reviewed for relevance to the
domain of RL and XAI, of which 69 were deemed relevant using
the relevancy measure described above. These papers were then
read fully to determine relevance to the domain. The remaining
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FIGURE 1 | Number of papers included in review after various stages of filtering.

FIGURE 2 | Categorization of papers by domain. Note that some papers were in multiple domains.

20 papers after this stage of filtering constitute the main analysis
of this paper.

The jump down from 69 to 20 may seem surprising, however
due to the search terms, a number of papers mentioned RL
in the body for purposes of describing AI systems generally
for the reader, or in some cases RL was used as the technique
for generating explanations for a different form of AI such as
classification. Such use of the term “Reinforcement Learning”
could not be determined until the full paper was examined.
Many filtered papers advertised frameworks or implementations
for XAI in ML in general and were picked up by the search
terms for RL as the papers described the broad spectrum of
Machine Learning which encompasses RL. However, these papers
ultimately just described typical classification problems instead.

In addition, 5 papers were added to the review, using a
snowball sampling technique (Greenhalgh and Peacock, 2005),
where if a relevant sounding paper was cited by a reviewed paper,
it was subsequently assessed, and if deemed relevant added to
the pool of papers for review (15 papers were examined during
this stage).

Before going into detail of some of the approaches for XAI in
RL, the following section explores at a high level the core themes
in the 25 papers reviewed in terms of domain and scope, in order
to paint a picture of the current state of the research space.

SUMMARY OF LITERATURE

Selected papers were categorized and analyzed based upon four
main topics: domain, publication type, year, and purpose. A full
summary table of the selected papers and information about each
is provided in Supplementary Materials.

Domain
Papers were categorized based upon the featured subject
domain(s) they focused on (either in their implementation,
or theoretical domain). It was possible for each paper to be
in multiple categories. The distribution of papers across the
categories is summarized in Figure 2, and expanded upon in
this section.

The majority of papers (16; 64.0%) focused their examples
on the domain of video games (particularly Atari games, given
recent popularity due to DeepMind’s success), however choice of
target game was generally quite broad spread, with the only game
utilized in more than one paper was Pac-Man, as illustrated in
Figure 3. Most common after this were examples using a basic
grid-world environment with a navigation task (5 papers), and
examples in robotics (4 papers).

The domain of networking tasks such as video bitrate
monitoring and cloud-based applications appeared in 2 papers.
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FIGURE 3 | Screenshots of the game-based applications in the studied papers. Where more than one paper used that game, the number of papers using the game

are shown in brackets.

An area that was expected to have greater representation was
autonomous vehicles (and this is validated by the mention of this
area of RL frequently in the reviewed papers), however this area
was the focus of only 2 papers.

Finally, one paper was written from a defense/military
perspective. It should be noted that only 6 papers attempted
to apply their implementation to multiple example situations,
however even in these cases, it was from within the same domain
(e.g., multiple types of games).

Publication Type
The primary outlet for the reviewed papers was conference
proceedings (16 papers), with only 3 papers published in journals.
Another 4 papers were from the open access repository arXiv,2

3 of which were found as part of the snowball sampling process

2Available online at: https://arxiv.org/.

described previously. One publication (Pynadath et al., 2018) was
a book chapter published in “Human and Machine Learning.”

Year
The majority of papers found were published in 2019 (15 papers),
while only 6 were published in 2018, and 4 in 2017 (see Figure 4).
This indicates that research into attempting produce explainable
RL agents is an area of considerable growth. As we will see, given
the sudden increase in publications, there is a reasonable amount
of cross-over between some streams of research, and ideally these
researchers may consolidate their work and progress together,
rather than in parallel, into the future.

Purpose/Scope
The reviewed papers presented a mixture of papers attempting
to establish a theory or model (6 papers), while others primarily
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FIGURE 4 | Distribution of surveyed papers by year, indicating an increase of

academic interest in this area.

TABLE 1 | A summary of the papers reviewed, categorized by purpose.

Purpose Papers

Human collaboration Amir et al. (2019), Hayes and Shah (2017), Huang

et al. (2019), Pynadath et al. (2018), Tabrez et al.

(2019), Tabrez and Hayes (2019), Ehsan et al. (2019)

Visualization Dao et al. (2018), Dethise et al. (2019), Iyer et al.

(2018), Joo and Kim (2019), Mishra et al. (2018),

Pan et al. (2019), Wang et al. (2018), Greydanus

et al. (2018), Yang et al. (2018).

Policy summarization Amir et al. (2019), Fukuchi et al. (2017a,b), Hayes

and Shah (2017), Lage et al. (2019), Madumal et al.

(2020), Sridharan and Meadows (2019), Stamper

and Moore (2019), Lyu et al. (2019), Verma et al.

(2018)

Query-based explanations Amir et al. (2019), Hayes and Shah (2017), Kazak

et al. (2019), Sridharan and Meadows (2019)

Verification Kazak et al. (2019), Dethise et al. (2019)

Note that a paper could have multiple purposes.

focused on introducing a new method for explainable RL
(18 papers).

The primary purpose or focus of the reviewed papers was
coded down to 5 core topics as shown in 5 (it was possible for
a paper to be assigned to multiple topics): human collaboration
(7 papers); visualization (9 papers); policy summarization (10
papers); query-based explanations (5 papers); and verification
(1 paper). This distribution of purposes is consistent with the
findings in the Anjomshoae et al. (2019) review, which found a
high number of visualization-based explanation systems.

Table 1 summarizes which category was determined for each
paper, and the distribution of papers across different domains is
presented in Figure 5. These topics are used to help structure the
following discussion section.

DISCUSSION

The following sections address each of the defined research
questions for this work.

RQ1: What Approaches Exist for Producing
Explainable Output for Reinforcement
Learning?
Human Collaboration
Seven papers discussed approaches that were inherently human-
based in their approaches.

Pynadath et al. (2018) tested human interaction with an agent
while manipulating the perceived ability of the agent by altering
the explanations it gave. They explored the design of explanations
for Partially Observable Markov Decision Process (POMDP)-
based RL agents. The authors mapped different components of
the POMDP model to the Situational Awareness-based Agent
Transparency (SAT) model in order to determine a set of
“explanation content” to assist with situational awareness in a
military setting. The SAT was comprised of three levels:

• The agent’s actions and plans;
• The agent’s reasoning process, and;
• The agent’s predicated outcomes (optionally

including uncertainties).

The researchers were able to manipulate the ability of the agent
in their experiments for human-machine team missions. They
evaluated an explainable robot agent which would navigate
around an online 3D environment. The robot used a scanner
to recommend to the human team members what they should
do next (enter the building, put on armor etc.) Example
explanations for this agent included “I believe that there
are no threats in the market square” for beliefs about the
current state of the world, or “my image processing will fail
to detect armed gunmen 30% of the time” as an explanation
of the current state of the observation model the agent
was using.

The authors evaluated differing levels of explanation and
found that in general they could potentially “improve task
performance, build transparency, and foster trust relationships.”
Interestingly, the authors noted that explanations which resulted
in users being uncertain about what to do next were considered
just as ineffective as when no explanations were given. Ability
of the robot was tested as well. The high-ability robot
got predictions 100% correct, resulting in participants not
questioning the robots’ decisions (potentially leading those
participants to ignore some of the explanation content as the
robot “got it right anyway”). This is a prominent example of
overreliance, mentioned earlier.

In a similar vein as the work by Pynadath et al. (2018)
and Sridharan and Meadows (2019) contributed a theory of
how to enable robots to provide explanatory descriptions of its
decisions based upon its beliefs and experiences. Building upon
existing work into scientific explanation, the theory encompassed
3 core components:

1) How to represent, reason with, and learn knowledge to
support explanations.

2) How to characterize explanations in terms of axes of
abstraction, specificity, and verbosity.

3) How to construct explanations.

Frontiers in Artificial Intelligence | www.frontiersin.org 6 May 2021 | Volume 4 | Article 55003074

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Wells and Bednarz Explainable AI and Reinforcement Learning

FIGURE 5 | Categorization of papers by scope. Note that some papers were multi-faceted and covered multiple categories.

FIGURE 6 | Example visualizations from DQNVis, showing (a,b) episode duration, and (c) actions taken over time and how experts identified these as “hesitating” and

“repeating” behaviors which were non-optimal (from Wang et al., 2018, p. 294, reproduced with permission).

The authors went on to describe an architecture which
implemented this theory in a cross-domain manner. The
architecture itself operates on two levels, first reasoning using
commonsense domain knowledge at a high-level a plan of
actions. The system utilized RL for the actions, working
alongside Answer Set Prolog (ASP) reasoning of object
constants, domain attributes, and axioms based upon state-
action-reward combinations (Sridharan and Meadows, 2019).
The ASP reasoning was used for planning and diagnostics,

and to trigger the learning (using RL) of new concepts when
something unknown is encountered (Sridharan and Meadows,
2018). When producing explanations, the architecture extracted
words and phrases from a human querymatching a template, and
based upon human-controlled values effecting the abstraction,
specificity, and verbosity of the explanation, reasoned based
upon changes in beliefs about the environment. The two
evaluation tasks used weremoving objects to a target location and
following a recipe.
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Tabrez and Hayes (2019) described a framework called RARE
(Reward Augmentation and Repair through Explanation) which
also extended the POMDP model. Using this framework, the RL
agent was able to infer based upon a human’s behavior the most
likely reward function they were using and communicate to the
user important differences or missing information in the human’s
reward function. The agent autonomously provided “actionable
statements,” which the authors tested in a controlled experiment
on a Sudoku-style game. The control group were given an agent
who would alert users who were about to make a mistake, and
the treatment group had an agent which would indicate that a
move would result in failure, and explain to them which rules
of the game would be broken. Participants found the agent with
explanations to be more helpful, useful, and intelligent. The
authors however highlighted the fact that the approach does not
scale. Statements used a template in the form of: “If you perform
{describe action}, you will fail the task in state {describe state}
because of {describe reward function difference}.”

Looking at autonomous vehicles as an example, Pan et al.
(2019), contributed Semantic Predictive Control (SPC) which
learns to “predict the visual semantics of future states and
possible events based upon visual inputs and an inferred
sequence of future actions” (p. 3203). Visual semantics in this case
refers to object detection, and the authors suggested that these
predicted semantics can provide a visual explanation of the RL
process. The paper, however, provided little insight into how it
addresses the problem of XAI.

Another work in the autonomous driving domain, Huang
et al. (2019) compared approximate-inference and exact-
inference approaches in an attempt to leverage the way humans
make inferences about how a RL agent operates based upon
examples of optimal behavior. Their work compared different
approximate-inference models in a user study, where users were
shown example behaviors. Users were tasked with selecting from
a range of trajectories which one they thought the autonomous
driver was most likely to take. The authors’ findings suggested
that an approximate-inference model using a Euclidean-based
approach performed better than algorithmic teaching.

Finally, work by Ehsan et al. (2019) presented a novel
approach for generating rationales (the authors note a distinction
between this and explanations, indicating that rationales do
not need to explain the inner workings of the underlying
model). The method involves conducting a modified think-
aloud user study of the target application (in this case, the
game Frogger) where participants are prompted to verbally
indicate their rationale for each action they take. These
rationales (and the associated observation-action pairs in
the game) are then cleansed and parsed before being fed
through an encoder-decoder network to facilitate natural
language generation of actions taken by a RL agent. The
authors conducted user studies on the generated explanations
compared to random and compared to pre-prepared human
explanations. Generated explanations performed better than
randomly generated explanations in all factors tested (confidence,
human-likeness, adequate justification, and understandability),
and performed similarly to the pre-prepared explanations, but
did not beat it. A limitation of this work was that the system

was designed for turn-based or distinct-step environments, and
the authors are continuing their work to look at continuous
environments. A major challenge in this is that data collection of
rationales during the think-aloud stage is constrained to be after
each action taken and would be an arduous process for a human
for games larger than Frogger.

Visualization
Nine of the papers reviewed focused on graphical visualization of
the agent learning process. Some remarkable visualizations have
already been produced, however as discussed later, limitations
exist in the ability of these visualizations to fully explain an agent’s
behavior or policy.

Wang et al. (2018) provided a comprehensive yet highly
application-specific visualization tool for Deep-Q Reinforcement
Learning Networks called DQNViz, with the goal of identifying
and extracting typical action/movement/reward patterns of
agents. While DQNVis was scoped to the Atari Breakout game
and was focused primarily on objectives relating to improving
the training of an agent during development, the tool shows
the power of visualization techniques to gain insight into the
behaviors of an agent.

The system allowed behaviors to be identified and labeled
using tools, such as regular expressions, principal component
analysis, dynamic time warping, and hierarchical clustering.
Core behaviors in Breakout that the agent went through during
training included repeating, hesitating, digging, and bouncing (see
Figure 6). The tool allowed users to investigate certain moments
and see what the agent did at that time and highlight which
states in each layer of the convolutional neural network were
most activated. Coupled with video output surrounding certain
behaviors, experts were able to explore what caused bad behaviors
like repetition or hesitation.

Testing so far on DQNViz has been conducted only with deep
learning experts who were involved in the initial collaborative
process of building the system, and so the usability for non-
experts remains to be seen.

Region Sensitive Rainbow (RS-Rainbow) was a visualization
method contributed by Yang et al. (2018). RS-Rainbow used
a “region-sensitive module” (p. 1) added in after the standard
image convolution layers of a deep neural network, which
looks for distinctive patterns or objects, and this representation
replaces the original representation of the screen as the state
used by the deep Q network agent. The authors provided three
alternative approaches for visualizing the important regions: a
weights-overlay, a soft saliency mask, and a binary saliency mask.
Tested on a range of Atari games, the agent out-performed
state-of-the-art approaches for Deep RL. The authors have not
yet studied to what extent the visualization aids in human
understanding in non-experts and ability to debug agents.

Greydanus et al. (2018) also presented a visualization
technique tested on Atari games. They contributed perturbation-
based saliency, to artificially reduce the RL agent’s certainty about
specific features (e.g., the location of the ball in the Atari game
Pong), and its effect on the agent’s policy. Using this, the authors
could determine the regions of an image which had the most
effect. The authors used the visualization to understand “strong”
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policies where agents perform dominant strategies (such as
“tunneling” in Breakout), and to observe how attention changes
while the agent learns. The study found that the visualization
helped non-expert users with identify agents with overfitted
models. Finally, the study showed how visualization can aid
in debugging, showing examples of Atari games where human
performance was not yet attained. In MsPacman, it was found
that the agent was not tracking the ghosts, and in Frostbite,
the agent was only tracking the player and goal, and not the
destination platforms.

A similar approach to highlighting areas of an image that
were relevant to a decision was presented by Joo and Kim
(2019) who applied the Gradient-weighted Class Activation
Mapping (Grad-CAM) approach, to Asynchronous Advantage
Actor-Critic (A3C) deep RL in the context of Atari Games. The
result was effectively a heatmap indicating which parts of the
input image affected the predicted action.

A more complex approach to visualizing the focus of a RL
agent was presented by Iyer et al. (2018). The authors claimed
their system could “automatically produce visualization[s] of
their state and behavior that is intelligible to humans.” Developed
within the domain of Atari games, the authors used template

matching to detect objects in the screen input to produce a
number of “object channels” (one for each detected object), as
extra input into the convolutional neural network used by the
RL agent. The authors also described an approach to produce
a “pixel saliency map,” where pixels are ranked in terms of
their contribution toward the chosen action in that state (see
Figure 7). As the pixel map is generally not human intelligible
(i.e., it is difficult to interpret due to noise and other factors),
the approach was combined with the previously mentioned
object detection, to produce an “object saliency map” which is
easier for humans to understand. The authors tested the system
using human experiments, where participants were tasked with
generating explanations of the behavior of a Pacman agent, and
predict the next action. Participants assisted by the object salience
maps performed significantly better on the tasks.

Sparse Bayesian Reinforcement Learning (SBRL; Lee, 2017)
can explain which relevant data samples influenced the agent’s
learning. An extension to SBRL by Mishra et al. (2018) was V-
SBRL which was applied to vision-based RL agents. The system
maintains snapshot storage to store important past experiences.
The authors presented an approach to visualizing snapshots
at various important locations (as determined by the SBRL

FIGURE 7 | Screenshots (left) and their matching object saliency maps (right) in the game Ms Pacman (from Iyer et al., 2018, p. 148, reproduced with permission).
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FIGURE 8 | Summarized policies for Montezuma’s Revenge (left), and the “taxi” problem (right), (from Lyu et al. (2019), p. 2975, reproduced with permission).

algorithm), by showing state-action pairs. In the context of a
navigation task, an interesting visualization was provided by
overlaying the snapshots on a Q contour plot, allowing designers
to see where the agent had confidence in its actions and where
it did not. V-SBRL may prove to be useful in continuous
environments, where the number of important moments may
be high, but can be compressed down by finding similar state-
action pairs within the continuous space. In another paper from
the same authorship team, Dao et al. (2018) applied the approach
to the Atari games Pong and Ms Pacman.

Pan et al. (2019) as previously described provided visual
explanations in the form of object detection.

Policy Summarization
Ten papers provided approaches to in some way summarize the
policy that a RL agent has learned. While a policy summary
doesn’t explain an individual action, it can help provide context
for why an action was taken, and more broadly why an agent
makes the overall set of actions it makes.

Fukuchi et al. (2017a) described the Instruction-based
Behavior Explanation (IBE) approach which allows an agent to
announce their future behavior. To accomplish this, the agent
leveraged Interactive RL where experts provide instructions in
real-time to beginner agents. The instructions are then re-used
by the system to generate natural-language explanations. Further
work by Fukuchi et al. (2017b) then expanded on this to a
situation where an agent dynamically changed policy.

Hayes and Shah (2017) used code annotations to give human-
readable labels to functions representing actions and variables
representing state space, and then used a separate Markov
Decision Process (MDP) to construct a model of the domain and
policy of the control software itself. The approach is compatible
not only with RL, but also with hard-coded conditional logic
applications too.

The authors tested their approach on three different domains,
a grid-world delivery task, the traditional Cart Pole task, and an

FIGURE 9 | Plot of steering actions generated by standard DRL agent vs. the

summarized NDPS policy, which resulted in much smoother steering

movements (from Verma et al., 2018, p. 7, reproduced with permission).

inspection robot task. Generated policies were similar in nature
to the expert-written policies. The authors suggested that the
state space and action space of the learned domain model needs
to be constrained in order for the approach to be effective, and
to prevent combinatory explosion. It remains to be seen if the
approach will work on environments more complex than the
Cart Pole.

Amir et al. (2019) proposed a conceptual framework for
strategy summarization. The framework consisted of three
core components:

1) intelligent states extraction: which given the agent’s
strategy/policy as input, outputs a prioritized subset of
states to be included in the summary—the main challenge
being determining what the desirable characteristics of a state
are for use in a summary;
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2) world state representation: which involves the summarization
of potentially complex world states (i.e., an agent may consider
a large number of variables with different weights for certain
decisions); and

3) the strategy summary interface: which is concerned with
a usable and appropriate user interface for exploration of
the summary, which is guided by both the user and the
system itself.

For each of these components, the authors provided potential
research directions for addressing these problems in the RL
space, however this is the only paper reviewed which did
not include an implementation which was tested alongside the
theoretical framework.

Recent work by Madumal et al. (2020), implemented
explanations in a RL agent playing StarCraft II, under the premise
that humans would prefer causal models of explanation. The
agent was able to answer “counterfactual” levels of explanations,
i.e., “why” questions. The authors introduced an approach where
a causal graph was generated in the form of a directed acyclic
graph, where state variables and rewards were nodes, and actions
being edges (assuming that an action caused a transition between
different states). Using structural causal equations, on the causal
graph, an explanation was generated.

The explainable agent was tested on 120 participants. To
test participants understanding of the explanations, they were
tasked with first watching the agent play StarCraft II and
explain its actions, followed by watching an agent play and
predict its next action. The agent was found to have statistically
significantly higher levels of satisfaction and understanding
of actions taken than a non-explainable agent. Interestingly
however, no significant difference in levels of trust was found, a
fact that the author attributed to the short interaction time with
the agent.

A set of causal rules was also used in similar work
by Lyu et al. (2019) who proposed the Symbolic Deep
Reinforcement Learning (SDRL) framework, aimed at handling
high-dimensional sensory inputs. The system used symbolic
planning as a high-level technique for structuring the learning
with a symbolic representation provided by an expert. The
high-level symbolic planner had the goal of maximizing some
“intrinsic” reward of formulating the most optimal “plan”
(where a plan is a series of learned sub-tasks). DRL was used
at the “task/action” level to learn low-level control policies,
operating to maximize what the authors call an “extrinsic”
reward. The authors tested their new approach on the classic
“taxi” Hierarchical Reinforcement Learning (HRL) task, and
the Atari game Montezuma’s Revenge (see Figure 8). While the
system contributed gains in terms of data efficiency, of interest
to this paper is the use of symbolic representation and the high-
level planner. Such representation of the environment and action
space and abstraction at a high-level can be useful in the pursuit
of XAI as it may open up opportunities to (with careful design)
provide more interpretable systems.

Verma et al. (2018) described a framework for generating
agent policies called Programmatically Interpretable
Reinforcement Learning (PIRL), which used a high-level,

domain-specific programming language, similar to the symbolic
representations mentioned previously. The system used DRL
for initial learning, and then a novel search algorithm called
Neurally Directed Program Search (NDPS) to search over the
DRL with a technique inspired by imitation learning to produce
a model in the symbolic representation. The resulting model was
described by the authors as “human readable source code” (p.
9), however no tests have yet been conducted on how well users
can understand it, or how useful it is for debugging. The authors
indicated that the resulting policy was smoother than the one
generated by DRL—in the case of the test domain of a racing
game, the steering output was much smoother, albeit with slower
lap times (see Figure 9).

Lage et al. (2019) reported on different approaches for agent
policy summarization, using Inverse Reinforcement Learning
and Imitation learning approaches. Tested in three different
domains, the authors found that the policy of an agent was
most accurately reproduced when using the same model that was
used for extraction as was used for reconstruction. Stamper and
Moore (2019) compared policies generated by machines to those
of humans. Using post-hoc human inspection, they analyzed
data from a DQN RL agent, using t-SNE embedding. They
found that the agent playing Space Invaders exhibited similar
decision-making behaviors to expert human players (e.g., keeping
the invaders in a square formation, and destroying right-most
enemies first to slow down the rate of advancement). The work
is still in its early stages, and the authors plan to automate the
strategy identification process.

The previously described work by Sridharan and Meadows
(2019) also provided for a summary of learned policy in their
approach at different levels of abstraction. These summaries were
able to be queried by the user, as explained in the next section.

Query-Based Explanations
Five papers described an interactive query-based approach to
extracting explanations from a RL agent. Hayes and Shah (2017)
went into the most detail. Broadly, their system conducted 4
core actions:

1) identify the question based upon a template approach, e.g.,
“When do you do {action}?”;

2) resolve states [using the template from (1), determine the
states that are relevant to the question];

3) summarize attributes (determine common attributes across
the resolved states); and

4) compose a summary in a natural language form (using
“communicable predicates”).

These steps integrated with the code annotations previously
described for this system.

The work by Madumal et al. (2020) featured a query-based RL
agent playing Starcraft II. The agent focused on handling why?
and why not? questions. An example question was provided by
the author, “Why not build barracks?”, to which the agent replied,
“Because it is more desirable to do action build_supply_depot to
have more supply depots as the goal is to have more destroyed
units and destroyed buildings.” This is a great example of a RL
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agent being able to answer questions about its action, however it
remains to be seen how well this approach will scale.

Kazak et al. (2019) presented an approach which allowed
experts to query a RL agent in order to perform verification tasks.
In their tests, queries took over 40 s to complete. Their work is
described in more detail in the verification section, as that was
the primary purpose of that work.

Previously described work on policy summarization by
Amir et al. (2019) and Sridharan and Meadows (2019), both
highlighted the importance of being able to further query
summarized policies in order to prevent initial cognitive load on
the user by presenting a policy that was too complex or verbose.
The query functionality in Sridharan and Meadows (2019) was
able to be customized to different levels of abstraction, specificity,
and verbosity, but this was further guided by the ASP-based
architecture they used.

Verification
A theme which was found within two reviewed papers was that
of verification. Verification is an area of importance to RL for a
number of reasons, not least due to the impact on safety it can
have. As Fulton and Platzer (2018) point out, formal verification
allows us to detect discrepancies betweenmodels and the physical
system being controlled, which could lead to accidents.

Acknowledging the non-explainability of RL systems, Kazak
et al. (2019) suggested that verifying that systems adhere to
specific behaviors may be a good alternative to verifying that
they adhere to exact values from a model. They presented
an approach called Verily, which checks that the examined
system satisfies the pre-defined requirements for that system by
examining all possible states the agent could be in, and using
the formal verification approach Marabou. The system identifies
“undesirable” sequences using bounded model checking queries
of the state space. Of interest to this review is that when a
system is found to not meet the requirements, a counter example
is generated that explains a scenario in which the system fails.
The authors tested this approach on three case studies within a
networking/cloud computing domain, providing verification that
the RL systems employed were conducting desired behaviors and
avoiding poor outcomes (e.g., verifying that an adaptive video
streaming system was correctly choosing between high- or low-
quality video based upon network conditions). The impact of
Verily on the trust relationship between humans and the systems
remains to be tested, as does the scalability of this approach since
it operates on all possible states.

Similar to the Kazak et al. study was work by Dethise et al.
(2019), also in the domain of RL for networking problems.
They looked at using interpretability tools to identify unwanted
and anomalous behaviors in trained models. The system in
question was Pensieve, an adaptive bit rate selector, common in
video streaming services. The authors analyzed the relationship
between data throughput and decisions made by the agent.
Using simple visualization techniques, they showed that the
agent never chose certain bandwidths for users (despite there
being no bias present in the training data). Further analysis
revealed that the agent preferred to multiplex between higher
and lower bitrates when the average available bitrate was one of

the identified ignored bitrates. The authors also analyzed which
features contributed the most to decisions, finding that the most
highly weighted feature was the previous bit rate. This paper used
domain knowledge to lead a guided exploration of the inputs of a
relatively simple RL agent, however some of the approaches and
visualizations presented may be of use in other areas.

RQ2: What Are the Limitations of Studies in
the Area of XAI for Reinforcement
Learning?
In reviewing the collected papers, a number of common
limitations were identified, particularly in the use of “toy
examples,” a lack of new algorithms, lack of user testing,
complexity of explanations, basic visualizations, and lack of
open-sourced code. The following sections discuss in more detail
the various common limitations.

Use of Toy Examples, Specific Applications, and

Limited Scalability
Given the early stages of XAI for RL research, all papers reviewed
presented effectively “toy” examples, or case studies which were
deliberately scoped to smaller examples. In most cases this was
done to avoid the combinatory explosion problem in which
where state- and action-space grow, so do the number of possible
combinations of states and actions. An example of this was
Hayes and Shah (2017) who scoped their work to the basic Cart
Pole environment. Similarly the Tabrez and Hayes (2019) paper
focused on a grid-world example.

Many authors indicated limitations in scaling the approach
to more complex domains or explanations (with the exception
of Sridharan and Meadows, 2019, who indicated that a strong
contribution of their work was that their approach would scale).
Sixteen of the papers reviewed were either agents within video
games or were tested with video game problems, and surprisingly
few were on more real-world applications such as autonomous
driving or robotics. Examples of this include Ehsan et al. (2019)
who provide an interesting example but is highly scoped to
the Frogger game, and Madumal et al. (2020) who looked at
Starcraft II. While this is naturally following on from the success
of DeepMind, and video game problems provide for challenging
RL tasks, there is an opportunity for more work on applications
outside of this domain.

Focus on Modification of Existing Algorithms
Papers examined in this review described RL approaches or
visualization techniques to augment or accompany existing RL
algorithms. There is an opportunity in this area to design RL
algorithms with explainability in mind. Symbolic representation
can be a step toward allowing for inherently explainable and
verifiable agents.

Lack of User Testing
A major limitation of the studies presented in this review
is that many approaches were either not tested with users
(17 papers), or when they did, limited details of the testing
were published, failing to describe where the participants were
recruited from, how many were recruited, or if the participants
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were knowledgeable in Machine Learning (Pynadath et al., 2018;
Tabrez and Hayes, 2019; Tabrez et al., 2019). Participant counts
varied greatly, with one paper using 3 experts (Wang et al., 2018),
others with students (Iyer et al., 2018), n = 40; and Greydanus
et al. (2018), n = 31, and three recruiting using Amazon
Mechanical Turk3 (Huang et al., 2019, n = 191; Madumal et al.,
2020, n= 120; and Ehsan et al., 2019, n= 65 and n= 60).

This lack of user testing across the reviewed papers is
consistent with the findings in the Miller et al. (2017) review of
XAI in Machine Learning.

Explanation Presentation
In some cases, implementations provided too much information
for the human participant, or required significant additional
knowledge from the human team member, making these
approaches unsuitable for use by laypeople or even
knowledgeable domain experts. This finding is consistent
with the survey paper by Miller et al. (2017) who found that
there is very little research in the XAI space on leverages existing
work on how people “generate, select, present, and evaluate”
(p. 4) explanations, such as the work by Lombrozo (2007)
which describes how people prefer simpler and more general
explanations over specific and more likely explanations.

In the papers focusing on visualization, most expanded on
existing techniques of pixel saliency which have successfully been
used for image classification (e.g., Greydanus et al., 2018; Iyer
et al., 2018; Yang et al., 2018). RL problems happening over time
may need more complex visualization techniques to capture the
temporal dimension. Other forms of visualization presented were
primarily 2D graphs (e.g., DQNVis, Wang et al., 2018), however
these solutions may struggle to scale and to be interpretable in
more complex domains given the large amount of data involved
network design.

The majority of papers with user studies presented
explanations or visualizations palatable only to experts. Further
research could look at providing explainable systems targeted at
laypeople or people more likely to be working with the agent,
rather than those with a background in artificial intelligence.
Symbolic representation was present in a number of papers in
this review (e.g., Verma et al., 2018; Lyu et al., 2019). Future
research could consider alternatives to text representation of
these to provide more visceral explanations, such as annotations
in the virtual environment. Similarly, visualization techniques
presented in the papers in this review are a good start (e.g.,
DQNVis, Wang et al., 2018), however the toolkits provided
may be enhanced by the addition of visualization techniques
better designed for handling the temporal dimension of RL
(such as the Immersive Analytics Toolkit by Cordeil et al. (2019)
or TensorBoard graphs4), as well as multi-modal, immersive
forms of visualization such as virtual or augmented reality to
better explore the complex data structures of neural networks
(Marriott et al., 2018).

3Available online at: https://www.mturk.com/.
4Available online at: https://www.tensorflow.org/tensorboard/graphs.

Lack of Open-Source Code
Finally, only four papers provided the reader with a link to the
open-source repository of their code (Greydanus et al., 2018;
Yang et al., 2018; Dethise et al., 2019; Sridharan and Meadows,
2019). This lack of availability of code could be as the result of
many things, but we argue that given the toy example nature
of the work previously described, that some authors didn’t
find utility in providing code online. Additionally, intellectual
property issues can sometimes arise, making it not possible
to publish code in an open-source matter. This is despite the
potential benefits for the academic community of shared, open-
source code.

CONCLUSION

The area of XAI is of growing importance as Machine Learning
techniques become commonplace, and there are important
issues surrounding ethics, trust, transparency, and safety to be
considered. This review has explored the extant literature on XAI
within the scope of RL. We have shown that work in this area
is still in its early stages but growing in prevalence and impact
it can make. Clear trends are appearing in terms within the area
with researchers focusing on human collaboration, visualization
techniques, whole-of-policy summarization explanations, query-
based explanations, and verification approaches.

This paper has described current approaches, while also
identifying a range of limitations in this field of research,
primarily finding a lack of detail when describing human
experiments, limited outcomes in terms of scalability and level
of comprehension of explanations for non-expert users, and
under-use of more advanced visualization techniques such as
multi-modal displays and immersive visualization. To truly break
through the black box of RL, a strong combination of well-
articulated explanations coupled with advanced visualization
techniques will be essential tools for Machine Learning experts
and users alike.
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