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Editorial on the Research Topic

Novel Strategies for Anti-Tumor Vaccines

The old dream of tumor immunologists is the construction of efficient anti-tumor vaccines to
fight cancer. Anti-tumor vaccine strategies are necessarily focused, however, on patients who are
already affected by the pathology in which the tumor not only has eluded the host initial immune
response but often further creates suppressive mechanisms that keep counteracting the action of
the immune system.

This Research Topic was intended to focus on several aspects of anti-tumor vaccinology and
particularly on ways to increase the potency of anti-tumor vaccines by acting both on facilitating
tumor antigen selection and presentation to cells of adaptive immunity and on reducing the effect
of suppressive mechanisms on these immune responses. We are convinced, however, that to fight
cancer single immune-based approaches cannot stand alone and thus vaccine approaches need to
be complemented by other immune approaches.

Identification of the optimal repertoire of tumor antigens, in particular neoantigens, for the
best use in anti-tumor vaccination is extensively discussed by Garcia-Garijo et al., who provide an
overview of the existing strategies to identify neoantigens and to evaluate their immunogenicity.
Indeed, only a small fraction of all tumor somatic non-synonymous mutations (NSM) identified
represent bona fide immunogenic neoantigens, and even fewer mediate tumor rejection. Thus, the
impact of neoantigens for vaccine purposes may be overestimated (1). A rich source of tumor
antigens that are non-mutated but still highly tumor specific comes from analysis of the HLA
ligandome landscape of tumors. To complement these studies, Fennemann et al. describe how
personalized tumor vaccines containing multiple neoantigens can broaden and enhance the anti-
tumor immune response. They also focus on the issue of the intratumor mutational landscape
containing different tumor cell subclones, temporal and spatial diversity of neoantigen presentation
and burden, and the relation to tumor immunogenicity, all parameters to be taken into account to
improve clinical efficacy of personalized tumor vaccines.

The use of embryonic and pluripotent stem cells for the identification of additional suitable
antigens to induce an optimal anti-tumor response are described by Ouyang et al. Approaches that
combine an autologous induced pluripotent stem cells (iPSC) vaccine with an immune adjuvant

5
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have demonstrated great promise to elicit potent anti-tumor
responses for cancer treatment. Insights on future directions are
described by the authors.

Targeting tumor-associated antigens with specific antibodies
in association with stimulating cytokines in novel formulations
can be beneficial particularly in case of neoplastic diseases
characterized by the pronounced expression of these antigens as
it is the case of the unique tumor-associated form of MUC1 in
pancreatic ductal carcinoma (PDA) described by Dreau et al..
Interestingly, the treatment results in infiltration of cells that
can mediate ADCC function of phagocytes and reduction of
suppressive regulatory cells, stressing the fact that effective anti-
tumor treatment can also include a drastic modification of the
tumor microenvironment.

Mimicking tumor antigens by approaches of anti-idiotype
responses is revisited by Kohler et al.. They discuss advantages
and limitations of this approach and explain how this old/novel
strategy can be adapted in Biotech-standard production of
therapeutic antibodies. As all nominal antigens, tumor antigens
become immunogenic only if appropriately processed and
presented by antigen presenting cells (APC). A novel therapeutic
strategy of combining personalized vaccines in combination
with standard therapy and anti-PD1 checkpoint inhibitors
is proposed by Bassani-Sternberg et al. as a Phase1b study
in resected pancreatic adenocarcinoma (PDAC) patients. The
vaccine platform is based on autologous dendritic cells (DCs)
loaded with mutated neoantigens and tumor-specific antigens
identified through their original proteo-genomics antigen
discovery pipeline. The addition of nivolumab to boost and
maintain the vaccine effect underscores once more the belief that
multiple immunological approaches should be used for optimal
triggering and maintenance of the anti-tumor immune response.

Ameliorating and/or selecting the optimal DC subpopulation
to present tumor antigens are discussed also by Zeng et al. who
focus on a new type of DC, designated CD137 ligand-induced
DC (CD137L-DCs), that induce strong cytotoxic T cell responses.
They show that superior potency of CD137L-DCs in APC activity
compared to other types of DCs is due to their intrinsic increased
Akt-driven glycolysis, thus suggesting that Akt-driven glycolysis
could be a therapeutic target to manipulate the function of
CD137L-DCs for better clinical efficacy.

Increasing tumor antigen availability and T cell priming
are crucial parameters for the efficient response to anti-cancer
vaccines. Accolla et al. reviewed their work on tumor cells
genetically modified by transfection with the MHC class II
transactivator CIITA. These modified tumor cells can not only
process and present antigens to naïve Th cells but they can also
prime virgin tumor specific T cells. Their experimental approach
has been extended to isolate MHC-II-bound relevant tumor
peptides to formulate novel multipeptide vaccines (MHC-I +

MHC-II- bound) against human hepatocarcinoma, presently in
clinical trial1.

Alternative procedures of tumor antigen presentation and
T cell priming are also discussed by Schluck et al. who
concentrate on artificial APC methods employing biomaterials,

1http://www.hepavac.eu.

highly promising tools to activate T cells and evoke robust in vitro
and in vivo immune responses. In this perspective, they presented
an overview of molecular cues that could be used to selectively
expand T cell subsets that are beneficial for strong anti-tumor
immune responses.

Ways to facilitate triggering of anti-tumor immune
response in vivo have been also analyzed by Loeffler et al.
who studied the immune response of patients undergoing
radio-frequency ablation (RFA) of liver metastasis from
colorectal cancers. RFA induced and/or boosted T cell
responses specific for individual tumor antigens were
frequently detectable, but not sufficient for the rejection of
established tumors, indicating once more that combination
therapies, such as immune checkpoint inhibitors should
be considered.

Oncolytic virus (OV) therapy is also becoming an
interesting strategy not only to treat but also to trigger
and/or increase the anti-tumor immune response for
vaccination purposes as Marchini et al. summarized
in their review. They also provide information about
OV-mediated immune conversion of the tumor
microenvironment. As a case study they focus on the rodent
protoparvovirus H-1PV and its dual role as an oncolytic and
immunomodulatory agent.

Construction of therapeutic vaccines against tumors must
take into account reduced or loss of MHC-I expression in
tumor cells as an important mechanism of immune escape.
Abdelaziz et al. stress this point and present intriguing new
data on unexpected block of MHC-I-restricted tumor antigen
presentation without reduction of cell surface expression of
MHC-I molecule by using a Human Cytomegalovirus (HCMV)-
based vector including a HPV E6/E7 fusion protein in a
murine glioblastoma model. The molecular mechanism of lack
of MHC-I presentation is not fully clear but it seems to
correlate with defects of proteasome function generated by
the HCMV vector. Of course this should be taken in serious
considerations when approaches of tumor peptide vaccination
using HCMV as host for gene sequences of tumor peptides
are used.

In conclusion, we are confident that this Research
Topic will help to better delineate the past and present
problems related to the efficacy of anti-tumor vaccines
and, based on this background, develop new ideas and
strategies to improve their construction and efficacy
for tomorrow.
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The promise of idiotype-based therapeutics has been disappointing forcing a new look at

the concept and its potential to generate an effective approach for immunotherapy. Here,

the idiotype network theory is revisited with regard to the development of efficacious

anti-idiotype vaccines. The experience of polyclonal anti-Idiotype reagents in animal

models as well as an understanding of the immune response in humans lends to

the proposition that polyclonal anti-Idiotype vaccines will be more effective compared

to monoclonal-based anti-Idiotype vaccines. This novel strategy can be adapted in

Biotech-standard production of therapeutic antibodies.

Keywords: idiotype, polyclonal, vaccines, polyreactive, multi-epitope binding, therapeutic, mimetic

1. INTRODUCTION

The strategy of using anti-idiotype (anti-Id) antibodies as surrogate antigens stems from the
Idiotype cascade proposed by Niels Jerne (1). Accordingly, anti-Id antibodies were originally
described as Ab2α and Ab2β, whereby the former does not block antigen binding and the latter
can inhibit binding of the corresponding Ab1 to its antigen. This lent to the conclusion that Ab2β
mimics structurally the antigen for Ab1. The concept and its experimental use have been extensively
reviewed, (2–5). Noted advantages of using anti-Ids over nominal antigens as therapeutic vaccines
include difficulties to produce vaccines containing non-protein antigens. Anti-Ids can be produced
that mimic lipid, carbohydrate or nucleic acid epitopes or even drugs. Tolerance to antigens is a
major hurdle in vaccine development. Antibody-B Cell Receptor binding occurs at multiple sites,
while antigen strictly binds to Complementary Determining Regions (CDRs) of antibodies. This
allows stimulation of a broader determinate targeting antibody response that might include epitope
spreading. Finally, anti-Ids can be persistent in inducing an immune response against antigens
while avoiding autoimmune responses triggered by nominal antigen based vaccines (6).

A major obstacle both theoretically and practically is reconciling the immunization concept
with the postulated restriction of the putative idiotypic network of natural antibody producing
B cell clones (7). Natural antibodies, in the strictest sense, are constitutively produced (8), but
this strict definition leaves out some polyreactive antibodies induced in marginal zone B cells and
in T-cell independent responses, which can also be defined as natural antibodies in a broader
sense (9–11). The gray zone of the natural antibody concept probably contains the answers to
some of the paradoxes of idiotypy. Thus, several animal studies using anti-Id antibodies support
their utility, as vaccines while human trials with monoclonal Ab2β were disappointing and have
failed in later phase trials. Here, we analyze this failure and propose an alternative strategy for an
idiotype-based immunotherapy.
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2. SETTING THE STAGE FOR THE

IDIOTYPE INTERACTIONS IN

REGULATING AN IMMUNE RESPONSE

In 1963 two laboratories reported evidence for a new marker
on antibodies distinct from allotypes (12, 13). The term
IDIOTYPE for determinants recognized by antibodies was
adopted. Recognizing that antibodies against antibodies exist and
playing a number game on the multitude of B-cells producing
antibodies, Jerne concluded that there must be a functional
network of idiotype (Id) and anti-idiotypes (anti-Id) (14). Thus,
the idiotype network hypothesis was born. Yet, evidence was
lacking for network interactions during an induced immune
response and that an anti-Id response might have a regulating
function. In 1972 several reports appeared on the potential of
anti-Id antibodies to suppress a specific immune response (15–
17). Such results suggested that anti-Ids can affect an immune
response, but did not establish that immune-modulation is part
of an antigen-induced immune response. Two reports supported
this latter premise (17, 18). An idiotypic cascade was perceived:
Ab1>Ab2β >Ab3. Ab3 would resemble Ab1 and were labeled
Ab1’. Jerne distinguished two types of anti-Ids (1, 14): Based on
this concept, Ab2β’s resemble structurally the antigen; thus the
term Internal Image of antigen emerged as an explanation for
this mimicry.

Shortly after this concept emerged several laboratories put this
to the test by using Ab2β as antigen to induce target-specific
immune responses (19–23). The dual functional property of Ab2
was demonstrated as either suppression (15) or induction of a
specific response (24) to be dependent on the IgG-class (25). The
idiotypic cascade implies that Ab1 used therapeutically might
induce an antigen specific antibody response (26). Clinically,
support for the idiotypic cascade is suggested in that patients
developing low-level Human Anti-Mouse Antibody (HAMA)
to a GD2 reactive Ab1 were shown to have higher long-
term survival rates than those who did not (27, 28). GD2 is
a disialoganglioside expressed on tumors of neuroectodermal
origin, including human neuroblastoma and melanoma, with
highly restricted expression on normal tissues, principally to
the cerebellum and peripheral nerves in humans. The relatively
tumor specific expression of GD2 makes it a suitable target for
monoclonal antibody therapy and potentially a proving ground
to probe and dissect network interactions.

The idiotype cascade has been suggested to be part of the
functional utility of at least one monoclonal antibody presently
approved by the US FDA [dinutuximab targeting the GD2
antigen: (29)]. The FDA approved Dinutuximab (Ch14.18, trade
name Unituxin) and Dinutuximab beta (trade name Isquette),
a monoclonal antibody used as a second-line treatment for
children with high-risk neuroblastoma. However, differences in
immune responses to Ab1 might be attributed to differences
in Germline origins of the selected monoclonal Ab1 used
in therapeutic application. A clinical trial with Ch14.18, a
chimeric, in combination with IL-2, while showing a strong
activation of antibody effector functions, did not show a better
clinical outcome (30). Development of human anti-chimeric
antibody (HACA) (21% of patients) did result in strong

reduction of ch14.18 levels, abrogating complement dependent
cytotoxicity and antibody dependent cellular cytotoxicity (31).
The monoclonal studied in Cheung et al. (27, 28) is of the
IGVH2-9∗02 germline while the ch14.18 variable region is
derived from the IGHV1S135∗01 germ line. Little attention is
paid to such difference yet we know that no two antibodies need
to be alike immunologically.

3. LESSONS LEARNED FROM

THERAPEUTIC ANTI-ID ANTIBODIES

While the earlier anti-Id data were generated with polyclonal
antibodies, later experiments used monoclonal anti-Ids
(32, 33). The successful use of monoclonal anti-Ids as
vaccines in inbred mice prompted several clinical trials
with monoclonal Ab2β antibodies. The early studies on the
immunomodulatory activities of Ab2, while consistently
demonstrating immunological activity in animals, clinical trials
with anti-Ids in the cancer space proved to be mixed (34).
Herlyn and coworkers demonstrated that humoral immune
reactivity against a tumor can be enhanced upon active anti-id
vaccination (35). In these studies 30 patients with advanced
colorectal carcinoma (CRC) were treated with alum-precipitated
polyclonal goat anti-Id antibodies to monoclonal anti-CRC
antibody CO17-1A (Ab1) in doses between 0.5 and 4mg per
injection. All patients developed Ab3 with binding specificities
on the surface of cultured tumor cells similar to the specificity
of Ab1. Furthermore, the Ab3 competed with Ab1 for binding
to CRC cells. Fractions of Ab3-containing sera obtained after
elution of the serum immunoglobulin from CRC cells bound
to purified tumor antigen and inhibited binding of Ab2 to Ab1.
Six patients showed partial clinical remission and seven patients
showed arrest of metastases following immunotherapy (35).
Therefore, it was concluded that the Ab3 could share binding
similarities with Ab1.

In other studies, an anti-Id vaccine to induce anti-
Carcinoembryonic antigen (CEA) antibodies (Ab3) was tested
in non-human primates (36). CEA is a tumor marker largely
utilized for the detection of minimal disease associated with
colon cancer and considered a target for immunotherapy. The
murine monoclonal antibody specific for CEA, was generated via
hybridoma technology and selected for inhibition of the binding
to CEA. These successful preclinical studies led to clinical trials
in humans with CEA positive tumors (37). In this trial, 9 of 12
patients demonstrated an anti-anti-idiotypic (Ab3) response. All
nine patients generated specific anti-CEA antibody demonstrated
by reactivity with radiolabeled purified CEA. Toxicity was limited
to local reaction with mild fever and chills. However, in all
12 patients the tumor progressed after completion of the trial.
Four of seven responding patients were reported to have T cell
responses to purified CEA suggesting that there was an antigen
specific T cell response after immunization (37). A patent was
filed for the anti-Id (Chatterjee et al. 5,977,315). Yet, a phase II
trial with anti-Id did not improve relapse of tumor (38) and a
phase III study with the anti-Id and 5-Fluorouracil (5-FU) did
not improve the overall outcome of the study (39). In preclinical
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models CEA was found to be up-regulated after exposure of
cancer cells to 5-FU (40). Therefore, the premise for combination
therapy would be to increase the expression of the target antigen
for Ab3 to bind to.

Further anti-Id-based vaccine studies in humans have
included those associated with Tumor Associated Carbohydrate
Antigens (TACAs), particularly the ganglioside targets GD3 and
GD2. The anti-Id BEC2, a mimic for GD3, was found not
to be highly immunogenic in melanoma patients suggesting
adjuvants might be necessary (41–43). More recently BEC2
was considered as a therapeutic intervention in GBS by
neutralizing specific pathogenic anti-ganglioside antibodies (44).
The murine monoclonal anti-Id antibody 1A7 (TriGem), a
mimic of GD2, has been tested in pre-clinical studies and in
the clinic (45). In pre-clinical studies, active immunization of
mice, rabbits, and monkeys with TriGem induced polyclonal
IgG anti-GD2 responses and TriGem specific T cell proliferative
responses suggesting the generation of CD4+ T cell help. In
clinical trials, it was demonstrated that patients with advanced
metastatic melanoma and patients with high-risk melanoma
in the postsurgical adjuvant setting generated active immune
responses against GD2 following immunization with TriGem.
IgG subclasses were shown to be predominately IgG1 and IgG4,
suggesting the possibility of the generation of CD4+ T cell help.
Median survival was 16+ months for 47 patients with advanced
disease. Eighty-two percent of 69 patients with stage III disease
were alive at a median follow up of 2 years.

An anti-Id vaccine has reached the market. Racotumomab
(Vaxira) is now the first approved anti-Id vaccine—with approval
in Cuba and Argentina. Vaxira was shown to increase the
survival of Non-Small Cell Lung Cancer patients in recurrent or
advanced stages (IIIB/IV). A phase III trial is currently ongoing
(NCT01460472). The vaccine was initiated by the Center for
Molecular Immunology in Havana, Cuba. Racotumomab, an
Ab2γ, was raised against the murine anti-ganglioside N-glycolyl
(NGc) GM3 (NGcGM3) (46). The safety of Racotumomab was
established in several phase I trials in melanoma, breast and lung
cancers (47, 48). In the lung trial, patients developed antibodies
against NGcGM3 and had longer medium survival times (49).
Results from a randomized trial with Racotumomab showed
necrosis of tumor cells as a mechanism for efficacy (50).

While preclinical studies suggested that anti-Ids could
mediate cellular responses, little evidence in humans
demonstrates this aspect (51, 52). The most direct example
for the activation of CD8+ Cytotoxic T Lymphocytes (CTL)
involvement comes from a clinical trial testing a combination of
the murine anti-id monoclonal antibodies MEL-2 and MF11–30
that are mimics of the high molecular weight melanoma-
associated antigen (HMW-MAA) (53). The two anti-ids mimic
two distinct epitopes of HMW-MAA. This combination called
MELIMMUNE was shown to induce HLA-A2-restricted CTLs
that lyse melanoma cells expressing both HLA-A2 antigen and
HMW-MAA (53). Collectively, preclinical and clinical trials,
albeit very limited, indicate that anti-Id vaccines can induce B
and T-cell immune responses both in general terms supporting
CD4+ T cell activation for IgG production and tumor antigen
specific CD8+ CTLs if the anti-Ids are properly chosen.

4. SOLVING THE PROBLEMS WITH

CURRENT ANTI-ID VACCINES

While showing promise, to date no anti-Id-based vaccines
has been approved by the US FDA for use in patients.
Reasons for the failure of anti-Id vaccines against tumors
are similar to generalized failures of other cancer vaccines.
On the one hand it is possible that such failures reflect the
patient populations used in the studies. We have now come
to realize that checkpoint inhibitors are necessary to take the
brakes off the immune system. On the other hand a major
problem in cancer is the complexity and heterogeneity of antigen
expression, the antigens that are potential targets of T and B-
cells are multiple, diverse and endlessly adaptable. This reduces
the ability of responding immune cells to consistently carry
out their task to recognize, bind and destroy. A lesson might
be forthcoming from consideration of the “normal” immune
response to pathogens as many viruses, bacteria, and parasites
induce a strong polyclonal B cell response, which can be crucial
for early host defense against rapidly dividing microorganisms.
In certain situations the response is restricted such as in
HIV infections (54, 55). Interestingly, this clonal-restricted
antibody response shares an idiotypic marker (56), termed
Ab2δ. The polyclonal and sometimes oligoclonal antibodies in
immune reactions would suggest that, in order to stimulate
the polyclonal Ab1 spectrum, Ab2 should also be polyclonal.
Early vaccine experiments were performed in rabbits and not
subject to potential monoclonal anti-Id restrictions (25, 57).
Later experiments suggested a strategy to simulate polyclonal
immunization by combining monoclonals that are functional
anti-Ids in that they compete with antigen clearly are not
distinguished in their ability to activate functional T cell
responses a priori (53, 58, 59). Yet making a panel of hybridomas
by screening and selecting only high affinity binders may not
be enough to distinguish between protective and non-protective
anti-Ids (59).

The advantages of polyclonal vs. monoclonal antibodies
has recently been reviewed (60). Previous discussions have
suggested a soluble antigen reflective of multiple epitopes can
be a more potent modulator of humoral and cellular immune
responses than Ab2 that represents a singular epitope (61).
Counter arguments have been made (62). However, these
arguments often neglect a possible influence of a network
and the structural basis for antibody recognition. The major
characteristic of polyclonal responses is their clonal and
structural diversity. Multi-epitope binding increases the overall
avidity to the target. For optimizing the targeting of Ab2 to
idiotype expressing B-cell receptors all classes of anti-Id, (Ab2α,
Ab2β, Ab2γ, and Ab2δ) should be involved. Thus, a polyclonal
or oligoclonal anti-Id vaccine would improve targeting, by
invoking a “normal’ polyclonal immune response. Polyclonal
B cell response is a natural mode of an immune response in
adaptive immunity. It is a practical and functionally important
element of a healthy immune system, with considerable
evidence to support its role in protection from at the least
infectious agents. Consequently, we are proposing to change
the strategy of monoclonal-based anti-Id vaccine development
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and use. Immunizing with polyclonal–based anti-Ids has the
capacity to induce humoral antigen spread in patients by
engaging multiple BCR’s with the potential to activate both
targeted and non-targeted antibody producing B and T
cells. Immunizations with selected polyclonal anti-Ids to one
or multiple target antigens might be a plausible strategy
to amplify preexisting B cells and potentially preexisting
T cell responses in addition to de novo generation of
novel responses. This strategy abandons the concept that
the idiotype vaccine represents the “Internal Image” of
the antigen and supports our earlier suggestion of being
a “Network Antigen” (63).

5. RECIPES FOR MAKING POLYCLONAL

ANTI-ID-BASED VACCINES

A key prerequisite for an idiotypic network is poly/autoreactivity
of some B cell clones. Moreover, it implies positive selection
on existing variable regions for which there is evidence (64–
66). Positive selection of the B cell repertoire has been
demonstrated numerous times over a span of years (67–71)
but the nature and the intensity of the self-signal define the
choice between elimination, annergy and survival. This implies
that a certain range of signal intensities including from existing
antibody variable regions can probably recruit the emergent
repertoire (7). A constant component of natural IgM would
provide the necessary signal exposing idiotopes in the CDR3

regions (72), albeit other regions can be defined as idiotope

containing (73), of the required concentration. The unique
structures would be too dilute but those shared by a number

of clones or sets of clonal products recognized cross-reactively
by the same paratope would provide signal sufficient either

for positive selection or for negative if the signal were too

strong. Maybe this precludes the selection by too broadly
distributed public idiotopes. It is interesting to speculate that
every strong antibody response might temporarily provide a
similar signal. During this time of optimal intensity it may
recruit corresponding anti-idiotypic immature B cells. This
mechanism may constitute an indirect way to elicit anti-Ids
by (inadvertently) manipulating the existing natural antibody
network and its capacity to recruit anti-Ids. It may reconcile
the “second generation” network concept (7) with experimental
induction of anti-Ids as well as introduce the notion that a set of
clones rather than a single antibody may be necessary to put this
machine in motion.

To stimulate and simulate a polyclonal response, Ab2s can
be a mixture of monoclonal antibodies stimulating B and T-
cells (53, 58). There are examples of anti-Ids containing both
B and T cell epitopes (59, 74). Admixing them might broaden
a response. An alternative concept of inducing antibodies
against multiple tumor-associated antigens is a pan-immunogen,
which harbors “fuzzy” mimicking determinants to induce a
polyclonal response to multiple antigens. This concept has

not been developed with an Ab2-based vaccine but antigen-
mimicking peptides of glycans and TACA have shown such
an ability in preclinical (75–80) and clinical studies (81, 82)
where a carbohydrate mimetic peptide can induce polyclonal
responses to two or more TACAs (81–83). This can be due
both to shared epitopes as well as to a multifaceted mimotope
exposing diverse antigenic determinants—a structural substrate
of immunological polyspecificity.

The advantage of monoclonal antibodies over polyclonal
is its consistency and excellent characterization. Monoclonals
are produced by cell cultures seeded from a reference
cell bank. In contrast polyclonal antibodies are derived
from immunized animals producing a unique batch-specific
biochemical and biophysical property. For use in humans,
each batch must be validated satisfying the advertised criteria.
The call for polyclonal or oligoclonal anti-Id antibodies
must be answered with novel production strategies. The
final step in monoclonal antibody production by hybridoma
or recombinant technologies is the selection of the most
potent clone or cell line. This is performed under so-
called limiting dilution conditions. Suppose one reduced the
stringency of selection and mixed a number of clones including
ones with lower affinity. The number of antibodies in this
polyclonal mix can be controlled. A master cell bank can
be established, similar to the master banks in monoclonal
production. However, since there is no experience with the
clonal stability of cell lines growing in large cell culture
tanks research will be required to maintain the original cell
culture mix.

COVERED IN THIS REVIEW

1. Rationale and strategy of idiotype-based
vaccines-Sections 1-5.

2. Ab1 can also be used to initiate idiotype cascades - Section 2.
3. Lessons learned - Section 3

a. Ab3 can share binding similarities with Ab1
b. Utility in combination therapy
c. Clinically, Anti-Ids can induce B and T-cell immune

responses against antigens.

4. Rational for importance of polyclonal responses - Section 4.
5. Redefining the mimetic nature of anti-Ids as network

antigens - Section 4.
6. Introduction of a Master Bank for Polyclonal

anti-Ids - Section 5.
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Tumor vaccines are an important asset in the field of cancer immunotherapy. Whether

prophylactic or therapeutic, these vaccines aim to enhance the T cell-mediated

anti-tumor immune response that is orchestrated by dendritic cells. Although promising

preclinical and early-stage clinical results have been obtained, large-scale clinical

implementation of cancer vaccination is stagnating due to poor clinical response. The

challenges of clinical efficacy of tumor vaccines can bemainly attributed to tumor induced

immunosuppression and poor immunogenicity of the chosen tumor antigens. Recently,

intratumor heterogeneity and the relation with tumor-specific neoantigen clonality were

put in the equation.In this perspective we provide an overview of recent studies showing

how personalized tumor vaccines containing multiple neoantigens can broaden and

enhance the anti-tumor immune response. Furthermore, we summarize advances in

the understanding of the intratumor mutational landscape containing different tumor cell

subclones and the temporal and spatial diversity of neoantigen presentation and burden,

and the relation between these factors with respect to tumor immunogenicity. Together,

the presented knowledge calls for the investment in the characterization of neoantigens

in the context of intratumor heterogeneity to improve clinical efficacy of personalized

tumor vaccines.

Keywords: tumor vaccines, personalized vaccines, neoantigens, intratumor heterogeneity, multiplex neoantigen

vaccines

INTRODUCTION–A SHORT HISTORY OF TUMOR VACCINES

The beginnings of immunotherapy date back to the late Nineteenth century. In 1891, the
American bone surgeon William B. Coley started to treat cancer patients with bacterial
injections with the rationale to stimulate the immune system and thereby enhance tumor
cell killing. With varying success “Coley’s Toxins” were accepted as treatment for inoperable
bone cancers but could never fully be clinically established (1). In 1909, Paul Ehrlich
established the concept of protective vaccinations of mice by transplanting them with
foreign tumors. He described that in 50–100% of vaccinated mice an acquired tumor-
directed immunity could be observed (2). The genetic basis of this type of rejection was
discovered in 1914 by Clarence Little (3), and later linked to histocompatibility antigens
on transplanted tumors by Gorer et al. (4). In line with these findings, Foley (5) and
Prehn et al. (6) investigated the mechanism of protection in mice against carcinogen-induced
sarcomas after rechallenge with the same tumor, thereby formulating the rational of using
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tumor tissue as a vaccine. In the following years more pieces of
the immunological puzzle were solved finally culminating in the
concept of immunological surveillance, formulated by Burnet in
1970, further justifying the use of cancer vaccines (7).

Nowadays, it is well-established that tumor vaccines can
effectively mount an anti-tumor immune response. These
vaccines can be comprised of whole tumor lysates, recombinant
tumor proteins, tumor antigen derived epitope peptides, or
antigen encoding mRNA and DNA (8). Once injected, dendritic
cells (DCs) play a crucial role by taking up the vaccine and
presenting the vaccine-derived tumor epitope in the context of
major histocompatibility class (MHC) I or II complexes to CD8+

or CD4+ T cells, respectively (9, 10). In turn, ideally tumor
specific CD8+ T cells will be activated, proliferate and infiltrate
into the tumor to exert cytotoxic functions. CD4+ T cells are
skewed toward T helper cell subsets and support the anti-tumor
immune response by the release of cytokines (11, 12) or tumor
cell killing (13).

Despite promising results obtained in 1995 with a DC vaccine
pulsed ex vivo with the melanoma tumor antigen 1 (MAGE-1)
(14, 15), it was not until 2010 before the first DC-based vaccine
Sipuleucel-T was approved by the Food andDrugAdministration
(FDA). This revitalized the tumor vaccine field resulting in the
initiation of clinical trials to test new formulations and delivery
methods of tumor vaccines across multiple types of cancers.

Especially, recent developments in the understanding of the
nature of tumor antigens have attributed to the improvement of
tumor vaccines. Together with new insights into the mutational
landscape of tumors and their evolution these findings are
instrumental for the rise of novel, multiplex and personalized
tumor vaccines.

THE IMPORTANCE OF
ANTIGEN-SPECIFICITY FOR
TUMOR VACCINES

Since Edward Tyzzer coined the term “somatic mutation” in
1916 for describing “modifications of the somatic tissue” that
determine foreignness and antigenicity of a transplanted tumor,
it took until 1991 to discover the first tumor antigen MAGE-
1(16, 17). MAGE-1 was shown to be expressed on patient-
derived melanoma cells and in immune privileged sites, such as
testis, hence the name cancer/testis antigen (CTA), and therefore
qualified as a good target for immunotherapy (17). Although
CTAs are specific targets on tumor cells and therefore classify
as candidates for tumor vaccines, their expression is limited
to a small number of tumors and patients (18). In contrast to
cancer/testis antigens, tumor-associated antigens (TAAs), such
as gp100, tyrosinase or EGFR, are overexpressed on tumor
cells and are shared in a bigger patient population (19). Their
concurrent expression on healthy cells however, will result in
a weaker antigen-specific immune response, due to negative
selection as a consequence of central tolerance. Furthermore,
DCs and regulatory T cells will dampen the immune response by
inducing peripheral tolerance and inhibiting effector T cells (20).
Together with the potential of inducing auto-immune reactions,

these features underline that TAAs are not ideal candidates
for effective tumor vaccination and that therapy targets are
preferably expressed exclusively on tumor cells.

In 1994, the first report of such tumor-specific antigen
(TSA) was published, being a mutated version of the membrane
protein Connexin-37 in Lewis lung carcinoma (21). In the
following years the rise of next-generation sequencing techniques
led to the discovery of more TSAs or so called neoantigens.
Neoantigens are seen as highly specific tumor antigens that arise
due to somatic mutations exclusively in tumor cells while being
absent in healthy cells [for extensive reviews about neoantigens
see (22, 23)]. Except of mutations in driver genes, such as
isocitrate dehydrogenase 1 (IDH1)(24) or KRAS(25) and in a
rare form of hereditary colon cancer, called Lynch syndrome(26),
neoantigens are not shared between individual patients and can
have differential expression in tumor clones within one patient,
as will be discussed later. Moreover, the load of neoantigens has
been positively correlated with the presence of tumor-infiltrating,
neoantigen-specific T cells and a good prognosis for checkpoint
inhibitor therapy and survival across different types of cancers
(27, 28). In turn researchers have made use of sequencing and
peptide-based assays combined with computational filtering and
prediction algorithms for the selection of candidate neoantigens
to design the first generation of personalized tumor vaccines (29,
30). An example of such, is a point mutation in the gene encoding
IDH1, which is shared by about 70% of diffuse grade II and III
glioma patients, as mentioned above. Using the mutant IDH1
as synthetic long peptide vaccine, Schumacher et al. observed
reduced tumor growth in vaccinated mice carrying tumors with
the IDH1 point mutation compared to mice carrying IDH1 WT
tumors (Table 1) (24).

FROM SINGLE TO MULTIPLEX
PERSONALIZED NEOANTIGEN VACCINES

The IDH1 synthetic long peptide is an example of a rationally
designed neoantigen vaccine based on a tumor-specific point
mutation shared by a large patient population with a mildly
immunogenic tumor. For more immunogenic tumors with
higher mutational load such as melanoma, high throughput
genome screens are needed. One of the first studies applying
this strategy used massive parallel sequencing of mouse tumor
and healthy tissue combined with RNA expression profiling
and immunogenicity tests to obtain potential neoantigen
sequences for vaccination purposes. Eventually, vaccinations
were performed with two to five neoantigens in the form of
synthetic long peptides or mRNA. These led to significant delay
of tumor growth and protection of mice in a prophylactic (29) or
therapeutic setting (29, 30). Predicted mutations for the B16F10
melanoma, CT-26 colon cancer or 4T1 mammary carcinoma
models by Castle and Kreiter et al. were subsequently used
and extended to generate neoantigen vaccines targeting more
than one epitope simultaneously, and delivered as synthetic
long peptide (43), mRNA (41), by carrier molecules such as
nanoparticles (31, 34, 36, 39), nanodiscs (38, 45) or other
modalities (33, 35, 46) (Table 1). In addition to this, in
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TABLE 1 | Summary of neoantigen vaccine studies ordered by the amount of neoepitopes that are incorporated in the vaccine.

Tumor type Organism Neoantigen identification

(origin, method)

Neoantigen

prediction

Vaccine format Amount of

neoantigens used for

vaccination

Year Publication

Melanoma,

B16F10

Mouse (29)

Mass spectronomy

- PLGA capturing

endogenous

neoantigen containing

proteins

n.m. 2017 (31)

Colon cancer CT26,

TC-1, melanoma

B16F10

Mouse (29) - SLP in

polyethyleneimine

mesoporous silica

microrods

n.m. 2018 (32)

Colon cancer

MC-38, TC-1

Mouse (33) - Ferritin nanoparticle

neoantigen conjugates

1 (TC-1)

3 (MC-38)

2019 (34)

Sarcoma,

A2.DR1

Mouse (Most frequent point

mutation in glioma)

- SLP 1 2014 (24)

Colon cancer CT26,

TC-1, melanoma

Mouse (29) - RNA lipoplex 1 2016 (35)

Colon cancer,

MC-38

Mouse (33) - RNA-DNA

nanostructures

1 2018 (36)

Sarcoma,

d42m1-T3 and F244

Mouse Complement DNA capture

sequencing,

3x MHCI epitope binding,

processing by

immunoproteasome

SLP 2 2014 (37)

Melanoma,

B16F10

Mouse B16F10 cells,

DNA/RNA sequencing

Expression, Location,

mutation type,

immunogenicity

SLP 2 2012 (29)

Melanoma B16F10,

colon cancer MC-38

Mouse (29, 33) - RNA nanodisc 2 2016 (38)

Colon cancer

MC38

Mouse Whole exon and RNA

sequencing, Mass

spectronomy

netMHC binding prediction,

solvent exposure in MHC

SLP 3 2014 (33)

Melanoma, colon

cancer, HPV E6/E7

Mouse (29) - PC7A nanoparticle 3 2017 (39)

Melanoma

B16F10

Mouse Exome/RNA sequencing MHCII Class binding mRNA 5 2015 (30)

Melanoma Human Resected tumor, Exome

sequencing

Binding to HLA-A, cDNA

expression

SLP 7 2015 (40)

Stage III/IV

Melanoma

Human Tumor biopsy,

Exome and RNA

sequencing

Binding affinity to HLA class

II and expression of

mutation encoding RNA,

and HLA class I binding

mRNA 10 2017 (41)

Lewis lung

carcinoma, TC-1,

ovarian cancer ID8

Mouse Cell lines and lysed tumor,

Whole exome and RNA

sequencing

Binding affinity to HLA class

I and II, proteasomal

processing

Plasmid DNA 12 2019 (42)

Melanoma

Stage IIIB/C

Stage IVM1a/b

Human Whole exon sequencing and

RNA sequencing

Binding to HLA-A and -B SLP 20 2017 (43)

Glioblastoma Human

Phase I/Ib

Whole exon sequencing and

RNA sequencing

Binding to HLA-A and -B SLP 20 2019 (44)

n.m, not mentioned.

pre-clinical mouse studies, the concurrent use of checkpoint
inhibitors programmed cell death-1 (PD-1) or cytotoxic T-
lymphocyte-associated protein-4 (CTLA-4) at the time of
vaccination worked synergistically and enhanced the treatment
outcome (31, 34, 39, 45).

In clinical studies of late stage melanoma patients, multiplex
personalized neoantigen vaccines have achieved significant
results in clinical studies of late stagemelanoma patients, as nicely

summarized by Hellmann and Snyder (47). Recently, a similar
approach has been presented for phase Ib glioblastoma patients.
These patients received personalized neoantigen vaccines,
covering 20 neoepitopes in the form of long peptides, based on
mutational profiling and RNA expression analysis of surgically
resected tumors. Although all patients died due to progressive
disease, neoantigen-specific CD8+ and CD4+ T cells could be
observed which were able to infiltrate into the tumor (44).
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Finally, also DNA has been used as a delivery vector for encoding
neoantigen vaccines. Duperret et al. used a combination of
intramuscular injection and electroporation of plasmids with
strings of up to twelve 9-mer neoepitopes, derived from
lung carcinoma or ovarian cancer. Neoantigen-specific immune
response were predominantly guided by CD8+ T cells and
resulted in a delay of tumor growth and increased survival in
prophylactically or therapeutically vaccinated mice (42).

Concurrently, a general trend that can be observed in recent
studies is an increase in neoepitope incorporation into tumor
vaccines (Table 1). This is mainly the result of the increasing
improvements of next-generation sequencing and computational
tools for prediction of neoantigens, providing a more detailed
view on the mutational landscape of tumors.

Argumentation supporting multiplex neoantigen vaccines can
be found in a more fundamental aspect of tumor evolution which
has been elucidated, especially within the last 10 years. It relates
to the understanding of the identity of individual tumor cells
within specific regions in the tumor mass. Although it is well-
known that tumors are heterogeneous, comprised of different cell
types, such as immune cells and stromal cells, more knowledge
had to be gained at the single cell- and genotypic- level of
malignant cells. As such, it was elucidated that a certain degree
of tumor cell evolution takes place within one tumor leading
to the formation of subclones separated not only spatially, but
also by mutational patterns (48–52). The latest key findings on
the deciphering of intratumor heterogeneity (ITH), its relation
to neoantigen expression and its effect on the immune system
and immunotherapy present an essential milestone toward the
next generation of multiplex personalized neoantigen vaccines
and offer an outlook on the challenges we face in the future.

INTRATUMOR HETEROGENEITY
CHALLENGING MULTIPLEX
PERSONALIZED NEOANTIGEN VACCINES

The concept of ITH was first introduced in the 1970’s
by Prehn et al. who investigated the immunogenicity of
methylcholanthrene-induced murine sarcomas. Paired cancer
cell subclones from different regions of a primary tumor showed
differential induction of immune responses after transplantation
into recipient mice. These differences were thought to be
caused by distinct antigenicity and immunogenicity of subclones,
hence a heterogeneous distribution within one tumor (53). In
the following years other groups extended this knowledge by
delineating the types of immune responses toward heterogeneous
tumors based on subclonal expression of tumor antigens (54).

The first human study to investigate the extent of ITH
within one tumor mass was performed in 2012 by Gerlinger
et al. (48). In this study, several biopsies from a patient-derived
primary renal-cell carcinoma were analyzed by whole-exome
sequencing and aligned to healthy tissue. Next to several shared
mutations between different subclones, ca. 23% of the mutations
were only found in specific regions of the tumor. Strikingly, a
single biopsy of that same tumor only covered around 55% of

the total mutational diversity, underlining the need for multi-
region sampling. Tracing the order of mutations in different
subclones revealed that they develop in a branching fashion
from the primary tumor clone, harboring the driver mutation,
rather than in a linear model. Remarkably, these differentially
branched subclones harbored different mutations in the same
gene which suggests a mode of convergent evolution (48). These
findings emphasize the importance of multi-region sampling of
tumor samples, as it can explain the mutational ancestry of a
tumor and thereby aid in the selection of neoantigens for tumor
vaccination, which ideally target mutations from the trunk of the
phylogenetic tree.

Besides being able to reconstruct the mutational history, it
is also important to correlate this to the developmental stage of
the tumor as shown by De Bruin et al. (49). In patients with
non-small cell lung cancer (NSCLC) mutational events in the
primary tumor coupled to known driver genes could be identified
in the context of tobacco-induced carcinogenesis, bearing typical
C>T transitions in early development. Mutations in driver
genes were also observed in subclones of later development,
however these clones also acquired other somatic mutations
indicative of a branched evolution and supporting the idea
of ITH in NSCLC. Knowing that these tumors carry driver
mutations in late stage development, in different regions of the
tumor, emphasizes the benefit of multi-dimensional sampling
and sequencing for developing tumor vaccines that target these
driver mutations (49). Importantly, in this study <5% of the
tumor tissue could be analyzed, which probably underestimates
the extend of observed ITH.

As growing evidence suggests that diverse sets of mutations
occur in subclones in distinct regions of one tumor, McGranahan
et al. asked to what extent these mutations translate into
neoantigens and how neoantigen ITH (NITH) relates to the anti-
tumor immune response (50). Analysis of neoantigen burden
and NITH in single biopsies from roughly 200 cases of different
types of lung cancers was performed. Using whole-genome
and -exome sequencing and bioinformatic processing revealed
that a high clonal neoantigen burden (upper quartile of total
neoantigen burden) combined with a low NITH (smaller than
1%) correlates with a longer survival in lung adenocarcinoma
patients. In contrast, a lower neoantigen clonality (higher NITH)
characterized the tumor as more heterogeneous which correlates
with a shorter survival (Figure 1A). More homogeneous
tumors showed genetic signatures of an inflamed or hot
tumor microenvironment with upregulated genes for antigen
presentation, T cell migration and effector functions next to
inhibitory molecules such as programmed death receptor ligand
1 (PD-L1). As a consequence to this environment, active
interferon γ, granzyme B, H and A producing, PD-L1 and
lymphocyte activation gene 3 (LAG-3) expressing CD8+ T
cells specific to clonal neoantigens could be identified within
the tumors by MHC multimer staining and flowcytometric
analysis. Whether earlier in the development of the tumor it
was more heterogeneous, homogenized by initial neoantigen
specific T cell infiltration, leading to attraction of more
immune cells and an inflamed tumor microenvironment, is
however difficult to investigate due to the lack of samples
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FIGURE 1 | (A) The impact of low and high intratumor heterogeneity (ITH) on clonal ancestry, neoantigen clonality and T cell responses. Tumors that show low ITH

(left panel) typically have few branching mutations as indicated in the clonal ancestry panel. In turn, more cells in the tumor harbor the same mutation, which is

potentially translated and presented on the cell as a neoantigen. The overall neoantigen clonality (the number of cells that express one specific neoantigen, indicated

by black-gray triangle) is therefore higher, leading to a lower neoantigen ITH and subsequently in a better neoantigen-specific T cell response. Tumors that have a high

ITH in contrast (right panel), show more branching mutations leading to an increased amount of neoantigens expressed. Having more subclones with specific

neoantigens however decreased the neoantigen clonality and increases neoantigen ITH. This will result in a weaker neoantigen-specific T cell response. (B) Workflow

(Continued)
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FIGURE 1 | for the designing of next generation multiplex neoantigen vaccines addressing ITH (1–6). (1) Ideally, the generation of multiplex neoantigen vaccines starts

with multi-region tumor sampling by preferentially, non-invasive techniques. (2) Acquired data will then be analyzed by whole-genome/-exome sequencing for

detection of mutations and RNA expression analysis to infer whether these mutations are located within transcribed regions. (3, 4) From this the subclonal ancestry

can be inferred to determine the overall neoantigen clonality and ITH. (5) By mapping found neoantigens to subclones in the tumor and the ancestral tree, target

neoantigen can be chosen that are located in the trunk and/or branching regions. (6) Finally, state-off the art prediction algorithms can supplement the aforementioned

workflow to cross-validate found neoantigen vaccine candidates that will be incorporated in the final vaccine or vaccine carrier. Panels I-III depict the in vivo processing

of multiplex neoantigen vaccines leading to a multi-angled anti-tumor T cell response. (I) After injection of multiplex neoantigen vaccines dendritic cells (DCs) will take

up and process the vaccine and present antigenic epitopes on the cell surface complexed with MHC molecules. (II) Subsequently, T cells will interact with DCs via T

cell receptor-MHC interaction and co-stimulatory molecules and will be further activated under the influence of cytokines. (III) Effector T cells will finally perform

cytotoxic effector functions targeting several subclones in the heterogenous tumor.

from these earlier developmental stages of the tumor. The
observation that these tumors harbored an inflamed, PD-
1/L1 expressing microenvironment was the rationale to inhibit
PD-1 by checkpoint immunotherapy, which resulted in a
clinical benefit for patients with these inflamed tumors.
In the same study, similar results have been obtained in
a melanoma patient cohort treated with PD-1 checkpoint
immunotherapy, where patients with high clonal neoantigen
burden and low NITH showed prolonged survival (50). Another
example supporting combination of multiplex neoantigen
vaccines and checkpoint immunotherapy is provided by two
clinical studies of Ott et al. (43) and Sahin et al. (41). In
these studies, stage III-IV melanoma patients are initially
treated with RNA -or long peptide-based multiplex neoantigen
vaccines (Table 1). While most of the patients experienced
progression free survival as consequence of neoantigen specific
T cell infiltration into the tumor, some showed recurrent
disease during multiplex neoantigen vaccination. In these cases,
combinatorial treatment with PD-1 blocking antibodies was able
to remove tumor mediated immunosuppression and unleash
neoantigen-specific T cells that were generated by the vaccine
(41, 43).

The discovery that checkpoint immunotherapy results

in prolonged survival once neoantigen-specific cytotoxic T

cells have infiltrated these tumors, presents a rationale to
combine multiplex neoantigen vaccination with checkpoint

immunotherapy for tumors with low NITH.

Based on the aforementioned clinical examples a sequential

treatment with first multiplex neoantigen vaccines and then,

if needed, checkpoint therapy can be suggested to reduce
the amount of patients that are unnecessarily treated with
checkpoint inhibitors.

As already briefly touched upon above, to what extent
neoantigen-specific immune responses shape the heterogeneity
of a tumor throughout tumorigenesis by targeting dominant
subclones and whether this can lead to tumor escape of
untargeted clones remains to be determined.

By applying multi-color barcoding of male Eµ-myc
lymphoma cells, Milo et al. studied tumorigenesis and subclonal
distribution in a metastatic mouse model (51). When injected
in male recipient mice, the differentially colored tumor cells
seeded in different proximal niches, ultimately resulting in
equally heterogeneous tumors, demonstrating equal survival
and outgrowth of the injected barcoded tumor cells. When

these cells were injected in female recipient mice, homogeneous

tumors with one or two dominant colors established in a CD8+

T cell dependent manner. Part of the explanation for this

observation can be found in the expression of Y-chromosome
derived H-Y antigens, which induced an antigen-specific T
cell-mediated immune response. However, the injected mix of
color coded tumor cells contained up to 25% non-immunogenic
cells due to a loss of the Y-chromosome, suggesting additional
clonal reduction as a result of epitope spreading, ultimately
resulting in homogeneous Y chromosome deficient tumors.
Additionally, whole genome exome-sequencing was applied
in this system to infer whether the neoantigen repertoire is
narrowed as a consequence of the anti-tumor immune response.
In line with the reduction in color-coded subclones in female
recipients also NITH was reduced, underlining that the immune
system actively shapes subclone diversity and NITH during
immunosurveillance, resulting in the evolution of one or few
escaping subclones (51).

In a first attempt to study the contribution of neoantigen
immunogenicity in the emergence of dominant tumor cell
subclones Gejman et al. developed an artificial antigen-
presentation system allowing the construction of heterogeneous
tumors, expressing up to five thousand defined artificial MHCI
neoepitopes (52). Looking at the clearance of immunogenic
subclones within a largely heterogeneous tumor in mice,
it was revealed that the immune system was incapable of
elimintating small clonal fractions of immunogenic subclones. It
appeared that the percentage of neoepitope subclonal tumor cell
representation is an important determinant for its clearance. This
critical subclonal percentage seemed to differ between individual
neoepitopes (52). The exact mechanisms behind the persistence
of tumor cell subclones, although partly assigned to absence of
antigenicity or clonality, remains to be elucidated in more detail.
These two studies emphasize the need for controlled systems
to investigate the dynamic process of immunosurveillance in
the context of heterogeneous tumors with known mutations
or neoepitopes to determine how the immune system can be
used to reduce subclone diversity and ultimately enable the total
clearance of the tumor.

CONCLUSION

The discovery of neoantigens and their use as tumor vaccines
generated a lot of momentum in the tumor vaccination field.
Personalized neoantigen vaccines hold promise in generating
specific anti-tumor immune responses and durable survival
benefits as emphasized by several pre-clinical and clinical studies.
Especially in the last 2 years, vaccines comprising of not one,
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but several neoepitopes, so called multiplex neoantigen vaccines,
have been developed in order to successfully increase the breadth
of the anti-tumor immune response.

A rationale that supports this development is obtained from
recent insights into the dynamic evolution of tumors. This
evolution is characterized by the time-dependent acquisition
of region-specific mutations and leads to the emergence of
genetically distinct tumor cell subclones within one tumor,
as shown by multi-region sampling and massive parallel
sequencing. These subclone-specific mutations define the
neoantigen clonality, burden and therefore the total NITH, which
in turn affects the potency of immunosurveillance. Tumors with
a high neoantigen clonality and a low NITH show a better tumor
clearance. More heterogeneous tumors with lower neoantigen
clonality are more difficult to eradicate (Figure 1A). Depending
on this balance between neoantigen clonality and NITH, T cells
are able to reduce the diversity of subclones within a tumor
and thereby actively shape the ITH. Two important factors
which influence the efficacy with which T cells can clear a
specific subclone within a heterogeneous tumor seem to be
the antigen itself and the percentage of tumor cells expressing
this antigen. The exact underlying mechanism has still to be
uncovered and can possibly aid us in choosing the right antigens
for preventing the emergence of dominant subclones. In the
meanwhile, targeting more neoantigens by multiplex neoantigen
vaccines is a feasible approach to induce a specific immune
response against several subclones in the tumor and thereby
address ITH.

FUTURE PERSPECTIVES

Although current studies with multiplex neoantigen vaccines
(Table 1) seem to tackle ITH by including more neoepitopes,
they are limited by the snapshot of the mutanome acquired by
a single biopsy. We believe that the lack of multi-dimensional
tumor information in these neoantigen vaccine studies impairs
the power of inducing a multi-angled immune response against
all the subclones in a tumor. Challenging pre-clinical longitudinal
studies of tumorigenesis are needed, taking into account samples
from different locations in the tumor at different time points,
both before and after treatment. These studies would gain insight
in the dynamics of tumor evolution in the context of multiplex
neoantigen vaccination. Ultimately, this knowledge could be
integrated into the process of designing the next generation
of multiplex neoantigen vaccines. Currently, driving neoepitope
selection criteria are predicted MHCI binding as well as T
cell receptor affinities. We propose a workflow (Figure 1B)
starting with the multi-regional NITH acquisition of available
biopsies, to obtain multi-dimensional tumor biopsy information,
from which dominant clonal neoepitope vaccine candidates
could potentially be extrapolated. Attractive, less invasive and
practically more feasible alternatives, such as circulating tumor
DNA or tumor exosome DNA sequencing, deserve special
attention. Varying reports exist about the success of these two
techniques in comprehending ITH, which underlines the need

for further development of these tools (55–57). Next-generation
sequencing and bioinformatic tools that have been developed
in the recent years (48, 58–62) will then be an essential asset
to acquire genomic sequence information of high, subclonal
resolution. With this information the clonal architecture
and mutational ancestry of subclones can be reconstructed.
Subsequently, neoantigen clonality and burden can be inferred
to predict total NITH and map neoantigens to the subclone
architecture of the tumor. This dynamic genomic blueprint
of the tumor will aid in determining optimal neoantigen
candidates for vaccination purposes and can be complemented
with bioinformatic prediction algorithms and novel tools to
assay T cell reactivity on a large scale (63). Current vaccine
production platforms as described earlier, can then facilitate the
efficient formulation and delivery of the vaccine to the patient
in vivo, where DCs will process vaccine content and activate
neoantigen specific T cells that will infiltrate and eradicate the
tumor (Figure 1B, p. 1–3).

We are convinced that the development of more refined
techniques to sample and predict the right neoantigens
for vaccination can address ITH, and will be essential to
fuel the progress that is currently made with regard to
time efficient formulation, design and delivery of multiplex
neoantigen vaccines [as extensively reviewed by others (64,
65)]. With these techniques in mind, we could create a more
detailed map of the neoantigen clonality in primary tumors
and metastasis to determine shared mutations within these
regions as shown earlier (48). Along this line, combining
multiplex neoantigen vaccines with TAA or CTA epitopes
could present a handle to increase the chances of epitope
spreading and sensitize the immune system for a priori
low abundant neoantigens. A full comprehension of tumor
evolution and neoantigen distribution will be the fundament
for counteracting the survival of the fittest tumor clone and
will pave the way for powerful next-generation multiplex
neoantigen vaccines.
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CD137 ligand-induced dendritic cells (CD137L-DCs) are a new type of dendritic cells

(DCs) that induce strong cytotoxic T cell responses. Investigating the metabolic activity

as a potential contributing factor for their potency, we find a significantly higher rate

of glycolysis in CD137L-DCs than in granulocyte macrophage colony-stimulating factor

(GM-CSF) and interleukin 4 induced monocyte-derived DCs (moDCs). Using unbiased

screening, Akt-mTORC1 activity was found to be significantly higher throughout the

differentiation and maturation of CD137L-DCs than that of moDCs. Furthermore, this

higher activity of the Akt-mTORC1 pathway is responsible for the significantly higher

glycolysis rate in CD137L-DCs than in moDCs. Inhibition of Akt during maturation or

inhibition of glycolysis during and after maturation resulted in suppression of inflammatory

DCs, with mature CD137L-DCs being the most affected ones. mTORC1, instead, was

indispensable for the differentiation of both CD137L-DCs and moDCs. In contrast to

its role in supporting lipid synthesis in murine bone marrow-derived DCs (BMDCs), the

higher glycolysis rate in CD137L-DCs does not lead to a higher lipid content but rather

to an accumulation of succinate and serine. These data demonstrate that the increased

Akt-driven glycolysis underlies the higher activity of CD137L-DCs.

Keywords: CD137L-DC, metabolism, glycolysis, Akt, mTOR, lipid synthesis, succinate

INTRODUCTION

With the recent success of immune checkpoint inhibitors and chimeric antigen receptor T cells
(CAR-T), tumor immunotherapy finally had its long-awaited breakthroughs. However, there are
many cancer types where these two approaches have low to no efficacy (1–3). Examples would be
solid cancers that lack a cell surface tumor associated antigen (TAA) that can be targeted by CAR-T,
and cancers that failed to induce an immune response (2, 3).

Dendritic Cells (DCs) as the pivotal link between the innate immune and the adaptive immune
system have been the focus of immunological researches for the last several decades. DC-
based immunotherapy for cancer has been proven safe and to prolong survival but the clinical
response and efficacy are disappointing (4). To date most of the DCs for cancer immunotherapy
are generated by treating patients’ monocytes with granulocyte macrophage colony-stimulating
factor (GM-CSF) and interleukin 4 (IL-4) (4, 5), which are generally referred to as monocyte-
derived DCs (moDCs). We have discovered a new type of DCs, CD137L-DCs, which are derived
from monocytes by CD137 ligand (CD137L) reverse signaling (6). CD137L-DCs are only found
in human but not in mouse because of the difference in human and mouse CD137L (7).
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Nevertheless, CD137L-DCs are more potent than moDCs in
stimulating cytotoxic T cells in an antigen-specific manner and
driving a T helper 1 type response (8). T cells activated by
CD137L-DCs are less exhausted and metabolically more active
(9). CD137L-DCs are promising candidates for the still unmet
need of an effective immunotherapy for many types of cancer.
A clinical trial testing the safety and optimal dose of CD137L-
DCs for the treatment of nasopharyngeal carcinoma is currently
ongoing (NCT03282617).

There is accumulating evidence that metabolic reprograming
underpins the transition of immune cells between the quiescent
and the activated state. The same cells activated by different
stimuli usually induce distinctive metabolic programs and the
metabolism in turn influences the fate of the cell development.
This mutual regulation is particularly evident during T cell
differentiation (10) and macrophage polarization (11). DCs are
a heterogeneous population consisting of different subsets (12).
However, because of the rarity of DCs in peripheral blood, the
knowledge of DC metabolism is mainly gained from murine
bone marrow-derived DCs (BMDCs). During the activation of
BMDCs by toll like receptor (TLR) ligands, especially the TLR4
ligand LPS, BMDCs switch from oxidative phosphorylation
(OXPHOS) to glycolysis. This shift is executed in two different
stages: The early increase of glycolysis is inducible nitric oxide
synthase (iNOS)-independent and mediated by TBK1-IKKε-Akt,
while the latter long-term commitment to glycolysis is PI3K-Akt-
mTOR-mediated and dependent on iNOS, which generates NO
to suppress OXPHOS (13). Glycogenolysis also contributes to
the early glycolytic burst in both LPS-activated human moDCs
and in murine BMDCs (14). Unlike tumor cells and T cells that
rely on glycolysis to provide intermediates as building blocks for
proliferation, non-proliferative BMDCs utilize glycolysis mainly
to provide acetyl-CoA and nicotinamide adenine dinucleotide
phosphate (NADPH) for the synthesis of lipids, leading to
an expansion of endoplasmic reticulum (ER) and the Golgi
apparatus and increased synthesis and transport of proteins for
DC activation (15).

Nevertheless, one should be cautious in applying findings
obtained in murine BMDCs to the other types of DCs, as
notable differences in metabolism have been found between
different subsets of DCs (16). For example, iNOS is induced
in LPS-activated murine BMDCs but not the murine classical
DCs isolated from the spleen (17). Furthermore, most clinical
trials on moDCs to date use a cocktail of cytokines instead of
LPS to mature moDCs (4). Whether CD137L-DCs and moDCs
matured by cytokine cocktails share similar metabolism as
murine BMDCs is unknown. In this study, we have compared the
metabolism of CD137L-DCs with that of moDCs, characterized
the metabolism-regulating signaling pathways, and explained the
high potency of CD137L-DCs from a metabolic perspective. We
find that CD137L-DCs are characterized by high Akt-driven

Abbreviations: ACC, acetyl-CoA carboxylase; BMDCs, bone marrow-derived

DCs; CD137L-DC, CD137 ligand-induced DC; DC, Dendritic cell; FASN,

fatty acid synthase; moDC, monocyte-derived DC; OXPHOS, oxidative

phosphorylation.

glycolysis that is important for both the activation of CD137L-
DCs and the persistence of their activated state.

MATERIALS AND METHODS

Antibodies and Inhibitors
Antibodies to the following proteins were purchased from the
indicated vendors: mouse IgG1 Kappa (clone MOPC21) Sigma-
Aldrich (St. Louis, MO, USA). CD137L (clone 5F4) Biolegend
(San Diego, CA, USA). CD3 (clone OKT3), CD40 (clone
5C3) and PD-L1 (clone M1H1) Affymetrix eBioscience (San
Diego, CA, USA). CD80 (clone 2D10), CD86 (clone IT2.2) and
CD70 (clone 113-16) Biolegend. Phospho-Akt (Ser473) (clone
D9E), Pan-Akt (clone 40D4), Phospho-S6 Ribosomal Protein
(Ser235/236), S6 Ribosomal Protein (clone 54D2), Phospho-
p44/42 MAPK (Erk1/2, Thr202/Tyr204), p44/42 MAPK (Erk1/2,
clone L34F12), phospho-AMPKα (Thr172, clone 40H9), AMPKα

(clone F6), phospho-GSK-3β (Ser9, clone D85E12), GSK-3β
(clone 3D10), rabbit IgG-HRP,mouse IgG-HRP, beta-actin (clone
13E5), and PathScan R© Intracellular Signaling Array Kit from
Cell Signaling Technology (Danvers, MA, USA). GAPDH (clone
6C5) Abcam (Cambridge, UK). LY294002 and Rapamycin from
Cell Signaling Technology. DMSO, 2-DG, C75, and TOFA
from Sigma-Aldrich.

Differentiation of DCs
Human peripheral blood mononuclear cells (PBMCs) were
isolated from human blood by Ficoll-Paque (GE Healthcare, Chi,
IL, US) density gradient centrifugation. Monocytes were isolated
from PBMCs by using the EasySep Human Monocyte Isolation
Kit (#19359, StemCell technologies, Vancouver, Canada). Isolated
monocytes were cultured in RPMI-1640 supplemented by 10%
FBS, 50µg/ml streptomycin and 50 IU/ml penicillin (R10
PS medium). CD137L-DCs were differentiated by seeding
monocytes on anti-CD137L antibody pre-coated plate (5µg/ml,
4◦C overnight) at 1 million/ml for 7 d. moDCs were
differentiated by treating monocytes with 100 ng/ml IL-4 and
80 ng/ml GM-CSF (ImmunoTools, Friesoythe, Germany) for 7
d. CD137L-DCs were matured by 1µg/ml Resiquimod (R848,
InvivoGen, San Diego, CA, USA) and 50 ng/ml IFN-γ (#285-IF-
100, R&D,Minneapolis, MN, USA) andmoDCs were matured by
10 ng/ml IL-6, IL-1β, TNFα (ImmunoTools) and PGE2 (#P0409,
Sigma-Aldrich) in the last 18 h of differentiation.

For experiments involving inhibitors, cells were incubated
with inhibitors 1 h prior to inducing differentiation or
maturation. During differentiation, 2µM LY294002 and 10 nM
Rapamycin were used. After 1 day of DC differentiation,
inhibitors were washed out and developing DCs were
supplemented again with differentiation cytokines. During
maturation, 50µM 2-DG, 10µM LY294002, 50 nM Rapamycin,
20µMC75 and 20µM TOFA were used.

Mixed Lymphocyte Reaction
T cells were isolated from PBMCs using the EasySep Human T
cell Isolation Kit (#17951, StemCell technologies), and labeled

by CellTrace
TM

Violet dye (#C34557, ThermoFisher Scientific).
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Allogenic mixed lymphocyte reaction (MLR) was done by co-
culturing 2 × 104 DCs generated from one donor with 2

× 105 T cells isolated from another donor in AIM V
TM

medium (#12055091, ThermoFisher Scientific) supplemented
with 2% human AB serum (#H3667, Sigma-Aldrich) for 5 d
in 96-well plates. The supernatants were collected for cytokine
measurements. The proliferation of T cells was quantified by the

dilution of CellTrace
TM

Violet dye which was measured by flow
cytometry after gating for CD3+ cells.

Seahorse Metabolic Assays
Seahorse XFe24 FluxPaks, XF Base Medium Minimal DMEM
(0mM Glucose), Seahorse XF Glycolysis Stress Test Kit, XF
Mito Fuel Flex Test kit and XF Cell Mito Stress Test Kit
were purchased from Agilent (Santa Clara, California, USA).
The characterization of DC metabolism was done as described
previously (18). Briefly, harvested DCs were washed with PBS
once, resuspended in assay medium to make 2 million/ml
(1∼4 million/ml), and 0.1ml DCs were seeded per well in
poly-D-lysine (#P6407, Sigma-Aldrich) coated plate. DCs were
equilibrated in CO2-free incubator at 37◦C for 30min. After
the medium was topped up to 0.5ml, the plate was equilibrated
in CO2-free incubator at 37

◦C for another 30min before being
loaded into the machine. The final concentrations of drugs
were: 10mM Glucose, 1µM Oligomycin, 50mM 2-DG, 3µM
FCCP, 1µMRotenone+ 1µMAntimycin A, 3µMBPTES, 4µM
Etomoxir, and 2 µMUK5099.

Western Blot
For PathScan R© Intracellular Signaling Array experiments, cell
lysates were prepared and incubated according to the protocol.
The signal were measured by a ChemiDoc (Biorad, CA, USA)
machine. For LY294002 or Rapamycin treatment, cells were
pretreated with the inhibitors for 1 h before maturation or
differentiation. 1 or 2 h afterwards, cells were washed with
ice-cold PBS twice and lysed by RIPA buffer (#9806, CST)
supplemented with protease and phosphatase inhibitor cocktail
(#78440, ThermoFisher Scientific) on ice for 10min. Cell lysates
were collected, sonicated by a water bath sonicator, and pelleted
at maximum speed at 4◦C for 15min on a bench top centrifuge.
The concentrations of cell supernatants were quantified by
Bradford assay. Equal amount of proteins was run on a SDS-
PAGE gel, transferred to a PVDF membrane and blocked by 5%
non-fat milk at room temperature for 1 h. The PVDF membrane
was probed with primary antibodies at 4◦C overnight, washed
with 1% TBST three times, and probed with secondary antibodies
at rt. for 1 h. The PVDF membrane was washed again with 1%
TBST three times before development. The developed X-ray films
were scanned and the bands were semi-quantified by ImageJ.

qPCR
Total DNA were extracted by organic solvents (19). The
mitochondrial DNA copy number per cell was quantified by the
ratio of the copy number of mitochondrial tRNA to the copy
number of β-2-microglobulin (β2M) (quantified by qPCR) as
previously described (20).

TMRE Staining
CD137L-DCs were grown on cell-culture treated coverslips
(#174985, ThermoFisher Scientific). DCs were generated and
loaded with TMRE (1ψm indicator; 100 nM) in the dark for
20min at 37◦C. Cells were then washed and resuspended in
Hank’s buffered salt solution (HBSS), pH 7.2. Images were
acquired using an Olympus IX73 fluorescent imaging system
with excitation at 561 nm. Twenty images were collected
randomly for each sample, and the fluorescence was quantified
using Image J software.

ELISA
IL-8, IL-10, TNFα, and IL-1β in the supernatant were measured
by respective Ready-SET-Go! R© Set (eBioscience) ELISA kits
according to the protocol. IL-12 and IFN-γ in the supernatant
were measured by respective DuoSet ELISA kit according to the
protocol (R&D Systems, Minneapolis, USA). All cytokines are
in pg/ml.

Flow Cytometry
CD137L-DCs were washed with cold PBS, incubated in L7TM

hPSC Passaging Solution (#FP-5013, Lonza, Basel, Switzerland)
at 37◦C for 15min followed by R10 PS medium addition,
and harvested by scraping. moDCs were harvested by flushing.
For the proper comparison of cell surface markers, moDCs
were also incubated with L7TM hPSC Passaging Solution at
37◦C for 15min. Cells were pelleted and washed with cold
PBS for once, followed by cell surface Fc receptor blockage by
FcR blocking reagent (#130-059-901, Miltenyi Biotec, Bergisch
Gladbach, Germany). Cell surface markers were stained at 4◦C
for 30min. Cells were spun down and washed with cold FACS
buffer twice before the analysis on LSR Fottessa or X20 (BD, NJ,
USA) or Attune NxT Flow Cytometer (ThermoFisher Scientific,
Carlsbad, CA, USA). For live / dead cell staining, 1µg/ml 7-AAD
(Biolegend) was added 5min before the measurement by flow
cytometry. Data were analyzed with FlowJo 10.

Lipid Staining
HCS LipidTOX

TM
Phospholipidosis and Steatosis Detection

Kit (#H34158, ThermoFisher Scientific) or BODIPY (#790389,
Sigma-Aldrich) was used to stain the lipid. LipidTOX Red
phospholipid stain was added to the cell culture 18 h before
harvesting. Harvested DCs were washed with PBS and stained
with LipidTOXGreen neutral lipid stain at room temperature for
30min. DCs were spun down and washed with PBS once before
acquisition on flow cytometer. If BODIPY was used, harvested
DCs were stained in the same way as LipidTOX Green neutral
lipid stain.

Metabolomics
The metabolic profiling of organic acids, amino acids, and
glycolysis intermediates was done in collaboration with the
Duke-NUS metabolomics facility. DCs were washed with ice-
cold PBS thrice and resuspended in 50% acetonitrile, 0.3% formic
acid. The extraction and measurement of metabolites by LC-MS
was done as described previously (21, 22). The concentration of
metabolites was normalized by the protein contents of DCs.
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Gene Set Enrichment Analysis (GSEA)
The dataset is obtained from Gene Expression Omnibus,
accession number GSE60199 that was deposited by Harfuddin
et al. (23). The GSEA analysis was performed by using the
javaGSEA Desktop Application (24, 25). For all gene sets, 1,000
permutations with “phenotype” algorithm were used.

Statistical Analysis
Statistical significance was determined by two-tailed unpaired
Student’s t-test unless specified otherwise. If the sample was
normalized by the control, statistical significance was determined
by one-sample t-test against one. The scatter dot plots and bar
charts were plotted by GraphPad Prism 6.

RESULTS

CD137L-DCs Have Higher Glycolysis Rates

and Akt-mTOR1 Activity
As the activation of DCs is accompanied by metabolic
reprograming to a higher rate of glycolysis (15, 26), we compared
the glycolysis rates of CD137L-DCs and moDCs at baseline and
under metabolic stress induced by Oligomycin. As expected,
all DCs had higher extracellular acidification rate (ECAR) due
to higher basal glycolysis rates and glycolytic capacities than
the undifferentiated monocytes (Figure 1A). Maturation of both
CD137L-DCs and moDCs further elevated basal glycolysis rates.
Notably, immature CD137L-DCs have significantly higher basal
glycolysis than both immature and mature moDCs, while mature
CD137L-DCs have the highest basal glycolysis and glycolytic
capacity (Figure 1A). In agreement with the higher glycolysis
in CD137L-DCs, GSEA also showed an enrichment in enzymes
involved in glycolysis in immature CD137L-DCs (Figure 1B),
such as hexokinase 2 (HK2), which is a key enzyme in promoting
aerobic glycolysis (27).

As the main source of ATP, mitochondrial respiration has also
been studied by measuring the oxygen consumption rate (OCR).
After their differentiation from monocytes, all DCs had a higher
basal respiration rate and a higher maximal respiration than the
starting monocytes, though not all comparisons were statistically
significant (Figure 1C), indicating a biogenesis of mitochondria
duringDC differentiation (28). In line with previous observations
(15, 26), moDCs had a lower maximal respiration after
maturation. Though the basal respiration in moDCs was higher
than in CD137L-DCs, there was no significant difference in
maximal respiration between the two types of DCs (Figure 1C),
suggesting that the mitochondria in CD137L-DCs are still
healthy and that their function is not significantly compromised.
In line with their higher basal respiration rate, immature
moDCs have a higher enrichment in enzymes involved in
the TCA cycle than immature CD137L-DCs and mature
moDCs (Figure 1D). The lower basal respiration in CD137L-
DCs could be a result of fewer mitochondria than in moDCs
(Figure 1E). The average mitochondrial membrane potential,
which is controlled by respiration, did not differ significantly
among the four types of DCs (Supplementary Figures 1A,B).
In fact, the responsiveness of moDCs but not CD137L-DCs to
themitochondrial pyruvate carrier blocker, UK5099, implied that

moDCs had a mixed glycolytic and aerobic energy phenotype
for glucose utilization while CD137L-DCs were mostly glycolytic
(Supplementary Figure 1C).

Signaling pathways mediate and regulate the diverse activities
of cells. We utilized the CST PathScan R© Intracellular Signaling
Array Kit to unbiasedly screen the main signaling pathways for
an involvement in CD137L-DC differentiation and maturation.
Among the 18 targets screened, the Akt-mTORC1 pathway
but not the MAPK or Stat pathways consistently showed a
stronger activation in CD137L-DCs than moDCs differentiated
from monocytes from two healthy donors (data not shown).
This result was further confirmed by Western blot analysis.
24 h after the differentiation was initiated, the nascent CD137L-
DCs showed a robust Akt activation that could not be detected
in nascent moDCs. Although Akt activation was present in
moDCs at later time points, this stronger activation of Akt in
CD137L-DCs persisted during the entire period of differentiation
and maturation (Figure 1F). Ribosomal protein S6, which is
a downstream target of mTORC1, was comparably activated
in immature CD137L-DCs and immature moDCs but showed
higher activation inmature CD137L-DCs than inmature moDCs
(Figure 1F). The result is reproducible with the pooled semi-
quantified results shown in Figure 1G. Some comparisons are
not statistically significant due to the large donor variation and
relatively small sample size of three donors. Other molecules
related to mTORC1, such as PRAS40, p70S6, and mTOR itself,
also displayed stronger activation in mature CD137L-DCs than
in mature moDCs (Supplementary Figure 2).

Glycolysis Is Essential for Sustaining the

Activated State of Mature CD137L-DCs
It has been previously reported that glycolysis is indispensable
for the activation of murine BMDCs and human moDCs
(15, 26). Our data are in line with these observations.
When glycolysis was inhibited by 2-Deoxy-D-glucose (2-
DG) during moDCs maturation, expression of CD70 and
CD86 was significantly decreased (Supplementary Figure 3A).
The maturation of CD137L-DCs was more affected by 2-
DG than the maturation of moDCs. For example, CD40,
CD70, and IL-12 were downregulated by 2-DG to a much
higher extent in mature CD137L-DCs than in mature moDCs
(Supplementary Figures 3A,B). This could be explained by
the higher rate of glycolysis in mature CD137L-DCs than in
mature moDCs.

Since DCs used for tumor immunotherapy are always
generated in nutrient-rich medium, we investigated how
important glycolysis is for the function of different types
of in vitro generated DCs. Surprisingly, glycolysis remained
necessary for the expression of most co-stimulatory molecules
examined and for the secretion of inflammatory cytokines
even after DC differentiation and maturation had been
completed. Representative sets of histogram are shown in
Supplementary Figure 4A. Mature CD137L-DCs, which had the
highest glycolysis rate, were the DC type most inhibited by 2-DG.
For example, the MFI of CD80 decreased in mature CD137L-
DC after 2-DG treatment but increased in the other three types
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FIGURE 1 | CD137L-DCs have a higher glycolysis rate and higher Akt and mTORC activity than moDCs. (A) Glycolysis stress assay and (C) Mitostress assay were

done by Seahorse XFe24 Analyzer. ECAR (pmol/min/Norm. Unit) and OCR (mpH/min/Norm. Unit) were normalized by the cell protein content. The basal glycolysis,

glycolytic capacity, basal respiration, and maximal respiration were calculated according to the instructions provided by the kit’s manufacturer. The heatmaps of the

glycolysis gene signature (B) and the TCA gene signature (D) were drawn by comparing the levels of RNAs between immature CD137L-DCs and the other DC types

(immature moDCs and mature moDCs) by GSEA. Shown are results from five different donors. Red: relatively enriched. Blue: relatively decreased. The enrichment

score (ES) of the gene set in immature CD137L-DC relative to immature moDC and mature moDC as a whole is stated above the heatmap. (E) Relative mitochondrial

(Continued)
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FIGURE 1 | counts in different DC types were measured by the mitochondrial DNA copy number. Shown are means ± standard deviations of triplicate

measurements. (F) Monocytes were differentiated by GM-CSF + IL-4 or anti-CD137L antibody (clone 5F4) or the isotype antibody (clone MOPC-21) for 7 d. Cells

were lysed at indicated time points. CD137L-DCs were matured by 1µg/ml R848 + 50 ng/ml IFN-γ and moDCs were matured by 10 ng/ml IL-6, IL-1β, TNFα, and

PGE2 during the last 18 h of differentiation, which is indicated by #. The activation of Akt and ribosome protein S6 were measured by Western blot analysis. These

data are representative of three independent experiments. (G) The activation of Akt (p-Akt/ t-Akt) and mTORC1 (p-S6/ loading controls) was semi-quantified by

ImageJ and normalized by the protein level in immature CD137L-DCs. Data from three different donors were statistically analyzed. *p < 0.05, **p < 0.01, ***p <

0.001, ****p < 0.0001 (two-tailed, two sample student t test).

of DCs. CD70, CD86, and CD137L also significantly decreased
when glycolysis was suppressed by 2-DG (Figures 2A,B).
However, this inhibition by 2-DG was not permanent. After
2-DG was washed out and the DCs were cultured in normal
medium, all the co-stimulatory molecules increased to the level
of control cells (Supplementary Figure 5), indicating that DCs
are plastic and responsive to the changes in the environment.

Interestingly, CD137L-DCs treated with 2-DG were more
resistant to cell death than moDCs. The inhibition of glycolysis
altered the forward scatter and side scatter of mature moDCs but
not of mature CD137L-DCs, indicating an increased percentage
of cell death in mature moDCs (Supplementary Figure 4B).
This vulnerability of mature moDCs to 2-DG induced cell
death was further supported by in-plate trypan blue staining
(Supplementary Figure 4C), which did not require cell scraping
and thereby avoided potential damage to cells. These data tally
with the data from the PathScan Intracellular Signaling Array
showing that there is more extensive phosphorylation of the Bcl-
2-associated death promoter (Bad) and less cleavage of caspase
3 in CD137L-DCs than in moDCs (Supplementary Figure 4D),
indicating a lower degree of apoptosis. This dependence of
moDCs on glycolysis for cell survival confirms previous findings
in murine BMDC (17). In contrast, CD137L-DCs were more
viable and not as dependent on glycolysis for cell survival.

Akt Drives the Increased Glycolysis and

Activation of CD137L-DCs
As demonstrated above, the activation of CD137L-DCs was
accompanied by an elevated glycolysis rate and an increased
Akt-mTORC1 activity. An increased Akt-mTORC1 activity is
the cause of an elevated glycolysis rate in LPS-activated murine
BMDCs (26). In order to test whether such a causal relationship
is also the case for human DCs, LY294002, an inhibitor of PI3K-
Akt, and Rapamycin, an inhibitor of mTORC1, were used. The
efficacy and specificity of the inhibitors were first confirmed
(Supplementary Figures 6A,B). Inhibition of the Akt-mTORC1
pathway by LY294002 or Rapamycin slightly reduced the increase
in glycolysis in mature moDCs (Figure 3A) but completely
blocked it in mature CD137L-DCs (Figure 3B). Similarly as
the inhibition of glycolysis by 2-DG, inhibition of glycolysis
by LY294002 significantly impaired the expression of most co-
stimulatory molecules and the secretion of pro-inflammatory
cytokines by mature CD137L-DCs, while mature moDCs were
not much affected (Figures 3C,D). In contrast, Rapamycin
generally increased the expression of co-stimulatory molecules
and IL-12 secretion, of which the reason is currently not known.

However, once the DCs were matured, the inhibition
of Akt or mTORC1 had little effect on the expression of

costimulatory molecules and cytokines by mature CD137L-DCs
or mature moDCs (Supplementary Figure 7). The reason for
this non-responsiveness may be that the signaling pathways
are usually upstream of an activation decision point, and
are only active for a short period after encountering a
stimulus, such as the TLR ligands or maturation cocktails,
while the metabolism is fundamental and active for an
extended period.

mTORC1 Is Indispensable for the

Differentiation of CD137L-DCs
Since the PI3K - Akt - mTORC1 pathway was activated early
on upon the induction of DC differentiation (Figure 1F), we
were wondering whether the PI3K - Akt - mTORC1 pathway
could affect the differentiation of monocytes to DCs in addition
to its effect on maturation. For that the concentration of
inhibitors was first optimized (Supplementary Figures 8A,B).
The most striking effect was that inhibition of mTORC1 from
1 h before to 24 h after induction of immature moDCs or
CD137L-DCs differentiation always blocked the differentiation
of DCs, as evidenced by the absence of the typical morphology
of immature moDCs or CD137L-DCs (Figure 4A). After 7
d, fewer live DCs were present. The increased cell death
after Rapamycin treatment is mainly a result of differentiation
blockade but not of acute cytotoxicity of Rapamycin, since
the viabilities of monocytes and nascent moDCs on day 1
were comparable between Rapamycin treatment and the control
sample (Supplementary Figure 8C). Analysis of costimulatory
molecule expression confirmed that mTORC1 inhibition during
differentiation impaired the differentiation of DCs, with
immature CD137L-DCs being more affected than immature
moDCs (Figure 4B). The effect of Akt inhibition during
differentiation was more variable among different donors.
Expression of costimulatory molecules and cytokines by
immature CD137L-DCs was reduced although the difference was
not always statistically significant due to large donor to donor
variation (Figure 4C).

The inhibition of Akt or mTORC1 during the first day of
differentiation had a long-term influence on DC maturation. IL-
12 is usually secreted by activated DCs, especially by mature
CD137L-DCs. Even though the inhibitors were washed out by
the end of the first day, LY294002-treated mature CD137L-DCs
still secreted much less IL-12 while Rapamycin-treated mature
CD137L-DCs secreted more IL-12 than the control cells, which is
reminiscent of the IL-12 secreted bymature CD137L-DCs treated
by LY29002 or Rapamycin during maturation (Figure 3D).
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FIGURE 2 | The inhibition of glycolysis after maturation significantly impairs the function of mature CD137L-DCs. DCs were generated and on day 8 treated with

50mM 2-DG for 24 h. (A) Cell surface expression of co-stimulatory and inhibitory molecules was measured by flow cytometry. (B) The secretion of cytokines by DCs

was measured by ELISA. Depicted are the means ± standard deviations of relative changes upon addition of 2-DG to respective medium controls (values set at 1)

from up to six independent experiments with DCs from different donors. *p < 0.05, **p < 0.01, ***p < 0.001 (two-tailed, one sample student t test). MFI, geometric

mean fluorescence intensity. n.d., not detected.

The Increased Glycolysis During DC

Maturation Does Not Fuel Lipid Synthesis
Glycolysis can favor the function of DCs in many different ways,
such as providing carbons and reducing power for lipid synthesis
(15). However, there are conflicting data concerning the effect
of fatty acid synthesis blockade on DC function (15, 29). Our
previous data showed an enrichment in gene expression related
to the lipid metabolism in immature CD137L-DCs compared
to moDCs (23). But neither had mature CD137L-DCs more
phospholipids or neutral lipids than mature moDCs, nor did
the lipid content in CD137L-DCs increase upon maturation
(Figure 5A), indicating that the synthesis of fatty acids is not the
main output of the increased glycolysis in CD137L-DCs.

Since acetyl-CoA carboxylase (ACC) and fatty acid synthase
(FASN) are key enzymes for lipid metabolism, we inhibited

them with TOFA and C75, respectively. Both inhibitors
did not lead to a decrease of the lipid content in treated
DCs (data not shown). Nevertheless, C75 significantly
suppressed the maturation of CD137L-DCs and moDCs as
evidenced by the lower expression of most co-stimulatory
molecules (Figure 5B) and the almost complete block of IL-

12 secretion (Figure 5C). In the allogenic mixed leukocyte

reaction (MLR), T cells activated by C75-treated DCs secreted
less IFN-γ and proliferated less than T cells activated by the

control DCs (Figure 5D). However, the expression of co-
stimulatory molecules and IL-12 were not suppressed by TOFA

(Supplementary Figures 9A,B). TOFA-treated DCs did not have
a defect in stimulating the T cells (Supplementary Figure 9C).
A representative set of histogram of T cell proliferation is shown
in Supplementary Figure 9D.
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FIGURE 3 | The activation of Akt and mTORC1 is important for the commitment to glycolysis and maturation of CD137L-DCs. DCs were differentiated and

pre-treated with DMSO or 10µM LY294002 or 50 nM Rapamycin for 1 h before maturation. Glycolysis stress assays of (A) mature moDCs and (B) mature

CD137L-DCs were done with a Seahorse XFe24 Analyzer. (C) Cell surface expression of co-stimulatory and inhibitory molecules was measured by flow cytometry. (D)

The secretion of cytokines by DCs was measured by ELISA. Depicted are means ± standard deviations of changes upon addition of 10µM LY294002 or 50 nM

Rapamycin relative to respective DMSO controls (values set at 1) from up to 5 independent experiments with DCs from different donors. *p < 0.05, **p < 0.01

(two-tailed, one sample student t test). n.d., not detected.

Succinate and Serine Are Enriched in

CD137L-DCs
To determine the consequence of the higher glycolysis rate in
CD137L-DCs, an unbiased metabolomics experiment, covering
amino acids and intermediates from glycolysis and the TCA
cycle, was performed. Unexpectedly, citrate, a TCA intermediate
that has been reported to accumulate in activated BMDCs (15),
was not elevated in mature moDCs, and was lower in CD137L-
DCs than moDCs (Figure 6A). However, succinate, another
intermediate in TCA cycle, was found to be highly enriched in

CD137L-DCs (Figure 6B). A further highly enriched metabolite
in CD137L-DCs was serine (Figure 6C), which can be derived
from glycolysis. Both succinate and serine play a role in DNA and
histone methylation (30, 31).

DISCUSSION

It is increasingly appreciated that metabolic reprograming
accompanies the activation of leukocytes. We found that
CD137L-DCs have a higher basal glycolysis rate than moDCs
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FIGURE 4 | The activation of mTORC1 is indispensable for the differentiation and function of CD137L-DCs and moDCs. Primary monocytes were pre-treated with

DMSO or 2µM LY294002 or 10 nM Rapamycin for 1 h before the differentiation to moDC or CD137L-DCs was induced. 24 h after the initiation of differentiation,

inhibitors were washed out and the moDCs were re-supplemented with GM-CSF + IL-4. Where indicated, DCs were matured during the last 18 h of the 7-day culture.

(A) mTORC1 inhibition by Rapamycin blocks differentiation. Shown are representative photos of DCs, taken before the drug wash-out. Cell surface expression of

co-stimulatory and inhibitory molecules and the secretion of cytokines after (B) Rapamycin and (C) LY294002 treatment were measured. Depicted are means ±

standard deviations of changes upon addition of 2µM LY294002 or 10 nM Rapamycin relative to respective DMSO controls (values set at 1) from up to 7 independent

experiments with DCs from different donors. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, p = 0.0584 (two-tailed, one sample student t test). n.d.,

not detected.
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FIGURE 5 | C75 suppresses the maturation of moDCs and CD137L-DCs. (A) The phospholipid (left) and neutral lipid (right) contents were measured by LipidTOX

reagents. The MFIs of other DCs were normalized by the MFIs of the respective mature CD137L-DCs from up to 11 different donors. DCs were pretreated with 20µM

C75 for 1 h before the last 18 h of maturation/culture. (B) Cell surface markers and (C) IL-12 in the supernatant were measured. The values were normalized by the

respective DMSO-treated controls, and results from three donors were pooled. (D) C75-treated DCs were co-cultured with CellTrace Violet labeled allogenic T cells at

1:10 ratio for 5 days. The proliferation of T cells and secretion of IFN-γ by T cells were measured. *p < 0.05, ****p < 0.0001 (two-tailed, one sample student t test).

n.d., not detected.

because of a higher activity of Akt. After maturation by IFN-
γ and the TLR7/8 ligand R848, mature CD137L-DCs have an
even higher activity of the Akt-mTORC1 pathway, leading to a
further increase in the basal glycolysis rate and the glycolytic
capacity. We demonstrated that glycolysis is not only important
for the increased expression of co-stimulatory molecules and
the increased secretion of inflammatory cytokines during the
maturation of CD137L-DCs, but is also important for the

preservation of their activated state after maturation. The
inhibition of Akt nicely recapitulates the suppressive effects of
inhibition of glycolysis on CD137L-DC activity. It is therefore
the high Akt-driven glycolysis rate that is the basis for the higher
potency of CD137L-DCs compared to moDCs. The essence of
our findings is graphically depicted in Figure 7.

Fast growing tumor cells often deplete glucose in the
microenvironment (32, 33), leading to a dampened immune
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FIGURE 6 | Succinate and serine are enriched in CD137L-DCs. Results from

three different donors were normalized based on protein concentrations and

statistically analyzed. (A) Relative citrate concentrations. (B) Relative

succinate/α-ketoglutarate and succinate/fumarate ratios. (C) Relative abun-

dance of serine. *p < 0.05, **p < 0.01, ***p < 0.001 (two-tailed, paired t test).

response (34). Similarly as tumor cells, T cells upon activation
also switch to aerobic glycolysis to support their proliferation
(10). In the lymph node, where T cells become primed and
activated, glucose level may be low. It is possible that T cells,
after being activated by tumor associated antigen (TAA)-loaded
DCs, proliferate for some time before the low glucose level in
the lymph node suppresses DCs and limits T cell activation.
Therefore, multiple injections of in vitro-generated DCs are
needed to achieve sufficient T cell activation against tumors (35).
One advantage of CD137L-DCs is that they are more resistant
to spontaneous apoptosis and 2-DG-induced cell death. It is
possible that CD137L-DCs survive longer in the lymph node,
and therefore deliver stronger and longer-lasting activation to T
cells. The plasticity of CD137L-DCs allows them to adapt to the
changing environment, and may make it possible to fine-tune the
tumor microenvironment and lymph node microenvironment
with drugs in order to augment DC-based immunotherapy (36).

We have proven that both Akt and its downstream
target mTORC1 mediate the increase of glycolysis in mature
CD137L-DCs. However, only the inhibition of Akt during
maturation suppresses inflammatory mature CD137L-DCs. The
inhibition of mTORC1 by Rapamycin generally enhances the
inflammatory features of mature moDCs and mature CD137L-
DCs. This discrepancy suggests there are other regulating factors
downstream of Akt and mTORC1 besides glycolysis that are

involved in the activation of DCs. On top of that, the inhibition
of mTORC1 by Rapamycin can be both pro-inflammatory and
anti-inflammatory. Sukhbaatar et al. proposed a model where the
effect of mTORC1 inhibition on DC function is spatiotemporal:
mTORC1 inhibition during early DC activation in the periphery
suppresses inflammatory DCs while mTORC1 inhibition during
late DC activation in the lymph node enhances the T cell
activating ability (37). Our results support this model. For
example, the early cytokine IL-1β secreted by mature CD137L-
DCs is inhibited, whereas the late cytokine IL-12 is enhanced
by Rapamycin.

During the differentiation of DCs, mTORC1 rather than Akt
plays the more important role. mTORC1 inhibition blocks the
DC differentiation and leads to massive cell death. This blockade
of Akt or mTORC1 during differentiation has long-lasting
consequences on the generated cells. Even when the monocytes
were treated with the PI3K inhibitor LY294002 only during the
first 24 h of differentiation, IL-12 secretion was still suppressed
in the resulting matured DC on day 7. But the opposite, i.e., and
enhancement of IL-12 secretion in resulting DC, was obtained
when monocytes had been treated with the mTOR inhibitor
Rapamycin. This long-term effect resembles the reported innate
memory where monocytes are more inflammatory to a second
stimulus (38). The molecular basis for this long-term effect
may be the Akt-mTORC1-mediated glycolysis which has been
reported to be involved in the epigenetic regulation of monocyte
memory (39).

Everts and colleagues suggested that the increased glycolysis
during activation results in an accumulation of citrate for the
synthesis of lipids, which expands the ER and Golgi apparatus
(15). However, we could not find an accumulation of citrate.
Neither did we observe a higher lipid content in moDCs or
CD137L-DCs after maturation, nor could we measure more
lipids in CD137L-DCs than in moDCs. It has been shown
that in monocytes different TLR ligands induce very different
metabolic changes and transcriptomes (40). It is possible that
the increased lipid synthesis is specific to LPS-activated moDCs
but not to CD137L-DCs or cytokine-activated moDCs. The two
fatty acid synthesis inhibitors, C75 and TOFA, did not decrease
the lipid contents in any of the four types of DCs. However, the
inhibition of FASN by C75 inhibited the maturation of both,
CD137L-DCs and moDCs. It is possible that C75 reduces the
level of Acetyl-CoA for acetylation, which plays an important
role in the regulation of inflammation-related gene expression
(41). Another possibility is that C75 alters the ratio of pro-
inflammatory lipids to anti-inflammatory lipids (42).

Succinate and α-ketoglutarate have been reported
to be involved in the polarization of M1 and M2
macrophages (43). Succinate accumulates in M1
macrophages and promotes inflammation (44). A higher
succinate to α-ketoglutarate ratio preferentially induces
pro-inflammatory macrophage differentiation while a
lower succinate / α-ketoglutarate ratio promotes anti-
inflammatory macrophage differentiation (31). It is
very likely that the higher succinate/α-ketoglutarate
ratio contributes to the pro-inflammatory features
of CD137L-DC.
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FIGURE 7 | Graphic abstract of the main findings. Immature moDCs have minimal activation of the Akt-mTORC1 pathway, and rely mainly on OXPHOS at the resting

stage. In contrast, immature CD137L-DCs have a high activation of the Akt-mTORC1 pathway at the resting stage, leading to an increased glycolysis. After

maturation, both mature moDCs and mature CD137L-DCs display an elevated activity of Akt-mTORC1, leading to higher glycolysis and the increased expression of

co-stimulatory molecules and pro-inflammatory cytokines. Compared with mature moDCs, mature CD137L-DCs have a significantly higher Akt-driven glycolysis, and

secrete more pro-inflammatory cytokines. This higher glycolysis leads to a relative accumulation of succinate and serine rather than citrate or lipids. Red: relative

accumulation. Green: relative depletion.

Succinate and α-ketoglutarate are also involved in the
epigenetic regulation of cancer cells and macrophages (31, 45).
Serine as an indispensable substrate for the synthesis of S-
adenosylmethionine (SAM), a methyl group donor, plays a
role in the epigenetic regulation of gene expression (30). The
accumulation of succinate and serine in CD137L-DC might not
be a coincidence, but may have a synergistic effect on epigenetic
upregulation of pro-inflammatory gene expression.

Inflammatory DCs, M1 macrophages and effector T cells
all reprogram their metabolism and increase glycolysis rates
upon activation (46), and the function of these cells can be
dampened if glycolysis is inhibited. However, it is unknown at
present if the functions of these cells can be enhanced by simply
increasing their (1) glycolysis, (2) activation of the Akt-mTORC1
pathway, or (3) their ability to compete for glucose in the tumor
microenvironment. We have tried to achieve this by using the
Akt agonist SC-79 (47) and the mTORC agonist MHY1485 (48),
but to no avail. It is also not clear by what mechanisms glycolysis
supports the functions of these immune cells. Our data argue
for further in-depth investigation of the already increasingly
appreciated interplay between metabolism and epigenetics.

It would have been informative to demonstrate the enhanced
Akt-driven glycolysis as the basis of the higher potency in vivo,
e.g., in a murine tumor model, by genetic manipulation of
key glycolytic enzymes (e.g., HK2) specifically in CD137L-DCs.
Unfortunately, CD137L-DCs do not exist in mouse (7), and the
reason may be the large difference in CD137L between human
and mouse. While for most members of the TNF and TNF
receptor families the human—mouse homology is 60–80%, it is
only 36% for human and murine CD137L (49).

In summary, we have demonstrated (1) that the Akt-driven
glycolysis is crucial for the sustained activation of CD137L-DCs,
(2) that the higher Akt-driven glycolysis is part of the reason why
CD137L-DCs are more potent than the conventional moDCs,
and (3) that Akt-driven glycolysis leads to an accumulation

of succinate and serine instead of lipids in CD137L-DCs. Our
finding suggests that the Akt-driven glycolysis could be a
therapeutic target to manipulate the function of CD137L-DCs for
better clinical efficacy.
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Immunotherapy regimens have shown success in subsets of cancer patients;

however, their efficacy against pancreatic ductal adenocarcinoma (PDA) remain

unclear. Previously, we demonstrated the potential of TAB004, a monoclonal

antibody targeting the unique tumor-associated form of MUC1 (tMUC1) in the

early detection of PDA. In this study, we evaluated the therapeutic benefit of

combining the TAB004 antibody with Liposomal-MSA-IL-2 in immune competent and

human MUC1 transgenic (MUC1.Tg) mouse models of PDA and investigated the

associated immune responses. Treatment with TAB004 + Lip-MSA-IL-2 resulted in

significantly improved survival and slower tumor growth compared to controls in

MUC1.Tg mice bearing an orthotopic PDA.MUC1 tumor. Similarly, in the spontaneous

model of PDA that expresses human MUC1, the combination treatment stalled the

progression of pancreatic intraepithelial pre-neoplastic (PanIN) lesion to adenocarcinoma.

Treatment with the combination elicited a robust systemic and tumor-specific

immune response with (a) increased percentages of systemic and tumor infiltrated

CD45+CD11b+ cells, (b) increased levels of myeloperoxidase (MPO), (c) increased

antibody-dependent cellular cytotoxicity/phagocytosis (ADCC/ADCP), (d) decreased

percentage of immune regulatory cells (CD8+CD69+ cells), and (e) reduced circulating

levels of immunosuppressive tMUC1. We report that treatment with a novel antibody

against tMUC1 in combination with a unique formulation of IL-2 can improve survival

and lead to stable disease in appropriate models of PDA by reducing tumor-induced

immune regulation and promoting recruitment of CD45+CD11b+ cells, thereby

enhancing ADCC/ADCP.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDA) has the poorest
prognosis of all malignancies with more than 260,000 deaths
annually worldwide, a 5% 5-year survival rate, a mean life
expectancy of <6 months, and a high degree of resistance to
standard therapy (1–4). Radiotherapy and chemotherapy remain
largely ineffective. While surgery is an option, only 20% of PDA
patients have resectable tumors at the time of diagnosis and
the recurrence rate remains high in these patients. In addition
to surgery, PDA is treated with adjuvant therapies including
gemcitabine to reduce the incidence of local recurrences and
distant metastases (3, 5). Combination treatments such as
rosiglitazone and gemcitabine, FOLFIRINOX (5-FU, leucovorin,
irinotecan, and oxaliplatin), monoclonal antibody (mAb), and 5-
fluorouracil, or gemcitabine and nab-paclitaxel have been shown
to significantly reduce tumor progression and metastases and
significantly extend overall patient survival (1, 6–8). While those
treatments led to some improvements and extended overall
survival in small subsets of patients (from 6–7 months to ∼25
months) (8, 9), improved approaches to treat patients with
pancreatic cancer remain urgent (3, 10).

Cancer immunotherapies that target tumor associated
antigens present attractive alternatives as these approaches are
expected to cause fewer side effects while preventing metastasis
and recurrence better than standard therapies. Antibody-based
immunotherapy for cancer was established within the past
15 years, and is now one of the most successful strategies
for treating patients with hematological and solid tumors
(11). The fundamental basis of antibody-based therapy of
tumors relies on the presence of cell surface antigens that are
overexpressed, mutated or selectively expressed compared with
normal tissues (11). A key challenge has been to identify antigens
that are suitable for antibody-based therapeutics. There are
approximately 460 active clinical trials with 38 antibody-based
drugs and several new products under development. Some
examples of FDA approved antibodies for solid tumors include
Herceptin R©, Avastin R©, Erbitux R©, Vectibix R©, and Ipilimumab R©.
However, none is approved for pancreatic cancer.

There is clinical evidence for mAb driven T cell immunity.
For instance, the therapeutic effect of rituximab was augmented
by eliciting a T cell response (12). Further, administration of
cetuximab triggered expansion of EGFR-specific T cells (13); and
trastuzumab elicited a Her-2/neu-specific cellular response (14).
Since interleukin-2 (IL-2) through enhancement of NK ADCC
greatly improved the therapeutic efficacy of mAbs (15, 16),
trials with trastuzumab and rituximab in combination with IL-
2 were conducted. The results were disappointing, with little to
no objective clinical response observed with the combination
(17, 18). This is most likely because IL-2 in its native form is short

Abbreviations: ADCC, Antibody Dependent Cell Cytotoxicity; ADCP, Antibody

Dependent Cell Phagocytosis; APC, Allophycocyanin; CBC, Cell Blood Counts;

EGFR, Epidermal Growth Factor Receptor; FITC, Fluorescein Isothiocyanate;

IFN, Interferon; IL, Interleukin; MPO, Myeloperoxidase; PDA, Pancreatic Ductal

Adenocarcinoma; PE, Phycoerythrin; RBC, Red Blood Cells; TAB004, Anti-tMuc1

antibody; TIL, Tumor Infiltrating Lymphocytes; TNF, Tumor Necrosis Factor;

WBC, White Blood Cells.

lived in vivo and increasing the dose is toxic. Indeed, combining
antibodies with a form of IL-2 with extended circulation provided
surprisingly robust control of B16 melanoma tumor growth, in
the absence of any marked toxicity (19). Administration of IL-
2, which supports the survival and function of tumor-reactive
T cells (20), has been shown to benefit some patients with
melanoma (21). However, the vascular leak syndrome associated
with the high-dose IL-2 treatment regimen has limited its use
in tumor immunotherapy (21). More recently, Lip-MSA-IL-2, a
formulation stabilizing IL-2, was associated with the generation
of an immune response that prevented melanoma progression in
a murine model (22).

Mucin-1 (i.e., MUC1, CD227) is a membrane-tethered
mucin overexpressed and aberrantly glycosylated in many
epithelial malignancies, including>90% of human PDA (23–29).
The hypo-glycosylated MUC1 expressed on malignant cells
renders normally cryptic MUC1 epitopes open to detection
and is hereto forth referred to as tMUC1. MUC1 has
long been an interesting target molecule for immunotherapy
development, given its highly increased cell surface expression
and altered glycosylation in tumors [reviewed in (30)]. Many
antibodies have been developed that recognize epitopes of those
tumor-associated hypo-glycosylated MUC1 regions, including
PankoMab, Pemtumomab (also known as HMFG1) and TAB004
(26, 27, 31–33). TAB004 (patent #8,518,405, and 9845362 B2)
was initially developed using pancreatic tumors expressing the
altered form of MUC1 (34). TAB004 targets the epitope area
(AA950-958) which is only accessible for antigenic detection in
cells expressing the hypo-glycosylated form of MUC1 (35–38). In
contrast to most other MUC1 antibodies, TAB004 distinguishes
between normal and tumor-associated forms ofMUC1 by relying
solely on the expression of hypo-glycosylated MUC1. Further,
TAB004 was effective in identifying primary PDA and pancreatic
cancer stem cells in PDA patients, while sparing recognition of
normal tissue (27, 39).

Previously, we have demonstrated the effectiveness of MUC1-
directed tumor vaccines in colorectal, pancreatic, and breast
cancer models (38, 40, 41); however, immunosuppression within
the tumor microenvironment hindered the effectiveness of the
vaccine (41). We have recently shown that an anti-MUC1
antibody can be used as a therapeutic antibody when conjugated
to the immune modulating agent CpG ODN via enhanced NK
cell anti-tumor activity against PDA tumors (42).

Here we sought for the first time to determine whether the
combination of TAB004 and stabilized Lip-MSA-IL-2 elicits an
immune response and confers a survival benefit in orthotopic and
spontaneous immunocompetent murine models of PDA. Our
results indicate that, with minimal toxicity, the combination of
TAB004 + Lip-MSA-IL-2 was associated with improved survival
in the orthotopic murine model of PDA, as well as a lower cancer
burden in the PDA.MUC1 mouse spontaneous model of PDA.

MATERIALS AND METHODS

TAB004 Antibody and Lip-MSA-IL-2
The antibody TAB004 has been described earlier (27, 43)
(OncoTab Inc., Charlotte NC). The stabilized Lip-MSA-IL-2

Frontiers in Oncology | www.frontiersin.org 2 April 2019 | Volume 9 | Article 33039

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Dréau et al. Anti-tMUC1 + IL2 Limit Pancreatic Cancer

has been described (22) and was provided by Dr. Wittrup
(Massachusetts Institute of Technology, Cambridge, MA). The
optimal dose of TAB004 (500 µg/mouse/injection i.e., 25
mg/kg/dose) was determined in preliminary experiments using
doses ranging from 62.5 to 1,000 µg/mouse/injection. The
dose of Lip-MSA-IL-2 used (25 µg/mouse/injection, i.e., 1.25
mg/kg/dose) was derived from previous experiments (22).

KCM and KCM-LUC+ PDA Cells
KCM cells were generated from spontaneous PDA tumors from
PDA.MUC1 triple transgenic mice (LSL-KrasG12D X P48Cre X
human MUC1.Tg mice) (44) and, therefore, express human
MUC1 (43, 45). The KCM-Luc cell line was generated by
retroviral transduction of KCM cells with the MSCV Luciferase
PGK-Hygro plasmid (Addgene plasmid # 18782, a generous gift
from Scott Lowe, Memorial Sloan Kettering Cancer Center, New
York, NY) (46). Both KCM and KCM-Luc+ cells were cultured
and expanded in DMEM (Gibco, Waltham, MA) supplemented
with 10% fetal bovine serum (FBS, Gibco), glutamine, penicillin,
and streptomycin (Cellgro, Corning, Manassas, VA).

Spontaneous Mouse Model of PDA
Triple transgenic mice (i.e., PDA.MUC1 also designated KCM
mice) express human MUC1 as a self-molecule and is the
first model of invasive pancreatic cancer that expresses human
MUC1 (44). Indeed, KCM mice develop ductal lesions with
complete penetrance (100%), very similar to all three stages
of human pancreatic intraepithelial neoplasia (PanIN) lesions
(PanIN-1A, PanIN-1B, PanIN-2, and PanIN-3) and progress to
adenocarcinoma and lung metastasis. As early as 6–16 weeks of
age, mice develop PanINs of different stages including PanIN-
IA, PanIN-IB, and PanIN-2. By 20–26 weeks of age, early PanIN
lesions progress to PanIN-3 and carcinoma in-situ and by 30–
36 weeks, invasive adenocarcinoma and metastasis are observed.
As in human PDA, tumor cells express high levels of tMUC1
(44) that were detectable using the TAB004 antibody (27). KCM
mice are characterized by (1) tumors arising spontaneously in the
pancreatic ductal epithelial cells due to the KRASG12D mutation;
(2) the normal human MUC1 transformed to tMUC1 with
disease progression just as observed in the human disease; (3)
tumors arising in fully immune competent host; and (4) tolerance
to MUC1 immunization as MUC1 is expressed as a self-molecule
driven by its own regulatory sequence (47).

Following an Institutional Animal Care and Use Committee
(IACUC) approved protocol, KCM triple transgenic mice were
primed to activate the KRAS mutation through a CRE tamoxifen
sensitive cassette (41, 44) during week 12–13 of age. All KCM
mice treated with tamoxifen (20 mg/ml/mouse 5 day/week for 2
weeks) develop PanIN lesions by 20–23 week of age. At that age,
animals (n = 18) were randomized and treated with either PBS
(vehicle, n = 4), TAB004 alone (n = 4), Lip-MSA-IL-2 (n = 4)
alone or the combination of TAB004+ Lip-MSA-IL-2 (n= 6; for
treatment schedule and dose, see Figure 1A). Two animals died
or were removed from the study per IACUC guidelines: one in
the PBS group and one in the TAB004 alone group, respectively.
Animals were treated for 5 weeks and monitored daily for
health concerns. Body weight was recorded weekly and all mice

were euthanized at 36–40 week of age. At euthanasia, pancreata
were collected free of fat and surrounding tissue, fixed in 10%
buffered formalin and embedded in paraffin. Pancreas sections
(4–6µm) were stained with hematoxylin and eosin (H&E),
and the presence of PanIN lesions and/or adenocarcinoma was
determined following a microscopic assessment of 5 sections per
pancreas. For each animal, pancreatic lesions were counted and
scored in 10 microscope fields (100x) and for each pancreas, the
most advanced stage was reported (41, 44).

Orthotopic Mouse Model of PDA
Surgeries were performed in a sterile environment under the
supervision of the UNCC attending veterinarian and IACUC
approved protocols. The resident veterinarian (Dr. Williams,
DVM) orthotopically injected 20,000 KCM-Luc+ cells (∼50 µl)
in the pancreas of both male and female human MUC1.Tg mice
(originally received from Dr. Gendler, Mayo Clinic, Arizona
and bred in-house at UNC Charlotte) (47). When implanted
orthotopically in those mice, KCM cells generate tumors (45).
The optimal number of cells to be injected was determined
in a preliminary experiment using 10,000–200,000 KCM-Luc+
cells. Following surgical healing (i.e., on day 7 post-surgery),
the presence of KCM-Luc+ tumors in mice was assessed using
an IVIS system (Perkin Elmer). Treatment started on day 8
post-surgery and included four groups: vehicle (PBS), TAB004,
Lip-MSA-IL-2, or the combination TAB004 + Lip-MSA-IL-2.
Treatments were administered IP once weekly and tumor
progression was monitored by chemiluminescence through
weekly IVIS imaging. Detailed schedules and dose are provided in
Figures 2A, 3A for survival andmechanistic studies, respectively.

Mice were weighed weekly and monitored for activity level
and adverse health events daily. Loss of more than 20 percent
of body weight led to the euthanasia of the animal at which
time tumor and serum were collected. For the survival studies,
animals (n = 6–7 per treatment group) were treated for up
to 5 weeks. For the mechanistic study, animals (n = 3 per
treatment group) were euthanized at day 18 based on preliminary
studies in which control animals (vehicle-injected group) had
to be removed from the study by day 19–22 due to high
tumor burden and morbidity. No TILs were available for one
animal from the TAB004 group. For all animals, tumors and
surrounding pancreas, spleen, and blood were collected. For
the mechanistic studies, cells from spleen, tumor, and blood
were used for ADCC/ADCP assays, flow-cytometry analyses of
tumor infiltrating lymphocytes, and of systemic immune cells.
In addition, sera were assayed for cytokines, myeloperoxidase
(MPO) and the presence of tMUC1. Collected whole blood
was used to determine cell blood counts (CBC; IDEXX,
Columbia, MO).

Flow Cytometry Analyses of Blood and
Intra-Tumoral Immune Cells
Blood, spleen and tumors, obtained on day 18 post-tumor
implantation from animals orthotopically implanted with KCM-
Luc+ cells and treated as detailed above, were assessed by
flow cytometry for specific subsets of lymphocytes. Tumor
cell suspensions were obtained following mechanical disruption
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FIGURE 1 | TAB004 + Lip-MSA-IL-2 treatment significantly slowed tumor progression in a spontaneous pancreatic cancer mouse model. KrasG12Dmut; P-48Cre;

MUC1.TG (KCM) triple-transgenic 8–16 week-old mice were induced with Tamoxifen (75 mg/kg, IP, for 5 consecutive days for 2 weeks). Following tamoxifen

induction, all KCM mice develop pancreatic cancer lesions around 30–40 week of age (41, 44). (A) Tamoxifen-induced 23–31 week-old mice were administered once

weekly either PBS (n = 3), Lip-MSA-IL-2 (n = 4), TAB004 (n = 3), or the combination TAB004 + Lip-MSA-IL-2 (n = 6). Ten weeks later, pancreata were collected and

processed for histology. Pancreas slides (5–6µm thick) from each mouse were stained using hematoxylin and eosin and the presence of Pan lesions and/or

carcinoma blindly assessed and recorded. (B) Representative micro-photographs of H&E stained pancreas sections from normal and tamoxifen-induced KCM mice

treated with PBS, Lip-MSA-IL-2, TAB004, and TAB004 + Lip-MSA-IL-2. Note the presence of carcinoma in all pancreases except those of normal and TAB004 +

Lip-MSA-IL-2 treated mice. (C) Each pancreas was evaluated using the pancreatic cancer histological stages, i.e., PanIN1, PanIN2, PanIN3, and carcinoma.

*p < 0.05. TAB, TAB004; IL2, Lip-MSA-IL-2; IP, intraperitoneal.

of the tumor mass and filtration through 70µm strainers
(BD Biosciences San Jose, CA). Non-necrotic areas were
used to generate cell suspensions, and cell suspensions were
further treated 15min with DNAse1 (10µg/ml). Tumor
cell suspensions were washed, counted and resuspended
in PBS (1 × 107 cells/ml). For each sample, 106 cells
were stained for CD45 (anti-CD45-APC), CD4 (anti-CD4-
FITC), CD8 (anti-CD8-PE), CD69 (anti-CD69-PE-cy7), NK
(anti-NK-1.1-PE), CD107 (anti-CD107-FITC), anti-ly6G-PE,
and/or CD11b-FITC. Ly6G and CD11b have been used to
identify and deplete neutrophils (48) and macrophages (49)
predominantly, respectively. Of note, CD11b in particular is
also expressed on the surface of other immune cells (50).
Corresponding isotype controls for APC, PE, FITC, PE-Cy7
were run concurrently. All antibodies were purchased from
BD-Biosciences. Additionally, cells were stained to exclude
dead cells using Fixable Viability Dye (FVD, eBioscience, CA)
(51). Samples were run on a Fortessa flow-cytometer (BD
Biosciences) and the data analyzed using FlowJo software
(BD Biosciences).

Systemic Cytokines
Sera obtained on day 18 post-tumor implantation from animals
orthotopically implanted with KCM-Luc+ cells and treated as
detailed above, were assessed for the following 20 cytokines:
GMCSF, IL-1α, IL-2, IL-4, IL-6, IL-10, IL-13, CXCL1, M-CSF,
TNF-α, IL-1β, IL-3, IL-5, IL-9, IL-12, IL-17, MCP1, RANTES,
and VEGF (Quantibody R© Mouse Cytokine Array 1; Raybiotech)
according to the manufacturer’s recommendations. Following
incubations, washing, and detection steps, fluorescent signal
was detected using a Tecan LS300 Series Scanner (Tecan, San
Jose, CA).

Systemic Myeloperoxidase
The concentrations of MPO, a phagocyte hemoprotein (that
primarily mediates host defense reactions) abundantly expressed
in neutrophils and moderately expressed in macrophages
and secreted during their activation (52, 53), was determined
by ELISA (Boster Biological Tech, CA). MPO levels were
determined in sera obtained on day 18 post-tumor implantation.
MPO concentrations expressed in pg/ml of sera were
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FIGURE 2 | TAB004 + Lip-MSA-IL-2 treatment significantly slowed tumor progression in the KCM orthotopic pancreatic cancer mouse model. MUC1.Tg mice were

implanted orthotopically with KCM-Luc+ pancreatic cancer cells (20,000 cells) and treated [see schedule (A); details in Materials and Methods section]. Mice

implanted orthotopically with KCM-Luc+ cells were treated with either PBS, Lip-MSA-IL-2, TAB004, or the combination TAB004 + Lip-MSA-IL-2. The tumor growth

was monitored in vivo through luciferase bioluminescence imaging. (B) Representative IVIS bioluminescent images of mice treated with PBS, Lip-MSA-IL-2, TAB004,

or the combination TAB004 + Lip-MSA-IL-2 at days 7, 14, and 21 post-tumor implantation, respectively (One mouse per treatment group shown from baseline i.e.,

day 7–day 21). (C) Kaplan Meier survival curves of mice (n ≥ 6 mice/group) implanted orthotopically with KCM-luc+ pancreatic tumor cells (20,000 cells) treated with

PBS, TAB004, Lip-MSA-IL-2, or the combination TAB004 + Lip-MSA-IL-2 (Log-rank test, p = 0.0239). TAB, TAB004; IL2, Lip-MSA-IL-2; W, week.

derived from a standard curve that was run along with the
samples tested.

Blood Cell Counts
White blood cells counts, RBC counts and features were
determined by IDEXX Bioresearch (Columbia, MO) on whole
blood, obtained on day 18 post-tumor implantation from animals
orthotopically implanted with KCM-Luc+ cells and treated as
detailed above.

Antibody-Dependent Cell Cytotoxicity
(ADCC)/Antibody-Dependent Cell
Phagocytosis (ADCP)
ADCC/ADCP was evaluated by flow cytometry as detailed
previously (54). Briefly, target cells (KCM) were labeled
with carboxyfluorescein succinimidyl ester (CFSE, BioLegend
488 nm) dye for ∼5min, seeded in 24 well tissue culture
plates and incubated overnight (37◦C, 5% CO2, humidity
>80%) (55, 56). Splenocytes were added to target cells at a
1:5 tumor:splenocyte ratio in the presence of TAB004 (0.1–
1.0µg/ml). Maximum lysis was obtained following incubation
with saponin 0.1%. After a 24 h incubation, cells were harvested
and stained with the viability dye Vital fluorophore (Fixable

Viability Dye ∼360–405 nm, BioLegend) (51). Cells were then
run on a Fortessa flow cytometer (BD Biosciences), and gating
on CFSE+ cells, percent of dead KCM cells were determined.

tMUC1 Concentrations
Concentrations of tMUC1 in the serum obtained on day 18 post-
tumor implantation from animals orthotopically implanted with
KCM-Luc+ cells and treated as detailed above, were determined
by ELISA as previously described (27, 43, 57).

Statistical Analyses
Data are presented as mean± SEM. Survival differences between
treatments were represented using Kaplan-Meier and tested
using Log-rank tests. Other parameters measured (e.g., % stained
cells, tumor weight, % of lysis, number and type of pancreatic
lesions, MPO, and MUC1 concentrations) were assessed for
normality using the Shapiro-Wilk normality test. For parameters
with normal distribution, differences between treatment groups
were tested using ANOVA and post-hoc tests. Correlations
between tumor weight and parameters measured was assessed
by Pearson r correlations. All analyses were completed using
Prism 7 (GraphPad software Inc.). A priori p < 0.05 was defined
as significant.
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FIGURE 3 | Tumor-infiltrating immune cell populations, particularly macrophages, were altered in mice treated with the combination TAB004 + Lip-MSA-IL-2.

MUC1.Tg mice were implanted orthotopically with KCM-Luc+ pancreatic cancer cells (20,000 cells) and treated with either PBS, Lip-MSA-IL-2, TAB004, or the

combination TAB004 + Lip-MSA-IL-2 [see schedule (A); details in Materials and Methods section] for 18 days. On day 18, tumor cell suspensions were obtained and

the presence (%) of CD45+ immune cells (C) CD45+CD11b+ cells (B), and of activated effector T cells (CD45+CD8+CD69+) (D) was determined. Additionally,

tumor burden (E) was recorded [n = 3 per treatment group except for TILs evaluations (B–D) in TAB group, n = 2]. For (B–E), data are presented as mean ± SEM.

(*)p < 0.08, *p < 0.05, **p < 0.01. TAB, TAB004; IL2, Lip-MSA-IL-2; W, week.

RESULTS

Treatment With TAB004 + Lip-MSA-IL-2
Limited Pancreatic Cancer Progression in
the KCM Triple Transgenic Mice That
Develop Spontaneous PDA
The effects of TAB004 with or without Lip-MSA-IL-2 were
assessed in the KCM mice, a model of human MUC1-expressing
spontaneous PDA. KCMmice carry the humanMUC1 transgene
(driven by its own promoter) and the KRASG12D transgene

(driven by tamoxifen-inducible P48 promoter) (41, 44). When
KCM mice are injected with tamoxifen for 2 weeks starting at 11
weeks of age, all (100%) mice develop early stage PanIN lesions
by 20–24 weeks of age (∼12 weeks post tamoxifen) (41, 44).

KCM mice were treated with vehicle (PBS: n = 3), TAB004
(500 µgs/mouse. n = 3), Lip-MSA-IL-2 (25 µgs/mouse. n = 4),
or TAB004+ Lip-MSA-IL-2 (n= 6) for 5 weeks starting 15 weeks
post-tamoxifen treatment (or 26 weeks of age) (Figure 1A). At
40 weeks of age, pancreata were harvested and processed for
histology. Tumor grade was determined following hematoxylin
and eosin (H&E) staining. Representative microphotographs
of H&E stained pancreas sections from each treatment group

compared to normal pancreas highlight the presence of tumor
lesions (Figure 1B). Results show that in 5 out of 6 mice
treated with the combination TAB004 + Lip-MSA-IL-2, the
PanIN lesions did not progress beyond the PanIN2 grade. One
mouse in the combination TAB004 + Lip-MSA-IL-2 group
progressed to adenocarcinoma. In sharp contrast, all 4 mice
treated with Lip-MSA-IL-2 alone progressed from PanIN lesions
to adenocarcinoma. Similarly, 2 out of 3 mice in the PBS
group and in the TAB004 group progressed to adenocarcinoma
while one mouse from each group progressed to high-grade
PanIN3/CIS grade (Figure 1C). Of note, we did not observe any
adverse effect of the treatment on the health of the KCMmice.

Treatment With TAB004 and Lip-MSA-IL-2
Also Significantly Improved Survival of
MUC1.Tg Mice Bearing Orthotopic KCM
Tumors
MUC1.Tg mice bearing orthotopic KCM.Luc+ pancreatic
tumors were treated with either vehicle (PBS), TAB004, or Lip-
MSA-IL-2 alone or the combination of TAB004+ Lip-MSA-IL-2
weekly for up to 5 weeks (Figure 2A, n ≥ 6 mice per treatment
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group). The in vivo growth of KCM cells expressing luciferase
wasmonitored post-luciferin injection as shown in representative
IVIS images of orthotopic tumor (one mouse per treatment over
time from day 7 to day 21, Figure 2B). By day 21, while tumors
grew in all mice, reduced bioluminescence indicative of smaller
tumors was detected in treated mice groups, suggesting that
those tumors grew more slowly compared to tumors in mice
treated with PBS (Figure 2B). More importantly, TAB004+ Lip-
MSA-IL-2 treatment was associated with a significantly improved
survival (p = 0.02, Log rank test, Figure 2C) compared to mice
that received any other treatments. Notably, TAB004 alone or
Lip-MSA-IL-2 alone did not improve mouse survival.

No significant toxicity was associated with the treatments
except for mild to severe skin dermatitis observed in a third
of the mice treated with Lip-MSA-IL-2 alone and half of the
mice treated with the TAB004 + Lip-MSA-IL-2 combination.
Complete blood cell count (WBC and RBC) analyses were
conducted on whole blood. No difference was observed in
RBC measured parameters (Supplemental Figure 1S) and WBC
populations (Supplemental Figure 2S) when comparing tumor
bearing and treated mice with control non-tumor bearing
MUC1.Tg mice.

Treatment With TAB004 + Lip-MSA-IL-2
Was Associated With Increases in
CD45+CD11b+ Cells and Decreases in
Both CD45+ Lymphocytes and
CD8+CD69+ T Cells Within the Orthotopic
KCM Tumors
In another set of experiments, tumors were collected 18 days
post tumor challenge and 2 weeks post treatment (Figure 3A) to
assess the treatment induced immune responses (n = 3 mice per
treatment group). Changes in specific immune cell populations
including macrophages, neutrophils, NK cells, lymphocytes, and
lymphocyte subsets are associated with effective immunotherapy
(58, 59). In particular, IL-2 treatment is associated with increases
in neutrophils and activated NK (NK1.1+CD107+) cells (19).
Moreover, tumor infiltration by specific subsets of macrophages
is also associated with improved pre-clinical responses (60, 61).
Therefore, we assessed immune cell subpopulations in spleen,
blood and tumors fromMUC1.Tg mice orthotopically implanted
with KCM tumor cells, treated as detailed in Figure 3A. In the
spleen, there was no significant difference in the populations of
CD45+, CD8+, CD4+, CD4+CD69+, CD8+CD69+, NK1.1+,
NK1.1+CD107+, CD11b+, or Ly6G+ as determined by flow
cytometry (data not shown).

In the tumors, a significant increase in the percent of tumor-
associated CD45+CD11b+ cells was observed in the tumors of
mice treated with the combination of TAB004 + Lip-MSA-IL-2
compared to tumors from mice in all other treatments (p < 0.01;
Figure 3B). Interestingly, in mice treated with the combination
TAB004 + Lip-MSA-IL-2 or TAB004 alone, we observed a
significant decrease in the percent of tumor-associated CD45+
lymphocytes and of CD8+CD69+ T lymphocytes compared
to tumors from mice treated with PBS or Lip-MSA-IL-2 alone
(P < 0.01; Figures 3C,D). A subset of CD8+CD69+ cells has

been identified as activated CD8+ regulatory cells previously
(62). Although tumor infiltrating CD45+ cells were lower in the
mice treated with the TAB004+ Lip-MSA-IL-2 combination, the
CD45+CD11b+ cell population remained high. There was no
significant change in any other subpopulation including Tregs,
CD4+CD69+, CD8+, NK1.1+, or activated NK cell populations
(data not shown). The tumor weight was also assessed at day
18 and was highly variable. Nevertheless, the orthotopic tumor
burden in the mice treated with the combination TAB004+ Lip-
MSA-IL-2 tended to be smaller compared to the tumor burden
observed the other treatment groups (ns, Figure 3E).

Of note, the number of monocytes per µl of blood was
significantly decreased in mice treated with the combination of
TAB004 + Lip-MSA-IL-2 compared to mice treated with Lip-
MSA-IL-2 alone (Supplemental Figure 3AS). Additionally, the
number of CD45+CD11b+ cells per gram of tumor was higher
in tumors isolated from animals treated with Lip-MSA-IL-2
alone compared tumors collected from mice treated with PBS or
TAB004 (Supplemental Figure 3BS).

Together, the survival and mechanistic experiments
conducted in the orthotopic KCM tumor model highlight
that the tumor progression is slower and the tumor burden
is lower in the mice treated with the combination TAB004 +

Lip-MSA-IL-2 compared to mice treated with PBS, TAB004 or
Lip-MSA-IL-2 alone. Furthermore, a significant survival benefit
was observed in the mice treated with the combination TAB004
+ Lip-MSA-IL-2 (see Figure 2C above).

The Combination TAB004 + Lip-MSA-IL-2
Treatment Markedly Increased the
Myeloperoxidase Present in the Serum of
MUC1.Tg Mice Bearing Orthotopic KCM
Tumors
Multiple immune cells, especially neutrophils and macrophages,
have a MPO activity (52, 53). MPO is produced during
degranulation of neutrophils and macrophages and produces
hypochlorous acid that is generally associated with cellular
cytotoxicity. MPO concentrations were determined using ELISA
in sera. Significantly higher MPO concentrations were detected
in the sera of KCM tumor bearing mice treated with the
combination of TAB004 + Lip-MSA-IL-2 than in the sera
of the mice that were administered the other treatments
(P < 0.001; Figure 4).

The Combination TAB004 + Lip-MSA-IL-2
Treatment Led to Significant Increases in
Circulating Levels of CXCL1 and IL-5 as
Well as Decreased IL-6 in the Sera of KCM
Tumor Bearing MUC1.Tg Mice
Along with changes in immune cell infiltration, successful
immunotherapies are associated with changes in multiple
cytokines (63, 64). We assessed the concentrations of 20
Th1, Th2, Th17, and/or macrophage-related cytokines in sera
collected 18 days post tumor challenge and 2 weeks post
treatment (Figure 3A). Mice treated with the combination
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FIGURE 4 | Blood myeloperoxidase (MPO) concentrations were significantly

higher in KCM-tumor bearing mice following TAB004 + Lip-MSA-IL-2

treatment. Sera were assessed by ELISA for the presence of MPO and the

MPO concentration expressed in pg/ml (n = 3 per treatment group). Data are

presented as mean ± SEM. **p < 0.01. TAB, TAB004; IL2, Lip-MSA-IL-2.

TAB004 + Lip-MSA-IL-2 showed a significant increase in levels
of IL5 (Figure 5B) and CXCL1 (Figure 5D) compared to all other
treatment groups. Following Lip MSA IL2 treatment, serum
concentrations of RANTES were highly variable (Figure 5A,
p < 0.05; Shapiro–Wilk normality test). Also noteworthy is
the decrease in the serum levels of IL-6 in mice treated with
Lip-MSA-IL-2 and the combination TAB004 + Lip-MSA-IL-2
compared to PBS and TAB004 treatedmice (p< 0.05; Figure 5C).

Treatment With TAB004 Antibody Markedly
Decreased tMUC1 Serum Concentrations
in the MUC1.Tg Mice Bearing Orthotopic
KCM Tumors
Because tMUC1 is associated with immune suppression (31)
and increased aggressiveness of pancreatic tumors (44), we
determined the concentrations of serum tMUC1 in the treated
mice using a specific ELISA. As was expected, serum tMUC1
concentrations were significantly lower in TAB004 and TAB004
+ Lip-MSA-IL-2 treated mice when compared to serum from
mice treated with Lip-MSA-IL-2 alone or with PBS (p < 0.05;
Figure 6A). Further, similar observations were made when
the serum concentrations were normalized to tumor mass
(p < 0.05; Figure 6B).

Treatment With TAB004 Alone and the
Combination of TAB004 + Lip-MSA-IL-2
Led to an Increased Antibody-Dependent
Cell Cytotoxicity/Phagocytosis
To further assess the cytotoxic mechanisms induced by
the combination of TAB004 + Lip-MSA-IL-2, splenocytes
isolated from treated KCM-tumor bearing mice (Figure 3) were
assayed in vitro with TAB004 antibody for antibody-dependent
cell cytotoxicity (ADCC)/antibody-dependent cell phagocytosis
(ADCP) against KCM tumor cells as detailed previously (54).
Splenocytes isolated from KCM tumor bearing mice treated with

either TAB004 alone or the combination TAB004+ Lip-MSA-IL-
2 had a significantly higher ADCC/ADCP response against KCM
tumor cells compared to splenocytes isolated from mice treated
with PBS or Lip-MSA-IL-2 alone (p < 0.05, Figure 7).

Specific Immune Parameters Measured
Correlated With Tumor Size and the
Treatment With TAB004 Led to Lower
Neutrophil/Lymphocyte Ratios
To shed light on the robustness of the association between
immune variables and tumor progression in the treated mice,
the immune parameters measured were correlated with tumor
size regardless of treatment (Table 1). Interestingly, the immune
parameters measured in the mechanistic study had significant
correlations with tumor size. Specifically, a smaller tumor size
was correlated with increases in CD45+CD11b+ cells present in
the tumors (r = −0.956; p = 0.04), in serum MPO (r = −0.969;
p = 0.03), in serum IL-5 (r = −0.948; p = 0.051), and in serum
CXCL1 (r = −0.938; p = 0.06) concentrations. Additionally,
a smaller tumor size was correlated with a decrease in blood
neutrophil numbers (r = 0.969; p= 0.03).

As the blood neutrophil/lymphocyte ratio has been
demonstrated to have prognostic value in monitoring
tumor progression (with a lower ratio associated with
improved outcomes (65, 66)), we compared the blood
neutrophil/lymphocyte ratio between mouse treatment
groups (Figure 8A). Treatments with either TAB004 or the
combination of TAB004 + Lip-MSA-IL-2 led to significant
decreases in the blood neutrophil/lymphocyte ratio compared
to the blood of mice treated with PBS or Lip-MSA-IL-2 alone
(p < 0.05, Figure 8A). Furthermore, the ratio of neutrophils
(i.e., CD45+Ly6G+ cells per gram of tumor) to T lymphocytes
(defined as the sum of CD45+CD4+ and CD45+CD8+ per
gram of tumor) tended to be lower in the tumors of mice treated
with the combination of TAB004 + Lip-MSA-IL-2 compared to
tumors from mice treated with the vehicle (PBS), and was lower
than the neutrophil/T lymphocyte ratio in tumors from mice
treated with Lip-MSA-IL-2 (p < 0.05; Figure 8B).

DISCUSSION

The most effective pre-clinical studies are conducted in immune
competent spontaneous tumor models (67). Here, using both
orthotopic (KCM implanted tumor cells in the pancreas) and
spontaneous PDA models, we demonstrate for the first time a
significant slowdown of tumor growth and improved survival
following combination treatment with TAB004 and Lip-MSA-IL-
2. The beneficial therapeutic effect was associated with specific
immune changes, including increases in CD45+CD11b+ cells
and decreases in immune regulatory lymphocytes within the
tumor mass. Treatments also led to increases in the serum
concentrations of MPO and of specific cytokines as well as
ADCC/ADCP activities of splenocytes. The immunocompetent
orthotopic pancreatic model was informative on the effects of
treatments on immune responses. Indeed, notwithstanding the
number of animals per group [n = 3 except TAB004 group
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FIGURE 5 | Blood cytokine concentrations following PBS, TAB004, Lip-MSA-IL-2, and TAB004 + Lip-MSA-IL-2 treatments. The presence of multiple cytokines in

sera (A–D, pg/ml) collected from mice implanted with 20,000 KCM-luc cells and treated with PBS (black), TAB004 (dark gray), Lip-MSA-IL-2 (darker gray), and

TAB004 + Lip-MSA-IL-2 (light gray) were determined using multiplex quantitative cytokine arrays (n = 3 per treatment group). (*)p < 0.08; *p < 0.05; ***p < 0.001.

[Values and variation (Average ± SEM) are provided in the Supplemental Table 1S].

FIGURE 6 | tMUC1 serum concentrations were significantly lower in TAB004 and TAB + Lip-MSA-IL-2 treated mice. tMUC1 was measured by ELISA in the serum of

KCM tumor-bearing mice (A, n ≥ 5) treated with PBS, Lip-MSA-IL-2, TAB004, or the TAB004 + Lip-MSA-IL-2 combination and normalized to tumor size (B, n = 3).

Data are presented as mean ± SEM. *p < 0.05; p < 0.01; ***p < 0.001. TAB, TAB004; IL2, Lip-MSA-IL-2.

(n = 2)] that requires a cautious interpretation of the data,
significant changes in immune parameters were observed, and
most were correlated to tumor size. Of note, there was minimal
toxicity associated with this treatment.

Both mouse models used here mimic the development of the
human tumor, including similarities in MUC1 expression, the
native immune responses against MUC1 as tumors progress,
and the immune suppressive microenvironment within the
developing tumor (28). In these clinically-relevant models,
tumors arise in an appropriate tissue background and in a host
conditioned by the physiological events of neoplastic progression
and tumorigenesis and in the context of a viable immune system
(67). Regardless of treatment, multiple factors likely modulate

the immune responses observed here including the desmoplasia
and immune evasion. For example, desmoplasia is routinely
observed in pancreatic tumors and hinders chemotherapy
(68, 69). Indeed, in our model, collagen accumulation was
observed in all treatments (Supplemental Figure 4S) and may
have affected the immunotherapy tested. Numerous mechanisms
of immune evasion have been identified and reviewed elsewhere
(70–72). As our tumor model is not highly immunogenic,
evasion mechanisms were not investigated here and will be
assessed in future studies. Moreover, both mouse models express
human MUC1 as a self-molecule and thus are tolerant to
MUC1. Additionally, KCM mice develop spontaneous tumors
of the pancreas, with tumor cells expressing large amounts of
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FIGURE 7 | ADCC/ADCP lysis was significantly increased in mice treated with

TAB004 or TAB + Lip-MSA-IL-2. Splenocytes isolated from KCM

tumor-bearing mice were assayed in vitro for antibody-dependent cell

cytotoxicity (ADCC)/antibody-dependent cell phagocytosis (ADCP) as detailed

previously (54). KCM tumor cells were seeded and stained with the dye (CSFE)

and incubated for 24 h with isolated splenocytes at a 1:5 tumor:splenocyte

ratio in the presence of TAB004 with gating on non-CD45+ cells. The KCM

cells CSFE+ dead cells (%) stained with vital fluorophore were evaluated by

flow-cytometry (n = 3 per treatment group). Data are presented as mean ±

SEM. (*)p < 0.08;*p < 0.05; **p < 0.01; ***p < 0.001. TAB, TAB004; IL2,

Lip-MSA-IL-2.

hypo-glycosylated MUC1 as observed in human PDAs (29).
Therefore, the tumor growth reduction along with a significantly
higher survival observed here support the potential of these
therapeutic approaches in humans.

Clinically, combination treatments such as rosiglitazone
and gemcitabine, FOLFIRINOX (5-FU, leucovorin, irinotecan,
and oxaliplatin), monoclonal antibody and 5-fluorouracil,
adriamycin, and mitomycin chemotherapy, or gemcitabine and
nab-paclitaxel have been shown to significantly reduce tumor
progression and metastases and significantly extend overall
patient survival (1, 6–8). While those treatments led to some
improvements and extended overall survival in small subsets
of patients (8, 9), improved approaches to treat patients with
pancreatic cancer are required (3, 10).

Clinical trials with combinations of antibodies to specific
tumor antigens along with IL-2 treatment have not shown
significant efficacy (22, 73). Modified IL-2 formulations alone
led to longer IL-2 half-life, but without significant clinical
benefit when used as a monotherapy (74). We have previously
demonstrated that treatment with an anti-tumor antigen
antibody and a fusion protein bestowing prolonged IL-2
signaling (i.e., Lip-MSA-IL-2 used here) led to significantly
improved survival in a melanoma mouse model (22).
Furthermore, in a murine model, the sustained persistence of

TABLE 1 | Pearson r correlation coefficients between and tumor size and immune

parameters.

Tumor size (mg) vs. Pearson r coefficient Significance

Immune cells within tumors

CD45+, % 0.355 n.s.

CD8+CD69+, % 0.360 n.s.

CD11b+, % −0.956 0.04

Immune cells within blood

WBC (Number/ul) 0.632 n.s.

Lymphocytes (Number/ul) 0.244 n.s.

Monocytes (Number/ul) 0.734 n.s.

Neutrophils (Number/ul) 0.970 0.03

Cytokines within serum

IL-2 (pg/ml) −0.736 n.s.

IL-4 (pg/ml) −0.911 n.s

IL-5 (pg/ml) −0.948 0.05

IL-9 (pg/ml) −0.335 n.s.

CXCL1 (pg/ml) −0.939 0.06

RANTES (pg/ml) 0.417 n.s.

Serum Muc1 (pg/ml) 0.562 n.s.

Serum MPO (pg/ml) −0.969 0.03

IL-2 signaling enhanced the antitumor effects of peptide vaccines
(75), highlighting the key role of sustained IL-2 signaling
activation in successful immunotherapy. Although PDA is
classically resistant to immunotherapy and lacks baseline T cell
infiltration (76), higher clinical benefits were observed when
immunotherapy/chemotherapy/chemoprevention combinations
were used (41, 77). Indeed, our data support the benefits of
sustained IL-2 signaling when combined with the specific
tumor targeting antibody TAB004, as Lip-MSA-IL-2, or TAB004
treatments alone had no effects on survival, whereas the
combination was associated with clearly improved survival.

Immunological responses observed in the PDA models
following treatment in part mimic those observed and
summarized earlier (22) in a murine melanoma model,
including critical interactions between various effectors during
administration of cancer immunotherapy. In particular, the
administration of anti-MUC1 antibodies leads to effective
tumor cell killing by antibody-dependent cell-mediated
cytotoxicity/phagocytosis (ADCC/ADCP) in part through NK
cell and/or macrophage-mediated killing activities (24, 32, 42).
Remarkably, populations of CD45+CD11b+ cells (including
macrophages), but not NK cells, were increased in tumors
treated with Lip-MSA-IL-2 and TAB004, suggesting a key
role for CD45+CD11b+ cells (including macrophages) in the
limitation of tumor progression in vivo. Our observation is
supported by the required role of macrophages in the anti-
MUC1 tumor response in vivo (42). Notably, overall survival
of PDA patients who had alterations in the genes for CD45
(PTPRC) and CD11b (ITGAM) was significantly lower than
the survival of all patients with PDA (CBioportal.org query,
Supplemental Figure 5S) (78, 79). Future depletion studies will
be required to confirm that the CD45+CD11b+ cells involved
here are macrophages.
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FIGURE 8 | The combination TAB004 + Lip-MSA-IL-2 treatment led to lower neutrophil/lymphocyte ratio in blood (A) and Tumors (B). Blood and tumor cells were

characterized by blood count and flow-cytometry, respectively (see section Materials and Methods for details). For blood, ratios were derived using number (#) of

neutrophils and lymphocytes per µl of blood. For each tumor mass, the cell suspensions obtained were stained for CD45+and ly6G+ (neutrophils) and CD45+ and

either CD4+ or CD8+(T lymphocytes) evaluated by flow-cytometry and normalized to gram of tumor (n = 3 per treatment group). Data are presented as mean ±

SEM. (*)p < 0.08;*p < 0.05; TAB, TAB004; IL2, Lip-MSA-IL-2.

This immune response was complemented with a significant
decrease in immune regulatory cells (CD8+CD69+ cells).
Interestingly, enhanced anti-tumor immunity against MHC class
I tumors (RMA-S ad RM-1) was reported in CD69 knockout
mice and mice treated with an anti-CD69 antibody (80).
Indeed, CD8+CD69+ T cells are immunoregulatory cells that
are known to promote tumor progression by inducing the
production of indoleamine 2,3, dioxygenase (IDO) (62). Our
previous studies indicated that IDO, one of the major players
in immune tolerance but also in tumor progression, metastasis,
and angiogenesis, is overexpressed in MUC1-expressing PDA
(44). Thus, tMUC1 expression may contribute toward a
highly tolerogenic tumor microenvironment by influencing the
IDO/tryptophan pathways.

Our data suggest that the increased percent of tumor
infiltrating CD45+CD11b+ cells and serum MPO
concentrations are associated with the increased survival
observed in the mice treated with the combination. MPO
is produced especially during degranulation of neutrophils
and macrophages, leading to the generation of hypochlorous
acid that is commonly indicative of cellular cytotoxicity. In
contrast with previous increases in neutrophils associated with
Lip-MSA-IL-2 treatment in the melanoma model (22), no
significant changes in neutrophil populations were observed in
this study. Nevertheless, we do report that tumor progression is
correlated with an increase in the number of blood neutrophils.
Interestingly, the blood neutrophil/lymphocyte ratio, an
independent prognostic marker of tumor progression (i.e.,
the lower the blood neutrophil/lymphocyte ratio, the better
the outcome (65, 66), was determined to be lower in mice
treated with TAB004 alone or with the combination of TAB004
+ Lip-MSA-IL-2. Furthermore, the ratio of neutrophils/T
lymphocytes per gram of tumor (approximated using the sum of
CD45+CD4+ cells and CD45+CD8+ cells) was also lower in

the tumors from mice treated with the combination of TAB004
+ Lip-MSA-IL-2.

We also detected increases in serum IL-5 and CXCL1
concentrations and decreases in serum IL-6 concentrations
in mice treated with the combination vs. control mice. In
particular, the significant increase in circulating CXCL1, along
with the correlation of the number of blood neutrophils with
the tumor size, may be related to the recruitment of tumor
entrained neutrophils (TENs) from the bone marrow into
possibly other organs. TENs are associated with inhibiting
seeding in the metastatic niche (81) by generating H2O2 and
tumor secreted MCP1 (also noted in our treatment group) which
are both critical mediators of anti-metastatic entrainment of
stimulated neutrophils. IL-6 is a critical pleiotropic cytokine
associated with innate immunity and cancer; it is known to
inhibit expression of CXCL1, and is a prominent target for
clinical intervention (82). Together, these data hint that the
combination treatment may be associated with wound healing
and macrophage/monocyte recruitment.

The presence of plasma IgG antibodies specific to tMUC1
has been associated with survival benefits in patients with
breast, lung, pancreatic, ovarian and gastric carcinomas (24).
Interestingly, circulating shed tMUC1 accurately detected tumor
stage progression in PDA patients (27). Possible mechanisms
by which anti-tMUC1 antibodies prevent tumor progression
include enhanced NK cell anti-tumor activity (42), restoration of
cell-cell interactions altered by tumor-associatedMUC1 (24), and
prevention of tMUC1-associated reduction of T cell proliferation
and anergy of cytotoxic T cells (23, 31). Interestingly, the
inhibition of human T cell responses by cancer-associatedMUC1
was abrogated by IL-2 (31). Moreover, when conjugated to
tMUC1 antibody, IL-2 stimulated the proliferation of activated
human lymphocytes in vitro and triggered resting NK cells to
lyse tumor cells (23). Furthermore, the IL-2-antibody complex
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promoted antitumor immunity in mice by activating tumor-
reactive CD8+ T cells (20). Previous imaging analyses clearly
indicated strong co-localization of TAB004 and tumor cells (43,
57), and our data highlight clear tumor responses to combined
TAB004 + Lip-MSA-IL-2 immunotherapy. The neutralization
of tMUC1 in circulation is likely due to TAB004 complexing
with circulating tMUC1, which in turn dampens the tMUC1-
induced immune suppression. This enables immune effector cells
(in this case, the macrophages) to elicit an anti-tumor immune
response and enhance survival. Although TAB004 alone did
not improve survival, since Lip-MSA-IL-2 has been shown to
activate macrophage cytotoxicity against cancer cells (83), it is
possible that Lip-MSA-IL-2 likely enhances the recruitment and
activation of macrophages once TAB004 is bound to tMUC1-
expressing tumor cells.

Taken together, our data, for the first time, indicate that
treatment with Lip-MSA-IL-2 + TAB004 significantly improved
survival in an orthotopic model, and resulted in retardation of
tumor progression in a spontaneous model of PDA. Remarkably,
these results are the first to demonstrate improved PDA
outcomes in immunocompetent mouse models. In contrast,
the use of Lip-MSA-IL-2 alone or TAB004 alone were not
associated with any significant improvement in tumor burden
or survival in the in vivo PDA models tested. Beside the
benefits of TAB004 as an early monitoring approach to detect
cancers earlier and monitor their progression, these data
indicate that TAB004 may also have clear therapeutic benefits
when combined with IL-2 to stimulate a targeted immune
response. Success in developing FDA-approved TAB004-based
treatments of patients with non-resectable PDA would have
enormous long-term clinical impact. Furthermore, TAB004
antibody therapy may usher a new area of immunotherapy for
other malignancies.
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Traditional tumor vaccination approaches mostly focus on activating dendritic cells (DCs)

by providing themwith a source of tumor antigens and/or adjuvants, which in turn activate

tumor-reactive T cells. Novel biomaterial-based cancer immunotherapeutic strategies

focus on directly activating and stimulating T cells through molecular cues presented

on synthetic constructs with the aim of improving T cell survival, more precisely steer

T cell activation and direct T cell differentiation. Synthetic artificial antigen presenting

cells (aAPCs) decorated with T cell-activating ligands are being developed to induce

robust tumor-specific T cell responses, essentially bypassing DCs. In this perspective,

we approach these promising new technologies from an immunological angle, first by

identifying the CD4+ and CD8+ T cell subtypes that are imperative for robust anti-cancer

immunity and subsequently discussing the molecular cues needed to induce these

cells types. We will elaborate on how biomaterials can be applied to stimulate T cells

in vitro and in vivo to improve their survival, activation and function. Scaffold-based

methods can also be used as delivery vehicles for adoptive transfer of T cells, including

tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor expressing (CAR) T

cells, while simultaneously stimulating these cells. Finally, we provide suggestions on how

these insights could advance the field of biomaterial-based activation and expansion of

tumor-specific T cells in the future.

Keywords: cancer immunotherapy, biomaterials, T cells, artificial antigen-presenting cells, scaffold, anti-tumor

immune response, synthetic immune niche, molecular cues

INTRODUCTION

Immunotherapy provides a revolutionary treatment modality for cancer. A variety of strategies
have been developed to improve the clinical outcome of patients by generating long-term
anti-tumor immune responses. The development of therapeutic monoclonal antibodies that block
co-inhibitory receptors on T cells, such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)
and programmed death 1 (PD-1), has shown exceptional clinical benefit in cancer patients and is
seen as a crucial breakthrough in the cancer immunotherapy field (1).

Apart from relieving suppression in pre-existing T cells, other immunotherapeutic strategies
focus on increasing the number of tumor-reactive T lymphocytes that recognize either
tumor-specific antigens, tumor-associated antigens, cancer-testis antigens or neo-antigens.
Dendritic cell (DC) vaccination targets antigen-presenting DCs, which are capable of priming
T cells by capturing, processing and presenting antigens to naïve T cells together with
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co-stimulatory cues (2). To generate DC vaccines, patient-
derived DCs are cultured ex vivo, maturated and loaded
with antigens, after which they are infused back into the
patient where they activate tumor-reactive T cells (3). Increased
overall survival, functional tumor-specific immune responses
and low toxicities have been observed with this strategy (4, 5).
Other cell-based therapies attempt to increase the number of
circulating tumor-specific T cells by reinfusing autologous ex
vivo-expanded T cells derived from tumors (tumor-infiltrating
lymphocytes, TIL) or genetically engineering them to confer
tumor reactivity using high affinity T-cell receptors (TCR) or
chimeric antigen receptors (CAR) (6). Promising preclinical
data have been obtained with these adoptive T-cell therapies
(1, 7, 8). The prominent immunotherapeutic strategies described
above all focus on generating robust tumor-directed T cell
responses, which is crucial to inducing effective and long-
lasting anti-tumor immunity, as there is a strong correlation
between tumor-infiltrating CD8+ T cells and patient survival
in virtually all cancer types (9). In addition, antigen-specific
CD4+ T helper cells are believed to be critically involved
in the induction of optimal anti-tumor responses (10, 11).
It is therefore evident that T cells play a central role in
cancer immunotherapy.

Although current cancer immune therapies have shown
promising preclinical and clinical results, challenges remain that
may limit therapeutic benefit. To improve on this and to design
new therapeutic strategies, interest in the field of biomaterial
engineering has grown. Biomaterials have proven valuable in
reducing systemic toxicities, enhancing accumulation in tumors,
improving pharmacokinetics and ensuring sustained release
by controlled (targeted) drug delivery (12, 13). Biomaterial-
based immunotherapeutic strategies led to the development of
nanoparticles for the targeted delivery of cargo to immune
cells in vivo, such as cytokines, DC-activating agents or small
inhibitors (13–15). Careful design can be applied to tune the
delivery of DC-targeted vaccines using materials responsive
to temperature (16) or pH (17, 18). Other biomaterial-based
approaches focus on improving ex vivo immune cell expansion
or on supporting immune cells after adoptive transfer (13, 14).
Furthermore, there has been a rise in the development of
synthetic, acellular artificial antigen presenting cells (aAPCs)
that can target and activate T cells directly (19, 20), thereby
bypassing the need for DC activation. By presenting molecular
cues on synthetic constructs based on biomaterials, specific
signals are transmitted to T cells in a well-defined context
and controlled manner to support T cell viability, activation
and differentiation.

In this perspective, we will detail what T cell subtypes
are imperative for robust anti-cancer immunity and which
molecular cues are needed to induce these T cells. Next, we
will elaborate on how these molecular cues can be presented
by biomaterials for direct activation and expansion of T
cells. The use of biomaterials to aid the adoptive transfer of
T cells will also be discussed. Finally, we will illustrate in
which direction the field of biomaterial engineering for cancer
immunotherapy should go for the next generation of biomaterial-
based cancer immunotherapies.

T CELL SUBSETS IN CANCER
IMMUNOTHERAPY

To generate durable anti-tumor immune responses that have
a beneficial impact on the clinical outcome of cancer patients,
potent CD8+ and CD4+ T cell responses are crucial (9–11).
Here, we will discuss the roles of different T cell subtypes in
cancer-specific immune responses and we will highlight the
cellular and molecular characteristics of these T cells (Figure 1).

Upon interaction with their cognate antigen in the context
of major histocompatibility complex class I (MHC I) and
co-stimulatory cues, CD8+ T cells will undergo extensive
proliferative expansion to create a large population of short-lived
effector cytotoxic T lymphocytes (CTLs) that have tumor-killing
capacities. The CTL population comprises functionally distinct
subsets (21). For instance, expression of CX3CR1 on CTLs
is associated with their ability to generate memory subsets
and serves as a predictor for CX3CR1 expression on the
generated memory cells, which is associated with robust
cytotoxic effector functions (22, 23). CXCR5-expressing CTLs
are involved in chronic viral infections and show reduced
susceptibility to exhaustion (24). Additional heterogeneity may
exist regarding cytokine production and the (co-)expression
of perforin and various granzymes (25). In addition to these
short-lived CTLs, the formation of CD8+ memory T cells is
required to support long-term anti-tumor immunity. Following
a progressive differentiation model, primed naive CD8+ T cells
(Tn) will progress into different memory T cell populations
[T stem cell memory (Tscm), T central memory (Tcm), T
effector memory (Tem)] (21, 22, 25–27). The Tscm subset
displays increased anti-tumor activity, enhanced proliferation,
increased survival capacities and multipotency (27, 28). The
Tcm generally have higher proliferative abilities while Tem are
more cytotoxic (22). In contrast to circulating memory T cells,
there is also a population of non-circulating memory T cells,
tissue resident memory T cells (Trm). These Trm cells were
shown to be superior in providing rapid long-term protection
against recurrent infections (29). Inducing a broad repertoire of
potent CTLs together with CD8+ memory T cells will be highly
beneficial for robust anti-tumor immunity (Figure 1A).

CD4+ T cell help is imperative for potent CD8+ T
cell activation by supplying cytokines and co-stimulation,
by enhancing persistence and migration, and by reactivating
memory CD8+ T cells (30–32). Recently, it has been reported that
CD4+ T cells are also dependent on CD8+ T cells, underlining
the mutual dependence of CD4+ and CD8+ T cell responses
(10). Furthermore, a RNA vaccination study clearly showed
the importance of CD4+ T cell neo-epitopes in controlling
murine tumors (11). The CD4+ T cell population can be
subdivided into specific subsets, each having their own signature
cytokine repertoire (33, 34). The T helper 1 (Th1) subset is
strongly associated with better prognosis, improved survival,
low incidence of tumor recurrence and prolonged disease-free
survival in cancer immunology (35). This is in part due to
their supportive role in cellular immunity, the cytokines they
produce [including interferon-γ (IFN-γ)] (35), and their role
in inducing immunological memory (36). In addition, notable
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FIGURE 1 | Molecular cues involved in CD8+ and CD4+ T cell activation and differentiation. (A) CD8+ T cells can be subdivided in cytoxic T lymphocytes (CTLs) and

memory subsets [memory stem cells (Tscm), central memory (Tcm), effector memory (Tem) and tissue-resident memory (Trm)] that all have specific functionalities. To

stimulate antigen-specific CTLs, biomaterials should present peptide MHC (pMHC) class I, agonistic antibodies that trigger co-stimulatory receptors for signal 2 and

cytokines as signal 3 as depicted. (B) To trigger differentiation of CD4+ T cells into T helper 1 (Th1) and Th17 cells, biomaterials need to present pMHC class II

together with co-stimulatory signals and different combinations of cytokines. As an alternative to agonistic antibodies to trigger co-stimulatory signaling pathways,

natural ligands of co-stimulatory receptors can be used.

results of a mouse melanoma study showed that the T helper
17 (Th17) subset producing IL-17 was involved in B16 tumor
rejection (37). Other studies have also indicated a positive role
for Th17 cells in the development of long-term anti-tumor
immunity and their help in CTL activation and recruitment to
the tumor (38, 39). Besides providing support to CTLs, CD4+

T cells can also contribute to the anti-tumor immune response
independent of CD8+ T cells (30, 40, 41) by acquiring cytotoxic
activity and executing a direct anti-tumor effect (36, 40). Finally,
CD4+ T regulatory cells (Tregs) mainly encompass the immune
inhibitory subset, which is important in physiological settings
to prevent autoimmunity (35). Due to their immune inhibitory
profile, Tregs can prevent tumor clearance by inhibiting CTL
functions (42).

The generation of the various CD4+ T cell subsets in vitro is
mainly determined by the cytokine profile present during T cell
receptor-mediated activation (34). The presence of interleukin-
12 (IL-12) and IFN-γ will skew CD4+ T cells toward a Th1
profile, while the presence of TGF-β, IL-6 and IL-21 will drive
the differentiation toward a Th17 profile (34) (Figure 1B).

Besides inducing Th1 differentiation, IL-12 also enhances the
proliferation of activated T cells and induces cell-mediated
immunity (43). In addition, IL-1 is able to directly act on CD4+ T
cells, especially IL-17 producing cells, increasing antigen-specific
T cell expansion and enhancing survival (Figure 1B) (44).

Taken together, these studies emphasize the importance of
inducing potent CTL and stimulatory CD4+ T helper cell subsets
(in particular Th1 and Th17 cells) to induce potent anti-tumor
responses, but they also highlight the need for differentiation of
the effector subsets into memory cells to help prevent relapse.
Insight into the molecular cues that can optimize the design of
biomaterial strategies to gain control over the repertoire of T cells
that is induced is therefore pivotal.

MOLECULAR CUES TO ACTIVATE AND
EXPAND T CELLS

To provide T cells with the signals that are required for
activation and differentiation, inspiration could be sought in the
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mechanism of action of natural antigen-presenting cells (APCs)
for T cell priming, thereby creating aAPCs. Three fundamental
signals for T cell activation are (i) triggering TCR signaling; (ii)
adequate co-stimulation, e.g., through the CD28 signaling axis;
and (iii) the availability of cytokines to direct T cell differentiation
(45, 46). TCR engagement can be mimicked by agonistic αCD3
antibodies for polyclonal T cell expansion or recombinant MHC
peptide complexes (pMHC) for antigen-specific T cell expansion.
Artificial co-stimulation can be provided using agonistic αCD28
antibodies or recombinant natural ligands CD80 (B7.1) and
CD86 (B7.2). Recombinant cytokines that provide signal 3 are
widely available and are typically presented in soluble form.

Various biomaterial designs have been synthesized to mimic
DCs which vary in their shape, the signals they present
and the method of administration (19, 47) (Figure 2A).
Traditionally, soluble polymers or polymeric beads presenting
agonistic αCD3/αCD28 antibodies to T cells are used to
induce vigorous polyclonal expansion. Besides CD28, co-
stimulatory signals belonging to the tumor necrosis factor
receptor superfamily (TNFRSF), such as OX-40, 4-1BB, CD27,
and LIGHT, are also potentially interesting to steer T cell
activation (56, 57). Though OX-40, 4-1BB and CD27 can
perform co-stimulation for both CD4+ and CD8+ T cells,
OX-40 was shown to predominantly act as a co-stimulatory
molecule for CD4+ T cells (58–61). Engagement of 4-
1BB and CD27 were more prone to induce potent CD8+

activation. An aAPC design presenting αCD3 antibodies with
α4-1BB antibodies as the co-stimulatory cue was reported
to preferentially expand memory cells and induce enhanced
cytolytic activity compared to aAPCs presenting αCD3 and
αCD28 (62). CD27 co-stimulation enhances activation and
survival of CD8+ T cells (60, 61), prevents activation-induced
cell death (60) and supports the presence of tumor-specific CD8+

T cells residing within established melanoma (63). Expression
of LIGHT in the tumor microenvironment of patients increases
T cell expansion, activation and infiltration and correlates
with improved clinical outcome (64, 65). Furthermore, LIGHT
signaling enhanced T cell proliferation, IFN-γ production,
tumor infiltration and regression of established tumors in a
P815 mastocytoma tumor model and a CT26 colon cancer
model (57, 64). These studies imply that careful tuning of co-
stimulatory cues presented by biomaterials can steer T cell
priming and functionality.

The third signal consisting of cytokines is especially important
for naïve CD8+ T cells to differentiate, develop their effector
functions, and form potent memory populations (66). Absence
of this third signal can result in deletion or anergy of the
activated cells (67, 68). In a normal immunological setting,
CD4+ T helper cells promote IL-12 or type I IFN production
by DCs in a CD40-dependent manner to ensure potent
CTL development (67, 68). Apart from supplying T cells
with recombinant cytokines presented by biomaterials, the
adaptor molecule Stimulator of IFN Gene (STING) could
be used to induce type I IFN production (69, 70). Besides
IL-12 and type I IFN, there are various other cytokines
involved in T cell activation and differentiation such as IL-
2, IL-7, IL-15 and IL-21 (Figure 1A) (66). IL-7, IL-15 and

IL-21 are important for CD8+ T cell memory formation
and maintenance (71), while IL-2 promotes the expansion
of both CD4+ and CD8+ T cells, thus augmenting the
effector T-cell response (72). Moreover, cytokines steer CD4+

T cell development into the different subsets (34), which
emphasizes the necessity to include these signals into a
biomaterial design.

MOLECULAR CUES TO GENERATE T
CELLS OF HIGH QUALITY

Not only the quantity of the generated T cells is important,
as the quality needs also to be considered. When T cells
reach a more differentiated state, the cell effector functions
increase while the memory functions and proliferation capacity
decrease (26). Experimental studies in mice and patients
have shown a superior role for less differentiated cells (Tscm
and Tcm) in adoptive cell transfer, as was demonstrated
by enhanced engraftment, expansion, persistence and anti-
tumor responses of these minimally differentiated T cells
in vivo (28, 73–77).

The low numbers of circulating Tscm (28) cells have resulted
in the development of in vitro culture practices where the
differentiation of naïve T cells is controlled by supplementing
culture media with IL-7 plus IL-15 or IL-21 and/or small
molecules to activate the Wnt/β-catenin pathway (71, 78). The
cells generated with these culture protocols showed increased
engraftment, expansion and higher tumor reactivity (71, 78).
In addition, longer expansion time of T cells ex vivo can also
drive T cell differentiation and negatively affect cytolytic activity,
proliferation, tumor control and T cell persistence in vivo (79).

T cell differentiation may also be influenced by T cell
metabolism. TILs cultured with a small inhibitory drug for
protein kinase B (AKT) (80), naïve T cells cultured with
an inhibitor for mammalian target of rapamycin (mTOR)
(81) and CD8+ T cells exposed to 2-hydroxyglutarate (82)
induces T cells with transcriptional and metabolic properties
characteristic of memory T cells that show increased persistence
and anti-tumor response in vivo after adoptive transfer.
These studies indicate the importance of T cell quality
and how this may affect persistence, proliferation, survival
and effector functions in vivo, and demonstrate possibilities
for improving ex vivo T cell cultures that could also be
highly relevant in designing biomaterial-based systems for T
cell expansion.

The multifunctionality of the effector T cells also influences
the quality of the generated T cells (72). T cells are considered
to be multifunctional when having two or more functions
including, but not limited to, the production of cytokines,
chemokines and/or degranulation (72). Multifunctional CD4+

and CD8+ T cells are able to secrete more IFNγ, and T cells
producing both IFNγ and TNF can mediate more efficient
killing compared to single cytokine-producing cells (72). Even
though these are illustrations from the field of infectious diseases,
multifunctional effector T cell responses could also benefit anti-
tumor immunity.
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FIGURE 2 | Overview of biomaterial design strategies for T cell activation and expansion. (A) An overview of design strategies of artificial antigen-presenting cells

(aAPCs) based on liposomes (48), nanoparticles (19) or filamentous polymers (49). aAPC designs present various molecular cues to induce T cell activation, including

pMHC or αCD3 antibodies as signal 1, αCD28 antibodies to mimic signal 2 and cytokines as signal 3. (B) Different T cell backpacking strategies for the ex vivo or in

vivo targeting of cytokine-loaded particles to T cells using antibody as targets [liposome (50) and nanogel (51)] or through chemical [binding (52) (nanoparticle)]. These

strategies ensure targeted delivery of cytokines to support persistence of adoptively transferred cells in vivo. (C) 3D scaffold-based strategies to expand T cells and to

support adoptively transferred (CAR) T cells. Designs include alginate scaffolds with stimulatory microparticles for CAR T cell expansion (53), mesoporous silica rods

for T cell activation (54) and a synthetic polyisocyanopeptide-based scaffold that disperses T cells (55).

DESIGNING BIOMATERIALS FOR OPTIMAL
TUMOR-SPECIFIC T CELL PRIMING

Biomaterials can be used to present the three imperative signals
to T cells to support activation, expansion and differentiation
in a spatiotemporally well-defined and sustained manner
(83). The defined structural nature of biomaterials enables

chemical modification to introduce desired functionalities
through standard conjugation or bio-orthogonal chemistries
such as “click chemistry” (84, 85). The characteristics of
the biomaterial, such as biodegradability, biocompatibility,
half-life and the implementation of biological targeting
moieties, but also physical properties such as shape, surface
topology and mechanical properties, can shape the interaction

Frontiers in Immunology | www.frontiersin.org 5 May 2019 | Volume 10 | Article 93157

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Schluck et al. Biomaterial-Based T Cell Activation

with T cells and thus alter the immune response that
is provoked (86).

The context in which molecular cues are provided can
also influence T cell responses. Immobilizing signal 1 on a
surface was reported to promote robust T cell activation (87),
because physical forces play an important role in TCR signal
transduction (88). The relevance of force upon the TCR was
interrogated in more detail by making use of materials with
different stiffness (89, 90). MHC class I molecules presented
on a softer poly(dimethylsioxane) surface led to enhanced
T cell proliferation, improved IL-2 production and increased
Th1 differentiation compared to TCR engagement using rigid
polystyrene beads (89, 90). In addition to the effect of
material stiffness, polymeric aAPC presenting T cell-stimulating
cues in a multivalent context demonstrated the importance
of multivalency for long-lasting T cell activation (91, 92).
Furthermore, superior CD8+ T cell activation was observed for
biomaterials displaying signals 1 and 2 in a pre-clustered manner
(19, 47, 93, 94), for instance on liposomes (48). Signal density also
affects T cell responses, as CD4+ T cells were reported to remain
unresponsive when signal 1 is presented in a density that is too
low (95–97). In addition to signal density, the quantity of signals
1 and 2 can also influence the effector Th1 CD4+ and effector
CD8+ T cell responses (72). Limited amounts of signal 1 or 2 were
shown to induce Th1 cells and CD8+ T cells that only secrete
IFNγ, while in the presence of increased concentrations of signal
1 or 2 cells both IFNγ and IL-2 were secreted (98, 99).

Most biomaterial designs implement cytokines (signal 3)
either in release vesicles or via adsorption (47, 54, 100), creating
a local high concentration of soluble cytokines. Robust T cell
activation can also be obtained with immobilized cytokines
and might preferentially deliver these to T cells through co-
presentation of T cell-specific antibodies (49), providing a new
range of possibilities for the addition of cytokines in biomaterial-
based immune therapies.

When using biomaterials, care must be taken to prevent the
induction of exhausted T cells due to persisting T cell stimulation,
leading to diminished cytokine production, reduced proliferative
capacity, decreased killing abilities, and high expression of co-
inhibitory molecules, such as PD-1 and CLTA-4 (101). Therefore,
one should not only focus on trying to induce a strong activation
signal, but special care should be taken to achieve appropriate
stimulation levels to ensure desired T cell activation and prevent
T cell exhaustion. To prevent or counteract the exhausted state of
T cells, the biomaterial might need to be equipped with PD-1 and
CTLA-4 blocking antibodies. Several biomaterial designs have
been tested to improve the delivery and sustained release of these
antibodies, displaying improved anti-tumor efficacy (14, 102).
An alternative strategy to prevent T cell exhaustion could be to
provide co-stimulation with an αCD2 antibody (103).

BIOMATERIALS FOR ADOPTIVE T CELL
TRANSFER

Apart from applying biomaterials to prime and expand T
cells with stimulatory cues, biomaterials are also excellent

tools to support the adoptive transfer of T cells for cancer
immunotherapeutic purposes (Figures 2B,C). Adoptive T cell
therapy (ACT) has shown promising results in inducing durable
anti-tumor immune responses (1, 7, 8). However, efficacy
generally depends on the co-administration of lymphodepleting
chemotherapy and/or high doses of IL-2 to support the
persistence of these cells in vivo (1, 104, 105). Biomaterials
have been designed to reduce toxicities seen with the systemic
administration of these adjuvants and to enhance the response
of adoptively transferred cells (51, 52) (Figure 2B). In an
elegant design of liposome-like synthetic nanoparticles that
encapsulate IL-15 superagonist and IL-21, reduced thiol groups
on the T cell surface were used to covalently bind nanoparticles
onto the cells before ACT (52). These “backpacks” resulted
in considerably more proliferation and persistence of the
transferred cells in vivo and led to complete tumor clearance
in mice bearing metastasized B16F10 melanoma. Further
development led to stimuli-responsive particles that release IL-
15 superagonist upon increased redox activity at the T cell
surface upon TCR signaling (51). To enable repeated in vivo
stimulation of adoptively transferred T cells, particles were
designed that target T cells through an αThy1.1 antibody or
IL-2 (50). To circumvent the need to culture cells ex vivo,
αCD3 antibody fragments can be used to target biodegradable
poly(β-amino ester)-based nanoparticles to T cells in vivo.
These nanoparticles contained a DNA plasmid encoding a
leukemia-specific CAR gene combined with 4-1BB and CD3ζ
cytoplasmic signaling domains. This strategy resulted in the
in vivo generation of CAR-T cells that perform comparable
to CAR-T cells generated using the conventional ex vivo
culture method (106).

Most biomaterials for T cell activation are designed to
function in soluble form or in suspension as two-dimensional
systems. Limited work has been performed using three-
dimensional (3D) scaffold-based designs for T cell activation,
whereas within the field of DC activation there are multiple
examples of 3D scaffolds to create local DC-recruiting and
activating niches. 3D scaffolds have proven advantageous
as they present DCs with activating cues in a sustained
manner at a localized site (107–109). We believe that
designing such scaffolds and thereby creating synthetic
immune niches for localized in vivo T cell activation could
contribute significantly to the current T cell mediated anti-
cancer therapies. A synthetic immune niche as a site of
T cell priming and dispersion could replace or augment
the function of tumor-draining lymph nodes, which were
shown to be key regulators in the anti-tumor immune
response (110).

One area in which 3D scaffolds have been explored for T
cell activation is in the field of ACT (Figure 2C). An alginate
implant equipped with T cell-stimulating signals (αCD3, αCD28,
α4-1BB, and IL-15 superagonist) and migration-promoting
peptides induced a substantial increase in the proliferation of
adoptively transferred T cells at the tumor resection site in a
4T1 mouse breast tumor model (100). Moreover, these cells
did not acquire an exhausted phenotype, but migrated toward
the tumor-draining lymph nodes where they differentiated into
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central memory T cells. In another alginate-based scaffold
approach, a combination of adoptive transfer of CAR-T cells
and the incorporation of a STING agonist was used to
trigger anti-tumor host immunity (53). A chitosan thermogel
has also been tested for ACT and resulted in a supportive
environment where antigen-specific T cells could proliferate
and subsequently migrate toward target cells, which were
effectively killed in vitro (111). Mesoporous silica micro-
rods with supported lipid bilayers were used to provide T
cells with either polyclonal cues (αCD3) or antigen-specific
cues (pMHC) in combination with αCD28 for co-stimulation
and adsorbed IL-2 to provide paracrine delivery of cytokines
(54). Alternatively, a fully-synthetic hydrogel composed of tri-
ethylene glycol-substituted polyisocyanopeptides functionalized
with integrin-binding motifs supported the ex vivo expansion
and survival of T cells (55). The ex vivo-stimulated T
cells could successfully egress from the hydrogel over time
when administered in vivo, identifying these hydrogels as
effective cellular delivery vehicles. Together, these studies
demonstrate proof of the concept that 3D scaffolds can be
used as a multifunctional platform to enhance polyclonal
and antigen-specific T cell expansion and cell persistence
in vivo.

The use of biomaterials for the adoptive transfer of T
cells might make ACT more efficient, as ex vivo culture
time could be reduced and be potentially superfluous. This
would make ACT more feasible and at the same time
benefit T cell functionality (105). Moreover, implementing
molecular cues like IL-7, IL-15, or IL-21 in 3D biomaterial-
based scaffolds could provide an in vivo immune niche for
the generation and support of adoptively transferred Tscm,
which in turn could improve in vivo T cell persistence,
proliferation and anti-tumor response (71, 78), underlining
the promise of biomaterial-based 3D scaffolds for T cell
activation in vivo. Careful investigation of the behavior of T
cells in response to different combinations of molecular cues is
required to create the most desirable T cell-activating synthetic
immune niche.

CONCLUDING REMARKS

Biomaterials are highly promising tools to present molecular cues
to T cells to evoke robust immune responses both in vitro and in
vivo. In this perspective, we presented an overview of molecular
cues that could be used to selectively expand T cell subsets
that are beneficial for strong anti-tumor immune responses.
Biomaterials can be exploited to control the presentation of
specific combinations of these molecular cues to T cells and
can thus be used to regulate the stimulation level and the
induction of specific T cell phenotypes. Careful consideration
of how to combine the insights on important T cell-activating
molecular cues with material-intrinsic factors is highly important
for the design of biomaterials for the expansion and activation
of tumor-specific T cells. In this respect, biomaterials could
be used as tools to delineate the molecular cues and scaffold
design parameters that dictate T cells’ responses. When designing

biomaterials for controlled activation of the immune system, it
is important to take into account the intrinsic immunogenicity
of materials and the potential change in immunomodulatory
properties after biodegradation (112, 113). In our opinion,
one of the major factors that needs to be considered is
implementing potent CD4+ T helper cues alongside CD8+ T
cell signals on biomaterials. In particular, tuning the T helper
response toward a more Th1 and/or Th17 response might have
considerable effects on clinical outcomes. Moreover, an improved
understanding of the cues essential for memory cell formation
is needed in order to develop biomaterial designs that can
elicit long-term memory and thus better protect against tumor
recurrence. It will be imperative to pursue a balanced and
controlled system in terms of number and the release kinetics
of molecular cues and the biodegradability of the biomaterial of
choice (114).

As is evident from the studies discussed above, biomaterial-
based cancer vaccines constitute a very promising field, but
a number of challenges remain, especially those related to
clinical translation. The ultimate goal is clinical application of
biomaterial-based systems to induce long-term and systemic
anti-cancer immunity in cancer patients. To ensure smooth
transition to clinical translation, it is important to recognize
key design parameters from the beginning of the design
process, such as biomaterial composition, reproducible and large-
scale production under good manufacturing practice (GMP),
in vivo behavior, degradation, toxicities and safety. This can
contribute to decreasing the time and cost of the regulatory
pathway. Cell-free biomaterials for local administration, like
3D scaffolds, typically need less extensive testing to get
approval, due to limited risks of systemic toxicities (115).
However, local toxicity and inflammation may still arise
and need to be carefully tested. The soluble biomaterial
strategies, such as the particle-based aAPCs, might be considered
as biologicals which would indicate a longer and more
expensive regulatory pathway. Moreover, modifying already
existing and approved therapeutic designs, including materials
such as poly(lactic-co-glycolic acid) (PLGA) and hyaluronic
acid, will allow for a clearer regulatory pathway (115). The
field of regenerative medicine has already contributed a
range of clinically-approved biomaterial products from which
biomaterial-based cancer immunotherapies may benefit (115,
116). Besides meeting the safety criteria, the biomaterial-based
cancer immunotherapies will need to demonstrate efficacy in
appropriate preclinical animal tumor models when compared to
current therapies (116).

The backpacking of adoptively transferred cells using
particle-based biomaterials is considered to have great clinical
promise (51, 52). In the beginning of this year, a phase 1
clinical trial with these biomaterial-based T cell backpacks
started in patients with solid tumors and lymphomas (117).
This example, together with the developments and future
directions described in this perspective, illustrates that
innovative designs of biomaterials for the direct activation
of T cells will bring clinical implementation of biomaterial-
based expansion and differentiation of tumor-reactive T
cells closer.
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All tumors accumulate genetic alterations, some of which can give rise to mutated,

non-self peptides presented by human leukocyte antigen (HLA) molecules and elicit T-cell

responses. These immunogenic mutated peptides, or neoantigens, are foreign in nature

and display exquisite tumor specificity. The correlative evidence suggesting they play

an important role in the effectiveness of various cancer immunotherapies has triggered

the development of vaccines and adoptive T-cell therapies targeting them. However,

the systematic identification of personalized neoantigens in cancer patients, a critical

requisite for the success of these therapies, remains challenging. A growing amount

of evidence supports that only a small fraction of all tumor somatic non-synonymous

mutations (NSM) identified represent bona fide neoantigens; mutated peptides that are

processed, presented on the cell surface HLA molecules of cancer cells and are capable

of triggering immune responses in patients. Here, we provide an overview of the existing

strategies to identify candidate neoantigens and to evaluate their immunogenicity, two

factors that impact on neoantigen identification. We will focus on their strengths and

limitations to allow readers to rationally select and apply the most suitable method for

their specific laboratory setting.

Keywords: cancer, immunotherapy, neoantigen, vaccine, T-cell therapy, review

INTRODUCTION

Cancer arises as a result of the accumulation of DNA damage and genetic alterations. Mutated gene
products can be processed and presented in the form of small peptides on major histocompatibility
complex (MHC) molecules of tumor cells and some can elicit T-cell responses. Such immunogenic
mutated peptides, referred to as neoantigens, are emerging as promising targets to develop
personalized clinical interventions.

Awareness that T cells can target cancer neoantigens is not novel. The dissection of themolecular
nature of neoantigens derived from tumor variants induced through exposure to chemical
carcinogens was first performed in mice in the late 1980s. The coding regions of three tumor-
rejection antigens identified all contained mutations that changed one amino acid in proteins that
were ubiquitously expressed (1–3). Importantly, the corresponding wild-type peptides were not
immunogenic. The first strategy employed to identify human T-cell reactivities to neoantigens
involved the laborious screening of cytotoxic tumor-reactive lymphocytes for recognition of
tumor cDNA library pools by transfecting them along with the proper human leukocyte antigen
(HLA) restriction element into transfectable target cells (4). In addition, neoantigen-specific
responses dominated compared to responses targeting shared antigens in a patient with melanoma
suggesting a greater contribution of neoantigen-specific T cells to antitumor immunity (5). The
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immunotherapeutic potential of targeting neoantigens was
already acknowledged at the time. Neoantigens are specifically
expressed by tumor cells and immunotherapeutic targeting of
these antigens should be safe. In addition, neoantigens elicit T-
cell responses that are not subject to central tolerance in the
thymus, suggesting that immune responses against these antigens
should be more potent. However, the difficulties of identifying
such personalized peptides and T cells were daunting.

Recent technological innovations have enabled the systematic
dissection of the personalized T-cell response targeting the
tumormutanome. Retrospective studies have shown that patients
that exhibited complete tumor regressions following tumor-
infiltrating lymphocyte (TIL) therapy have a higher tumor
mutation burden (6) and TILs from responders frequently
contain neoantigen-specific lymphocytes (7–11). Antibodies
targeting the CTLA-4 and PD-1 pathways have shown the
greatest clinical activity in tumor histologies with higher
mutation load and brisk T-cell infiltrates such as metastatic
melanoma, non-small-cell lung carcinoma (NSCLC), bladder
cancer, and tumors with DNA-mismatch-repair deficiencies (12).
Even within one same tumor histology, patients whose tumors
have a higher mutation load display greater clinical benefit
following treatment with immune checkpoint inhibitors (13–15),
and this association has been observed across multiple cancer
types (16). It is worth noting that a few retrospective studies
have also reported a lack of correlation between high tumor
mutational burden and clinical benefit in some tumor types
(17, 18). Overall, the majority of clinical data are consistent with
the hypothesis that highermutation load is associated with higher
likelihood to present neoantigens which can facilitate immune
recognition of tumors as foreign.

The clinical correlative data coupled with the technological
innovations to sequence tumors and to functionally dissect the
personalized T-cell responses in cancer patients have spurred
the development of immunotherapies targeting neoantigens.
Active immunization strategies employed to treat patients rely
on the identification of the non-synonymous mutations (NSM)
by tumor whole exome sequencing (WES), in silico peptide
HLA binding affinity prediction and prioritization of 10–20
candidate neoantigens, to manufacture RNA, synthetic long
peptide or dendritic cell-based vaccines of unique composition.
In one clinical trial, the vaccines also included candidate
neoepitopes identified through elution from tumor cell-surface
HLA-I molecules. Results reported thus far in patients with
melanoma (19–21), and glioblastoma (22, 23) demonstrate that
immunization with vaccines targeting neoantigens is feasible,
safe and well tolerated. The melanoma trials reported clinical
activity in some patients with detectable tumors at the time of
vaccination, and some patients who progressed after vaccination
and received anti-PD-1 therapy showed complete responses.
More recently, two clinical studies of personalized neoantigen
vaccines in patients with resected glioblastoma reported that,
although vaccines triggered strong systemic T-cell responses, the
majority of patients showed tumor recurrence. These first five
clinical trials provide proof of principle that these approaches
can enhance the frequency of pre-existing or de novo neoantigen-
responses following immunization. However, induction of T

cell responses were previously observed following immunization
against shared antigens and this rarely translated into clinical
benefit (24). Hence, significant challenges remain to be overcome
including improvement of neoantigen selection, identifying the
best route and method for immunization and overcoming
intrinsic factors in the tumor microenvironment. However, the
complete responses observed in post-vaccination melanoma
patients receiving immune checkpoint inhibitors open a window
of opportunity for the design of combinatorial approaches in
the future.

In another approach different to vaccination, the infusion of
large numbers of TILs targeting personalized cancer neoantigens
have shown antitumor responses in selected cases of patients
with cholangiocarcinoma (25), colorectal cancer (26), and
breast cancer (27). This together with the prospective analyses
of neoantigen reactivity in peripheral blood of melanoma,
gastrointestinal (GI) and ovarian cancer patients suggesting
that neoantigen-specific lymphocytes can be detected in the
vast majority of patients screened (28–31), provide rationale to
develop personalize T-cell based therapies targeting neoantigens.

DETERMINANTS FOR
NEOANTIGEN IDENTIFICATION

Despite the increasing interest in clinical interventions targeting
neoantigens, substantial challenges remain to enable a more
precise identification of neoantigens that are relevant for patient
treatment. RNA and synthetic peptide-based vaccines targeting
neoantigens used to treat patients thus far lack prospective
immunological testing of candidate neoantigens. Rather, these
are selected largely based on in silico HLA-I binding affinity,
making the selection of candidate neoantigens crucial for this
therapeutic approach. Surprisingly, neoantigen vaccines reported
appear to favor CD4+ over CD8+ responses. Moreover, only
few of the patients immunized generated T-cell responses
targeting the autologous melanoma cell lines (21), manifesting
the limitations of in silico peptide HLA binding prediction
alone to effectively identify neoantigens naturally processed and
presented by the tumor.

Evidence arising from available studies is that only a small
fraction of all NSM identified by tumor WES are actually
processed, presented and recognized by T cells (8, 28, 29, 31–
33). Many of these screenings interrogated the immunogenicity
of all the candidate NSM identified by tumor WES, without
using in silico prediction algorithms. Instead, they used a
high through-put immunological screening method relying on
the expression of all the mutated minigenes in the patient’s
own antigen presenting cells (APCs), which enables unbiased
processing and presentation on the patient’s own HLA-I and
HLA-II molecules (described in more detail in section Unbiased
Screening of All Candidate Neoantigens Identified by Tumor
WES). Hence, the paucity of reactivities detected cannot be
attributed to the limitations of in silico peptide prediction
algorithms. Furthermore, the vast majority of selected candidate
neoantigens identified in a tumor are also not effective in tumor
rejection in mouse models (34, 35). Part of the reason that could
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explain this lack of immunogenicity lies in the fact that for
a neoepitope to be recognized in a cancer patient, the T-cell
receptor (TCR) repertoire of the patient needs to contain a
TCR that specifically targets this peptide bound to a specific
HLA allele. Although the TCR repertoire diversity in any given
individual is thought to be capable of recognizing virtually
any pathogen, this may not hold true for neoantigens which
frequently differ from their wild-type counterparts only by one
residue. Tumor heterogeneity is yet another potential factor that
could hinder neoantigen identification.

Estimating the exact number of neoantigen-specificities in a
cancer patient is further complicated by the fact that the absence
of evidence is not evidence of absence. Neoantigen identification
is technically challenging and all the steps involved can impact
on the outcome. Briefly, as depicted in Figure 1, WES from
tumor and matched normal DNA is typically used to identify
all cancer-specific NSM, all candidate neoantigens. The resulting
neoepitope candidates can be further selected based on their
likelihood to be processed and presented on the cell surface
HLA molecules using in silico prediction algorithms or through
selection of mutated epitopes bound to tumor cell-surface HLA
molecules through immunopeptidomics. Finally, a variety of
novel high-throughput immunological screening methods, with
enhanced capacity to interrogate large numbers of candidate
neoepitopes, are used to screen cancer-derived CD8+ and
CD4+ T-cell populations of interest for neoantigen recognition.
Given the technical complexity, it is entirely possible that a
fraction of neoantigen-reactive lymphocytes are not detected
due to limitations arising from the specific computational
analysis performed to identify NSM from WES data, from
the in silico peptide prediction algorithms, from the specific
immunological screening assay and read-outs chosen and/or
the limited frequency of neoantigen-specific TCR clonotypes
within the chosen source of effector T-cell population used for
the screening.

Overall, two critical factors can greatly influence the
identification of bona fide immunogenic neoantigens: (1) the
identification of candidate neoantigens, and (2) the evaluation
of their immunogenicity. Given the emerging potential of
neoantigens as therapeutic targets, and the crucial importance
of these factors for neoantigen identification, the technical
implications of these steps and advantages and disadvantages will
be reviewed in detail.

IDENTIFICATION OF
CANDIDATE NEOANTIGENS

The first element that can influence the identification of
immunogenic neoantigens is the tumor-derived DNA and RNA
sequencing and the computational analysis necessary to identify
tumor-specific NSM.

Identification of Tumor-Specific
Non-synonymous Mutations
The process for discovering immunogenic neoantigens starts
with the identification of all tumor somatic NSM. To date,

this is generally done by mapping genetic alterations in the
tumor genome using next generation sequencing (NGS). For
each patient, Whole genome sequencing (WGS) or WES
data from matched tumor and normal DNA is required.
Following the alignment of normal and tumor reads to the
human reference genome, somatic variants, which include
single nucleotide variants (SNV), gene fusions and insertion or
deletion variants (indels), can be detected using variant-calling
algorithms. Multiple variant callers have been developed to date
and each of them differ in their accuracy and sensitivity to
detect different somatic variant types (i.e., SNV, gene fusions,
or indels) (36). Indeed, several studies have compared distinct
variant calling pipelines and reported substantial discrepancies
in the detected variants from the same set of raw sequencing
data (37, 38). Consequently, computational analysis pipelines
commonly use more than one variant caller and select those
somatic variants that are identified by several independent
variant callers to reduce the number of false positives (39, 40).
Integration of these pipelines will however not solve false-
negative calls, which are somatic variants that, despite being
potential neoantigens, will remain undetected, pointing out the
need for improvement of sensitivity of variant calling algorithms.
Of note, the performance of variant calling algorithms is
directly related to the process of sequencing. Thus, current
technical limitations of sequencing technology such as errors
introduced by PCR amplification during library construction
or mismapped reads can affect the accurate identification of
somatic variants leading to detection of false variants (41). Tumor
heterogeneity is an additional limitation for calling somatic
variants with confidence, since it biases the detection of clonal
over subclonal mutations due to differences in variant allele
frequency, thus resulting in underrepresentation of somatic
variants (41).

Although WES is currently the standard strategy used to
identify candidate neoantigens, RNA sequencing (RNAseq)
could alternatively be performed. RNAseq is currently used in
combination with WES, to filter out those candidate neoantigens
that do not exceed a selected threshold of gene expression.
However, its usage should not be restricted to gene expression
assessment as it provides additional information that might
be essential for the identification of certain somatic variants
that otherwise would remain undetected. For instance, low
frequency somatic variants that might not be identified by WES
could conversely be detected using RNAseq data if their read
count is within the detection range (36). Moreover, as RNAseq
surveys the entire transcriptome, it is the only method that
allows the identification of peptides arising from RNA editing
processes such as alternative splicing, gene fusions and post-
transcriptional modifications (42, 43). Of note, unlike mutations
identified using WES data, which can be assigned to the
tumor but not normal DNA, alterations identified exclusively
using tumor RNAseq data are not necessarily restricted to the
tumor. Epitopes derived from edited RNA cannot immediately
be considered candidate neoantigens until their expression
in normal tissue has been ruled out. Nevertheless, the use
of tumor RNAseq could provide a broader landscape of
candidate neoantigens.
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FIGURE 1 | Overview of neoantigen identification using tumor WES. WES is performed on tumor and normal DNA to identify tumor-specific NSM. When available,

RNAseq is used to select mutations that are expressed. Once NSM are identified, three strategies can be used to select the list of candidate neoantigens that will be

assessed for immunogenicity. The gray-filled shapes depict how each selection strategy will dictate the final number of candidate peptides to be evaluated. Note that

in silico prediction initially increases the number of potential candidates but, after a ranking-based selection of peptides, this number decreases substantially. Finally,

the immunogenicity of the selected candidate peptides is evaluated with different immunological screening assays.

Selection of Neoantigen Candidate Set
of Interest
Following the identification of NSM, the neoantigen candidate
set of interest can be (1) filtered using in silico peptide
prediction algorithms, (2) selected based on the identification
of specific neoepitopes eluted from tumor HLA through
immunopeptidomics, or (3) left unfiltered to perform unbiased
testing of all the neoantigens identified (Table 1).

Selection of Candidate Neoantigens Using in silico

Peptide Prediction
The advances in computational biology and immunology have
led to the development of algorithms that allow to prioritize
candidate peptides that are more likely to be presented on HLA-
I based on biochemical and biophysical properties of most of
the steps involved in peptide processing, transport and binding
to HLA-I.

While peptide processing and transport prediction tools can
give important information about the nature of peptides that
are presented on HLA, their predictive value alone is still
limited. Tools available for proteasomal peptide processing have
been trained with a combination of data sets derived from in
vitro digestion assays with the conventional proteasome, and
naturally processed HLA-I ligands, which also include those
processed by the immunoproteasome (44, 45). Likewise, peptide
transport prediction algorithms have been trained with data
sets of experimentally validated HLA-I peptides known to bind
TAP (46, 47). However, TAP-independent processing pathways

also contribute to the peptide repertoire, and these cannot be
predicted with currently available transport prediction tools (48).
Given the yet limited predictive value of these in silico prediction
tools, they are typically integrated with more robust predictors in
pipelines for neoantigen prioritization (49, 50).

Algorithms capable of predicting peptide binding to HLA
molecules are the most widely used for in silico prioritization
of neoantigens and were instrumental for the first identification
of neoantigens using tumor WES (7, 51). These tools are
usually trained with large datasets of experimentally definedHLA
ligands and peptides eluted from HLA molecules using mass
spectrometry (MS)-based immunopeptidomics. Peptide HLA
binding prediction takes into account not only the importance
of anchor residues but also the influence of amino acids flanking
them. Additionally, the diversity of HLA molecules, which gives

rise to thousands of alleles with distinct binding preferences, are

considered. Since generating experimental data for that amount
of alleles is not feasible, prediction tools used to date incorporate

biochemical and structural data of known alleles to infer peptide
binding to rare alleles for which no or little data is available (52).

In order to predict which mutated peptides are more likely

to bind to HLA, binding affinity prediction tools are commonly

fed with a list of peptides in which the detected mutation is

flanked by a variable number of amino acids of the wild-type

sequence. Algorithms then generate small peptides (8–14 amino
acids) from the input sequence for which the binding affinity

to the queried HLAs is predicted. Since several peptides derived

from the same 25mer sequence are likely to bind one or more
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TABLE 1 | Strategies used for selection of candidate neoantigens.

Strategy Advantages Disadvantages

In silico peptide prediction and

prioritization

Narrows down the number of candidate neoantigens

Identifies minimal epitopes

Depends on accuracy of prediction algorithms

Not optimal for HLA-II-presented peptides

Less accurate predictions for low frequent HLA clonotypes

LC-MS/MS based immunopeptidomics Direct identification of naturally presented HLA binding

peptides

Narrows down the number of candidate neoantigens

Allows the identification of post-translational modified

peptides and non-canonical neoantigens

Identifies minimal epitopes

Limited sensitivity of mass spectrometry

Biased toward detecting the more abundant peptides

Relies on efficient peptide ionization and fragmentation

Depends on HLA expression of tumor cells

High amount of tumor tissue needed

List of all candidate neoantigens based on

whole-exome sequencing data

Identification of all candidate neoantigens Minimal epitope is not defined

Limited feasibility in tumors with high mutation burden

HLA, human leukocyte antigen.

HLAs, the potential number of candidate peptides can sometimes
increase (Figure 1). Given that in vitro neoantigen screening
assays currently limit the number of tested peptides to the
hundreds, peptides are commonly prioritized based on binding
affinity ranking. Predictors such as NetMHCpan 4.0 generally
report results as either IC50 values in nM units or as a percentile
rank score. IC50 values reflect direct binding affinity predictions,
and thresholds<500 nM can be used to define candidate peptides
that are more likely to bind to HLA. Percentile rank scores reflect
relative binding affinity to a specific HLA allele compared to a
large set of random peptides, and ranks≤2 are used as thresholds
for selecting potential neoantigen binders (53). Although both
outputs can be used, the percentile rank is preferred to select
candidate peptides across multiple HLA molecules, as it is less
influenced by the large differences in peptide binding affinity
values among HLA molecules.

Although prediction tools for HLA-II-restricted peptides also
exist, these are less reliable than HLA-I predictors for two main
reasons. First, endosomal HLA-II peptide processing is complex
and poorly characterized (54), limiting the development of HLA-
II peptide processing algorithms. Second, prediction of binding
affinity to HLA-II molecules is more complex due to its structural
nature because, unlike HLA-I molecules in which the peptide-
binding groove is closed, HLA-II molecules have open ends.
Even though the core binding motif of both molecules comprises
peptides of approximately nine amino acids, HLA-II-restricted
ones have a wider length range (11–20 amino acids) compared
to HLA-I-restricted ones (8–11 amino acids), and the flanking
amino acids can affect binding affinity (55). Further research
addressing these challenges will be crucial for improvement of
HLA-II prediction tools in the future.

Despite advances in prediction algorithms, currently available
tools fail to reliably predict which of the presented peptides
will be immunogenic (i.e., whether a presented peptide will be
recognized by T cells). This is one of the main limiting steps in
neoantigen screening, and it is perfectly reflected by the fact that
only few of the hundreds of peptides identified by tumor WES
data and in silico prediction are immunogenic despite binding to
HLA molecules. Although HLA binding prediction is a strong
correlate of immunogenicity, accumulating data suggest that bias

of in silico prediction toward strong binders (<500 nM) can
overlook immunogenic peptides that show low-binding affinity.
The first evidence of this was reported by Duan et al., who
developed an algorithm, termed differential agretopicity index
(DAI), which ranks mutant peptides based on their improved
binding to HLA compared to the wild-type counterpart (34).
Using DAI to identify neoantigens in mouse models of cancer,
the study demonstrated that validated immunogenic peptides
could have binding affinities up to 140-fold higher than the
500 nM threshold. These findings have been confirmed by other
studies in humans (17, 18, 28, 56), highlighting that peptide
selection based on the 500 nM threshold should be revisited.
Additionally, other limitations of binding prediction tools have
been recently identified in clinical trials of cancer vaccines.
Patients with melanoma or glioblastoma receiving personalized
neoantigen vaccines appear to favor CD4+ over CD8+ T-cell
responses against the immunizing peptides, even though these
were predicted and prioritized using HLA-I binding algorithms
(21, 22). These data further stress the need of developing
improved algorithms which can reliably predict HLA-I and
II immunogenic peptides. The low number of immunogenic
neoantigens validated to date [<300; reviewed in Karpanen and
Olweus (32)] makes it difficult to generate a consensus for
features likely to predict peptide immunogenicity. Although this
is currently a matter of extensive research, only few parameters,
besides the aforementioned DAI, have been suggested to improve
the prediction of immunogenicity of peptides. For instance,
differences in non-anchor residues (P4-P6), peptide size (i.e.,
large) and amino acid composition (i.e., aromatic residues)
have been associated with immunogenicity (57). Additionally,
peptide-HLA (pHLA) stability, measured by biochemical assays,
has been proposed as a parameter to discriminate immunogenic
from non-immunogenic peptides (58). Data derived from this
kind of experiments led to the development of prediction tools
which show that immunogenic peptides promote more stable
pHLA-I than non-immunogenic peptides (59). However, the
predictive value of this tool is still controversial (60). Thus, its
use as a single predictor is less frequent.

It is worth mentioning that the immunogenicity of a given
neoantigen does not necessarily translate into tumor rejection
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and/or therapeutic benefit. Mice studies have shown that the
vast majority of identified neoepitopes, despite triggering T-
cell responses, fail to induce complete tumor rejections (34,
35). In humans, the previously mentioned clinical trials of
personalized neoantigen vaccines have rarely shown clinical
responses despite triggering strong T-cell responses against
the targeted neoantigens (20–23). The development of novel
algorithms or screening tools capable of identifying neoantigens
capable of inducing tumor rejection could be determinant for the
efficacy of personalized vaccines.

To date, there is a plethora of computational pipelines
that allow the identification of NSM and the prediction of
neoantigens. However, these are built on the basis of traits
set by each developer, which often leads to discordant results.
Strategies such as the Tumor Neoantigen Selection Alliance
(TESLA), which seek to harmonize these pipelines, will be of
great importance in the coming years to improve neoantigen
identification (61).

Selection of Candidate Neoepitopes Using Mass

Spectrometry-Based Immunopeptidomics
Another possible strategy that can be used to prioritize
candidate neoantigens for screening is the use of MS-
based immunopeptidomics which relies on the study of the
tumor pHLA immunopeptidome (62). This method starts
with the lysis and homogenization of the tumor material
followed by the purification of the pHLA complexes through
immunoprecipitation. After eluting the peptides bound to HLA
molecules, liquid chromatography coupled tandem MS (LC-
MS/MS) is performed to identify the amino acid sequence of
the eluted peptides, which is commonly obtained by matching
MS/MS spectra against a customized protein sequence database
(63). This database is generated by combining a reference protein
sequence database with genomic information derived from
patient’s NGS data, which is essential to identify eluted mutated
peptides that are private for each patient. This method to identify
neoantigens was first described in a mouse tumor model. WES
and RNAseq in combination with MS analysis of peptides eluted
from the cell surface MHC of two mouse tumor cell lines allowed
the identification of seven candidate neoantigens, three of which
turned out to be truly immunogenic (64). Since then, candidate
neoantigens have also been successfully identified in human
tumor cell lines (65) and, more importantly, in fresh tumor
material (56, 66). Indeed, Bassani-Sternberg et al. demonstrated
for the first time that this strategy could also be exploited
to identify immunogenic neoantigens directly from primary
human cancer tissues. In this case, the combination of WES and
immunopeptidomics of tumors from five patients allowed the
identification of 11 mutated peptides, and two of eight peptides
tested were able to elicit antitumor T-cell responses.

MS-based immunopeptidomics is advantageous, as it
substantially narrows down the list of candidate neoantigens
to be screened (Figure 1) and, consequently, the number of
false positives that are obtained using other strategies such as
in silico prediction (67). This might be of great importance
for immunogenicity screening assays, especially in tumors
with high mutation burden. Additionally, this is currently the

only unbiased method that directly interrogates the naturally
presented HLA-bound peptides including those harboring
post-translational modifications (68). Neoantigens could also
derive from non-canonical or cryptic peptides, including those
derived from alternative open reading frames, novel exon-
exon junctions, intronic sequences, long non-coding RNAs,
5′ untranslated regions (5′UTRS; Table 2). These could also
be identified by performing database-dependent analyses as
long as the amino acid sequences of such peptides have been
previously introduced into the customized protein sequence
database (80, 81). This could be achieved using a customized
database derived from RNAseq data as exemplified by the study
of Smart et al., in which they identified epitopes derived from
retained introns using RNAseq and validated their expression
and presentation by MS analyses (42). Importantly, retained
introns expressed in normal tissues were filtered out with the
aim to exclusively identify those that are tumor-specific and can
potentially be immunogenic. As an alternative to the generation
of a customized sequence database, the amino acid sequence can
also be directly extracted from tandem mass spectra through
database-independent analysis (i.e., de novo sequencing).
However, the use of this strategy is still limited because it is error
prone and fails to determine the entire amino acid sequences due
to incomplete tandem mass spectra (82).

Although MS-based immunopeptidomics offers multiple
advantages, the discovery of presented immunogenic peptides
using this approach is hindered by technical limitations,
evidenced by the short list of human cancer neoepitopes
identified through this approach to date (56, 66). The major
concern is the low sensitivity of MS. The fact that MS is
skewed toward detecting the more abundant peptides hampers
the identification of mutated peptides among all endogenously
presented peptides, especially if they are expressed at low levels
or exclusively expressed in subclonal tumor populations. Because
of this, and considering that tumor cells express heterogeneous
levels of HLA molecules, large amounts of starting tumor
material is required to identify candidate neoepitopes. Indeed, in
the study by Bassani-Sternberg et al. in which they eluted HLA-
I and II bound peptides from primary tumor material, tumor
biopsy size seems to be associated with the number of mutated
peptides detected (66). Identifying candidate neoantigens within
the repertoire of HLA II-peptides in fresh tumor material can
also be cumbersome probably due to their low frequency within
the pool of presented peptides on APCs, which typically express
HLA-II molecules. In fact, even if HLA-II peptides have been
successfully eluted in different studies, neoantigens have not been
identified so far among the class II tumor peptidomes (67, 83).

Another important consideration is that MS/MS relies on
efficient ionization and fragmentation of the peptides. Thus,
the successful identification of the sequence of a peptide will
depend on its amino acid composition and the biochemical
characteristics of such amino acids, which will determine
their capacity to be ionized and efficiently fragmented (84).
Consequently, a fraction of peptides that are naturally presented
might never be detected using this approach.

Overall, this strategy yields a long list of minimal epitopes
from both normal and mutated HLA-bound peptides, from
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TABLE 2 | Tumor-rejection antigens derived from non-canonical protein sequences.

Epitope identifieda Type of tumor Origin of non-canonical

peptide

Expression in normal

tissue

Gene name HLA restriction

element

Reference

MSLQRQFLR Melanoma aORF Unknown TRP1 HLA-A*31 (69)

VYFFLPDHL Melanoma Intronic Yes GP100 HLA-A*24 (70)

RSDSGQQARY Melanoma Intronic Yes/lowb AIM2 HLA-A*01 (71)

VLPDVFIRC/VLPDVFIRCV Melanoma Intronic No GNTV HLA-A*02:01 (72)

EEKLIVVLF Melanoma Intronic No MUM1 HLA-B*44:02 (4)

LPAVVGLSPGEQEY Renal cell carcinoma aORF Yes MCSF HLA-B*35:01 (73)

SPRWWPTCL Renal cell carcinoma aORF Yes/lowb iCE HLA-B*07:02 (74)

EVISCKLIKR Melanoma Intronic No TRP2 HLA-A*68:011/HLA-

A*33:01

(75)

LAAQERRVPR Melanoma and

breast cancer

aORF Unknown NYESO1 HLA-A*31 (76)

MLMAQEALAFL Melanoma aORF Yes LAGE1 HLA-A*02:01 (77)

CQWGRLWQL/MCQWG

RLWQL

Melanoma aORF Unknown BING4 HLA-A*02 (78)

LPRWPPPQL Renal cell carcinoma Intronic Yes RU2 HLA-B*07 (79)

a identified by cDNA library screens; bcompared to cancer tissue; aORF, alternative open reading frame; HLA, human leukocyte antigen.

which candidate neoantigens can be selected and tested to assess
their immunogenicity.

Unfiltered Neoantigen Candidate List
Once all tumor NSM are identified, one possibility is to
interrogate the immunogenicity of all candidate neoepitopes
identified by tumor WES, without biasing the selection of
peptides based on in silico prediction, which may not always
be accurate. This can be done using a variety of immunological
screening methods, as explained in section Immunological
Screening Methods Used to Evaluate Neoantigen Recognition.
However, the feasibility of this approach is restricted to tumors
with a limited number of mutations given the cost and effort
associated with screening T cells for recognition of a large
set of mutated epitopes. Alternatively, and particularly when
dealing with tumors with high mutation burden, it is crucial to
further filter candidate neoantigens to exclusively evaluate the
immunogenicity of a selected set of candidate neoantigens.

EVALUATION OF IMMUNOGENICITY OF
CANDIDATE NEOANTIGENS

Evidence arising from available studies is that the vast majority
of selected candidate neoantigens identified in a tumor are not
recognized by T cells (28–30, 32, 85). Thus, evaluation of the
immunogenicity of candidate neoantigens using a variety of
screening methods will be critical to more precisely identify and
select neoantigens suitable for clinical intervention (Table 3).

Immunological Screening Methods Used to
Evaluate Neoantigen Recognition
The first strategy employed to identify human T-cell reactivities
to neoantigens was described in Coulie et al. (4). Coulie

et al. identified a tumor-specific intronic mutation in MUM-
1 recognized by a human cytolytic T lymphocyte (CTL) clone
using an approach which involved screening melanoma-specific
CTLs for recognition of target cells transfected with tumor
cDNA library pools along with the appropriate HLA restriction
element. Additional mutated gene products derived from CDK4
and β-catenin, capable of inducing T-cell responses, were also
identified using similar strategies and were found to either
enable peptide binding to HLA-I by creating an HLA-I binding
motif or to modify a TCR contact residue of a peptide that
was already capable of binding to HLA-I (9, 86). This strategy
was widely used during the following decades to dissect the
molecular nature of antigens recognized by tumor-reactive T
cells, leading to the identification of additional neoantigens
(10, 11, 87). However, this approach is laborious and time-
consuming, it can be influenced by the size, expression levels
or GC-richness of transcripts encoding for T-cell epitopes,
and optimally requires the establishment of tumor-specific
clones and matched tumor cell lines, which is often not
possible. Furthermore, this approach unbiasedly screens T cells
for recognition of both mutated and non-mutated antigens,
leading to frequent identification of self-antigens, rather than
neoantigens (Table 3).

All these limitations have incentivized the development
of alternative high-throughput immunological strategies that
facilitate the evaluation of T-cell reactivity against a large number
of candidate neoepitopes identified by tumor WES. Yet, it is
worthmentioning that a considerable number of tumor-rejection
antigens identified by screening tumor cDNA libraries, including
the first human neoantigen identified (4), derive from non-
canonical protein sequences encoded by introns, alternative open
reading frames or aberrantly spliced variants (Table 2). These
findings are of potential concern, given that the current strategies
exclusively identify NSM in exons (rarely using WGS), ignoring
potential neoantigens that could arise from non-canonically
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TABLE 3 | Immunological screening assays used to test for neoantigen recognition.

Strategy Advantages Disadvantages

cDNA libraries Interrogates all transcribed sequences Labor intensive and time-consuming.

Biased toward highly transcribed genes.

Influenced by the size, expression levels or GC-richness of

transcripts encoding for T-cell epitopes.

Interrogates mutated and non-mutated sequences.

Minimal epitopes Cost-effective.

HLA-matched target cells (based on in silico prediction) can

be used instead of autologous APCs

Exclusively interrogates a selected list of mutated epitopes

based on in silico prediction or validated by

immunopeptidomics

Requires autologous or HLA-matched cells as target cells

Not optimal for CD4+ cells

Peptide-HLA multimers Overcomes the need of autologous APCs

Allows the isolation of antigen-specific T cells

Exclusively interrogates a selected list of mutated epitopes

based on in silico prediction or validated by

immunopeptidomics

Multimers are available for a limited number of HLA molecules

Not optimal for CD4+ cells

Tandem minigenes or

peptide pools

Can be used to interrogate all or a large portion of mutated

epitopes

Allows potential processing and presentation of candidate

neoantigens on HLA-I and HLA-II

Does not require prior knowledge of the minimal epitope or

HLA restriction

Cost increases in patients with high mutation burden

Availability of APCs/effectors can limit this approach,

especially when >250 epitopes are tested

Requires autologous APCs as target cells

Peptide processing by immunoproteasome in APCs might

differ from processing by the proteasome in tumor cells

APC, antigen-presenting cell; HLA, human leukocyte antigen.

translated sequences. Current efforts to overcome this limitation
of exome-based strategies to identify neoantigens arising from
non-canonical protein sequences combine WES with RNAseq
and immunopeptidomics, as previously explained in detail
in section Selection of Candidate Neoepitopes Using Mass
Spectrometry-Based Immunopeptidomics.

Screening of Predicted or Eluted

Minimal Neoepitopes
In 2012, two reports in mouse tumor models demonstrated
for the first time that tumor WES can be exploited to identify
neoantigens (35, 88). In 2013, Robbins et al. performed a
retrospective study to identify the molecular nature of the
antigens targeted by TILs from five melanoma patients, some
of which demonstrated tumor regression following TIL transfer
(7). They used tumor exome sequencing to identify all NSM
and synthesized neoepitopes that were predicted to bind to
the patients’ HLA-A class I molecules and screened the TIL
infusion products for recognition of the mutated peptides
individually pulsed onto COS7 monkey kidney cells or HEK293
human embryonal kidney cells transfected with the appropriate
HLA-A alleles. This work led to the identification of eight
mutated peptides recognized in four of five patients analyzed.
Remarkably, two of the neoantigens that were identified in
two independent patients using this approach, CSNK1A1 and
PLEKHM2, were not identified using the tumor cDNA screening
method. This work describing frequent detection of neoantigen-
specific lymphocytes in responding patients together with a
recent study demonstrating that patients that exhibited complete
tumor regressions following tumor-infiltrating lymphocyte (TIL)
therapy (6) have a higher tumor mutation burden suggest that
neoantigen-specific lymphocytes play an important role in the
efficacy of TIL therapy.

Although this screening strategy was initially used to
interrogate reactivity to neoepitopes presented exclusively by
HLA-A alleles, it can be used to identify neoantigens in
any HLA of interest as long as autologous or HLA-matched
antigen-negative target cells are available or by introducing the
autologous HLA molecules into transfectable cells, that can be
used as target cells. It can also be used to interrogate candidate
neoepitopes eluted from the cell surface HLA molecules of
tumor cell lines or tumor biopsies (65, 89). In a slightly
higher-throughput version, it can be used to interrogate large
numbers of in silico predicted neoepitopes by grouping these into
peptide pools. It is the simplest approach available to analyze
neoantigen immunogenicity, since it relies on classically available
immunological techniques such as IFN-γ release by ELISA or
ELISPOT assays, as well as others, and its sensitivity depends on
the specific read-out chosen to measure T-cell responses. This
approach has allowed to successfully identify immunogenic neo-
epitopes in different malignancies including melanoma, NSCLC
and ovarian cancer (56, 65, 90, 91).

A second immunological method that can be used to
identify neoantigen-specific lymphocytes is the use of pHLA
multimers. Since pHLA-I tetramers were described in 1996,
these have become essential reagents for the visualization and
isolation of antigen-specific T cells (92). However, the technically
challenging generation of individual pHLA monomers coupled
with the limited number of fluorochromes available for pHLA
multimer detection precluded a more comprehensive analysis
of T-cell immunity. Two technical innovations have contributed
to facilitate large scale neoepitope discovery using HLA
multimer-based detection technologies from limited biological
material. First, the development of conditional HLA ligands
which are cleaved upon exposure to UV-light and can be
exchanged with any epitope of interest (93, 94). Using

Frontiers in Immunology | www.frontiersin.org 8 June 2019 | Volume 10 | Article 139271

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Garcia-Garijo et al. Cancer Neoantigen Identification

UV-exchangeable HLA ligands, only one pHLAmultimer loaded
with an exchangeable peptide has to be produced for each HLA
allele of interest and can be used as a stock to generate large
libraries of pHLA complexes through simple manipulations.
Similar strategies have been reported recently, all of them
aiming at facilitating the high-throughput production of large
panels of pHLA complexes (95, 96). Second, fluorochrome-
based combinatorial encoding has increased the number of T-
cell specificities that can be interrogated by flow cytometry in
one sample (up to 28 single specificities with two-dimensional
combinatorial encoding with eight fluorochromes) (97). In one
study, Van Rooij et al. performed tumor WES, and expanded
TILs from a melanoma patient who exhibited a partial response
to ipilimumab. They used in silico HLA-A and HLA-B binding
prediction algorithms to identify neoepitope candidates and
generated a library of pHLA tetramers. TILs were screened for
binding to this library of tetramers using the fluorochrome-
based combinatorial encoding staining method and this led to
the identification of TILs targeting two distinct neoantigens (51).
Interestingly, they also monitored an increase in the frequency
of one of the neoantigen-specific lymphocytes in the blood of
the patient following treatment with anti-CTLA-4, suggesting
the involvement of these T cells in the therapeutic efficacy of
this immunotherapy.

This technology has enabled the generation of large panels
of desired pHLA complexes and consequently pHLA multimer
libraries are currently used for large-scale immunogenic neo-
epitope discovery (98), and have successfully been used to
identify immunogenic mutated neoepitopes in NSCLC and
melanoma (14, 99). More recently, DNA barcoding of individual
pHLA molecules has enabled to screen 1031 T-cell specificities
in one single reaction (100). While DNA barcodes offer the
possibility of screening T cells for a full cancer mutanome
using one biological sample, this technology only provides a
measure of T-cell frequency, but lacks the visual assessment
of the individual T-cell reactivities as well as the possibility of
performing short-term culture given that T cells are lysed for
DNA barcoding amplification.

High-throughput screening of T cells using multiplexed
pHLA multimer staining is of particular interest as it overcomes
the need of autologous or HLA-matched APCs. However, pHLA
complexes are only available for a limited number of HLA
allotypes. Thus, if the aim is to screen T cells for recognition of all
possible predicted or HLA-eluted neoepitopes, this strategy can
only be used in patients for which all ormost of theHLA allotypes
are available for pHLA multimer generation. The detection
of CD4+ specificities using HLA-II multimers represents an
additional challenge in the field. Although it is feasible (101), the
low accuracy of in silico prediction of HLA-II-restricted epitopes
can result in a less precise identification of candidate minimal
epitopes (see section Selection of Candidate Neoantigens using
in silico Peptide Prediction). Furthermore, technical issues
related with the production of pHLA-II multimers, and the
weaker TCR binding affinities to HLA-II also hinder the use
of pHLA-II multimer staining for neoantigen-specific CD4+ T-
cell identification (102). Consequently, the majority of screenings
performed using this approach are usually focused on identifying

neoepitopes presented on HLA-I molecules to CD8+ T cells,
which might underestimate the contribution of neoantigen-
specific CD4+ T cell populations.

It is worth mentioning that the immunological functional
screening assay as well as the HLA multimer staining
technologies described above rely on in-house or commercial
production of synthetic peptides. These are frequently
synthesized or ordered at <70% purity, given the relatively
large number of neoepitopes obtained following in silico peptide
prediction algorithms and the costs associated with custom
peptide production. However, custom peptide libraries have
been reported to contain impurities, that can affect T-cell
recognition and yield false-positive results (103, 104). Hence,
validation of neoantigen-specific reactivity/ies using a second
batch of >70% pure peptides is highly advisable. Ultimately, the
best in vitro evidence that a neoantigen exists is provided by
showing preferential T-cell recognition of a given neoantigen
expressed, processed and presented by autologous APCs or
HLA transfectable target cells, compared to the corresponding
wild-type (wt) counterpart.

Unbiased Screening of All Candidate Neoantigens

Identified by Tumor WES
While the strategies mentioned above are frequently used to
identify neoantigens and neoantigen-specific lymphocytes, they
are limited by the accuracy of current in silico prediction
algorithms, which have not been thoroughly trained to identify
minimal epitopes for rare HLA-I alleles or HLA-II molecules,
and do not consider post-translational modifications (see section
Selection of Candidate Neoantigens using in silico Peptide
Prediction). To overcome these limitations, Lu et al. devised
a new screening assay to evaluate CD8+ and CD4+ T-cell
responses to any of the NSM identified expressed processed and
presented on the patient-specific HLA-I and HLA-II molecules,
without the need for in silico prediction. Briefly, for each NSM
identified one minigene construct was designed, encoding the
mutated amino acid flanked by 12 amino acids of the wt
sequence. Typically, between 6 and 24 minigenes were stringed
together to generate tandem minigenes (TMG) in a single
open reading frame. In vitro transcribed RNA generated from
the TMGs was transfected into autologous APCs, such as B
cells or immature dendritic cells (8, 25, 29). In addition, or
as an alternative to the generation of mutated TMGs, 25-
residue peptides can be synthesized and grouped into peptide
pools (PPs), each containing up to 24 mutated peptides.
Neoepitopes presented through intracellular (transfected TMGs)
and extracellular (pulsed peptides) pathways on autologous APCs
expressing all HLA-I and HLA-II molecules are then evaluated
for their ability to induce T-cell responses and when reactivities
are detected against a specific TMG or PP, these are subsequently
deconvoluted to identify the specific neoantigen recognized.

This unbiased screening approach was used to identify
two mutated antigens, KIF2C and POLA2, targeted by TIL
derived from two patients that underwent complete tumor
regression following TIL transfer (8). An additional study
interrogated the immunogenicity of 720 non-synonymous
somatic variants identified by WES, encoded by 62 TMGs,
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and identified 10 neoantigens targeted by TILs presented on
three different HLA molecules (33). Linnemann et al. used
immortalized autologous B cells pulsed with 31-residue mutated
peptides to identify neoantigen-specific CD4+ T cells in two of
three melanoma patients evaluated (85). Moreover, this high-
throughput screening approach revealed that neoantigen-specific
lymphocytes are frequently detected in TILs derived from GI
cancers which have lower mutation burden (29), providing an
opportunity to develop effective immunotherapies for patients
with additional cancer types. Importantly, TMG and/or PP
screening were used to prospectively select neoantigen-specific
TILs for patient treatment and this was able to induce antitumor
responses in a patient with cholangiocarcinoma treated with
CD4+ ERBB2IP mutation-specific lymphocytes (25), a patient
with metastatic colorectal cancer treated with CD8+ KRAS
mutation-specific lymphocytes (26), and a patient with breast
cancer treated with TILs recognizing SLC3A2, KIAA0368,
CADPS2, and CTSB mutated gene products combined with
anti-PD-1 (27). A diverse repertoire of lymphocytes targeting
three neoantigens was also detected using this approach in
one patient with cervical carcinoma who underwent complete
tumor regression following TIL transfer (105). Overall, this
strategy has been used to identify over 100 neoantigens in over
13 studies (8, 25–31, 33, 105–108), including both CD4+ and
CD8+ T-cell responses. Moreover, this provides the strongest
evidence that T-cell therapies targeting neoantigens can lead
to antitumor responses. However, these unbiased screening
strategies have also provided evidence that only a limited number
of tumor somatic mutations detected by tumorWES and RNAseq
are immunogenic.

The biggest advantage of the unbiased screening using TMGs
and PPs is that it mimics the natural antigen processing
and presentation of neoepitopes on both class I and class
II patients own HLA molecules, overcoming the need of in
silico peptide prediction algorithms. Importantly, it has enabled
the identification of CD4+ neoantigen-specific lymphocytes.
However, it also has some limitations that should be taken into
account. Although, theoretically, all mutations identified byWES
can be screened, the cost associated with peptide and TMG
synthesis, and in vitro RNA transcription greatly increases when
screening tumors with high mutation load. Moreover, since the
initial screening is carried out with TMGs and PPs containing
multiple candidate neoantigens, a deconvolution is required to
identify the neoantigen recognized. Thus, the availability of large
numbers of autologous APCs and effector cells to assess the
immunogenicity of neoantigens can sometimes be a limitation.
The lack of autologous APCs could be overcome using HLA-
matched cells or by transfecting the individual HLA alleles,
although this further complicates the screening strategy. In
addition, the electroporation of TMG RNA does not guarantee
expression and processing of all the mutated minigenes included,
which could be influenced by the position in the TMG or
the 3D structure of the chimeric protein resulting from the
concatenation of up to 24 minigenes. Moreover, the size of the
mutated minigene or peptide to ensure proper processing and
presentation is still a matter of debate. Finally, the efficiency
of this approach is influenced by the APC chosen. Although

immature dendritic cells and ex vivo stimulated B cells are the
cells of preference, their proteasome can be different to that
expressed in tumor cells, and the ability of each cell type to
process and present TMG or cross-present peptides could differ.

In conclusion, this strategy allows to agnostically interrogate
the immunogenicity of all or a large fraction of candidate
neoantigens detected in a given tumor without prior knowledge
of the minimal epitope or the HLA restriction element of each
mutated peptide.

Novel High-Throughput Screening Strategies to

Identify Neoantigens
A few novel technologies that have recently been described aim
at identifying the cognate peptide recognized by a T cell through
the detection of APCs that have been specifically recognized by
T cells, rather than monitoring specific activation of T cells. For
instance, Joglekar et al., developed a cell-based platform for T-cell
antigen discovery that relies on the screening of a large number
of antigens through the expression of chimeric receptors termed
Signaling and antigen-presenting bifunctional receptors (SABRs)
in NFAT-GFP-Jurkat cells through stable transduction with
lentiviral vectors (109). These chimeric receptors are composed
of an extracellular domain comprising a peptide tethered to an
HLA fused to an intracellular CD3ζ signaling domain and a CD28
co-stimulatory domain. When recognized by a specific TCR, this
interaction triggers the expression of GFP and CD69 on NFAT-
GFP-Jurkat cells which can be selected and sequenced to identify
the specific peptide recognized. More recently, Kisielow et al.
have used a similar NFAT reporter system which is restricted
to the identification of tumor-specific peptides recognized by
CD4+ T cells (110). In this case, the signal-triggering molecule
is a MHC-TCR chimeric receptor (MCRs) which incorporates
the peptide linked to the MHC domain. MCR libraries are
generated by cloning fragmented tumor cell cDNA into MCR
sequences and are transduced into reporter cells, which are used
as target cells in co-culture assays with T cells encoding for
TCR of interest. TCR interaction with a specific MCR induces
reporter gene expression through NFAT activation, allowing the
selection, and identification of the recognized peptide through
sequencing. Although these are proof-of-concept studies and
their applicability as well as advantages and limitations remain
to be determined, the novel strategies described may potentially
be used alone or in combination with other screening strategies
for an unbiased identification of neoantigens targeted by T cells
in patients with cancer.

Sources of Effector T-Cell Populations to
Identify Neoantigen-Specific Lymphocytes
Once a list of candidate neoantigens is obtained, their
immunogenicity is typically evaluated in vitro. In addition
to the immunological screening methods previously described,
the selection of an effector T-cell population with which
screening assays will be performed is a critical determinant
for neoantigen identification (Figure 2). Theoretically,
any tissue or fluid from which T cells can be isolated
and/or expanded is a potential source for neoantigen
immunogenicity screenings.

Frontiers in Immunology | www.frontiersin.org 10 June 2019 | Volume 10 | Article 139273

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Garcia-Garijo et al. Cancer Neoantigen Identification

FIGURE 2 | Workflow for the identification of immunogenic neoantigens. Normal and tumor DNA obtained from cancer patients are used to identify tumor-specific

NSM by WES (1). Upon selection of candidate neoantigens (see Figure 1), different immunological screening methods can be used to evaluate peptide

immunogenicity (2). Prior to evaluating their immunogenicity, effector T-cell populations of interest are selected from cancer patient samples (3). These can either be

directly used in immunological screening assays or as a starting source for an optional pre-enrichment step to increase the frequency of neoantigen-specific T cells

(3b). Finally, the immunogenicity of candidate neoantigens is evaluated using the screening method and effector T-cell population/s of choice (4). IVS, in vitro

sensitization; APC, antigen-presenting cell; TCR, T-cell receptor.

TILs and Other Tumor-Associated Populations
T cells are thought to accumulate at the tumor site, presumably

as a result of local antigen-specific clonal expansion. Consistent

with this, the tumor-infiltrating TCR repertoire is typically more

oligoclonal as shown by intratumoral TCR deep sequencing (111,
112). It is therefore not surprising that TILs are the preferred

T-cell source to detect T cells recognizing neoantigens. The
optimization of TIL culture conditions in the late 1980s (113),
motivated in part by the therapeutic potential of adoptive cell
transfer (ACT), has facilitated the expansion of the relatively
small numbers of lymphocytes that can be naturally found
infiltrating human tumors. TIL cultures, which are usually
expanded from tumor biopsies in the presence of high IL-2
concentrations, have been used to identify immunogenic HLA-
I- and HLA-II-restricted neoantigens (7, 25, 29, 51, 111, 114).
Despite being the most attractive source in terms of T-cell
composition, expansion of TILs is not always successful, it
can be highly heterogeneous even when expanding TILs from
contiguous tumor fragments, and the generation of these cultures
depends on tumor biopsies which are not always available.
Furthermore, in vitro expansion of TILs can significantly increase
or decrease the frequency of antigen-specific T cells (99, 115),
thereby underestimating the initial T-cell repertoire. Recent
studies have also shown that TILs are composed not only
of tumor-reactive but also of cancer-unrelated T cells (e.g.,
virus-specific T cells) (116, 117). How these bystander cancer-
unrelated T cells behave in comparison to tumor-reactive cells
during TIL expansion has not been fully determined, although
initial studies suggest that ex vivo expansion of TILs can
increase the frequency of virus-specific T cells at the expense
of tumor-reactive T cells (115). Therefore, other T-cell sources
have been studied with the aim of complementing TILs for
neoantigen validation.

Fluids directly associated with particular solid tumors, such
as ascites from ovarian cancer or pleural effusions from

mesotheliomas, have been used as sources for the expansion
of tumor-associated lymphocytes (TALs). TALs do not fully
share TCR repertoires with TILs (118), and they might thus
underrepresent the tumor-reactive T-cell population of the
primary tumor. Nonetheless, the potential of TALs has been
demonstrated in a high-grade serous ovarian cancer patient
in which a neoantigen-specific T-cell clone was detected in
ascites at the time of recurrence, but not in primary ascites or
tumor samples (90). Other body fluids, such as cerebroespinal
fluid (CSF), although low or absent in healthy individuals,
can be increased in patients with different pathologies (119).
Indeed, T cells isolated and expanded from CSF of patients with
diffuse intrinsic pontine glioma have been used to detect tumor-
reactive T cells after dendritic-cell vaccination (120). Urine
has been recently used to isolate and characterize lymphocytes
from bladder cancer patients (121). Notably, urine-derived
lymphocytes (UDLs) recapitulated the phenotypic and TCR
landscapes of T cells from the tumor microenvironment. Given
the non-invasive nature of urine collection and the similarities
between UDLs and TILs, the former represents an attractive
source of T cells to identify immunogenic neoantigens in bladder
cancer patients.

PBMCs
One of the major challenges for the identification of neoantigens
is finding non-invasive T-cell sources to perform immunological
screenings. PBMCs derived from blood extractions represent the
most attractive source for this purpose. The first evidence of
circulating neoantigen-specific T cells was reported more than
20 years ago. Back then, effector T cells used for reactivity
screenings were obtained using a mixed lymphocyte tumor
culture (MLTC) (122). After successive rounds of stimulation
of PBMCs from cancer patients with irradiated autologous
tumor cell lines, they were tested for tumor reactivity, and
positive “clones” were obtained. Using MLTC-derived clones,
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Wölfel et al. identified an HLA-A2.1-restricted neoepitope
derived from CDK4 (86). This strategy has been successfully
exploited in other studies, but the requirement of multiple
stimulations prompted the development of strategies to detect
neoantigen-specific lymphocytes in unmanipulated PBMCs. The
first reports of circulating neoantigen-specific T cells detected
in bulk PBMCs from cancer patients are from less than a
decade ago with the advent of improved multimer staining
technologies (51, 99). In one of those studies, Cohen et al.
used multimer libraries to screen for candidate neoantigens,
resulting in the successful isolation and expansion of neoantigen-
specific T cells from the blood of melanoma patients. Subsequent
studies have also shown that naïve T cells from healthy
donors can be used as a source to identify neoantigens
from melanoma patients for which T-cell reactive clones were
absent in autologous TILs (123). These studies suggest that
blood-derived T cells are attractive populations for identifying
immunogenic neoantigens.

Pre-enriched T-Cell Populations
Multimer-based studies have shown that neoantigen-specific
T cells are present at relatively low frequencies in fresh
tumor single-cell suspensions (98), and this is even more
problematic when working with peripheral blood lymphocytes
(PBLs) (51, 99). To overcome this challenge, different enrichment
strategies have been developed to increase the odds of
detecting cells which otherwise would be missed due to limited
technical sensitivities. Given the low frequency of neoantigen-
specific T cells, enrichment strategies rely on the selection of
particular T-cell populations that are then in vitro expanded
to achieve high cell numbers for immunogenicity screenings
(Figure 2; Table 4).

One of these strategies exploits the fact that, upon recognition
of their target antigen on tumor cells, T cells express co-inhibitory
and co-stimulatory molecules. Furthermore, chronic exposure to
target antigens may differentiate TILs into a dysfunctional (also
termed exhausted) state characterized by the co-expression of
exhaustion/activation markers (124, 125). This T-cell phenotype
has prompted research evaluating whether the expression of these
markers could be used to identify and enrich for neoantigen-
specific T-cells residing in fresh tumors or peripheral blood of
patients with cancer. To date, most of the co-inhibitory/co-
stimulatory markers identified to associate with enrichment of
tumor- or neoantigen-reactive T cells have been described in
TILs from fresh tumor preparations. Initial reports demonstrated
that the isolation and expansion of CD8+ melanoma TILs based
on either PD-1, or a combination of PD-1 TIM-3 and LAG-3
expression consistently enriched for T cells recognizing tumors
and neoantigens (111, 126). Subsequent studies have confirmed
that tumor-specific CD8+PD-1+/hi-infiltrating populations show
a distinct transcriptional and metabolic profile (127). Phenotypic
characterization of CD8+ TILs from colorectal and lung cancer
patients has revealed that CD39, rather than PD-1, could
accurately distinguish between tumor-specific (CD39+) and
cancer-unrelated T cells (CD39−) (117). In line with this,
a recent study has shown that co-expression of CD39 and
CD103 favors the identification of tumor-reactive T cells (128).

A different approach exploits the fact that T cells express
CD137 upon recognition of tumor cells (129). Consequently,
isolating T cells based on CD137 expression after co-culture
with autologous tumor cells leads to enrichment of neoantigen-
specific T cells (130, 131). Identification of markers associated
with neoantigen-specific T-cell enrichment in circulating T cells
has been more challenging compared to TILs. For instance,
expression levels of immune checkpoints in blood-derived T
cells is lower than in TILs (111). Additionally, circulating T
cells expressing immune checkpoints could result from other
pathogen-specific responses. To date, only two reports have
used T-cell markers for enrichment of tumor-specific T cells
from peripheral blood. In contrast to CD8+PD-1− peripheral
blood T cells, sorted CD8+PD-1+ cells from melanoma patients
contained lymphocytes targeting neoantigens (28). Moreover,
neoantigen specificities and TCR repertoires in CD8+PD-1+

cells from blood and melanoma tumors were very similar.
More recently, isolation of circulating memory T cells based
on CD62L and CD45RO expression enabled the identification
of neoantigen-specific T cells (108). Enriching T cells based on
marker expression is advantageous as no foreknowledge of T
cell-specific reactivities or HLA restriction is required, thereby
theoretically broadening its application to any patient. However,
marker expression is variable among patients. Furthermore, the
low frequency of marker-expressing cells demands an additional
in vitro expansion step after sorting in order to achieve reasonable
cell numbers for in vitro immunological screening assays, which
could change the repertoire compared to the initial population.
Although there is no direct evidence of this for marker-sorted
cells in humans, mouse antigen-specific T cells among sorted
CD8+PD-1+ TILs have been shown to decrease in frequency
after in vitro expansion (132). Despite these challenges, this
approach is attractive not only for neoantigen screening but
also as a source of T cells for therapeutic applications such as
ACT. Open questions regarding this strategy that still need to
be addressed include: (i) which marker best recovers most of
the neoantigen-specific T-cell repertoire, and (ii) whether the co-
expression of multiple markers can improve enrichment based
on single-markers.

Other enrichment strategies rely on the detection of the
interaction between the TCR and its cognate pHLA complex.
Staining of T cells with fluorescently-labeled pHLA multimers
allows the simultaneous detection and sorting of pure antigen-
specific populations, which can then be interrogated for
validation of neoantigens in functional assays. Using this
approach, multimer-enriched T cells from either PBMCs
or fresh tumor digests have been used for validation of
neoantigens derived from solid and hematological malignancies
(99, 133, 134). Besides the disadvantages related to pHLA
multimers mentioned in section Screening of Predicted or
Eluted Minimal Neoepitopes, one that limits multimer-based
enrichment of T cells is the fact that positive signals after
multimer staining not necessarily determine functional T-cell
responses (134–136).

Another frequently used enrichment strategy is in vitro
sensitization (IVS), which exploits antigen-specific stimulation
and expansion to increase the frequency of specific T-cell
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TABLE 4 | Strategies to enrich for neoantigen-specific lymphocytes.

Strategy Advantages Disadvantages

Surface marker-based

selection

Prior knowledge of the specific reactivity or HLA restriction is

not required

Universal (Can be used for every patient)

Increases the frequency of neoantigen-specific lymphocytes

Expression of surface markers varies among patients

May not capture all reactivities

Does not exclusively select neoantigen-reactive lymphocytes

Multimer staining Allows isolation of T cells with one specific reactivity with

high purity

Requires generation of HLA multimer for each reactivity

Limited number of HLA multimers

Prior knowledge of the specific reactivity and HLA restriction

required

Not optimal for isolating tumor-reactive CD4+ T cells

Sensitivity limited by the frequency of the

neoantigen-specific population

In vitro sensitization Increases the frequency of T cells with a specific reactivity Requires multiple rounds of in vitro sensitization

Requires autologous or HLA matched APCs

Laborious depending on the number of peptides screened

APC, antigen-presenting cell; TCR, T-cell receptor; HLA, human leukocyte antigen.

reactivities. The most frequently used approach of IVS involves
the co-culture of either PBMCs or TILs, with or without
irradiated feeders and a pool of candidate peptides in the presence
of cytokine cocktails [usually combinations of interleukin (IL)-
2, IL-7, IL-15, and IL-21]. Co-cultures are usually incubated
for 10–14 days, after which the resulting T-cell populations
can be screened for neoantigen recognition or for subsequent
rounds of stimulations. A modified version of this approach
involves the stimulation of TILs or PBMCs with autologous
APCs electroporated or pulsed with TMGs or peptides (long or
minimal epitopes), respectively, under similar culture conditions
as the ones mentioned above. Alternatively, if the patient’s
autologous tumor cell line is available, it can be used instead
of APCs for stimulation. These three strategies have proven
to be useful for enrichment of neoantigen-specific T cells and
for the subsequent validation of candidate neoantigens (86,
108, 137, 138). However, the simultaneous presentation of
multiple epitopes during IVS may favor the enrichment of T-
cell populations specific for immunodominant peptides, leading
to underrepresentation of the true neoantigen-specific T-cell
repertoire present in the starting population. To overcome the
potentially biased enrichment of T cells and in order to detect the
broader repertoire of neoantigen-specific T cells, a more reliable
but also more cumbersome approach involves the stimulation of
T cells with APCs pulsed with every single predicted minimal
epitope for separate (91). It is important to note, however, that
this strategy has been limited to tumors with lowmutational load,
or those whose neoantigen candidate list has been prioritized
using in silico prediction algorithms.

The methods described in this section have been commonly
used as single enrichment strategies. However, the combination
of such enrichment strategies (e.g., marker-based selection and
IVS) can result in highly enriched populations of neoantigen-
specific T cells (108). Furthermore, recent efforts aim at
combining enrichment methods, such as IVS with or without
CD137-based T-cell selection, with other sensitive technologies
such as TCRβ deep sequencing by NGS to screen for
neoantigens (91, 139–141).

T-Cell Clones and TCR-Transduced Lymphocytes
The antitumor responses observed upon adoptive transfer of
TILs targeting neoantigens has provided rationale to develop
personalized T-cell therapies. However, the differentiated status
of the administered cells has been associated with limited
antitumor activity in mouse models, suggesting that TCR-gene
engineered T cells could be more efficacious. This, combined
with recent progress in the non-viral delivery of TCRs into
PBLs (142), has made personalized neoantigen-specific TCR-
gene engineering a true possibility.

The rapid identification of neoantigen-specific TCRs, a
pre-requisite for the development of such therapies, can be
performed through multiple strategies. First, T-cell clones can
be established either from TILs, peripheral blood subsets or
enriched populations (as described above) and can be screened
for recognition of neoantigens. TCRα and TCRβ sequencing
can be carried out from the neoantigen-specific clones to isolate
the variable regions of the TCR. These can then be cloned into
a vector of choice to transduce or transfect PBLs to express
and test the specificity of the TCRs identified. This approach
led to the rapid identification of six neoantigen-specific TCRs
from two patients, including a high affinity HLA-II-restricted
KRASp.G12D-specific TCR in a recent report (30). However, the
limited proliferative capacity of some clonotypes may result in a
biased representation of the starting TCR repertoire.

A second approach to isolate neoantigen-specific TCRs uses
the oligoclonality of specific tumor-resident TCR clonotypes as
a surrogate to select for candidate neoantigen-specific TCRs
that may have undergone clonal antigen-specific expansion. As
exemplified in the work by Pasetto et al. the most frequent TCRβ

clonotypes identified by TCRβ deep sequencing were selected as
candidate tumor or neoantigen-specific lymphocytes and were
paired with the most dominant TCRα sequences, leading to
the cloning, expression and immunological testing of a few
TCRα-β pairs (112). However, the inefficient allelic exclusion of
TCRα chains during somatic recombination in T cells frequently
leads to T cells harboring two TCRα sequences and this can
hinder construction of the correct pairs. Alternatively, the TCRα

Frontiers in Immunology | www.frontiersin.org 13 June 2019 | Volume 10 | Article 139276

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Garcia-Garijo et al. Cancer Neoantigen Identification

sequence that pairs with the oligoclonal TCRβ clonotype selected
can be identified using pairSEQ, a high-throughput strategy
combining TCRα and TCRβ sequencing with statistical analysis
to infer TCRα-β pairs from bulk PBLs or TILs (143). In addition,
single-cell TCRα and TCRβ sequencing of cells directly isolated
from the tumor can be carried out either using conventional
sanger sequencing (112) or NGS (116), to identify TCRα-β
pairs from TILs. Once the sequence of the selected TCRα-β
pairs are identified, T cells can be screened for recognition of
candidate epitopes in functional assays that require autologous
target cells (116). Using this approach, Pasetto et al. generated
PBLs expressing 68 TCRα-β pairs derived from melanoma-
resident CD8+PD-1+ T cells from 10 patients and successfully
identified 9 neoantigen-specific TCRs. Furthermore, recently,
single-cell transcriptomics has enabled to couple specific TCRα-
β sequences to specific differentiation and functional traits.
Although this technology has not yet been exploited to isolate
neoantigen-specific TCRs from TILs, it could further improve
our understanding of the functional and phenotypic traits of TILs
and the accuracy of existing biomarkers to select for candidate
neoantigen-specific lymphocytes. The major limitation of this
approach is the high amount of TCR clonotypes that can be
retrieved from all the sequencing data. Hence, high-throughput
platforms to gene-engineer and test the specificity of such high
number of TCRs is currently a matter of extensive research (144).

CONCLUDING REMARKS

Virtually all cancers harbor genetic alterations, some of which
can give rise to mutated, non-self peptides presented by HLA
molecules and elicit T-cell responses, referred to as neoantigens.
Recent data suggests that neoantigen-specific lymphocytes can be
detected in the vast majority of cancer patients, regardless of their
tumor mutation burden. Moreover, they appear to have a central
role in the clinical activity of cancer immunotherapies. Thus,
neoantigens have emerged as promising targets for personalized
immunotherapies. However, mounting evidence suggests that
only a small fraction of the NSM identified by tumor WES
are actually immunogenic. While inherent difficulties can limit
neoantigen identification, such as tumor heterogeneity or as a
result of holes in the TCR repertoire, the success or failure of
neoantigen identification is, in great part, determined by the
identification of candidate neoantigens and the immunological
screening assays required to identify bona fide neoantigens, all
with their own advantages and disadvantages.

Whilst in silico peptide prediction strategies have led to
the identification of neoantigens, they can inaccurately predict

peptides, and they are not efficiently trained to identify HLA-II
neoantigens. Immunopeptidomics can be used to discover novel
neoantigens or validate those obtained using in silico peptide
predictors, but MS based identification of peptides is limited by
its current sensitivity and by the fact that some peptides may
never be detected using this approach. To date, the safest, albeit,
the most laborious, and costly strategy to identify neoantigens
requires the unbiased screening of all neoantigens identified
using TMGs or PPs, as demonstrated by the growing number
of neoantigens identified using this approach in the last five
years. This strategy has provided a broader idea of the frequency
of neoantigen reactivities in cancer patients and is capable of
detecting CD4+ T-cell responses targeting neoantigens, which
may be important to develop effective treatments. Moreover, the
specific immunological screeningmethod and read-outs selected,
as well as the choice of effector population screened can also
greatly impact on neoantigen identification.

Thus far, clinical trials testing vaccines targeting neoantigens
have demonstrated they are safe and well tolerated, and
personalized T-cell based therapies targeting neoantigens
have shown antitumor responses in selected cases. However,
whether individualized immunotherapies targeting neoantigens
can mediate effective antitumor responses in a broader
patient population, remains an open question. Despite all the
technological innovation and development of novel screening
assays, the rapid and precise identification of the bona fide
neoantigens in any given patient remains a major hurdle
that will need to be overcome to translate the potential of
neoantigen targeting into effective therapies for patients
with cancer.
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Over a century ago, it was reported that immunization with embryonic/fetal tissue could

lead to the rejection of transplanted tumors in animals. Subsequent studies demonstrated

that vaccination of embryonic materials in animals induced cellular and humoral immunity

against transplantable tumors and carcinogen-induced tumors. Therefore, it has been

hypothesized that the shared antigens between tumors and embryonic/fetal tissues

(oncofetal antigens) are the key to anti-tumor immune responses in these studies.

However, early oncofetal antigen-based cancer vaccines usually utilize xenogeneic or

allogeneic embryonic stem cells or tissues, making it difficult to tease apart the anti-tumor

immunity elicited by the oncofetal antigens vs. graft-vs.-host responses. Recently, one

oncofetal antigen-based cancer vaccine using autologous induced pluripotent stem

cells (iPSCs) demonstrated marked prophylactic and therapeutic potential, suggesting

critical roles of oncofetal antigens in inducing anti-tumor immunity. In this review,

we present an overview of recent studies in the field of oncofetal antigen-based

cancer vaccines, including single peptide-based cancer vaccines, embryonic stem cell

(ESC)- and iPSC-based whole-cell vaccines, and provide insights on future directions.
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INTRODUCTION

Cancer cells have the capability to proliferate indefinitely and metastasize to different parts of the
body. Embryonic stem cells (ESCs) have the ability to undergo rapid clonal proliferation and self-
renew, and can inhabit and thrive in various environments of the human body. The similarities
between fetal development and cancer have long been recognized (1) following the discovery of
oncofetal proteins and antigens such as α-fetoprotein (AFP) (2), carcinoembryonic antigen (CEA)
(3), and human chorionic gonadotropic (HCG) (4) (Supplemental Table 1). These proteins are
tumor associated proteins or antigens (TAA) that are synthesized during embryonic development
and appear again in adults during cancer development. Furthermore, these proteins are well-known
biomarkers for cancer detection and monitoring (3, 5–9). Induced pluripotent stem cells (iPSCs)
can be generated by introducing four transcription factors into adult somatic cells, which transform
their transcriptional and epigenetic state to a pluripotent one that closely resembles ESCs (10).
Similar to ESCs, iPSCs share genetic and transcriptomic signatures with cancer cells, including
protein markers that can be recognized by the immune system (11, 12).

Schöne recognized over a century ago that immunization with embryonic/fetal tissue could lead
to the rejection of transplanted tumors in animals (13). Later studies indicated that vaccination
of embryonic materials in animals elicited humoral and cellular immunity against transplantable
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tumors and carcinogen-induced tumors, supporting the idea
that anti-tumor immunity may arise from the antigens shared
between fetal tissue and cancer cells. Recent studies provided
evidence that oncofetal antigen-based cancer vaccines could
elicit potent T cell responses (5–9). However, there are
problems associated with utilizing embryonic/fetal materials
for the development of anti-cancer vaccines. Ethical issues,
tumorigenicity, and alloimmunity have been themain limitations
of using ESCs for clinical applications. Therefore, a substitute
for ESCs is needed for overcoming these obstacles. A recent
study using an irradiated autologous iPSC-based cancer vaccine
has started to address these issues (14). Moreover, the use
of ESCs/iPSCs alone as an anti-cancer vaccine only showed
moderate anti-tumor effects in some of the early studies (13,
15, 16), suggesting that vaccine adjuvants may be needed in
combination with ESCs/iPSCs to enhance innate immunity and
increase antigen presentation. Here, we summarize and compare
recent studies in addressing these challenges.

CANCER CELLS ARE REMARKABLY

SIMILAR TO ESCS AND iPSCS

Cancer cells and ESCs share many cellular and molecular
features. These include a rapid proliferation rate (17),
upregulated activity of telomerase (18), increased expression
levels of oncogenes such as c-MYC (19) and krupple-like factor 4
(KLF4) (20), and similar overall gene expression profiles (21, 22),
microRNA signatures (23), and epigenetic status (24). Similar to
cancer cells, after long-term culture the ESC lines will continue
to proliferate actively and express high levels of telomerase
activity, allowing them to maintain telomere length and cellular
immortality (18, 25, 26). These features of ESCs resemble the
hallmarks of cancer cells that have “sustaining proliferative
signaling” and “replicative immortality” (27).

The discovery of iPSCs in 2006 (10, 28) has revolutionized
the field of stem cell research. Human iPSCs reprogrammed
from a patient’s somatic tissues share almost the same gene
expression profiles with that patient’s ESCs (29–32), providing a
possible solution to the ethical objections that have obstructed
the use of human ESCs in many countries. Similar to ESCs,
iPSCs share genetic and transcriptomic signatures with cancer
cells (14). Human iPSCs were first generated by the transduction
of fibroblasts with four transcription factors: OCT4, SOX2, c-
MYC, and KLF4 (28). C-MYC is a well-known oncogene (33, 34),
and the other three factors are also known to be upregulated
in multiple cancers types (35–40). Indeed, one study showed
significant overexpression of at least one of these factors in 18 of
the 40 cancer types that were evaluated (41). Also, these genes are
associated with tumor progression and poor prognosis in certain
tumor types (41), suggesting that targeting these genes in cancers
may be therapeutically beneficial.

A recent study analyzed and compared the epigenomic
and transcriptomic signatures of human tumors from The
Cancer Genome Atlas (TCGA) and ESCs, as well as iPSCs and
other progenitor cells from Progenitor Cell Biology Consortium
(PCBC) (42). In this study, the authors applied machine

learning algorithms to reveal a positive correlation between
tumor dedifferentiation status and stemness indices for most
of the tumor cases they analyzed (42). Importantly, they also
demonstrated that the cancer stemness indices are higher
in recurrent and metastatic tumors than primary tumors,
supporting the concept that cancer stem cells play essential
roles in cancer recurrence and metastasis (43, 44). In addition,
using single-cell transcriptome analysis the authors identified
a heterogeneous expression of stemness-associated markers in
patient tumors, suggesting the need for multi-target strategies
when targeting cancer stem cells.

IMMUNOGENICITY OF ESCS AND iPSCS

Embryonic stem cells are usually obtained from an unrelated
donor due to their limited availability. Therefore, these cells
often express mismatched major histocompatibility complex
(MHC) and/or minor histocompatibility (miH) antigens and will
trigger alloimmune responses when transplanted in the host.
ESCs express low levels of HLA class I molecules (45) and
almost undetectable levels of HLA class II and costimulatory
molecules (46). Although expressed at a low level, HLA class
I molecules in ESCs are sufficient to trigger xenorejection of
human ESCs mediated by cytotoxic T cells (47, 48). ESCs
induce potent humoral and cellular immune responses, leading
to the infiltration of inflammatory cells that is followed by ESC
rejection (49). So far, most immunogenicity studies of ESCs
have focused on a scenario that involves MHC mismatches,
implicating alloimmunity as one of the main players in the
immune responses after ESCs transplantation. However, whether
embryonic antigens in ESCs could induce an immune response is
less clear.

Induced pluripotent stem cells are somatic cells that were
reprogramed back to a pluripotent state. Autologous iPSCs
can be generated from the person receiving therapy. Since the
initial discovery of iPSCs, researchers immediately assumed
that these cells would be a potential cell source of autologous
cell-based therapies to bypass the issues of alloimmunity
caused by allogeneic sources such as human ESCs or donated
tissue (50, 51). However, later studies investigating iPSC
immunogenicity in autologous settings raised questions about
this assumption. Araki et al. (52) showed that autologous
iPSC-derived teratomas were rejected by immune-competent
mice and found a comparable level of rejection of autologous
ESC-derived teratomas. These data suggest that in autologous
transplantation models with minimized alloimmunity, other
antigens such as embryonic antigens in ESCs and iPSCs could
still induce an immune response. In 2014, we noticed that
autologous iPSCs are immunogenic (11), contradicting earlier
studies claiming they are immune privileged. We showed in
murine models that undifferentiated autologous iPSCs elicited
an immune response with increased lymphocytic infiltration
and elevated granzyme-B, IFN-γ, and perforin intragraft. In
contrast, autologous iPSC-derived endothelial cells were accepted
by immune mechanisms similar to self-tolerance. These studies
suggest that undifferentiated autologous iPSCs may express

Frontiers in Immunology | www.frontiersin.org 2 July 2019 | Volume 10 | Article 151084

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ouyang et al. iPSC-Based Cancer Vaccines

antigens of embryonic origin that can trigger an immune
response, whereas fully differentiated cells derived from iPSCs
have lower levels of immunogenicity. Based on these data and
the similarity between iPSCs and cancer cells, we reached the
conclusion that undifferentiated iPSCs are immunogenic and
hypothesized that they can be used as a cancer vaccine.

ONCOFETAL PEPTIDE VACCINES AND

WHOLE-CELL VACCINES

Oncofetal Peptide-Based Vaccines
A wide range of vaccines based on the aforementioned
oncofetal antigens have been tested in pre-clinical studies,
and some single antigen vaccines have been tested in clinical
trials. Among all oncofetal antigens, many well-studied ones
belong to a class of proteins called cancer testis antigens
(CTAs) (Supplemental Table 1). CTAs are expressed within the
immune-privileged environment of the testes as well as by
tumor cells. Targeting CTAs can induce highly tumor-specific
immune responses and thus provide an ideal strategy for anti-
cancer vaccines. For example, a series of clinical trials have
evaluated the CTA melanoma-specific antigen A3 (MAGE-A3)
as a cancer vaccine target. MAGE-A3 is highly expressed in
many different tumor types (53, 54). An early phase clinical
trial demonstrated that adjuvant-mixed, recombinant MAGE-
A3 proteins or peptide vaccines could elicit potent anti-tumor T
cell and antibody responses which are associated with objective
responses (54). However, a phase III trial in non-small-cell
lung carcinoma (NSCLC) evaluating MAGE-A3 as an adjuvant
treatment demonstrated no significant improvement in disease-
free survival compared with placebo in MAGE-A3-positive
patients. So far, no further clinical trials testing the MAGE-A3
targeting immunotherapies in NSCLC have been approved based
on these results (55).

Another example of a single-peptide-antigen vaccine in
clinical trial targeting glypican-3 taught us a similar lesson
(56). In this phase II clinical trial, the investigators observed
that two patients had tumor relapse despite significant numbers
of vaccine-induced peptide-specific CTLs in their blood.
Interestingly, they found that although glypican-3 was expressed
in the primary tumor, the recurrent tumors lost the antigen
expression. The investigators concluded that “the peptide vaccine
may eradicate tumor cells that express such antigen, [and] cancer
cells that do not express or lose the same antigen may then
proliferate. In such cases, vaccines that target multiple shared
antigens would be effective.”

Upon learning the lessons from failed early clinical trials using
single-peptide cancer vaccines, later clinical trials evaluating
peptide antigen-based cancer vaccines have focused mostly
on multiple-peptide and antigens and/or are administered
in combination with immunostimulatory adjuvants and other
targeted therapies (57).

These results indicate that targeting one antigen alone may
not be able to generate a sufficiently effective and durable anti-
tumor immune response to mediate tumor rejection because
of tumor heterogeneity and the rapid appearance of escape

mutants. Therefore, it has been suggested that strategies that
could target multiple tumor-associated antigens at once would
induce a broader spectrum of anti-tumor immunity and possibly
provide more effective and durable protection against cancer.

ESC-Based Whole-Cell Cancer Vaccines
Since the establishment and characterization of human ESC lines,
researchers have attempted to evaluate ESC-based whole-cell
cancer vaccines due to their ability to deliver multiple oncofetal
antigens in one treatment. In addition, unlike defined antigen-
based vaccines, the whole-cell vaccine is universally applicable
to all patients regardless of their HLA type. Li et al. found that
human ESCs were able to induce a moderate anti-tumor effect
(16). Both humoral and cellular immunity were activated by H9
ESC line, as evidenced by the production of colon carcinoma cell
line-specific antibodies and IFNγ-producing cells, respectively.
It was speculated that oncofetal antigens shared by the ESCs
and tumors might have contributed to the vaccine-induced anti-
tumor response. However, these immune responses were induced
by a xenogeneic human ESC line injected into mice, and it is
very likely that the incompatibility of the MHC antigens between
the human ESCs and mouse cells contributed to a large portion
of the immune responses. Furthermore, the anti-tumor effects
produced by the xenogeneic ESC-vaccine were not as potent as
those induced by immunization with the syngeneic murine colon
cancer cells. A similar approach using xenogeneic human ESCs
as a cancer prevention vaccine was evaluated by Zhang et al.
(58) in an ovarian cancer model in rats, and a moderate tumor
prevention effect was observed in this study.

These results raise the question of whether allogeneic or
autologous ESCs are better than xenogeneic ESCs as an anti-
cancer vaccine. A later study by Dong et al. (59) evaluated an
allogeneic ESC cancer vaccine in mice. They investigated the
ESC vaccine both as a prophylactic vaccine and as a therapeutic
treatment in a transplantable lung cancer model by showing it
could inhibit tumor growth in mice by enhancing lymphocyte
proliferation and cytokine secretion, suggesting the potential
of utilizing allogeneic ESC vaccines as a therapeutic strategy.
However, they observed a stronger tumor inhibitory effect in
the prophylactic group compared with the therapeutic group,
which may be due to the immunosuppressive environment in
established tumors.

To test the prophylactic ESC cancer vaccine in a
physiologically relevant setting, Yaddanapudi et al. (60) employed
a spontaneous mouse tumor model. Allogenic ESCs along with
GM-CSF were used to provide immunostimulatory adjuvant
activity. GM-CSF can stimulate and activate antigen-presenting
cells (APCs), which can process and present tumor antigens
to CD4+ helper T cells and CD8+ cytotoxic T lymphocytes
(CTL) (61, 62). The authors observed more potent and durable
protection against tumor growth than that found in earlier
studies using ESCs alone, corroborating the immunostimulatory
effects of the GM-CSF in the cancer vaccine. Moreover, this
combinatory vaccination could inhibit carcinogen and chronic
pulmonary inflammation induced lung cancer, which is a
physiologically relevant spontaneous lung cancer model in mice.
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iPSC-Based Whole-Cell Cancer Vaccines
Embryonic stem cells and iPSCs share nearly identical gene
expression and epigenetic profiles (29–32). Based on the
similarities between cancer cells and ESCs, Li et al. (16) evaluated
one human iPSC line TZ1 as an anti-cancer vaccine in a
transplantable mouse colon cancer model. They found that
although these iPSCs induced significant numbers of IFNγ-
and IL-4-producing splenocytes against the mouse colon cancer
cells, no evidence of tumor rejection was seen, possibly due
to the accumulation of myeloid-derived suppressor cells in
TZ1-immunized groups. These data suggest that modifications
of the iPSC-based cancer vaccine are needed to increase the
immune response against tumors. For example, autologous
iPSCs may contain a more representative and accurate panel of
tumor antigens than xenogeneic iPSCs, and therefore, autologous
iPSCs may be better than xenogeneic iPSCs as anti-cancer
vaccines, pending further confirmatory studies. In addition, an
immunostimulatory vaccine adjuvant may enhance the anti-
tumor immunity of the iPSC-based vaccines.

Embryonic/fetal materials or ESCs often come from unrelated
donors and may express mismatched MHC that could trigger
an immune response. To study the immunogenicity of oncofetal
proteins, alloimmunity stimulated by MHC mismatches will
need to be eliminated. In addition, tumorigenicity associated
with ESCs has been one of the major obstacles in using ESCs
as cancer vaccines for clinical applications. Recently, a study
by our lab (14) addressed these issues using an irradiated
autologous iPSC-based cancer vaccine. In this study, we first
demonstrated that human and murine iPSCs express a list
of tumor-associated and tumor-specific antigens by comparing
expression profiles of 11 different human iPSC clones with
human ESCs, cancer tissues, and healthy tissues using RNA
sequencing. We showed that human iPSCs cluster with human
ESCs and the cancer tissues, revealing significant gene expression
overlap in cancer genes among different cancer types and
iPSCs. To evaluate whether the oncofetal antigens in iPSCs
rather than MHC mismatches could induce immune responses,
we minimized alloimmunity by utilizing autologous iPSCs as
the source of the anti-cancer vaccine. To enhance the anti-
tumor immunity induced by the vaccine, we included an
immunostimulatory adjuvant, CpG oligodeoxynucleotide, a toll-
like receptor 9 (TLR 9) agonist that can induce the maturation
of APCs (Figure 1). We then irradiated iPSCs before vaccination
to prevent teratoma formation, as studies have shown that
gamma irradiation could inhibit the tumorigenicity of iPSCs
(63, 64). We irradiated iPSCs at 60Gy, which is a lethal dose
to human iPSCs in vitro and known to significantly decrease
teratoma formation ability of human iPSCs in mice (63, 64).
We generated autologous iPSCs by introducing Yamanaka factors
(Oct4, Sox2, Klf4, and c-Myc) into mouse fibroblasts from
the same mouse strain. Vaccinations with irradiated iPSCs
mixed with the immunostimulatory CpG were administered
weekly for a month, inducing antibodies that bound to iPSCs
and tumor cells. Vaccination with iPSC-based cancer vaccine
also induced CD4+ and CD8+ T cells that could recognize
tumor cells in vitro, suggesting the induced immune responses
are tumor specific. Vaccination increased APCs and activated

T cells in mice, resulting in a favorable ratio of CD8+ T
cells over CD4+CD25+FoxP3+ regulatory T cells (T-regs). As
a result, vaccinated mice rejected transplanted breast cancer,
melanoma, and mesothelioma tumor cells, indicating that the
stimulated immune activity was tumor-specific and functional.
Importantly, adoptive transfer of T cells isolated from vaccine-
treated tumors could transfer this tumor protection to naïve
mice, proving that the tumor protection effect was mediated by
T cells (Figure 1).

Because preventive treatment of cancer is clinically
uncommon for non-viral associated cancers, we also investigated
the therapeutic effects of the iPSC-vaccine in established
tumors. Here, the vaccination with iPSC vaccine did not stop
the growth of established melanomas, which may be due to
the established immunosuppressive tumor microenvironment.
We then examined a clinically relevant scenario involving the
surgical removal of the majority of tumors but left some residual
tumor remains at the margins; we found that the iPSC + CpG
vaccine could inhibit tumor relapse. These data are consistent
with the finding that cancer stemness features are more highly
expressed in recurrent tumors (42).

Because adult stem cells are also present, although rare, in
some adult organs such as skin, liver, bone marrow, and digestive
system (65), we evaluated auto-immunity by monitoring the
animal body weight, organ histology, and antinuclear antibody
levels. All of these measurements were normal, suggesting the
absence of gross toxicity and autoimmunity in vaccinated mice.
The iPSC vaccine could break the self-tolerance of the immune
system to oncofetal antigens yet did not induce significant auto-
immunity, which was possibly due to the higher abundance
of these oncofetal antigens in tumors than in resident stem
cells within organs. Taken together, our data support further
assessing the value of iPSC-based whole-cell therapy as an
anti-cancer immunotherapy.

CONCLUDING REMARKS

Oncofetal antigen-based cancer vaccines have demonstrated
therapeutic potential in preclinical and some clinical studies. As
presented by several examples in this review, various oncofetal
antigen-based vaccine strategies, particularly approaches
that combine an autologous iPSC vaccine with an immune
adjuvant, have demonstrated great promise to elicit potent
anti-tumor responses for cancer treatment. Despite these
advances, challenges remain. For instance, many early clinical
studies using oncofetal antigen-based vaccines focused on
single oncofetal antigens with or without immune adjuvants,
limiting the level, and duration of the induced anti-tumor
immune response due to tumor heterogenicity and fast
adaptation of cancer cells. Unlike the defined antigen-based
vaccines, whole-cell vaccines are universally applicable to
all patients without concerns on HLA type mismatches.
Therefore, whole cell-based cancer vaccines, with the epitope
heterogeneity of wholes cells of ESCs and iPSCs, may prove
more potent, durable, and easier to apply than single-antigen
targeted vaccines.
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FIGURE 1 | (A) Schematic illustration of vaccine preparation consisting of sorting murine iPSCs for a pluripotent marker, irradiation, resuspension in adjuvant solution

(CpG), and subcutaneous injection in mice. (B) In a prophylactic setting, autologous iPSC vaccines prevent tumor growth in syngeneic murine models. Adoptive

transfer of T cells isolated from vaccine-treated mice inhibited tumor growth in unvaccinated tumor-bearing recipients, indicating that the iPSC vaccine promotes an

antigen-specific anti-tumor T cell response. Adapted from Kooreman et al. (14) with permission from Elsevier.

FIGURE 2 | A schematic illustration of the generation and application of an autologous iPSC-based cancer vaccine in patients. To generate an autologous iPSC-based

cancer vaccine, peripheral blood mononuclear cells (PBMCs) are isolated from the patient’s blood and reprogrammed into induced pluripotent stem cells (iPSCs) by

the introduction of four Yamanaka factors (Oct4, Klf4, Sox2, and c-Myc). The resulting patient-derived iPSCs are then irradiated and prepared in combination with

CpG oligodeoxynucleotides and injected into patients as an anti-cancer vaccine. Upon vaccination of iPSC-autologous vaccine in patients, the irradiated iPSCs will

provide a broad spectrum of oncofetal antigens, while CpGs will activate toll-like receptor 9 (TLR9) on antigen-presenting cells such as dendritic cells, B cells, and

macrophages, which can process and present oncofetal antigens to helper T cells and cytotoxic T lymphocytes, thus conferring anti-tumor immunity.
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The only FDA approved non-antiviral cancer vaccine,
Sipuleucel-T (Provenge), was developed as a TAA pulsed
autologous dendritic cell-based cancer vaccination for prostate
cancer (66). In 2010, it was approved as an autologous whole-cell
cancer vaccine that utilizes a TAA and GM-CSF fusion protein
pulsed autologous peripheral blood mononuclear cells (PBMCs).
It prolonged patient survival rate by 50% at 3 years in a phase
III study, thus has been approved for treating patients with
castration -resistant metastatic prostate cancer (67), supporting
the efficacy of TAA-based cancer vaccine and the feasibility of
using autologous whole-cell cancer vaccine in clinical settings.

In addition, because autologous iPSC-based cancer vaccines
are relatively easy to generate (Figure 2), iPSC vaccines can be
made available at short notice after a diagnosis, ready to be
dispensed soon after surgery, chemotherapy, or radiation therapy
when cancer cells are most vulnerable. Vaccination of iPSC-
vaccines at this time could prime the immune system to target a
broad spectrum of cancer-specific antigens to prevent recurrence
of cancer, because recurrent and metastatic tumors have a higher
level of stemness phenotype (42).

Concerns such as teratoma formation and auto-immunity
must be addressed in evaluating the use of iPSC-based cancer
vaccines in humans. Although the iPSC-based cancer vaccine
did not induce significant auto-immunity in mice and injection
of irradiated miPSCs did not result in teratoma formation in
mice (14), differences in mouse and human iPSCs and immune
systems should be carefully considered before moving this
treatment to the clinical settings.

Approaches to further enhance the efficacy of iPSC-based
cancer vaccines include concurrent treatment with PD-1/CTLA-
4 checkpoint inhibitors, chemotherapy, or radiation therapy.
Additional approaches include immunostimulatory agents that
can more potently activate APCs, including agonistic CD40
monoclonal antibodies and other TLR agonists such as PolyI:C.
These approaches offer powerful combination therapies with
possible synergistic effects that may be more effective in patients
who have a high risk of disease recurrence after receiving initial
standard-of-care therapy.
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Construction of an optimal vaccine against tumors relies on the availability of appropriate

tumor-specific antigens capable to stimulate CD4+ T helper cells (TH) and CD8+

cytolytic T cells (CTL). CTL are considered the major effectors of the anti-tumor adaptive

immune response as they recognize antigens presented on MHC class I (MHC-I)

molecules usually expressed in all cells and thus also in tumors. However, attempts

to translate in clinics vaccination protocols based only on tumor-specific MHC-I-bound

peptides have resulted in very limited, if any, success. We believe failure was mostly due

to inadequate triggering of the TH arm of adaptive immunity, as TH cells are necessary

to trigger and maintain the proliferation of all the immune effector cells required to

eliminate tumor cells. In this review, we focus on a novel strategy of anti-tumor vaccination

established in our laboratory and based on the persistent expression of MHC class II

(MHC-II) molecules in tumor cells. MHC-II are the restricting elements of TH recognition.

They are usually not expressed in solid tumors. By genetically modifying tumor cells of

distinct histological origin with theMHC-II transactivator CIITA, the physiological controller

of MHC-II gene expression discovered in our laboratory, stable expression of all MHC

class II genes was obtained. This resulted in tumor rejection or strong retardation of

tumor growth in vivo in mice, mediated primarily by tumor-specific TH cells as assessed

by both depletion and adoptive cell transfer experiments. Importantly these findings led

us to apply this methodology to human settings for the purification of MHC-II-bound

tumor specific peptides directly from tumor cells, specifically from hepatocarcinomas,

and the construction of a multi-peptide (MHC-II and MHC-I specific) immunotherapeutic

vaccine. Additionally, our approach unveiled a noticeable exception to the dogma that

dendritic cells are the sole professional antigen presenting cells (APC) capable to prime

naïve TH cells, because CIITA-dependent MHC-II expressing tumor cells could also

perform this function. Thus, our approach has served not only to select the most

appropriate tumor specific peptides to activate the key lymphocytes triggering the

anti-tumor effector functions but also to increase our knowledge of intimate mechanisms

governing basic immunological processes.
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INTRODUCTION

In recent years, tumor immunology has witnessed a dramatic
development mostly due to the possibility of applying the
acquired knowledge in the field to the development of concrete
and realistic approaches to fight cancer. The interest of many
investigators has been concentrated mainly on ways to activate
and maintain those effector cells of adaptive immunity that
are believed be the major actors in eliminating the tumor
cells, the CD8+ cytolytic T cells (CTL). This was justified by
the fact that CTL recognize directly the tumor cells via their
specific receptors (TcR) directed against “tumor antigens” [here
defined as peptides derived from both overexpressed or mutated
(neoantigens) proteins in the tumor], presented by MHC class I
(MHC-I) molecules of tumor cells (1). At the variance withMHC
class II (MHC-II) molecules that are constitutively expressed
only in few cell types (2), MHC-I molecules are expressed,
with few exceptions, in all cell types including tumor cells
(3). Moreover, the intracellular pathway through which MHC-I
molecules are loaded with peptides favors the binding of peptides
from endogenously synthesized proteins (4, 5), as potential
tumor antigens are. Unfortunately, CTL suffers of important
extrinsic and intrinsic limitations in the fight against tumors.
Often the tumor cells down-regulate their MHC-I expression to
elude recognition by the CTL (3, 6–8); moreover tumor cells
secrete in the tumor microenvironment suppressive mediators
that limit the functional activity of CTL (9). Finally, and
importantly, maturation, proliferation and functional activity
of CTL require the continuous support of CD4+ T cells (T
helper cells or TH) and this makes TH cells the master officers
and the regulators of all adaptive immune responses (10, 11).
Thus, the efficacy of the adaptive immune response against
the tumor is strongly conditioned by the initial priming and
activation of TH cells. To become fully active, TH cells must
recognize antigens, including tumor antigens, via their TcR
that interact with the antigen only if it is presented within
the context of MHC-II molecules expressed on the surface of
professional antigen presenting cells (APC), mainly dendritic
cells (DC) and macrophages. At variance with MHC-I, loading
of peptides on MHC-II molecules preferentially takes place in
endosomal compartments (4), rich of degraded products from
endocytosed external materials. Hence, it is believed that MHC-
II molecules cannot present peptides derived from the processing
of endogenously synthesized molecules. As mentioned above,
due to their relatively restricted tissue distribution MHC-II
molecules are not expressed on the majority of tumor cell
types. For all these reasons, tumor cells would be prevented to
stimulate TH cells and consequently to initiate the cascade of
event leading to anti-tumor effector functions. The inability of
tumor cells to trigger TH cells has contributed to substantiate
the immunological dogma, verified for a wide variety of antigens,
including pathogens, that tumor antigens could trigger the
response of TH only if endocytosed, processed and presented
by professional APC (12, 13). However, while for pathogens
the mechanism of phago-endocytosis, digestion, processing, and
presentation on the MHC-II molecules by professional APC is
part of the normal physiology to eliminate the non-self external

aggressors, the same is not true for tumor cells as in general
these cells are not phagocytosed and degraded by APC. Thus,
processing and presentation of putative immunogenic tumor
antigens is strongly limited to tumor cell debris and possibly
secreted tumor cell products that APC can capture in the tumor
microenvironment. It is clear that in this condition the potential
repertoire of tumor antigens that professional APC can process
and expose via their MHC class II molecules is relatively limited
both in quality and in quantity.

RE-ORIENTING THE FOCUS

On the basis of the above considerations, it was not so surprising
that attempts to translate to clinics vaccination protocols based
only on tumor-specific MHC-I-bound peptides resulted in very
limited, if any, success (7). In our opinion the failure of this
vaccination attempts was mostly due to inadequate triggering
of the TH arm of adaptive immunity. In this review, we focus
on a novel strategy of anti-tumor vaccination established in
our laboratory and based on the persistent expression of MHC-
II molecules in tumor cells. Our approach started by asking a
relatively naïve question: should tumor cells have the possibility to
express in a “physiological way” MHC-II molecules, would they be
capable to process and present putative tumor antigens, and would
they even have the capacity to trigger naïve CD4+ TH cells specific
for tumor?

CANONICAL MHC CLASS II EXPRESSION

IN TUMOR CELLS CAN RESULT IN

TRIGGERING OF PROTECTIVE

ANTI-TUMOR IMMUNE RESPONSE

IN VIVO

Although, MHC-II molecules can present preferentially peptides
originated from protein processing in endosomal compartments
and thus derived from exogenously endocytosed material,
endogenous proteins could also access the MHC-II pathway of
antigen presentation, as demonstrated by previous important
studies (14–16) and peptides of these proteins could be
recognized and serve as immunogens for TH cell triggering
(17, 18). On this ground, we hypothesized that tumor cells,
modified to express MHC-II molecules in an appropriate way,
could present their own tumor antigens in a MHC-II-restricted
fashion to tumor-specific TH cells.

As mentioned above, normally, tumor cells do not express
MHC-II genes constitutively because this expression is
developmentally regulated and restricted to few cell types.
Nevertheless, a vast array of cell types can transiently express
MHC class II genes after induction with immune cytokines,
particularly IFNγ (19). Both constitutive and inducible MHC
class II gene expression are under the control of the MHC class II
transcriptional activator encoded by the AIR-1 locus discovered
in our laboratory (20–23) and also designated CIITA (24).
CIITA regulates also the expression of other fundamental genes
necessary for MHC-II transport to endosomal compartments
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and loading of peptides, including the invariant chain (In
chain) and DM (25–28). When experiments were performed to
stably express CIITA in both human and mouse tumor cells,
we could demonstrate the constitutive expression of MHC-II
genes and corresponding molecules and, importantly, the
acquisition of antigen processing and presentation to primed
TH cells (29). These findings were the ground to verify in
vivo the hypothesis that MHC-II positive tumor cells could be
specifically recognized by the host immune system and establish
a protective immune response. Indeed, we could demonstrate
that CIITA-transfected tumor cells of distinct histological origin
can be efficiently rejected or strongly retarded in their growth
when injected into immunocompetent syngeneic mice (30, 31).
Importantly, capacity to reject the tumors and/or strongly retard
their growth was directly related to the amount of CIITA-
driven MHC class II molecules expressed on the cancer cell
surface (30–32). Furthermore, it was shown that CIITA-tumor
vaccinated mice develop an anamnestic response not only
against the CIITA-transfected tumor but, most importantly,
against the parental tumor leading to a very efficient rejection
of the parental tumor as well. The expression of MHC class II
molecules driven by CIITA was an obligatory requirement to
induce the anamnestic protective response against the parental
tumor, and this received confirmation also by experiments
using as a vaccine non-replicating CIITA-transfected
tumor cells (33).

Careful analysis of the mechanisms of protection highlighted
several crucial aspects. First, enduring immunity was generated
in CIITA-tumor vaccinated as shown by the fact that these
mice remained immune from further challenge with parental
tumor cells for many months. Moreover, anti-tumor effector
mechanisms were specifically mediated by CD4+ TH cells and
CTL, since elimination of these cell subpopulation in vivo by
injecting anti-CD4 or anti-CD8 specific antibodies, abrogated
the capacity of the animals to generate protective immunity
after administration of CIITA-tumor cells. On the other hand,
elimination of B cells or NK cells did not affect the capacity
of the animals to reject CIITA-tumor cells. Finally, the crucial
importance of CD4+ TH cells as key players in the generation of
protective anti-tumor immunity was substantiated by adoptive
cell transfer experiments of CD4+ cells from vaccinated mice
into naïve recipients and consequent acquisition of protection
from tumor growth when challenged with parental tumor cells.

Cumulatively, these findings demonstrated the that the
expression of MHC class II molecules driven by CIITA in tumor
cells was key in triggering an adaptive and protective immunity.

These results were at variance with respect to those obtained
by the group of Ostrand-Rosenberg and colleagues, who studied
the function of MHC class II expression in tumors by focusing
however mostly on a single tumor model, the H-2K SaI sarcoma,
and on MHC class II alpha-beta transfected genes, in absence of
invariant chain, reaching the conclusion that class II-transfected
cells could be better rejected as compared to CIITA-transfected
cells (34, 35). We have extensively discussed in a previous
publication (36) the immunological constraints and limitations
of this approach and the consequent biological conclusions, due
mostly to the fact that MHC class II molecules are highly unstable

in absence of invariant chain and therefore they can hardly go
to the cell surface end present antigenic peptides for appropriate
recognition by CD4+ T cells (6, 37).

THE TUMOR MICROENVIRONMENT

SWITCH IN CIITA-TUMOR VACCINATED

MICE

The comparative study of the tumor microenvironment and
tumor draining lymph nodes of animals injected with parental
tumor or CIITA-tumor cells gave additional and crucial hints
for understanding the mechanism through which CIITA-
tumor cells triggered a protective immune response (32). Little
infiltration composed mostly by macrophages and neutrophils,
and virtually no CD4+ T cells, CD8+ T cells, and DC was
observed in tumors derived from parental cells. In contrast
a rapid infiltration of CD4+ T cells, followed by DC and
CD8+ T cells was observed at the tumor site when mice
were injected with CIITA-tumors. Interestingly the CIITA-tumor
microenvironment was characterized by extensive areas of tumor
cell necrosis. Furthermore, in CIITA-tumor vaccinated mice
challenged with parental tumors, the number of infiltrating
lymphocytes and the extension of necrotic tissue were clearly
larger than those found in naïve mice injected with CIITA-tumor
cells (31).

The above histological aspect in parental tumor-injected
vs. CIITA-tumor injected mice was indeed representative of
what is generally described as a “non-inflamed or cold” vs.
an “inflamed or hot” tumor microenvironment, respectively
(38, 39). Thus, forcing the “physiological” expression of MHC-
II molecules by transfecting CIITA into tumor cells resulted
in a dramatic modification of the tumor microenvironment
which was associated to specific tumor rejection and/or strong
retardation of tumor growth (Figure 1). Within this frame it is
tempting to speculate that in spontaneous tumors characterized
by an inflamed microenvironment, tumor infiltrating CD4+ as
well as CD8+ T cells by actively secreting IFNγ may transiently
induce CIITA expression and consequently MHC class II gene
expression in naïve tumor cells resulting in further recognition
and killing of the tumor. Additionally, tumor-draining lymph
nodes of mice vaccinated with CIITA-tumor cells showed a more
polarized TH1-type phenotype with respect to a rather polarized
TH2-type phenotype observed in similar lymph nodes of mice
injected with parental tumor cells. It should be underlined
the strong anti-tumor T cell immunity was not accompanied
by manifestations of autoimmunity, suggesting tumor-specific
and not self-antigens were the target of the observed anti-
tumor response. The subversion of the tumor microenvironment
affected also the number CD4+/CD25+ regulatory T cells
(Tregs) in draining lymp nodes. It is generally accepted that Tregs
play an important role in regulating the activity of CD4+ TH
cells. In tumor-bearing, hosts is often observed an increase in
number and corresponding function of Tregs (40). In our tumor
model, we found an increase in draining lymph nodes of parental
tumor-bearing mice not paralleled, however, by a functional
increase in suppressive function in vitro and in vivo (41). On
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FIGURE 1 | Expression of CIITA-driven MHC-II expression in tumor cells drastically modify the histology of the tumor microenvironment. MHC class II negative mouse

tumors of distinct histologic origin and H-2 genotype (left side) are very little infiltrated by blood-derived cells (cold or non-inflamed tumor). In the mouse tumor models

analyzed in our studies, scarce infiltration of neutrophils and monocyte-macrophages was detected in vivo in the microenvironment of parental tumors. Upon stable

transfection with CIITA and consequent expression of MHC class II molecule, tumors became rapidly infiltrated by CD4+ T cells, followed by CD8+ T cells and only

later by dendritic cells and macrophages (inflamed or hot tumor). As result of the intense lymphocyte infiltration, large areas of tumor necrosis were generated. Thus,

the tumor microenvironment was drastically modified by the CIITA-driven MHC class II expression in the tumor cells.

the other hand in CIITA-tumor vaccinated mice, the number
of Tregs was clearly reduced and comparable to the number
of naïve animals (33). This led us to conclude that vaccination
with CIITA-tumor cells affected also a crucial component of
the regulatory circuit, the Tregs, by preventing their increase
in number in the tumor microenvironment and in so doing
facilitating the triggering and persistence of anti-tumor CD4+
TH cells (36).

CIITA-DRIVEN MHC-II EXPRESSING

TUMOR CELLS ARE THE MAJOR APC

IN VIVO

Cumulatively, the above described studies clearly demonstrated
that CIITA-driven MHC-II expressing tumor cells are strongly
recognized in vivo and trigger tumor specific CD4+ TH cell
responses that are protective against subsequent rechallenge with
parental tumors. Nevertheless, they did not formally prove that
CIITA-tumor cell could function as classical APC in triggering
the priming of naïve tumor antigen-specific TH cells. The
possibility remained that priming of naïve TH cells could
be still mediated by professional APC capturing of MHC-II-
peptide complexes derived from dying CIITA-tumor cells or from
cellular debris.

The final demonstration that CIITA-mediated MHC-II
expressing tumor cells could indeed function as classical APC
came recently by using a transgenic mouse model, in which
professional APC can be transiently deleted. These transgenic
C57BL/6 H-2b mice, designated CD11c.DTR, carry the diphteria

toxin receptor under the control of the CD11c promoter, which
is strongly expressed in DC. Thus, in these animals dendritic cells
can be conditionally deleted by administration of diphteria toxin
(42). Two highly tumorigenic MHC-II-negative C57BL/6 H-2b

tumor cell lines, MC38 colon carcinoma and LLC Lewis lung
carcinoma, were stably transfected with CIITA and selected for
expression of MHC class II molecules. When injected in vivo
in CD11c.DTR mice both these CIITA-tumors were rejected or
strongly retarded in their growth. Importantly the same behavior
was observed after treatment with diphtheria toxin to eliminate
DC (43).

The mice rejecting the tumor were immune to MHC-
II-negative parental tumors and their CD4+ TH cells
protected naïve H-2b C57Bl/6 mice in adoptive cell transfer
experiments. To exclude that additional professional APC
like macrophages, in absence of DC could serve as main
subpopulation to prime tumor-specific naïve CD4T cells,
CD11c.DTR transgenic mice were treated with liposomal
Clodronate, a compound that is selectively engulphed by
macrophages. Upon phagocytosis, liposomal Clodronate kills
the cells by apoptosis (44). Interestingly, in the spleen liposomal
Clodronate is engulphed by and kill quite selectively the
marginal zone and the metallophilic macrophages considered
the predominant APCs (45). Even after treatment with liposomal
Clodronate, mice injected with CIITA-tumor cells could reject
or strongly retard tumor growth with a behavior very similar to
the one observed in liposomal Clodronate-untreated mice (43).
Thus, CIITA-driven MHC-II positive tumor cells can perform
not only antigen processing and presenting function in vitro
at least for primed T cells of either human (29) or mouse (32)
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but, more importantly, they can prime in vivo naïve CD4+
TH cells and thus serve as bona fide APC to generate a strong
adaptive immune response capable to protect against the tumor
(43, 46).

Of relevance, recent work indicated that the MHC class
II-positive H-2d A20 B cell lymphoma cells expressing GFP
(A20-GFP), but not the MHC class II-negative H-2d 4T1-GFP
mammary carcinoma cells, can indeed prime directly and be
killed in vitro by syngeneic CD8T cells specific for GFP, although
in this particular system in vivo cross-priming by dendritic
cells may also be required (47). These experiments underline
the importance of MHC class II expression on tumors to elicit
optimal antigen priming, although in vivo they may not apply to
all tumor histotypes.

Collectively, our findings have not only practical but also
conceptual consequences because they challenge the widely
accepted view of the exquisite supremacy of DC and, to lesser
extent, macrophages to serve as sole APC for priming antigen-
specific naïve CD4+ TH cells (9). Whether CIITA-driven MHC
class II expressing tumor cells may also spontaneously acquire or
be endowed in part with phagocytotic function and thus eat the
other dead tumor cells and cross-present their tumor antigen to
the naïve lymphocytes just like human immature DCs, remains
to be investigated.

Another interesting consideration derived from the above
results relates to the genetic characteristics of C57BL/6 H-
2b and their transgenic derivative CD11c.DTR mice. These
mice express only one subclass of MHC class II molecule,
the I-A molecules because of a defect of the Eα gene (48).
Thus, not only tumor cells of distinct genetic background
and distinct histotype origin can become immunogenic when
expressing CIITA-driven MHC class II molecules (31, 43) but
they can also do so by presenting relevant and sufficient tumor
derived-peptides within a single MHC-II restricting element,
the IA molecule. Very similar results were obtained by other
investigators in a pancreatic ductal adenocarcinoma model of
C57BL/6 H-2b (49).

The capacity of CIITA-dependent MHC class II expressing
tumor cells to serve as APC in vivo raises the question of
whether these cells possess or acquire the expression of co-
stimulatory molecules, such as B7.1 (CD80) and B7.2 (CD86)
that may serve as “signal 2” in triggering antigen-specific naïve
TH cells upon interaction with CD28 (50), as previous studies
of another group has shown that prevention of tumor growth
in vivo of CIITA-modified tumor cells in a distinct model of
mammary carcinoma in H-2q model required also expression
of CD80 (51). We found that MC38 and LLC tumor cells
do not express CD80 and CD86 costimulatory molecules and
this phenotype is not modified by CIITA expression. Thus,
either CIITA-tumors do not need necessarily accessory molecules
to perform their APC function in vivo, or other accessory
molecules are involved to provide the second signal, or tumor-
specific, and possibly organ-specific constraints limit the immune
stimulating function of CIITA-driven MHC class II expressing
tumor cells.

This important issue should certainly deserve detailed
investigation in the future.

As outlined earlier and in relation to the peculiar modification
of the tumor microenvironment generated by CIITA-driven
MHC class II positive tumor cells, our studies raise another
relevant question related to the anatomical location in which
the anti-tumor immune response against CIITA-modified cancer
cells takes place. It is generally assumed that TH cell priming
mediated by professional APC, namely DC, takes place in the
lymph nodes, where DC that have captured and processed
the antigens in the periphery migrate and present antigenic
peptides within the context of MHC-II molecules (12). As the
tumor microenvironment was drastically modified in presence
of CIITA-tumor cells, with a profound change both in number
and compartmentalization of the leukocyte infiltration (32) we
may speculated that it could be the ideal site for the formation
of ectopic lymphoid-like structures or tertiary lymphoid organs
(TLO), neoformations that are often detected in chronic inflamed
tissues and in tumor tissues (36, 52). TLO share many
characteristics with lymph nodes associated with the generation
of an adaptive immune response (53). If this will be confirmed
in future studies, tumors cells expressing MHC class II molecules
not only act as APC for priming naïve tumor-specific CD4+ T
cells but also perform APC activity ectopically with respect to the
canonical site represented by the lymph nodes.

FROM THE BENCH TO THE BEDSIDE: THE

CONSTRUCTION OF AN OPTIMAL

ANTI-TUMOR THERAPEUTIC VACCINE…

AND BEYOND

A major corollary of the studies related to the high in vivo
immunogenicity of CIITA-driven MHC-II expressing tumors
is that MHC class II molecules should be loaded with
sufficient quantity of tumor specific peptides, derived from
either overexpressed or mutated genes, to generate an efficient
functional triggering of tumor-specific CD4+ T cells, an event
that we have defined as Adequate Antigen Availability (AAA)
(54). Thus, these cells can be instrumental to identify the key
tumor antigens which may serve to develop new generation
anti-tumor vaccines (Figure 2).

This strategy has indeed been applied recently by a
European Consortium of nine institutions, including our
laboratory (the Hepavac Consortium, www.hepavac.eu), as part
of the construction of an innovative vaccine against human
hepatocarcinomas (HCC). HCC was selected because ranks sixth
in terms of incidence but fourth in term of deaths/year worldwide
(GLOBOCAN 2018, http://gco.iarc.fr/). Given the current lack of
available effective treatments, the overall prognosis for patients
with HCC is poor with a dismail 5-year survival of <25%,
making the disease a highly important and relevant target for the
development of innovative therapies (55).

By using a well-established experimental protocol and
purification platform (56), the relevant MHC II-bound tumor
specific peptides were selected from CIITA-driven MHC-II
expressing human HCC cells. These peptides, along with a
number of highly specific HCC MHC-I-bound tumor peptides,
contributed to the formation of a peptide cocktail to be used
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FIGURE 2 | Tumor cells expressing CIITA-driven MHC-II molecules are potent surrogate APC to prime relevant tumor-specific TH cells. The MHC class II-bound tumor

peptidome (Tumap, red symbols) derived from CIITA-driven MHC-II expressing cells is highly enriched of tumor-specific epitopes (Lower part) as compared to the one

of classical APC, such as dendritic cells (DC), that may capture tumor antigens (TA) only after phagocytosis of dying MHC-II-negative tumor cell debris (Upper part). As

a result, in CIITA-tumors, MHC-II-tumor peptide complexes efficiently stimulate and amplify higher number of tumor-specific TH cell clones (in red) to generate a strong

immune response capable to reject the tumor (Lower part). On the contrary, classical APC do not efficiently select sufficient tumor-specific peptides from

MHC-II-negative tumor cells to be presented within the context of their MHC-II. As a consequence DC cannot efficiently prime tumor-specific TH cell clones and tumor

takes off and grows (Upper part).

as the first multi-epitope, multi-target, and multi-allele cancer
vaccine against HCC aimed at stimulating both CD4+ and
CD8+ T cells. This vaccine is, at present, in a phase I/II clinical
trial whose results on safety, tolerability, and immunogenicity
(primary endpoints) and possibly overall survival (secondary
endpoint) are expected by the end of 2019.

In studying patient’s HCC tumor tissues as well as normal
liver tissues, we observed two important features that bear
relevance not only for applying profitable vaccination approaches
as the one described here but also to better understand
old and recent observations on the immunologically tolerant
environment of the liver (57, 58). The first important observation
was related to the expression of MHC-I and MHC-II in liver
cells. While both these molecules were virtually absent in
normal liver cells, MHC-I cell surface molecules were expressed
at very high level in HCC cells (59). This of course was
relevant to purify the MHC-I tumor peptidome and select
the appropriate peptides for the vaccine compositions. The
second important observation was that MHC-II expression,
instead, remained silent in HCC cells both in vivo and
in patients’ derived tumor cell lines. Importantly MHC-II
expression could not be rescued even by treatment with
IFNγ, the most potent inflammatory cytokine that induces
MHC-II expression indirectly via the primary transcriptional
activation of CIITA (19). In depth analysis of the molecular
mechanism responsible of this finding demonstrated that the
CIITA promoter IV, the specific promoter activated by the IFNγ

(60), was silenced by hypermethylation of its sequence and thus

rendered developmentally unresponsive in liver cells (59). This
finding may have important effects on the interpretation of the
tolerogenic environment of the liver, because the impossibility to
express MHC-II molecules by liver cells, continuously in contact
with massive concentrations of antigenic materials derived from
the digestive tract, would prevent accidental co-participation of
these cells to APC function and activation of immune system
against potential food antigens as well as other antigens including
self antigens.

Thus, as it was the case for the discovery of the surrogate APC
function of CIITA-drivenMHC-II expressing tumor cells, we also
believe that unveiling the tissue constraints at the basis of CIITA-
driven MHC class II expression or non-expression may serve to
better understand important aspects of basic immunology.
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Human cytomegalovirus (HCMV) induces a uniquely high frequency of virus-specific

effector/memory CD8+ T-cells, a phenomenon termed “memory inflation”. Thus,

HCMV-based vaccines are particularly interesting in order to stimulate a sustained

and strong cellular immune response against cancer. Glioblastoma multiforme (GBM)

is the most aggressive primary brain tumor with high lethality and inevitable relapse.

The current standard treatment does not significantly improve the desperate situation

underlining the urgent need to develop novel approaches. Although HCMV is highly

fastidious with regard to species and cell type, GBM cell lines are susceptible

to HCMV. In order to generate HCMV-based therapeutic vaccine candidates, we

deleted all HCMV-encoded proteins (immunoevasins) that interfere with MHC class I

presentation. The aim being to use the viral vector as an adjuvant for presentation

of endogenous tumor antigens, the presentation of high levels of vector-encoded

neoantigens and finally the repurposing of bystander HCMV-specific CD8+ T cells

to fight the tumor. As neoantigen, we exemplarily used the E6 and E7 proteins of

human papillomavirus type 16 (HPV-16) as a non-transforming fusion protein (E6/E7)

that covers all relevant antigenic peptides. Surprisingly, GBM cells infected with

E6/E7-expressing HCMV-vectors failed to stimulate E6-specific T cells despite high

level expression of E6/E7 protein. Further experiments revealed that MHC class I

presentation of E6/E7 is impaired by the HCMV-vector although it lacks all known

immunoevasins. We also generated HCMV-based vectors that express E6-derived

peptide fused to HCMV proteins. GBM cells infected with these vectors efficiently
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stimulated E6-specific T cells. Thus, fusion of antigenic sequences to HCMV proteins

is required for efficient presentation via MHC class I molecules during infection. Taken

together, these results provide the preclinical basis for development of HCMV-based

vaccines and also reveal a novel HCMV-encoded block of MHC class I presentation.

Keywords: human cytomegalovirus, therapeutic cancer vaccine, glioblastoma, cancer immunotherapy, viral

immune evasion

INTRODUCTION

Glioblastoma multiforme (GBM) is one of the most frequent and
devastating brain tumors (1, 2). In fact, GBM is incurable and
has a bad prognosis even after aggressive standard treatment that
combines radiation, surgery and chemotherapy (3). Accordingly,
there is a need to develop novel therapeutic strategies to combat
this deadly disease.

Different forms of immunotherapy have been implemented or
explored in a variety of human malignancies including GBM (4).
Adoptive transfer of geneticallymodified T cells may be an option
in treatment of GBM (5–8). In recent clinical trials, checkpoint
inhibitors have failed to prolong the overall survival of patients
with recurrent GBM (9–11). As a neoadjuvant therapy, however,
PD-1monoclonal antibody blockade improves local and systemic
antitumor T cell responses (12). Therapeutic cancer vaccines
stimulating tumor-reactive CD8+ T cells represent another
form of immunotherapy that has also been tested in GBM
patients (4, 13).

Successful tumor immunotherapy requires preexisting
CD8+ T cells in the tumor microenvironment (TME) (14, 15)
and genetic mutations that generate tumor neoantigens
(16, 17). GBM, however, provides a “cold” TME with low
numbers of infiltrating immune cells (15, 18) and scarce
somatic mutations (19, 20). In situ vaccination with viral
vectors can turn “cold” TME into “warm” through the
adjuvant effect resulting from triggering multiple pattern
recognition receptors (PRRs) (21–25). This inflammatory
response may increase TME infiltration with immune cells.
A large fraction of tumor-infiltrating immune cells are in
fact memory CD8+ T lymphocytes specific for common
viruses such as human cytomegalovirus (HCMV) (26–
29). These cells are neither tolerized nor exhausted by
continuous stimulation and can be repurposed for tumor
immunosurveillance (27).

Human cytomegalovirus (HCMV) inflates memory by
intermittent reactivation from latency or reinfections (30–32).
In HCMV-infected humans, on average 10% of the circulating
T cells with an effector-memory phenotype are in fact HCMV-
specific (33, 34). Thus, HCMV-based vectors represent a very
promising novel platform for therapeutic vaccination (35,
36). HCMV persists in immunocompetent individuals without
causing disease (37). Intriguingly, HCMV infects GBM cells in
vitro (38). Moreover, HCMV is detected in GBM tumor tissue
but not in the surrounding normal brain tissue (39). Thus,
immunotherapy may leverage HCMV-encoded tumor antigens
to induce elimination of tumor cells by cytotoxic CD8+ T cells
(40–42). Several strategies to achieve this goal have been explored

including adoptive transfer of in vitro-expanded HCMV-specific
T cells and vaccination with autologous dendritic cells (DCs)
stimulating HCMV-specific T cells in vivo (39).

In this study, we designed novel HCMV-based therapeutic
viral vaccines to exploit the patient’s own immune system for
elimination of tumor cells. We increased the immunostimulatory
capacity of the HCMV-based vector by deleting important
viral immune evasion genes. Moreover, we expressed a well-
characterized epitope from human papillomavirus (HPV) that
functions as a neo-epitope after infection of GBM cells. Finally,
we tested whether genetically altered T cells specific for HCMV-
encoded epitope or neo-epitope are stimulated by GBM cells
infected with the HCMV-based vaccines.

MATERIALS AND METHODS

Ethics Statement
Buffy coat preparations were purchased from German Red
Cross (Dresden, Germany). Blood samples were taken
with the approval of the ethics committee of the Charité–
Universitätsmedizin Berlin. Written informed consent was
obtained from all donors.

Cells
The GBM cell lines U343 and LN18 were kindly provided by
the Department of Neurosurgery, Charité-Universitätsmedizin
Berlin, Berlin, Germany. The GBM cell line U251 was a kind
gift of L. Wiebusch from the Children’s Hospital, Laboratory for
Molecular Biology, Charité-Universitätsmedizin Berlin, Berlin,
Germany. Human embryonic lung fibroblasts (Fi301) and GBM
cell lines were cultured in Eagle’s minimum essential medium
(EMEM) from Lonza supplemented with 1mM sodium pyruvate,
2mM L-alanyl-L-glutamine, non-essential amino acids, 50µg/ml
gentamicin, and 10% heat inactivated FBS (hiFBS) (HyClone).
PBMCs and reporter Jurkat cell lines were cultured in RPMI 1640
medium (Gibco) supplemented with 2mM L-glutamine, 25mM
HEPES Buffer, 50µg/ml gentamicin, and 10% hiFBS.

Flow Cytometry of Surface Molecules
Cells were harvested, washed and stained as previously
described (43). Cell surface expression of HLA-A2 molecules
was detected by using PE-conjugated anti-HLA-A2 antibody
BB7.2 (BioLegend). For quantifying fluorescence of labeled
cells, a FACSCalibur R© (BD Biosciences) was used. Results
were evaluated with the software programs CellQuestPro R© (BD
Biosciences) and FlowJo V10 (Tree Star, Inc).
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Viruses
HCMV strain TB40/E and the corresponding bacterial artificial
chromosome TB40/E-BAC (clone 4) as well as RV-TB40-
BACKL7-SE-EGFP, an enhanced green fluorescent protein
(EGFP)-expressing virus derived from TB40/E (44), were
kindly provided by Christian Sinzger, University of Ulm, Ulm,
Germany. The advantages of TB40/E are high titer growth in
cell culture similar to lab strains and cell tropism resembling
recent clinical isolates (45). TB40/E and themutants derived from
TB40/E-BAC were propagated in Fi301 cells. For generation of
virus stocks, cells and medium were collected at various times
after infection, after which cells were disrupted by three freeze-
thaw cycles and cell debris was pelleted by centrifugation.

Generation of Recombinant Viruses
As a neoantigen for expression in TB40/E-BAC derived vectors,
we used human papillomavirus type 16 (HPV-16) consensus
E6/E7 fusion protein (ConE6E7, GenBank accession number:
FJ229356) (46). In addition, the HLA-A2-binding peptide
E629−38 (TIHDIILECV) derived from the E6 protein of HPV-
16 (47) was fused with an AA-linker (AATIHDIILECV) to
the C-terminus of HCMV IE1 (E6peptideIE1) or HCMV
UL83 (E6peptideUL83). The corresponding sequences were
synthesized and verified by Integrated DNA Technologies (IDT).
The synthesized E6/E7 encoding sequence was digested with
EcoRI and Kpn-I and cloned into the expression vectors
pEF6/V5-His A and pcDNATM3.1 (+). These constructs were
named pEF6E6/E7EcoRI and pcDNAE6/E7Kpn-I, respectively.
Recombinant HCMV was generated using BAC technology as
previously described (48). All recombinant BAC clones were
confirmed by PCR and DNA-sequencing of the target area.
Viruses were reconstituted from BACs by electroporation of 1
× 106 Fi301 cells using program A24 of the Nucleofector II
(Amaxa) and a basic Nucleofector kit (Lonza), according the
manufacturer’s instructions.

Virus Titration and Growth Kinetics
Virus titers of virus stocks and multi-step growth kinetics were
quantified by 50% tissue culture infectious dose (TCID50) assay
on Fi301 cells. The TCID50 values were calculated using the
method of Reed and Muench (49).

Stable Transfection of U251
U251 cells were stably transfected with pcDNAE6/E7Kpn-I by
electroporation as previously described (50). Transfected cells
were selected by G418 for neomycin resistance and different
clones were isolated and separately cultured for E6 and E7
expression assays.

Detection of HPV-16 E7 Protein
For detection of E6/E7 fusion protein, 1 × 106 cells were
trypsinized and aliquots covering a range of different cell
numbers were prepared (7 × 102 to 16 × 104 cells). In
these aliquots, the E6/E7 fusion protein was detected by
using recomWell HPV 16/18/45 ELISA Kit (Mikrogen GmbH,
Neuried, Germany) according to manufacturer’s instructions.
The optical density was measured at 450 nm in a microplate

photometer (Multiskan FC, Thermo Fisher Scientific, USA).
The absorbance detected for experimental probes was expressed
relative to the absorbance measured for the same number of
CaSki cells, an E6- and E7-expressing cervical carcinoma cells
that served as positive control.

Generation of TCR Expression Vectors
For HLA-A2-restricted HPV E629−36-specific TCR (51)
transgene cassettes were codon-optimized for human expression
and synthesized by GeneArt/Life Technologies. TCR-α/β chains
with human TCR constant regions replaced by their murine
counterparts were linked via 2A “self-cleaving” peptide sequence
from Porcine teschovirus-1 (P2A) and cloned in the configuration
TCRβ-P2A-TCRα into pMP71-PRE using NotI and EcoRI
restriction sites as described recently (52). The HCMV-specific
TCR (NLV3) detecting a HLA-A2-restricted epitope derived
from pp65 (NLVPMVATV; aa 495-503) was used in its original
configuration as described by Schub et al. (53).

TCR Gene Transfer
TCR gene transfer was carried out as described (54) with minor
modifications. In brief, HEK-293 cells stably expressing GALV-
env and MLV-gag/pol were grown to ∼80% confluence and
transfected with 3 µg of pMP71-TCR vectors in the presence
of 10 µg Lipofectamine2000 (Life Technologies). At 48 and 72 h
after transfection, 3ml of retrovirus containing supernatant were
harvested. 1 × 106 human PBMCs, that had been frozen after
isolation from healthy donors by ficoll gradient centrifugation,
were thawed and stimulated with 5µg/ml anti-CD3 (OKT3) and
1µg/ml anti-CD28 (CD28.2) (Biolegend) coated plates in the
presence of 300 U/ml recombinant human interleukin 2 (hIL-2)
(Peprotech). Transductions at 48 and 72 h after stimulation were
performed by addition of retrovirus containing supernatant and
4µg/ml protamine sulfate followed by spinoculation for 90min
at 800 g and 32◦C (1st transduction). For second transduction,
retrovirus was preloaded onto retronectin (Takara)-coated plates
followed by spinoculation for 30min at 800 g and 32◦C.
Transduced PBMCsweremaintained in the presence of 300U/ml
hIL-2 for a total of 2 weeks. At least 2 days prior to use in
experiments, transduced PBMCs were cultured in the presence
of 30 U/ml hIL-2.

Functional Assays With TCR-Transduced T
Cells
IFN-γ production was measured by ELISA after 16 h coculture
of 1 × 105 TCR-transduced T cells with 1 × 105 target cells
(HCMV-vector infected or HCMV-vector infected and pulsed
with the corresponding peptide). As a negative control, 1 × 105

TCR-transduced T cells were cocultured with 1× 105 target cells
that had been left uninfected. Stimulation with phorbol myristate
acetate and ionomycin (P+I) was used as a positive control.

Reporter Cell Lines
For detection of NFAT activation, a previously described cellular
platform for analysis of TCRs was used (55, 56). In the human
T cell lymphoma cell line Jurkat 76 (J76), the response elements
of transcription factor nuclear factor of activated T-cells (NFAT)
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drive the expression of EGFP (55). The J76 cell line is a
subline of cell line Jurkat E6.1 (JE6.1), which lacks expression
of the TCR alpha and beta chains (57). The J76 cell line was
transduced with a retroviral vector encoding HLA-A2-restricted
HPV E629−36-specific TCR (51). Moreover, J76 cells were co-
transduced to express a HLA-A2-restricted HCMV pp65-specific
TCR (NLVPMVATV; aa 495-503) and CD8 (56).

For measuring of nuclear factor ’kappa-light-chain-enhancer’
of activated B-cells (NF-κB) activation a single T cell reporter
cell line was used, in which the responsive element for NF-κB
controls EGFP expression (58). This single reporter cell line was
transduced with retroviral vector encoding HLA-A2-restricted
HPV E629−36-specific TCR (51) or with retroviral vector
encoding the HCMV-specific TCR (NLV3), which recognizes a
HLA-A2-restricted epitope derived from pp65 (NLVPMVATV;
aa 495-503) (53).

Antigen Presentation Assays Using
Reporter Cell Lines
For stimulation of reporter cell lines 5 × 104 GBM cells (LN18,
U343, or U251 cells) were infected with HCMV-based vaccines
(MOI of 5). After 2 days and 4 days, respectively, infected cells
were co-cultured with HPV E6-specific reporter cells and HCMV
pp65-specific reporter cells, respectively, for 24 h at a ratio 2:1.
Subsequently, EGFP expression of reporter cells was determined
by FACS analysis.

U251 cells stably transfected with pcDNAE6/E7Kpn-I (U251-
E6/E7 cells) were used to assess the impact of HCMV infection
on MHC class I presentation of the E6/E7 fusion protein. For
this purpose, U251 cells were left uninfected or infected with
RVTB401US11 for 3–24 h at different MOIs. RVTB401US11
lacks all known HCMV-encoded immunoevasins (US2, US3,
US6, and US11) that target MHC class I presentation and
does not downregulate MHC class I molecules. On uninfected
and infected U251-E6/E7 cells, the existing peptide-MHC class
I complexes on U251 cells were removed by acid wash as
previously described (59). Briefly, 1 × 106 cells were harvested,
washed with PBS and subsequently washed with ice-cold citric
acid buffer (pH 3) for 2–3min. Afterwards, stripped U251-
E6/E7 cells were pelleted, washed twice with EMEM, resuspended
in RPMI 1640 medium and subsequently co-cultured for 18 h
with the HPV E629−36-specific reporter cell line, in which the
responsive element for NF-κB controls EGFP expression (58).
Finally, EGFP expression of reporter cells was determined by
FACS analysis. In parallel, the maximal peptide stimulation was
always determined by pulsing a cell aliquot with the E6 peptide
(1µg/ml) during coculture with the E6-specific reporter cell line.

Peptide Synthesis
The peptides used for pulsing antigen-presenting cells
(1µg/ml) were synthesized by peptides & elephants GmbH
(Hennigsdorf, Germany).

Statistical Analysis
Statistical significance was determined by one-way ANOVA
analysis or unpaired t-test. P values below 0.05 (95% confidence)

were considered to be significant. Prism 6 software (GraphPad)
was used for statistical analysis.

RESULTS

Susceptibility of GBM Cells to HCMV
Infection
In order to construct therapeutic vaccines targeting GBM we
first investigated whether GBM cells are susceptible to HCMV
infection. For this purpose, we used RV-TB40-BACKL7-SE-EGFP.
This EGFP-expressing virus is derived from low-passage HCMV
strain TB40/E and contains an intact US-gene region encoding all
immunoevasins (US2, US3, US6, and US11) that downregulate
MHC class I presentation (44). We infected the GBM cell lines
LN18, U343, and U251 with RV-TB40-BACKL7-SE-EGFP at a
multiplicity of infection (MOI) of 0.3. At different time points
of infection, we determined the percentage of EGFP-expressing
GBM cells (Figure 1, left graphs). In addition, we analyzed the
presence of virus in the supernatant of infected GBM cell cultures
(Figure 1, right graphs). Although all GBM cell lines tested were
susceptible to HCMV, infection the virus remained mostly cell-
associated during the observation period of 12 days. Thus, LN18,
U343, and U251 cells are susceptible to HCMV infection as
previously reported for other GBM cell lines (38, 60). Taken
together, these experiments indicate that HCMV-based vectors
can be used to mark GBM cells for attack by CD8+ T cells.

Construction of HCMV-Based Therapeutic
Vaccines
Next, we generated HCMV-based vectors that lack
immunoevasins (US2, US3, US6, and US11) and efficiently
stimulate CD8+ T cells. We used a bacterial artificial
chromosome (BAC) clone of the HCMV strain TB40/E
(TB40-BAC4), which lacks the US1-US6 region due to insertion
of the BAC (45). We obtained RVTB401US11 from TB40-BAC4
by deleting US11. RVTB401US11 does not downregulate MHC
class I molecules as recently described (Figure 2A) (61).

We now pursued two strategies to equip RVTB401US11 with
neo-epitopes. Firstly, we used a consensus sequence encoding
the E6 and E7 protein of human papillomavirus type 16 (HPV-
16) as a fusion protein (E6/E7). E6/E7 covers all relevant
antigenic peptides but is non-transforming (46). Vaccination
of mice with a plasmid encoding E6/E7 induces a strong
CD8+ T cell response and prevents growth of E6/E7 tumors
(46). In accordance, we observed that E6/E7-expressing clones
derived from stably transfected U251 cells (U251 cells) stimulate
reporter T cells that recognize a HLA-A2-restricted peptide
(E629−38: TIHDIILECV) (47) (Figure 2B). Thus, we inserted the
E6/E7 sequence into the RVTB401US11 at different locations
ensuring that endogenous or exogenous promotors control
E6/E7 expression (Figure 3). The E6/E7 expression level in cells
infected with E6/E7-expressing HCMV-based vaccines was in the
same order of magnitude as observed for U251 cell transfected
with an E6/E7-expressing plasmid (Figure 2C).

Secondly, we fused a single neo-epitope flanked by an
Alanine spacer to the C-terminus of a viral protein as
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FIGURE 1 | Susceptibility of GBM cells to HCMV infection. The GBM cell lines LN18, U343, and U251 were infected with RV-TB40-BACKL7-SE-EGFP (MOI of 0.3).

At different time points cells were tested for cell-associated virus by FACS analysis of EGFP expression (Left graphs). For detection of cell-free HCMV (Right graphs)

supernatants from infected GBM cell lines were collected at different time points. Subsequently, Fi301 cells were infected with the supernatants and tested for EGFP

expression by FACS 2 days after infection. Results are derived from three technical replicates; error bars represent the mean ± SEM.

recently reported for murine cytomegalovirus (MCMV)
(62, 63) (Figure 4). We used HPV-16 E629−38 as CD8+ T
cells specific for this peptide recognize and kill HLA-A2+
tumor cells expressing E6 despite tumor-associated immune
evasion mechanisms (64). This E6 peptide was fused to
the C-Terminus of IE1 (RVTB401US11_E6peptideIE1)
or UL83 (RVTB401US11_E6peptideUL83). We also
generated a mutant virus with both the full E6/E7 sequence
inserted into UL83 and the E6 peptide linked to IE1
(RVTB401US11_E6/E7intoUL83_E6peptideIE1). All generated
HCMV-based vaccines showed growth kinetics similar to WT
TB40/E and control virus (RVTB401US11) (Figure 5A). The
relevant features of the different HCMV-based vaccines are
summarized in Figure 5B.

HCMV-Based Vaccines Expressing E6
Peptide Fused to Viral Protein but Not
E6/E7 Expressing HCMV-Based Vaccines
Stimulate E6-Specific T Cells
Now we investigated whether the different HCMV-based
therapeutic vaccines could stimulate antigen-specific T cells
after infection of GBM cells. To this end, we used a recently
developed T cell reporter platform, in which the response
elements for NFAT control EGFP expression (55, 56). These
cells were transduced either with a retroviral vector encoding
a HPV-specific TCR recognizing the HLA-A2-restricted peptide
HPV E629−36 (51) or with a retroviral vector encoding HCMV-
specific TCR detecting the HLA-A2-restricted HCMV epitope
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FIGURE 2 | Rationale for generation of HCMV-based vectors expressing

E6/E7 fusion protein. (A) Prevention of virus-induced MHC class I

downregulation in cells infected with HCMV-based vectors lacking US2, US3,

US6, and US11. Fi301 cells were infected with WT TB40/E or RVTB401US11

at MOI of 0.5. After 2 days, cells were stained with HLA-A2-specific antibody

or isotype control and analyzed by flow cytometry. The results shown are

representative of three experiments. (B) Stimulation of specific reporter T cells

by U251 cells expressing E6/E7. Clones of U251 cells stably transfected with

E6/E7 expressing plasmid were incubated with E6 peptide-specific reporter

cell line, in which EGFP expression is driven by the responsive elements of

NF-κB. Stimulation of reporter cells is given as percentage of maximal peptide

stimulation, i.e., stimulation of reporter cells incubated with peptide pulsed

cells. (C) Detection of E6/E7 in cells infected with HCMV-based vectors driving

E6/E7 expression under control of endogenous or exogenous promotors. For

quantification of the E6/E7 fusion protein expressed by different HCMV-based

vectors (blue bars) an ELISA detecting the HPV-16 E7 protein was used. For

each experimental group 6 × 104 cells were used. RVTB401US11 served as

a negative control. The absorbances detected for experimental probes were

expressed relative to the absorbance measured for 6 × 104 CaSki cells, a

well-characterized E6- and E7-expressing cervical carcinoma cell line (Positive

control, white bars). We also included U251 cells stably transfected with E6/E7

encoding plasmid in our analysis (green bar).

pp65495−503 (53) together with CD8. In addition, we used another
set of reporter cell lines with the same TCR specificities, in
which EGFP expression is driven by the responsive elements
of NF-κB (65). These reporter cell lines were incubated with
HLA-A2+ LN18, U343, and U251 cells that had been infected
with the different HCMV-based therapeutic vaccines for 2 or 4
days, respectively. Surprisingly, GBM cells infected with E6/E7-
expressing vectors stimulated neither NFAT (Figure 6, left side,
blue columns) nor NF-κB (Figure 7, left side, blue columns) in
E6-specific reporter T cell lines. In stark contrast, all GBM cells
infected with an HCMV-based vector expressing the E6 peptide

FIGURE 3 | Construction of HCMV-based vaccines expressing E6/E7 fusion

protein. The HCMV genome has a length of ∼235 kB and contains a unique

long (UL ) and a unique short (US) region each flanked by terminal (TRL and

TRS), and internal (IRL and IRS) inverted repeats. The E6/E7 encoding

sequence was inserted into (A) US11 (RVTB40_E6/E7into US11), (B) UL111A

(RVTB401US11_E6/E7intoUL111A), or (C) UL83

(RVTB401US11_E6/E7intoUL83) in such a way that endogenous promotors

control E6/E7 expression. (D) The E6/E7 consensus sequence was put under

the control of the elongation factor-1 alpha (EF-1 alpha) promotor, a strong

constitutive promotor of human origin, and inserted between TB40-BAC4

Mini-F sequence and US7 (RVTB401US11_EF-1E6/E7).

fused with an Alanine-linker to the C-terminus of HCMV IE1
(E6peptideIE1) nicely activated NFAT (Figure 6, left side, red
columns) and NF-κB (Figure 7, left side, red columns) in E6-
specific T cells. Although to a lesser extent stimulation of reporter
cell lines was also observed with all GBM cells that had been
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FIGURE 4 | Construction of HCMV-based vaccines expressing E6 peptide

fused to the C-terminus of HCMV IE1 or HCMV UL83. The HLA-A2-binding

peptide E629−38 (TIHDIILECV) derived from the E6 protein of HPV-16 was

fused with an AA-linker (AATIHDIILECV) to the C-terminus of (A) HCMV UL123

(IE1) (RVTB401US11_E6peptideIE1) or (B) HCMV UL83

(RVTB401US11_E6peptideUL83). (C) In addition, a recombinant virus

expressing both the E6/E7 fusion protein inserted into UL83 and the

E6-peptide fused to the C-terminus of HCMV IE1 was generated

(RVTB401US11_ E6/E7intoUL83_E6peptideUL83).

infected with a HCMV-based vector expressing the E6 peptide
fused with an Alanine-linker to the C-terminus of HCMV UL83
(Figures 6 and 7, left side, red columns). As expected, all HCMV-
based therapeutic vaccines with the exception of those deficient
of pp65 (UL83) could stimulate pp65-specific reporter cell lines
to a similar extent after infection of GBM cells (Figures 6
and 7, right side). Taken together, E6 peptide fused to the C-
terminus of HCMV proteins but not the complete E6/E7 fusion
protein expressed separately fromHCMV proteins stimulated E6
peptide-specific T cells.

FIGURE 5 | Features of HCMV-based therapeutic vaccines used in this study.

(A) Growth curve kinetics of E6/E7 expressing vaccines (blue) and E6

peptide-expressing vaccines (red). Fi301 cells were infected at MOI of 0.01.

Supernatant was collected at different time points after infection and titrated on

Fi301 cells to calculate the TCID50. WT TB40/E and RVTB401US11 served

as a control. Results are derived from three experiments; error bars represent

the mean ± SEM. (B) Summary of all HCMV-based vectors used in this study.

A Novel HCMV-Encoded Block of MHC
Class I Presentation
The finding that GBM cells infected with HCMV vaccines
failed to stimulate E6-specific T cells despite abundant E6/E7
protein expression was surprising. It suggested that MHC class
I presentation of E6/E7 is impaired by the HCMV-vector
although RVTB401US11 lacks all known immunoevasins (US2,
US3, US6, US11). To address this issue, aliquots of transfected
U251 cells, which stably express the E6/E7 protein, were left
uninfected or infected at different MOIs with the HCMV-vector.
Thereafter, cells were acid washed as described previously (59)
to remove all existing peptide-MHC class I complexes from the
cell surface. Subsequently, cells were co-cultured for 18 h with
HPV E629−36-specific reporter cells, which express EGFP under
the control of NF-κB responsive elements (58). Maximal peptide
stimulation was assessed in parallel by pulsing cells with E6
peptide during coculture with the reporter cells. Figure 8A shows
that U251-E6/E7 cells (Positive control) but not untransfected
U251 cells (Negative control) stimulated E6 peptide-specific
reporter cells. Strikingly, acid washed U251-E6/E7 cells that
had been infected with different MOIs of the HCMV-vector
showed a significantly reduced capacity to stimulate E6-specific
reporter cells as compared to acid washed uninfected U251-
E6/E7 cells (Figure 8A). After additional pulsing with exogenous
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FIGURE 6 | NFAT-driven EGFP expression in reporter cell lines stimulated by infected GBM cells. 5 × 104 GBM cells (LN18, U343, or U251 cells) were infected with

HCMV-based vaccines (MOI of 5). After 2 and 4 days, respectively, infected cells were co-cultured with HPV E6-specific reporter cells (left graphs) and HCMV

pp65-specific reporter cells (right graphs), respectively, for 24 h at a ratio 2:1. Subsequently, EGFP expression of reporter cells was determined by FACS analysis.

Uninfected cells (Mock) and cells infected with RVTB401US11 (Control) were also included in this type of analysis. Stimulation of reporter cells is given as percentage

of maximal peptide stimulation, i.e., stimulation of reporter cells incubated with peptide pulsed cells. Results are derived from three technical replicates; error bars

represent the mean ± SEM. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05, one-way ANOVA test.
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FIGURE 7 | NF-κB-driven EGFP expression in reporter cell lines stimulated by infected GBM cells. 5 × 104 GBM cells (LN18, U343, or U251 cells) were infected with

HCMV-based vaccines (MOI of 5). After 2 and 4 days, respectively, infected cells were co-cultured with HPV E6-specific reporter cells (left graphs) and HCMV

pp65-specific reporter cells (right graphs), respectively, for 24 h at a ratio 2:1. Subsequently, EGFP expression of reporter cells was determined by FACS analysis.

Uninfected cells (Mock) and cells infected with RVTB401US11 (Control) were also included in this type of analysis. Stimulation of reporter cells is given as percentage

of maximal peptide stimulation, i.e., stimulation of reporter cells incubated with peptide pulsed cells. Results are derived from three technical replicates; error bars

represent the mean ± SEM. ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05, one-way ANOVA test.
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FIGURE 8 | Block of MHC class I presentation induced by

immunoevasin-deficient HCMV. U251 cells stably expressing the E6/E7 fusion

protein (U251-E6/E7 cells) were left uninfected or infected with

RVTB401US11, a mutant HCMV lacking all known immunoevasins, at the

indicated MOIs for 3–24 h. Subsequently, cells were harvested, washed with

ice-cold citric acid, to remove all preexisting peptide-MCH complexes and

cocultured at a ratio of 2:1 with HPV E6-specific reporter cells, in which NF-κB

drives EGFP. After 18 h EGFP expression was assessed by FACS analysis.

Unwashed U251 cells (Negative control) and unwashed U251-E6/E7 cells

(Positive control) were also cocultured with HPV E6-specific reporter cells. In

parallel, maximal peptide stimulation was determined for each experimental

group by pulsing cells additionally with E6 peptide (1µg/ml) before coculture

with HPV E6-specific reporter cells and subsequent FACs analysis. (A) The

stimulation in each experimental group is given as percentage of maximal

peptide stimulation. (B) The % of EGFP+ reporter cells after pulsing with E6

peptide (maximal peptide stimulation) is shown for washed U251-E6/E7 cells

left uninfected and washed U251-E6/E7 cells infected with mutant HCMV at

the indicated MOIs. (C) The block of MHC class I presentation after infection

with mutant HCMV at the indicated MOIs is given as a percentage. The results

shown are derived from three independent experiments. Error bars represent

the mean ± SEM (****P < 0.0001; ***P < 0.001; *P < 0.05; unpaired t-test).

E6 peptide, however, acid washed infected U251-E6/E7 cells
stimulated E6-specific reporter cells to a similar extent as acid
washed uninfected U251-E6/E7 cells (Figure 8B). In fact, the
block of MHC class I antigen presentation induced by the
HCMV-vector was more than 50% (Figure 8C). Taken together,
we discovered a previously unsuspected HCMV-encoded block
of MHC class I presentation.

Genetically Altered Human T Cells Secrete
IFN-γ in Response to E6 Peptide but Not
E6/E7 Expressing HCMV-Based Vaccines
HCMV-based vaccines enabling presentation of a neo-epitope
by tumor cells could be combined with adoptive transfer of
genetically modified T cells specific for the vectored neo-epitope.

FIGURE 9 | Release of IFN-γ by TCR transduced PBMCs after stimulation

with infected cells. 1 × 105 human PBMCs, transduced with HPV E6-specific

TCR and HCMV pp65-specific TCR), respectively, or non-transduced

(Background), were co-cultured for 16 h with 1 × 105 fibroblasts that had been

infected for 48 h with HCMV-based vaccines. PBMCs as described above

were also co-cultured with infected fibroblasts that had been additionally

pulsed with the corresponding peptide (maximal peptide stimulation).

Subsequently, IFN-γ production was measured by ELISA. Release of IFN-γ is

shown as percentage of maximal peptide stimulation after subtraction of the

background. Uninfected cells (Mock) and cells infected with RVTB401US11

(Control) were also included in this type of analysis. Results are derived from

three experiments; error bars represent the mean ± SEM; n.d., not detectable.

In order to test this option and verify our results obtained with
the reporter cell lines, we transduced human PBMCs with either
retroviral vector encoding E6-specific TCR or retroviral vector
encoding pp65-specific TCR. Subsequently, we co-cultured these
cells for 16 h with vaccine-infected fibroblasts that express HLA-
A2. Untransduced PBMCs were included as a negative control
and treated in the same way. After co-culture the release
of IFN-γ was measured as a read out of T cell function.
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Moreover, we pulsed aliquots of the vaccine-infected fibroblasts
with the corresponding E6-derived and pp65-derived peptides,
respectively. These cells were also co-cultured with transduced
PBMCs to assess the maximal peptide-stimulated IFN-γ release.
In Figure 9, the specific IFN-γ release induced by vaccine-
infected fibroblasts is given as a percentage of IFN-γ release after
stimulation with cells that had been additionally pulsed with
exogenous peptide (maximal peptide stimulation). As observed
for reporter cell lines, cells infected with HCMV-based vaccines
expressing E6/E7 protein did not stimulate PBMCs transduced
with E6 peptide-specific TCR (Figure 9, upper graph, blue
columns). In contrast, cells infected with HCMV-based vaccines
expressing the E6 peptide fused to the C-terminus of HCMV IE1
or HCMV UL83 induced IFN-γ release by E6-specific PBMCs
(Figure 9, upper graph, red columns). Moreover, all HCMV-
based vaccines with intact UL83 (pp65) were able to activate
PBMCs transduced with pp65-specific TCR (Figure 9, lower
graph). Taken together, PBMCs transduced with E6-specific TCR
could be used for adoptive transfer to detect tumor cells targeted
by E6 peptide-expressing HCMV-based therapeutic vaccines.

DISCUSSION

In this study, we generated HCMV-based therapeutic vaccines
that lack immunoevasins for in situ vaccination of GBM patients.
We pursued two different strategies to channel a defined vector-
encoded neo-epitope into the processing machinery of antigen-
presenting cells. In one set of HCMV-based vaccines, we
expressed the consensus sequence encoding an immunogenic
but non-transforming E6/E7 fusion protein under the control
of endogenous or exogenous promoters. In another set, we
fused a single E6-epitope to the C-terminus of HCMV IE1
or HCMV UL83. Surprisingly, GBM cells transfected with
an E6/E7 expression plasmid but not cells infected with the
E6/E7 expressing HCMV-vectors were recognized by E6-specific
T cells despite comparable E6/E7 expression. In contrast,
cells infected with HCMV-based vaccines expressing an E6-
epitope fused to HCMV proteins by an Alanine linker nicely
stimulated E6 peptide-specific T cells. Subsequent analysis
demonstrated a previously unnoticed HCMV-encoded block of
MHC class I presentation that could explain the failure of
E6/E7-expressing vaccines.

The central nervous system is subjected to continuous
immunosurveillance through special gateways that allow
exchange of immune cells and antigens with the periphery (66).
As outlined in a recent review (67), antigens in the CNS are
transported to cervical lymph nodes either in a soluble form or
via APCs that take up antigen in the meningeal linings. After
priming in the CNS-draining lymph nodes, antigen-specific T
cells home back to the CNS to kill their target. Thus, in situ
vaccination with a HCMV-based therapeutic vaccine in the
brain can activate specific cytotoxic T cells in the CNS-draining
lymph nodes. These in turn can migrate back to the CNS to
eliminate tumor cells. We found that LN18, U343, and U251
cells are susceptible to HCMV infection as previously reported
for other GBM cell lines (38, 60). Moreover, it has been recently

shown that HCMV targets Glioma stem–like cells (GSCs)
(60, 68). GSCs are radioresistant and chemoresistant and play
a crucial role in progression and recurrence of tumor cells.
Accordingly, they represent attractive targets for novel GBM
therapies (69). HCMV-based therapeutic vaccines expressing
E6 peptide as a neo-epitope and lacking immunoevasins could
render these tumor-driving cells vulnerable to cytotoxic attack
by E6-specific CD8+ T cells. After killing of GSCs release of
apoptotic debris containing further tumor-specific antigens
could be phagocytosed by resident microglia or brain endothelial
cells, which efficiently cross prime CD8+ T cells (70, 71). In
addition, many viruses including HCMV can trigger bystander
activation of antiviral memory CD8+ T cells as part of an early
line of antiviral defense (72–77). Thus, therapeutic HCMV-based
vaccines as described in this study could amplify the anti-tumor
response in GBM patients by several distinct mechanisms.

HCMV-based vaccines expressing the E6-epitope fused to the
C-terminus of HCMV IE1 or HCMV UL83 could easily activate
E6-specific T cells. In accordance, MCMV-vector expressing
a HPV E7-derived peptide at the C-terminus of MCMV IE2
protein could efficiently protect mice from lethal tumor challenge
(62, 78). In contrast, cells infected with HCMV-based vaccines
expressing the E6/E7 protein separately from viral proteins
did not stimulate E6-specific reporter cell lines or E6-TCR
transduced PBMCs despite strong E6/E7 expression. The fusion
protein E6/E7, however, was not per se resistant to processing.
Uninfected U251 cells stably transfected with pcDNA-E6/E7
(U251-E6/E7 cells) expressed E6/E7 at the same order of
magnitude and stimulated E6-TCR expressing reporter cells.
Thus, the E6 epitope is naturally processed and presented by
HLA-A2 in the absence of HCMV.

After infection of U251-E6/E7 cells with HCMV, however, the
MHC class I presentation of the E6 peptide derived from the
E6/E7 fusion protein was impaired. This was not due to known
HCMV-encoded immunoevasins as we used RVTB401US11 as
a vector. This mutant HCMV lacks US2, US3, US6, and US11,
the known immunoevasins. It is well-described that cytosolic and
nuclear proteasomes have to degrade viral proteins to generate
the viral peptides that are presented by MHC class I molecules
on the cell surface (79). On the other hand, viral pathogens such
as herpes simplex viruses and HCMV highjack and relocalize
the proteasomal machinery of the host cells to facilitate their
own replication (80–82). Thus, these pathogensmay diminish the
proteasomal activity for processing of antigens thereby reducing
the presentation of peptides by MHC class I molecules. The
precise mechanism underlying this novel virus-induced block of
MHC class I presentation remains to be elucidated.

We observed that GBM cells infected with HCMV-based
therapeutic vaccines stimulate IFN-γ release by pp65-sepcific
T cells. In fact, pp65 is the most abundant HCMV-encoded
protein (83) and represents a major target for the CD8+ T
cell responses in infected human individuals (84, 85). It may
be a useful target for immunotherapeutic interventions in GBM
patients as pp65-specific cytotoxic T cells lyse HCMV-infected
GBM cell lines in vitro (86, 87). Thus, PBMCs derived from
GBM patients could be transduced in vitro with retroviral
vectors encoding pp65-TCR and adoptively transferred back to
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eliminate GBM cells. Experiments with rhesus CMV in rhesus
macaques, an animalmodel forHCMV infection of humans, have
demonstrated that pp65-specific T cell responses are important
for limiting viral dissemination during primary infection (88).
This result implies that simultaneous application of pp65-specifc
T cells with in situ vaccination of HCMV-based therapeutic
vaccines prevents unwanted side effects due to virus spread.
Thus, although pp65 helps HCMV to subvert host defense (89–
93) and is not required for viral replication (94) it should not
be eliminated from a HCMV-based therapeutic vaccine. On the
other hand, it is important to use HCMV-based vectors, which
do not express cmvIL-10 (UL111A) for several reasons. Firstly,
cmvIL-10 dampens the antiviral immune response (95–100).
Secondly, cmvIL-10 produced by HCMV-infected GSCs can
induce immunosuppressive macrophages and microglia, which
subsequently support tumor growth (42, 101).

Autologous DC vaccines generated ex vivo from peripheral
blood monocytes represent another promising novel approach
in immunotherapy of GBM patients (40, 41, 102–104). They
can complement adoptive T cell transfer and in situ vaccination
and play a role in adjuvant treatment of cancer including GBM
(105). HCMV-based vectors may be useful for generation of
DC vaccines because HCMV infects DCs (43, 106). However,
cmvIL-10 confers an immunosuppressive function uponHCMV-
infected DCs (95–100, 107). Thus, HCMV-based vaccines lacking
cmvIL-10 may be suitable for generation of autologous DCs that
stimulate pp65-specific T cells and neo-epitopes expressed by the
HCMV-based vector.

Besides GBM cells HCMV also infects cells from other
malignant human tumors including colorectal carcinoma and

prostate cancer (108–110). Accordingly, patients with these
malignancies could also benefit from vaccination with HCMV-
based therapeutic vaccines expressing neo-epitopes.
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Cancer cells utilize multiple mechanisms to evade and suppress anticancer immune

responses creating a “cold” immunosuppressive tumor microenvironment. Oncolytic

virotherapy is emerging as a promising approach to revert tumor immunosuppression

and enhance the efficacy of other forms of immunotherapy. Growing evidence indicates

that oncolytic viruses (OVs) act in a multimodal fashion, inducing immunogenic cell death

and thereby eliciting robust anticancer immune responses. In this review, we summarize

information about OV-mediated immune conversion of the tumor microenvironment. As a

case study we focus on the rodent protoparvovirus H-1PV and its dual role as an oncolytic

and immune modulatory agent. Potential strategies to improve H-1PV anticancer efficacy

are also discussed.

Keywords: oncolytic viruses, H-1PV, immunotherapy, immunogenic cell death, combination therapy, tumor

microenvironment, checkpoint blockade

INTRODUCTION

After the market approval of Imlygic R© (Talimogene laherparepvec, T-Vec, Amgen, Thousand
Oaks, CA, USA) (1), oncolytic viruses (OVs) are gaining tangible momentum as a new class of
anticancer agents. This is apparent from the fact that more than 40 OVs belonging to at least ten
viral families are currently undergoing clinical trials against various malignancies, as monotherapy
or in combination with other anticancer modalities (2). Most likely, other OVs will soon be
approved for use as novel therapeutics for cancer patients.

OVs selectively replicate in and kill tumor cells in a multimodal fashion while sparing normal
tissues. Productive virus infection ends with the lysis of the cancer cell and the release of progeny
viral particles. In this way, OVs have the ability to multiply and spread throughout the tumor bed.
Importantly, OV-mediated cell death is often immunogenic and accompanied by the activation
of anticancer immune responses (3). The relevance of this immunological facet of oncolytic
virotherapy is further emphasized by the limited OV propagation observed in cancer patients (4).

In this review we provide a brief introduction of the tumor microenvironment, its
immune components and the different strategies developed by tumors to avoid attack
from the immune system, before focusing on the ability of OVs to act as immune
adjuvants and contribute to the induction of systemic antitumor immunity. We also
discuss possible ways to enhance the anticancer activity of OVs by combining them with
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other anticancer treatments and in particular with other forms
of immunotherapy (e.g., checkpoint blockade). We use the
protoparvovirus H-1PV, one of the OVs presently under
evaluation in the clinic, as a case study.

THE TUMOR MICROENVIRONMENT

Solid malignant tumors comprise not only a heterogeneous
population of neoplastic cells but also a multitude of resident
and infiltrating non-transformed cells, secreted factors and
extracellular matrix (ECM) proteins, which altogether constitute
the tumor microenvironment (TME) (5). The non-transformed
cells of the TME consist in particular of cancer-associated
fibroblasts (CAFs), adipocytes, stromal, and vascular endothelial
cells, pericytes, lymphatic endothelial cells, and recruited
cells of the immune system. Tumor-infiltrating immune cells
include T-lymphocytes [CD8+ cytotoxic (memory) T-cells,
CD4+ helper (Th1, Th2) T-cells, and regulatory T-cells
(Tregs)], B lymphocytes (B-cells), tumor-associatedmacrophages
(TAMs), tumor-associated neutrophils (TANs), myeloid-derived
suppressor cells (MDSCs), dendritic cells (DCs), and natural
killer (NK) cells (5, 6).

Non-neoplastic cells may account for more than 50% of the
total tumor mass, and their composition varies between different
tumors. Like cancer cells, non-malignant cells produce, and
release cytokines, chemokines, growth factors, matrix remodeling
enzymes, vesicles, and other soluble factors into the tumor
mass, often supporting tumor growth (5). Metabolic interactions
between cancer and non-malignant cells influence all stages
of carcinogenesis.

The ECM network, an important TME component, consists
of a flexible deposit of collagen and fibronectin fibrils associated
with glycoproteins, proteoglycans, and polysaccharides within
and around tumor areas (7). The ECM not only serves as a
physical scaffold for all cells of the TME, but also provides
biochemical signals by hosting growth factors and chemokines
modulating tumor cell growth, migration, and metastasis (7,
8). Although the formation of the ECM is primarily the
responsibility of CAFs, cancer cells also contribute. Cancer
development and progression are associated with increased ECM
deposition (7).

Recent findings from whole-genome sequencing and
microRNA expression profiling studies (9, 10) have further
highlighted the key role of non-malignant cells and other TME
components in influencing tumor growth, immune tolerance,
metastasis, and therapeutic resistance (11, 12). It follows that
targeting these “normal” elements may represent a new approach
to complement conventional therapies and develop innovative
and more efficient treatments against cancer.

ANTI-TUMOR IMMUNE RESPONSE

Among the non-transformed cells of the TME, immune cells
have attracted the most attention in the past decade and have
become the subject of intense preclinical and clinical research.
In a healthy body, the immune system is able to detect and

eliminate malignant cells (13), a phenomenon referred to as
immune surveillance against tumors. The two main components
of this surveillance are activated cytotoxic CD8+ T cells (13, 14)
(also called cytotoxic T lymphocytes, CTLs) and NK cells (15)
which belong, respectively, to the adaptive and innate arms of the
immune system.

(i) In order to exert their tumoricidal activity, CTLs have to
recognize tumor-associated antigen (TAAs) motifs presented
by major histocompatibility complex class I molecules
(MHC-I) on tumor cells. To become activated, naïve CTL
need to be previously primed by professional, antigen-
presenting cells (APCs) which expose TAA motifs through
MHC-I molecules to T-cell receptors on CTLs. CD28
molecules expressed at the surface of CTLs bind to
CD80 or CD86 polypeptides exposed on APCs (DCs or
macrophages), providing a co-stimulatory signal for CTL
killing activation. CTL tumoricidal activity is carried out both
directly through the release of cytotoxic granules containing
perforin and granzymes, and indirectly through the secretion
of cytokines such as interferon-γ (IFN-γ), tumor necrosis
factor-α (TNF-α), and IL-2. These cytokines induce apoptosis
of tumor cells and/or activation of anticancer immune
responses (16). CD4+ T helper cells also contribute to the
cytotoxic anticancer immune response mediated by CTLs, by
stimulating CTL priming through the release of cytokines,
particularly IFN-γ (17).

(ii) In contrast to CTLs, NK cells do not require specific TAA
recognition to interact with tumor cells nor MHC-dependent
cross-priming. A repertoire of inhibitory and activating
receptors on these cells, makes their activity dependent on
the down- or up-modulation of various ligands exposed on
tumor cells, respectively. Similarly to CTL, NK cells are
able to kill neoplastic cells directly by releasing perforin
and granzymes as well as indirectly by secreting death
receptor ligands (FasL and TRAIL) and cytokines [IFN-
γ, TNF-α, and granulocyte macrophage-colony-stimulating
factor (GM-CSF)] (15). NK cell functions can be activated
or exacerbated in presence of cytokines released by DCs and
monocytes (IL-12 and IL-15) as well as T-cells or NK cells
themselves (IL-2) (18).

In conclusion, the immune system appears to play a major
pleiotropic role in the surveillance against tumors.

TUMOR STRATEGIES OF IMMUNE

EVASION

As mentioned above, CD8+ T-cells, NK cells, and monocytes
populate TMEs. The presence of these cells was found to
correlate with a better prognosis and treatment responsiveness
of various tumors including brain, hepatocellular, lung, breast,
renal, colorectal cancers, and melanoma (19, 20). TMEs
containing these immune cell populations are called inflamed.
Unfortunately, the immunosuppressive ecosystem prevailing in
many TMEs suppresses NK and CTL cytotoxic activities, thereby
precluding long-standing protective immunity. In addition,
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the TME often inhibits T-cell proliferation, promotes T-
cell apoptosis, down-regulates expression of MHC molecules
and antigen processing machinery components on most
cells within tumors (in particular neoplastic cells, DCs, and
CD4+ T helper cells) and corrupts TAMs toward an M2
immunosuppressive phenotype, thereby allowing tumor cells to
escape attack from the immune system. For a comprehensive
discussion of the strategies developed by cancer cells to
escape immune surveillance, we redirect readers to excellent
recent reviews by Muhn and Bronte (21) and Fearon (22).
Briefly, a main mechanism by which tumors prevent attack
from the immune system consists in the release within
TMEs of immunosuppressive molecules such as growth factors
[e.g., transforming growth factor (TGF)-β], cytokines [e.g.,
interleukin-10 (IL-10)], chemokines, inflammatory, and matrix-
remodeling enzymes as well as metabolites. These molecules
contribute to establish complex and dynamic communication
networks between all the cells composing a tumor in order
to promote its survival, development, and metastasis. These
molecules are produced not only by tumor cells, but also
by non-malignant cells of the TME including CAFs (23, 24),
adipocytes (25), and infiltrating immune cells such as Tregs
(26, 27), Bregs (28, 29), MDSCs (30, 31), and TAMs (32).
Thus, diverse cell subtypes depending on their activation state
by producing and secreting these molecules simultaneously
participate in establishing an immune-suppressive TME via
multiple mechanisms [e.g., Tregs through the production of IL-
10 and TGF-β inhibit CTL and NK cytolytic activity, promote
Treg survival, and expansion and modulate the activity of
other immunosuppressive cells within the TME such as Bregs,
MDSCs, TAMs and CAF, which in their turn concur to augment
immunosuppression (26, 27)]. The activity of these cells may
change from tumor to tumor and during the different phases
of tumorigenesis and even between different regions within the
same tumor.

A second immune-inhibitory mechanism relies on a natural
process developed by the immune system to regulate the
amplitude and the quality of the T-cell response. This mechanism
is triggered to prevent the immune response from getting over-
activated and causing autoimmune reactions that could damage
healthy tissues. The factors involved in this inhibitory process
are collectively referred to as immune checkpoint molecules
(ICs) and are expressed at the surface of several cell populations
of TME. The mechanism is triggered upon interaction of ICs
acting as receptors and located on tumor-infiltrating effector
T-cells, B-cells and NK cells, with specific ICs behaving as
ligands and often expressed at the surface of APCs, Tregs,
TAMs, and MDSCs. Interestingly, ICs ligands are overexpressed
in many tumor cells. Well-known examples of IC-receptors
include the CTL-associated antigen 4 (CTLA-4/CD152), the
programmed death receptor 1 (PD-1/CD279), and the molecules
lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin,
and mucin domain containing protein 3 (TIM-3), and T-cell
immunoreceptor with Ig and ITIM domains (TIGIT) (33–35).
The corresponding ligands are CD80 and CD86 for CTLA-4,
and programmed death receptor ligand 1 and 2 (PD-L1/CD274,
PD-L2/CD273) for PD-1. These IC receptor-ligand interactions

play a critical role in blocking anticancer immune responses
mediated by cytotoxic T-cells and NK cells in TMEs (35). The
underlying molecular mechanisms involved in these inhibitory
signaling pathways are complex and beyond the scope of this
review (36–38). Within the TME, tumor cells and myeloid cells
are considered to be the main cell types responsible for T-cell
suppression through the expression of PD-1 ligands (39).

CANCER IMMUNOTHERAPY

To overcome tumor-driven immune evasion and suppression,
a new appealing therapeutic strategy, namely cancer
immunotherapy, emerged, and was recognized as the
breakthrough of the year 2013 (40). Presently, the field is
rapidly expanding, yielding continuously growing evidence of
clinical efficiency in patients with various types of solid and
hematological tumors. Cancer immunotherapy is generally
based on two approaches. Passive immunotherapy aims at
enhancing an already existing antitumor immune response;
active immunotherapy attempts to trigger the latter de novo.
Administration of immunomodulating antibodies (e.g., immune
checkpoint inhibitors, ICIs) and the adoptive transfer of
tumor-infiltrating lymphocytes or chimeric antigen receptor
(CAR) T-cells represent the passive immunotherapy approach,
while the active one is exemplified by anticancer vaccination
[discussed in this issue by Fennemann et al. (41)]. Current
cancer immunotherapeutic strategies, their molecular bases,
challenges, and future directions and prospects are extensively
reviewed in various recent publications to which the reader is
redirected (41–44). Special attention is paid in the present review
to immune checkpoint blockade using ICIs, given its relevance
to the oncolytic virotherapy approaches discussed below.

IMMUNE CHECKPOINT BLOCKADE

The discovery of the aforementioned immunosuppressive
pathways represented a breakthrough for oncology, as illustrated
by the 2018 Nobel Prize in Physiology or Medicine jointly
awarded to Allison and Honjo for their contribution to novel
cancer therapy approaches based on the inhibition of negative
immune regulation. Indeed, these findings have paved the way for
the development of innovative treatments that aim to restore or
boost anticancer immune responses in TMEs through alleviation
of the immunosuppressive signals inhibiting the cytotoxic
activities of CTL and NK cells (35). Like other promising cancer
immunotherapies using DC-based vaccines (45) and CAR T-cell
therapy (46), the application of immune checkpoint inhibitors is
currently the subject of intense efforts worldwide to harness the
power of the immune system against cancers.

While small-molecule immune checkpoint inhibitors are
under development (47), immune checkpoint blockade (ICB)
has been successfully achieved using monoclonal antibodies that
interfere with the interactions between checkpoint receptors
and cognate ligands by targeting either of these molecules
(48). Examples of ICB include nivolumab and pembrolizumab
directed against PD-1; ipilimumab specific for CTLA-4; and
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atezolizumab, durvalumab, and avelumab developed against PD-
L1. These market-approved antibodies, alone or in combination,
showed impressive results against several types of cancer
including melanoma and lung carcinomas (48, 49), with
some patients experiencing a durable and complete anticancer
response. New antibodies targeting the more recently discovered
immune checkpoint molecules Tim-3 (50) and LAG-3 (33)
have shown pre-clinical efficacy and are now entering clinical
trials (51, 52).

Despite these successes, it should be stated that only a fraction
(10–40%) of treated patients responds positively to checkpoint
blockade with PD-1 or PD-L1 specific antibodies (53). In addition
treatment resistance is common (54, 55) influenced at least
in part by patient HLA class I genotype (56). Furthermore,
the appearance of severe immune-related adverse events due
to an exacerbated activation of the global immune system
(57, 58) hampers (combinatorial) treatments with checkpoint
blocking antibodies.

The clinical outcome of checkpoint blockade is thought to
depend on the neoantigen load of tumors as well as the size
and composition of the immune cell population present in the
tumor bed. Inflamed tumors (also referred to as hot tumors)
that contain CD8+ and CD4+ T-cells, monocytes and pro-
inflammatory cytokines, show the best response rate to ICB (59).
Indeed, the immune landscape of inflamed tumors is indicative
of a pre-existing antitumor immune response that has been
silenced by the tumor-bed suppressive environment, as revealed
by prominent Treg and MDSC infiltration, production of anti-
inflammatory cytokines or T cell exhaustion. Another common
feature of inflamed tumors is the elevated expression of PD-
L1 by neoplastic or immune cells. A PD-1/PD-L1 signature in
tumors generally correlates with a positive response to anti-PD-1
therapy (19), although PD-L1 expression is not a prerequisite for
successful checkpoint therapy.

In contrast, immune-excluded or deserted tumors (cold
tumors) are characterized by poor or almost no T-cell infiltration
in the stroma, and they respond poorly to ICB (20, 60). Therefore,
it is clear that the development of new strategies to convert
a cold TME into a hot one, is essential for improving the
clinical outcome of ICB and increasing the proportion of patients
who benefit from this treatments. One of the most promising
strategies in this respect is the use of OVs.

ONCOLYTIC VIRUSES

In recent years, OVs have attracted significant attention as anti-
cancer agents because they preferably replicate in, and eventually
lyse, tumor cells while sparing normal counterparts. Tumor cells
offer a favorable environment for the lytic replication of many
OVs that exploit various physiological alterations occurring in
cancer cells. These tumor cell defects are often associated with:
(i) rapid proliferation and dysregulated metabolism (61); (ii)
impairment of antiviral immune responses (62); (iii) production
of immune suppressive factors in the TME (63, 64), (iv)
intracellular signaling pathway alterations that promote survival
under stress conditions (65, 66). Besides directly killing tumor

cells through activation of different cytocidal programs ranging
from apoptosis, pyroptosis, and necroptosis to autophagy and
lysosome-dependent cell death, OVs proved able to convert a
cold TME into an inflamed one, thereby reawakening antitumor
immune responses. Due to their multimodal activity, OVs have
become a major focus of interest in cancer therapy research. As
a result of their oncosuppressive activities, more than forty OVs
are presently in clinical testing against various malignancies and
a number of OVs are undergoing phase III clinical trials (67).

This list of OVs under investigation includes herpes
simplex virus (HSV), adenoviruses (Ad), vaccinia virus (VV),
measles virus (MV), coxsackie virus, poliovirus, protoparvovirus,
reovirus, Newcastle disease virus, vesicular stomatitis virus
(VSV), and Seneca Valley virus. Some of the OVs undergoing
clinical trials are based on human pathogens (e.g., Ad, HSV,
MV, poliovirus) and are engineered to reduce their toxicity and
compel their lytic multiplication in response to factors and/or
pathways specifically active in tumor cells.

The therapeutic potential of OVs can be best exemplified
by the clinical benefit of the prototypical drug in this class,
the genetically modified type 1 HSV designated talimogene
laherparepvec (T-Vec). For a recent T-Vec review, the reader
is referred to Conry et al. (68). Based on encouraging clinical
results, T-Vec became the first oncolytic virus to receive
regulatory approval by FDA in 2015 with an indication for
advanced melanoma (1). This virus was engineered to prevent
production of both its neurovirulence protein ICP34.5 required
for lytic infection of normal cells (in particular neurons),
and its ICP47 protein that reduces MHC class I expression
and virus/tumor antigen presentation by infected cells. These
changes also brought the viral US11 gene under control of an
early/intermediate promoter, partially reinvigorating the virus
lytic activity in tumor cells. Furthermore, two copies of the
human granulocyte-macrophage colony-stimulating factor (GM-
CSF) gene were introduced into the virus genome to enhance it
immunogenicity, knowing that GM-CSF production by cancer
cells attracts DCs in the tumor niche and enhances their
antigen presentation function. T-Vec propagates preferentially in
neoplastic cells in which the malignant transformation process
has impaired the PKR (e.g., through oncogenic Ras activation)
and/or type I IFN pathways, features characterizing in particular
many melanoma cells.

In a phase III randomized clinical trial (OPTiM) conducted
in 436 patients with stage IIIB to IV melanoma, intralesional
injection of T-Vec resulted in significantly better durable
and overall response rates compared with subcutaneous
administration of GM-CSF alone, with superior overall survival
for patients with stage III or IV M1a disease. The virus
treatment proved also to be beneficial against non-injected
lesions, demonstrating its ability to stimulate an anticancer
immune response. In T-Vec-treated patients with cutaneous
melanoma arising in the head and neck, a complete response
rate of 30% was achieved, and 73% of responses persisted longer
than 1 year. Based on these results, phase IB/II and IB/III
clinical trials combining T-Vec with the immune checkpoint
inhibitors ipilimumab (anti-CTLA-4) or pembrolizumab (anti-
PD-1), respectively, were undertaken in patients with advanced
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melanoma (see below section Strategies to improve OVs and
optimize their immune stimulatory activities).

Another promising candidate for clinical applications is the
oncolytic poliovirus PVSRIPO in which the internal ribosomal
entry site of poliovirus is replaced with that of human rhinovirus
type 2, to ablate neurovirulence. PVSRIPO uses for its entry the
poliovirus receptor CD155, which is highly expressed on the
surface of neoplastic cells and in other cells of the TME. There
is preclinical and clinical evidence that this OV has strong ability
to activate DCs and promote formation of tumor-specific CTLs
(69). The results of a clinical trial in which 61 patients with
grade IV malignant glioma were treated with PVSRIPO, showed
increased survival rate (at 24 and 36 months) in 21% of patients
in comparison with historical controls (70).

Other OVs are endowed with an intrinsic oncotropism,
which can be traced back to their elevated sensitivity to the
antiviral innate immune responses developed by normal human
cells but often deficient in their neoplastic derivatives (e.g.,
VSV) and/or to the depending of their lytic multiplication on
oncogenic pathways [e.g., activated Ras signaling for reovirus
(66)]. The group of genuinely oncotropic OVs also includes
non-human animal viruses (e.g., Newcastle disease virus or
protoparvovirus whose natural hosts are avian or rodent species,
respectively). One advantage of animal OVs lies in the lack of pre-
existing antiviral immunity in contrast to human pathogen-based
OVs against which patients may have developed neutralizing
antibodies prior to virotherapy. For a complete list of OVs
undergoing clinical testing we redirect the reader to these recent
reviews (4, 71).

It is worth noting that no champion has emerged yet among
the various OVs under investigation. Each OV has indeed its own
peculiar modes of replication, action, and tumor specificity. This
variation justifies the continued development and optimization
of these ground-breaking anticancer agents.

ONCOLYTIC VIRUSES AS TOOLS TO HEAT

UP TUMORS

OVs evoke anticancer immune responses through different
mechanisms. In addition to releasing progeny virions into
the TME, virus-mediated tumor cell lysis disseminate a wide
repertoire of both cellular tumor-associated antigens/neo-
antigens (TAAs/TANs), danger-associated molecular patterns
(DAMPs) and viral pathogen-associated molecular patterns
(PAMPs) which lead to an inflammatory immune response. In
an ideal scenario, TAAs and TANs are captured and processed by
infiltrating APCs, in particular DCs. DCs loaded with antigens
migrate to draining lymph nodes where they mature and acquire
the capacity to prime T-cells, thus leading to a cancer-specific
T-cell response potentially directed against a wide spectrum of
tumor antigens.

PAMPs consist of viral RNA, DNA, or proteins that are
sensed by pattern recognition receptors (PRRs) expressed by
DCs. PRRs include Toll-like receptors, RIG-like receptors, NOD-
like receptors, and cGAS (72–74). As a consequence of PRR
engagement, DCs produce pro-inflammatory (e.g., TNF-α and

IL-12) and antiviral [type I IFNs (IFN-α and IFN-β)] cytokines
(75). These cytokines contribute to TAA/TAN cross-presentation
and priming of CTL, among other effects (76). It is noteworthy
that the cGAS-Sting pathway in tumor-infiltrating DCs can also
sense tumor-derived genomic DNA, leading to IFN-β production
and eventually CTL activation (77), highlighting the relevance of
this antiviral pathway in cancer development and therapy (78).

Interestingly, OV-infected cancer cells may sense PAMPs and
contribute in a direct way to the production and release of
pro-inflammatory cytokines into the TMEs. This is exemplified
by the type I IFN response. Neoplastic transformation is often
associated with defects in antiviral innate immunity, with cancer
cells unable to produce type I IFN and/or to respond to these
cytokines. However, in the context of heterogeneous tumors,
a fraction of cancer cells may still be able to detect viral
PAMPs through their PRRs and sustain significant type I IFN
production. The virus-induced type I IFN response is pleiotropic
and comprises facets which are undesirable (antiviral effects)
and desirable (anticancer effects) in the context of oncolytic
virotherapy. Type I IFNs thus act as a double-edged sword: on
the one hand, they are directed against the virus by blocking its
multiplication and inducing its neutralization and elimination
and on the other hand, they have anticancer properties. The
oncosuppressive potential of type I IFNs relies in part on their
ability to arrest tumor cell proliferation and exert anti-angiogenic
effects (79–81). Furthermore, type I IFNs may promote the
activation of anti-tumor immune reactions (76). It is well-
documented that type I IFNs are important regulators of NK
cell and CTL functions. In particular, type I IFNs stimulate
NK cell cytotoxic activity and NK cell-mediated production and
secretion of IFN-γ (82, 83). Besides inhibiting angiogenesis and
inducing cell cycle arrest and apoptosis of tumor cells (84), IFN-
γ is a strong immune stimulant. In particular, INF-γ induces
the expression of MHC class II molecules on DCs, activates and
increases the phagocytic activity of macrophages, and promotes
antigen-specific Th1 and CTL responses (84). Type I IFNs also
have a crucial role in mediating the interplay between innate and
adaptive immunity. Type I IFNs induce maturation of DCs, in
particular upregulating the surface expression ofMHC class I and
co-stimulatory CD40 and CD86 molecules, which are essential
for CTL activation (85). Type I IFNs support CTL differentiation
and expansion (86, 87). Accordingly, virus-induced type I IFNs
directly stimulate the cross-priming of CTLs by DCs (88), and
are essential for the protection of activated T cells from NK
cell cytotoxicity (89). Notably, IFN-α enhances the induction
and maintenance of a Th1 response through its direct action on
Th-cells (90).

OVs differ markedly in the ability to trigger production of
type I IFNs. The type I IFN response is, for instance a main
determinant of whether melanoma cells are resistant or sensitive
to oncolytic MV (91). Whereas, NDV is a strong inducer of type I
IFNs, human cells infected with protoparvovirus H-1PV produce
very little of these antiviral cytokines (65, 92). The Seneca Valley
virus actively inhibits the production of type I IFN by cleaving
adaptor proteins necessary for this process (93). Nevertheless,
these various OVs all show promising oncosuppressive activity
in preclinical and clinical studies, indicating that type I IFNs
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represent one of several factors that OVs can mobilize to heat up
TMEs and activate immune responses against cancer cells.

In addition to the type I IFN induction resulting from some
OV/tumor cell interactions, the way by which OVs kill cancer
cells can stimulate an antitumor immune response before or
during cancer cell lysis. Indeed, OVs (alone or in combination
with cytotoxic agents) provoke various intracellular disturbances
at the expense of cell organelles in particular mitochondria,
lysosomes, endoplasmic reticulum and Golgi apparatus, which
eventually results in the lysis of the cancer cell and the release
of progeny viruses (94). Several OVs have been reported to
induce oxidative stress with the production of ROS and reactive
nitrogen species (RNS) and ER stress accompanied by Ca2+
release from ER with consequent Ca2+ dyshomeostasis and
unfolded protein response (94). ROS/RNS may themselves
induce ER stress with consequent Ca2+ release, while Ca2+
potentiates oxidative stress with enhanced production and release
of ROS/RNS, thereby generating a positive amplification loop
that results in the induction of apoptosis or other modes of cell
death (95). Remarkably, OV-mediated cancer cell death is often
immunogenic and associated with the expression, release, and/or
exposure of DAMPs including ATP, high mobility group box
1 (HMGB1), and calreticulin (CRT). In particular, extracellular
ATP acts as a “find me” signal promoting the recruitment of
DCs (96), while HMGB1 functions as a danger signal ligand
for Toll-like receptor 4 and can directly activate DCs (97). CRT
exposure on the cell surface acts as an “eat me” signal neutralizing
CD47 on tumor cells and promoting phagocytosis (98). DAMPs
attract APCs, in particular DCs, into the TME and induce them
to secrete inflammatory cytokines, present TAAs, and prime
cytotoxic T-cells. The temporally concomitant release of type I
IFNs and DAMPs from OV-infected tumor cells leads to the
consideration of type I IFNs as DAMPs, because they trigger
similar immunogenic effects and also because the expression
of some DAMPs can most likely be activated by IFNs. While
ATP, CRT, and HMGB1 represent the classical hallmarks of
immunogenic cell death, other molecules behave as DAMPs, for
instance annexin A1 (ANXA1) and cancer cell-derived nucleic
acid (99). It would be interesting to analyze these molecules in the
context of OV-induced cell death. Furthermore, it is most likely
that other DAMPs involved in the completion of immunogenic
cell death remain to be identified. Information about OV-
mediated (immunogenic) tumor cell death is often incomplete
and fragmentary (99) warranting further studies of this essential
parameter of virotherapy. These studies will not only improve our
understanding of the mode of action of OVs, but also provide
clues to improve the efficacy of OV-based treatments.

It should also be stated that in addition to the above-
mentioned effects on tumor and immune cells, someOVs are able
to infect and replicate in endothelial cells. By causing disruption
of tumor vessels, these OVs can thus contribute to the necrosis of
tumor cells irrespective of their infection, through oxygen and
nutrients deprivation (100–104). Furthermore, these OVs may
also promote in this way the infiltration of immune cells into
the TME.

In summary, the great interest raised by OVs in the field
of cancer therapy relies on their abilities (i) to specifically

replicate, multiply, and spread in a lytic manner in tumor cells
(oncolysis), (ii) to trigger the release of PAMPs and TAAs/TANs
from dying tumor cells, leading to the activation of innate
as well as adaptive immune responses, (iii) to directly induce
the expression of pro-inflammatory and immuno-stimulatory
cytokines, in particular type I IFNs, in some tumor and immune
cells, and (iv) to kill tumor cells via immunogenic mechanisms
(immunogenic cell death) involving the production of DAMPs
that are able to further stimulate immune cells, and (v) for
some OVs, to break-down tumor vasculature, causing tumor
cell starvation and facilitating immune cell infiltration. Based on
these considerations, OVs are attractive candidates to activate
innate and adaptive immune responses in TMEs and turn
immune-excluded or immune-deserted tumors into inflamed
ones (Figure 1).

STRATEGIES TO IMPROVE OVs AND

OPTIMIZE THEIR IMMUNE STIMULATORY

ACTIVITIES

Despite promising results obtained at the preclinical level, only
a small proportion of cancer patients seems to benefit from
OV-mediated therapy in clinical studies. A number of reasons
account for these disappointing results. OVs, especially when
delivered systemically, need to overcome several physiological
and physical barriers to reach the tumor target and be effective
[reviewed in Marchini et al. (105)]. For instance, sequestration,
and neutralization by the mononuclear phagocyte system can
dramatically restrict the systemic delivery of OVs. The presence
of specific neutralizing antibodies (NAb), can also severely
hamper OV systemic delivery and effectiveness, especially in the
case of OVs based on human pathogens to which patients may
have been previously exposed. For instance, seroprevalence is
high against Ad type 5 (60 and 70% in Europe and USA) (106)
andHSV (50–80%worldwide) (107), two viruses commonly used
as OVs. NAb recognize and coat the virus particles, signaling
them for destruction by competent cells. Virus clearance can
occur very rapidly, eliminating the virus before its anticancer
potential is expressed. Optimal use of these OVs therefore
requires consideration of the counteracting effect of pre-existing
anti-viral immunity. However, recent results obtained with
reovirus (against which about 80% of the human population
has developed immunity) indicate that the presence of anti-viral
NAb is not always a negative event and paradoxically, can even
enhance the delivery of systemically administrated reovirus into
the tumor bed. Indeed, NAb-reovirus complexes were found to be
taken up and delivered to the tumor by the monocytes present in
the blood (108, 109). In most cases, NAb still limit OV activity, as
exemplified by a phase I trial demonstrating the greater efficiency
of MV in myeloma patients devoid of pre-existing NAbs (110).
Several strategies have been developed to overcome anti-viral
host immune responses and improve delivery, e.g., virus capsid
engineering (111), chemical modification of virus capsid [e.g.,
PEGylation (112)] and use of cell carriers (e.g., DCs) (113). For
instance, Ad vector PEGylation was shown to reduce liver uptake,
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FIGURE 1 | Induction of immune conversion of tumor microenvironment by OVs. The left panel depicts a cold tumor microenvironment (TME). In addition to tumor

cells, some other components of the TME are shown, i.e., blood vessel with endothelial cells, CAFs, ECM, and few infiltrating immune cells. These immune cells

(mainly Treg, MDSC, and TAM having a M2 immunosuppressive status), together with other cells of TME (e.g., CAF and tumor cells themselves), produce and secrete

chemo/cytokines, growth factors, and other molecules which contribute to create an immunosuppressive TME. This “cold” TME supports tumor development and

metastasis, and confers resistance to (immuno) therapies. The right panel depicts an inflamed TME after intravenous OV treatment. OVs reach the tumor through the

blood stream and act in a multimodal fashion to eliminate cancer cells. OVs specifically replicate in and kill cancer cells by inducing immunogenic cell death.

Virus-induced cancer cell lysis is associated with the release of progeny virus particles, TAAs, DAMPs, PAMPs, and pro-inflammatory/immunostimulatory cytokines

which contribute to recruiting immune cells in the TME and inducing maturation of DCs, thereby triggering innate as well as adaptive immune responses (inset a). DCs

migrate to the draining lymph nodes where they cross-present TAAs to T cells (inset b). After expansion, T cells infiltrate the TME and participate in the destruction of

cancer cells together with other effector cells such as NK cells and M1-converted macrophages (inset c). Some OVs may also infect endothelial cells and induce

disruption of tumor vasculature, potentially facilitating immune cell migration into the TME (inset d).

prevent NAb binding, and thereby improve Ad half-life in blood
and infection of tumors (112).

Potentiation of OVs can be achieved by inserting (a)
therapeutic transgene(s) into the viral genome. Notable examples
are OVs armed with payloads that have immune stimulatory
activity, such as pro-inflammatory cytokine (e.g., GM-CSF, IFN-
γ, IL-2, IL-12, or IL-15) or chemokine (e.g., CCL2, CCL5,
CCL19, CXCL11) transgenes. OV arming with cytokine and
chemokine genes is aimed at providing additional stimuli for
turning immune-excluded and deserted tumors into hot inflamed
ones by induction of immune cell migration and activation. The
impact of different arming strategies on tumor heating up has
been recently reviewed by de Graaf et al. (114). The success of this
approach is exemplified by the HSV-based T-Vec recombinant
expressing GM-CSF, a cytokine that stimulates DC migration

and maturation, thereby conferring the virus with enhanced
capacity for inducing antigen presentation and T-cell priming
(68). Intratumoral administration of T-Vec was found to induce
the regression of not only injected tumors but also of non-
injected distant tumors, including visceral metastases, indicating
virus ability to trigger a systemic antitumor immune response
(68, 115, 116). Furthermore, treatedmice were protected from re-
challenging with the same tumor cells, which indicate a durable
antitumor memory response (117). However, it should be stated
that cytokine arming, in the context of OV therapy, needs to
be carefully evaluated on a case-by-case basis, considering that
OVs are replication-competent and transgene expression may
thus get amplified. Cytokine overexpression can be deleterious,
as illustrated by the severe side effects and hepatic toxicity
associated with high dose regimes of recombinant IL-2.
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Another promising approach makes use of OVs expressing
bi-specific T-cell engagers (BiTEs). BiTEs represent a new
class of immunotherapeutic molecules which consist of
two single-chain variable fragments (scFv) connected by a
flexible linker. One scFv recognizes a T-cell-specific molecule,
e.g., CD3, while the second scFv is directed against a TAA
expressed on the surface of tumor cells. In this way, BiTEs
lead T-cells to target tumor cells, ultimately stimulating T-
cell activation, tumor cell killing, and cytokine production.
In addition to exert their intrinsic anticancer activity,
OVs expressing BITEs are thus able to mobilize T-cells
at tumor sites, resulting in an increased oncosuppressive
potential (118, 119).

Important improvements of anticancer efficacy have been
achieved by inserting genes encoding for scFv targeting immune
checkpoint molecules (e.g., PD-1 or CTLA-4) into the viral
genome. This approach has been applied successfully with
myxoma virus, Ad, MV, and VV (120–123). By achieving
intra-tumoral delivery and expression of checkpoint blockade,
these recombinant OVs alleviate the risk of systemic unspecific
side effects often encountered when the antibody blockers
are administered by intravenous infusion. As the PD-1/PD-
L1 checkpoint control may be triggered by tumor cells,
i.e., at the site of action of OVs, the synergism between
the latter and PD-1/PD-L1 checkpoint blockade is expected
to be most efficient for this particular immune checkpoint.
Indeed, the oncosuppressive activity of MV was found to be
reinforced to a greater extent by anti-PD-1/PD-L1 than anti-
CTLA-4 transgenes (122). However, intratumorally produced
CTLA-4-specific antibodies may still enhance the adaptive
antitumor response triggered by OV-activated APCs by getting
transported to draining lymph nodes or intratumoral tertiary
lymphoid structures where priming takes place. Indeed, growing
evidence supports the assumption that local delivery of CTLA-
4 blockade can trigger T-cell priming in the periphery (124)
and release local effector cells by depleting intratumoral
Tregs (125).

Combining multiple OVs also opens up interesting prospects,
as demonstrated by a recent study in which Ad treatment
was followed by VV administration in a Syrian hamster
model. The first line OV treatment was found to protect
the second virus from the attack of the immune system,
enlarging its therapeutic window, and enhancing efficacy (126).
An especially intriguing approach consists in a prime-boost
protocol involving the sequential application of two distinct
oncolytic viruses (vectors): a first one for priming the immune-
system to recognize TAAs and a second one for boosting
this response through virus-mediated TAA expression after
systemic OV administration [reviewed in (127, 128)]. Also
in this case, the use of a different virus vector in the
priming phase may reduce the insurgence of NAb against the
second virus used during the boosting phase. This strategy
has also the potential to sensitize tumors to checkpoint
blockade (129).

OV therapy is also compatible with other anticancer
modalities, and investigation of OV-based combination

treatments is actively being pursued with all OVs under
clinical development.

(i) For the sake of expediting clinical translation, OV
administration has been combined with conventional
chemotherapy and radiotherapy, resulting in a number of
cases in synergistic anticancer effects at the preclinical level
(67, 130, 131). Some of these combinations are currently
being tested in clinical studies.

(ii) In addition to combining with standard treatments, OVs
are being tested together with immunomodulators, including
drugs that induce immunogenic cell death [reviewed in (94)]
or dampen the antiviral innate response (3).

(iii) A particularly promising area of active research involves the
combination of OVs with adoptive immune cell therapy. In
particular, OV can improve the efficacy of CAR-modified T
cell transfer therapy [as recently reviewed in (3, 132)].

(iv) Owing to their ability to induce immune conversion of
TMEs, a number of OVs have been clinically tested in
combination with checkpoint blockade against a broad
range of malignancies [for a recent review see (133)].
The joint application of these therapies is anticipated to
improve the clinical outcome in cancer patients by eliciting
more robust anticancer immune responses. This concept is
supported by multiple preclinical evidence showing that OV
treatment sensitizes tumors to checkpoint blockade, resulting
in synergistic anticancer activity in animal models (122,
134–139). Recent studies by Samson et al. (138) provided
further appealing clinical evidence of OV ability to convert
a cold tumor previously resistant to immune checkpoint
blockade therapy, into a hot tumor sensitive to immune
therapy. This conversion may be due in part to the OV-
induced local expression of type I IFNs and type II IFN-
γ resulting in the up-regulation of inhibitory ligands (PD-
L1 and PD-L2) on tumor cells (140) and thereby making
“cold” tumors susceptible to immune checkpoint blockade.
Upon intravenous treatment with reovirus, patients with
high-grade glioma, or brain metastases, showed increased
intratumoral leukocyte infiltration and type I and II IFN-
dependent induction of PD-L1 expression (138).

OV-mediated potentiation of checkpoint blockade
immunotherapy was also demonstrated in clinical studies
using T-Vec in combination with ipilimumab (anti CTLA-4) or
pembrolizumab (anti PD-1) (68). In particular, in a randomized
open-label phase II trial involving 198 patients with advanced
melanoma, ipilimubab/T-Vec co-treatment produced higher
objective response rates (ORR) (39 vs. 18%), with 89% of all
co-treated patients experiencing durable responses at a median
follow up time of 16 months. Furthermore, 52% of patients
presented reduced visceral lesions, providing evidence that
T-Vec enhanced systemic antitumor immune responses (141).
Promising results were also obtained by combining T-Vec with
pembrolizumab in a trial’s phase Ib arm involving 21 patients
with advanced melanoma. In this trial, co-treated patients
showed a higher ORR (62%), compared with patients treated
with pembrolizumab (34%) or T-Vec (26%) alone. Immune
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conversion of the TME was observed in co-treated patients,
including CD8+ T cell infiltration and both elevated PD-L1
protein expression levels and IFN-γ production in tumor
cells (142). It should also be stated that co-treatment was not
associated with additional toxicity. Extension of this trial is
ongoing and involves a total of 660 patients receiving either
combination treatment or pembrolizumab alone (68).

The pros and cons of oncolytic virotherapy and the current
attempts at improving this strategy will be exemplified in the
following section with one of the OVs in clinical development,
the rodent protoparvovirus H-1PV.

THE RAT PROTOPARVOVIRUS H-1PV

The Virus
The oncolytic protoparvovirus (PV) H-1PV is a non-enveloped
single-stranded DNA virus (143, 144). With an icosahedral
capsid of 25 nm, H-1PV is the smallest OV presently under
clinical development. H-1PV belongs to the Parvoviridae
family, genus Protoparvovirus, species Rodent protoparvovirus 1.
The Parvoviridae family also includes adeno-associated viruses
(AAV) that are commonly used in gene therapy for the delivery
of therapeutic transgenes (143, 144). However, in contrast to
AAVs which need a helper virus for their replication, H-1PV as
other protoparvoviruses can replicate autonomously. The Rodent
protoparvovirus 1 also includes the Kiham rat virus, LuIII virus,
mouse parvovirus, minute virus of mice (MVM), tumor virus X,
and rat minute virus. Some of these viruses are under evaluation
at the preclinical level as oncolytic agents.

The H-1PV genome comprises ∼5,100 nucleotides. Small
deletions and point mutations can naturally occur in the
parvoviral genome, reflecting genetic adaptation to themolecular
characteristics of the host cell. The genome consists of two
transcription units, termed NS and VP, whose expression
is controlled by the early (P4) and late (P38) promoters,
respectively. The NS gene unit encodes the non-structural
proteins NS1, NS2, and NS3 while the VP unit encodes the VP1,
VP2/VP3 capsid proteins and the non-structural SAT protein.

The natural host of H-1PV is the rat; the virus is not
pathogenic to humans. H-1PV is unable to replicate in normal
tissues, but it can productively infect and kill a broad range of
human cancer cell lines from different origins including glioma,
breast cancer, hepatoma, pancreatic carcinoma, melanoma,
colorectal carcinoma, nasopharyngeal carcinoma, and lymphoma
(143). H-1PV oncosuppression has been demonstrated in a
number of preclinical animal models (143).

The reasons for H-1PV intrinsic oncotropism and tumor
selectivity have been elucidated only in part and are discussed
in detail elsewhere (143–146). In brief, the virus has the ability
to exploit some of the molecular features that distinguish
the cancer cell, such as (i) fast proliferation associated with
the overexpression and/or activation of specific cellular factors
needed for virus DNA replication and gene transcription
belonging to the E2F, ATF/CREB, ETS, NFY families and
cyclin A, and (ii) altered signaling pathways accompanied by
upregulation of factors controlling viral functions (e.g., the
PDK1/PKB/PKC pathway involved in the phosphorylation of
the oncotoxic viral protein NS1); (iii) impairment of the innate

antiviral immune response in many tumor cells, although the
sensitivity of rodent PVs to type I IFN is presently a matter of
controversy (92, 144, 147–150).

H-1PV, an Oncolytic Virus Case in Point
Although underlyingmechanismsmay be at least partly different,
H-1PV, and various other OVs share a number of properties
that illustrate well the pros and cons of cancer virotherapy. Pros
comprise safety, oncotropism, oncosuppressive ability resulting
from both oncolytic and immune adjuvant properties, and the
possibility of systemic administration. Cons include limited
tumor capacity for virus production in cancer patients, and
inter/intratumoral heterogeneity of cancer cell permissiveness
for virus infection. H-1PV can thus be used to exemplify the
prospects and drawbacks of oncolytic virotherapy. PVs still have
a number of unique properties distinguishing them from several
other OVs [for a review, see Geletneky et al. (151)]. On the
one hand, their lack of natural infectiousness and pathogenicity
for humans, and the synthetic oncotoxicity of the viral protein
NS1 are worth mentioning. On the other hand, PVs are taken
up by most normal cells, which leads to typically harmless
abortive infections, but results in the sequestration of a major
fraction of administered/produced virions in normal tissues. This
trapping limits the capacity of H-1PV to work at a distance
from the inoculation site, making viral remote activity especially
dependent on a bystander immune adjuvant effect, which is the
focus of the present review.

H-1PV Oncolytic Activity
Besides being the key regulator of H-1PV replication, the NS1
protein is the major effector of virus oncotoxicity. The molecular
mechanisms underlying H-1PV-mediated cell death are not fully
understood. It was demonstrated that through NS1, H-1PV has
the ability to induce oxidative stress associated with elevated
levels of intracellular ROS, RNS, and DNA damage resulting in
the activation of the intrinsic pathway of apoptosis (152).

In addition to apoptosis, the virus can activate a range of
other cell death programs, including necrosis and cathepsin-
mediated cell death in glioma cells (143). The latter mechanism
involves relocation of active cathepsins from lysosomes into the
cytoplasm accompanied by the downregulation of cystatin B and
C, two cathepsin inhibitors (153). In support of the capacity of
H-1PV to induce lysosomal-mediated necrosis in glioma cells,
we recently obtained evidence of the occurrence of lysosomal
membrane permeabilization and ER stress after infection of these
cells (Marchini et al. unpublished results). The SAT protein
may have a role in H-1PV-mediated ER stress as observed for
porcine parvovirus (PPV). A PPV mutant with a deletion in
the SAT region had less lytic activity than the wild-type virus
and consequently less spreading (154). It is therefore possible
that SAT together with NS1 participates in H-1PV-mediated
cell death, in agreement with recent results from our laboratory
(Bretscher et al. unpublished results).

Depending on the characteristics of the target tumor and on
the amount of virus penetrating the tumor cell (i.e., input virus
dose), it is possible that multiple cell death pathways are activated
in parallel. It is important to point out that some forms of cell
death may be more immunogenic than others and may therefore
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influence the outcome of H-1PV-based therapies by engaging
the immune system at different levels. This needs to be carefully
considered in the design of therapeutic protocols (e.g., effective
viral dose and treatment fractionation), especially in the context
of combination regimens.

The extent of H-1PV-induced oxidative stress may account
in part for the capacity of the virus to induce different types of
cell death. Indeed, it has been demonstrated that intracellular
ROS/RNS levels are pivotal for the determination of cell fate
by fine-tuning cell stress responses. While physiological levels of
ROS promote cell proliferation, excess production/accumulation
of these toxic compounds has been associated with DNA damage
and major disturbances such as activation of the inflammasome,
induction of TNF-mediated inflammatory pathways, lipid
peroxidation, lysosomal dysfunction, ER stress, and calcium and
iron dyshomeostasis. Depending on the genetic background of
the cell, different ROS/RNS levels can activate distinct forms of
cell death, such as apoptosis, pyroptosis, necroptosis, ferroptosis,
authophagy, and necrosis (95, 99). Some cancer cells may have
more efficient antioxidant mechanisms to counteract H-1PV-
induced oxidative stress and therefore be less susceptible to virus
oncotoxicity. However, through its ability to activate different
cell death pathways, H-1PV may compensate for cancer cell
resistance to apoptotic stimuli or DNA damage-inducing agents
by engaging the immune system to act against the tumor. Indeed,
as briefly summarized in the next section, there is accumulating
evidence supporting a role for H-1PV as an activator of immune-
mediated anticancer responses.

H-1PV-Mediated Immune Modulation
Preclinical studies of H-1PV demonstrated the involvement of
multiple immune cell populations in the anti-neoplastic activity
of this virus. Distinct immune cells proved to be activated by H-
1PV as a result of both their direct infection with the virus and
their exposure to virus-induced tumor cell lysates.

H-1PV can infect a wide panel of human immune cells,
namely DCs, macrophages, NK cells, and T-lymphocytes.
Infection is abortive and does not result in the production of
progeny viral particles. More importantly, no or little direct
toxicity of H-1PV for human immunocytes has been observed,
while the induced release of cytokines may cause cytopathic
effects under in vitro conditions (155, 156). H-1PV has been
shown to be harmless for rat immune cells as well. Rats
treated with repeated high doses of H-1PV showed normal
activity of B-cells and developed NAbs against H-1PV. Serum
concentrations of IL-6 and TNF-α were normal in these animals,
and isolated PBMCs showed proliferative response similar to
control (157).

H-1PV infection of human PMBCs results in their maturation
and activation, which are associated with the release of IFN-γ
and TNF-α. Furthermore, a type I IFN production mediated at
least in part by TLR-9 was observed and assigned to infected
plasmacytoid DCs (156). Interestingly, H-1PV infection proved
able to stimulate CD4+ T-cells, as revealed by the enhanced
expression of activation markers (CD69 and CD30) and release
of both Th1 and Th2 cytokines (IL-2, IFN-γ, and IL-4) (158).

In addition to its direct impact on human immune cells, H-
1PV indirectly causes major immune stimulatory effects which
are apparently induced by infected cancer cells. Indeed, while
failing to induce type I IFN in these cells, H-1PV can indirectly
upregulate both innate and adaptive immune responses through
its effects on tumor cells.

On the innate side, H-1PV infection of human pancreas and
colon carcinoma cells was shown to enhance their ability to
stimulate NK cells, as a result of the downregulation of MHC-
I molecules and upregulation of NK-activating ligands on the
surface of infected tumor cells. This stimulation is reflected in an
increase of both the release of cyto/chemokines (IFN-γ, TNF-α,
and MIP-1), and the killing of tumor cells by NK cells (159).

On the adaptive side, effector Th cells (with a Th1 bias)
were found to be stimulated in the presence of H-1PV-infected
tumor cells, at least in part through the enhanced capacity of
the latter for activating APCs. Infection of pancreatic ductal
adenocarcinoma (PDAC) cells with H-1PV leads to the release
of HMGB1 but apparently not CRT or ATP (160). As mentioned
above, HMGB1 interacts with TLR4 and can directly activate
DCs. Furthermore, infection of human melanoma cells with
H-1PV induces them to release HSP72. Extracellular HSP72
has potent adjuvant properties and can induce migration and
activation of DCs as well as activation of NK cells (155,
161). H-1PV-infected melanoma cell lysates are indeed able to
induce maturation of DCs, as revealed by the upregulation of
co-stimulatory molecules (CD86) and the production of pro-
inflammatory cytokines (TNF-α and IL-6) (162). The maturation
of DCs resulting from their incubation with H-1PV-induced
melanoma cell lysates correlates with the up-regulation of TLR3
and TLR9 expression and the activation of the NFκB signaling
pathway (163). DCs pulsed with lysates of H-1PV-infected tumor
cells not only mature and produce pro-inflammatory cytokines,
but also show the ability to cross-present TAAs to specific CTLs,
linking the stimulation of innate immunity to the activation of an
adaptive immune response (164).

H-1PV requires functional adaptive immunity to fully express
its therapeutic potential. CD8+ cells are essential to suppress
metastases of Morris hepatoma cells in rats treated with a
therapeutic vaccine based on H-1PV-infected autologous tumor
cells (165). Similarly, antibody depletion of CD8+ cells in an
immunocompetent rat model of glioma, strongly diminished
H-1PV oncosuppressive activity (166). Immune reconstitution
of NOD SCID mice bearing human PDAC transplants with
autologous DC and T-cells primed ex vivo with H-1PV-induced
tumor cell lysates resulted in a strong suppression of tumor
development (167). These data directly demonstrate the adjuvant
effect of H-1PV on the efficacy of a cancer vaccine. It is
noteworthy that the vaccination potential of H-1PV can be
further improved by combination therapy with IFN-γ (168). The
involvement of CTLs in H-1PV anti-cancer activity was further
demonstrated in a rat syngeneic bilateral PDAC model. Rats
engrafted with tumors in both flanks and injected with virus in
only one site, experienced significant reduction in tumor size at
both the injected and the distal uninjected sites, arguing for an
involvement of the immune system in the regression of untreated
lesions. H-1PV particles were not detected in uninjected tumors
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which instead showed increased expression of IFN-γ, granzyme
B and perforin (169). As additional proof of the role of CTLs in
the therapeutic activity of H-1PV, adoptive transfer of splenocytes
from H-1PV-treated donors into naïve recipients was shown to
significantly prolong survival of animals harboring PDAC (167).

H-1PV Clinical Development
H-1PV is one of the OVs that have successfully transitioned from
preclinical studies into clinical development. Two clinical trials,
in brain and gastrointestinal (pancreatic) tumor patients, have
been conducted recently.

Glioblastoma

Glioblastoma is recognized as one of the tumors with the
“coldest” TME. Infiltration of immune cells into the glioblastoma
bed is generally very limited (170). Furthermore, mutational
signature studies in glioblastoma have revealed the presence of
only 30–50 non-synonymous mutations (171). As mentioned
above, the success of antigen-specific immunotherapies, such as
checkpoint blockade, largely depends on tumor mutational load
and the presence and phenotype of tumor-infiltrating immune
cells. The benefit of this approach for patients with glioblastoma
is therefore presently insufficient and badly predictable. In
contrast to this intrinsically low responsiveness to checkpoint
blockade seen in the majority of glioblastoma patients, H-
1PV treatment of the latter is unlikely to be compromised
by the “cold” TME. Moreover, H-1PV-induced tumor cell
killing, DAMP/PAMP release and increased neoantigen exposure
[recently reviewed in Angelova and Rommelaere (150)] may
contribute to TME “warming up” and not only trigger antitumor
immune responses per se, but also alleviate glioblastoma
resistance to checkpoint inhibition. Based on the above, H-1PV
deserves consideration also as partner drug in combinatorial
immune checkpoint blockade treatments directed against
glioblastoma and other tumors with low mutational load.

Similar concerns apply to the applicability of CAR T-cell
therapy in glioblastoma. Currently, three CAR T-cell trials
have been published which reported promising signs of efficacy
in selected glioblastoma patients (172). However, also here
the immunosuppressive glioblastoma TME presents obstacles
and poses barriers to CAR T-cell proliferation and responses.
Whether administered as preceding treatment or simultaneously,
in combination with CAR T-cells, H-1PV-mediated TME
immune stimulation holds the promise for synergizing with CAR
T-cell efficiency. H-1PV-based combinatorial approaches which
have yielded encouraging evidence of preclinical and clinical
efficacy were recently reviewed in Bretscher and Marchini (144)
and are briefly listed below (see Future perspectives in PV
therapeutic development).

Yet another advantage of H-1PV as anticancer
immunomodulator lies in the gentle way in which the
virus reshapes the TME and boosts the immune system.
Contrary to immune checkpoint blockade- and CAR T-cell
therapy-associated organ toxicities and immune-related
adverse events, H-1PV administration to glioblastoma
patients is not accompanied by any signs of immune
system overstimulation and does not exert any negative

impact on laboratory safety parameters. Furthermore,
no dose-limiting toxicity could be reached in the first
parvovirus glioblastoma clinical trial, as described in more
detail below.

The preclinical proof of concept for H-1PV-based virotherapy
of brain tumors was provided by in vivo experimental evidence
demonstrating efficient H-1PV-induced suppression of both rat
and human gliomas in syngeneic or immunodeficient animal
models, respectively (173). Progressive reduction of tumor size,
complete remission in 50% of the responding animals and
significant survival prolongation were observed, while no H-
1PV treatment-associated side effects could be detected. These
data paved the way for the launch of the first-in-man PV
clinical trial (ParvOryx01), a phase I/IIa study in patients with
recurrent glioblastoma (174). Notably, ParvOryx01 was also
the first OV trial in Germany (175). Within the frame of the
trial, 18 patients with a history of one previous glioblastoma
resection were treated with escalating H-1PV (GMP-grade,
ParvOryx) doses. Half of the corresponding dose was applied
either intratumorally or intravenously before tumor resection.
After tumor resection, at day 10 after treatment, the second
half of the planned virus dose was injected into the wall of
the resection cavity. The primary trial endpoints were safety,
tolerability, pharmacokinetics, and maximum tolerated dose
(MTD) estimation. In addition, tumor tissue samples were
acquired during resection, allowing for the analysis of markers
of intratumoral virus expression and TME immunological
landscape. ParvOryx01 convincingly proved H-1PV safety and
tolerability (176). MTD could not be reached. Risk assessment
ruled out virus transmission from study patients to third persons,
since no infectious H-1PV particles were found in fecal and urine
samples. Analysis of post-treatment tumor tissues detected virus
expression in a subset of glioblastoma cells and remarkably, also
in those patients who received systemic ParvOryx treatment.
This was in line with preclinical reports showing H-1PV
ability to cross the blood-brain/tumor barrier after intravenous
administration. Furthermore, TME immune conversion was
observed (176). ParvOryx treatment promoted tumor infiltration
with immune cells. Most of the infiltrate consisted of Th
cells and perforin- and granzyme B-expressing CTLs. Of note,
only scarce Treg cells were seen scattered within the tumor.
Activation of glioblastoma-associated microglia/macrophages
and detection of pro-inflammatory cytokine production in
treated tumors hinted at the induction of an inflamed
microenvironment and increased immunological visibility of the
tumor. Interestingly, in some of the study patients, formation of
not only virus-specific but also glioma-specific T-cell responses
was demonstrated, raising the hope that H-1PV treatment may
contribute to the circumvention of tumor immune evasion
mechanisms in glioblastoma and other poorly immunogenic
human tumors.

Pancreatic Ductal Adenocarcinoma (PDAC)

The second H-1PV clinical trial (ParvOryx02) was launched in
2015 in patients with metastatic inoperable pancreatic cancer
(177). ParvOryx02 was recently successfully completed and
clinical and research findings are currently awaiting publication.
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Future Perspectives in PV Therapeutic

Development
The first clinical evidence of H-1PV capacity to induce
an inflamed TME in glioblastoma patients together with
favorable survival data (176, 178), prompted further efforts
to develop strategies to increase the efficiency of PV-based
cancer viro(immuno)therapy. Several approaches hold particular
promise and are currently under investigation.

H-1PV-based combinatorial treatments have been evaluated
in both preclinical and clinical settings (144). H-1PV
combinations with chemotherapeutics (160, 179), histone
deacetylase (HDAC) inhibitors such as valproic acid (VPA) (180)
and immune checkpoint blockade (181) have been demonstrated
to synergistically potentiate the double-faceted anticancer
activity of the virus by both inducing enhanced virus replication,
oxidative stress and tumor cell lysis (180), and exerting immune
stimulatory effects (160, 181) in tumor cell and animal models.
Notably, some H-1PV-based combinatorial approaches have
also been tested in the clinic. The ParvOryx02 trial combined
systemic and intramethastatic H-1PV administration with
gemcitabine, the gold standard first-line therapy for PDAC
patients. Within the frame of a compassionate use program,
favorable response was achieved in glioblastoma patients
treated with H-1PV and bevacizumab, an anti-angiogenic agent
with still underappreciated immunomodulating properties
(182). Some of the patients were also co-treated with the
PD-1 inhibitor nivolumab and based on the positive results
obtained at the preclinical level, with VPA. This multimodal
treatment resulted in partial or complete objective responses in
7 of 9 cases (183, 184). These encouraging results strongly
support further (pre)clinical development of PV-based
viro(immuno)/chemotherapies for glioblastoma and other
cancers treatment.

H-1PV Genetic Engineering
Another intriguing approach to PV efficacy potentiation
is arming the PV genome with immunostimulatory CpG
motifs (185) or therapeutic transgenes encoding for
angiostatic/immunostimulatory molecules (186). However,
in the latter example, due to the limited packaging capacity
of H-1PV, the therapeutic transgene replaces part of the viral

genomic region encoding for the capsid proteins, rendering the
virus replication deficient. Production of these recombinant PVs
requires the use of helper plasmids (187, 188).

The limited packaging capacity of H-1PV can be overcome
through an original strategy proposed by El-Andaloussi et al.

(189). An engineered H-1PV genome is inserted into the genome
of a replication-defective Ad5 vector. The resulting chimera
not only allows H-1PV genome delivery to cancer cells with
subsequent production and release of infectious replication-
competent viral particles but, importantly, also offers new
prospects for reinforcing the anticancer activity of H-1PV by
inserting a therapeutic gene into the adenovirus component of
the Ad-PV hybrid genome. This chimera provides a unique
platform to carry out, by means of a single agent, cancer
gene therapy (through the replication-deficient transgene-armed
adenovirus carrier) and oncolytic virotherapy (through the
released replication-competent H-1PV particles).

As for every OV under investigation and more generally
for any other anticancer agents, further development of
H-1PV-based therapies would certainly benefit from the
establishment of novel models (e.g., use of patient-derived
spheroids/organoids, syngeneic, or humanized animal models)
that more closely recapitulate human disease and better
predict the outcome of the novel therapies once transferred to
the clinic.
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Despite the promising therapeutic effects of immune checkpoint blockade (ICB),

most patients with solid tumors treated with anti-PD-1/PD-L1 monotherapy do not

achieve objective responses, with most tumor regressions being partial rather than

complete. It is hypothesized that the absence of pre-existing antitumor immunity

and/or the presence of additional tumor immune suppressive factors at the tumor

microenvironment are responsible for such therapeutic failures. It is therefore clear

that in order to fully exploit the potential of PD-1 blockade therapy, antitumor

immune response should be amplified, while tumor immune suppression should be

further attenuated. Cancer vaccines may prime patients for treatments with ICB by

inducing effective anti-tumor immunity, especially in patients lacking tumor-infiltrating

T-cells. These “non-inflamed” non-permissive tumors that are resistant to ICB could

be rendered sensitive and transformed into “inflamed” tumor by vaccination. In this

article we describe a clinical study where we use pancreatic cancer as a model,

and we hypothesize that effective vaccination in pancreatic cancer patients, along

with interventions that can reprogram important immunosuppressive factors in the

tumor microenvironment, can enhance tumor immune recognition, thus enhancing

response to PD-1/PD-L1 blockade. We incorporate into the schedule of standard of

care (SOC) chemotherapy adjuvant setting a vaccine platform comprised of autologous

dendritic cells loaded with personalized neoantigen peptides (PEP-DC) identified

through our own proteo-genomics antigen discovery pipeline. Furthermore, we add

nivolumab, an antibody against PD-1, to boost and maintain the vaccine’s effect.
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We also demonstrate the feasibility of identifying personalized neoantigens in three

pancreatic ductal adenocarcinoma (PDAC) patients, and we describe their optimal

incorporation into long peptides for manufacturing into vaccine products. We finally

discuss the advantages as well as the scientific and logistic challenges of such an

exploratory vaccine clinical trial, and we highlight its novelty.

Keywords: pancreatic adenocarcinoma, dendritic cell vaccine, antigen discovery, neoantigen, cancer

immunotherapy

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the seventh leading
cause of cancer-related death in the world in 2018 (1), with
an overall 5-year survival rate of ∼5% (2). Approximately 70%
of deaths are due to widespread metastasis and the remaining
cases have limited metastasis but extensive primary tumors
which eventually lead to mortality (3). Surgery is the only
potential hope of cure for PDAC, but tumors are resectable
only in 20% of patients at the time of diagnosis. Therapeutic
research efforts have mainly focused on improvements in
radio/chemo treatments and to date, there are only a few
chemotherapeutic agents that have shown to be effective against
advanced pancreatic cancer, including gemcitabine with or
without abraxane (4). At present, it is difficult to conclude that
there is a definite SOC adjuvant chemotherapy for all patients
with PDAC. However, multiagent adjuvant therapy (modified
folforinox) has been demonstrated to be more effective than
gemcitabine alone in the adjuvant setting, but its use is limited
only to patients with excellent performance status (5). Recently it
has suggested that gemcitabine plus capecitabine is a valid option
for these patients since it has been shown that it is more efficient
than gemcitabine alone (6).

One of the most promising new cancer treatment approaches
is immunotherapy. Recent studies have shown that PDAC
is an immunogenic tumor. Antigens expressed on pancreatic
tumor cells able to induce specific B and T cells comprise
(7): Wilms’ tumor gene 1 (WT1) (75%) (8), mucin 1 (MUC1)
(over 85%) (9), human telomerase reverse transcriptase (hTERT)
(88%) (10), mutated K-RAS (nearly 100%), survivin (77%),
carcinoembryonic antigen (CEA) (over 90%) (11), HER-
2/neu (over 60%) (12), p53 (over 65%) (13), and α-enolase
(ENO1) (14). Several studies have reported that dysfunction
of the immune system is one of the key contributors for
the development of PDAC (15, 16). Moreover, PDAC is
known to have an immunosuppressive tumor microenvironment
characterized by (i) the absence of intratumoral effector T-cells
(17, 18), (ii) the presence of an inflammatory tumor micro-
environment led by the RAS oncogene (19), and (iii) massive
infiltration of immunosuppressive leukocytes into the tumor

microenvironment, which predicts poor survival (18, 20, 21).
Additionally, the analysis of immune infiltrates in human tumors

has demonstrated a positive correlation between prognosis and
the presence of humoral response to pancreatic antigens (MUC-
1 andmesothelin) (22, 23) or of tumor-infiltrating T cells (20, 24).
Therefore, cancer immunotherapy can be a promising alternative

treatment for PDAC patients.

A major mechanism of immune resistance engaged by tumors
is the enforcement of immune checkpoint pathways, aiming to
shutdown T cells specific for tumor antigens. An important
immune checkpoint is mediated by the programmed cell death
protein 1 (PD-1) expressed on the surface of activated T cells
during initial activation (25, 26). The major role of PD-1 is
to limit the activity of T cells in peripheral tissues at the
time of an inflammatory response to infection and to restrict
autoimmunity (27, 28). Cancer immunotherapy targeting anti-
PD-1 (e.g., nivolumab, pembrolizumab), as well as anti-cytotoxic
T-lymphocyte-associated antigen 4 (anti-CTLA-4, ipilimumab),
has changed the treatment landscape of several tumors (29). Yet
the success of immunotherapy has not been proven effective
for the treatment of metastatic pancreatic cancer patients (30),
who have been shown unresponsive except for the population
withmismatch-repair deficiency which comprises only 0.8% (31).
A broad array of clinical trials in pancreatic cancer have been
completed or are ongoing using different combinations with ICB
(32, 33). However, the most adequate combination for PDAC
patients is not clear so far.

Dendritic cell (DC)-based vaccines for cancer
immunotherapy have been studied and tested for more
than a decade and proven clinically safe and efficient to induce
tumor-specific immune responses, however only limited efficacy
was observed in patients with advanced recurrent disease after
DC vaccination (34, 35). Several groups have attempted to test
safety and efficacy of DC-based vaccines against pancreatic
cancer in early phase clinical trials, loading DCs with tumor
associated antigens (TAAs) ex vivo, and subsequently re-infusing
them in patients, yet with low clinical benefit so far (36–39).
One possible reason for reduced vaccine efficacy could be that
most cancer vaccines tested to date were targeted against defined
non-mutated self-antigens. Tumors express two major kinds
of antigens that can be recognized by T cells: non-mutated
self-antigens and mutated neoantigens, generated in tumor
cells due to their inherent genetic instability (40). Tumor cells
usually harbor between 10 and few thousands private somatic
mutations, as identified by deep sequencing analysis, and even
among tumors of the same histotype, most mutations are
different (41, 42). Thus, neoantigens are mostly “private” and
patient-specific (43) and trigger a higher more robust T-cell
response. Indeed, increasing evidence associates clinical benefit
from immunotherapy with specific responses to private tumor
epitopes (44–48), leading to increased interest in neoantigen
vaccination (40).

Several clinical trials describing vaccines designed to harness
neoantigen-specific immunity have been recently reported
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mainly in melanoma patients: The first study reported the
feasibility, safety and efficacy of a DC vaccine pulsed with
neoantigen peptides (49). Another phase I study has evaluated
a peptide vaccine targeting up to 20 predicted personal tumor
neoantigens and demonstrated an expansion of the repertoire
of neoantigen-specific T cells which correlated with clinical
benefit (50). A second group performed a phase I study
using RNA vaccines that contained up to 10 mutations per
patient and demonstrated that these vaccines can mobilize
specific anti-tumor immunity against these cancers (51). These
studies provide proof-of-principle that a personalized vaccine
can be produced and administered to a patient to generate
highly specific immune responses against that individual’s tumor,
showing that a personalized neoantigen vaccine broadens the
repertoire of neoantigen-specific T cells substantially beyond
what is induced by existing immunotherapeutics.

To determine whether targetable mutations and neoantigens
exist in PDAC, several studies have been performed using
genomic profiles of PDAC tumor samples. A whole-genome
sequencing and copy number variation (CNV) analysis was
performed on 100 pancreatic ductal adenocarcinomas (PDACs)
and found in total 11,868 somatic structural variants at an
average of 119 per individual (range 15–558) (52). Furthermore,
the genomic profile of 221 PDAC tumors were analyzed and
the findings revealed that nearly all PDAC samples harbor
potentially targetable neoantigens (53). To define the importance
of neoantigens in PDAC, one study compared stage-matched
cohorts of treatment-naive, surgically resected, rare long-term
survivors to short-term survivors with a more typical poor
outcome. The authors detected a median of 38 predicted
neoantigens per tumor, and showed that the association of higher
neoantigen quantity and CD8+ T-cell infiltrate with survival
was independent of adjuvant chemotherapy, suggesting that
neoantigen quality, and not purely quantity, correlates with
survival (54).

We hypothesize that effective vaccination in PDAC patients
along with interventions that can reprogram important
immunosuppressive factors in the tumor microenvironment can
enhance tumor immune recognition, thus enhancing response
to PD-1/PD-L1 blockade. To this end, we designed a phase 1b
trial where we incorporated a vaccination schedule of a novel
autologous DC pulsed with personalized neoantigen peptides
(PEP-DC) identified through our own proteo-genomics antigen
discovery pipeline in the SOC chemotherapy adjuvant setting
followed by nivolumab. We hereby set the objectives and design
of our study, and we demonstrate the feasibility of identifying
personalized neoantigens in three PDAC patients, and their
optimal incorporation into long peptides for manufacturing into
vaccine products.

MATERIALS AND METHODS

Clinical Study Design
This is a phase Ib trial (CHUV-DO-0017_PC-PEPDC_2017) to
evaluate the feasibility, safety, immunogenicity, and efficacy
of subcutaneous DC vaccine loaded with personalized
peptides (PEP-DC), in combination with SOC chemotherapy

(gemcitabine/capecitabine) and enteric-coated aspirin, followed
by the anti-PD-1 antibody nivolumab to boost and maintain
the vaccine’s effect in patients with surgically resected PDAC.
The components of the vaccine to be investigated in this study
include agents for which safety has been previously demonstrated
to be acceptable. This trial has been approved by Swissmedic
and the competent Ethics Committee. Before any study-specific
procedure is performed, a signed and dated informed consent
is obtained. In order to be eligible, patients must present:
(a) histologically confirmed resected adenocarcinoma of the
pancreas (T1–T4, N 0–1, minimum 2 cm–AJCC 8th ed.) and
(b) appropriate amount of tumoral tissue collected from the
cytoreductive surgery, allowing the identification of top 10
personalized peptides (PEP) for preparation of PEP-DC vaccine.

Objectives
The primary objectives of the trial are to determine: (1) the
feasibility of producing and administering PEP-DC vaccine in
the indicated patient population; (2) the safety and tolerability
of the study treatment vaccine and aspirin given together
with SOC chemotherapy, and followed by nivolumab; (3)
the immunogenicity by measuring acquired T cell mediated
immune activation events post vaccination. This study has also
a secondary objective, which is to evaluate relapse free survival at
6, 12, 18, 24, and 36 months and overall survival in the indicated
population of patients.

Statistical Methods
We hypothesize that the delivery of the PEP-DC vaccine
through the subcutaneous route in combination with aspirin,
nivolumab, and adjuvant chemotherapy in advanced pancreatic
cancer patients is feasible, safe without additional toxicity, and
immunogenic. Based on study feasibility and anticipated accrual
rate, a total of 12 evaluable patients is expected to enter this
Phase Ib study if treatment limiting toxicities (TLTs) are in the
acceptable range.

The feasibility hypothesis for PEP-DC vaccine will be assessed
by (a) the number of patients in which vaccine production is
successful (at least 6 doses are manufactured and released), and
(b) the number of patients who receive at least one dose of
PEP-DC vaccine (since the mainstay of the therapeutic approach
here is PEP-DC) and the corresponding percentages in the
ITT population (i.e., all registered patients). Exact binomial
confidence intervals for the corresponding rates will be estimated.

The safety and tolerability of the PEP-DC vaccine in
combination with other protocol drugs will be evaluated by the
occurrence of TLTs and adverse events (AEs) in both the “TLT
evaluation” and the safety population. The severity of toxicities
will be classified according to the NCI CTCAE Version 4.03 and
will be presented in tabular as well as graphical format. For each
patient, each AEwill be presented considering the highest (worst)
grade of toxicity observed over the whole treatment period
according to CTCAE version 4.03. Although the safety of the
vaccination backbone has been already established, a continuous
monitoring rule will be followed, to allow for early termination of
the study. Any patient who receives at least one vaccination will
be included in the toxicity (safety) analysis. A Bayesian rule will
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be employed to monitor TLTs after groups of 4 patients have been
treated and complete the final TLT evaluation.

As only 5 weeks are allocated for target prioritization,
assessment of pre-vaccination immune responses against the
predicted neoantigens will not be performed to assist their
selection. Therefore, the selection of long peptides is done in
silico by the NeoDisc pipeline. The immunogenicity of PEP-
DC vaccine will be assessed (based on ITT population as
well as the safety population) by measuring acquired, T cell-
mediated immune activating events post vaccination compared
to pre-vaccination levels. Descriptive statistics of absolute and
relative differences will be calculated overall and for subgroups
of interest.

Regimen
The study was designed so that eligible subjects with PDAC
who undertook cytoreductive surgery followed by chemotherapy
may plan to enroll in the vaccine study. Should the subject
wishes, and upon informed consent, tissue can be harvested
at the time of surgery for identification of personalized targets
for vaccination. Screening of patients may be completed after
the collection of tumor was performed during the surgery.
Upon registration for the trial, all patients would receive 8
cycles of 21 day cycle of gemcitabine/capecitabine. Eligible
patients will undergo apheresis during the last week of the third
cycle of gemcitabine/capecitabine to collect peripheral blood
mononuclear cells for DC vaccine production. Patients will
receive at least six PEP-DC vaccinations starting concomitant
with the 5th cycle of chemotherapy. PEP-DC vaccine of 5–10 ×

106 autologous DC in 1ml volume/treatment will be delivered
subcutaneously every 3 weeks. Patients will receive oral enteric-
coated aspirin daily for the duration of the study starting from the
day of first vaccination until the end of study. Nivolumab will be
administered starting 3 weeks after last chemotherapy cycle and
will be given during the vaccination period until the last vaccine
dose. Afterwards, it will be given as a maintenance therapy
until appearance of new lesion(s) or unacceptable toxicity for
maximum 2 years.

To verify that the combination of PEP-DC vaccine and
enteric-coated aspirin during and following standard adjuvant
chemotherapy, followed by nivolumab, will significantly
enhance tumor immunogenicity, and allow tumor response,
the translational objectives of the study are the following: (a) to
deeply characterize the tumor microenvironment of pancreatic
adenocarcinoma patients; (b) to assess the overall effects of
the combined PEP-DC vaccine during and following standard
adjuvant chemotherapy, followed by nivolumab on peripheral
blood and plasma; (c) to determine tumor antigens against which
the treatment elicits a response.

Identification of Personalized Targets for
Vaccination With NeoDisc
Processing of Patients’ Material for PEP-DC Vaccine

Preparation
Informed consent of the participants was obtained
following requirements of the institutional review board
(Ethics Commission, CHUV). The translational research

has been approved by the CHUV ethics committee
(protocols 2017-00305).

DNA Extraction and Sequencing
DNA was extracted for HLA typing and exome sequencing
with the commercially available DNeasy Blood & Tissue
Kit (Qiagen, Hilden, Germany), following manufacturers’
protocols. Five hundred nanograms of gDNA were used to
amplify HLA genes by PCR. High resolution 4-digit HLA
typing was performed with the TruSight HLA v2 Sequencing
Panel from Illumina on a MiniSeq instrument (Illumina)
(Supplementary Table 1). Sequencing data were analyzed with
the Assign TruSight HLA v2.1 software (Illumina). For exome
sequencing, SureSelect Exome V5 library type (Sureselect v5
capture, Agilent Technologies, Santa Clara, CA, USA), and paired
end reads were chosen, with at least 100x coverage for the tumor
and PBMCs.

LC-MS/MS Analyses of Eluted HLA Peptides
For immunoaffinity purification of HLA peptides from tissues,
we applied a previously published protocol (55, 56). Briefly, anti-
HLA-I and anti-HLA-II monoclonal antibodies were purified
from the supernatant of HB95 (ATCC R© HB-95TM) and HB145
cells (ATCC R© HB-145TM) using protein-A sepharose 4B beads
(Invitrogen, Carlsbad, California), and cross-linked to the beads.
Snap-frozen PDAC tissue samples were homogenized in lysis
buffer on ice in 3–5 short intervals of 5 s each using an Ultra
Turrax homogenizer (IKA, T10 standard, Staufen, Germany)
at maximum speed, as previously described (55, 56). Lysates
were cleared by centrifugation at 25,000 rpm (Beckman Coulter,
JSS15314, Nyon, Switzerland) at 4◦C for 50min. The Waters
Positive Pressure-96 Processor (Waters, Milford, Massachusetts)
was used with 96-well, 3µm glass fiber and 10µm polypropylene
membranes micro-plates (Seahorse Bioscience, North Billerica,
Massachusetts). A depletion step of endogenous antibodies was
performed with plates containing Protein-A beads, and then
the lysates were passed through a plate containing beads cross-
linked to anti-HLA-I, and then sequentially through a plate with
the anti-HLA-II cross-linked beads. After washing with varying
concentrations of salts, the beads were washed twice 2mL of
20mM Tris-HCl pH 8. HLA complexes and the bound peptides
were eluted directly into pre-conditioned Sep-Pak tC18 100mg
plates (ref number: 186002321, Waters) with 1% TFA. After
washing the C18 wells with 2mL of 0.1% TFA, HLA-I peptides
were eluted with 28% ACN in 0.1% TFA, and HLA-II peptides
were eluted from the class II C18 plate with 500 µL of 32% ACN
in 0.1% TFA. HLA-I, and HLA-II peptide samples were dried
using vacuum centrifugation (Concentrator plus Eppendorf) and
stored at−20◦C.

We measured the peptides with LC-MS/MS system consisting
of an Easy-nLC 1200 (Thermo Fisher Scientific, Bremen,
Germany) and the Q Exactive HF-X mass spectrometer (Thermo
Fisher Scientific, Bremen, Germany). Peptides were separated on
a 450mm analytical column of 75µm inner diameter for 120min
using a gradient of H2O/FA 99.9/0.1% (A) and ACN/FA 80/0.1%
(B). The gradient was run as follows: 0min 2% B, then to 5% B at
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5min, 35% B at 85min, 60% B at 100min, and 95% B at 105min
at a flow rate of 250 nL/min.

MS spectra were acquired in the Orbitrap from m/z = 300–
1,650 with a resolution of 60,000 (m/z = 200), ion accumulation
time of 80ms. The AGC was set to 3e6 ions. MS/MS spectra were
acquired in a data-dependent manner, and 10 most abundant
precursor ions were selected for fragmentation, with a resolution
of 15,000 (m/z = 200), ion accumulation time of 120ms and
an isolation window of 1.2 m/z. The AGC was set to 2e5 ions,
dynamic exclusion to 20 s, and a normalized collision energy
(NCE) of 27 was used for fragmentation.

NeoDisc Pipeline

Alignment
Exome sequence reads were aligned to the Genome Reference
Consortium Human Build 37 assembly (GRCh37) with
BWA-MEM version 0.7.17 (57). The resulting SAM format
was sorted by chromosomal coordinate and converted into
a BAM file, then PCR duplicates were flagged, using the
Picard AddOrReplaceReadGroups and MarkDuplicates
utilities, respectively (from http://broadinstitute.github.io/
picard). Various quality metrics were assessed with the Picard
MarkDuplicates, CollectAlignmentSummaryMetrics, and
CalculateHsMetrics utilities. Following GATK best practices,
GATK BaseRecalibrator (within GATK v3.7-0) was used to
recalibrate base quality scores (BSQR) prior to variant calling
(58, 59). BQSR corrects base quality scores based on an
estimation of empirical error frequencies in the alignments. The
recalibrated tumor and germline BAM files were then used as
input for each of three variant callers: GATK HaplotypeCaller;
MuTect v1; and VarScan 2.

Caller 1: GATK HaplotypeCaller
The GATK HaplotypeCaller algorithm improves variant calling
by incorporating de-novo assembly of haplotypes in variable
regions, thus reducing the overall false-positive variant call rate
(58, 59). HaplotypeCaller was run in GVCF mode on each tumor
and germline recalibrated BAM file to detect SNV and Indel
variants. The resultant gVCF files were combined using GATK
GenotypeGVCF to produce raw variant calls for tumor and
germline within in a single VCF. Subsequent variant quality score
recalibration, following GATK best practices, was performed
separately for SNVs and Indels (insertions/deletions) using the
GATK variant Recalibrator tool to identify high-confidence calls.
Variant quality was assessed by the GATK VariantEval tool.
Patient-specific SNPs were defined as variants present in both
tumor and germline, while variants present only in tumor were
defined as somatic mutations.

Caller2: MuTect v1
TheMuTect variant calling algorithm predicts somaticmutations
based on log odds scores of two Bayesian classifiers (from https://
github.com/broadinstitute/mutect). The first classifier identifies
non-reference variants in the tumor sample while the second
detects whether those variants are tumor specific. Candidate
somatic mutations are then filtered based on read support, for
example by ensuring that supporting reads map to both DNA

strands, in order to reduce next-generation sequencing artifacts.
Identified somatic mutations are exported in VCF format.

Caller3: VarScan 2
The VarScan2 algorithm, unlike GATK and MuTect, relies on
hard filtering of calls rather than Bayesian statistics (60). This
has the advantage of being less sensitive to bias such as extreme
read coverage and sample contamination. VarScan 2 filters reads
based on parameters such as read quality, strand bias, minimum
coverage, and variant frequency. The multisample pileup file
required for VarScan 2 input was generated with SAMtools (61,
62). VarScan 2 was run using default parameters and generated
a VCF containing SNVs and Indels for both somatic mutations
and SNPs.

Non-redundant call set
Variant calls from GATK, MuTect v1, and VarScan 2 were
combined into a single VCF that contains the union of the
variants of all three callers. Ambiguous calls (i.e., different calls at
the same genomic coordinate) were resolved by a simple majority
rule. If there was no majority, the call was rejected. GATK
ReadBackedPhasing was used to retrieve the phasing information
of all variants in the combined VCF (58, 59). The functional
effect of the variants was annotated by SnpEff which predicts
the effects of variants on genes based on reference databases.
To maximize variant annotation we used annotations from the
hg19 (Refseq) and GRCH37.75 (Ensembl) databases (63–65).
This non-redundant, annotated VCF file was used for further
genomics and proteogenomics analyses.

Prediction and Prioritization of Neoantigens
For the identification of neoantigens, only “high confidence”
calls were selected, defined as the set of variants containing all
somatic mutations plus linked SNPs (i.e., those SNPs present on
the same allele as the somatic mutation) detected by MuTect v1
alone or by a combination of at least two of the three variant
callers described above. The novel amino acid generated by each
single nucleotide somatic mutation was placed at the center of
a 31mer peptide that also included any amino acid changes
resulting from non-synonymous linked SNPs. In the case of
a somatic indel mutation, the entire polypeptide encoded by
the new open-reading frame plus the upstream 24 amino acids
could be subjected to HLA ligand prediction. However, for the
described three PDAC samples this option was disabled.

HLA-I and HLA-II ligands were predicted by the
MixMHCpred.v2.0.2 and MixMHC2pred.v1 algorithms,
respectively (66–68). Both algorithms have been trained on
naturally presented peptides and compute the likelihood of a
peptide to bind to one of a given set of HLA alleles. Mutant
peptides of sizes ranging from 9 to 12 and 12 to 19 amino acids,
derived from the 31mer were supplied as input for HLA-I and
HLA-II predictions, respectively, using patient-specific allotypes
as determined by HLA typing (Supplementary Table 1).

Tissue-specific gene expression data was downloaded from
The Genotype-Tissue Expression (GTEx) project, a public
resource that contains data from 53 non-diseased tissues across
nearly 1,000 individuals (69). We used a custom R script to
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retrieve gene expression values, based on GTEx v7 publicly
available data. The 90th percentile expression of the wild type
gene in the tissue-derived tumor was reported from GTEx data,
and mutations in genes not expressed (TPM < 1) in pancreas
were excluded.

Due to the intrinsic content and properties of protein
sequences, HLA ligands are not distributed equally along proteins
and tend to cluster in hotspots. We captured this information
across dozens of cell types in our ipMSDB database (70). The
overlap of the wild-type-form of a mutant peptide with a hotspot
in ipMSDB was calculated, as well as the level of presentation of
the source protein. Any mutant peptide matching any wild-type
sequence in SwissProt (71) or found in the reference GRCh37
(64) proteome was filtered out.

Finally, we used a custom python script to design the best long
peptide(s) for every mutation, encompassing the highest possible
number of HLA-I and HLA-II binding peptides (MixMHCpred
and MixMHC2pred %Rank < 5% or found in ipMSDB). Long
peptides were ranked by the minimum p-value of the predicted
HLA-I neoantigens, and the top 10 long peptides were selected.

Proteogenomics
For every sample, we created a reference fasta file where residue
mutation information was added to the header of the affected
translated transcripts, in a format compatible with MaxQuant
v1.5.9.4i as previously reported (72). We used the GENCODE
v24 (73) (GRCh37 human reference assembly, downloaded from
https://www.gencodegenes.org/human/release_24lift37.html) as
the standard reference dataset (89,543 entries). We parsed the
GENCODE comprehensive gene annotation file, in GFF3 format,
to extract genomic coordinate information for every exon.
These coordinates were compared with sample-specific variant
coordinates to derive non-synonymous amino acid changes
within each protein.

For every patient, we searched the immunopeptidomics MS
data against the patient-specific customized reference database,
including a list of 247 frequently observed contaminants. The
enzyme specificity was set as unspecific, and peptides with
a length between 8 and 25 AA were allowed. The second
peptide identification option in Andromeda was enabled. A false
discovery rate (FDR) of 5% was required for peptides and no
protein FDR was set. The initial allowed mass deviation of the
precursor ion was set to 6 ppm and the maximum fragment
mass deviation was set to 20 ppm. Methionine oxidation and
N-terminal acetylation were set as variable modifications.

PEP-DC Manufacturing
The PEP-DC vaccine is composed of autologous monocyte-
derived DC pulsed with personalized peptides (PEP). Monocytes
are enriched from a fresh leukapheresis using CD14+ cells
selection on the CliniMACS Prodigy (Miltenyi). This process
is GMP compliant and allows for a fast and reliable monocyte
selection in a closed system. Purifiedmonocytes are differentiated
into immature monocyte-derived DC (iDC) by a 5 days culture
in the presence of IL-4 and GM-CSF. On day 6, iDC are then
loaded overnight with 10 long peptides andmatured/activated for
6–8 h using a maturation cocktail composed of MPLA and IFNγ.

Cells are finally harvested and cryopreserved as vaccine doses (5–
10 × 106 cells per dose). For each injection of PEP-DC vaccine,
one dose is thawed, washed and resuspended in NaCl 0.9%
supplemented with 1% human albumin before being transferred
into syringes and stored at 2–8◦C until administration.

Immunogenicity Assessment of PEP-DC
Candidates Pre-immunization
The immunogenicity the long peptides was evaluated in
cryopreserved peripheral blood mononuclear cells (PBMC) from
the three subjects as described (74). PBMC were thawed, rested
overnight in RPMI 10% FBS with Penicillin/Streptomycin. For
the in vitro stimulation (IVS), cells were plated in 24- to 96-
well plates at 2 × 106 cells per well in RPMI, 8% human
serum supplemented with Penicillin/Streptomycin, 50µM beta-
mercaptoethanol and recombinant human IL-2 at a final
concentration of 100 UI/ml. The cells were stimulated with
peptide pools containing 1µg/ml of each candidate peptide. At
day 12, intracellular cytokine stainings (ICS) were performed.
Each individual well was splitted in two identical fractions
and one fraction only was re-challenged with 1µg/ml of the
corresponding peptide for 16–18 h at 37◦C and 5% CO2 in
presence of 1 µg of brefeldin A (Golgiplug, BD). As a positive
control, cells stimulated with staphylococcal enterotoxin B
(SEB) at a concentration of 0.25 ng/ml. After 16–18 h of re-
stimulation with individual long peptides, cells were harvested
and stained with anti-CD3, anti-CD8, anti-CD4, anti-IL-2, anti-
TNF-α, anti-IFN-γ (BD biosciences), and with viability dye
(Life technologies). Flow cytometry was performed using a
four-lasers Fortessa (BD biosciences) and analyzed with FlowJo
v10 (TreeStar).

RESULTS

We here present a novel study were a vaccination schedule
is incorporated in the SOC chemotherapy adjuvant setting
in patients with non-metastatic resectable pancreatic
adenocarcinoma followed by nivolumab (an antibody against
PD-1), to boost and maintain the vaccine’s effect (Figure 1). The
study was optimally designed to offer innovative cancer vaccines
for a PDAC patient population that on one hand would fit the
course of standard of care, and on the other hand will be feasible
in terms of the time required for the process of antigen discovery
and the manufacturing of the vaccine.

It has been correctly pointed out that putting a mutanome-
based individualized treatment concept into practice requires
both highly interdisciplinary research and an innovative drug
development process (75). To fit the tight schedule of the
clinical trial, a period of 5 weeks was dedicated for antigen
discovery. Upon reception of a pair of tumor tissue sample and
matched PBMCs, DNA extraction is performed for whole exome
sequencing and HLA typing, and the tumor tissue sample is
processed for purification of HLA-I and HLA-II peptides for
MS analyses. Within the 2 weeks required for sequencing the
DNA samples, HLA typing and MS analyses are completed.
The following 2 weeks are dedicated for executing the NeoDisc
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FIGURE 1 | Clinical trial study design.

pipeline, for data mining and for manual inspection of the data
and results, leading to the selection of 10 long optimally designed
neoantigens. Finally, the production needs to be “on demand,”
cost-effective, rapid, and compliant with Good Manufacturing
Practice (GMP).

NeoDisc Pipeline for Neoantigen Discovery
in PDAC
We here tested the feasibility of prioritizing neoantigens in
PDAC as targets for our PEP-DC vaccine in three PDAC
patients, 14JQ, 154H, and 16AY. The NeoDisc pipeline integrates
multiple types of data input from next generation sequencing
data, MS immunopeptidomics datasets, and publicly available
resources (Figure 2). First, the NeoDisc pipeline requires a
list of non-synonymous somatic mutations that affect protein-
coding regions as identified by three different mutation-calling
algorithms: MuTect, VarScan2, and GATK. A combined VCF
file is generated and annotated with amino acid changes
and transcript information. To increase accuracy, only “high
confidence” calls were selected, defined as the set of somatic
mutations detected by MuTect alone or by a combination of at
least two of the three variant callers described above. As expected,
the mutational load in the three PDAC patients was low, with 60,
39, and 23, non-synonymous somatic mutations in 14JQ, 154H,
and 16AY, respectively, which is within the range previously
reported (53). Among them, we detected mutations in predicted
driver genes, the MLLT4 (Ser1708Ala) and PTPN12 (Gly532Glu)
(76–78). We then attempted to identify personalized neoantigens
using two different approaches; direct identification with mass
spectrometry and by prediction of HLA ligands encompassing
any of these mutations.

We first performed MS immunopeptidomics analyses on
exactly the same tumor tissue used for the genomics analysis
from the three PDAC patients, and applied a proteogenomics
pipeline as previously described (72) in order to identify
neoantigens naturally presented in the PDAC tissues. We
have identified 11,437, 4,437, and 6,158 HLA-I and 1,569,
448, and 3,319 HLA-II peptides, from the 14JQ, 154H,
and 16AY tumor tissues, respectively (Supplementary Table 2).
However, no neoantigens could be identified by MS. Either
many of the potential neoantigens remain undetected in
the MS-based analyses because of the lack of sensitivity, or
they might not be naturally presented. The likelihood of
detecting neoantigens by discovery MS increases with the overall
depth of ligandomic data available and with the mutational
load. Here, both aspects were not sufficient to successfully
detect neoantigens.

Additional tumor-associated antigen (TAAs) derived HLA
ligands are frequently identified by MS, such as “normal”
(wild-type) proteins overexpressed or restricted to tumors (e.g.,
MelanA, Tyrosinase, PMEL in melanoma; NY-ESO in multiple
cancer types). Such targets have been exploited in innovative
personalized vaccines and T cell based therapies (79, 80).
We have identified multiple TAAs in the immunopeptidome
for each of the three PDAC patients, including the testis-
specific protein bromodomain testis-specific protein (BRDT),
L-lactate dehydrogenase C chain (LDHC), outer dense fiber
protein 2 (ODF2), coiled-coil domain-containing protein 110
(CCDC110), tumor associated antigens mesothelin (MSLN),
mucin-1 (MUC1), prolyl endopeptidase FAP (FAP), and the
cellular tumor antigen p53 (TP53) (Supplementary Table 2).
Nevertheless, after thorough data mining, we estimated that these
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FIGURE 2 | Schematic overview of NeoDisc pipeline for prioritization of neoantigens in PDAC for the design of optimally long peptides for vaccination.

ligands were unlikely to be immunogenic and therefore have
decided not to include them in the vaccine.

Prioritization of Neoantigens and Design of
Long Peptides
Consequently, in the three PDAC patients, the selection of targets
was based exclusively on prediction of neoantigens. To increase
accuracy, the “high confidence” calls were selected, and a list of
31 mer peptides with mutation in the middle position was then
generated and subjected to binding predictions of HLA class I (9–
12 mers) and class II (12–19 mers) with the MixMHCpred.v2.0.2
and MixMHC2pred.v1 algorithms, respectively (66, 68, 81). Both
algorithms have been trained on naturally presented peptides
and compute the likelihood of a peptide to bind to one of
the given set of the patient HLA alleles. We have previously
showed that large scale immunopeptidomics dataset may help
in prioritizing predicted neoantigens (70, 82). Therefore, we
mapped the list of predicted neoantigens on our ipMSDB
ligandomic database that contains a million of HLA-I and HLA-
II ligands. The overlap between the predicted neoantigen and
the wild-type (WT) form present in ipMSDB was determined,
as well as the level of presentation of the source genes. These
values were considered for prioritization; neoantigens matching
exactly WT counterparts in ipMSDB were prioritized (Table 1).
Mutated source genes that were underrepresented in ipMSDB
were excluded. In addition, we excluded predicted neoantigens
that are identical to other WT sequences in the human proteome
(GRCh37 Genome assembly and UniProt database) and all
predicted neoantigens derived from highly mutated genes, which
are likely to be false positives. Finally, we excluded genes that
are known not to be expressed in pancreas (TPM < 1 in GTEx).
For each mutation, we designed a few long peptides covering as
many predicted HLA-I and HLA-II neoantigens as possible. We

ranked the mutations in the format of long peptides according
to the best predicted binding affinity to HLA-I alleles (%Rank
≤ 5% MixMHCpred.v2.0.2), the number of HLA-I and HLA-II
predicted neoantigens harboring the mutation, and the number
of represented HLA alleles. Finally, for each mutation we selected
the shortest long peptide covering as many predicted HLA-I and
HLA-II neoantigens (Figure 3) and completed the list of ten long
peptides (PEP).

DC Vaccine Production
The DC-vaccine used in this study is a frozen suspension of
patient-specific, ex vivo cultured autologous monocyte derived
DCs loaded with synthetic neoantigen (personalized) peptides.
The proprietary name for the biological product comprising
this substance is PEP-DC, which refers to Personalized Peptides
loaded onto autologous DCs. Manufacturing of PEP-DC consists
of five main steps described in Figure 4, starting with peptides
identification and manufacturing. We have tested and validated
this production process with healthy donor leukapheresis and
peptides mixes of up to 9 peptides. Indeed, because of the
peptide length, some synthesis failure should be expected even
after sequence optimization and careful peptide selection. Based
on three experimental batches, we can evaluate that PEP-DC
process leads to the production of 2.8 ± 2.1 × 108 PEP-DC
cells, corresponding to 56 ± 41 PEP-DC cryopreserved vaccine
doses (based on 5.0 × 106 cells per dose) per manufacturing
run. Specifications of the final product ensure safety (sterility,
mycoplasma, endotoxin), viability (Trypan blue exclusion),
identity (phenotype), and functionality (IL12p70 secretion upon
maturation) of the PEP-DC vaccine (Table 2). For each vaccine
injection, a PEP-DC dose is thawed, washed and reconstituted
NaCl-Albumin before injection. Viability is checked on each
reconstituted dose with a target of ≥60.0% viable cells. All
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TABLE 1 | Basic clinical information and detailed information about the 10 optimally designed long peptides for each patient.

Rank Chromosome

position

Gene Expression

in

pancreas,

GTEx

[TPM]

Mutation Gene driver

and

mutation

status

Long peptide sequence ipMSDB HLA-I ipMSDB

HLA-II

Lowest

HLA-I

binding

pval

Lowest

HLA-II

binding

pval

#

predicted

peptides

# HLA-I

alleles

# HLA-II

alleles

14JQ, PDAC, 60 NON-SYNONYMOUS SOMATIC MUTATIONS

1 16_8994451 USP7 11.509 p.Tyr749Asp LYEEVKPNLTERIQDDDVSLDKALDE EXACT 0.002 0.01209 31 4 3

2 7_27169740 HOXA4 1.06 p.Ala205Thr VVYPWMKKIHVSTVNPSYNGGEPKRSRT EXACT EXACT 0.004 0.0005 58 3 7

3 9_33797978 PRSS3 13983 p.Val175Ile TLDNDILLIKLSSPAIINSRVSAISLPT EXACT INCLUDED 0.02 0.00096 39 4 7

4 14_105415346 AHNAK2 1.162 p.Thr2148Ala AHLQGDLTLANKDLTAKDSRFKM EXACT PARTIAL 0.002 0.00914 31 3 2

5 1_17083776 MST1L 34.35 p.Arg674Leu ARSRWPAVFTLVSVFVDWIHKVMRLG 0.0001 0.00578 54 3 6

6 6_168366581 MLLT4 11.744 p.Ser1708Ala Driver LPRDYEPPSPAPAPGAPPPPPQRNAS 0.0001 0.00054 80 3 3

7 8_52732961 PCMTD1 16.471 p.Pro342Thr EPPQNLLREKIMKLTLPESLKAYLT PARTIAL PARTIAL 0.0008 0.00098 66 4 3

8 6_150001239 LATS1 3.182 p.Asp789Asn KDNLYFVMDYIPGGNMMSLLIRMGIFPE PARTIAL 0.0009 0.00126 58 3 7

9 3_123419461 MYLK 3.273 p.Asp952Asn Passenger RKVHSPQQVNFRSVLAKKGTSKT 0.001 0.01599 24 4 3

10 1_155697428 DAP3 12.728 p.Leu168Phe IPDAHLWVKNCRDFLQSSYNKQRFD 0.002 0.00521 45 4 2

154H, PDAC, 39 NON-SYNONYMOUS SOMATIC MUTATIONS

1 2_85576579 RETSAT 17.724 p.Arg309Trp IAFHTIPVIQWAGGAVLTKATVQSVL EXACT EXACT 0.0004 0.00026 65 5 4

2 12_51453191 LETMD1 14.494 p.Asn367Asp AELSLLLHNVVLLSTDYLGTRR EXACT EXACT 0.006 0.00298 50 4 4

3 20_34457413 PHF20 2.4 p.Arg288Gly NSQTLQPITLELRRGKISKGCEVPL EXACT 0.02 0.03246 19 4 2

4 3_57908703 SLMAP 3.553 p.Lys783Gln KQSITDELQQCKNNLKLLREK 0.0007 0.00357 40 3 2

5 2_241700220 KIF1A 11.548 p.Ser769Phe KKVQFQFVLLTDTLYFPLPPDLLPPEAA 0.0008 0.00201 72 5 5

6 2_238253286 COL6A3 16.075 p.Arg2459Trp VAVVTYNNEVTTEIWFADSKRKSVLLDK 0.0009 0.00133 61 5 5

7 13_96592287 UGGT2 3.986 p.Val579Gly KKDQNILTVDNVKSGLQNTF 0.002 0.01697 24 6 3

8 7_77256591 PTPN12 12.375 p.Gly532Glu Driver DRLPLDEKEHVTWSFHGPENAIPI PARTIAL PARTIAL 0.003 0.0391 12 6 1

9 18_55352319 ATP8B1 10.673 p.Asn486Lys DHRDASQHKHNKIEQVDFSWNTYA 0.003 0.0339 14 5 2

10 8_9627645 TNKS 3.91 p.Gly1257Glu HRQMLFCRVTLEKSFLQFSTMKMAHA PARTIAL PARTIAL 0.003 0.00039 39 6 5

16AY, PDAC, 23 NON-SYNONYMOUS SOMATIC MUTATIONS

1 17_15134320 PMP22 11.978 p.Gly133Ser HPEWHLNSDYSYSFAYILAWVAFPLALL EXACT 0.0004 0.00018 86 4 8

2 X_54014354 PHF8 5.113 p.Ser621Tyr LLMSNGSTKRVKSLYKSRRTKIAKKVDK 0.0001 0.0075 48 5 2

3 9_33794809 PRSS3 13983 p.Ser5Asn MRETNVFTLKKGRSAPLVF 0.0004 0.00558 10 4 3

4 12_9085452 PHC1 9.639 p.Gln467Lys TQQVPPSQSQQKAQTLVVQPMLQSSPL PARTIAL 0.0004 0.0044 42 5 6

5 19_1037681 CNN2 20.083 p.Asp259Asn APGTRRHIYDTKLGTNKCDNSSMSLQMG 0.0008 0.01696 27 5 5

6 20_50704942 ZFP64 1.539 p.Arg187Leu YASRNSSQLTVHLLSHTGDTPFQ 0.002 0.00077 40 3 4

7 12_31254897 DDX11 5.459 p.Arg728His LRQVHAHWEKGGLLGHLAARKKIFQE 0.003 0.00764 37 3 2

8 11_32954416 QSER1 3.78 p.Asn409Asp SSNQQEVLSSVTNEDYPAQTRDLSSVSQ PARTIAL 0.003 0.00478 39 3 4

9 1_27177681 ZDHHC18 4.114 p.His299Tyr FFSIWSILGLSGFYTYLVASNLTTNEDI PARTIAL 0.005 0.00012 106 4 8

10 20_60892518 LAMA5 23.906 p.Arg2465Gln AKEELERLAASLDGAQTPLLQRMQT PARTIAL PARTIAL 0.008 0.00763 41 5 6

The position of the mutation in the long peptide is indicated in red. ipMSDB HLA-I and ipMSDB HLA-II columns show the matching of the WT counterpart of the predicted neoantigen in the ipMSDB. Prediction of driver genes and

mutation status annotations are derived from IntOGen database.
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FIGURE 3 | Example for the design of the minimally long peptide covering the mutation Arg288Gly in PFH20 gene identified in 154H PDAC patient.

FIGURE 4 | Schematic overview of PEP-DC manufacturing process and timelines.

PEP-DC batches prepared in this pilot study met specification
for product release as described in Table 2. This confirms that
our GMP-compliant manufacturing process is suitable for the
production PEP-DC.

Pre-immunization Immunogenicity of PEP
Candidates
Even though immune responses against neoantigens prior to
vaccination are typically rare, we decided to test if any of the 10
PEP long peptides may be recognized by autologous T cells from
peripheral blood. Pre-immunization immunogenicity was tested

for the three PDAC patients. Although some of the long peptides
failed the synthesis quality control and could not be tested, CD4+
T-cell responses against PEP candidates were detected against at
least one long peptide in all three donors, while no CD8+ T cell
responses could be detected (Figure 5).

DISCUSSION AND INNOVATION

Over the last 10 years immunotherapy has changed the
treatment landscape of several tumor types in metastatic setting.
Management of patients with non-metastatic cancer relies
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on multimodality treatment that includes surgical resection
depending on tumor type and peri-operative chemotherapy. In
PDAC, despite these aggressive measures, the high propensity
of relapse has a detrimental effect on survival. The high
metastatic potential is due to the presence of micrometastasis
at systemic sites in patients with early-stage pancreatic cancer
(83). In this proof of concept trial, our aim is to demonstrate
that in such very aggressive diseases, there is a need to act
without any delay, and early immunomodulation may be the
key response.

TABLE 2 | Specification for release for the final product of PEP-DC doses.

Test Analytical procedure Specification

PEP-DC at day 6

(final product)

Sterility BacTEC (aerobic and

anaerobic)

No growth

Mycoplasma MycoSeq Negative

Endotoxin Endosafe ≤10.0 EU/mL

Cell count Manual cell count by

Trypan blue exclusion

≥45.0 × 106 viable

cells

Viability ≥60.0% viability

Cell

purity/identity

Flow cytometry ≥60.0% live

HLA-DR+CD86+

cells

≤20.0%

CD14+ cells

Culture supernatant

at day 6 after

maturation

Functionality

IL-12p70

ELISA ≥50.0 pg/mL

Although pancreatic cancer patients present high frequencies
of functional tumor-reactive T cells in the bone-marrow and
blood (84), and show an averagemutation burden similar to other
solid tumors (85), parsing tumor immune microenvironment
(TME) of pancreatic cancer seems to be a challenge. In PDAC,
tumor-specific CTLs become “trapped” in the peritumoral tissue
and in the tumor stroma, not reaching pancreatic tumor cells in
sufficient amounts (86, 87). Additionally, exhaustion of effector
CD8+ T-cells by the TME as well as hampered recruitment of
cDC1s by downregulating CCL4 signaling upon constitutively
active β-catenin signaling may explain the ineffective antitumoral
response, which underscores the importance of endogenous DCs
for initiating anti-tumor immunity.

Rationale for Combination Immunotherapy
in PDAC
Currently, clinical benefit using different agents in monotherapy
is very limited in PDAC. Therefore, combination strategies are
required, in order to obtain a synergistic effect on potential
efficacy, yet keeping expected adverse events under manageable
conditions. Therefore, it is important to establish both the
scientific rationale of the proposed combination, as well as the
best timing for introducing each component.

Treatment of metastatic cancer essentially relies on cytotoxic
drugs that kill tumor cells or hinder their proliferation.
Although a primary goal of anti-cancer chemotherapy is the
tumor mass reduction, it is now clear that off-target effects,
especially directed to the host immune system, may reduce the

FIGURE 5 | T-cell responses in donors 14JQ, 16AY, and 154H against long peptides. The percentage of IFN-γ-producing T cells are shown. Black (unstim) and white

(SEB) bars represents negative and positive controls, respectively. Positive peptides are identified in red.
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immunosuppressive activity of malignant cells and cooperate
for successful tumor eradication (88). Gemcitabine (GEM) is
a chemotherapeutic agent acting as a nucleoside analog that
also targets ribonucleotide reductase by inactivating the enzyme
irreversibly. It is used in various carcinomas such as non-small
cell lung cancer, pancreatic cancer, bladder cancer, and breast
cancer, and it represents the primary systemic agent for the
treatment of pancreatic cancer. On standard dose schedules
in patients with pancreatic cancer, the drug is associated with
manageable toxicity, and its administration has led to a survival
benefit both in the primary and adjuvant settings (89, 90).
In advanced pancreatic cancer patients, GEM therapy may
decrease memory T-cells, promote naive T-cell activation (91),
and induce the proliferation of CD14+ monocytes and CD11c+

DC (92). GEM is also able to induce apoptotic destruction of
tumor cells and potentially load the immune system with large
amounts of tumor antigen, but this is not enough to initiate a
protective antitumor response and adjuvant immunotherapy is
required (93).

A peptide cocktail vaccine OCV-C01 containing epitope
peptides [coding for vascular epithelial growth factor receptor
(VEGFR1 ad VEGFR2)] was investigated in combination with
GEM in the adjuvant treatment for resected pancreatic cancer
patients (n = 30) in a single arm multicenter Phase II study.
OCV-C01 combined with GEM was tolerable with a median DFS
of 15.8months (and aDFS rate at 18months of 34.6%), which was
favorable compared with previous data for resected pancreatic
cancer (94). In another phase I pilot study, a Wilms tumor gene-
1 peptide-pulsed DC vaccination was evaluated in combination
with GEM as a first-line of treatment in 10 patients with advanced
pancreatic cancer. WT1 peptide-pulsed DCGEM is feasible, well-
tolerated, and effective for inducing anti-tumor T-cell responses
(95). Kimura et al. evaluated a DC-based vaccine alone or in
combination with lymphokine-activated killer (LAK) cells, along
with gemcitabine and/or S-1 in 49 patients with inoperable
pancreatic cancer (96). Of these patients, two manifested a
complete remission, five a partial remission, and 10 had stable
disease. The median survival of these individuals was 360 days,
which appeared to be longer than what could be achieved
with gemcitabine and/or S-1. Thus, the combination of DC-
based immunotherapy and chemotherapy seems well-tolerated
by advanced PDAC patients but warrants further investigation
through combination with ICB or other immunotherapies. In
our study, we build on the gemcitabine/capecitabine backbone
for not fit pancreatic cancer population (ECOG PS 1 or 2) and
explore the additive benefits of DC-vaccination from the 5th cycle
of chemotherapy, followed by nivolumab treatment.

In pancreatic cancer, a possible explanation for the therapeutic
failure of PD-1/PD-L1 blockade therapy is the lack of
natural infiltration of effector immune cells in most cases
(17, 18, 20). Vaccine-based immunotherapy is a potential
strategy to activate effector T cell trafficking into the TME.
Additionally, it has been shown that the repertoire of clonally
expanded tumor antigen-reactive cells within TILs expresses
PD-1 (97), either in spontaneous responses or vaccine-
mediated. Furthermore, vaccination induces intratumoral PD-L1
expression (98), suggesting a role for PD-1 blockade in enhancing

vaccine efficacy (98, 99). Consistently, in a preclinical model
for pancreatic cancer, GVAX administration (a cancer vaccine
composed of allogeneic pancreatic tumor cell line engineered
to secrete GM-CSF) induced upregulation of PD-L1 expression
when compared to untreated human and mouse pancreatic
tumors. Combination therapy with GVAX and PD-1/PD-L1
blockade improved survival, and correlated with increased
CD8+ T infiltration into pancreatic tumors (100).

Currently very few clinical trials combining cancer vaccines
and PD-1/PD-L1 blockade have been reported in the setting
of pancreatic cancer. Combination strategies using DC vaccines
with ICB should generate an additive effect (98, 99, 101), with low
additional toxicity due to DC vaccination (102, 103). Nesselhut
et al. demonstrated that the efficacy of DC based therapy can be
improved by blockade of PD-L1, enhancing the T-cell specific
response (104). Dose and schedule for anti-PD-1 therapy and
vaccines have been minimally studied; however, both PD-1 on
activated T cells and PD-L1 on tumors appear rapidly following
exposure to interferon (105), suggesting that early application
of PD-1 blockade may be important. For this reason, we have
decided to start nivolumab treatment 3 weeks after the end of
SOC treatment, aiming also to avoid potential toxicities due to
combined chemo-ICB.

Because Treg may persist despite checkpoint blockade,
Treg depletion in conjunction with checkpoint blockade and
vaccination may enhance clinical anti-tumor efficacy. Systematic
reviews of the results of aspirin in cardiovascular studies have
suggested that low-dose aspirin reduces overall cancer incidence
and mortality including in pancreatic cancer (106, 107). In terms
of its mechanism (108), it has been shown that non-steroidal anti-
inflammatory drugs may limit carcinogenesis and enhance the
immune response by (a) preventing prostaglandin E2 (PGE2)-
mediated inhibition of DCs and reducing the transition of
monocytes to immunosuppressive MDSCs (109); (b) reducing
the inhibitory potential of Tregs induced by PGE2 (110); and
(c) abrogating the PGE2 induced suppression of effector T-cell
proliferation by regulatory T cells (111), therefore contributing
to enhanced immune surveillance. Furthermore, PGE2 inhibitors
like aspirin can counteract the FasL mediated elimination of
activated lymphocytes by the tumor endothelial cells, as well
as reduce the immunosuppressive conditions, thus enhancing
the immune response against the tumor. We therefore consider
that blockade of PGE2 in cancers using aspirin can reverse the
endothelial barrier and synergize with vaccination allowing T
cell infiltration. Consequently, we will use aspirin all along our
study, which we expect to synergize with T cell activation by
PD-1/PD-L1 blockade.

Neoantigen Prediction and Selection for
PEP-DC
Identification and selection of targets for neoantigen based
vaccines is challenging. Mass spectrometry has been instrumental
for the identification of cancer-associated antigens among the
endogenously presented peptides. In recent years, dedicated
computational pipelines for proteogenomic applications
facilitated the direct identification of neoantigens by MS in

Frontiers in Immunology | www.frontiersin.org 12 August 2019 | Volume 10 | Article 1832142

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bassani-Sternberg et al. Personalized Vaccine for Pancreatic Cancer

murine and human cancer cell line models (49, 112–115), B
cell lymphomas (116), and melanoma tissues (72) as well as
other cryptic peptides resulting from unconventional coding
sequences in the genome (117, 118). However, only a handful
of neoantigens have been identified by MS in a given sample,
and typically in high mutational load tumors such as melanoma
(72). Indeed, we could not identify with discovery MS-based
immunopeptidomics neoantigens in the three investigated
PDAC samples. While several tumor-associated antigens were
identified, after literature mining we concluded that these
antigens might be poorly immunogenic, and in these three cases
we decided to exclude non-mutated targets.

The prioritization and selection of neoantigens for
personalized vaccines in low mutational load tumors like
PDAC is largely performed with HLA ligand interaction
prediction algorithms. The performance of such tools has
improved significantly with the incorporation of MS HLA
ligand elution data in the training of the algorithms, both
for HLA-I (81, 119–121), and more recently for HLA-II (68).
Furthermore, interrogation of properties of the thousands of
different source-proteins has revealed biological determinants
that correlate with presentation, such as level of translation and
expression, turnover rate, proteasomal cleavage specificities,
hotspots, and biological functions. Integrating such variables into
a single predictor further improves prediction of neoantigens
(70, 72, 120, 122). Because predictors of immunogenicity are still
immature (123) false positives are inevitably included among
the predicted neoantigens, which may eventually be included in
a vaccine.

A main innovative aspect of our study is the identification of
PDACmutated neoantigens. We have designed NeoDisc, a novel
proteogenomics antigen discovery pipeline for identification
and selection of neoantigens, and we apply it for the first
time in PDAC. NeoDisc integrates multiple state of the
art prediction tools, large-scale ligandomic database, and a
unique personalized and optimized design of long peptides
that maximizes the likelihood that the selected mutations will
eventually be presented by the HLA-I and HLA-II complexes
on the loaded DCs. While in this PEP-DC study the existence
of pre-existing immune responses against the long peptides is
not a prerequisite for inclusion in the vaccine, such analysis
is performed as part of a large translational program that
aims to provide extensive immunogenicity training data that
will allow future development to improve the performance
of NeoDisc.

This proof of concept study aimed to assess specifically
the feasibility of prioritizing immunogenic neoantigens with
NeoDisc. Indeed, we were able to confirm for the three
patients pre-existing immune responses against in total four long
neoantigen peptides with autologous peripheral CD4+ T cells.
No CD8+ T cell responses could be detected. This might be
related to the low frequency of neoantigen specific CD8+ T
cells. Alternative strategies could have been more sensitive to
detect CD8+ T-cell responses, such as peptide-MHC multimers
screening. However, unfortunately, there were no PBMC left to
test this hypothesis. The clinical trial has not started yet, and
therefore the investigation of immune responses post-vaccine

could not be performed. This trial will give us the opportunity to
(1) better understand PDACTME since wewill be able to evaluate
the mutational rate in PDAC and predict the presentation of
neoantigens; (2) assess the frequency of specific T cells to such
mutant epitopes in PDAC patients, before and after treatment
with ICB; (3) validate the immunogenicity of neoantigens and
their therapeutic effect.

In conclusion, PDAC in early-stage remains a deadly disease
with limited treatment options and the development of novel
strategies tailored to individual patients is the key. Our approach
is focused particularly on patients with a borderline performance
status or a comorbidity profile that precludesmultiagent adjuvant
therapy (type folforinox). In this context, we give the opportunity
even in patients with the worst prognosis to have access to
innovative therapies.
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Radiofrequency Ablation of Liver
Metastases From Colorectal Cancer
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Jan Budczies 8,9, Philippe L. Pereira 10,11, Stephan Clasen 10, Daniel J. Kowalewski 1†,
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Background: Radiofrequency ablation (RFA) is an established treatment option for

malignancies located in the liver. RFA-induced irreversible coagulation necrosis leads

to the release of danger signals and cellular content. Hence, RFA may constitute

an endogenous in situ tumor vaccination, stimulating innate and adaptive immune

responses, including tumor-antigen specific T cells. This may explain a phenomenon

termed abscopal effect, namely tumor regression in untreated lesions evidenced after

distant thermal ablation or irradiation. In this study, we therefore assessed systemic and

local immune responses in individual patients treated with RFA.

Methods: For this prospective clinical trial, patients with liver metastasis from

colorectal carcinoma (mCRC) receiving RFA and undergoing metachronous liver

surgery for another lesion were recruited (n = 9) during a 5-year period. Tumor

and non-malignant liver tissue samples from six patients were investigated by whole

transcriptome sequencing and tandem-mass spectrometry, characterizing naturally

presented HLA ligands. Tumor antigen-derived HLA-restricted peptides were selected by

different predefined approaches. Further, candidate HLA ligands were manually curated.

Peripheral blood mononuclear cells were stimulated in vitro with epitope candidate

peptides, and functional T cell responses were assessed by intracellular cytokine staining.
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Immunohistochemical markers were additionally investigated in surgically resected

mCRC from patients treated with (n = 9) or without RFA (n = 7).

Results: In all six investigated patients, either induced immune responses and/or

pre-existing T cell immunity against the selected targets were observed. Multi-cytokine

responses were inter alia directed against known tumor antigens such as cyclin D1 but

also against a (predicted) mutation contained in ERBB3. Immunohistochemistry did not

show a relevant influx of immune cells into distant malignant lesions after RFA treatment

(n = 9) as compared to the surgery only mCRC group (n = 7).

Conclusions: Using an individualized approach for target selection, RFA induced and/or

boosted T cell responses specific for individual tumor antigens were more frequently

detectable as compared to previously published observations with well-characterized

tumor antigens. However, the witnessed modest RFA-induced immunological effects

alone may not be sufficient for the rejection of established tumors. Therefore,

these findings warrant further clinical investigation including the assessment of RFA

combination therapies e.g., with immune stimulatory agents, cancer vaccination, and/or

immune checkpoint inhibitors.

Keywords: colorectal cancer, radiofrequency ablation, liver metastasis, HLA ligandome, T cells, tumor-associated

antigens, neoepitopes, abscopal effect

INTRODUCTION

Percutaneous radiofrequency ablation (RFA) has initially been
established as a therapeutic modality enabling the physical
destruction of malignant tissue by heat. During RFA, an
alternating electric current is generated within the tissue leading
to ion agitation and frictional heat, resulting in coagulative
necrosis of cells due to local heating of tissues (>60◦C) (1, 2). This
minimally invasive technique is an additional therapeutic option
or alternative to surgical treatment, mainly applied for patients
for whom a complete surgical tumor resection cannot be achieved
or who do not qualify for surgery due to other reasons.

Besides various other malignancies, RFA is frequently used to
reach tumor control in colorectal cancers (CRC) metastasized to
the liver (mCRC), where it has been established as a safe and

Abbreviations: APC, allophycocyanin; BSC, best supportive care; BV, brilliant

violet; CD, cluster of differentiation; CID, collision-induced dissociation;

CPM, counts per million mapped reads; CRC, colorectal cancer; DMSO,

dimethylsulfoxide; ERBB3, human epidermal growth factor receptor 3; FCS, fetal

calf serum; FFPE, formalin-fixed, paraffin embedded; FN1, fibronectin 1; FSC,

forward scatter; H&E, hematoxylin and eosin; HLA, human leucocyte antigen;

HSP, heat shock protein; ICI, immune checkpoint inhibition; ICS, intracellular

cytokine staining; IFI6, interferon alpha-inducible protein 6; IFN, interferon;

IL, interleukin; IRISS, Interventional Radiology, Immunology, Surgery Study;

LC, liquid chromatography; LTQ, linear trap quadrupole; mAB, monoclonal

antibody; mCRC, metastasized colorectal cancer (to the liver; unless stated

otherwise); mRNA, messenger ribonucleic acid; MHC, major histocompatibility

complex; MS, mass spectrometry; MS/MS, tandem mass spectrometry; MSI,

microsatellite instable; NML, non-malignant liver; NMT, non-malignant tissue;

PGCA, aggrecan core protein; PCR, polymerase chain reaction; PBMC, peripheral

blood mononuclear cell; PE, phycoerythrin; PMA, phorbol myristate acetate; RFA,

radiofrequency ablation; RNA, ribonucleic acid; TCR, T cell receptor; TNF, tumor

necrosis factor; uHPLC, ultra-high-performance liquid chromatography; WTS,

whole transcriptome sequencing.

effective procedure (3, 4). Since recurrence rates surpass 50%
for patients undergoing potentially curative liver resection for
mCRC (5), RFA may not only constitute a promising adjunct
treatment approach, but also have beneficial effects beyond
local tumor control. Nevertheless, the definite benefit of RFA
treatment in mCRC of the liver remains to be established (6), and
respective randomized controlled trials are still ongoing (7).

It has only been appreciated recently that RFA treatment may
also have profound immunological implications and that there
are effects occurring beyond mere local tumor destruction (8).
Like radiotherapy and cryoablation, RFA may also induce so-
called abscopal effects, where subsequent to the treatment of
one malignant lesion, another untreated distant lesion responds
to treatment. The phenomenon is still insufficiently understood
(9) and even in mouse models no robust effects are observed
(10). However, particularly in mouse models there is convincing
evidence that the involvement of the immune system represents
the most plausible mode of action, since RFA and comparable
treatment approaches may constitute a form of in situ whole
cell vaccination comparable to lysates from tumor cells. Such
tumor cell lysates have been proposed to contribute a wide
array of immunogens that may induce tumor rejection (11–
13). Abscopal effects have been ascribed to the stimulation of
tumor-specific T cells recognizing tumor antigen-derived HLA-
restricted peptides. Interestingly, these effects were shown to
occur with disproportionally high frequency in malignancies
considered as immunogenic such as malignant melanoma, renal
cell carcinoma, and lymphomas (12) but they still remain rare
and cannot be regularly reproduced (14–16). In this context, it
can be assumed that single T cell targets such as mutated HLA
ligands bear great potential for tumor rejection and may even
hold the key for patient cure, in case they can be specifically
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exploited for therapy (17). Nonetheless, based on the current
state-of-the-art in characterizing HLA-presented ligands by mass
spectrometry (MS), mutated HLA ligands are probably very rare.
This aspect is of particular relevance for malignancies with very
few mutations (18). Only a small fraction of predicted mutated
gene products was detectable by MS on tumors (19) or shown as
immunogenic and may therefore mediate tumor rejection (20),
a notion that may also help to explain the sporadic nature of
abscopal effects.

In CRC for instance, highly mutated (e.g., microsatellite
instable) cancers were shown to respond to immune checkpoint
inhibition (ICI) immunotherapies, whereas sporadic CRC with
low mutation rates did not (21). Further, it is becoming clearer,
that not only mutated HLA ligands may drive the immune
response against cancers, but also alterations beyond exome-
derived mutations may prove relevant for the rejection of
malignant cells, such as (non-mutated) neoantigens, originating
from tumor-specific alterations, protein modifications, RNA-
editing and alterations in non-coding regions (22–25). Excluding
some exceptions, most of these alterations are patient-individual.
In addition, there have been recent reports that ICI in
combination with radiotherapy can increase the occurrence of
clinically significant abscopal effects (26).

In a previous study, we have shown that tumor antigen-
specific antibodies and T cells can be induced in a fraction
(<10%) of patients following RFA treatment (27). In this
study, we aimed at studying patient-individual anti-tumor T
cell responses occurring in the context of RFA in patients with
metastasized colorectal cancer (mCRC), as well as assessing
immune infiltrates that may arise in distant metastases following
RFA treatment.

MATERIALS AND METHODS

Ethics Approval and Informed Consent
This trial using the acronym IRISS (Interventional Radiology,
Immunology, Surgery Study) was conducted in accordance
with the principles of the Declaration of Helsinki and
approved by the local institutional review board of the
University Hospital Tübingen (Reference No. 169/2005V and
638/2014BO2). All participants provided written informed
consent before study inclusion.

Study Design and Patients
Sixteen patients were recruited for this study. Patient
characteristics are provided in Supplementary Table 1. The
first group (Figure 1) included all consenting patients with
metastases from CRC in different liver segments, scheduled for
treatment with RFA and subsequent liver surgery at Tübingen
University Hospital, recruited in the course of a 5-year period
(n = 9). This RFA + surgery group [all men; mean age 64 years
(range, 45–79 years) at initial diagnosis] included six patients
with sufficient sample materials for in-depth analyses (mCRC
and non-malignant liver (NML) tissues, as well as PBMCs
for immunological evaluation). Patients in this group were
treated with one session of RFA for one of the tumor lesions,
followed by subsequent surgical resection (on average 4 weeks

after RFA; range 1–8 weeks) of the non-RFA-pretreated, distant
liver metastases.

A corresponding control group included patients (n= 7) with
liver metastases of mCRC scheduled for surgery only (five males;
mean age 58 years (range, 45–77 years) at initial diagnosis). Of
note, no fresh frozen tumor/NML tissue or PBMCs was available
for this group and only paraffin embedded tumor tissue was
accessible for immunohistochemical evaluation.

All patients were treated with curative intent according to
institutional standards and presented with a median number of
two mCRC lesions (min. – max.: 1–7).

Sample Materials
For patients included in the RFA + surgery group and
evaluated in immunological experiments (n = 6), blood samples
were collected before RFA treatment, at surgery (∼1 month
later), and at several follow-up visits thereafter, at intervals
of 1–4 months (Figure 1). Peripheral blood mononuclear cells
(PBMCs) were isolated by density gradient centrifugation and
cryopreserved in freezing medium [fetal calf serum (FCS) with
10% dimethylsulfoxide (DMSO)] until subsequent analysis.

Additionally, during elective liver surgery for mCRC,
scheduled after RFA treatment, resected tissue was obtained
from both mCRC as well as NML tissue. Tissue samples
without diagnostic relevance were divided and snap frozen in
liquid nitrogen or else stored in RNA later (ThermoFisher
Scientific, Waltham, MA) and kept at −80◦C for long-term
cryopreservation until analysis.

For all patients from both groups (n = 16), mCRC tissue
samples were paraffin embedded, and diagnosis was confirmed
by expert pathologist review. Paraffin embedded tissue was used
for immunohistochemical evaluation.

HLA Typing
For the patients included in the RFA + surgery group (n = 6),
high-resolution HLA typing from peripheral blood (LUMINEX
and sequence-based typing according to implemented validated
institutional clinical routines) was performed for HLA-A and
HLA-B (Table 1).

Isolation of HLA Ligands From Surgical
Specimens
Immunoaffinity purification was used for parallel isolation of
HLA class I and II molecules from tissue lysates, employing the
pan HLA class I monoclonal antibody W6/32 (28) as well as
the HLA-DR monoclonal antibody L243 (29) together with the
pan HLA class II monoclonal antibody Tü39 (30) (all produced
in-house at the Department of Immunology, University of
Tübingen, Germany) as previously described (31). HLA class
I and II-bound peptides were separately eluted using 0.2%
trifluoroacetic acid.

Analysis of HLA Ligands by LC-MS/MS
Purified HLA-bound peptides from HLA class I and II
immunoprecipitates were analyzed in up to six technical
replicates of each sample, as previously described (32). Briefly,
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FIGURE 1 | Study design of the IRISS trial. Patients with metastasized colorectal cancer (mCRC) and tumor manifestations in different liver segments were included in

the study. Patients underwent RFA treatment for one malignant liver lesion first. After ∼4 weeks, a second lesion was surgically removed. As a control group, mCRC

patients were included who underwent surgical resection only. Blood samples (drops, right) were collected at predefined time points before initiation of treatment and

during follow-up visits. Tumor and non-malignant liver (NML) tissue was obtained from surgical specimens for analysis.

purified peptides were separated by nanoflow ultra-high-
performance liquid chromatography (uHPLC; UltiMate 3000
RSLCnano System, ThermoFisher) using a 50µm × 25 cm
column (PepMap RSLC, ThermoFisher) and an acetonitrile
gradient ranging from 2.4 to 32.0% over the course of 90min.
uHPLC eluting peptides were analyzed in an online coupled
linear trap quadrupole (LTQ) Orbitrap XL mass spectrometer
(ThermoFisher), equipped with a nanoelectron spray ion
source employing a top 5 collision-induced dissociation (CID)
fragmentation method.

Database Search and Spectral Annotation
The Mascot search engine (Mascot 2.2.04, Matrix Science,
Boston, MA) was used to search the human proteome contained
in the Swiss-Prot database (20,279 reviewed protein sequences,
as of September 2013) without any enzymatic restriction
(required Mascot ion score ≥20; search engine rank: 1). As a
dynamic modification oxidized methionine was allowed. The
false discovery rate was estimated with the Percolator algorithm
(33) and set to 5%. Peptide lengths for HLA class I-eluted
peptides were limited from 8 to 12 amino acids (required charge
state: 2–3) and for HLA class II-eluted peptides from 9 to 25

amino acids (required charge state: 2–5). Protein inference was
disabled, allowing for multiple protein annotations of peptides.
HLA class I annotation was performed using SYFPEITHI (34),
and NetMHC (vers. 3.4) (35).

Whole Transcriptome Sequencing (WTS)
and Data Analysis
Whole transcriptome sequencing (WTS) was performed after
isolation of mRNA from the patient’s tissue samples (mCRC vs.
NML) using 100 ng of total RNA and the TruSeq StrandedmRNA
Kit (Illumina, San Diego, CA) with 14 cycles of PCR. Tissue
sample from patient IRISS06 were processed using 40 ng of total
RNA and the TruSeq RNA Access Kit (Illumina) with 15 cycles
of amplification. All samples were sequenced on a HiSeq 2500
device (Illumina) as paired-end sequencing. Sequencing depth
was 20–40 million cluster/ sample with 68 cycles per read.

Data Preprocessing
Adapters were trimmed using SeqPurge [v. 0.1 (36), https://
github.com/marc-sturm/ngs-bits]. Trimmed reads were mapped
to hg19 using STAR (v. 2.4.2a). Duplicates were removed
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TABLE 1 | Patient characteristics and results of HLA ligandomics performed by tandem mass spectrometry.

UPN Diagnosis HLA-A* HLA-B* Tissue Sample weight HLA class I HLA class II RIN

[mg] Peptides (n=) Binders (n=) Binders [%] Peptides (n=)

IRISS01 mCRC 24 66 27 44 Tumor 160 1,785 1,508 84.5 850 7.2

NMT 710 1,917 1,507 78.6 1490 7.1

IRISS05 mCRC 01 02 08 18 Tumor 46 260 198 76.2 556 8.4

NMT 290 922 820 88.9 803 7.1

IRISS06 mCRC 02 24 15 35 Tumor 54 711 666 93.7 n.d. 7.4

NMT n.d. n.d. n.d. n.d. n.d. 3.3

IRISS08 mCRC 02 33 14 18 Tumor 24 231 175 75.8 220 8.6

NMT 280 1101 923 83.8 631 7.5

IRISS09 mCRC 01 08 Tumor n.d. n.d. n.d. n.d. n.d. n.d.

NMT 130 560 341 60.9 445 8.3

IRISS12 mCRC 01 02 08 27 Tumor 920 1887 1714 90.8 1461 6.9

NMT 840 1372 1244 90.7 1307 8.3

CRC, colorectal cancer; HLA, human leukocyte antigen; m, metastasized; n.d., not determined; NMT, non-malignant tissue; RIN, RNA integrity number; RNA, ribonucleic acid; UPN,

uniform patient number. Binders were defined as HLA-eluted peptides predicted to bind to the respective HLA alleles of the patient above the thresholds given in Materials and Methods

determined by suitable software.

by picard tools (MarkDuplicates v. 1.85, http://broadinstitute.
github.io/picard/).

Expression Analysis: Read counts were calculated using
the HTSeq count based method implemented in STAR and
Ensembl gene annotations (GRCh37 v. 75). Read counts were
normalized using CPM (counts per million mapped reads) and
log2 fold-changes (FC) were calculated to filter genes with high
expression differences.

Variant Calling: Strelka (v. 1.0.11; in matched tumor/normal
mode) was used for variant calling and called variants were
annotated based on several different databases including among
others dbSNP, ExAC, COSMIC, ClinVar and HGMD. SNPeff,
Sift, MetaLR, and Polyphen were used to predict effects on gene
function. For detection of gene fusions deFuse (v. 0.6.1) was used.

Peptide Selection
Selection of HLA Class I-Restricted Tumor-Specific

Peptide Candidates
For the six patients of the RFA + surgery group, the multi-step
selection approach used included the reassessment of MS/MS
detected HLA class I-eluted peptides (a representative example
for this approach is provided in Figure 2 for patient IRISS12)
regarding their HLA binding affinity by dedicated software
[SYFPEITHI >50% max. score (34) and NetMHC v. 3.4 (IC50
<500 nM) (37)]—step 1 (see binders in Table 1 and counts in
Supplementary Table 3), subtraction of HLA ligands eluted from
non-malignant liver tissue (NML) from those of corresponding
mCRC tissue—step 2, as well as the subtraction of all HLA
ligands identified on all available non-malignant colon tissue
(NMT) samples from the mCRC cohort (32)—step 3. Since the
target pool remained extensive at this stage, the strategy was
extended to filter out HLA-eluted peptides from non-malignant
colon samples available from previous studies—step 4, and
subsequently expanded to all HLA class I ligands included in
an in-house database comprising 132 non-malignant human

tissues from different organs, as already used previously in
CRC (32)—step 5. To avoid the selection of peptides presented
on HLA class II, any HLA class I-eluted peptides presumably
representing shorter length variants of longer HLA class II
ligands were discarded—step 6. Finally, to enhance the stringency
of selection, HLA class I-eluted peptides were only retained when
surpassing a relative SYFPEITHI score of >60% of the maximal
allelic score—step 7. For patient IRISS06, step 2 was omitted,
because autologous NML tissue was not available. In addition, for
patient IRISS09, the HLA-peptide elution resulted unsuccessful
for tumor tissue.

Selection of HLA Class II-Restricted Tumor-Specific

Peptide Candidates
For HLA class II (Figure 3, Supplementary Table 4), peptides
eluted from mCRC were initially compared to the peptides
characterized by MS/MS on corresponding NML, discarding the
overlap—step 1. Subsequently, all HLA class II-eluted peptides
of NMT of the entire mCRC cohort were deducted—step 2, as
well as all HLA class II-eluted peptides detected in non-malignant
colon tissue from previous studies—step 3, then all HLA class II
ligands included in an in-house HLA class II peptide database
comprising 82 non-malignant human tissues from different
organs (32) were eliminated—step 4. Finally, for stringency, all
HLA class I peptides comprised in a comprehensive database of
benign tissues (n = 132) and in the NML tissue from the mCRC
cohort were subtracted—step 5. A representative HLA class II
selection approach (for patient IRISS12) is provided in Figure 3.
For patient IRISS06, step 1 was omitted because autologous
NML tissue was not available. Again, for patient IRISS09, the
HLA-peptide elution remained unsuccessful for mCRC.

Selection of (Predicted) Mutated HLA Ligands
For prediction of mutation-derived HLA ligands, only non-
synonymous somatic variants [single nucleotide variants (SNVs)
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FIGURE 2 | In silico selection strategy for candidate HLA class I-presented antigens (exemplified for patient IRISS12). HLA class I-restricted peptides were eluted from

mCRC tissue (n = 1,887) and corresponding non-malignant liver (NML) tissue (n = 1,372) by HLA immunoprecipitation using suitable antibodies followed by

(Continued)
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FIGURE 2 | uHPLC tandem mass spectrometry (MS/MS). Spectra were annotated using the MASCOT search engine. All peptides eluted were evaluated for their

HLA binding affinity using SYFPEITHI and NetMHC version 4.0 (step 1, n = 1,714 and n=1,244 from malignant and non-malignant tissues, respectively). For further

selection, only peptides were included with appropriate HLA class I binding motifs (step 2, n = 886). In the following step, the peptides were excluded that were also

present on corresponding NML in all included RFA patients (step 3, n = 799), 35 non-malignant colon tissues (NMT; step 4, n = 485) or on any of 132 non-malignant

tissues of different origins (step 5, n = 400), as previously reported in Löffler et al. (32). Peptides were further cross-matched with all HLA class II-restricted peptides

eluted from NML samples from all included RFA patients (step 6, n = 399). As a final step, only peptides which exhibited a SYFPEITHI binding score >60% of the

respective maximal allelic score were considered suitable candidate antigens for further manual curation (step 7, n = 293). Specific data for all analyzed samples are

provided in Supplementary Table 3.

and Insertion/Deletions (InDels)] were selected, when being
sequenced with >25 reads in mCRC and simultaneously
remaining undetectable in corresponding NML. Additionally, all
ambiguous gene transcripts mapping to more than one genetic
locus were discarded. Gene fusions were chosen in case>10 split-
reads were detectable in mCRC with a probability value >0.8%.
Only known driver mutations and variants affecting genes with
established relevance for malignant development were selected.
For gene fusions the latter was required for at least one of the
involved genes.

Non-synonymous somatic variants and gene fusions were
translated into the corresponding protein containing the amino
acid altered by mutation. The protein sequence flanking the
altered amino acid sequence was then disaggregated and screened
for HLA class I peptide sequences with a SYFPEITHI score
>60% of the maximal allelic score. Mutation containing peptides
predicted to bind to the respective patient’s HLA class I alleles
were extended at the N- and C-terminus to produce a 15 mer
peptide, covering both the predicted binding HLA class I peptide
sequence as well as peptide sequences showing HLA class II
binding properties. Finally, two predicted potential mutated
neoantigens were selected, a mutated sequence in the ERRB3
protein for IRISS06 (mERBB3) and a fusion-derived peptide
between the two proteins Malic enzyme 2 and SMAD family
member 4 (MAOM-SMADA4) for patient IRISS12.

None of the predictedmutation-derivedHLA ligands could be
confirmed in MS/MS data of HLA ligands eluted from respective
mCRC tissue.

Selection of Candidate Peptides for Immunological

Analyses
Candidate tumor antigen-derived peptides were collated and
manually curated for each patient, selecting a manageable
set of short and/or long peptides for immunological testing.
Criteria for non-mutated peptide selection included increased
expression of the source antigen in the tumor as compared to
autologous normal tissue [fold change (log2); FC], frequency of
identification among RFA and CRC (32) cohorts (for HLA class
II ligands, length variants were considered), tumor association
(e.g., involvement of the source protein in cancerogenesis
according to the literature, representation in tumor-associated
pathways. . . ). Representation in cancer-associated pathways
(Supplementary Table 2) was established by literature research
(www.pubmed.gov), as well as through the human protein
atlas (www.proteinatlas.org).

The two mentioned predicted mutated peptides were
prioritized. Altogether, a ranking list of peptides to be tested was

established for each individual patient, and the final number of
peptides tested was adjusted to the numbers of available PBMCs
(between 6 and 9 peptides/patient, Supplementary Table 2).

Peptide and HLA-Peptide Monomer
Synthesis
Peptides required for T cell stimulation assays
(Supplementary Table 2) were synthesized in house
(Department of Immunology, University of Tübingen,
Germany) by solid-phase synthesis with the 9-fluorenylmethyl-
oxycarbonyl/tert-butyl (Fmoc/tBu) strategy (38) in an automated
peptide synthesizer (EPS 221, Abimed; ABI 433A, Applied
Biosystems). Lyophilized peptides were diluted at 1 mg/ml in
distilled water with 10% DMSO and stored at−80◦C.

In vitro Stimulation of T Cells and
Functional Assays
PBMCs from six patients (RFA + surgery group) were
thawed, washed and seeded at ∼3–6 × 106 cells per well
in a 48-well-plate in IMDM (Lonza, Verviers, Belgium)
with 10% heat-inactivated human serum containing 1%
penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO) and
50µM β-mercaptoethanol (Roth, Karlsruhe, Germany) (culture
medium). After overnight resting, pooled synthetic peptides
were added at 2.5 or 5µg/ml, for HLA class I and HLA class II
peptide stimulations, respectively. Cell culture was performed
for 12 days and medium supplemented with recombinant
IL-2 (2 ng/ml, R&D Systems, Minneapolis, MN) on days 3,
5, 7, and 9.

Peptide-specific T cells were quantified by intracellular
cytokine staining (ICS) for both CD8+ and CD4+ cells.
Directly after 12-day pre-sensitization, cultivated cells were
washed and stimulated with the relevant individual peptides
(10µg/ml; in pools or individually) and pre-incubated for
1 h (37◦C; 7.5% CO2) in the presence of the monoclonal
antibody (mAb) CD107a-FITC (clone H4A3, BD Biosciences,
Heidelberg, Germany). Phorbol myristate acetate (PMA)
(5 ng/ml) plus ionomycin (1µM) (both Sigma-Aldrich)
served as positive control and 10% DMSO was used as
negative control. Subsequently, secretion of intracellularly
produced cytokines was prevented by adding GolgiSTOP
(BD Biosciences) and Brefeldin A (10µg/ml, Sigma-Aldrich).
After a 12 h stimulation period, cells were washed and stained
as previously described (39) with mAbs CD3-BV711 (clone
OKT3, Biolegend, San Diego, CA), CD8-PE-Cy7 (clone
SFCI21Thy2D3, Beckman Coulter, Brea, CA), CD4-APC-
Cy7 (clone RPA-T4, BD Biosciences), anti-IFNγ-BV421
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FIGURE 3 | in silico selection strategy for candidate HLA class II-presented antigens (exemplified for patient IRISS12). HLA class II-restricted peptides were eluted

from mCRC tissue (n = 1,461) and corresponding non-malignant liver (NML) tissue (n = 1,307) by HLA immunoprecipitation using suitable antibodies followed by

tandem mass spectrometry (MS/MS). HLA-eluted peptides were compared between corresponding mCRC and autologous NML tissue and only peptides exclusively

found on mCRC were included (step 1, n = 764). Further, peptides which were presented on NML of any of the other RFA patients were excluded (step 2, remaining

peptides n = 610). In the next step, cross-evaluation with a database of 20 non-malignant colon tissues (NMT) (32) could not restrict peptides further (step 3, n =

610). Peptides were additionally compared to peptides eluted from 82 non-malignant tissue samples of different origins (32) (step 4, n = 513). Before manual

assessment, further peptides were excluded when presented as HLA class I antigens on any NML of all RFA patients and 132 tissues of different origins (step 5, n =

509). Specific data for all analyzed samples are provided in Supplementary Table 4.

(clone 4S.B3, Biolegend), anti-TNF-BV605 (clone Mab11,
Biolegend), anti-IL-2-PE and anti-CD154-APC (clone MQ1-
17H12 and clone TRAP1, respectively, both BD Biosciences).
LIVE/DEAD R© Fixable Aqua Dead Cell Stain Kit (ThermoFisher)

was included in the stainings. Samples were acquired on a flow
cytometer (LSR Fortessa, BD Biosciences) equipped with the
DIVA software and analyzed with FlowJo software (TreeStar,
Ashland, OR).
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The following gating strategy was applied: time gate
(histogram)/singlet cells (FSC-H/FSC-A), living cells (FSC-
A/ Live/Dead R© Fixable Aqua), lymphocytes (FSC-A/SSC-A),
CD3+ (FSC-A/CD3) CD4neg and CD8neg cells (CD4/CD8); T
cell activation (cytokine production, CD107a and CD154 of
CD8+/CD4+ subsets was assessed within the CD4neg and CD8neg

lymphocytes, respectively). Results are expressed as % of marker-
positive cells within CD4+ or CD8+ subsets.

Immune responses were considered positive if (I.) the
percentage of cytokine producing cells within the sample was
2-fold above the percentage of cytokine producing cells within
the corresponding negative control (10% DMSO; no stimulation,
as described above), (II.) the number of cytokine producing
cells within the sample was ≥20 cells after subtraction of the
number of cytokine producing cells within the corresponding
negative control (10% DMSO; no stimulation), and (III.) at
least two of the five investigated parameters (IFNγ, TNF, IL-
2 cytokine production or CD107a, CD154 upregulation) were
positive according to the criteria under (I.) and (II.). All dot-plots
were audited.

Immunohistochemistry
Formalin-fixed, paraffin embedded (FFPE) tissue from
all 16 patients of both groups was cut in 3–5 µm-thick
sections and stained with haematoxylin and eosin (H&E).
Immunohistochemistry was performed by an automated
immunostainer (Roche Ventana Medical Systems, Tucson,
AZ) according to the manufacturer’s instructions for open
procedures with slight modifications. Samples were stained with
antibodies against CD4 (clone SP35, Zytomed Systems, Berlin,
Germany), CD8 (clone C8/144B, DAKO, Glostrup, Denmark),
CD14 (clone EPR3653, MEDAC Diagnostika, Wedel, Germany),
CD19 (clone LE-CD19, Zytomed), CD45RO (clone UCH-L1,
Abcam, Cambridge, UK), CD68 (clone KP1, DAKO), Granzyme
B (clone 11F1, Novocastra, Wetzlar, Germany), HLA class I
(polyclonal, Santa Cruz Biotechnology, Dallas, TX), HLA-DR,
-DP, and –DQ (clone CR3-43, DAKO), HSP70 (cloneW27, Santa
Cruz Biotechnology), IL-10 (polyclonal, Abcam), and LAMP3
(polyclonal, Sigma-Aldrich). Appropriate positive and negative
controls were employed to confirm the adequacy of the staining.

Stained slides were digitalized using a Hamamatsu
NanoZoomer (C9600-12) using NDP.scan (v. 2.5.88) and
NPD.view (v. 2.6.13) software (all from Hamamatsu Photonics,
Hamamatsu City, Japan).

Slides were first counted using automated digital slide analysis.
For each marker, five representative high-power fields (HPF)
were captured using a 200-fold magnification. The number of
positive cells was enumerated and the mean for every case
was calculated. CD4, CD8, CD19, and CD68 stainings were
evaluated using the CD4Quantifier software, which is part
of the CognitionMaster Professional Suite (VMscope GmbH,
Germany) (40). CD14, CD45RO, HLA-DR, HSP70, IL-10, HLA
class I and LAMP3 were evaluated manually. For CD14 and
CD45RO, the mean number of positive cells per five HPF
was assessed by manual counting. Concerning HLA-DR, we
calculated the percentage of positive tumor cells (41). For HSP70,
IL-10, and MHC I, we used the immunoreactive score (IRS)

(42). In brief, the IRS is calculated by multiplying the number
of positive cells (0= 0%, 1= 1–10%, 2= 11–50%, 3= 51–80%, 4
= >80%) with the staining intensity (0 = no staining, 1 = weak
staining, 2=moderate staining, 3= strong staining), resulting in
a score ranging from 0 to 12.

Slides were also counted manually using the count tool of
Adobe Photoshop (v. CC 2018, Adobe Systems, San José, CA).
Areas for manual counting were defined as follows: invasive
margins were defined as 500µm in both directions of the tumor
border (inwards/outwards) (43). Counting areas were selected
using the hot-spot method (good pathological practice) and were
defined as areas with subjective/visually most positive stained
cells [3× 0.2 mm² (radius: 252µm) for each area] (43).

Both automated and manual counting was performed in a
blinded fashion by expert pathologists and group assignment was
only unblinded to the evaluating pathologists after completion of
statistical evaluation.

Evaluation of Microsatellite Instability (MSI)
Genomic DNA was extracted from macrodissected paraffin
sections using the Maxwell R© RSC FFPE Plus DNA Purification
Kit and the Maxwell R© 16 Instrument (Promega, Madison,
WI), according to the manufacturer’s instructions. Microsatellite
PCR in duplicates was performed using genomic DNA and
AmpliTaq Gold DNA Polymerase (ThermoFisher) as well-
fluorescent labeled primers (Sigma-Aldrich). For GeneScan
analysis PCR products were mixed with sample loading solution
(Beckman Coulter). The products were separated by capillary
electrophoresis on the GenomeLab GeXP Genetic Analysis
System and analyzed by the GenomeLab GeXP software 10.2
(Beckman Coulter).

Statistical Analyses
Mann Whitney U-Tests were performed using GraphPad Prism
Version 6.0 (GraphPad Software, San Diego, CA). Kaplan
Meyer, COX regression and log rank analyses were performed
using SPSS Version 24 (IBM, Armonk, NY). Significance levels
were set to p < 0.05 and respective values considered as
statistically significant.

RESULTS

Study Design
We recruited two groups of patients with liver metastasis from
colorectal carcinoma (mCRC). One group with mCRC was
treated merely with surgical resection for their liver lesions (n
= 7), and another group received RFA first and subsequently
a surgical resection (n = 9) for the remaining metastases not
treated by RFA (Figure 1, Supplementary Table 1). We obtained
blood samples from RFA-treated patients before intervention
(i.e., RFA treatment followed by surgery) as well as in the
course of clinical follow-up (n = 6) to obtain peripheral blood
mononuclear cells (PBMCs) for immunomonitoring. Further, we
obtained tissue samples, encompassing mCRC as well as NML,
enabling mRNA analysis by whole transcriptome sequencing
(WTS) and the immunoprecipitation and characterization
of naturally presented HLA ligands using tandem mass
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spectrometry (MS/MS). The mean sample weight was 340mg
(range 24–920mg), yielding on average 835 peptides identified
by MS/MS for mCRC and 1,174 peptides for NML (Table 1). On
average >75% of HLA class I-eluted peptides from the included
samples showed HLA binding properties as corroborated with
dedicated software; RNA integrity (RIN) was >6.5 in all cases,
except for NML of IRISS06 (RIN = 3.3), which was processed
with a high fidelity kit for this reason, to enable the generation of
suitable data. Samples with insufficient yields were excluded from
downstream analyses.

Selection of Individual Candidate Antigens
A key challenge for our study was the choice of relevant candidate
antigens for testing of T cell recognition. In principle, RFA
resembles a whole cell in situ vaccination approach, whereby both
the priming of novel target-specific T cells as well as boosting of
pre-existing T cell responses may occur. Therefore, an extensive
spectrum of potential targets prevails that may comprise tumor-
specific targets, such as mutated HLA ligands, but also tumor-
associated antigens (TAA), a class of tumor antigens that was
already previously tested in this setting (27, 44).

In this study, we aimed at a patient-individual selection
strategy for candidate HLA class I and II ligands, including
MS/MS detected natural HLA ligands exclusive to each patient’s
own malignant tumor tissue by incorporating information from
HLA ligandome as well as from WTS. The approach was
complemented by complementary information available from
our in house HLA ligand database, which contains an array
of natural HLA ligands presented on various different tumor
entities (including CRCs) and benign tissues (n= 132 and n= 82
for HLA class I and HLA class II ligands, respectively, including
NML and NMT).

Hence, we used a comprehensive HLA ligand-based multi-
step selection strategy (strategies are described in the Materials
and Methods section and visualized exemplarily in Figures 2, 3),
which was followed for each patient when feasible, aiming at the
identification of natural HLA ligands presented by the individual
patient’s mCRC, ideally derived from tumor-specific proteins,
and including both non-mutated as well as selecting mutated
peptides, when available. Of note, upon testing all mCRC
included in the study were tested as non-MSI high tumors.

An example of the target selection procedure (patient
IRISS12) is presented for HLA class I binding candidate peptides
in Figure 2, resulting in a decrease of the initial target peptide
pool by 84%. The selection procedure for HLA class II binding
candidate peptides for the same patient is provided in Figure 3.
Respective data for the other included mCRCs disaggregated
according to the described steps is presented for HLA class
I and class II in Supplementary Tables 3, 4, respectively. The
remaining candidate peptides (ranging between 3 and 293 HLA-
eluted peptides) encompassed between 1 and 16% of the initially
available peptide pool.

High confidence somatic variants identified by WTS were
used to predict mutated HLA ligands, selecting only peptides
with the required patient-specific HLA class I binding properties.
Peptide sequences were elongated to 15 mers, aiming to increase

TABLE 2 | Overview of T cell reactivity measured by ICS.

Patient

(UPN)

Pre-RFA (d0) Post-RFA Effector cells

IRISS01 CCND1198−212 CCND1198−212

(1M, 4M)

[not enhanced]

CD4+

IRISS05 Pool:

AREG93−106,

FN11789−1804,

CCND1198−212

Pool:

AREG93−106,

FN11789−1804,

CCND1198−212

(1M)

[not enhanced]

CD4+

IRISS06 mERBB396−110

(4M, 7M)

[induced]

CD4+

IRISS08 IFI6106−114 IFI6106−114

(6M)

[not enhanced]

CD8+

CCND1198−212 CCND1198−212

(1M, 4M, 6M)

[enhanced]

CD4+

IRISS09 GPA3352−67 GPA3352−67

(12.5M)

[not enhanced]

CD4+

IRISS12 FN11797−1811

(1.5M)

[induced]

CD4+

AREG, amphiregulin; CCND1, cyclin D1; d0, before RFA; FN1, fibronectin 1; GPA33,

Glycoprotein A33; IFI6, interferon alpha inducible protein 6; ICS, intracellular cytokine

staining; M, month post-RFA; mERBB, (mutated) human epidermal growth factor receptor

3; RFA, radiofrequency ablation; UPN, uniform patient number.

chances for the verification of CD8+ and/ or CD4+ mediated T
cell responses.

Peptides identified through these different procedures
were merged and manually curated individually for each
patient, selecting a manageable set of short and/or long
peptides for immunological testing (6–9 peptides per patient,
Supplementary Table 2). Peptides predicted from gene fusions
or mutations were preferentially selected, when available (n= 2).

RFA Induces Tumor-Specific T Cell
Reactivity
We were able to detect immune responses against various
individually selected candidate peptides involving all patients of
our small test cohort (n = 6); most of these T cell reactivities
were directed at long candidate epitopes (presumably HLA class
II-restricted). Preexisting antigen-specific T cell responses were
confirmed in 4/6 patients, and one of them was assessed as
enhanced after RFA treatment (patient IRISS08, CCND1198−212).
Additionally, de novo priming of tumor-specific T cells was
observed in two patients, including one immune response against
a mutated peptide. These findings can be most probably ascribed
to RFA, since the T cell responses could not be measured before
treatment in the respective patients (Table 2).

In one patient (IRISS06), a CD4+ T cell response was
induced after RFA, which was directed against one predicted
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mutated peptide derived from the human epidermal growth
factor receptor 3 (mERBB3) containing an amino acid exchange
from valine to leucine at position 104 (TLPLPNLRLVRGTQV).
The induced T cell reactivity to mERBB3 was polyfunctional
(Figure 4A; encompassing CD154, interferon γ (IFNγ), tumor
necrosis factor (TNF) and interleukin (IL)-2, but not CD107a)
with robust responses (∼1.4% of the CD4+ T cell subset) at 7
months post-RFA treatment (Figure 4B). Importantly, further
experiments demonstrated that the corresponding wildtype
peptide (wtERBB3: TLPLPNLRVVRGTQV) induced strongly
attenuated cytokine responses in CD4+ T cells, as compared
to the mERBB3 peptide (Figure 4C). The other tested peptides
(Figure 4A) derived from amphiregulin (AREG) as well as
epithelial cell adhesion molecule (EpCAM) did not elicit any
detectable T cell responses.

Another patient (IRISS08) showed an enhancement of
a pre-existing immune response directed against the long
cyclin D1-derived peptide (CCND1) NPPSMVAAGSVVAAV
(Supplementary Table 2). This CD4+ T cell response was
evidenced before as well as 1, 4, and 6 months after RFA
with increased functionality after RFA (encompassing positivity
for CD154 and cytokines IFNγ, TNF, and IL-2), which
peaked at 4 and 6 months but was no longer measurable
subsequently (at 17 months post-RFA) (Figures 5A,B). In the
same patient, CD8+ T cell reactivity against an interferon
alpha-inducible protein 6–derived peptide (IFI6: VVIGNIGAL;
HLA-A∗02) was detected before and also after RFA treatment,
stimulating IFNγ, TNF and CD107a in ICS, however this
response was not boosted (Supplementary Figure 1) and the
aggrecan core protein (PGCA)–derived peptide DEFPGVRTY
tested simultaneously showed no reactivity.

In addition to these findings, several pre-existing
immune responses could be detected, among them CD4+

cells responding to the long CCND1-derived peptide
previously mentioned, which were not found enhanced
after RFA treatment at this time (patient IRISS01) but
remained detectable after 1 and 4 months following RFA,
encompassing positivity for CD154 as well as positive staining
for IFNγ, TNF, IL-2 in ICS (Supplementary Figure 2A).
One further patient (IRISS05) was shown to respond to a
three peptide pool of long peptides containing the same
CCND1-derived peptide NPPSMVAAGSVVAAV as well
as a long FN1- (VSVYALKDTLTSRPA) and an AREG-
derived peptide (IPGYIVDDSVRVEQ) before as well as
1 month subsequent to RFA with CD4+ cells positive for
CD107a, CD154 as well as cytokines IFNγ, TNF, and IL-2
(Supplementary Figure 2B). In this case, due to limited sample
material, it was impossible to distinguish, which of the peptides
was ultimately responsible for the CD4+ T cell response.
Patient IRISS09 showed a preexisting CD4+ T cell response
detectable prior to RFA, triggered by the cell surface A33 antigen
(GPA33) peptide REGLIQWDKLLLTHTE, which persisted
for over 12 months post-RFA (Supplementary Figure 2C).
Regrettably, from this patient individual data (transcriptome
and HLA ligandome) were lacking, which is why peptides
identified in other patients of the study cohort matching to
the HLA alleles of interest were selected for evaluation in
this case.

Further, we detected an immune response against a long
fibronectin peptide (FN11797−1811; patient IRISS12), which
proved negative before RFA but showed induction of CD4+

cells staining positive for IFNγ, TNF, IL-2 in ICS as well as for
CD154, 6 weeks after treatment (Supplementary Figures 2D,E).
Whereas, analyses of a predicted peptide derived from aMAOM-
SMADA4 fusion (Supplementary Table 2) remained negative.

Immune Cell Infiltration in Distant
Metastases Is Not Increased After RFA
To determine whether RFA impacts immune cell infiltration
into distant, non-ablated, tumor lesions, we assessed our
expanded mCRC patent cohort, consisting of patients that
received RFA first and a liver resection for additional malignant
lesions subsequently (n = 9 patients; mCRC lesions were
surgically removed ∼4 weeks following RFA), as well as a
control group of mCRC patients that merely received surgery
for their liver metastases (n = 7). FFPE tissue was stained
by immunohistochemistry for different markers (comprising
CD4, CD8, CD14, CD19, CD45RO, CD68, granzyme B, HLA
class I, HLA-DR, HLA-DP and HLA–DQ, HSP70, IL-10, and
LAMP3). Results were compared between both groups. Overall,
no drastic change in the immune cell infiltrate into distant
tumor lesions was observed in RFA-pretreated patients, as
exemplified by stainings with CD45RO (activated lymphocytes)
and granzyme B (cytotoxic lymphocyte effectors) (Figures 6A,B).
CD8+ cells (potentially cytotoxic T lymphocytes) in the tumor
center were generally scarce (<100 cells/HPF) and did not
show significant differences between both patient groups neither
at the invasive margin nor the tumor center (Figures 6C,D).
However, numbers of CD8+ cells appeared to be slightly
decreased at the invasive margin (Figure 6C). In addition,
for patients pre-treated with RFA, we observed significantly
decreased numbers of CD4+ cells (including cell subsets such as
effector TH, Tregs, and possibly also macrophages) both within
the tumors and at the invasive margin, when compared to the
resection only group (Supplementary Figures 3A,B). Further,
HSP70 expression [indicating an inflammatory environment
(45)] showed significantly decreased staining in the patients
treated with RFA, in contrast to those that only received surgery
(Supplementary Figures 3C,D). All other assessed markers,
including the expression of HLA molecules, were not found to
be significantly different.

Altogether, these findings suggest that no significant influx
of immune effector cells was observed 4 weeks after RFA in
non-ablated tumor lesions. It should be noted however, that we
assessed only lesions that were not treated directly by RFA but
distant and resected at later time points (∼4 weeks) following
RFA treatment.

Clinical Course of Study Patients
For clinical follow-up (data from individual patients are provided
in Supplementary Table 1), the date of surgery was defined as
day 0 (d0) for both the RFA + surgery and the surgery only
(control) groups for reasons of comparability. Patients were
followed in median for 43 months (range, 3–124 months). The
clinical course of each patient is depicted in Figure 7A. After
RFA and surgery, all patients reached complete disease remission
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FIGURE 4 | Analysis of antigen- and neoantigen specific CD4+ T cells in patient IRISS06. Reactivity of antigen-specific CD4+ T cells against selected patient-individual

tumor peptides was evaluated by flow cytometry. (A) Summary of intracellular cytokine staining (ICS) experiments after 12 day prestimulation followed by restimulation

(Continued)
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FIGURE 4 | with AREG, mutated ERBB3 (mERBB3) and EpCAM peptides. Patient individual PBMCs obtained before RFA (black bars), as well as 4 months (gray

bars) and 7 months (hatched bars) after RFA were assessed. Activation of mERRB3-specific CD4+ T cells is reflected by expression of CD154, as well as production

of IFNγ, TNF, and IL-2. (B) Examples of ICS dot plots (7 month sample) after stimulation with the mERBB3 peptide (TLPLPNLRLVRGTQV) after 12 day-prestimulation.

Activation of antigen-specific CD4+ T cells is reflected by positivity for CD154, as well as cytokine production, including IFNγ, TNF, and IL-2. (C) Based on the data

presented in (B), a new experiment was performed where PBMCs were tested for reactivity against the mutated and wildtype ERBB3 peptides (TLPLPNLRLVRGTQV

and TLPLPNLRVVRGTQV, respectively). Activation of CD4+ T cells was detected by secretion of IFNγ, TNF, and IL-2, as well as expression of CD154.

(CR) as confirmed by abdominal computed tomography (CT)
or magnetic resonance imaging (MRI) scans without signs of
active disease.

Median progression free survival (PFS) was 9.6 and 11.3
months for RFA + surgery and surgery only groups, respectively
(p = 0.814, Figure 7B, left panel). Cumulative incidence of
tumor recurrence was 75 and 60% at 12 months for patients
undergoing RFA + surgery or surgery only, respectively (p =

0.969, hazard ratio 0.978). Sites of recurrence comprised the
liver (n = 8), the liver and the lung (n = 2), as well as
the lung, the brain or the abdominal wall and retroperitoneal
lymph nodes (n = 1 each). Altogether, during follow-up 62%
of patients showed tumor recurrence within the liver, whereas
in only one of the nine patients treated with RFA (∼10%)
recurrence was confirmed at the ablation site (for details see
Supplementary Table 1).

Upon disease recurrence, patients received standard palliative
therapies including repeated local treatment, chemotherapy and
best supportive care (BSC), according to local institutional
standards. The median overall survival (OS) was comparable
for both groups (with 43.1 and 41.9 months in the RFA
+ surgery vs. surgery only group; p = 0.886, Figure 7B,
right panel). At the end of follow-up, in the RFA + surgery
group three of nine patients remained alive, two with active
disease and one in CR. In the surgery only group, two of
seven patients remained alive, one with active disease and
one in CR. Cause of death was disease recurrence in all
cases (n= 11).

DISCUSSION

We and others have previously observed that RFA leads to the
induction and release of heat shock proteins (45–47) and is able
to induce antigen-specific T cell responses against known tumor-
antigens, such as MAGE-A-derived peptides in humans (8, 27).
However, so far, these immune responses were only verified at
very low frequencies in patients (<5%). Although the patient
collective assessed for this study was very limited (n = 6), we
found T cell responses that were either induced or boosted
after RFA (after 1.5–4 months) in 50% of them. Hence, T cell
responses were more frequently detected as compared to our
previous study (27), which is likely due to the patient-individual
strategy of selecting peptides to be assessed as T cell targets.
Here we show systemic changes in the immune cell repertoire,
encompassing both CD8+ and CD4+ T cells, responding to long
as well as short peptides, fulfilling the characteristics required for
HLA presentation.

Using a fully individualized selection strategy, based
on patient-specific mCRC HLA ligand profiles as well as

whole transcriptome sequencing (WTS), complemented with
comprehensive knowledge regarding the HLA ligand repertoire
in the context of CRC from previous work (32) and from
additional benign and malignant tissues, the broad range of
candidate peptides could be substantially minimized for each
patient. A multistep selection approach was employed to reduce
the amount of candidate peptides to numbers manageable for
manual curation. We combined different lines of evidence,
including both candidate HLA class I and HLA class II-presented
peptides as well as complementary predicted mutated HLA
ligands. We thereof selected an individual set of target peptides
for each RFA patient for immunological testing. We are aware
of the limitations of such an approach that introduces potential
–in our view limited– bias, precluding full reproducibility,
but it was essential to cope with the challenge of an extensive
target pool. Of note, this approach proved effective for the
successful identification of targets and for enriching an existing
T cell repertoire, validated by the numerous antigen-specific T
cell responses evidenced. The obtained results indeed suggest
that immunomodulation is a rather frequent feature in the
context of RFA, whereas without any obvious clinical effects.
These findings are generally in line with reports from previous
research in humans, where clinical manifestations of induced
immune responses triggered by interventional techniques
remain anecdotal (48). This notion is also supported by results
from animal testing, where such immune responses are observed
but do not appear to be robust or consistent (10). In mouse
RFA models for instance, it has been shown that although in
situ tumor ablation does create a suitable antigen source for
generating anti-tumor immunity, the induced T cell responses
are usually weak and offer protection from malignancy only in
a small subset of animals (11). Of note, in those experiments,
performed more than a decade ago, it could already be shown
that ICI may potentially augment the occurrence of RFA-induced
immune responses.

In our study, mainly non-mutated tumor-antigens were
evaluated. The antigenic repertoire of tumor cells comprises
a vast array of potential targets, which is partly invisible to
confirmatory tools like tandemmass spectrometry (MS/MS), due
to specific technical limitations. In silico, an excessive quantity
of potential HLA-restricted targets can be predicted based on
NGS data. Numbers of confirmed HLA ligands are substantially
lower than expectable by these predictions, which is likely
the reason why MS/MS-confirmed mutated neoantigens remain
rather anecdotal at present (18, 19, 49, 50), and suggests that the
sole prediction of HLA class I ligands yields an array of false
positives (51). Nevertheless, it can be stated that responses to ICI
based on tumor mutational burden (TMB) or predicted load of
mutated neoantigens may indicate which cancers are more likely
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FIGURE 5 | Analysis of antigen-specific CD4+ T cells in patient IRISS08. Reactivity of antigen-specific CD4+ T cells against selected individual tumor-associated

peptides was evaluated by flow cytometry. (A) Summary of intracellular cytokine staining (ICS) experiments after 12 day prestimulation followed by restimulation with

AREG, CCND1, and EpCAM peptides over time. Patient individual PBMCs obtained before RFA (black bars), as well as 1 month (gray bars), 4 months (hatched bars),

7 months (light gray bars), and 17 months (dotted bars) after RFA were evaluated. Activation of antigen-specific T cells is reflected by expression of CD154, as well as

by cytokine production (IFNγ, TNF, and IL-2). (B) Examples of ICS dot plots (6 month sample) after stimulation with the HLA class II-restricted CCND1 peptide

(NPPSMVAAGSVVAAV) after 12 days prestimulation. Activation of CD4+ T cells is reflected by expression of CD154, as well as cytokine production (IFNγ, TNF, and

IL-2).
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FIGURE 6 | Immunohistochemical evaluation of tumor-infiltrating immune cells into distant CRC liver metastases resected after RFA. Infiltration of immune cells into

the tumor center (A,B,D) and the invasive tumor margin (C) and was assessed by immunohistochemistry revealing comparable infiltration of CD45RO (A) and

(Continued)
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FIGURE 6 | granzyme B (B) positive cells, while infiltration of CD8+ cells (C,D) was diminished in the invasive margin (C) but not in the tumor center (D) in patients

who underwent RFA before surgery as compared to patients who solely underwent surgery. Staining of cells was automatically calculated (left) in digitalized slides.

Numbers represent absolute cell counts with specific staining per high power field (HPF) by automated counting. Exemplary immunohistochemistry stainings are

provided in the middle (patients after surgical resection) and right (patients after both RFA and surgical resection) columns (20-fold magnification). Differences were

assessed using the Mann Whitney U-Test with p < 0.05 considered as significant.

to present respective mutated neoantigens on HLA. The reasons
for this are indeed multifactorial. We have recently shown that
fundamental differences exist between high and low mutated
tumors, suggesting this may be of relevance for the probability
of presentation of mutated HLA ligands (18). Further, cancer-
related pathways may influence the HLA-presented ligandome
(32). These alterations may give rise to tumor-specific HLA
ligands with wildtype sequence. When sufficiently vetted these
targets may prove as a valid alternative to mutations (44, 52) and
might further warrant both in vitro and in vivo investigations as
performed in our study.

Descriptions of abscopal effects in mCRCwith liver metastasis
however are particularly rare even after radiotherapy (53), since
the liver is considered inherently tolerogenic and does not favor
the induction of immune responses (54).

Furthermore, clinically relevant RFA-induced immunity
apparent by distinct clinically recognizable effects in humans
is hardly known and most insights in this regard have been
derived from animal research. It may be indeed relevant how
RFA is precisely performed for the generation of immune
responses, since immunological effects may result more effective
in malignant tissue that is only treated with subtotal RFA, which
has been shown to enable induction of tumor-specific CD8+ and
CD4+ T cells as well as tumor regression in mice (55).

Further, putative influencing factors are inter alia the
properties of the ablated tumor tissue and numbers and quality
of immunogenic epitopes (56). It is easily conceivable that these
properties might influence tumor recognition by the immune
system, something that has been impressively shown for CRC
treated with ICI, where highly mutated cancers responded,
whereas sporadic CRCs with low mutation rates did not (21).
Here, we observed immune responses to various antigens,
among these established tumor-antigens such as cyclin D1 used
already in different vaccination approaches (57, 58), but also
in one case the recognition of a predicted mutation-derived
peptide. The mutation, which was recognized by CD4+ T cells,
was directed against ERBB3 and could be shown to induce
multi-cytokine responses (strongly attenuated for the respective
wildtype peptide). Further, this immune response was induced
only after RFA and shown as generally increased 7 months after
treatment. Of note, a mutation in ERBB2 interacting protein,
also recognized by CD4+ T cells, exhibiting a TH1 profile,
has been shown effective for mediating tumor regression in a
patient with metastatic cholangiocarcinoma treated by adoptive
cell transfer (17).

However, in our study immune infiltrates in non-ablated
mCRC liver lesions resected after RFA proved generally
scarce by immunohistochemistry. Comparing these non-ablated
malignant liver lesions removed after RFA to lesions frommCRC

patients with surgery only, significantly lower CD4+ cell counts
in the tumor center as well as decreased numbers of CD8+ and
CD4+ cells at the tumor border were observed for the RFA +

surgery group. These findings support the notion that clinically
relevant abscopal effects are rare and not clinically robust. It
should be noted though, we do only provide a very limited patient
cohort and the analyses only give an impression of the effects
observed about 4 weeks after RFA in liver lesions. Further, for
instance potential dynamics over time remain unknown. Also,
in RFA-treated hepatocellular carcinoma, significantly increased
responsiveness to tumor antigens and elevated frequencies of
circulating tumor antigen-specific T cells were reported, whereas
these effects showed insufficient for tumor control (59). Hence,
we may conclude that although immunomodulatory effects in
the context of RFA seem to constitute rather the norm than
an exception, they may still prove largely ineffective for the
induction of robust clinical effects.

Concerning the clinical course of our patients, the combined
RFA and surgical treatment, proved comparable to the surgery
only group assessed in parallel both with regard to progression
free survival (PFS) and overall survival (OS). Some patients in
both groups even showed long-term survival. That in mCRC
metastasized to the liver, both RFA and surgery and surgical
treatment alone may yield similar OS results has recently been
concluded from a meta-analysis (60). It is important to realize
that patients with several CRC liver metastases are usually
considered to be in a palliative stage but may still benefit from
a combination of RFA and surgery, as also our survival data
suggest. Against this background, larger clinical trials to evaluate
the combination of both treatment modalities seem warranted.

In summary, our data show that thermal ablation of
metastases induced or boosted tumor-antigen specific T cell
responses in half of the mCRC patients evaluated by us. These
T cell reactivities can be detected on an individual level,
supporting the hypothesis that tumor-directed immunity might
include mutated neoantigens and tumor-associated antigens
with wildtype sequence that are “selected by nature itself ”
and that most successful immunotherapies remain limited to
strategies strictly confined to individualized approaches (61–
64). Since ICI unleash T cell-mediated immune responses
non-specifically but rely on natural T cell responses that
are individual for each patient (65–67), approaches such
as RFA for modulating T cell immunity are anticipated to
prove beneficial in this context. There is no doubt to us
that T cell responses triggered by thermal ablation generate
very limited clinical activity [reviewed in (8)], which is also
supported by the data presented in this study. However, our
data suggest that RFA-induced immune responses are very
frequent and might be boosted by adequate combination
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FIGURE 7 | Clinical course and survival of study patients. (A) Individual clinical course of patients with colorectal cancer (CRC) metastasized to the liver undergoing

RFA followed by surgical resection (top 9 patients, above x-axis) and patients with surgery only (lower 7 patients, below x-axis). Gray arrows indicate time between

(Continued)
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FIGURE 7 | initial CRC diagnosis and last follow-up. Light gray parts of the arrows indicate variable time spans not fitted to scale. Numbers shown indicate durations

of follow-up after surgical resection. In line, respective time spans are normalized to the date of surgery (for comparability with the control group; here defined as day

0). Time points on the x-axis are relative to the time of surgery. Black triangles indicate disease recurrence before (left of y-axis) and after (right of y-axis) study

inclusion. Patients with recurrence before RFA and/or surgery represent individuals with metachronous metastasis, while patients without recurrence before RFA

and/or surgery had synchronous metastases. Red circles indicate time points of RFA. Crosses indicate passing of patients. (B) Progression free (left; PFS) and overall

survival (OS) of the complete patient cohort was estimated using Kaplan Meier Regression analysis (n = 16). Survival data are presented for patients undergoing RFA

followed by surgical resection (green dashed lines, n = 9) and for patients with surgical resection only (blue lines, n = 7). Differences were assessed by log rank with p

< 0.05 considered as significant.

treatments. This needs to be investigated in future trials,
combining thermal ablation with established (e.g. immune
checkpoint inhibitors) and/or novel adjuvants in order to
induce more potent –and presumably clinically relevant–
immune responses.
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Supplementary Figure 1 | Analysis of antigen-specific CD8+ T cells in patient

IRISS08. Reactivity of antigen-specific CD8+ T cells against selected individual
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tumor-associated peptides was evaluated by ICS over time before RFA (A) and

after 6 months (B). T cells were prestimulated for 12 days and restimulated with

peptides derived from interferon alpha-inducible protein 6 (IFI6) and aggrecan core

protein (PGCA). As positive control, PMA and ionomycin were used. As negative

control, 10% DMSO was employed. Positivity criteria used throughout this article

are provided in the materials and methods section. Activation of CD8+ T cells is

reflected by expression of CD107a, as well as cytokine production of IFNγ

and TNF.

Supplementary Figure 2 | Analysis of antigen-specific T cells in patients

IRISS01, IRISS05, IRISS09, and IRISS12. Reactivity of antigen-specific CD4+

T cells against selected individual tumor-associated peptides was evaluated by

ICS over time. Respective time points of sample obtainment for individual patients

are indicated. Patients PBMCs were presensitized for 12 days, restimulated with

denoted peptides, and tested in ICS as detailed in Material and Methods.

(A–D) Expression of CD154, IFN-γ, TNF, and IL-2 in the CD4+ subset. For

IRISS05 and IRISS12, cell numbers were limited before RFA treatment (day 0).

Therefore, peptide pools were used. (E) Dot-plots corresponding with tests shown

in (D) showing FN1-reactive CD4+ T cells 1.5M after RFA. Positive responses

were defined as detailed in Material and Methods. Additional negative test results

are omitted.

Supplementary Figure 3 | Immunohistochemical evaluation of CD4 and HSP70

in distant CRC liver metastases resected after RFA. (A,B) Infiltration of CD4+ cells

(including Th, Tregs, possibly macrophages) into the invasive tumor margin

(A; border) and tumor center (B) was assessed in immunohistochemistry revealing

decreased detection of CD4+ cells in patients who underwent RFA before surgery.

(C,D) Heat shock protein 70 (HSP70) expression was significantly diminished in

the cytoplasm (cyt., C) and in the nucleus (nuc., D). Staining of cells was

automatically calculated (left) in digitalized slides. Numbers represent absolute cell

counts with specific staining per high power field (HPF) by automated counting.

Exemplary immunohistochemistry stainings are provided in the middle (patients

after surgical resection) and right (patients after both RFA and surgical resection)

columns (20-fold magnification). Differences were assessed using the Mann

Whitney U-Test with p < 0.05 considered as significant.

Supplementary Table 1 | Patient characteristics.

Supplementary Table 2 | Overview of selected individual peptides for

immunological testing.

Supplementary Table 3 | Selection of HLA class I peptides for identification of

potential candidate antigens for immune analyses. A detailed description of the

different selection steps can be found in Figure 2 (exemplified for patient IRISS12).

Supplementary Table 4 | Selection of HLA class II peptides for identification of

potential candidate antigens for immune analyses. A detailed description of the

different selection steps can be found in Figure 3 (exemplified for patient IRISS12).
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